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Preface

We have worked on our Ph.D. theses on Statistical Signal Processing although in a
gap of almost 15 years. The first author was introduced to the area by his Ph.D.
supervisor Professor C. R. Rao, while the second author was introduced to this
topic by the first author. It has been observed that frequency estimation plays an
important role in dealing with different problems in the area of Statistical Signal
Processing, and both the authors have spent a significant amount of their research
career dealing with this problem for different models associated with Statistical
Signal Processing.

Although an extensive amount of literature is available in the engineering
literature dealing with the frequency estimation problem, not much attention has
been paid to the statistical literature. The book by Quinn and Hannan [1] is the
only book dealing with the problem of frequency estimation written for the sta-
tistical community. We were thinking of writing a review article on this topic for
quite sometime. In this respect, the invitation from Springer to write a Springer
Brief on this topic came as a pleasant surprise to us.

In this Springer Brief, we provide a review of the different methods available
till date dealing with the problem of frequency estimation. We have not attempted
an exhaustive survey of frequency estimation techniques. We believe that would
require separate books on several topics themselves. Naturally, the choice of topics
and examples are based, in favor of our own research interests. The list of ref-
erences is also far from complete.

We have kept the mathematical level quite modest. Chapter 4 mainly deals with
somewhat more demanding asymptotic theories, and this chapter can be avoided
during the first reading without losing any continuity. Senior undergraduate level
mathematics should be sufficient to understand the rest of the chapters. Our basic
goal to write this Springer Brief is to introduce the challenges of the frequency
estimation problem to the statistical community, which are present in different
areas of science and technology. We believe that statisticians can play a major role
in solving several problems associated with frequency estimation. In Chap. 8, we
have provided several related models, where there are several open issues which
need to be answered by the scientific community.

vii



Every book is written with a specific audience in mind. This book definitely
cannot be called a textbook. It has been written mainly for senior undergraduate
and graduate students specializing in Mathematics or Statistics. We hope that this
book will motivate students to pursue higher studies in the area of Statistical
Signal Processing. This book will be helpful to young researchers who want to
start their research career in the area of Statistical Signal Processing. We will
consider our efforts to be worthy if the target audience finds this volume useful.

Kanpur, January 2012 Debasis Kundu
Delhi, January 2012 Swagata Nandi
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Chapter 1
Introduction

Signal processing may broadly be considered to involve the recovery of information
from physical observations. The received signal is usually disturbed by thermal, elec-
trical, atmospheric, or intentional interferences. Due to random nature of the signal,
statistical techniques play important roles in analyzing the signal. Statistics is also
used in the formulation of appropriate models to describe the behavior of the system,
the development of an appropriate technique for the estimation of model parameters,
and the assessment of the model performances. Statistical signal processing basically
refers to the analysis of random signals using appropriate statistical techniques.

The main aim of this monograph is to introduce different signal processing models
which have been used in analyzing periodic data, and different statistical and com-
putational issues associated with them. We observe periodic phenomena everyday
in our lives. The daily temperature of Delhi or the number of tourists visiting the
famous Taj Mahal everyday or the ECG signal of a normal human being, clearly fol-
low periodic nature. Sometimes, the observations/signals may not be exactly periodic
on account of different reasons, but they may be nearly periodic. It should be clear
from the following examples, where the observations are obtained from different
disciplines, that they are nearly periodic. In Fig. 1.1, we provide the ECG signal of a
healthy person. In Fig. 1.2, we present an astronomical data set which represents the
daily brightness of a variable star on 600 successive midnights. Figure 1.3 represents
a classical data set of the monthly international airline passengers from January 1953
to December 1960 and is collected from the Time Series Data Library http://www.
robhyndman.info/TDSL.

The simplest periodic function is the sinusoidal function and it can be written in
the following form:

y(t) = A cos(ωt)+ B sin(ωt), (1.1)

where A2 + B2 is known as the amplitude of y(t) and ω is the frequency. In general,
a smooth mean zero periodic function y(t) can always be written in the form

D. Kundu and S. Nandi, Statistical Signal Processing, SpringerBriefs in Statistics, 1
DOI: 10.1007/978-81-322-0628-6_1, © The Author(s) 2012
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Fig. 1.1 ECG signal of a
healthy person
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Fig. 1.2 Brightness of a variable star

y(t) =
∞∑

k=1

[Ak cos(kωt)+ Bk sin(kωt)] , (1.2)

and it is well known as the Fourier expansion of y(t). From y(t), Ak and Bk for
k = 1, . . . ,∞, can be obtained uniquely. Unfortunately in practice, we hardly
observe smooth y(t). Most of the times y(t) is corrupted with noise as observed
in the above three examples; hence, it is quite natural to use the following model

y(t) =
∞∑

k=1

[Ak cos(kωt)+ Bk sin(kωt)] + X (t), (1.3)
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Fig. 1.3 Monthly international airline passengers during the period from January 1953 to December
1960

to analyze the noisy periodic signal. Here X (t) is the noise component. It is impossible
to estimate the infinite number of parameters in practice, hence (1.3) is approxi-
mated by

y(t) =
p∑

k=1

[Ak cos(ωk t)+ Bk sin(ωk t)] + X (t), (1.4)

for some p < ∞. Due to this reason, quite often, the main problem boils down to
estimating p, and Ak , Bk , ωk for k = 1, . . . , p, from the observed signal {y(t); t =
1, . . . , n}.

The problem of estimating the parameters of model (1.4) from the data {y(t); t =
1, . . . , n} becomes a classical problem. Starting with the work of Fisher [1], this
problem has received considerable attention because of its widescale applicability.
Brillinger [2] discussed some of the very important real-life applications from differ-
ent areas and provided solutions using the sum of sinusoidal model. Interestingly, but
not surprisingly, this model has been used quite extensively in the signal processing
literature. Kay and Marple [3] wrote an excellent expository article from the signal
processor’s point of view. More than 300 list of references can be found in Stoica [4]
on this particular problem till that time. See also two other review articles by Prasad
et al. [5] and Kundu [6] in this area. The monograph of Quinn and Hannan [7] is
another important contribution in this area.

This problem has several different important and interesting aspects. Although,
model (1.4) can be viewed as a non-linear regression model, this model does not
satisfy the standard assumptions needed for different estimators to behave nicely.
Therefore, deriving the properties of the estimators is an important problem. The
usual consistency and asymptotic normality results do not follow from the general
results. Moreover, finding the estimators of the unknown parameters is well known
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to be a numerically difficult problem. The problem becomes more complex if p ≥ 2.
Because of these reasons, this problem becomes challenging both from the theoretical
and computational points of view.

Model (1.4) is a regression model, hence in the presence of independent and
identically distributed (i.i.d.) error {X (t)}, the least-squares method seems to be a
reasonable choice for estimating the unknown parameters. But interestingly, instead
of the least-squares estimators (LSEs), traditionally the periodogram estimators (PEs)
became more popular. The PEs of the frequencies can be obtained by finding the local
maximums of the periodogram function I (ω), where

I (ω) = 1

n

∣∣∣∣∣

n∑

t=1

y(t)e−iωt

∣∣∣∣∣

2

. (1.5)

Hannan [8] and Walker [9] independently first obtained the theoretical properties
of the PEs. It is observed that the rate of convergence of the PEs of the frequencies
is Op(n−3/2). Kundu [10] observed that the rates of convergence of the LSEs of
the frequencies and amplitudes are Op(n−3/2) and Op(n−1/2), respectively. This
unusual rate of convergence of the frequencies makes the model interesting from the
theoretical point of view.

Finding the LSEs or the PEs is a computationally challenging problem. The prob-
lem is difficult because the least-squares surface as well as the periodogram surface
of the frequencies are highly non-linear. There are several local optimums in both
the surfaces. Thus, very good (close enough to the true values) initial estimates are
needed for any iterative process to work properly. It is also well known that the
standard methods like Newton–Raphson or Gauss–Newton do not work well for
this problem. One of the common methods to find the initial guesses of the fre-
quencies is to find the local maximums of the periodogram function I (ω), at the
Fourier frequencies, that is, restricting the search space only at the discrete points
{ω j = 2π j/n; j = 0, . . . , n − 1}. Asymptotically, the periodogram function has
local maximums at the true frequencies. But unfortunately, if two frequencies are
very close to each other, then this method may not work properly.

Just to see the complexity of the problem, consider the periodogram function of
the following synthesized signal;

y(t) = 3.0 cos(0.20π t)+ 3.0 sin(0.20π t)

+0.25 cos(0.19π t)+ 0.25 sin(0.19π t)+ X (t); t = 1, . . . , 75. (1.6)

Here, {X (t); t = 1, . . . , 75} are i.i.d. normal random variables with mean 0 and
variance 0.5. The periodogram function of the observed signal from model (1.6) is
provided in Fig. 1.4. In this case clearly, two frequencies are not resolvable. It is not
immediate how to choose initial estimates in this case to start any iterative process
to find the LSEs or the PEs.

Because of this, several other techniques are available in practice, which attempt
to find efficient estimators without using any iterative procedure. Most of the methods
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Fig. 1.4 Periodogram function of the synthesized data obtained from model (1.6)

make use of the recurrence relation formulation (1.7) obtained from the celebrated
Prony’s equation (see in Chap. 2);

2p∑

j=0

c( j)y(t − j) =
2p∑

j=0

c( j)X (t − j); t = 2p + 1, . . . , n, (1.7)

where c(0) = c(2p) = 1, c( j) = c(2p − j) for j = 0, . . . , 2p. Relation (1.7) is
formally equivalent to saying that a linear combination of p sinusoidal signals can
be modeled as an ARMA(2p, 2p) process. The coefficients c(1), . . . , c(2p − 1)
depend only on the frequencies ω1, . . . , ωp and they can be obtained uniquely from
the c(1), . . . , c(2p − 1). Due to this relation, a variety of procedures have been
evolved since 1970s on estimating the coefficients c( j) for j = 1, . . . , 2p − 1 from
the observed signal {y(t); t = 1, . . . , n}. From the estimated c(1), . . . , c(2p − 1),
the estimates of ω1, . . . , ωp can be easily obtained. Since all these methods are
non-iterative in nature, they do not demand any initial guesses. But, the frequency
estimates produced by these methods are mostly Op(n−1/2), not Op(n−3/2). There-
fore, their efficiency is much lower than that of LSEs or the PEs.

Another important problem is to estimate p, when it is unknown. Fisher [1]
first treated this as a testing of hypothesis problem. Later, several authors attempted
different information theoretic criteria, namely AIC, BIC, EDC, etc., or their variants.
But choosing the proper penalty function seems to be a really difficult problem. Cross
validation technique has also been used to estimate p. But computationally it is quite
demanding, particularly if p is large, which may happen in practice quite often.
Estimation of p for model (1.4) seems to be an open problem for which we still do
not have any satisfactory solution.

The main aim of this Springer brief is to provide a comprehensive review of dif-
ferent aspects of this problem mainly from a statistician’s perspective, which is not
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available in the literature. It is observed that several related models are also available
in the literature. We try to provide a brief account on those different models. Interest-
ingly, natural two-dimensional (2D) extension of this model has several applications
in texture analysis and in spectrography. We provide a brief review on 2D and three-
dimensional (3D) models also. For better understanding of the different procedures
discussed in this monograph, we present some real data analysis. Finally we present
some open and challenging problems in these areas.

Rest of the monograph is organized as follows. In Chap. 2, we provide the pre-
liminaries. Different methods of estimation are discussed in Chap. 3. Theoretical
properties of the different estimators are presented in Chap. 4. Different order esti-
mation methods are reviewed in Chap. 5. Few real data sets are analyzed in Chap. 6.
Multidimensional models are introduced in Chap. 7 and finally we provide several
related models in Chap. 8.

References

1. Fisher, R. A. (1929). Tests of significance in harmonic analysis. Proceedings of the Royal
Society London Series A, 125, 54–59.

2. Brillinger, D. (1987). Fitting cosines: Some procedures and some physical examples. In I.
B. MacNeill & G. J. Umphrey (Eds.), Applied probability, stochastic process and sampling
theory (pp. 75–100). Dordrecht: Reidel.

3. Kay, S. M., & Marple, S. L. (1981). Spectrum analysis—A modern perspective. Proceedings
of the IEEE, 69, 1380–1419.

4. Stoica, P. (1993). List of references on spectral analysis. Signal Processing, 31, 329–340.
5. Prasad, S., Chakraborty, M., & Parthasarathy, H. (1995). The role of statistics in signal

processing—A brief review and some emerging trends. Indian Journal of Pure and Applied
Mathematics, 26, 547–578.

6. Kundu, D. (2002). Estimating parameters of sinusoidal frequency; some recent developments.
National Academy Science Letters, 25, 53–73.

7. Quinn, B. G., & Hannan, E. J. (2001). The estimation and tracking of frequency. New York:
Cambridge University Press.

8. Hannan, E. J. (1971). Non-linear time series regression. Journal of Applied Probability, 8,
767–780.

9. Walker, A. M. (1971). On the estimation of a harmonic component in a time series with
stationary independent residuals. Biometrika, 58, 21–36.

10. Kundu, D. (1997). Estimating the number of sinusoids in additive white noise. Signal
Processing, 56, 103–110.



Chapter 2
Notations and Preliminaries

In this monograph, the scalar quantities are denoted by regular lower or uppercase
letters. The lower and uppercase bold typefaces of English alphabets are used for
vectors and matrices, and for Greek alphabets it should be clear from the context. For
a real matrix A, AT denotes the transpose. Similarly, for a complex matrix A, AH

denotes the complex conjugate transpose. An n × n diagonal matrix , with diagonal
elements, λ1, . . ., λn , are denoted by diag{λ1, . . ., λn}. If A is a real or complex
square matrix, the projection matrix on the column space of A is denoted by PA =
A(AT A)−1AT or PA = A(AH A)−1AH respectively. The following definition and
matrix theory results may not be very familiar with the readers and therefore we are
providing it for ease of reading.

Definition 2.1 An n × n matrix J is called a reflection or exchange matrix if

J =

⎡

⎢⎢⎢⎢⎢⎣

0 0 . . . 0 1
0 0 . . . 1 0
...
...
. . .

...
...

0 1 . . . 0 0
1 0 . . . 0 0

⎤

⎥⎥⎥⎥⎥⎦
. (2.1)

Result 2.1 (Spectral Decomposition) If A is an n × n real symmetric matrix or
complex Hermitian matrix, then all the eigenvalues of A are real and it is possible to
find n normalized eigenvectors v1, . . ., vn, corresponding to n eigenvaluesλ1, . . ., λn,
such that

A =
n∑

i=1

λi vi v
T
i , or A =

n∑

i=1

λi vi v
H
i , (2.2)

respectively. If λi > 0 for all i , then

D. Kundu and S. Nandi, Statistical Signal Processing, SpringerBriefs in Statistics, 7
DOI: 10.1007/978-81-322-0628-6_2, © The Author(s) 2012
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A−1 =
n∑

i=1

1

λi
vi v

T
i , or A−1 =

n∑

i=1

1

λi
vi v

H
i (2.3)

respectively.

Result 2.2 (Singular Value Decomposition) If A is an n×m real or a complex matrix
of rank k, then there exist an n ×n orthogonal matrix U, an m ×m orthogonal matrix
V, and an n × m matrix �, such that

A = U�V, (2.4)

where � is defined as

� =
[

S 0
0 0

]
, S = diag{σ1, . . ., σk},

and σ 2
1 ≥ · · · ≥ σ 2

k > 0 are k non-zero eigenvalues of AT A or AH A depending on
whether A is a real or a complex matrix.

Result 2.3 The following results are used, see Mangulis [1].

1

n

n∑

t=1

cos2(ωt) = 1

2
+ o

(
1

n

)
, (2.5)

1

n

n∑

t=1

sin2(ωt) = 1

2
+ o

(
1

n

)
, (2.6)

1

nk+1

n∑

t=1

tk cos(ωt) sin(ωt) = o

(
1

n

)
. (2.7)

2.1 Prony’s Equation

Now, we provide one important result which has been quite extensively used in the
Statistical Signal Processing and it is known as Prony’s equation. Prony, a Chemical
engineer, proposed the following method more than 200 years back in 1795, mainly
to estimate the unknown parameters of the real exponential model. It is available in
several numerical analysis textbooks, see for example, Froberg [2] or Hildebrand [3].
Prony observed that for arbitrary real constants α1, . . ., αM and for distinct constants
β1, . . ., βM , if

μ(t) = α1eβ1t + · · · + αM eβM t ; t = 1, . . ., n, (2.8)
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then there exist (M + 1) constants {g0, . . ., gM }, such that

Ag = 0, (2.9)

where

A =
⎡

⎢⎣
μ(1) . . . μ(M + 1)
...

. . .
...

μ(n − M) . . . μ(n)

⎤

⎥⎦ , g =
⎡

⎢⎣
g0
...

gM

⎤

⎥⎦ and 0 =
⎡

⎢⎣
0
...

0

⎤

⎥⎦ . (2.10)

Note that without loss of generality we can always put restrictions on g0, . . ., gM

such that
M∑

j=0

g2
j = 1 and g0 > 0. The sets of linear equations (2.9) is known as

Prony’s equations. The roots of the following polynomial equation

p(x) = g0 + g1x + · · · + gM x M = 0, (2.11)

are eβ1 , . . ., eβM . Therefore, there is a one to one correspondence between
{β1, . . ., βM } and {g0, g1, . . ., gM }, such that

M∑

j=0

g2
j = 1, g0 > 0. (2.12)

Moreover, {g0, g1, . . ., gM } do not depend on {α1, . . ., αM }. One natural question is,
how to recover {α1, . . ., αM } and {β1, . . ., βM } from a givenμ(1), . . ., μ(n). It can be
done as follows. Note that the rank of matrix A as defined in (2.10) is M . Therefore,
there exists unique {g0, g1, . . ., gM }, such that (2.9) and (2.12) hold simultaneously.
From that {g0, g1, . . ., gM }, using (2.11), {β1, . . ., βM }, can be recovered. Now to
recover {α1, . . ., αM }, write (2.8) as

μ = Xα, (2.13)

where μ = (μ(1), . . ., μ(n))T and α = (α1, . . ., αM )
T are n ×1 and M ×1 vectors,

respectively. The n × M matrix X is as follows;

X =
⎡

⎢⎣
eβ1 . . . eβM

...
. . .

...

enβ1 . . . enβM

⎤

⎥⎦ . (2.14)

Therefore α = (XTX)−1XT μ. Note that XTX is a full-rank matrix as β1, . . ., βM

are distinct.
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2.2 Undamped Exponential Model

Although Prony observed the relation (2.9) for a real exponential model, the same
result is true for a complex exponential model or popularly known as undamped
exponential model. A complex exponential model can be expressed as

μ(t) = A1eiω1t + . . .+ AM eiωM t ; t = 1, . . ., n. (2.15)

Here, A1, . . ., AM are complex numbers, 0 < ωk < 2π for k = 1, . . .,M , and
i = √−1. In this case also there exists {g0, . . ., gM }, such that they satisfy (2.9).
Also the roots of the polynomial equation p(z) = 0, as given in (2.11), are z1 =
eiω1 , . . ., zM = eiωM . Observe that

|z1| = · · · = |zM | = 1, z̄k = z−1
k ; k = 1, . . .,M. (2.16)

Here z̄k denotes the complex conjugate of zk . Define the new polynomial

Q(z) = z−M p̄(z) = ḡ0z−M + · · · + ḡM . (2.17)

From (2.16), it is clear that p(z) and Q(z) have the same roots. Therefore, we obtain

gk

gM
= ḡM−k

ḡ0
; k = 0, . . .,M, (2.18)

by comparing the coefficients of the two polynomials p(z) and Q(z). If we denote

bk = gk

(
ḡ0

gM

)− 1
2 ; k = 0, . . .,M, (2.19)

then
bk = b̄M−k; k = 0, . . .,M. (2.20)

The condition (2.20) is the conjugate symmetric property and can be written as:

b = Jb̄, (2.21)

here b = (b0, . . ., bM )
T and J is an exchange matrix as defined in (2.1). From

the above discussions, it is immediate that for μ(t) in (2.15), there exists a vector

g = (g0, . . ., gM )
T , such that

M∑

k=0

g2
k = 1, which satisfies (2.9), also satisfies

g = Jḡ. (2.22)
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2.3 Sum of Sinusoidal Model

Prony’s method can also be applied to the sum of sinusoidal model. Suppose μ(t)
can be written as follows:

μ(t) =
p∑

k=1

[Ak cos(ωk t)+ Bk sin(ωk t)] ; t = 1, . . ., n. (2.23)

Here A1, . . ., Ap, B1, . . ., Bp are real numbers, the frequencies ω1, . . ., ωp are dis-
tinct and 0 < ωk < 2π for k = 1, . . ., p. Then (2.23) can be written in the form;

μ(t) =
p∑

k=1

Ckeiωk t +
p∑

k=1

Dke−iωk t ; t = 1, . . ., n, (2.24)

here Ck = (Ak − i Bk)/2 and Dk = (Ak + i Bk)/2. The model (2.24) is in the
same form as in (2.15). Therefore, there exists a vector g = (g0, . . ., g2p), such that
2p∑

j=0

g2
j = 1, which satisfies

⎡

⎢⎣
μ(1) . . . μ(2p + 1)
...

. . .
...

μ(n − 2p) . . . μ(n)

⎤

⎥⎦

⎡

⎢⎣
g0
...

g2p

⎤

⎥⎦ =
⎡

⎢⎣
0
...

0

⎤

⎥⎦ (2.25)

and satisfies
g = Jḡ. (2.26)

2.4 Linear Prediction

Observe that μ(t) as defined in (2.15) also satisfies the following backward linear
prediction equation;

⎡

⎢⎣
μ(2) . . . μ(M + 1)
...

. . .
...

μ(n − M + 1) . . . μ(n)

⎤

⎥⎦

⎡

⎢⎣
d1
...

dM

⎤

⎥⎦ = −
⎡

⎢⎣
μ(1)
...

μ(n − M)

⎤

⎥⎦ , (2.27)

clearly, d j = b j/b0, for j = 1, . . .,M . It is known as
M th order backward linear prediction equation. In this case the following polynomial
equation
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p(z) = 1 + d1z + · · · + dM zM = 0, (2.28)

has roots at eiω1 , . . ., eiωM .
Along the same manner, it may be noted thatμ(t) as defined in (2.15) also satisfies

the following forward linear prediction equation

⎡

⎢⎣
μ(M) . . . μ(1)
...

. . .
...

μ(n − 1) . . . μ(n − M)

⎤

⎥⎦

⎡

⎢⎣
a1
...

aM

⎤

⎥⎦ = −
⎡

⎢⎣
μ(M + 1)

...

μ(n)

⎤

⎥⎦ , (2.29)

where a1 = bM−1/bM , a2 = bM−2/bM , . . ., aM = b0/bM . It is known as
M th order forward linear prediction equation. Moreover, the following polynomial
equation

p(z) = 1 + a1z + · · · + aM zM = 0, (2.30)

has roots at e−iω1 , . . ., e−iωM .
Consider the case when μ(t) has form (2.23), then clearly both the polynomial

equations (2.28) and (2.30) have roots at e±iω1 , . . ., e±iωp , hence the corresponding
coefficients of both the polynomials must be equal. Therefore, in this case the forward
backward linear prediction equation can be formed as follows;

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎣

μ(2) . . . μ(M + 1)
...

. . .
...

μ(n − M + 1) . . . μ(n)
μ(M) . . . μ(1)
...

. . .
...

μ(n − 1) . . . μ(n − M)

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡

⎢⎣
d1
...

dM

⎤

⎥⎦ = −

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎣

μ(1)
...

μ(n − M)
μ(M + 1)

...

μ(n)

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (2.31)

In the signal processing literature, the linear prediction method has been used quite
extensively for different purposes.

2.5 Matrix Pencil

Suppose A and B are two n × n, real or complex matrices. The collection of all the
matrices A such that

A = {C : C = A − λB,where λ is any complex number}

is called a linear matrix pencil or matrix pencil, see Golub and van Loan [4], and
it is denoted by (A,B). The set of all λ, such that det (A − λB) = 0, is called the
eigenvalues of the matrix pencil (A,B). The eigenvalues of the matrix pencil (A,B)
can be obtained by solving the general eigenvalue problem of the form
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Ax = λBx.

If B−1 exists, then
Ax = λBx ⇔ B−1Ax = λx.

Efficient methods are available to compute the eigenvalues of (A,B)when B−1 does
not exist, or it is nearly a singular matrix, see, for example, Golub and van Loan
[4]. The matrix pencil has been used quite extensively in numerical linear algebra.
Recently, extensive usage of the matrix pencil method can be found in the spectral
estimation method also.

2.6 Stable Distribution: Results

Definition 2.2 A random variable X is said to have a stable distribution if there are
parameters 0 < α ≤ 2, σ ≥ 0, −1 ≤ β ≤ 1, and μ real such that its characteristic
function has the following form

E exp[it X ] =
⎧
⎨

⎩

exp
{−σα|t |α(1 − iβ(sign(t)) tan(πα2 ))+ iμt

}
ifα �= 1,

exp{−σ |t |(1 + iβ 2
π
(sign(t))ln|t |)+ iμt} ifα = 1.

The parameter α is called the index of stability or the characteristic exponent and

sign(t) =
⎧
⎨

⎩

1 if t > 0
0 if t = 0

−1 if t < 0.

The parameters σ (scale parameter), β (skewness parameter) and μ are unique (β is
irrelevant when α = 2) and is denoted by X ∼ Sα(σ, β, μ).

Definition 2.3 A symmetric (around 0) random variable X is said to have symmetric
α stable (SαS) distribution, with scale parameter σ , and stability index α, if the
characteristic function of the random variable X is

Eeit X = e−σα |t |α . (2.32)

We denote the distribution of X as SαS(σ ). Note that a SαS random variable with
α = 2 is N (0, 2σ 2) and with α =1, it is a Cauchy random variable, whose density
function is

fσ (x) = σ

π(x2 + σ 2)
.
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The SαS distribution is a special case of the general stable distribution with non-
zero shift and skewness parameters. For detailed treatments of SαS distribution, the
readers are referred to the book of Samorodnitsky and Taqqu [5].
Some Basic Properties:

1. Let X1 and X2 be independent random variables with X j ∼ Sα(σ j , β j , μ j ),
j = 1, 2, then X1 + X2 ∼ Sα(σ, β, μ) with

σ = (σα1 + σα2 )
1/α, β = β1σ

α
1 + β2σ

α
2

σα1 + σα2
, μ = μ1 + μ2.

2. Let X ∼ Sα(σ, β, μ) and let a be a real constant. Then X +a ∼ Sα(σ, β, μ+a).
3. Let X ∼ Sα(σ, β, μ) and let a be a non-zero real constant. Then

aX ∼ Sα(|a|σ, sign(a)β, aμ) if α �= 1
aX ∼ Sα(|a|σ, sign(a)β, aμ− 2

π
a(ln|a|)σβ) if α = 1

.

4. X ∼ Sα(σ, β, μ) is symmetric if and only if β = 0 and μ = 0.
5. Let γ be uniform on (−π/2, π/2) and let W be exponential with mean 1. Assume
γ and W independent. Then

X = sin αγ

(cos γ )1/α

(
cos((1 − α)γ )

W

)(1−α)/α

is Sα(1, 0, 0) = Sα(1).

Definition 2.4 Let X = (X1, X2, . . ., Xd) be an α-stable random vector in R
d , then

	(t) = 	(t1, t2, . . ., td) = E exp{i(t,X)} = E exp{i
d∑

k=1

tk Xk}

denote its characteristic function.	(t) is also called the joint characteristic function
of the random variables X1, X2, . . ., Xd .

Result 2.4 Let X be a random vector in R
d .

(a) If all linear combinations of the random variables X1, . . ., Xd are symmetric
stable, then X is a symmetric stable random vector in R

d .
(b) If all linear combinations are stable with index of stability greater than or equal
to one, then X is a stable vector in R

d .
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Chapter 3
Estimation of Frequencies

In this section, we provide different estimation procedures of the frequencies of a
periodic signal. We consider the following sum of sinusoidal model;

y(t) =
p∑

k=1

(Ak cos(ωk t)+ Bk sin(ωk t))+ X (t); t = 1, . . ., n. (3.1)

Here Ak , Bk , ωk for k = 1, . . ., p are unknown. In this chapter, p is assumed to
be known, later in Chap. 5, we provide different estimation methods of p. The error
component X (t) has mean zero and finite variance, and it can have either one of the
following forms:

Assumption 3.1 {X (t); t = 1, . . ., n} are i.i.d. random variables with E(X (t)) = 0
and V (X (t)) = σ 2.

Assumption 3.2 {X (t)} is a stationary linear process with the following form

X (t) =
∞∑

j=0

a( j)e(t − j), (3.2)

where {e(t); t = 1, 2, . . .} are i.i.d. random variables with E(e(t)) = 0,

V (e(t)) = σ 2, and
∞∑

j=0

|a( j)| < ∞.

All the available methods have been used under both these assumptions. Although
theoretical properties of these estimators obtained by different methods may not be
available under both these assumptions.

In this chapter, we mainly discuss different estimation procedures, while the prop-
erties of these estimators are discussed in Chap. 4. Most of the methods deal with the
estimation of frequencies. If the frequencies are known, model (3.1) can be treated as
a linear regression model, therefore the linear parameters Ak and Bk for k = 1, . . ., p

D. Kundu and S. Nandi, Statistical Signal Processing, SpringerBriefs in Statistics, 17
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can be estimated using a simple least squares or generalized least squares method
depending on the error structure. Similar methods can be adopted even when the
frequencies are unknown.

3.1 ALSEs and PEs

In this section, first we assume that p = 1, later we provide the method for
general p. Under Assumption 3.1, the most intuitive estimators are the LSEs, that is,
Â, B̂, and ω̂, which minimize

Q(A, B, ω) =
n∑

t=1

(y(t)− A cos(ωt)− B sin(ωt))2 . (3.3)

Finding the LSEs is a non-linear optimization problem, and it is well known to
be a numerically difficult problem. The standard algorithm like Newton–Raphson,
Gauss–Newton or their variants may be used to minimize (3.3). Often it is observed
that the standard algorithms may not converge, even when the iterative process starts
from a very good starting value. It is observed by Rice and Rosenblatt [1], that the
least squares surface has several local minima near the true parameter value, and
due to this reason most of the iterative procedures even when they converge, often
converge to a local minimum rather than the global minimum.

Therefore, even if it is known that LSEs are the most efficient estimators, finding
LSEs is a numerically challenging problem. Due to this reason, extensive work has
been done in the statistical signal processing literature to find estimators that perform
like the LSEs.

First, we provide the most popular method, which has been used in practice to
compute the frequency estimator. For p = 1, model (3.1) can be written as

Y = Z(ω)θ + e, (3.4)

where

Y =
⎡

⎢⎣
y(1)
...

y(n)

⎤

⎥⎦ , Z(ω) =
⎡

⎢⎣
cos(ω) sin(ω)
...

...

cos(nω) sin(nω)

⎤

⎥⎦ θ =
[

A
B

]
, e =

⎡

⎢⎣
X (1)
...

X (n)

⎤

⎥⎦ .

(3.5)

Therefore, for a given ω, the LSEs of A and B can be obtained as

θ̂ (ω) =
[

Â(ω)
B̂(ω)

]
=
(

ZT (ω)Z(ω)
)−1

ZT (ω)Y. (3.6)
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Using (2.5)–(2.7), (3.6) can be written as

[
Â(ω)
B̂(ω)

]
=
[

2
∑n

t=1 y(t) cos(ωt)/n
2
∑n

t=1 y(t) sin(ωt)/n

]
. (3.7)

Substituting Â(ω) and B̂(ω) in (3.3), we obtain

1

n
Q
(

Â(ω), B̂(ω), ω
) = 1

n
YT Y − 1

n
YT Z(ω)ZT (ω)Y + o(1). (3.8)

Therefore, ω̂ which minimizes Q( Â(ω), B̂(ω), ω)/n is equivalent to ω̃, which max-
imizes

I (ω) = 1

n
YT Z(ω)ZT (ω)Y = 1

n

⎧
⎨

⎩

(
n∑

t=1

y(t) cos(ωt)

)2

+
(

n∑

t=1

y(t) sin(ωt)

)2
⎫
⎬

⎭

in the sense ω̂− ω̃ a.e.→ 0. The estimator of ω, which is obtained by maximizing I (ω)
for 0 ≤ ω ≤ π , is known as the ALSE of ω.

The maximization of I (ω) can be performed by some standard algorithm like
Newton–Raphson or Gauss–Newton method, although computation of the ALSEs
has the same type of problems as the LSEs. In practice instead of maximizing I (ω)
for 0 < ω < π , it is maximized at the Fourier frequencies, namely at the points
2π j/n; 0 ≤ j < [n/2]. Therefore, ˜̃ω = 2π j0/n is an estimator of ω, where

I (ω j0) > I (ωk), for k = 1, . . ., [n/2], k �= j0.

It is also known as the PE of ω. Although it is not an efficient estimator, it is being
used extensively as an initial guess of any iterative procedure to compute an efficient
estimator of the frequency.

The method can be easily extended for the model when p > 1. The main idea
is to remove the effect of the first component from the signal {y(t)} and repeat the
whole procedure. The details are explained in Sect. 3.12.

3.2 EVLP

The equivariance linear prediction (EVLP) method was suggested by Bai et al. [2]
for estimating the frequencies of model (3.1), under error Assumption 3.1. It mainly
uses the fact that in the absence of {X (t); t = 1, · · ·, n}, {y(t); t = 1, · · ·, n} satisfy
(2.25). The idea behind the EVLP method is as follows: Consider an (n − 2p)× n
data matrix YD as
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YD =
⎡

⎢⎣
y(1) · · · y(2p + 1)
...

. . .
...

y(n − 2p) · · · y(n)

⎤

⎥⎦ . (3.9)

If {X (t)} is absent, Rank(YD) = Rank(YT
DYD/n) = 2p. It implies that the

symmetric matrix (YT
DYD/n) has an eigenvalue zero with multiplicity one. There-

fore, there exists an eigenvector g = (g0, . . ., g2p) which corresponds to the zero

eigenvalue, such that
∑2p

j=0
g2

j = 1, and the polynomial equation

p(x) = g0 + g1x + · · · + g2px2p = 0 (3.10)

has roots at e±iω1 , . . ., e±iωp .
Using this idea, Bai et al. [2] proposed that when {X (t)} satisfies error Assumption

3.1, from the symmetric matrix (YT
DYD/n) obtain the normalized eigenvector ĝ =

(ĝ0, . . ., ĝ2p), such that
∑2p

j=0
ĝ2

j = 1 corresponds to the minimum eigenvalue. Form

the polynomial equation

p̂(x) = ĝ0 + ĝ1(x)+ · · · + ĝ2px2p = 0, (3.11)

and obtain the estimates of ω1, · · ·, ωp from these estimated roots.
It has been shown by Bai et al. [2] that as n → ∞, EVLP method provides con-

sistent estimators of the unknown frequencies. It is interesting that although EVLP
frequency estimators are consistent, the corresponding linear parameter estimators
obtained by the least squares method as mentioned before are not consistent estima-
tors. Moreover, it has been observed in the extensive simulation studies by Bai et al.
[3] that the performance of the EVLP estimators is not very satisfactory for small
sample sizes.

3.3 MFBLP

In the signal processing literature, the forward linear prediction method or back-
ward linear prediction, see Sect. 2.4, has been used to estimate the frequencies of
the sinusoidal signals. It has been observed by Kumaresan [4] using extensive sim-
ulation studies that the pth order linear prediction method does not work very well
in estimating the frequencies in the presence of noise, particularly when the two
frequencies are very close to each other.

Due to this reason, Kumaresan [4], see also Tufts and Kumaresan [5], used the
extended order forward backward linear prediction method, and call it as the modified
forward backward linear prediction (MFBLP) method, and it can be described as
follows. Choose an L , such that n − 2p ≥ L > 2p, and set up the Lth order
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backward and forward linear prediction equations as follows;

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎣

y(L) · · · y(1)
...

. . .
...

y(n − 1) · · · y(n − L)
y(2) · · · y(L + 1)
...

. . .
...

y(n − L + 1) · · · y(n)

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡

⎢⎣
b1
...

bL

⎤

⎥⎦ = −

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎣

y(L + 1)
...

y(n)
y(1)
...

y(n − L)

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (3.12)

It has been shown by Kumaresan [4] that in the noiseless case, {y(t)} satisfies (3.12),
and out of the L roots of the polynomial equation

p(x) = x L + b1x L−1 + · · · + bL = 0, (3.13)

2p roots are of the form e±iωk , and the rest of the L − 2p roots are of the modulus
not equal to one. Observe that (3.12) can be written as

Ab = −h. (3.14)

Tufts and Kumaresan [5] suggested using the truncated singular value decomposition
solution of the vector b by setting the smaller singular values of the matrix A equal
to zero. Therefore, if the singular value decomposition of A is as given in (2.4) where
vk and uk for k = 1, · · ·, 2p are the eigenvectors of AT A and AAT , respectively,
σ 2

1 ≥ · · ·σ 2
2p > 0 are the 2p non-zero eigenvalues of AT A, then the solution b̂ of

the system of Eq. (3.14) becomes

b̂ = −
2p∑

k=1

1

σk

[
uT

k h
]

vk . (3.15)

The effect of using the truncated singular value decomposition is to increase the
signal-to-noise ratio in the noisy data, prior to obtaining the solution vector b̂. Once
b̂ is obtained, get the L roots of the L-degree polynomial

p(x) = x L + b̂1x L−1 + · · · + b̂L , (3.16)

and choose 2p roots, which are closest to one in absolute value. It is expected, if
at least the variance is small, that they form p conjugate pairs and from there the
frequencies can be easily estimated.

It is observed by extensive simulation studies by Kumaresan [4] that the
MFBLP performs very well if L ≈ 2n/3, and the error variance is not too large.
The main computation involved in this case is the computation of the singular value
decomposition of A and then root findings of an L degree polynomial. Although, the
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MFBLP performs very well for small sizes, it has been pointed out by Rao [6] that
MFBLP estimators are not consistent.

3.4 NSD

The noise space decomposition (NSD) method has been proposed by Kundu and
Mitra [7], see also Kundu and Mitra [8] in this respect. The basic idea behind the
NSD method can be described as follows. Consider the following (n − L)× (L + 1)
matrix A, where

A =
⎡

⎢⎣
μ(1) · · · μ(L + 1)
...

. . .
...

μ(n − L) · · · μ(n)

⎤

⎥⎦ , (3.17)

for any integer L , such that 2p ≤ L ≤ n − 2p, and μ(t) is same as defined in (2.23).
Let the spectral decomposition of AT A/n be

1

n
AT A =

L+1∑

i=1

σ 2
i ui uT

i , (3.18)

where σ 2
1 ≥ · · · ≥ σ 2

L+1 are the eigenvalues of AT A/n and u1, . . .,uL+1 are the
corresponding orthonormal eigenvectors. Since matrix A is of rank 2p,

σ 2
2p+1 = · · · = σ 2

L+1 = 0,

and the null space spanned by the columns of matrix AT A is of rank L + 1 − 2p.
Using Prony’s equations one obtains

AB = 0,

where B is an (L + 1)× (L + 1 − 2p) matrix of rank (L + 1 − 2p) as follows;

B =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

g0 0 · · · 0
g1 g0 · · · 0
...

...
. . .

...

g2p g2p−1 · · · 0
0 g2p · · · g0

0 0
. . . g1

...
... · · · ...

0 0 · · · g2p

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (3.19)
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and g0, . . ., g2p are same as defined before. Moreover, the space spanned by the
columns of B is the null space spanned by the columns of matrix AT A.

Consider the following (n − L)× (L + 1) data matrix Ã as follows;

Ã =
⎡

⎢⎣
y(1) · · · y(L + 1)
...

. . .
...

y(n − L) · · · y(n)

⎤

⎥⎦ .

Let the spectral decomposition of ÃT Ã/n be

1

n
ÃT Ã =

L+1∑

i=1

σ̃ 2
i ũi ũT

i ,

where σ̃ 2
1 > · · · > σ̃ 2

L+1 are ordered eigenvalues of ÃT Ã/n and ũ1, . . ., ũL+1 are
orthonormal eigenvectors corresponding to σ̃ 2

1 , . . ., σ̃L+1, respectively. Construct
(L + 1)× (L + 1 − 2p) matrix C as

C = [
ũ2p+1 : · · · : ũL+1

]
.

Partition matrix C as
CT =

[
CT

1k : CT
2k : CT

3k

]
,

for k = 0, 1, . . ., L − 2p, where CT
1k , CT

2k , and CT
3k are of orders (L + 1 − 2p)× k,

(L + 1 − 2p)× (2p + 1), and (L + 1 − 2p)× (L − k + 2p), respectively. Find an
(L + 1 − 2p) vector xk , such that

⎡

⎣
CT

1k

CT
3k

⎤

⎦ xk = 0.

Denote the vectors for k = 0, 1, . . ., L − 2p

bk = CT
2kxk,

and consider the vector b, the average of the vectors b0, . . . ,bL−2p , that is

b = 1

L + 1 − 2p

L−2p∑

k=0

bk = [
ĝ0, ĝ1, . . ., ĝ2p

]
.

Construct the polynomial equation

ĝ0 + ĝ1x + · · · + ĝ2px2p = 0, (3.20)
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and obtain the estimates of the frequencies from complex conjugate roots of (3.20).
It has been shown by Kundu and Mitra [8] that the NSD estimators are strongly

consistent, although asymptotic distribution of the NSD estimators has not yet been
established. It is observed by extensive simulation studies that the performance of the
NSD estimators are very good and it provides the best performance when L ≈ n/3.
The main computation of the NSD estimators involves computation of the singular
value decomposition of an (L + 1)× (L + 1) matrix, and the root findings of a 2p
degree polynomial equation.

3.5 ESPRIT

Estimation of signal parameters via rotational invariance technique (ESPRIT) was
first proposed by Roy [9] in his Ph.D. thesis, see also Roy and Kailath [10], which
is based on the generalized eigenvalue-based method. The basic idea comes from
Prony’s system of homogeneous equations. For a given L , when 2p < L < n − 2p,
construct the two data matrices A and B both of the order (n − L) × L as given
below;

A =
⎡

⎢⎣
y(1) · · · y(L)
...

. . .
...

y(n − L) · · · y(n − 1)

⎤

⎥⎦ , B =
⎡

⎢⎣
y(2) · · · y(L + 1)
...

. . .
...

y(n − L + 1) · · · y(n)

⎤

⎥⎦ .

If, C1 = (AT A − σ 2I) and C2 = BT A − σ 2K, where I is the identity matrix of
order L × L and K is an L × L matrix with ones along the first lower diagonal off
the major diagonal and zeros elsewhere. Consider the matrix pencil C1 − γC2.

It has been shown, see Pillai [11] for details, that out of the L eigenvalues of the
matrix pencil C1−γC2, 2p non-zero eigenvalues are of the form e±iωk , k = 1, . . ., p.
Therefore, from those 2p non-zero eigenvalues the unknown frequenciesω1, . . ., ωp

can be estimated. It is further observed that if σ 2 = 0, then L − 2p eigenvalues of
the matrix pencil C1 − γC2 are zero.

The following problems are observed to implement the ESPRIT in practice. Note
that both the matrices C1 and C2 involve σ 2, which is unknown. If σ 2 is very small
it may be ignored, otherwise it needs to be estimated, or some prior knowledge may
be used. Another problem is to separate 2p non-zero eigenvalues from the total of
L eigenvalues. Again if σ 2 is small, it may not be much of a problem, but for large
σ 2 separation of non-zero eigenvalues from the zero eigenvalues may not be a trivial
issue. The major computational issue is to compute the eigenvalues of the matrix
pencil C1 − γC2, and the problem is quite ill conditioned if σ 2 is small. In this case,
the matrices A and B both are nearly singular matrices. To avoid both these issues,
the following method has been suggested.
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3.6 TLS-ESPRIT

Total least squares ESPRIT (TLS-ESPRIT) has been proposed by Roy
and Kailath [10] mainly to overcome some of the problems involved in implementing
the ESPRIT algorithm in practice. Using the same notation as in Sect. 3.5, construct
the following 2L × 2L matrices R and � as follows;

R =
[

AT

BT

]
[A B] and � =

[
I K
KT I

]
.

Let e1, . . ., e2p be 2p orthonormal eigenvectors of the matrix pencil (R − γ�)

corresponding to the largest 2p eigenvalues. Now construct the two L ×2p matrices
E1 and E2 from e1, . . ., e2p as

[e1 : · · · : e2p] =
[

E1
E2

]

and then obtain the unique 4p × 2p matrix W and the two 2p × 2p matrices W1
and W2 as follows

[E1 : E2]W = 0 and W =
[

W1
W2

]
.

Finally obtain the 2p eigenvalues of −W1W−1
2 . Again, it has been shown,

see Pillai [11], that in the noise less case, the above 2p eigenvalues are of the form
e±iωk for k = 1, . . ., p. Therefore, the frequencies can be estimated from the eigen-
values of the matrix −W1W−1

2 .
It is known that the performance of TLS-ESPRIT is very good, and it is much

better than the ESPRIT method. The performance of both the methods depends on
the values of L . In this case also, the main computation involves the computation of
the eigenvalues and eigenvectors of the L × L matrix pencil (R − γ�). Although,
the performance of the TLS-ESPRIT is very good, the consistency property of TLS-
ESPRIT or ESPRIT has not yet been established.

3.7 Quinn’s Method

Quinn [12] proposed this method in estimating the frequency of model (3.1) when
p = 1. It can be easily extended for general p, see, for example Kundu and Mitra
[8]. Quinn’s method can be applied in the presence of error Assumption 3.2. The
method is based on the interpolation of the Fourier coefficients, and using the fact
that the PE has the convergence rate O(1/n).
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The method can be described as follows: Let

Z( j) =
n∑

t=1

y(t)e−i2π j t/n; j = 1, . . ., n.

Algorithm 3.1

• Step 1: Let ω̃ be the maximizer of |Z( j)|2, for 1 ≤ j ≤ n.
• Step 2: Let α̂1 = Re {Z(ω̃ − 1)/Z(ω̃)}, α̂2 = Re {Z(ω̃ + 1)/Z(ω̃)}, and
δ̂1 = α̂1/(1 − α̂1), δ̂2 = −α̂2/(1 − α̂2). If δ̂1 > 0 and δ̂2 > 0, put δ̂ = δ̂2,
otherwise put δ̂ = δ̂1.

• Step 3: Estimate ω by ω̂ = 2π(ω̃ + δ̂)/n.

Computationally Quinn’s method is very easy to implement. It is observed that
Quinn’s method produces consistent estimator of the frequency, and the asymptotic
mean squared error of the frequency estimator is of the order O(1/n3). Although
Quinn’s method has been proposed for one component only, the method can be easily
extended for the model when p > 1. The details are explained in Sect. 3.12.

3.8 IQML

The iterative quadratic maximum likelihood (IQML) method was proposed by
Bresler and Macovski [13], and this is the first special purpose algorithm, which
has been used to compute the LSEs of the unknown parameters of model (3.1). It is
well known that in the presence of i.i.d. additive normal errors, the LSEs become the
MLEs also. Re-write model (3.1) as follows:

Y = Z(ω)θ + e, (3.21)

where

Y =
⎡

⎢⎣
y(1)
...

y(n)

⎤

⎥⎦ ,Z(ω) =
⎡

⎢⎣
cos(ω1) sin(ω1) · · · cos(ωp) sin(ωp)

...
...

. . .
...

...

cos(nω1) sin(nω1) · · · cos(nωp) sin(nωp)

⎤

⎥⎦ ,

θT = [
A1, B1, . . ., Ap, Bp

]
, eT = [e1, . . ., en] ,ωT = (ω1, . . ., ωp).

Therefore, the LSEs of the unknown parameters can be obtained by minimizing

Q(ω, θ) = (Y − Z(ω)θ)T (Y − Z(ω)θ) (3.22)

with respect to ω and θ . Therefore, for a given ω, the LSE of θ can be obtained as
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θ̂(ω) = (Z(ω)T Z(ω))−1Z(ω)T Y. (3.23)

Substituting back (3.23) in (3.22) we obtain

R(ω) = Q(̂θ(ω),ω) = YT (I − PZ)Y, (3.24)

here PZ = Z(ω)(Z(ω)T Z(ω))−1Z(ω)T is the projection matrix on the space spanned
by the columns of Z(ω). Note that I −PZ = PB, where the matrix B = B(g) is same
as defined in (3.19), and PB = B(BT B)−1BT is the projection matrix orthogonal
to PZ. The IQML method mainly suggests how to minimize YT PBY with respect
to the unknown vector g = (g0, . . ., g2p)

T , which is equivalent to minimize (3.24)
with respect to the unknown parameter vector ω. First observe that

YT PBY = gT YT
D(B

T B)−1YDg, (3.25)

where YD is an (n − 2p) × (2p + 1) matrix as defined in (3.9). The following
algorithm has been suggested by Bresler and Macovski [13] to minimize YT PBY =
gT YT

D(B
T B)−1YDg.

Algorithm 3.2

1. Suppose at the kth step the value of the vector g is g(k).
2. Compute matrix C(k) = YT

D(B
T
(k)B(k))

−1YD , here B(k) is obtained by replacing
g with g(k) in matrix B given in (3.19).

3. Solve the quadratic optimization problem

min
x:||x||=1

xT C(k)x,

and suppose the solution is g(k+1).
4. Check the convergence whether |g(k+1)−g(k)| < ε, where ε is some pre-assigned

value. If the convergence is met, go to step [5], otherwise go to step [1].
5. Obtain the estimate of ω from the estimate of g.

Although, no proof of convergence is available for the above algorithm, it works
quite well in practice.

3.9 Modified Prony Algorithm

Modified Prony algorithm was proposed by Kundu [14], which also involves the
minimization of

Ψ (g) = YT PBY (3.26)

with respect to the vector g, where the matrix B(g) and the projection matrix PB
are same as defined in Sect. 3.8. Now observe that Ψ (g) is invariant under scalar
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multiplication, that is
Ψ (g) = Ψ (cg),

for any constant c ∈ R. Therefore,

min
g
Ψ (g) = min

g;gT g=1
Ψ (g).

To minimize Ψ (g) with respect to g, differentiate g with respect to different com-
ponents of g and equating them to zero lead to solving the following non-linear
equation

C(g)g = 0; gT g = 1, (3.27)

where C = C(g) is a (2p + 1)× (2p + 1) symmetric matrix whose (i, j)th element,
for i, j = 1, . . ., 2p + 1, is given by

ci j = YT Bi (BT B)−1BT
j Y − YT B(BT B)−1BT

j Bi (BT B)−1BT Y.

Here the elements of matrix BT
j , for j = 1, . . ., 2p + 1, are only zero and ones,

such that

B(g) =
2p∑

j=0

g j B j .

The problem (3.27) is a non-linear eigenvalue problem and the following iterative
scheme has been suggested by Kundu [14] to solve the set of non-linear equations;

(C(g(k))− λ(k+1)I)g(k+1) = 0; g(k+1)T g(k+1) = 1. (3.28)

Here g(k) denotes the kth iterate of the above iterative process, and λ(k+1) is the
eigenvalue of C(g(k)), which is closest to 0. The iterative process is stopped when∣∣λ(k+1)

∣∣ is sufficiently small compared to ||C||, where ||C|| denotes a matrix norm of
matrix C. The proof of convergence of the modified Prony algorithm can be found
in Kundu [15].

3.10 Constrained Maximum Likelihood Method

In the IQML or the modified Prony algorithm, the symmetric structure of vector g as
derived in (2.22) has not been utilized. The constrained MLEs, proposed by Kannan
and Kundu [16], utilized that symmetric structure of vector g. The problem is same
as to minimize Ψ (g) as given in (3.26) with respect to g0, g1, . . ., g2p.

Again differentiating Ψ (g) with respect to g0, . . ., g2p and equating them to zero
lead to matrix equation of the form
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C(x)xT = 0, (3.29)

here C is a (p + 1)× (p + 1)matrix and x = (x0, . . ., x p)
T vector. The elements of

matrix C say ci j for i, j = 0, . . ., p, are as follows;

ci j = YT Ui (BT B)−1UT
j Y + YT U j (BT B)−1UT

i Y

−YT B(BT B)−1(UT
i U j + UT

j Ui )(BT B)−1BT Y.

Here matrix B is same as defined in (3.19), with gp+k being replaced by gp−k , for
k = 1, . . ., p. U1, . . .,Up are n × (n − 2p) matrices with entries 0 and 1 only, such
that

B =
p∑

j=0

g j U j .

Similar iterative scheme as the modified Prony algorithm has been used to solve
for x̂ = (̂x0, . . ., x̂ p)

T , the solution of (3.29). Once x̂ is obtained, ĝ can be easily
obtained as follows,

ĝ = (̂x0, . . ., x̂ p−1, x̂ p, x̂ p−1, . . ., x̂0)
T .

From ĝ, the estimates of ω1, . . ., ωp can be obtained along the same line as before.
The proof of convergence of the algorithm has been established by Kannan and
Kundu [16]. The performances of the constrained MLEs are very good as expected.

3.11 Expectation Maximization Algorithm

Expectation Maximization (EM) algorithm, developed by Dempster et al. [17], is a
general method for solving the maximum likelihood estimation problem when the
data is incomplete. The details on EM algorithm can be found in a book by McLachlan
and Krishnan [18]. Although this algorithm has been originally used for incomplete
data, sometimes it can be used quite successfully even when the data is complete.
It has been used quite effectively to estimate unknown parameters of model (3.1)
by Feder and Weinstein [19] under the assumption that the errors are i.i.d. normal
random variables.

For a better understanding, we briefly explain the EM algorithm here. Let Y denote
the observed (may be incomplete) data with the probability density function fY(y; θ)

indexed by the parameter vector θ ∈ � ⊂ R
k and let X denote the complete data

vector related to Y by
H(X) = Y,
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where H(·) is a many-to-one non-invertible function. Therefore, the density function
of X, say fX(x, θ), can be written as

fX(x; θ) = fX|Y=y(x; θ) fY(y; θ) ∀H(x) = y. (3.30)

Here fX|Y=y(x; θ) is the conditional probability density function of X, given Y = y.
From (3.30) after taking the logarithm on both sides, we obtain

ln fY(y; θ) = ln fX(x; θ)− ln fX|Y=y(x; θ). (3.31)

Taking the conditional expectation, given Y = y at the parameter value θ ′ on both
sides of (3.31), yields

ln fY(y; θ) = E{ln fX(x; θ)|Y = y, θ ′} − E{ln fX|Y=y(x; θ)|Y = y, θ ′}. (3.32)

If we define L(θ) = ln fY(y; θ), U (θ , θ ′) = E{ln fX(x; θ)|Y = y, θ ′}, and
V (θ , θ ′) = E{ln fX|Y=y(x; θ)|Y = y, θ ′}, then (3.32) becomes

L(θ) = U (θ, θ ′)− V (θ , θ ′).

Here L(θ) is the log-likelihood function of the observed data and that needs to be
maximized to obtain MLEs of θ . Since due to Jensen’s inequality, see, for example,
Chung [20], V (θ , θ ′) ≤ V (θ ′, θ ′), therefore, if,

U (θ, θ ′) > U (θ ′, θ ′),

then
L(θ) > L(θ ′). (3.33)

The relation (3.33) forms the basis of the EM algorithm. The algorithm starts with

an initial guess and we denote it by θ̂
(m)

, the current estimate of θ after m-iterations.

Then θ̂
(m+1)

can be obtained as follows;

E step : Compute U (θ, θ̂
(m)
)

M step : Compute θ̂
(m) = arg maxθU (θ , θ̂

(m)
).

Now we show how the EM algorithm can be used to estimate the unknown frequencies
and amplitudes of model (3.1) when the errors are i.i.d. normal random variables with
mean zero and variance σ 2. Under these assumptions, the log-likelihood function
without the constant term takes the following form;

l(ω) = −n ln σ −
n∑

t=1

1

σ 2

(
y(t)−

p∑

k=1

(Ak cos(ωk t)+ Bk sin(ωk t))

)2

. (3.34)
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It is clear that if Âk , B̂k , and ω̂k are the MLEs of Ak, Bk , and ωk respectively, for
k = 1, . . ., p, then the MLE of σ 2 can be obtained as

σ̂ 2 = 1

n

n∑

t=1

(
y(t)−

p∑

k=1

( Âk cos(ω̂k t)+ B̂k sin(ω̂k t))

)2

.

It is clear that the MLEs of Ak , Bk , and ωk for k = 1, . . ., p, can be obtained by
minimizing

1

σ 2

n∑

t=1

(
y(t)−

p∑

k=1

(Ak cos(ωk t)+ Bk sin(ωk t))

)2

, (3.35)

with respect to the unknown parameters. EM algorithm can be developed to compute
the MLEs of Ak, Bk , and ωk for k = 1, . . ., p, in this case. In developing the EM
algorithm, Feder and Weinstein [19] assumed that the noise variance σ 2 is known,
and without loss of generality it can be taken as 1.

To implement EM algorithm, re-write the data vector y(t) as follows:

y(t) = (
y1(t), . . ., yp(t)

)T
, (3.36)

where
yk(t) = Ak cos(ωk t)+ Bk sin(ωk t)+ Xk(t).

Here, Xk(t) for k = 1, . . ., p are obtained by arbitrarily decomposing the total noise
X (t) into p components, so that

p∑

k=1

Xk(t) = X (t).

Therefore, if H = [1, . . ., 1] is a p × 1 vector, then model (3.1) can be written as

y(t) =
p∑

k=1

yk(t) = Hy(t).

If we choose X1(t), . . ., X p(t) to be independent normal random variables with mean
zero and variance β1, . . ., βp, respectively, then

p∑

i=1

βk = 1, βk ≥ 0.
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With the above notation, the EM algorithm takes the following form. If Â(m)k , B̂(m)k ,

and ω̂(m)k denote the estimates of Ak , Bk , and ωk , respectively, after m-iterations,
then

E-Step:

ŷ(m)k (t) = Â(m)k cos(ω̂(m)k t)+ B̂(m)k sin(ω̂(m)k t)

+βk

[
y(t)−

p∑

k=1

Â(m)k cos(ω̂(m)k t)− B̂(m)k sin(ω̂(m)k t)

]
. (3.37)

M-Step:

( Â(m+1)
k , B̂(m+1)

k , ω̂
(m+1)
k ) = arg min

A,B,ω

n∑

t=1

(
ŷ(m)k (t)− A cos(ωt)− B sin(ωt)

)2
.

(3.38)
It is interesting to observe that Â(m+1)

k , B̂(m+1)
k , and ω̂(m+1)

k are the MLEs of

Ak, Bk, and ωk , respectively, based on ŷ(m)k (t), t = 1, . . ., n. The most important
feature of this algorithm is that it decomposes the complicated optimization problem
into p separate simple 1-D optimization problem.

Feder and Weinstein [19] did not mention how to choose β1, . . ., βp and how the
EM algorithm can be used when the error variance σ 2 is unknown. The choice of
β1, . . ., βp plays an important role in the performance of the EM algorithm. One
choice might be to take β1 = · · · = βp, alternatively dynamical choice of β1, . . ., βp

might provide better results.
We propose the following EM algorithm when σ 2 is unknown. Suppose Â(m)k ,

B̂(m)k , ω̂(m)k , and σ̂ 2(m) are the estimates of Ak, Bk, ωk, and σ 2, respectively, at the
m-step of the EM algorithm. They may be obtained from the periodogram estimates.
Choose β(m)k as

β
(m)
k = σ̂ 2(m)

p
; k = 1, . . . , p.

In E-step of (3.37) replace βk by β(m)k , and in the M-step after computing (3.38) also
obtain

σ̂ 2(m+1) = 1

n

n∑

t=1

(
y(t)−

p∑

k=1

Â(m+1)
k cos(ω̂(m+1)

k t)+ B̂(m+1)
k sin(ω̂(m+1)

k t)

)2

.

The iteration continues unless convergence criterion is met. The proof of convergence
or the properties of the estimators have not yet been established. Further work is
needed along that direction.
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3.12 Sequential Estimators

One major drawback of different estimators discussed so far is in their computational
complexity. Sometimes to reduce the computational complexity, efficiency has been
sacrificed. Prasad et al. [21] suggested sequential estimators, where computational
complexity has been reduced and at the same time the efficiency of the estimators
has not been sacrificed.

Prasad et al. [21] considered model (3.1) under error Assumptions 3.1 and 3.2.
The sequential method is basically a modification of the approximate least squares
method as described in Sect. 3.1. Using the same notation as in (3.5), the method can
be described as follows:

Algorithm 3.3

• Step 1: Compute ω̂1, which can be obtained by minimizing R1(ω), with respect
to ω, where

R1(ω) = YT (I − PZ(ω))Y. (3.39)

Here Z(ω) is same as defined in Sect. 3.1, and PZ(ω) is the projection matrix on
the column space of Z(ω).

• Step 2: Construct the following vector

Y(1) = Y − Z(ω̂1)̂α1, (3.40)

where

α̂1 =
[
ZT (ω̂1)Z(ω̂1)

]−1
ZT (ω̂1)Y.

• Step 3: Compute ω̂2, which can be obtained by minimizing R2(ω), with respect
to ω, where R2(ω) is obtained by replacing Y with Y(1) in (3.39).

• Step 4: The process continues up to p-steps.

The main advantage of the proposed algorithm is that it significantly reduces the
computational burden. The minimization of Rk(ω) for each k is a 1-D optimization
process, and it can be performed quite easily. It has been shown by the authors that
the estimators obtained by this sequential procedure are strongly consistent and they
have the same rate of convergence as the LSEs. Moreover, if the process continues
even after p-steps, it has been shown that the estimators of A and B converge to zero
a.s.

3.13 Quinn and Fernandes Method

Quinn and Fernandes [22] proposed the following method by exploiting the fact that
there is a second-order filter which annihilates a sinusoid at a given frequency. First
consider model (3.1) with p = 1. It follows from Prony’s equation that the model
satisfies the following equation;
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y(t)− 2 cos(ω)y(t − 1)+ y(t − 2) = X (t)− 2 cos(ω)X (t − 1)+ X (t − 2).

(3.41)

Therefore, {y(t)} forms an autoregressive moving average, namely ARMA(2,2)
process. It may be noted that the process does not have a stationary or invertible
solution. As expected, the above process does not depend on the linear parameters
A and B, but only depends on the non-linear frequency ω. It is clear from (3.41) that
using the above ARMA(2,2) structure of {y(t)}, it is possible to obtain the estimate
of ω.

Re-write (3.41) as follows;

y(t)− βy(t − 1)+ y(t − 2) = X (t)− αX (t − 1)+ X (t − 2), (3.42)

and the problem is to estimate the unknown parameter with the constraint α = β,
based on the observation {y(t)} for t = 1, . . ., n. It is important to note that if
the standard ARMA-based technique is used to estimate the unknown parameter, it
can only produce estimator which has the asymptotic variance of O(n−1) the order
n−1. On the other hand, it is known that the LSE of ω has the asymptotic variance
of O(n−3) the order n−3. Therefore, some ‘non-standard’ ARMA-based technique
needs to be used to obtain an efficient frequency estimator.

If α is known, and X (1), . . ., X (n) are i.i.d. normal random variables, then the
MLE of β can be obtained by minimizing

Q(β) =
n∑

t=1

(ξ(t)− βξ(t − 1)+ ξ(t − 2))2 , (3.43)

with respect to β, where ξ(t) = 0 for t < 1, and for t ≥ 1,

ξ(t) = y(t)+ αξ(t − 1)− ξ(t − 2).

The value of β, which minimizes (3.43), can easily be obtained as

α +
∑n

t=1 y(t)ξ(t − 1)∑n
t=1 ξ

2(t − 1)
. (3.44)

Therefore, one way can be to put the new value of α in (3.44) and then re-estimate β.
This basic idea has been used by Quinn and Fernandes [22] with a proper acceleration
factor, which ensures the convergence of the iterative procedure also. The algorithm
is as follows;

Algorithm 3.4

• Step 1: Put α(1) = 2 cos(ω̂(1)), where ω̂(1) is an initial estimator of ω.
• Step 2: For j ≥ 1, compute
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ξ(t) = y(t)+ α( j)ξ(t − 1)− ξ(t − 2); t = 1, . . ., n,

where ξ(t) = 0 for t < 1.
• Step 3: Obtain

β( j) = α( j) + 2

∑n
t=1 y(t)ξ(t − 1)∑n

t=1 ξ
2(t − 1)

.

• Step 4: If |α( j)−β( j)| is small then stop the iteration procedure, and obtain estimate
of ω as ω̂ = cos−1(β( j)/2). Otherwise obtain α( j+1) = β( j) and go back to
Step 2.

In the same paper, the authors extended the algorithm for general model (3.1) also
based on the observation that a certain difference operator annihilates all the sinu-
soidal components. If y(1), . . ., y(n) are obtained from model (3.1), then from
Prony’s equations it again follows that there exists α0, . . ., α2p, so that

2p∑

j=0

α j y(t − j) =
2p∑

j=0

α j X (t − j), (3.45)

where
2p∑

j=0

α j z
j =

p∏

j=1

(1 − 2 cos(ω j )z + z2). (3.46)

It is clear from (3.46) that α0 = α2p = 1, and α2p− j = α j for j = 0, . . ., p − 1.
Therefore, in this case y(1), . . ., y(n) form an ARMA(2p, 2p) process, and all the
zeros of the corresponding auxiliary polynomial are on the unit circle. It can also be
observed from Prony’s equations that no other polynomial of order less than 2p has
this property.

Following exactly the same reasoning as before, Quinn and Fernandes [22] sug-
gested the following algorithm for multiple sinusoidal model;

Algorithm 3.5

• Step 1: If ω̃1, . . ., ω̃p are initial estimators ofω1, . . ., ωp, computeα1, . . ., αp from

2p∑

j=0

α j z
j =

p∏

j=1

(1 − 2z cos(ω̃ j )+ z2).

• Step 2: Compute for t = 1, . . ., n;

ξ(t) = y(t)−
2p∑

j=1

α jξ(t − j)
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and for j = 1, . . ., p − 1 compute the p × 1 vector

η(t − 1) = [̃
ξ(t − 1), . . ., ξ̃ (t − p + 1), ξ(t − p)

]T
,

where
ξ̃ (t − j) = ξ(t − j)+ ξ(t − 2p + j),

and ξ(t) = 0, for t < 1.
• Step 3: Let α = [

α1, . . ., αp
]T , compute β = [

β1, . . ., βp
]T , where

β = α − 2

{
n∑

t=1

η(t − 1)η(t − 1)T
}−1 n∑

t=1

y(t)η(t − 1).

• Step 4: If max
j

|β j − α j | is small stop the iteration and obtain estimates of

ω1, . . ., ωp. Otherwise set α = β and go to Step 2.

This algorithm works very well for small p. For large p, the performance is not very
satisfactory, as it involves a 2p ×2p matrix inversion, which is quite ill conditioned.
Due to this reason, the elements of the vectors α and β obtained by this algorithm
can be quite large.

Quinn and Fernandes [22] suggested the following modified algorithm that works
very well even for large p also.

Algorithm 3.6

• Step 1: If ω̃1, . . ., ω̃p are initial estimators of ω1, . . ., ωp, respectively, compute
θk = 2 cos(ω̃k), for k = 1, . . ., p.

• Step 2: Compute for t = 1, . . ., n, j = 1, . . . , p, ζ j (t), where ζ j (−1) = ζ j (−2) =
0, and they satisfy

ζ j (t)− θ jζ j (t − 1)+ ζ j (t − 2) = y(t).

• Step 3: Compute θ = [
θ1, . . ., θp

]T , ζ(t) = [
ζ1(t), . . ., ζp(t)

]T , and

ψ = θ + 2

{
n∑

t=1

ζ(t − 1)ζ(t − 1)T
}−1 n∑

t=1

y(t)ζ(t − 1).

• Step 4: If |ψ − θ | is small, stop the iteration and obtain the estimates of the
ω1, · · ·, ωp. Otherwise set θ = ψ and go to Step 2.

Comments: Note that in both the above algorithms which have been proposed by
Quinn and Fernandes [22] for p > 1 involve the computation of a 2p × 2p matrix
inversion. Therefore, if p is very large then it becomes a computationally challenging
problem.
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3.14 Amplified Harmonics Method

The estimation of frequencies of model (3.1) based on amplified harmonics was
proposed by Truong-Van [23]. The main idea of Truong-Van [23] is to construct
a process which enhances the amplitude of a particular frequency quasi-linearly
with t , whereas the amplitudes of the other frequencies remain constant in time. The
method is as follows. For each frequency ωk , and any estimate ω(0)k near ωk , define
the process ξ(t) as the solution of the following linear equation;

ξ(t)− 2α(0)k ξ(t − 1)+ ξ(t − 2) = y(t); t ≥ 1, (3.47)

with the initial conditions ξ(0) = ξ(−1) = 0 and α(0)k = cos(ω(0)k ). Using the results
of Ahtola and Tiao [24], it can be shown that

ξ(t) =
t−1∑

j=0

ν( j;ω(0)k )y(t − k); t ≥ 1, (3.48)

where

ν( j;ω) = sin(ω( j + 1))

sin(ω)
.

Note that the process ξ(t) depends on ω(0)k , but we do not make it explicit. If it is

needed, we denote it by ξ(t;ω(0)k ). It has been shown by the author that the process
ξ(t) acts like an amplifier of the frequency ωk . It has been further shown that such an
amplifier exists and proposed an estimator ω̂k of ωk by observing the fact that y(t)
and ξ(t − 1; ω̂k) are orthogonal to each other, that is,

n∑

t=2

ξ(t − 1; ω̂k)y(t) = 0. (3.49)

Truong-Van [23] proposed two different algorithms mainly to solve (3.49). The first
algorithm (Algorithm 3.7) has been proposed when the initial guess values are very
close to the true values and the algorithm is based on Newton’s method to solve
(3.49). The second algorithm (Algorithm 3.8) has been proposed when the initial
guess values are not very close to the true values, and this algorithm also tries to find
a solution of the non-linear equation (3.49) using least squares approach.

Algorithm 3.7

• Step 1: Find an initial estimator ω(0)k of ωk .
• Step 2: Compute

ω
(1)
k = ω

(0)
k − F(ω(0)k )F ′(ω(0)k )−1,
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where

F(ω) =
n∑

t=2

ξ(t − 1;ω)y(t), and F ′(ω) =
n∑

t=2

d

dω
ξ(t − 1;ω)y(t).

• Step 3: Ifω(0)k andω(1)k are close to each other, stop the iteration, otherwise replace

ω
(0)
k by ω(1)k and continue the process.

Algorithm 3.8

• Step 1: Find an initial estimator ω(0)k of ωk and compute α(0)k = cos(ω(0)k ).
• Step 2: Compute

α
(1)
k = α

(0)
k +

(
2

n∑

t=2

ξ2(t − 1;ω(0)k )

)−1

F(ω(0)k ).

• Step 3: If α(0)k and α(1)k are close to each other, stop the iteration, otherwise replace

α
(0)
k by α(1)k and continue the process. From the estimate of αk , the estimate of ωk

can be easily obtained.

3.15 Weighted Least Squares Estimators

Weighted least squares estimators (WLSEs) are proposed by Irizarry [25]. The main
idea is to produce asymptotically unbiased estimators, which may have lower vari-
ances than the LSEs depending on the weight function. Irizarry [25] considered
model (3.1), and WLSEs of the unknown parameters can be obtained by minimizing

S(ω, θ) =
n∑

t=1

w

(
t

n

)(
y(t)−

p∑

k=1

{Ak cos(ωk t)+ Bk sin(ωk t)}
)2

, (3.50)

with respect to ω = (ω1, . . ., ωp), θ = (A1, . . ., Ap, B1, . . ., Bp). The weight func-
tion w(s) is non-negative, of bounded variation, has support [0, 1]. Moreover, it is
such that W0 > 0 and W 2

1 − W0W2 �= 0, where

Wn =
1∫

0

snw(s)ds.

It is assumed that the weight function is known a priori. In this case, it can be seen
along the same line as the LSEs that if we denote ω̂1, . . ., ω̂k , Â1, . . ., Âk , B̂1, . . ., B̂k
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as the WLSEs of ω1, . . ., ωk , A1, . . ., Ak , B1, . . ., Bk , respectively, then they can be
obtained as follows. First obtain ω̂1, . . ., ω̂k , which maximize Q(ω), with respect to
ω1, . . ., ωk , where

Q(ω) =
p∑

k=1

∣∣∣∣∣
1

n

n∑

t=1

w

(
t

n

)
y(t)eitωk

∣∣∣∣∣

2

, (3.51)

and then Âk and B̂k are obtained as

Âk = 2
∑n

t=1 w
( t

n

)
y(t) cos(ω̂k t)

∑n
t=1 w

( t
n

) and B̂k = 2
∑n

t=1 w
( t

n

)
y(t) sin(ω̂k t)

∑n
t=1 w

( t
n

) ,

for k = 1, . . ., p. Irizarry [25] proved that WLSEs are strongly consistent estimators
of the corresponding parameters, and they are asymptotically normally distributed
under fairly general assumptions on the weight function and on the error random
variables. The explicit expression of the variance covariance matrix is also provided,
which is as expected depends on the weight function. It appears that with the proper
choice of the weight function, the asymptotic variances of the WLSEs can be made
smaller than the corresponding asymptotic variances of the LSEs, although it has not
been explored. Moreover, it has not been indicated how to maximize Q(ω) as defined
in (3.51), with respect to the unknown parameter vector ω. It is a multi-dimensional
optimization problem, and if p is large, it is a difficult problem to solve. It might
be possible to use the sequential estimation procedure as suggested by Prasad et al.
[21], see Sect. 3.12, in this case also. More work is needed in that direction.

3.16 Nandi and Kundu Algorithm

Nandi and Kundu [26] proposed a computationally efficient algorithm for estimating
the parameters of sinusoidal signals in the presence of additive stationary noise, that
is, under error Assumption 3.2. The key features of the proposed algorithm are
(i) the estimators are strongly consistent and they are asymptotically equivalent to
the LSEs, (ii) the algorithm converges in three steps starting from the initial frequency
estimators as the PEs over Fourier frequencies, and (iii) the algorithm does not use
the whole sample at each step. In the first two steps, it uses only some fractions of
the whole sample, only in the third step it uses the whole sample. For notational
simplicity, we describe the algorithm when p = 1, and note that for general p, the
sequential procedure of Prasad et al. [21] can be easily used.

If at the j th stage the estimator of ω is denoted by ω( j), then ω( j+1) is
calculated as

ω( j+1) = ω( j) + 12

n j
Im

[
P( j)

Q( j)

]
, (3.52)
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where

P( j) =
n j∑

t=1

y(t)
(

t − n j

2

)
e−iω( j)t , (3.53)

Q( j) =
n j∑

t=1

y(t)e−iω( j)t , (3.54)

and n j denotes the sample size used at the j th iteration. Suppose ω(0) denotes the
periodogram estimator of ω, then the algorithm takes the following form.

Algorithm 3.9

1. Step 1: Compute ω(1) from ω(0) using (3.52) with n1 = n0.8.
2. Step 2: Compute ω(2) from ω(1) using (3.52) with n2 = n0.9.
3. Step 3: Compute ω(3) from ω(2) using (3.52) with n3 = n.

It should be mentioned that the fraction 0.8 or 0.9, which has been used in Step 2 or
Step 3, respectively, is not unique, and several other choices are also possible, see
Nandi and Kundu [26] for details. Moreover, it has been shown by the authors that
asymptotic properties of ω(3) are same as the corresponding LSE.

3.17 Super Efficient Estimator

Kundu et al. [27] recently proposed a modified Newton–Raphson method to obtain
super efficient estimators of the frequencies of model (3.1) in the presence of station-
ary noise {X (t)}. It is observed that if the algorithm starts with an initial estimator
with a convergence rate Op(1/n), and uses the Newton–Raphson algorithm with
proper step factor modification, then it produces super efficient frequency estima-
tor, in the sense that its asymptotic variance is lower than the asymptotic variance
of the corresponding LSE. It is indeed a very counterintuitive result because it is
well known that the usual Newton–Raphson method cannot be used to compute the
LSE, whereas with proper step-factor modification, it can produce super efficient
frequency estimator.

If we denote
S(ω) = YT Z(ZT Z)−1ZT Y, (3.55)

where Y and Z are same as defined in (3.5), then the LSE of ω can be obtained
by maximizing S(ω) with respect to ω. The maximization of S(ω) using Newton–
Raphson algorithm can be performed as follows:

ω( j+1) = ω( j) − S′(ω( j))

S′′(ω( j))
, (3.56)
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hereω( j) is same as defined before, that is, the estimate ofω at the j th stage, moreover,
S′(ω( j)) and S′′(ω( j)) denote the first derivative and second derivative, respectively,
of S(ω) evaluated atω( j). The standard Newton–Raphson algorithm is modified with
a smaller correction factor as follows:

ω( j+1) = ω( j) − 1

4
× S′(ω( j))

S′′(ω( j))
. (3.57)

Suppose ω(0) denotes the PE of ω, then the algorithm can be described as follows:

Algorithm 3.10

(1) Take n1 = n6/7, and calculate

ω(1) = ω(0) − 1

4
× S′

n1
(ω(0))

S′′
n1
(ω(0))

,

where S′
n1
(ω(0)) and S′′

n1
(ω(0)) are same as S′(ω(0)) and S′′(ω(0)), respectively,

computed using a subsample of size n1.
(2) With n j = n, repeat

ω( j+1) = ω( j) − 1

4
× S′

n j
(ω( j))

S′′
n j
(ω( j))

, j = 1, 2, . . .,

until a suitable stopping criterion is satisfied.

It is observed that any n1 consecutive data points can be used at step (1) to start
the algorithm, and it is observed in the simulation study that the choice of the initial
subsamples does not have any visible effect on the final estimator. Moreover, the
factor 6/7 in the exponent at step (1) is not unique, and there are several other
ways the algorithm can be initiated. It is observed in extensive simulation studies by
Kundu et al. [27] that the iteration converges very quickly and it produces frequency
estimator which has lower variances than the corresponding LSE.

3.18 Conclusions

In this section, we discussed different estimation procedures for estimating the fre-
quencies of the sum of sinusoidal models. It should be mentioned that although we
have discussed 17 different methods, the list is no where near complete. The main
aim is to provide an idea how the same problem due to its complicated nature has
been attempted by different methods to get some satisfactory answers. Moreover,
it is also observed that none of these methods work uniformly well for all values
of the model parameters. It is observed that finding the efficient estimators is a



42 3 Estimation of Frequencies

numerically challenging problem. Due to this reason several suboptimal solutions
have been suggested in the literature which do not have the same rate of conver-
gence as the efficient estimators. The detailed theoretical properties of the different
estimators are provided in the next chapter.
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Chapter 4
Asymptotic Properties

4.1 Introduction

In this chapter, we discuss asymptotic properties of some of the estimators described
in Chap. 3. Asymptotic results or results based on large samples deal with properties
of estimators under the assumption that the sample size increases indefinitely. The
statistical models, observed in signal processing literature, are mostly very compli-
cated non-linear models. Even a single component sinusoidal component model is
highly non-linear in its frequency parameter. Due to that many statistical concepts
for small samples cannot be applied in case of sinusoidal model. The added problem
is that under different error assumptions, this model is mean non-stationary. There-
fore, it is not possible to obtain any finite sample property of the LSE or any other
estimators, discussed in the previous chapter. All the results have to be asymptotic.
The most intuitive estimator is the LSE and the most popular one is the ALSE. These
two estimators are asymptotically equivalent and we discuss their equivalence in
Sect. 4.4.3. The sinusoidal model is a non-linear regression model, but it does not
satisfy, see Kundu [1], the standard sufficient conditions of Jennrich [2] or Wu [3]
for the LSE to be consistent. Jennrich [2] first proved the existence of the LSE in a
non-linear regression model of the form y(t) = ft (θ

0)+ε(t), t = 1, . . .. The almost
sure convergence of the LSE of the unknown parameter θ was shown under the fol-

lowing assumption: Define Fn(θ1, θ2) =
n∑

t=1

( ft (θ1) − ft (θ2))
2/n, then Fn(θ1, θ2)

converges uniformly to a continuous function F(θ1, θ2) and F(θ1, θ2) �= 0 if and only
if θ1 = θ2. Consider a single-component sinusoidal model and assume that A0 = 1
and B0 = 0 in (4.1). Suppose the model satisfies Assumption 3.1 andω0 is an interior
point of (0, π). In this simple situation, Fn(θ1, θ2) does not converge uniformly to a
continuous function. Wu [3] gave some sufficient condition under which the LSE of
θ0 is strongly consistent when the growth rate requirement of Fn(θ1, θ2) is replaced
by a Lipschitz-type condition on the sequence { ft }. In addition, the sinusoidal model
does not satisfy Wu’s Lipschitz-type condition also.
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Whittle [4] first obtained some of the theoretical results. Recent results are by
Hannan [5, 6], Walker [7], Rice and Rosenblatt [8], Quinn and Fernandes [9], Kundu
[1, 10], Quinn [11], Kundu and Mitra [12], Irizarry [13], Nandi et al. [14], Prasad
et al. [15], and Kundu et al. [16]. Walker [7] considered the sinusoidal model with one
component and obtained the asymptotic properties of the PEs under the assumption
that the errors are i.i.d. with mean zero and finite variance. The result has been
extended by Hannan [5] when the errors are from a weakly stationary process and
by Hannan [6] when the errors are from a strictly stationary random process with
continuous spectrum. Some of the computational issues have been discussed in Rice
and Rosenblatt [8]. The estimation procedure, proposed by Quinn and Fernandes
[9], is based on fitting ARMA (2,2) models and the estimator is strongly consistent
and efficient. Kundu and Mitra [12] considered the model when errors are i.i.d. and
proved directly the consistency and asymptotic normality of the LSEs. The result was
generalized by Kundu [10] when the errors are from a stationary linear process. The
weighted LSEs are proposed by Irizarry [13] and extended the asymptotic results
of the LSEs to the weighted one. Nandi et al. [14] prove the strong consistency of
the LSEs when the errors are i.i.d. with mean zero, but may not have finite variance.
They also obtain the asymptotic distribution of the LSEs when the error distribution is
symmetric stable. It is well known that the Newton–Raphson method does not work
well in case of sinusoidal frequency model. Kundu et al. [16] propose a modification
of the Newton–Raphson method with a smaller step factor such that the resulting
estimator has the same rate of convergence as the LSEs. Additionally, the asymptotic
variances of the proposed estimators are less than those of the LSEs. Therefore, the
estimators are named as the superefficient estimators.

4.2 Sinusoidal Model with One Component

We first discuss the asymptotic results of the estimators of the parameters of the sinu-
soidal model with one component. This is just to keep the mathematical expression
simple. We talk about the model with p components at the end of the chapter. The
model is now

y(t) = A0 cos(ω0t)+ B0 sin(ω0t)+ X (t), t = 1, . . . , n. (4.1)

In this section, we explicitly write A0, B0, and ω0 as the true values of the unknown
parameters A, B, andω, respectively. Write θ = (A, B, ω) and let θ0 be the true value
of θ and let θ̂ and θ̃ be the LSE and ALSE of θ , respectively; {X (t)} is a sequence of
error random variables. To ensure the presence of the frequency component and to
make sure that y(t) is not pure noise, assume that A0 and B0 are not simultaneously
equal to zero. For technical reason, take ω ∈ (0, π). At this moment, we do not
explicitly mention the complete error structure. We assume in this chapter that the
number of signal components (distinct frequency), p, is known in advance. The
problem of estimation of p is considered in Chap. 5.
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In the following, we discuss the consistency and asymptotic distribution of the
LSE and ALSE of θ under different error assumptions. Apart from Assumptions 3.1
and 3.2, the following two assumptions regarding the structure of the error process
are required.

Assumption 4.1 {X (t)} is a sequence of i.i.d. random variables with mean zero and
E |X (t)|1+δ < ∞ for some 0 < δ ≤ 1.

Assumption 4.2 {X (t)} is a sequence of i.i.d. random variables distributed as
SαS(σ ).

Note 4.1

(a) Assumption 3.1 is a special case of Assumption 4.1 as both are same with δ = 1.
(b) If {X (t)} satisfies Assumption 4.2, Assumption 4.1 is also true with 1 + δ <

α ≤ 2. Therefore, from now on, we take 1 + δ < α ≤ 2.
(c) Assumption 3.2 is a standard assumption for a stationary linear process, any

finite dimensional stationary AR, MA, or ARMA process can be represented
as a linear process with absolute summable coefficients. A process is called a
stationary linear process if it satisfies Assumption 3.2.

4.3 Strong Consistency of LSE and ALSE of θ

We recall that Q(θ) is the residual sum of squares, defined in (3.3) and I (ω) is the
periodogram function, defined in (1.5).

Theorem 4.1 If {X (t)} satistifies either Assumption 3.1, 4.1, or 3.2, then the LSE θ̂

and the ALSE θ̃ are both strongly consistent estimators of θ0, that is,

θ̂
a.s.−→ θ0 and θ̃

a.s.−→ θ0. (4.2)

The following lemmas are required to prove Theorem 4.1.

Lemma 4.1 Let SC1,K = {
θ; θ = (A, B, θ), |θ − θ0| ≥ 3C1, |A| ≤ K , |B| ≤ K

}
.

If for any C1 > 0 and for some K < ∞,

lim inf
n→∞ inf

θ∈SC1,K

1

n

[
Q(θ)− Q(θ0)

]
> 0 a.s., (4.3)

then θ̂ is a strongly consistent estimator of θ0.

Lemma 4.2 If {X (t)} satisfies either Assumption 3.1, 4.1, or 3.2, then

sup
ω∈(0,π)

∣∣∣∣∣
1

n

n∑

t=1

X (t) cos(ωt)

∣∣∣∣∣ → 0 a.s. as n → ∞. (4.4)
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Corollary 4.1

sup
ω∈(0,π)

∣∣∣∣∣
1

nk+1

n∑

t=1

tk X (t) cos(ωt)

∣∣∣∣∣ → 0 a.s., f or k = 1, 2 . . .

The result is true for sine functions also.

Lemma 4.3 Write SC2 = {ω : |ω−ω0| > C2}, for any C2 > 0. If for some C2 > 0,

lim sup
SC2

1

n

[
I (ω)− I (ω0)

]
< 0 a.s.,

then ω̃, the ALSE of ω0, converges to ω0 a.s. as n → ∞.

Lemma 4.4 Suppose ω̃ is the ALSE of ω0. Then n(ω̃ − ω0) → 0 a.s. as n → ∞.

Lemma 4.1 provides a sufficient condition for θ̂ to be strongly consistent, whereas
Lemma 4.3 gives a similar condition for ω̃, the ALSE of ω0. Lemma 4.2 is used to
verify conditions given in Lemmas 4.1 and 4.3. Lemma 4.4 is required to prove the
strong consistency of the ALSEs of the amplitudes, Ã and B̃.

The consistency results of the LSEs and the ALSEs are stated in Theorem 4.1 in
concise form and it is proved in two steps. First, the proof of the strong consistency of
θ̂ , the LSE of θ and next the proof of the strong consistency of θ̃ , the ALSE of θ . The
proofs of Lemmas 4.1–4.4, required to prove Theorem 4.1, are given in Appendix
A. We prove Lemma 4.1. The proof of Lemma 4.3 is similar to Lemma 4.1 and so it
is omitted. Lemma 4.2 is proved separately under Assumptions 4.1 and 3.2.

4.3.1 Proof of the Strong Consistency of ̂θ , the LSE of θ

In this proof, we denote θ̂ by θ̂n to write explicitly that θ̂ depends on n. If θ̂n is not
consistent for θ0, then either case 4.1 or case 4.2 occurs.

Case 4.1 For all subsequences {nk} of {n}, | Ân| + |B̂n| → ∞. This implies[
Q(̂θnk ) − Q(θ0)

]
/nk → ∞. At the same time, θ̂nk is the LSE of θ0 at n = nk ,

therefore Q(̂θnk )− Q(θ0) < 0. This leads to a contradiction.

Case 4.2 For at least one subsequence {nk} of {n}, θ̂nk ∈ SC1,K for some C1 > 0

and for a 0 < K < ∞. Write
[

Q(θ)− Q(θ0)
]
/n = f1(θ)+ f2(θ), where
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f1(θ) = 1

n

n∑

t=1

[
A0 cos(ω0t)− A cos(ωt)+ B0 sin(ω0t)− B sin(ωt)

]2
,

f2(θ) = 1

n

n∑

t=1

X (t)
[

A0 cos(ω0t)− A cos(ωt)+ B0 sin(ω0t)− B sin(ωt)
]
.

Define sets S j
C1,K

= {θ : |θ j − θ0
j | > C1, |A| ≤ K , |B| ≤ K } for j = 1, 2, 3, where

θ j is the j th element of θ , that is, θ1 = A, θ2 = B, and θ3 = ω and θ0
j is the true

values of θ j . Then SC1,K ⊂ S1
C1,K

∪ S2
C1,K

∪ S3
C1,K

= S, say and

lim inf
n→∞ inf

SC1,K

1

n

[
Q(θ)− Q(θ0)

]
≥ lim inf

n→∞ inf
S

1

n

[
Q(θ)− Q(θ0)

]
.

Using Lemma 4.2, limn→∞ f2(θ) = 0 a.s. Then

lim inf
n→∞ inf

S j
C1,K

1

n

[
Q(θ)− Q(θ0)

]
= lim inf

n→∞ inf
S j

C1,K

f1(θ)> 0 a.s. for j = 1, . . . , 4,

⇒ lim inf
n→∞ inf

SC1,K

1

n

[
Q(θ)− Q(θ0)

]
> 0 a.s.

Therefore, for j = 1,

lim inf
n→∞ inf

S j
C1,K

f1(θ)

= lim inf
n→∞ inf

|A−A0|>C1

1

n

n∑

t=1

[{
A0 cos(ω0t)− A cos(ωt)

}2 +
{

B0 sin(ω0t)− B sin(ωt)
}2

+2
{

A0 cos(ω0t)− A cos(ωt)
}{

B0 sin(ω0t)− B sin(ωt)
}]

= lim inf
n→∞ inf

|A−A0|>C1

1

n

n∑

t=1

[{
A0 cos(ω0t)− A cos(ωt)

}2
>

1

2
C2

1 > 0 a.s.

We have used trigonometric result (2.5) here. Similarly, the inequality holds for
j = 2, 3. Therefore, using Lemma 4.1, we say that θ̂ is a strongly consistent estimator
of θ . �

4.3.2 Proof of Strong Consistency of θ , the ALSE of θ

We first prove the consistency of ω̃, the ALSE of ω, and then provide the proof of
the linear parameter estimators. Consider
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1

n

[
I (ω)− I (ω0)

]

= 1

n2

[∣∣∣
n∑

t=1

y(t)e−iωt
∣∣∣
2−
∣∣∣

n∑

t=1

y(t)e−iω0t
∣∣∣
2]

= 1

n2

[{ n∑

t=1

y(t) cos(ωt)
}2 +

{ n∑

t=1

y(t) sin(ωt)
}2

−
{ n∑

t=1

y(t) cos(ω0t)
}2 −

{ n∑

t=1

y(t) sin(ω0t)
}2]

=
{ n∑

t=1

(
A0 cos(ω0t)+ B0 sin(ω0t)+ X (t)

)
cos(ωt)

}2

+
{ n∑

t=1

(
A0 cos(ω0t)+ B0 sin(ω0t)+ X (t)

)
sin(ωt)

}2

−
{ n∑

t=1

(
A0 cos(ω0t)+ B0 sin(ω0t)+ X (t)

)
cos(ω0t)

}2

−
{ n∑

t=1

(
A0 cos(ω0t)+ B0 sin(ω0t)+ X (t)

)
sin(ω0t)

}2
.

Using Lemma 4.2, the terms of the form lim supω∈SC2
(1/n)

∑n
t=1 X (t) cos(ωt) = 0

a.s. and using trigonometric identities (2.5–2.7), we have

lim sup
ω∈SC2

1

n

[
I (ω)− I (ω0)

]

= − lim
n→∞

{
1

n

n∑

t=1

A0 cos2(ω0t)

}2

− lim
n→∞

{
1

n

n∑

t=1

B0 sin2(ω0t)

}2

= −1

4
(A02 + B02

) < 0 a.s.

Therefore, using Lemma 4.3, ω̃ → ω0 a.s.
We need Lemma 4.4 to prove that Ã and B̃ are strongly consistent. Observe that

Ã = 2

n

n∑

t=1

y(t) cos(ω̃t) = 2

n

n∑

t=1

(
A0 cos(ω0t)+ B0 sin(ω0t)+ X (t)

)
cos(ω̃t).

Using Lemma 4.2, (2/n)
∑n

t=1 X (t) cos(ω̃t) → 0. Expand cos(ω̃t) by Taylor series
around ω0.
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Ã = 2

n

n∑

t=1

(
A0 cos(ω0t)+ B0 sin(ω0t)

)[
cos(ω0t)− t (ω̃−ω0) sin(ωt)

]
→ A0 a.s.

using Lemma 4.4 and trigonometric results (2.5–2.7). �

Remark 4.1 The proof of the consistency of LSE and ALSE of θ̂ for model (4.1)
is extensively discussed. The consistency of the LSE of the parameter vector of the
multiple sinusoidal model with p > 1 follows similarly as the consistency of θ̂ and
θ̃ of this section.

4.4 Asymptotic Distribution of LSE and ALSE of θ

This section discusses the asymptotic distribution of LSE and ALSE of θ̂ under
different error assumptions. We discuss the asymptotic distribution of θ̂ , the LSE of
θ under Assumption 3.2. Then we consider the case under Assumption 4.2. Under
Assumption 3.2, the asymptotic distribution of θ̂ , as well as θ̃ , is multivariate nor-
mal, whereas under Assumption 4.2, it is distributed as multivariate symmetric stable.
First we discuss the asymptotic distribution of θ̂ in both the cases. Then the asymp-
totic distribution of θ̃ is shown to be same as that of θ̂ by proving the asymptotic
equivalence of θ̂ and θ̃ .

4.4.1 Asymptotic Distribution of ̂θ Under Assumption 3.2

Assume that {X (t)} satisfies Assumption 3.2. Let Q′(θ) be a 1 × 3 vector of first
derivative and Q′′(θ), a 3 × 3 matrix of second derivatives of Q(θ), that is,

Q′(θ) =
(
∂Q(θ)

∂A
,
∂Q(θ)

∂B
,
∂Q(θ)

∂ω

)
, (4.5)

Q′′(θ) =

⎛

⎜⎜⎜⎜⎜⎜⎝

∂2 Q(θ)
∂A2

∂2 Q(θ)
∂A∂B

∂2 Q(θ)
∂A∂ω

∂2 Q(θ)
∂B∂A

∂2 Q(θ)
∂B2

∂2 Q(θ)
∂B∂ω

∂2 Q(θ)
∂ω∂A

∂2 Q(θ)
∂ω∂B

∂2 Q(θ)
∂ω2

⎞

⎟⎟⎟⎟⎟⎟⎠
. (4.6)

The elements of Q′(θ) and Q′′(θ) are
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∂Q(θ)

∂A
= −2

n∑

t=1

X (t) cos(ωt),
∂Q(θ)

∂B
= −2

n∑

t=1

X (t) sin(ωt),

∂Q(θ)

∂ω
= 2

n∑

t=1

t X (t) [A sin(ωt)− B cos(ωt)] ,

∂2 Q(θ)

∂A2 = 2
n∑

t=1

cos2(ωt),
∂2 Q(θ)

∂B2 = 2
n∑

t=1

sin2(ωt),

∂2 Q(θ)

∂A∂B
= 2

n∑

t=1

cos(ωt) sin(ωt),

∂2 Q(θ)

∂A∂ω
= −2

n∑

t=1

t cos(ωt) [A sin(ωt)− B cos(ωt)] + 2
n∑

t=1

t X (t) sin(ωt),

∂2 Q(θ)

∂B∂ω
= −2

n∑

t=1

t sin(ωt) [A sin(ωt)− B cos(ωt)] − 2
n∑

t=1

t X (t) cos(ωt),

∂2 Q(θ)

∂ω2 = 2
n∑

t=1

t2 [A sin(ωt)− B cos(ωt)]2

+2
n∑

t=1

t2 X (t) [A cos(ωt)+ B sin(ωt)] .

Consider a 3×3 diagonal matrix D = diag
{
n−1/2, n−1/2, n−3/2

}
. Expanding Q′(̂θ)

around θ0 using Taylor series expansion

Q′(̂θ)− Q′(θ0) = (̂θ − θ0)Q′′(θ̄), (4.7)

where θ̄ is a point on the line joining θ̂ and θ0. As θ̂ is the LSE of θ0, Q′(̂θ) = 0.
Also θ̂

a.s.→ θ0 using Theorem 4.1. Because Q(θ) is a continuous function of θ , we
have

lim
n→∞ DQ′′(θ̄)D = lim

n→∞ DQ′′(θ0)D =
⎛

⎝
1 0 1

2 B0

0 1 − 1
2 A0

1
2 B0 − 1

2 A0 1
3 (A

02 + B02
)

⎞

⎠ = Σ, say.

(4.8)
Therefore, (4.7) can be written as

(̂θ − θ0)D−1 = −
[

Q′(θ0)D
] [

DQ′′(θ̄)D
]−1

, (4.9)

since DQ′′(θ̄)D is an invertible matrix a.e. for large n. Using a central limit theorem
of stochastic processes, Fuller [17], it follows that Q′(θ0)D tends to a 3-variate
normal distribution with mean vector zero and variance covariance matrix equal to
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2σ 2c(ω0)Σ , where

c(ω0) =
∣∣∣

∞∑

j=0

a( j)e−i jω0
∣∣∣
2=

[ ∞∑

j=0

a( j) cos( jω0)
]2+

[ ∞∑

j=0

a( j) sin( jω0)
]2
.

(4.10)

Therefore, (̂θ − θ0)D−1 d→ N3(0, 2σ 2c(ω0)Σ−1) and we can state the asymptotic
distribution in the following theorem.

Theorem 4.2 Under Assumption 3.2, the limiting distribution of ({n 1
2 ( Â − A0),

n
1
2 (B̂ − B0), n

3
2 (ω̂−ω0)}) as n → ∞ is a 3-variate normal distribution with mean

vector zero and dispersion matrix 2 σ 2c(ω0)Σ−1, where c(ω0) is defined in (4.10)
and Σ−1 has the following form:

Σ−1 = 1

A02 + B02

⎡

⎢⎢⎢⎢⎣

A02 + 4B02 −3A0 B0 −3B0

−3A0 B0 4A02 + B02
3A0

−3B0 3A0 6

⎤

⎥⎥⎥⎥⎦
. (4.11)

Remark 4.2

1. The diagonal entries of matrix D correspond to the rates of convergence of Â, B̂,
and ω̂, respectively. Therefore, Â − A0 = Op(n−1/2), B̂ − B0 = Op(n−1/2),
and ω̂ − ω0 = Op(n−3/2).

2. Instead of Assumption 3.2, if {X (t)} only satisfies Assumption 3.1, then a( j) =
0, for all j �= 0 and a(0) = 1 in the derivation discussed above and so c(ω0) = 1.

Therefore, in such a situation (̂θ − θ0)D−1 d→ N3(0, 2σ 2Σ−1).
3. Observe that (σ 2/2π)c(ω) = f (ω), where f (ω) is the spectral density function

of the error process {X (t)} under Assumption 3.2.

4.4.2 Asymptotic Distribution of ̂θ Under Assumption 4.2

In this section, the asymptotic distribution of θ̂ under Assumption 4.2 is developed,
that is, {X (t)} is a sequence of i.i.d. symmetric stable random variables with stability
index α and scale parameter σ (see Nandi et al. [14]).

Define two diagonal matrices of order 3 × 3 as follows:

D1 = diag
{

n− 1
α , n− 1

α , n− 1+α
α

}
, D2 = diag

{
n− α−1

α , n− α−1
α , n− 2α−1

α

}
. (4.12)

Note that D1D2 = D2. Also if α = 2, it corresponds to normal distribution and
in that case D1 = D2 = D. Using the same argument as in (4.8), we have



54 4 Asymptotic Properties

lim
n→∞ D2 Q′′(θ̄)D1 = lim

n→∞ D2 Q′′(θ0)D1 = Σ . (4.13)

Similarly as in (4.9), we write

(̂θ − θ0)D2
−1 = −

[
Q′(θ0)D1

] [
D2 Q′′(θ̄)D1

]−1
. (4.14)

To find the distribution of Q′(θ0)D1, write

Q′(θ0)D1 =
[
− 2

n
1
α

n∑

t=1

X (t) cos(ω0t),− 2

n
1
α

n∑

t=1

X (t) sin(ω0t),

2

n
1+α
α

n∑

t=1

t X (t)
[

A0 sin(ω0t)− B0 cos(ω0t)
]]

=
(

Z1
n, Z2

n, Z3
n

)
, (say). (4.15)

Then the joint characteristic function of (Z1
n, Z2

n, Z3
n) is

φn(t) = E exp{i(t1 Z1
n + t2 Z2

n + t3 Z3
n)} = E exp

⎧
⎨

⎩i
2

n1/α

n∑

j=1

X ( j)Kt( j)

⎫
⎬

⎭ ,

(4.16)

where

Kt( j) = −t1 cos(ω0 j)− t2 sin(ω0 j)+ j t3
n

{
A0 sin(ω0 j)− B0 cos(ω0 j)

}
. (4.17)

Since {X (t)} is a sequence of i.i.d. random variables

φn(t) =
n∏

j=1

exp{−2ασα
1

n
|Kt( j)|α} = exp{−2ασα

1

n

n∑

j=1

|Kt( j)|α}. (4.18)

Nandi et al. [14] argued that (1/n)
∑n

j=1 |Kt( j)|α converges, based on extensive
numerical experiments. Assuming that it converges, it is proved in Nandi et al. [14]
that it converges to a non-zero limit for t �= 0. The proof is given in Appendix B.
Suppose

lim
n→∞

1

n

n∑

j=1

|Kt( j)|α = τt(A
0, B0, ω0, α). (4.19)
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Therefore, the limiting characteristic function is

lim
n→∞φn(t) = e−2ασατt(A0,B0,ω0,α), (4.20)

which indicates that even if n → ∞, any linear combination of Z1
n , Z2

n , and Z3
n ,

follows a SαS distribution. Using Theorem 2.1.5 of Samorodnitsky and Taqqu [18],
it follows that:

lim
n→∞

[
Q′(θ0)D1

] [
D2 Q′′(θ̄)D1

]−1
(4.21)

converges to a symmetric α stable random vector in R
3 with characteristic function

φ(t) = exp{−2ασατu(A0, B0, ω0, α)}, where τu is defined through (4.19) replacing
t by u. The vector u is defined as a function of t as u = (u1, u2, u3) with

u1(t1, t2, t3, A0, B0) =
[
(A02 + 4B02

)t1 − 3A0 B0t2 − 6B0t3
] 1

A02 + B02 ,

u2(t1, t2, t3, A0, B0) =
[
−3A0 B0t1 + (4A02 + B02

)t2 + 6A0t3
] 1

A02 + B02 ,

u3(t1, t2, t3, A0, B0) =
[
−6B0t1 + 6A0t2 + 12t3

] 1

A02 + B02 .

Therefore, we have the following theorem.

Theorem 4.3 Under Assumption 4.2, (̂θ − θ0)D2
−1 =

(
n
α−1
α ( Â − A0), n

α−1
α (B̂ −

B0), n
2α−1
α (ω0 − ω)

)
converges to a multivariate symmetric stable distribution in

R
3 having characteristic function equal to φ(t).

4.4.3 Asymptotic Equivalence of LSE ̂θ and ALSE θ

In this section, it is shown that the asymptotic distribution of θ̃ , the ALSE of θ , is
equivalent to that of θ̂ for large n. We have presented the asymptotic distribution of
θ̂ in two cases: (i) {X (t)} is a sequence of i.i.d. symmetric stable with stability index
1 < α < 2 and scale parameter σ , and (ii) {X (t)} is a stationary linear process,
such that it can be expressed as (3.2) with absolute summable coefficients. In both
the cases, the asymptotic distribution of θ̃ is same as the LSE, θ̂ and stated in the
following theorem.

Theorem 4.4 Under Assumption 4.2, the asymptotic distribution of (̃θ − θ0)D2
−1

is same as that of (̂θ − θ0)D2
−1. Similarly, under Assumption 3.2 the asymptotic

distribution of (̃θ − θ0)D−1 is same as that of (̂θ − θ0)D−1.

Proof Observe that under Assumption 4.2
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1

n
Q(θ)

= 1

n

n∑

t=1

y(t)2 − 2

n

n∑

t=1

y(t) {A cos(ωt)+ B sin(ωt)}

+1

n

n∑

t=1

(A cos(ωt)+ B sin(ωt))2

= 1

n

n∑

t=1

y(t)2 − 2

n

n∑

t=1

y(t) {A cos(ωt)+ B sin(ωt)} + 1

2

(
A2 + B2

)
+ O

(1

n

)

= C − 1

n
J (θ)+ O

(1

n

)
, (4.22)

where

C = 1

n

n∑

t=1

y(t)2 and

1

n
J (θ) = 2

n

n∑

t=1

y(t) {A cos(ωt)+ B sin(ωt)} − 1

2

(
A2 + B2

)
.

Write J ′(θ)/n =
(
∂ J (θ)
∂A /n, ∂ J (θ)

∂B /n, ∂ J (θ)
∂ω

/n
)

, then at θ0

1

n

∂ J (θ0)

∂A
= 2

n

n∑

t=1

y(t) cos(ω0t)− A0

= 2

n

n∑

t=1

{
A0 cos(ω0t)+ B0 sin(ω0t)+ X (t)

}
cos(ω0t)− A0

= 2

n

n∑

t=1

X (t) cos(ω0t)+ 2A0

n

n∑

t=1

cos2(ω0t)

+2B0

n

n∑

t=1

sin(ω0t) cos(ω0t)− A0

= 2

n

n∑

t=1

X (t) cos(ω0t)+ A0 + O
(1

n

)
− A0,

= 2

n

n∑

t=1

X (t) cos(ω0t)+ O
(1

n

)
.

Similarly (1/n)
∂ J (θ0)

∂B
= (2/n)

n∑

t=1

X (t) sin(ω0t)+ O
(

1/n
)

, and
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1

n

∂ J (θ0)

∂ω
= 2

n

n∑

t=1

t X (t)
{
−A0 sin(ω0t)+ B0 cos(ω0t)

}
+ O(1). (4.23)

Comparing Q′(θ0)/n and J ′(θ0)/n, we have

1

n
Q′(θ0) = −1

n
J ′(θ0)+

⎡

⎢⎢⎣

O
(

1/n
)

O
(

1/n
)

O(1)

⎤

⎥⎥⎦

T

⇒ Q′(θ0) = −J ′(θ0)+
⎡

⎣
O(1)
O(1)
O(n)

⎤

⎦
T

.

(4.24)

Note that Ã = Ã(ω) and B̃ = B̃(ω), therefore, at ( Ã, B̃, ω)

J ( Ã, B̃, ω)

= 2
n∑

t=1

y(t)

[{
2

n

n∑

k=1

y(k) cos(ωk)

}
cos(ωt)+

{
2

n

n∑

k=1

y(k) sin(ωk)

}
sin(ωt)

]

−n

2

⎡

⎣
{

2

n

n∑

t=1

y(t) cos(ωt)

}2

+
{

2

n

n∑

t=1

y(t) sin(ωt)

}2
⎤

⎦

= 2

n

{
n∑

t=1

y(t) cos(ωt)

}2

+ 2

n

{
n∑

t=1

y(t) sin(ωt)

}2

= 2

n

∣∣∣∣∣

n∑

t=1

y(t)e−iωt

∣∣∣∣∣

2

= I (ω).

Hence, the estimator of θ0, which maximizes J (θ), is equivalent to θ̃ , the ALSE of
θ0. Thus, for the ALSE θ̃ , in terms of J (θ), is

(̃θ − θ0) = −J ′(θ0)
[
J ′′(θ̄)

]−1

⇒ (̃θ − θ0)D2
−1 = −

[
J ′(θ0)D1

] [
D2 J ′′(θ̄)D1

]−1

= −
⎡

⎢⎣

⎛

⎜⎝−Q′(θ0)+
⎡

⎣
O(1)
O(1)
O(n)

⎤

⎦
T
⎞

⎟⎠D1

⎤

⎥⎦
[
D2 J ′′(θ̄)D1

]−1
. (4.25)

The matrices D1 and D2 are same as defined in (4.12). One can show similarly as in
(4.8) and (4.13), that

lim
n→∞

[
D2 J ′′(θ̄)D1

] = lim
n→∞

[
D2 J ′′(θ0)D1

]
= −Σ = − lim

n→∞
[
D2 Q′′(θ0)D1

]
.

(4.26)
Using (4.14) and (4.26) in (4.25), we have
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(̃θ − θ0)D2
−1 = −

[
Q′(θ0)D1

] [
D2 Q′′(θ̄)D1

]−1 +
⎛

⎝
O(1)
O(1)
O(n)

⎞

⎠
T

D1
[
D2 J ′′(θ̄)D1

]−1

= (̂θ − θ0)D2
−1 +

⎛

⎝
O(1)
O(1)
O(n)

⎞

⎠
T

D1
[
D2 J ′′(θ̄)D1

]−1
.

Since D2 J ′′(θ0)D1 is an invertible matrix a.e. for large n and limn→∞

⎛

⎝
O(1)
O(1)
O(n)

⎞

⎠
T

D1 = 0, it follows that LSE, θ̂ and ALSE, θ̃ of θ0 of model (4.1) are asymptotically
equivalent in distribution. Therefore, asymptotic distribution of θ̃ is same as that of θ̂ .

Under Assumption 3.2, instead of Assumption 4.2, (4.25) follows similarly by
replacing D1 = D2 = D. This is the case corresponding to α = 2, so that the second
moment is finite. Similarly (4.26), and equivalence follow. �

4.5 Superefficient Frequency Estimator

In this section, we discuss the theoretical results behind the superefficient algorithm
proposed by Kundu et al. [16]. This method modifies the widely used Newton–
Raphson iterative method. In the previous section, we have seen that the least squares
method estimates the frequency with convergence rate Op(n−3/2) and once the fre-
quency is estimated with Op(n−3/2), the linear parameters can be estimated effi-
ciently with the rate of convergence Op(n−1/2). The modified Newton-Raphson
method estimates the frequency with the same rate of convergence as the LSE and
the asymptotic variance is smaller than that of the LSE.

The superefficient frequency estimator of ω maximizes S(ω), where S(ω) is
defined in (3.55) in Sect. 3.17. Suppose ω̂ maximizes S(ω), then the estimators of A
and B are obtained using the separable regression technique as

( Â B̂)T = (Z(ω̂)T Z(ω̂))−1Z(ω̂)T Y, (4.27)

where Z(ω) is defined in (3.5).
The motivation behind using a correction factor, one-fourth of the standard

Newton–Raphson correction factor, is based on the following limiting result. As
assumed before, ω0 is the true value of ω.

Theorem 4.5 Assume that ω̃ is an estimate of ω0 such that ω̃−ω0 = Op(n−1−δ),
δ ∈ (0, 1

2

]
. Suppose ω̃ is updated as ω̂, using ω̂ = ω̃ − 1

4 × S′(ω̃)
S′′(ω̃) , then

(a) ω̂ − ω0 = Op(n−1−3δ) if δ ≤ 1
6 ,

(b) n
3
2 (ω̂ − ω0)

d−→ N
(

0, 6σ 2c(ω0)

A02+B02

)
if δ > 1

6 ,
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where c(ω0) is same as defined in asymptotic distribution of LSEs.

Proof Write

D = diag{1, 2, . . . , n}, E =
[

0 1
−1 0

]
, (4.28)

Ż = d

dω
Z = DZE, Z̈ = d2

dω2 Z = −D2Z. (4.29)

In this proof, we use Z(ω) ≡ Z. Note that EE = −I, EET = I = ET E and

d

dω
(ZT Z)−1 = −(ZT Z)−1[ŻT Z + ZT Ż](ZT Z)−1. (4.30)

Compute the first and second derivatives of S(ω) as;

1

2
S′(ω) = YT Ż(ZT Z)−1ZT Y − YT Z(ZT Z)−1ŻT Z(ZT Z)−1ZT Y,

1

2
S′′(ω) = YT Z̈(ZT Z)−1ZT Y − YT Ż(ZT Z)−1(ŻT Z + ZT Ż)(ZT Z)−1ZT Y

+YT Ż(ZT Z)−1ŻT Y − YT Ż(ZT Z)−1ŻT Z(ZT Z)−1ZT Y

+YT Z(ZT Z)−1(ŻT Z + ZT Ż)(ZT Z)−1ŻT Z(ZT Z)−1ZT Y

−YT Z(ZT Z)−1(Z̈T Z)(ZT Z)−1ZT Y

−YT Z(ZT Z)−1(ŻT Ż)(ZT Z)−1ZT Y

+YT Z(ZT Z)−1ŻT Z(ZT Z)−1(ŻT Z + ZT Ż)(ZT Z)−1ZT Y

−YT Z(ZT Z)−1ŻT Z(ZT Z)−1ŻT Y.

Assume ω̃ − ω0 = Op(n−1−δ). So, for large n,

1

n
ZT Z) ≡ (

1

n
Z(ω̃)T Z(ω̃))−1

= 2 I2 + Op(
1

n
)

and

1

2n3 S′′(ω̃) = 2

n4 YT Z̈ZT Y − 4

n5
YT Ż(ŻT Z + ZT Ż)ZT Y + 2

n4 YT ŻŻT Y

− 4

n5
YT ŻŻT ZZT Y + 8

n6 YT Z(ŻT Z + ZT Ż)ŻT ZZT Y

− 4

n5
YT ZZ̈T ZZT Y − 4

n5
YT ZŻT ŻZT Y

+ 8

n6 YT ZŻT Z(ŻT Z + ZT Ż)ZT Y − 4

n5
YT ZŻT ZŻT Y + Op(

1

n
).
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Substituting Ż and Z̈ in terms of D and Z, we obtain

1

2n3 S′′(ω̃) = − 2

n4 YT D2ZZT Y − 4

n5
YT DZE(ET ZT DZ + ZT DZE)ZT Y

+ 2

n4 YT DZEET ZT DY − 4

n5
YT DZEET ZT DZZT Y

+ 8

n6 YT Z(ET ZT DZ + ZT DZE)ET ZT DZZT Y

+ 4

n5
YT ZZT D2ZZT Y − 4

n5
YT ZET ZT D2ZEZT Y

+ 8

n6 YT ZET ZT DZ(ET ZT DZ + ZT DZE)ZT Y

− 4

n5
YT ZET ZT DZET ZT DY + Op(

1

n
).

Using results (2.5–2.7), one can see that

1

n2 YT DZ = 1

4
(A B)+ Op(

1

n
),

1

n3 YT D2Z = 1

6
(A B)+ Op(

1

n
), (4.31)

1

n3 ZT D2Z = 1

6
I2 + Op(

1

n
),

1

n
ZT Y = 1

2
(A B)T + Op(

1

n
), (4.32)

1

n2 ZT DZ = 1

4
I2 + Op(

1

n
). (4.33)

Therefore,

1

2n3 S′′(ω̃) = (A2 + B2)

[
−1

6
− 0 + 1

8
− 1

8
+ 0 + 1

6
− 1

6
+ 0 + 1

8

]
+ Op(

1

n
)

= − 1

24
(A2 + B2)+ Op(

1

n
).

Write S′(ω)/2n3 = I1 + I2 and simplify I1 and I2 separately for large n.

I1 = 1

n3 YT Ż(ZT Z)−1ZT Y = 2

n4 YT DZEZT Y,

I2 = 1

n3 YT Z(ZT Z)−1ŻT Z(ZT Z)−1ZT Y

= 1

n3 YT Z(ZT Z)−1ET ZT DZ(ZT Z)−1ZT Y

= 1

n3 YT Z(2I + Op(
1

n
))ET (

1

4
I + Op(

1

n
))(2I + Op(

1

n
))ZT Y

= 1

n3 YT ZET ZT Y + Op(
1

n
) = Op(

1

n
),
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and (n4 I1)/2 = YT DZEZT Y at ω̃ for large n is simplified as

YT DZEZT Y = YT DZ(ω̃)EZT (ω̃)Y

=
( n∑

t=1

y(t)t cos(ω̃t)
)( n∑

t=1

y(t) sin(ω̃t)
)

−
( n∑

t=1

y(t)t sin(ω̃t)
)( n∑

t=1

y(t) cos(ω̃t)
)
.

Observe that
n∑

t=1

y(t)e−iωt =
n∑

t=1

y(t) cos(ωt) − i
n∑

t=1

y(t) sin(ω). Then along the

same line as Bai et al. [19] (see also Nandi and Kundu [20])

n∑

t=1

y(t)e−iω̃t =
n∑

t=1

[
A0 cos(ω0t)+ B0 sin(ω0t)+ X (t)

]
e−iω̃t

=
n∑

t=1

[
A0

2

(
eiω0t + e−iω0t

)
+ B0

2i

(
eiω0t − e−iω0t

)
+ X (t)

]
e−iω̃t

=
(

A0

2
+ B0

2i

) n∑

t=1

ei(ω0−ω̃)t +
(

A0

2
− B0

2i

) n∑

t=1

e−i(ω0+ω̃)t

+
n∑

t=1

X (t)e−iω̃t .

If ω̃ − ω0 = Op(n−1−δ), the it can be shown that
n∑

t=1

e−i(ω0+ω̃)t = Op(1) and

n∑

t=1

ei(ω0−ω̃)t = n + i(ω0 − ω̃)

n∑

t=1

ei(ω0−ω∗)t = n + Op(n
−1−δ)Op(n

2)

= n + Op(n
1−δ),

where ω∗ is a point between ω0 and ω̃. Choose L1 large enough, such that L1δ > 1.
Therefore, using Taylor series approximation of e−iω̃ j t around ω0 up to L1th order
terms

n∑

t=1

X (t)e−iω̃t

=
∞∑

k=0

a(k)
n∑

t=1

e(t − k)e−iω̃t
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=
∞∑

k=0

a(k)
n∑

t=1

e(t − k)e−iω0t +
∞∑

k=0

a(k)
L1−1∑

l=1

(−i(ω̃ − ω0))l

l!
n∑

t=1

e(t − k)t le−iω0t

+
∞∑

k=0

a(k)
θ1(n(ω̃ − ω0))L1

L1!
n∑

t=1

|e(t − k)|,

with |θ1| < 1. Since {a(k)} is absolutely summable,
∑∞

k=0 |a(k)| < ∞,

n∑

t=1

X (t)e−iω̃t = Op(n
1
2 )+

L1−1∑

l=1

Op(n−(1+δ)l)
l! Op(n

l+ 1
2 )+ Op

(
(n.n−1−δ)L1 .n

)

= Op(n
1
2 )+ Op(n

1
2 +δ−L1δ)+ Op(n

1−L1δ) = Op(n
1
2 ).

Therefore,

n∑

t=1

y(t)e−iω̃t =
(

A0

2
+ B0

2i

)(
n + Op(n

1−δ)
)

+ Op(1)+ Op(n
1
2 )

= n

2

[
(A0 − i B0)+ Op(n

−δ)
]

as δ ∈
(

0,
1

2

]
,

and

n∑

t=1

y(t) cos(ω̃t) = n

2

(
A0 + Op(n

−δ)
)
,

n∑

t=1

y(t) sin(ω̃t) = n

2

(
B0 + Op(n

−δ)
)
.

Similarly as above, observe that

n∑

t=1

y(t)te−iω̃t =
n∑

t=1

(
A0 cos(ω0t)+ B0 sin(ω0t)+ X (t)

)
te−iω̃t

= 1

2
(A0 − i B0)

n∑

t=1

t ei(ω0−ω̃)t

+1

2
(A0 + i B0)

n∑

t=1

t e−i(ω0+ω̃)t +
n∑

t=1

X (t)te−iω̃t ,

and following Bai et al. [19]
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n∑

t=1

t e−i(ω0+ω̃)t = Op(n),

n∑

t=1

t ei(ω0−ω̃)t =
n∑

t=1

t + i(ω0 − ω̃)

n∑

t=1

t2 − 1

2
(ω0 − ω̃)2

n∑

t=1

t3

−1

6
i(ω0 − ω̃)3

n∑

t=1

t4 + 1

24
(ω0 − ω̃)4

n∑

t=1

t5ei(ω0−ω∗)t .

Again using ω̃ − ω0 = Op(n−1−δ), we have

1

24
(ω0 − ω̃)4

n∑

t=1

t5ei(ω0−ω∗)t = Op(n
2−4δ). (4.34)

Choose L2 large enough such that L2δ > 1 and using Taylor series expansion of
e−iω̃t we have,

n∑

t=1

X (t)te−iω̃t =
∞∑

k=0

a(k)
n∑

t=1

e(t − k)te−iω̃t

=
∞∑

k=0

a(k)
n∑

t=1

e(t − k)te−iω0t

+
∞∑

k=0

a(k)
L2−1∑

l=1

(−i(ω̃ − ω0))l

l!
n∑

t=1

e(t − k)t l+1e−iω0t

+
∞∑

k=0

a(k)
θ2(n(ω̃ − ω0))L2

L2!
n∑

t=1

t |e(t − k)| (as before |θ2| < 1)

=
∞∑

k=0

a(k)
n∑

t=1

e(t − k)te−iω0t +
L2−1∑

l=1

Op(n
−(1+δ)l)Op(n

l+ 3
2 )

+
∞∑

k=0

a(k)Op(n
5
2 −L2δ)

=
∞∑

k=0

a(k)
n∑

t=1

e(t − k)te−iω0t + Op(n
5
2 −L2δ).

Therefore,
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n∑

t=1

y(t)t cos(ω̃t)

= 1

2

[
A0

( n∑

t=1

t − 1

2
(ω0 − ω̃)2

n∑

t=1

t3

)
+ B0

( n∑

t=1

(ω0 − ω̃)t2 − 1

6
(ω0 − ω̃)3

n∑

t=1

t4

)]

+
∞∑

k=0

a(k)
n∑

t=1

e(t − k)t cos(ω0t)+ Op(n
5
2 −L2δ)+ Op(n)+ Op(n

2−4δ).

Similarly,

n∑

t=1

y(t)t sin(ω̃t)

= 1

2

[
B0

( n∑

t=1

t − 1

2
(ω0 − ω̃)2

n∑

t=1

t3

)
− A0

( n∑

t=1

(ω0 − ω̃)t2 − 1

6
(ω0 − ω̃)3

n∑

t=1

t4

)]

+
∞∑

k=0

a(k)
n∑

t=1

e(t − k)t sin(ω0t)+ Op(n
5
2 −L2δ)+ Op(n)+ Op(n

2−4δ).

Hence,

ω̂ = ω̃ − 1

4

S′(ω̃)
S′′(ω̃)

= ω̃ − 1

4

1
2n3 S′(ω̃)

− 1
24 (A

02 + B02
)+ Op(

1
n )

= ω̃ − 1

4

2
n4 YT DZEZT Y

− 1
24 (A

02 + B02
)+ Op(

1
n )

= ω̃ + 12
1

n4 YT DZEZT Y

(A02 + B02
)+ Op(

1
n )

= ω̃ + 12

1
4n3 (A

02 + B02
)
{
(ω0 − ω̃)

∑n
t=1 t2 − 1

6 (ω
0 − ω̃)3

∑n
t=1 t4

}

(A02 + B02
)+ Op(

1
n )

+
⎡

⎣B0
∞∑

k=0

a(k)
n∑

t=1

e(t − k)t cos(ω0t)+ A0
∞∑

k=0

a(k)
n∑

t=1

e(t − k)t sin(ω0t)

⎤

⎦

× 6

(A02 + B02
)n3 + Op(

1
n )

+ Op(n
− 1

2 −L2δ)+ Op(n
−2)+ Op(n

−1−4δ)

= ω0 + (ω0 − ω̃)Op(n
−2δ)
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+
⎡

⎣B0
∞∑

k=0

a(k)
n∑

t=1

e(t − k)t cos(ω0t)+ A0
∞∑

k=0

a(k)
n∑

t=1

e(t − k)t sin(ω0t)

⎤

⎦

× 6

(A02 + B02
)n3 + Op(

1
n )

+ Op(n
− 1

2 −L2δ)+ Op(n
−2)+ Op(n

−1−4δ).

Finally, if δ ≤ 1/6, clearly ω̂ − ω0 = Op(n−1−3δ), and if δ > 1/6, then

n
3
2 (ω̂ − ω0)

d= 6n− 3
2

(A02 + B02
)

⎡

⎣B0
∞∑

k=0

a(k)
n∑

t=1

e(t − k)t cos(ω0t)

+A0
∞∑

k=0

a(k)
n∑

t=1

e(t − k)t sin(ω0t)

⎤

⎦

= 6n− 3
2

(A02 + B02
)

[
B0

n∑

t=1

X (t)t cos(ω0t)+ A0
n∑

t=1

X (t)t sin(ω0t)

]

[
Using similar technique described in Appendix B.

]

d−→ N

(
0,

6σ 2c(ω0)

A02 + B02

)
.

That proves the theorem. �

Remark 4.3 In Eq. (4.27), write ( Â B̂)T = (A(ω̂)B(ω̂))T . Expanding A(ω̂) around
ω0 by Taylor series,

A(ω̂)− A(ω0) = (ω̂ − ω0)A′(ω̄)+ o(n2). (4.35)

A′(ω̄) is the first-order derivative of A(ω) with respect to ω at ω̄; ω̄ is a point
on the line joining ω̂ and ω0; ω̂ can be either the LSE or the estimator obtained
by modified Newton-Raphson method. Comparing the variances (asymptotic) of the
two estimators ofω, note that the asymptotic variance of the corresponding estimator
of A0 is four times less than that of the LSE. The same is true for the estimator
of B0.

Var(A(ω̂)− A(ω0)) ≈ Var(ω̂ − ω0)[A′(ω̄)]2

Var(A(ω̂)− A0) = Var(ω̂L SE )

4
[A′(ω̄)]2 = Var( ÂL SE )

4
,

where ω̂L SE and ÂL SE are the LSEs ofω0 and A0, respectively. Similarly, Var(B(ω̂)−
B(ω0)) = Var(B̂L SE )/4 and different notation involving B have a similar meaning
replacing A by B.
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Remark 4.4 Theorem 4.5 suggests that an initial estimator ofω0 having convergence
rate equal to Op(n−1−δ) is required to use it. But such an estimator is not easily
available. Therefore, Kundu et al. [16] use an estimator having convergence rate
Op(n−1) and using a fraction of the available data points to implement Theorem
4.5. The subset is chosen in such a way that the dependence structure of the error
process is not destroyed. The argument maximum of I (ω), defined in (1.5), or S(ω),
defined in (3.55), over Fourier frequencies, provides an estimator of the frequency
with convergence rate Op(n−1).

4.6 Multiple Sinusoidal Model

The multi-component frequency model, generally known as multiple sinusoidal
model, has the following form in the presence of p distinct frequency component;

y(t) =
p∑

k=1

[
A0

k cos(ω0
k t)+ B0

k sin(ω0
k t)
]

+ X (t), t = 1, . . . , n. (4.36)

Here {y(1), . . . , y(n)} is the observed data. For k = 1, . . . , p, A0
k and B0

k are ampli-
tudes and ω0

k is the frequency. Similar to single-component model (4.1), the additive
error {X (t)} is the sequence of random variables which satisfies different assump-
tions depending upon the problem at hand. In this chapter, p is assumed to be known.
The problem of estimation of p is considered in Chap. 5.

Extensive work, on multiple sinusoidal signal model, has been done by several
authors. Some references: Kundu and Mitra [12] studied the multiple sinusoidal
model (4.36) and established the strong consistency and asymptotic normality of the
LSEs under Assumption 3.1, that is, {X (t)} is sequence of i.i.d. random variables with
finite second moment. Kundu [10] proved the same results under Assumption 3.2.
Irizarry [13] consider a semi-parametric weighted LSEs of the parameters of model
(4.36) and develop the asymptotic variance expression (discussed in next section).

The LSEs of the unknown parameters are asymptotically normality distributed
under Assumption 3.2 and stated in the following theorem.

Theorem 4.6 Under Assumption 3.2, as n → ∞, {n 1
2 ( Âk − A0

k), n
1
2 (B̂k − B0

k ),

n
3
2 (ω̂k − ω0

k )} are jointly distributed as a 3-variate normal distribution with mean
vector zero and dispersion matrix 2 σ 2c(ω0

k )Σ
−1
k , where c(ω0

k ) and Σ−1
k are same as

c(ω0) and Σ−1, with A0, B0, and ω0 replaced by A0
k, B0

k , and ω0
k , respectively. For

j �= k, ({n 1
2 ( Â j − A0

j ), n
1
2 (B̂ j − B0

j ), n
3
2 (ω̂ j −ω0

j )}), and ({n 1
2 ( Âk − A0

k), n
1
2 (B̂k −

B0
k ), n

3
2 (ω̂k − ω0

k )}) are asymptotically independently distributed. The quantities
c(ω0) and Σ−1 are defined in (4.10) and (4.11), respectively.
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4.7 Weighted Least Squares Estimators

The WLSEs are proposed by Irizarry [13] in order to analyze the harmonic com-
ponents in musical sounds. The least squares results in case of multiple sinusoidal
model are extended to weighted least squares case for a class of weight functions.
Under the assumption that the error process is stationary with certain other properties,
the asymptotic results are developed. The WLSEs minimize the following criterion
function

S(ω, η) =
n∑

t=1

w

(
t

n

)(
y(t)−

p∑

k=1

(Ak cos(ωk t)+ Bk sin(ωk t)

)2

, (4.37)

with respect to ω = (ω1, . . . , ωp) and η = (A1, . . . Ap, B1, . . . , Bp). The error
process {X (t)} is stationary with autocovariance function cxx (h)= Cov(X (t),
X (t + h) and spectral density function fx (λ), −∞ < λ < ∞ satisfies Assump-
tion 4.3 and the weight function w(s) satisfies Assumption 4.4.

Assumption 4.3 The error process {X (t)} is a strictly stationary real-valued random
process all of whose moments exist, with zero mean and with cxx ...x (h1, . . . , hL−1),
the joint cumulant function of order L for L = 2, 3, . . . . Also,

CL =
∞∑

h1=−∞
· · ·

∞∑

hL−1=−∞
|cxx ...x (h1, . . . , hL−1)|

satisfy
∑

k

(Ck zk)/k! < ∞, for z in a neighborhood of 0.

Assumption 4.4 The weight function w(s) is non-negative, bounded, of bounded
variation, has support [0, 1] and it is such that W0 > 0 and W 2

1 − W0W2 �= 0, where

Wn =
∫ 1

0
snw(s)ds. (4.38)

Irrizarry [13] uses the idea of Walker [7] discussed for the unweighted case by proving
the following Lemma.

Lemma 4.5 If w(t) satisfies Assumption 4.4, then for k = 0, 1, . . .

lim
n→∞

1

nk+1

n∑

t=1

w
( t

n

)
tk exp(iλt) = Wn, for λ = 0, 2π,

n∑

t=1

w(
( t

n

)
tk exp(iλt) = O(nk), for 0 < λ < 2π.
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Similar to the unweighted case, that is the LSEs, the WLSEs of (ω, η) are asymptot-
ically equivalent to the weighted PEs which maximize

IW y(ω) =
p∑

k=1

∣∣∣∣∣
1

n

n∑

t=1

w
( t

n

)
y(t) exp(i tωk)

∣∣∣∣∣

2

with respect to ω and the estimators of η are given in Sect. 3.15. This is the sum of

the periodogram functions of the tapered data w
(

t/n
)

y(t). The following lemma is

used to prove the consistency and asymptotic normality of the WLSEs.

Lemma 4.6 Let the error process {X (t)} satisfy Assumption 4.3 and the weight
function w(s) satisfy Assumption 4.4, then

lim
n→∞

∑

0≤λ≤2π

∣∣∣∣∣
1

nk+1

∞∑

t=n

w
( t

n

)
tk X (t) exp(−i tλ)

∣∣∣∣∣ = 0, in probability.

The consistency and asymptotic normality of the WLSEs are stated in Theorem
4.7 and Theorem 4.8, respectively. Let ω0 = (ω0

1, . . . ω
0
p) and η = (A0

1, . . . A0
p,

B0
1 , . . . , B0

p) be the true parameter values.

Theorem 4.7 Under Assumptions 4.3 and 4.4, for 0 < ω0
k < π ,

Âk
p→ A0

k, and B̂k
p→ B0

k , as n → ∞

lim
n→∞ n|ω̂k − ω0

k | = 0, for k = 1, . . . , p.

Theorem 4.8 Under the same assumptions as in Theorem 4.7,

(
n

1
2 ( Âk − A0

k), n
1
2 (B̂k − B0

k ), n
3
2 (ω̂k − ω0

k

)′ d→ N3

(
0,

4π fx (ω
0
k )

A0
k

2 + B0
k

2 Vk

)

where

Vk =
⎡

⎢⎣
c1 A0

k
2 + c2 B0

k
2 −c3 A0

k B0
k −c4 B0

k

−c3 A0
k B0

k c2 A0
k

2 + c1 B0
k

2
c4 A0

k−c4 B0
k c4 A0

k c0

⎤

⎥⎦

with
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c0 = a0b0

c1 = U0W −1
0

c2 = a0b1

c3 = a0W1W −1
0 (W 2

o W1U2 − W 3
1 U0 − 2W 2

0 + 2W0W1W2U0)

c4 = a0(W0W1U2 − W 2
1 U1 − W0W2U1 + W1W2U0),

and

a0 = (W0W2 − W 2
1 )

−2

bi = W 2
i U2 + Wi+1(Wi+1U0 − 2WiU1), for i = 0, 1.

Here, Wi , i = 0, 1, 2 are defined in (4.38) and Ui , i = 0, 1, 2 are defined by

Ui =
∫ 1

0
siw(s)2ds.

4.8 Conclusions

In this chapter, we mainly emphasize the asymptotic properties of LSEs of the
unknown parameters of sinusoidal signal model under different error assumptions.
The theoretical properties of the superefficient estimator are discussed in much detail
because it has the same rate of convergence as the LSEs. At the same time it has
a smaller asymptotic variance than the LSEs. Some of the other estimation pro-
cedures, presented in Chap. 3, have desirable theoretical properties. Bai et al. [21]
proved the consistency of EVLP estimators, whereas Kundu and Mitra [22] did the
same for NSD estimators. The proofs of convergence of the modified Prony algo-
rithm and constrained MLE are found in Kundu [23] and Kundu and Kannan [24],
respectively. Sequential estimators are strongly consistent and have the same limit-
ing distribution as the LSEs, see Prasad et al. [15]. The frequency estimator obtained
by using Quinn and Fernandes method is strongly consistent and as efficient as the
LSEs, Quinn and Fernandes [9]. Trung-Van [25] proved that the estimators of the
frequencies obtained by amplitude harmonics method are strongly consistent, their
bias converges to zero almost surely with rate n−3/2(log n)δ , δ > 1/2 and have the
same asymptotic variances as Whittle estimators. Nandi and Kundu [20] proved that
the algorithm presented in Sect. 3.16 is as efficient as the LSEs.
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Appendix A

Proof of Lemma 4.1

In this proof, we denote θ̂ by θ̂n = ( Ân, B̂n, ω̂n) and Q(θ) by Qn(θ) to emphasize
that they depend on n. Suppose (4.3) is true and θ̂n does not converge to θ0 as
n → ∞, then there exist a c > 0, an 0 < M < ∞ and a subsequence {nk} of {n},
such that θ̂nk ∈ Sc,M for all k = 1, 2, . . .. Since θ̂nk is the LSE of θ0 when n = nk ,

Qnk (θ̂nk ) ≤ Qnk (θ
0) ⇒ 1

nk

[
Qnk (θ̂nk )− Qnk (θ

0)
]

≤ 0.

Therefore,

lim inf
θnk ∈Sc,M

1

nk
[Qnk (θ̂nk )− Qnk (θ

0)] ≤ 0,

which contradicts the inequality (4.3). Thus, θ̂n is a strongly consistent estimator of
θ0. �

Proof of Lemma 4.2 under Assumption 4.1

We prove the result for cos(ωt), the result for sin(ωt) follows similarly. Let Z(t) =
X (t)I[|X (t)|≤t

1
1+δ ]. Then

∞∑

t=1

P[Z(t) �= X (t)] =
∞∑

t=1

P[|X (t)| > t
1

1+δ ] =
∞∑

t=1

∑

2t−1≤m<2t

P[|X (1)| > m
1

1+δ ]

≤
∞∑

t=1

2t P[2 t−1
1+δ ≤ |X (1)|]

≤
∞∑

t=1

2t
∞∑

k=t

P[2 k−1
1+δ ≤ |X (1)| < 2

k
1+δ ]

≤
∞∑

k=1

P[2 k−1
1+δ ≤ |X (1)| < 2

k
1+δ ]

k∑

t=1

2t

≤ C
∞∑

k=1

2k−1 P[2 k−1
1+δ ≤ |X (1)| < 2

k
1+δ ]

≤ C
∞∑

k=1

E |X (1)|1+δ I[2 k−1
1+δ ≤|X (1)|<2

k
1+δ ] ≤ C E |X (1)|1+δ < ∞.
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Therefore, P[Z(t) �= X (t) i.o.] = 0. Thus

sup
0≤ω≤2π

1

n

n∑

t=1

X (t) cos(ωt) → 0 a.s ⇔ sup
0≤ω≤2π

1

n

n∑

t=1

Z(t) cos(ωt) → 0 a.s.

Let U (t) = Z(t)− E(Z(t)), then

sup
0≤ω≤2π

∣∣∣∣∣
1

n

n∑

t=1

E(Z(t)) cos(ωt)

∣∣∣∣∣ ≤ 1

n

n∑

t=1

|E(Z(t))|

= 1

n

n∑

t=1

∣∣∣∣∣∣

∫ t
1

1+δ

−t
1

1+δ
xd F(x)

∣∣∣∣∣∣
→ 0.

Thus, we only need to show that

sup
0≤ω≤2π

1

n

n∑

t=1

U (t) cos(ωt) → 0 a.s.

For any fixed ω and ε > 0, let 0 ≤ h ≤ 1

2n
1

1+δ
, then we have

P

{∣∣∣∣∣
1

n

n∑

t=1

U (t) cos(ωt)

∣∣∣∣∣ ≥ ε

}
≤ 2e−hnε

n∏

t=1

EehU (t) cos(ωt)

≤ 2e−hnε
n∏

t=1

(
1 + 2Ch1+δ) .

Since |hU (t) cos(ωt)| ≤ 1
2 , ex ≤ 1 + x + 2|x |1+δ for |x | ≤ 1

2 and E |U (t)|1+δ < C
for some C > 0. Clearly,

2e−hnε
n∏

t=1

(
1 + 2Ch1+δ) ≤ 2e−hnε+2nCh1+δ

.

Choose h = 1/(2n−(1+δ), then for large n,

P

{∣∣∣∣∣
1

n

n∑

t=1

U (t) cos(ωt)

∣∣∣∣∣ ≥ ε

}
≤ 2e− ε

2 n
δ

1+δ +C ≤ Ce− ε
2 n

δ
1+δ
.

Let K = n2, choose ω1, . . . , ωK , such that for each ω ∈ (0, 2π), we have a ωk

satisfying |ωk − ω| ≤ 2π/n2. Note that



72 4 Asymptotic Properties

∣∣∣∣∣
1

n

n∑

t=1

U (t) (cos(ωt)− cos(ωk t))

∣∣∣∣∣ ≤ C
1

n

n∑

t=1

t
1

1+δ .t.

(
2π

n2

)
≤ Cπn− δ

1+δ → 0.

Therefore for large n, we have

P

{
sup

0≤ω≤2π

∣∣∣∣∣
1

n

n∑

t=1

U (t) cos(ωt)

∣∣∣∣∣ ≥ 2ε

}

≤ P

{
max
k≤n2

∣∣∣∣∣
1

n

n∑

t=1

U (t) cos(ωtk)

∣∣∣∣∣ ≥ ε

}
≤ Cn2e− ε

2 n
δ

1+δ
.

Since
∑∞

n=1 n2e− ε
2 n

δ
1+δ

< ∞, therefore

sup
0≤ω≤2π

∣∣∣∣∣
1

n

n∑

t=1

U (t) cos(ωt)

∣∣∣∣∣ → 0 a.s.

by Borel Cantelli lemma. �

Proof of Lemma 4.2 under Assumption 3.2

Under Assumption 3.2, the error process {X (t)} is a stationary linear process with
absolutely summable coefficients. Observe that (Kundu [10])

1

n

n∑

t=1

X (t) cos(ωt) = 1

n

n∑

t=1

∞∑

j=0

a( j)e(t − j) cos(ωt)

1

n

n∑

t=1

∞∑

j=0

a( j)e(t − t)
{

cos((t − j)ω) cos( jω)− sin((t − j)ω) sin( jω)
}

= 1

n

∞∑

j=0

a( j) cos( jω)
n∑

t=1

e(t − j) cos((t − j)ω)

−1

n

∞∑

j=0

a( j) sin( jω)
n∑

t=1

e(t − j) sin((t − j)ω). (4.39)

Therefore,
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sup
ω

1

n

∣∣∣
n∑

t=1

X (t) cos(ωt)
∣∣∣ ≤ sup

θ

1

n

∣∣∣
∞∑

j=0

a( j) cos( jω)
n∑

t=1

e(t − j) cos((t − j)ω)
∣∣∣

+ sup
ω

1

n

∣∣∣
∞∑

j=0

a( j) sin( jω)
n∑

t=1

e(t − j) sin((t − j)ω)
∣∣∣ a.s.

≤ 1

n

∞∑

j=0

|a( j)| sup
ω

∣∣∣
n∑

t=1

e(t − j) cos((t − j)ω)
∣∣∣

+ 1

n

∞∑

j=0

|a( j)| sup
ω

∣∣∣
n∑

t=1

e(t − j) sin((t − j)ω)
∣∣∣.

Now taking expectation

E
(

sup
ω

1

n

∣∣∣
n∑

t=1

X (t) cos(ωt)
∣∣∣
)

≤ 1

n

∞∑

j=0

|a( j)|E
(

sup
ω

∣∣∣
n∑

t=1

e(t − j) cos((t − j)ω)
∣∣∣
)

≤ 1

n

∞∑

j=0

|a( j)|
{

E sup
θ

∣∣∣
n∑

t=1

e(t − j) cos((t − j)ω)
∣∣∣
2}1/2

+1

n

∞∑

j=0

|a( j)|
{

E sup
θ

∣∣∣
n∑

t=1

e(t − j) sin((t − j)ω)
∣∣∣
2}1/2

. (4.40)

The first term of (4.40)

1

n

∞∑

j=0

|a( j)|
{

E sup
θ

∣∣∣
n∑

t=1

e(t − j) cos((t − j)ω)
∣∣∣
2}1/2

≤ 1

n

∞∑

j=0

|a( j)|
{

n +
n−1∑

t=−(n−1)

E
(∣∣∣
∑

m

e(m)e(m + t)
∣∣∣
)1/2}

(4.41)

where the sum
∑n−1

t=−(n−1) omits the term t = 0 and
∑

m is over all such m such that
1 ≤ m + t ≤ n, that is, n − |t | terms (dependent on j). Similarly the second term of
(4.41) can be bounded by the same. Since

E
(∣∣∣
∑

m

e(m)e(m + t)
∣∣∣
)

≤ E
(∣∣∣
∑

m

e(m)e(m + t)
∣∣∣
2)1/2 = O(n1/2), (4.42)
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uniformly in j , the right-hand side of (4.41) is O
{
(n + n3/2)1/2/n

}
= O(n−1/4).

Therefore, (4.40) is also O(n−1/4). Let M = n3, then E
(

supω

∣∣∣
∑n

t=1 X (t)

cos(ωt)
∣∣∣/n
)

≤ O(n−3/2). Therefore using Borel Cantelli Lemma, it follows that

sup
ω

1

n

∣∣∣
n∑

t=1

X (t) cos(ωt)
∣∣∣→ 0, a.s.

Now for J , n3 < J ≤ (n + 1)3,

sup
ω

sup
n3<J<(n+1)3

∣∣∣
1

n3

n3∑

t=1

X (t) cos(ωt)− 1

J

J∑

t=1

X (t) cos(ωt)
∣∣∣

= sup
ω

sup
n3<J<(n+1)3

∣∣∣
1

n3

n3∑

t=1

X (t) cos(ωt)− 1

n3

J∑

t=1

X (t) cos(ωt)

+ 1

n3

J∑

t=1

X (t) cos(ωt)− 1

J

J∑

t=1

X (t) cos(ωt)
∣∣∣

≤ 1

n3

(n+1)3∑

t=n3+1

|X (t)| +
(n+1)3∑

t=1

|X (t)|
( 1

n3 − 1

(n + 1)3

)
a.s. (4.43)

The mean squared error of the first term is of the order O
(
(1/n6) × ((n + 1)3 −

n3)2
)

= O(n−2) and the mean squared error of the second term is of the order

O
(

n6 ×
(
((n +1)3 −n3)/n6

)2) = O(n−2). Therefore, both terms converge to zero

almost surely. That proves the lemma. �

Proof of Lemma 4.4

Let I ′(ω) and I ′′(ω) be the first and second derivatives of I (ω) with respect to ω.
Expanding I ′(ω̃) around ω0 using Taylor series expansion.

I ′(ω̃)− I ′(ω) = (ω̃ − ω0)I ′′(ω̄), (4.44)

where ω̄ is a point on the line joining ω̃ and ω0. Since I ′(ω̃) = 0, (4.44) can be
written as
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n(ω̃ − ω0) =
[ 1

n2 I ′(ω0)
][ 1

n3 I ′′(ω̄)
]−1

It can be shown that limn→∞ 1
n2 I ′(ω0) = 0 a.s. and since I ′′(ω) is a continuous

function of ω and ω̃ → ω0 a.s.

lim
n→∞

1

n3 I ′′(ω̄) = 1

24
(A02 + B02

) �= 0. (4.45)

Therefore, we have n(ω̃ − ω0) → 0 a.s. �

Appendix B

We here calculate the variance covariance matrix of Q′(θ0)D, present in (4.9). In this
case, the error random variables X (t) can be written as

∑∞
j=0 a( j)e(t − j). Note

that

Q′(θ0)D =
(

1

n
1
2

∂Q(θ)

∂A
,

1

n
1
2

∂Q(θ)

∂B
,

1

n
3
2

∂Q(θ)

∂ω

)

and limn→∞ Var(Q′(θ0)D)) = Σ . In the following, we calculate Σ11 and Σ13,
where Σ = ((Σi j )). Rest of the elements can be calculated similarly.

Σ11 = lim
n→∞ Var

( 1

n
1
2

∂Q(θ)

∂A

)
= 1

n
E
[
−2

n∑

t=1

X (t) cos(ω0t)
]2

= lim
n→∞

4

n
E
[ n∑

t=1

∞∑

j=0

a( j)e(t − j) cos(ω0t)
]3

= lim
n→∞

4

n
E
[ n∑

t=1

∞∑

j=0

a( j)e(t − j)
(
cos(ω0(t − j)) cos(ω0 j)

− sin(ω0(t − j)) sin(ω0 j)
)]2

= lim
n→∞

4

n
E
[ ∞∑

j=0

a( j) cos(ω0 j)
n∑

t=1

e(t − j) cos(ω0(t − j)

−
∞∑

j=0

a( j) sin(ω0 j)
n∑

t=1

e(t − j) sin(ω0(t − j)
]2

= 4σ 2
[1

2

{ ∞∑

j=0

a( j) cos(ω0 j)
}2 + 1

2

{ ∞∑

j=0

a( j) sin(ω0 j)
}2]
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= 2σ 2
∣∣∣

∞∑

j=0

a( j)e−i jω0
∣∣∣
2= 2c(ω0).

Σ13 = lim
n→∞ Cov

( 1

n
1
2

∂Q(θ)

∂A
,

1

n
3
2

∂Q(θ)

∂ω

)

= lim
n→∞

1

n2 E
[
−2

n∑

t=1

X (t) cos(ω0t)
][

2
n∑

t=1

t X (t)
(

A0 sin(ω0t)− B0 cos(ω0t)
)]

= lim
n→∞ − 4

n2 E
[ n∑

t=1

∞∑

j=0

a( j)e(t − j) cos(ω0t)
]

×
[ n∑

t=1

t
∞∑

j=0

a( j)e(t − j)
{

A0 sin(ω0t)− B0 cos(ω0t)
}]

= lim
n→∞ − 4

n2 E
[ n∑

t=1

∞∑

j=0

a( j)e(t − j)
(
cos(ω0(t − j)) cos(ω0 j)

− sin(ω0(t − j)) sin(ω0 j)
)]

×
[ n∑

t=1

∞∑

j=0

t a( j)e(t − j)
(

A0 sin(ω0(t − j) cos(ω0 j)+ A0 cos(ω0(t − j) sin(ω0 j)

−B0 cos(ω0(t − j)) cos(ω0 j)+ B0 sin(ω0(t − j)) sin(ω0 j)
)]

= lim
n→∞ − 4

n2 E

⎡

⎣

⎛

⎝
∞∑

j=0

a( j) cos(ω0 j)
n∑

t=1

e(t − j) cos(ω0(t − j))

−
∞∑

j=0

a( j) sin(ω0 j)
n∑

t=1

e(t − j) sin(ω0(t − j))

⎞

⎠

×
⎛

⎝A0
∞∑

j=0

a( j) cos(ω0 j)
n∑

t=1

t e(t − j) sin(ω0(t − j))

+A0
∞∑

j=0

a( j) sin(ω0 j)
n∑

t=1

t e(t − j) cos(ω0(t − j))

−B0
∞∑

j=0

a( j) cos(ω0 j)
n∑

t=1

t e(t − j) cos(ω0(t − j))

+B0
∞∑

j=0

a( j) sin(ω0 j)
n∑

t=1

t e(t − j) sin(ω0(t − j))

⎞

⎠

⎤

⎦
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= −4

⎡

⎣A0 1

4

{ ∞∑

j=0

a( j) cos(ω0 j)
}

×
{ ∞∑

j=0

a( j) sin(ω0 j)
}
σ 2 − B0 1

4

{ ∞∑

j=0

a( j) cos(ω0 j)
}2

− A0
{ ∞∑

j=0

a( j) cos(ω0 j)
}{ ∞∑

j=0

a( j) sin(ω0 j)
}

− B0 1

4

{ ∞∑

j=0

a( j) sin(ω0 j)
}2

⎤

⎦

= σ 2 B0
∣∣∣

∞∑

j=0

a( j)ei jω0
∣∣∣
2= B0σ 2c(ω0). �
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Chapter 5
Estimating the Number of Components

5.1 Introduction

In the previous two chapters, we have discussed different estimation procedures of
model (3.1) and properties of these estimators. In all these developments, it has been
assumed that the number of components ‘p’ is known in advance. But in practice
estimation of p is also a very important problem. Although, during the last 35 to 40
years extensive work has been done in estimating the frequencies of model (3.1), not
that much attention has been paid in estimating the number of components p.

The estimation of ‘p’ can be considered as a model selection problem. Consider
the class of models

Mk =
⎧
⎨

⎩μk;μk(t) =
k∑

j=1

A j cos
(
ω j t

) + B j sin
(
ω j t

)
⎫
⎬

⎭ ; for k = 1, 2, . . . .

(5.1)
Based on the data {y(t); t = 1, 2 · · · , n}, estimating ‘p’ is equivalent to find p̂, so
that M p̂ becomes the ‘best’ fitted model to the data. Therefore, any model selection
method can be used in principle to choose p.

The most intuitive and natural estimator of p is the number of peaks of the peri-
odogram function of the data as defined in (1.5). Consider the following examples.

Example 5.1 The data {y(t), t = 1, . . . , n} are obtained from model (3.1) with
model parameters;

p = 2, A1 = A2 = 1.0, ω1 = 1.5, ω2 = 2.0. (5.2)

The error random variables X (1), . . . , X (n) are i.i.d. normal random variables with
mean 0 and variance 1. The periodogram function is plotted in Fig. 5.1, and it is
immediate from the plot that the number of components is 2.

D. Kundu and S. Nandi, Statistical Signal Processing, SpringerBriefs in Statistics, 79
DOI: 10.1007/978-81-322-0628-6_5, © The Author(s) 2012
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Fig. 5.1 The periodogram plot of the data obtained from model (5.2)
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Fig. 5.2 The periodogram plot of the data obtained from model (5.3)

Example 5.2 The data {y(t), t = 1, . . . , n} are obtained from model (3.1) with
model parameters;

p = 2, A1 = A2 = 1.0, ω1 = 1.95, ω2 = 2.0. (5.3)

The error random variables are same as in Example 5.1. The periodogram is plotted
in Fig. 5.2. It is not clear from Fig. 5.2 that p = 2.

Example 5.3 The data {y(t); t = 1, . . . , n} are obtained from model (3.1) with the
same model parameters as in Example 5.1, but the errors are i.i.d. normal random
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Fig. 5.3 The periodogram plot of the data obtained from model (5.2) with error variance 5.

variables with mean zero and variance 5. The periodogram function is presented in
Fig. 5.3. It is not clear again from the periodogram plot that p = 2.

The above examples reveal that when frequencies are very close to each other or if
the error variance is high, it may not be possible to detect the number of components
from the periodogram plot of the data. Different methods have been proposed to
detect the number of components of model (3.1). All the methods can be broadly
classified into three different categories namely; (a) likelihood ratio approach, (b)
cross validation method, and (c) information theoretic criterion. In this chapter, we
provide a brief review of different methods. Throughout this chapter without loss of
generality, one can assume that

A2
1 + B2

1 > A2
2 + B2

2 > · · · > A2
p + B2

p.

5.2 Likelihood Ratio Approach

In estimating p of model (3.1), one of the natural procedures is to use a test of
significance for each additional term as it is introduced in the model. Fisher [1]
considered this as a simple testing of hypothesis problem. Such a test can be based
on the well-known ‘maximum likelihood ratio’, that is, the ratio of the maximized
likelihood for k terms of model (3.1) to the maximized likelihood for (k −1) terms of
model (3.1). If this quantity is large, it provides evidence that the kth term is needed
in the model.

The problem can be formulated as follows:

H0 : p = p0 against H1 : p = p1, (5.4)
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where p1 > p0. Based on the assumption that the error random variables follow i.i.d.
normal distribution with mean 0 and variance σ 2, the maximized log-likelihood for
fixed σ 2 can be written as

constant − n

2
ln σ 2 − 1

2σ 2

n∑

t=1

[
y(t)−

p0∑

k=1

{
Âk,p0 cos

(
ω̂k,p0 t

)

+ B̂k,p0 sin
(
ω̂k,p0 t

)}
]2

,

here Âk,p0 , B̂k,p0 , ω̂k,p0 are the MLEs of Ak,p0 , Bk,p0 , ωk,p0 , respectively, based on
the assumption that p = p0. The unconstrained maximized log-likelihood is then

l p0 = constant − n

2
ln σ̂ 2

p0
− n

2
, (5.5)

here

σ̂ 2
p0

= 1

n

n∑

t=1

[
y(t)−

p0∑

k=1

{
Âk,p0 cos

(
ω̂k,p0 t

) + B̂k,p0 sin
(
ω̂k,p0 t

)}
]2

.

Therefore, the likelihood ratio test takes the following form: rejects H0 if L is large,
where

L = σ̂ 2
p0

σ̂ 2
p1

=
∑n

t=1

[
y(t)− ∑p0

k=1

{
Âk,p0 cos

(
ω̂k,p0 t

) + B̂k,p0 sin
(
ω̂k,p0 t

)}]2

∑n
t=1

[
y(t)− ∑p1

k=1

{
Âk,p1 cos

(
ω̂k,p1 t

) + B̂k,p1 sin
(
ω̂k,p1 t

)}]2 .

(5.6)
To find the critical point of the above test procedure, one needs to obtain the exact/
asymptotic distribution of L under the null hypothesis. It seems finding the exact/
asymptotic distribution of L is a difficult problem.

Quinn [2] obtained the distribution of L as defined in (5.6) under the assumptions:
(a) errors are i.i.d. normal random variables, with mean 0 and variance σ 2 and (b)
frequencies are of the form 2π j/n, where 1 ≤ j ≤ (n − 1)/2. If the frequencies are
of the form (b), Quinn [2] showed that in this case L is of form:

L =
∑n

t=1 y(t)2 − Jp0∑n
t=1 y(t)2 − Jp1

, (5.7)

where Jk is the sum of the k largest elements of {I (ω j );ω j = 2π j/n, 1 ≤ j
≤ (n − 1)/2}, and I (ω) is the periodogram function of the data sequence {y(t); t =
1, . . . , n}, as defined in (1.5). The likelihood ratio statistic L as defined in (5.7) can
also be written as

L =
∑n

t=1 y(t)2 − Jp0∑n
t=1 y(t)2 − Jp1

= 1

1 − G p0,p1

, (5.8)
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where

G p0,p1 = Jp1 − Jp0∑n
t=1 y(t)2 − Jp0

. (5.9)

When p0 = 0 and p1 = 1,

G0,1 = J1∑n
t=1 y(t)2

, (5.10)

and it is the well-known Fisher’s g-statistic.
Finding the distribution of L is equivalent to finding the distribution of G p0,p1 .

Quinn and Hannan [3] provided the approximate distribution of G p0,p1 , which is quite
complicated in nature and may not have much practical importance. The problem
becomes more complicated when the frequencies are not in the form of (b) as defined
above. Some attempts have been made to simplify the distribution of G p0,p1 by Quinn
and Hannan [3] under the assumption of i.i.d. normal error. It is not further pursued
here.

5.3 Cross Validation Method

Cross validation method is a model selection technique and it can be used in a fairly
general setup. The basic assumption of cross validation technique is that there exists
an M , such that 1 ≤ k ≤ M for the models defined in (5.1). The cross validation
method can be described as follows: For a given k, such that 1 ≤ k ≤ M , remove
j th observation from {y(1), . . . , y(n)}, and estimate y( j), say ŷk( j), based on the
model assumption Mk and {y(1), . . . , y( j − 1), y( j + 1), . . . , y(n)}. Compute the
cross validatory error for the kth model as

CV (k) =
n∑

t=1

(y(t)− ŷk(t))
2; for k = 1, . . . ,M. (5.11)

Choose p̂ as the estimate of p, if

CV ( p̂) < {CV (1), . . . ,CV (( p̂ − 1),CV (( p̂ + 1), . . . ,CV (M)}.

Cross validation method has been used quite extensively in model selection as it is
well known that the small sample performance of cross validation technique is very
good, although it usually does not produce consistent estimator of the model order.

Rao [4] proposed to use the cross validation technique to estimate the number of
components in a sinusoidal model. The author did not provide any explicit method to
compute ŷk( j), based on the observations {y(1), . . . , y( j − 1), y( j + 1), . . . , y(n)}
and most of the estimation methods are based on the fact that the data are equispaced.
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Kundu and Kundu [5] first provided modified EVLP method and some of its
generalizations to estimate consistently the amplitudes and frequencies of a sinu-
soidal signal based on the assumption that the errors are i.i.d. random variables with
mean zero and finite variance. The modified EVLP method has been further modified
by Kundu and Mitra [6] by using both the forward and backward data, and it has
been used quite effectively to estimate p of model (3.1) by using cross validation
technique. Extensive simulation results suggest that the cross validation technique
works quite well for small sample sizes and for large error variances, although for
large sample sizes the performance is not that satisfactory. For large sample sizes,
the cross validation technique is computationally very demanding, hence it is not
recommended.

In both the likelihood ratio approach and the cross validation approach, it is
important that the errors are i.i.d. random variables with mean zero and finite variance.
It is not immediate how these methods can be modified for stationary errors.

5.4 Information Theoretic Criteria

Different information theoretic criteria such as AIC of Akaike [7, 8], BIC of Schwartz
[9] or Rissanen [10], EDC of Bai et al. [11] have been used quite successfully in
different model selection problems. AIC, BIC, EDC, and their several modifications
have been used to detect the number of components of model (3.1). All the infor-
mation theoretic criteria are based on the following assumption that the maximum
model order can be M , and they can be put in the general framework as follows: For
the kth order model, define

ITC(k) = f
(
σ̂ 2

k

)
+ N (k) c(n); 1 ≤ k ≤ M, (5.12)

here σ̂ 2
k is the estimated error variance and N (k) denotes the number of parameters,

both based on the assumption that the model order is k, f (·) is an increasing and c(·)
is a monotone function of n. The quantity N (k)c(n) is known as the penalty, and for
fixed n, it increases with k. Depending on different information theoretic criteria,
f (·) and c(·) change. Choose p̂ as an estimate of p, if

I T C ( p̂) < {I T C(1), . . . , I T C (( p̂ − 1 ) , I T C (( p̂ + 1 ) , . . . , I T C(M)} .

The main focus of the different information theoretic criteria is to choose properly
the functions f (·) and c(·).
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5.4.1 Rao’s Method

Rao [4] proposed different information theoretic criteria to detect the number of
sinusoidal components based on the assumption that the errors are i.i.d. mean zero
normal random variables. Based on the above error assumption, AIC takes the fol-
lowing form

AIC(k) = n ln Rk + 2 (7k), (5.13)

here Rk denotes the minimum value of

n∑

t=1

⎛

⎝y(t)−
k∑

j=1

(
A j cos

(
ω j t

) + B j sin
(
ω j t

))
⎞

⎠
2

, (5.14)

and the minimization of (5.14) is performed with respect to A1, . . . , Ak , B1, . . . , Bk ,
ω1, . . . , ωk . ‘7k’ denotes the number of parameters when the number of components
is k.

Under the same assumption, BIC takes the form

BIC(k) = n ln Rk + (7k)
1

2
ln n, (5.15)

and EDC takes the form;

EDC(k) = n ln Rk + (7k) c(n), (5.16)

here c(n) satisfies the following conditions;

lim
n→∞

c(n)

n
= 0 and lim

n→∞
c(n)

ln ln n
= ∞. (5.17)

EDC is a very flexible criterion, and BIC is a special case of EDC. Several c(n)
satisfy (5.17). For example, c(n) = na , for a < 1 and c(n) = (ln ln n)b, for b > 1
satisfy (5.17).

Although Rao [4] proposed to use information theoretic criteria to detect the
number of components of model (3.1), he did not provide any practical implementa-
tion procedure particularly, the computation of Rk . He suggested to compute Rk by
minimizing (5.14) with respect to the unknown parameters, which may not be very
simple, as it has been observed in Chap. 3.

Kundu [12] suggested a practical implementation procedure of the method pro-
posed by Rao [4], and performed extensive simulation studies to compare different
methods for different models, for different error variances, and for different choices
of c(n). It is further observed that AIC does not provide consistent estimate of the
model order. Although, for small sample sizes the performance of AIC is good, for
large sample sizes it has a tendency to overestimate the model order. Among the
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different choices of c(n) for EDC criterion, it is observed that BIC performs quite
well.

5.4.2 Sakai’s Method

Sakai [13] considered the problem of estimating p of model (3.1) under the assump-
tions that the errors are i.i.d. normal random variables with mean zero and the frequen-
cies can be Fourier frequencies only. He has re-formulated the problem as follows.
Consider the model

y(t) =
M∑

j=0

v j
(

A j cos
(
ω j t

) + B j (sin( ω j t
)) + X (t); t = 1, . . . , n, (5.18)

here ω j = 2π j/n, and M = n/2 or M = (n − 1)/2 depending on whether n is even
or odd. The indicator function v j is such that

v j =
{

1 if j th component is present
0 if j th component is absent.

Sakai [13] proposed the following information theoretic like criterion as follows

SI C(v1, . . . , vM ) = ln σ̂ 2 + 2(ln n + γ − ln 2)

n
(v1 + · · · + vM ), (5.19)

here γ (≈= 0.577) is the Euler’s constant and

σ̂ 2 = 1

n

n∑

t=1

y(t)2 − 4

n

M∑

k=1

I (ωk)vk,

here I (·) is the periodogram function of {y(t); t = 1, . . . , n}. Now for all 2M possible
choices of (v1, . . . , vM ), choose that combination for which SI C(v1, . . . , vM ) is
minimum.

5.4.3 Quinn’s Method

Quinn [14] considered the same problem under the assumptions that the sequence
of error random variables {X (t)} is stationary and ergodic with mean zero and finite
variance. It is further assumed that the frequencies are of the form 2π j/n, for 1 ≤
j ≤ (n − 1)/2. Under the above assumptions, Quinn [14] proposed an information
theoretic like criterion as follows. Let
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Q I C(k) = n ln σ̂ 2
k + 2k c(n) (5.20)

where

σ̂ 2
k = 1

n

(
n∑

t=1

y(t)2 − Jk

)
,

and Jk is same as defined in (5.7). The penalty function c(n) is such that it satisfies

lim
n→∞

c(n)

n
= 0. (5.21)

Then the number of sinusoids p is estimated as the smallest value of k ≥ 0, for
which QIC(k) < QIC(k + 1). Using the results of An et al. [15], it has been shown
that if p̂ is an estimate of p, then p̂ converges to p almost surely. Although this
method provides a consistent estimate of the number of sinusoidal components, it is
not known how the method behaves for small sample sizes. Simulation experiments
need to be done to verify the performance of this method.

5.4.4 Wang’s Method

Wang [16] also considered this problem of estimating p under a more general con-
dition than Rao [4] or Quinn [14]. Wang [16] assumed the same error assumptions
as those of Quinn [14], but the frequencies need not be restricted to only Fourier fre-
quencies. The method of Wang [16] is very similar to the method proposed by Rao
[4], but the main difference is in the estimation procedure of the unknown parameters
for the kth order model. The information criterion of Wang [16] can be described as
follows. For the kth order model consider

WIC(k) = n ln σ̂ 2
k + k c(n), (5.22)

here σ̂ 2
k is the estimated error variance and c(n) satisfies the same condition as (5.21).

Although Rao [4] did not provide any efficient estimation procedure of the unknown
parameters for the kth order model, Wang [16] suggested to use the following esti-
mation procedure of the unknown frequencies. Let �1 = (−π, π], and ω̂1 is the
argument maximizer of the periodogram function (1.5) over �1. For j > 1, if� j−1
and ω̂ j−1 are defined, then

� j = � j−1\
(
ω̂ j−1 − un, ω̂ j−1 + un

)
,

and ω̂ j is obtained as the argument maximizer of the periodogram function over� j ,
where un > 0 and satisfies the conditions
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lim
n→∞ un = 0, and lim

n→∞ (n ln n)1/2 un = ∞.

Estimate p as the smallest value of k ≥ 0, such that WIC(k) < WIC(k + 1). If

lim inf
n→∞

c(n)

ln n
> C > 0,

then an estimator of p obtained by this method is a strongly consistent estimator of p,
see Wang [16]. Although Wang’s method is known to provide a consistent estimate
of p, it is not known how this method performs for small sample sizes. Moreover, he
did not mention about the practical implementation procedure of his method, mainly
how to choose un or c(n) for a specific case. It is very clear that the performance of
this procedure heavily depends on them.

Kavalieries and Hannan [17] discussed some practical implementation procedure
of Wang’s method. They have suggested a slightly different estimation procedure
of the unknown parameters than that of Wang [16]. It is not pursued further here,
interested readers may have a look at that paper.

5.4.5 Kundu’s Method

Kundu [18] suggested the following simple estimation procedure of p. If M denotes
the maximum possible model order, then for some fixed L > 2M , consider data
matrix AL :

AL =
⎛

⎜⎝
y(1) · · · y(L)
...

. . .
...

y(n − L + 1) · · · y(n)

⎞

⎟⎠ . (5.23)

Let σ̂ 2
1 > · · · > σ̂ 2

L be the L eigenvalues of the L × L matrix Rn = AT
L AL/n.

Consider
KIC(k) = σ̂ 2

2k+1 + k c(n), (5.24)

here c(n) > 0, satisfying the following two conditions;

lim
n→∞ c(n) = 0, and lim

n→∞
c(n)

√
n

(ln ln n)1/2
= ∞. (5.25)

Now choose that value of k as an estimate of p for which K I C(k) is minimum.
Under the assumption of i.i.d. errors, the author proved the strong consistency

of the above procedure. Moreover, the probability of wrong detection has also been
obtained in terms of linear combination of chi-square variables. Extensive simula-
tions have been performed to check the effectiveness of the proposed method and to
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find proper c(n). It is observed that c(n) = 1/
√

ln n works quite well, although no
theoretical justification has been provided.

Kundu [19] in a subsequent paper discussed the choice of c(n). He has considered
a slightly different criterion than (5.24), and the new criterion takes the form

KIC(k) = ln
(
σ̂ 2

2k+1 + 1
)

+ k c(n), (5.26)

here c(n) satisfies the same assumptions as in (5.25). In this case also, the bounds
on the probability of overestimation and probability of underestimation are obtained
theoretically, and extensive simulation results suggest that these theoretical bounds
match very well with the simulated results.

The natural question is how to choose proper c(n). It is observed, see Kundu [19],
that the probability of over estimates and probability of under estimates depend on the
eigenvalues of the dispersion matrix of the asymptotic distribution of Vec(Rn). Here
Vec(·) of a k × k matrix is a k2 × 1 vector stacking the columns one below the other.
The main idea to choose the proper penalty function from a class of penalty functions
which satisfy (5.25) is to choose that penalty function for which the theoretical bound
of probability of wrong selection is minimum. These theoretical bounds depend on
the parameters, and without knowing the unknown parameters it is not possible
to calculate these theoretical bounds. The natural way to estimate these bound is
by replacing the true parameter values by their estimates. Kundu [19] suggested a
bootstrap-like technique to estimate these probabilities based on the observed sample,
and then uses it in choosing the proper penalty function from a class of penalty
functions.

The second question naturally arises how to choose the class of penalty functions.
The suggestion is as follows. Take any particular class of reasonable size maybe
around 10 or 12 where all of them should satisfy (5.25) but they should converge to
zero at varying rates (from very low to very high). Obtain the probability of wrong
detection for all these penalty functions and compute the minimum of these values.
If the minimum itself is high, it indicates that the class is not good, otherwise it is
fine. Simulation results indicate that the method works very well for different sample
sizes and for different error variances. The major drawback of this method is that it
has been proposed when the errors are i.i.d. random variables, it is not immediate
how the method can be modified for the correlated errors.

5.5 Conclusions

In this chapter, we have discussed different methods of estimating the number of com-
ponents in a multiple sinusoidal model. This problem can be formulated as a model
selection problem, hence any model selection procedure which is available in the
literature can be used for this purpose. We have provided three different approaches,
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comparison of different methods is not available in the literature. We believe it is
still an open problem, more work is needed along this direction.
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Chapter 6
Real Data Example

6.1 Introduction

In this chapter, we analyze four data sets using multiple sinusoidal model. These
data sets are namely (i) a segment of ECG signal of a healthy human being, (ii) the
well-known variable star data, (iii) a short duration voiced speech signal, the “uuu”
data, and (iv) the airline passenger data. Periodogram function defined in (1.5), as
well as R1(ω) defined in (3.39), can be used for initial identification of the number
of components. Once the initial estimates are found, the unknown parameters are
estimated using sequential estimation procedure. For the estimation of the number
of components p, information theoretic criteria are used.

6.2 ECG Data

The data represents a segment of ECG signal of a healthy human being and is plotted
in Fig. 1.1. The data set contains 512 points, and it has been analyzed by Prasad et al.
[1]. The data are first mean corrected and scaled by the square root of the estimated
variance of {y(t)}. The S(ω) function, as defined in (3.55), in the interval (0, π) is
plotted in Fig. 6.1. This gives an idea about the number of frequencies present in the
data. We observe that the total number of frequencies is quite large. It is not easy to
obtain an estimate of p from this figure. Apart from that all the frequencies may not be
visible, depending on the magnitudes of some of the dominant frequencies and error
variance. In fact, p̂ is much larger than what Fig. 6.1 reveals. The BIC has been used
to estimate p. We estimate the unknown parameters of the multiple sinusoidal model
sequentially for k = 1, . . . , 100. For each k, the residual series is approximated by
an AR process and the corresponding parameters are estimated. Here, k represents
the number of components. Let ark be the number of AR parameters in the AR
model fitted to the residuals when k sinusoidal components are estimated and σ̂ 2

k
be the estimated error variance. Then minimize BIC(k) for this class of models for
estimating p, which takes the following form in this case;

D. Kundu and S. Nandi, Statistical Signal Processing, SpringerBriefs in Statistics, 91
DOI: 10.1007/978-81-322-0628-6_6, © The Author(s) 2012
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Fig. 6.1 The plot of the S(ω) function of the ECG signal data

BIC(k) = n log σ̂ 2
k + 1

2
(3k + ark + 1) log n.

The BIC(k) values are plotted in Fig. 6.2 for k = 75, . . . , 85 and at k = 78, the
BIC(k) takes its minimum value, therefore, we estimate p as p̂ = 78. We estimate
the unknown parameters using sequential method described in Sect. 3.12 as p̂ is
quite large and simultaneous estimation might be a problem. With the estimated p̂,
we plug-in the other estimates of the linear parameters and frequencies and obtain
the fitted values {ŷ(t); t = 1, . . . , n}. They are plotted in Fig. 6.3 along with their
observed values. The fitted values match reasonably well with the observed one. The
residual sequence satisfies the assumption of stationarity.

6.3 Variable Star Data

The variable star data is an astronomical data and widely used in time series literature.
This data set represents the daily brightness of a variable star on 600 successive
midnights. The data is collected from Time Series Library of StatLib (http://www.stat.
cmu.edu; Source: Rob J. Hyndman). The observed data is displayed in Fig. 1.2 and
its periodogram function in Fig. 6.4. Initial inspection of the periodogram function
gives an idea of the presence of two frequency components in the data, resulting in
two sharp separate peaks in the periodogram plot. With p̂ = 2, once we estimate the
frequencies and the amplitudes and obtain the residual series, the periodogram plot
of the resulting residual series gives evidence of the presence of another significant
frequency. The not so dominating third component is not visible in the periodogram
plot of the original series. This is due to the fact that the first two components are
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Fig. 6.2 The BIC values for different number of components

Fig. 6.3 The plot of the observed (red) and fitted values (green) of the ECG signal

dominant in terms of the large absolute values of their associated amplitudes. In
addition, the first one is very close to the third one as compared to the available
data points to distinguish them. Therefore, we take p̂ = 3 and estimate the unknown
parameters. The estimated point estimates are listed in Table 6.1. The observed (solid
line) and the estimated values (dotted line) are plotted in Fig. 6.5, and it is not possible
to distinguish them. So, the performance of the multiple sinusoidal model is quite
good in analyzing variable star data.
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Fig. 6.4 The plot of the periodogram function of the variable star data

t

y(t)

 0

 5

 10

 15

 20

 25

 30

 35

0 100 200 300 400  500  600

Fig. 6.5 The observed variable star data (solid line) along with the estimated values

6.4 “uuu” Data

In the “uuu” voiced speech data, 512 signal values, sampled at 10 kHz frequency,
are available. The mean corrected data are displayed in Fig. 6.6. The plot in Fig. 6.6
suggests that the signal is mean non-stationary and there exists strong periodicity.
The periodogram function of the “uuu” data is plotted in Fig. 6.7 and we obtain
p̂ = 4. The estimated parameters ( Âk, B̂k, ω̂k), k = 1, . . . , 4 for “uuu” data are
listed in Table 6.1. These point estimates are used in estimating the fitted/predicted
signal. The predicted signal (solid line) of the mean corrected data along with the
mean corrected observed “uuu” data (dotted line) are presented in Fig. 6.8. The fitted
values match quite well with the mean corrected observed data.
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Fig. 6.6 The plot of the mean corrected “uuu” vowel sound data
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Fig. 6.7 The plot of the periodogram function of “uuu” vowel data

6.5 Airline Passenger Data

This is a classical data in time series analysis. The data represent the monthly inter-
national airline passenger data during January 1953 to December 1960, collected
from the Time Series Data Library of Hyndman (n.d.). The raw data are plotted in
Fig. 1.3. It is clear from the plot that the variability increases with time, so it cannot
be considered as constant variance case. The log transform of the data is plotted in
Fig. 6.9 to stabilize the variance. The variance seems to be approximately constant
now, but at the same time there is a significant linear trend component present along
with multiple periodic components. Therefore, a transformation of the form a+bt or
application of the difference operator to the log transform data is required. We choose
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Fig. 6.8 The plot of the fitted values (solid line) and the mean corrected “uuu” vowel data

Table 6.1 The point estimates of the unknown parameters for variable star data and “uuu” data
Data Set: “Variable Star”
A1 7.48262 B1 7.46288 ω1 0.21623
A2 −1.85116 B2 6.75062 ω2 0.26181
A3 −0.80728 B3 0.06880 ω2 0.21360
Data Set: “uuu”
A1 8.92728 B1 1698.65247 ω1 0.22817
A2 −584.67987 B2 −263.79034 ω2 0.11269
A3 −341.40890 B3 −282.07540 ω3 0.34326
A4 −193.93609 B4 −300.50961 ω4 0.45770

to use the difference operator and finally we have y(t) = log x(t + 1) − log x(t),
which can be analyzed using multiple sinusoidal model. The transformed data are
plotted in Fig. 6.10. It now appears that there is no trend component with approxi-
mately constant variance. Here, {x(t)} represents the observed data. Now to estimate
the frequency components and to get an idea about the number of frequency com-
ponents present in {y(t)}, we plot the periodogram function of {y(t)} in the interval
(0, π) in Fig. 6.11. This dataset has been analyzed by Nandi and Kundu [2].

There are six peaks corresponding to dominating frequency components in the
periodogram plot. The initial estimates of ω1, . . . , ω6 are obtained one by one using
the sequential procedures. After taking out the effects of these six frequency com-
ponents, we again study the periodogram function of the residual plot, similarly as
in the case of the variable star data. We observe that there is an additional significant
frequency component present. Hence, we estimate p as seven and accordingly esti-
mate the other parameters. Finally plugging in the estimated parameters, we have
the fitted series which is plotted in Fig. 6.12 along with the log difference data.
They match quite well. The sum of squares of the residuals of this sinusoidal fit
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Fig. 6.9 The logarithm of the observed airline passenger data
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Fig. 6.10 The first difference of the log of the airline passenger data

is 5.54 × 10−4. The monthly international airline passenger data is a well-studied
dataset in time series literature. Usually a seasonal ARIMA (multiplicative) model
is used to analyze it. A reasonable fit using this class of models is a seasonal ARIMA
of order (0, 1, 1) × (0, 1, 1)12 to the log of the data, which is same as the model
(0, 0, 1) × (0, 1, 1)12 applied to the difference of the log data (discussed by Box
et al. [3] in detail). The fitted seasonal ARIMA model to the difference of the log
data {y(t)} is
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Fig. 6.11 The periodogram function of the log-difference data
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Fig. 6.12 The fitted values (green) along with the log difference data (red)

y(t) = y(t − 12)+ Z(t)+ 0.3577Z(t − 1)+ 0.4419Z(t − 12)+ 0.1581Z(t − 13),

where {Z(t)} is a white noise sequence with mean zero and estimated variance
0.001052. In this case, we observe that the residual sum of squares is 9.19 × 10−4,
which is greater than the residual sum of squares of the proposed method.
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6.6 Conclusions

Basic analysis of four data sets from different fields of application have been pre-
sented. It has been observed that the multiple sinusoidal model is effective to capture
the periodicity present in these data. If p is large, as in the case of ECG signal data,
the usual least squares method has difficulties in estimating such a large number
(in the order of n/2) of unknown parameters. In such cases, the sequential method
described in Sect. 3.12 is extremely useful. In all the data analyses considered here,
the stationary error assumption is satisfied. The model is able to extract inherent
periodicity, if present, from the transformed data also.
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Chapter 7
Multidimensional Models

7.1 Introduction

In the last few chapters, we have discussed different aspects of 1-D sinusoidal fre-
quency model. In this chapter, our aim is to introduce 2-D and 3-D frequency models
and discuss several issues related to them. The 2-D and 3-D sinusoidal frequency
models are natural generalizations of 1-D sinusoidal frequency model (3.1), and these
models have various applications.

The 2-D sinusoidal frequency model has the following form;

y(m, n) =
p∑

k=1

[Ak cos(mλk + nμk)+ Bk sin(mλk + nμk)] + X (m, n);

for m = 1, . . . ,M, n = 1, . . . , N . (7.1)

Here for k = 1, . . . , p, Ak , Bk are unknown real numbers, λk , μk are unknown fre-
quencies, and {X (m, n)} is a 2-D sequence of error random variables with mean zero
and finite variance. Several correlation structures have been assumed in the literature,
and they are explicitly mentioned later. Two problems are of major interest associated
to model (7.1). One is the estimation of Ak , Bk , λk , μk for k = 1, . . . , p, and the
other is the estimation of the number of components namely p. The first problem
has received considerable attention in the statistical signal processing literature.

In the particular case when {X (m, n); m = 1, . . . ,M, n = 1, . . . , N } are i.i.d.
random variables, this problem can be interpreted as a ‘signal detection’ problem,
and it has different applications in ‘Multidimensional Signal Processing’. This is a
basic model in many fields such as antenna array processing, geophysical perception,
biomedical spectral analysis, etc., see, for example, the work of Barbieri and Barone
[1], Cabrera and Bose [2], Chun and Bose [3], Hua [4], and the references cited
therein. This problem has a special interest in spectrography, and it has been studied
using the group theoretic method by Malliavan [5, 6].

D. Kundu and S. Nandi, Statistical Signal Processing, SpringerBriefs in Statistics, 101
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Fig. 7.1 The image plot of
a simulated data from model
(7.2)

Zhang and Mandrekar [7] used the 2-D sinusoidal frequency model for analyzing
symmetric gray-scale textures. Any gray-scale picture, stored in digital format in a
computer, is composed of tiny dots or pixels. In the digital representation of gray-
scale or black and white pictures, the gray shade at each pixel is determined by the
gray-scale intensity at that pixel. For instance, if 0 represents black and 1 represents
white, then any real number ∈ [0, 1] corresponds to a particular intensity of gray.
If a picture is composed of 2-D array of M pixels arranged in rows and N pixels
arranged in columns, the size of the picture is M×N pixels. The gray-scale intensities
corresponding to the gray shades of various pixels can be stored in an M × N matrix.
This transformation from a picture to a matrix and again back to a picture can be
easily performed by image processing tools of any standard mathematical software.

Consider the following synthesized gray-scale texture data for m = 1, . . ., 40 and
n = 1, . . ., 40.

y(m, n) = 4.0 cos(1.8m + 1.1n)+ 4.0 sin(1.8m + 1.1n)

1.0 cos(1.7m + 1.0n)+ 1.0 sin(1.7m + 1.0n)+ X (m, n), (7.2)

here X (m, n) = e(m, n) + 0.25e(m − 1, n) + 0.25e(m, n − 1), and e(m, n) for
m = 1, . . . , 40 and n = 1, . . . , 40, are i.i.d. normal random variables with mean 0
and variance 2.0. This texture is displayed in Fig. 7.1. From Fig. 7.1 it is clear that
model (7.1) can be used quite effectively to generate symmetric textures.

In this chapter, we briefly discuss about different estimators of the unknown
parameters of 2-D model (7.1) and their properties. It can be seen that model (7.1) is
a non-linear regression model, and therefore, the LSEs seem to be the most reasonable
estimators. It is observed that the 1-D periodogram method can be extended to 2-D
model, but it also has similar problems as the 1-D periodogram method. Although,
the LSEs are the most intuitive natural estimators in this case, it is well known that
finding the LSEs is a computationally challenging problem, particularly when p is
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Fig. 7.2 The image plot of
a simulated data from model
(7.3)

large. It is observed that the sequential method recently proposed by Prasad et al.
[8] can be used very effectively in producing estimators, which are equivalent to the
LSEs. For p = 1, an efficient algorithm has been proposed by Nandi et al. [9] which
produces estimators which are equivalent to the LSEs in three steps starting from the
PEs.

Similarly, 3-D sinusoidal frequency model takes the following form;

y(m, n, s) =
p∑

k=1

[Ak cos(mλk + nμk + svk)

+Bk sin(mλk + nμk + svk)] + X (m, n, s);
for m = 1, . . . ,M, n = 1, . . . , N , s = 1, . . . , S. (7.3)

Here for k = 1, . . . , p, Ak , Bk are unknown real numbers, λk , μk , vk are unknown
frequencies, {X (m, n, s)} is a 3-D sequence of error random variables with mean
zero, finite variance, and ‘p’ denotes the number of 3-D sinusoidal components.
Model (7.3) has been used for describing color textures by Prasad and Kundu [10],
see Fig. 7.2. The third dimension represents different color schemes. In digital repre-
sentation, any color picture is stored digitally in RGB format. Almost any color can
be represented by a unique combination of red, green, and blue color intensities. In
RGB format, S = 3. A color picture can be stored digitally in an M × N × S array.
Similarly as a black and white picture, any image processing tool of a mathemati-
cal software can convert a color picture to a 3-D array and vice versa. For detailed
description on how a color picture is stored digitally, the readers are referred to Prasad
and Kundu [10].
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7.2 2-D Model: Estimation of Frequencies

7.2.1 LSEs

As it has been mentioned earlier that in the presence of i.i.d. errors, the LSEs seem
to be the most natural choice, and they can be obtained by minimizing

M∑

m=1

N∑

n=1

(
y(m, n)−

p∑

k=1

[Ak cos(mλk + nμk)+ Bk sin(mλk + nμk)]

)2

, (7.4)

with respect to the unknown parameters. Minimization of (7.4) can be performed
in two steps by using the separable regression technique of Richards [11]. For
k = 1, . . . , p, when λk and μk are fixed, the LSEs of Ak and Bk can be obtained as

[
Â1(λ, μ), B̂1(λ, μ) : . . . : Â p(λ, μ), B̂p(λ, μ)

]T =
(

UT U
)−1

UT Y, (7.5)

here λ = (λ1, . . . , λp), μ = (μ1, . . . , μp), U is an M N × 2p matrix and Y is an
M N × 1 vector as follows;

U = [U1 : · · · : Up]

Uk =
[

cos(λk + μk) · · · cos(λk + Nμk) cos(2λk + μk) · · · cos(Mλk + Nμk)

sin(λk + μk) · · · sin(λk + Nμk) sin(2λk + μk) · · · sin(Mλk + Nμk)

]T

,

(7.6)
for k = 1, . . . , p, and

Y = (
y(1, 1) · · · y(1, N ) y(2, 1) · · · y(2, N ) · · · y(M, 1) · · · y(M, N )

)T
.

(7.7)
For k = 1, . . . , p, once Âk(λ, μ) and B̂k(λ, μ) are obtained, the LSEs of λk and μk

are obtained by minimizing

M∑

m=1

N∑

n=1

(
y(m, n)−

p∑

k=1

[
Âk(λ, μ) cos(mλk + nμk)+ B̂k(λ, μ) sin(mλk + nμk)

]
)2

,

(7.8)
with respect to λ1, . . . , λp and μ1, . . . , μp. Once λ̂k and μ̂k , the LSEs of λk and
μk respectively, are obtained, the LSEs of Ak and Bk can be obtained as Âk (̂λ, μ̂)

and B̂k (̂λ, μ̂), respectively, where λ̂ = (̂λ1, . . . , λ̂p) and μ̂ = (μ̂1, . . . , μ̂p). The
minimization of (7.8) can be obtained by solving a 2p-dimensional optimization
problem, which can be computationally quite challenging if p is large.
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Rao et al. [12] obtained the theoretical properties of the LSEs of the parameters
of a similar model namely 2-D superimposed complex exponential model, that is,

y(m, n) =
p∑

k=1

Ckei(mλk+nμk ) + Z(m, n), (7.9)

here for k = 1, . . . , p, Ck are complex numbers, λk and μk are same as defined
before, {Z(m, n)} is a 2-D sequence of complex-valued random variables. Rao et
al. [12] obtained the consistency and asymptotic normality properties of the LSEs
under the assumptions that {Z(m, n); m = 1, . . . ,M, n = 1, . . . , N } are i.i.d. com-
plex normal random variables. Kundu and Gupta [13] proved the consistency and
asymptotic normality properties of the LSEs of model (7.1) under the assumption
that the error random variables {X (m, n); m = 1, . . . ,M, n = 1, . . . , N } are i.i.d.
with mean zero and finite variance. Later Kundu and Nandi [14] provided the consis-
tency and asymptotic normality properties of the LSEs under the following stationary
assumptions on {X (m, n)}.
Assumption 7.1 The double array sequence of random variables {X (m, n)} can be
represented as follows;

X (m, n) =
∞∑

j=−∞

∞∑

k=−∞
a( j, k)e(m − j, n − k),

where a( j, k) are real constants such that

∞∑

j=−∞

∞∑

k=−∞
|a( j, k)| < ∞,

and {e(m, n)} is a double array sequence of i.i.d. random variables with mean zero
and variance σ 2.

We use the following notation to provide the asymptotic distribution of the LSEs
of the parameters of model (7.1) obtained by Kundu and Nandi [14]:

θ1 = (A1, B1, λ1, μ1), . . . , θ p = (Ap, Bp, λp, μp)

D = diag{M1/2 N 1/2,M1/2 N 1/2,M3/2 N 1/2,M1/2 N 3/2},

and for k = 1, . . . , p,
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�k =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 1
2 Bk

1
2 Bk

0 1 − 1
2 Ak − 1

2 Ak

1
2 Bk − 1

2 Ak
1
3 (A

2
k + B2

k )
1
4 (Ak + Bk)

1
2 Bk − 1

2 Ak
1
4 (Ak + Bk)

1
3 (A

2
k + B2

k )

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

Theorem 7.1 Under Assumption 7.1, θ̂1, . . . , θ̂ p, the LSEs of θ1, . . . , θ p respec-
tively, are consistent estimators, and as min{M, N } → ∞

(
D(̂θ1 − θ1), . . . ,D(̂θ p − θ p)

) d−→ N4p

(
0, 2σ 2Δ−1

)
,

here

�−1 =

⎡

⎢⎢⎢⎣

c1�
−1
1 0 · · · 0

0 c2�
−1
2 · · · 0

...
. . .

...
...

0 0 · · · cp�
−1
p

⎤

⎥⎥⎥⎦

and for k = 1, . . . , p,

ck =
∣∣∣∣∣

∞∑

u=−∞

∞∑

v=−∞
a(u, v)e−i(uλk+vμk )

∣∣∣∣∣

2

.

From Theorem 7.1, it is clear that even for 2-D model, the LSEs of the frequencies
have much faster convergence rates than the linear parameters.

7.2.2 Sequential Method

It has been observed that the LSEs are the most efficient estimators, although, com-
puting the LSEs is a difficult problem. As it has been mentioned in the previous
section that it involves solving a 2p-dimensional optimization problem. It might be
quite difficult particularly if p is large. To avoid this problem Prasad et al. [8] pro-
posed a sequential estimation procedure of the unknown parameters, which have the
same rate of convergence as the LSEs. Moreover, the sequential estimators can be
obtained by solving p, 2-D optimization problems sequentially. Therefore, even if p
is large, sequential estimators can be obtained quite easily compared to the LSEs. It
can be described as follows. At the first step, minimize the quantity
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Q1(A, B, λ, μ) =
M∑

m=1

N∑

n=1

(y(m, n)− A cos(mλ+ nμ)− B sin(mλ+ nμ))2 ,

(7.10)
with respect to A, B, λ, μ. It can be easily seen using the separable regression tech-
nique of Richards [11] that for fixed λ and μ, Ã(λ, μ) and B̃(λ, μ)minimize (7.10),
where [

Ã(λ, μ) B̃(λ, μ)
]T =

(
UT

1 U1

)−1
UT

1 Y, (7.11)

where U1 is an M N × 2 and Y is an M N × 1 data vector as defined in (7.6) and
(7.7), respectively. Replacing Ã(λ, μ) and B̃(λ, μ) in (7.10), we obtain

R1(λ, μ) = Q1( Ã(λ, μ), B̃(λ, μ), λ, μ). (7.12)

If λ̃ and μ̃ minimize R1(λ, μ),
(

Ã(̃λ, μ̃), B̃ (̃λ, μ̃), λ̃, μ̃
)

minimizes (7.10). Denote
these estimators as θ̃1 = (

Ã1, B̃1, λ̃1, μ̃1
)
.

Consider {y1(m, n); m = 1, . . . ,M, n = 1, . . . , N }, where

y1(m, n) = y(m, n)− Ã1 cos(mλ̃1 + nμ̃1)− B̃1 sin(mλ̃1 + nμ̃1). (7.13)

Repeating the whole procedure as described above by replacing y(m, n) with
y1(m, n), obtain θ̃2 = (

Ã2, B̃2, λ̃2, μ̃2
)
. Following along the same line, one can

obtain θ̃1, . . . , θ̃p. Prasad et al. [8] proved that Theorem 7.1 also holds for θ̃1, . . . , θ̃p.
Further θ̃ j and θ̃k, j �= k are independently distributed. It implies that the LSEs and
the estimators obtained by using the sequential method are asymptotically equivalent
estimators.

7.2.3 Periodogram Estimators

The 2-D periodogram function of any double array sequence of observations
{y(m, n); m = 1, . . . ,M, n = 1, . . . , N } is defined as follows;

I (λ, μ) = 1

M N

∣∣∣∣∣

M∑

m=1

N∑

n=1

y(m, n)e−i(mλ+nμ)

∣∣∣∣∣

2

. (7.14)

Here, the 2-D periodogram function is evaluated at the 2-D Fourier frequencies,
namely at (πk/M, π j/N ); k = 0, . . . ,M, j = 0, . . . , N . Clearly the 2-D peri-
odogram function (7.14) is a natural generalization of 1-D periodogram function.
Zhang and Mandrekar [7] and Kundu and Nandi [14] used the periodogram function
(7.14) to estimate the frequencies of model (7.1). For p = 1, Kundu and Nandi [14]
proposed the ALSEs as follows;
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(̃λ, μ̃) = arg max I (λ, μ), (7.15)

where the maximization is performed for 0 ≤ λ ≤ π and 0 ≤ μ ≤ π , and the
estimates of A and B are obtained as follows;

Ã = 2

M N

M∑

m=1

N∑

m=1

y(m, n) cos(mλ̃+ nμ̃) (7.16)

B̃ = 2

M N

M∑

m=1

N∑

m=1

y(m, n) sin(mλ̃+ nμ̃). (7.17)

It has been shown that under Assumption 7.1, the asymptotic distribution of
( Ã, B̃, λ̃, μ̃) is same as in Theorem 7.1. Sequential method as described in the previ-
ous section can be applied exactly in the same manner for general p, and the asymp-
totic distribution of the ALSEs also satisfies Theorem 7.1. Therefore, the LSEs and
ALSEs are asymptotically equivalent.

7.2.4 Nandi–Prasad–Kundu Algorithm

The ALSEs or the sequential estimators as described in the previous two sections
can be obtained by solving a 2-D optimization problem. It is well known that the
least squares surface and the periodogram surface have several local minima and local
maxima respectively. Therefore, the convergence of any optimization algorithm is not
guaranteed. Recently Nandi et al. [9] proposed a three-step algorithm which produces
estimators of the unknown frequencies which have the same rate of convergence as
the LSEs. We provide the algorithm for p = 1. The sequential procedure can be easily
used for general p. We use the following notation for describing the algorithm.

P1
M N (λ, μ) =

M∑

t=1

N∑

s=1

(
t − M

2

)
y(t, s)e−i(λt+μs) (7.18)

P2
M N (λ, μ) =

M∑

t=1

N∑

s=1

(
s − N

2

)
y(t, s)e−i(λt+μs) (7.19)

QM N (λ, μ) =
M∑

t=1

N∑

s=1

y(t, s)e−i(λt+μs) (7.20)

λ̂(r) = λ̂(r−1) + 12

M2
r

Im

[
P1

Mr Nr
(̂λ(r−1), μ̂(0))

QMr Nr (̂λ
(r−1), μ̂(0))

]
, r = 1, 2, . . . , (7.21)

μ̂(r) = μ̂(r−1) + 12

N 2
r

Im

[
P2

Mr Nr
(̂λ(0), μ̂(r−1))

QMr Nr (̂λ
(0), μ̂(r−1))

]
, r = 1, 2, . . . . (7.22)
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Nandi et al. [9] suggested to use the following initial guesses of λ and μ. For
any fixed n ∈ {1, . . . , N } from the data vector {y(1, n), . . . , y(M, n)}, obtain the
periodogram maximizer over Fourier frequencies, say at λ̂n . Take

λ̂(0) = 1

N

N∑

n=1

λ̂n . (7.23)

Similarly, for fixed m ∈ {1, . . . ,M}, from the data vector {y(m, 1), . . . , y(m, N )},
first obtain μ̂m , which is the periodogram maximizer over Fourier frequencies, and
then consider

μ̂(0) = 1

M

M∑

m=1

μ̂m . (7.24)

It has been shown that λ̂(0) = Op(M
−1 N−1/2) and μ̂(0) = Op(M

−1/2 N−1). The
algorithm can be described as follows.

Algorithm 7.1

• Step 1: Take r = 1, choose M1 = M0.8, N1 = N . Compute λ̂(1) from λ̂(0) using
(7.21).

• Step 2: Take r = 2, choose M2 = M0.9, N2 = N . Compute λ̂(2) from λ̂(1) using
(7.21).

• Step 3: Take r = 3, choose M3 = M , N3 = N . Compute λ̂(3) from λ̂(2) using
(7.21).

Exactly in the same manner μ̂(3) can also be obtained from (7.22). λ̂(3) and μ̂(3) are
the proposed estimators of λ and μ respectively. It has been shown that the proposed
estimators have the same asymptotic variances as the corresponding LSEs. The main
advantage of the proposed estimators is that they can be obtained in a fixed number
of iterations. Extensive simulation results suggest that the proposed algorithm works
very well.

7.2.5 Noise Space Decomposition Method

Recently Nandi et al. [15] proposed the noise space decomposition method to esti-
mate the frequencies of the 2-D sinusoidal model (7.1). The proposed method is an
extension of 1-D NSD method which was originally proposed by Kundu and Mitra
[16] as described in Sect. 3.4. The NSD method for 2-D model can be described as
follows: From the sth row of the data matrix
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YN =

⎡

⎢⎢⎢⎢⎢⎢⎣

y(1, 1) · · · y(1, N )
...

. . .
...

y(s, 1) · · · y(s, N )
...

. . .
...

y(M, 1) · · · y(M, N )

⎤

⎥⎥⎥⎥⎥⎥⎦
, (7.25)

construct a matrix As for any N − 2p ≥ L ≥ 2p as follows,

As =
⎡

⎢⎣
y(s, 1) · · · y(s, L + 1)
...

...
...

y(s, N − L) · · · y(s, N )

⎤

⎥⎦ .

Obtain an (L + 1)× (L + 1) matrix B =
M∑

s=1

As
T As/((N − L)M). Now using the

1-D NSD method on matrix B, the estimates of λ1, . . . , λp can be obtained. Similarly,
using the columns of the data matrix YN , the estimates ofμ1, . . . , μp can be obtained.
For details see Nandi et al. [15]. Finally one needs to estimate the pairs, namely
{(λk, μk); k = 1, . . . , p} also. The authors suggested the following two pairing
algorithms once the estimates of λk andμk for k = 1, . . . , p are obtained. Algorithm
7.2 is based on p! search. It is computationally efficient for small values of p, say
p = 2, 3 and Algorithm 7.3 is based on p2-search, so it is efficient for large values of
p, that is, when p is greater than 3. Suppose the estimates obtained using the above
NSD method are {̂λ(1), . . . , λ̂(p)} and {μ̂(1), . . . , μ̂(p)}, then the two algorithms are
described as follows.

Algorithm 7.2 Consider all possible p! combinations of pairs {(λ̂( j), μ̂( j)) : j =
1, . . . , p} and calculate the sum of the periodogram function for each combi-
nation as

IS(λ,μ) =
p∑

k=1

1

M N

∣∣∣∣∣

M∑

s=1

N∑

t=1

y(s, t)e−i(sλk+tμk )

∣∣∣∣∣

2

.

Consider that combination as the paired estimates of {(λ j , μ j ) : j = 1, . . . , p} for
which this IS(λ,μ) is maximum.

Algorithm 7.3 Compute I (λ, μ) as defined in (7.14) over {(λ̂( j), μ̂(k)), j, k =
1, . . . , p}. Choose the largest p values of I (̂λ( j), μ̂(k)) and the corresponding
{(̂λ[k], μ̂[k]), k = 1, . . . , p} are the paired estimates of {(λk, μk), k = 1, . . . , p}.

From the extensive experimental results it is observed that the performance of
these estimators is better than that of the ALSEs, and compare reasonably well with
the LSEs. It has been observed along the same line as the 1-D NSD method that
under the assumptions of i.i.d. errors, the frequency estimators obtained by the 2-D
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NSD method are strongly consistent, although the asymptotic distribution of these
estimators has not yet been established.

7.3 2-D Model: Estimating the Number of Components

The estimation of frequencies of the 2-D sinusoidal model has received considerable
attention in the signal processing literature. Unfortunately, not that much of attention
has been paid in estimating the number of components namely p of model (7.1). It
may be mentioned that p can be estimated by observing the number of peaks of the
2-D periodogram function, as mentioned in Kay [17], but that is quite subjective in
nature and it may not work properly all the times.

Miao et al. [18] discussed the estimation of the number of components for an
equivalent model. Kundu and Nandi [14] proposed a method based on the eigen-
decomposition technique and it avoids estimation of the different parameters for
different model orders. It only needs the estimation of error variance for different
model orders. The method uses the rank of a Vandermond-type matrix and the infor-
mation theoretic criteria like AIC and MDL. But instead of using any fixed penalty
function a class of penalty functions satisfying some special properties has been used.
It is observed that any penalty function from that particular class provides consistent
estimates of the unknown parameter p under the assumptions that the errors are i.i.d.
random variables. Further, an estimate of probability of wrong detection for any par-
ticular penalty function has been obtained using the matrix perturbation technique.
Once an estimate of the probability of wrong detection has been obtained, that penalty
function from the class of penalty functions for which the estimated probability of
wrong detection is minimum, is used to estimate p. The main feature of this method
is that the penalty function depends on the observed data, and it has been observed
by extensive numerical studies that the data-dependent penalty function works very
well in estimating p.

7.4 Conclusions

In this chapter, we have considered the 2-D sinusoidal model and discussed different
estimators and their properties. In the 2-D case also, the LSEs are the most natural
choice and they are the most efficient estimators also. Unfortunately, finding the
LSEs is a difficult problem. Due to this reason, several other estimators which may
not be as efficient as the LSEs, but easier to compute have been suggested in the
literature. Recently Prasad and Kundu [10] proposed a 3-D sinusoidal model, which
can be used quite effectively to model color textures. They have established the strong
consistency and asymptotic normality properties of the LSEs under the assumptions
of stationary errors. No attempt has been made to compute the LSEs efficiently or to
find some other estimators which can be obtained more conveniently than the LSEs.
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It seems most of the 2-D results should be possible to extend to 3-D case. More work
is needed along that direction.
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Chapter 8
Related Models

8.1 Introduction

The sinusoidal frequency model is a well known model in different fields of science
and technology and as has been observed in previous chapters, is a very useful model
in explaining nearly periodical data. There are several other models which are prac-
tically the multiple sinusoidal model, but also exploit some extra features in the data.
In most of such cases, the parameters satisfy some additional conditions other than
the assumptions required for the sinusoidal model. For example, if the frequencies
appear at λ, 2λ, . . . , pλ in a multiple sinusoidal model, then the model that exploits
this extra information is the fundamental frequency model. The advantage of using
this information in the model itself is that it reduces the total number of parameters
to 2p + 1 from 3p and a single non-linear parameter instead of p, in case of mul-
tiple sinusoidal model. Similarly, if the gap between two consecutive frequencies
is approximately same, then the suitable model is the generalized fundamental fre-
quency model. We call these models as “related models” of the sinusoidal frequency
model.

This chapter is organized in the following way. The damped sinusoid and the
amplitude modulated (AM) model are discussed in Sects. 8.2 and 8.3, respectively.
These are complex-valued models. The rest of the models, discussed here, are real-
valued. The fundamental frequency model and the generalized fundamental fre-
quency model are given in Sects. 8.4 and 8.5, respectively. The partial sinusoidal
model is given in Sect. 8.6 and the burst model in Sect. 8.7. The chapter is concluded
by a brief discussion of some more related models in Sect. 8.8.

8.2 Damped Sinusoidal Model

The superimposed damped exponential signal in the presence of noise is an important
model in signal processing literature. It is a complex-valued model in general form
and can be written as

D. Kundu and S. Nandi, Statistical Signal Processing, SpringerBriefs in Statistics, 113
DOI: 10.1007/978-81-322-0628-6_8, © The Author(s) 2012
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y(t) = μ(α,β, t)+ ε(t) =
p∑

j=1

α j exp{β j t} + ε(t), t = ti , (8.1)

where ti , i = 1, . . . , n, are equidistant; α j j = 1, . . . , p are unknown complex
amplitudes; p is the total number of sinusoids present; β j , j = 1, . . . , p are assumed
to be distinct; {ε(t1), . . . , ε(tn)} are complex-valued random variables with mean zero
and finite variance.

Model (8.1) represents a general complex-valued sinusoidal model and has three
special cases; (i) undamped sinusoidal model, (ii) damped sinusoidal model, and
(iii) real compartment model, depending on the form of β j , j = 1, . . . , p. When
β j = iω j , ω j ∈ (0, π), model (8.1) is an undamped sinusoid; if β j = −δ j + iω j

with δ j > 0 andω j ∈ (0, π) for all j , it is a damped sinusoid where δ j is the damping
factor and ω j is the frequency corresponding to the j th component; if for all j , α j

and β j are real numbers, model (8.1) represents a real compartment model. All the
three models are quite common among engineers and scientists. For applications of
damped and undamped models, the readers are referred to Kay [1] and for the real
compartment model, see Seber and Wild [2] and Bates and Watts [3].

Tufts and Kumaresan consider model (8.1) with ti = i . Some modifications of
Prony’s method were suggested by a series of authors. See Kumaresan [4], Kumare-
san and Tufts [5], and the references therein. It is pointed out by Rao [6] that solutions
obtained by these methods may not be consistent. Moreover, Wu [7] showed that any
estimator of the unknown parameters of model (8.1) is inconsistent with ti = i . Due
to this reason, Kundu [8] considers the following alternative model. Write model
(8.1) as

yni = μ(α0,β0, tni )+ εni , i = 1, . . . , n, (8.2)

where tni = i/n, i = 1, . . . , n take values in the unit interval; θ = (α,β) =
(α1, . . . , αp, β1, . . . , βp) be the parameter vector. Least norm squares estimator is
the most natural estimator in this case. Kundu [9] extends the results of Jennrich [10]
for the LSEs to be consistent and asymptotically normal to the complex parameter
case. But the damped sinusoid does not satisfy Kundu’s condition. It is necessary
for the LSEs to be consistent that tni , i = 1, . . . , n, n = 1, 2, . . . are bounded. It is
also assumed that {εni }, i = 1, . . . , n, n = 1, 2, . . . is a double array sequence of
complex-valued random variables. Each row {εn1, . . . , εnn} is i.i.d. with mean zero.
The real and imaginary parts of εni are independently distributed with finite fourth
moments. The parameter space 	 is a compact subset of IC p and the true parameter
vector θ0 is an interior point of 	. Further, the function

1∫

0

|μ(α0,β0, t)− μ(α,β, t)|2dt (8.3)

has a unique minimum at (α,β) = (α0, β0). Under these assumptions, the LSEs of
the unknown parameters of model (8.1) are strongly consistent.
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8.3 Amplitude Modulated Model

This is a special type of AM undamped signal model and naturally complex-valued
like damped or undamped model. The discrete-time complex random process {y(t)}
consisting of p single-tone AM signals is given by

y(t) =
p∑

k=1

Ak

[
1 + μkeivk t

]
eiωk t + X (t); t = 1, . . . , n, (8.4)

where for k = 1, . . . , p, Ak is the carrier amplitude of the constituent signal, μk

is the modulation index, ωk is the carrier angular frequency, and vk is the modulat-
ing angular frequency. The sequence of additive errors {X (t)} is a complex-valued
stationary linear process.

The model was first proposed by Sircar and Syali [11]. Nandi and Kundu [12] and
Nandi et al. [13] proposed LSEs and ALSEs and studied their theoretical properties
for large n. The method, proposed by Sircar and Syali [11], is based on accumulated
correlation functions, power spectrum, and Prony’s difference-type equations, but
applicable if {X (t)} is a sequence of complex-valued i.i.d. random variables. Readers
are referred to Sircar and Syali [11] for physical interpretation of different model
parameters. Model (8.4) was introduced for analyzing some special type of non-
stationary signal in steady-state analysis. If μk = 0 for all k, model (8.4) coincides
with the sum of complex exponential, that is, the undamped model. The undamped
model is best suited for transient non-stationary signal, but it may lead to large order
when the signal is not decaying over time. Sircar and Syali [11] argued that complex
AM model is more suitable for steady-state non-stationary signal. This model was
proposed to analyze some short duration speech data. Nandi and Kundu [12] and
Nandi et al. [13] analyzed two such datasets.

The following restrictions are required on the true values of the model parameters:
for all k, Ak �= 0 and μk �= 0 and they are bounded. Also 0 < vk < π , 0 < ωk < π

and
ω1 < ω1 + v1 < ω2 < ω2 + v2 < · · · < ωM < ωM + vM . (8.5)

A complex-valued stationary linear process implies that X (t) has the following rep-
resentation

X (t) =
∞∑

k=0

a(k)e(t − k),

where {e(t)} is a sequence of i.i.d. complex-valued random variables with mean zero
and variance σ 2 < ∞ for both the real and imaginary parts. The real and imaginary
parts of e(t) are uncorrelated. The sequence {a(k)} of arbitrary complex-valued
constants is such that ∞∑

k=0

|a(k)| < ∞.
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The norm squares estimators of the unknown parameters of model (8.4) minimize

Q(A,μ, v,ω) =
n∑

t=1

∣∣∣∣∣y(t)−
p∑

k=1

Ak(1 + μkeivk t )eiωk t

∣∣∣∣∣

2

, (8.6)

with respect to A = (A1, . . . , Ap), μ = (μ1, . . . , μp), v = (v1, . . . , vp),
ω = (ω1, . . . , ωp), subject to restriction (8.5).

Similarly the ALSEs of the unknown parameters are obtained by maximizing

I (v,ω) =
p∑

k=1

⎧
⎨

⎩
1

n

∣∣∣∣∣

n∑

t=1

y(t)e−iωk t

∣∣∣∣∣

2

+ 1

n

∣∣∣∣∣

n∑

t=1

y(t)e−i(ωk+vk )t

∣∣∣∣∣

2
⎫
⎬

⎭ (8.7)

with respect to v and ω under restriction (8.5). Write (ω̃k, ṽk) as the ALSE of (ωk, vk),
for k = 1, . . . , p. Then the corresponding ALSEs of the linear parameters of Ak and
μk are estimated as

Ãk = 1

n

n∑

t=1

y(t)e−iω̃k t , Ãkμ̃k = 1

n

n∑

t=1

y(t)e−i(ω̃k+̃vk )t . (8.8)

Minimization of Q(A,μ, v,ω) is a 2p-dimensional optimization problem. But, as
in the case of sequential method of multiple sinusoidal model, it can be reduced to
2p, 2-D problem.

Nandi and Kundu [12] and Nandi et al. [13] established the strong consistency of
the LSEs and ALSEs and obtained their asymptotic distributions for large n under
restriction (8.5) and the assumption that the sequence of the error random variables
follows the assumption of stationary complex-valued linear process. It has been found
that the linear parameters, that is, the real and imaginary parts of the amplitudes Ak

and modulation index μk for k = 1, . . . , p are estimated with a rate Op(n−1/2),

whereas frequencies are estimated with rate Op(n−3/2).

8.4 Fundamental Frequency Model

The fundamental frequency model is widely used in different fields of science and
technology. It is a special case of general multiple sinusoidal model where different
periodic components are corresponding to a particular frequency. The model takes
the following form;
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y(t) =
p∑

j=1

ρ0
j cos(t jλ0 − φ0

j )+ X (t); (8.9)

=
p∑

j=1

[
A0

j cos(t jλ0)+ B0
j sin(t jλ0)

]
+ X (t) for t = 1, . . . , n. (8.10)

Here, ρ0
j > 0, j = 1, . . . , p are unknown amplitudes; φ0

j ∈ (−π, π), j = 1, . . . , p

are unknown phases; and λ0 ∈ (0, π/p) is the unknown frequency; {X (t)} is a
sequence of error random variables; for j = 1, . . . , p, A j = ρ0

j cos(φ0
j ) and

B j = −ρ0
j sin(φ0

j ). Most of the theoretical works involving fundamental frequency
model, available in the literature, are derived under Assumption 3.2. The effective
frequency corresponding to j-th sinusoidal component present in y(t) is jλ0, which
is of the form of harmonics of the fundamental frequency λ0, hence the above model
(8.9) has been named as fundamental frequency model. The model is also known as
harmonic regression signal plus noise model.

Model (8.9) or (8.10) is a special case of the multiple sinusoidal model where
λ0

j = jλ0. This particular form of the sinusoidal model is widely used. Brown
[14] discussed the asymptotic properties of a Weighted Least Squares Estimator
(WLSE) defined through periodogram functions and a continuous even function
under some additional assumptions. Quinn and Thomson (QT) [15] proposed an
estimation method, we call it QT estimator, which is based on the weighted sum
of the periodogram functions of the observed data at the harmonics. The weights
are equal to the reciprocal of the spectrum of the error process at the harmonics
of the fundamental frequency. This is quite a strong assumption because spectrum
is usually unknown and hence a consistent estimation is required, which itself is a
difficult problem. Kundu and Nandi [16] studied the theoretical properties of the
LSEs and ALSEs, under Assumption 3.2, that is, the error process is a stationary
linear process.

The LSEs of the unknown parameters of model (8.9) are obtained by minimizing
the residual sum of squares;

Q(θ) =
n∑

t=1

⎡

⎣y(t)−
p∑

j=1

ρ j cos(t jλ− φ j )

⎤

⎦
2

, (8.11)

with respect to the parameter vector θ = (ρ1, . . . , ρp, φ1, . . . , φp, λ).
Let θ̂ = (ρ̂1, . . . , ρ̂p, φ̂1, . . . , φ̂p, λ̂) be the LSE of θ0 = (ρ0

1 , . . . , ρ
0
p, φ

0
1 , . . . ,

φ0
p, λ

0), that minimizes Q(θ) with respect to θ . We observe that λ is the only non-
linear parameter and ρ1, . . . ρp and φ1, . . . , φp are either linear parameters or can be
expressed in terms of the linear parameters. Hence, using separable regression tech-
nique of Richards [17], one can explicitly write the LSEs ofρ0

1 , . . . ρ
0
p andφ0

1 , . . . , φ
0
p

as functions of λ only. Therefore, it boils down to a 1-D minimization problem.
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The strong consistency of the LSE of λ0, as well as the other parameters under
Assumption 3.2, can be proved following similar techniques as the multiple sinu-
soidal model. The asymptotic distribution is obtained using multivariate Taylor series
and first-order approximation and is stated in the following theorem.

Theorem 1 Under Assumption 3.2,

√
n
[
(ρ̂1 − ρ0

1 ), . . . , (ρ̂p − ρ0
p), (φ̂1 − φ0

1), . . . , (φ̂p − φ0
p), n(̂λ− λ0)

]

→ N2p+1(0, 2σ 2V)

as n → ∞. The variance–covariance matrix V is as follows:

V =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎣

C 0 0

0 CD−1
ρ0 + 3δG LLT

(∑p
j=1 j2ρ02

j

)2
6δG L(∑p

j=1 j2ρ02
j

)2

0 6δG LT
(∑p

j=1 j2ρ02
j

)2
12δG(∑p

j=1 j2ρ02
j

)2

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎦

(8.12)

where
Dρ0 = diag{ρ02

1 , . . . , ρ
02

p }, L = (1, 2, . . . , p)T , (8.13)

δG = LT Dρ0 CL =
p∑

j=1

j2ρ02

j c( j), C = diag{c(1), . . . , c(p)}, (8.14)

c( j) =
∣∣∣∣∣

∞∑

k=0

a(k)e−i jkλ0

∣∣∣∣∣

2

. (8.15)

In case of fundamental frequency model, the LSEs of the amplitudes only depend on
the fundamental frequency λ0 through c( j). Unlike the multiple sinusoidal model,
the frequency estimator asymptotically depends on all the ρ j , j = 1, . . . , p.

The ALSE of λ0, say λ̃, is obtained by maximizing IS(λ), the sum of the peri-
odogram functions at jλ, j = 1, . . . , p, defined as follows:

IS(λ) = 1

n

p∑

j=1

∣∣∣∣∣

n∑

t=1

y(t)eit jλ

∣∣∣∣∣

2

. (8.16)

The ALSEs of the other parameters are estimated as;
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ρ̃ j = 2

n

∣∣∣∣∣

n∑

t=1

y(t)eit j λ̃

∣∣∣∣∣ , φ̃ j = arg

{
1

n

n∑

t=1

y(t)eit j λ̃

}
(8.17)

for j = 1, . . . , p. Therefore, similar to LSE, estimating ALSE of λ0 involves 1-D
optimization and once λ̃ is obtained, ALSEs of the other parameters are estimated
using (8.17).

Similar to the case of general sinusoidal model, ALSEs of the unknown parameters
of the fundamental frequency model are strongly consistent (Kundu and Nandi [16])
and for large n have the same distribution as the LSEs.

Write model (8.9) as y(t) = μ(t; θ)+ X (t), where θ is same as defined in case
of LSEs and

Iy(ω j ) = 1

2πn

∣∣∣∣∣

n∑

t=1

y(t) exp(i tω j )

∣∣∣∣∣

2

, Iμ(ω j , θ) = 1

2πn

∣∣∣∣∣

n∑

t=1

μ(t; θ) exp(i tω j )

∣∣∣∣∣

2

,

Iyμ(ω j , θ) = 1

2πn

(
n∑

t=1

y(t) exp(i tω j )

)⎛

⎝
n∑

t=1

μ(t; θ) exp(i tω j )

⎞

⎠ ,

where {ω j = 2π j/n; j = 0, . . . , n − 1} are Fourier frequencies. Then the WLSE of

θ0, say ̂̂θ , minimizes the following objective function;

S1(θ) = 1

n

n−1∑

j=0

[{
Iy(ω j )+ Iμ(ω j ; θ)− 2Re(Iyμ(ω j ; θ))

}
φ(ω j )

]
, (8.18)

where φ(ω) is a continuous even function of ω and it satisfies φ(ω) ≥ 0 for ω ∈
[0, π ].

WLSEs of the unknown parameters are strongly consistent and asymptotically
normally distributed under Assumption 3.2 and some more regularity conditions.
The asymptotic variance–covariance matrix depends on the chosen function φ(ω)
and the spectrum f (ω) of the error process {X (t)}, see Hannan [18], Hannan [19]
and Brown [14].

The QT estimator of λ0, proposed by Quinn and Thomson [15], say ˜̃λ, minimizes

Q(λ) = 1

n

p∑

j=1

1

f ( jλ)

∣∣∣∣∣

n∑

t=1

y(t)eit jλ

∣∣∣∣∣

2

, (8.19)
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where

f (λ) = 1

2π

∞∑

h=−∞
e−ihλγ (h) (8.20)

is the spectral density function or the spectrum of the error process with auto-
covariance function γ (.). Under Assumption 3.2, the spectrum of {X (t)} has the

form f (λ) =
∣∣∣
∑∞

j=0 a( j)e−i jλ
∣∣∣
2

and it is assumed that the spectrum of the error

process is known and strictly positive on [0, π ]. When the spectrum is unknown,
f ( jλ) in (8.19) is replaced by its estimate. The QT estimators of the other para-
meters are same as the ALSEs given in (8.17). In case of QT estimator, Q(λ) is a
weighted sum of the squared amplitude estimators of model (8.9) at the harmonics
jλ, j = 1, . . . , p and the weights are inversely proportional to the spectral density
of the error random variables at these frequencies. Hence, Q(λ) coincides with IS(λ)

when {X (t)} is a sequence of uncorrelated random variables. Similar to WLSE, one
can term the QT estimator as Weighted ALSE.

Quinn and Thomson [15] established the strong consistency and asymptotic dis-
tribution of the QT estimator based on the assumption that the error process is ergodic
and strictly stationary and the spectral density function f (·) at jλ is known.

Note A comparison of the asymptotic dispersion matrix of the LSE θ̂ and QT esti-

mator ˜̃θ is available in Nandi and Kundu [16]. It has been noted that the asymptotic
variances of the estimators of ρ0

j , j = 1, . . . , p are same in both the cases, whereas

in case of the estimators of λ0 and φ0
j , j = 1, . . . , p, large sample variances are

different when p > 1. For p > 1, the asymptotic variances of the QT estimators
are smaller than the corresponding asymptotic variances of the LSEs or ALSEs of
λ0 and φ0

j for all j , if f ( jλ) at different j are distinct. Hence, the QT estimators
have certain advantages over the LSEs or ALSEs in terms of large sample variances.
However, Nandi and Kundu [16] remarked that in practice QT estimators may not
behave that well.

8.4.1 Test for Harmonics

The fundamental frequency model is nothing but the multiple sinusoidal model with
a constraint that the frequencies are harmonics of a fundamental frequency. Once
it is known that the frequencies appear at λ0, 2λ0, . . . , pλ0, the total number of
parameters reduces to 2p + 1 with only one non-linear parameter, λ0. If p is large,
this model has a substantial advantage over multiple frequency model in terms of
computational difficulty. Therefore, a test of H0: λ j = jλ, j = 1, . . . , p against
HA: not H0 is required where λ0 is unknown. Quinn and Thomson [15] considered
likelihood ratio statistics which is asymptotically equivalent to
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χ2
QT = n

π

⎧
⎨

⎩

p∑

j=1

J (̂λ j )

f (̂λ j )
−

p∑

j=1

J ( j˜̃λ)
f ( j˜̃λ)

⎫
⎬

⎭ , J (λ) =
∣∣∣∣∣
1

n

n∑

t=1

y(t)eitλ

∣∣∣∣∣

2

. (8.21)

Here λ̂ j , j = 1, . . . , p are the LSEs of λ0
j , j = 1, . . . , p under HA and ˜̃λ is the QT

estimator of λ0.
Following Quinn and Thomson [15], Nandi and Kundu [16] also used a similar

statistic χ2
N K , which has the same form as χ2

QT , with ˜̃λ replaced by λ̂, the LSE of λ0

under H0. It has been shown that under H0 and some regularity conditions (Quinn and
Thomson [15], Nandi and Kundu [16]) χ2

QT and χ2
N K are asymptotically distributed

as χ2
p−1 random variable and asymptotically equivalent to

χ2∗ = n3

48π

p∑

j=1

ρ̂2
j

(̂
λ j − jλ∗)2

f ( jλ∗)
, (8.22)

where λ∗ is either the LSE λ̂ or the QT estimator ˜̃λ under H0. Furthermore, under
H0, χ2 = χ2

QT + o(1).
A comparative study of the two tests proposed by Quinn and Thomson [15]

and Kundu and Nandi [16] will be of interest and theoretical as well as empirical
comparison of these tests are important and at present an open problem.

8.5 Generalized Fundamental Frequency Model

The fundamental frequency model has been generalized by the authors (i) Irizarry
[20] and (ii) Nandi and Kundu [21]. Such models can be used in case there is more
than one fundamental frequency.

Irizarry [20] proposed the signal plus noise model with J periodic components;
for j = 1, . . . , J , s j (t;β j ) is the contribution of the j th fundamental frequency and
is a sum of K j sinusoidal components of the following form:

y(t) =
J∑

j=1

s j (t;β j )+ X (t), t = 1, . . . , n. (8.23)

s j (t;β j ) =
K j∑

k=1

{
A j,k cos(kθ j t)+ B j,k sin(kθ j t)

}
, (8.24)

β j = (A j,1, B j,i , . . . , A j,K j , B j,K j , θ j ).

Nandi and Kundu [21] considered a similar generalization with J fundamental fre-
quencies of the form;
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s j (t;β j ) =
q j∑

k=1

ρ jk cos
{[λ j + (k − 1)ω j ]t − φ jk

}
, (8.25)

β j = (ρ j1 , . . . , ρ jqk
, φ j1 , . . . , φ jqk

, λ j , ω j ),

where λ j , j = 1, . . . , J are fundamental frequencies and the other frequencies asso-
ciated with λ j are occurring at λ j , λ j +ω j , . . ., λ j + (q j − 1)ω j . Corresponding to
j-th fundamental frequency, there are q j bunch of effective frequencies. If λ j = ω j ,
then frequencies effectively appear at the harmonics of λ j . Corresponding to the
frequency λ j + (k − 1)ω j , ρ jk and φ jk , k = 1, . . . , q j , j = 1, . . . , J represent the
amplitude and phase components, respectively, and they are also unknown. Motiva-
tion for such a generalized model came through some real datasets.

Irizarry [20] proposed a window-based weighted least squares method and devel-
oped asymptotic variance expression of the proposed estimators. Kundu and Nandi
[21] studied the theoretical properties of the LSEs of the unknown parameters. LSEs
are strongly consistent and asymptotically normally distributed under the assumption
of stationary linear process.

8.6 Partially Sinusoidal Frequency Model

The Partially Sinusoidal Frequency Model is proposed by Nandi and Kundu [22]
with the aim of analyzing data with periodic nature superimposed with a polynomial
trend component. The model in its simplest form, in the presence of a linear trend,
is written as

y(t) = a+bt+
p∑

k=1

[Ak cos(ωk t)+ Bk sin(ωk t)]+X (t), t = 1, . . . , n+1. (8.26)

Here {y(t), t = 1, . . . , n + 1} are the observed data and a and b, unknown real
numbers, are parameters of the linear trend component. The specifications in the
sinusoidal part in model (8.26) are same as the multiple sinusoidal model (8.26),
described in Sect. 4.36. That is Ak, Bk ∈ R are unknown amplitudes, ωk ∈ (0, π)
are the unknown frequencies. The sequence of noise {X (t)} satisfies Assumption 3.2.
The number of sinusoidal components present is p and it is assumed to be known in
advance. The initial sample size is taken as n + 1 instead of the usual convention as
n due to some technical reason.

If b is zero, model (8.26) is nothing but model (4.36) with a constant mean term.
A more general model in the class of partially sinusoidal frequency models includes
a polynomial of degree q instead of the linear contribution a + bt .

Consider model (8.26) with p = 1, then

y(t) = a + bt + A cos(ωt)+ B sin(ωt)+ X (t), t = 1, . . . , n + 1. (8.27)
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Define y(t + 1)− y(t) = z(t), say for t = 1, . . . n, then

z(t) = y(t + 1)− y(t)

= b + A[cos(ωt + ω)− cos(ωt)] + B[sin(ωt + ω)− sin(ωt)] + xd(t),

(8.28)

where xd(t) = X (t + 1) − X (t) is the first difference of {X (t)} and satisfies the
assumption of a stationary linear process. In matrix notation, Eq. (8.28) is written as;

Z = b1 + X(ω)η + E, (8.29)

with Z = (z(1), z(2), . . . , z(n))T , 1 = (1, 1, . . . , 1)T , E = (xd(1), . . . , xd(n))T ,
η = (A, B)T , and

X(ω) =

⎡

⎢⎢⎢⎣

cos(2ω)− cos(ω) sin(2ω)− sin(ω)
cos(3ω)− cos(2ω) sin(3ω)− sin(2ω)

...
...

cos(ω(n + 1))− cos(ωn) sin(ω(n + 1))− sin(ωn)

⎤

⎥⎥⎥⎦ . (8.30)

Then for large n, b is estimated as b̂ = (
∑n

t=1 z(t))/n and is a consistent estimator

of b, see Nandi and Kundu [22]. Plugging b̂ in (8.29) and using least squares method
along with separable regression technique, the frequency and linear parameters are
estimated as

ω̂ = arg minωZ∗T
(

I − X(ω)
[
X(ω)T X(ω)

]−1
X(ω)T

)
Z∗, Z∗ = Z − b̂1

η̂ = ( Â, B̂)T =
[
X(ω̂)T X(ω̂)

]−1
X(ω̂)T Z∗. (8.31)

Testing whether b is zero is an interesting problem. which has not been addressed so
far.

Nandi and Kundu [22] study the strong consistency and obtain the distribution of

the estimators for large sample size. It is proved that under the condition A02+B02
>

0, the estimators are consistent and for large n,

(
√

n( Â − A0),
√

n(B̂ − B0), n
√

n(ω̂ − ω0)
d→ N3(0,�(θ0))

where

�(θ0) = σ 2cpar (ω
0)

(
1 − cos(ω0)

) (
A02 + B02

)

⎡

⎢⎣
A02 + 4B02 −3A0 B0 −6B0

−3A0 B0 4A02 + B02
6A0

−6B0 6A0 12

⎤

⎥⎦ ,
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cpar (ω) =
∣∣∣∣∣

∞∑

k=0

(a(k + 1)− a(k))e−iωk

∣∣∣∣∣

2

. (8.32)

Note that cpar (ω) takes the same form as c(ω) presented in (4.10) defined for the
differenced error process {xd(t)}. Also,

Var(̂θ
1
) = cpar (ω

0)

2(1 − cos(ω0))c(ω0)
Var(̂θ

2
),

where θ̂
1 = ( Â1, B̂1, ω̂1)T denote the LSE of (A, B, ω)T in case of model (8.27)

and θ̂
2 = ( Â2, B̂2, ω̂2)T is the LSE of the same model without any trend component.

In case of model (8.26), the estimation technique is the same as the one component
frequency plus linear trend model (8.27). One needs to estimate the frequencies and
the amplitudes using the differenced data. The coefficient b is estimated as the aver-
age of the differenced data. The corresponding design matrix X is of the order n×2p.
Because X(ω j ) and X(ωk), k �= j , are orthogonal matrices, X(ω j )

T X(ωk)/n = 0
for large n. Therefore, the parameters corresponding to each sinusoidal component
can be estimated sequentially. Nandi and Kundu [22] observe that the estimators are
consistent and the parameters of the j th frequency component have similar asymp-
totic distribution as model (8.27) and the estimators corresponding to j th component
are asymptotically independently distributed as the estimators corresponding to kth
estimators, for j �= k.

8.7 Burst-Type Model

The burst-type signal is proposed by Sharma and Sircar [23] to describe a segment of
an ECG signal. This model is a generalized model of the multiple sinusoidal model
with time-dependent amplitudes of certain form. The model exhibits occasional burst
and is expressed as

y(t) =
p∑

j=1

A j exp[b j {1 − cos(αt + c j )}] cos(θ j t + φ j )+ X (t), t = 1, . . . , n,

(8.33)
where for j = 1, . . . , q , A j is the amplitude of the carrier wave, cos(θ j t + φ j ); b j

and c j are the gain part and the phase part of the exponential modulation signal; α is
the modulation angular frequency; θ j is the carrier angular frequency and φ j is the
phase corresponding to the carrier angular frequency θ j ; {X (t)} is the sequence of the
additive error random variables. The number of component, p, denotes the number
of carrier frequencies present. The modulation angular frequency α is assumed to be
same through all components. This ensures the occasional burst at regular intervals.
Nandi and Kundu [24] study the LSEs of the unknown parameters under the i.i.d.
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assumption of {X (t)} and known p. Model (8.33) can be viewed as a sinusoidal model

with a time-dependent amplitude
∑q

j=1
A j s j (t) cos(θ j t +φ j )+ X (t),where s j (t)

takes the particular exponential form exp[b j {1 − cos(αt + c j )}].
Mukhopadhyay and Sircar [25] proposed a similar model to analyze an ECG signal

with a different representation of parameters. Nandi and Kundu [24] show the strong
consistency and obtain the asymptotic distribution as normal under the assumption
of i.i.d. error and exp{|b0|} < J , where b0 is the true value of b. It is observed as in
case of other related models that the frequencies θ j j = 1, . . . , p and α are estimated
with a rate Op(n−3/2) and rest of the other parameters with rate equal to Op(n−1/2).
When p = 1, the estimators of the pairs of parameters (A, b), (α, c) and (θ, φ) are
asymptotically independent of each other, whereas the estimators of the parameters
in each pair are asymptotically dependent. In case p > 1, the estimator of α depends
on parameters of all the components.

8.8 Discussion/Remarks

Apart from the models discussed in this chapter, there are several other models which
have important real-life applications and can be categorized as related models of the
sinusoidal frequency model. Chirp signal model is such a model which is a natural
way of extending sinusoidal model where the frequency changes linearly with time
rather than being constant throughout. Chirp signal model was first proposed by
Djuric and Kay [26] and is quite useful in various disciplines of science and engi-
neering, particularly in physics, sonar, radar, and communications. Besson and his
coauthors study the chirp model and different variation of this model, e.g. random or
time-varying amplitudes. Nandi and Kundu [27] and Kundu and Nandi [28] develop
theoretical properties of the LSEs. The generalized chirp signal is also proposed by
Djuric and Kay [26], where there are p non-linear parameters corresponding to a
polynomial of degree p and this polynomial acts as the arguments of sine and cosine
functions. Recently Lahiri et al. [29] develop an efficient algorithm to estimate the
parameters of a chirp model in the presence of stationary error.

Besson and Stoica [30] consider the problem of estimating the frequency of a
single sinusoid whose amplitude is either constant or time-varying and formulate a
test to detect time-varying amplitudes. Bian et al. [31] propose an efficient algorithm
for estimating the frequencies of the superimposed exponential signal in zero mean
multiplicative as well as additive noise.

Bloomfield [32] considered the fundamental frequency model when the funda-
mental frequency is a Fourier frequency. Baldwin and Thomson [33] and Quinn and
Thomson [15] used model (8.9) to explain the visual observation of S. Carinae, a
variable star in the Southern Hemisphere sky. Greehouse et al. [34] proposed higher-
order harmonics of one or more fundamental frequencies with stationary ARMA
processes for the errors to study of biological rhythm data, illustrated by human core
body temperature data. The harmonic regression plus correlated noise model has also
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been used in assessing static properties of human circadian system, see Brown and
Czeisler [35] and Brown and Liuthardt [36] and examples therein. Musical sound seg-
ments produced by certain musical instruments are mathematically explained using
such models. Some short duration speech data are analyzed using model (8.9), see
Nandi and Kundu [16] and Kundu and Nandi [27]. Several interesting open problems
exist in these areas. Further attention is needed along these directions.
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