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Preface

This book uses a model we have developed for teaching mathematical statistics
through in-depth case studies. Traditional statistics texts have many small numer-
ical examples in each chapter to illustrate a topic in statistical theory. Here, we
instead make a case study the centerpiece of each chapter. The case studies, which
we call labs, raise interesting scientific questions, and figuring out how to answer a
question is the starting point for developing statistical theory. The labs are substan-
tial exercises; they have nontrivial solutions that leave room for different analyses
of the data. In addition to providing the framework and motivation for studying
topics in mathematical statistics, the labs help students develop statistical thinking.
We feel that this approach integrates theoretical and applied statistics in a way not
commonly encountered in an undergraduate text.

The Student

The book is intended for a course in mathematical statistics for juniors and seniors.
We assume that students have had one year of calculus, including Taylor series, and
a course in probability. We do not assume students have experience with statistical
software so we incorporate lessons into our course on how to use the software.

Theoretical Content

The topics common to most mathematical statistics texts can be found in this
book, including: descriptive statistics, experimental design, sampling, estimation,
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testing, contingency tables, regression, simple linear least squares, analysis of vari-
ance, and multiple linear least squares. Also found here are many selected topics,
such as quantile plots, the bootstrap, replicate measurements, inverse regression,
ecological regression, unbalanced designs, and response surface analysis.

This book differs from a standard mathematical statistics text in three essential
ways. The first way is in how the topic of testing is covered. Although we address
testing in several chapters and discuss thez, t , andF tests as well as chi-square
tests of independence and homogeneity, Fisher’s exact test, Mantel-Haenszel test,
and the chi-square goodness of fit test, we do not cover all of the special cases oft

tests that are typically found in mathematical statistics texts. We also do not cover
nonparametric tests. Instead we cover more topics related to linear models.

The second main difference is the depth of the coverage. We are purposefully
brief in the treatment of most of the theoretical topics. The essential material is
there, but details of derivations are often left to the exercises.

Finally this book differs from a traditional mathematical statistics text in its
layout. The first four sections of each chapter provide the lab’s introduction, data
description, background, and suggestions for investigating the problem. The the-
oretical material comes last, after the problem has been fully developed. Because
of this novel approach, we have included an Instructor’s Guide toStat Labs, where
we describe the layout of the chapters, the statistical content of each chapter, and
ideas for how to use the book in a course.

The design ofStat Labsis versatile enough to be used as the main text for a
course, or as a supplement to a more theoretical text. In a typical semester, we
cover about 10 chapters. The core chapters that we usually cover are Chapter 1
on descriptive statistics, Chapter 2 on simple random sampling, Chapter 4 on
estimation and testing, and Chapter 7 on regression. Other chapters are chosen
according to the interests of students. We give examples of semester courses for
engineering, social science, and life science students in the Instructor’s Guide.
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Instructor’s Guide toStat Labs

The labs you find here in this text are case studies that serve to integrate the practice
and theory of statistics. The instructor and students are expected to analyze the
data provided with each lab in order to answer a scientific question posed by
the original researchers who collected the data. To answer a question, statistical
methods are introduced, and the mathematical statistics underlying these methods
are developed.

The Design of a Chapter

Each chapter is organized into five sections: Introduction, Data, Background, In-
vestigations, and Theory. Sometimes we include a section called Extensions for
more advanced topics.

Introduction

Here a clear scientific question is stated, and motivation for answering it is given.
The question is presented in the context of the scientific problem, and not as a
request to perform a particular statistical method. We avoid questions suggested
by the data, and attempt to orient the lab around the original questions raised by
the researchers who collected the data.

The excerpt found at the beginning of a chapter relates the subject under inves-
tigation to a current news story, which helps convey the relevance of the question
at hand.
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Data

Documentation for the data collected to address the question is provided in the
Data section. Also, this section includes a description of the study protocol. The
data can be found at theStat Labswebsite:
www.stat.berkeley.edu/users/statlabs/

Background

The Background section contains scientific material that helps put the problem
in context. The information comes from a variety of sources, and is presented in
nontechnical language.

Investigations

Suggestions for answering the question posed in the Introduction appear in the
Investigations section. These suggestions are written in the language of the lab’s
subject matter, using very little statistical terminology. They can be used as an
assignment for students to work on outside of the classroom, or as a guide for the
instructor for discussing and presenting analyses to answer the question in class.

The suggestions vary in difficulty, and are grouped to enable the assignment of
subsets of investigations. Also included are suggestions on how to write up the
results. Appendix A gives tips on how to write a good lab report.

Theory

The theoretical development appears at the end of the chapter in the Theory section.
It includes both material on general statistical topics, such as hypothesis testing
and parameter estimation, and on topics specific to the lab, such as goodness-of-
fit tests for the Poisson distribution and parameter estimation for the log-normal
distribution. The exercises at the end of the Theory section are designed to give
practice with the theoretical material introduced in the section. Some also extend
ideas introduced in the section. The exercises can be used for paper-and-pencil
homework assignments.

Statistical Topics

The table below lists the main statistical topics covered in each chapter. All of
the basic topics found in most mathematical statistics texts are included here: de-
scriptive statistics, experimental design, sampling, estimation, testing, contingency
tables, regression, simple linear least squares, analysis of variance, and multiple
linear least squares. We also list some of the additional specialized topics covered
in each chapter.
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Chapter Main Topic Some Additional Topics
1 descriptive statistics quantile plots,

normal approximation
2 simple random sampling confidence intervals
3 stratified sampling parametric bootstrap

allocation
4 estimation and testing goodness-of-fit tests,

information, asymptotic variance
5 contingency tables experimental design
6 Poisson counts and rates Mantel-Haenszel test
7 regression prediction
8 simple linear model replicate measurements,

transformations, inverse regression
9 ecological regression weighted regression
10 multiple linear regression model checking, projections
11 analysis of variance unbalanced designs,

indicator variables
12 response surface analysis factorial design

Sample Courses

This book can be used as the main text for a course, or as a supplement to a more
theoretical text. In a typical semester, we cover eight to ten chapters. We spend
about one week on each of the chapters, with the exception of Chapters 4, 10,
and 11, which require up to two weeks to cover.

The core chapters that we usually include in a course are Chapter 1 on descrip-
tive statistics, Chapter 2 on simple random sampling, Chapter 4 on estimation
and testing, and Chapter 7 on regression. Other chapters are chosen according to
the interests of students. In a one semester course for engineers we may include
Chapter 3 on stratified sampling, Chapter 5 on experimental design, Chapter 8 on
calibration and inverse regression, Chapter 11 on analysis of variance, and Chap-
ter 12 on response surface analysis. In a course designed for social and life science
majors we tend to include Chapter 3 on stratified sampling, Chapter 6 on estimat-
ing mortality rates, Chapter 9 on ecological regression, Chapter 10 on multiple
regression, and Chapter 11 on analysis of variance.

Lab Assignments

We have found that our course is most successful when we incorporate the labs
into the class room, and not leave them as exercises for students to work on solely
outside of class. Often, we have students work on four or five of the ten labs
covered in course. They have as their assignment, to address the suggestions in
the Investigations section. Students analyze the data and write a report on their
findings. We give two to three weeks for them to complete the assignment, and
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we sometimes allow them to work in groups of two or three. An alternative to this
approach has students work on final projects of their own choosing. In this case,
we make fewer lab assignments.

Software

For most of the labs, statistical software is needed to analyze the data. The excep-
tions are Chapters 2, 5, and 12. For these three chapters a statistical calculator is
sufficient.

We have had success in using the software S-plus and R in the course. For
those unfamiliar with R, the syntax of the language is similar to that of S-
plus, and it is free. Students can easily down load a copy from the worldwide
web (lib.stat.cmu.edu/R/) to run on their PCs, and so be able to work on
assignments at home.

We advise students to consult an introductory text on how to use the software.
For S-plus, we recommendAn Introduction to S and S-plus, P. Spector, Wadsworth,
1994. For R we recommendAn Introduction to R, the R Development Core Team,
which can be found at the R website (lib.stat.cmu.edu/R/) and copied at no
cost.

In our experience, we have found it important to provide assistance outside
of class time on how to use the statistical software. One place where we do
this is in section, where we sometimes meet in a computer laboratory room to
work on the assignment and provide advice as needed. We also build a Fre-
quently Asked Questions (FAQ) web page for each lab assignment. The page
contains sample code and answers to questions students have asked in office
hours, class, and section. These FAQs are available at theStat Labswebsite
(www.stat.berkeley.edu/users/statlabs/).

Grading

It can be difficult to grade the lab reports, because the investigations allow students
to be creative in their solutions to the problem. We often base our grading on four
aspects of the report: composition and presentation, basic analyses, graphs and
tables, and advanced analyses. Sometimes we also request an appendix to the
report for technical material.

Class time

This book is ideal for teaching statistics in a format that breaks away from the tra-
ditional lecture style. We have used it in classes where the enrollment ranges from
20 to 60 students, and where classes meet three hours a week with the instructor
and one to two hours a week with a teaching assistant. In all of these classes we
have found that interactive teaching is both possible and desirable.
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In smaller classes, we run the class in a seminar style with time spent brain-
storming on how to solve the problems in the Investigations section. Solving these
problems leads to new statistical methods, and class time then alternates to lectures
in order to cover these topics in mathematical statistics.

In the larger classes, we rely on group work in class to facilitate the discussion
and analysis. We often supply handouts with an abbreviated list of investigations,
and ask students to come up with a plan of attack for how to begin to address
the questions. After they discuss their plan, we present results from analyses we
have prepared in advance in anticipation of their suggestions. Other times, students
are given a set of charts and graphs and they are asked to further summarize and
interpret the output in order to answer questions from the Investigations section.
Groups present their solutions and the instructor leads the class in a discussion of
the analysis.

Another alternative that we have tried has groups of students prepare in advance
to discuss a lab in class. They make a presentation to the class, and supply their
own handouts and materials.

Whatever way you decide to use this book, we hope you will find it useful in
augmenting your mathematical statistics course with substantial applications.
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1
Maternal Smoking and Infant Health

A new study of more than
7.5 million births has challenged
the assumption that low birth
weights per se are the cause of the
high infant mortality rate in the
United States. Rather, the new
findings indicate, prematurity is
the principal culprit.

Being born too soon, rather
than too small, is the main
underlying cause of stillbirth and
infant deaths within four weeks of
birth.

Each year in the United
States about 31,000 fetuses die
before delivery and 22,000
newborns die during the first 27
days of life.

The United States has a
higher infant mortality rate than
those in 19 other countries, and
this poor standing has long been
attributed mainly to the large
number of babies born too small,
including a large proportion who
are born small for date, or
weighing less than they should for
the length of time they were in the
womb.

The researchers found that
American-born babies, on

average, weigh less than babies
born in Norway, even when the
length of the pregnancy is the
same. But for a given length of
pregnancy, the lighter American
babies are no more likely to die
than are the slightly heavier
Norwegianbabies.

The researchers, directed by
Dr. Allen Wilcox of the National
Institute of EnvironmentalHealth
Sciences in Research Triangle
Park, N.C., concluded that
improving the nation s infant
mortality rate would depend on
preventing preterm births, not on
increasing the average weight of
newborns.

Furthermore, he cited an
earlier study in which he
compared survival rates among
low-birth-weight babies of
women who smoked during
pregnancy.

Ounce for ounce, he said,
the babies of smoking mothers

had a higher survival rate . As he
explained this paradoxical finding,
although smoking interferes with
weight gain, it does not shorten
pregnancy.

New York Times� �� ��WEDNESDAY, MARCH 1, 1995

Infant Deaths Tied to

Premature Births

Low weights not solely to blame

1

1Reprinted by permission.
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Introduction

One of the U.S. Surgeon General’s health warnings placed on the side panel of
cigarette packages reads:

Smoking by pregnant women may result in fetal injury, premature birth, and
low birth weight.

In this lab, you will have the opportunity to compare the birth weights of babies
born to smokers and nonsmokers in order to determine whether they corroborate the
Surgeon General’s warning. The data provided here are part of the Child Health and
Development Studies (CHDS)—a comprehensive investigation of all pregnancies
that occurred between 1960 and 1967 among women in the Kaiser Foundation
Health Plan in the San Francisco–East Bay area (Yerushalmy [Yer71]). This study
is noted for its unexpected findings that ounce for ounce the babies of smokers did
not have a higher death rate than the babies of nonsmokers.

Despite the warnings of the Surgeon General, the American Cancer Society, and
health care practitioners, many pregnant women smoke. For example, the National
Center for Health Statistics found that 15% of the women who gave birth in 1996
smoked during their pregnancy.

Epidemiological studies (e.g., Merkatz and Thompson [MT90]) indicate that
smoking is responsible for a 150 to 250 gram reduction in birth weight and that
smoking mothers are about twice as likely as nonsmoking mothers to have a low-
birth-weight baby (under 2500 grams). Birth weight is a measure of the baby’s
maturity. Another measure of maturity is the baby’s gestational age, or the time
spent in the womb. Typically, smaller babies and babies born early have lower
survival rates than larger babies who are born at term. For example, in the CHDS
group, the rate at which babies died within the first 28 days after birth was 150
per thousand births for infants weighing under 2500 grams, as compared to 5 per
thousand for babies weighing more than 2500 grams.

The Data

The data available for this lab are a subset of a much larger study — the Child
Health and Development Studies (Yerushalmy [Yer64]). The entire CHDS database
includes all pregnancies that occurred between 1960 and 1967 among women in
the Kaiser Foundation Health Plan in Oakland, California. The Kaiser Health Plan
is a prepaid medical care program. The women in the study were all those enrolled
in the Kaiser Plan who had obtained prenatal care in the San Francisco–East Bay
area and who delivered at any of the Kaiser hospitals in Northern California.

In describing the 15,000 families that participated in the study, Yerushalmy
states ([Yer64]) that

The women seek medical care at Kaiser relatively early in pregnancy. Two-
thirds report in the first trimester; nearly one-half when they are pregnant for
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2 months or less. The study families represent a broad range in economic,
social and educational characteristics. Nearly two-thirds are white, one-fifth
negro, 3 to 4 percent oriental, and the remaining are members of other
races and of mixed marriages. Some 30 percent of the husbands are in
professional occupations. A large number are members of various unions.
Nearly 10 percent are employed by the University of California at Berkeley
in academic and administrative posts, and 20 percent are in government
service. The educational level is somewhat higher than that of California
as a whole, as is the average income. Thus, the study population is broadly
based and is not atypical of an employed population. It is deficient in the
indigent and the very affluent segments of the population since these groups
are not likely to be represented in a prepaid medical program.

At birth, measurements on the baby were recorded. They included the baby’s
length, weight, and head circumference. Provided here is a subset of this informa-
tion collected for 1236 babies — those baby boys born during one year of the study
who lived at least 28 days and who were single births (i.e., not one of a twin or
triplet). The information available for each baby is birth weight and whether or not
the mother smoked during her pregnancy. These variables and sample observations
are provided in Table 1.1.

Background

Fetal Development

The typical gestation period for a baby is 40 weeks. Those born earlier than 37
weeks are considered preterm. Few babies are allowed to remain in utero for
more than 42 weeks because brain damage may occur due to deterioration of the
placenta. The placenta is a special organ that develops during pregnancy. It lines
the wall of the uterus, and the fetus is attached to the placenta by its umbilical cord
(Figure 1.1). The umbilical cord contains blood vessels that nourish the fetus and
remove its waste.

TABLE 1.1. Sample observations and data description for the 1236 babies in the Child
Health and Development Studies subset.

Birth weight 120 113 128 123 108 136 138 132
Smoking status 0 0 1 0 1 0 0 0

Variable Description
Birth weight Baby’s weight at birth in ounces.

(0.035 ounces = 1 gram)
Smoking status Indicator for whether the mother smoked (1)

or not (0) during her pregnancy.
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Placenta

Umbillical
cord

HeartLung

FIGURE 1.1. Fetus and placenta.

At 28 weeks of age, the fetus weighs about 4 to 5 pounds (1800 to 2300 grams)
and is about 40 centimeters (cm) long. At 32 weeks, it typically weighs 5 to 5.5
pounds (2300 to 2500 grams) and is about 45 cm long. In the final weeks prior to
delivery, babies gain about 0.2 pounds (90 grams) a week. Most newborns range
from 45 to 55 cm in length and from 5.5 to 8.8 pounds (2500 to 4000 grams).
Babies born at term that weigh under 5.5 pounds are considered small for their
gestational age.

Rubella

Before the 1940s, it was widely believed that the baby was in a protected state
while in the uterus, and any disease the mother contracted or any chemical that she
used would not be transmitted to the fetus. This theory was attacked in 1941 when
Dr. Norman Gregg, an Australian ophthalmologist, observed an unusually large
number of infants with congenital cataracts. Gregg checked the medical history
of the mothers’ pregnancies and found that all of them had contracted rubella
in the first or second month of their pregnancy. (There had been a widespread
and severe rubella epidemic in 1940.) In a presentation of his findings to the
Opthalmological Society of Australia, Gregg ([Gre41]) replied to comments on
his work saying that

. . .he did not want to be dogmatic by claiming that it had been established the
cataracts were due solely to the “German measles.” However, the evidence
afforded by the cases under review was so striking that he was convinced that
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there was a very close relationship between the two conditions, particularly
because in the very large majority of cases the pregnancy had been normal
except for the “German measles” infection. He considered that it was quite
likely that similar cases may have been missed in previous years either
from casual history-taking or from failure to ascribe any importance to an
exanthem [skin eruption] affecting the mother so early in her pregnancy.

Gregg was quite right. Oliver Lancaster, an Australian medical statistician, checked
census records and found a concordance between rubella epidemics and later
increase in registration at schools for the deaf. Further, Swan, a pediatrician in
Australia, undertook a series of epidemiological studies on the subject and found
a connection between babies born to mothers who contracted rubella during the
epidemic while in their first trimester of pregnancy and heart, eye, and ear defects
in the infant.

A Physical Model

There are many chemical agents in cigarette smoke. We focus on one: carbon
monoxide. It is commonly thought that the carbon monoxide in cigarette smoke
reduces the oxygen supplied to the fetus. When a cigarette is smoked, the carbon
monoxide in the inhaled smoke binds with the hemoglobin in the blood to form
carboxyhemoglobin. Hemoglobin has a much greater affinity for carbon monoxide
than oxygen. Increased levels of carboxyhemoglobin restrict the amount of oxygen
that can be carried by the blood and decrease the partial pressure of oxygen in blood
flowing out of the lungs. For the fetus, the normal partial pressure in the blood
is only 20 to 30 percent that of an adult. This is because the oxygen supplied to
the fetus from the mother must first pass through the placenta to be taken up by
the fetus’ blood. Each transfer reduces the pressure, which decreases the oxygen
supply.

The physiological effects of a decreased oxygen supply on fetal development
are not completely understood. Medical research into the effect of smoking on
fetal lambs (Longo [Lon76]) provides insight into the problem. This research has
shown that slight decreases in the oxygen supply to the fetus result in severe oxygen
deficiency in the fetus’ vital tissues.

A steady supply of oxygen is critical for the developing baby. It is hypothesized
that, to compensate for the decreased supply of oxygen, the placenta increases
in surface area and number of blood vessels; the fetus increases the level of
hemoglobin in its blood; and it redistributes the blood flow to favor its vital parts.
These same survival mechanisms are observed in high-altitude pregnancies, where
the air contains less oxygen than at sea level. The placenta at high altitude is larger
in diameter and thinner than a placenta at sea level. This difference is thought
to explain the greater frequency in high-altitude pregnancies of abruptia placenta,
where the placenta breaks away from the uterine wall, resulting in preterm delivery
and fetal death (Meyer and Tonascia [MT77]).
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Is the Difference Important?

If a difference is found between the birth weights of babies born to smokers and
those born to nonsmokers, the question of whether the difference is important to
the health and development of the babies needs to be addressed.

Four different death rates — fetal, neonatal, perinatal, and infant — are used by
researchers in investigating babies’ health and development. Each rate refers to a
different period in a baby’s life. The first is the fetal stage. It is the time before
birth, and “fetal death” refers to babies who die at birth or before they are born.
The term “neonatal” denotes the first 28 days after birth, and “perinatal” is used
for the combined fetal and neonatal periods. Finally, the term “infant” refers to a
baby’s first year, including the first 28 days from birth.

In analyzing the pregnancy outcomes from the CHDS, Yerushalmy ([Yer71])
found that although low birth weight is associated with an increase in the number of
babies who die shortly after birth, the babies of smokers tended to have much lower
death rates than the babies of nonsmokers. His calculations appear in Ta-
ble 1.2. Rather than compare the overall mortality rate of babies born to smokers
against the rate for babies born to nonsmokers, he made comparisons for smaller
groups of babies. The babies were grouped according to their birth weight; then,
within each group, the numbers of babies that died in the first 28 days after birth for
smokers and nonsmokers were compared. To accommodate the different numbers
of babies in the groups, rates instead of counts are used in making the comparisons.

The rates in Table 1.2 are not adjusted for the mother’s age and other factors that
could potentially misrepresent the results. That is, if the mothers who smoke tend
to be younger than those who do not smoke, then the comparison could be unfair
to the nonsmokers because older women, whether they smoke or not, have more
problems in pregnancy. However, the results agree with those from a Missouri
study (see the left plot in Figure 1.2), which did adjust for many of these factors
(Malloy et al. [MKLS88]). Also, an Ontario study (Meyer and Tonascia [MT77])
corroborates the CHDS results. This study found that the risk of neonatal death for
babies who were born at 32+ weeks gestation is roughly the same for smokers and

TABLE 1.2. Neonatal mortality rates per 1000 births by birth weight (grams) for live-born
infants of white mothers, according to smoking status (Yerushalmy [Yer71]).

Weight category Nonsmoker Smoker
≤ 1500 792 565

1500–2000 406 346
2000–2500 78 27
2500–3000 11.6 6.1
3000–3500 2.2 4.5
3500+ 3.8 2.6

Note: 1500 to 2000 grams is roughly 53 to
71 ounces.
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FIGURE 1.2. Mortality curves for smokers and nonsmokers by kilograms (left plot) and by
standard units (right plot) of birth weight for the Missouri study (Wilcox [Wil93]).

nonsmokers. It was also found that the smokers had a higher rate of very premature
deliveries (20–32 weeks gestation), and so a higher rate of early fetal death.

As in the comparison of Norwegian and American babies (New York Times, Mar.
1, 1995), in order to compare the mortality rates of babies born to smokers and those
born to nonsmokers, Wilcox and Russell ([WR86]) and Wilcox ([Wil93]) advocate
grouping babies according to their relative birth weights. A baby’s relative birth
weight is the difference between its birth weight and the average birth weight for its
group as measured in standard deviations(SDs); it is also called the standardized
birth weight. For a baby born to a smoker, we would subtract from its weight
the average birth weight of babies born to smokers (3180 grams) and divide this
difference by 500 grams, the SD for babies born to smokers. Similarly, for babies
born to nonsmokers, we standardize the birth weights using the average and SD
for their group, 3500 grams and 500 grams, respectively. Then, for example, the
mortality rate of babies born to smokers who weigh 2680 grams is compared to
the rate for babies born to nonsmokers who weigh 3000 grams, because these
weights are both 1 SD below their respective averages. The right plot in Figure 1.2
displays in standard units the mortality rates from the left plot. Because the babies
born to smokers tend to be smaller, the mortality curve is shifted to the right
relative to the nonsmokers’ curve. If the babies born to smokers are smaller but
otherwise as healthy as babies born to nonsmokers, then the two curves in standard
units should roughly coincide. Wilcox and Russell found instead that the mortality
curve for smokers was higher than that for nonsmokers; that is, for babies born
at term, smokers have higher rates of perinatal mortality in every standard unit
category.
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Investigations

What is the difference in weight between babies born to mothers who smoked
during pregnancy and those who did not? Is this difference important to the health
of the baby?

• Summarize numerically the two distributions of birth weight for babies born
to women who smoked during their pregnancy and for babies born to women
who did not smoke during their pregnancy.

• Use graphical methods to compare the two distributions of birth weight. If you
make separate plots for smokers and nonsmokers, be sure to scale the axes
identically for both graphs.

• Compare the frequency, or incidence, of low-birth-weight babies for the two
groups. How reliable do you think your estimates are? That is, how would
the incidence of low birth weight change if a few more or fewer babies were
classified as low birth weight?

• Assess the importance of the differences you found in your three types of
comparisons (numerical, graphical, incidence).

Summarize your investigations for the CHDS babies. Include the most relevant
graphical output from your analysis. Relate your findings to those from other
studies.

Theory

In this section, several kinds of summary statistics are briefly described. When
analyzing a set of data, simple summaries of the list of numbers can bring insight
about the data. For example, the mean and the standard deviation are frequently
used as numerical summaries for the location and spread of the data. A graphical
summary such as a histogram often provides information on the shape of the data
distribution, such as symmetry, modality, and the size of tails.

We illustrate these statistics with data from the 1236 families selected for this
lab from the Child Health and Development Study (CHDS). The data used here are
described in detail in the Data section of the continuation of this lab in Chapter 10.
For each statistic presented, any missing data are ignored, and the number of
families responding is reported.

The Histogram

Figure 1.3 displays a histogram for the heights of mothers in the CHDS. The
histogram is unimodal and symmetric. That is, the distribution has one mode
(peak), around 64 inches, and the shape of the histogram to the left of the peak
looks roughly like the mirror image of the part of the histogram to the right of the
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FIGURE 1.3. Histogram of mother’s height for 1214 mothers in the CHDS subset.

peak. Outliers can be detected via histograms as well. They are observations that
fall well outside the main range of the data. There appear to be a few very short
mothers in the study.

In contrast to the height distribution, the histogram of the number of cigarettes
smoked per day for those mothers who smoked during their pregnancy has a very
different appearance (Figure 1.4). It shows two modes, one at 5–10 cigarettes and
the other at 20–30 cigarettes. The distribution is asymmetric; that is it is right-
skewed with the mode around 20–30 cigarettes less peaked than the mode at 0–5
cigarettes and with a long right tail. For unimodal histograms, a right-skewed
distribution has more area to the right of the mode in comparison with that to the
left; a left-skewed distribution has more area to the left.

A histogram is a graphical representation of a distribution table. For example,
Table 1.3 is a distribution table for the number of cigarettes smoked a day by
mothers who smoked during their pregnancy. The intervals include the left endpoint
but not the right endpoint; for example the first interval contains those mothers who
smoke up to but not including 5 cigarettes a day. In the histogram in Figure 1.4,
the area of each bar is proportional to the percentage (or count) of mothers in the
corresponding interval. This means that the vertical scale is percent per unit of
measurement (or count per unit). The bar over the interval from 0 to 5 cigarettes is
3.2% per cigarette in height and 5 cigarettes in width: it includes all women who
reported smoking up to an average of 5 cigarettes a day. Hence the area of the bar
is

5 cigarettes× 3.2%/cigarette� 16%.
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FIGURE 1.4. Histogram of the number of cigarettes smoked per day for the 484 mothers
who smoked in the CHDS subset.

TABLE 1.3. Distribution of the number of cigarettes smoked per day for 484 mothers in
the CHDS subset who smoked during their pregnancy, rounded to the nearest percent.

Number Percent
of cigarettes of smokers

0–5 16
5–10 25
10–15 14
15–20 4
20–30 32
30–40 5
40–60 4
Total 100

This bar is the same height as the bar above 20–30 cigarettes even though it has
twice the number of mothers in it. This is because the 20–30 bar is twice as wide.
Both bars have the same density of mothers per cigarette (i.e., 3.2% per cigarette).

Histograms can also be used to answer distributional questions such as: what
proportion of the babies weigh under 100 ounces or what percentage of the babies
weigh more than 138 ounces. From the histogram in Figure 1.5, we sum the areas
of the bars to the left of 100 and find that 14% of the babies weigh under 100
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FIGURE 1.5. Histogram of infant birth weight for 1236 babies in the CHDS subset.

ounces. However, to answer the second question, we note that 138 does not fall
at an interval endpoint of the histogram, so we need to approximate how many
babies weigh between 138 and 140 ounces. To do this, split up the interval that
runs from 130 to 140 into 10 one-ounce subintervals. The bar contains 14.2% of
the babies, so we estimate that each one-ounce subinterval contains roughly 1.4%
of the babies and 2.8% of the babies weigh 138–140 ounces. Because 12.5% of the
babies weigh over 140 ounces, our estimate is that 15.3% of the babies weigh more
than 138 ounces. In fact, 15.1% of the babies weighed more than this amount. The
approximation was quite good.

Numerical Summaries

A measure of location is a statistic that represents the center of the data distribution.
One such measure is the mean, which is the average of the data. The mean can be
interpreted as the balance point of the histogram. That is, if the histogram were
made up of bars sitting on a weightless balance beam, the mean would be the point
at which the histogram would balance on the beam.

For a list of numbersx1, . . . xn, the mean̄x is computed as follows:

x̄ � 1

n

n∑
i�1

xi.

A measure of location is typically accompanied by a measure of dispersion that
gives an idea as to how far an individual value may vary from the center of the
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data. One such measure is the standard deviation (SD). The standard deviation is
the root mean square (r.m.s.) of the deviations of the numbers on the list from the
list average. It is computed as

SD(x) �
√√√√1

n

n∑
i�1

(xi − x̄)2.

An alternative measure of location is the median. The median is the point that
divides the data (or list of numbers) in half such that at least half of the data are
smaller than the median and at least half are larger. To find the median, the data
must be put in order from smallest to largest.

The measure of dispersion that typically accompanies the median is the in-
terquartile range (IQR). It is the difference between the upper and lower quartiles
of the distribution. Roughly, the lower quartile is that number such that at least
25% of the data fall at or below it and at least 75% fall at or above it. Similarly, the
upper quartile is the number such that at least 75% of the data fall at or below it
and at least 25% fall at or above it. When more than one value meets this criterion,
then typically the average of these values is used. For example, with a list of 10
numbers, the median is often reported as the average of the 5th and 6th largest
numbers, and the lower quartile is reported as the 3rd smallest number.

For infant birth weight, the mean is 120 ounces and the SD is 18 ounces. Also,
the median is 120 ounces and the IQR is 22 ounces. The mean and median are very
close due to the symmetry of the distribution. For heavily skewed distributions, they
can be very far apart. The mean is easily affected by outliers or an asymmetrically
long tail.

Five-Number Summary

The five-number summary provides a measure of location and spread plus some
additional information. The five numbers are: the median, the upper and lower
quartiles, and the extremes (the smallest and largest values). The five-number
summary is presented in a box, such as in Table 1.4, which is a five-number
summary for the weights of 1200 mothers in the CHDS.

From this five-number summary, it can be seen that the distribution of mother’s
weight seems to be asymmetric. That is, it appears to be either skewed to the right
or to have some large outliers. We see this because the lower quartile is closer to
the median than the upper quartile and because the largest observation is very far

TABLE 1.4. Five-number summary for the weights (in pounds) of 1200 mothers in the
CHDS subset.

Median 125
Quartiles 115 139
Extremes 87 250
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from the upper quartile. Half of the mothers weigh between 115 and 139 pounds,
but at least one weighs as much as 250 pounds.

Box-and-Whisker Plot

A box-and-whisker plot is another type of graphical representation of data. It con-
tains more information than a five-number summary but not as much information
as a histogram. It shows location, dispersion and outliers, and it may indicate
skewness and tail size. However, from a box-and-whisper plot it is not possible to
ascertain whether there are gaps or multiple modes in a distribution.

In a box-and-whisker plot, the bottom of the box coincides with the lower quartile
and the the top with the upper quartile; the median is marked by a line through the
box; the whiskers run from the quartiles out to the smallest (largest) number that
falls within 1.5× IQR of the lower (upper) quartile; and smaller or larger numbers
are marked with a special symbol such as a * or−.

Figure 1.6 contains a box-and-whisker plot of mother’s weight. The right skew-
ness of the distribution is much more apparent here than in the five-number
summary. There are many variants on the box-and-whisker plot, including one
that simply draws whiskers from the sides of the box to the extremes of the data.

The Normal Curve

The standard normal curve (Figure 1.7), known as the bell curve, sometimes
provides a useful method for summarizing data.
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FIGURE 1.6. Box-and-whisker plot of mother’s weight for 1200 mothers in the CHDS
subset.
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FIGURE 1.7. The standard normal curve.

The normal curve is unimodal and symmetric around 0. It also follows the 68-
95-99.7 rule. The rule states that 68% of the area under the curve is within 1 unit
of its center, 95% is within 2 units of the center, and 99.7% is within 3 units
of its center. These areas and others are determined from the following analytic
expression for the curve:

1√
2π
e−x

2/2.

Traditionally,�(z) represents the area under the normal curve to the left ofz,
namely,

�(z) �
∫ z

−∞

1√
2π
e−x

2/2dx.

A table of these areas can be found in Appendix C. Also, most statistical software
provides these numbers.

Many distributions for data are approximately normal, and the 68-95-99.7 rule
can be used as an informal check of normality. If the histogram looks normal, then
this rule should roughly hold when the data are properly standardized. Note that
to standardize the data, subtract the mean from each number and then divide by
the standard deviation; that is, compute

xi − x̄

SD(x)
.
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Notice that a value of+1 for the standard normal corresponds to anx-value that
is 1 SD abovex̄. We saw in Figure 1.2 that standardizing the birth weights of
babies led to a more informative comparison of mortality rates for smokers and
nonsmokers.

For birth weight, we find that 69% of the babies have weights within 1 standard
deviation of the average, 96% are within 2 SDs, and 99.4% are within 3 SDs. It looks
pretty good. When the normal distribution fits well and we have summarized the
data by its mean and SD, the normal distribution can be quite handy for answering
such questions as what percentage of the babies weigh more than 138 ounces. The
area under the normal curve can be used to approximate the area of the histogram.
When standardized, 138 is 1 standard unit above average. The area under a normal
curve to the right of 1 is 16%. This is close to the actual figure of 15%.

Checks for normality that are more formal than the 68-95-99.7 rule are based
on the coefficients of skewness and kurtosis. In standard units, the coefficient
of skewness is the average of the third power of the standardized data, and the
coefficient of kurtosis averages the 4th power of the standardized list. That is,

skewness� 1

n

n∑
i�1

(
xi − x̄

SD(x)

)3

kurtosis � 1

n

n∑
i�1

(
xi − x̄

SD(x)

)4

.

For a symmetric distribution, the skewness coefficient is 0. The kurtosis is a
measure of how pronounced is the peak of the distribution. For the normal, the
kurtosis should be 3. Departures from these values (0 for skewness and 3 for
kurtosis) indicate departures from normality.

To decide whether a given departure is big or not, simulation studies can be used.
A simulation study generates pseudo-random numbers from a known distribution,
so we can check the similarity between the simulated observations and the actual
data. This may show us that a particular distribution would be unlikely to give
us the data we see. For example, the kurtosis of birth weight for the 484 babies
born to smokers in the CHDS subset is 2.9. To see if 2.9 is a typical kurtosis value
for a sample of 484 observations from a normal distribution, we could repeat the
following a large number of times: generate 484 pseudo-random observations from
a normal distribution and calculate the sample kurtosis. Figure 1.8 is a histogram
of 1000 sample values of kurtosis computed for 1000 samples of size 484 from the
standard normal curve. From this figure, we see that 2.9 is a very typical kurtosis
value for a sample of 484 from a standard normal.

Quantile Plots

For a distribution such as the standard normal, theqth quantile iszq , where

�(zq) � q, 0< q < 1.

The median, lower, and upper quartiles are examples of quantiles. They are,
respectively, the 0.50, 0.25, and 0.75 quantiles.
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FIGURE 1.8. Histogram of kurtosis values for 1000 samples of size 484 from the standard
normal.

For datax1, . . . , xn, the sample quantiles are found by ordering the data from
smallest to largest. We denote this ordering byx(1), . . . , x(n). Thenx(k) is considered
thek/(n + 1)th sample quantile. We divide byn + 1 rather thann to keepq less
than 1.

The normal-quantile plot, also known as the normal-probability plot, provides
a graphical means of comparing the data distribution to the normal. It graphs the
pairs (zk/(n+1), x(k)). If the plotted points fall roughly on a line, then it indicates that
the data have an approximate normal distribution. See the Exercises for a more
formal treatment of quantiles. Figure 1.9 is a normal-quantile plot of the weights
of mothers in the CHDS. The upward curve in the plot identifies a long right tail,
in comparison to the normal, for the weight distribution.

Departures from normality are indicated by systematic departures from a straight
line. Examples of different types of departures are provided in Figure 1.10. Gen-
erally speaking, if the histogram of the data does not decrease as quickly in the
right tail as the normal, this is indicated by an upward curve on the right side of the
normal-quantile plot. Similarly, a long left tail is indicated by a downward curve
to the left (bottom right picture in Figure 1.10). On the other hand, if the tails
decrease more quickly than the normal, then the curve will be as in the bottom left
plot in Figure 1.10. Granularity in the recording of the data appears as stripes in
the plot (top left plot in Figure 1.10). Bimodality is shown in the top right plot of
Figure 1.10.
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FIGURE 1.9. Normal quantile plot of mother’s weight for 1200 mothers in the CHDS
subset.

Quantile plots can be made for any distribution. For example, a uniform-quantile
plot for mother’s weight appears in Figure 1.11, where the sample quantiles of
mother’s weight are plotted against the quantiles of the uniform distribution. It is
evident from the plot that both the left and right tails of the weight distribution are
long in comparison to the uniform.

To compare two data distributions — such as the weights of smokers and non-
smokers — plots known as quantile-quantile plots can be made. They compare
two sets of data to each other by pairing their respective sample quantiles. Again,
a departure from a straight line indicates a difference in the shapes of the two
distributions. When the two distributions are identical, the plot should be linear
with slope 1 and intercept 0 (roughly speaking, of course). If the two distributions
are the same shape but have different means or standard deviations, then the plot
should also be roughly linear. However, the intercept and slope will not be 0 and
1, respectively. A nonzero intercept indicates a shift in the distributions, and a
nonunit slope indicates a scale change. Figure 1.12 contains a quantile-quantile
plot of mother’s weight for smokers and nonsmokers compared with a line of slope
1 and intercept 0. Over most of the range there appears to be linearity in the plot,
though lying just below the line: smokers tend to weigh slightly less than non-
smokers. Notice that the right tail of the distribution of weights is longer for the
nonsmokers, indicating that the heaviest nonsmokers weigh quite a bit more than
the heaviest smokers.
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FIGURE 1.10. Examples of normal quantile plots.

Cross-tabulations

Distribution tables for subgroups of the data are called cross-tabulations. They
allow for comparisons of distributions across more homogeneous subgroups. For
example, the last row of Table 1.5 contains the distribution of body length for a
sample of 663 babies from the CHDS. The rows of the table show the body-length
distribution for smokers and nonsmokers separately. Notice that the babies of the
smokers seem to be shorter than the babies of nonsmokers. It looks as though the
distribution for the smokers is shifted to the left.

Bar Charts and Segmented Bar Charts

A bar chart is often used as a graphical representation of a cross-tabulation. It
depicts the count (or percent) for each category of a second variable within each
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FIGURE 1.11. Uniform-quantile plot of mother’s weight for 1200 mothers in the CHDS
subset.
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TABLE 1.5. Cross-tabulation of infant body length (in inches) for smokers and nonsmokers
for a sample of 663 babies from the CHDS.

Body length (inches)
≤18 19 20 21 ≥22 Total

Count 18 70 187 175 50 500Nonsmokers
Percent 4 14 37 35 10 100
Count 5 42 56 47 13 163Smokers
Percent 3 26 34 29 8 100

Total count 23 112 243 222 63 663

TABLE 1.6. Population characteristics and prevalence of maternal smoking among 305,730
births to white Missouri residents, 1979–1983 (Malloy et al. [MKLS88]).

Percent of Percent smokers in
mothers each group

All 100 30
Married 90 27Marital status
Single 10 55
Under 12 21 55Educational level
12 46 29(years)
Over 12 33 15
Under 18 5 43
18–19 9 44

Maternal age 20–24 35 34
(years) 25–29 32 23

30–34 15 21
Over 34 4 26

category of a first variable. A segmented bar chart stacks the bars of the second
variable, so that their total height is the total count for the category of the first vari-
able (or 100 percent). Table 1.6 contains comparisons of smokers and nonsmokers
according to marital status, education level, and age. The segmented bar chart in
the left plot of Figure 1.13 shows the percentage of unmarried and married mothers
who are smokers and nonsmokers. This information can also be summarized where
one bar represents the smokers, one bar represents the nonsmokers, and the shaded
region in a bar denotes the proportion of unmarried mothers in the group (6% for
nonsmokers and 19% for smokers). Alternatively, a bar chart of these data might
show the shaded and unshaded bars adjacent to each other rather than stacked.
(These alternative figures are not depicted).

Table 10.3 in Chapter 10 compares qualitative characteristics of the families in
the CHDS study according to whether the mother smokes or not. One of these
characteristics, whether the mother uses contraceptives or not, is pictured in the
segmented bar chart in the right plot of Figure 1.13.
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FIGURE 1.13. Bar charts of smoking prevalence by marital status (left) for mothers in the
Missouri study (Malloy et al. [MKLS88]) and contraceptive use by smoking prevalence
(right) for mothers in the CHDS study (Yerushalmy [Yer71]).

Exercises

1. Use Table 1.3 to find the approximate quartiles of the distribution of the number
of cigarettes smoked per day for the mothers in the CHDS who smoked during
their pregnancy.

2. Combine the last four categories in Table 1.3 of the distribution of the number
of cigarettes smoked by the smoking mothers in the CHDS. Make a new
histogram using the collapsed table. How has the shape changed from the
histogram in Figure 1.4? Explain.

3. Consider the histogram of father’s age for the fathers in the CHDS (Fig-
ure 1.14). The bar over the interval from 35 to 40 years is missing. Find its
height.

4. Consider the normal quantile plots of father’s height and weight for fathers in
the CHDS (Figure 1.15). Describe the shapes of the distributions.

5. Following are the quantiles at 0.05, 0.10, . . ., 0.95 for the gestational ages
of the babies in the CHDS. Plot these quantiles against those of the uniform
distribution on (0,1). Describe the shape of the distribution of gestational age
in comparison to the uniform.
252, 262, 267, 270, 272, 274, 276, 277, 278, 280, 281, 283, 284, 286, 288,
290, 292, 296, 302.
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FIGURE 1.14. Histogram of father’s age for fathers in the CHDS, indicating height of the
bars. The bar over the interval from 35 to 40 years is missing.
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FIGURE 1.15. Normal quantile plots of father’s height (left) and weight (right) for fathers
in the CHDS.

6. Use the normal approximation to estimate the proportion of mothers in the
CHDS between 62 and 64 inches tall to the nearest half inch (i.e., between 61.5
and 64.5 inches). The average height is 64 inches and the SD is 2.5 inches.
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7. In the Missouri study, the average birth weight for babies born to smokers is
3180 grams and the SD 500 grams, and for nonsmokers the average is 3500
grams and the SD 500 grams. Consider a baby who is born to a smoker. If the
baby’s weight is 2 SDs below average weighs, then the baby weighs
grams. Suppose another baby weighs this same number of grams, but is born
to a nonsmoker. This baby has a weight that falls SDs below the
average of its group. According to the normal approximation, approximately
what percentage of babies born to nonsmokers are below this weight?

8. Suppose there are 100 observations from a standard normal distribution. What
proportion of them would you expect to find outside the whiskers of a box-
and-whisker plot?

9. Make a table for marital status that gives the percentage of smokers and
nonsmokers in each marital category for the mothers in the Missouri study
(Table 1.6).

10. Make a segmented bar graph showing the percentage at each education level
for both smokers and nonsmokers for the mothers in the Missouri study
(Table 1.6).

11. Make a bar graph of age and smoking status for the mothers in the Missouri
study (Table 1.6). For each age group, the bar should denote the percentage of
mothers in that group who smoke. How are age and smoking status related?
Is age a potential confounding factor in the relationship between a mother’s
smoking status and her baby’s birth weight?

12. In the Missouri study, the average birth weight for babies born to smokers is
3180 grams and the SD is 500 grams. What is the average and SD in ounces?
There are 0.035 ounces in 1 gram.

13. Consider a list of numbersx1, . . . , xn. Shift and rescale eachxi as follows:

yi � a + bxi.

Find the new average and SD of the listy1, . . . yn in terms of the average and
SD of the original listx1, . . . , xn.

14. Consider the data in Exercise 13. Express the median and IQR ofy1, . . . , yn
in terms of the median and IQR ofx1, . . . , xn. For simplicity, assumey1 <

y2 < · · · < yn and assumen is odd.
15. For a list of numbersx1, . . . , xn with x1 < x2 · · · < xn, show that by replacing

xn with another number, the average and SD of the list can be made arbitrarily
large. Is the same true for the median and IQR? Explain.

16. Suppose there aren observations from a normal distribution. How could you
use the IQR of the list to estimateσ?

17. Suppose the quantilesyq of a N (µ, σ 2) distribution are plotted against the
quantileszq of aN (0,1) distribution. Show that the slope and intercept of the
line of points areσ andµ, respectively.

18. SupposeX1, . . . , Xn form a sample from the standard normal. Show each of
the following:
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a. �(X1), . . . �(Xn) is equivalent to a sample from a uniform distribution on
(0,1). That is, show that forX a random variable with a standard normal
distribution,

P(�(X) ≤ q) � q.

b. LetU1, . . . , Un be a sample from a uniform distribution on (0,1). Explain
why

E(U(k)) � k

n+ 1
,

whereU(1) ≤ . . . ≤ U(n) are the ordered sample.
c. Use (a) and (b) to explain whyX(k) ≈ zk/n+1.

19. Prove thatx̄ is the constant that minimizes the following squared error with
respect toc:

n∑
i�1

(xi − c)2.

20. Prove that the mediañx of x1, . . . , xn is the constant that minimizes the
following absolute error with respect toc:

n∑
i�1

|xi − c|.

You may assume that there are an odd number of distinct observations.Hint:
Show that ifc < co, then

n∑
i�1

|xi − co| �
n∑
i�1

|xi − c| + (c − c0)(r − s) + 2
∑

x∈(c,co)

(c − xi) ,

wherer � number ofxi ≥ co, ands � n− r.

Notes

Yerushalmy’s original analysis of the CHDS data ([Yer64], [Yer71]) and Hodges
et al. ([HKC75]) provide the general framework for the analysis found in this lab
and its second part in Chapter 10.

The data for the lab are publicly available from the School of Public Health at
the University of California at Berkeley. Brenda Eskanazi and David Lein of the
School of Public Health provided valuable assistance in the extraction of the data
used in this lab.

The information on fetal development is adapted from Samuels and Samuels
([SS86]).
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2
Who Plays Video Games?

When Bill Gates, founder of
Microsoft, cruised through the
Bay Area in January, he took time
out to visit some of his companys
youngestcustomers.

The billionaire software
developer spent part of the
morning at Cesar Chavez
Academy in East Palo Alto,
watching a giggling bunch of
third-graders work on computer
art programs and search for
informationon the Internet.

I need to see what you re
doing with the computers and
how we can make it better, Gates
told the twenty 8- and 9-year-olds.
But some people are asking the
question, better for whom? Better
for the students whose parents
desperately want them to get the
education that best prepares them
for the future, or better for the
school districts, politicians and
technologycompaniescarryingon
a wild love affair with a high-tech
visionof educations future?

President Clinton says in a
speech that he wants to see the
day when computersare as much a
p a r t o f a c l a s s r o o m a s
blackboards . Ca l i forn ia
legislators plan to commit about
$460 million over the next four
years to get technology into every
one of the state s 1,400 high
schools. Schools throughout the
state are spending millions of
dollars to wire classrooms, buy
computers and show children
from kindergarten on up how to
surf the Net. ...

Making computers part of
the daily classroom activity is one
of the toughest parts of the new
technology, said Rhonda Neagle,
technology coordinator for the
New Haven Unified School
District in UnionCity. ...

What we re asking teachers
to do is change the way they
teach, she said. With only six
(student) computers in a room,
teachers need to provide more
group work and maybe use a
different setup for their course.

San Francisco ChronicleTUESDAY, MARCH 3, 1998

By John Wildermuth

Computing Computers Effect

Critics ask if there s too much
technology in the classroom

1

1Reprinted by permission.
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Introduction

Every year, three to four thousand students enroll in statistics courses at the Univer-
sity of California, Berkeley. About half of these students are taking an introductory
statistics course in order to satisfy the university’s quantitative reasoning require-
ment. To aid the instruction of these students, a committee of faculty and graduate
students of the Statistics Department have designed a series of computer labs.

The labs are meant to extend the traditional syllabus for a course by providing
an interactive learning environment that offers students an alternative method for
learning the concepts of statistics and probability. Some have likened the labs
to educational video games. To help the committee design the labs, a survey of
undergraduate students who were enrolled in a lower-division statistics course was
conducted. The survey’s aim was to determine the extent to which the students play
video games and which aspects of video games they find most and least fun.

Students who were enrolled in an advanced statistics course conducted the
study. They developed the questionnaire, selected the students to be sampled,
and collected the data. Their work is outlined in the Background section of this
chapter.

In this lab, you will have the opportunity to analyze the results from the sample
survey to offer advice to the design committee.

The Data

Ninety-five of the 314 students in Statistics 2, Section 1, during Fall 1994 were
selected at random to participate in the survey. Completed questionnaires were
obtained from 91 of the 95 students. The data available here are the students’
responses to the questionnaire.

The survey asks students to identify how often they play video games and what
they like and dislike about the games. The answers to these questions were coded
numerically as described in Table 2.1. Also provided in Table 2.1 are a few sample
observations. If a question was not answered or improperly answered, then it was
coded as a 99. All questions with yes/no answers recorded a 1 for a “Yes” and a
0 for a “No.” For the exact wording of the questions, see the questionnaire at the
end of this chapter. Those respondents who had never played a video game or who
did not at all like playing video games were asked to skip many of the questions.

The survey can be roughly divided into three parts. Two of them pertain to the
students’ use of video games. One of these parts ascertains the frequency of play.
This information is requested via two questions. One question asks how much time
a student actually spent playing video games in the week prior to the survey, and the
other asks how often a student usually plays (daily, weekly, monthly, semesterly).

The second part of the survey covers whether the student likes or dislikes playing
games, and why. A summary of responses to three of these questions appears in
Tables 2.2, 2.3, and 2.4. These questions are different from the others in that more



2. Who Plays Video Games? 29

TABLE 2.1. Sample observations and data description for the survey of 91 undergraduate
statistics students.

Time 2 0 0 .5 0 0 0 0 2
Like to play 3 3 3 3 3 3 4 3 3
Where play 3 3 1 3 3 2 3 3 2
How often 2 3 3 3 4 4 4 4 1
Play if busy 0 0 0 0 0 0 0 0 1
Playing educational 1 0 0 1 1 0 0 0 1
Sex 0 0 1 0 0 1 1 0 1
Age 19 18 19 19 19 19 20 19 19
Computer at home 1 1 1 1 1 0 1 1 0
Hate math 0 1 0 0 1 0 1 0 0
Work 10 0 0 0 0 12 10 13 0
Own PC 1 1 1 1 0 0 1 0 0
PC has CD-Rom 0 1 0 0 0 0 0 0 0
Have email 1 1 1 1 1 0 1 1 0
Grade expected 4 2 3 3 3 3 3 3 4
Variable Description
Time Number of hours played in the week prior to

survey.
Like to play 1=never played; 2=very much; 3=somewhat;

4=not really; 5=not at all.
Where play 1=arcade; 2=home system; 3=home computer;

4=arcade and either home computer or system;
5=home computer and system; 6= all three.

How often 1=daily; 2=weekly; 3=monthly; 4=semesterly.
Play if busy 1=yes; 0=no.
Playing educational 1=yes; 0=no.
Sex 1=male; 0=female.
Age Student’s age in years.
Computer at home 1=yes; 0=no.
Hate math 1=yes; 0=no.
Work Number of hours worked the week prior to

the survey.
Own PC 1=yes; 0=no.
PC has CD-Rom 1=yes; 0=no.
Have email 1=yes; 0=no.
Grade expected 4=A; 3=B; 2=C; 1=D; 0=F.

than one response may be given. Table 2.2 summarizes the types of games played.
The student is asked to check all types that he or she plays. So, for example, 50%
of the students responding to this question said that they play action games. Not
all students responded to this question, in part because those who said that they
have never played a video game or do not at all like to play video games were
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TABLE 2.2. What types of games do you play?

Type Percent
Action 50
Adventure 28
Simulation 17
Sports 39
Strategy 63

(Each respondent was asked to check all that applied.
Percentages are based on the 75 respondents to this question.)

TABLE 2.3. Why do you play the games you checked above?

Why? Percent
Graphics/realism 26
Relaxation 66
Eye/hand coordination 5
Mental challenge 24
Feeling of mastery 28
Bored 27

(Each respondent was asked to check at most three responses.
Percentages are based on the 72 respondents to this question.)

TABLE 2.4. What don’t you like about video game playing?

Dislikes Percent
Too much time 48
Frustrating 26
Lonely 6
Too many rules 19
Costs too much 40
Boring 17
Friends don’t play 2
It’s pointless 33

(Each respondent was asked to check at most three responses.
Percentages are based on the 83 respondents to this question.)

instructed to skip this question. Students who did answer this question were also
asked to provide reasons why they play the games they do. They were asked to
select up to three such reasons. Their responses are presented in Table 2.3. Finally,
Table 2.4 contains a summary of what the students do not like about video games.
All students were asked to answer this question, and again they were asked to
select up to three reasons for not liking video games.

The third part of the questionnaire collects general information about the student,
such as their age and sex. The students were also asked whether or not they had an
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e-mail account, what they thought of math, and what grade they expected in the
course.

Background

The Survey Methodology

All of the population studied were undergraduates enrolled inIntroductory Prob-
ability and Statistics, Section 1, during Fall 1994. The course is a lower-division
prerequisite for students intending to major in business. During the Fall semester
the class met Monday, Wednesday, and Friday from 1 to 2 pm in a large lecture hall
that seats four hundred. In addition to three hours of lecture, students attended a
small, one-hour discussion section that met on Tuesday and Thursday. There were
ten discussion sections for the class, each with approximately 30 students.

The list of all students who had taken the second exam of the semester was used
to select the students to be surveyed. The exam was given the week prior to the
survey. A total of 314 students took the exam. To choose 95 students for the study,
each student was assigned a number from 1 to 314. A pseudo-random number
generator selected 95 numbers between 1 and 314. The corresponding students
were entered into the study.

To encourage honest responses, the students’ anonymity was preserved. No
names were placed on the surveys, and completed questionnaires were turned in
for data entry without any personal identification on them.

To limit the number of nonrespondents, a three-stage system of data collection
was employed. Data collectors visited both the Tuesday and Thursday meetings
of the discussion sections in the week the survey was conducted. The students
had taken an exam the week before the survey, and the graded exam papers were
returned to them during the discussion section in the week of the survey. On Friday,
those students who had not been reached during the discussion section were located
during the lecture. A total of 91 students completed the survey.

Finally, to encourage accuracy in reporting, the data collectors were asked to
briefly inform the students of the purpose of the survey and of the guarantee of
anonymity.

Video Games

Video games can be classified according to the device on which they are played and
according to the kinds of skills needed to play the game. With regard to the device,
there are three basic types of games: arcade, console, and personal computer (PC).
An arcade is a commercial establishment where video games are played outside the
home. In an arcade, players pay each time they play the game. Console games are
played on a television that has a port connection (e.g., Nintendo and Sega). Games
for the console can be purchased and then played repeatedly at no cost. The PC
games typically require the computer to have a large memory, fast processor, and



32 2. Who Plays Video Games?

TABLE 2.5. Classification of five main types of video games.

Eye/hand Puzzle Plot Strategy Rules
Action ×
Adventure × ×
Simulation × ×
Strategy × ×
Role-Play × × ×

CD-Rom. As with console games, once the basic equipment is available, software
can be purchased and games are then played at no additional cost.

Video games are divided into five categories: action, adventure, simulation,
strategy, and role-play. Each of these can be described in terms of a few at-
tributes: eye/hand coordination, puzzle solving, intricate plot line, strategy, and
rule learning. Table 2.5 summarizes the attributes typically found in each category.

Most arcade games are fast action games that emphasize eye/hand coordination
and have a short learning curve. Console games are usually either action, adventure,
or strategy games. Simulation and role-playing games are found almost exclusively
on the PC. They are unsuitable for the arcade and console because they often take
many hours to play. All five types of games are made for the PC.

Investigations

The objective of this lab is to investigate the responses of the participants in the
study with the intention of providing useful information about the students to the
designers of the new computer labs.

• Begin by providing an estimate for the fraction of students who played a video
game in the week prior to the survey. Provide an interval estimate as well as a
point estimate for this proportion.

• Check to see how the amount of time spent playing video games in the week
prior to the survey compares to the reported frequency of play (i.e., daily,
weekly, etc.). How might the fact that there was an exam in the week prior to
the survey affect your previous estimates and this comparison?

• Consider making an interval estimate for the average amount of time spent
playing video games in the week prior to the survey. Keep in mind the overall
shape of the sample distribution. A simulation study may help determine the
appropriateness of an interval estimate.

• Next consider the “attitude” questions. In general, do you think the students
enjoy playing video games? If you had to make a short list of the most important
reasons why students like (or dislike) video games, what would you put on the
list? Don’t forget that those students who say that they have never played a
video game or do not at all like to play video games are asked to skip over some
of these questions. So, there may be many nonresponses to the questions as to
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whether they think video games are educational, where they play video games,
etc.

• Look for differences between those who like to play video games and those
who do not. To do this, use the questions in the last part of the survey, and
make comparisons between male and female students, those who work for pay
and those who do not, those who own a computer and those who do not, or
those who expect A’s in the class and those who do not. Graphical displays and
cross-tabulations are particularly helpful in making these kinds of comparisons.
Also, you may want to collapse the range of responses to a question down to
two or three possibilities before making these comparisons.

• Just for fun, further investigate the grade that students expect in the course.
How well does it match the target distribution used in grade assignment of 20%
As, 30% Bs, 40% Cs, and 10% D or lower? If the nonrespondents were failing
students who no longer bothered to come to the discussion section, would this
change the picture?

Summarize your findings in a memo to the committee in charge of designing
the new computer labs.

Theory

In this section we will use as our primary example the problem of estimating the
average amount of time students in the class spent playing video games in the week
prior to the survey. To determine the exact amount of time for the entire class, we
would need to interview all of the students (there are over three hundred of them).
Alternatively, a subset of them could be interviewed, and the information collected
from this subset could provide an approximation to the full group.

In this section, we discuss one rule for selecting a subset of students to be
surveyed, thesimple random sample. The simple random sample is a probabil-
ity method for selecting the students. Probability methods are important because
through chance we can make useful statements about the relation between the
sample and the entire group. With a probability method, we know the chance of
each possible sample.

We begin by introducing some terminology for describing the basic elements of
a sampling problem. For the population:

• Population unitsmake up the group that we want to know more about. In
this lab, the units are the students enrolled in the 1994 Fall semester class of
Introductory Probability and Statistics.

• Population size, usually denoted byN , is the total number of units in the pop-
ulation. For very large populations, often the exact size of the population is not
known. Here we have 314 students in the class.

• Unit characteristicis a particular piece of information about each member of
the population. The characteristic that interests us in our example is the amount
of time the student played video games in the week prior to the survey.
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• Population parameteris a summary of the characteristic for all units in the
population, such as the average value of the characteristic. The population
parameter of interest to us here is the average amount of time students in the
class spent playing video games in the week prior to the survey.

In parallel, for the sample, we have the following:

• Sample unitsare those members of the population selected for the sample.
• Sample size, usually denoted byn, is the number of units chosen for the sample.

We will use 91 for our sample size, and ignore the four who did not respond.
• Sample statisticis a numerical summary of the characteristic of the units sam-

pled. The statistic estimates the population parameter. Since the population
parameter in our example is the average time spent playing video games by
all students in the class in the week prior to the survey, a reasonable sample
statistic is the average time spent playing video games by all students in the
sample.

Finally, there is theselection rule, the method for choosing members of the
population to be surveyed. In this case, each student was assigned a number from
1 to 314, and the computer was used to choose numbers (students) between 1 and
314 one at a time. Once a number was chosen, it was eliminated from the list for
future selections, thus ensuring that a student is chosen at most once for the sample.
Also, at each stage in the selection process, all numbers remaining on the list were
equally likely to be chosen. This method for selecting the sample is equivalent to
thesimple random sample, which is described in more detail below.

The Probability Model

The simple random sample is a very simple probability model for assigning
probabilities to all samples of sizen from a population of sizeN .

In our case,n is 91 andN is 314. There are very many different sets of 91
students that could be chosen for the sample. Any one of the 314 students could
be the first to be selected. Once the first person is chosen and removed from the
selection pool, there are 313 students left for the second selection, and after that
student is chosen there are 312 students remaining for the third selection, etc.
Altogether there are 314× 313× · · · × 224 different ways to choose 91 students
from 314, if we keep track of the order in which they are chosen (i.e., who was
chosen first, second, etc). But since we only care which students are selected, not
the order in which they are chosen, there are

314× 313× · · · × 224

91× 90× · · · × 1

different subsets of 91 from 314. A shorter way to write this is

(
314

91

)
� 314!

223! 91!
,
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where we say the number of subsets is “314 choose 91.”
In general, withN population units and a sample of sizen, there areN choose

n possible samples. The probability rule that defines the simple random sample
is that each one of the

(
N

n

)
samples is equally likely to be selected. That is, each

unique sample ofn units has the same chance, 1/
(
N

n

)
, of being selected. From this

probability, we can make statements about the variations we would expect to see
across repeated samples.

One way to conceptualize the simple random sample is to assign every unit a
number from 1 toN . Then, write each number on a ticket, put all of the tickets
in a box, mix them up, and drawn tickets one at a time from the box without
replacement. The chance that unit #1 is the first to be selected for the sample
is 1/N . Likewise, unit #1 has chance 1/N of being the second unit chosen for
the sample, and all together unit #1 has chancen/N of being in the sample. By
symmetry, the chance that unit #2 is chosen first is 1/N , and unit #2 has chancen/N
of appearing in the sample. That is, each unit has the same chance (1/N) of being
the first chosen for the sample and the same chance (n/N ) of being selected for the
sample. However, there is dependence between the selections. We see this when
we compute the chance that unit #1 is chosen first and unit #2 is chosen second. It
is 1/N (N − 1). This chance is the same for any two units in the population, and
the chance that #1 and #2 are both in the sample is

n(n− 1)

N (N − 1)
.

In our example,

P(unit #1 in the sample)� 91

314
,

P(units #1 and #2 are in the sample)� 91× 90

314× 313
.

The probability distribution for the units chosen at random from the population can
be concisely described as follows. LetI (1) represent the first number drawn from
the list 1, 2, . . . , N , I (2) the second number drawn,. . . andI (n) the last number
drawn. EachI (·) is called arandom index. Then

P(I (1) � 1) � 1

N
,

P(I (1) � 1 andI (2) � N ) � 1

N × (N − 1)
,

and, in general, for 1≤ j1 �� j2 . . . �� jn ≤ N

P(I (1) � j1, I (2) � j2, . . . , I (n) � jn) � 1

N × (N − 1) × · · · (N − n+ 1)
.

The simple random sample method puts a probability structure on the sample.
Different samples have different characteristics and different sample statistics.
This means that the sample statistic has a probability distribution related to the
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sampling procedure. We can find the expected value and variance for the sample
statistic under the random sampling method used.

Sample Statistics

Suppose we letx1 be the value of the characteristic for unit #1,x2 the value for
unit #2,. . ., andxN the value for unit #N . In our example,xi is time spent playing
video games by student #i, i � 1, . . . ,314. Take the population average,

µ � 1

N

N∑
i�1

xi,

as our population parameter.
To specify the values of the characteristic for the units sampled, we use the ran-

dom indices,I (1), . . . , I (n). That is,xI (1) represents the value of the characteristic
for the first unit sampled. The valuexI (1) is random. IfI (1) � 1 then the value will
bex1, if I (1) � 2 then it will bex2, and so on. In our example,xI (j ) represents the
time spent playing video games by thej th unit sampled,j � 1, . . . ,91. We find
the expectation ofxI (1) as follows:

E(xI (1)) �
N∑
i�1

xiP(I (1) � i)

�
N∑
i�1

xi
1

N

� µ.

Similarly, since each unit is equally likely to be thej th unit chosen,j � 1, . . . , n,

E(xI (j )) � µ.

The sample average,

x̄ � 1

n

n∑
j�1

xI (j ),

is the sample statistic that estimates the population parameter. It is random too,
and from the computations above we find its expected value to be

E(x̄) � 1

n
E(xI (1) + · · · + xI (n))

� E(xI (1))

� µ.

We have shown that the expected value of the sample average is the population
parameter; that is, the sample average is anunbiasedestimator of the population
parameter.
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Next we find the standard deviation ofx̄. To do this, we first find the variance
of xI (1),

Var(xI (1)) � E(xI (1) − µ)2

� 1

N

N∑
i�1

(xi − µ)2

� σ 2,

where we useσ 2 to represent thepopulation variance. Then we compute the
variance of the sample averagex̄ as follows:

Var(x̄) � 1

n2
Var

(
n∑
j�1

xI (j )

)

� 1

n2

n∑
j�1

Var(xI (j )) + 1

n2

n∑
j ��k

Cov(xI (j ), xI (k))

� 1

n
σ 2 + n− 1

n
Cov(xI (1), xI (2)).

The last equality follows from noting that all pairs (xI (j ), xI (k)) are identically
distributed. The covariance between any two sampled unitsxI (j ) andxI (k) is not 0
because the sampling procedure makes them dependent. We leave it as an exercise
to show that this covariance is−σ 2/(N − 1), and

Var(x̄) � 1

n
σ 2N − n

N − 1
,

SD(x̄) � 1√
n
σ

√
N − n√
N − 1

.

The factor (N − n)/(N − 1) in the variance and SD is called thefinite population
correction factor. It can also be expressed as

1 − n− 1

N − 1
,

which is roughly 1− n/N . The ration/N is called thesampling fraction. It is
very small when the sample size is small relative to the population size. This
is frequently the case in sampling, and when this happens Var(x̄) ≈ σ 2/n, and
the finite population correction factor is often ignored. In our example, the factor
cannot be ignored;

√
314− 91√
314− 1

� 0.84.

Notice that without the correction factor we have the same variance as when
the draws are made with replacement. If the draws from the box are made with
replacement, thexI (j ) are independent and the Var(x̄) � σ 2/n. Sampling with
replacement is like sampling from an infinite population. To see this, letN tend
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to ∞ in the correction factor, and keepn fixed. The factor tends to 1. This is why
(N − n)/(N − 1) is called the finite population correction factor.

With a simple random sample, the standard deviation for the estimator can be
computed in advance, dependent on the population varianceσ 2. If σ 2 is known
approximately, then the sample size can be chosen to give an acceptable level of
accuracy for the estimator. Often a pilot study, results from a related study, or a
worst-case estimate ofσ 2 is used in planning the sample size for the survey.

Estimators for Standard Errors

Standard deviations for estimators are typically calledstandard errors(SEs). They
indicate the size of the deviation of the estimator from its expectation.

Whenσ 2 is unknown, a common estimator for it is

s2 � 1

n− 1

n∑
j�1

(xI (j ) − x̄)2.

To estimate Var(̄x), we can then use

s2

n

N − n

N − 1
.

The reason for usings2 is that the sample, when chosen by the simple random
sample method, should look roughly like a small-scale version of the population,
so we plug ins2 for σ 2 in the variance of̄x.

In fact, we can make a slightly better estimate for Var(x̄). When we take the
expectation ofs2 we find that it is not exactlyσ 2,

E(s2) � N

N − 1
σ 2.

An unbiased estimator ofσ 2 is then

s2N − 1

N
,

and an unbiased estimator of Var(x̄) is

s2

n

N − n

N
.

Notice that there is essentially no difference between these two estimators of Var(x̄)
for any reasonably sized population.

Population Totals and Percentages

Sometimes the population parameter is a proportion or percentage, such as the
proportion of students who played a video game in the week prior to the survey or
the percentage of students who own PCs.
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When the parameter is a proportion, it makes sense for the characteristic value
xi to be 1 or 0 to denote the presence or absence of the characteristic, respectively.
For example, fori � 1, . . . ,314,

xi �
{

1 if the ith student in the population owns a PC,

0 if not.

Thenτ � ∑
xi counts all of the students who own PCs in the population, and

π �∑ xi/N is the proportion of students in the population who own PCs.
In this casex̄ remains an unbiased estimator forπ , the population average,

andNx̄ estimatesτ . A simpler form for the population variance and the unbiased
estimator of Var(̄x) can be obtained because

σ 2 � 1

N

N∑
i�1

(xi − π )2

� π (1 − π ).

Then an estimator for the standard error is

SE(x̄) �
√
x̄(1 − x̄)√
n− 1

√
N − n√
N

.

See the Exercises for a derivation.
Often the symbolŝµ, π̂ , andτ̂ are used in place of̄x andNx̄ to denote sample

estimates of the parametersµ, π , andτ . Table 2.6 contains the expectations and
standard errors for estimators of a population average, proportion, and total.

The Normal Approximation and Confidence Intervals

If the sample size is large, then the probability distribution of the sample average is
often well approximated by the normal curve. This follows from the Central Limit
Theorem.

Central Limit Theorem: If X1, ..., Xn are independent, identically dis-
tributed with meanµ and varianceσ 2 then, forn large, the probability

TABLE 2.6. Properties of sample statistics.

Average Proportion Total

Parameter µ π τ

Estimator x̄ x̄ Nx̄

Expectation µ π τ

Standard error σ√
n

√
N−n
N−1

√
π (1−π )√

n

√
N−n
N−1 N σ√

n

√
N−n
N−1

Estimator of SE s√
n

√
N−n
N

√
x̄(1−x̄)√
n−1

√
N−n
N

N s√
n

√
N−n
N
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distribution of

Z � (X̄ − µ)

σ/
√
n

is approximately standard normal.

In simple random sampling, thexI (j ) are identically distributed but not inde-
pendent. However, the normal approximation can still hold if, in addition to the
sample size being large, it is not too large relative to the population size. That is,
if the sampling fractionn/N is small, then thexI (j ) are nearly independent. There
are no hard and fast rules for how largen must be or how smalln/N must be
before we can use the normal approximation. You may want to test a few cases by
simulation.

The Central Limit Theorem is a very powerful result. It implies that for any
population distribution, under simple random sampling (for appropriaten and
n/N ), the sample average has an approximate normal distribution.

The normal distribution can be used to provide interval estimates for the
population parameter. One interval estimate forµ is

(x̄ − σ/
√
n, x̄ + σ/

√
n).

This interval is called a 68%confidence intervalfor the population parameter.
A 95% confidence interval forµ is (x̄ − 2σ/

√
n, x̄ + 2σ/

√
n). These interval

estimates derive their names from the fact that, by the Central Limit Theorem, the
chance that̄x is within one (or two) standard error(s) ofµ is approximately 68%
(or 95%). That is, ignoring the finite population correction factor,

P

(
x̄ − 2

σ√
n

≤ µ ≤ x̄ + 2
σ√
n

)
� P

(
µ− 2

σ√
n

≤ x̄ ≤ µ+ 2
σ√
n

)
� P

(
−2 ≤ x̄ − µ

σ/
√
n

≤ 2

)
≈ 0.95 .

In practice, the population variance is rarely known, and we substitutes for σ in
order to make the confidence interval. With this substitution, we sometimes refer
to the interval as an approximate confidence interval.

The sample statistic̄x is random, so we can think of the interval estimates as
random intervals. Just as different samples lead to different sample statistics, they
also lead to different confidence intervals. If we were to take many simple random
samples over and over, where for each sample we compute the sample average
and make a confidence interval, then we expect about 95% of the 95% confidence
intervals to containµ.
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An Example

To summarize the ideas introduced in this section, consider the problem of esti-
mating the proportion of females in the class. In this case, we happen to know
that there are 131 females in the class. Therefore we have all of the population
information:

π � 131/314� 0.4172;

σ 2 � 0.2431;

N � 314.

Because we have a simple random sample, the probability distribution forxI (1)

matches the population distribution; that is,P(xI (1) � 1) � 0.4172 andP(xI (1) �
0) � 0.5818. This means that

E(xI (1)) � 0.4172,

Var(xI (1)) � 0.2431,

E(x̄) � 0.4172,

SE(x̄) �
√

0.2431

91
× 223

313
� 0.044.

Also, the exact probability distribution of̄x can be found:

P(x̄ � m/91) � P(the sample hasm females)

�
(131
m

)( 183
91−m

)(314
91

) .

This is known as the hypergeometric distribution.
In a real sampling problem, the exact distribution ofx̄ is not known. However,

it is known that the probability distribution of thexI (j )s matches the population
distribution, thatx̄ is an unbiased estimator of the population parameter, and that,
providedn is large andn/N is small, the probability distribution of̄x is roughly
normal. This is enough for us to make confidence intervals for the population
parameter. In this example,n � 91 is large, butn/N � 91/314 is also relatively
large, so we should check that we can use a normal approximation before making
confidence intervals. The next section, on the bootstrap, discusses how this can be
done, but here the approximation is satisfactory.

In our sample, 38 of the 91 students responding were female. Our estimate for
the population parameter is̄x � 38/91 � 0.42, our estimate of the standard error
for x̄ is √

38
91(1 − 38

91)
√

91− 1

√
314− 91

314
� 0.044,

and our approximate 95% confidence interval for the population parameter runs
from 0.33 to 0.51. This includes or “covers” the known proportionπ � 0.4172 of
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females in the class. In general, we will not know whether the confidence interval
covers the population parameter whenπ is unknown.

Finally, in this example the actual proportion of women in the sample was very
close to the expected proportion of women,E(x̄). We might want to calculate
the probability that we would get as close or closer to the expected proportion.
Sometimes samples may seem to be “too close” to what we expect: if the chance
of getting data as close or closer to the expected value is small, say1

100, then we
might suspect the sampling procedure. Here the expected number of women in
the sample is 91× π � 37.97, so we may want to know the chance that exactly
38 of the 91 students were women:

(131
38

)( 183
91−38

)
/
(314

91

) � 0.10. Therefore about 1
time in 10 we would expect to get this close to the expected number of women. In
practice, we could approximate this chance using the normal curve; this is left as
an exercise.

The Bootstrap

From the histogram (Figure 2.1) of the time spent playing video games by the
students in the sample, we see that the sample distribution is extremely
skewed. This observation raises the question of whether the probability distri-
bution of the sample average follows a normal curve. Without knowledge of the
population, we cannot answer this question completely. However, the bootstrap
can help us.
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FIGURE 2.1. Histogram of the number of hours spent playing video games for the 91
statistics students in the sample.
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TABLE 2.7. Distribution of time, in hours, spent playing video games in the week prior to
the survey for the 91 statistics students in the sample.

Bootstrap
Time Count population

0 57 197
0.1 1 3
0.5 5 17
1 5 17

1.5 1 4
2 14 48
3 3 11
4 1 3
5 1 4
14 2 7
30 1 3

Total 91 314

According to the simple random sample probability model, the distribution of
the sample should look roughly similar to that of the population. We could create
a new population of 314 based on the sample and use this population, which we
call the bootstrap population, to find the probability distribution of the sample
average. Table 2.7 shows how to do this. For every unit in the sample, we make
314/91 � 3.45 units in the bootstrap population with the same time value and
round off to the nearest integer.

Next, to determine the probability distribution of the sample average when the
sample is taken from the bootstrap population, we use a computer. With a computer,
we can select a simple random sample of 91 from the bootstrap population, called a
bootstrap sample, and take its average. Then we take a second sample of 91 and take
its average, and so on. A histogram of bootstrap sample averages, each constructed
from a simple random sample of 91 from the bootstrap population, appears in
Figure 2.2. We took 400 bootstrap samples from the bootstrap population in order
to make a reasonable simulation of the probability distribution of the bootstrap
sample average. From the normal-quantile plot in Figure 2.3, we see that it closely
follows the normal curve. Of course, to further validate this claim of approximate
normality, we could compare the skewness (0.19) and kurtosis (2.67) for the 400
bootstrap sample averages to a simulated distribution of skewness and kurtosis for
samples of size 400 from a normal distribution. See Figure 2.4 for these simu-
lated distributions. (Chapter 1 contains more details on the use of simulations for
approximating complex statistical distributions.) Our sample values for skewness
and kurtosis are in the tails of the simulated distributions but seem reasonable.

The method described here is one version of the bootstrap. The bootstrap tech-
nique derives its name from the expression, “to pull yourself up by your own
bootstraps” (Diaconis and Efron [DE83]). In the sampling context, we study the
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FIGURE 2.2. Histogram of the bootstrap sample averages, from 400 bootstrap samples of
size 91 from the bootstrap population (Table 2.7), for the 91 statistics students in the sample.

Quantiles of standard normal

B
oo

ts
ra

p 
sa

m
pl

e 
av

er
ag

e 
 (

ho
ur

s)

•

•
•

•

•

•

•

•

•
•

•

•

•
•

•

•

•

•
•

•

•

•

•

•

•

•

•

• •

•

•

•

•

•

•

•

•
•

•

•

••

•

•

•

•

•

•

•

•

•
•

•

•

•

•

•

•

•

•
•

•

•
•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•
•

•

••

•

•
••

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•
•

•

•

•

•

•

•

•

•
•

•

•
•

•

•

•

•

•

•

•

•

•

•

•
•

•

•

•

•
•

•

• •

•

•

•

••

•

•

•

•

•

•

•

•

•

•
•

•

•

•

•

•

•

••

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•
•

•

•

•

•

•

•

•

•

•
•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

••

•

••

•

•

•

•

•

•

•
•

•
•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•
•

•

•

•

•

•

•

•

•

•

•
•

•

•

•

•

•

•
•

•

•

•

•

•

•

•

•

•

•
•

•

•

•

•

•

•

• •

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•
•

•
•

•

• •

•

•

•

•

•
•

•

•

•

•

•

•

•

•
•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•
•

•

-3 -2 -1 0 1 2 3

0.5

1.0

1.5

2.0

FIGURE 2.3. Normal-quantile plot of the bootstrap sample averages, from 400 bootstrap
samples of size 91 from the bootstrap population (Table 2.7), for the 91 statistics students
in the sample.
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FIGURE 2.4. Approximate distribution of skewness (top plot) and kurtosis (bottom plot)
for samples of size 400 from the normal. (Based on 1000 samples of size 400.)
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relation between bootstrap samples and the bootstrap population, where both the
samples and the population are known, in order to learn about the relationship
between our actual sample and the population, where the latter is unknown.

Exercises

1. Consider the following population of six units:

x1 � 1, x2 � 2, x3 � 2, x4 � 4, x5 � 4, x6 � 5.

a. Find the exact distribution of̄x for a simple random sample of size 2 from
this population.

b. Use the exact distribution to compute the expectation and standard
deviation of the sample average.

c. Use the formulas found in the Theory section to compute the expecta-
tion and SD ofx̄. Compare your answers to those found using the exact
distribution ofx̄.

2. Consider the following population of five units:

x1 � 1, x2 � 2, x3 � 2, x4 � 4, x5 � 4.

a. Find the exact distribution of the sample median of a simple random sample
of size 3.

b. Use the exact distribution to compute the expectation and standard
deviation of the sample median.

3. For a simple random sample of size 5 from a population of 100 subjects, let
I (1), I (2), . . . , I (5) be the indices of the first, second, third, fourth, and fifth
subjects sampled. Compute the following and show your work.

a. P(I (1) � 100), . . . ,P(I (5) � 100).
b. P (the 100th subject is in the sample).
c. E[I (1)].
d. P(I (1) � 100 andI (2) � 2).
e. P(I (1) � 10, I (2) � 20, I (3) � 30, I (4) � 40, andI (5) � 50).
f. P(the 10th,20th,30th,40th, and 50th subjects are in the sample).
g. P(the 10th and 20th subjects are in the sample).

4. Suppose a simple random sample of 2 units is taken from the population
described in Exercise 1, find

a. P(xI (2) � 5).
b. E[xI (1)].
c. P(xI (1) � 2 andxI (2) � 2).

5. Consider the following list of quantities:

x1, xI (1), x̄, N, µ, I (1), n.
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Determine which elements on the list are random and which are not. Explain.
6. For I (1), I (2), . . . , I (5) defined in Exercise 3, supposexi � 0 or 1 and the

proportion of 1’s in the population isπ . Find

E[xI (1)xI (2)] .

Use your computation to find the covariance ofxI (1) andxI (2) in this special
case when they have values 0 or 1.

7. In the survey of the statistics class, 67 of 91 respondents said they owned a
PC. Construct a 95% confidence interval for the proportion of students in the
statistics class who own a PC.

8. The average age of the respondents in the statistics class survey was 19.5 years,
and the sample standard deviation was 1.85 years. Find a 95% confidence
interval for the average age of the students in the class.

9. Suppose that an unknown fractionπ of the population of students at a par-
ticular university own a PC. What value ofπ gives the largest population
variance? Explain.

10. Suppose a survey of the 32,000 students at a university is planned. The goal
of the survey is to estimate the percentage of the students who own PCs. Find
the minimum sample size required to make a 95% confidence interval for the
population percentage that is at most 4 percentage points wide. The variance
of the population is unknown. Ignore the finite population correction factor.

a. In your calculation of the sample size use the percentage of students who
own PCs in the survey of the statistics class to estimate the population
variance for the university students.

b. Instead of using the percentage from the statistics class sample in your
calculation, assume the worst-case scenario — that is, the largest variance
possible for the parameter.

11. Continue with Exercise 10, and suppose that the survey is to estimate two
characteristics of the university students. One characteristic is thought to have
a prevalence of roughly 50% of the population and the other only 10%. For
each of the following conditions, find the sample size required.

a. Both estimates are to be accurate to about 1% (i.e., the standard error of
each estimator should be at most 1%).

b. Each statistic is to be accurate to about 1/10 of its population parameter.

12. In a survey of students at a large university, graduate students and undergrad-
uates are to be surveyed separately. A simple random sample of 100 of the
4000 graduate students is planned. Because there are 8 times as many under-
graduates, does the sample size for the undergraduate survey need to be 800
to get the same accuracy as in the graduate student survey? You may assume
that the SDs for the two groups of students are the same.
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13. In this exercise, we estimate the fractionπ of women that played video games
in the week prior to the survey. Our estimate is

π̂ � v̄

131/314
,

where 131/314 is the known fraction of women in the course, andv̄ is the
fraction of the respondents who were both female and played a video game
in the week prior to the survey.

a. Prove thatπ̂ is an unbiased estimator.
b. What is the standard error ofπ̂?

14. Of the 314 students in the STAT 21 class surveyed, 131 are female. Simulate
many different samples of size 91 from the class, and use each sample to
construct a 95% confidence interval for the percentage of females in the class.
Is the distribution of the left endpoint of the 95% confidence interval normal?
Make a normal-quantile plot of the left endpoints of the intervals. Explain
why this would or would not be the case.

15. Use a normal-curve approximation to estimate the chance that exactly 38 of the
91 students in the sample would be female. You will need to use a continuity
correction: the probability histogram for the hypergeometric distribution is
discrete, but the normal curve is continuous. Is your answer similar to the
exact calculation in the text? Discuss whether you would expect them to be
similar.

16. Use the bootstrap to find a 95% confidence interval for the proportion of
students who own PCs. Compare your bootstrapped confidence interval to the
interval obtained assuming the sample proportion is approximately normally
distributed.

17. In the video survey, 31 of the 91 (34%) students expect an A for their grade
in the course, and √

.34× .66

90

√
314− 91

314
� 0.04 .

Consider the following statements about confidence intervals. Determine
which are true and which are false. Explain your reasoning carefully.

a. There is a 95% chance that the percentage of students in the STAT 21 class
who expect an A for the course is between 26% and 42%.

b. There is a 95% chance that the sample percentage is in the interval
(26%,42%).

c. About 95% of the STAT 21 students will be contained in a 95% confidence
interval.

d. Out of one hundred 95% confidence intervals for a population parameter,
we expect 95 to contain the population parameter.

18. For a random sample ofn units with replacement from a population, consider
the following estimates for the population average:
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a. x̂ � xI (1).
b. x̃ � 2xI (1) − xI (2).
c. x∗ � 2x̄.

For each estimate, find its expectation and variance. Comment on these
estimates.

19. For a simple random sample of sizen from a population of sizeN , consider
the following estimate of the population average:

x̄w �
n∑
i�1

wixI (i),

where thewi are fixed weights. Show that all of the estimators in Exercise 18
are special cases ofx̄w. Prove that for the estimator to be unbiased, the weights
must sum to 1.

20. With simple random sampling, is̄x2 an unbiased estimate ofµ2? If not, what is
the bias? Avoid a lot of calculations by using facts you already know aboutx̄.

21. A clever way to find the covariance betweenxI (1) andxI (2) is to note that if
we sampled all the units from the population then the sample average would
always be the population average (i.e., whenn � N thenx̄ � µ always). In
this case, Var(̄x)=0. Use this fact and the fact that

Var(x̄) � 1

n
σ 2 + n− 1

n
Cov(xI (1), xI (2))

to find the covariance ofxI (1) andxI (2). Then show that

Var(x̄) � 1

n
σ 2N − n

N − 1
.

22. Show that when thexi ’s in a population are 0s and 1s, and the proportion of
1’s in the population isπ , then

σ 2 � π (1 − π ).

23. Suppose thexi values area or b only andp is the proportion ofxi ’s taking
the valuea. Show that this implies

σ 2 � (b − a)2p(1 − p).

24. A bootstrap method (Bickel and Freedman [BF84]) better than the one de-
scribed in the Theory section would proceed as follows. For a sample ofn

from N , whenN/n is not an integer, two bootstrap populations are created.
The first takesk copies of each unit in the sample, and the second takesk+ 1
copies, where

N � k × n+ r 0< r < n.

Then to sample from the bootstrap populations, first one of the two populations
is chosen. The first population is selected with probability

p �
(
1 − r

n

)(
1 − n

N − 1

)
,
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and the second population is chosen with chance 1−p. Then a simple random
sample ofn units is taken from the chosen bootstrap population to form a
bootstrap sample, and the sample average is computed. This procedure is
repeated many times, each time selecting a population at random and then a
sample from the population, to simulate the distribution of the sample average.

a. Construct the two bootstrap populations for the sample in Table 2.7.
b. Take 400 bootstrap samples from each population and find the bootstrap

sample averages. Compare the two bootstrap distributions.

Notes

The students in the Fall 1994 Statistics 131a, Section 1 class provided the leg
work for conducting this survey. Cherilyn Chin, an avid gamer, was instrumental
in designing the questionnaire. Roger Purves was also very helpful in designing
the questionnaire and kindly let the Statistics 131 students survey his Statistics 21
students. Wesley Wang helped with the background material on video games.
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The Questionnaire

1. How much time did you spend last week playing video and/or computer games?
(C’mon, be honest, this is confidential)

� No time Hours

2. Do you like to play video and/or computer games?
� Never played→ Question 9
� Very Much � Somewhat � Not Really � Not at all→ Question 9

3. What types of games do you play? (Check all that apply)
� Action (Doom, Street Fighter)
� Adventure (King’s Quest, Myst, Return to Zork, Ultima)
� Simulation (Flight Simulator, Rebel Assault)
� Sports (NBA Jam, Ken Griffey’s MLB, NHL ’94)
� Strategy/Puzzle (Sim City, Tetris)

4. Why do you play the games you checked above? (Choose at most 3)
� I like the graphics/realism
� relaxation/recreation/escapism
� It improves my hand-eye coordination
� It challenges my mind
� It’s such a great feeling to master or finish a game
� I’ll play anything when I’m bored
� Other (Please specify)

5. Where do you usually play video/computer games?
� Arcade
� Home � on a system (Sega, Nintendo, etc.)
� on a computer (IBM, MAC, etc.)

6. How often do you play?
� Daily � Weekly � Monthly � Semesterly

7. Do you still find time to play when you’re busy (i.e., during midterms)?
� Yes (can’t stay away) � No (school comes first!)

8. Do you think video games are educational?
� Yes (or else all my years of playing have gone to waste)
� No (I should have been reading books all those years)
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9. What don’t you like about video game playing?
Choose at most 3
� It takes up too much time � It costs too much
� It’s frustrating � It’s boring
� It’s lonely � My friends don’t play
� Too many rules to learn � It’s pointless
� Other (Please specify)

10. Sex: � Male � Female

11. Age:

12. When you were in high school was there a computer in your home?
� Yes � No

13. What do you think of math?� Hate it � Don’t hate it

14. How many hours a week do you work for pay?

15. Do you own a PC? � Yes � No
Does it have a CD-Rom?� Yes � No

16. Do you have an e-mail account?� Yes � No

17. What grade do you expect in this class? �A �B �C �D �F
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Minnesota Radon Levels

Every day there s another
frightening headline about
dangerous substances in our
homes.

Cance r- c au s i ng r adon
s e e p i n g u p t h r o u g h t h e
floorboards. Deadly asbestos
sprayed on the ceiling. Toxic lead in
our drinking water or painted
walls. Poisonous carbon monoxide
gas spewingfrom gas stoves.

How much of a threat are
these hazards? And what should we
do about them?

Many people simply bury
their heads. And why not? If you
know you have a problem, you
either have to spend big bucks to fix
it or disclose it when you sell your
house.

And, if you arent sick, why
test your home? Ignorance can be
bliss.

Or at least it used to be. ...

Unlike asbestos, lead and
carbon monoxide, radon is a
naturally occurring toxin, which
leads many people to mistakenly
believe it is less dangerous than its
man-made counterparts, says
Groth of ConsumerReports.

As one expert put it, its
God s radon , Groth says. It s a
problem people tend not to worry
about because its natural and it s
there. But radon is simply a very
big risk. ...

Radon is produced by the
normal decay of uranium, ... It is
colorless, odorless and tasteless -
and impossible to detect without a
special test. ...

Radon is the second-leading
cause of lung cancer, after smoking,
according to the U.S. surgeon
general. According to the EPA, an
e s t i m a t e d 1 4 , 0 0 0 p e o p l e
nationwide die each year from
radon-causedlung cancer ...

San Francisco Chronicle� �� ��WEDNESDAY, JULY 5, 1995

Does Your House Make You Sick?

How to detect and manage radon, lead,
asbestos and carbon monoxide

RADON - WE RE NOT EXEMPT
Tara Aronson

1

1Reprinted by permission.
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Introduction

Radon is a radioactive gas with a very short half-life, yet it is considered a serious
health risk to the general public. Because radon is a gas, it moves easily from soil
into the air inside a house, where it decays. The decay products of radon are also
radioactive, but they are not gases. They stick to dust particles and cigarette smoke
and can lodge in lung tissue, where they irradiate the respiratory tract.

Radon has long been known to cause lung cancer. In the sixteenth century, a
high incidence of fatal respiratory disease was reported among eastern European
miners; this disease was identified as lung cancer in the nineteenth century. More
recently, the U.S. National Cancer Institute conducted a large epidemiological
study of 68,000 miners exposed to radon. It was found that the miners are dying
of lung cancer at 5 times the rate of the general population. According to the U.S.
Environmental Protection Agency (EPA), the level of radon exposure received in
the mines by some of these miners is comparable to the exposure millions of people
in the U.S. receive over their lifetime in their homes.

In the 1980s, the EPA began funding efforts to study indoor radon concentrations
with the goal of finding homes with high levels of radon. As part of their search
for these homes, the EPA constructed a map for each state in the U.S. indicating
county radon levels. The purpose of the map is to assist national, state, and local
organizations in targeting their resources for public awareness campaigns and in
setting radon-resistant building codes.

In this lab, you will examine indoor radon concentrations for a sample of homes
in Minnesota. The survey results are from a 1987 study of radon conducted by the
EPA and the Minnesota Department of Health. You will have the opportunity to
create a county radon map for the state of Minnesota based on these survey results
and information about the state’s geology.

The Data

The data were collected by the EPA and the Minnesota Department of Health in
November, 1987, for 1003 households in Minnesota (Tate [Tat88]). Radon con-
centrations were monitored in each house for two days using a charcoal canister.
To maintain anonymity, houses were identified by county only.

For each house in the survey, the county identification number and the two-day
charcoal canister measurement of the radon level are available (Table 3.1).

Table 3.2 contains a key to match the county identification number with the
county name, which can be used to locate counties on the map in Figure 3.1.

Survey Design

The houses that were included on the list to be surveyed were all those with
permanent foundations, at least one floor at or below the ground level, owner
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TABLE 3.1. Sample observations and data description for the EPA radon survey of 1003
Minnesota homes (Tate [Tat88]).

County ID 1 1 1 1 2 2 2 2 2 2
Radon 1.0 2.2 2.2 2.9 2.4 0.5 4.2 1.8 2.5 5.4

Variable Description
County ID Identifier for the county in which the house is located.
Radon Radon measurement, in picoCuries per liter (pCi/l).

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22 2324

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

4041 42

43

44

45

46

47

4849

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

FIGURE 3.1. County map of Minnesota. See Table 3.2 to identify counties.

occupied, and with a listed phone number. The real population of interest is all
occupied residences. These restrictions resulted from the difficulties in gaining
permission to conduct the survey in rental units and finding houses without listed
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TABLE 3.2. County populations and sample sizes for the EPA radon survey in Minnesota
(Tate [Tat88]).

County Houses Total County Houses Total
ID Name sampled (100s) ID Name sampled (100s)
1 Aitkin 4 54 45 Martin 8 97
2 Anoka 57 719 46 McLeod 13 111
3 Becker 4 110 47 Meeker 5 77
4 Beltrami 7 115 48 Mille Lacs 3 72
5 Benton 4 95 49 Morrison 10 103
6 Big Stone 3 29 50 Mower 14 149
7 Blue Earth 14 186 51 Murray 1 39
8 Brown 4 102 52 Nicollet 4 95
9 Carlton 11 105 53 Nobles 3 78

10 Carver 6 141 54 Norman 3 33
11 Cass 5 84 55 Olmsted 11 361
12 Chippewa 5 56 56 Otter Tail 11 199
13 Chisago 6 100 57 Pennington 4 57
14 Clay 15 172 58 Pine 6 75
15 Clearwater 4 31 59 Pipestone 4 41
16 Cook 2 18 60 Polk 4 125
17 Cottonwood 4 52 61 Pope 2 46
18 Crow Wing 12 172 62 Ramsey 42 1809
19 Dakota 69 794 63 Red Lake 0 18
20 Dodge 3 55 64 Red Wood 5 67
21 Douglass 11 114 65 Renville 3 74
22 Faribault 6 73 66 Rice 11 159
23 Fillmore 2 79 67 Rock 3 38
24 Freeborn 10 134 68 Roseau 14 47
25 Goodhue 15 146 69 St Louis 122 81
26 Grant 0 27 70 Scott 14 165
27 Hennepin 119 3925 71 Sherburne 9 111
28 Houston 6 64 72 Sibley 4 55
29 Hubbard 5 57 73 Stearns 27 360
30 Istani 5 90 74 Steele 10 110
31 Itasca 12 166 75 Stevens 2 37
32 Jackson 7 48 76 Swift 4 47
33 Kanabec 4 49 77 Todd 4 94
34 Kandiyohi 4 141 78 Traverse 5 17
35 Kittson 3 23 79 Wabasha 7 74
36 Koochiching 9 62 80 Wadena 5 50
37 LacQui Parle 2 38 81 Waseca 4 69
38 Lake 10 44 82 Washington 50 424
39 Lake Of The Woods 5 15 83 Watonwan 3 47
40 LeSueur 6 87 84 Wilkin 1 28
41 Lincoln 4 29 85 Winona 13 161
42 Lyons 10 90 86 Wright 14 216
43 Mahnomen 1 16 87 Yellow Medicine 3 46
44 Marshall 9 45 Total 1003 14804
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phone numbers, and from the fact that houses entirely above ground tend to have
very low radon concentrations.

Houses were selected county by county for the sample. Within a county, each
house had an equal chance of being included in the survey. The county population
and a radon index were used to determine how many houses to choose from each
county. Table 3.2 contains, for each county, the total number of households in the
county and the number of houses sampled from the county.

To select the houses to be surveyed, telephone numbers were randomly chosen
from a directory of listed telephone numbers. For each county, the list of randomly
selected phone numbers was 5 times the desired number of households to be
contacted in the county. The phone numbers were arranged in lists of 50, and the
contacts for each county were made in waves of 50, until the desired number of
participants was obtained.

The phone caller determined whether the candidate was eligible and willing to
participate. If this was the case, the candidate was mailed a packet of materials
containing the charcoal canister, an instruction sheet, a questionnaire, literature on
radon, and a postage-paid return envelope. Eligible candidates who were unwilling
to participate were mailed information about radon, and a second phone contact
was made later to see if they had changed their minds about participating in the
study.

The original survey design was to use sampling rates proportional to county
populations, with the proportion determined by one of three factors according to
whether the county was considered a potentially high-radon, medium-radon, or
low-radon area. In reality, the sampling rates were far more varied. Nonetheless,
for each county, a simple random sample of willing households was obtained.

Background

Radon

Radon is a radioactive gas that comes from soil, rock, and water. It is a by-product
of the decay of uranium (U238), which is naturally present in all rocks and soils.
Because radon is a gas, it escapes into the air through cracks in rocks and pore
spaces between soil grains. Outdoors, radon is diluted by other atmospheric gases
and is harmless. Indoors, radon may accumulate to unsafe levels.

Uranium is the first element in a long series of radioactive decay that produces
radium and then radon. Radon is called a daughter of radium because it is the
element produced when radium decays. Radon is radioactive because it decays to
form polonium. Polonium is also radioactive, but it is not a gas. Polonium easily
sticks to dust particles in the air and to lung tissue, and for this reason radon is
considered a health hazard.

Radioactive decay is a natural spontaneous process in which an atom of one
element breaks down to form another element by losing protons, neutrons, or
electrons. In this breakdown, radioactive elements emit one of three kinds of rays:
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alpha, beta, or gamma. An alpha particle consists of two protons and two neutrons,
beta rays are electrons, and gamma rays are photons. When an alpha particle is
emitted by an atomic nucleus, the element changes into a new element two columns
to the left in the periodic table. When a beta particle is emitted, the element changes
into an element one column to the right in the periodic table. The emission of
gamma rays does not change the element. Each of these types of rays can sensitize
photographic plates. When radium and radon decay, an alpha particle is given off.

Measuring Radon

Radioactive elements are measured in terms of their half-life. A half-life is the
time it takes a large quantity of a radioactive element to decay to half its original
amount. Radon decays very quickly. Its half-life is about four days. In contrast,
the half-life of uranium is about four billion years, and radium’s half-life is about
1600 years.

Radon concentrations are measured in Becquerels per cubic meter or in pic-
oCuries per liter. One Becquerel is one radioactive decay per second. A picoCurie
per liter (pCi/l) equals 37 Becquerels per cubic meter (Bq/m3). In the U.S., concen-
trations of radon in single-family houses vary from 1 Becquerel per cubic meter
to 10,000 Becquerels per cubic meter.

These units of measurement are named after the pioneers in the discovery of
radioactivity (Pauling [Pau70]). In 1896, Becquerel showed that uranium could
blacken a photographic plate that was wrapped in paper. Later that same year,
Marie and Pierre Curie discovered radium. One gram of radium is approximately
one Curie.

Table 3.3 contains the U.S. EPA guidelines for safe radon levels.

Radon in the Home

Indoor radon concentrations are related to the radium content of the soil and rock
below the building. All rock contains uranium. Most contain a very small amount,
say 1–3 parts per million (ppm). Some rocks have high uranium content, such as
100 ppm. Examples of these rocks include light-colored volcanic rock, granite,
shale, and sedimentary rocks that contain phosphate.

When radium decays and shoots off an alpha particle in one direction, it also
shoots off a radon atom in the opposite direction. If the radium atom is close
to the surface of the rock grain, then the radon atom can more easily leave the
mineral grain and enter the pore space between the grains. Once it has escaped
the rock or soil grain, it can travel a long way before it decays. Radon moves
more quickly through coarse sand and gravel in comparison to clay and water. The
interconnectedness of the pore spaces determines the ability of the soil to transmit
a gas such as radon — we call this property permeability.

The permeability and radioactive levels of the soil and rock beneath a house af-
fect the quantity of radon that enters the house. For example, some granite contains
high concentrations of radium; however, because it is rock, a large fraction of the
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TABLE 3.3. EPA Action Guidelines (Otton [Ott92].)

Radon concentration Recommended urgency of reduction
(pCi/l) efforts

200 or above Action to reduce levels as far below
200 pCi/l as possible is recommended
within several weeks after measuring
these levels.

20 to 200 Action to reduce levels as far below
20 pCi/l as possible is recommended
within several months.

4 to 20 Action to reduce levels to under 4 pCi/l is
recommended within a few years, and
sooner if levels are at the upper end of
this range.

Less than 4 While these levels are at or below the EPA
guideline, some homeowners
might wish to attempt further reductions.

radon generated in the mineral grain is absorbed in neighboring grains, not reach-
ing the mineral pores. In contrast, buildings on drier, highly permeable soils such
as hillsides, glacial deposits, and fractured bedrock may have high radon levels
even if the radon content of the soil pores is in the normal range. This is because
the permeability of the soils permits the radon to travel further before decaying.

Radon enters a building via the air drawn from the soil beneath the structure.
This air movement is caused by small differences between indoor and outdoor air
pressures due to wind and air temperature. The air pressure in the ground around
a house is often greater than the air pressure inside the house so air tends to move
from the ground into the house. A picture of how radon may enter a house is shown
in Figure 3.2. Most houses draw less than 1% of their air from the soil. However,
houses with low indoor air pressures and poorly sealed foundations may draw up
to 20% of their air from the soil.

Indoor radon concentrations are also affected by ventilation and by reactions
with other airborne particles in the house, such as cigarette smoke.

The Geology and Geography of Minnesota

Minnesota’s landscape is diverse and influenced in most of the state by the action
of glaciers. The map in Figure 3.3 (Schumann and Schmidt [SS88]) shows several
distinct areas characterized by different landscape features.
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FIGURE 3.2. Radon can enter a house through many paths (Otton [Ott92]).

The Superior Upland is primarily an area of glacial erosion, where exposed
bedrock has been smoothed and grooved by overriding glaciers, producing linear
patterns of lakes and ridges. In the southern and western parts of the Superior
Upland are the Giants range, a ridge of granite flanking the Mesabi Iron Range.
The Mesabi Range has many large open-pit iron mines. Some of these mine pits
are now lakes.

The Western Lake Section of the Central Lowlands province is characterized by
glacial landscape features, including various types of glacial hills and ridges and
depressions, most of which are filled with lakes and wetlands.

The Till Prairie Section of the Central Lowlands occupies most of the southern
half of the state. This area is relatively flat and featureless, except where it is
dissected by rivers and streams, the largest of which is the Minnesota River. Chains
of lakes are common features and may be due to buried preglacial valleys. Along
the southern border of the state are uplands. To the east, these areas are partially
covered by windblown silt. In the southeast corner of the state, the windblown silt
rests directly on bedrock and is called the “driftless area.” In the southwest, the
Prairie Couteau is an upland area that lies between the Minnesota River lowland
and the James River basin in South Dakota. It is a bedrock highland that existed
in preglacial times; part of it is covered by windblown silt.

The Red River Lowland, in the northwestern part of the state, is a relatively
flat-lying lowland, which is the former bed of Lake Agassiz. The lake was one of
the largest Wisconsin glacial lakes. The flatness and clay deposits make this area
very poorly drained, and much of it is occupied by wetlands.
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FIGURE 3.3. Landscape features of Minnesota (Schumann and Schmidt [SS88]).

A significant portion of Minnesota’s population is clustered around urban centers
such as Minneapolis, St. Paul, and Duluth (Figure 3.4). (Minneapolis is in Hennepin
County, St. Paul is in Ramsey County, and Duluth is in St. Louis County.) Major
land use in the state includes agriculture and manufacturing in the southern part
of the state and logging, mining, and tourism in the north.

Many areas of Minnesota are underlaid by rocks that contain sufficient quantities
of uranium to generate radon at levels of concern if they are at or near the surface
(Figure 3.5). Most rocks of the greenstone-granite terrain in northern Minnesota
have low uranium contents. Rocks in northeastern Minnesota are generally low in
uranium. The rocks in Carlton and Pine Counties can contain significant amounts
of uranium. Rocks of central Minnesota and the Minnesota River valley (e.g.,
Redwood, Renville, and Yellow Medicine Counties) have high concentrations of
uranium. In general, soils from Cretaceous shales contain more uranium than
those from metamorphic and other crystalline rocks. Sandstones in southeastern
Minnesota are generally low in uranium, but these rocks contain small amounts of
uranium-bearing heavy minerals that may be locally concentrated.
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FIGURE 3.4. Population map of Minnesota.

Investigations

Our goal is to provide estimates for the proportion of houses in the state that exceed
the EPA recommended action levels. Below are two sets of suggestions for making
these estimates. The first is sample-based and the second model-based. It may be
interesting to compare the two techniques.

The Sample-Based Method

• Use the number of houses in the sample with radon levels that exceed 4 pCi/l
to estimate the proportion of houses in the state that exceed this level. Keep
in mind the sampling scheme when creating the estimate. That is, in some
counties one sampled house represents 500 houses and in other counties one
house represents 10,000 houses.



3. Minnesota Radon Levels 63

FIGURE 3.5. Bedrock map of Minnesota.

• Attach standard errors to your estimate, or provide an interval estimate for the
proportion of houses in Minnesota that exceed 4 pCi/l.

• How would you use the sample survey results for each county to estimate the
number of households in that county with radon levels that exceed 4 pCi/l?

• Many counties have as few as four or five observations. For a county with only
four observations, the estimated proportion of houses in the county to exceed
4 pCi/l can only be either 0, 25, 50, 75, or 100%, according to whether 0, 1, 2,
3, or 4 houses exceed the level. Can you use the information for the entire state
or for neighboring counties to help provide a more reasonable estimate for a
county with a small sample?

• Using estimates for each county, color or shade a county map of Minnesota,
indicating at least three levels of indoor radon concentration. What do you con-
clude about the geographical distribution of radon concentration in Minnesota?
What factors limit the validity of your conclusions?
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Model-based Estimation

The lognormal distribution is frequently used in environmental statistics. Nero et
al. ([NSNR86]), Marcinowski ([Mar91]), and the California Air Resources Board
([Boa90]) all make a case based on empirical evidence for using the lognormal dis-
tribution to approximate the distribution of radon concentrations. If the lognormal
distribution fits the data reasonably well, then it can be used to provide estimates
of the proportion of houses that exceed the recommended EPA action level.

• Examine the data from a heavily sampled county, such as Hennepin, to de-
termine how well the data fit the lognormal distribution. To do this, consider
graphical methods and statistical tests to assess the fit. Also, note that fitting the
lognormal distribution to radon concentration is similar to fitting the normal
distribution to the log concentrations. To fit the model, estimate the mean and
SD of the lognormal distribution. The data are truncated on the left due to limi-
tations of the measurement process. That is, measurements below 0.5 pCi/l are
reported as 0.5 pCi/l. How might this truncation affect estimates of the mean
and SD? Consider adjusting the estimates to compensate for the truncation.

• According to the fitted density, what proportion of the houses in Hennepin
County exceed 4 pCi/l? For each county, fit the lognormal distribution. Then
estimate the proportion of houses in the state that exceed 4 pCi/l. How does
this estimate agree with the sample-based estimate that makes no model
assumptions?

• Provide an interval estimate for this proportion. To do this, use the bootstrap
to find an approximate distribution (and standard error) for the estimator. That
is, generate a bootstrap sample for each county according to the lognormal
distribution with parameters that match the county’s sample average and vari-
ance. Use the county bootstrap samples, just as you used the actual samples, to
construct an estimate of the proportion of houses in the county and state with
radon levels greater than 4 pCi/l. Repeat this process, taking more bootstrap
samples, yielding more bootstrap estimates of the proportion. The distribution
of the bootstrap proportions approximates the sampling distribution of the boot-
strap estimator. It can be used to make an interval estimate from your original
estimate of the proportion of houses with radon levels over 4 pCi/l.

• How does the procedure differ if the average and SD of the lognormal distribu-
tion are estimated directly from the sampled radon measurements, as opposed
to estimating it indirectly through the average and SD of the logged mea-
surements? Consider a simulation study that compares the properties of these
estimates under various values ofµ, σ , andn.

Theory
Stratified Random Sampling

The stratified random sample is a probability method for sampling from a pop-
ulation that is divided into subgroups called strata. A simple random sample is
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taken from each stratum. The strata are typically homogeneous groups of units.
The benefits of this more complex sampling technique are that more information
is obtained for a subgroup of the population and that a more accurate estimate for
a population parameter is possible.

In this lab, the strata are counties. Within each county, a simple random sample
was taken independently of the other counties. For example, in Hennepin County
a simple random sample of 119 of the 392,500 houses was taken. Without regard
to the sample from Hennepin County, a simple random sample of 3 houses from
the 4600 houses in Yellow Medicine County was also taken. Similarly, simple
random samples were independently taken from each of the remaining 85 counties.
Altogether, 1003 houses were sampled. The sample sizes were chosen to reflect the
size of the population in the county and the estimated radon levels for the county.
That is, larger counties had larger samples, and counties that were thought to have
high indoor radon concentrations had larger samples.

The Model

Consider a population withN units, where the units are grouped intoJ strata.
Suppose there areN1 units in the first stratum,N2 in the second, and so on. Assign
each unit in stratum #1 a number from 1 toN1. Also assign each unit in stratum
#2 a number from 1 toN2. Do likewise for the rest of the strata.

The value of the characteristic for unit #i in stratum #j can be represented by
xj,i . That is, the #1 unit in stratum #1 has characteristic valuex1,1, the #2 unit
in stratum #1 has valuex1,2, and so on. Then the average for stratum #j can be
written asµj , for j � 1, . . . , J , and the average for all units in the population is
µ;

µj � 1

Nj

Nj∑
i�1

xj,i ,

µ � 1

N

J∑
j�1

Nj∑
i�1

xj,i .

Notice that

µ � N1

N
µ1 + . . . + NJ

N
µJ .

That is, the population average can be represented as a weighted combination of
the stratum averages, where the weights are the relative sizes of the strata.

In stratified sampling, the sample sizen is dividedJ ways inton1, . . .,nJ , where

n1 + . . .+ nJ � n.

From the first stratum, a simple random sample ofn1 units is taken. From the second
stratum, a simple random sample ofn2 units is taken, and so on. Each of the stratum
samples are taken without regard to the others (i.e., they are independent samples).
If we let I (j, i) represent the index of theith unit selected at random from thej th
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stratum, fori � 1, . . . , nj , andj � 1, . . . , J then the sample averagesx̄1, . . . , x̄J
can be combined as follows to estimateµ:

x̄j � 1

nj

nj∑
i�1

xI (j,i),

x̃ � N1

N
x̄1 + . . .+ NJ

N
x̄J .

This estimator is unbiased because each of the stratum sample averages is unbiased
for its respective stratum population average.

To compute its variance, we use the fact that the strata samples are independent,
so the strata sample averages are independent. We also use the fact that within each
stratum a simple random sample was taken, which means

Var(x̄j ) � σ 2
j

nj

Nj − nj

Nj − 1
,

whereσ 2
j is the variance of the units in thej th stratum, namely,

σ 2
j � 1

Nj

Nj∑
i�1

(xj,i − µj )
2.

Using these facts, we find that

Var(x̃) �
J∑
j�1

w2
jVar(x̄j )

�
J∑
j�1

w2
j

σ 2
j

nj

Nj − nj

Nj − 1
,

wherewj � Nj/N , j � 1, . . . J .

Optimal Allocation

Those strata with more units and more variation across units contribute more to
the variance of̃x than smaller and less variable strata. This observation leads to
the question of how best to choose strata sample sizes{nj } in order to minimize
the variance of the estimator.

To answer this question, we begin by looking at the case of two strata (i.e.,
J � 2). The optimal allocation follows from the inequality:

w2
1σ

2
1

n1
+ w2

2σ
2
2

n2
≥ (w1σ1 + w2σ2)2

n
.

(We ignore the finite population correction factor for now.) To see this, notice that
when the right side is subtracted from the left side the difference is:

(n2w1σ1 − n1w2σ2)2

n1n2n
,
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which is never negative. It then follows that the left side is minimized when

n2w1σ1 � n1w2σ2,

or, equivalently, when

n1 � n
w1σ1

w1σ1 + w2σ2
.

In general, the optimal allocation is

ni � n
wiσi∑J
j�1wjσj

,

and the variance of̃x is

1

n

(
J∑
j�1

wjσj

)2

.

The proof forJ > 2 is left as an exercise.
As expected, the optimal allocation takes a larger sample from the larger and

the more variable strata. If the stratum variances are all the same then the optimal
allocation coincides with proportional allocation.Proportional allocationtakes
the stratum sample size to be proportional to the stratum population size (i.e.,
nj/n � Nj/N ).

When the stratum variances are unknown, the method of proportional allocation
can be used. Table 3.4 compares the variances of the sample average from a simple
random sample, a stratified random sample with proportional allocation, and a
stratified random sample with optimal allocation. The finite population correction
factor is ignored in each of the calculations. Note thatσ̄ � ∑

wjσj , which is in
general different from the population standard deviationσ .

TABLE 3.4. Summary of variances for different sampling techniques (ignoring the finite
population correction factor).

Sampling method Variance Difference

Simple 1
n
σ 2

Simple−Proportional
1
n

∑J

j�1wj (µj − µ)2

Proportional 1
n

∑J

j�1wjσ
2
j

Proportional−Optimal
1
n

∑J

j�1wj (σj − σ̄ )2

Optimal 1
n
(
∑J

j�1wjσj )
2
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An Example

For the moment, treat Minnesota as a state with only three counties: Hennepin,
Ramsey, and St. Louis (i.e., counties #27, #62, and #69). Their population sizes
(in hundreds of houses) are 3925, 1809, and 81, and their sample sizes are 119,
42, and 122, respectively. The total population in this mini-state is 5815 hundred
houses, and the total number of houses sampled is 283. Then the weights for these
three counties are

wH � 3925/5815� 0.675, wR � 0.311, wS � 0.014,

where the subscripts denote the county — H for Hennepin, R for Ramsey, and S
for St. Louis. The sample means for these three counties are

x̄H � 4.64, x̄R � 4.54, x̄S � 3.06.

Using the weights, we estimate the population average radon concentration to be

x̃ � (0.675× 4.64)+ (0.311× 4.54)+ (0.014× 3.06) � 4.59.

The sample SDs for each of the counties are

sH � 3.4, sR � 4.9, sS � 3.6,

and if we plug these estimates into the formula for the Var(x̃) then we have an
estimate for the variance:(

w2
H

s2
H

119

)
+
(
w2
R

s2
R

42

)
+
(
w2
S

s2
S

122

)
� 0.10.

In comparison, if proportional allocation had been used to take the samples, then
the variance of the estimator would be about

1

283
[(wH × s2

H ) + (wR × s2
R) + (wS × s2

S)] � 0.05 .

The estimate of the variance under optimal allocation is also 0.05 to 2 decimal
places.

The Lognormal Distribution

The geometric mean of a set of nonnegative numbersx1, x2, . . . xn is defined to be(
n∏
i�1

xi

)1/n

.

It can easily be shown that (
n∏
i�1

xi

)1/n

� eȳ,

whereyi � logxi and ȳ � n−1∑ yi . This notion extends naturally to random
variables: the geometric mean of a random variableX is exp(E(logX)).
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A nonnegative random variableX is said to have a lognormal distribution with
parametersµ andσ 2 if log (basee) of X has a normal distribution with meanµ
and varianceσ 2 (Crow and Shimiza [CS88]). Note thatµ andσ 2 are not the mean
and variance ofX but the mean and variance of logX. The density function of the
lognormal can be found via the change of variable formula for the transformation
X � exp(Z), whereZ has a normal distribution with meanµ and SDσ . Forx > 0,

f (x) � 1

xσ
√

2π
exp

[
− 1

2σ 2

(
log

x

γ

)2
]
,

whereγ � exp(µ) is the geometric mean of the lognormal distribution.
Then the mean and variance of the lognormal are

E(X) � γ exp(σ 2/2)

and

Var(X) � γ 2[exp(2σ 2) − exp(σ 2)].

Note that forσ small, the geometric mean and expected value are close.

Parametric Bootstrap

In Chapter 2, we saw how to use the bootstrap to “blow up” the sample to make
a bootstrap population and use this bootstrap population to approximate (through
repeated sampling) the variance of the sample average.

In this lab, we consider the possibility that the survey results look as though
they are random samples from the lognormal distribution. We can again use the
bootstrap method to determine the variance of the sample average. This time,
however, we use a parametric bootstrap that is based on the lognormal distribution.
Rather than blowing up the sample in each county to make the county bootstrap
population, we suppose the bootstrap population values in each county follow the
lognormal distribution, with parameters determined by the county sample. Then
by resampling from each county’s bootstrap lognormal distribution, we generate
bootstrap samples for the counties. Each county’s bootstrap sample is used to
estimate the lognormal parameters for the county, and then a bootstrap estimate of
the proportion of houses in the state with radon levels exceeding 4 pCi/l is obtained.
By repeated resampling from the counties, we can approximate the distribution
of the bootstrap proportion. The bootstrap sampling procedure imitates stratified
random sampling from each of the counties, with the number of bootstrap units
sampled from a county matching the actual sample size taken.

Exercises

1. Consider the following population of six units:

x1 � 1, x2 � 2, x3 � 2, x4 � 4, x5 � 4, x6 � 5.
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Suppose units 2, 3, 4, and 5 are in one stratum and units 1 and 6 are in a second
stratum. Take a simple random sample of 2 units from the first stratum and a
simple random sample of 1 unit from the second stratum.

a. Find the exact distribution of the stratified estimator for the population
average.

b. Use the exact distribution to compute the expectation and standard
deviation of the estimator.

c. Compare your calculations to the numeric results obtained from plugging
the values forNj , nj , µj , andσj into the formulas derived in this chapter
for the expected value and standard error of a stratified estimator.

2. The following results were obtained from a stratified random sample.
Stratum 1: N1 � 100, n1 � 50, x̄1 � 10, s1 � 50.
Stratum 2: N2 � 50, n2 � 50, x̄2 � 20, s2 � 30.
Stratum 3: N3 � 300, n3 � 50, x̄3 � 30, s3 � 25.

a. Estimate the mean for the whole population.
b. Give a 95% confidence interval for the population mean.

3. Allocate a total sample size ofn � 100 between two strata, whereN1 �
200,000,N2 � 300,000,µ1 � 100,µ2 � 200,σ1 � 20, andσ2 � 16.

a. Use proportional allocation to determinen1 andn2.
b. Use optimal allocation to determinen1 andn2.
c. Compare the variances of these two estimators to the variance of the

estimator obtained from simple random sampling.

4. For the strata in Exercise 3, find the optimal allocation for estimating the dif-
ference of means of the strata:µ1−µ2. Ignore the finite population correction
factor in your calculation.

5. It is not always possible to stratify a sample before taking it. In this case,
when a simple random sample is taken, it can be stratified after the units are
surveyed and it is known to which group each sampled unit belongs. That
is, the sample is divided into strata after sampling and treated as a stratified
random sample. This technique is calledpoststratification. ForJ strata, with
strata sizesNj and weightswj � Nj/N , the poststratified estimator is

w1x̄1 + · · · + wJ x̄J .

Because we have poststratified, the number of units in thej th stratum,nj , is
random.
The variance of the poststratified estimator is approximately

N − n

n(N − 1)

∑
j

wjσ
2
j + 1

n2

N − n

N − 1

∑
j

N −Nj

N
σ 2
j ,

whereµj andσ 2
j are the mean and standard deviation for stratumj . The first

term in the variance is the same as the variance under proportional allocation,
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TABLE 3.5. Numbers of female and male students in the sample of statistics students
(Chapter 2) who did/did not play video games in the week prior to the survey, and who
do/do not own a PC.

Female Male
Yes 9 25Played
No 29 28
Yes 27 40Owns a PC
No 11 13
Total 38 53

with the finite population correction factor included. The second term is due
to there being a random number of units in each stratum.
Poststratify the sample of statistics students (Chapter 2) by sex, and provide
a 95% confidence interval for the proportion of students who played video
games in the week prior to the survey (Table 3.5). Of the 314 students in the
statistics class, 131 were women.

6. Consider the poststratification method introduced in Exercise 5. Show that the
expected value fornj equals the sample size for proportional allocation.

7. Prove that forJ strata, the optimal choice for strata sample sizes{nj }, where∑
nj � n, is

nj � n
wjσj∑J
i�1wiσi

.

8. Suppose the cost of an observation varies from stratum to stratum, where the
cost of sampling a unit from stratumj is cj . Suppose there is a fixed start-up
costco to run the survey, so the total cost is

co + c1n1 + · · · + cJ nJ .

Now instead of fixing the total sample sizen, we fix total survey costC. Find
the allocation ofn1, ..., nJ that minimizes the variance of the estimator for
the population mean. You may ignore the finite population correction factor.

9. The delta method.A second-order Taylor expansion of a functiong around
yo is

g(y) ≈ g(yo) + (y − yo) × ∂

∂y
g(y)

∣∣∣
yo

+ 1

2
(y − yo)

2 × ∂2

∂y2
g(y)

∣∣∣
yo

.

We can use this approximation to estimate the mean ofg(Y ) by taking ex-
pectations of the right side, foryo � µ. Use a second-order expansion to
approximate the expected value of a lognormal random variable and compare
this approximation to the exact expression. Remember that ifY has a normal
distribution with meanµ and varianceσ 2, theneY has a lognormal distribution
with parametersµ andσ 2.

10. Use a first-order Taylor expansion to estimate the variance of a lognormal
random variable. How does your estimate compare to the exact expression?
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11. Suppose the values of two characteristics are recorded on each unit in a simple
random sample. Let the pair (xi, yi), i � 1, . . . , N represent the values of
these pairs of characteristics for all members of the population. Suppose the
population average forx is known and isµx , and the goal is to estimateµy ,
the population average fory. An alternative tōy for an estimator ofµy is the
following ratio estimator:

µ̂r � ȳ
µx

x̄
.

a. Show that this estimator is equivalent to∑
yI (i)∑
xI (i)

µx.

b. Explain why the expectation of̂µr is not typicallyµy .
c. Show that the bias of the estimator is

−Cov(ȳ/x̄, x̄).

d. Use the delta method to show thatµ̂r is approximately unbiased; that is,
use a first-order approximation to the functionf (x̄, ȳ) � ȳ/x̄,

f (x̄, ȳ) ≈ µy/µx + (ȳ − µy)/µx − (x̄ − µx)µy/µ
2
x.

e. Use the same approximation as in part (d) to show the approximate variance
of µ̂r is

Var(ȳ − x̄µy/µx) � 1

n

N − n

N − 1
Var(yI (1) − xI (1)µy/µx).

Notice that if the pairs (xi, yi) roughly fall on a line through the origin of
slopeµy/µx then the expected sum of squares

∑
E(yi − xiµy/µx)2 will

be smaller than
∑

E(yi − µy)2.

12. Use the ratio estimator introduced in Exercise 11 and the data in Table 3.5
to estimate the proportion of students who own PCs in the class, where it is
known that 131 of the 314 students in the class are women (Chapter 2). Supply
a 95% confidence interval for the population proportion. Do you think this
ratio estimator is a better estimator than the proportion of students who own
PCs in the sample? Explain.

Notes

Tony Nero and Philip Price of the Lawrence Berkeley Laboratory were very helpful
in providing the data and in answering questions on radon and on the Minnesota
survey.

The description of the sampling methodology is from a Minnesota Department of
Health publication (Tate [Tat88]). The U.S. Department of the Interior publications
(Nero [Ner88] and Otton [Ott92]) were the primary sources for the description of
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radon and how it enters houses. The geographic description of Minnesota was
summarized from Schumann and Schmidt [SS88]. Pauling [Pau70] was the source
for the description of the uranium series.

References

[Boa90] California Air Resources Board. Survey of residential indoor and outdoor radon
concentrations in California, California Environmental Protection Agency,
Sacramento, 1990.

[CS88] E.L. Crow and K. Shimiza.Lognormal Distribution: Theory and Applications.
Marcel Dekker, New York, 1988.

[Mar91] F. Marcinowski. Nationwide survey of residential radon levels in the U.S. U.S.
Environmental Protection Agency, Washington, D.C., 1991.

[Ner88] A.V. Nero. Controlling indoor air pollution.Sci. Am., 258(5):42–48, 1988.
[NSNR86] A.V. Nero, M.B. Schwehr, W.W. Nazaroff, and K.L. Revzan. Distribution of

airborne radon-222 concentrations in U.S. homes.Science, 234:992–997, 1986.
[Ott92] J.K. Otton. The Geology of Radon. U.S. Government Printing Office,

Washington, D.C., 1992.
[Pau70] L. Pauling.General Chemistry. Dover, New York, 1970.
[SS88] R.R. Schumann and K.M. Schmidt. Radon potential of Minnesota. U.S.

Geological Survey, Washington, D.C., 1988.
[Tat88] E.E. Tate. Survey of radon in Minnesota homes. Unpublished manuscript,

Minnesota Department of Health, Minneapolis, 1988.



This page intentionally left blank



4
Patterns in DNA

Life is a mystery, ineffable,
unfathomable, the last thing on
earth that might seem susceptible
to exactdescription. Yet now, for
the first time, a free-living
organism has been precisely
d e f i n e d b y t h e c h e m i c a l
identification of its complete
genetic blueprint.

The creature is just a humble
bacterium known as

, but it nonetheless
possesses all the tools and tricks
req ui red f or independent
existence. For the first time,
biologists can begin to see the
entire parts list, asit were, of what

a living cell needs to grow, survive
and reproduce itself.

--no relation to
the flu virus -- colonizes human
tissues, where in its virulent form
it ca n ca use earach es and
meningitis. Knowledge of its full
genome has already given
biologists a deeper insight into its
genetic survivalstrategies.

I think it s a great moment
in science, said Dr. James D.
Watson, codiscoverer of the
structure of DNA and a former
director of the Federal project to
sequence the human genome.
With a thousand genes identified,

we are beginning to see what a cell
is, he said. ...

Hemophilus
influenzae

Hemophilus

New York TimesTUESDAY, AUGUST 1, 1995

By Nicholas Wade

First Sequencing of Cell's DNA
Defines Basis of Life

Feat is milestone in study of evolution

1

1Reprinted by permission.
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Introduction

The human cytomegalovirus (CMV) is a potentially life-threatening disease for
people with suppressed or deficient immune systems. To develop strategies for
combating the virus, scientists study the way in which the virus replicates. In
particular, they are in search of a special place on the virus’ DNA that contains
instructions for its reproduction; this area is called the origin of replication.

A virus’ DNA contains all of the information necessary for it to grow, survive
and replicate. DNA can be thought of as a long, coded message made from a
four-letter alphabet: A, C, G, and T. Because there are so few letters in this DNA
alphabet, DNA sequences contain many patterns. Some of these patterns may flag
important sites on the DNA, such as the origin of replication. A complementary
palindrome is one type of pattern. In DNA, the letter A is complementary to T,
and G is complementary to C, and a complementary palindrome is a sequence
of letters that reads in reverse as the complement of the forward sequence (e.g.,
GGGCATGCCC).

The origin of replication for two viruses from the same family as CMV, the herpes
family, are marked by complementary palindromes. One of them, Herpes simplex,
is marked by a long palindrome of 144 letters. The other, the Epstein–Barr virus,
has several short palindromes and close repeats clustered at its origin of replication.
For the CMV, the longest palindrome is 18 base pairs, and altogether it contains 296
palindromes between 10 and 18 base pairs long. Biologists conjectured that clusters
of palindromes in CMV may serve the same role as the single long palindrome in
Herpes simplex, or the cluster of palindromes and short repeats in the Epstein–Barr
virus’ DNA.

To find the origin of replication, DNA is cut into segments and each segment
is tested to determine whether it can replicate. If it does not replicate, then the
origin of replication must not be contained in the segment. This process can be
very expensive and time consuming without leads on where to begin the search. A
statistical investigation of the DNA to identify unusually dense clusters of palin-
dromes can help narrow the search and potentially reduce the amount of testing
needed to find the origin of replication. In practice, the CMV DNA was examined
statistically for many different kinds of patterns. However, for this lab, the search
will be restricted to looking for unusual clusters of complementary palindromes.

Data

Chee et al. ([CBB+90]) published the DNA sequence of CMV in 1990. Leung et
al. ([LBBK91]) implemented search algorithms in a computer program to screen
the sequence for many types of patterns. Altogether, 296 palindromes were found
that were at least 10 letters long. The longest ones found were 18 letters long. They
occurred at locations 14719, 75812, 90763, and 173863 along the sequence.
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0 10 k 20 k 30 k 40 k 50 k 60 k

FIGURE 4.1. Diagram of the 296 palindrome locations for the CMV DNA (Chee et al.
[CBB+90]).

Palindromes shorter than 10 letters were ignored, as they can occur too frequently
by chance. For example, the palindromes of length two — AT, TA, GC and CG —
are quite common.

Altogether, the CMV DNA is 229,354 letters long. Table 4.1 contains the loca-
tions of the palindromes in the DNA that are at least 10 letters long. Notice that
the very first palindrome starts at position 177, the second is at position 1321, the
third at position 1433, and the last at position 228953. Each palindrome is also
located on a map of the DNA sequence in Figure 4.1. In this figure, a palindrome is
denoted by a vertical line; clusters of palindromes appear as thick lines on the map.

Background

DNA

In 1944, Avery, MacLeod, and McCarty showed that DNA was the carrier of
hereditary information. In 1953, Franklin, Watson, and Crick found that DNA has
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TABLE 4.1. CMV palindrome locations for the 296 palindromes each at least ten base pairs
long (Chee et al. [CBB+90]).

177 1321 1433 1477 3248 3255
3286 7263 9023 9084 9333 10884

11754 12863 14263 14719 16013 16425
16752 16812 18009 19176 19325 19415
20030 20832 22027 22739 22910 23241
25949 28665 30378 30990 31503 32923
34103 34398 34403 34723 36596 36707
38626 40554 41100 41222 42376 43475
43696 45188 47905 48279 48370 48699
51170 51461 52243 52629 53439 53678
54012 54037 54142 55075 56695 57123
60068 60374 60552 61441 62946 63003
63023 63549 63769 64502 65555 65789
65802 66015 67605 68221 69733 70800
71257 72220 72553 74053 74059 74541
75622 75775 75812 75878 76043 76124
77642 79724 83033 85130 85513 85529
85640 86131 86137 87717 88803 89586
90251 90763 91490 91637 91953 92526
92570 92643 92701 92709 92747 92783
92859 93110 93250 93511 93601 94174
95975 97488 98493 98908 99709 100864

102139 102268 102711 104363 104502 105534
107414 108123 109185 110224 113378 114141
115627 115794 115818 117097 118555 119665
119757 119977 120411 120432 121370 124714
125546 126815 127024 127046 127587 128801
129057 129537 131200 131734 133040 134221
135361 136051 136405 136578 136870 137380
137593 137695 138111 139080 140579 141201
141994 142416 142991 143252 143549 143555
143738 146667 147612 147767 147878 148533
148821 150056 151314 151806 152045 152222
152331 154471 155073 155918 157617 161041
161316 162682 162703 162715 163745 163995
164072 165071 165883 165891 165931 166372
168261 168710 168815 170345 170988 170989
171607 173863 174049 174132 174185 174260
177727 177956 178574 180125 180374 180435
182195 186172 186203 186210 187981 188025
188137 189281 189810 190918 190985 190996
191298 192527 193447 193902 194111 195032
195112 195117 195151 195221 195262 195835
196992 197022 197191 198195 198709 201023
201056 202198 204548 205503 206000 207527
207788 207898 208572 209876 210469 215802
216190 216292 216539 217076 220549 221527
221949 222159 222573 222819 223001 223544
224994 225812 226936 227238 227249 227316
228424 228953
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FIGURE 4.2. Paired ribbons of DNA forming the double helix structure.

a double helical structure (Figure 4.2) composed of two long chains of nucleotides.
A single nucleotide has three parts: a sugar, a phosphate, and a base. All the sugars
in DNA are deoxyribose — thus the name deoxyribose nucleic acid, or DNA.
The bases come in four types: adenine, cytosine, guanine, and thymine, or A, C,
G, T for short. As the bases vary from one nucleotide to another, they give the
appearance of a long, coded message.

The two strands of nucleotides are connected at the bases, forming complemen-
tary pairs. That is, the bases on one strand are paired to the other strand: A to T, C
to G, G to C, and T to A. Therefore, one strand “reads” as the complement of the
other. This pairing forms a double helix out of the two strands of complementary
base sequences.

The CMV DNA molecule contains 229,354 complementary pairs of letters or
base pairs. In comparison, the DNA of theHemophilus influenzaebacterium has
approximately 1.8 million base pairs, and human DNA has more than 3 billion
base pairs.

Viruses

Viruses are very simple structures with two main parts: a DNA molecule wrapped
within a protein shell called a capsid. The DNA stores all the necessary information
for controlling life processes, including its own replication. The DNA for viruses
typically ranges up to several hundred thousand base pairs in length. According to
The Cartoon Guide to Genetics([GW91]), the replication of the bacteriaE. coli
happens as follows:

In E. coli replication begins when a “snipping” enzyme cuts the DNA strand
apart at a small region called theorigin. In the neighborhood are plenty of free
nucleotides, the building blocks for the new strands. When a free nucleotide
meets its complementary base on the DNA, it sticks, while the “wrong”
nucleotides bounce away. As the snipping enzyme opens the DNA further,
more nucleotides are added, and a clipping enzyme puts them together.
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FIGURE 4.3. A sketch of DNA replication.

Figure 4.3 illustrates the replication process. Theorigin described in Gonick
and Wheelis ([GW91]), where the snipping enzyme starts to cut apart the DNA
strands, is the object of the search in this lab.

Human Cytomegalovirus

CMV is a member of the Herpes virus family. The family includes Herpes simplex
I, chicken pox, and the Epstein–Barr virus. Some Herpes viruses infect 80% of
the human population; others are rare but debilitating. As for CMV, its incidence
varies geographically from 30% to 80%. Typically, 10 – 15% of children are
infected with CMV before the age of 5. Then the rate of infection levels off until
young adulthood, when it again increases ([Rya94, pp. 512–513]). While most
CMV infections in childhood and adulthood have no symptoms, in young adults
CMV may cause a mononucleosis-like syndrome.

Once infected, CMV typically lays dormant. It only becomes harmful when the
virus enters a productive cycle in which it quickly replicates tens of thousands
of copies. In this production cycle, it poses a major risk for people in immune-
depressed states such as transplant patients who are undergoing drug therapy to
suppress the immune system or people with Acquired Immune Deficiency Syn-
drome (AIDS). For these people, if the virus is reactivated, it can cause serious
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infections in internal organs. For example, CMV pneumonia is the leading cause
of death among patients receiving bone marrow transplants. In AIDS patients,
CMV infection often leads to neurological disorders, gastrointestinal disease and
pneumonia. In addition, CMV is the most common infectious cause of mental
retardation and congenital deafness in the United States.

Locating the origin of replication for CMV may help virologists find an effective
vaccine against the virus. Research on the DNA for other Herpes viruses has
uncovered the origin of replication for Herpes simplex I and Epstein–Barr. As
stated earlier, the former is marked by one long palindrome of 144 base pairs, and
the latter contains several short patterns including palindromes and close repeats.
In earlier research, Weston ([Wes88]) found that a cluster of palindromes in the
CMV DNA in the region 195,000 to 196,000 base pairs (see Figure 4.1) marked
the site of another important function, called the enhancer.

Genomics

Recent advances in recombinant DNA and in machines that automate the identifica-
tion of the bases have led to a burgeoning new science called genomics (Waterman
[Wat89]). Genomics is the study of living things in terms of their full DNA se-
quences. Discoveries in genomics have been aided by advances in the fields of
computer science, statistics, and other areas of mathematics, such as knot theory.
For example, computer algorithms are being designed to search long sequences of
DNA for patterns, information theory is facing the challenge of how to compress
and manage these large databases, statistics and probability theory are being devel-
oped for matching sequences and identifying nonrandom structure in sequences,
and knot theory has provided insights into the three-dimensional structure and
molecular dynamics of DNA.

Investigations

How do we find clusters of palindromes? How do we determine whether a cluster
is just a chance occurrence or a potential replication site?

• Random scatter.
To begin, pursue the point of view that structure in the data is indicated by
departures from a uniform scatter of palindromes across the DNA. Of course,
a random uniform scatter does not mean that the palindromes will be equally
spaced as milestones on a freeway. There will be some gaps on the DNA where
no palindromes occur, and there will be some clumping together of palindromes.
To look for structure, examine the locations of the palindromes, the spacings
between palindromes, and the counts of palindromes in nonoverlapping regions
of the DNA. One starting place might be to see first how random scatter looks
by using a computer to simulate it. A computer can simulate 296 palindrome
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sites chosen at random along a DNA sequence of 229,354 bases using a pseudo-
random number generator. When this is done several times, by making several
sets of simulated palindrome locations, then the real data can be compared to
the simulated data.

• Locations and spacings.Use graphical methods to examine the spacings be-
tween consecutive palindromes and sums of consecutive pairs, triplets, etc.,
spacings. Compare what you find for the CMV DNA to what you would expect
to see in a random scatter. Also, consider graphical techniques for examining
the locations of the palindromes.

• Counts.Use graphical displays and more formal statistical tests to investigate
the counts of palindromes in various regions of the DNA. Split the DNA into
nonoverlapping regions of equal length to compare the number of palindromes
in an interval to the number that you would expect from uniform random scatter.
The counts for shorter regions will be more variable than those for longer
regions. Also consider classifying the regions according to their number of
counts.

• The biggest cluster.Does the interval with the greatest number of palindromes
indicate a potential origin of replication? Be careful in making your intervals, for
any small, but significant, deviation from random scatter, such as a tight cluster
of a few palindromes, could easily go undetected if the regions examined are
too large. Also, if the regions are too small, a cluster of palindromes may be
split between adjacent intervals and not appear as a high-count interval. These
issues are discussed in more detail in the Extensions section of this lab.

How would you advise a biologist who is about to start experimentally searching
for the origin of replication? Write your recommendations in the form of a memo
to the head biologist of a research team of which you are a member.

Theory

The Homogeneous Poisson Process

The homogeneous Poisson process is a model for random phenomena such as the
arrival times of telephone calls at an exchange, the decay times of radioactive parti-
cles, and the positions of stars in parts of the sky. This model was first developed in
the time domain. For the phone call example, it seems reasonable to think of phone
calls coming from subscribers who are acting independently of one another. It is
unlikely that any one subscriber will make a call in a particular time interval, but
there are many subscribers, and it is likely that a few will make calls in a particular
interval of time.

The process arises naturally from the notion of points haphazardly distributed
on a line with no obvious regularity. The characteristic features of the process are
that:
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• The underlying rate (λ) at which points, called hits, occur doesn’t change with
location (homogeneity).

• The number of points falling in separate regions are independent.
• No two points can land in exactly the same place.

These three properties are enough to derive the formal probability model for the
homogeneous Poisson process.

The Poisson process is a good reference model for making comparisons because
it is a natural model for uniform random scatter. The strand of DNA can be thought
of as a line, and the location of a palindrome can be thought of as a point on the
line. The uniform random scatter model says: palindromes are scattered randomly
and uniformly across the DNA; the number of palindromes in any small piece
of DNA is independent of the number of palindromes in another, nonoverlapping
piece; and the chance that one tiny piece of DNA has a palindrome in it is the same
for all tiny pieces of the DNA.

There are many properties of the homogeneous Poisson process that can be used
to check how well this reference model fits the DNA data. A few of these properties
are outlined here.

Counts and the Poisson Distribution

One way to summarize a random scatter is to count the number of points in different
regions. The probability model for the Poisson process gives the chance that there
arek points in a unit interval as

λk

k!
e−λ, for k � 0,1, . . . .

This probability distribution is called the Poisson distribution (as it is derived from
the Poisson process). The parameterλ is the rate of hits per unit area. It is also the
expected value of the distribution.

The Rateλ

Usually the rateλ is unknown. When this is the case, the empirical average number
of hits per unit interval can be used to estimateλ. It is a reasonable estimate because
λ is the expected number of hits per unit interval. This technique for estimatingλ

by substituting the sample average for the expected value is called themethod of
moments. Another technique, more widely used to estimate an unknown parameter
such asλ, is the method ofmaximum likelihood. For the Poisson distribution, both
methods yield the same estimate forλ— the sample average. These two methods
of parameter estimation are discussed in greater detail later in this chapter.

Goodness-of-Fit for Probability Distributions

We often hypothesize that observations are realizations of independent random
variables from a specified distribution, such as the Poisson. We do not believe
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TABLE 4.2. Palindrome counts in the first 57 nonoverlapping intervals of 4000 base pairs
of CMV DNA (Chee et al. [CBB+90]).

Palindrome counts
7 1 5 3 8 6 1 4 5 3
6 2 5 8 2 9 6 4 9 4
1 7 7 14 4 4 4 3 5 5
3 6 5 3 9 9 4 5 6 1
7 6 7 5 3 4 4 8 11 5
3 6 3 1 4 8 6

that the data are exactly generated from such a distribution but that for practical
purposes the probability distribution does well in describing the randomness in
the outcomes measured. If the Poisson distribution fits the data reasonably well,
then it could be useful in searching for small deviations, such as unusual clusters
of palindromes.

In our case, we would want to use the homogeneous Poisson process as a ref-
erence model against which to seek an excess of palindromes. This only makes
sense if the model more or less fits. If it doesn’t fit well— for example if there is a
lot of heterogeneity in the locations of the palindrome — then we would have to
try another approach. A technique for assessing how well the reference model fits
is to apply the chi-square goodness-of-fit test.

For example, divide the CMV DNA into 57 nonoverlapping segments, each of
length 4000 bases, and tally the number of complementary palindromes in each
segment (Table 4.2). There is nothing special about the number 4000; it was chosen
to yield a reasonable number of observations (57). Notice that 7 palindromes were
found in the first segment of the DNA, 1 in the second, 5 in the third, etc. The
distribution of these counts appears in Table 4.3. It shows that 7 of the 57 DNA
segments have 0, 1, or 2 palindromes in them, 8 segments have 3 palindromes, 10
segments have 4 palindromes each, ..., and 6 segments have at least 9 palindromes.
However, these segments cover only the first 228,000 base pairs, excluding the last
1354, which include 2 palindromes. Hence we are now considering only a total of
294 palindromes.

The last column in Table 4.3 gives the expected number of segments containing
the specified number of palindromes as computed from the Poisson distribution.
That is, the expected number of intervals with 0, 1, or 2 palindromes is 57× the
probability of 0, 1, or 2 hits in an interval:

57 P(0,1 or 2 palindromes in an interval of length 4000)

� 57e−λ[1 + λ+ λ2/2].

The rateλ is not known. There are 294 palindromes in the 57 intervals of length
4000, so the sample rate is 5.16 per 4000 base pairs. Plugging this estimate into the
calculation above yields 0.112 for the chance that an interval of 4000 base pairs
has 0, 1, or 2 palindromes. Then the approximate expected number of segments
containing 0, 1, or 2 palindromes is 57×0.112, or 6.4. This is approximate because
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TABLE 4.3. Distribution of palindrome counts for intervals of 4000 base pairs for the 294
palindromes in the first 228,000 base pairs of CMV DNA (Chee et al. [CBB+90]).

Palindrome Number of intervals
count Observed Expected
0–2 7 6.4
3 8 7.5
4 10 9.7
5 9 10.0
6 8 8.6
7 5 6.3
8 4 4.1

9+ 6 4.5
Total 57 57

we are using an estimated value ofλ. The remaining expectations are calculated
in a similar fashion.

To compare the observed data to the expected, we compute the followingtest
statistic:

(7 − 6.4)2

6.4
+ (8 − 7.5)2

7.5
+ (10− 9.7)2

9.7
+ (9 − 10.0)2

10.0
+

(8 − 8.6)2

8.6
+ (5 − 6.3)2

6.3
+ (4 − 4.1)2

4.1
+ (6 − 4.5)2

4.5
� 1.0 .

If the random scatter model is true, then the test statistic computed here has an
approximatechi-square distribution(also writtenχ2) with six degrees of freedom.
The size of the actual test statistic is a measure of the fit of the distribution. Large
values of this statistic indicate that the observed data were quite different from
what was expected. We use theχ2 distribution to compute the chance of observing
a test statistic at least as large as ours under the random scatter model:

P(χ2
6 random variable≥ 1.0) � 0.98 .

From this computed probability, we see that deviations as large as ours (or larger)
are very likely. It appears that the Poisson is a reasonable initial model. In this case,
the observed values and expected values are so close that the fit almost seems too
good. See the Exercises for a discussion of this point.

Thehypothesis testperformed here is called achi-square goodness-of-fit test.
In general, to construct a hypothesis test for a discrete distribution a distribution
table is constructed from the data, wherem represents the number of categories or
values for the response andNj stands for the number of observations that appear
in categoryj , j � 1, . . . , m. These counts are then compared to what would be
expected; namely,

µj � npj , where pj � P(an observation is in category j).

Note that
∑
pj � 1 so

∑
µj � n. Sometimes a parameter from the distribution

needs to be estimated in order to compute the above probabilities. In this case, the



86 4. Patterns in DNA

data are used to estimate the unknown parameter(s). The measure of discrepancy
between the sample counts and the expected counts is

m∑
j�1

(j th Sample count− j th Expected count)2

j th Expected count
�

m∑
j�1

(Nj − µj )2

µj
.

When the statistic computed in this hypothesis test (called thetest statistic) is large,
it indicates a lack of fit of the distribution. Assuming that the data are generated
from the hypothesized distribution, we can compute the chance that the test statistic
would be as large, or larger, than that observed. This chance is called theobserved
significance level, orp-value.

To compute thep-value, we use theχ2 distribution. If the probability model
is correct, then the test statistic has an approximate chi-squared distribution with
m − k − 1 degrees of freedom, wherem is the number of categories andk is
the number of parameters estimated to obtain the expected counts. Theχ2

m−k−1
probability distribution is a continuous distribution on the positive real line. Its
probability density function has a long right tail (i.e., it is skewed to the right) for
small degrees of freedom. As the degrees of freedom increase, the density becomes
more symmetric and more normal looking. See Appendix B for tail probabilities
of theχ2.

A rule of thumb for the test statistic to have an approximateχ2 distribution is
that the expected counts for each bin, or category, should be at least five. This
means that some bins may need to be combined before performing the test. In
the example above, the expected counts for the last two categories are not quite
five. However, because the probability distribution is unimodal, it is okay to have
one or two extreme bins with expected counts less than five. Also, for testing the
goodness-of-fit of the uniform distribution, this rule of thumb can be ignored. (You
may want to check these rules of thumb with a simulation study.)

If the χ2 test gives a smallp-value, then there is reason to doubt the fit of the
distribution. When this is the case, a residual plot can help determine where the
lack of fit occurs. For each category, plot thestandardized residual

Sample count− Expected count√
Expected count

� Nj − µj√
µj

.

The denominator transforms the residuals (i.e., the differences between the ob-
served and expected counts) in order to give them approximately equal variances.
The square root allows for meaningful comparisons across categories. Note that
the sum of the residuals is zero, but the standardized residuals do not necessarily
sum to zero. Values of the standardized residuals larger than three (in absolute
value) indicate a lack of fit. Figure 4.4 is such a plot for the entries in Table 4.3.

Locations and the Uniform Distribution

Under the Poisson process model for random scatter, if the total number of hits in
an interval is known, then the positions of the hits are uniformly scattered across
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FIGURE 4.4. Standardized residual plot for the goodness-of-fit test of the Poisson distri-
bution to the distribution of palindrome counts in 4000 base pair intervals of CMV DNA
(Chee et al. [CBB+90]).

the interval. In other words, the Poisson process on a region can be viewed as a
process that first generates a random number, which is the number of hits, and then
generates locations for the hits according to the uniform distribution.

For the CMV DNA, there are a total of 296 palindromes on the CMV DNA.
Under the uniform random scatter model, the positions of these palindromes are
like 296 independent observations from a uniform distribution. The locations of
the palindromes can be compared to the expected locations from the uniform
distribution. Also, if the DNA is split into 10 equal subintervals, then according
to the uniform distribution, we would expect each interval to contain 1/10 of the
palindromes. Table 4.4 contains these interval counts. Aχ2 goodness-of-fit test
can compare these observed and expected counts. We leave this computation to
the Exercises.

TABLE 4.4. Observed and expected palindrome counts for ten consecutive segments of
CMV DNA, each 22,935 base pairs in length (Chee et al. [CBB+90]).

Segment 1 2 3 4 5
Observed 29 21 32 30 32
Expected 29.6 29.6 29.6 29.6 29.6

Segment 6 7 8 9 10 Total
Observed 31 28 32 34 27 296
Expected 29.6 29.6 29.6 29.6 29.6 296
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TABLE 4.5. Distribution of palindrome counts for intervals of 400 base pairs for the 296
palindromes in CMV DNA (Chee et al. [CBB+90]).

Palindrome Number of intervals
count Observed Expected

0 355 342
1 167 177
2 31 46
3 16 8
4 3 1

≥5 1 0.1
Total 573 573

Which Test?

Why did we use 57 intervals of 4000 base pairs in our Poisson goodness-of-fit
test but only 10 intervals for the uniform goodness-of-fit test? If we based the
Poisson test on much shorter interval lengths, we would get many more intervals,
but a larger proportion would contain zero palindromes. For example, with an
interval length of 400 base pairs (Table 4.5), 522 of the 573 intervals have 0 or 1
palindromes. The distribution of counts is now highly skewed, and the test is
uninformative because a large proportion of the counts are in two categories (0 or
1 palindromes).

Alternatively, why not use larger intervals for the Poisson goodness-of-fit test?
Suppose we divide the genome into 10 large, equal-sized intervals, as in Table 4.4.
If we do this, we have hardly enough data to compare observed and expected
numbers of intervals for a particular palindrome count. Our sample size here is
10, but the 10 intervals have 8 different palindrome counts. Previously, we had
57 intervals, which was enough to see the same palindrome counts for an interval
many times (e.g., 10 of the intervals had a count of 4 palindromes).

Now with only 10 intervals, we change our approach from examining the
goodness-of-fit of the Poisson distribution to the goodness-of-fit of the uniform
distribution. In Table 4.3, we compared theobserved numbers of intervalswith
a given count (or range of counts) of palindromes to the Poisson distribution. In
Table 4.4, we are directly comparing theobserved counts of palindromesin each of
our 10 intervals with the uniform distribution, so we can use the many properties of
the Poisson process to test the data in different ways. Be careful of the distinction
between the Poisson process and the Poisson distribution; the Poisson distribution
quantifies the frequencies of hits in fixed intervals of a Poisson process.

Spacings and the Exponential and Gamma Distributions

Another property that can be derived from the Poisson process is that the distance
between successive hits follows an exponential distribution. That is,

P(the distance between the first and second hits> t)
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� P(No hits in an interval of lengtht)

� e−λt ,

which implies that the distance between successive hits follows the exponential
distribution with parameterλ. Similarly, it can be shown that the distance between
hits that are two apart follows a gamma distribution with parameters 2 andλ.
The exponential distribution with parameterλ is a special case of the gamma
distribution for parameters 1 andλ. Theχ2

k distribution is also a special case of the
gamma distribution for parametersk/2 and 1/2. Theχ2

k distribution can be used
in place of the gamma(k/2, λ) distribution in gamma-quantile plots becauseλ is a
scale parameter and only affects the slope of the plot.

Maximum Number of Hits

Under the Poisson process model, the numbers of hits in a set of nonoverlapping
intervals of the same length are independent observations from a Poisson distri-
bution. This implies that the greatest number of hits in a collection of intervals
behaves as the maximum of independent Poisson random variables. If we suppose
there arem such intervals, then

P(maximum count overm intervals≥ k)

� 1 − P(maximum count< k)

� 1 − P(all interval counts< k)

� 1 − [P(first interval count< k)]m

� 1 −
[
λ0

0!
e−λ + . . .+ λk−1

k − 1!
e−λ
]m
.

From this expression, with an estimate ofλ, we can find the approximate chance
that the greatest number of hits is at leastk. If this chance is unusually small,
then it provides evidence for a cluster that is larger than that expected from the
Poisson process. In other words, we can use the maximum palindrome count as a
test statistic, and the computation above gives us thep-value for the test statistic.

Parameter Estimation

Suppose we have an independent samplex1, . . . , xn from a Poisson(λ) distribution
whereλ is unknown. Themethod of momentsis one technique for estimating the
parameterλ. It proceeds as follows:

1. FindE(X), whereX has a Poisson(λ) distribution.
2. Expressλ in terms ofE(X).
3. ReplaceE(X) by x̄ to produce an estimate ofλ, calledλ̂.

For the Poisson distribution, the method of moments procedure is very simple
becauseE(X) � λ, so the estimatêλ is x̄.
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Sometimes higher moments need to be taken; for example,E(X2) is computed
and

∑
x2
i /n replacesE(X2) to estimate an unknown parameter. See the Exercises

for an example of such a problem.
The method ofmaximum likelihoodis a more common procedure for parameter

estimation because the resulting estimators typically have good statistical prop-
erties. The method searches among all Poisson distributions to find the one that
places the highest chance on the observed data. For a Poisson(λ) distribution, the
chance of observingx1, . . . xn is the following:

λx1

x1!
e−λ × · · · × λxn

xn!
e−λ � λ

∑
xi

	xi !
e−nλ � L(λ).

For the given datax1, . . . , xn, this is a function ofλ, called thelikelihood function,
and denoted byL(·). The maximum likelihood technique estimates the unknown
parameter by theλ-value that maximizes the likelihood functionL. Since the log
function is monotonically increasing, the log likelihood function, which is typically
denoted byl, is maximized at the sameλ as the likelihood function. In our example,
to find the maximum likelihood estimator, we differentiate the log likelihood as
follows:

∂l

∂λ
� ∂

∂λ

[∑
xi log(λ) − nλ−

∑
log(xi !)

]
�
∑

xi/λ− n,

∂2l

∂λ2
� −

∑
xi/λ

2.

By setting the first derivative to 0 and solving forλ, we find that the log likelihood
is maximized at̂λ � x̄. The second derivative shows that indeed a maximum has
been found because the countsxi are always nonnegative.

Maximum likelihood for continuous distributions is similar. For example, sup-
posex1, . . . , xn form a sample from an exponential distribution with unknown
parameterθ . Now the likelihood function given the observed datax1, . . . , xn is

L(θ) � fθ (x1, . . . , xn),

wherefθ is the joint density function for then observations. The observations
were taken independently, so the likelihood reduces to

L(θ) � θne−θ
∑

xi ,

and the log likelihood is

l(θ ) � n log(θ ) − θ
∑

xi.

We leave it as an exercise to show that the maximum likelihood estimateθ̂ is 1/x̄.
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Properties of Parameter Estimates

To compare and evaluate parameter estimates, statisticians use the mean square
error:

MSE(λ̂) � E(λ̂− λ)2

� Var(λ̂) + [E(λ̂) − λ]2.

Note that this is the sum of the variance plus the squared bias of the estimator.
Many of the estimators we use are unbiased, though sometimes an estimator with
a small bias will have a small MSE (see the Exercises).

For independent identically distributed (i.i.d.) samples from a distributionfλ,
maximum likelihood estimates ofλ often have good properties. Under certain
regularity conditions on the sampling distribution, as the sample size increases,
the maximum likelihood estimate (MLE) approachesλ, and the MLE has an
approximate normal distribution with variance

1

nI (λ)
,

whereI (λ), called theinformation, is

I (λ) � E

(
∂ logfλ(X)

∂λ

)2

� −E

(
∂2 logfλ(X)

∂λ2

)
.

That is,
√
nI (λ)(λ̂−λ) has an approximate standard normal distribution forn large.

The normal distribution can be used to make approximate confidence intervals for
the parameterλ; for example,

λ̂± 1.96/
√
nI (λ)

is an approximate 95% confidence interval forλ. The asymptotic variance for the
MLE is also a lower bound for the variance of any unbiased parameter estimate.

Hypothesis Tests

Theχ2 goodness-of-fit test and the test for the maximum number of palindromes
in an interval are examples of hypothesis tests. We provide in this section another
example of a hypothesis test, one for parameter values. We use it to introduce the
statistical terms in testing.

An Example

In Hennepin County, a simple random sample of 119 households found an average
radon level of 4.6 pCi/l with an SD of 3.4 pCi/l. In neighboring Ramsey County,
a simple random sample of 42 households had an average radon level of 4.5 pCi/l
with an SD of 4.9 pCi/l (Chapter 3). It is claimed that the households in these two
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counties have the same average level of radon and that the difference observed in
the sample averages is due to chance variation in the sampling procedure.

To investigate this claim, we conduct a hypothesis test. We begin with the prob-
ability model. LetX1, ..., X119 denote the radon levels for the sampled households
from Hennepin County, and letY1, ..., Y42 denote those from Ramsey County. Also,
letµH andµR denote the average radon levels for all households in the respective
counties, andσ 2

H , σ 2
R denote the population variances. Thenull hypothesisis that

the two counties have the same population means; namely,

H0 : µH � µR,

and thealternative hypothesisis

HA : µH �� µR.

In making a hypothesis test, we assume thatH0 is true and find out how likely
our data are under this model. In this example,X̄ and Ȳ are independent, their
sampling distributions are approximately normal, and, underH0, the difference
X̄ − Ȳ has mean 0. Thetest statistic,

Z � X̄ − Ȳ√
σ 2
H/119+ σ 2

R/42
,

has anull distribution that is approximately standard normal. We call this test
statistic thez statisticbecause it is based on a normal approximation. (In Chapter 3,
we saw that it might be appropriate to take logarithms ofXi andYi and then proceed
with computing the test statistic because the data were thought to be approximately
lognormal in distribution.)

Using estimates forσH andσR, the survey results produced anobserved test
statisticof 0.12, and the chance that|Z| could be as large or larger than 0.12 is
0.90. The probability 0.90 is called thep-value. Notice that thep-value is two-
sided — i.e., 0.90 � P(|Z| ≥ 0.12) — because the alternative hypothesis is that
the two population averages are unequal. If the alternative wasµH > µR then the
test would be one-sided and thep-value would be 0.45. Either way, we conclude
that we have observed a typical value for the difference between sample averages,
and the data support the null hypothesis.

If the p-value were very small, then we would conclude that the data provide
evidence against the null hypothesis, and we would reject the null hypothesis in
favor of the alternative. The typical levels at which the null hypothesis is rejected
are 0.05 and 0.01. These cutoffs are calledsignificance levelsor α-levels. A test
statistic that yields ap-value less than 0.05 is said to bestatistically significant,
and one that is less than 0.01 ishighly statistically significant.

Thep-value isnot the chance that the null hypothesis is true; the hypothesis is
either true or not. When we reject the null hypothesis, we do not know if we have
been unlucky with our sampling and observed a rare event or if we are making
the correct decision. Incorrectly rejecting the null hypothesis is a Type I error. A
Type II error occurs when the null hypothesis is not rejected and it is false. We



4. Patterns in DNA 93

defineα to be the chance of a Type I error andβ to be the chance of a Type II
error. Typicallyα is set in advance, and 1− β, thepowerof the hypothesis test,
is computed for various values of the alternative hypothesis. Power is the chance
that we correctly reject the null hypothesis, so we want the power to be high for
our test. For example, the power of the test in this example forα � 0.05 and
µH − µR � 0.5 is

P

( |X̄ − Ȳ |
0.81

≥ 1.96

)
� P

(|X̄ − Ȳ | ≥ 1.96× 0.81
)

� P

(
X̄ − Ȳ − 0.5

0.81
≥ 1.34

)
+ P

(
X̄ − Ȳ − 0.5

0.81
≤ −2.58

)
� 0.09 .

That is, the chance that we would reject the null hypothesis of no difference, given
an actual difference of 0.5, is about 1 in 10. This test is not very powerful in
detecting a difference of 0.5 in the population means. A larger sample size in each
county would have given a more powerful test.

Exercises

1. For the 91 students in the video survey (Chapter 2), do their expected grades
for the course fit the “curve” of 20% As, 30% Bs, 40% Cs, and 10% Ds and
Fs? Provide aχ2 goodness-of-fit test of the data to the “curve.”

Grade A B C D F Total
Count 31 52 8 0 0 91

2. For the data in Table 4.4, provide a goodness-of-fit test for the uniform
distribution.

3. The negative binomial distribution is often used as an alternative to the Poisson
distribution for random counts. Unlike the Poisson distribution, the variance
of the negative binomial is larger than the mean. Consider the following
parameterization for the negative binomial,j � 0,1, . . .,

P(j ) �
(
1 + m

k

)−k 
(k + j )

j ! 
(k)

(
m

m+ k

)j
.

a. Establish the recursive relation:

P(0) �
(
1 + m

k

)−k
.

P(j ) � (k + j − 1)m

j (m+ k)
P(j − 1) .
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b. The mean of the negative binomial ism, and the variance ism+ (m2/k).
Use these moments to find method of moment estimates ofm andk.

c. Use the method of moment estimates ofm andk and the recursive relation-
ship for the probabilities to make aχ2 goodness-of-fit test of the negative
binomial to the palindrome counts in Table 4.2.

4. Unusually large values of the test statistic in aχ2 goodness-of-fit test indicate
a lack of fit to the proposed distribution. However, unusually small values may
also indicate problems. Suspicion may be cast on the data when they are too
close to the expected counts. What is the smallest value obtainable for aχ2

test statistic? Why would very small values indicate a potential problem? For
theχ2 test for Table 4.3, thep-value is 0.98. This means that the chance of a
test statistic smaller than the one observed is only 1/50. How does thep-value
change when intervals of length 1000 base pairs rather than 4000 base pairs
are used? You will need to use the computer to summarize the palindrome
counts.

5. Perform a simulation study on the sensitivity of theχ2 test for the uniform
distribution to expected cell counts below 5. Simulate the distribution of the
test statistic for 40, 50, 60, and 70 observations from a uniform distribution
using 8, 10, and 12 equal-length bins.

6. Let x̄ be the average radon level for a simple random sample ofn households
in a county in Wisconsin that neighbors Washington County, Minnesota. Con-
sider a 95% confidence interval forµ, the average radon level for the county.
Explain why if the confidence interval were to contain the value 5, then the
hypothesis test forµ � 5 would not be rejected at theα � 0.05 level. Also
explain why if the confidence interval does not contain 5, then the hypothesis
would be rejected at theα � 0.05 level. You may use 4 pCi/L for the SD, the
sample SD from neighboring Washington County in Minnesota (Chapter 3).

7. For the two-sided hypothesis test in Exercise 6 thatµ � 5 at theα � 0.05 level,
compute the power of the test against the alternatives thatµ � 4,4.5,5,5.5,
and 6. Taken to be 100. Use these computations to sketch the power curve.
How does the power curve change when the alternative hypothesis is now
one-sided:µ > 5?

8. SupposeX1, . . . , Xn are independent binomial(m,p) distributed random vari-
ables. Find the method of moments estimate ofp and show that it is the same
as the maximum likelihood estimate ofp.

9. Suppose we observe (x1, . . . , xm) from a multinomial(100, p1, . . . , pm) dis-
tribution. Use LaGrange multipliers to find the maximum likelihood estimate
of the probabilities,p1, . . . , pm.

10. SupposeX1, . . . , Xn are independent exponential(θ ) distributed random
variables.

a. Find the method of moments estimate ofθ .
b. Show that it is the same as the maximum likelihood estimate.
c. Compute the information for the exponential(θ ) distribution.
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11. SupposeX1, . . . , Xn are independent uniform(0,θ ) distributed random
variables.

a. Find the method of moments estimate ofθ .
b. Find the maximum likelihood estimate ofθ .
c. Find the MSE of the maximum likelihood estimate ofθ for the uniform(0,θ )

distribution. Compare it to the MSE of the method of moment estimate of
θ .

12. Find the maximum likelihood estimate ofα for n independent observations
from the distribution with density

α(1 − x)α−1, for 0 ≤ x ≤ 1.

13. Find the maximum likelihood estimate ofθ > 0 for n independent
observations from the Rayleigh distribution with density

θ−2x exp−x2/2θ2
, 0 ≤ x < ∞.

14. Compute the information for the Poisson(λ) distribution.
15. Find the maximum likelihood estimate forθ > 0 given n independent

observations from the Pareto distribution,

f (x) � θxθo x
−θ−1, x ≥ xo,

where xo is known. Also find the asymptotic variance of the maximum
likelihood estimate.

16. For a homogeneous Poisson process in time, with rateλ per hour, show that
the total number of hits in two nonoverlapping hours has a Poisson distribution
with parameter 2λ. Hint:

P(n hits in two hours)

�
n∑
k�0

P(k hits in the first hour, n− k hits in the second hour).

You may also need to use the formula
n∑
k�0

n!

k!(n− k)!
� 2n.

17. Suppose we have two independent Poisson-distributed random variables,X

andY , one with rateλ and one with rateµ. Show that the distribution ofX+Y
is Poisson with rateλ+µ. Hint: Proceed as in Exercise 16 and use the formula

n∑
k�0

n!

k!(n− k)!
xkyn−k � (x + y)n.

18. Suppose we have two independent Poisson random variables,X andY , with
ratesλ andµ, respectively. Use the result from Exercise 17 to show that the
distribution ofX, givenX + Y � n, is binomial(n, p) with p � λ/(λ+ µ).
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Extensions

One of the later parts of the Theory section examined the interval with the greatest
number of palindromes. There it was noted that a tight cluster of palindromes can
be split between two intervals. Then the corresponding interval counts are not very
high, and the cluster remains hidden.

To circumvent this problem, we could slide a window 500 base pairs long along
the DNA sequence one letter at a time and find the interval with the greatest number
of palindromes out of all possible intervals 500 base pairs long.

To help us in this search, we can make a sliding bin plot (Figure 4.5). We
calculate palindrome counts for overlapping intervals. These counts are plotted at
the interval midpoints with connecting lines to illustrate areas of high density so,
for example, if we choose an interval length of 1000 base pairs and an overlap
of 500 base pairs, then (from Table 4.1) the intervals and their counts would be
as in Table 4.6, and the sliding bin plot appears in Figure 4.5. To keep the figure
simple, we use an overlap of 500 base pairs. An overlap of 1 base pair would find
the interval of length 1000 base pairs with the greatest number of palindromes.

Try searching short overlapping regions, say of length 250, 500, or 1000, for
clusters of palindromes.

Once potential cluster regions are found, you must decide whether the cluster is
typical of what you may find among 296 palindromes scattered randomly across
a DNA strand of 229,354 base pairs. That is, say you find an interval of 500 base
pairs with 6 palindromes in it. Table 4.7 gives the probability that a random scatter
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FIGURE 4.5. Sliding bin plot for the 296 palindromes in the CMV DNA, with intervals of
1000 base pairs and overlap of 500 base pairs (Chee et al. [CBB+90]).
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TABLE 4.6. Sample computations of the bin counts for a sliding bin plot of the CMV DNA
(Chee et al. [CBB+90]).

Start End Palindrome
point point count

1 1000 1
501 1500 3

1001 2000 3
1501 2500 0
2001 3000 0
2501 3500 3

etc.

TABLE 4.7. Probabilities of the maximum palindrome count for a sliding bin plot with
intervals of length 250, 500, and 1000 base pairs, for the CMV DNA (calculated from
Leung et al.[LSY93] and Naus [Nau65]).

Interval Maximum palindrome count
length 4 5 6 7 8 9 10 11

250 0.67 0.08 0.006 0.0003 — — — —
500 — 0.61 0.12 0.013 0.001 0.0001 — —

1000 — — — 0.34 0.07 0.012 0.002 0.0002

of 296 palindromes across a DNA sequence of 229,354 base pairs would contain
an interval of 500 base pairs with at least 6 palindromes in it. From the table,
we see that this chance is about 12%. Probabilities for intervals of length 250,
500, and 1000 base pairs appear in the table. Note that this probability is different
from the chance that the maximum of 458 nonoverlapping intervals of 500 base
pairs contains 6 or more palindromes, which is only .03. These probabilities have
been computed using the algorithms found in Leung et al. ([LSY93]) and Naus
([Nau65]).

Notes

Ming-Ying Leung introduced us to these data and the associated problem. Her
solution appears in Leung et al. ([LSY93]) and is the basis for the material in
the Extensions section. The probabilities used in this section were determined by
Naus ([Nau65]). Hwang ([Hwa77]) provided an algorithm for approximating this
chance. Table 4.7 lists these probabilities computed for the special case of 296
palindromes in a sequence of 229,354 base pairs. They are calculated from an
example in Leung et al. ([LSY93]). Masse et al. ([MKSM91]) provides another
analysis of the CMV DNA.

We recommend Gonick and Wheelis ([GW91]) as a source for the background
material on DNA. The material on CMV comes from Anders and Punterieri
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([AP90]), Ryan ([Rya94]), and Weston ([Wes88]). Pitman ([Pit93]) and Kingman
([Kin93]) were sources for the development of the Poisson process.
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5
Can She Taste the Difference?

The distinctive aroma of
freshly brewed coffee is not only
pleasant, says a University of
California chemist, it might be
chock full of things that are good
for you.

The molecules wafting up
from a steaming cup of coffee, he
has discovered, combine to form
potent anti-oxidants. In principle,
they should have cancer- and age-
fighting effects similar to other
anti-oxidants, including vitamin C
and vitaminE.

Of course, just waking up and
smelling the coffee won t do much
good. The nose cannot possibly
absorb enough aroma molecules to
make an appreciable difference to
health. You have to drink it.

But if initial calculations are
correct, there is as much anti-
oxidant capacity in the aromatic

compounds of a cup of fresh coffee
as in three oranges, said Takayuki
Shibamoto, a professor of
environmental toxicology at UC
Davis. ...

Because the compounds are
light and escape rapidly into the air,
you have to drink it in about 20

minutes after it is brewed, he said.
In other words, the smell of fresh
coffee is from the good stuff
evaporatinginto the air.

Shibamoto emphasized that
all he has so far is a hypothesis.
Much more research will be needed
to show whether coffee -- despite
its ability to cause stomach aches
and send nerve-rattling caffeine
through your arteries -- is actually a
health tonic. ...

And it appears that the health
effects, if they are there, should be
the same for caffeine-free coffee as
for regular coffee. ...

San Francisco Chronicle� �� ��MONDAY, APRIL 14, 1997

Wake Up and Smell Health

Benefits of Fresh Coffee

By Charles Petit

1

1Reprinted by permission.
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Introduction

One of R.A. Fisher’s first designed experiments was prompted by an English lady’s
claim that she could tell the difference between a cup of tea prepared by adding the
milk to the cup before the tea rather than after. She preferred the milk first. Fisher
found it hard to believe that she could distinguish between the two preparations,
and he designed an experiment to put the lady’s skill to the test.

In this lab, you will conduct an experiment similar to Fisher’s to determine if
a subject can tell the difference between decaffeinated and regular coffee. We all
know someone who claims they can tell the difference between the two. Here you
will test the sensory discrimination of the supposed expert. Unlike the other labs,
you will design and carry out an experiment in order to produce the data to analyze.

The essential ideas in this experiment appear in many other experimental de-
signs, including ones used to test the skills of touch therapists (Rosa et al. [Rosa98])
and to test subjects purported to have extrasensory perception (Tart [Tart76]).

Data

The data for this lab are to be collected by you. They are the results from an
experiment that you design and conduct. In your experiment, a subject will be
asked to distinguish, by taste alone, between cups of regular and decaffeinated
coffee.

For each cup of coffee tasted by the subject, record whether the coffee is decaf-
feinated (D) or regular (R), and record the subject’s classification of the coffee as
decaffeinated (D) or regular (R). It may be a good idea to also keep track of the
order in which the cups were prepared, and the order in which they were served to
the subject. This could be accomplished with identification numbers, as shown in
Table 5.1.

Background

Rothamsted Experimental Station

In 1834, John Bennet Lawes, a chemistry student at Oxford University, left school
to return with his widowed mother to the family manor of Rothamsted in England.
At Rothamsted, he found that fertilizing the soil with bone meal did not improve
his crop yields. Although bone meal worked well on sand, peat, and limestone, it
was ineffective on the clay soil at the manor. Lawes used his training as a chemist
to develop a better fertilizer. He turned a barn into a chemical laboratory, and in
this laboratory he discovered that the treatment of the soil with acid improved his
crop yields.

Lawes supported and expanded his laboratory with funds from a patent on his
fertilizer, and in 1889 he created a trust for the endowment of a continuing research
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TABLE 5.1. Example observations and data description for results from a taste testing
experiment.

Order poured 1 2 3
Order served 5 7 1
Type R D R
Opinion R D D

Variable Description
Order prepared Each cup of coffee is assigned a number 1, . . . , N

according to the order in which it was poured.
Order served A number 1, . . . , N used to denote the order in which

the coffee was served to the subject.
Type The type of coffee: D=decaffeinated; R=regular.
Opinion Subject’s classification: D=decaffeinated; R=regular.

station at Rothamsted. Fisher joined the staff at Rothamsted in 1919, where he
quickly made an impact at tea time. According to his daughter [Box78]:

Already, quite soon after he had come to Rothamsted, his presence had
transformed one commonplace tea time to an historic event. It happened
one afternoon when he drew a cup of tea from the urn and offered it to the
lady beside him, Dr. B. Muriel Bristol, an algologist [someone who studies
algae]. She declined it, stating that she preferred a cup into which the milk
had been poured first. “Nonsense,” returned Fisher, smiling, “Surely it makes
no difference.” But she maintained, with emphasis, that of course it did. From
just behind, a voice suggested, “Let’s test her.” It was William Roach who
was not long afterward to marry Miss Bristol. Immediately, they embarked
on the preliminaries of the experiment, Roach assisting with the cups and
exulting that Miss Bristol divined correctly more than enough of those cups
into which tea had been poured first to prove her case.
Miss Bristol’s personal triumph was never recorded, and perhaps Fisher was
not satisfied at that moment with the extempore experimental procedure.
One can be sure, however, that even as he conceived and carried out the
experiment beside the trestle table, and the onlookers, no doubt, took sides
as to its outcome, he was thinking through the questions it raised: How many
cups should be used in the test? Should they be paired? In what order should
the cups be presented? What should be done about chance variations in the
temperature, sweetness, and so on? What conclusion could be drawn from
a perfect score or from one with one or more errors?
Probably this was the first time he had run such an experiment, for it was
characteristic of him, having conceived an idea in one context, to revert to
that context in expounding the idea later, rather than to select a new example
from innumerable possibilities. And, of course, when he came to writeThe
Design of Experiments(1935) more than a dozen years later, the “lady with
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FIGURE 5.1. Various coffee makers: French press (right), filter cones (middle two), and
automatic drip (left).

the tea-cups” took her rightful place at the initiation of the subject. ... In
the subsequent pages [of the book] he considered the questions relevant to
designing this particular test as a prime example, for the same questions
arise, in some form, in all experimental designs.

Brewing Coffee

We asked the staff at Peet’s Coffee how to brew a good cup of coffee and received
the following instructions for three types of coffee makers: French press, filter
cone, and automatic drip (Figure 5.1).

For all methods, start with fresh, cold water. If your water is heavily chlorinated,
hard, or tastes funny, then use bottled or filtered water. Ideally, the water should
have between 50 and 150 parts per million of dissolved solids.

Use two level tablespoons (10 grams) of ground coffee for each six ounces (180
milliliters) of water. Keep coffee (whole or ground beans) in an airtight container
in the refrigerator or freezer. The fineness of the grind required depends on the
method used for making the coffee (see below). In general, too fine a grind will
cause bitterness, and too coarse a grind will yield watery coffee.

For the French press (right picture in Figure 5.1), heat the water to just below
the boiling point (200o to 205o Fahrenheit, or 93o to 96o Celsius). Rinse the coffee
pot with hot water. Add medium to coarsely ground coffee to the bottom of the
preheated container. Pour water over the grounds, stir, wait a minute, stir again,
and then push the plunger down. Do not brew for more than three minutes.

For filter cones (middle pictures in Figure 5.1), heat the water and preheat the
container as described for the french press. Use a clean nylon or gold filter. Place
the filter in the cone, and add medium to finely ground coffee. Wet the coffee
grounds, then fill the cone with water. Continue to add water to keep the infusion
going, remove grounds before the last few drops of coffee pass through the filter,
and stir before serving.
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For automatic drip machines (left picture in Figure 5.1), add cold water to the
machine, and rinse the paper filter with hot water before adding a medium grind of
beans. To avoid overextraction, make only the amount of coffee that can be brewed
in four to six minutes. As with the filter cone, remove the grounds before the last
few drops of coffee pass through the filter, and stir the coffee before serving.

Finally, coffee can be kept warm for only about 20 minutes before it starts to
turn bitter. Do not reheat coffee.

Decaffeinated Coffee

There are two basic techniques for removing caffeine from coffee beans. For both
techniques, the caffeine is extracted from green beans, before the beans are roasted.

The Swiss water process uses warm water under pressure to extract caffeine.
First, the process creates an extraction of green coffee water solubles. The beans
used to create this extraction are discarded, and the resulting liquid is used to
remove the caffeine from other batches of beans. To do this, the extract is filtered
to remove the caffeine, and then the decaffeinated liquid is continuously heated and
circulated through the beans. Since the extract contains all green coffee solubles
except caffeine, the beans give up only their caffeine to the liquid.

The direct contact method of decaffeination uses methylene chloride to remove
the caffeine and wax from the beans. The temperatures used in this process are
kept low so as not to destroy the chlorophyll in the beans. To remove the methylene
chloride from the beans, they are washed and dried under a vacuum, which also
keeps the temperature low. The U.S. Food and Drug Administration limits the
amount of methylene chloride to 10 parts per million (ppm) in green coffee. Some
processing plants guarantee the level of this chemical to be less than 5 ppm, with
typical amounts less than 1 ppm. Roasting further reduces the level of this chemical.

Investigations

In this lab, you will design, conduct, and analyze results from your own experiment
to test the sensory discrimination of a subject who claims to be able to taste the
difference between regular and decaffeinated coffee. First you will need to find such
a subject for your experiment. Then to proceed with designing your experiment,
use the questions posed by Fisher’s daughter — the questions that she says were
on his mind as he carried out the impromptu experiment over tea at Rothamsted.

• What should be done about chance variations in the temperature, sweetness,
and so on?Before conducting your experiment, carefully lay out the procedure
for making the cups of coffee. Ideally you would want to make all cups of
coffee identical, except for the caffeine. But it is never possible to control all
of the ways in which the cups of coffee can differ from each other. Some must
always be dealt with by randomization.
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• How many cups should be used in the test? Should they be paired? In what order
should the cups be presented?Fisher [Fisher66] suggests that the experiment
should be designed such that, “if discrimination of the kind under test is absent,
the result of the experiment will be wholly governed by the laws of chance.”
Also keep in mind that the number and ordering of the cups should allow a
subject ample opportunity to prove his or her abilities and keep a fraud from
easily succeeding at correctly discriminating the type of coffee in all the cups
served.

• What conclusion could be drawn from a perfect score or from one with one
or more errors?For the design you are considering, list all possible results of
the experiment. For each possible result, decide in advance what action you
will take if it occurs. In determining this action, consider the likelihood that
someone with no powers of discrimination could wind up with that result. You
may want to make adjustments in your design to increase the sensitivity of
your experiment. For example, if someone is unable to discriminate between
decaffeinated and regular coffee, then by guessing alone, it should be highly
unlikely for that person to determine correctly which cups are which for all of
the cups tasted. Similarly, if someone possesses some skill at differentiating
between the two kinds of coffee, then it may be unreasonable to require the
subject to make no mistakes in order to distinguish his or her abilities from a
guesser.

• Write out an instruction sheet for your experimental process. Conduct a “dress-
rehearsal” to work out the kinks in the process. After your practice run, you
may want to make changes in your instruction sheet to address any problems
that arose.

• You should now be ready to conduct your experiment. Record your results
carefully, and note any unusual occurrences in the experimental process. Use a
form similar to the one shown in Table 5.1 to record the successes and failures
of the subject.

• Summarize your results numerically. Do they support or contradict the claim
that the subject possesses no sensory discrimination? Use your list of all possible
events and subsequent actions to come to a conclusion. Discuss the reasons
behind the decision that you have made.

• What changes would you make to your experimental process if you had the
opportunity to do it over again?

To help you in designing your experiment, here are some pitfalls that one student
discovered in his experimental procedures:

“The subject simply didn’t like the brand of coffee that I bought. I chose the
brand that I did because it had a decaffeinated and a caffeinated version. If
I were to do the experiment over, I might try to buy a kind of coffee that
I knew the expert would enjoy. This has its own problems because if you
choose the expert’s favorite coffee, he would probably be able to identify the
version that he normally drinks (whether it be caffeinated or decaffeinated)
and deduce the other one.
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The expert was used to drinking coffee with sugar, and I served the coffee
black. Whether this is an important factor is debatable. I think that if I were
to do the experiment over again, I would sugar the coffee, to simulate as
closely as possible the expert’s usual experience.
Another problem was that after six or seven sips of two different coffees, the
expert’s ability to differentiate was diminished. Both “mistakes” made by
our expert were made in the second half of the tastings. If I were to re-design
the experiment, I would leave some time between each tasting. In order to
make sure each cup of coffee was the same, I could make a single pot and
use a thermos to keep it hot throughout the tasting period.”

Theory

For this lab, we observe simple counts such as how many cups of regular coffee
were classified as regular by the subject. These counts can be summarized and
presented in a 2× 2 table as shown in Table 5.2. The four numbersa, b, c, andd
reported in the cells of the table correspond to the four possible categories: regular
cup and subject classifies it as regular; decaffeinated cup and subject classifies it
as regular; regular cup and subject classifies it as decaffeinated; and decaffeinated
cup and subject classifies it as decaffeinated, respectively. The total number of
cups of coffee made is

n � a + b + c + d.

From the table, we see thata + c cups of regular coffee are prepared and the
subject classifiesa + b of them as regular. Ideally, if the subject can taste the
difference, then the countsb andc should be small. Conversely, if the subject can’t
really distinguish between the two types of coffee, then we would expecta andc
to be about the same.

In this section, we propose several ways of testing the subject’s skill, and we
derive exact and approximate tests for the hypothesis that the subject cannot
distinguish between the two types of coffee. For more on hypothesis tests, see
Chapter 4.

TABLE 5.2. Counts of cups of coffee properly labeled as decaf.

Coffee Prepared
Regular Decaf

Regular a b a + bSubject says
Decaf c d c + d

a + c b + d n
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The Hypergeometric Distribution

Suppose that to test the subject, 8 cups of coffee are prepared, 4 regular and 4 decaf,
and the subject is informed of the design (i.e., that there are 4 cups of regular and 4
decaf). Also suppose that the cups of coffee are presented to the subject in random
order. The subject’s task is to identify correctly the 4 regular coffees and the 4
decafs.

This design fixes the row and column totals in Table 5.2 to be 4 each; that is,

a + b � a + c � c + d � b + d � 4.

With these constraints, when any one of the cell counts is specified, the remainder
of the counts are determined. That is, givena,

b � 4 − a, c � 4 − a, and d � a.

In general, for this experimental design, no matter how many cups of regular coffee
are served, the row totala + b will equal a + c because the subject knows how
many of the cups are regular. Then forn cups of coffee, of whicha+ c are known
to be regular, oncea is given, the remaining counts are specified.

We can use the randomization of the cups to judge the skill of the subject. Begin
by formulating the null hypothesis. We take the position that the subject has no
sensory discrimination. Then the randomization of the order of the cups makes the
4 cups chosen by the subject as regular coffee equally likely to be any 4 of the 8
cups served.

There are
(8

4

) � 70 possible ways to classify 4 of the 8 cups as regular. If
the subject has no ability to discriminate between decaf and regular, then by the
randomization, each of these 70 ways is equally likely. Only one of them leads
to a completely correct classification. Hence a subject with no discrimination has
chance 1/70 of correctly discriminating all 8 cups of coffee.

To evaluate the results of the experiment, we need only consider the five possi-
bilities: the subject classifies 0, 1, 2, 3, or 4 of the regular cups of coffee correctly.
The chance of each of these possible outcomes is shown in Table 5.3. These
probabilities are computed from the hypergeometric distribution:

P(a) �
(4
a

)( 4
4−a
)(8

4

) a � 0,1,2,3,4.

With these probabilities, we can compute thep-value for the test of the hypothesis
that the subject possesses no sensory discrimination. Recall that thep-value is the
chance of observing a result as extreme or more extreme than the one observed,
given the null hypothesis. If the subject makes no mistakes, then thep-value is
1/70 ≈ 0.014, and if the subject makes one mistake, then thep-value is

P(1 or fewer mistakes)� 1

70
+ 16

70
≈ 0.24.

Making one or fewer mistakes could easily occur by chance if the subject had no
sensory discrimination. Only when the subject performs perfectly would we reject
this hypothesis.
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TABLE 5.3. Hypergeometric probabilities for the number of regular cups of coffee that
have been correctly determined by the subject, assuming no sensory discrimination. (For 4
cups of regular and 4 cups of decaf).

Number of mistakes 0 1 2 3 4
Probability 1

70
16
70

36
70

16
70

1
70

This test is known asFisher’s exact test. See Exercise 2 for an example of Fisher’s
exact test when there are an unequal number of regular and decaf cups of coffee.
Notice that with this test there are only a finite number of possible outcomes, and
as a result there are only a finite number of possiblep-values. This means the
critical values that correspond exactly to the traditional significance levels of 0.05
and 0.01 may not exist.

Two Alternative Designs

As an alternative, we could serve 8 cups of coffee, where for each cup a coin is
flipped: if it lands heads, regular is served; and if it lands tails, decaf is served. For
this design, there are 28 possible ways in which the subject can classify the cups of
coffee. Under the hypothesis that the subject possesses no sensory discrimination,
each of these 256 possibilities is equally likely, and the chance of making no
mistakes is 1/256. This probability and others can be determined from the binomial
distribution.

If B andC are the random variables used to denote the number of decaf coffees
classified as regular by the subject and the number of regular coffees classified as
decaf, respectively, then the chance ofb + c mistakes is

P(b + c) �
(

8

b + c

)
1

256
, (b + c) � 0,1, . . . ,8.

Notice that this design constrains only the overall totaln in Table 5.2, which means
that it is possible that the coffees served are all decaf or all regular. In these cases,
the experimental design denies the subject the advantage of judging by comparison.

As another alternative, we could serve the cups of coffee in pairs, where in each
pair one cup is regular and one is decaf. As in the first design, the subject would
choose 4 cups as regular and 4 as decaf, and we need only keep track of mistakes
of one type — regular coffee said to be decaf. However, the pairing makes it easier
for a person with no discriminating abilities to guess correctly:

P(b) �
(

4

b

)
1

16
, b � 0, . . . ,4.

With this design, more than 8 cups of coffee need to be served to make the prob-
ability of no mistakes small. Also for this design, we would not use Table 5.2 to
summarize the results of the experiment because it hides the pairing that is present
in the data. All that needs to be reported are the number of correctly and incorrectly
discriminated pairs.
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An Approximate Test

With a large number of counts, it can be cumbersome to computep-values for
Fisher’s exact test. Instead, we can use the normal approximation to the hyperge-
ometric distribution to test the hypothesis. (See the Exercises and Appendix B for
an example of this approximation.)

LetA,B,C,D be the random variables underlying the counts in the 2×2 table.
We have already seen that for Fisher’s design,A has a hypergeometric distribution.
It can be shown (see the Exercises) that

E(A) � (a + b)
a + c

n

Var(A) � (a + b)
(a + c)

n

(b + d)

n

(c + d)

n− 1
.

Use the expected value and standard deviation ofA to standardize the cell count:

z � a − E(A)

SD(A)
≈ a − (a+b)(a+c)

n√
(a+b)(a+c)(b+d)(c+d)

n3

�
√
n(ad − bc)√

(a + b)(a + c)(b + d)(c + d)
.

Note thatn− 1 was approximated byn in the standardization. Thisz statistic has
an approximate standard normal distribution. That is, we can approximate Fisher’s
exact test with az test. For intermediate sample sizes, we would use a continuity
correction in the approximation; that is, we would substitutea ± 0.5 for a in z.
See Exercise 3 for an example of the continuity correction.

We note that

z2 � n(ad − bc)2

(a + b)(a + c)(b + d)(c + d)
. (5.1)

We will refer to this representation throughout the remainder of this section.

Contingency Tables

Two-by-two tables that cross-classify subjects according to two dichotomous char-
acteristics are calledcontingency tables. We present here two additional models
forA,B,C, andD, the random variables underlying the cell counts in a 2×2 table.
For each model, we show that the counts can be analyzed using the test statisticz2

in equation (5.1).

The Multinomial

In Chapter 2, a simple random sample of statistics students found that the men in
the sample appeared more likely to enjoy playing video games than the women
(Table 5.4). Ignoring the slight dependence between observations that arises from
sampling without replacement, we can think of the 4 counts in the table as an
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TABLE 5.4. Counts of students according to their sex and whether they like to play video
games (Chapter 2).

Sex
Male Female

Yes 43 26 69Like to play
No 8 12 20

51 38 89

observation from a multinomial distribution. That is, (a, b, c, d) is an observation
of a multinomial with parameters (n, πA, πB, πC, πD). The probabilityπA is the
chance that the student selected will be a male who likes to play video games,πB
is the chance that the student will be a female who likes to play video games, and
so on. In our casea � 43,b � 26,c � 8, d � 12, andn � 89.

Suppose we want to test the hypothesis that sex and attitude toward video games
are independent. Here we would use the chi-square goodness-of-fit test that was
introduced in Chapter 4. Recall that the chi-square test compares the observed
counts to the expected counts from the multinomial. Form categories, the test
statistic is

m∑
j�1

(j th Sample count− j th Expected count)2

jth Expected count
.

In our casem � 4.
To determine the expected counts for our example, note that the null hypothesis

of independence between sex and attitude implies that

πA � αβ, πB � α(1 − β), πC � (1 − α)β, πD � (1 − α)(1 − β),

whereα is the probability of choosing a student who likes video games, andβ is
the chance of choosing a male student. Then the expected counts are

E(A) � nαβ, E(B) � nα(1 − β),

E(C) � n(1 − α)β, E(D) � n(1 − α)(1 − β).

The probabilitiesα andβ need to be estimated in order to obtain numeric values
for these expected counts. A natural estimate to use forα is the proportion of
students in the sample who like video games (i.e., (a+ b)/n � 69/89.) Similarly,
(a + c)/n � 51/89 can be used to estimateβ. (Exercise 12 shows that they are
the maximum likelihood estimates.) We use these estimates to find

E(A) ≈ n
(a + b)

n

(a + c)

n

� 89× 69

89
× 51

89
� 39.5 .
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Similarly, the other approximate expected cell counts are 11.5, 29.5, and 8.5, and
the test statistic is

(43− 39.5)2

39.5
+ (26− 29.5)2

29.5
+ (8 − 11.5)2

11.5
+ (12− 8.5)2

8.5
� 3.2 .

To find thep-value — the chance of observing a test statistic as large as or larger
than 3.2 — we compute

P(χ2
1 > 3.2) � 0.08.

Thep-value indicates we have observed a typical value for our statistic; we would
not reject the null hypothesis of independence between sex and attitude toward
video games.

Recall that the degrees of freedom in the chi-square test are calculated as follows:
from 4, the number of categories, subtract 1 for the constraint that the counts add
to 89 and subtract 2 for the parameters estimated.

This special case of the chi-square test is called thechi-square test of
independence. This chi-square test statistic,

(a − n (a+b)
n

(a+c)
n

)2)

n (a+b)
n

(a+c)
n

+ · · · + (d − n (c+d)
n

(b+d)
n

)2)

n (c+d)
n

(b+d)
n

, (5.2)

is identical toz2 in equation (5.1). We leave it as an exercise to show this
equivalence.

Independent Binomials

Suppose for the moment that the male and female students in the previous example
were sampled independently. In other words, a simple random sample ofa +
c � 51 male students was taken, and a simple random sample ofb + d � 38
females students was taken independently of the sample of males. For this design,
ignoring the dependence that occurs with sampling from a finite population,A has
a binomial(51, γA) distribution and, independent ofA, the random variableB has
a binomial(38, γB) distribution. Also,C � 51− A andD � 38− B.

As in the previous example, we may be interested in whether males and females
have similar attitudes toward video games. Assume that the chance that a male
chosen for the sample likes video games is the same as the chance that a female
chosen for the second sample likes video games. This assumption ofhomogeneity
means thatγA � γB � γ , say.

To test this null hypothesis of homogeneity, we compare estimates ofγA andγB .
To estimateγA we would use the fraction of males who like video games, namely
a/(a + c) � 43/51. Similarly, we estimateγB by b/(b + d) � 26/38. Under the
null hypothesis, the difference

A

(a + c)
− B

(b + d)
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has expected value 0 and variance

γ (1 − γ )

[
1

(a + c)
+ 1

b + d)

]
.

The observed standardized difference,

z �
a

(a+c) − b
(b+d)√

γ (1 − γ )
[

1
(a+c) + 1

(b+d)

] ,
has an approximate standard normal distribution for large sample sizes. A test
using this standardized difference is called atwo-sample z test. We estimate the
variance of the difference by plugging in the pooled sample variance forγ (1−γ ):

(a + b)

n
× (c + d)

n

[
1

(a + c)
+ 1

(b + d)

]
� 69

89

20

89

[
1

51
+ 1

38

]
� 0.008.

Then our observed test statistic is (43/51−26/38)/
√

0.008� 1.8, and thep-value
is

P(|Z| > 1.8) � 0.08.

Notice that thisp-value is the same as in the previous example for the chi-square
test of homogeneity. This equality is not a fluke:Z2 has aχ2

1 distribution, and the
square of 1.8 is 3.2. The two analyses lead to the same test statistic — the square
of this two-sample test statistic equals the quantity in equation (5.1). We leave it
as an exercise to prove this result.

Why Are All These Statistics the Same?

Three different models for the 2× 2 contingency table all led to the same test
statistic. The reason for this lies in the relations between the hypergeometric,
multinomial, and binomial distributions. Both the hypergeometric and the bino-
mial models can be derived from the multinomial by placing conditions on the
distribution.

If (A,B,C,D) has a multinomial distribution with parametersn, πA, πB , πC ,
andπD, then givenA + C � a + c we can show thatA is binomial(a + c, γA),
whereγA � πA/(πA+πC);B is binomial(b+d, γB), whereγB � πB/(πB +πD);
andA andB are independent.

Further conditioning onA+B � a+b, for the special case whenγA � γB � γ ,
the distribution ofA becomes hypergeometric, where

P(A � a) �
(
a+b
a

)(
c+d
b

)(
n

a+b
) .

Note thatA has the hypergeometric distribution found in Fisher’s exact test. We
leave the proof of these relationships to the Exercises.
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I × J Contingency Tables

A cross-classification of subjects where there areI categories in the first classi-
fication andJ categories in the second can be represented in a contingency table
with I rows andJ columns. Call the count in theith row and thej th column of the
tablecij , for i � 1, . . . , I andj � 1, . . . , J . We can generalize the multinomial
and independent binomial models of the 2× 2 table to theI × J table.

Multinomial

Suppose theIJ counts form one observation from a multinomial distribution
with parametersn andπij , i � 1, . . . , I andj � 1, . . . J . The assumption of
independence between the two classifications means thatπij � αiβj , where the
0 < αi < 1,

∑
αi � 1, 0 < βj < 1, and

∑
βj � 1. To test the hypothesis of

independence, ifα andβ are unknown we would use the statistic

I∑
i�1

J∑
j�1

(cij − nα̂i β̂j )2

nα̂i β̂j
,

whereα̂i �∑j cij /n andβ̂j �∑i cij /n. Under the null hypothesis, provided the
cell counts are all at least 5, the test statistic has an approximateχ2 distribution with
(I−1)(J−1) degrees of freedom. The degrees of freedom are calculated by taking
IJ cells and subtracting 1 for the constraint that they add ton andI − 1 + J − 1
for the parameters that were estimated. This test is called thechi-square test of
independence.

Independent Multinomials

To generalize the test of the null hypothesis of homogeneous binomial proportions,
supposeI samples are taken of sizen1, . . ., nI , respectively. If, for each of these
samples, units are classified according to one ofJ categories, then fori � 1, . . . , I ,
(ci1, . . . , ciJ ) form one observation from a multinomial with parametersni , γij ,
j � 1, . . . , J , where 0< γij < 1 and

∑
j γij � 1. TheI multinomials are

independent. The null hypothesis of homogeneity states thatγ1j � γ2j � · · · �
γIj � γj , for j � 1, . . . , J . To test this hypothesis here, we use thechi-square
test of homogeneity,

I∑
i�1

J∑
j�1

(cij − niγ̂j )2

niγ̂j
,

whereγ̂j �∑i cij /n. Again, provided the counts are large enough, the test statistic
has an approximateχ2 distribution with (I − 1)(J − 1) degrees of freedom. The
degrees of freedom are calculated by takingIJ cells and subtractingI for the
constraints that each row adds toni andJ−1 for the parameters that are estimated.

As in the 2× 2 contingency table, the chi-square test for homogeneity and the
chi-square test for independence yield the same test statistic. The proof is left as
an exercise.
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Exercises

1. Suppose 10 cups of coffee, 5 decaf and 5 regular, are served according to
Fisher’s design. Find thep-value for Fisher’s exact test when one cup of regular
coffee is incorrectly categorized. What is thep-value when no mistakes are
made? What about two mistakes?

2. Suppose 6 of the 10 cups of coffee in the experiment described in Exercise 1
are regular and the remaining 4 are decaf. How do thep-values change? Which
design, 5+ 5 or 6+ 4, is preferred?

3. Suppose 20 cups of coffee, 10 decaf and 10 regular, are served according to
Fisher’s design.

a. Find thep-value for Fisher’s exact test when two cups of regular coffee
are incorrectly categorized.

b. Compare thisp-value to the one obtained using thez test.
c. Compute thep-value for thez test using the continuity correction. That

is, find the chance that at most 2.5 cups are incorrectly labeled. Does this
correction improve thep-value?

4. Suppose 8 cups of coffee are served to a subject, where for each cup a coin
is flipped to determine if regular or decaf coffee is poured. Also suppose that
the subject correctly distinguishes 7 of the 8 cups. Test the hypothesis that the
subject has no sensory discrimination. What is yourp-value?
Suppose instead that the cups were presented to the subject in pairs, where
each pair had one cup of decaf and one regular, and the order was determined
by the flip of a coin. How many cups of coffee would you need to serve the
subject to obtain ap-value for one mistake that is roughly the same size as in
the previous design?

5. Table 5.5 gives a finer categorization of the cross-classification of students
in the video survey. Here the students are categorized according to whether
they like video games very much, somewhat, or not really. Test the hypothesis
that sex and attitude are independent. Do your conclusions from the test differ
from the conclusions using the data in Table 5.4?

6. Table 5.6 cross-classifies students in the video survey according to the grade
they expect in the class and whether they like to play video games. Test the
hypothesis that these two characteristics are independent.

TABLE 5.5. Counts of students according to their sex and whether they like to play video
games (Chapter 2).

Like to play
Very Somewhat No

Male 18 25 8 51Sex
Female 5 21 12 38

23 46 20 89
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TABLE 5.6. Counts of students according to their expected grade and whether they like to
play video games (Chapter 2).

Like to play
Very Somewhat No

A 10 14 6 30Expected grade
B or C 13 32 14 59

23 46 20 89

7. In Stearns County, Minnesota, it was found that 15 of 27 houses sampled
had radon concentrations exceeding 4 pCi/l. In neighboring Wright county, a
sample of 14 houses found 9 with radon concentrations over 4 pCi/l. Test the
hypothesis that the proportion of houses in Stearns County with radon levels
over 4 pCi/l is the same as the proportion for Wright County.

8. Consider a simple random sample ofn subjects from a population of
N subjects, whereM of the subjects in the population have a particular
characteristic.

a. Show thatT , the number of subjects in the sample with the particular
characteristic, has a hypergeometric distribution, where

P(T � k) �
(
M

k

)(
N−M
n−k
)(

N

n

) ,

for k � 0,1, . . . , n. (We assume thatn < min(M,N −M).)
b. Use the expected value and variance from Chapter 2 for totals from

simple random samples to derive the expected value and variance of a
hypergeometric distribution.

9. Consider Fisher’s exact test. Use the results from Exercise 8 to show:

E(A) � (a + b)
a + c

n
,

Var(A) � (a + b)
(a + c)

n

(b + d)

n

(c + d)

n− 1
.

10. Show that the estimated expected counts for the independent binomial model
and the homogeneous parameter model equal the expected counts for the
hypergeometric model:

E(A) � n
(a + b)

n

(a + c)

n
, E(B) � n

(a + b)

n

(b + d)

n
,

E(C) � n
(c + d)

n

(a + c)

n
, E(D) � n

(c + d)

n

(b + d)

n
.

11. Show that the square of the two-samplez statistic
a

(a+b) − c
(c+d)√

(a+c)
n

× (b+d)
n

[
1

(a+b) + 1
(c+d)

]
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reduces to equation (5.1).
12. Suppose (A,B,C,D) follows a multinomial with parametersn, πA, πB , πC ,

and πD. Show that for observations (a, b, c, d), the maximum likelihood
estimates ofπA, πB , πC , andπD area/n, b/n, c/n, andd/n, respectively.
Show that in the case of independence — that is, whenπA � αβ, πB �
α(1 − β), πC � (1 − α)β, andπD � (1 − α)(1 − β) — that the maximum
likelihood estimates ofα andβ are (a + b)/n and (a + c)/n, respectively.

13. Consider the chi-square test of independence for a 2× 2 contingency table.
Show that the test statistic (5.2) is equivalent to

n(ad − bc)2

(a + b)(a + c)(b + c)(b + d)
.

14. Suppose (A,B,C,D) has a multinomial distribution with parametersn, πA,
πB ,πC , andπD. GivenA+C � a+c, show thatA has a binomial distribution
with parametersa+ c andγA � πA/(πA+πC); B has a binomial distribution
with parametersb+d andγB � πB/(πB+πD); andA andB are independent.

15. Continue with Exercise 14 and further suppose thatA andB are independent
binomials with parametersa+c,p andb+d,p, respectively. GivenA+B �
a+ b, prove thatA has the hypergeometric distribution in Fisher’s exact test.

Extensions

For a final example of a model for a 2× 2 contingency table, suppose the table
corresponds to a cross-classification by sex (female, male) and residence (urban,
rural) of the number of cases of a particular cancer in a given state in a given year.
(In practice, we would classify by age too, but this is a simplified example.) Then
our counts area, b, c, andd, wherea is the number of cancer cases that are female
and urban,b the number of male and urban cases,c the number of female and rural
cases, andd the number of male and rural cases.

For reasons to be explained in Chapter 6, we might begin our analysis supposing
that the underlying random variablesA,B,C, andD are independent Poisson, with
parameters (means)α,β,γ , andδ. To estimate these parameters, we use the method
of maximum likelihood. For observationsa, b, c, andd, the likelihood function is

L(α, β, γ, δ) � e−ααa

a!

e−ββb

b!

e−γ γ c

c!

e−δδd

d!
.

By maximizingL with respect toα, β, γ , andδ, we find that (see the Exercises)
if a > 0, b > 0, c > 0, andd > 0,

α̂ � a, β̂ � b, γ̂ � c, δ̂ � d.

An alternative model is themultiplicative model. If we think of urban females
as a baseline category and suppose that the male relative risk of getting this cancer
(in this state in this year) isλ and the relative risk of rural inhabitants isµ, then a
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simple model for these data would have expected values

E(A) � α, E(B) � λα,

E(C) � µα, E(D) � λµα;

in other words,αδ � βγ . The use of relative risk parameters such asλ andµ
simplifies discussion of cancer rates, but does it fit the data?

For the multiplicative model,δ � βγ/α. As a result, only three parameters need
to be estimated. The likelihood function in this case is

L(α, β, γ ) � e−ααa

a!

e−ββb

b!

e−γ γ c

c!

e−βγ/α(βγ/α)d

d!
.

We leave it to the Exercises to show that the maximum likelihood estimates of the
parameters are, fora + b > 0, a + c > 0, b + c > 0, andc + d > 0,

α̂ � (a + b)(a + c)

n
, β̂ � (a + b)(b + d)

n
,

γ̂ � (c + d)(a + c)

n
, δ̂ � (c + d)(b + d)

n
.

To test how well this model fits our data, we compare the observed counts to
their expected counts in a chi-square test. Since the expected counts are the same
as in the previous examples for the hypergeometric, multinomial, and binomial
distributions, we will get exactly the same test statistic:

n(ad − bc)2

(a + b)(a + c)(b + c)(b + d)
.

Also, as before, there is one degree of freedom. This degree of freedom comes
from 4 freely varying cells (n is not fixed) less 3 estimated parameters.

We saw earlier that the relations among the various distributions (multinomial-
binomial and multinomial-hypergeometric) explained how the test statistics all
reduced to the same quantity. The same reasoning underlies this model. ForA,B,C,
D independent Poisson random variables, when we condition onA+B+C+D �
n, then (A,B,C,D) has a multinomial distribution with parametersn, πA, πB ,
πC , andπD, whereπA � α/(α + β + γ + δ), and so forth. For the multiplicative
model, these probabilities further reduce to

πA � 1

(1 + λ)(1 + µ)
, πB � λ

(1 + λ)(1 + µ)
,

πC � µ

(1 + λ)(1 + µ)
, πD � λµ

(1 + λ)(1 + µ)
.

We see that the multiplicative Poisson model reduces to a multinomial model,
which in turn is an independent binomial model with two probabilities, 1/(1+ λ)
and 1/(1 + µ), that need to be estimated.



5. Can She Taste the Difference? 117

Exercises

1. SupposeA, B, C, andD are independent Poisson random variables, with
parametersα, β, γ , andδ. Show that for the given observationsa, b, c, and
d, the maximum likelihood estimates forα, β, γ , andδ area, b, c, andd,
respectively, provideda, b, c, andd are positive.

2. SupposeA, B, C, andD are independent Poisson random variables, with
parametersα,β, γ , andδ � βγ/α. Derive the maximum likelihood estimates
of α, β, γ , andδ given observationsa, b, c, andd.

3. SupposeA, B, C, andD are independent Poisson random variables with
means that satisfy the multiplicative model. GivenA + B + C + D � n,
prove that (A,B,C,D) has a multinomial distribution with parametersn,πA,
πB , πC , andπD, whereπA � πλπµ, πB � (1 − πλ)πµ, πC � πλ(1 − πµ),
πD � (1 − πλ)(1 − πµ), andπλ � 1/(1 + λ), πµ � 1/(1 + πµ).

Notes

We chose an experiment to test a subject’s ability to discriminate between decaf-
feinated and regular coffee because it seemed the modern American version of tea
tasting. Other comparisons that we considered, and that you may wish to use, were
based on comparing brands of food, such as peanut butter and soft drinks. You
may also want to collect data according to the multinomial and binomial models.
A sample of students cross-classified by sex and handedness would provide an
example for the multinomial model. Two samples, one of fraternity students and
one of dormitory students with regard to their smoking habits, would provide an
example of the independent binomial model.

Cathy, the manager of Peet’s Coffee shop on Domingo Avenue in Berkeley, Cal-
ifornia, was very helpful in providing information on brewing and decaffeinating
coffee. Much of this information was paraphrased from their brochure,Peet’s Cof-
fee: Recommendations & Descriptions, and from their web site — www.peets.com.
Peet’s recommends the French press for brewing coffee and the direct-contact
method for removing caffeine from the coffee beans. To mail order Peet’s coffee
call 1-800-999-2132 or visit their web site.
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6
HIV Infection in Hemophiliacs

With 14 million pints of
blood collected from U.S. donors
each year, screening blood-borne
diseases is a daunting task. Each
pint is tested within 24 hours for
HIVand other viruses.

Right now, the tests
theoretically miss just 1.5 HIV
and 10 hepatitusC viruses in every
million parts, but safety regulators
say that isn t goodenough.

In response, U.S. blood
banks launched a new genetic test
this spring that promises to make
the slim odds of infection even
slimmer.

This new technique, called
nucleic acid testing, or NAT, is
supposed to be sensitive enough
to detect the earliest traces of HIV
or hepatitis C viruses that can slip
throughcurrent blood tests.

Although current tests
already have made infection from

donated blood exceedingly rare,
NAT could reduce the risk 80 to
90 percent for hepatitis and
somewhat less for HIV. ...

But some experts have
questionedwhether the cost of the
new test -- it could add 5 percent
to the overall cost of a pint of
blood -- is worth the slim
improvement in safetymargins.

Jim AuBuchon, a pathology
professor at Dartmouth Medical
Center in New Hampshire, says
NAT should reduce the statistical
probability of transfusion-caused
HIV from 24 cases a year at
present to 16 a year. But he notes
that there hasn t been a single real
case of HIV-infected blood
reported in five years -- which
makes him wonder whether there
actually would be an increased
safety margin for HIV. This is the
least cost-effective medical
procedure I have ever seen, he
says.

San Francisco Chronicle� �� ��MONDAY, MAY 31, 1999

Genetic Bloodhound
New test from rival Bay Area biotech firms
can sniff out viral infections in donations

By Tom Abate

1

1Reprinted by permission.
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FIGURE 6.1. Median age at death for hemophiliacs in the U.S. (Chorba [Chorba94] and
Cohen [Cohen94]).

Introduction

Major advances in hemophilia treatment were made during the 1960s and 1970s
when new techniques were developed for concentrating blood clotting factors
used in transfusions. As a result, the median age at death increased steadily (Fig-
ure 6.1). However in the 1980s, large numbers of people with hemophilia began to
die from Acquired Immune Deficiency Syndrome (AIDS). Hemophiliacs are typ-
ically immunosuppressed and susceptible to bacterial infections, but in the 1980s
people with hemophilia began to die from other types of infections, such as fun-
gal infections, that are more associated with AIDS. Immune failure soon became
the single most common cause of death in hemophiliacs (Harris [Harris95]), and
the median age at death peaked in 1984 before dropping dramatically in the late
1980s.

The clotting factor supply was contaminated with the Human Immunodeficiency
Virus (HIV) and it was thought that HIV infection caused AIDS because most or
all of the deaths due to AIDS occurred in people who were infected with HIV.
However, the implication of causality is difficult to prove in part because the
definition of AIDS adopted by the U.S. Centers for Disease Control (CDC) requires
patients to have seroconverted (i.e., become infected with HIV) in order to be
diagnosed as having AIDS.

A few leading scientists have questioned whether HIV causes AIDS. Some
contend that HIV infection is necessary for AIDS but that it alone is not sufficient to
cause AIDS. Others, such as the retrovirologist Peter Duesberg at the University of
California, Berkeley, have claimed that HIV is a harmless passenger virus that acts
as a marker for the number of transfusions a patient with hemophilia has received.
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According to Duesberg, AIDS is caused by the large quantity of contaminants
people with hemophilia receive in their lifetime dosages of clotting factor.

In this lab, you will have the opportunity to examine this question of whether HIV
causes AIDS using data from a large study of hemophiliacs. As Cohen ([Cohen94])
states:

Hemophiliacs offer a unique window on the effects of HIV infection because
there are solid data comparing those who have tested positive for antibodies
to HIV — and are presumably infected — with those who have tested nega-
tive. In addition, the health status of hemophiliacs has been tracked for more
than a century, providing an important base line. And unlike homosexual
groups, hemophiliac cohorts are not riddled with what Duesberg thinks are
confounding variables, such as illicit drug use.

Data

The data for this lab are from the Multicenter Hemophilia Cohort Study (MHCS),
which is sponsored by the U.S. National Cancer Institute (NCI). The study followed
over 1600 hemophilia patients at 16 treatment centers (12 in the U.S. and 4 in
western Europe) during the period from January 1, 1978 to December 31, 1995
(Goedert et al. [GKA89], Goedert [Goedert95]). The MHCS is one of the two large
U.S. epidemiological studies of hemophiliacs, the other being the Transfusion
Safety Study Group of the University of Southern California.

Patients in the MHCS are classified according to age, HIV status, and severity
of hemophilia. See Table 6.1 for a description of the data and sample observa-
tions. To determine severity of hemophilia, on each annual questionnaire patients
indicate the amount of clotting-factor concentrate they have received in that year.
Hemophiliacs are fairly consistent over time with respect to dose, except that low-
dose users might have an occasional moderate year if they had surgery. The severity
of hemophilia reported here is calculated from the average annual clotting-factor
concentrate received in the 1978–84 period.

Each record in the data set corresponds to one stratum of hemophiliacs in one
calendar year of the study. For example, the first column in Table 6.1 provides in-
formation on all severe hemophiliacs in 1983 who were HIV-negative and between
the ages of 10 and 14 inclusive. In this group in 1983, the patients contributed 6.84
person years to the study, and none of them died. In general, a subject’s person
years are calculated from the beginning of the study, or their birth date if they were
born after January 1, 1978, until the time of last contact or the end of the study,
whichever is earlier. When a subject dies or drops out before the end of the study,
then the last contact occurs at the time of death or withdrawal.

Figure 6.2 shows a time line for three hypothetical subjects for the 18 years
of the study. Subject A is a severe hemophiliac who was 6 years old when he
entered the study, seroconverted in 1985, and was alive as of December 31, 1995.
He contributes 18 person years to the study. Subject B, also a severe hemophiliac,
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TABLE 6.1. Sample observations and data description for 29067.22 person years in the
Multicenter Hemophilia Cohort Study (Goedert et al.[GKA89], Goedert [Goedert95]).

Year 83 83 91 91 91 91 91 91 91 91
HIV 1 1 2 2 2 2 2 2 2 2
Severity 1 1 1 1 1 1 3 3 3 3
Age 3 4 5 6 7 8 2 3 4 5
Person years 6.84 9.04 30.14 33.74 28.51 18.92 7.47 14.64 14.83 18.57
Deaths 0 0 1 2 2 3 0 0 0 1

Variable Description
Year Calendar year: 78; ... ;95.
HIV HIV status: 1=negative; 2=positive.
Severity Average annual dose of clotting-factor concentrate:

1= over 50,000 units; 2= 20,001–50,000 units;
3= 1–20,000 units; 4=unknown; 5=none.

Age Age in 5-year intervals:
1= under 5; 2= 5 to 9;... ; 14= 65 and over.

Person years Total amount of time during the calendar year that the
people in the stratum were alive and part of the study.

Deaths Number of deaths in the calendar year for the stratum.

entered the study at age 11, seroconverted in 1984, and died on September 30,
1990. This subject contributes 12.75 person years to the study. Subject C, a mild
hemophiliac, was born on July 1, 1985 and dropped out of the study on March
31, 1990, not having seroconverted at that point. He contributes 4.75 person years.
Each subject’s person years can be further allocated to strata within calendar years.
Here are some examples: for 1983, subject A contributes one person year to the
HIV-negative, 10–14 year old, severe hemophilia group; subject B contributes one
person year to the HIV-negative, 15–19 year old, severe hemophilia group; and
subject C has not yet entered the study and does not contribute anything. Later, in
1990: one person year is contributed to the HIV-positive, 15–19 year old, severe
strata; 0.75 person years and one death to the HIV-positive, 20–24 year old, severe
group; and 0.25 years to the HIV-negative, under 5, mild hemophiliacs.

Background

Hemophilia

There are twelve factors in plasma, numbered I through XII, that play a role in
blood coagulation. A person whose factor VIII level is so low that it leads to
uncontrolled bleeding is diagnosed with hemophilia A, or classical hemophilia.
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|A �Conversion |
|B �Conversion |Death

|C |Withdrew

| | | | | | | | | |
78 80 82 84 86 88 90 92 94 96

FIGURE 6.2. Diagrammatic representation of follow-up on three hypothetical subjects in
the MHCS. (SubjectA is a severe hemophiliac who was 6 years old at the start of the study;
subjectB, also a severe hemophiliac, was 11 when he entered the study; and subjectC,
born July 1, 1985, was a mild hemophiliac.)

Hemophilia B, also named Christmas disease after someone who had the disease,
occurs when factor IX levels are too low.

Hemophilia is classified into three degrees of severity according to the quantity of
the clotting factor present in the blood. Severe hemophilia A means the individual’s
plasma contains less than 1% of the factor VIII found in a healthy adult; this amount
is 0.2 micrograms per milliliter of plasma. Moderate cases have 1–5%, and mild
cases have 6–24% of the normal quantity of the clotting factor.

Most hemophiliacs (85%) are of Type A, and of these 70% are severe cases.
Fourteen percent are of Type B, and the remaining 1% have factor disorders other
than VIII and IX. Severe hemophiliacs spontaneously bleed without trauma several
times a month.

Hemophiliacs do not have trouble with their platelets, meaning nose bleeds,
cuts, and scratches are not a problem for them. Instead, bleeding occurs internally,
most often in muscles and joints, especially ankles, knees, elbows, shoulders, and
hips. The bleeding destroys the cartilage in the joints and leads to chronic pain
and permanent disability. Internal bleeding occurs at other sites as well. Prior to
the AIDS epidemic, approximately 1/4 of the deaths in patients with hemophilia
were attributed to intracranial bleeding. Moderate and mild hemophiliacs rarely
have unprovoked bleeding episodes in joints, and mild cases may go undetected
into adulthood.

Hemophilia is a sex-linked genetic disease. That is, the genes coding for factors
VIII and IX are located on the X-chromosome. A woman has two X-chromosomes,
and if only one of the chromosomes has the specific mutation then she is called a
carrier. Carriers generally have factor levels from 25% to 49% of the normal level
and tend not to bleed. Males have one X-chromosome inherited from their mother,
and one Y-chromosome from their father. If the X-chromosome has the specific
mutation, then the individual will have hemophilia; about one in 5000 male births
result in hemophilia. Hemophilia in females occurs in the very rare case when
both X-chromosomes have mutated. There is no family history of the bleeding
disorder for about one-third of hemophiliacs, as the disorder often results from
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a new genetic mutation. The U.S. population of hemophiliacs in 1994 was about
35,000.

Treatment

From the late 1800s into the 1940s, hemophiliacs were treated with blood trans-
fusions. Unfortunately, this treatment was ineffective because there is very little
factor VIII in blood, and the transfusions often led to circulatory failure. Plasma
transfusions introduced in the 1950s improved the treatment, but the real change
in treatment occurred in the 1960s when Pool discovered that the material formed
in the bottom of a bag of fresh frozen plasma had high concentrations of the co-
agulation factors, and techniques for processing these crude concentrates were
developed. To make these blood products, plasma from 2000 to 30,000 donors is
pooled, purified, and stabilized in a concentrated form. These new concentrates
dramatically improved the physical conditions and life expectancy of hemophil-
iacs. Patients were able to administer treatment at home, and bleeding episodes
could be rapidly reversed. People with severe hemophilia require regular trans-
fusions because the body constantly recycles these plasma factors. Within eight
hours of a transfusion, half of the factor VIII received will be eliminated from the
bloodstream.

In the early 1980s, the concentrates became contaminated from donors with the
Human Immunodeficiency Virus (HIV), and by 1985 roughly two-thirds of the
U.S. hemophiliac population was infected with HIV. Hemophiliacs began dying
of AIDS. Deaths increased from 0.4 per million in 1978 to 1.3 per million in the
1979–89 period (Chorba [Chorba94]), and the median age at death dropped from
over 60 years in the early 1980s (Figure 6.1) to 38 in 1989.

Starting in 1985, donors were screened for blood-borne viruses, and all blood
products were tested for hepatitis and HIV. Later, new heat techniques and ge-
netic processing were developed to better purify the concentrates. From 1985 to
1994, only 29 cases of HIV transmission were reported among recipients of blood
products screened for HIV.

AIDS

Acquired Immune Deficiency Syndrome (AIDS) is the name given to a new med-
ical syndrome: a fatal immune deficiency acquired by previously healthy patients.
The immune deficiency in AIDS involves a particular kind of cell in blood and
lymphatic tissues, called a T-lymphocyte. In the syndrome, a subset of these cells,
the CD4+ cells, gradually disappear. These CD4+ cells help stimulate the immune
system. A healthy adult has a CD4+ cell count between 800 and 1000. Under
physical stress, injury, and chronic stress, the CD4+ count might drop to 500 and
mild non-fatal infections may result. The CD4+ count of an adult with full-blown
AIDS is under 200, and this count continues to decrease over time. Another T-
lymphocyte cell is the CD8+. In a healthy adult, the CD8+ cell count is between
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400 and 500. AIDS does not affect the CD8+ cell count, so the ratio CD4+/CD8+
is generally less than 1 for people with AIDS.

Those diagnosed with AIDS die of immune failure; they are subject to fatal
opportunistic infections, such as the Cytomegalovirus (CMV) described in Chap-
ter 4. People with low CD4+ counts had been dying from immune failure prior to
the AIDS epidemic. However, these deaths were generally associated with cancer,
malnutrition, tuberculosis, radiation, or chemotherapy. AIDS differs from these
causes of immune deficiency in that it is “acquired,” meaning that it is “picked up”
by healthy people.

In 1993, the CDC diagnosed AIDS when the following symptoms are present:
CD4+ count under 500 or a CD4+/CD8+ ratio under 1; HIV infection; and either
a CD4+ count under 200 or opportunistic infection. Some medical researchers
object to this definition because it includes HIV infection and therefore skirts the
question as to whether HIV causes AIDS. Conservative skeptics would like HIV
infection to be dropped from the CDC definition; other more extreme dissenters,
such as Duesberg, advocate expanding the definition to include all those patients
with CD4+ counts under 500 or a CD4+/CD8+ ratio under 1. This criterion would
include a large number of HIV-free cases.

Does HIV Cause AIDS?

The risk groups for AIDS in western countries are illicit drug users, recipients
of blood products, and male homosexuals. All people in these high-risk groups
who have low and declining CD4+ counts have been infected with HIV (Harris
[Harris95]). (French researcher Luc Montagnier first isolated the HIV virus in 1983
from a French patient who later died of AIDS.) This observation does not prove
that HIV causes AIDS. However, according to Harris, the CDC reported after a
massive search that it had found fewer than 100 cases without HIV infection that
had CD4+ counts that were less than 300. These people were not in the usual AIDS
risk groups. In addition, their CD4+ cell counts were often higher than 300 and
did not progressively decrease.

Duesberg claims that HIV is nothing more than a benign passenger virus, and
that AIDS is a result of lifestyle choices: illicit drug use; use of AZT, the first drug
approved for treating AIDS; and contaminants in blood products. HIV skeptics
argue that the lifetime dosages of illicit drugs, AZT, and factor concentrates need to
be considered in epidemiological studies of the relationship between HIV infection
and AIDS. They also point out that HIV does not satisfy Koch’s postulates for
proving that an organism causes disease.

Robert Koch, a 19th century physician, postulated simple rules that should be
fulfilled in order to establish that an organism causes disease. One postulate states
that the organism must be isolated in pure culture; that the culture be used to
transmit disease; and that the organism must be isolated again from the diseased
subject. This has not been confirmed with HIV.

Some attempts to argue that HIV satisfies Koch’s postulate have been made.
For example, animal experiments on a strain of HIV found in AIDS patients in
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West Africa has caused AIDS in monkeys. However, experiments have not been
successful in infecting animals with the strain found in the U.S. and many other
countries. Also, three lab workers have been accidentally infected with the pure
HIV virus. These workers did not belong to any of the high-risk groups, and all
developed AIDS. Two of the three did not receive AZT treatment.

Drug Use

The earliest proven case of modern AIDS was in 1959 in the U.K., and the first case
found in the U.S. was in 1968. Both of these individuals were victims of severe
immune deficiency, and their tissues were preserved and later tested positive for
HIV. Additionally, 4% of preserved serum samples from injectable drug users in
1971–72 in the U.S. have been found to be HIV-positive.

It appears that HIV was around long before the epidemic that began in the 1980s.
There are two possible reasons for the dramatic increase in AIDS cases. In the late
1960s, illicit drug use became more widespread in the U.S., and the disposable
plastic syringe made it possible for large-scale injectable-drug abuse. Also around
this time, one faction of male homosexuals began to engage in the high infection
risk of the “bath house” lifestyle. Ten years later, there was a large enough fraction
of HIV-infected people to contaminate the blood supply.

Evidence that HIV causes AIDS was found in a Dutch study of illegal drug use
(Cohen [Cohen94]). After controlling for lifetime dosages, it was found that the
CD4+ counts of HIV-positive drug users were well outside the normal range, and
the CD4+ counts for comparable HIV-negative users were in the normal range.

AZT

The Concorde study, a British and French study of HIV-positive subjects, found
that the mortality of those who began immediate AZT treatment was not signif-
icantly different from the mortality of HIV-positive subjects who deferred their
AZT treatment. These figures are in Table 6.2. According to Cohen [Cohen94],
Duesberg claims that

The Concorde data exactly prove my points: the mortality of the AZT-treated
HIV-positives was 25% higher than that of the placebo [deferred] group.

This statement is examined in more detail in the Exercises.

TABLE 6.2. Observed deaths in HIV-positive subjects according to whether treatment with
AZT was immediate or deferred. Data are from the Concorde study as reported in Cohen
[Cohen94]).

Immediate Deferred
Total deaths 96 76
HIV-related deaths 81 69
Number of subjects 877 872
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Factor VIII Contaminants

People with hemophilia represent a well-defined group whose mortality and mor-
bidity have been studied over the long term. One long-term study of hemophiliacs
is the U.K. National Haemophilia Register (NHR), established in 1976 to follow
all diagnosed hemophiliacs living there.

From 1977 to 1991, over 6000 male hemophiliacs were living in the U.K.,
and in the 1979–86 period approximately two-thirds of them received transfu-
sions that were potentially contaminated with HIV. As of January, 1993, 15%
of these 6000+ individuals had died, 82% were alive, and 3% were lost to fol-
lowup. Table 6.3 shows the number of deaths and death rates according to severity
of hemophilia and HIV infection (Darby et al. [DEGDSR95]). In the 1978–84
period, the mortality rate among all severe hemophiliacs was 8 deaths per 1000
person years (8 d/1000 py). Over the next 8 year period, the mortality rate for
HIV-negative severe hemophiliacs remained at 8 d/1000 py, but for HIV-positive
severe hemophiliacs it increased to 50 d/1000 py. According to Darby et al.,

During 1985–92, there were 403 deaths among all HIV seropositive patients,
whereas only 60 would have been predicted from the rates in seronegatives,
suggesting that 85% of the deaths in seropositive patients were due to HIV
infection. Most of the excess deaths were certified as due to AIDS or to
conditions recognized as being associated with AIDS.

Figure 6.3 shows mortality rates by calendar period for HIV-positive and HIV-
negative patients. The vertical bars in the plot are 95% confidence intervals based
on the normal approximation.

The rates in Table 6.3 and Figure 6.3 are weighted averages of rates in the
age groups< 15, 15–24, 25–34, 35–44, 45–54, 55–64,and 65–84. The weights are
based on the total number of person years at risk in the period 1985–92 for all HIV-
positive patients of all degrees of severity. Standardization of rates is described in
the Theory section of this chapter.

TABLE 6.3. Observed deaths and standardized death rates per 1000 person years in
all hemophiliacs in the NHR by HIV status and severity of hemophilia (Darby et al.
[DEGDSR95]).

Severe hemophilia Moderate or mild hemophilia
HIV-negative HIV-positive HIV-negative HIV-positive

Years Deaths Rate Deaths Rate Deaths Rate Deaths Rate
85–86 8 15.0 43 23.9 5 2.4 13 19.4
87–88 13 9.3 74 41.3 14 2.0 10 23.8
89–90 13 9.9 96 56.8 19 4.6 22 63.0
91–92 7 3.6 121 80.8 26 4.1 24 84.7
85–92 41 8.1 334 49.1 64 3.5 69 45.2
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FIGURE 6.3. Death rates, with confidence intervals, for severe hemophiliacs per 1000
person years, by calendar year and HIV status (Darby et al. [DEGDSR95]). In this figure,
the HIV-negative group includes those of unknown HIV status.

Investigations

The main question to be addressed here is how the mortality of HIV-positive
hemophiliacs compares to that of HIV-negative hemophiliacs.

Table 6.4 shows that the crude mortality rate for the HIV-positive hemophiliacs
in the MHCS is 34.1 deaths per 1000 person years, and the rate for HIV-negative
hemophiliacs is only 1.6 deaths per 1000 person years. However, it may be inappro-
priate to make such crude comparisons because the HIV-positive and HIV-negative
hemophiliacs may differ according to some factor that is associated with mortality,
which confounds the results. For example, if the HIV-positive hemophiliacs tend
to be older than the HIV-negative hemophiliacs, then the additional deaths in this
group may be explained by differences in the age distribution between the two
groups. If there is a difference in age distribution, then we should compare the
rates within age categories.

• Begin by comparing the age distribution of person years for the HIV-negative
and HIV-positive groups. Is the HIV-negative population younger or older than
the HIV-positive population? From 1980 to 1985, the clotting-factor concen-
trates were contaminated with HIV, and it was during this time period that the
hemophiliacs who received contaminated transfusions were infected. By 1985,
methods were available for screening blood supplies, and HIV was virtually
eliminated from blood products. How might this window of exposure affect the
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age distribution of the HIV-infected hemophiliacs over time? Is calendar year
a potential confounder?

• According to Duesberg, it is not HIV that has caused AIDS among hemophil-
iacs, but the “other junk” in the transfusions the patient receives. Duesberg
claims that these other contaminants are the real cause of AIDS, and that it
is critical to take into account the quantities of clotting-factor concentrate that
people with hemophilia receive in their lifetime for a fair comparison of mor-
tality rates of seropositive and seronegative patients. Do you find evidence in
the MHCS study to support Duesberg’s claim?

• Consider various weighting schemes for standardizing the mortality rates. If
the ratio of mortality rates for HIV-positive to HIV-negative patients within an
age subgroup is roughly constant across age subgroups, then the age-specific
mortality rates for an HIV group may be combined to provide a single rate. It is
usually easier to compare these single rates. The HIV-positive mortality rates for
each age group may be combined using a weighted average, where the weights
reflect the relative size of each age group in some standard population. The same
age adjustment would then be made to the HIV-negative rates. Alternatively, the
rates may be combined with weights chosen to minimize the variability in the
difference between these rates. In either case, these combined rates should be
interpreted with caution, as changes in the weights can produce quite different
summary rates.

• Provide interval estimates for the difference in mortality rates between HIV-
positive and HIV-negative hemophiliacs according to severity of hemophilia
and calendar year. Present your results graphically. Darby et al. (Figure 6.3)
provide similar estimates using the NHR. These mortality curves give a picture
of the progression of the AIDS epidemic through the hemophilia population
in the U.K. The bars used to denote variability in the figure are based on the
normal approximation. The normal approximation may not be entirely appro-
priate in this setting because of small counts, and a population rather than a
random sample was observed. Nonetheless, the intervals are useful in providing
a comparison of the seropositive and seronegative groups.

Write your report as a letter to the editor ofNature to follow up on Darby et
al. [DEGDSR95]. Explain your findings and whether or not they corroborate the
response of Darby et al. to what Cohen [Cohen94] inSciencelabels the “Duesberg
phenomenon.”

Theory

The data for this lab are from acohort study. The cohort or group under observation
is hemophiliacs. The population in the MHCS isdynamicrather thanfixedas new
subjects enter the study after the initial start date. A cohort study isprospective:
subjects are followed through time, occurrence of disease or death are noted, and
the rate at which people die or become diseased (i.e., the incidence of disease) is
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measured. In contrast, across-sectionalstudy takes a snapshot of a population at
a fixed point in time. With a cross-sectional study, the prevalence of disease, or
proportion of subjects with a disease, is measured.

Proportions, Rates, and Ratios

Proportions, rates, and ratios are used to measure disease. A proportion measures
prevalence; it is a fraction in which the numerator is included in the denomina-
tor, such as the proportion of hemophiliacs who are HIV-infected. A rate measures
change in one quantity per unit change in another quantity, where the second quan-
tity is usually time. The speed of a car in kilometers per hour is an instantaneous
rate; the total distance traveled in a car divided by the total travel time is an average
rate. In the MHCS, the mortality rate for hemophiliacs is an average rate; it is the
ratio of the number of deaths (d) to the number of person years (py) observed in
the study period. For the HIV-positive hemophiliacs, the mortality rate (Table 6.4)
is

434 deaths/12,724 person years� 34.1 d/1000 py.

Person years provides a measure of exposure to HIV infection.
Ratios provide a means of comparing two proportions or two rates. The ratio of

mortality rates, ormortality ratio,

34.1 HIV-negative d/1000 py

1.6 HIV-positive d/1000 py
� 21,

indicates that the average mortality rate for HIV-positive hemophiliacs is 21 times
that for HIV-negative hemophiliacs.

As a rule of thumb, a small number such as 0.5 is often added to each of the
counts to stabilize the effect of small cell counts on the rates and ratios. The use
of 0.5 is arbitrary; another value, such as 0.1, may be added to the counts and
may produce different rates and ratios. In our example, the mortality ratio of HIV-
positive to HIV-negative hemophiliacs is 21; when 0.5 is added to each of the death
tallies, the ratio drops to 19. On the other hand, adding 0.1 does not change the
ratio. Standard errors for these rates and ratios are useful for making confidence
intervals and testing differences. This topic is discussed next.

TABLE 6.4. Observed deaths, person years, and crude death rates per 1000 person years
for hemophiliacs in the MHCS by HIV status (Goedert et al. [GKA89]).

Deaths PY Rate
HIV-negative 26 16,343 1.6
HIV-positive 434 12,724 34.1
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Poisson Counts

In epidemiology (Kleinbaum et al. [KKM82]), the standard errors for rates and
ratios of rates are based on the assumption that counts (e.g., of deaths in strata) have
either binomial or Poisson distributions. The usual justification for the latter is what
is sometimes called thelaw of small numbers; namely, the Poisson approximation
to the binomial. This “law” asserts that the total number of successes in a large
numbern of Bernoulli trials, with small common probabilityp of success, is
approximately Poisson distributed with parameternp.

For a large group of individuals, such as hemophiliacs, the individual chances
of death in some short period are quite small, so there is some plausibility to the
assumption that mortality experience is like a series of Bernoulli trials, where the
total number of deaths can be approximated by the Poisson distribution. How-
ever, we are not dealing with perfectly homogeneous groups of people, rates are
seldom completely stable over the relevant time periods, and deaths are not al-
ways independent, so the Bernoulli assumption will be violated to some extent.
One consequence of this violation is a greater variance associated with the counts
than would be the case with the binomial or Poisson distributions. This is some-
times dealt with by using models incorporating what is known as “over-dispersion”
(McCullagh and Nelder [MN89]).

We will calculate variances of rates and ratios under the Poisson assumption in
what follows, with the knowledge that in many cases these will be understated. If
we letλ represent the mortality rate per 1000 person years, then the number of
deathsD observed overm×1000 person years follows a Poisson(mλ) distribution
with expected value and variance,

E(D) � mλ,

Var(D) � mλ.

The observed mortality rate isR � D/m. Its expectation isλ, and SE is
√
λ/m.

Recall from Chapter 4 thatR is the maximum likelihood estimate ofλ. Provided
mλ is large, the distribution ofR is well approximated by the normal. We can
estimatemλ byD, so the SE ofR can be estimated by

√
D/m. Hence we find an

approximate 95% confidence interval forλ,

R ± 1.96
√
D/m.

Note that these intervals and estimates are conditional on the number of person
years observed; that is, we treatm as a nonrandom quantity.

Comparing Rates

Most often, we would like to compare the mortality rates for different groups
such as HIV-positive and HIV-negative hemophiliacs. Suppose for HIV-positive
hemophiliacs we observeD+ deaths overm+ × 1000 person years, and we have a
Poisson model with parameterm+λ+. TakeR+ � D+/m+ as an estimate forλ+.
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Similarly, for HIV-negative hemophiliacs,D− follows a Poisson(m−λ−) distribu-
tion, andR− � D−/m− estimatesλ−. To compare rates for the two groups, we
consider the ratio

R+
R−

� m−D+
m+D−

.

The distribution of possible values for this ratio is often asymmetric; the ratio has
to be nonnegative and is one when the rates are equal. Hence it is often misleading
to use a normal approximation to provide confidence intervals.

One remedy is to create confidence intervals for the logarithm of the ratio
log(R+/R−), which tends to have a more symmetric distribution. In the exercises
of Chapter 3, we used the delta method to approximate variances of transformed
random variables. We leave it as an exercise to derive the approximate variance

Var[log(R+/R−)] ≈ 1

λ+m+
+ 1

λ−m−
,

which we estimate by

1

D+
+ 1

D−
.

Then an approximate 95% confidence interval for the log of the ratios is

log(R+/R−) ± 1.96

√
1

D+
+ 1

D−
.

We take exponentials of the left and right endpoints of the interval to obtain an
approximate 95% confidence interval forR+/R−:

R+
R−

exp

(
±1.96

√
1

D+
+ 1

D−

)
.

Notice that the confidence interval is not symmetric about the ratioR+/R−.
Rates can also be compared via differences such as (R+ −R−). Ratios have the

advantage of always producing viable estimates for rates; negative rates may arise
from estimates and confidence intervals based on differences.

When rates for more than two groups are to be compared, one group may be
designated as the reference group. Typically it is the lowest-risk group. Then ratios
are calculated with the reference group in the denominator.

Adjusting Rates

The figures 34.1 and 1.6 d/1000 py from Table 6.4 are crude mortality rates because
they do not control for potential confounding factors such as age or severity of
hemophilia. For instance, HIV is transmitted via contaminated blood products, and
severe hemophiliacs receive more transfusions and have higher mortality rates than
moderate or mild hemophiliacs. It seems likely that HIV-infected hemophiliacs are
more often severe cases, so the comparison of these crude rates can be misleading.
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TABLE 6.5. Observed deaths, person years, and crude death rates per 1000 person years in
the MHCS by HIV status and severity of hemophilia (Goedert et al. [GKA89]).

Severe hemophilia Moderate/mild hemophilia
Deaths PY Rate Deaths PY Rate

HIV-negative 4 1939 2.3 16 6387 2.6
HIV-positive 199 4507 44.2 138 3589 38.5

It would be more appropriate to compare mortality rates within subgroups of
hemophiliacs that have the same severity of hemophilia. Table 6.5 provides these
figures; the 434 deaths in the HIV-positive group are divided among 199 severe,
138 moderate/mild, and 97 of unknown severity. For those diagnosed with severe
hemophilia, the mortality rates are 2.3 d/1000 py for the HIV-negative and 44.2
d/1000 py for the HIV-positive.

Controlling for age produces many subgroups, as shown in Table 6.6. To simplify
the comparison of groups according to the main factor, such as HIV status, we can
standardizethe mortality rates by age. One way to do this is to apply the mortality
rates for age groups to a standard population. For example, the distribution of
person years from 1978 to 1980 for all hemophiliacs in the MHCS could be used
as a standard hemophiliac population. Figure 6.4 displays the distribution of these
person years.

The age-standardized mortality rate for HIV-positive hemophiliacs is computed
as follows

(0.38× 7.9) + (0.29× 21.2) + · · · + (0.02× 126.5) � 25 d/1000 py.

A similar calculation for HIV-negative hemophiliacs gives an age standardized rate
of 1.2 d/1000 py. These rates are standardized to the same age distribution. Other
factors may be simultaneously controlled in a similar manner. However, sparsity
of data can make these comparisons difficult.

An alternative weighting scheme for standardizing ratios selects weights that
minimize the variance of the estimator. These are known asprecision weights.
Suppose we want to compare the mortality rates of two groups, controlling for
a second factor that hasG groups. For simplicity, we will denote the two main

TABLE 6.6. Observed deaths, person years, and crude death rates per 1000 person years in
the MHCS by HIV status and age (Goedert et al. [GKA89]).

HIV-positive HIV-negative
Deaths PY Rate Deaths PY Rate

<14 16 2034 7.9 1 6240 0.2
15–24 84 3967 21.2 1 3764 0.3
25–34 112 3627 30.9 3 3130 1.0Age
35–44 117 2023 57.8 4 1713 2.3
45–54 52 655 79.4 6 905 6.6
55+ 53 419 126.5 11 590 22.4
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FIGURE 6.4. Histogram of the distribution of person years from 1978 to 1980 for all
hemophiliacs in the MHCS. The area of each bar is provided to the nearest percent.

groups by+ and−. LetD+g be the number of deaths in thegth subgroup of the
positive group andD−g be the number of deaths in the corresponding subgroup of
the negative group. Weightsw1, . . . , wG, calledprecision weights, are chosen to
minimize the variance

Var

[
G∑
g�1

wg log(R+g/R−g)

]
.

Recall that the log transformation symmetrizes the distribution of the ratio of rates.
We leave it to the Exercises to show that the minimizing weights are

wg � 1/Var[log(R+g/R−g)]∑G
i�1 1/Var[log(R+i/R−i)]

,

which we would estimate by

ŵg � D+gD−g
D+g +D−g

(
G∑
i�1

D+iD−i
D+i +D−i

)−1

.

The precision weights are not viable when the number of deaths in stratumg is 0
(i.e.,D+g � D−g � 0), as the weight̂wg would not be defined. We could correct
the problem by adding a small increment to eachD. However, the weights may be
sensitive to the size of the increment, especially if more than one stratum has zero
weight.
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Standardizing rates may be misleading when the ratiosR+g/R−g vary greatly.
For example, suppose the ratio for one subgroup is less than 1, which indicates a
“protective” effect, and also suppose the ratio is greater than 1 for another subgroup,
indicating a “detrimental effect.” These two contradictory effects can be masked
in weighted averages of rates. Standardizing is most appropriate when all ratios of
rates in subgroups go in the same direction (i.e., are all greater than 1) and are all
roughly the same size. See the Exercises for examples of this.

Mantel–Haenszel Test

The confidence intervals introduced earlier can be used to test a hypothesis that
two rates are the same (i.e., that the ratio of rates is 1). If the 95% confidence
interval does not include 1, then the hypothesis would be rejected at the 5% level.

An alternative test is based on comparing the observed to expected deaths under
the hypothesis that the rates are the same. This test is a Mantel–Haenszel-type test.
It is applied conditionally given the total deaths in the two groups,n � D+ +D−.
In the Exercises, we show that givenn,m+, andm−, the number of deaths in the
positive groupD+ follows a binomial distribution with parametersn and

p � m+λ+
m+λ+ +m−λ−

.

Under the hypothesis thatλ+ � λ−, the probabilityp simplifies tom+/(m++m−),
and

E(D+) � n
m+

m+ +m−
,

SD(D+) �
√
nm+m−

m+ +m−
.

Additionally, the Mantel–Haenszel test statistic,(
D+ − np√
np(1 − p)

)2

,

has an approximateχ2
1 distribution under the null hypothesis.

The Mantel–Haenszel test can also be applied to a stratified analysis such as one
that controls for age. For example, letD+g have a Poisson(m+gλ+g) distribution,
and similarly theD−g have a Poisson(m−gλ−g) distribution,g � 1 . . . , G. Given
ng � D+g +D−g, g � 1, . . . ,G, theD+g are independent binomials. Under the
hypothesis thatλ+g � λ−g, for all g, the parameters for the binomial areng and
pg � m+g/(m+g +m−g), and the test statistic( ∑

[D+g − ngpg]√∑
ngpg(1 − pg)

)2

has aχ2
1 distribution. This test statistic is robust against small cell counts because

the cell counts are summed before the ratio is taken.
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TABLE 6.7. Events for hypothetical patients in a cohort study.

Subject Entered Exposed Last contact Outcome
A 1/1/80 7/1/85 12/31/95 alive
B 1/1/80 1/1/84 9/1/92 died
C 1/1/80 — 4/1/94 died
D 1/1/80 — 1/1/88 withdrew
E 1/1/80 — 12/31/95 alive
F 1/1/80 — 1/1/90 withdrew
G 1/1/82 1/1/84 9/1/91 died
H 7/1/85 — 9/1/92 died
I 9/1/83 7/1/83 12/31/95 alive
J 1/1/90 — 12/31/95 alive
K 1/1/81 1/1/85 1/1/94 withdrew
L 4/1/83 1/1/85 1/1/91 died

Exercises

1. Use thez statistic to conduct a test of the hypothesis that the proportion of
deaths in the group of patients in the Concorde study (Table 6.2) who received
immediate AZT treatment equals the proportion of deaths in the group that
deferred treatment. Comment on Duesberg’s analysis of the data as reported
in Cohen ([Cohen94]) and on page 126.

2. Consider the time line (Table 6.7) for the hypothetical patients in a study of
the effect of exposure to some agent on mortality. For each calendar year of
the study, determine the number of person years and deaths in the exposed
and unexposed groups.

3. LetD1 be an observation from a Poisson(λ1) distribution, and letD2 be from
a Poisson(λ2). Given that we know the totaln � D1 + D2, show thatD1

follows a binomial(n, λ1/(λ1 + λ2)) distribution. That is, show

P(D1 � k|D1 +D2 � n) �
(
n

k

)(
λ1

λ1 + λ2

)k (
λ2

λ1 + λ2

)n−k
.

4. LetD have a Poisson(λ) distribution. Consider the transformation log(D).

a. Use a first-order Taylor series expansion (see Exercise 9 in Chapter 3) to
show that for largeλ

Var(log(D)) ≈ 1

λ
.

b. Use this result twice to derive the approximation

Var[log(R1/R2)] ≈ 1

m1λ1
+ 1

m2λ2
,

whereR1 � D1/m1, D1 has a Poisson(m1λ1) distribution, andD2 is
independent ofD1 and similarly defined.
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5. Use the summary statistics in Table 6.4 to provide a 95% confidence interval
for the mortality rate of HIV-positive hemophiliacs.

6. Use the information in Table 6.5 to make a 95% confidence interval for the
ratio of mortality rates for HIV-positive and HIV-negative hemophiliacs.

7. a. Determine the precision weights for the age categories shown in Table 6.6.
b. Use these weights to provide an age-adjusted estimate for the ratio of

mortality rates of HIV-positive and HIV-negative hemophiliacs.
c. Provide a confidence interval for the population ratio.

8. Use the weights from Exercise 7 to standardize the mortality rate for HIV-
positive hemophiliacs displayed in Table 6.6. Explain the differences obtained.

9. Compare the ratios of mortality rates of HIV-positive to HIV-negative
hemophiliacs for the age groups in Table 6.6. Do they all go in the same
direction? Are they all roughly the same magnitude?

10. Add 0.5 to each of the counts in Table 6.6 and recalculate the age-adjusted rates
for HIV-positive and HIV-negative hemophiliacs using the standard weights
displayed in the histogram in Figure 6.4. Compare these rates to the 25 and 1.2
d/1000 py obtained without adding a small constant to each cell. Also compare
them to the rates obtained by adding 0.1 to each count. How sensitive are the
rates to the size of the addition?

11. Compute the Mantel–Haenszel test statistic to compare HIV-positive and HIV-
negative deaths; adjust for severity of hemophilia using Table 6.5.

12. Test the hypothesis of no difference in mortality between HIV-positive and
HIV-negative hemophiliacs. Use the Mantel–Haenszel test and adjust for age
(Table 6.6).

13. Study the robustness of the Mantel–Haenszel test to small cell counts. Add
small values such as 0.1, 0.5, and 0.8 to the cell counts in Table 6.6 and
compute and compare the Mantel–Haenszel test statistics.

14. For uncorrelatedDg with varianceσ 2
g , g � 1, . . . ,G, show that thewg that

minimize

Var(
∑

wgDg)

subject to the constraint that
∑
wg � 1 are

wg � 1/σ 2
g∑

1/σ 2
j

.

Notes

Darby (1995) served as the impetus for studying this subject. Articles by Cohen
(1994) and Harris (1995) were the source for much of the background material
on the controversy over whether HIV causes AIDS. The background material on
hemophiliacs was from Hoyer [Hoyer94] and Levine [Levine93]. Kleinbaum et al.
[KKM82] provides further details on standardizing rates and the Mantel–Haenszel-
type test. See especially Chapter 17, Sections 1 and 3. The data were made available
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by James J. Goedert and Philip S. Rosenberg of the Multicenter Hemophilia Cohort
Study. Christine Chiang assisted in the preparation of the background material for
this lab.
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7
Dungeness Crab Growth

Commercial fishing vessels
are hauling so much seafood from
the world s oceans that more than
100 species are in danger, scientists
say.

Last week, an international
science group issued a red list of
imperiled marine fish, including
some species of tuna, swordfish,
sharkand Pacific red snapper.

The ocean cannot sustain the
massive removal of wildlife needed
to keep nations supplied with
present levels of food taken from
the sea, said Sylvia Earle, an
internationally known marine
biologist from Oakland.

Regulators and fishing
groups, among them the National
Marine Fisheries Service and the
Pacific Fishery Management
Council, consider the list an
indicatorof failing fish populations.

The World Conservation
Union s 1996 list of 5,205
threatened animals includes 120
marine fish - a record number. It

was based on the recommendations
of 30 experts brought together by
the ZoologicalSocietyof London.

Until now, the group has put
only a handful of marine fish on the
list, whichbegan in the 1960sand is
updatedevery three years. ...

The problems associated with
overfishing began more than a half
century ago when the annual catch
of sea creatures was about 20
milliontons.

In the 1940s, demand for
fresh fish grew.

With advanced fish-locating
technology, factory-size vessels,
longer fishing lines and nets, the
world catch exceeded 60 million
tons by the 1960s. It peaked in
1989 at 86 million tons, then began
to dwindle.

In 1993, the National Marine
Fisheries Service announced that of
157 commercially valuable fish
species in the United States, 36
percent were overfished and 44
percent were fished at the
maximumlevel. ...

San Francisco ExaminerSUNDAY, OCTOBER 20, 1996

By Jane Kay

Stripping the Seas

Fishermen are taking from the oceans
faster than species can be replenished

1

1Reprinted by permission.
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Introduction

Dungeness crabs (Cancer magisterDana, Figure 7.1) are commercially fished
between December and June along the Pacific coast of North America. In U.S.
waters, nearly the entire adult male Dungeness crab population is fished each
year. Female crabs are not fished in order to maintain the viability of the crab
population. However, the question of fishing female crabs has been raised as a
possible means of controlling the large fluctuations in yearly catches of crabs.
To support the change in fishing law, it has been noted that the fishing industry
in Canada allows female crabs to be fished and does not suffer from such large
fluctuations in catches (Wickham [Wic88]). It has also been argued that the great
imbalance in the sex ratio may have contributed to the decline in the crab population
along the central California coast. According to biologists, the imbalance may have
caused an increase in the parasitic ribbon worm population to the level where the
worm now destroys 50–90% of the crab eggs each year (Wickham [Wic88]).

Size restrictions on male crabs are set to ensure that they have at least one
opportunity to mate before being fished. To help determine similar size restrictions
for female crabs, more needs to be known about the female crab’s growth.

The lack of growth marks on crab shells makes it difficult to determine the age of
a crab. This is because crabs molt regularly, casting off their old shell and growing
a new one. Adult female Dungeness crabs molt in April and May, although they do
not necessarily molt yearly. Biologists (Mohr and Hankin [MH89]) require size-
specific information on molting to understand the female crab’s growth pattern.
Of particular interest is the size of the increase in the width of the shell having
observed only the size of the shell after the crab molted; for example, for a female
crab with a postmolt shell that measures 150 mm across, the scientists want to
provide a prediction for how much the shell changed in size. In this lab, you will
have the opportunity to study the growth patterns of female Dungeness crabs in
order to assist biologists in developing recommendations for size restrictions on
fishing female crabs.

FIGURE 7.1. Dungeness Crab (Cancer magister).
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TABLE 7.1. Sample observations and data description for the 472 Dungeness crabs collected
in 1981, 1982, and 1992 (Hankin et al. [HDMI89]).

Premolt 113.6 118.1 142.3 125.1 98.2 119.5 116.2
Postmolt 127.7 133.2 154.8 142.5 120.0 134.1 133.8
Increment 14.1 15.1 12.5 17.4 21.8 14.6 17.6
Year NA NA 81 82 82 92 92
Source 0 0 1 1 1 1 1

Variable Description
Premolt Size of the carapace before molting.
Postmolt Size of the carapace after molting.
Increment postmolt–premolt.
Year Collection year (not provided for recaptured crabs).
Source 1=molted in laboratory; 0=capture–recapture.

The Data

The data for this lab were collected as part of a study of the adult female Dun-
geness crab. The study was conducted by Hankin, Diamond, Mohr, and Ianelli
([HDMI89]) with assistance from the California Department of Fish and Game
and commercial crab fishers from northern California and southern Oregon.

Two sets of data are provided. The first consists of premolt and postmolt widths
of the carapaces (shells) of 472 female Dungeness crabs. These data are a mixture
of some laboratory data and some capture–recapture data. They were obtained
by scientists and commercial fisheries over three fishing seasons. The first two
seasons were in 1981 and 1982. The third season was in 1992. The information
available in the first data set is summarized in Table 7.1. The size measurements
were made on the external carapace along the widest part of the shell, excluding
spines. All measurements are in millimeters.

The capture–recapture data were obtained by tagging 12,000 crabs. These crabs
were caught, measured, tagged with a unique identification number, and returned
to the water. The crabs were tagged and released in January through March of
each year, before the annual spring molting season. Commercial fisheries brought
tagged crabs they caught in their traps to the laboratory for second measurements.
Commercial traps have netting designed to catch the larger male crabs; female
crabs caught with these traps were typically larger than 155 mm. For an incentive
to return the tagged crabs, a lottery of the returned crab tags, with a $500 prize,
was held at the end of each fishing season.

The laboratory data were collected during the molting season for female crabs.
Crabs that were in a premating embrace were caught and brought to the laboratory.
The premolt carapace width was measured when the crab was first collected, and
the postmolt measurements were made three to four days after the crab left its old
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TABLE 7.2. Sample observations and data description for the 362 female crabs caught in
1983 (Mohr and Hankin [MH89]).

Postmolt 114.6 116.8 128.7 139.3 142.4 148.9 150.8 155.8
Molt 0 1 0 1 1 0 0 1

Variable Description
Postmolt Size of the carapace after molting.
Molt classification 1=clean carapace; 0=fouled carapace.

shell to ensure that the new shell had time to harden. The postmolt measurements
for all crabs were made in the laboratory, after which they were released.

The second set of data were collected in late May, 1983, after the molting season.
The carapace width was recorded as well as information on whether the crab had
molted in the most recent molting season or not. The crabs were collected in
traps designed to catch adult female crabs of all sizes, and so it is thought that
the sample is representative of the adult female Dungeness crab population. This
sample consists of 362 crabs. Table 7.2 contains a description of this second set
of data.

Background

The Dungeness crab (Cancer magister) is a large marine crustacean found off the
Pacific coast of North America from the Aleutian Islands to Baja, California. It is
one of the largest and most abundant crabs on the Pacific coast.

The crab has a broad, flattened hard shell, or carapace, that covers the back of
the animal. The shell is an external skeleton that provides protection for the crab
(Figure 7.1). To accommodate growth, the crab molts periodically, casting off its
shell and growing a new one. To do this, the crab first takes in water to enlarge
its body and split open its shell. The animal then withdraws from the shell and
continues to take in water and swell. Then the exterior tissues of the crab harden
to form the new shell. Once the shell has hardened, the water is released, and the
animal shrinks to its original size, which creates room to grow in the new shell.
The molting process is complete in four to five days. Immediately after the molting
season, it is fairly easy to determine whether a crab has recently molted; its shell
is clean, free of barnacles, and lighter in color.

Crabs mate in April and May when the female molts. The male crabs molt later
in the year in July and August. During the female crabs’ molting season male and
female crabs enter shallow water; a male and female will embrace prior to the
female’s molting. When the female leaves her shell, the male deposits a sperm
packet in the female. Once the female crab’s shell has hardened, the male and
female separate. The female stores the sperm for months as her eggs develop.
In the fall, she extrudes her eggs and fertilizes them with the stored sperm. She
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carries her eggs on four pairs of bristly abdominal appendages until they hatch,
after which they pass through several stages as free-swimming plankton and a final
larval stage before they metamorphose into juvenile crabs. The juveniles molt every
few months for about two years, until they reach maturity. This occurs when the
carapaces (shells) are 90 to 100 mm in width.

Dungeness crabs have many kinds of predators in their different stages of devel-
opment. The parasitic ribbon worm preys on crab eggs; many kinds of fish eat crab
plankton; adult crabs, shorebirds, and fish prey on the juvenile crabs; and otters,
sea lions, sharks, and large bottom fish consume adult crabs.

Investigations

In this lab, you will examine the relationship between premolt and postmolt cara-
pace size and summarize your results both numerically and graphically. When
you analyze the data, keep in mind that some crabs molted in the laboratory and
others molted in the ocean. Studies suggest that crabs in captivity have smaller
molt increments than those in the wild. Although the crabs in this study were held
in captivity for only a few days, a comparison of the crabs caught by these two
collection methods is advisable. Also keep in mind that the crabs were fished in
the early 1980s and ten years later.

Figure 7.2 is a histogram for the size distribution of the sample of female crabs
collected after the 1983 molting season. The shaded portion of each bar represents
the crabs that molted, and the unshaded portion corresponds to those that did not
molt. The goal of this lab is to create a similar histogram for the size distribution
of the crabs before the molting season, with the shaded region representing the
molted crabs. The data where both premolt and postmolt sizes are available can be
used to determine the relationship between a crab’s premolt and postmolt size, and
this relationship can be used to develop a method for predicting a crab’s premolt
size from its postmolt size.

• Begin by considering the problem of predicting the premolt size of a crab
given only its postmolt size. Develop a procedure for doing this, and derive an
expression for the average squared error you expect in such a prediction.

• Examine a subset of the data collected, say those crabs with postmolt carapace
width between 147.5 and 152.5 mm. Compare the predictions of premolt size
for this subset with the actual premolt size distribution of the subset. Do this
for one or two other small groups of crabs.

• Use your procedure to describe the premolt size distribution of the molted crabs
collected immediately following the 1983 molting season. Make a histogram
for the size distribution prior to the molting season of the crabs caught in 1983.
Use shading to distinguish the crabs that molted from those that did not molt.
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FIGURE 7.2. Size distribution of 362 adult female Dungeness crabs shortly after the 1983
molting season (Mohr and Hankin [MH89]).

Theory

A subset of the crab data will be used to illustrate the theoretical concepts in this
lab. It includes those female Dungeness crabs that molted in the laboratory and
that have premolt shells at least 100 mm wide.

Correlation Coefficient

From the scatter plot in Figure 7.3, we see that the pre- and postmolt sizes of the
crab shells are highly linearly associated. That is, the points on the scatter plot
in Figure 7.3 are closely bunched around a line. The linear association referred
to here is more formally measured by thecorrelation coefficient. The correlation
between premolt and postmolt size for the crabs collected in this study is 0.98. This
correlation is very high; correlation coefficients range from−1 to +1. A correlation
of exactly +1 or−1 indicates that all points in the scatter plot fall exactly on a line.
The sign of the correlation determines whether the line has positive or negative
slope.

Examples of other correlation coefficients are the correlation between the length
and weight of babies in the CHDS, which is 0.72, and the correlation of the height
and weight of the mothers in the CHDS, which is 0.44.

Positive correlation coefficients indicate that above average values in one vari-
able, such as length, are generally associated with above average values in the
second variable, such as weight. It also indicates that below average values in the
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FIGURE 7.3. Scatter plot of premolt and postmolt carapace width for 342 adult female
Dungeness crabs (Hankin et al. [HDMI89]).
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FIGURE 7.4. Scatter plot of premolt and postmolt carapace width for 342 adult female
Dungeness crabs; also shown are the average premolt carapace widths at 5 mm increments
of postmolt carapace width (Hankin et al. [HDMI89]).
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first variable are typically associated with below average values in the second.
Conversely, negative correlation coefficients indicate that above average values
in one variable are generally associated with below average values in the other
variable.

To compute the correlation coefficient, let (x1, y1) . . . , (xn, yn) be the pairs of
postmolt and premolt sizes for all the laboratory crabs. Then forx̄ the average
postmolt size,̄y the average premolt size, and SD(x) and SD(y) the corresponding
standard deviations, the sample correlation coefficientr is computed as follows:

r � 1

n

n∑
i�1

xi − x̄

SD(x)
× yi − ȳ

SD(y)
.

In our examplex̄ � 144 mm, SD(x)=10 mm,ȳ �129 mm, SD(y)=11 mm, and
r �0.98.

The correlation coefficient is a unitless measure of linear association. That
is, if premolt size is converted into centimeters and postmolt size is converted
into inches, the correlation coefficient remains unchanged because the individual
measurements of premolt and postmolt size are standardized in the correlation
computation.

Averages

From the scatter plot in Figure 7.3, we see that the crabs with a postmolt carapace of
150 mm have premolt carapaces of about 136 mm. We also see that there is natural
variability in their premolt sizes. Altogether, there are 69 crabs in the sample with
a postmolt size of 150 mm, to the nearest 5 mm; that is, there are 69 crabs in the
range from 147.5 to 152.5 mm. For these crabs, the average premolt size is 136
mm and the SD is 2.7 mm. The smallest crab in the group has a premolt size of
130 mm, and the largest has a premolt size of 143 mm. In trying to predict the
premolt carapace size of a crab with a known postmolt size of about 150 mm, it
seems sensible to use the value 136 mm and to attach an error to our prediction
of 2.7 mm. (If premolt carapace sizes for this subset of crabs are roughly normal,
then we could use the standard deviation to provide a confidence interval for our
estimate — a 68% confidence interval would be [133 mm,139 mm].)

Figure 7.4 indicates the average premolt size for groups of crabs with a similar
postmolt size. To create this plot, the crabs were divided into groups according to
their postmolt size. Each group represents a 5 mmrange in carapace size. These
averages also appear in Table 7.3, along with the SDs and the number of crabs in
each group. The group averages fall roughly on a line, called theline of averages.
Notice that each 5 mm increase in postmolt size corresponds to a 5–6 mm increase
in premolt size.

The method of least squares can be used to find an equation for this line:

premolt� a + b × postmolt.
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TABLE 7.3. Summary statistics on premolt carapace size for groups of Dungeness crabs
with similar postmolt size (Hankin et al. [HDMI89]).

Postmolt size Premolt size (mm) Number
(mm) Average SD of crabs

122.5 to 127.5 109 2.8 14
127.5 to 132.5 113 2.2 34
132.5 to 137.5 119 1.9 39
137.5 to 142.5 125 2.8 56
142.5 to 147.5 130 3.0 55
147.5 to 152.5 136 2.7 69
152.5 to 157.5 141 2.0 49
157.5 to 162.5 146 2.3 15

This method finds the line that minimizes the squared difference between the
observed premolt size and the premolt size on the line:∑

(premolt− a − b × postmolt)2.

Minimizing the sum of squares above is usually done on the individual obser-
vations, not the grouped data. That is, the least squares method minimizes the
following sum of squares with respect toa andb:

n∑
i�1

(yi − a − bxi)
2,

for pairs (xi, yi) of postmolt and premolt sizes forn crabs. The minimizing values
are denoted bŷa andb̂, and the resulting line,y � â+ b̂x, is called theregression
line of premolt size on postmolt size.

The regression line for the crab data is drawn on the plot of averages in Figure 7.5.
The equation for the line is

premolt � −29 + 1.1 × postmolt.

Notice that the slope of this line corresponds to an average 5.5 mm increase in
premolt size for each 5 mm increase in postmolt size.

The Regression Line

The regression line has a slope of

b̂ � r
SD(y)

SD(x)
� 1.1 mm/mm.

(The derivation is left to the Exercises.) The slope is expressed in terms of the
standard deviations and the correlation coefficient of the two variables. In our
example, an increase of one SD in postmolt size corresponds, on average, to an
increase of 0.98 SDs in premolt size. The linear association of premolt and postmolt
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size is so high that a one SD increase in postmolt size is associated with nearly a
one SD increase in premolt size.

For any pair of variables, there are two regression lines. In Figure 7.5, we plot
the regression line for determining premolt size in terms of postmolt size. There
is also the regression line that describes postmolt size in terms of premolt size.
This line is in a sense the more natural one to consider because the premolt size
is measured before the crab molts and can be thought to determine the postmolt
size. Its slope is

0.98 SD(postmolt)/SD(premolt)� 0.88 mm/mm.

However, in this lab, we are interested in the less “natural” regression line of
premolt on postmolt because, for the crabs measured after the molting season, our
task is to determine their premolt size.

An Example

Regression analysis can often be used to address questions involving biological
populations that exhibit natural variability. The effect of the correlation on the slope
of the regression line is more clearly seen in an example where the linear association
is not as high as for the premolt and postmolt shell sizes. Take, for example, the
height and weight of mothers in the CHDS study. There, the average height is 64
inches with an SD of 2.5 inches, the average weight is 128 pounds with an SD of
19 pounds, and the correlation is 0.44. Figure 7.6 shows the scatter plot of height
and weight for the mothers. Two lines are also marked on the scatter plot; one is
the regression line. Its slope is 3.5 pounds/inch (i.e., 0.44×19 pounds/2.5 inches).
This line is much less steep then the SD line, the other line marked on the scatter
plot. The SD line has a slope equal to the ratios of the SDs with the sign ofr (that is,
rSD(y)/|r|SD(x)), so here the slope is 19 pounds/2.5 inches� 7.6 pounds/inch.
This effect is calledregression to the meanbecause those mothers with height one
SD below average have weights that are on average only about 0.44 SDs below
the overall average (i.e., they are closer than one SD to the overall mean weight).

Residuals

Table 7.3 shows that the crabs’ premolt sizes in each group vary about the group’s
premolt average, with an SD about 2.5 mm. Similarly, a crab’s premolt size varies
about the regression line. The residual is a name for the difference between a crab’s
actual premolt size and the regression line prediction of it. More concretely, for
crabi, with premolt sizeyi and postmolt sizexi , the residual is

ri � yi − (â + b̂xi), or

ri � yi − ŷi ,

where the regression line prediction isŷi � â + b̂xi . Note that the residuals have
an average of zero, so the SD and root mean square of the residuals are equal.
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FIGURE 7.5. Regression line for premolt shell size in terms of postmolt shell size for
342 adult female Dungeness crabs; also shown are the average premolt sizes for 5 mm
increments in postmolt size (Hankin et al. [HDMI89]).
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FIGURE 7.6. Scatter plot of heights and weights of 1197 mothers in the CHDS (Yerushalmy
[Yer64]); also shown here are the regression line and SD line for weight as determined by
height.
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FIGURE 7.7. Normal-quantile plot of the residuals from the least squares fit of premolt size
to postmolt size for 342 adult female Dungeness crabs (Hankin et al. [HDMI89]).

The root mean square or SD of the residuals is a measure of how informative the
postmolt size is in determining premolt size (i.e., the size of a typical prediction
error). In our example, the residual SD is 2 mm. This is much smaller than 11 mm,
which is the SD of premolt size for all the crabs. The residual SD is also smaller
than most of the standard deviations found in Table 7.3. This is in part due to the
grouping together of the crabs into 5 mm bins, and using the center of the bin
rather than the actual postmolt size to estimate a crab’s premolt size.

The residual SD can be computed easily, as follows:√
1 − r2 SD(y) � 2 mm.

(We leave the derivation to the Exercises.) In our example, the residuals are roughly
normally distributed (see Figure 7.7), so about 68% of the crabs’ premolt sizes are
within 2 mm of the regression line estimate of their size. This means that if we were
to draw two lines parallel to the regression line, one 2 mm above the regression
line and the other 2 mm below it, then roughly 68% of the points in the scatter plot
would be expected to fall between these two lines. This is very useful in showing
how the individual crabs may vary about the regression estimates.

In general, the residual SD is in the range from 0 to SD(y). It equals zero only
when r � ±1; then there is an exact linear relationship betweenx andy, and
knowingx allows us to predicty exactly. Whenr ≈ 0, knowingx does not give
us much information on what valuey might take, so our prediction ofy will have
as much variability as if we did not knowx. Notice that, in our example, anr of
0.98 corresponds to a reduction in variability to

√
1 − r2 � 0.20 of the SD(y).
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Although the correlation is extremely close to 1, the SD of the residuals is still
20% of the original SD. In fact,

SD(y)2 � SD(residuals)2 + SD(ŷ)2,

where the quantity SD(ŷ) is the standard deviation of the fitted values. The SD(ŷ)2

is that part of the variance of the observed data that can be attributed to variation
along the regression line, which isr2SD(y)2.

Bivariate Normal

The formula for the regression line follows from a special property of the joint nor-
mal distribution. If two standard normal random variablesX andY have correlation
ρ, they are said to have abivariate normal densitywith parameters (0,0,1,1, ρ),
which represent the corresponding means, variances, and correlation ofX andY .
We say the pair (X, Y ) has aN2(0,0,1,1, ρ) distribution. The density function of
(X, Y ) is then

1

2π
√

1 − ρ2
exp

{
− 1

2(1− ρ2)
(x2 − 2ρxy + y2)

}
,

and its contours are the values (x, y), wherex2 − 2ρxy + y2 is constant.
A special property of the bivariate normal is that

If (X, Y ) have aN2(0,0,1,1, ρ) distribution, thenX and Y − ρX are
independent;X isN (0,1) andY − ρX isN (0,

√
1 − ρ2).

From this property, we see that

Z � Y − ρX√
1 − ρ2

has a standard normal distribution and is independent ofX. HenceY can be
expressed as follows:

Y � ρX +
√

1 − ρ2Z.

This means that givenX � x, Y has a normal distribution with meanρx and an
SD of

√
1 − ρ2; namely,

Y � ρx +
√

1 − ρ2Z.

We can apply this property to the more general case of bivariate normal random
variables,

(X, Y ) ∼ N2(µ1, µ2, σ
2
1 , σ

2
2 , ρ).

By shifting and rescalingX andY , we find that givenX � x, the random variable
Y has a normal distribution with mean

µ2 + σ2ρ
x − µ1

σ1
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and standard deviation
√

1 − ρ2σ2.
Notice that if we estimateµ1 by x̄, µ2 by ȳ, σ1 by SD(x), σ2 by SD(y), andρ

by r, then we arrive at̂a + b̂x for an estimate of the conditional mean ofY given
X � x and

√
1 − r2SD(y) for its standard deviation. It can also be shown that

these estimators of the parameters of the bivariate normal are maximum likelihood
estimators.

Exercises

1. For crabs with premolt shells 140 mm wide, the regression line prediction of
their postmolt size is mm, with an SD of mm. According to the
normal approximation, we expect roughly 68% of the crabs to have a postmolt
shell size within mm of this prediction. In fact, we find % of the
crabs to be that close to the prediction. Table 7.4 contains summary statistics
on the shell sizes for the crabs. The postmolt sizes of the subset of crabs with
premolt shell size 140 mm are displayed below.
149.5 150.4 150.4 151.4 151.5 151.5 151.5 151.6 151.7 151.7 151.8 152.0
152.1 152.1 152.2 152.2 152.3 152.4 152.9 152.9 153.0 153.1 153.2 153.3
153.4 153.4 153.5 153.5 153.6 153.6 153.8 154.1 154.2 154.2 154.3 154.4
154.5 154.6 154.7 154.8 154.8 154.9 155.0 155.2 155.3 155.4 156.6 156.7

2. For a male Dungeness crab with a premolt carapace 150 mm wide, we use the
regression line for female crabs to predict its postmolt carapace (Table 7.4):

150− 129

11
× 0.98× 10 + 144 � 163 mm.

Comment on the appropriateness of this prediction.
3. The scatter plot in Figure 7.8 includes a number of juvenile crabs. Their

premolt carapaces are under 100 mm. The regression line−29+1.1×postmolt
does not include these juvenile crabs. Describe how you think the slope of the
regression line will change when these crabs are included in the least squares
procedure. Next compute the new regression line to confirm your expectations.
With the extra crabs, the average premolt carapace width is now 126 mm with
SD 16 mm, the average postmolt carapace width is 141 mm with SD 15 mm,
and the correlation is 0.99.

TABLE 7.4. Summary statistics on carapace size for female Dungeness crabs (Hankin et
al. [HDMI89]).

Average SD
Premolt size 129 mm 11 mm
Postmolt size 144 mm 10 mm

r=0.98
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FIGURE 7.8. Scatter plot of premolt and postmolt carapace widths for 361 adult and juvenile
female Dungeness crabs (Hankin et al. [HDMI89]).

TABLE 7.5. Summary statistics on heights of mothers and fathers in the CHDS (Yerushalmy
[Yer64]).

Average SD
Mother’s height 64 inches 2.5 inches
Father’s height 70 inches 2.9 inches

r=0.34

TABLE 7.6. Summary statistics on gestational age and birth weight for babies in the CHDS
(Yerushalmy [Yer64]).

Average SD
Birth weight 120 ounces 18 ounces
Gestational age 279 days 16 days

r=0.41

4. Use the summary statistics provided in Table 7.4 to find the regression line
for predicting the increment in shell size from the postmolt shell size. The
correlation between postmolt shell size and increment is−0.45. The increment
in shell size is 14.7 mm on average, with SD 2.2 mm.

5. According to the summary statistics in Table 7.5, the mothers in the CHDS
who are 69 inches tall tend to marry men 72 inches tall on average. Is it true
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that if you take the fathers in the CHDS who are 72 inches tall, their wives
will be 69 inches tall on average? Explain.

6. A baby in the CHDS with a 64-inch mother most likely has a father who is
inches tall, with an SD of inches. Use Table 7.5 to fill in the blanks.

7. Suppose a simple random sample of 25 is taken from the mothers in the CHDS
who are 64 inches tall. Find the approximate chance that the average height
of the corresponding fathers is more than 71 inches.

8. The correlation between gestational age and birth weight is 0.41 for the babies
in the CHDS (Table 7.6). Does this mean that for every additional day in utero,
a mother can expect her baby to weigh an additional 0.4 ounces on average?
Explain.

9. Show that the least squares solution to
n∑
i�1

[yi − (a + bxi)]
2 is

â � ȳ − b̂x̄

b̂ � r
SD(y)

SD(x)
.

10. Consider pairs (xi, yi), i � 1, . . . , n. Show that

r(x, y) � r(ax + b, y),

wherer(x, y) denotes the correlation betweenx andy.
11. Show that ifyi � axi + b, thenr � +1 if a > 0 andr � −1 if a < 0.
12. Show that−1 ≤ r ≤ +1.

a. To simplify the argument, supposex̄ � ȳ � 0 and SD(x) � SD(y) � 1.
(This case is all that we need to prove, as shown in Exercise 10). Show that
this implies

r � 1

n

∑
xiyi and SD(x) � 1

n

∑
x2
i .

b. Use the following inequalities∑
(xi − yi)

2 ≥ 0,∑
(xi + yi)

2 ≥ 0,

to complete the argument.

13. Show that the least squares liney � â + b̂x passes through the point of
averages (̄x, ȳ).

14. Use the fact that̂a andb̂ are the minimizers of∑
[yi − (a + bxi)]

2

to show that the average of the residuals is 0.
15. Prove that the average of the fitted values,

∑
ŷi/n, is ȳ.
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16. Use Exercises 9 and 15 to show that

SD(ŷ) � r SD(y).

17. Show that the total sum of squares can be written as∑
(yi − ȳ)2 �

∑
(ŷi − ȳ)2 +

∑
(yi − ŷi)

2.

Use this result and Exercise 16 to show that

SD(residuals)�
√

1 − r2 SD(y).

18. Consider the least squares estimatesâ and b̂ based on the data (xi, yi), i �
1, . . . , n. Suppose eachxi is rescaled as follows:ui � kxi . Find an expression
in terms ofâ andb̂ for the new coefficients obtained from the least squares fit
of the liney � c + du to the pairs (ui, yi), i � 1, . . . , n. Also show that the
fitted values remain the same (i.e.,â + b̂xi � ĉ + d̂ui).

19. Suppose the pairs (X1, Y1), . . . , (Xn, Yn) are independent bivariate nor-
mal N2(µ1, µ2, σ

2
1 , σ

2
2 , ρ) distributed random variables. Find the maximum

likelihood estimates ofµ1 andµ2 whenσ 2
1 , σ

2
2 , andρ are known.

Extensions

Growth Increment

The correlation between premolt and postmolt carapace size is 0.98 for the crabs
collected in a premating embrace with premolt carapace size exceeding 100 mm.
This correlation is very high because postmolt size is made up of premolt size plus
a small growth increment. That is, when a group of crabs molt, the big crabs stay
big and small crabs stay small, relatively speaking.

To see more formally how this works, letX andZ be normally distributed with
meansµx , µz, respectively, variancesσ 2

x , σ 2
z , respectively, and correlationρ. In

our example,X represents premolt size andZ represents the growth increase from
molting. For our data, the two sample means are 129 mm and 14.7 mm, the SDs
are about 11 mm and 2.2 mm, respectively, and the sample correlation is−0.60.
Consider the new random variableY � X + Z. In our example,Y represents the
postmolt size. The point is that whenσx is considerably larger thanσz, thenY is
highly correlated withX, regardless of the correlation betweenX andZ. To see
this, we find a lower bound for the correlation betweenX andY that holds for all
ρ < 0. First, we note that

Cov(X, Y ) � σ 2
x + ρσzσx.

SD(Y ) �
√
σ 2
x + σ 2

z + 2ρσzσx.
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Then plug these values for the covariance and SD into the correlation to find

corr(X, Y ) � σ 2
x + ρσzσx

σx
√
σ 2
x + σ 2

z + 2ρσzσx

≥ σ 2
x − σzσx

σx
√
σ 2
x + σ 2

z

� 1 − λ√
1 + λ2

,

whereλ � σz/σx .
In our example, from the two SDs alone, a lower bound on the correlation

between premolt and postmolt size is 0.78. Adding a small increment to the premolt
width gives a similar postmolt value. The increments have a small SD compared to
the premolt SD. Thus pre- and postmolt sizes for an individual crab will be similar
when compared to the variability of premolt values, and the correlation between
pre- and postmolt values will be high. This implies that the regression equation
found in the Theory section of this lab,

premolt � −29 + 1.1 × postmolt,

is not a very informative model for crab growth.
A more informative model should be based on the relationship between postmolt

size and molt increment. In this section, we will explore several models for crab
growth and use the crab data at hand to help determine which models do a good
job of describing growth for this particular population of Dungeness crabs.

Growth Models

Crabs, and their growth patterns, have long been studied by biologists and statis-
ticians. In 1894, Pearson examined the size frequency distribution of crabs;
Thompson, in his 1917 bookOn Growth and Form([Tho77]), compared the shape
of the shell across species of crabs, and Huxley, in his 1932 bookProblems of Rel-
ative Growth([Hux93]), studied the changes over time in the relationship between
the weight and carapace width of crabs.

One simple biological model for growth that is derived from the notion of
cell duplication is the multiplicative growth model. It says that, for some size
measurementy and timet ,

∂y

∂t
� ky;

that is, the rate of change iny is a multiple ofy. For a multiplicative growth model,
the relative growth is constant; namely,

1

y

∂y

∂t
� k.

A crab’s molt increment is an approximation to its growth rate, and relative
growth can be approximated by normalizing the molt increment by the premolt
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size. Notice that the relative increment,

(post− pre)

pre
,

reports a crab’s growth increment relative to its premolt size (i.e., it removes the
size of the crab from its increase in size).

For our case,constant relative growthcan be expressed as

molt increment/premolt� c.

More recently, empirical studies by Mauchline ([Mau77]) found that the growth
of crabs as measured by weight followed a constant growth increment; that is,

∂y

∂t
� k.

For our case, aconstant growth incrementis simply expressed as

molt increment� c.

Huxley studied the relationship between pairs of size measurements, such as
width and weight. He showed that if two different size measurements, sayx and
y, both follow a multiplicative growth model, with constantsk andl, respectively,
then the measurements satisfy theallometricrelationship

y � bxk/l .

This can be shown via the relationship between their relative growths:

1

y

∂y

∂t
� k

l

1

x

∂x

∂t
.

Thompson suggested that growth in weighty and lengthx should follow the rela-
tionshipy � bx3.The allometric relationship studied by Huxley is a generalization
of this model.

More generally, a model for growth in terms ofy and an allometric relationship
betweenx andy can together provide a model for growth forx. For example, if we
take Mauchline’s constant increment model for crab weight (y) and an allometric
relationship between carapace width (x) and weight, wherey � bxc, then

1

x

∂x

∂t
� constant× 1

xc
.

For molt increments, theallometric relationship between weight and width and
constant growth increment in weightgives

log(molt increment/premolt)� a − c × log(premolt),

wherec is the exponent in the allometric relationship. What values ofcmake sense
for this model?

Two other growth models that have been considered by biologists in their
empirical study of crabs are also described here.
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FIGURE 7.9. Scatter plot of molt increment against premolt size for adult female Dungeness
crabs (Hankin et al. [HDMI89]).

Linear extension of constant relative growth:

molt increment� a + b × premolt.

Log-linear extension of constant relative growth:

log(molt increment/premolt)� a + b × premolt.

Begin your investigation of the relationship between molt increment and pre-
molt size by examining the scatter plot in Figure 7.9. The plot shows that larger
crabs have smaller molt increments. This rules out some of the models described
above. With which models are the data consistent? How would you choose among
such models? Use the Dungeness crab data and take into account the biological
explanations for growth in answering this question. Also keep in mind that it is
reasonable to assume that the coefficients for the growth model may change for
different stages of growth; that is, juvenile and adult crabs may have different
growth rates.

Notes

Mike Mohr made the crab data for this lab available, and he assisted us with a
description of the life cycle of the Dungeness crab. General information on the
Dungeness crab can be found in Wickham’s contribution to the Audubon Wildlife
Report ([Wic88]).
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Somerton ([Som80]) adapted the linear model for growth to a bent-line model
in order to accommodate changes in growth from juvenile to adult stages. A dis-
cussion of the different models of growth can be found in Mauchline ([Mau77]).
Wainwright and Armstrong ([WA93]) and Orensanz and Gallucci ([OG88]) contain
comparisons of these models for other data.
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8
Calibrating a Snow Gauge

A late-season cold front was
moving off the Pacific Monday
morning, bringing more heavy
downpours to the rain-besotted
coastal areas of Central and
Northern California and more
snow to the already towering
snowpack in the Sierra. But the
primary weather problem of the
day was that the substantial rain
and snow melt caused by balmy
temperatures ahead of the new
storm was boosting the runoff
and increasing a flood threat in
mountainstreams.

Streams were running high
in the foothills and higher
elevations of Mariposa, Madera,
Fresno and Tulare counties.

Bass Lake, near Oakhurst
south of Yosemite National Park,
was full and releases from the lake
caused flood danger along Willow
Creek in Madera County. The
National Weather Service put a
small-stream flood advisory into
effect through Monday night and
warned residents and travelers to
be cautious there and on other

streams flowing from the
southernSierraNevada.

Rainfall totals from the
latest extension of the seemingly
endless parade of storms were
heavy over most of the north part
of the state. In the 24 hours
ending at 5 a.m. Monday, 4.2
inches fell at Four Trees, in Plumas
County northeast of Oroville.
Three inches of rain fell there in
just six hours ending at 5 p.m.
Sunday.

Blue Canyon, at the mile-
high level on Interstate 80 east of
Auburn, had 2.48 inches in the
24-hour period ending at 5 a.m.
and other heavy rain was reported
in the Mount Shasta-Siskiyou
region and in northwestern
California.

In the Bay Area, 1.12 inches
fell in San Rafael. San Francisco
had 0.39 inches; Alameda 0.36;
Oakland0.32; and RedwoodCity
0.06.

Strong southerly winds
gusted to 40 mph at Weed and
Redding and a high wind warning
was posted on the San Francisco
Bay Bridge just before dawn.

San Francisco ExaminerMONDAY, MAY 1, 1995

Rain Prompts Small-Stream

Flood Warning

By Larry D. Hatfield

1

1Reprinted by permission.
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Introduction

The main source of water for Northern California comes from the Sierra Nevada
mountains. To help monitor this water supply, the Forest Service of the United
States Department of Agriculture (USDA) operates a gamma transmission snow
gauge in the Central Sierra Nevada near Soda Springs, California. The gauge is
used to determine a depth profile of snow density.

The snow gauge does not disturb the snow in the measurement process, which
means the same snow-pack can be measured over and over again. With these
replicate measurements on the same volume of snow, researchers can study snow-
pack settlement over the course of the winter season and the dynamics of rain on
snow. When rain falls on snow, the snow absorbs the water up to a certain point,
after which flooding occurs. The denser the snow-pack, the less water the snow
can absorb. Analysis of the snow-pack profile may help with monitoring the water
supply and flood management.

The gauge does not directly measure snow density. The density reading is con-
verted from a measurement of gamma ray emissions. Due to instrument wear and
radioactive source decay, there may be changes over the seasons in the function
used to convert the measured values into density readings. To adjust the conversion
method, a calibration run is made each year at the beginning of the winter season.
In this lab, you will develop a procedure to calibrate the snow gauge.

Radioactive source

Detector

FIGURE 8.1. Sketch of the gamma transmission snow gauge.
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TABLE 8.1. The measured gain for the middle 10 runs of 30 of the snow gauge, for each of
9 densities in grams per cubic centimeter of polyethylene blocks (USDA Forest Service).

Density Gain
0.686 17.6 17.3 16.9 16.2 17.1 18.5 18.7 17.4 18.6 16.8
0.604 24.8 25.9 26.3 24.8 24.8 27.6 28.5 30.5 28.4 27.7
0.508 39.4 37.6 38.1 37.7 36.3 38.7 39.4 38.8 39.2 40.3
0.412 60.0 58.3 59.6 59.1 56.3 55.0 52.9 54.1 56.9 56.0
0.318 87.0 92.7 90.5 85.8 87.5 88.3 91.6 88.2 88.6 84.7
0.223 128 130 131 129 127 129 132 133 134 133
0.148 199 204 199 207 200 200 205 202 199 199
0.080 298 298 297 288 296 293 301 299 298 293
0.001 423 421 422 428 436 427 426 428 427 429

The Data

The data are from a calibration run of the USDA Forest Service’s snow gauge
located in the Central Sierra Nevada mountain range near Soda Springs, California.
The run consists of placing polyethylene blocks of known densities between the
two poles of the snow gauge (Figure 8.1) and taking readings on the blocks. The
polyethylene blocks are used to simulate snow.

For each block of polyethylene, 30 measurements were taken. Only the middle
10, in the order taken, are reported here. The measurements recorded by the gauge
are an amplified version of the gamma photon count made by the detector. We call
the gauge measurements the “gain.”

The data available for investigation consist of 10 measurements for each of 9
densities in grams per cubic centimeter (g/cm3) of polyethylene. The complete
data appear in Table 8.1.

Background

Location

The snow gauge is a complex and expensive instrument. It is not feasible to establish
a broad network of gauges in the watershed area in order to monitor the water
supply. Instead, the gauge is primarily used as a research tool. The snow gauge
has helped to study snow-pack settling, snow-melt runoff, avalanches, and rain-
on-snow dynamics.

At one time, gauges were located on Mt. Baldy, Idaho, on Mt. Hood, Oregon,
in the Red Mountain Pass, Colorado, on Mt. Alyeska, Alaska, and in the Central
Sierra Nevada, California. The Central Sierra snow gauge provided the data to be
analyzed in this lab. It is located in the center of a forest opening that is roughly 62
meters in diameter. The laboratory site is at 2099 meters elevation and is subject to
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FIGURE 8.2. Plot of gain by density in g/cm3 for ten blocks of polyethylene (USDA Forest
Service).

major high-altitude storms which regularly deposit 5–20 centimeters of wet snow.
The snow-pack reaches an average depth of 4 meters each winter.

The Gauge

The snow gauge consists of a cesium-137 radioactive source and an energy de-
tector, mounted on separate vertical poles approximately 70 centimeters apart
(Figure 8.1). A lift mechanism at the top of the poles raises and lowers the
source and detector together. The radioactive source emits gamma photons, also
called gamma rays, at 662 kilo-electron-volts (keV) in all directions. The detector
contains a scintillation crystal which counts those photons passing through the 70-
centimeter gap from the source to the detector crystal. The pulses generated by the
photons that reach the detector crystal are transmitted by a cable to a preamplifier
and then further amplified and transmitted via a buried coaxial cable to the lab.
There the signal is stabilized, corrected for temperature drift, and converted to a
measurement we have termed the “gain.” It should be directly proportional to the
emission rate.

The densities of the polyethylene blocks used in the calibration run range from
0.001 to 0.686 grams per cubic centimeter (g/cm3). The snow-pack density is never
actually as low as 0.001 or as high as 0.686. It typically ranges between 0.1 and
0.6 g/cm3.



8. Calibrating a Snow Gauge 165

A Physical Model

The gamma rays that are emitted from the radioactive source are sent out in all
directions. Those that are sent in the direction of the detector may be scattered
or absorbed by the polyethylene molecules between the source and the detector.
With denser polyethylene, fewer gamma rays will reach the detector. There are
complex physical models for the relationship between the polyethylene density
and the detector readings.

A simplified version of the model that may be workable for the calibration
problem of interest is described here. A gamma ray on route to the detector passes
a number of polyethylene molecules. The number of molecules depends on the
density of the polyethylene. A molecule may either absorb the gamma photon,
bounce it out of the path to the detector, or allow it to pass. If each molecule
acts independently, then the chance that a gamma ray successfully arrives at the
detector ispm, wherep is the chance, a single molecule will neither absorb nor
bounce the gamma ray, andm is the number of molecules in a straight-line path
from the source to the detector. This probability can be re-expressed as

em logp � ebx,

wherex, the density, is proportional tom, the number of molecules. A polyethylene
block of high density can be roughly considered to be composed of the same
molecules as a block that is less dense. Simply, there are more molecules in the
same volume of material because the denser material has smaller air pores. This
means that it is reasonable to expect the coefficientb in the equation above to
remain constant for various densities of polyethylene.

The true physical model is much more complex, and in practice snow will be
between the radioactive source and detector. However, it is expected that polyethy-
lene is similar enough to snow (with respect to gamma ray transmission) to serve
as its substitute and that the model described here is adequate for our purposes.

Investigations

The aim of this lab is to provide a simple procedure for converting gain into density
when the gauge is in operation. Keep in mind that the experiment was conducted
by varying density and measuring the response in gain, but when the gauge is
ultimately in use, the snow-pack density is to be estimated from the measured
gain.

• Use the data to fit gain, or a transformation of gain, to density. Try sketching the
least squares line on a scatter plot. Do the residuals indicate any problems with
the fit? If the densities of the polyethylene blocks are not reported exactly, how
might this affect the fit? What if the blocks of polyethylene were not measured
in random order?

• We are ultimately interested in answering questions such as: Given a gain
reading of 38.6, what is the density of the snow-pack? or Given a gain reading
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of 426.7, what is the density of the snow-pack? These two numeric values, 38.6
and 426.7, were chosen because they are the average gains for the 0.508 and
0.001 densities, respectively. Develop a procedure for adding bands around your
least squares line that can be used to make interval estimates for the snow-pack
density from gain measurements. Keep in mind how the data were collected:
several measurements of gain were taken for polyethylene blocks of known
density.

• To check how well your procedure works, omit the set of measurements corre-
sponding to the block of density 0.508, apply your calibration procedure to the
remaining data, and provide an interval estimate for the density of a block with
an average reading of 38.6. Where does the actual density fall in the interval?
Try this same test of your procedure for the set of measurements at the 0.001
density.

• Consider the log-polynomial model:

log(gain) � a + b × density + c × density2.

How well does it fit the data? Can you provide interval estimates here as well?
Compare this model to the simple log-linear model in terms of its fit, predictive
ability, physical model, and any other factors that you think are relevant.

Write a short instruction sheet for a lab technician on how the snow gauge
should be calibrated for use in the winter months. Include an easy-to-use graph
for determining snow density for a given gain. Accompany the instructions with a
short technical appendix that explains the method you have chosen.

Theory

The Simple Linear Model

The simple linear model is that the expectationE(Y |x) of a random responseY at
a known design pointx satisfies the relation

E(Y |x) � a + bx.

TheGauss measurement modelsupposes that measurement errorsE have mean 0,
constant variance (sayσ 2), and are uncorrelated. A common practice is to express
the response in the form

Y � a + bx + E,

with the understanding that theEs have the properties noted above. Notice that
theY is capitalized to denote that it is a random variable, andx is in lowercase to
denote that it is fixed. Also, we use capitals when we explicitly representY as a
random variable, and we use lowercase to represent an observed response, sayy1.
Sometimes it is necessary to deviate from this convention when, for example, we
take a function of the observations, such as the residual sum of squares

∑
(yi−ŷi)2,

and we also want to take the expectation of that quantity.
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If we observe pairs (x1, y1), . . . (xn, yn), then the method of least squares can be
used to estimatea andb. As in Chapter 7 on Dungeness crabs, the least squares
estimates ofa andb are

â � (
∑
x2
i )(
∑
yi) − (

∑
xi)(
∑
xiyi)

n
∑
x2
i − (

∑
xi)2

,

(8.1)

b̂ � n
∑
xiyi − (

∑
xi)(
∑
yi)

n
∑
x2
i − (

∑
xi)2

.

Note that̂a andb̂ are linear functions of the responsesyi , so they are linear functions
of the errors, even though we don’t get to see them. It is left to the Exercises to
show thatâ andb̂ are unbiased and to find their variances and covariance under
the Gauss measurement model. The residualsyi − (â+ b̂xi) are also unbiased, and
we can think of the residuals as estimates of the errors. It is left to the Exercises
to show that the residual sum of squares has expectation

E(
∑

[yi − (â + b̂xi)]
2) � (n− 2)σ 2.

The residual sum of squares can thus provide an estimate of the variance in the
Gauss measurement model.

Model Misfit

An alternative to the simple linear model is a polynomial model. For example, a
quadratic model for the expectationE(Y |x) is

E(Y |x) � c + dx + ex2.

This model can also be expressed as a two-variable linear model if we rewritex2

asu;

E(Y |x) � c + dx + eu. (8.2)

The topic of fitting quadratics and other multivariable linear models is covered in
Chapter 10.

Regardless of the model for the expected value of the response, we can fit a line
to the data. For example, say that (8.2) is the true model for our data. If we observe
pairs (x1, y1), . . . , (xn, yn), we can fit a line by the method of least squares to these
observations: minimize, with respect toa andb, the sum of squares

n∑
i�1

[yi − (a + bxi)]
2.

The solutions for̂a andb̂ remain as shown in equation (8.1). However, the model
has been misfitted. These sample coefficientsâ and b̂ may be biased under the
Gauss measurement model,

Yi � c + dxi + eui + Ei,
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where theEi are independent with mean 0 and varianceσ 2. The expectation of̂b
need not bed. It can be shown that

E(b̂) � d + e
(
n
∑

xiui −
∑

xi
∑

ui

)
/
[
n
∑

x2
i − (

∑
xi)

2
]
.

In the special case where the design is such thatx is uncorrelated withu, we find

E(b̂) � d, E(â) � c.

Otherwise these fitted coefficients are biased. In any case, the residuals

ri � yi − â − b̂xi

will be biased. For example, in this special case,

E(ri |xi) � eui.

The residuals then include both measurement error fromEi and model misfit error
from eui . If the root mean square (r.m.s.) ofeui is not small in comparison to
σ 2, the residual sum of squares does not provide a good estimate ofσ 2. Residual
plots of (xi, ri) help to indicate whether the model is misfitted. Residual plots are
discussed below in greater detail. Note that even when the model is misfitted, the
average of the residualsr̄ is 0.

Transformations

Sometimes the relationship between the response and the design variable is not
initially linear, but a transformation can put the relationship into a linear form. For
example, the physical model for gain and density leads us to think that the simple
linear model is inappropriate and it suggests the nonlinear relationship

E(G) � cebx,

whereGdenotes the gain andx denotes the density. By taking the natural logarithm
of both sides of the equation, we find a linear relationship between log(E(G)) and
x:

log(E(G)) � log(c) + bx.

What happens to the errors? There are at least two approaches here. One is to
continue with the Gauss measurement error model, in which case

G � cebx + U,

where theUs are measurement errors. Here the linearization obtained by taking
logs ofE(G) does not help:

log(G) � log(cebx + U )

� a + bx + V (x).

In this case, we have a linear relationship between log(G) andx, but the variance
of the errors changes withx.
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We might use a multiplicative alternative to the Gauss measurement error model,
which often describes data of this kind. In the multiplicative error model, random
proportional error factors are nonnegative, have a common mean and variance, and
are independent across measurements:

G � cebxW

log(G) � log(c) + bx + log(W ).

Now log(W ) is like an error term in the Gauss model, except that its mean may
not be zero (i.e., there may be bias).

Residual Plots

Graphical representations of the residuals are important diagnostic tools for de-
tecting curvilinear relationships. If the simple linear model holds, then plots of
the residuals against the explanatory variable —i.e., scatter plots of the pairs
(xi, yi − â − b̂xi)— should show a horizontal blur of points about the horizontal
axis. Residuals can also be plotted against fitted valuesŷi , another variable not
used in the regression, or a function ofx such asx2.

Consider the residual plot (Figure 8.3) from the least squares fit of gain to density
for the data in this lab. An obvious problem appears: the curvature in the residual
plot indicates that it may be appropriate to includex2 in the least squares fit or to
transformG to log(G). The physical model for the relationship between gain and
density suggests proceeding with the log transformation. In addition, the residual
plots for the fit of log gain to density can help determine whether the errors are
multiplicative or additive. If they are multiplicative, then the transformation should
equalize the variance of the residuals. That is, for each value ofx, the spread in the
residuals should be roughly equal. However, any systematic error in the residuals
indicates a problem other than whether the error may be multiplicative.

Figure 8.4 gives hypothetical examples of residual plots for different types of
departures from the simple linear model. They show that:

• Patterns in the residuals may indicate a nonlinear relationship (top left).
• Unusually large residuals point to outliers that may have a large effect on the

least squares line (bottom left).
• Funneling of the residuals may indicate that the variability about the least

squares line may change with the values ofx (top right).
• A linear trend in the residuals plotted against some variable not used in the

regression may indicate that this variable should be included (bottom right).

Additionally, a normal-quantile plot of the residuals may indicate that they are non-
normal, or more importantly that there is a long tail or skewness in the distribution
of the residuals.
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FIGURE 8.3. Observed data and residuals from fitting gain and log gain to density (USDA
Forest Service).

Replicate Measurements

In this lab, the response is measured at 9 distinct values of the explanatory variable
x, and for eachx, 10 replicate measurements are taken. In general, suppose a
random variableY is measuredk times at each one ofm distinct values. Then if
x1, . . . , xm are them distinct values, the responses can be denoted byYij , i �
1, . . . , m andj � 1, . . . , k, whereYij is thej th measurement taken atxi . That is,
for our simple linear model,

Yij � a + bxi + Eij .

Note that the errorsEij are assumed to be uncorrelated for alli � 1, . . . , m and
all j � 1, . . . , k.

The replicate measurements can provide an estimate of error varianceσ 2 that
does not rely on the model. If the model is incorrectly fitted as in the example dis-
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FIGURE 8.4. Sample residual plots indicating lack of fit.

cussed earlier, then the residuals include measurement error from theEij and model
misfit. However, the replicate measurements allow us to estimate the measurement
error separately from the model misfit.

To explain, suppose the model for the response is

Yij � c + dxi + eui + Eij ,

as discussed earlier, and the simple linear model is fitted by least squares. The
replicatesY11, . . . Y1k arek uncorrelated random variables with meanc+dxi+eui
and varianceσ 2. Therefore

s2
1 � 1

k − 1

k∑
j�1

(y1j − ȳ1)2
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is an unbiased estimate ofσ 2, whereȳ1 � k−1∑
j y1j . There arem such estimates

s2
1, . . . , s

2
m of σ 2 which can be pooled to form a single unbiased estimate:

s2
p � (k − 1)s2

1 + · · · + (k − 1)s2
m

mk −m

� 1

mk −m

m∑
i�1

k∑
j�1

(yij − ȳi)
2

� 1

m

m∑
i�1

s2
i .

The subscriptp stands for “pooled.”
With replicate measurements, the residual sum of squares (RSS) from the least

squares fit of a simple linear model can be split into a measurement error sum of
squares and a model misfit sum of squares :

m∑
i�1

k∑
j�1

(yij − ŷi)
2 �

m∑
i�1

k∑
j�1

(yij − ȳi)
2 + k

m∑
i�1

(ŷi − ȳi)
2.

Note thatŷij � â+ b̂xi , which we abbreviatêyi . The first sum on the right side is
the measurement error sum of squares. It is an unnormalized pooled estimate of
σ 2, with m(k − 1) degrees of freedom. The second term is the lack of fit sum of
squares. When the model is correct, the second term provides another estimate of
σ 2, withm− 2 degrees of freedom.

Dividing a sum of squares by the degrees of freedom yields what is called a
mean square. The pure error mean square and the model misfit mean square can
be compared to help determine whether there is a lack of fit. If the errors are
mutually independent and normally distributed, and there is no model misfit, then
the ratio

k
∑

i(ŷi − ȳi)2/(m− 2)∑
i

∑
j (yij − ȳi)2/m(k − 1)

follows an F distribution withm − 2 andm(k − 1) degrees of freedom. On the
other hand, if there is model misfit, then the numerator should be larger than the
denominator, with values of the ratio bigger than 3 to 5 indicative of misfit. We
can use this ratio as a test of how well the data fit the model.

Confidence and Prediction Bands

We can predict the responsey at any valuex by ŷ � â + b̂x. An interval for this
prediction can be based on the following variance forR � 1:

Var(y − ŷ) � Var(y − â − b̂x) � σ 2

[
1 + 1

m
+ (x − x̄)2∑

(xi − x̄)2

]
.
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On the right side, the first term in square brackets is the contribution from the
variation ofy about the line; the second and third terms are the contributions from
the uncertainty in the estimates ofa andb, respectively.

An approximate 99%prediction intervalfor y, atx, is formed from the following
two bounds:

(â + b̂x) + z0.995 σ̂

[
1 + 1

m
+ (x − x̄)2∑

(xi − x̄)2

]1/2

and

(â + b̂x) − z0.995 σ̂

[
1 + 1

m
+ (x − x̄)2∑

(xi − x̄)2

]1/2

,

wherez0.995 is the 0.995 quantile of the standard normal distribution, andσ̂ is the
standard deviation of the residuals. The prediction interval fory differs from a
confidence interval fora + bx,

(â + b̂x) ± z0.995 σ̂

[
1

m
+ (x − x̄)2∑

(xi − x̄)2

]1/2

.

The confidence interval is smaller because it does not include the variability ofy

about the linea + bx. It tells us about the accuracy of the estimated mean ofy

at x, whereas a prediction interval is for an observation, or the mean of a set of
observations, taken at design pointx.

Figure 8.5 displays these prediction intervals for all values ofx over a range.
These curves are calledprediction bands. Notice that the size of an interval depends
on how farx is from x̄. That is, the interval is most narrow atx̄ and gets wider the
furtherx is from x̄.

If y0 is the average ofr measurements, all taken for the same densityx0 andR
replicate measurements are taken at eachx−i , then the prediction variance becomes

Var(y0 − ŷ0) � σ 2

[
1

r
+ 1

mR
+ (xo − x̄)2

R
∑

(xi − x̄)2

]
.

As before, the first term in the variance is the contribution from the variation about
the line, which is nowσ 2/r because we have an average ofr observations. The
bands must be adjusted accordingly.

The bands shown here are pointwise bands. This means that they provide an
interval for one future reading, or the average of a set of future readings.

Calibration

There is an important difference between the calibration run and how the gauge will
be used in practice. In the calibration run, polyethylene blocks of known densities
are placed in the gauge, and the gain is measured. At each density level, several
measurements were taken and were not all the same. This variability is due to
measurement error. In the future, the gain will be measured for an unknown snow
density, and the gain measurement will be used to estimate snow density; that is,
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FIGURE 8.5. Prediction bands and inverse prediction estimates forx0.

in the calibration run, we take the relationship between log gain and snow density
to follow a standard linear model:

Y � a + bx + E,

whereY represents the log gain,x denotes the known polyethylene density, and
the errors follow the Gauss measurement model. In the future, when the gauge is
in operation, we will observe the new measurementy0 for a particular snow-pack
and use it to estimate the unknown density, sayx0.

One procedure for estimating the density first finds the least squares estimates
â and b̂ using the data collected from the calibration run. Then it estimates the
density as follows:

x̂0 � y0 − â

b̂
.

This is called theinverse estimator.
Just as the least squares line can be inverted to provide an estimate for snow

density, the bands in Figure 8.5 can be inverted to make interval estimates for snow
density. In the left plot, read across fromy0, to the top curve, then read down to
find the correspondingx-value, which we callxl . This is the lower bound for the
interval estimate. We similarly find the upper bound by reading across fromy0

to the lower curve and then down to thex-value, which we callxu. The interval
(xl, xu) is not symmetric about̂x0, and in some cases it may be a half-line, as in
the example shown in the right plot in Figure 8.5.
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Maximum Likelihood

In calibration problems, we have known design points,x1, ... xm, and it seems
sensible to invert the bands about the regression line to provide an interval estimate
of x0. Here we show that under the Gauss measurement model and the additional
assumption of normal errors,x̂0 is the maximum likelihood estimate ofx0, and the
interval (xl, xu) is a confidence interval forx0; that is, consider, forR � 1,

Yi � a + bxi + Ei i � 1, . . . , m

Y0 � a + bx0 + E0,

where we now suppose thatE0,E1, . . . Em are independent normal errors with
mean 0 and varianceσ 2. In our case,a, b, σ 2, andx0 are unknown parameters.

Ignoring additive constants, the log-likelihood function for these four parameters
is

l(σ, a, b, x0)

� (m+ 1) log(σ ) − (2σ 2)−1

[
m∑
i�1

(yi − a − bxi)
2 + (y0 − a − bx0)2

]
,

and the maximum likelihood estimatex̂0 of x0 satisfies

y0 − â − b̂x̂0 � 0,

whereâ andb̂ are the maximum likelihood estimates ofa andb. The maximum
likelihood estimates ofa andb are simply the least squares estimates based on the
m observationsy1, ...ym.

Properties of these estimators can be used to show that

y0 − â − b̂x0

σ̂ [1 + 1/n + (x0 − x̄)2/
∑

(xi − x̄)2]1/2
:� W (x0)

has an approximate normal distribution.
An approximate 95% confidence interval forx0 is then the set of allx values

that satisfy the inequalities

−z.975 ≤ W (x) ≤ z.975.

From these inequalities, we see that (xl, xu) can be interpreted as a 95% confidence
interval forx0.

An Alternative

The inverse estimator ofx0 can be compared to an alternative procedure that treats
the density as the response variable, even though thexi are design points. That is,
the alternative procedure uses the method of least squares to estimatec andd in
the equation

x � c + dy.
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Then for the log gain,y0, the density is estimated asĉ + d̂y0.
Halperin ([Hal70]) has shown that inverse estimation is indistinguishable from

the alternative procedure when either (i) the calibration is intrinsically precise,
meaning the slopeb is steep relative to the errorσ ; or (ii) the design estimates
the slope well (i.e., thexi are widely dispersed). In practice, calibration proce-
dures should not be run unless these conditions are present. Additionally, Halperin
provided a simulation study that showed inverse estimation was preferable to the
alternative under many other conditions.

Exercises

1. Show theoretically that the least squares estimates ofa andb in the equation

log(gain) � a + b × density

are the same whether the sum of squares is minimized using the 9 average
gains or all 90 gain measurements.
Show that the SDs of the residuals from the fit are different. Explain why this
is the case.

2. Suppose the simple linear model holds, where

Y � a + bx + E,

and the errors are uncorrelated, with mean 0 and varianceσ 2. Consider
the least squares estimatesâ and b̂ based on the pairs of observa-
tions (x1, y1), . . . (xn, yn). Derive the following expectations, variances, and
covariance:

E(â) � a, E(b̂) � b,

Var(â) � σ 2∑ x2
i

n
∑
x2
i − (

∑
xi)2

,

Var(b̂) � nσ 2

n
∑
x2
i − (

∑
xi)2

,

Cov(â, b̂) � −σ 2∑ xi

n
∑
x2
i − (

∑
xi)2

.

3. Use Exercise 2 to derive the variance ofâ + b̂x, and then provide an
approximate 95% confidence interval forE(Y ).

4. Use Exercise 3 to show that

E

(
n∑
i�1

[yi − (â + b̂xi)]
2

)
� (n− 2)σ 2.
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5. Explain why the confidence interval obtained in Exercise 3, forE(Y ), is
smaller than the prediction interval fory, using the prediction variance

σ 2

[
1 + 1

n
+ (x − x̄)2∑

(xi − x̄)2

]
.

6. Show that the cross product term in the residual sum of squares below must
be 0.

m∑
i�1

k∑
j�1

(yij − ŷi)
2 �

m∑
i�1

k∑
j�1

(yij − ȳi)
2 + k

m∑
i�1

(ŷi − ȳi)
2.

7. Show that both the pure error mean square and the model misfit mean square
have expectationσ 2 under the assumption of the simple linear model.

8. Suppose there areki measurementsyij ,j � 1, . . . , ki at eachxi , i � 1, . . . , m.
Provide a pooled estimate ofσ 2.

9. Supposen points,x1, . . . , xn, are to be placed in [−1,1]. Also suppose that
both the simple linear model,Yi � a+ bxi +Ei , and the Gauss measurement
model hold. How should thexi be chosen to minimize the variance ofb̂?

10. Suppose thatYi � a + bxi + Ei , whereYi is the average ofni replicates at
xi and the replicate errors are uncorrelated with common varianceσ 2 (i.e.,
Var(Ei) � σ 2/ni). Use transformations to re-express the linear model such
that the errors have common variance, and find least squares estimates ofa

andb.
11. Suppose that the true model is

Y � c + dx + ex2 + E,

where the Gauss measurement model holds; that is, errors are uncorrelated,
with mean 0 and common varianceσ 2. Suppose that the simple linear model
is fit to the observations (x1, y1), . . . , (xn, yn); in other words, the quadratic
term is ignored. Find the expectation of the residuals from this fit.

12. Use Exercise 4 to explain whyW , which is defined in the subsection on
maximum likelihood in the Theory section, has at distribution withn − 2
degrees of freedom.

Notes

David Azuma of the USDA Forest Service Snow-Zone Hydrology Unit kindly
provided the data for this lab, a detailed description of how the data were collected,
and the references by Bergman ([Berg82]) and Kattelmann et. al. ([KMBBBH83]),
which contain descriptions of the operation, location, and use of the cesium-137
snow gauge. Philip Price of the Lawrence Berkeley Laboratory generously helped
us with a physical model for the relationship between gain and density.

Calibration and inverse regression is discussed in Draper and Smith ([DS81])
Chapter 1, Section 7, and in Carroll and Ruppert ([CR88]). Fisch and Strehlau
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([FS93]) provide an accessible explanation of the maximum likelihood approach
to inverse regression and confidence intervals. For more advance references, see
Brown ([Bro93]) Chapter 2, Sections 3–7, and Seber ([Seb77]) Chapter 7, Section
2. For material on simultaneous confidence bands for calibration problems, see
Lieberman et. al. ([LMH67]).
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Voting Behavior

(a)

(b)

No voting qualification or
prerequisite to voting or standard,
practice, or procedure shall be
imposedor applied by any State or
political subdivision in a manner
which results in a denial or
abridgment of the right of any
citizen of the United States to vote
on account of race or color, or in
contravention of the guarantees
set forth in section 1973b(f)(2) of
this title as provided in subsection
(b) of this section.

A violation of subsection (a)
of this section is established if,
based on the tota l i ty of
circumstances, it is shown that the
political processes leading to
nomination or election in the

State or political subdivision are
not equally open to participation
by members of a class of citizens
protected by subsection (a) of this
section in that its members have
less opportunity than other
members of the electorate to
participate in the political process
and to elect representativesof their
choice. The extent to which
members of a protected class have
been elected to office in the State
or political subdivision is one
circumstance which may be
considered: Provided, that
nothing in this section establishes
a right to have members of a
protected class elected in numbers
equal to their proportion in the
population.

The Voting Rights Act

42 U.S.C. 1973

1

1Reprinted by permission.
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Introduction

In Stockton, California’s November 4th 1986 election, the voters approved Mea-
sure C to discard the old system of district elections for City Council and Mayor,
replacing it with a two tier system that included a district primary followed by
a general city-wide election. After more than a year of controversy, six Stockton
citizens filed a class-action lawsuit against the city. Their claim was that Measure C
would dilute Hispanic and Black citizens’ ability to elect their chosen representa-
tives to the City Council. Hispanics make up about 20% of Stockton’s population,
and if the candidates preferred by Hispanics are often different from those preferred
by Whites, then in a city-wide election it could prove very difficult for Hispanics
to elect the candidate of their choice.

More than a year after the election to approve Measure C, in February, 1988, a
United States District Court Judge blocked Stockton’s municipal election that was
to be held in June. According to theStockton Record(Feb 20, 1998),

U.S. District Court Judge Edward J. Garcia said an election can be held later
if Measure C ultimately is ruled non-discriminatory. But he said the risk
of harm to minorities is too great to allow an election under Measure C’s
ground rules before the measure can be tested in a trial.

The judge’s decision was in response to the lawsuit filed by the six Stockton
citizens. Although originally a class action suit, it was decertified before coming
to trial. Instead, the plaintiffs made the claim that Measure C violated section 2 of
the Voting Rights Act, which prohibits any practice which, even unintentionally,
denies a citizen the right to vote because of race or color.

In voting-rights trials, statistical evidence is often given to demonstrate that a
minority group generally prefers a candidate different from the one preferred by
the majority group of voters. In this lab, you will have the opportunity to address
the question of the validity of the statistical evidence commonly presented in these
lawsuits.

Data

There are two sets of data available for this lab. The first set (Table 9.1) contains
the election results from the 1988 Democratic presidential primary in Stockton,
California. The election results are reported for each of the 130 electoral precincts
in Stockton. In addition to the number of votes cast for presidential candidate Rev.
Jesse Jackson and the total votes cast in the primary, census data are provided on
the number of citizens in the precinct who are of voting age and on the proportions
of these voting-age persons who are Hispanic and Black. The census information
was derived from data for geographic regions that are larger than the precincts.
To obtain precinct figures, the regional numbers were divided equally among the
precincts in the region. This approximation leads to identical figures for precincts
in the same region.
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TABLE 9.1. Sample observations and data description for the 130 precinct results from the
1988 Democratic presidential primary results in Stockton, California.

Precinct 101 102 103 104 105 106 107
Jackson votes 120 192 201 129 60 113 122
Total votes 141 231 238 247 125 252 250
VAP 737 692 614 1349 955 1517 842
VAP Black 0.541 0.620 0.542 0.173 0.284 0.174 0.188
VAP Hispanic 0.381 0.236 0.381 0.476 0.439 0.469 0.412

Variable Description
Precinct Identification number for precinct.
Jackson votes Votes cast in the primary for Jackson.
Total votes Total votes cast in the primary.
Voting age population (VAP) Number of citizens of voting age

in precinct.
VAP Black Proportion of voting-age population

that is Black.
VAP Hispanic Proportion of voting-age population

that is Hispanic.

The second set of data is from an exit poll (Freedman et al. [FKSSE91]) con-
ducted by the Field Research Corporation, a private consulting firm that conducts
public opinion polls for state and federal agencies. The survey data were collected
as voters left the polls. They were asked to anonymously complete a survey pro-
viding information on their race, income, education, and for whom they had cast
their vote. See Table 9.2 for a description of these data. In the survey, the number-
ing scheme used to identify precincts does not match the precinct identification
numbers used in the first data set.

The sampling method used for selecting the voters to be included in the exit
poll is not described here. When analyzing the data from the exit poll, the sampled
voters are treated as a population from a small city. These data are not used to
compare against the city-wide election results, so the sampling procedure need not
concern us.

Background

Election Rules in Stockton

Prior to Measure C, the city of Stockton was divided into nine districts, and one
representative from each district sat on the City Council. Representatives were
elected to the City Council via district elections. Candidates for a district’s Council
seat had to reside in the district and had to receive the most votes in the district.
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TABLE 9.2. Sample observations and data description for the 1867 individuals in the 1988
exit poll (Freedman et al. [FKSSE91]).

Precinct 52 52 52 61 62 62 62 62 62
Candidate 3 1 4 3 3 1 1 1 3
Race 1 1 1 3 4 3 3 2 2
Income 5 0 4 0 3 3 1 3 1

Variable Description
Precinct Identification number for precinct.
Candidate Vote cast for:

1 = Jackson; 2 = LaRouche;
3 = Dukakis; 4 = Gore.

Race Voter’s race:
1 = White; 2 = Hispanic;
3 = Black; 4 = Asian; 5 = other.

Income Voter’s income ($’000s):
1 = 00–10; 2 = 10–20; 3 = 20–30;
4 = 30–40; 5 = 40–50; 6 = 50–60;
7 = 60–70; 8 = 70+.

The mayor was elected in a city-wide election, where the mayoral candidates had
to be City Council members.

Measure C changed the election of City Council members to a two-step process.
First, each district held a primary election, where the top two vote-getters then ran
in a general election. The general election was city-wide, with all voters in the city
voting for one candidate in each district. Also under the new rules, the mayor was
no longer required to be a sitting Council member, and the number of districts was
reduced from nine to six.

Stockton Demographics

According to 1980 census data, 10% of the population of Stockton is Black; 22%
is Hispanic; 59% is non-Hispanic White; and the remaining 9% are Asian or from
other minority groups. The census data indicate that the Black and Hispanic com-
munities are concentrated in south Stockton, while north Stockton is predominantly
White.

At the time Measure C was adopted, three Blacks and one Hispanic sat on the
City Council; two of the Blacks were elected from predominantly White districts.
In 1990, the first election under the new rules was held; no Hispanic, one Black, and
one Asian (the City’s first Asian representative) were elected to the City Council.

Time Line of Badillo versus Stockton

11/86Measure C approved by voters
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12/87Badillo, Fernandez, Villapando, Durham, Means, and Alston filed suit
against the City of Stockton, California, stating that Measure C constitutes
a violation of section 2 of the Voting Rights Act and that it violates the
Fourteenth and Fifteenth Amendments of the United States Constitution.

Amendment XIV

... No State shall make or enforce any law which shall abridge the
privileges or immunities of citizens of the United States; nor shall
any State deprive any person of life, liberty, or property, without due
process of law; nor deny to any person within its jurisdiction the equal
protection of the laws. ...
Amendment XV

The right of citizens of the United States to vote shall not be denied
or abridged by the United States or by any State on account of race,
color, or previous condition of servitude. ...

2/88 U.S. District Court Judge Garcia issued a preliminary injunction that blocked
the June, 1988, Stockton primary election.

6/89 The U.S. District Court held a bench trial, where Judge Garcia dismissed
the plaintiffs’ charges against the city. According to 956 F.2d 884 (9th Cir.
1992)

The district court held that the plaintiffs had failed to make out a valid
section 2 claim. ... the plaintiffs had not presented sufficient evidence to
establish that Blacks and Hispanics would vote together or separately
as a politically cohesive group or that the White majority would vote
as a block, overshadowing minority voting strength.

2/91 Durham appealed the decision.
2/92 Judges Schroeder, Canby, and Noonan of the U.S. Court of Appeals, Ninth

Circuit, upheld the District Court’s ruling, stating that the “city’s change
in election procedures increased the likelihood of minority voting strength
dilution,” but that it did not “mean that such dilution had actually occurred”
and that the plaintiffs had failed to show that “minorities exhibited sufficient
cohesion to cause election of their preferred candidates.”

Vote Dilution and Polarization

Section 2 of the Voting Rights Act prohibits any practice that denies any citizen
the right to vote on account of race. This includes any practice where members
of a race “have less opportunity than other members of the electorate... to elect
representatives of their choice.”

The leading vote dilution case is Thornburg vs. Gingles, 478 US 30, which was
decided in 1986. In that case, the Supreme Court ruled that plaintiffs must prove
three things for a decision in their favor:
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1. The minority group is sufficiently large and geographically compact to
constitute a majority in a single-member district.

2. The minority group is politically cohesive.
3. The majority votes sufficiently as a block to enable it to usually defeat the

minority preferred candidate.

To establish the first point, it only needs to be shown that a district can be drawn
where at least 50% of the voting-age citizens belong to the minority group. The
two other conditions are more difficult to establish. It must be shown that voting is
polarized (i.e., the candidate generally preferred by the minority group is different
from the candidate preferred by the majority group voters) and that the majority
group’s preferred candidate generally wins the election.

According to Klein and Freedman [KF93], who were consultants for the city of
Stockton in the Badillo vs. Stockton case,

Ecological regression has become the principle technique used by plaintiffs
to demonstrate polarized voting.... Ecological regression was used inThorn-
burg, and the Supreme Court accepted the results. Since then, ecological
regression has been used in voting-rights litigation in Arizona, California,
Florida, Illinois, and Texas, among other states.

Ecological regression is described in the Theory section of this chapter. The basic
premise is that the relationship between the votes cast in a precinct for a candidate
and the ethnic make-up of a precinct can be used to determine individual voters’
support for the candidate.

The 1988 Democratic Primary

Prior to the U.S. presidential election, which is held every four years, each polit-
ical party selects a candidate to run in the election as the official party nominee.
The Democratic party selects its nominee during a convention held in the sum-
mer before the November election. Each state sends delegates to the convention;
these delegates determine the party’s nominee for president. The state arm of the
Democratic party sets the process for selecting its delegates for the convention.
In California, part of that process includes a primary election, where adults who
reside in the state and are registered with the party cast their vote in a secret ballot
for the presidential candidate of their choice.

In 1988, Jesse Jackson, a Black minister, ran as a candidate for the Democratic
nomination. Other candidates on the ballot included Michael Dukakis, Albert Gore,
and Lyndon Larouche; all of these candidates were White. Dukakis was selected as
the Democratic nominee, and in the presidential election, he lost to the Republican
party nominee, George Bush.
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Investigations

Consider the exit poll results from the 1988 Democratic primary in Stockton. If we
treat the polled voters as if they constitute the entire voting-age population in some
small town, say “Stocktette,” then we have a special situation where we know how
each eligible voter cast his or her vote in the election.

• To begin, summarize the election results for Stocktette by precinct. These are
typical polling results, because a voter’s ballot is secret.

• From this precinct-level summary, estimate the Hispanic support rate for Jack-
son, and attach an error to your estimate. The Hispanic support rate is defined
as:

Hispanic votes in Stocktette for Jackson

Hispanic votes in the Stocktette primary
.

To help you make your estimate, assume that Hispanics support Jackson to the
same extent regardless of where they live, as do non-Hispanics.

• Consider an alternative assumption that says voters in a precinct vote similarly
regardless of race and that their support for Jackson is a function of income.
More specifically, suppose the voters in a precinct vote in the same pattern,
regardless of race, and the support for Jackson in a precinct is linearly related
to the proportion of voters in the precinct with incomes exceeding $40,000.
That is, the Hispanics who live in a precinct support Jackson to the same degree
as all other ethnic groups in that precinct, and this support is determined by the
relationship

Proportion votes for Jackson�
c + d × proportion voters earning over $40,000.

For example, in a precinct where 20% of the voters have incomes exceeding
$40,000, the support for Jackson isc + 0.2d for all ethnic groups. Use this
model to estimate the Hispanic support rate for Jackson in Stocktette.

• How do your two estimates compare to the truth and to each other? Is the true
support rate within the error bounds you supplied for the first estimate? We can
check our results against the truth only because we know how each individual
voted in our hypothetical town. Typically, we do not know how individuals or
groups of individuals, such as Hispanics, vote because the ballot is secret. Were
the assumptions you used in making your estimates supported by the data on
individual voters? Can these assumptions be checked if only precinct data are
available?

Prepare a document to be submitted to the U.S. District Court Judge Garcia
supporting or discouraging the use of the statistical methods you have investigated.
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Theory

In the Stockton exit poll, among other things individual voters were asked to
provide information on their education and income. These data are summarized in
Table 9.3. The correlation between income and years of education for the voters
in the sample is 0.45; voters with above average education levels tend to have
above average incomes. Figure 9.1 shows a scatter plot of these data summarized to
precincts. That is, each point in the plot represents a precinct, with thex-coordinate
being the average number of years of education for voters in the precinct and the
y-coordinate the average income. The correlation for the summarized data is 0.85,
much higher than the correlation for individuals. But, it is individuals, not precincts,
who earn incomes and attend school. Data reported for groups can be misleading
because it is tempting to apply the correlation for groups to the individuals in
the group. As in this case, there is typically a stronger correlation for groups
than individuals. Correlation based on groups is calledecological correlation, and
regression based on groups is calledecological regression. Here the ecological
correlation is 0.85. (These calculations are done on binned data as in Table 9.3
because raw data is not available).

In this section, we will consider various models for the relationships between
voter turnout and precinct population characteristics. We will also consider ex-
tending these relationships from precincts to individual voters. The data used in
this section are from a 1982 Democratic primary for Auditor in Lee County, South
Carolina (Loewen and Grofman [LG89]). There were two candidates running for
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FIGURE 9.1. Average education and income levels in 39 precincts for voters surveyed in
the exit poll from the 1988 Stockton Democratic primary.
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TABLE 9.3. Table of voters by income and education for those surveyed in the exit poll
from the 1988 Stockton Democratic primary (Freedman et. al. [FKSSE91]).

Education Income ($’000s)
(years) <10 10–20 20–30 30–40 40–50 50–60 60–70 70+Total
<12 96 60 48 15 7 3 3 5 237
12 88 87 89 87 49 26 9 9 444

13–15 70 103 117 113 75 62 28 25 603
16 9 22 33 32 31 27 20 26 200
17+ 5 17 25 42 30 40 21 51 231

Total 268 289 312 299 192 158 81 1161715
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FIGURE 9.2. Scatter plot of the turnout for the White candidate against the proportion
of voters in the precinct who are White, for the 1982 election results for Auditor in Lee
County, South Carolina (Loewen and Grofman [LG89]). Also shown is the regression line
for turnout in terms of proportion of voters who are White.

election: one White and the other Black. We will call the White candidateA and
the Black candidateB. The data from this election are in Table 9.4.

Weighted Least Squares

Figure 9.2 is a scatter plot of the proportion of voters who turned out to vote for
the White candidate against the proportion of voters in the precinct who are White.
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TABLE 9.4. Table of 1982 election results for Auditor in Lee County, South Carolina
(Loewen and Grofman [LG89]).

Registered voters Number of Proportion
Total Proportion votes cast for turnout for

Precinct number White A B A B

1 567 0.783 200 43 0.353 0.076
2 179 0.659 79 1 0.441 0.006
3 659 0.404 182 146 0.276 0.222
4 651 0.562 257 72 0.395 0.111
5 829 0.581 306 170 0.369 0.205
6 965 0.389 284 159 0.294 0.165
7 226 0.774 116 21 0.513 0.093
8 418 0.541 126 29 0.301 0.069
9 456 0.178 91 144 0.200 0.316

10 172 0.738 64 30 0.372 0.174
11 472 0.523 119 149 0.252 0.316
12 278 0.630 115 46 0.414 0.166
13 871 0.232 121 218 0.140 0.250
14 353 0.351 69 116 0.196 0.329
15 320 0.206 53 127 0.166 0.397
16 276 0.663 130 48 0.471 0.174
17 52 0.808 26 0 0.500 0.000
18 225 0.307 47 39 0.209 0.173
19 362 0.185 30 143 0.083 0.395
20 844 0.280 97 153 0.115 0.181
21 149 0.859 74 6 0.497 0.040
22 492 0.655 141 16 0.287 0.033
23 156 0.712 84 2 0.539 0.013
24 240 0.192 44 46 0.183 0.192

Total 10212 0.458 2855 1924 0.280 0.188

Turnout for a candidate in a precinct is computed as follows:

number of votes cast for candidate in precinct

number of persons of voting age in precinct
.

It appears that precincts with more White voters tend to have a higher turnout for
the White candidate and that this relationship is approximately linear. In the next
section, we show how this linearity can be used to estimate the support among
Whites and Blacks for each candidate. Here we concentrate on fitting a line to the
data.

The precincts are numbered 1 through 24 in Table 9.4. For precincti, i �
1, . . . ,24, letxi represent the proportion of the voting-age persons who are White,
and letyi be the proportion of the voting-age persons who turned out and voted
for the White candidate; these proportions appear in the third and sixth columns
of Table 9.4, respectively. We can use the method ofweighted least squaresto fit
a line to the data by minimizing the following sum of squares with respect toa
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andb;
24∑
i�1

wi [yi − (a + bxi)]
2,

wherewi � ni/n, theni is the number of registered voters in theith precinct, and
n � ∑

ni . Thewi in the least squares formula above are weights. The weights
reflect the variation in the proportionsyi ; larger precincts play a greater role than
smaller precincts in determining the least squares coefficients. To further explain,
consider each eligible voter as having a propensity, or chance,p to choose to turn
out and vote for a candidate, independent of the other voters. Then the number of
persons who actually do turn out and vote for a candidate has expectationnip and
variancenip(1 − p), and the proportion of voters who turn out for the candidate
has expected valuep and variance [p(1−p)/ni ]. Therefore, weighting each term
in the sum of squares bywi gives the terms equal variance.

The least squares solutions to the above sum of squares is:

âw � ȳw − b̂wx̄w,

b̂w �
∑
wi(yi − ȳw)(xi − x̄w)∑

wi(xi − x̄w)2
,

where

x̄w �
∑

wixi,

ȳw �
∑

wiyi.

The subscriptw reminds us that we use weights in the sum of squares. See the
Exercises for other examples of weighted regression and for the derivation of these
quantities.

For the White candidate in the Lee County primary, the least squares line is

0.04+ 0.52× xi, (9.1)

and for the Black candidate (see Figure 9.3), the least squares line is

0.36− 0.37× xi. (9.2)

In ecological regression, the least squares lines in equations (9.1) and (9.2) are
used to estimate support rates for candidates.

Support Rates for Candidates

The White support rate for candidateA is defined to be:

number of Whites who voted for candidateA

number of Whites who voted
.

Because the ballot is secret, both the numerator and denominator are unknown,
and we use the least squares lines in equations (9.1) and (9.2) to provide estimates
of these quantities. To do this, a key assumption is first made:
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Proportion of White voters

T
ur

no
ut

 fo
r 

B
la

ck
 c

an
di

da
te

•

•

•

•

•

•

•
•

•

•

•

•

•

•

•

•

•

•

•

•

••
•

•

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.1

0.2

0.3

0.4

0.5

FIGURE 9.3. Scatter plot of the turnout for the Black candidate against the proportion
of voters in the precinct who are White for the 1982 election results for Auditor in Lee
County, South Carolina (Loewen and Grofman [LG89]). Also shown is the regression line
for turnout in terms of proportion of voters who are White.

Ethnicity Assumption: Whites have the same propensity to turn out and
vote for a particular candidate, regardless of the precinct they vote in. Blacks
have the same propensity, but possibly different from the Whites’ propensity,
to turn out and vote for the particular candidate, regardless of precinct.

How is this assumption used to determine a candidate’s support rates? First we
estimate the turnout for the White candidate; we takex � 1 and thenx � 0 in
equation (9.1) to estimate the turnout for candidateA in an all-White precinct and
in an all-Black precinct, respectively:

0.04+ 0.52× 1 � 0.56,

0.04+ 0.52× 0 � 0.04.

According to the Ethnicity Assumption, the turnout for a candidate among White
voters is the same across precincts, so the turnout for a candidate in a 100% White
precinct is an estimate of the White turnout for the candidate. Similarly, to estimate
turnout for the White candidate among Black voters, we can use the regression
line prediction of turnout in a precinct with 0% Whites.

Using equation (9.2), we estimate the turnout for candidateB to be−1% among
White registered voters and 36% among Black registered voters. Notice that the
regression line gives an estimate for the White turnout for candidateB that is
impossible because it is negative. The negative estimate arises because we are
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using the regression line at anx-value that is far from the observed proportion of
Whites in any precinct.

Finally, to estimate the White support for candidateA, we use the ratio

0.56

0.56− 0.01
� 1.02,

The numerator is the estimated proportion of White voters who turned out and
voted forA, and the denominator is the estimated proportion of White voters who
turned out to vote. Again, we see an impossible estimate; the White support for
A is larger than 1 due to the negative estimate for the turnout rate of Whites for
candidateB. Nonetheless, voting definitely appears to be polarized because the
Black support for the White candidate is estimated as

0.04

0.04+ 0.36
� 0.11.

Standard errors for these support rates are discussed later in this section.
In estimating the support for a candidate among a subgroup of voters, we have

used the line fitted to precincts, which we have just shown can lead to improbable
results. The Ethnicity Assumption justifies the use of precinct regression in esti-
mating White and Black support for a candidate. Unfortunately, neither assumption
can be fully checked because they require data on individual voters, which we do
not have because the ballot is secret.

Alternatives to the Ethnicity Assumption

An alternative to the Ethnicity Assumption on voting patterns is the following:

Neighborhood Assumption: All voters in a precinct have the same propen-
sity to turn out and vote for a particular candidate, regardless of a voter’s
race.

The Neighborhood Assumption leads to an alternative method for estimating
support for a candidate. According to this assumption, all eligible voters in a
precinct support a candidate to the same extent, so the support for a candidate
among White registered voters in a precinct can be estimated by the support for
the candidate among all voters in the precinct. The overall support among eligible
White voters for a candidate can be estimated by∑

mixi∑
(mi + li)xi

, (9.3)

wheremi is the number of votes cast forA, andli is the number of votes cast for
B (columns 4 and 5 in Table 9.4). To compute the numerator, the proportion of
Whites in a precinct is applied to the number of votes a candidate received in the
precinct. The denominator is an estimate of the total votes cast for either candidate
by White voters. According to the Neighborhood Assumption, the support for
the White candidate among Whites is estimated at 67%, and the support for this
candidate among Blacks is estimated at 53%.
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These estimates are very different from those calculated under the Ethnicity
Assumption. The Neighborhood Assumption is in some sense opposite to the Eth-
nicity Assumption. One assumption is that the propensity to vote is determined
by location, not race. The other assumption states that a voter’s actions are deter-
mined by his or her race, not location. We don’t expect either assumption to be
fully correct but perhaps a reasonable model of voting behavior. However, both
require precinct characteristics to apply to individual voters, and the question as
to which assumption is most appropriate cannot be checked with the data at hand.
Data on individual registered voters are needed, such as data from an exit poll.

A third assumption that we will also consider here says:

Income Assumption: All voters in a precinct have the same propensity to
turn out and vote for a particular candidate, and this propensity is a linear
function of the average income in a precinct.

Under this assumption, to estimate the White support for a candidate, we would
use the formula in (9.3), except that we would substituteni(ĉ+ d̂zi) formi , where
ĉ andd̂ are the least squares estimates ofc andd obtained from minimizing∑

wi [yi − (c + dzi)]
2,

and wherezi is a summary measure of income for voters in precincti. Similarly,
for li we substitute the least squares estimate of the support for the Black candidate.
We see that the Income Assumption is a Neighborhood-type Assumption.

Adding more ethnic groups or terms, such as income, in the regression typically
improves the situation, but this addition neglects the assumption of linearity, and
how these extra variables are involved in group relations remains unknown.

Standard Errors

In Chapter 7 on Dungeness crabs, the two variables of interest were the premolt
and postmolt size of the crab shell, and they jointly exhibited natural variability.
Here, we tend to think of the ethnic make-up of a precinct as a predetermined
quantity and that the voter turnout exhibits natural variability. As in Chapter 8
on calibrating a snow gauge, a simple linear model for turnout would be that the
expected turnoutE(Yi |xi) is a linear function ofxi , the given proportion of eligible
voters in the precinct;

E(Yi |xi) � a + bxi.

We place additional assumptions on the randomYi—that they are independent
with varianceσ 2/ni and hence

E(Yi |xi) � a + bxi,

Var(Yi |xi) � σ 2/ni.

With this model, the weighted least squares solutionsâw andb̂w are random, and
their expectations and variances can be used to compute the standard error of the
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estimate:

ŷ � âw + b̂w × 1,

SE(ŷ) � σ

√
1

n
+ (1 − x̄w)2∑

ni(xi − x̄w)2
.

Using an estimate ofσ , the standard error above can provide confidence intervals
for ŷ atx � 1.

Exercises

1. Consider observations (x1, y1), . . . , (xn, yn). Show that if these observations
are split into two groups, and the group means are (x̄A, ȳA) and (̄xB, ȳB), then
the ecological correlation of the groups is±1 regardless of the correlation of
the original observations.

2. Consider the hypothetical town with 10 precints, each with 100 voters, shown
in Table 9.5. For simplicity, suppose all voters turn out to vote. Also suppose
that 20% of the White voters, 40% of the Hispanic voters, and 80% of the Black
voters support canidate A, regardless of the precinct in which they reside (i.e.,
candidateA receives 32 votes in precinct #1 and 50 votes in precinct #10).

a. Use the Ethnicity Assumption, the number of votes candidateA receives
in each precinct, and the percentage of White voters in each precinct to
estimate the White support for candidateA (i.e., lump Hispanic and Black
voters together as non-White).

b. Use the Neighborhood Assumption and these same numbers to estimate
the White support for candidateA.

3. As in Exercise 2, consider the hypothetical town shown in Table 9.5. Suppose
the Neighborhood Assumption holds and all voters in a precinct have the same

TABLE 9.5. Table of voter ethnicity by precinct for a hypothetical town with 10 precincts.

Registered voters
Precinct White Black Hispanic

1 80 20 0
2 80 15 5
3 70 20 10
4 60 30 10
5 60 35 5
6 40 40 20
7 40 35 25
8 20 50 30
9 20 30 50

10 10 30 60
Total 480 305 215
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propensity to support candidateA. Also suppose that this propensity is 0.8,
0.7, 0.7, 0.6, 0.6, 0.5, 0.4, 0.2, 0.2, and 0.2 for precincts #1–10, respectively.
For example, this means that candidateA receives 80 votes in precinct #1 and
20 in #10. As in Exercise 2, estimate the support for candidateA using only
the number of votes candidateA receives in each precinct and the percentage
of White voters in each precinct under the Ethnicity Assumption and again
under the Neighborhood Assumption.

4. Assume the Neighborhood model. Then in precinct #1 in Lee County (Ta-
ble 9.4, we would estimate that candidateA received votes and
candidateB received votes from the White voters in the precinct.

5. Assume the Neighborhood model. Estimate the support for Jesse Jackson
among White voters for those Stockton precincts reported in Table 9.1.

6. For the precincts in Lee County (Table 9.4), find the unweighted least squares
line that fits turnout for candidateB to the proportion of White voters. Use
this least squares line to estimate the support for the candidate among White
and among Black voters. Compare your estimate to the one obtained by
minimizing the weighted sum of squares in equation (9.2).

7. For pairs (x1, y1), . . . , (xn, yn) and weightswi , find thea andb that minimize
the following weighted sum of squares:∑

wi [yi − (a + bxi)]
2.

8. Suppose that in the model

Yi � a + bxi + Ei

the errorsEi have mean 0 and are uncorrelated, but Var(Ei) � σ 2/wi . The
model may be transformed as follows:

√
wiYi � √

wia + b
√
wixi + √

wiEi,

or equivalently,

Zi � aui + bvi +Di,

whereZi � √
wiYi , ui � √

wi , vi � √
wixi , andDi � √

wiEi . Show that
this new model satisfies the Gauss measurement model (Chapter 8). Also show
that minimizing the sum of squares∑

(zi − aui − bvi)
2

is equivalent to minimizing the weighted sum of squares∑
wi(yi − a − bxi)

2.

9. Use the results from Exercise 8 to find the expected values, variances, and
covariances of̂aw andb̂w.
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10. Use the result of Exercise 9 to show that

SE(ŷ) � σ

√
1

n
+ (1 − x̄w)2∑

ni(xi − x̄w)2
,

whereŷ � âw + b̂w × 1.

Notes

The data for this lab were made available by David Freedman of the University
of California, Berkeley, and Stephen Klein of the Rand Corporation. In addition,
David Freedman provided answers to our many questions on the Stockton election.
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10
Maternal Smoking and Infant Health
(continued)

Introduction

In Chapter 1, the first lab on Maternal Smoking and Infant Health, it was found that
the babies born to women who smoked during their pregnancy tended to weigh
less than those born to women who did not smoke. But smokers may differ from
nonsmokers in some essential ways that may affect the birth weight of the baby,
whether or not the mother smoked. The 1989 Surgeon General’s Report addresses
this problem:

... cigarette smoking seems to be a more significant determinant of birth
weight than the mother’s prepregnancy height, weight, parity, payment sta-
tus, or history of previous pregnancy outcome, or the infant’s sex. The
reduction in birthweight associated with maternal tobacco use seems to be
a direct effect of smoking on fetal growth.
Mothers who smoke also have increased rates of premature delivery. The
newborns are also smaller at every gestational age.

In this lab, you will use data from the Child Health and Development Studies
(CHDS) to investigate the assertions in the Surgeon General’s Report. The CHDS
provides a comprehensive study of all babies born between 1960 and 1967 at the
Kaiser Foundation Hospital in Oakland, California (Yerushalmy [Yer64]). Many of
the factors discussed in the Surgeon General’s Report are reported for the families
in the CHDS data set.
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TABLE 10.1. Sample observations and data description for the 1236 babies in the Child
Health and Development Studies subset.

Birth weight 120 113 128 123 108 136 138
Gestation 284 282 279 NA 282 286 244
Parity 1 0 1 0 1 0 0
Age 27 33 28 36 23 25 33
Height 62 64 64 69 67 62 62
Weight 100 135 115 190 125 93 178
Smoking status 0 0 1 1 1 1 0

Variable Description
Birth weight Baby’s weight at birth, to the nearest ounce.
Gestation Duration of the pregnancy in days, calculated from

the first day of the last normal menstrual period.
Parity Indicator for whether the baby is the first born (1)

or not (0).
Age Mother’s age at the time of conception, in years.
Height Height of the mother, in inches.
Weight Mother’s prepregnancy weight, in pounds.
Smoking status Indicator for whether the mother smokes (1) or not (0).

The Data

As described in Chapter 1, the data for this lab are a subset of a much larger study:
the Child Health and Development Studies (CHDS). The full data set includes all
pregnancies that occurred between 1960 and 1967 among women in the Kaiser
Foundation Health Plan in Oakland, California. The data here are from one year
of the study; it includes all 1236 male single births where the baby lived at least
28 days. The Kaiser Health Plan is a prepaid medical care program; the mem-
bers represent a broadly based group that is typical of an employed population.
Approximately 15,000 families participated in the study. Some of the informa-
tion collected on all single male births in one year of the study is provided here.
The variables that are available for analysis are described in Table 10.1. Summary
statistics on these variables appear in Table 10.2.

The mothers in the CHDS were interviewed early in their pregnancy, and a
variety of medical, genetic, and environmental information was ascertained on both
parents, including height, weight, age, smoking habits, and education. The initial
interview was thorough and careful. The information on smoking was obtained
before the birth of the baby and as such was not influenced by the outcome of
the pregnancy. At birth, the baby’s length, weight, and head circumference were
recorded. Yerushalmy ([Yer64]) describes the initial interview process:

The interviewers are competent; their relationship with the women is excel-
lent; and the interview is obtained in a relaxed and unhurried fashion. The
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TABLE 10.2. Summary statistics on the 1236 babies and their mothers from the Child
Health and Development Studies subset.

Variable Number Average SD units
Birth weight 1236 120 18 ounces
Gestation 1223 279 16 days
Parity 1236 0.25 0.44 proportion
Age 1234 27 6 years
Height 1214 64 2.5 inches
Weight 1200 129 21 pounds
Smoking status 1236 0.39 0.49 proportion

greatest advantage, however, lies in the fact that the information is obtained
prospectively, and therefore cannot be biased by knowledge of the outcome.

Background

Smokers versus Nonsmokers

Several studies of birth weight and smoking show that smokers differ from
nonsmokers in many ways. In the CHDS, Yerushalmy ([Yer71]) found that the
nonsmokers were more likely to use contraceptive methods and to plan the baby,
and less likely to drink coffee and hard liquor (Table 10.3).

A very large database of all births in the state of Missouri between 1979 and 1983
(the smoking status of the mother was recorded on the birth certificate in Missouri)
has been analyzed by several researchers (Malloy et al. [MKLS88], Kleinman et
al. [KPMLS88]). They too found many important factors by which the pregnant
women who smoked differed from those who did not smoke. On average, they were
less well educated, younger, and less likely to be married than their nonsmoking
counterparts (Table 1.6 in Chapter 1). These dissimilarities could contribute to the
difference found in birth weight between the babies born to smokers and those
born to nonsmokers.

A 1987 study of pregnant women in Northern California (Alameda County
Low Birth Weight Study Group [Ala90]) excluded those women from their study

TABLE 10.3. Characteristics of mother according to smoking status for the families in the
Child Health and Development Studies (Yerushalmy [Yer71]).

Percent of Percent of
Characteristic smokers nonsmokers
Not using contraceptive 33 25
Planned baby 36 43
Drink 7+ cups of coffee a day 22 7
Drink 7+ glasses of whiskey a week 5 2
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who used cocaine, heroin, or methadone. These women were removed from the
analysis because prior studies indicated that the use of these substances is strongly
associated with cigarette smoking and low-birth-weight. In the California study,
it was found that smokers had a higher risk than nonsmokers of giving birth to
low-birth-weight and preterm babies, even when these comparisons were made
for women with similar alcohol use, prepregnancy weight, age, socio-economic
status, prenatal care, and number of children.

Association versus Causation

Any study involving the smoking habits of people must necessarily be observa-
tional because people choose to smoke or not. This means that it is difficult to
determine whether differences in birth weight are due to smoking or to some other
factor by which the smokers and nonsmokers differ. In statistical jargon, observa-
tional studies are not controlled experiments. The investigator has no control over
the assignment of subjects to the treatment (smoking), so the effect of smoking on
the response (birth weight) can be confused, orconfounded, with the effect due to
other factors, such as alcohol consumption.

This same problem arises in studies of lung cancer and smoking, yet the Surgeon
General concluded that smoking causes lung cancer and placed a warning on the
side of cigarette packages that reads:

Cigarette smoking has been determined to cause lung cancer.

This conclusion is based on a large amount of evidence collected on lung cancer
and smoking. The evidence is from various sources: large prospective studies that
follow smokers and nonsmokers over years to observe their medical history and
cause of death; large retrospective studies that compare the smoking habits of lung
cancer patients with those of matched controls; twin studies that compare twins
where one smokes and the other does not smoke; and controlled animal experiments
that show smoking causes tumors in laboratory animals. There is also a plausible
physiological explanation for how smoking can directly influence lung cancer, and
this explanation is missing for other possible explanatory factors. Taking all of this
evidence together, the Surgeon General determined that smoking does cause lung
cancer, and this opinion is commonly accepted among the health professionals and
researchers today.

There are far fewer studies on the relationship between smoking and birth weight
and on the relationship between smoking and infant death. The Surgeon General’s
warning about maternal smoking and low birth weight that appears on the side
panel of cigarette packages reads:

Smoking by pregnant women may result in fetal injury, premature birth,
and low birthweight.

This warning is not as strongly worded as the Surgeon General’s warning about
lung cancer, which may be a reflection of the amount of evidence collected on the
problem.
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Investigations

The excerpt from the Surgeon General’s Report contains three assertions.

• Mothers who smoke have increased rates of premature delivery.
• The newborns of smokers are smaller at every gestational age.
• Smoking seems to be a more significant determinant of birth weight than the

mother’s prepregnancy height and weight, parity, payment status, or history of
previous pregnancy outcomes, or the infant’s sex.

You are to investigate each of these statements.

Premature Delivery

• Do the mothers in the CHDS who smoked during pregnancy have higher rates
of premature delivery than those who did not smoke? Consider collapsing the
values for gestational age into a few manageable subgroups for making the
comparison. Examine the rates directly and graphically.

Size at Every Gestational Age

The Surgeon General’s Report states that the newborns of smokers aresmallerat
every gestational age. Babies could be smaller in length, weight, head circumfer-
ence, or in another common measure of size, length2/weight. Only birth weight is
available for this lab, although Table 1.5 in Chapter 1 contains measurements on
body length for the newborns in the CHDS.

• For different gestational ages, graphically compare the birth weights of babies
born to smokers to those born to nonsmokers. In Chapter 1 on infant health, it
was found that, overall, the average weight of a baby born to a smoker was 9
ounces lower than the average weight of a baby born to a nonsmoker. Is smoking
associated with a 9 ounce reduction in birth weight at every gestational age? If
not, can you describe how the difference changes with gestational age? Is there
a simple relationship between birth weight and gestational age? Does it hold
for both smokers and nonsmokers?

Determinants of Birth Weight

Address the claim of the Surgeon General that “smoking seems to be a more
significant determinant of birth weight than the mother’s prepregnancy height and
weight, parity, payment status, or history of previous pregnancy outcomes, or the
infant’s sex.” All of the CHDS families have the same payment status, all babies
included in this lab are the same sex, and information on the history of previous
pregnancies is not available. Therefore you will need to restrict your analysis to
the mother’s height, prepregnancy weight, and parity.
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• When we compared the babies of smokers to those of nonsmokers, we found a
difference of 9 ounces in their average birth weights. How does this difference
compare to the difference between the birth weight of babies who are firstborn
and those who are not? What about the birth weights of babies born to mothers
who are above the median in height or weight and babies born to mothers who
are below the median in height or weight?

• Recall that we also found that the spread and shape of the birth-weight distribu-
tions for the babies born to smokers and nonsmokers were quite similar. How
do the birth-weight distributions compare for the groupings of the babies by
parity, mother’s height, or weight?

• Set aside the information as to whether they smoke or not, and divide the
mothers into many groups where within each group the mothers are as similar
as possible. For example, take into account a mother’s height, weight, and parity
when placing her in a group. Although the mothers within a group are similar
in many respects, they may differ according to whether the mother smokes or
not and by other characteristics as well.Within each group, compare the birth
weights of babies born to smokers and nonsmokers. Do you see any patterns
acrossgroups?

• Another way to compare the effect of a mother’s smoking on birth weight to
the effect of her height on birth weight is to see if the variation in birth weight
is related to these factors and, if so, in what way. First, consider the standard
deviation of birth weight for all babies. Determine how much it is reduced when
we take into consideration whether the mother smokes or not. To do this, for
babies born to smokers, find the root mean square (r.m.s.) deviation in birth
weight. Compare this to the r.m.s. deviation in birth weight for babies born to
nonsmokers. If they are roughly the same, then they can be pooled to get a single
r.m.s. deviation of each baby’s birth weight from the average birth weight for
its group.

• We can also see how the deviation in birth weight varies with mother’s height.
The babies can be split into groups, where each group consists of those babies
whose mothers have the same height to the nearest inch. For each group, the
remaining variation in birth weight can be computed using the r.m.s. deviation
in birth weight about the group average. If the deviations do not vary much
across groups, then they can be combined to form a single r.m.s. deviation in
birth weight given mother’s height. This single measurement of variation in
birth weight can then be compared to the variation remaining in birth weight
given the mother’s smoking status. These types of comparisons are useful in
determining the relative importance of smoking versus other factors that may
affect birth weight.

Write up your findings to be included in a new handbook on pregnancy. The
handbook is directed at the college-educated population of pregnant women and
their families to help them make informed decisions about their pregnancy. Your
findings are to appear in a section on smoking during pregnancy. Report your
findings in “plain English” so the intended audience can understand your view of
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the problem and your conclusions. Include an appendix with supporting statistical
analysis.

Theory

In Chapter 7 on Dungeness crabs, we saw that the natural variability in the size of
crab shells before and after molting was well described by the regression line. In
this chapter, it is the variability in size of babies and their mothers that are of interest.
This section generalizes the regression line with one variable that was introduced in
Chapter 7. It covers regression with indicator variables; techniques for comparing
regression lines that use different explanatory variables; a geometric interpretation
of least squares; and, in the Extensions section, two-variable regression.

Recall that the method of least squares involves finding the values of the intercept
a and the slopeb that minimize the sum of squared deviations

n∑
i�1

[yi − (a + bxi)]
2

for then points (x1, y1), . . . (xn, yn). Throughout this section, we will takeyi to
represent the birth weight of theith baby in the CHDS data set, andxi to denote
the length of gestation for the baby.

Indicator Variables

Separate regression lines for the babies born to smokers and those born to non-
smokers can fit birth weight to gestational age. By splitting the babies and their
mothers into two groups according to whether or not the mother smokes, we can
minimize the sum of squares, with respect toas, bs, an, andbn, separately for each
group, ∑

(smokers)

[yi − (as + bsxi)]
2 and

∑
(nonsmokers)

[yi − (an + bnxi)]
2,

to obtain two regression lines, one for smokers and one for nonsmokers. If these
two regression lines are roughly parallel over the typical range for gestational
age, then we can proceed to fit these two lines simultaneously such that they have
exactly the same slope. When the two lines have a common slope (bs � bn), then
we can obtain a more accurate estimate of birth weight by using the data from both
groups to fit two parallel lines. We use anindicator variableto accomplish this
task.

Indicator variables take on only two possible values: 0 and 1. An indicator for
smoking status would be 1 for a mother who smoked during her pregnancy and 0
for a mother who did not. It “indicates” the smoking status of the mother. Whether
the baby is firstborn or not can also be represented via an indicator variable.

To make this definition more precise, for theith baby in the CHDS,i � 1, . . . , n,
let zi � 1 if the baby’s mother smoked during her pregnancy andzi � 0 if she
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did not. Then we can find the values ofap, bp, andcp that minimize the following
sum of squared deviations:

n∑
i�1

[yi − (ap + bpxi + cpzi)]
2.

The subscriptp reminds us that the data from the two groups are pooled. Notice
that this sum of squares is equivalent to the following sum of squares:

∑
(smokers)

[yi − (ap + cp + bpxi)]
2 +

∑
(nonsmokers)

[yi − (ap + bpxi)]
2.

The minimization fits two parallel lines to the data, one for smokers and one
for nonsmokers. If the minimizing values forap, bp, andcp are âp, b̂p, andĉp,
then âp + ĉp + b̂px is the regression line for the mothers who smoke andâp +
b̂px is the regression line for those who do not smoke. It follows thatĉp is the
average difference in birth weight between the two groups of babies, after we
adjust (equivalently control) for gestational period. This qualification states that
we calculate the difference using a linear regression that includes gestation period.
By fitting two parallel lines, we are saying that this difference is roughly the same
for each gestation period. In other words, whether the babies are born at 37 weeks
or 40 weeks, the average difference in weight between those born to smokers and
those born to nonsmokers is roughlyĉp.

Residual plots that include information as to whether the baby belongs to the
smoking group or nonsmoking group can be helpful in determining whether the
fitted parallel lines model is appropriate.

Comparing Regressions

The Surgeon General uses the term “a more significant determinant” when com-
paring the relationship between smoking status and birth weight to the relationship
between mother’s height and birth weight. There are a variety of ways to interpret
this comparative statement. We present one here that uses two regression lines —
one that fits birth weight to a smoking indicator and one that fits birth weight to
mother’s height.

Recall thatyi represents the birth weight of theith baby and thatzi is an indicator
for the smoking status of the mother. Now letvi represent theith mother’s height.
We write the regression line for expressing birth weight in terms of mother’s height
asd̂ + êv.

To fit birth weight to the smoking indicator alone, we would minimize, with
respect tof andg, the sum of squares

n∑
i�1

[yi − (f + gzi)]
2 �

∑
nonsmokers

(yi − f )2 +
∑

smokers

[yi − (f + g)]2.
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It is easy to show by completing the square thatf̂ is the average birth weight for the
nonsmokers,f̂ + ĝ is the average birth weight for the smokers, and the regression
“line” is f̂ + ĝz.

To determine whether smoking or mother’s height is a more significant deter-
minant of birth weight, we can compare theroot mean square (r.m.s.) deviations
of the residuals for each of the fits. First, the r.m.s. of the deviations of birth weight
from their average is 18.4 ounces; this is simply another name for the SD of birth
weight. The r.m.s. deviation of the residuals from fitting birth weight to mother’s
height is 18.0 ounces, and for fitting birth weight to the smoking indicator it is
17.8 ounces. The residuals from the regression for the smoking indicator have a
smaller r.m.s. than those from the regression for mother’s height. An alternative
description is that the smoking indicator reduces the r.m.s. in birth weight by 3%
(1−17.8/18.4). Mother’s height reduces it by 2%. Both reductions are quite small;
there is a lot of variability in birth weight that remains “unexplained” by either
the smoking indicator or the mother’s height. However, this percentage is still
meaningful, as millions of babies are born annually to smokers in the U.S.

We now give a few words of caution about the interpretation of the reduction
in standard deviation. Although we have used the conventional terminology “ex-
plained” variation, it should not be taken to imply a causal relationship. It means
only that the deviations of birth weight from their average are reduced when ba-
bies are compared to those in a group more like themselves (i.e., those born to
smokers, or those born to mothers of a particular height). In addition, the variation
“explained” by one of two or more variables could, in some instances, also be
explained by another of the variables. This is not the case for the pair of smoking
and mother’s height because whether the mother smokes or not is uncorrelated
with her height. To explain, note that the variance in birth weight is 337 ounces2.
Smoking reduces this variance by 20 ounces2 (i.e., the residuals from the least
squares fit of birth weight to smoking status have a variance of 317 ounces2).
Mother’s height reduces the variance in birth weight by 13 ounces2. Usually this
reduction in variance is expressed as a percentage. In this case, the reduction in
variance explained by smoking is 6%, and the reduction explained by mother’s
height is 4%. When we fit birth weight to both smoking status and mother’s height
(i.e., when we fit two parallel lines one for smokers and one for nonsmokers), the
variability in birth weight is reduced by 10% from 337 ounces2 to 303 ounces2.
This additive relationship holds because the sample correlation between mother’s
height and the smoking indicator is .01, which is essentially 0; that is, the explana-
tory variables smoking and height are nearly uncorrelated. When the two variables
are correlated, then both can explain some of the same variability in the response.
This is described in more detail in the Extensions section.

Geometry of Least Squares

The geometric interpretation of least squares is intuitively appealing and eas-
ily leads to the generalization of simple regression to two-variable and multiple
regression.
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To begin, we consider a simpler problem where we have only the observations
y1, . . . , yn. Suppose our goal is to findk that minimizes

n∑
i�1

(yi − k)2.

This problem can be re-expressed in terms of vectors by representing then obser-
vations as ann× 1 column vector (y1, . . . , yn), which we cally. Then the sum of
squares above can be rewritten as

|y − k1|2,
where1 is then× 1 column vector of 1’s—namely, (1, . . . ,1) —and where| |2 is
the squared Euclidean length of the vector,

|y|2 �
n∑
i�1

y2
i .

The problem can now be recognized as one of finding the closest point toy in
the linear span of1. The linear span of the vector1 consists of all those vectors of
the formk1 for some constantk. Figure 10.1 shows a picture of the problem.

The closest point toy in the linear span of1 is ȳ1, where as usual̄y � (y1 +
· · · yn)/n. To show that this is indeed the case, note thatȳ1 is in the linear span
of 1. Also note thaty − ȳ1 is orthogonal to1 because the dot product of the two
vectors is 0, as shown below:

(y − ȳ1) · 1 � y · 1 − ȳ1 · 1

� nȳ − nȳ

� 0.

Pythagoras’ formula says that for anyk,

|y − k1|2 � |y − ȳ1 + (ȳ − k)1|2
� |y − ȳ1|2 + |(ȳ − k)1|2.

�
�

�
�

��

� 1
ȳ1

y

FIGURE 10.1. Projection of the vectory onto the linear span of1.
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The cross product disappears becausey − ȳ1 is orthogonal to1. Hence|y − k1|2
is minimized fork � ȳ. (Notice that the squared length ofy − ȳ1 is n times the
variance of{y1, . . . , yn}.)

In general, the closest point to a vectory in the linear span of a vectorv is the
orthogonal projection

Pvy � y · v
|v|2 v,

wherey · v is the dot product
∑

i yivi .
Now we can consider the original problem of minimizing, with respect toa and

b, the sum of squares ∑
[yi − (a + bxi)]

2,

which we can re-express as

|y − (a1 + bx)|2.
Figure 10.2 shows the solution to be the projection ofy onto the linear span of

the two vectors1 andx. In general, the orthogonal projection ofy onto a linear
spaceL is that unique vectorp in L such that the residualy − p is orthogonal to
L.

To determine the projection onto1 andx, it is simpler to consider the equivalent
problem of projectingy onto the linear span of the two orthogonal vectors1 and
x − x̄1. The linear span of1 andx is also the linear span of1 andx − x̄1.

The projectionP1,xy is the same as the projectionP1,x−x̄1y, which, due to
orthogonality, is equivalent to the sum of the two projections,

P1,xy � P1y + Px−x̄1y � ȳ1 + y · (x − x̄1)

|x − x̄1|2 (x − x̄1).

This projection is the vector of fitted values for the original regression problem.
To see this, rearrange the terms to find that theith element of the projected vector
is

ȳ − byx·1x̄ + byx·1xi,

������

�
�

�
�

��

1

x

y

FIGURE 10.2. Projection of the vectory onto the linear span of1 andx.
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wherebyx·1 is the coefficient ofx−x̄1. This coefficient is identical to the coefficient
b̂ obtained from minimizing the sum of squared deviations∑

[yi − (a + bxi)]
2

in Chapter 7.
This geometric representation of least squares can be used to establish many of

the properties of the fitted values and residuals, where the fitted value and residual
vectors are denoted

ŷ � P1,xy,

r � y − ŷ.

Of particular interest is the fact thatȳ1, byx·1(x − x̄1), andy − ȳ1 − byx·1(x −
x̄1) are pairwise orthogonal. This fact makes many of the following statements
self-evident.

• r̄ � 0.
• ŷ · r � 0.
• x · r � 0.
• |y − ȳ1|2 � |r|2 + |ŷ − ȳ1|2.

The proofs of these relationships are left to the Exercises.

Exercises

1. Consider the relationship between low birth weight, parity, and smoking.
Construct an artificial example where smokers have a higher rate of low-
birth-weight babies than the nonsmokers, but, when parity is also considered,
the relationship inverts. In other words, when examined within parity status,
smokers in comparison to nonsmokers have a lower rate of low-birth-weight
babies. This oddity is called Simpson’s Paradox.

2. Consider the minimization with respect tof andg of the expression

n∑
i�1

[yi − (f + gzi)]
2,

wherezi is the indicator variable for smoking andyi is birth weight. Show that
f̂ is the average birth weight for the nonsmokers and thatĝ is the difference
between the average birth weight for smokers and nonsmokers.

3. Find the solution forb minimizing

n∑
i�1

(yi − bxi)
2.

4. Prove thatPvy is the closest point toy in the linear span ofv.
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5. Show that the expression forb̂ obtained by minimizing∑
[yi − (a + bxi)]

2

with respect toa andb,

b̂ � r
SD(y)

SD(x)
,

is the same as
y · (x − x̄1)

|x − x̄1|2 .

6. Prove that

b(y·1)(x·1) � byx·1,

whereb(y·1)(x·1) is the coefficient obtained by projectingy − ȳ1 onto the linear
span ofx − x̄1.

7. Show that the following vectors are pairwise orthogonal.

a. 1.
b. x − x̄1.
c. y − ȳ1 − byx·1x.

8. Use the results from Exercise 7 to establish the following properties of the
residual and fitted value vectors:

a. r̄ � 0.
b. ŷ · r � 0.
c. x · r � 0.
d. |y − ȳ1|2 � |r|2 + |ŷ − ȳ1|2.

Extensions

In this section, we consider two-variable linear regression. We already encountered
a special case of two-variable linear regression when we included the indicator vari-
able for smoking status in the regression that fitted two parallel lines for smokers
and nonsmokers. Now we examine the more general case. As an example, we use
the regression of birth weight on mother’s height and prepregnancy weight.

By examining a scatter plot, it is easy to see if the relationship between birth
weight and mother’s height is roughly linear. It is not as easy to see if the rela-
tionship between three variables is roughly linear. To assess whether two-variable
linear regression is appropriate, we can divide the babies and their mothers into
groups according to the mother’s weight, so that each group consists of mothers
who are roughly the same weight. All plots of birth weight on mother’s height for
each group of babies should show linear relationships, and the lines should have
similar slopes. Also, for each group we can fit the simple (i.e., one variable) linear
regression of baby’s weight on mother’s height. This would give us a series of
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regression lines, one for each weight group. If these regression lines are roughly
parallel, then two-variable linear regression can be used to fit a common slope.

In two-variable linear regression, we minimize, with respect toa, b, andc, the
sum of squares

n∑
i�1

[yi − (a + bvi + cwi)]
2,

whereyi is the baby’s birth weight,vi is the mother’s height, andwi is the mother’s
weight for theith baby in the CHDS. We have performed this minimization for the
CHDS babies and found thatâ � 35 ounces,̂b � 1.2 ounces/inch, and̂c � 0.07
ounces/pound. Specifically, the two-variable linear regression is

ŷi � 35 + 1.2vi + 0.07wi.

The coefficient for mother’s height is different from the coefficient in the simple
regression of birth weight on mother’s height. There we found that

ŷi � 27 + 1.4vi.

The two coefficients for mother’s height differ because the 1.4 arises from fitting
mother’s height alone to birth weight and the 1.2 is from fitting mother’s height in
the presence of mother’s weight. To interpret the coefficient 1.2, we need to keep
in mind that both the height and weight variables were fitted in the regression. This
means that among mothers with a given fixed weight, 1.2 ounces is the average
increase in birth weight for each additional inch of height. We see that there is less
of a height effect on birth weight when we know the mother’s weight.

We compare the variance (mean square) of the residuals from the two-variable
fit to the variances from each of the one-variable fits. Birth weight is reduced from
337 to 322 ounces2 in the two-variable linear regression that incorporates both
mother’s height and weight. For the one-variable linear regressions, the reduction
in mean square of the residuals for mother’s height is 13 ounces2, and the reduction
for mother’s weight is 8 ounces2. Notice that mother’s height reduces the variation
in birth weight more than mother’s weight. This is because the correlation between
mother’s height and birth weight is higher than the correlation between mother’s
weight and birth weight. Also notice that the reduction is not additive as it was for
the two-variable model that included mother’s height and the smoking indicator.
This is because mother’s height and mother’s weight are correlated. See Table 10.4
for the correlations.

TABLE 10.4. Correlations among birth weight, mother’s height, and mother’s weight for
1197 babies from the CHDS.

Birth Mother’s Mother’s
weight height weight

Birth weight 1.00 0.20 0.16
Mother’s height 0.20 1.00 0.44
Mother’s weight 0.16 0.44 1.00
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Geometry

The geometric picture of two-variable linear regression is useful in understanding
the interpretation of the coefficients. As before, writey, v, andw for then × 1
column vectors, (y1, . . . , yn), (v1, . . . , vn), and (w1, . . . , wn), respectively. Also let
1 denote then×1 column vector of 1’s. The two-variable least squares minimization
described here is equivalent to the minimization, with respect toa, b, andc, of the
squared length

|y − (a + bv + cw)|2.
By analogy with the geometric solution of the one-variable linear regression, the
two-variable solution is the projection ofy onto the space spanned by the vectors
1, v, and w. This space is equivalent to the space spanned by1, v − v̄1, and
w − w̄1 − bwv·1(v − v̄1). It is also equivalent to the space spanned by1, w − w̄1,
andv − v̄1 − bvw·1(w − w̄1). See the Exercises for a proof of this result. This
implies that

P1,v,wy � ȳ1 + byv·1(v − v̄1) + byw·1,v[w − w̄1 − bwv·1(v − v̄1)]

� ȳ1 + byw·1(w − w̄1) + byv·1,w[v − v̄1 − bvw·1(w − w̄1)],

where

byw·1,v � y · [w − w̄1 − bwv·1(v − v̄1)]

|w − w̄1 − bwv·1(v − v̄1)|2
and

byv·1,w � y · [v − v̄1 − bvw·1(w − w̄1)]

|v − v̄1 − bvw·1(w − w̄1)|2 .

Collect terms to find that

(ȳ − byv·1v̄ + byw·1,vbwv·1v̄ − byw·1,vw̄)1

+ (byv·1 − byw·1,vbwv·1)v + byw·1,vw
� (ȳ − byw·1w̄ + byv·1,wbvw·1w̄ − byv·1,wv̄)1

+ byv·1,wv + (byw·1 − byv·1,wbvw·1)w.

Since the coefficients of1, v, andw must be equal, we find that

byv·1,w � byv·1 − byw·1,vbwv·1

and

byw·1,v � byw·1 − byv·1,wbvw·1.

The two-variable linear regression equation can now be more compactly expressed
as

(ȳ − byv·1,wv̄ − byw·1,vw̄)1 + byv·1,wv + byw·1,vw.

Here we see that the coefficients ofv andw from the two-variable linear regres-
sion depend on the presence of the other variable. In other words, the coefficient for
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v results from the projection ofy onto that part ofv that is orthogonal to1 andw. If
v andw are orthogonal, then the coefficients in the two-variable model are the same
as those in the one-variable model; that is,byv·1,w � byv·1 andbyw·1,v � byw·1.

Plots of residuals from the fit ofy to 1 andv against the residuals from the fit
of w to 1 andv can help determine whether the slopebyw·1,v is roughly 0 or not.
This is becausebyw·1,v � b(y·1,v)(w·1,v) (see the Exercises).

The two-variable linear regression can be easily generalized to multiple linear
regression using this geometric picture. But, linearly fitting multiple variables
should be done carefully. There is usually not enough data even for the two-
variable regression to see whether the simple linear regression involving one of
the variables has the same slope for all values of the second variable. For three
or more variables, we need a huge data set. For example, to determine whether
a three-variable regression of birth weight on gestation and mother’s height and
weight is supported by the data would involve producing plots of birth weight and
gestation for groups of babies with mothers of the same height and weight. Often
the linear relationship between variables is assumed to hold and no checking of
the assumptions is made. At other times, the multiple linear regression is simply
regarded as the best linear fit to the data.

Extension Exercises

1. Polynomial regression is a special case of multiple linear regression. Consider
fitting a polynomial,

y � bx + cx2,

to the points (xi, yi), i � 1, . . . n. Express the polynomial as a two-variable
linear equation with variablesx andu � x2, and find the least squares estimates
of the coefficients.

2. Suppose you try to minimize the following sum of squares with respect to
a, b, c, andd:

n∑
i�1

[yi − (a + bxi + cui + dvi)]
2,

wherevi � xi + 2ui + 3. Explain geometrically why it would be problematic
to estimate the coefficients at the unique minimum.

3. Prove

P1,xy � P1y + Px−x̄1y.

4. Consider the minimization with respect toa, b, c, andd of the following sum
of squares:

n∑
i�1

[yi − (a + bxi + czi + dxizi)]
2,
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wherexi is mother’s height,zi is an indicator variable for smoking, andyi is
birth weight. Show that the minimization above yields the same result as fitting
birth weight to mother’s height separately for smokers and nonsmokers.

5. Show that the projection onto the sum of three orthogonal one-dimensional
subspaces is the sum of the projections onto each of the subspaces.

6. Show that

byw·1,v � b(y·1,v)(w·1,v).

Notes

The Surgeon General’s Report and other information on smoking and reproduction
can be found inReducing the health consequences of smoking: 25 years of progress.
A report of the Surgeon General ([DHHS89]) and inVital and Health Statistics
([NCHS88]).

The data sources are discussed in the Notes section of Chapter 1, the first part
of Maternal Smoking and Infant Health.
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11
A Mouse Model for Down Syndrome

Bay Area scientists have
created a mouse that exhibits the
same brain abnormalities as
humanswith Alzheimer s, offering
an important new tool for
understanding the disease and
developing a treatment.

This mouse is a real
breakthrough ... providing the first
real hope we can progress toward
meaningful drugs, said John
Groom, president and chief
e x e c u t i v e o f A t h e n a
Neurosciences, the South San
Francisco company that led the
collaborative project.

Alzheimer s is one of the top
killers of Americans, with at least
100,000 people dying of the
disease each year. The condition is
marked by a progressive loss of
memory, dementia, and eventually
death.

Researchers have found it
difficult to pinpoint the cause of
Alzh eimer s, how the brain
changes as it loses memory, and
how to go about fixing it. The lack
of an animal that developed
anything like the disease has made

it especially hard to study.
Mice with rodent versions of

cystic fibrosis, obesity and other
conditions have become valuable
tools for scientists to learn about
these diseases and the ways drugs
can interfere. Scientistshave tried
for many years to engineer an
Alzheimer s mouse through
genetic manipulation, but never
have been able to achieve changes
in the brain that mimic the disease.

In the Thursday issue of
Nature magazine, Athena, its
partners Eli Lilly and Co., and their
collaborators describe a mouse
that develops remarkably similar
characteristics to humans with
Alzheimer s. The animal develops
plaque in its brain, abnormal nerve
fibers that surround the plaquelike
a web, inflammatory cells and
deterioration of the connections
between its nerve cells.

The problems arise in two
key areas of the brain related to
spatial memory and associative
learning. Later this year, the
Athena scientists intend to test the
animals in a complicated maze and
see whether they have memory
difficulties just like humans.

San Francisco ExaminerTHURSDAY, FEBRUARY 9, 1995

By Sally Lehrman

Scientists Create Mouse
with Alzheimer's

1

1Reprinted by permission.
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Introduction

Down Syndrome is a congenital syndrome that occurs when a child inherits an
extra chromosome 21 from his or her parents. The syndrome is associated with
some degree of physical and mental retardation and is one of the most common
congenital syndromes. One-quarter of a million people in the U.S. have Down
Syndrome.

In the 1980s, it was discovered that only the genes at the bottom of chromosome
21 cause the syndrome, and scientists today are working to further identify and
isolate the genes on the chromosome responsible for the disorder. To do this, they
genetically alter the DNA of lab mice by adding to it cloned human DNA that
comes from a small part of chromosome 21. If the transgenically altered mice
exhibit symptoms of Down Syndrome, then that fragment of DNA contains the
genes responsible for the syndrome.

Although much is known about the physical and mental retardation associated
with Down Syndrome, very little is known about the equivalent syndrome in mice.
To determine if the mice with extra DNA fragments exhibit the syndrome, they
are typically put through tests for learning disabilities and intelligence. These tests
rely on the mice being able to react to visual cues.

Unfortunately, over 500 of the lab mice were born blind and as a result could
not partake in the usual tests to diagnose the syndrome. For these mice, only their
body weight was measured. While it is known that people with Down Syndrome
have a tendency for obesity, it is not known whether obesity is one of the features
of the syndrome in mice. Nonetheless, it is hoped that comparisons of the weights
of these blind mice will offer additional evidence in the quest to further narrow the
region of chromosome 21 that is identified with the syndrome.

Data

The Human Genome Center at the Lawrence Berkeley Laboratory constructed a
panel of transgenic mice, each containing one of four fragments of cloned human
chromosome 21 (Smith et al. [SZZCR95], [SSS97], Smith and Rubin [SR97]).
The mice in the panel were created by artificially introducing cloned human
DNA into fertilized eggs. These first-generation transgenic mice were bred with
nontransgenic mice in order to increase the pool of genetically altered mice. A
first-generation mouse may pass on its extra piece of DNA to some of its off-
spring. Those second-generation mice that inherit the cloned DNA are mated with
nontransgenic mice, and so on, in order to continue increasing the numbers of
transgenic mice available for experimentation. The data provided here are from
over 500 descendants of the panel of mice. All mice that have descended from the
same first-generation transgenic mouse are said to belong to a family line.

Four different cloned fragments of DNA were used to create the transgenic
mice. They are called 141G6, 152F7, 230E8, and 285E6. Some of these DNA
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230E8 (670 Kb) 141G6 (475 Kb)

152F7 (570 Kb)

285E6 (430 Kb)

FIGURE 11.1. Map of the four fragments of DNA from chromosome 21 in kilobases (Smith
et al.[SZZCR95]).

TABLE 11.1. Sample observations and data description for 532 offspring of the panel of
transgenic mice.

DNA C C C C A A A A A
Line 50 50 50 50 4 4 28 28 28
Transgenic 1 0 0 1 1 1 0 1 0
Sex 1 1 0 0 1 1 1 1 1
Age 113 113 112 112 119 119 115 115 115
Weight 31.6 30.1 23.1 26.3 31.2 28.4 28.1 30.1 29.1
Cage 1 1 5 5 7 7 9 9 10

Variable Description
DNA Fragment of chromosome 21 integrated in parent mouse

(A=141G6; B=152F7; C=230E8; D=285E6).
Line Family line.
Transgenic Whether the mouse contains the extra DNA (1)

or not (0).
Sex Sex of mouse (1=male; 0=female).
Age Age of mouse (in days) at time of weighing.
Weight Weight of mouse in grams, to the nearest tenth of a gram.
Cage Number of the cage in which the mouse lived.

fragments overlap: fragment 141G6 overlaps with 152F7, and 152F7 overlaps
285E6 (Figure 11.1). With the exception of a small region between 230E8 and
141G6, the four pieces of DNA completely cover the part of chromosome 21 that
is known to contain the Down Syndrome genes.

The data available to us are for blind family lines, a subset of the family lines
in the study. The information available on the mice are sex, age, weight, whether
they are transgenic or not, family line, the extra DNA fragment in the family line,
and cage (Table 11.1). Mice of the same sex and litter are housed in the same cage.
However, cages may contain multiple litters if the number of same-sex mice in a
litter is small.
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Background

Down Syndrome

Down Syndrome was first clinically described in 1866 by the English physician
John Langdon Down, who described the characteristic features of the syndrome
but was unable to determine its cause. In 1932, de Waardenburg suggested that
the syndrome resulted from a chromosomal abnormality. This was not confirmed
until 1959, when Lejeune and Jacobs independently discovered that the syndrome
was caused by an extra chromosome 21.

A syndrome is a collection of symptoms that occur together to indicate the
presence of the condition. As many as 120 features have been ascribed to Down
Syndrome, but most people with this syndrome have only 6 or 7 of these symptoms.
All have some degree of physical and mental retardation.

The typical Down Syndrome individual’s eyes slant slightly upward and there
is a fold of skin that runs vertically from the inner corner of the eye to the bridge
of the nose. The face is noticeably rounded from the front and appears flattened
from the side. The mouth cavity is slightly smaller and the tongue is slightly larger
than usual, which results in a habit of the individual putting out his or her tongue.
Also, the hands are broad with short fingers and a single crease in the palm.

Body weight and length at birth are usually below that expected, and, in adult-
hood, those with Down Syndrome are generally short and have a tendency for
obesity.

Aside from these obvious physical traits, one-third of those with Down Syn-
drome suffer from heart problems. Six different types of heart conditions are known
to afflict those with the syndrome, including a hole between the right and left side
of the heart, narrow blood vessels to the lungs, and malformed valves.

Finally, the Down Syndrome child learns at a steady pace, but in comparison to
a child without the syndrome the rate is much slower. The gap in abilities widens
as the child grows. However, the Down Syndrome child can continue to learn new
skills in adolescence and well into adulthood.

Trisomy 21

Down Syndrome is congenital, meaning it is present at birth, and it is due to the
abnormal development of the fetus. All cells in the body originate from the single
cell that is formed from the fusion of sperm and egg. In the center of each cell
is a nucleus that contains the genetic material inherited from the parents. There
are approximately 100,000 genes in the cell nucleus, and they are arranged into
chromosomes: 23 from the mother and 23 from the father. These cells are called
diploid cells.

The only cells that do not have two sets of chromosomes are the sperm and
egg cells. They each contain a single set of 23 chromosomes. In the formation
of eggs and sperm, a diploid cell replicates its DNA and then divides into four
new cells, which are called haploid cells. Each haploid cell contains one set of
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23 chromosomes. These new cells develop into the eggs and sperm, although in
women only one in four of the haploid cells will mature into an egg. Sometimes,
the cell division does not proceed correctly, and a haploid cell will have two
chromosomes of one type. This mix-up causes some genetic disorders. When the
egg and sperm join, there will be three copies of the chromosome instead of two.
This is called a trisomy.

Ninety-five percent of all Down Syndrome cases occur when an extra 21st
chromosome appears in all cells (i.e., a trisomy 21). The extra 21st chromosome
nearly always comes from the egg, and the eggs of older women are more likely to
have an extra chromosome. Although women over 35 have only 5–8% of the total
number of pregnancies, their babies account for 20% of Down Syndrome births.
This is because the odds of having an affected child for a woman aged 40 to 44 is
about 1 in 40, whereas at age 20 it is only 1 in 2300 (Hotchner [Hot90]). In the
United States, Down Syndrome occurs on average at a rate of 1 per 800 births,
and the national population of individuals with Down Syndrome is estimated to
be 250,000 (Selikowitz [Sel90]).

The Transgenic Mouse

A transgenic mouse is a mouse that has had its DNA altered by humans. This
is accomplished by removing a newly fertilized egg from a female mouse and
injecting it with a fragment of DNA. In the first 12 hours after fertilization, there
are still two nuclei present in the egg, one from the egg and one from the sperm.
During this time, the egg is placed under a dissecting microscope, and a micro-
injection needle pierces the egg and injects the extra DNA into the sperm nucleus.
Then the new DNA integrates with the DNA in the sperm. The egg is transplanted
into a female, and after 12 hours have elapsed, the egg nucleus and the altered
sperm nucleus fuse to form the mouse embryo.

Theoretically, the mouse that develops from this genetically altered DNA should
display the characteristics of the inserted DNA. However, expression of the inserted
DNA does not always occur; in fact, only about 1 injection in 100 is successful.
To determine if a mouse is in fact transgenic, the tip of its tail is removed and
examined to see if the nuclei of the cells have the extra fragment of DNA.

For experimenters to create a mouse model that will exhibit characteristics of hu-
man Down Syndrome, four or five separate lines of mice were created for each DNA
fragment. (See the Data section for a description of a family line.) To determine
whether a mouse with a particular fragment of DNA exhibits Down Syndrome,
the mouse is given tests for learning disabilities, fearfulness, and low intelligence.
Only male mice are tested because female mice ovulate frequently (every few
days), and it is not known what effect ovulation may have on their performance
on these tests. The tests are visual, so the blind mice could not perform them.
Instead, their weights were recorded, and we will look for differences in weight
as signifying expression of human Down Syndrome.
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Laboratory Conditions

The life expectancy of laboratory mice is 12 to 18 months, and they are infertile
after 1 year. The health of these mice is extremely fragile because they are from
fully inbred strains (i.e., because they are genetically identical). Precautions are
taken to prevent the spread of disease among mice. For example, an air filter is
placed over the top of each cage, and an air vent (or hood) is used when the
scientist works directly with a mouse. These cautionary measures are designed to
keep disease-causing bacteria out of the environment.

The mice live in 15×30 cm plastic cages stacked on shelves in a small window-
less room. Typically five mice occupy one cage. Males and females are housed
separately to prevent unwanted breeding. Mice of the same sex and litter share a
cage, and if the litter is small, two litters may share the same cage. The mice have a
constant supply of food and water but no means of exercise. The cages are cleaned
once a week by a lab assistant, who is the only person to handle the mice other
than the experimenter.

Investigations

Is there a difference between the weights of transgenic and nontransgenic mice?
If so, for which fragment or fragments of the DNA are there differences?

To answer these questions, make graphical and numerical comparisons of groups
of mice. Try to make comparisons between groups that are as similar as possible.
For example, male mice on average tend to weigh about 5 grams more than female
mice. Comparing groups of mixed-sex mice may reveal very little because a small
transgenic difference could be hidden or canceled out by the difference between
sexes.

• Begin by graphically comparing the weights of mice of the same sex. How do
the weights of mice with the extra 141G6 fragment of DNA compare to mice
with no extra copy of DNA? What about the mice with extra copies of the other
fragments of DNA?

• Investigate the variability in weight. Is it roughly the same across different
groups of mice? If so, then the pooled standard deviation for all nontransgenic
mice would provide a better estimate of the variability in weight.

• Formalize your comparison of the means of these different groups of mice using
a linear model with indicator variables for the sex and DNA fragment effects.
Consider an additive model in sex and DNA fragment. Be sure to consider the
possibility of interactions. In multi-way classifications, it is advisable to check
the cell counts for all the classifications. In other words, check to see that there
are plenty of mice in each classification: male-141G6, female-141G6, etc. If
there are too few data to justify an additive model, the model may be misleading,
and fitting separate models for subgroups of mice would be preferable.
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• Do the residuals indicate whether mice of the same sex and DNA fragment have
roughly the same weight, or do age and litter make a difference? Because all
mice from the same litter and the same sex are kept in one cage together, we can
use cage number as a surrogate for litter. Indeed, controlling for cage controls
for age, sex, and DNA fragment, although some cages contain mice from more
than one litter. Do the transgenic mice in a cage tend to be above average in
weight in comparison to the nontransgenic mice from the same cage?

• If you found differences between transgenic and nontransgenic mice, assess
the size of the difference. That is, are the differences you found big enough to
indicate that a particular region of DNA contains the Down Syndrome genes?

The scientists at the lab want to know if the data on the weight of the mice support
their findings from the visual tests. They need assistance in making sense out of the
mass of data collected on weight. Be complete in writing up your findings; include
results that may not be conclusive as well as those that seem to be definitive.

Theory

Fitting Means

Throughout this section, we will takeyi to represent the weight of theith mouse
in the experiment. We saw in Chapter 10 on Maternal Smoking and Infant Health
that the mean̄y is the least squares solution when we minimize

n∑
i�1

(yi − c)2

with respect toc. We also saw that if our plan is to fit two means to the data, say
one for female mice and one for male mice, then this can be accomplished with an
indicator variableeM , whereeM,i � 1 if theith mouse is male and 0 if female. The
least squares solution, minimizing with respect toa andb, of the sum of squares

n∑
i�1

[yi − (a + beM,i)]
2

is â � ȳF andb̂ � ȳM − ȳF , where

ȳF � 1

nF

∑
(F )

yi,

ȳM � 1

nM

∑
(M)

yi,

nF andnM are the number of females and number of males, respectively, and the
summation is over the female and male mice, respectively. The predicted values
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from the fit are one of two values:

â � ȳF ,

â + b̂ � ȳM,

depending on the sex of the mouse.
We can generalize this technique to fit means to more than two groups, such

as which extra fragment of DNA a mouse has. Here there are five categories,
one for each of the four possible DNA fragments and one for the absence of any
trisomy. Note that this is a combination of the DNA and transgenic variables from
Table 11.1. LeteA, eB, eC, eD indicate which extra fragment of DNA is present in
the mouse. That is,eA,i is 1 if theith mouse carries the extra DNA fragment denoted
141G6, and 0 if not. For a mouse with a trisomy, only one of these indicators is 1
and the others are 0, and if a mouse has no extra DNA, then all four indicators are
0. Consider the least squares solution, minimizing with respect tob0, bA, bB, bC ,
andbD, of the following sum of squares:

n∑
i�1

[yi − (b0 + bAeA,i + bBeB,i + bCeC,i + bDeD,i)]
2

�
∑

(no trisomy)

(yi − b0)2 +
∑
(A)

(yi − b0 − bA)2 +
∑
(B)

(yi − b0 − bB)2

+
∑
(C)

(yi − b0 − bC)2 +
∑
(D)

(yi − b0 − bD)2.

From the equation on the right side, we see that each sum is over a different set
of mice and so can be minimized separately. The predicted values areȳ0, ȳA, ȳB ,
ȳC , and ȳD, the mean weights of the nontransgenic mice and the mice with an
extra copy of the 141G6, 152F7, 230E8, and 285E6 fragments, respectively. This
implies that

b̂0 � ȳ0,

b̂A � ȳA − ȳ0, b̂B � ȳB − ȳ0,

b̂C � ȳC − ȳ0, b̂D � ȳD − ȳ0.

When multiple groups are to be compared, graphical comparisons using box-and-
whisker plots may be useful. In Figure 11.2, one box-and-whisker plot is made
for each group, and box-and-whisker plots for the groups are plotted on the same
graph.

A Model for Means

In the previous section, we showed how means could be fitted to groups of obser-
vations using least squares. In the DNA example, the model for the weights of the
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FIGURE 11.2. Comparative box-and-whisker plots of weight, in grams, for male mice
grouped by presence and type of DNA fragment (Smith et al. [SZZCR95]).

mice is simply that

E(Yi) �



b0 if no trisomy present

b0 + bA if 141G6 fragment present

b0 + bB if 152F7 fragment present

b0 + bC if 230E8 fragment present

b0 + bD if 285E6 fragment present.

This simple model, where the mean of a continuous valued responseYi is deter-
mined according to the group or category to which theith unit belongs, is called a
one-way classification. An alternative parameterization of the model is presented
in a later section. One advantage to this parameterization is thatbA represents the
difference between the nontransgenic mean and the mean for those mice with the
extra 141G6 fragment. If the mean weights are the same, thenbA � 0, and the
estimated coefficient may be used to test this hypothesis: couldb̂A be this far from
zero by chance. To do this, we standardize the estimate:

b̂A/ŜE(b̂A).

Estimation of the standard error ofb̂A is discussed in the Exercises. To determine
the distribution of this statistic, we place the following typical assumptions on the
Yi :
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Normal means model. The Yi are uncorrelated, Var(Yi)� σ 2, and the
meansȲA, ȲB, . . . have approximate normal distributions.

Traditionally the additional assumption is made that theYi have normal distribu-
tions in order to justify significance tests when the sample sizes are small. For
example, under the assumption that theYi are uncorrelated, Var(Yi) � σ 2, theYi
have normal distributions, and thatbA � 0 (i.e., that the population means of the
two groups are the same), then the preceding standardized estimate of the coef-
ficient b̂A has at-distribution withn − G degrees of freedom. In general, if the
sample sizes are large, then by the central limit theorem,b̂A has an approximate
normal distribution.

Notice that we have fitted only indicator variables in our model, though we could
also include continuous variables.

Sums of Squares

As in any least squares fit, the total sum of squares can be rewritten as the sum of
the “explained” sum of squares and residual sum of squares,

n∑
i�1

(yi − ȳ)2 �
n∑
i�1

(ŷi − ȳ)2 +
n∑
i�1

(yi − ŷi)
2.

But with a one-way classification, these sums of squares have simple forms because
the fitted values are exactly the group means:

n∑
i�1

(ŷi − ȳ)2 �
G∑
g�1

ng(ȳg − ȳ)2,

n∑
i�1

(yi − ŷi)
2 �

G∑
g�1

∑
(g)

(yi − ȳg)
2,

where

ȳg � 1

ng

∑
(g)

yi

is the average of theng subjects in thegth group.
These sums of squares are traditionally laid out in ananalysis of variance

(ANOVA) tableas shown in Table 11.2. In an analysis of variance table, the ex-
plained, or group, sum of squares is typically called thebetween groupsum of
squares, and the residual sum of squares is called thewithin groupsum of squares.
These two sums of squares can be used to simultaneously compare the means from
all groups. In other words, under the hypothesis thatE(Y1) � · · · � E(YG) and the
Yi are uncorrelated, Var(Yi) � σ 2, and theYi have normal distributions, the ratio∑

(ŷi − ȳ)2/(G− 1)∑
(yi − ŷi)2/(n−G)
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TABLE 11.2. Analysis of Variance Table for a one-way classification.

Source df Sum of squares Mean square F statistic

Group G− 1
∑G

g�1 ng(ȳg − ȳ)2
∑
ng (ȳg−ȳ)2

G−1

∑
ng (ȳg−ȳ)2/(G−1)∑
(yi−ŷi )2/(n−G)

Residual n−G
∑n

i�1(yi − ŷi)2
∑

(yi−ŷi )2
n−G

Total n− 1
∑n

i�1(yi − ȳ)2

has anF distribution withG−1 andn−G degrees of freedom. Here the degrees of
freedom for the numerator are the number of groups less 1, and for the denominator
they are the number of observations minus the number of groups. This ratio (the
F statistic) is robust against moderate departures from normality. It is also robust
against unequal error variances, and in the absence of normality, theF statistic can
still act as a measure of variation between groups relative to that within groups.

An Alternative Parameterization

We have seen that the model for the means of observations fromG groups can be
parameterized asE(Yi) � b0 + bg when theith subject is in thegth group,g �
1, . . . ,G− 1, andE(Yi) � b0 for theGth group. An alternative parameterization
often used in analysis of variance is

E(Yi) � µ+ αg,

when theith subject is in thegth group,g � 1, . . . ,G. This representation of the
model for group means is overparameterized because there areG+ 1 parameters
and onlyG groups.

We can still find a unique minimum, with respect toµ, α1, α2, . . . , αG, of the
sum of squares

n∑
i�1

[yi − (µ+ α1e1,i + α2e2,i + . . . αGeG,i)]
2,

whereeg,i is 1 if theith subject belongs to groupg and is 0 otherwise. Differenti-
ating with respect to these parameters and setting the expressions to zero, we get
a set ofG+ 1 equations:

n∑
i�1

[yi − (µ̂+ α̂1e1,i + α̂2e2,i + . . .+ α̂GeG,i)] � 0;∑
(g)

[yi − (µ̂+ α̂geg,i)] � 0, for g � 1, . . . ,G.
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These equations determine the unique minimum of the sum of squares, and from
this it is easy to check that̄yg � µ̂ + α̂g for g � 1, . . . ,G. However, there are
many combinations of estimates that achieve this unique minimum sum of squares
(see Exercise 7). A unique set of estimates can be singled out by placing a linear
constraint on the parameters (µ, α1, α2, . . . , αG) or, more simply, by takinĝµ � ȳ.
This is permissible as soon as we know there is at least one solution of the above
G+ 1 equations. It then follows that

α̂g � ȳg − ȳ, g � 1, . . . ,G.

Regardless of the parameterization, the fitted values remain the same. They
are theG group means:̄y1, . . . , ȳG. That is, if mousei is in thegth group,g �
1, . . . ,G− 1,

ŷi � µ̂+ α̂g

� b̂0 + b̂g

� ȳg,

and if mousei is in theGth group, thenŷi � ȳG as well. We would obtain the
same set of solutions (µ̂, α̂1, . . . , α̂G) if we minimized our sum of squares subject
to the constraint

n1α1 + n2α2 + . . .+ nGαG � 0,

whereng is the number of mice in groupg. Note that our estimateŝαg � ȳg − ȳ

satisfy this linear constraint. In the special case when there are an equal number of
responses in each group, the constraint has a particularly simple form:

∑
αg � 0.

This special case is called abalanced one-way classification.

Multi-way Classifications

Mice may be classified in many different ways, according to sex (male or female),
DNA fragment (141G6, 152F7, 230E8, 285E6), whether they are transgenic (yes,
no), family line, and cage. We may want to consider more than one classification
simultaneously, or we may want to stratify and look at groups of mice separately.

Here is an example where we consider two classifiers and stratify by a third.
Restrict attention to all those mice that have descended from a transgenically
altered mouse with an extra 141G6 fragment of DNA. In other words, stratify
according to the type of DNA fragment in the family line. These mice may or may
not be transgenic, and they also may be male or female. The sex of the mouse and
whether it is transgenic are the two classifiers that we will consider here for the
141G6 subgroup.

We can fit means for each of the 2×2 classifications of the mice: male-transgenic,
male-nontransgenic, female-transgenic, and female-nontransgenic. For the 141G6
subgroup, denoted byA,∑

(A)

[yi − (a0 + aMT eMT,i + aMNeMN,i + aFT eFT ,i)]
2,
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where the variableseMT , eMN , andeFT are indicators for the male-transgenic,
male-nontransgenic, and female-transgenic classifications, respectively, and the
summation is over those mice in a 141G6 family. Then

â0 � ȳFN ,

âMT � ȳMT − ȳFN ,

âMN � ȳMN − ȳFN ,

âFT � ȳFT − ȳFN .

That is, the least squares solution fits four means to each of the four groups. We
call this thefull model.

An alternative, simpler model is theadditive modelthat minimizes, with respect
to d0, dM , anddT , the sum of squares∑

(A)

[yi − (d0 + dMeM,i + dT eT,i)]
2,

whereeM indicates the sex of the mouse, andeT indicates whether the mouse is
transgenic or not. With this model, only three parameters are fitted; this implies
that the expected weights of the four groups are:

d0 for female nontransgenic mice,

d0 + dT for female transgenic mice,

d0 + dM for male nontransgenic mice, and

d0 + dM + dT for male transgenic mice.

The model is called additive because the mean levels for female and male non-
transgenic mice differ bydM , and the mean levels for female and male transgenic
mice differ bydM as well. That is,dM , the sexeffect, is the same regardless of
whether the mice are transgenic or not. With the additive model, there is one fewer
parameter to fit than in the previous full model. An additional indicator variable
may be added to the additive model,eMT � eM × eT , to obtain the full model.
Including this additional variable allows the difference in mean levels between the
male and female transgenic mice to be different from that for the nontransgenic
mice. It is called aninteraction term because it allows the sex effect to “inter-
act” with the transgenic effect, so differences between the male and female means
depend on whether the mice are transgenic. As in the one-way classification, the
standardized estimate for the coefficient of the interaction term has an approximate
normal distribution provided the group means are additive and the normal means
model holds. Additionally, for small samples, if theYi have normal distributions,
then the coefficient has at distribution withn− 4 degrees of freedom. Therefore,
if the standardized estimate is large compared to the normal (ort) distribution, this
suggests that the additive assumption is not true in this case.

Plots andF tests provide other ways to check the additivity assumption. Fig-
ure 11.3 shows plots of mean weights for the mice in the 141G6 family lines. The
means for female transgenic and female nontransgenic mice are connected with
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FIGURE 11.3. Plot of weight, in grams, for male and female mice from 141G6 family
lines, according to whether they are transgenic or not (Smith et al. [SZZCR95]). The lines
illustrate the difference in mean weight for transgenic and nontransgenic mice by sex.

a line, as are the means for the male transgenic and nontransgenic mice. Additiv-
ity would be indicated by parallel line segments. However, here we see that the
difference in mean weights of male and female mice is larger for nontransgenic
mice. In particular, male transgenic mice weigh more than male nontransgenic
mice, whereas the female transgenic mice weigh less than the female nontrans-
genic mice. Though the lines are close to being parallel, this relationship suggests
that an additive model is not suitable for these data. AnF test can be used to test
this statement.

We can also consider different parameterizations for multi-way classifications.
In the two-way classification, withG levels of the first classifier andH levels of
the second, we parameterize the additive model as follows:

E(Yi) � τ + γg + δh,

where theith subject belongs to thegth category of the first classifier and thehth
category of the second classifier. To fit this model, we minimize the following
sums of squares with respect toτ, γ1, . . . , γG, δ1, . . . , δH , wherefh,i is 1 if theith
unit belongs to thehth category of the second classifier, and 0 otherwise:

n∑
i�1

[
yi −

(
τ +

G∑
g�1

γgeg,i +
H∑
h�1

δhfh,i

)]2

.

As with the one-way classification, this linear model is overparameterized, and
again we can single out a unique set of parameter estimates achieving the minimum
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sum of squares in different ways. In the balanced case, where there areK mice,
say, in each of theG×H classifications, two convenient linear constraints which
single out a unique solution are∑

γg �
∑

δh � 0.

Assuming that our two-way classification is balanced, these constraints lead to the
following least-squares estimates:

τ̂ � ȳ,

γ̂g � ȳg. − ȳ,

δ̂h � ȳ.h − ȳ,

where ȳg. is the average response for theHK mice in groupg, and ȳ.h is the
average response for theGK mice in grouph. Note thatK of the mice in group
g of the first classifier belong to grouph of the second. (It is easy to check that∑
γ̂g � ∑

δ̂h � 0.) The advantage of this parameterization is that the sums of
squares have particularly simple forms. However, if group sizes are unequal, then,
in general, there are no simple formulas for the unique solution. See the Exercises
for an alternative way of subscripting theyi .

Two-way Classification

For the balanced two-way classification, the explained sum of squares for the
additive model can be written

n∑
i�1

(ŷi − ȳ)2 � SS1 + SS2,

where

SS1 � HK
∑
g

γ̂ 2
g � HK

∑
g

(ȳg. − ȳ)2,

SS2 � GK
∑
h

δ̂2
h � GK

∑
h

(ȳ.h − ȳ)2,

and the residual sum of squares can be written as
n∑
i�1

(yi − ŷi)
2 � SS1×2 +WSS,

where

SS1×2 � K
∑
g

∑
h

[ȳgh − (µ̂+ γ̂g + δ̂h)]
2

� K
∑
g

∑
h

[ȳgh − ȳg. − ȳ.h + ȳ]2
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TABLE 11.3. Analysis of variance table for the balanced two-way classification.

Source df SS MS F

Group 1 G− 1 SS1
SS1
G−1

SS1/(G−1)
WSS/GH (K−1)

Group 2 H − 1 SS2
SS2
H−1

SS2/(H−1)
WSS/GH (K−1)

Interaction (G− 1)(H − 1) SS1×2
SS1×2

(G−1)(H−1)
SS1×2/(G−1)(H−1)
WSS/GH (K−1)

Residual GH (K − 1) WSS WSS

GH (K−1)

Total GHK − 1
∑

(yi − ȳ)2

and

WSS �
∑
g

∑
h

∑
(gh)

(yi − ȳgh)
2.

Here ȳgh is the average of theK mice belonging to both groupg of the first
classifier and grouph of the second classifier, and the inner sum inWSS is over
theK observations in this group.

The respective degrees of freedom forSS1, SS2, SS1×2, andWSS are:G − 1,
H − 1, (G − 1)(H − 1), andGH (K − 1). Each of the ratios of mean squares
in the last column of Table 11.3 can be used for model checking. The first ratio
tests whetherαg � 0, g � 1, . . . ,G, and the second can be used in a similar test
that δh � 0, h � 1, . . . , H . The third ratio can be used to check the additivity
assumption. It compares the reduction in residual sum of squares of the additive
model when we include the interaction term to the residual sum of squares for the
full model:

[
∑

(yi − ȳg. − ȳ.h + ȳ)2 −∑(yi − ȳgh)2]/(G− 1)(H − 1)∑
(yi − ȳgh)2/(n−GH )

.

These test statistics each have anF distribution, given the typical assumptions
on Yi . For example, the test statistic for the interaction sum of squares has anF

distribution with (G− 1)(H − 1) andGH (K − 1) degrees of freedom.

Exercises

1. Table 11.4 contains the averages and SDs for the weights of male and female
mice from family lines with DNA fragment 141G6. Use these summary statis-
tics to construct an ANOVA table for the 141G6 mice with sex as the only
classifier.

2. Consider the summary statistics in Table 11.4 for male and female mice from
the 141G6 families. Use these statistics to estimate the coefficients in the linear
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TABLE 11.4. Summary statistics for the weights (grams) of male and female mice in 141G6
family lines (including both transgenic and nontransgenic mice).

Number Average SD
Male 94 31.70 2.62
Female 83 25.23 2.00

model

E(Yi) � a + beM,i .

Construct a test of the hypothesis thatb is 0.Hint: Recall thatb̂ � ȳM − ȳF ,
and use a pooled estimate ofσ 2 (page 172) in your estimate of

SE(̂b) � σ

√
1

nM
+ 1

nF
.

3. Show that the square of the test statistic in Exercise 2 is the same as theF

statistic in the ANOVA table derived in Exercise 1. Also show that, in general,
a t test that tests for a difference in two means and uses a pooled estimate of
the SD is equivalent to theF test in a one-way ANOVA table.

4. Consider the one-way classification based on DNA fragment,

E(Yi) � b0 + bAeA,i + bBeB,i + bCeC,i + bDeD,i,

where, for example,eA,i � 1 if theith mouse is transgenic and belongs to one
of the 141G6 families, and otherwise it is 0.

a. Suppose we assume that theYi ’s are uncorrelated with varianceσ 2. Show
that

SE(b̂A) � σ

√
1

n0
+ 1

nA
.

b. Show that
1

n−G

[ ∑
(no trisomy)

(yi − ȳ0)2 +
∑
(A)

(yi − ȳA)2

+
∑
(B)

(yi − ȳB)2 +
∑
(C)

(yi − ȳC)2 +
∑
(D)

(yi − ȳD)2
]

is an unbiased estimate ofσ 2.

5. Consider the coefficients in Exercise 4. To conduct four hypothesis tests that
each of the coefficients is 0 at theα � 0.05 level, we set the cutoff according
to α/4 � 0.0125 because we want the overall level of all four tests to be at
most 0.05. In other words, we want the probability of a Type I error to be at
most 0.05 simultaneously for all four tests. Prove that this is the case; that is,

P( any test rejects| all hypotheses correct)< 0.05.
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6. Consider the following simple model for the weights of the mice,

E(Yi) � a + bxi,

where for theith mouse

xi �
{

−1/nF if it is female

+1/nM if it is male,

nF is the number of female mice andnM is the number of male mice. Show
that the least squares predicted values areȳF and ȳM , according to whether
the mouse is male or female. Use this fact to derive the least squares estimates
of the coefficients:

â � ȳ,

b̂ � (ȳM − ȳF )/

(
1

nM
+ 1

nF

)
.

7. Show that for a one-way classification withG groups, if (̂µ, α̂1, . . . , α̂G)
minimizes

n∑
i�1

[yi − (µ+ α1e1,i + . . .+ αGeG,i)]
2,

then so does (̂µ− t, α̂1 + t, . . . , α̂G + t) for any realt .
8. Multiple subscripts are often used in analysis of variance models. For example,

suppose there aren observations, and each observation is classified into one
of G groups. We can denote the observation byYgi using two subscripts, the
first denoting the groupg to which the unit belongs,g � 1, . . . ,G, and the
second the index of the unit within the group,i � 1, . . . , ng, whereng is the
size of groupg. We can then fit the linear model

E(Ygi) � cg, g � 1, . . . ,G,

by minimizing

G∑
g�1

ng∑
i�1

(ygi − cg)
2

with respect toc1, . . . , cG. Show that the minimizing values arêcg � ȳg,
where, as before,

ȳg � 1

ng

ng∑
i�1

ygi .

9. Consider the alternative parameterization for the one-way classification,

E(Ygi) � µ+ αg,
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whereYgi is defined in Exercise 8. Find the set of equations that are satisfied
by all solutions in the minimization of

G∑
g�1

ng∑
i�1

(ygi − µ− αg)
2

with respect toµ, α1, . . . , αG. Show that, if we set

µ̂ � ȳ � 1

n

∑
g

∑
i

ygi,

the solutions are uniquely given byα̂g � ȳg − ȳ.
10. For the one-way classification withG groups, show that the total sum of

squares can be written as

G∑
g�1

ng∑
i�1

(ygi − ȳ)2 �
G∑
g�1

ng(ȳg − ȳ)2 +
G∑
g�1

ng∑
i�1

(ygi − ȳg)
2.

Be sure to show that the cross product is 0.
11. Consider a one-way classification withG groups andng observations in each

group,g � 1, . . . ,G. Under the Gauss measurement model, show that the
within-group sum of squares has expectation

G∑
g�1

(ng − 1)σ 2.

Also, under the additional assumption that the group means are all equal, show
that the between-group sum of squares has expectation (G−1)σ 2. Hint: Adapt
the result on page 38 that givesE(s2) to this situation.

12. Table 11.5 is an ANOVA table for the one-way classification by transgenic
for the 74 male mice in the 285E6 family line. Many of the cells in the table
have been left blank. Fill in the blank cells using only the other entries in the
table and 74, the number of mice. Determine whether theF test is statistically
significant.

13. Consider the following model for a 2× 2 classification, including a factor for
sex, for transgenic, and for their interaction for mice in the families with the
141G6 fragment:

E(Yi) � d0 + dMeM,i + dT eT,i + dMT,ieM,i × eT,i .

TABLE 11.5. ANOVA table for the one-way classification of weight, in grams, by transgenic
for 74 male mice in the 285E6 lines.

Source df SS MS F
Transgenic 1 19.4 2.4
Residual
Total
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Use the fact that the predicted values are the group means to determine the
least squares estimates for the coefficients:

d̂0 � ȳFN ,

d̂T � ȳFT − ȳFN ,

d̂M � ȳMN − ȳFN ,

d̂MT � ȳMT − ȳFT + ȳFN − ȳMN .

14. Show that under the assumption that the weights are uncorrelated with fi-
nite varianceσ 2, the estimatêdMT derived in Exercise 13 has the following
variance:

σ 2

(
1

nMT
+ 1

nMN
+ 1

nFN
+ 1

nFT

)
.

15. In Exercise 13, we saw that the interaction coefficient was estimated by

d̂MT � ȳMT − ȳFT + ȳFN − ȳMN .

a. Use the summary statistics in Table 11.6 to find a numeric value for this
estimate.

b. Estimate the variance of̂dMT .
c. Test the hypothesis of no interaction.

16. In the two-way classification, three subscripts can be used to denote the re-
sponse of theith unit in both thegth group of the first classifier and thehth
group of the second classifier,

E(Yghi) � θgh,

for g � 1, . . . ,G, h � 1, . . . , H , andi � 1, . . . , ngh. Consider minimizing

G∑
g�1

H∑
h�1

ngh∑
i�1

(yghi − θgh)
2,

with respect toθgh, for g � 1, . . . ,G andh � 1, . . . , H . Show that the least
squares solution iŝθgh � ȳgh, where

ȳgh � 1

ngh

ngh∑
i�1

yghi .

TABLE 11.6. Summary statistics of weight (grams) for mice in the 141G6 family lines.

Group Number Average SD
Female nontransgenic 43 25.5 1.9
Female transgenic 40 25.0 2.1
Male nontransgenic 30 30.9 1.8
Male transgenic 64 32.1 2.1
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17. In the linear model

E(Yghi) � τ + γg + δh,

for the balanced two-way classification withngh � K for all g andh, we saw
that

τ̂ � ȳ,

γ̂g � ȳg. � 1

HK

∑
h

K∑
i�1

yghi,

δ̂h � ȳ.h � 1

GK

∑
g

K∑
i�1

yghi .

a. Show that the model sum of squares can be written as

G∑
g�1

γ̂ 2
g +

H∑
h�1

δ̂2
h.

Be sure to show that the cross product term is 0.
b. Show that the residual sum of squares can be written as

K

G∑
g�1

H∑
h�1

(ȳgh − τ̂ − γ̂g − δ̂h)
2 +

G∑
g�1

H∑
h�1

K∑
i�1

(yghi − ȳgh)
2.

Again, be sure to show that the cross product term is 0.
c. Use part (b) to prove that the residual sum of squares for the additive model

is always at least as large as the residual sum of squares for the full model
with every cell having its own mean.

18. Consider the geometric approach to least squares (see the Extensions section
of Chapter 10), wherey represents then×1 vector of weightsyi , 1 is a vector
of 1s, andeM is the vector that indicates the sex of the mouse (i.e.,eM,i � 1
if the ith mouse is male and 0 otherwise). Then the sum of squares can be
expressed as

|y − (b01 + bMeM )|2.
a. Show that space spanned by1 andeM is the same as the space spanned by

eM andeF , where the vectoreF is an indicator for the female mice.
b. Explain why the projection ofy ontoeM is ȳMeM .
c. Show thateM andeF are orthogonal.
d. Use the orthogonality to determine the projection ofy onto this space and

to find b̂0 andb̂M .

19. Use the geometric approach to explain why the following sum of squares is
overparameterized: ∣∣∣∣∣y −

(
µ1 +

G∑
g�1

αgeg

)∣∣∣∣∣
2

,
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where then × 1 vectorseg are indicators for the groups. Further, use the
constraint that

∑
ngαg � 0 to re-express the sum of squares above as∣∣∣∣∣(y − ȳ1) −

(
G∑
g�1

αgeg

)∣∣∣∣∣
2

and therefore show that, under this constraint,α̂g � ȳg − ȳ.
20. Apply the geometric approach to least squares to Exercise 6. That is, first show

that1 is orthogonal tox. Then use this fact to derivêa andb̂ as the coefficients
of the projections ofy onto the vectors1 andx, respectively.

Notes

Much of the background information on the creation of transgenic mice and
on the care and testing of the mice was obtained from Desmond Smith, a sci-
entist at the Human Genome Center, Lawrence Berkeley National Laboratory.
Smith provided a guided tour of the laboratory and was very helpful in an-
swering our many questions on the subject. The data were made available by
Edward Rubin, senior scientist on the project. A complete and nontechnical
introduction to Down Syndrome can be found inDown Syndrome: The Facts
([Sel90]), and current information on the syndrome can be found on the web
site http://www.nas.com/downsyn/. Cheryl Gay assisted in the preparation of the
background material for this lab.
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Introduction

Figure 12.1 contains a diagram for making a helicopter from a single sheet of 8.5
× 5.5 inch paper and a paper clip. Can you build a better one—one that takes
longer to reach the ground when dropped from a height of eight feet? To develop
this new, superior helicopter, at most 25 sheets of paper may be used and at most
two hundred flight times may be recorded.

Unlike the other labs, this one does not have a real-world question with a set
of data collected that addresses the question. Instead, it is an artificial setup in
which you, the investigator, design and conduct an experiment. The analysis of
the experimental results is only one part of the statistical work involved in the
experimentation process. In this lab, you will encounter many of the problems
faced in the design and implementation of an experiment, including finding out
how accurately flight time can be measured, figuring out how to decide which
helicopter to build first, and deciding how to proceed in the experimentation as
you analyze your experimental results.

Data

The data for this lab have not been previously collected. As part of your lab work,
you will collect it in a notebook for analysis.

The information collected will be the wing widths and lengths of model heli-
copters, and their flight times. The wing dimensions will be determined by you,
the investigator. They are called the design variables; they are the variables over
which you have control. Their units of measurement are to be determined by the
investigator.

The response is the time it takes the helicopter to reach the ground from a fixed
height. To record these times, you will need a stop watch that measures time to the
nearest hundredth of a second.

Along with the helicopter measurements and flight times, you may find it useful
to annotate your numeric records. For example, a helicopter may hit a wall during
flight, or a helicopter may have very erratic flights, sometimes sailing smoothly
and other times plummeting wildly to the ground. Record all flight times and keep
track of any additional information that may prove useful in your search for the
best helicopter.

Background

All helicopters are restricted to have the general form shown in Figure 12.1. The
wing length and the wing width of the helicopter are the only two design variables
to be investigated in the search for the best helicopter. The body width and length
are to remain constant for all helicopters. A single, 32 mm, metal paper clip is
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FIGURE 12.1. Directions for making a paper helicopter.

to be attached to the bottom of the helicopter, as in Figure 12.1. Please use only
authorized materials in the construction of the helicopters. No additional folds,
creases, or perforations are allowed.

Here are some comments on helicopter building that previous students have
made in their notebooks. They may save you time in getting started.

“Rich creased the wings too much and the helicopters dropped like a rock,
turned upside down, turned sideways, etc.”
“Andy proposes to use an index card to make a template for folding the base
into thirds.”
“After practicing, we decided to switch jobs. It worked better with Yee timing
and John dropping. 3 – 2 – 1 – GO.”
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TABLE 12.1. Flight times, in seconds, for ten flights each of two identical helicopters.
Helicopter #1

1.64 1.74 1.68 1.62 1.68 1.70 1.62 1.66 1.69 1.62
Helicopter #2

1.62 1.65 1.66 1.63 1.66 1.71 1.64 1.69 1.59 1.61

Table 12.1 gives the flight times for ten flights from two helicopters made ac-
cording to the specifications wing width = 4.6 cm, wing length = 8.2 cm. The
average of all 20 flight times is 1.66 seconds, and the SD is 0.04 seconds. The
helicopters were dropped from a height of approximately eight feet. There are
much better helicopters; your job is to find one.

Investigations

Setup

The experiment is to be conducted by pairs of investigators. You may want to
designate one partner to be the launcher and one to be the timer. However, both
partners should try each of the jobs, so they have a sense of the work involved.

Record the flight times in a notebook. Be sure to annotate the recordings with
observations about environmental effects, flight patterns, or any information that
you think may be useful.

As a precursor to the main experiment, familiarize yourself with the product,
the instruments, and the operation of the lab. Use the following list of questions
as a guide in this process.

• How reproducible are the measurements of flight time? Try flying one or two
helicopters several times, and examine summary statistics for the flight times
for each helicopter.

• Do you notice any person-to-person differences, or other environmental effects?
If possible, separate measurement error from “natural variability.”

• Is there any variability between “identical” helicopters? That is, how similar are
the flight times for two helicopters built according to the same specifications.

• Which wing dimensions lead to viable helicopters?
• How big do the changes in the dimensions of the helicopters need to be in order

to easily observe a difference in the flight time?

It will be most effective to compare mean flight times for different helicopters.
How many flight times should be recorded and averaged for each helicopter’s
mean response? What is an estimate for the standard error for the mean response?
Too few flights per helicopter may result in indistinguishable results because the
variability is too large. On the other hand, too many flights will be time consuming.
Also, these helicopters have a very limited lifespan; they wear out quickly. The
standard error that you determine here will be used to make design decisions for
the rest of the experiment. It is important to get it right.
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Of course, changes in your experimentation process can be made along the way
to correct for earlier errors and new findings. Nonetheless, it is important to be
careful and thorough in this part of the experimentation. Time spent here learning
about the variability in the process could save time, limit confusion, and produce
more reliable results later.

Begin the Search

Choose a set of wing dimensions to begin the search for the best helicopter. The
wing width and length designate a point in what we call the design space of
helicopters. The left plot in Figure 12.2 gives an example of such a design point;
call it d0.

Each helicopter has a “true” flight time. If it were plotted above the width and
length of the helicopter, then the flight times might look like a surface map above
the design space (Figure 12.2; right plot). The flight time is called the helicopter’s
response, and the map of flight times is called theresponse surface. Our goal is to
find the helicopter that corresponds to the maximum flight time—the location on
the design space of the highest peak on the response surface.

To do this, we search in small regions of the design space to get an idea of the
local shape of the response surface. Then we use our rough, local picture of the
surface to determine the general direction for continuing the search. We repeat this
investigation in a new part of the design space until it looks as though we are in
the neighborhood of the peak.

This search is described in three parts.

Width

Le
ng

th • do

d0

Width
Length

Time

•

•

FIGURE 12.2. Examples of a design space (left) and response surface (right).
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1. First-order Search

Form a rectangle around the design pointd0, with it as the center of the rectangle.
Label each of the corners of the rectangled1, d2, d3, andd4, as in the left plot
in Figure 12.3. The earlier informal experimentation should give a sense of the
appropriate size of the rectangle.

Build helicopters corresponding to the design pointsd1, ...,d4, fly each of them
many times, and record the flight times in your notebook. Also draw a diagram of
the design rectangle that is true to scale, and mark the average flight times on the
diagram. (Why might it be a good idea to fly the helicopters in random order?)

If flight time is locally linear about the design pointd0, and if the rectangle is
not too large, then the linear model

time � a + b × width + c × length

should provide a reasonable approximation to the response surface.
To determine estimates of these coefficients, fit the linear model using the method

of least squares. You may use the computer to minimize the sum of squares or,
as shown in the Theory section, the calculations are simple enough to be done on
an ordinary calculator. Be sure to check whether the assumption of local linearity
is reasonable. Examine the residuals from the fit. If nonlinearity is apparent, try
correcting the problem with transformations of the design and response variables.
This may not be possible if the rectangle is too big.

FIGURE 12.3. Examples of a rectangular design (left) and rectangular plus star design
(right).
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FIGURE 12.4. Examples of a linear contour plot (left) and quadratic contour plot (right).

2. The Path of Steepest Ascent

If the linear fit is adequate, then it can be used to determine the direction of future
searches.

• Draw contour lines on the design region that correspond to the contours of the
fitted plane.

• Draw a line from the center ofd0 perpendicular to the contour lines.
• Choose a design point along this line, build the corresponding helicopter, and

measure the improvement in flight time. Continue to explore in this direction
until you have settled on a new region to conduct your search. Be careful not
to take steps that are too small or too large. Try moving far along the line and
backing up halfway if the results indicate you have gone too far.

• Return to the first-order search above.

3. Second-order Search

If the linear model is inadequate, then a more complex design to fit a quadratic
model may be required. The quadratic model is

time � d + e × width + f × length +
g × width2 + h× length2 + k × width × length.

To fit this model, more data must be collected. One approach is to augment the
rectangular design by a star design as in the right plot of Figure 12.3. Once the
additional data are collected at design pointsd5, d6, d7, d8, then the coefficients
can be estimated via least squares. Again, these estimates can easily be obtained
with the use of a calculator, as shown in the Theory section.
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From the coefficients of the quadratic model, the contours of the quadratic can
be sketched on the design space and the peak region can be determined.

Note that these procedures rely on the quadratic model being a reasonable local
approximation to the response surface.

One Last Word of Advice

The following excerpts from student reports provide advice on how to get started,
set up a design, and proceed along the path of steepest ascent.

“We realized that we did this wrong, because we used [whole] centimeter
increments instead of [whole] millimeters, so our design rectangle was too
large. We started over.”
“Instead of testing regions in a contiguous fashion, perhaps we should have
moved further along the steepest ascent vector at each round. We had wanted
to have complete coverage of the test path, but our test method was too slow
and used up too many helicopters along the way.”
“We figured out posthumously why our analyses were so bad is that we were
using the wrong proportions for our path of steepest ascent. [Actually no
one died.]”

Mistakes are bound to happen. The comments above will help you avoid some
of the more serious ones.

Your notebook will serve as the final report. It should contain all data, statistical
calculations, design diagrams, contour plots, and a narration of the experimental
process. Make sure the narration includes the problems that you encountered,
reasons for proceeding as you did, and final conclusions. All calculations can be
done with a calculator. The only time a computer is needed is for drawing the
quadratic contour plot.

Try to avoid making the following types of conclusions:

“Our data are very suspicious.”
“We made an extremely vital mistake.”
“Since we are out of paper, we will just ...”
“Great things were expected from our contour analysis, but unfortunately,
fell far short of our goals.”

Theory

Variability

In setting up the experiment, one of the first goals is to estimate the inherent
variability in flight times. Table 12.1 shows the results of ten helicopter flights for
two such helicopters. The average of the ten measurements taken on helicopter #1
is 1.67, and the standard deviation is 0.04.
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In comparing the performance of various helicopters, the average flight time
for each helicopter is used. The standard error for the average flight time can be
estimated bys/

√
n, wheres is an estimate of the standard deviation of flight time

andn is the number of flights for that helicopter.
The results of flight times from many different helicopters can be combined

to provide a more accurate estimate of the standard deviation. That is, of course,
provided that all the helicopters have roughly the same variability in flight time.
If so, the standard deviations for the helicopters can be pooled by forming their
r.m.s. as follows:

sp �
√
s2
1 + · · · + s2

m

m
,

where

s2
i � 1

k − 1

k∑
j�1

(yi,j − ȳi)
2

is the estimated flight time standard deviation for theith helicopter,yi,j is the flight
time for thej th flight of the ith helicopter, and̄yi is the average flight time for
the ith helicopter. If the individual standard deviationss1, ..., sm are based on a
different number of observations, then a different weighting scheme for pooling
standard deviations is required. (See the Exercises.)

Factorial Design

The rectangular set of design points in the left plot of Figure 12.3 are arranged
in what is known as a 2× 2 factorial. With this arrangement, the response (flight
time) can be maximized over both dimensions in the design space (wing width and
length) simultaneously. Thecontour plotto the left in Figure 12.4 is an example
of the result of such a maximization. The arrow originating from the center of
the rectangle points in the direction of the path of steepest ascent. The path is
determined by the two coefficientsb andc for wing width and wing length in the
linear equation below:

time � a + b × width + c × length.

A contour line on the plot corresponds to a set of wing width and length values
that yield the same estimated time. A simple rearrangement of the terms in the
equation above gives the equation for these contour lines:

length � time− a

c
− b

c
width.

The slope of this line is−b/c. Hence the slope of a perpendicular to these
contour lines isc/b. The path of steepest ascent from the center of the design
rectangle can readily be sketched on the design space as in Figure 12.4.
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Determining the path of steepest ascent via the factorial design is a much better
search method than sequentially searching in one direction at a time: flight time
is first maximized for helicopters with different wing widths but the same wing
length, after which flight time is maximized over various wing lengths using the
previously found “maximum” wing width. This search may end far from the true
maximum.

The linear equation above serves as a local approximation to the response sur-
face. If the response surface is smooth enough (i.e., if it has a continuous first
derivative), then it can be approximated by a plane in a small region aroundd0.
The local linear approximation then provides a direction for continuing the search
for the maximum flight time.

The linear model implies that, for a particular wing width, time is linear in
wing length, and the slope of the line does not depend on the wing width. A more
complex local approximation may be indicated if the linear approximation does
not fit the data well. For example, there may be an interaction between wing width
and length where, for a particular wing width, time is linear in length but the slope
of the line depends on the width. Also, a quadratic function may yield a better
local approximation. This may occur near the maximum, due to the curvature of
the response surface. In this case, hopefully the maximum of the local quadratic
approximation is near the true maximum of the response surface. However, the
quadratic approximation may also be poor if, for example, the region over which
the approximation is being made is too large.

Below is a quadratic model that includes an interaction term:

time � d + e × width + f × length + g × width2

+ h× length2 + k × width × length.

Hereg andh are coefficients for the second-order terms for width and length,
respectively. Ignoring these quadratic terms for the moment, notice that for a
fixed wing width, the interaction term yields a model that is linear in length with
coefficient (f + k × width).

The 2×2 factorial is a very simple design. With only four design points, the six
coefficients in the model above cannot be estimated. The rectangular design can
be augmented by a star design as in the right plot of Figure 12.3. Then the flight
times at the eight design points can be used to make a quadratic approximation
to the response surface in the neighborhood of the design pointd0. With this
approximation, it is not as easy to simply sketch the contours of the quadratic onto
the design space. However, graphical software can be used to make the contour
plots.

Fitting the Response Surface

To fit the local, linear approximation, the coefficientsa, b, andc need to be es-
timated. For each design point,di , a helicopter has been flown several times and
an average flight time reported, sayȳi . (Note thatdi � (wi, li), wherewi denotes
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the wing width andli the wing length.) We use the method of least squares to find
the coefficients that minimize the sum of squared deviations for the averagesȳi .
These estimated coefficients are calledâ, b̂, andĉ.

Most statistical software can perform this minimization for you. However, the
rectangular design of the experiment makes it very easy to determine these coeffi-
cients by simple arithmetic. The main advantage in doing it “by hand” is that the
computer may not be available at the time of data collection. A second one is that
you will get to exercise your math skills. A few simple calculations can quickly
point out the path of steepest ascent, and the helicopter building and flying can
continue uninterrupted.

The simple solution is based on a relabeling of the design axes to measure all
helicopters relative tod0, the center of the rectangle. Suppose helicopterd1 has
wings 3 mm narrower and 5 mm shorter thand0. (Note that it is also the case that
helicopterd4 has wings that are both 3 mm wider and 5 mm longer thand0’s.)
Change the scale so that 3 mm in width is one unit in width and 5 mm in length
is one unit in length. Thend1 has width−1 and length−1, relative tod0. The
rescaled widths and lengths for the rectangular design are displayed in Table 12.2.
There is nothing special about the choice 3 mm and 5 mm; these numbers were
only given as an example.

Now we can easily determine the least squares estimates ofa, b, andc to be

â � ȳ1 + ȳ2 + ȳ3 + ȳ4

4
, b̂ � −ȳ1 + ȳ2 − ȳ3 + ȳ4

4
,

ĉ � −ȳ1 − ȳ2 + ȳ3 + ȳ4

4
.

To draw the path of steepest ascent on your original design, convert back to the
original units. For our example, where width is measured in increments of 3 mm
and length in increments of 5 mm, the slope in original units will be 3c/5b.

This same procedure can be used in estimating the coefficients in the quadratic
model. Table 12.3 gives the measurements in the new units for each of the
helicopters in the composite design in Figure 12.3 (right plot).

The least squares estimates are

TABLE 12.2. Design variables for the 2× 2 factorial rectangular design.

Design Average
point time Width Length
d1 ȳ1 –1 –1
d2 ȳ2 +1 –1
d3 ȳ3 –1 +1
d4 ȳ4 +1 +1
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TABLE 12.3. Design variables for the composite rectangular plus star design.

Design
Point Width Length Width2 Length2 Width × Length
d1 –1 –1 1 1 1
d2 1 –1 1 1 –1
d3 –1 1 1 1 –1
d4 1 1 1 1 1
d5 0 –1 0 1 0
d6 1 0 1 0 0
d7 0 1 0 1 0
d8 –1 0 1 0 0

d̂ � −ȳ1 − ȳ2 − ȳ3 − ȳ4 + 2ȳ5 + 2ȳ6 + 2ȳ7 + 2ȳ8

4
,

ê � −ȳ1 + ȳ2 − ȳ3 + ȳ4 − ȳ6 + ȳ8

6
, f̂ � −ȳ1 − ȳ2 + ȳ3 + ȳ4 − ȳ5 + ȳ7

6
,

ĝ � ȳ1 + ȳ2 + ȳ3 + ȳ4 − 2ȳ5 − 2ȳ7

4
, ĥ � ȳ1 + ȳ2 + ȳ3 + ȳ4 − 2ȳ6 − 2ȳ8

4
,

k̂ � ȳ1 − ȳ2 − ȳ3 + ȳ4

4
.

If the linear approximation in the 2× 2 factorial design is too crude, it will show
up in the residuals

ȳ1 − (â + b̂w1 + ĉl1) � ȳ1 − ȳ2 − ȳ3 + ȳ4

4
.

In this case, the quantity above estimates the interaction between wing width and
length and as such is a measure of model misfit. (To see this, notice that it matches
the least squares estimate ofk, the coefficient of the interaction term in the quadratic
model.) On the other hand, if the linear approximation is good, then the “residual”
k̂ above should have expectation 0 and SEσn/2, whereσn is the standard error of
the average flight time. That is,σn � σ/

√
n, wheren is the number of flights for

each helicopter. To determine if there is significant model misfit, the “residual”
can be compared against the replication-based estimate of the standard deviation.

Under the linear model, the standard errors of the coefficients in the least squares
fit of the linear approximation are allσn/2. In the quadratic fit, the standard errors
for d̂, ê, f̂ , ĝ, ĥ, andk̂ are, respectively,

√
5σn/2,σn/

√
6,σn/

√
6,

√
3σn/2,

√
3σn/2,

andσn/2. These coefficients can also be compared against the replication-based
estimate of the standard deviation.
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Exercises

1. Derive the least squares estimates ofâ, b̂, andĉ from the minimization of

4∑
i�1

[ȳi − (a + bwi + cli)]
2

with wi andli as in Table 12.2.
2. Show that the path of steepest ascent fromd0 for the fitted plane (Exercise 1)

has slope iŝc/b̂.
3. Supposem helicopters are labeledi � 1, . . . m, and each is flownki times,

whereyi,j is the flight time for thej th flight of theith helicopter. Show that

s2
i � 1

ki − 1

ki∑
j�1

(yi,j − ȳi)
2

is an unbiased estimate for the variance of the flight time for theith helicopter.
4. Suppose the SD of flight time is the same for allm helicopters in Exercise 3.

Find a pooled estimatorsp for the SD. Show thats2
p is unbiased.

5. Show that the residuals̄yi − ŷi for the first-order model are such thatr1 �
−r2 � −r3 � r4. Explain why this is the case.

6. Show that the residualr1 has expectation 0 and SEσn/2 under the linear
model.

7. Show that the residual for the first-order model is an estimate of the interaction
weight× length.

8. Prove that the SEs of̂a, b̂, andĉ are allσn/2.
9. Find the SE ofd̂ andf̂ in the star design.

10. Suppose the contours of a response surface are elliptical and the response is
the following function:

exp

[
−
(
w2 + 1

4
l2 − 1

4
wl

)]
.

Maximize this function with respect tol, holdingw fixed at 1/2. Call the
maximizerl∗. Then holdingl∗ fixed, maximize overw, and show that the
overall maximum is not achieved.

11. Show that the linear model is set up so thatw, the vector of widths,l, the
vector of lengths, and1 are orthogonal.

12. Are the vectors in the quadratic model orthogonal? Use what you discover
to derive the least squares estimators ford, e, f , g, h, andk in the quadratic
model.
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Notes

The idea for this lab came out of a discussion with Bill Kahn. At the time he
was Chief Statistician for the Gore Company. One of Kahn’s roles was to train
the company’s engineers in the design of experiments. For proprietary reasons, he
could not share any of the data that these engineers collected in their experiments,
but he explained that his most effective teaching technique was to let the engineers
design and run a simple, fun experiment from scratch. He left us with a paper
helicopter, from which we developed this lab. Andy Choy, a student in one of our
earlier classes, suggested the use of a paper clip to help stabilize the helicopter’s
flight.

Later, we discovered Bisgaard’s ([Bis91]) description of the use of a paper heli-
copter in a classroom setting to teach design of experiments to engineers. Bisgaard
outlines how the helicopter can be used as a connecting theme throughout an entire
introductory statistics course. We do not know whether or not that helicopter is the
same as the one in Figure 12.1. Other examples of how to teach design of experi-
ments to engineers appear in Hunter ([Hun77]), Kopas and McAllister ([KM92]),
and Mead ([Mead90]). Hoadley and Kettenring ([HK90]) provide an interest-
ing discussion on communications between statisticians and engineers/physical
scientists.

The material on response surface analysis in the Theory section is adapted from
Box, Hunter and Hunter ([BHH78]) Chapter 15. Other, more detailed treatments of
the subject appear in Box and Draper ([BD87]) and Khuri and Cornell ([KC87]).
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Appendix A
Writing Lab Reports

To prepare your lab report, distill your investigations into a central argument. Then
organize your findings into units of evidence for your argument. A good lab report
is more than a compilation of your statistical analyses. A good report should be
well organized, and it should demonstrate clear and sound reasoning, contain easily
interpreted data displays, and use good grammar.

Organization1

Format your report into recognizable sections to clarify the structure of the paper.
Two levels of headings are usually helpful to provide a general outline. A paper
without section headings drags and is difficult to follow.

The choice of sections should match the reader’s expectations. For example, a re-
search article is generally divided into sections labeled: Introduction, Methodology,
Results, and Discussion. When the sections are jumbled, such as when discussion
or experimental detail is found in the statement of the results, the readers may
become confused.

Use the Introduction to state the problem you are addressing and your findings.
Without giving away all your points, let the reader know where your paper is
headed.

1The first three paragraphs of this section are summarized from, S. Tollefson,
“Encouraging Student Writing,” S. Tollefson, University of California, p. 24.
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• Catch the reader’s attention. Start with an example, a quotation, a statistic, a
question, or a complaint and use it as a theme that you refer to throughout the
paper.

• The Introduction sets the tone for your report. Explain why the problem you
are addressing is important. Appear to be interested in the topic.

• Break up a long Introduction into several paragraphs. One huge paragraph at
the outset of a paper can put readers off.

• Avoid such phrases as “I will discuss” or “this report will examine.” Better to
just dive right in.

Use the Methodology section to describe your data and how they were collected.
This information helps the reader assess the appropriateness of your analysis and
the significance of your findings.

• Describe the subject(s) under study. Be as specific as possible. Make clear who
was included in the study and who was not.

• Outline the procedures used for collecting the data. For example, if the data
are from a sample survey, then the reader may need to know the sampling
method, the interview process, and the exact wording of the questions asked.
Also address any problems with the data such as nonresponse.

• Explain how the variables measured can be used to address the scientific ques-
tion of interest. Clearly distinguish between the main outcome of the study and
auxiliary information. Be sure to provide the units in which the responses were
measured.

Use the Results section to present your findings. Limit the presentation to those
results that are most relevant to your argument and most understandable to the
reader.

• Be parsimonious in your use of supporting tables and graphs. Too much extra-
neous information overloads the reader and obscures the importance of your
main thesis. The reader is often willing to accept a brief statement summarizing
your additional findings, especially if the material presented is well displayed
and to the point. When preparing your data displays, follow the guidelines that
appear later in this appendix. Each display must be discussed in the prose.

• Limit the use of statistical jargon. Save the most technical material for an
Appendix where you show the advanced reader your more sophisticated ideas
and more complicated calculations.

• Include in your report any findings that point to a potential shortcoming in your
argument. These problems should be considered in the Discussion section.

• If you include a figure from another paper, cite the original source in your figure
caption.

Use the Discussion section to pull together your results in defense of your main
thesis.

• Be honest. Address the limitations of your findings. Discuss, if possible, how
your results can be generalized.



Appendix A. Writing Lab Reports 253

• Be careful not to overstate the importance of your findings. With statistical
evidence, we can rarely prove a conjecture or definitively answer a question.
More often than not, the analysis provides support for or against a theory, and
it is your job to assess the strength of the evidence presented.

• Relate your results to the rest of the scientific literature. Remember to give
credit to the ideas of others. Consider the following questions:

— Do your results confirm earlier findings or contradict them?
— What additional information does your study provide over past studies?
— What are the unique aspects of your analysis?
— If you could continue research into the area, what would you suggest for the

next step?

Clarity and Structure of Prose2

Information in a passage of text is interpreted more easily and more uniformly if it
is placed where readers expect to find it. Readers naturally emphasize the material
that arrives at the end of a sentence. When the writer puts the emphatic material at
the beginning or middle of a sentence, the reader is highly likely to emphasize the
wrong material and to incorrectly interpret the message of the sentence. Readers
also expect the material at the beginning of the sentence to provide them a link
to previous material and a context for upcoming material. When old information
consistently arrives at the beginning of the sentence, it helps readers to construct
the logical flow of the argument.

Observe the following structural principles:

• Follow a grammatical subject as soon as possible with its verb.
• Place at the end of the sentence the new information you want the reader to

emphasize.
• Place the person or thing whose story a sentence is telling at the beginning of

the sentence.
• Place appropriate old information (material already stated in the discourse)

at the beginning of the sentence for linkage backward and contextualization
forward.

• Provide context for your reader before asking that reader to consider anything
new.

• Try to ensure that the relative emphases of the substance coincide with the
relative expectations raised by the structure.

Here is an example from Gopen and Swan of scientific prose that begins sen-
tences with new information and ends with old information. After reading the
paragraph, we have no clear sense of where we have been or where we are going.

2The material in this section is summarized from G.D. Gopen and J.A. Swan, “The
Science of Scientific Writing,”Am. Sci., 78:550–558.
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Large earthquakes along a given fault segment do not occur at random inter-
vals because it takes time to accumulate the strain energy for the rupture. The
rates at which tectonic plates move and accumulate strain at their boundaries
are approximately uniform. Therefore, in first approximation, one may ex-
pect that large ruptures of the same fault segment will occur at approximately
constant time intervals. If subsequent main shocks have different amounts
of slip across the fault, then the recurrence time may vary, and the basic idea
of periodic mainshocks must be modified. For great plate boundary ruptures
the length and slip often vary by a factor of 2. Along the southern segment
of the San Andreas fault the recurrence interval is 145 years with variations
of several decades. The smaller the standard deviation of the average recur-
rence interval, the more specific could be the long term prediction of a future
mainshock.

Gopen and Swan revised the paragraph to abide by the structural principles
outlined above. The phrases in square brackets are suggestions for connections
between sentences. These connections were left unarticulated in the original para-
graph; they point out the problems that had existed with the logical flow of the
argument.

Large earthquakes along a given fault segment do not occur at random inter-
vals because it takes time to accumulate the strain energy for the rupture. The
rates at which tectonic plates move and accumulate strain at their bound-
aries are approximately uniform. Therefore, nearly constant time intervals
(at first approximation) would be expected between large ruptures of the
same fault segment. [However?], the recurrence time may vary; the basic
idea of periodic mainshocks may need to be modified if subsequent main
shocks have different amounts of slip across the fault. [Indeed?], the length
and slip of great plate boundary ruptures often vary by a factor of 2. [For
example?], the recurrence intervals along the southern segment of the San
Andreas fault is 145 years with variations of several decades. The smaller
the standard deviation of the average recurrence interval, the more specific
could be the long term prediction of a future mainshock.

Data Displays3

The aim of good data graphics is to display data accurately and clearly, and the
rules for good data display are quite simple. Examine data carefully enough to
know what they have to say, and then let them say it with a minimum amount of
adornment. Do this while following reasonable regularity practices in the depiction
of scale, and label clearly and fully.

3The material in this section is summarized from “How to Display Data Badly,” H.
Wainer,The American Statistician38:137–147, 1984.
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The following list provides guidelines for how to make good data displays.

• Density– Holding clarity and accuracy constant, the more information displayed
the better. When a graph contains little information, the plot looks empty and
raises suspicions that there is nothing to be communicated. However, avoid
adding to the displays extraneous graphics such as three-dimensional bars,
stripes, and logos. Chart junk does not increase the quantity of information
conveyed in the display; it only hides it.

• Scale–

– Graph data in context; show the scale of your axes.
– Choose a scale that illuminates the variation in the data.
– Do not change scale in mid-axis.
– If two plots are to be compared, make their scales the same.

• Labels– Captions, titles, labels, and legends must be legible, complete, accurate,
and clear.

• Precision– Too many decimal places can make a table hard to understand.
The precision of the data should dictate the precision reported. For example,
if weight is reported to the nearest 5 pounds then a table presenting average
weights should not be reported to the nearest 1/100 of a pound.

• Dimensions– If the data are one-dimensional, then use a visual metaphor that
is one-dimensional. Increasing the number of dimensions can make a graph
more confusing. Additional dimensions can cause ambiguity: is it length, area,
or volume that is being compared?

• Color– Adding color to a graph is similar to adding an extra dimension to the
graph. The extra dimension should convey additional information. Using color
in a graph can make us think that we are communicating more than we are.

• Order– Sometimes the data that are to be displayed have one important aspect
and others that are trivial. Choose a display that makes it easy to make the
comparison of greatest interest. For example: (a) ordering graphs and tables al-
phabetically can obscure structure in the data that would have been obvious had
the display been ordered by some aspect of the data; (b) Stacking information
graphically indicates the total but can obscure the changes in individual com-
ponents, especially if one component both dominates and fluctuates greatly; (c)
comparisons are most easily made by placing information all on one plot.

Grammar4

Bad grammar distracts the reader from what you are trying to say. Always assume
that whoever reads your paper will be evaluating your grammar, sentence structure,
and style, as well as content. Content cannot really be divorced from form.

4The material in this section is reprinted with permission from S. Tollefson,
“Encouraging Student Writing,” University of California, p. 27.
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Examples of grammatical problems:

• subject–verb or noun–pronoun agreement
Theories of cosmology suggests that the universe must have more than three
dimensions. (“suggest”)
Everyone investigating mass extinctions by asteroids may bring their own
prejudices to the investigations. (“Scientists investigating ... may bring their...”)

• faulty comparison—either incomplete or mixing apples and oranges
Thin metal strands deposited in a silicon wafer make it better. (“better” than
what?)
The stars in some galaxies are much more densely packed than the Milky Way.
(“than those in the Milky Way”)

• sentence fragment
The HTLV virus, nearly unknown six years ago (although some evidence of a
longer existence has been found) rapidly becoming the Black Plague of modern
times. (add “is” before “rapidly”)
The virus may be handled in the laboratory. But only with care. (These should
be one sentence.)

• misuse of tenses and confusion of parts of speech
Some researchers feel badly about how lab animals are treated. (“feel bad”)
Ever since Quagmire Chemical Company requested a heat exchanger, we
investigated several options. (“have investigated”)

• idiom—usually a misuse of prepositions
The Human Subjects Committee insisted to do it their way (“insisted on doing
it...”)

• modification—usually a word or phrase in the wrong place
When applying an electric field, liquid crystal molecules align themselves and
scattering of light is reduced. (Dangling—should be “When one applies...”)
Incinerating industrial wastes can produce compounds toxic to humans such
as dioxins. (misplaced—should be “can produce compounds, such as dioxins,
toxic to humans.”)

• parallel structure
In gel electrophoresis, large ions move slowly and small ones are traveling more
quickly. (“...and small ones travel more quickly”)
The vaccinia virus may be used to vaccinate against small pox and as a carrier of
genetic material from one organism to another. (“...to vaccinate...and to carry”)

• passive voice—not always bad, but overused
Short stature and low IQ can be caused by an extra chromosome. (more often
than not, it’s preferable to say “An extra chromosome causes...”)
Trisomy-21 is still often called “mongolism.” (“People still often call...”)

• predication—illogical connection among subject/verb/complements
Viewing occultations of certain asteroids suggests that they have moons. (it’s
not the viewing, but the occultations themselves that suggest this)
Exposure to intense x-rays is the reason these crystals glow. (exposure itself
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is not the reason—what the x-rays do to the structure causes the glow; or you
could say “Exposure to intense x-rays causes these crystals to glow.”)

• reference—faulty or vague
The deprojector and image stretcher allow us to examine tilted galaxies as if
they were facing us head on. It’s a great breakthrough. (“Development of these
devices is a great...”)

• run-together sentence
The meteor impact site in the Indian Ocean is the best possibility at the moment,
however, other sites do exist. (semicolon or period needed before “however”)
The layer of semenium is worldwide, it shows only a few gaps. (semicolon or
period needed after “worldwide”)

Revising and Proofreading

After you have completed a draft, look at the paper again. Learn to see where new
material is needed, where material should be deleted, and where reorganization
is required. Once you have spent enormous effort on the analysis and writing,
proofread your manuscript two or three times. Keep looking for unclear passages,
format errors, poor reasoning, etc., right down to the moment you submit the paper.

Use the following questions to appraise your manuscript:

• Is the problem clearly stated?
• Are the statistical statements correct?
• Are the data displays informative?
• Are the conclusions based on sound evidence?
• Are the grammar and sentence structure correct?
• Are the style and tone appropriate for the venue?
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Random Variables

A discreterandom variable is a random variable that can take on a finite or at most
a countably infinite number of different values. If a discrete random variableX

takes valuesx1, x2, . . ., its distribution can be described by itsprobability mass
function, or frequency function,

f (xi) � P(X � xi).

These satisfy 0≤ f (xi) ≤ 1 and
∑

i f (xi) � 1.
Thedistribution functionof any random variableX is defined as

F (x) � P(X ≤ x).

F (x) is a nondecreasing, left-continuous function which can take values between
0 and 1.

The expected valueof a discrete random variableX with probability mass
functionf is defined as

E(X) �
∑
i

xif (xi).

One can also compute the expected value of any functiong(X) by

E [g(X)] �
∑
i

g(xi)f (xi).

A continuousrandom variable is a random variable that can take on uncountably
many values, for example, all real numbers, or all real numbers in the interval [−1,
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1]. The analog of the probability mass function for continuous random variables is
thedensity functionf (x), which is a nonnegative, piecewise continuous function
such that

∫∞
−∞ f (x)dx � 1. For any real numbersa ≤ b,

P(a ≤ X ≤ b) �
∫ b

a

f (x)dx.

It follows that for any single pointa, P(X � a) � 0. Additionally, we may write
the distribution function as

F (x) � P(X ≤ x) �
∫ x

−∞
f (t)dt.

Conversely, the density may be expressed through the distribution function by

f (x) � d

dx
F (x).

The expected value of a continuous random variableX with density functionf is

E(X) �
∫ ∞

−∞
xf (x)dx,

and for any functiong(X),

E [g(X)] �
∫ ∞

−∞
g(x)f (x)dx.

The joint distribution functionof variablesX andY is

F (x, y) � P(X ≤ x, Y ≤ y).

For two discrete random variables, one can define their joint probability mass
function as

f (x, y) � P(X � x, Y � y).

Then themarginal probability mass functions ofX andY can be computed as,
respectively,

fX(x) �
∑
y

f (x, y) and fY (y) �
∑
x

f (x, y).

One can similarly define the joint density functionf (x, y) of two continuous
random variablesX andY . It is a nonnegative piecewise continuous function of
two variablesx andy such that

∫∞
−∞
∫∞
−∞ f (x, y)dxdy � 1. The marginal densities

of X andY are then defined by

fX(x) �
∫ ∞

−∞
f (x, y)dy and fY (y) �

∫ ∞

−∞
f (x, y)dx.

The conditional distribution ofY givenX is a probability mass function (or a
density function) writtenf (y|x) such that

f (x, y) � f (y|x)fX(x).
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Two random variablesX andY are independentif their joint probability mass
function or densityf (x, y) can be written as

f (x, y) � fX(x)fY (y),

or equivalentlyf (y|x) � fY (y).
Intuitively, independence means that knowing the value of one variable does not

change the distribution of the other variable. Independent variablesX andY have
the following important property:

E(XY ) � E(X)E(Y ),

and in general, for any functionsg andh,

E [g(X)h(Y )] � E [g(X)] E [h(Y )] .

Properties of Expectation, Variance and Covariance

Thevarianceof a random variableX is defined as

Var(X) � E [X − E(X)]2 � E(X2) − [E(X)]2.

Thestandard deviationof X is defined as

SD(X) �
√

Var(X).

Thecovarianceof two random variablesX andY is

Cov(X, Y ) � E[X − E(X)][Y − E(Y )] � E(XY ) − E(X)E(Y ),

and thecorrelation coefficientis

corr(X, Y ) � Cov(X, Y )

SD(X)SD(Y )
.

X andY are calleduncorrelatedif their correlation coefficient is equal to 0.
Independent variables are always uncorrelated, but uncorrelated variables are not
necessarily independent.

If a andb are real numbers, andX andY are random variables, then

1. E(aX + b) � aE(X) + b.
2. E(X + Y ) � E(X) + E(Y ).
3. Var(X) ≥ 0.
4. Var(aX + b) � a2Var(X).
5. Var(X + Y ) � Var(X) + Var(Y ) + 2Cov(X, Y ).
6. If X andY are uncorrelated, Var(X + Y ) � Var(X) + Var(Y )
7. −1 ≤ corr(X, Y ) ≤ 1, and if corr(X, Y ) � ±1, then there exist some constants
a andb such thatY � aX + b.
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Examples of Discrete Distributions

1. Bernoulliwith parameterp, 0 ≤ p ≤ 1.

• X can be thought of as an outcome of a coin toss (X � 1 if head;X � 0 if
tail) for a coin withP(head)� p.

• X can take values 0 or 1.

f (1) � P(X � 1) � p, f (0) � P(X � 0) � 1 − p;

E(X) � p, Var(X) � p(1 − p).

2. Binomialwith parametersn andp, n a positive integer and 0≤ p ≤ 1.

• X can be thought of as the number of heads inn independent coin tosses for
a coin withP(head)� p.

• X can take valuesk � 0,1, . . . , n.

f (k) �
(
n

k

)
pk(1 − p)n−k � n!

k!(n− k)!
pk(1 − p)n−k.

E(X) � np, Var(X) � np(1 − p).

• If X1, . . . , Xn are independent Bernoulli random variables with common
parameterp, thenX � X1 + . . .+Xn is binomial with parametersn andp.

• A useful identity for binomial coefficients:
n∑
k�0

(
n

k

)
xkyn−k � (x + y)n.

• If we let x � p, y � 1 − p, we see
∑n

k�0 f (k) � 1. If we letx � y � 1,
we get the identity

n∑
k�0

(
n

k

)
� 2n.

3. Geometricwith parameterp, 0 ≤ p ≤ 1.

• X can be thought of as the number of coin tosses up to and including the
first head for a coin withP(head)� p.

• X can take valuesk � 1,2, . . ..

f (k) � (1 − p)k−1p.

E(X) � 1

p
, Var(X) � 1 − p

p2
.

4. Negative binomialwith parametersr andp, r a positive integer and 0≤ p ≤ 1.

• X can be thought of as the number of coin tosses up to and including the
time a head appears for therth time for a coin withP(head)� p.
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• X can take valuesk � r, r + 1, . . ..

f (k) �
(
k − 1

r − 1

)
(1 − p)k−rpr .

E(X) � r

p
, Var(X) � r(1 − p)

p2
.

• If X1, . . . , Xr are independent geometric random variables with parameter
p, thenX � X1 + . . .+Xr is negative binomial with parametersr andp.

5. Poissonwith parameterλ > 0.

• X can take valuesk � 0,1, . . ..

f (k) � e−λλk

k!
.

E(X) � λ, Var(X) � λ.

• If X1, . . . , Xn are independent Poisson random variables with parameters
λ1, . . . , λn, then their sumX � X1 +· · ·+Xn is a Poisson random variable
with parameterλ1 + · · · + λn.

6. Hypergeometricwith parametersn,M, andN all positive integers.

• Suppose an urn containsN balls:M black andN − M white. If n balls
are drawn without replacement, thenX denotes the number of black balls
among them.

• X can take valuesk � max(0, n−N +M), . . . ,min(n,M).

f (k) �
(
M

k

)(
N−M
n−k
)(

N

n

) ,

E(X) � n
M

N
, Var(X) � n

M

N

(
1 − M

N

)
N − n

N − 1
.

• The hypergeometric distribution describes sampling without replacement
from a finite population. If we keepn fixed and letM andN go to infinity
in such a way thatM/N → p, then the hypergeometric probability mass
function converges to the binomial probability mass function with param-
etersn andp. In other words, when the population is very large, there is
essentially no difference between sampling with and without replacement.

7. Multinomial with parametersn, p1, . . . , pr , n a positive integer, 0≤ pi ≤ 1,∑r
i�1pi � 1.

• Suppose each ofn independent trials can result in an outcome of one of
r types, with probabilitiesp1, . . . , pr , and letXi be the total number of
outcomes of typei in n trials.
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• EachXi can take valuesni � 0,1, . . . , n, such that
∑n

i Xi � n.

P(X1 � n1, . . . , Xr � nr ) �
(

n

n1, . . . , nr

)
p
n1
1 p

n2
2 . . . pnrr ,

provided thatn1 + n2 + . . .+ nr � n, where(
n

n1, . . . , nr

)
� n!

n1!n2! · · · nr ! .

• The binomial distribution is a special case of multinomial withr � 2.

Examples of Continuous Distributions

1. Uniformon the interval (0,1).

f (x) �
{

1 if 0 ≤ x ≤ 1

0 otherwise
,

F (x) �


0 if x < 0

x if 0 ≤ x ≤ 1

1 if x > 1

,

E(X) � 1

2
, Var(X) � 1

12
.

Uniform on (0,1) can be generalized to uniform on any interval (a, b) for a, b
real numbers witha < b. If X is uniform on (0,1), thenX′ � a + (b − a)X
is uniform on (a, b). It is easy to see thatX′ has density

f (x) �


1

b − a
if a ≤ x ≤ b

0 otherwise

and

E(X′) � a + b

2
, Var(X′) � (b − a)2

12
.

2. Exponentialwith parameterλ > 0.

f (x) �
{
λe−λx if x ≥ 0

0 otherwise
,

F (x) �
{

1 − e−λx if x ≥ 0

0 otherwise
,

E(X) � 1

λ
, Var(X) � 1

λ2
.
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• The Poisson process provides an important connection between exponen-
tial and Poisson random variables. SupposeX1, X2, . . . are independent
exponentials with parameterλ. Let S0 � 0, andSn � X1 + · · · + Xn for
all n. Fix somet > 0. LetN (t) be the last index n such thatSn < t , i.e.
SN (t) < t ≤ SN (t)+1. ThenN (t) is a Poisson random variable with param-
eterλt . Moreover, if we think ofS1, . . . , Sn as points on a real line, then,
conditional onN (t) � n, the locations of thesen points are independently
and uniformly distributed in the interval (0, t).

3. Gammawith parametersλ > 0 andα > 0.

f (x) �


λα


(α)
xα−1e−λx if x ≥ 0

0 otherwise
,

where the gamma function
(α) is defined by
(α) � ∫∞
0 tα−1e−t dt and for

α a positive integer
(α) � (α − 1)!.

E(X) � α

λ
, Var(X) � α

λ2
.

• Exponential with parameterλ is a special case of Gamma withα � 1.
Additionally, ifX1, . . . , Xn are independent exponential random variables
with parameterλ, thenX � X1 +· · ·+Xn has a Gamma distribution with
parametersλ andn.

4. Betawith parametersa > 0 andb > 0.

f (x) �


1

B(a, b)
xa−1(1 − x)b−1 if 0 ≤ x ≤ 1

0 otherwise
,

where the beta functionB(a, b) is defined by

B(a, b) �
∫ 1

0
ta−1(1 − t)b−1dt � 
(a)
(b)


(a + b)
.

E(X) � a

a + b
, Var(X) � ab

(a + b)2(a + b + 1)
.

5. Standard normal, writtenN (0,1).

f (x) � 1√
2π

exp

(
−1

2
x2

)
,

E(X) � 0, Var(X) � 1.

6. Normalwith parametersµ andσ 2 > 0, writtenN (µ, σ 2).

f (x) � 1√
2πσ 2

exp

(
− 1

2σ 2
(x − µ)2

)
,
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E(X) � µ, Var(X) � σ 2.

• If X is N (µ, σ 2), then (X − µ)/σ is N (0,1), a standard normal. IfY is a
standard normal, thenσY + µ is N (µ, σ 2).

• If Xi ’s are independentN (µi, σ 2
i ), anda1, . . . , an are real numbers, then

X � a1X1 + · · · + anXn is N (
∑n

i�1 aiµi,
∑n

i�1 a
2
i σ

2
i ).

7. Lognormalwith parametersµ andσ 2 > 0.

f (x) �


1

x
√

2πσ 2
exp

(
− 1

2σ 2
(logy − µ)2

)
if x ≥ 0

0 otherwise
,

E(X) � exp

(
µ+ 1

2
σ 2

)
, Var(X) � exp(2µ+ σ 2)

(
exp(σ 2) − 1

)
.

• X is called lognormal if the logarithm ofX has a normal distribution with
parametersµ andσ 2, or equivalently, ifU is N (µ, σ 2), thenX � eU .

8. Chi-squaredistribution (χ2
n ) with parametern, a positive integer calleddegrees

of freedom.

• The easiest way to defineχ2
n is as follows: letX1, . . . , Xn be independent

normal random variables with mean 0 and variance 1. ThenX2
1 + X2

2 +
· · · +X2

n has aχ2
n distribution.

• χ2
n is a special case of Gamma distribution withλ � 1/2 andα � n/2.

E(χ2
n ) � n, Var(χ2

n ) � 2n.

• If X1, . . . , Xn are a sample fromN (µ, σ 2), with x̄ � 1
n

∑n
i�1 xi the sample

mean ands2 � 1
n−1

∑n
i�1(xi − x̄)2 the sample variance, then

n− 1

σ 2
s2

has aχ2
n−1 distribution.

9. t distribution, or Student’s distribution(tn), with a positive integer parameter
n (also called degrees of freedom).

• If Z is N (0,1),Y is χ2
n , andZ andY are independent, then

Z√
Y/n

has atn distribution.
• Whenn is large, thetn distribution becomes very similar to the standard

normal distribution.

E(tn) � 0 for n > 1; Var(tn) � n

n− 2
for n > 2;
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otherwiseE(tn) and Var(tn) are not defined.
• If x1, . . . , xn are a sample fromN (µ, σ 2), with x̄ the sample mean ands2

the sample variance, then

x̄ − µ

s/
√
n

has atn−1 distribution. Here we are using another important property of
normal sample statistics:x̄ ands2 are independent.

10. F distribution(Fn1,n2) with n1 andn2 degrees of freedom.

• If Y1 andY2 are independentχ2
n1

andχ2
n2

random variables, then

Y1/n1

Y2/n2

has anF distribution withn1 andn2 degrees of freedom.

E(Fn1,n2) � n2

n2 − 2
for n2 > 2.

11. Standard bivariate normal, writtenN2(0,0,1,1, ρ), where|ρ| ≤ 1.

f (x, y) � 1

2π
√

1 − ρ2
exp

(
− 1

2(1− ρ2)
(x2 − 2ρxy + y2)

)
.

12. Bivariate normalwith parametersµX,µY , σ 2
X, σ

2
Y andρ: µX andµY are real

numbers;σ 2
X, σ

2
Y > 0; |ρ| ≤ 1. WrittenN2(µX,µY , σ 2

X, σ
2
Y , ρ).

• If (X, Y ) has a N2(0,0,1,1, ρ) standard bivariate normal distribu-
tion, then (σXX + µX, σYY + µY ) has a bivariate normal distribution
N2(µX,µY , σ 2

X, σ
2
Y , ρ). Similarly, if (X̃, Ỹ ) is bivariate normal distri-

bution N2(µX,µY , σ 2
X, σ

2
Y , ρ), then ((X̃ − µX)/σX, (Ỹ − µY )/σY ) is

N2(0,0,1,1, ρ).
• Marginal distributions ofX andY areN (µX, σ 2

X) andN (µY , σ 2
Y ), respec-

tively, andρ � corr(X, Y ). If ρ � 0, thenX andY are independent (note
that this property does not hold in general).

• The conditional distribution ofY givenX � x is normal with meanµY +
ρ σY
σX

(x − µX) and varianceσ 2
Y (1 − ρ2).

• Note that if two variables have univariate normal distributions, their joint
distribution is not necessarily bivariate normal.

Limit Theorems

1. Law of Large Numbers:LetX1, X2, . . . be a sequence of independent random
variables with meanµ and varianceσ 2. Let X̄n � 1

n

∑n
i�1Xi . Then for any

t > 0,

P(|X̄n − µ| > t) → 0 asn → ∞.



268 Appendix B. Probability

2. Central Limit Theorem:LetX1, X2, . . . be a sequence of independent, identi-
cally distributed random variables with meanµ and varianceσ 2. Let X̄n �
1
n

∑n
i�1Xi . Let �(z) � P(N (0,1) ≤ z) be the distribution function of a

standard normal. Then for anyz,∣∣∣∣P( X̄n − µ

σ/
√
n

≤ z

)
−�(z)

∣∣∣∣→ 0 as n→ ∞.

This mode of convergence is called convergence in distribution.
3. Another Central Limit Theorem:Let x1, . . . , xN be real numbers, and fixn,

0< n < N . LetS be a simple random sample of sizen from x1, . . . , xN , taken
without replacement. LetF (t) be the distribution function of the sample sum.
Then for anyt (Höglund [Hog78]),∣∣∣∣F (t) −�

(
t − nx̄

s
√
pq

)∣∣∣∣ ≤ C
∑N

k�1(xk − x̄)3

s3√pq ,

wherep � n/N , q � 1 − p,

x̄ � 1

N

N∑
k�1

xk, ands2 � 1

N

N∑
k�1

x2
k .

4. Poisson approximation to binomial:Let X1, X2, . . . be a sequence of inde-
pendent binomial random variables, whereXn is binomial(n, λ/n) for n �
1,2,3, . . ., and 0< λ < 1. Let Y have a Poisson(λ) distribution. Then, for
x � 0,1,2, . . .,

|P (Xn ≤ x) − P (Y ≤ x)| → 0 asn → ∞.
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zp

P

TABLE C.1. Cumulative normal distribution—values ofP corresponding tozp for the
standard normal curve.
zp .00 .01 .02 .03 .04 .05 .06 .07 .08 .09
.0 .5000 .5040 .5080 .5120 .5160 .5199 .5239 .5279 .5319 .5359
.1 .5398 .5438 .5478 .5517 .5557 .5596 .5636 .5675 .5714 .5753
.2 .5793 .5832 .5871 .5910 .5948 .5987 .6026 .6064 .6103 .6141
.3 .6179 .6217 .6255 .6293 .6331 .6368 .6406 .6443 .6480 .6517
.4 .6554 .6591 .6628 .6664 .6700 .6736 .6772 .6808 .6844 .6879
.5 .6915 .6950 .6985 .7019 .7054 .7088 .7123 .7157 .719 .7224

.6 .7257 .7291 .7324 .7357 .7389 .7422 .7454 .7486 .7517 .7549

.7 .7580 .7611 .7642 .7673 .7704 .7734 .7764 .7794 .7823 .7852

.8 .7881 .7910 .7939 .7967 .7995 .8023 .8051 .8078 .8106 .8133

.9 .8159 .8186 .8212 .8238 .8264 .8289 .8315 .8340 .8365 .8389
1.0 .8413 .8438 .8461 .8485 .8508 .8531 .8554 .8577 .8599 .8621

1.1 .8643 .8665 .8686 .8708 .8729 .8749 .8707 .8790 .8810 .8830
1.2 .8849 .8869 .8888 .8907 .8925 .8944 .8962 .8980 .8997 .9015
1.3 .9032 .9049 .9066 .9082 .9099 .9115 .9131 .9147 .9162 .9177
1.4 .9192 .9207 .9222 .9236 .9251 .9265 .9279 .9292 .9306 .9319
1.5 .9332 .9345 .9357 .9370 .9382 .9394 .9406 .9418 .9429 .9441

1.6 .9452 .9463 .9474 .9484 .9495 .9505 .9515 .9525 .9535 .9545
1.7 .9554 .9564 .9573 .9582 .9591 .9599 .9608 .9616 .9625 .9633
1.8 .9641 .9649 .9656 .9664 .9671 .9678 .9686 .9693 .9699 .9706
1.9 .9713 .9719 .9726 .9732 .9738 .9744 .9750 .9756 .9761 .9767
2.0 .9772 .9778 .9783 .9788 .9793 .9798 .9803 .9808 .9812 .9817

2.1 .9821 .9826 .9830 .9834 .9838 .9842 .9846 .9850 .9854 .9857
2.2 .9861 .9864 .9868 .9871 .9875 .9878 .9881 .9884 .9887 .9890
2.3 .9893 .9896 .9898 .9901 .9904 .9906 .9909 .9911 .9913 .9916
2.4 .9918 .9920 .9922 .9925 .9927 .9929 .9931 .9932 .9934 .9936
2.5 .9938 .9940 .9941 .9943 .9945 .9946 .9948 .9949 .9951 .9952

2.6 .9953 .9955 .9956 .9957 .9959 .9960 .9961 .9962 .9963 .9964
2.7 .9965 .9966 .9967 .9968 .9969 .9970 .9971 .9972 .9973 .9974
2.8 .9974 .9975 .9976 .9977 .9977 .9978 .9979 .9979 .9980 .9981
2.9 .9981 .9982 .9982 .9983 .9984 .9984 .9985 .9985 .9986 .9986
3.0 .9987 .9987 .9987 .9988 .9988 .9989 .9989 .9989 .9990 .9990

3.1 .9990 .9991 .9991 .9991 .9992 .9992 .9992 .9992 .9993 .9993
3.2 .9993 .9993 .9994 .9994 .9994 .9994 .9994 .9995 .9995 .9995
3.3 .9995 .9995 .9995 .9996 .9996 .9996 .9996 .9996 .9996 .9997
3.4 .9997 .9997 .9997 .9997 .9997 .9997 .9997 .9997 .9997 .9998
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c
p

P

TA
B

LE
C

.2.P
ercentiles

ofthe
C

hisquare
distribution—

values
of

c
p

corresponding
toP

.

df χ2
.005 χ2

.01 χ2
.025 χ2

.05 χ2
.1 χ2

.9 χ2
.95 χ2

.975 χ2
.99 χ2

.995

1 0.000039 0.00016 0.00098 0.0039 0.0158 2.71 3.84 5.02 6.63 7.88
2 0.0100 0.0201 0.0506 0.1026 0.2107 4.61 5.99 7.38 9.21 10.60
3 0.0717 0.115 0.216 0.352 0.584 6.25 7.81 9.35 11.34 12.84
4 0.207 0.297 0.484 0.711 1.064 7.78 9.49 11.14 13.28 14.86
5 0.412 0.554 0.831 1.15 1.61 9.24 11.07 12.83 15.09 16.75

6 0.676 0.872 1.24 1.64 2.20 10.64 12.59 14.45 16.81 18.55
7 0.989 1.24 1.69 2.17 2.83 12.02 14.07 16.01 18.48 20.28
8 1.34 1.65 2.18 2.73 3.49 13.36 15.51 17.53 20.09 21.95
9 1.73 2.09 2.70 3.33 4.17 14.68 16.92 19.02 21.67 23.59
10 2.16 2.56 3.25 3.94 4.87 15.99 18.31 20.48 23.21 25.19

11 2.60 3.05 3.82 4.57 5.58 17.28 19.68 21.92 24.72 26.76
12 3.07 3.57 4.40 5.23 6.30 18.55 21.03 23.34 26.22 28.30
13 3.57 4.11 5.01 5.89 7.04 19.81 22.36 24.74 27.69 29.82
14 4.07 4.66 5.63 6.57 7.79 21.06 23.68 26.12 29.14 31.32
15 4.60 5.23 6.26 7.26 8.55 22.31 25.00 27.49 30.58 32.80

16 5.14 5.81 6.91 7.96 9.31 23.54 26.30 28.85 32.00 34.27
18 6.26 7.01 8.23 9.39 10.86 25.99 28.87 31.53 34.81 37.16
20 7.43 8.26 9.59 10.85 12.44 28.41 31.41 34.17 37.57 40.00
24 9.89 10.86 12.40 13.85 15.66 33.20 36.42 39.36 42.98 45.56
30 13.79 14.95 16.79 18.49 20.60 40.26 43.77 46.98 50.89 53.67

40 20.71 22.16 24.43 26.51 29.05 51.81 55.76 59.34 63.69 66.77
60 35.53 37.48 40.48 43.19 46.46 74.40 79.08 83.30 88.38 91.95

120 83.85 86.92 91.57 95.70 100.62 140.23146.57 152.21 158.95 163.65



272 Appendix C. Tables

t p

P

TABLE C.3. Percentiles of thet distribution—values oftp corresponding toP .
df t.60 t.70 t.80 t.90 t.95 t.975 t.99 t.995

1 0.325 0.727 1.376 3.078 6.314 12.706 31.821 63.657
2 0.289 0.617 1.061 1.886 2.920 4.303 6.965 9.925
3 0.277 0.584 0.978 1.638 2.353 3.182 4.541 5.841
4 0.271 0.569 0.941 1.533 2.132 2.776 3.747 4.604

5 0.267 0.559 0.920 1.476 2.015 2.571 3.365 4.032
6 0.265 0.553 0.906 1.440 1.943 2.447 3.143 3.707
7 0.263 0.549 0.896 1.415 1.895 2.365 2.998 3.499
8 0.262 0.546 0.889 1.397 1.860 2.306 2.896 3.355
9 0.261 0.543 0.883 1.383 1.833 2.262 2.821 3.250

10 0.260 0.542 0.879 1.372 1.812 2.228 2.764 3.169
11 0.260 0.540 0.876 1.363 1.796 2.201 2.718 3.106
12 0.259 0.539 0.873 1.356 1.782 2.179 2.681 3.055
13 0.259 0.538 0.870 1.350 1.771 2.160 2.650 3.012
14 0.258 0.537 0.868 1.345 1.761 2.145 2.624 2.977

15 0.258 0.536 0.866 1.341 1.753 2.131 2.602 2.947
16 0.258 0.535 0.865 1.337 1.746 2.120 2.583 2.921
17 0.257 0.534 0.863 1.333 1.740 2.110 2.567 2.898
18 0.257 0.534 0.862 1.330 1.734 2.101 2.552 2.878
19 0.257 0.533 0.861 1.328 1.729 2.093 2.539 2.861

20 0.257 0.533 0.860 1.325 1.725 2.086 2.528 2.845
21 0.257 0.532 0.859 1.323 1.721 2.080 2.518 2.831
22 0.256 0.532 0.858 1.321 1.717 2.074 2.508 2.819
23 0.256 0.532 0.858 1.319 1.714 2.069 2.500 2.807
24 0.256 0.531 0.857 1.318 1.711 2.064 2.492 2.797

25 0.256 0.531 0.856 1.316 1.708 2.060 2.485 2.787
26 0.256 0.531 0.856 1.315 1.706 2.056 2.479 2.779
27 0.256 0.531 0.855 1.314 1.703 2.052 2.473 2.771
28 0.256 0.530 0.855 1.313 1.701 2.048 2.467 2.763
29 0.256 0.530 0.854 1.311 1.699 2.045 2.462 2.756

30 0.256 0.530 0.854 1.310 1.697 2.042 2.457 2.750
40 0.255 0.529 0.851 1.303 1.684 2.021 2.423 2.704
60 0.254 0.527 0.848 1.296 1.671 2.000 2.390 2.660
120 0.254 0.526 0.845 1.289 1.658 1.980 2.358 2.617
∞ 0.253 0.524 0.842 1.282 1.645 1.96 2.326 2.576
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m\k 1 2 3 4 5 6 7 8 9 10 12 15 20 24 30 40 60 120
1 39.86 49.5 53.59 55.83 57.24 58.2 58.9159.44 59.86 60.19 60.71 61.22 61.74 62.00 62.26 62.53 62.79 63.06
2 8.53 9.00 9.16 9.24 9.29 9.33 9.359.37 9.38 9.39 9.41 9.42 9.44 9.45 9.46 9.47 9.47 9.48
3 5.54 5.46 5.39 5.34 5.31 5.28 5.275.25 5.24 5.23 5.22 5.2 5.18 5.18 5.17 5.16 5.15 5.14
4 4.54 4.32 4.19 4.11 4.05 4.01 3.983.95 3.94 3.92 3.9 3.87 3.84 3.83 3.82 3.8 3.79 3.78

5 4.06 3.78 3.62 3.52 3.45 3.4 3.373.34 3.32 3.3 3.27 3.24 3.21 3.19 3.17 3.16 3.14 3.12
6 3.78 3.46 3.29 3.18 3.11 3.05 3.012.98 2.96 2.94 2.9 2.87 2.84 2.82 2.8 2.78 2.76 2.74
7 3.59 3.26 3.07 2.96 2.88 2.83 2.782.75 2.72 2.7 2.67 2.63 2.59 2.58 2.56 2.54 2.51 2.49
8 3.46 3.11 2.92 2.81 2.73 2.67 2.622.59 2.56 2.54 2.5 2.46 2.42 2.4 2.38 2.36 2.34 2.32
9 3.36 3.01 2.81 2.69 2.61 2.55 2.512.47 2.44 2.42 2.38 2.34 2.3 2.28 2.25 2.23 2.21 2.18

10 3.29 2.92 2.73 2.61 2.52 2.46 2.412.38 2.35 2.32 2.28 2.24 2.2 2.18 2.16 2.13 2.11 2.08
11 3.23 2.86 2.66 2.54 2.45 2.39 2.342.3 2.27 2.25 2.21 2.17 2.12 2.1 2.08 2.05 2.03 2.00
12 3.18 2.81 2.61 2.48 2.39 2.33 2.282.24 2.21 2.19 2.15 2.1 2.06 2.04 2.01 1.99 1.96 1.93
13 3.14 2.76 2.56 2.43 2.35 2.28 2.232.2 2.16 2.14 2.1 2.05 2.01 1.98 1.96 1.93 1.9 1.88
14 3.1 2.73 2.52 2.39 2.31 2.24 2.192.15 2.12 2.1 2.05 2.01 1.96 1.94 1.91 1.89 1.86 1.83

15 3.07 2.7 2.49 2.36 2.27 2.21 2.162.12 2.09 2.06 2.02 1.97 1.92 1.9 1.87 1.85 1.82 1.79
16 3.05 2.67 2.46 2.33 2.24 2.18 2.132.09 2.06 2.03 1.99 1.94 1.89 1.87 1.84 1.81 1.78 1.75
17 3.03 2.64 2.44 2.31 2.22 2.15 2.1 2.06 2.03 2.0 1.96 1.91 1.86 1.84 1.81 1.78 1.75 1.72
18 3.01 2.62 2.42 2.29 2.2 2.13 2.082.04 2.0 1.98 1.93 1.89 1.84 1.81 1.78 1.75 1.72 1.69
19 2.99 2.61 2.4 2.27 2.18 2.11 2.062.02 1.98 1.96 1.91 1.86 1.81 1.79 1.76 1.73 1.7 1.67

20 2.97 2.59 2.38 2.25 2.16 2.09 2.042.0 1.96 1.94 1.89 1.84 1.79 1.77 1.74 1.71 1.68 1.64
21 2.96 2.57 2.36 2.23 2.14 2.08 2.021.98 1.95 1.92 1.87 1.83 1.78 1.75 1.72 1.69 1.66 1.62
22 2.95 2.56 2.35 2.22 2.13 2.06 2.011.97 1.93 1.9 1.86 1.81 1.76 1.73 1.7 1.67 1.64 1.6
23 2.94 2.55 2.34 2.21 2.11 2.05 1.991.95 1.92 1.89 1.84 1.8 1.74 1.72 1.69 1.66 1.62 1.59
24 2.93 2.54 2.33 2.19 2.1 2.04 1.981.94 1.91 1.88 1.83 1.78 1.73 1.7 1.67 1.64 1.61 1.57

25 2.92 2.53 2.32 2.18 2.09 2.02 1.971.93 1.89 1.87 1.82 1.77 1.72 1.69 1.66 1.63 1.59 1.56
26 2.91 2.52 2.31 2.17 2.08 2.01 1.961.92 1.88 1.86 1.81 1.76 1.71 1.68 1.65 1.61 1.58 1.54
27 2.9 2.51 2.3 2.17 2.07 2.0 1.95 1.91 1.87 1.85 1.8 1.75 1.7 1.67 1.64 1.6 1.57 1.53
28 2.89 2.5 2.29 2.16 2.06 2.0 1.941.9 1.87 1.84 1.79 1.74 1.69 1.66 1.63 1.59 1.56 1.52
29 2.89 2.5 2.28 2.15 2.06 1.99 1.931.89 1.86 1.83 1.78 1.73 1.68 1.65 1.62 1.58 1.55 1.51

30 2.88 2.49 2.28 2.14 2.05 1.98 1.931.88 1.85 1.82 1.77 1.72 1.67 1.64 1.61 1.57 1.54 1.5
40 2.84 2.44 2.23 2.09 2.0 1.93 1.871.83 1.79 1.76 1.71 1.66 1.61 1.57 1.54 1.51 1.47 1.42
60 2.79 2.39 2.18 2.04 1.95 1.87 1.821.77 1.74 1.71 1.66 1.6 1.54 1.51 1.48 1.44 1.4 1.35
120 2.75 2.35 2.13 1.99 1.9 1.82 1.771.72 1.68 1.65 1.6 1.55 1.48 1.45 1.41 1.37 1.32 1.26
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m\k 1 2 3 4 5 6 7 8 9 10 12 15 20 24 30 40 60 120
1 161.45 199.5 215.71 224.58 230.16 233.99236.77 238.88 240.54 241.88 243.91 245.95 248.01 249.05 250.1 251.14 252.2 253.25
2 18.51 19.0 19.16 19.25 19.3 19.3319.35 19.37 19.38 19.4 19.41 19.43 19.45 19.45 19.46 19.47 19.48 19.49
3 10.13 9.55 9.28 9.12 9.01 8.94 8.89 8.85 8.81 8.79 8.74 8.7 8.66 8.64 8.62 8.59 8.57 8.55
4 7.71 6.94 6.59 6.39 6.26 6.16 6.09 6.04 6.0 5.96 5.91 5.86 5.8 5.77 5.75 5.72 5.69 5.66

5 6.61 5.79 5.41 5.19 5.05 4.95 4.88 4.82 4.77 4.74 4.68 4.62 4.56 4.53 4.5 4.46 4.43 4.4
6 5.99 5.14 4.76 4.53 4.39 4.28 4.21 4.15 4.1 4.06 4.0 3.94 3.87 3.84 3.81 3.77 3.74 3.7
7 5.59 4.74 4.35 4.12 3.97 3.87 3.79 3.73 3.68 3.64 3.57 3.51 3.44 3.41 3.38 3.34 3.3 3.27
8 5.32 4.46 4.07 3.84 3.69 3.58 3.5 3.44 3.39 3.35 3.28 3.22 3.15 3.12 3.08 3.04 3.01 2.97
9 5.12 4.26 3.86 3.63 3.48 3.37 3.29 3.23 3.18 3.14 3.07 3.01 2.94 2.9 2.86 2.83 2.79 2.75

10 4.96 4.1 3.71 3.48 3.33 3.22 3.14 3.07 3.02 2.98 2.91 2.85 2.77 2.74 2.7 2.66 2.62 2.58
11 4.84 3.98 3.59 3.36 3.2 3.09 3.01 2.95 2.9 2.85 2.79 2.72 2.65 2.61 2.57 2.53 2.49 2.45
12 4.75 3.89 3.49 3.26 3.11 3.0 2.91 2.85 2.8 2.75 2.69 2.62 2.54 2.51 2.47 2.43 2.38 2.34
13 4.67 3.81 3.41 3.18 3.03 2.92 2.83 2.77 2.71 2.67 2.6 2.53 2.46 2.42 2.38 2.34 2.3 2.25
14 4.6 3.74 3.34 3.11 2.96 2.85 2.76 2.7 2.65 2.6 2.53 2.46 2.39 2.35 2.31 2.27 2.22 2.18

15 4.54 3.68 3.29 3.06 2.9 2.79 2.71 2.64 2.59 2.54 2.48 2.4 2.33 2.29 2.25 2.2 2.16 2.11
16 4.49 3.63 3.24 3.01 2.85 2.74 2.66 2.59 2.54 2.49 2.42 2.35 2.28 2.24 2.19 2.15 2.11 2.06
17 4.45 3.59 3.2 2.96 2.81 2.7 2.61 2.55 2.49 2.45 2.38 2.31 2.23 2.19 2.15 2.1 2.06 2.01
18 4.41 3.55 3.16 2.93 2.77 2.66 2.58 2.51 2.46 2.41 2.34 2.27 2.19 2.15 2.11 2.06 2.02 1.97
19 4.38 3.52 3.13 2.9 2.74 2.63 2.54 2.48 2.42 2.38 2.31 2.23 2.16 2.11 2.07 2.03 1.98 1.93

20 4.35 3.49 3.1 2.87 2.71 2.6 2.51 2.45 2.39 2.35 2.28 2.2 2.12 2.08 2.04 1.99 1.95 1.9
21 4.32 3.47 3.07 2.84 2.68 2.57 2.49 2.42 2.37 2.32 2.25 2.18 2.1 2.05 2.01 1.96 1.92 1.87
22 4.3 3.44 3.05 2.82 2.66 2.55 2.46 2.4 2.34 2.3 2.23 2.15 2.07 2.03 1.98 1.94 1.89 1.84
23 4.28 3.42 3.03 2.8 2.64 2.53 2.44 2.37 2.32 2.27 2.2 2.13 2.05 2.01 1.96 1.91 1.86 1.81
24 4.26 3.4 3.01 2.78 2.62 2.51 2.42 2.36 2.3 2.25 2.18 2.11 2.03 1.98 1.94 1.89 1.84 1.79

25 4.24 3.39 2.99 2.76 2.6 2.49 2.4 2.34 2.28 2.24 2.16 2.09 2.01 1.96 1.92 1.87 1.82 1.77
26 4.23 3.37 2.98 2.74 2.59 2.47 2.39 2.32 2.27 2.22 2.15 2.07 1.99 1.95 1.9 1.85 1.8 1.75
27 4.21 3.35 2.96 2.73 2.57 2.46 2.37 2.31 2.25 2.2 2.13 2.06 1.97 1.93 1.88 1.84 1.79 1.73
28 4.2 3.34 2.95 2.71 2.56 2.45 2.36 2.29 2.24 2.19 2.12 2.04 1.96 1.91 1.87 1.82 1.77 1.71
29 4.18 3.33 2.93 2.7 2.55 2.43 2.35 2.28 2.22 2.18 2.1 2.03 1.94 1.9 1.85 1.81 1.75 1.7

30 4.17 3.32 2.92 2.69 2.53 2.42 2.33 2.27 2.21 2.16 2.09 2.01 1.93 1.89 1.84 1.79 1.74 1.68
40 4.08 3.23 2.84 2.61 2.45 2.34 2.25 2.18 2.12 2.08 2.0 1.92 1.84 1.79 1.74 1.69 1.64 1.58
60 4.0 3.15 2.76 2.53 2.37 2.25 2.17 2.1 2.04 1.99 1.92 1.84 1.75 1.7 1.65 1.59 1.53 1.47
120 3.92 3.07 2.68 2.45 2.29 2.18 2.09 2.02 1.96 1.91 1.83 1.75 1.66 1.61 1.55 1.5 1.43 1.35
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m\k 1 2 3 4 5 6 7 8 9 10 12 15 20 24 30 40 60 120
1 647.79 799.5 864.16 899.58 921.85 937.11948.22 956.66 963.28 968.63 976.71 984.87 993.1 997.25 1001.41 1005.6 1009.8 1014.02
2 38.51 39.0 39.17 39.25 39.3 39.3339.36 39.37 39.39 39.4 39.41 39.43 39.45 39.46 39.46 39.47 39.48 39.49
3 17.44 16.04 15.44 15.1 14.88 14.7314.62 14.54 14.47 14.42 14.34 14.25 14.17 14.12 14.08 14.04 13.99 13.95
4 12.22 10.65 9.98 9.6 9.36 9.2 9.07 8.98 8.9 8.84 8.75 8.66 8.56 8.51 8.46 8.41 8.36 8.31

5 10.01 8.43 7.76 7.39 7.15 6.98 6.85 6.76 6.68 6.62 6.52 6.43 6.33 6.28 6.23 6.18 6.12 6.07
6 8.81 7.26 6.6 6.23 5.99 5.82 5.7 5.6 5.52 5.46 5.37 5.27 5.17 5.12 5.07 5.01 4.96 4.9
7 8.07 6.54 5.89 5.52 5.29 5.12 4.99 4.9 4.82 4.76 4.67 4.57 4.47 4.41 4.36 4.31 4.25 4.2
8 7.57 6.06 5.42 5.05 4.82 4.65 4.53 4.43 4.36 4.3 4.2 4.1 4.0 3.95 3.89 3.84 3.78 3.73
9 7.21 5.71 5.08 4.72 4.48 4.32 4.2 4.1 4.03 3.96 3.87 3.77 3.67 3.61 3.56 3.51 3.45 3.39

10 6.94 5.46 4.83 4.47 4.24 4.07 3.95 3.85 3.78 3.72 3.62 3.52 3.42 3.37 3.31 3.26 3.2 3.14
11 6.72 5.26 4.63 4.28 4.04 3.88 3.76 3.66 3.59 3.53 3.43 3.33 3.23 3.17 3.12 3.06 3.0 2.94
12 6.55 5.1 4.47 4.12 3.89 3.73 3.61 3.51 3.44 3.37 3.28 3.18 3.07 3.02 2.96 2.91 2.85 2.79
13 6.41 4.97 4.35 4.0 3.77 3.6 3.48 3.39 3.31 3.25 3.15 3.05 2.95 2.89 2.84 2.78 2.72 2.66
14 6.3 4.86 4.24 3.89 3.66 3.5 3.38 3.29 3.21 3.15 3.05 2.95 2.84 2.79 2.73 2.67 2.61 2.55

15 6.2 4.77 4.15 3.8 3.58 3.41 3.29 3.2 3.12 3.06 2.96 2.86 2.76 2.7 2.64 2.59 2.52 2.46
16 6.12 4.69 4.08 3.73 3.5 3.34 3.22 3.12 3.05 2.99 2.89 2.79 2.68 2.63 2.57 2.51 2.45 2.38
17 6.04 4.62 4.01 3.66 3.44 3.28 3.16 3.06 2.98 2.92 2.82 2.72 2.62 2.56 2.5 2.44 2.38 2.32
18 5.98 4.56 3.95 3.61 3.38 3.22 3.1 3.01 2.93 2.87 2.77 2.67 2.56 2.5 2.44 2.38 2.32 2.26
19 5.92 4.51 3.9 3.56 3.33 3.17 3.05 2.96 2.88 2.82 2.72 2.62 2.51 2.45 2.39 2.33 2.27 2.2

20 5.87 4.46 3.86 3.51 3.29 3.13 3.01 2.91 2.84 2.77 2.68 2.57 2.46 2.41 2.35 2.29 2.22 2.16
21 5.83 4.42 3.82 3.48 3.25 3.09 2.97 2.87 2.8 2.73 2.64 2.53 2.42 2.37 2.31 2.25 2.18 2.11
22 5.79 4.38 3.78 3.44 3.22 3.05 2.93 2.84 2.76 2.7 2.6 2.5 2.39 2.33 2.27 2.21 2.14 2.08
23 5.75 4.35 3.75 3.41 3.18 3.02 2.9 2.81 2.73 2.67 2.57 2.47 2.36 2.3 2.24 2.18 2.11 2.04
24 5.72 4.32 3.72 3.38 3.15 2.99 2.87 2.78 2.7 2.64 2.54 2.44 2.33 2.27 2.21 2.15 2.08 2.01

25 5.69 4.29 3.69 3.35 3.13 2.97 2.85 2.75 2.68 2.61 2.51 2.41 2.3 2.24 2.18 2.12 2.05 1.98
26 5.66 4.27 3.67 3.33 3.1 2.94 2.82 2.73 2.65 2.59 2.49 2.39 2.28 2.22 2.16 2.09 2.03 1.95
27 5.63 4.24 3.65 3.31 3.08 2.92 2.8 2.71 2.63 2.57 2.47 2.36 2.25 2.19 2.13 2.07 2.0 1.93
28 5.61 4.22 3.63 3.29 3.06 2.9 2.78 2.69 2.61 2.55 2.45 2.34 2.23 2.17 2.11 2.05 1.98 1.91
29 5.59 4.2 3.61 3.27 3.04 2.88 2.76 2.67 2.59 2.53 2.43 2.32 2.21 2.15 2.09 2.03 1.96 1.89

30 5.57 4.18 3.59 3.25 3.03 2.87 2.75 2.65 2.57 2.51 2.41 2.31 2.2 2.14 2.07 2.01 1.94 1.87
40 5.42 4.05 3.46 3.13 2.9 2.74 2.62 2.53 2.45 2.39 2.29 2.18 2.07 2.01 1.94 1.88 1.8 1.72
60 5.29 3.93 3.34 3.01 2.79 2.63 2.51 2.41 2.33 2.27 2.17 2.06 1.94 1.88 1.82 1.74 1.67 1.58
120 5.15 3.8 3.23 2.89 2.67 2.52 2.39 2.3 2.22 2.16 2.05 1.94 1.82 1.76 1.69 1.61 1.53 1.43
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m\k 1 2 3 4 5 6 7 8 9 10 12 15 20 24 30 40 60 120
1 4052.18 4999.5 5403.35 5624.58 5763.65 5858.995928.36 5981.07 6022.47 6055.85 6106.32 6157.28 6208.73 6234.63 6260.65 6286.78 6313.036339.39
2 98.5 99.0 99.17 99.25 99.3 99.33 99.36 99.37 99.39 99.4 99.42 99.43 99.45 99.46 99.47 99.47 99.4899.49
3 34.12 30.82 29.46 28.71 28.24 27.91 27.67 27.49 27.35 27.23 27.05 26.87 26.69 26.6 26.5 26.41 26.3226.22
4 21.2 18.0 16.69 15.98 15.52 15.21 14.98 14.8 14.66 14.55 14.37 14.2 14.02 13.93 13.84 13.75 13.6513.56

5 16.26 13.27 12.06 11.39 10.97 10.67 10.46 10.29 10.16 10.05 9.89 9.72 9.55 9.47 9.38 9.29 9.2 9.11
6 13.75 10.92 9.78 9.15 8.75 8.47 8.26 8.1 7.98 7.87 7.72 7.56 7.4 7.31 7.23 7.14 7.06 6.97
7 12.25 9.55 8.45 7.85 7.46 7.19 6.99 6.84 6.72 6.62 6.47 6.31 6.16 6.07 5.99 5.91 5.825.74
8 11.26 8.65 7.59 7.01 6.63 6.37 6.18 6.03 5.91 5.81 5.67 5.52 5.36 5.28 5.2 5.12 5.034.95
9 10.56 8.02 6.99 6.42 6.06 5.8 5.61 5.47 5.35 5.26 5.11 4.96 4.81 4.73 4.65 4.57 4.484.4

10 10.04 7.56 6.55 5.99 5.64 5.39 5.2 5.06 4.94 4.85 4.71 4.56 4.41 4.33 4.25 4.17 4.084.0
11 9.65 7.21 6.22 5.67 5.32 5.07 4.89 4.74 4.63 4.54 4.4 4.25 4.1 4.02 3.94 3.86 3.78 3.69
12 9.33 6.93 5.95 5.41 5.06 4.82 4.64 4.5 4.39 4.3 4.16 4.01 3.86 3.78 3.7 3.62 3.54 3.45
13 9.07 6.7 5.74 5.21 4.86 4.62 4.44 4.3 4.19 4.1 3.96 3.82 3.66 3.59 3.51 3.43 3.34 3.25
14 8.86 6.51 5.56 5.04 4.69 4.46 4.28 4.14 4.03 3.94 3.8 3.66 3.51 3.43 3.35 3.27 3.183.09

15 8.68 6.36 5.42 4.89 4.56 4.32 4.14 4.0 3.89 3.8 3.67 3.52 3.37 3.29 3.21 3.13 3.05 2.96
16 8.53 6.23 5.29 4.77 4.44 4.2 4.03 3.89 3.78 3.69 3.55 3.41 3.26 3.18 3.1 3.02 2.932.84
17 8.4 6.11 5.18 4.67 4.34 4.1 3.93 3.79 3.68 3.59 3.46 3.31 3.16 3.08 3.0 2.92 2.832.75
18 8.29 6.01 5.09 4.58 4.25 4.01 3.84 3.71 3.6 3.51 3.37 3.23 3.08 3.0 2.92 2.84 2.75 2.66
19 8.18 5.93 5.01 4.5 4.17 3.94 3.77 3.63 3.52 3.43 3.3 3.15 3.0 2.92 2.84 2.76 2.67 2.58

20 8.1 5.85 4.94 4.43 4.1 3.87 3.7 3.56 3.46 3.37 3.23 3.09 2.94 2.86 2.78 2.69 2.612.52
21 8.02 5.78 4.87 4.37 4.04 3.81 3.64 3.51 3.4 3.31 3.17 3.03 2.88 2.8 2.72 2.64 2.55 2.46
22 7.95 5.72 4.82 4.31 3.99 3.76 3.59 3.45 3.35 3.26 3.12 2.98 2.83 2.75 2.67 2.58 2.5 2.4
23 7.88 5.66 4.76 4.26 3.94 3.71 3.54 3.41 3.3 3.21 3.07 2.93 2.78 2.7 2.62 2.54 2.45 2.35
24 7.82 5.61 4.72 4.22 3.9 3.67 3.5 3.36 3.26 3.17 3.03 2.89 2.74 2.66 2.58 2.49 2.4 2.31

25 7.77 5.57 4.68 4.18 3.85 3.63 3.46 3.32 3.22 3.13 2.99 2.85 2.7 2.62 2.54 2.45 2.362.27
26 7.72 5.53 4.64 4.14 3.82 3.59 3.42 3.29 3.18 3.09 2.96 2.81 2.66 2.58 2.5 2.42 2.332.23
27 7.68 5.49 4.6 4.11 3.78 3.56 3.39 3.26 3.15 3.06 2.93 2.78 2.63 2.55 2.47 2.38 2.292.2
28 7.64 5.45 4.57 4.07 3.75 3.53 3.36 3.23 3.12 3.03 2.9 2.75 2.6 2.52 2.44 2.35 2.26 2.17
29 7.6 5.42 4.54 4.04 3.73 3.5 3.33 3.2 3.09 3.0 2.87 2.73 2.57 2.49 2.41 2.33 2.23 2.14

30 7.56 5.39 4.51 4.02 3.7 3.47 3.3 3.17 3.07 2.98 2.84 2.7 2.55 2.47 2.39 2.3 2.21 2.11
40 7.31 5.18 4.31 3.83 3.51 3.29 3.12 2.99 2.89 2.8 2.66 2.52 2.37 2.29 2.2 2.11 2.02 1.92
60 7.08 4.98 4.13 3.65 3.34 3.12 2.95 2.82 2.72 2.63 2.5 2.35 2.2 2.12 2.03 1.94 1.84 1.73
120 6.85 4.79 3.95 3.48 3.17 2.96 2.79 2.66 2.56 2.47 2.34 2.19 2.03 1.95 1.86 1.76 1.661.53
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Acquired Immuse Deficiency
Syndrome, 124

additive model, 227
AIDS, 124
allocation,

optimal, 66
proportional, 67

alternative hypothesis, 92
analysis of variance table, 224

between and within group sum of
squares, 224

F test, 225, 230
interaction, 227
one-way classification, 223
two-way classification, 229
normal means model, 224

association versus causation, 200
asymptotic variance, 91
average, 11

line of averages, 146
point of averages, 154

Badillo v. Stockton, 182
balanced design, 226, 229
bands,

confidence, 172
prediction, 172

bar chart, 18
Bernoulli distribution, 262
beta distribution, 265
between group sum of squares, 224
bias, 72
binomial distribution, 262
bivariate normal distribution, 151, 155,

267
bootstrap, 42, 49

confidence interval, 42
parametric bootstrap, 69

box-and-whisker plot, 13, 13, 222, 223
box model, 35
brewing coffee, 102

Calibration, 173
causation versus association, 200
central limit theorem, 39, 268
chi-square

distribution, 109, 266
goodness-of-fit test, 83
test of homogeneity, 111
test of independence, 112

classification,
multiway classification, 226
one-way, 223
two-way classification, 229
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coffee, 102
cohort study, 129
confidence bands, 172
confidence interval, 39, 40, 173, 175

bootstrap, 42
non-normal, 132

confounding, 128, 200
contingency table, 105, 108, 112, 115
continuity correction, 48
contour plot, 245
controlled experiment, 200
correlation coefficient,
r, 144, 210, 261
ecological, 186

counts, 105
covariance, 261
crabs, 142
cross-sectional study, 130
cross-tabulation, 18
cytomegalovirus, 80

Delta method, 71, 132
degrees of freedom

in chisquare, 86, 110, 112
in F test, 172, 225, 230,
in t test, 224, 227

Democratic Primary, 184
design

balanced, 226, 229
factorial, 245
point, 166

distribution function, 259, 260
distribution table, 9
DNA, 77
Down Syndrome, 218
Dungeness crabs, 142

Ecological correlation, 186
ecological regression, 186, 189
effect, 227
election,

Democratic primary, 184
Lee County, SC, 186
Stockton, 181

equivalence oft andF tests, 231
error

mean square, 91
measurement, 168
model misfit, 168

estimation
least squares, 176
maximum likelihood, 90, 115, 175
method of moments, 89
model based, 64

expected value, 36, 259
explained sum of squares, 205, 224, 229
exponential distribution, 88, 264

F distribution, 267
F test, 172

degrees of freedom, 172, 225, 230
equivalence oft andF , 231

factorial design, 245
fetal development, 3
finite population correction factor, 37
first-order search, 242
Fisher, 101
Fisher’s exact test, 107
five-number summary, 12
full model, 227

Gamma distribution, 89, 265
gamma ray, 165
Gauss measurement model, 166
genomics, 81
geography of Minnesota, 59
geology of Minnesota, 59
geometric distribution, 262
geometric mean, 68
geometry of least squares, 205, 211
goodness-of-fit test, 83

for Poisson, 84
for uniform, 86

group sum of squares, 224
growth increment, 155
growth model, 156

HCMV, 80
helicopter, 238
hemophilia, 122

treatment, 124
histogram, 8
HIV, 124, 125
homogeneity, 83
homogeneous Poisson process, 82
hypergeometric distribution, 106, 263
hypothesis test, 91

alternative hypothesis, 92
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chi-square test, 83, 111, 112
F test, 172
Mantel-Haenszel test, 135
maximum hits, 89
null distribution, 92
null hypothesis, 92
p value, 92
power, 93
power curve, 94
significance level , 92
t test, 224,227
two-samplez test, 111
type I error, 93
type II error, 93
z statistic, 92

Important difference, 6
index, random, 35
indicator variable, 203, 221
information, 91
interaction, 227
interquartile range, 12
interval,

confidence, 40, 173, 175
estimate, 40
prediction, 173

inverse estimator, 174
inverse regression, 177
IQR, 12

Kurtosis, 15

Laboratory mice, 220
LaGrange multiplier, 94
law of large numbers, 267
least squares, 146, 203, 221

estimates, 154, 167, 176
fitting means, 221
geometry of, 205, 211, 235
outliers, 9
pooled, 204
regression, 148, 203
residuals, 148, 167, 168, 209
weighted, 187, 194

Lee County, SC, 186
likelihood function, 90
line of averages, 146
linear model, see simple linear model
log transformations, 168

lognormal distribution, 68, 266

Mantel-Haenszel test, 135
maximum hits, 89
maximum likelihood, 90, 175

asymptotic variance, 91
information, 91
likelihood function, 90

mean, 11
fitting, 221
geometric, 68
model for, 222

mean square, 172, 177
mean square error, 91
Measure C, 182
measurement,

error, 168
error sum of squares, 172
replicates, 170

measuring radon, 58
median, 12
method of moments, 89
Minnesota, 59
mode, 8
model,

additive model, 227
based estimation, 64
crab growth, 156
full model, 227
Gauss measurement, 166
means, 222
misfit, 167
misfit error, 168
misfit sum of squares, 172
normal means, 224
simple linear model, 166
smoking, 5
snow density, 165

mortality,
rate, 7, 130
ratio, 130

mouse,
laboratory, 220
transgenic, 219

Multicenter Hemophilia Cohort Study,
121

multinomial distribution, 94, 108, 112,
263

multiway classification, 226
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Negative binomial distribution, 93, 262
normal approximation, 15, 39, 152

continuity correction, 48
to hypergeometric, 108

normal curve, 13
normal distribution, 13, 265
normal means model, 224
normal-quantile plot, 16, 23
null distribution, 92
null hypothesis, 92
numerical summaries, 11

Observational study, 200
one-way classification, 223

analysis of variance table, 224
balanced, 226

optimal allocation, 66
outliers, 9
over parameterized, 225, 232

p value, 92
palindrome, 76
parameter, 34, 89
parameterizations, 225, 228, 235
parametric bootstrap, 69
path of steepest ascent, 243
percentile, 15
physical model

for crab growth, 156
for smoking, 5
for snow density, 165

plot,
box-and-whisker plot, 13, 14, 222,

223
contour plot, 245
histogram, 8
normal-quantile plot, 16, 23
quantile-quantile plot, 17
residual, 86, 169
scatter, 144
sliding bin plot, 96

point of averages, 154
Poisson,

approximation to binomial, 131, 268
contingency table, 115
distribution, 263

pooled estimate,
of σ 2, 111, 172, 245
least squares, 204

unnormalized, 172
population, 33

parameter, 34
total, 38
unit, 33

post-stratification, 70
power, 93
power curve, 94
precision weights, 134
prediction band, 172, 173
prediction intervals, 173
probability method, 33
projection, 207, 207, 211, 235
proportional allocation, 67
pseudo-random number, 15

Quantile, 15
quantile-quantile plot, 17
quartile, 12

Radon, 57
in home, 58
measuring, 58

random index, 35
random sample,

box model, 35
simple, 34
stratified, 64

random scatter, 81
random variable, 259
rates,

mortality, 7, 130
support, 189

ratio estimator, 72
regression, 148, 203

comparing, 204
ecological, 186, 189
inverse, 177
line, 147, 203
outliers, 9
polynomial, 212
to the mean, 148, 153
two variable, 209

replicate measurements, 170
residuals, 86, 148, 167, 168, 209

plots, 169
root mean square, 205
SD, 150, 155
sum of squares, 172, 224, 229
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response surface, 241, 246
root mean square

deviation, 12
of residuals, 205

Rothamsted, 100
RSS, see residuals
rubella, 4

s2, 38, 171, 268
s2
p, 172, 245

sample, 34
sample size, 47, 11
sample statistic, 36
sampling fraction, 37
SD, see standard deviation
search,

first-order, 242
second-order, 243
steepest ascent, 243

second-order search, 243
segmented bar chart, 18
significance level , 92
simple linear model, 166, see least

squares
Gauss measurement model, 166
model misfit, 167
normal means model, 224
transformations, 168

simple random sample, 34
Simpson’s paradox, 208
simulation study, 15
skewness, 15
sliding bin plot, 96
smoking,

physical model, 5
versus nonsmoking, 199

snow gauge, 164
standard deviation, 12, 261

pooled estimate, 172, 245
residual, 150, 155

standard error, 38, 176, 192
standardize, 14, 108, 133, 223
standardized mortality rates, 133
standardized residual, 86
Stockton,

Badillo v. Stockton, 182
demographics, 182
election rules, 181

stratified random sampling, 64

optimal allocation, 66
post-stratification, 70
proportional allocation, 67

Student’s distribution, 266
sum of squares,

between and within group, 224
explained, 205, 224, 229
measurement error, 172
model misfit, 172
residual (RSS), 172, 224, 229

Support rates, 189
Surgeon General, 2, 197

t ,
distribution, 224, 266
statistic, 227,
test, 224,227, 231

test statistic, 92 chi-square, 83, 111, 112
F , 172
Fisher’s exact, 107
Mantel-Haenszel, 135
t , 224,227, 231
two-samplez, 111
z, 92, 108

transformations, 168
transgenic mouse, 219
treatment of hemophilia, 124
trisomy 21, 218
two-by-two contingency table, 105
two-samplez test, 111
two variable regression, 209
two-way classification, 229

additive model, 227
analysis of variance table, 230
balanced design, 229
effect, 227
full model, 227
interaction, 227
over parameterized, 225, 232
parameterizations, 225, 228, 235

type I error, 93
type II error, 93

Unbiased, 36
uniform distribution, 86, 95, 264

Variable,
indicator, 203, 221
random, 259
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variance, 37, 244, 261
asymptotic variance, 91

video games, 31
virus,

HCMV, 80
HIV, 124, 125

vote dillution, 183
voter turnout, 188
voting rights act, 180

Weighted least squares, 187, 194
weights,

least squares, 187, 194
precision weights, 134
standardized rates, 133

within group sum of squares, 224

z statistic, 92, 108
z test, 92, 108
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