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Preface To The Second Edition 

The use of logistic regression modeling has exploded during the 
past decade. From its original acceptance in epidemiologic research, the 
method is now commonly employed in many fields including but not 
nearly limited to biomedical research, business and finance, criminol­
ogy, ecology, engineering, health policy, linguistics and wildlife biol­
ogy. At the same time there has been an equal amount of effort in re­
search on all statistical aspects of the logistic regression model. A lit­
erature search that we did in preparing this Second Edition turned up 
more than 1000 citations that have appeared in the 10 years since the 
First Edition of this book was published. 

When we worked on the First Edition of this book we were very lim­
ited by software that could carry out the kinds of analyses we felt were 
important. Specifically, beyond estimation of regression coefficients, 
we were interested in such issues as measures of model performance, 
diagnostic statistics, conditional analyses and multinomial response data. 
Software is now readily available in numerous easy to use and widely 
available statistical packages to address these and other extremely im­
portant modeling issues. Enhancements to these capabilities are being 
added to each new version. As is well-recognized in the statistical com­
munity, the inherent danger of this easy-to-use software is that investi­
gators are using a very powerful tool about which they may have only 
limited understanding. It is our hope that this Second Edition will 
bridge the gap between the outstanding theoretical developments and 
the need to apply these methods to diverse fields of inquiry. 

Numerous texts have sections containing a limited discussion of lo­
gistic regression modeling but there are still very few comprehensive 
texts on this subject. Among the textbooks written at a level similar to 

ix 



X PREFACE TO THE SECOND EDITION 

this one are: Cox and Snell ( 1989), Collett ( 1991) and Kleinbaum 
(1994). 

As was the case in our First Edition, the primary objective of the 
Second Edition is to provide a focused introduction to the logistic re­
gression model and its use in methods for modeling the relationship 
between a categorical outcome variable and a set of covariates. Topics 
that have been added to this edition include: numerous new techniques 
for model building including determination of scale of continuous co­
variates; a greatly expanded discussion of assessing model performance; 
a discussion of logistic regression modeling using complex sample sur­
vey data; a comprehensive treatment of the use of logistic regression 
modeling in matched studies; completely new sections dealing with lo­
gistic regression models for multinomial, ordinal and correlated re­
sponse data, exact methods for logistic regression and sample size is­
sues. An underlying theme throughout this entire book is the focus on 
providing guidelines for effective model building and interpreting the 
resulting fitted model within the context of the applied problem. 

The materials in the book have evolved considerably over the past 
ten years as a result of our teaching and consulting experiences. We 
have used this book to teach parts of graduate level survey courses, 
quarter- or semester-long courses, and focused short courses to working 
professionals. We assume that students have a solid foundation in linear 
regression methodology and contingency table analysis. 

The approach we take is to develop the model from a regression 
analysis point of view. This is accomplished by approaching logistic 
regression in a manner analogous to what would be considered good 
statistical practice for linear regression. This differs from the approach 
used by other authors who have begun their discussion from a contin­
gency table point of view. While the contingency table approach may 
facilitate the interpretation of the results, we believe that it obscures the 
regression aspects of the analysis. Thus, discussion of the interpretation 
of the model is deferred until the regression approach to the analysis is 
firmly established. 

To a large extent there are no major differences in the capabilities 
of the various software packages. When a particular approach is avail­
able in a limited number of packages, it will be noted in this text. In 
general, analyses in this book have been performed in STATA [Stata 
Corp. (1999)]. This easy to use package combines excellent graphics 
and analysis routines, is fast, is compatible across Macintosh, Windows 
and UNIX platforms and interacts well with Microsoft Word. Other 
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major statistical packages employed at various points during the prepa­
ration of this text include SAS [SAS Institute Inc. (1999)], SPSS [SPSS 
Inc. (1998)], and BMDP [BMDP Statistical Software (1992)]. In gen­
eral, the results produced were the same regardless of which package 
was used. Reported numeric results have been rounded from figures 
obtained from computer output and thus may differ slightly from those 
that would be obtained in a replication of our analyses or from calcula­
tions based on the reported results. When features or capabilities of the 
programs differ in an important way, we note them by the names given 
rather than by their bibliographic citation. 

This text was prepared in camera ready format using Microsoft 
Word 98 on a Power Macintosh platform. Mathematical equations and 
symbols were built using Math Type 3.6a [Math Type: Mathematical 
Equation Editor (1998)]. 

Early on in the preparation of the Second Edition we made a deci­
sion that data sets used in the text would be made available to readers via 
the World Wide Web. The ftp site at John Wiley & Sons, Inc. for the 
data in this text is 

ftp://ftp. wiley .cornlpublic/sci_tech_med/logistic. 
In addition, the data may also be found, by permission of John Wiley & 
Sons Inc., in the archive of statistical data sets maintained at the Univer­
sity of Massachusetts at Internet address 

http://www-unix.oit.umass.edu/-statdata 
in the logistic regression section. Another advantage to having a text 
web site is that it provides a convenient medium for conveying to read­
ers text changes after publication. In particular, as errata become 
known to us they will be added to an errata section of the text's web site 
at John Wiley & Sons, Inc. Another use that we envision for the web is 
the addition, over time, of additional data sets to the statistical data set 
archive at the University of Massachusetts. 

We are deeply appreciative of the efforts of our students and col­
leagues who carefully read and contributed to the clarity of this manu­
script. In particular we are indebted to Elizabeth Donohoe-Cook, 
Sunny Kim and Soon-K wi Kim for their careful and meticulous reading 
of the drafts of this manuscript. Special thanks also goes to Rita Popat 
for helping us make the transition between the software we used for the 
first and second editions. We appreciate Alan Agresti's comments on 
the section dealing with the analysis of correlated data. Cyrus Mehta 
was particularly helpful in sharing key papers and for providing us with 
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the LogXact 4 (2000) program used for computations in Section 8.4. 
Others contributed significantly to the First Edition and their original 
suggestions made this Second Edition stronger. These include Gordon 
Fitzgerald, Sander Greenland, Bob Harris and Ed Stanek. 

There have been many other contributors to this book. Data sets 
were made available by our colleagues, Donn Young, Jane McCusker, 
Carol Bigelow, Anne Stoddard, Harris Pastides, and Jane Zapka, as well 
as by Doctors Daniel Teres and Laurence E. Lundy at Baystate Medical 
Center in Springfield, Massachusetts. Cliff Johnson at NCHS was help­
ful in providing us with a data set from the NHANES III that we used 
extensively in Section 6.4 as well as for sharing insights with us into 
analytic strategies used by that agency. We are very grateful to Profes­
sor Petter Laake, Section of Medical Statistics at the University of Oslo 
and Professeur Roger Salamon of the University of Bordeaux, II who 
provided us with support to work on this manuscript during visits to 
their universities. Comments by many of our students and colleagues at 
the University of Massachusetts, The Ohio State University, the New 
England Epidemiology Summer Program, the Erasmus Summer Pro­
gram, the Summer Program in Applied Statistical Methods at The Ohio 
State University, the University of Oslo and the University of Bordeaux 
as well as at innumerable short courses that we have had the privilege to 
be invited to teach over the past ten years, were extremely useful. 

Finally, we would like to thank Steve Quigley and the production 
staff at John Wiley & Sons for their help in bringing this project to 
completion. 

Amherst, Massachusetts 
Columbus Ohio 
June, 2000 

DAVID W. HOSMER, JR. 
STANLEY LEMESHOW 
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CHAPTER 1 

Introduction to the 
Logistic Regression Model 

1.1 INTRODUCTION 

Regression methods have become an integral component of any data 
analysis concerned with describing the relationship between a response 
variable and one or more explanatory variables. It is often the case that 
the outcome variable is discrete, taking on two or more possible values. 
Over the last decade the logistic regression model has become, in many 
fields, the standard method of analysis in this situation. 

Before beginning a study of logistic regression it is important to 
understand that the goal of an analysis using this method is the same as 
that of any model-building technique used in statistics: to find the best 
fitting and most parsimonious, yet biologically reasonable model to de­
scribe the relationship between an outcome (dependent or response) 
variable and a set of independent (predictor or explanatofy) variables. 
These independent variables are often called covariates. The most 
common example of modeling, and one assumed to be familiar to the 
readers of this text, is the usual linear regression model where the out­
come variable is assumed to be continuous. 

What distinguishes a logistic regression model from the linear re­
gression model is that the outcome variable in logistic regression is bi­
nary or dichotomous. This difference between logistic and linear re­
gression is reflected both in the choice of a parametric model and in the 
assumptions. Once this difference is accounted for, the methods em­
ployed in an analysis using logistic regression follow the same general 
principles used in linear regression. Thus, the techniques used in linear 
regression analysis will motivate our approach to logistic regression. We 
illustrate both the similarities and differences between logistic regression 
and linear regression with an example. 

1 
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Example 

Table 1.1 lists age in years (AGE), and presence or absence of evidence 
of significant coronary heart disease (CHD) for 100 subjects selected to 
participate in a study. The table also contains an identifier variable (ID) 
and an age group variable (AGRP). The outcome variable is CHD, 
which is coded with a value of zero to indicate CHD is absent, or 1 to 
indicate that it is present in the individual. 

It is of interest to explore the relationship between age and the 
presence or absence of CHD in this study population. Had our outcome 
variable been continuous rather than binary, we probably would begin 
by forming a scatterplot of the outcome versus the independent vari­
able. We would use this scatterplot to provide an impression of the na­
ture and strength of any relationship between the outcome and the in­
dependent variable. A scatterplot of the data in Table 1.1 is given in 
Figure 1.1. 

In this scatterplot all points fall on one of two parallel lines repre­
senting the absence of CHD ( y = 0) and the presence of CHD ( y = 1). 
There is some tendency for the individuals with no evidence of CHD to 
be younger than those with evidence of CHD. While this plot does de­
pict the dichotomous nature of the outcome variable quite clearly, it 
does not provide a clear picture of the nature of the relationship be­
tween CHD and age. 

A problem with Figure 1.1 is that the variability in CHD at all ages 
is large. This makes it difficult to describe the functional relationship 
between age and CHD. One common method of removing some varia­
tion while still maintaining the structure of the relationship between the 
outcome and the independent variable is to create intervals for the inde­
pendent variable and compute the mean of the outcome variable within 
each group. In Table 1.2 this strategy is carried out by using the age 
group variable, AGRP, which categorizes the age data of Table 1.1. Ta­
ble 1.2 contains, for each age group, the frequency of occurrence of 
each outcome as well as the mean (or proportion with CHD present) for 
each group. 

By examining this table, a clearer picture of the relationship begins 
to emerge. It appears that as age increases, the proportion of individuals 
with evidence of CHD increases. Figure 1.2 presents a plot of the pro­
portion of individuals with CHD versus the midpoint of each age inter­
val. While this provides considerable insight into the relationship be­
tween CHD and age in this study, a functional form for this relationship 
needs to be described. The plot in this figure is similar to what one 
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Table 1.1 Age and Coronary Heart Disease (CHD) 
Status of 100 Sub·ects 

ID AGE AGRP CHD ID AGE AGRP CHD 
I 20 I 0 51 44 4 1 
2 23 I 0 52 44 4 I 
3 24 I 0 53 45 5 0 
4 25 I 0 54 45 5 I 
5 25 I I 55 46 5 0 
6 26 1 0 56 46 5 I 
7 26 I 0 57 47 5 0 
8 28 I 0 58 47 5 0 
9 28 I 0 59 47 5 I 
10 29 I 0 60 48 5 0 
I 1 30 2 0 61 48 5 I 
12 30 2 0 62 48 5 1 
13 30 2 0 63 49 5 0 
14 30 2 0 64 49 5 0 
15 30 2 0 65 49 5 I 
16 30 2 I 66 50 6 0 
17 32 2 0 67 50 6 I 
18 32 2 0 68 51 6 0 
19 33 2 0 69 52 6 0 
20 33 2 0 70 52 6 I 
21 34 2 0 71 53 6 1 
22 34 2 0 72 53 6 I 
23 34 2 I 73 54 6 1 
24 34 2 0 74 55 7 0 
25 34 2 0 75 55 7 I 
26 35 3 0 76 55 7 1 
27 35 3 0 77 56 7 I 
28 36 3 0 78 56 7 1 
29 36 3 1 79 56 7 1 
30 36 3 0 80 57 7 0 
31 37 3 0 81 57 7 0 
32 37 3 I 82 '.i7 7 I 
33 37 3 0 83 57 7 1 
34 38 3 0 84 57 7 I 
35 38 3 0 85 57 7 1 
36 39 3 0 86 58 7 0 
37 39 3 I 87 58 7 I 
38 40 4 0 88 58 7 I 
39 40 4 I 89 59 7 I 
40 41 4 0 90 59 7 I 
41 41 4 0 91 60 8 0 
42 42 4 0 92 60 8 I 
43 42 4 0 93 61 8 I 
44 42 4 0 94 62 8 I 
45 42 4 I 95 62 8 I 
46 43 4 0 96 63 8 1 
47 43 4 0 97 64 8 0 
48 43 4 I 98 64 8 I 
49 44 4 0 99 65 8 I 
50 44 4 0 100 69 8 I 
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Figure 1.1 Scatterplot of CHD by AGE for 100 subjects. 

might obtain if this same process of grouping and averaging were per­
formed in a linear regression. We will note two important differences. 

The first difference concerns the nature of the relationship between 
the outcome and independent variables. In any regression problem the 
key quantity is the mean value of the outcome variable, given the value 
of the independent variable. This quantity is called the conditional 
mean and will be expressed as "E(Y I x )" where Y denotes the outcome 

Table 1.2 Freguenc~ Table of Age Grou2 b~ CHD 
CHD 

Age Graue n Absent Present Mean {Proeortion! 
20-29 10 9 1 0.10 
30-34 15 13 2 0.13 
35-39 12 9 3 0.25 
40-44 15 10 5 0.33 
45-49 13 7 6 0.46 
50-54 8 3 5 0.63 
55-59 17 4 13 0.76 
60-69 10 2 8 0.80 

Total 100 57 43 0.43 
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Figure 1.2 Plot of the percentage of subjects with CHD in each age 
group. 
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variable and x denotes a value of the independent variable. The quan­
tity E( Y f x) is read "the expected value of Y, given the value x." In 
linear regression we assume that this mean may be expressed as an 
equation linear in x (or some transformation of x or Y), such as 

This expression implies that it is possible for E(Y f x) to take on any 
value as x ranges between -oo and +oo. 

The column labeled "Mean" in Table 1.2 provides an estimate of 
E(Y f x). We will assume, for purposes of exposition, that the estimated 
values plotted in Figure 1.2 are close enough to the true values of 
E( Y f x) to provide a reasonable assessment of the relationship between 
CHD and age. With dichotomous data, the conditional mean must be 
greater than or equal to zero and less than or equal to 1 [i.e., 0 ~ 
E(Y I x) ~ 1]. This can be seen in Figure 1.2. In addition, the plot shows 
that this mean approaches zero and 1 "gradually." The change in the 
E(Yf x) per unit change in x becomes progressively smaller as the con­
ditional mean gets closer to zero or 1. The curve is said to be S-shaped. 
It resembles a plot of a cumulative distribution of a random variable. It 
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should not seem surprising that some well-known cumulative distribu­
tions have been used to provide a model for E(Y I x) in the case when Y 
is dichotomous. The model we will use is that of the logistic distribu­
tion. 

Many distribution functions have been proposed for use in the 
analysis of a dichotomous outcome variable. Cox and Snell (1989) dis­
cuss some of these. There are two primary reasons for choosing the 
logistic distribution. First, from a mathematical point of view, it is an 
extremely flexible and easily used function, and second, it lends itself to 
a clinically meaningful interpretation. A detailed discussion of the in­
terpretation of the model parameters is given in Chapter 3. 

In order to simplify notation, we use the quantity n-(x) = E(Y I x) to 
represent the conditional mean of Y given x when the logistic distribu­
tion is used. The specific form of the logistic regression model we use 
is: 

(1.1) 

A transformation of n-(x)that is central to our study of logistic regres­
sion is the logit transformation. This transformation is defined, in terms 
ofn-(x), as: 

g(x)=ln[ n(x) ] 
1-n-(x) 

= f3o + fJ1x · 

The importance of this transformation is that g(x) has many of the de­
sirable properties of a linear regression model. The Iogit, g(x), is linear 
in its parameters, may be continuous, and may range from -oo to +oo, 

depending on the range of x. 
The second important difference between the linear and logistic 

regression models concerns the conditional distribution of the outcome 
variable. In the linear regression model we assume that an observation 
of the outcome variable may be expressed as y = E( Y I x) + £. The 
quantity £ is called the error and expresses an observation's deviation 
from the conditional mean. The most common assumption is that £ 

follows a normal distribution with mean zero and some variance that is 
constant across levels of the independent variable. It follows that the 
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conditional distribution of the outcome variable given x will be normal 
with mean E(Y I x), and a variance that is constant. This is not the case 
with a dichotomous outcome variable. In this situation we may express 
the value of the outcome variable given x as y = rr(x)+£. Here the 
quantity £ may assume one of two possible values. If y = 1 then 
£=1-rr(x) with probability rr(x), and if y=O then £=-rr(x) with 
probability 1- rr(x). Thus, £ has a distribution with mean zero and 

variance equal to rr(x)[1-rr(x)]. That is, the conditional distribution of 

the outcome variable follows a binomial distribution with probability 
given by the conditional mean, rr(x). 

In summary, we have seen that in a regression analysis when the 
outcome variable is dichotomous: 

( 1) The conditional mean of the regression equation must be 
formulated to be bounded between zero and 1. We have 
stated that the logistic regression model, rr(x) given in equa­
tion (1.1 ), satisfies this constraint. 

(2) The binomial, not the normal, distribution describes the distri­
bution of the errors and will be the statistical distribution upon 
which the analysis is based. 

(3) The principles that guide an analysis using linear regression 
will also guide us in logistic regression. 

1. 2 FITTING THE LOGISTIC REGRESSION MODEL 

Suppose we have a sample of n independent observations of the pair 
(x;.Y;). i=1,2, ... ,n, where Y; denotes the value of a dichotomous out­
come variable and X; is the value of the independent variable for the i'h 
subject. Furthermore, assume that the outcome variable has been coded 
as 0 or 1, representing the absence or the presence of the characteristic, 
respectively. This coding for a dichotomous outcome is .used through­
out the text. To fit the logistic regression model in equation ( 1.1) to a 
set of data requires that we estimate the values of {30 and {31, the un­
known parameters. 

In linear regression, the method used most often for estimating un­
known parameters is least squares. In that method we choose those val­
ues of {30 and {31 which minimize the sum of squared deviations of the 
observed values of Y from the predicted values based upon the model. 
Under the usual assumptions for linear regression the method of least 
squares yields estimators with a number of desirable statistical proper-
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ties. Unfortunately, when the method of least squares is applied to a 
model with a dichotomous outcome the estimators no longer have these 
same properties. 

The general method of estimation that leads to the least squares 
function under the linear regression model (when the error terms are 
normally distributed) is called maximum likelihood. This method will 
provide the foundation for our approach to estimation with the logistic 
regression model. In a very general sense the method of maximum 
likelihood yields values for the unknown parameters which maximize 
the probability of obtaining the observed set of data. In order to apply · 
this method we must first construct a function, called the likelihood 
function. This function expresses the probability of the observed data 
as a function of the unknown parameters. The maximum likelihood es­
timators of these parameters are chosen to be those values that maximize 
this function. Thus, the resulting estimators are those which agree most 
closely with the observed data. We now describe how to find these val­
ues from the logistic regression model. 

If Y is coded as 0 or 1 then the expression for rr(x) given in equa­

tion (1.1) provides (for an arbitrary value of 13=(,80,,81), the vector of 
parameters) the conditional probability that Y is equal to 1 given x. This 
will be denoted as P(Y = 11 x). It follows that the quantity 1- rr(x) gives 
the conditional probability that Y is equal to zero given x, P(Y = 0 I x). 
Thus, for those pairs (X;, Y;), where Y; = 1, the contribution to the likeli­

hood function is rr( X;), and for those pairs where Y; = 0, the contribu­

tion to the likelihood function is 1-rr(x; ), where the quantity rr(x;) de­
notes the value of ;r(x) computed at X;. A convenient way to express 
the contribution to the likelihood function for the pair (x;, Y;) is 
through the expression 

(1.2) 

Since the observations are assumed to be independent, the likeli­
hood function is obtained as the product of the terms given in expres­
sion (1.2) as follows: 

n 

l(J3) = IJ 7r(xi )Y• ( 1-;r(x;) ty, (1.3) 
i=l 
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The principle of maximum likelihood states that we use as our es­
timate of Ji the value which maximizes the expression in equation (1.3). 
However, it is easier mathematically to work with the log of equation 
(1.3). This expression, the log likelihood, is defined as 

n 

L(l3) = ln[l(l3)) = L {Y; ln[rr(x;)]+(1- Y;)ln[l-rr(x;)]} . (1.4) 
i=l 

To find the value of 13 that maximizes L(l3) we differentiate L(l3) with 

respect to [30 and {31 and set the resulting expressions equal to zero. 
These equations, known as the likelihood equations, are: 

(1.5) 

and 

LX; [ Y; - rr( X;)] = 0. (1.6) 

In equations (1.5) and (1.6) it is understood that the summation is over i 
varying from 1 to n. (The practice of suppressing the index and range 
of summation, when these are clear, is followed throughout the text.) 

In linear regression, the likelihood equations, obtained by differen­
tiating the sum of squared deviations function with respect to f3 are lin­
ear in the unknown parameters and thus are easily solved. For logistic 
regression the expressions in equations (1.5) and (1.6) are nonlinear in 
[30 and {31, and thus require special methods for their solution. These 
methods are iterative in nature and have been programmed into avail­
able logistic regression software. For the moment we need not be con­
cerned about these iterative methods and will view them as a computa­
tional detail taken care of for us. The interested reader may see the text 
by McCullagh and Neider (1989) for a general discussion of the meth­
ods used by most programs. In particular, they show that the solution to 
equations (1.5) and (1.6) may be obtained using an iterative weighted 
least squares procedure. 

The value of 13 given by the solution to equations (1.5) and (1.6) is 

called the maximum likelihood estimate and will be denoted as p. In 
general, the use of the symbol "A" denotes the maximum likelihood 
estimate of the respective quantity. For example, rr(x;) is the maximum 

likelihood estimate of rr(x;). This quantity provides an estimate of the 
conditional probability that Y is equal to 1, given that x is equal to X;. 
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Table 1.3 
Regression 
Variable 

AGE 
Constant 

Results of Fitting 
Model to the Data 
Coeff. Std. Err. 

0.111 0.0241 
-5.309 1.1337 

Log likelihood= -53.67656 

the Logistic 
in Table 1.1 

z P>lzl 

4.61 <0.001 
-4.68 <0.001 

As such, it represents the fitted or predicted value for the logistic regres­
sion model. An interesting consequence of equation (1.5) is that 

That is, the sum of the observed values of y is equal to the sum of the 
predicted (expected) values. This property will be especially useful in 
later chapters when we discuss assessing the fit of the model. 

As an example, consider the data given in Table 1.1. Use of a lo­
gistic regression software package, with continuous variable AGE as the 
independent variable, produces the output in Table 1.3. The maximum 

A 

likelihood estimates of {30 and {31 are thus seen to be {30 == -5.309 and 

[31 = 0.111. The fitted. values are given by the equation 

e-5.309+0.111 xAGE 

rr(x) = ---~...,...,.--...,.--=-=:-1 + e-5.309+0.111xAGE 

and the estimated logit, g(x), is given by the equation 

g(x) == -5.309+0.111 x AGE. 

(1.7) 

(1.8) 

The log likelihood given in Table 1.3 is the value of equation ( 1. 4) 

computed using Po and P1• 

Three additional columns are present in Table 1.3. One contains 
estimates of the standard errors of the estimated coefficients, the next 
column displays the ratios of the estimated coefficients to their esti­
mated standard errors and the last column displays a p-value. These 
quantities are discussed in the next section. 

Following the fitting of the model we begin to evaluate its ade­
quacy. 
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1. 3 TESTING FOR THE SIGNIFICANCE OF 
THE COEFFICIENTS 

11 

In practice, the modeling of a set of data, as we show in Chapters 4, 7, 
and 8, is a much more complex process than one of fitting and testing. 
The methods we present in this section, while simplistic, do provide es­
sential building blocks for the more complex process. 

After estimating the coefficients, our first look at the fitted model 
commonly concerns an assessment of the significance of the variables in 
the model. This usually involves formulation and testing of a statistical 
hypothesis to determine whether the independent variables in the model 
are "significantly" related to the outcome variable. The method for 
performing this test is quite general and differs from one type of model 
to the next only in the specific details. We begin by discussing the gen­
eral approach for a single independent variable. The multivariate case is 
discussed in Chapter 2. 

One approach to testing for the significance of the coefficient of a 
variable in any model relates to the following question. Does the model 
that includes the variable in question tell us more about the outcome (or 
response) variable than a model that does not include that variable? 
This question is answered by comparing the observed values of the re­
sponse variable to those predicted by each of two models; the first with 
and the second without the variable in question. The mathematical 
function used to compare the observed and predicted values depends on 
the particular problem. If the predicted values with the variable in the 
model are better, or more accurate in some sense, than when the variable 
is not in the model, then we feel that the variable in question is "signifi­
cant." It is important to note that we are not considering the question 
of whether the predicted values are an accurate representation of the 
observed values in an absolute sense (this would be called goodness-of­
fit). Instead, our question is posed in a relative sense. The assessment of 
goodness-of-fit is a more complex question which is discussed in detail 
in Chapter 5. 

The general method for assessing significance of variables is easily 
illustrated in the linear regression model, and its use there will motivate 
the approach used for logistic regression. A comparison of the two ap­
proaches will highlight the differences between modeling continuous 
and dichotomous response variables. 

In linear regression, the assessment of the significance of the slope 
coefficient is approached by forming what is referred to as an analysis 
of variance table. This table partitions the total sum of squared devia-
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tions of observations about their mean into two parts: (1) the sum of 
squared deviations of observations about the regression line SSE, (or 
residual sum-of-squares), and (2) the sum of squares of predicted val­
ues, based on the regression model, about the mean of the dependent 
variable SSR, (or due· regression sum-of-squares). This is just a con­
venient way of displaying the comparison of observed to predicted val­
ues under two models. In linear regression, the comparison of observed 
and predicted values is based on the square of the distance between the 
two. If Y; denotes the observed value and Y; denotes the predicted value 
for the i'h individual under the model, then the statistic used to evaluate 
this comparison is 

n 

SSE= L(Y; -9;)
2 

i=l 

Under the model not containing the independent variable in question 
the only parameter is {30 , and fio = y, the mean of the response variable. 
In this case, Y; = y and SSE is equal to the total variance. When we in­
clude the independent variable in the model any decrease in SSE will be 
due to the fact that the slope coefficient for the independent variable is 
not zero. The change in the value of SSE is the due to the regression 
source of variability, denoted SSR. That is, 

In linear regression, interest focuses on the size of SSR. A large value 
suggests that the independent variable is important, whereas a small 
value suggests that the independent variable is not helpful in predicting 
the response. 

The guiding principle with logistic regression is the same: Compare 
observed values of the response variable to predicted values obtained 
from models with and without the variable in question. In logistic re­
gression, comparison of observed to predicted values is based on the log 
likelihood function defined in equation ( 1.4 ). To better understand this 
comparison, it is helpful conceptually to think of an observed value of 
the response variable as also being a predicted value resulting from a 
saturated model. A saturated model is one that contains as many pa­
rameters as there are data points. (A simple example of a saturated 
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model is fitting a linear regression model when there are only two data 
points, n = 2.) 

The comparison of observed to predicted values using the likeli­
hood function is based on the following expression: 

D = _21n[ (likelihood of the fitted model) ] . (1.9) 
(likelihood of the saturated model) 

The quantity inside the large brackets in the expression above is called 
the likelihood ratio. Using minus twice its log is necessary to obtain a 
quantity whose distribution is known and can therefore be used for hy­
pothesis testing purposes. Such a test is called the likelihood ratio test. 
Using equation (1.4), equation (1.9) becomes 

(1.10) 

where fti = it( xi). 
The statistic, D, in equation (1.10) is called the deviance by some 

authors [see, for example, McCullagh and Neider (1983)], and plays a 
central role in some approaches to assessing goodness-of-fit. The devi­
ance for logistic regression plays the same role that the residual sum of 
squares plays in linear regression. In fact, the deviance as shown in 
equation ( 1.1 0), when computed for linear regression, is identically 
equal to the SSE. 

Furthermore, in a setting such as the one shown in Table 1.1, where 
the values of the outcome variable are either 0 or 1, the likelihood of the 
saturated model is 1. Specifically, it follows from the definition of a 
saturated model that fti = Yi and the likelihood is 

n 

/(saturated model)= n y(' X (1- Y; il-y,) = 1. 
i=l 

Thus it follows from equation (1.9) that the deviance is 

D = -2ln(likelihood of the fitted model). (1.11) 

Some software packages, such as SAS, report the value of the deviance 
in (1.11) rather than the log likelihood for the fitted model. We discuss 
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the deviance in more detail in Chapter 5 in the context of evaluating 
model goodness-of-fit. At this stage we want to emphasize that we think 
of the deviance in the same terms that we think of the residual sum of 
squares in linear regression in the context of testing for the significance 
of a fitted model. 

For purposes of assessing the significance of an independent vari­
able we compare the value of D with and without the independent vari­
able in the equation. The change in D due to the inclusion of the inde­
pendent variable in the model is obtained as: 

G = D( model without the variable)- D( model with the variable). 

This statistic plays the same role in logistic regression as the numerator 
of the partial F test does in linear regression. Because the likelihood of 
the saturated model is common to both values of D being differenced to 
compute G, it can be expressed as 

G = _21n[(likelihood without the variable)] . 
(likelihood with the variable) 

(1.12) 

For the specific case of a single independent variable, it is easy to 
show that when the variable is not in the model, the maximum likeli­
hood estimate of {30 is ln(ndn0 ) where n1 =I.Y; and n0 =:2.(1-y;) and 
the predicted value is constant, nd n. In this case, the value of G is: 

(1.13) 

or 

G = z{ ~[y, ln(it1) + (1- y1) ln(l- it,) j-[ n1 ln(n1) + n, ln(n,)- nln(n )j}. 
(1.14) 

Under the hypothesis that {31 is equal to zero, the statistic G follows 
a chi-square distribution with 1 degree of freedom. Additional mathe­
matical assumptions are also needed; however, for the above case they 
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are rather nonrestrictive and involve having a sufficiently large sample 
size, n. 

As an example, we consider the model fit to the data in Table 1.1, 
whose estimated coefficients and log likelihood are given in Table 1. 3. 
For these data, n1 = 43 and n0 = 57 ; thus, evaluating G as shown in 
equation ( 1.14) yields 

G=2{-53.677-[43ln(43)+57ln(57)-100 ln(100)J} 

= 2(-53.677- (-68.331)] = 29.31. 

The first term in this expression is the log likelihood from the model 
containing AGE (see Table 1.3), and the remainder of the expression 
simply substitutes n1 and n0 into the second part of equation ( 1.14). 
We use the symbol x2(v) to denote a chi-square random variable with 
v degrees-of-freedom. Using this notation, the p-value associated with 
this test is P[x2(1)>29.31]<0.001; thus, we have convincing evidence 

that AGE is a significant variable in predicting CHD. This is merely a 
statement of the statistical evidence for this variable. Other important 
factors to consider before concluding that the variable is clinically im­
portant would include the appropriateness of the fitted model, as well as 
inclusion of other potentially important variables. 

The calculation of the log likelihood and the likelihood ratio test 
are standard features of all logistic regression software. This makes it 
easy to check for the significance of the addition of new terms to the 
model. In the simple case of a single independent variable, we first fit a 
model containing only the constant term. We then fit a model contain­
ing the independent variable along with the constant. This gives rise to 
a new log likelihood. The likelihood ratio test is obtained by multiply­
ing the difference between these two values by -2. 

In the current example, the log likelihood for the model containing 
only a constant term is -68.331. Fitting a model containing the inde­

pendent variable (AGE) along with the constant term results in the log 
likelihood shown in Table 1.3 of -53.677. Multiplying the difference 

in these log likelihoods by -2 gives 

-2 X [-68.331- ( -53.677)] = -2 X (-14.655) = 29.31. 
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This result, along with the associated p-value for the chi-square distribu­
tion, may be obtained from most software packages. 

Two other similar, statistically equivalent tests have been suggested. 
These are the Wald test and the Score test. The assumptions needed for 
these tests are the same as those of the likelihood ratio test in equation 
(1.13). A more complete discussion of these tests and their assumptions 
may be found in Rao (1973). 

The Wald test is obtained by comparing the maximum likelihood 
estimate of the slope parameter, fi,, to an estimate of its standard error. 
The resulting ratio, under the hypothesis that /31 = 0, will follow a stan­
dard normal distribution. While we have not yet formally discussed how 
the estimates of the standard errors of the estimated parameters are ob­
tained, they are routinely printed out by computer software. For exam­
ple, the Wald test for the logistic regression model in Table 1.3 is pro­
vided in the column headed z and is 

A 

W= ,.../31
A = 0•

111 
=4.61 

· sE(/3,) o.024 

and the two tailed p-value, provided in the last column of Table 1.3, is 
P(lzl > 4.61), where z denotes a random variable following the standard 
normal distribution. Hauck and Donner (1977) examined the perform­
ance of the Wald test and found that it behaved in an aberrant manner, 
often failing to reject the null hypothesis when the coefficient was sig­
nificant. They recommended that the likelihood ratio test be used. 

Jennings (1986a) has also looked at the adequacy of inferences in 
logistic regression based on Wald statistics. His conclusions are similar 
to those of Hauck and Donner. Both the likelihood ratio test, G, and the 
Wald test, W, require the computation of the maximum likelihood esti­
mate for /31 • 

A test for the significance of a variable which does not require 
these computations is the Score test. Proponents of the Score test cite 
this reduced computational effort as its major advantage. Use of the test 
is limited by the fact that it cannot be obtained from some software 
packages. The Score test is based on the distribution theory of the de­
rivatives of the log likelihood. In general, this is a multivariate test re­
quiring matrix calculations which are discussed in Chapter 2. · 

In the univariate case, this test is based on the conditional distribu­
tion of the derivative in equation (1.6), given the derivative in equation 
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(1.5). In this case, we can write down an expression for the Score test. 
The test uses the value of equation (1.6), computed using 
/30 = ln( n1 I n0 ) and /31 = 0. As noted earlier, under these parameter val­

ues, ic = n1 fn = y. Thus, the left-hand side of equation ( 1.6) becomes 

L.x;(Y;- y). It may be shown that the estimated variance is 

y(l- y)I, (X; - .xf . The test statistic for the Score test (ST) is 

ST=IF~i=~l======~ 
n 

y(l-'Y)L(x;-.xf 
i=l 

As an example of the Score test, consider the model fit to the data 
in Table 1.1. The value of the test statistic for this example is 

ST = 296.66 = 5.14 
.J3333.742 

and the two tailed p-value is P(lzl>5.14)<0.001. We note that, for this 

example, the values of the three test statistics are nearly the same (note: 
.JG = 5.41). 

In summary, the method for testing the significance of the coeffi­
cient of a variable in logistic regression is similar to the approach used 
in linear regression; however, it uses the likelihood function for a di­
chotomous outcome variable. 

1. 4 CONFIDENCE INTERVAL ESTIMATION 

An important adjunct to testing for significance of the model, discussed 
in Section 1.3, is calculation and interpretation of confidence intervals 
for parameters of interest. As is the case in linear regression we can 
obtain these for the slope, intercept and the "line", (i.e., the logit). In 
some settings it may be of interest to provide interval estimates for the 
fitted values (i.e., the predicted probabilities). 

The basis for construction of the interval estimators is the same sta­
tistical theory we used to formulate the tests for significance of the 
model. In particular, the confidence interval estimators for the slope 
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and intercept are based on their respective Wald tests. The endpoints of 
a 100(1- a)% confidence interval for the slope coefficient are 

(1.15) 

and for the intercept they are 

( 1.16) 

where z1_a12 is the upper 100(1- af2)% point from the standard normal 
A 

distribution and SE(·) denotes a model-based estimator of the standard 
error of the respective parameter estimator. We defer discussion of the 
actual formula used for calculating the estimators of the standard errors 
to Chapter 2. For the moment we use the fact that estimated values are 
provided in the output following the fit of a model and, in addition, 
many packages also provide the endpoints of the interval estimates. 

As an example, consider the model fit to the data in Table 1.1 re­
gressing age on the presence or absence of CHD. The results are pre­
sented in Table 1.3. The endpoints of a 95 percent confidence interval 
for the slope coefficient from (1.15) are 0.111 ± 1.96 x 0.0241, yielding 
the interval (0.064, 0.158). We defer a detailed discussion of the inter­
pretation of these results to Chapter 3. Briefly, the results suggest that 
the change in the log-odds of CHD per one year increase in age is 
0.111 and the change could be as little as 0.064 or as much as 0.15 8 
with 95 percent confidence. 

As is the case with any regression model, the constant term provides 
an estimate of the response in the absence of x unless the independent 
variable has been centered at some clinically meaningful value. In our 
example, the constant provides an estimate of the log-odds ratio of CHD 
at zero years of age. As a result, the constant term, by itself, has no use­
ful clinical interpretation. In any event, from expression ( 1.16), the 
endpoints of a 95 percent confidence interval for the constant are 
-5.309 ± 1.96 x 1.1337, yielding the interval ( -7.531, - 3.087). The 
constant is important when considering point and interval estimators of 
the logit. 

The logit is the linear part of the logistic regression model and, as 
such, is most like the fitted line in a linear regression model. The esti­
mator of the logit is 
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(1.17) 

The estimator of the variance of the estimator of the logit requires ob­
taining the variance of a sum. In this case it is 

( 1.18) 

In general the variance of a sum is equal to the sum of the variance of 
each term and twice the covariance of each possible pair of terms 
formed from the components of sum. The endpoints of a 100(1- a)% 
Wald-based confidence interval for the logit are 

g(x)± z1_a12SE[g(x)], (1.19) 

where SE[g(x)] is the positive square root of the variance estimator in 
(1.18). 

The estimated logit for the fitted model in Table 1.3 is shown in 
(1.8). In order to evaluate ( 1.18) for a specific age we need the esti­
mated covariance matrix. This matrix can be obtained from the output 
from all logistic regression software packages. How it is displayed var­
ies from package to package, but the triangular form shown in Table 
1.4 is a common one. 

The estimated logit from ( 1.8) for a subject of age 50 is 

g(50) = -5.31 + 0.111 X 50= 0.240. 

The estimated variance, using (1.18) and the results in Table 1.4, is 

V~r(g(50)] = 1.28517 + (50)2 x0.000579 +2 x 50 x (-0.026677) = 0.0650 

A 

and the estimated standard error is SE[g(50)]=0.2549. Thus the end 
points of a 95 percent confidence interval for the logit at age 50 are 
0.240±1.96x0.2550=(-0.260, 0.740). We discuss the interpretation 
and use of the estimated logit in providing estimates of odds ratios in 
Chapter 3. 

The estimator of the logit and its confidence interval provide the 
basis for the estimator of the fitted value, in this case the logistic prob­
ability, and its associated confidence interval. In particular, using ( 1.7) 
at age 50 the estimated logistic probability is 
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Table 1.4 Estimated Covariance Matrix of the 
Estimated Coefficients in Table 1.3 

AGE Constant 
AGE 

Constant 
0.000579 

-0.026677 1.28517 

• A eg(SO) e-5.31+0.111 xso 

n(50)= 1+eg(50) = l+e-5.31+0.111x50 =0.560 (1.20) 

and the endpoints of a 95 percent confidence interval are obtained from 
the respective endpoints of the confidence interval for the logit. The 
endpoints of the 100(1- a)% Wald-based confidence interval for the 
fitted value are 

( 1.21) 

Using the example at age 50 to demonstrate the calculations, the lower 
limit is 

and the upper limit is 

e-0.160 

-0260 = 0.435, 
I +e · 

e0.740 

I + e0.740 = 0.677. 

We have found that a major mistake often made by persons new to 
logistic regression modeling is to try and apply estimates on the prob­
ability scale to individual subjects. The fitted value computed in (1.20) 
is analogous to a particular point on the line obtained from a linear re­
gression. In linear regression each point on the fitted line provides an 
estimate of the mean of the dependent variable in a population of sub­
jects with covariate value "x ". Thus the value of 0.56 in ( 1.20) is an 
estimate of the mean (i.e., proportion) of 50 year old subjects in the 
population sampled that have evidence of CHD. Each individual 50 
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year old subject either does or does not have evidence of CHD. The 
confidence interval suggests that this mean could be between 0.435 and 
0.677 with 95 percent confidence. We discuss the use and interpretation 
of fitted values in greater detail in Chapter 3. 

One application of fitted logistic regression models that has re­
ceived a lot of attention in the subject matter literature is the use of 
model-based fitted values like the one in (1.20) to predict the value of a 
binary dependent value in individual subjects. This process is called 
classification and has a long history in statistics where it is referred to as 
discriminant analysis. We discuss the classification problem in detail in 
Chapter 4. We discuss discriminant analysis within the context of a 
method for obtaining estimators of the coefficients in the next section. 

1. 5 OTHER METHODS OF ESTIMATION 

The method of maximum likelihood described in Section 1.2 is the es­
timation method used in the logistic regression routines of the major 
software packages. However, two other methods have been and may still 
be used for estimating the coefficients. These methods are: (1) nonit­
erative weighted least squares, and (2) discriminant function analysis. 

A linear models approach to the analysis of categorical data was 
proposed by Grizzle, Starmer, and Koch (1969), which uses estimators 
based on noniterative weighted least squares. They demonstrate that the 
logistic regression model is an example of a general class of models that 
can be handled with their methods. We should add that the maximum 
likelihood estimators are usually calculated using an iterative reweighted 
least squares algorithm, and thus are also "least squares" estimators. 
The approach suggested by Grizzle et al. uses only one iteration in the 
process. 

A major limitation of this method is that we must have an estimate 
of n-(x) which is not zero or 1 for most values of x. An example where 
we could use both maximum likelihood and noniterative weighted least 
squares is the data in Table 1.2. In cases such as this, the two methods 
are asymptotically equivalent, meaning that as n gets large, the distribu­
tional properties of the estimators become identical. 

The discriminant function approach to estimation of the coeffi­
cients is of historical importance as it was popularized by Cornfield 
(1962) in some of the earliest work on logistic regression. These esti­
mators take their name from the fact that the posterior probability in the 
usual discriminant function model is the logistic regression function 
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given in equation (1.1). More precisely, if the independent variable, X, 
follows a normal distribution within each of two groups (subpopula­
tions) defined by the two values of y having different means and the 
same variance, then the conditional distribution of Y given X= x is the 
logistic regression model. That is, if 

then P(Y = 11 x) = n(x). The symbol "-" is read "is distributed" and 

the " N(JL,a2
)" denotes the normal distribution with mean equal to J.l 

and variance equal to a 2
• Under these assumptions it is easy to show 

[Lachenbruch (1975)] that the logistic coefficients are 

(I .22) 

and 

(1.23) 

where ()i = P(Y = j), j = 0, 1. The discriminant function estimators of 

{30 and /31 are found by substituting estimators for Jli• ()i' j = 0, I and 

a 2 into the above equations. The estimators usually used are jlj =xi' 
the mean of x in the subgroup defined by y = j, j = 0, 1, 01 = n1 In the 

mean of y with 80 = 1-01 and 

&2 = [ (no - 1 )s6 + ( n1 - 1 )s~ ]/ ( n0 + n1 - 2), 

where sJ is the unbiased estimator of a2 computed within the subgroup 

of the data defined by y = j, j = 0, 1. The above expressions are for a 
single variable x; the multivariable case is presented in Chapter 2. 

It is natural to ask why, if the discriminant function estimators are 
so easy to compute, are they not used in place of the maximum likeli­
hood estimators? Halpern, Blackwelder, and Verter (1971) and Hosmer, 
Hosmer, and Fisher (1983) have compared the two methods when the 
model contains a mixture of continuous and discrete variables, with the 
general conclusion that the discriminant function estimators are sensitive 
to the assumption of normality. In particular, the estimators of the coef-
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ficients for nonnorrnally distributed variables are biased away from zero 
when the coefficient is, in fact, different from zero. The practical impli­
cation of this is that for dichotomous independent variables (which oc­
cur in many situations), the discriminant function estimators will overes­
timate the magnitude of the coefficient. 

At this point it may be helpful to delineate more carefully the vari­
ous uses of the term "maximum likelihood," as it applies to the estima­
tion of the logistic regression coefficients. Under the assumptions of 
the discriminant function model stated above, the estimators obtained 
from equations (1.22) and (1.15) are maximum likelihood estimators. 
Those obtained from equations ( 1.5) and (1.6) are based on the condi­
tional distribution of Y given X and, as such, are actually "conditional 
maximum likelihood estimators." Because discriminant function esti­
mators are rarely used anymore, the word conditional has been dropped 
when describing the estimators given in equations ( 1.5) and ( 1.6). We 
use the word conditional to describe estimators in logistic regression 
with matched data as discussed in Chapter 7. 

In summary there are alternative methods of estimation for some 
data configurations that are computationally quicker; however, we use 
the method of maximum likelihood described in Section 1.2 through­
out the rest of this text. 

1.6 DATA SETS 

A number of different data sets are used in the examples as well as the 
exercises for the purpose of demonstrating various aspects of logistic 
regression modeling. Four data sets used throughout the text are de­
scribed below. Other data sets will be introduced as needed in later 
chapters. All data sets used in this text may be obtained from the text 
web sites at John Wiley & Sons Inc. and the University of Massachusetts 
as described in the Preface. 

1.6.1 The ICU Study 

The ICU study data set consists of a sample of 200 subjects who were 
part of a much larger study on survival of patients following admission 
to an adult intensive care unit (ICU). The major goal of this study was 
to develop a logistic regression model to predict the probability of sur-
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Table 1.5 Code Sheet for the ICU Data 
Variable DescriEtion CodesN a lues Name 

1 Identification Code IDNumber ID 
2 Vital Status 0 =Lived STA 

1 =Died 
3 Age Years AGE 
4 Sex O=Male SEX 

1 =Female 
5 Race 1 =White RACE 

2= Black 
3 =Other 

6 Service at ICU Admission O=Medical SER 
1 =Surgical 

7 Cancer Part of Present Problem O=No CAN 
1 =Yes 

8 History of Chronic Renal Failure O=No CRN 
I= Yes 

9 Infection Probable at ICU Ad- O=No INF 
mission I =Yes 

10 CPR Prior to ICU Admission O=No CPR 
I= Yes 

11 Systolic Blood Pressure at ICU mmHg SYS 
Admission 

12 Heart Rate at ICU Admission Beats/min HRA 
13 Previous Admission to an ICU O=No PRE 

Within 6 Months 1 =Yes 
14 Type of Admission 0 =Elective TYP 

I = Emergency 
15 Long Bone, Multiple, Neck, O=No FRA 

Single Area, or Hip Fracture 1 =Yes 
16 P02 from Initial Blood Gases 0= >60 P02 

1 = $60 
17 PH from Initial Blood Gases 0 = ~ 7.25 PH 

1 = < 7.25 
18 PC02 from Initial Blood Gases 0 = $45 PCO 

1 = >45 
19 Bicarbonate from Initial Blood 0= ~ 18 BIC 

Gases 1 = < 18 
20 Creatinine from Initial Blood 0 = $2.0 CRE 

Gases I= >2.0 
21 Level of Consciousness at ICU 0= No Coma or LOC 

Admission Deep Stupor 
I = Deep Stupor 
2 =Coma 
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vival to hospital discharge of these patients. A number of publications 
have appeared which have focused on various facets of this problem. 
The reader wishing to learn more about the clinical aspects of this study 
should start with Lemeshow, Teres, A vrunin, and Pastides (1988). For a 
more up-to-date discussion of modeling the outcome of ICU patients 
the reader is referred to Lemeshow and Le Gall ( 1994) and to Le­
meshow, Teres, Klar, Avrunin, Gehlbach and Rapoport (1993). Actual 
observed variable values have been modified to protect subject confi­
dentiality. 

A code sheet for the variables to be considered in this text is given 
in Table 1.5. 

1.6.2 The Low Birth Weight Study 

Low birth weight, defined as birth weight less than 2500 grams, is an 
outcome that has been of concern to physicians for years. This is due 
to the fact that infant mortality rates and birth defect rates are very high 
for low birth weight babies. A woman's behavior during pregnancy 
(including diet, smoking habits, and receiving prenatal care) can greatly 
alter the chances of carrying the baby to term and, consequently, of de­
livering a baby of normal birth weight. 

Data were collected as part of a larger study at Baystate Medical 
Center in Springfield, Massachusetts. This data set contains information 
on 189 births to women seen in the obstetrics clinic. Fifty-nine of these 
births were low birth weight. The variables identified in the code sheet 
given in Table 1.6 have been shown to be associated with low birth 
weight in the obstetrical literature. The goal of the current study was to 
determine whether these variables were risk factors in the clinic popula­
tion being served by Baystate Medical Center. Actual observed variable 
values have been modified to protect subject confidentiality. 

1.6.3 The Prostate Cancer Study 

A third data set involves a study of patients with cancer of the prostate. 
These data have been provided to us by Dr. Donn Young at The Ohio 
State University Comprehensive Cancer Center. The goal of the analysis 
is to determine whether variables measured at a baseline exam can be 
used to predict whether the tumor has penetrated the prostatic capsule. 
The data presented are a subset of variables from the main study. Of 
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Table 1.6 Code Sheet for the Variables in the Low Birth 
Weight Data 
Variable DescriEtion CodesNalues Name 

I Identification Code IDNumber ID 
2 Low Birth Weight 0 = ~ 2500 g LOW 

I=< 2500 g 

3 Age of Mother Years AGE 
4 Weight of Mother at Last Pounds LWT 

Menstrual Period 
5 Race I= White RACE 

2 =Black 
3 =Other 

6 Smoking Status During O=No SMOKE 
Pregnancy I =Yes 

7 History of Premature Labor 0= None PTL 
I =One 
2 =Two, etc. 

8 History of Hypertension O=No IIT 
I =Yes 

9 Presence of Uterine Irritability O=No UI 
I =Yes 

10 Number of Physician Visits 0= None FTV 
During the First Trimester I =One 

2 =Two, etc. 
II Birth Weight Grams BWT 

the 380 subjects considered here, 153 had a cancer that penetrated the 
prostatic capsule. Actual observed variable values have been modified 
to protect subject confidentiality. These data will be used primarily for 
exercises. A code sheet for the variables to be considered in this text is 
shown in Table 1. 7. 

1.6.4 The UMARU IMPACT Study 

Our colleagues, Drs. Jane McCusker, Carol Bigelow, and Anne Stoddard, 
have provided us with a subset of data from the University of Massachu­
setts Aids Research Unit (UMARU) IMPACT Study (UIS). This was a 
5-year (1989-1994) collaborative research project (Benjamin F. Lewis, 
P.l., National Institute on Drug Abuse Grant #R18-DA06151) com-
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Table 1.7 Code Sheet for the Prostate Cancer Stud~ 
Variable Descrif!tion CodesN alues Name 

I Identification Code I - 380 ID 
2 Tumor Penetration of 0 = No Penetration CAPSULE 

Prostatic Capsule I = Penetration 
3 Age Years AGE 
4 Race I= White RACE 

2= Black 
5 Results of the Digital I= No Nodule DPROS 

Rectal Exam 2 = Unilobar Nodule 
(Left) 

3 = Unilobar Nodule 
(Right) 

4 = Bilobar Nodule 
6 Detection of Capsular I =No DCAPS 

Involvement in Rectal 2 =Yes 
Exam 

7 Prostatic Specific Antigen mg/ml PSA 
Value 

8 Tumor Volume Obtained cm3 VOL 
from Ultrasound 

9 Total Gleason Score 0-10 GLEASON 

prised of two concurrent randomized trials of residential treatment for 
drug abuse. The purpose of the study was to compare treatment pro­
grams of different planned durations designed to reduce drug abuse 
and to prevent high-risk HIV behavior. The UIS sought to determine 
whether alternative residential treatment approaches are variable in ef­
fectiveness and whether efficacy depends on planned program duration. 

We refer to the two treatment program sites as A and B in this text. 
The trial at site A randomized 444 participants and was a comparison of 
3- and 6-month modified therapeutic communities which incorporated 
elements of health education and relapse prevention. Clients in the re­
lapse prevention/health education program (site A) were taught to rec­
ognize "high-risk" situations that are triggers to relapse and were 
taught the skills to enable them to cope with these situations without us­
ing drugs. In the trial at site B, 184 clients were randomized to receive 
either a 6- or 12-month therapeutic community program involving a 
highly structured life-style in a communal living setting. Our col­
leagues have published a number of papers reporting the results of this 
study, see McCusker et. al. (1995, 1997a, 1997b). 
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Table 1.8 Description of Variables in the UMARU 
IMPACT Studi 
Variable Descri12tion Codes/Values Name 

I Identification Code I-575 ID 
2 Age at Enrollment Years AGE 
3 Beck Depression Score at 0.000-54.000 BECK 

Admission 
4 IV Drug Use History at I= Never IVHX 

Admission 2 =Previous 
3 =Recent 

5 Number of Prior Drug 0-40 NDRUGTX 
Treatments 

6 Subject's Race O=White RACE 
I= Other 

7 Treatment Randomization 0 =Short TREAT 
Assignment I= Long 

8 Treatment Site O=A SITE 
I=B 

9 Returned to Drug Use Prior I = Remained Drug DFREE 
to the Scheduled End of the Free 
Treatment Program 0 = Otherwise 

As is shown in the coming chapters, the data from the UIS provide 
a rich setting for illustrating methods for logistic regression modeling. 
The data presented here are a subset of both variables and subjects of 
the data used to demonstrate methods for survival analysis in Hosmer 
and Lemeshow (1999). The small subset of variables from the main 
study we use in this text is described in Table 1.8. Since the analyses we 
report in this text are based on this small subset of variables and sub­
jects, the results reported here should not be thought of as being in any 
way comparable to results of the main study. In addition we have taken 
the liberty in this text of simplifying the study design by representing 
the planned duration as short versus long. Thus, short versus long rep­
resents 3 months versus 6 months planned duration at site A, and 6 
months versus 12 months planned duration at site B. The dichotomous 
outcome variable considered in this text is defined as having returned to 
drug use prior to the scheduled completion of the treatment program. 
The original data have been modified in such a way as to preserve sub­
ject confidentiality. 
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EXERCISES 

1. In the ICU data described in Section 1.6.1 the primary outcome vari­
able is vital status at hospital discharge, STA. Clinicians associated 
with the study felt that a key determinant of survival was the patient's 
age at admission, AGE. 

(a) Write down the equation for the logistic regression model of 
STA on AGE. Write down the equation for the logit transfor­
mation of this logistic regression model. What characteristic of 
the outcome variable, STA, leads us to consider the logistic re­
gression model as opposed to the usual linear regression model 
to describe the relationship between STA and AGE? 

(b) Form a scatterplot of STA versus AGE. 
(c) Using the intervals [15, 24], [25, 34], [35, 44], [45, 54], [55, 64], 

[65, 74], [75, 84], [85, 94] for AGE, compute the STA mean 
over subjects within each AGE interval. Plot these values of 
mean STA versus the midpoint of the AGE interval using the 
same set of axes as was used in Exercise 1 (b). 

(d) Write down an expression for the likelihood and log likelihood 
for the logistic regression model in Exercise 1 (a) using the un­
grouped, n = 200, data. Obtain expressions for the two likeli­
hood equations. 

(e) Using a logistic regression package of your choice obtain the 
maximum likelihood estimates of the parameters of the logistic 
regression model in Exercise l(a). These estimates should be 
based on the ungrouped, n = 200, data. Using these estimates, 
write down the equation for the fitted values, that is, the esti­
mated logistic probabilities. Plot the equation for the fitted val­
ues on the axes used in the scatterplots in Exercises 1 (b) and 
1 (c). 

(f) Summarize (describe in words) the results presented in the plot 
obtained from Exercises l(b), 1(c), and l(e). 

(g) Using the results of the output from the logistic regression pack­
age used for Exercise 1 (e), assess the significance of the slope 
coefficient for AGE using the likelihood ratio test, the Wald test, 
and, if possible, the Score test. What assumptions are needed for 
the p-values computed for each of these tests to be valid? Are 
the results of these tests consistent with one another? What is the 
value of the deviance for the fitted model? 
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(h) Using the results from Exercise l(e) compute 95 percent confi­
dence intervals for the slope and constant term. Write a sentence 
interpreting the confidence interval for the slope. 

(i) Obtain the estimated covariance matrix for the model fit in Ex­
ercise 1 (e). Compute the logit and estimated logistic probability 
for a 60-year old subject. Compute a 95 percent confidence in­
tervals for the logit and estimated logistic probability. Write a 
sentence or two interpreting the estimated probability and its 
confidence interval. 

(j) Use the logistic regression package to obtain the estimated logit 
and its standard error for each subject in the ICU study. Graph 
the estimated logit and the pointwise 95 percent confidence lim­
its versus AGE for each subject. Explain (in words) the simi­
larities and differences between the appearance of this graph 
and a graph of a fitted linear regression model and its pointwise 
95 percent confidence bands. 

2. Use the ICU Study and repeat Exercises 1(a), l(b), l(d), 1(e) and 
1 (g) using the variable "type of admission," TYP, as the covariate. 

3. In the Low Birth Weight Study described in Section 1.6.2, one vari­
able that physicians felt was important to control for was the weight 
of the mother at the last menstrual period, LWT. Repeat steps (a) -
(g) of Exercise 1, but for Exercise 3(c) use intervals [80, 99], [100, 
109], [110, 114], [115, 119], [120, 124], [125, 129], [130, 250]. 
(h) The graph in Exercises 3( c) does not look "S-Shaped". The 

primary reason is that the range of plotted values is from ap­
proximately 0.2 to 0.56. Explain why a model for the prob­
ability of low birth weight as a function of L WT could still be 
the logistic regression model. 

4. In the Prostate Cancer Study described in Section 1.6.3, one variable 
thought to be particularly predictive of capsule penetration is the 
prostate specific antigen level, PSA. Repeat steps (a) - (g) and (j) of 
Exercise 1 using CAPSULE as the outcome variable and PSA as the 
covariate. For Exercises 4(c) use intervals for PSA of [0, 2.4], [2.5, 
4.4], [4.5, 6.4], [6.5, 8.4], [8.5, 10.4], [10.5, 12.4], [12.5, 20.4], 
[20.5, 140]. 



CHAPTER 2 

Multiple Logistic Regression 

2.1 INTRODUCTION 

In the previous chapter we introduced the logistic regression model in 
the univariate context. As in the case of linear regression, the strength 
of a modeling technique lies in its ability to model many variables, some 
of which may be on different measurement scales. In this chapter we 
will generalize the logistic model to the case of more than one inde­
pendent variable. This will be referred to as the "multi variable case." 
Central to the consideration of multiple logistic models will be estima­
tion of the coefficients in the model and testing for their significance. 
This will follow along the same lines as the univariate model. An addi­
tional modeling consideration which will be introduced in this chapter is 
the use of design variables for modeling discrete, nominal scale inde­
pendent variables. In all cases it will be assumed that there is a prede­
termined collection of variables to be examined. The question of vari­
able selection is dealt with in Chapter 4. 

2.2 THE MULTIPLE LOGISTIC REGRESSION MODEL 

Consider a collection of p independent variables denoted by the vector 

x'=(x1,x2 , ... ,xp)· For the moment we will assume that each of these 

variables is at least interval scale. Let the conditional probability that the 
outcome is present be denoted by P(Y =II x) = 7l'(x). The logit of the 
multiple logistic regression model is given by the equation 

(2.1) 

in which case the logistic regression model is 

31 
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eg(x) 
n(x)--__,....,.. 

-I+ eg(x) 
(2.2) 

If some of the independent variables are discrete, nominal scale 
variables such as race, sex, treatment group, and so forth, it is inappro­
priate to include them in the model as if they were interval scale vari­
ables. The numbers used to represent the various levels of these nomi­
nal scale variables are merely identifiers, and have no numeric signifi­
cance. In this situation the method of choice is to use a collection of 
design variables (or dummy variables). Suppose, for example, that one 
of the independent variables is race, which has been coded as "white," 
"black" and "other." In this case, two design variables are necessary. 
One possible coding strategy is that when the respondent is "white," the 
two design variables, D1 and D2, would both be set equal to zero; when 
the respondent is "black," D1 would be set equal to 1 while D2 would 
still equal 0; when the race of the respondent is "other," we would use 
D 1 = 0 and D2 = 1. Table 2.1 illustrates this coding of the design vari-
ables. 

Most logistic regression software will generate design variables, and 
some programs have a choice of several different methods. The differ­
ent strategies for creation and interpretation of design variables are dis­
cussed in detail in Chapter 3. 

In general, if a nominal scaled variable has k possible values, then 
k -1 design variables will be needed. This is true since, unless stated 
otherwise, all of our models have a constant term. To illustrate the no­
tation used for design variables in this text, suppose that the fh inde­
pendent variable xj has kj levels. The kj -1 design variables will be 
denoted as Dj1 and the coefficients for these design variables will be 

denoted as f3j1,l = 1,2, ... ,kj -1. Thus, the logit for a model with p vari-

Table 2.1 An Example of the Coding of the Design 
Variables for Race, Coded at Three Levels 

Design Variable 

RACE DI Dz 

White 0 0 
Black I 0 
Other 0 I 
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abies and the r variable being discrete would be 

k}-l 

g(x) = {30 + {31x1 + · · · + L f3j/D11 + f3PxP. 
1=1 

When discussing the multiple logistic regression model we will, in gen­
eral, suppress the summation and double subscripting needed to indicate 
when design variables are being used. The exception to this will be the 
discussion of modeling strategies when we need to use the specific value 
of the coefficients for any design variables in the model. 

2.3 FITTING THE MULTIPLE LOGISTIC 
REGRESSION MODEL 

Assume that we have a sample of n independent observations 
(x;,Y;). i=I,2, ... ,n. As in the univariate case, fitting the model requires 

that we obtain estimates of the vector W = (f3o, {3" ... , f3P). The method 

of estimation used in the multi variable case will be the same as in the 
univariate situation - maximum likelihood. The likelihood function is 
nearly identical to that given in equation (1.3) with the only change 
being that n-(x) is now defined as in equation (2.2). There will be p+ 1 
likelihood equations that are obtained by differentiating the log likeli­
hood function with respect to the p + 1 coefficients. The likelihood 
equations that result may be expressed as follows: 

II 

L[Y; -n-(x;)]=O 
i=l 

and 

n 

L..xij[Y; -n-(x;)]=O 
i=l 

for j = 1,2, ... ,p. 
As in the univariate model, the solution of the likelihood equations 

requires special software that is available in most, if not all, statistical 
packages. Let ~ denote the solution to these equations. Thus, the fitted 



34 MULTIPLE LOGISTIC REGRESSION 

values for the multiple logistic regression model are ft( X;), the value of 

the expression in equation (2.2) computed using p, and X;. 

In the previous chapter only a brief mention was made of the 
method for estimating the standard errors of the estimated coefficients. 
Now that the logistic regression model has been generalized both in 
concept and notation to the multivariable case, we consider estimation of 
standard errors in more detail. 

The method of estimating the variances and covariances of the es­
timated coefficients follows from well-developed theory of maximum 
likelihood estimation [see, for example, Rao (1973)]. This theory states 
that the estimators are obtained from the matrix of second partial de­
rivatives of the log likelihood function. These partial derivatives have 
the following general form 

(2.3) 

and 

(2.4) 

for j, l=0,1,2, ... ,p where rc; denotes rc(x;). Let the (p+1)x(p+1) 
matrix containing the negative of the terms given in equations (2.3) and 
(2.4) be denoted as I(P). This matrix is called the observed information 

matrix. The variances and covariances of the estimated coefficients are 
obtained from the inverse of this matrix which we denote as 
Var(P)=1-1(P). Except in very special cases it is not possible to write 

down an explicit expression for the elements in this matrix. Hence, we 

will use the notation Var(f3j) to denote the l diagonal element of this 

matrix, which is the variance of jjj, and Cov(f3j,f3t) to denote an arbi­

trary off-diagonal element, which is the covariance of jjj and [31• The 

estimators of the variances and covariances, which will be denoted by 

V~r(P). are obtained by evaluating Var(P) at p. We will use V~r(jjj) 

and Cov(jjj,jj1), j,l=O, 1, 2, ... , p to denote the values in this matrix. 



FITIING THE MULTIPLE LOGISTIC REGRESSION MODEL 35 

For the most part, we will have occasion to use only the estimated stan­
dard errors of the estimated coefficients, which we will denote as 

A ( ~ ) [ A ( ~ )](/2 SE f3j = Var f3j (2.5) 

for j = 0, 1, 2, ... , p. We will use this notation in developing methods 
for coefficient testing and confidence interval estimation. 

A formulation of the information matrix which will be useful when 

discussing model fitting and assessment of fit is i(P) = X'V,X where X is 

an n by p + 1 matrix containing the data for each subject, and V is an n 

by n diagonal matrix with general element n';(1- fc;). That is, the rna-

trix X is 

1 

1 
X= 

1 

and the matrix V is 

ftl (1- ftt) 
0 

V= 

0 

XII xl2 

X21 X22 

xnl xn2 

0 

ft2 (1- ft2) 
0 

0 

0 

0 

Before proceeding further we present an example that illustrates the 
formulation of a multiple logistic regression model and the estimation 
of its coefficients using a subset of the variables from the data for the 
low birth weight study described in Section 1.6.2. The code sheet for 
the full data set is given in Table 1.6. As discussed in Section 1.6.2, the 
goal of this study was to identify risk factors associated with giving birth 
to a low birth weight baby (weighing less than 2500 grams). Data were 
collected on 189 women, n1 =59 of whom had low birth weight babies 
and n0 = 130 of whom had normal birth weight babies. Four variables 
thought to be of importance were age, weight of the mother at her last 
menstrual period, race, and number of physician visits during the first 
trimester of the pregnancy. In this example, the variable race has been 
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Table 2.2 Estimated Coefficients for a Multiple Logistic 
Regression Model Using the Variables AGE, Weight at Last 
Menstrual Period (LWT), RACE, and Number of First 
Trimester Physician Visits (FTV) from the Low Birth 
Weight Study 
Variable Coeff. Std. Err. z P>lzl 

AGE -0.024 0.0337 -0.71 0.480 
LWT -0.014 0.0065 -2.18 0.029 
RACE_2 1.004 0.4979 2.02 0.044 
RACE_3 0.433 0.3622 1.20 0.232 
FTV -0.049 0.1672 -0.30 0.768 
Constant 1.295 1.0714 1.21 0.227 

Log likelihood = -111.286 

recoded using the two design variables in Table 2.1. The results of fit­
ting the logistic regression model to these data are shown in Table 2.2. 

In Table 2.2 the estimated coefficients for the two design variables 
for race are indicated by RACE_2 and RACE_3. The estimated logit is 
given by the following expression: 

g(x) = 1.295- 0.024x AGE -0.014x LWT+ 1.004x RACE _2 

+ 0.433 x RACE_ 3-0.049 x FTV. 

The fitted values are obtained using the estimated logit, g( x). 

2.4 TESTING FOR THE SIGNIFICANCE 
OF THE MODEL 

Once we have fit a particular multiple (multivariable) logistic regression 
model, we begin the process of model assessment. As in the univariate 
case presented in Chapter 1, the first step in this process is usually to 
assess the significance of the variables in the model. The likelihood ra­
tio test for overall significance of the p coefficients for the independent 
variables in the model is performed in exactly the same manner as in the 
univariate case. The test is based on the statistic G given in equation 
(1.12). The only difference is that the fitted values, ft:, under the model 
are based on the vector containing p + 1 parameters, ~. Under the null 
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hypothesis that the p "slope" coefficients for the covariates in the 
model are equal to zero, the distribution of G will be chi-square with p 
degrees-of-freedom. 

Consider the fitted model whose estimated coefficients are given in 
Table 2.2. For that model, the value of the log likelihood, shown at the 
bottom of the table, is L = -111.286. The log likelihood for the con­
stant only model may be obtained by evaluating the numerator of 
equation (1.13) or by fitting the constant only model. Either method 
yields the log likelihood L = -117.336. Thus the value of the likeli­
hood ratio test is, from equation (1.12), 

G = -2( (-117.336)- ( -111.286))] = 12.099 

and the p-value for the test is P[x2(5) > 12.099] = 0.034 which is signifi­

cant at the a= 0.05 level. We reject the null hypothesis in this case and 
conclude that at least one and perhaps all p coefficients are different 
from zero, an interpretation analogous to that in multiple linear regres­
sion. 

Before concluding that any or all of the coefficients are nonzero, 
we may wish to look at the univariate Wald test statistics, 

These are given in the fourth column in Table 2.2. Under the hypothe­
sis that an individual coefficient is zero, these statistics will follow the 
standard normal distribution. The p-values are given in the fifth col­
umn of Table 2.2. If we use a level of significance of 0.05, then we 
would conclude that the variables LWT and possibly RACE are signifi­
cant, while AGE and FTV are not significant. 

If our goal is to obtain the best fitting model while minimizing the 
number of parameters, the next logical step is to fit a reduced model 
containing only those variables thought to be significant, and compare it 
to the full model containing all the variables. The results of fitting the 
reduced model are given in Table 2.3. 

The difference between the two models is the exclusion of the vari­
ables AGE and FfV from the full model. The likelihood ratio test 
comparing these two models is obtained using the definition of G given 
in equation (1.12). It will have a distribution that is chi-square with 2 
degrees-of-freedom under the hypothesis that the coefficients for the 
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Table 2.3 Estimated Coefficients for a Multiple 
Logistic Regression Model Using the Variables L WT 
and RACE from the Low Birth Weight Study 

Variable Coeff. Std. Err. z P>lzl 
LWT -0.015 0.0064 -2.36 0.018 
RACE_2 
RACE_3 

Constant 

1.081 
0.481 
0.806 

Log likelihood = -111.630 

0.4881 
0.3567 
0.8452 

2.22 
1.35 
0.95 

0.027 
0.178 
0.340 

variables excluded are equal to zero. The value of the test statistic com­
paring the models in Tables 2.2 and 2.3 is 

G = -2[ ( -111.630)- (-I 11.286)] = 0.688, 

which, with 2 degrees-of-freedom, has a p-value of P[z2(2) > 0.688) = 
0.709. Since the p-value is large, exceeding 0.05, we conclude that the 
reduced model is as good as the full model. Thus there is no advantage 
to including AGE and FfV in the model. However, we must not base 
our models entirely on tests of statistical significance. As we will see in 
Chapter 5, there are numerous other considerations that will influence 
our decision to include or exclude variables from a model. 

Whenever a categorical independent variable is included (or ex­
cluded) from a model, all of its design variables should be included (or 
excluded); to do otherwise implies that we have recoded the variable. 
For example, if we only include design variable D1 as defined in Table 
2.1, then race is entered into the model as a dichotomous variable coded 
as black or not black. If k is the number of levels of a categorical vari­
able, then the contribution to the degrees-of-freedom for the likelihood 
ratio test for the exclusion of this variable will be k -1. For example, if 
we exclude race from the model, and race is coded at three levels using 
the design variables shown in Table 2.1, then there would be 2 degrees­
of-freedom for the test, one for each design variable. 

Because of the multiple degrees-of-freedom we must be careful in 
our use of the Wald (W) statistics to assess the significance of the coeffi­
cients. For example, if the W statistics for both coefficients exceed 2, 
then we could conclude that the design variables are significant. Alter­
natively, if one coefficient has a W statistic of 3.0 and the other a value 
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of 0.1, then we cannot be sure about the contribution of the variable to 
the model. The estimated coefficients for the variable RACE in Table 
2.3 provide a good example. The Wald statistic for the coefficient for 
the first design variable is 2.22, and 1.35 for the second. The likelihood 
ratio test comparing the model containing LWT and RACE to the one 
containing only L WT yields 

G = -2[-(114.345)- (-111.630)] = 5.43, 

which, with 2 degrees-of-freedom, yields a p-value of 0.066. Strict ad­
herence to the a= 0.05 level of significance would justify excluding 
RACE from the model. However, RACE is known to be a "clinically 
important" variable. In this case the decision to include or exclude 
RACE should be made in conjunction with subject matter experts. 

In the previous chapter we described, for the univariate model, two 
other tests equivalent to the likelihood ratio test for assessing the signifi­
cance of the model, the Wald and Score tests. We will briefly discuss the 
multivariable versions of these tests, as their use appears occasionally in 
the literature. These tests are available in some software packages. SAS 
computes both the likelihood ratio and score tests for a fitted model and 
STATA has the capability to perform the Wald test easily. For the most 
part we will use likelihood ratio tests in this text. As noted earlier, we 
favor the likelihood ratio test as the quantities needed to carry it out 
may be obtained from all computer packages. 

The multivariable analog of the Wald test is obtained from the fol­
lowing vector-matrix calculation: 

w=~'[v;r(~)r~ 
=P'(X'VX)P, 

which will be distributed as chi-square with p + 1 degrees-of-freedom 
under the hypothesis that each of the p + 1 coefficients is equal to zero. 

~ 

Tests for just the p slope coefficients are obtained by eliminating /30 

from p and the relevant row (first or last) and column (first or last) 

from (X'VX). Since evaluation of this test requires the capability to 

perform vector-matrix operations and to obtain p, there is no gain over 
the likelihood ratio test of the significance of the model. Extensions of 
the Wald test which can be used to examine functions of the coefficients 
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are quite useful and are illustrated in subsequent chapters. In addition, the 
modeling approach of Grizzle, Starmer, and Koch (1969), noted earlier, 
contains many such examples. 

The multivariable analog of the Score test for the significance of the 
model is based on the distribution of the p derivatives of L(P) with respect 
to p. The computation of this test is of the same order of complication as 
the Wald test. To define it in detail would require introduction of addi­
tional notation which would find little use in the remainder of this text. 
Thus, we refer the interested reader to Cox and Hinkley (1974) or Dobson 
(1990). 

2.5 CONFIDENCE INTERVAL ESTIMATION 

We discussed confidence interval estimators for the coefficients, logit and 
logistic probabilities for the simple logistic regression model in Section 
1.4. The methods used for confidence interval estimators for a multiple 
variable model are essentially the same. 

The endpoints for a 1 00(1- a)% confidence interval for the coeffi­
dents are obtained from (1.4.1) for slope coefficients and from (1.4.2) for 
the constant term. For example, using the fitted model presented in Table 
2.3, the 95 percent confidence interval for LWT is 

-0.015 ± 1.96 X 0.0064 = ( -0.028, - 0.002). 

The interpretation of this interval is that we are 95 percent confident that 
the decrease in the log-odds per one pound increase in weight of the 
mother is between -0.028 and -0.002. As we noted in Section 1.4 many 

software packages automatically provide confidence intervals for all model 
coefficients in the output. 

The confidence interval estimator for the logit is a bit more compli­
cated for the multiple variable model than the result presented in ( 1.19). 
The basic idea is the same, only there are now more terms involved in the 
summation. It follows from (2.1) that a general expression for the estima­
tor of the logit for a model containing p co variates is 

(2.6) 

An alternative way to express the estimator of the logit in (2.6) is through 
the use of vector notation as g(x) = x'fJ, where the vector 
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P'=([30 ,[31,[32 , ••• ,[3P) denotes the estimator of the p+l coefficients and 

the vector x' = (x0 , x1, x2 , .. • , xP) represents the constant and a set of values 

of the p-covariates in the model, where x0 = 1. 
It follows from (1.18) that an expression for the estimator of the vari­

ance of the estimator of the logit in (2.6) is 

p p p 

V~r[g(x)]= :LxJV~r({3j)+ L L 2xjxkC;v([3j,[3k)· (2.7) 
j=O j=Ok=j+l 

We can express this result much more concisely by using the matrix ex­
pression for the estimator of the variance of the estimator of the coeffi­
cients. From the expression for the observed information matrix, we have 
that 

(2.8) 

It follows from (2.8) that an equivalent expression for the estimator in (2.7) 
is 

V~r[(g(x))] = x'V~r(~)x 
= x'(X'VXt X • (2.9) 

Fortunately, all good logistic regression software packages provide the op­
tion for the user to create a new variable containing the estimated values of 
(2.9) or the standard error for all subjects in the data set. This feature 
eliminates the computational burden associated with the matrix calcula­
tions in (2.9) and allows the user to routinely calculate fitted values and 
confidence interval estimates. However it is useful to illustrate the details 
of the calculations. 

Using the model in Table 2.3, the estimated logit for a 150 pound white 
woman is 

g(LWT = 150,RACE =White)= 0.806-0.015 x 150+ 1.081 x 0+0.481 x 0 

=-1.444 

and the estimated logistic probability is 
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e-1.444 

n(LWT= 150,RACE =White)= _1444 = 0.191. 
1+e · 

The interpretation of the fitted value is that the estimated proportion of low 
birthweight babies among 150 pound white women is 0.191. 

In order to use (2.7) to estimate the variance of this estimated logit we 
need to obtain the estimated covariance matrix shown in Table 2.4. Thus 
the estimated variance of the logit is 

Var[g(LWT = 150, RACE= White)]= Var(fio )+ (150f x Var(J31 )+ 

(0)
2 

x Var(fi2 ) + (0)
2 

x Var(fi3) + 2 x 150 x Cov{.Bo,fi1) 

+ 2 x ox Cov(fio,fi2 ) +2 x o xCov(fio,fi3 )+ 2 x 150 x ox Cov(fi1 ,ft2 ) 

+ 2 x 150 x o xCov(fi1,fi3) +2 x ox o xCov(fi2 ,fi3 ) 

= 0.7143+ (150)2 
X 0.000041 +0 X 0.2382 + 0 X 0.1272 

+ 2 X 150 X (-0.0052)+2 X 0 X 0.0226+ 2 X 0 X ( -0.1035) 

+ 2 x150x0x(-0.000647)+2 x150x0x 0.000036 

+ 2 x0x0x0.0532 = 0.0768 

and the standard error is sE[g(LWT=150,RACE= White)]=0.2771. The 

95 percent confidence interval for the estimated logit is 

-1.444 ± 1.96 X 0.2771 = (-1.988, -0.901). 

The associated confidence interval for the fitted value is ( 0.120, 0.289). 
We defer further discussion and interpretation of the estimated logit, fitted 
values and their respective confidence intervals until Chapter 3. 

Table 2.4 Estimated Covariance Matrix of the 
Estimated Coefficients in Table 2.3 

LWT RACE 2 RACE 3 Constant 
LWT 0.000041 
RACE_2 -0.000647 0.2382 

RACE_3 0.000036 0.0532 0.1272 
Constant -0.005211 0.0226 -0.1035 0.7143 
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2.6 OTHER METHODS OF ESTIMATION 

In Section 1.5, two alternative methods of estimating the parameters of the 
logistic regression model were discussed. These were the methods of non­
iteratively weighted least squares and discriminant function. Each may 
also be employed in the multivariable case, though application of the non­
iteratively weighted least squares estimators is limited by the need for 
nonzero estimates of n(x) for most values of x in the data set. With a 
large number of independent variables, or even a few continuous variables, 
this condition is not likely to hold. The discriminant function estimators do 
not have this limitation and may be easily extended to the multivariable 
case. 

The discriminant function approach to estimation of the logistic coef­
ficients is based on the assumption that the distribution of the independent 
variables, given the value of the outcome variable, is multivariate normal. 
Two points should be kept in mind: (1) the assumption of multivariate 
normality will rarely if ever be satisfied because of the frequent occurrence 
of dichotomous independent variables, and (2) the discriminant function 
estimators of the coefficients for nonnormally distributed independent vari­
ables, especially dichotomous variables, will be biased away from zero 
when the true coefficient is nonzero. For these reasons we, in general, do 
not recommend its use. However, these estimators are of some historical 
importance as a number of the classic papers in the applied literature, such 
as Truett, Cornfield, and Kannel (1967), have used them. These estimators 
are easily computed and, in the absence of a logistic regression program, 
should be adequate for a preliminary examination of your data. Thus, it 
seems worthwhile to include the relevant formulae for their computation. 

The assumptions necessary to employ the discriminant function ap­
proach to estimating the logistic regression coefficients state that the con­
ditional distribution of X (the vector of p covariate random variables) given 
the outcome variable, Y = y, is multivariate normal with a mean vector that 
depends on y, but a covariance matrix that does not. Using notation de­

fined in Section 1.5 we say X I y = j - N(J.L j, L j) where J1 j contains the 

means of the p independent variables for the subpopulation defined by 
y = j and 1: is the p x p covariance matrix of these variables. Under these 

assumptions, P(Y = 11 x) = n(x), where the coefficients are given by: 

(2.10) 

and 
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(2.11) 

where 81 = P(Y = 1) and 80 = 1-81 denote the proportion of the population 

with y equal to 1 or 0, respectively. Equations (2.10) and (2.11) are the 

multivariable analogs of equations (1.22) and (1.23). 
The discriminant function estimators of f30 and p are found by sub-

stituting estimators for J.lj• j = 0, 1, I,, and 81 into equations (2.10) and 

(2.11 ). The estimators most often used are the maximum likelihood esti­
mators under the multivariate normal model. That is, we let 

the mean of x in the subgroup of the sample with y = j, j = 0, 1. 
The estimator of the covariance matrix, 1:, is the multivariable exten­

sion of the pooled sample variance given in Section 1.5. This may be rep­
resented as 

S = (n0 -l)S0 +{n1 -l)S1 , 

(n+n-2) 

where S j, j = 0,1 is the p X p matrix of the usual unbiased estimators of 

the variances and covariances computed within the subgroup defined by 
y = j, j =0,1. 

Because of the bias in the discriminant function estimators when nor­
mality does not hold, they should be used only when logistic regression 
software is not available, and then only in preliminary analyses. Any final 
analyses should be based on the maximum likelihood estimators of the co­
efficients. 

EXERCISES 

1. Use the ICU data described in Section 1.6.1 and consider the multiple 
logistic regression model of vital status, STA, on age (AGE), cancer 
part of the present problem (CAN), CPR prior to ICU admission (CPR), 
infection probable at ICU admission (INF), and race (RACE). 
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(a) The variable RACE is coded at three levels. Prepare a table show­
ing the coding of the two design variables necessary for including 
this variable in a logistic regression model. 

(b) Write down the equation for the logistic regression model of STA 
on AGE, CAN, CPR, INF, and RACE. Write down the equation 
for the logit transformation of this logistic regression model. How 
many parameters does this model contain? 

(c) Write down an expression for the likelihood and log likelihood for 
the logistic regression model in Exercise l(b). How many likeli­
hood equations are there? Write down an expression for a typical 
likelihood equation for this problem. 

(d) Using a logistic regression package, obtain the maximum likeli­
hood estimates of the parameters of the logistic regression model 
in Exercise 1 (b). Using these estimates write down the equation 
for the fitted values, that is, the estimated logistic probabilities. 

(e) Using the results of the output from the logistic regression package 
used in Exercise l(d), assess the significance of the slope coeffi­
cients for the variables in the model using the likelihood ratio test. 
What assumptions are needed for the p-values computed for this 
test to be valid? What is the value of the deviance for the fitted 
model? 

(f) Use the Wald statistics to obtain an approximation to the signifi­
cance of the individual slope coefficients for the variables in the 
model. Fit a reduced model that eliminates those variables with 
nonsignificant Wald statistics. Assess the joint (conditional) sig­
nificance of the variables excluded from the model. Present the re­
sults of fitting the reduced model in a table. 

(g) Using the results from Exercise l(f), compute 95 percent confi­
dence intervals for all coefficients in the model. Write a sentence 
interpreting the confidence intervals for the non-constant covari­
ates. 

(h) Obtain the estimated covariance matrix for the final model fit in 
Exercise l(f). Choose a set of values for the covariates in that 
model and estimate the logit and logistic probability for a subject 
with these characteristics. Compute 95 percent confidence inter­
vals for the logit and estimated logistic probability. Write a sen­
tence or two interpreting the estimated probability and its confi­
dence interval. 

2. Use the Prostate Cancer data described in Section 1.6.3 and consider the 
multiple logistic regression model of capsule penetration (CAPSULE), 
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on AGE, RACE, results of the digital rectal exam (DPROS and 
DCAPS), prostate specific antigen (PSA), Gleason score (GLEASON) 
and tumor volume (VOL). 
(a) The variable DPROS is coded at four levels. Prepare a table 

showing the coding of the three design variables necessary for in­
cluding this variable in a logistic regression model. 

(b) The variable DCAPS is coded 1 and 2. Can this variable be used in 
its original coding or must a design variable be created? Explore 
this question by comparing the estimated coefficients obtained 
from fitting a model containing DCAPS as originally coded with 
those obtained from one using a 0-1 coded design variable, 
DCAPSnew = DCAPS -1. 

(c) Repeat parts l(b)- l(h) of Exercise 1. 



CHAPTER 3 

Interpretation of the Fitted Logistic 
Regression Model 

3.1 INTRODUCTION 

In Chapters 1 and 2 we discussed the methods for fitting and testing for 
the significance of the logistic regression model. After fitting a model 
the emphasis shifts from the computation and assessment of significance 
of the estimated coefficients to the interpretation of their values. Strictly 
speaking, an assessment of the adequacy of the fitted model should pre­
cede any attempt at interpreting it. In the case of logistic regression the 
methods for assessment of fit are rather technical in nature and thus are 
deferred until Chapter 5, at which time the reader should have a good 
working knowledge of the logistic regression model. Thus, we begin 
this chapter assuming that a logistic regression model has been fit, that 
the variables in the model are significant in either a clinical or statistical 
sense, and that the model fits according to some statistical measure of 
fit. 

The interpretation of any fitted model requires that we be able to 
draw practical inferences from the estimated coefficients in the model. 
The question being addressed is: What do the estimated coefficients in 
the model tell us about the research questions that motivated the study? 
For most models this involves the estimated coefficients for the inde­
pendent variables in the model. On occasion, the intercept coefficient is 
of interest; but this is the exception, not the rule. The estimated coeffi­
cients for the independent variables represent the slope (i.e., rate of 
change) of a function of the dependent variable per unit of change in 
the independent variable. Thus, interpretation involves two issues: de­
termining the functional relationship between the dependent variable 
and the independent variable, and appropriately defining the unit of 
change for the independent variable. 

47 
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The first step is to determine what function of the dependent vari­
able yields a linear function of the independent variables. This is called 
the link function [see McCullagh and Neider (1983) or Dobson (1990)]. 
In the case of a linear regression model, it is the identity function since 
the dependent variable, by definition, is linear in the parameters. (For 
those unfamiliar with the term "identity function," it is the function y = 
y.) In the logistic regression model the link function is the logit trans-

formation g(x) =In{ n(x)/[ 1-n(x) ]} = ,80 + ,B1x. 
For a linear regression model recall that the slope coefficient, ,81, is 

equal to the difference between the value of the dependent variable at 
x + 1 and the value of the dependent variable at x, for any value of x. 
For example, if y(x)=,80 +,81x, it follows that ,81 =y(x+1)-y(x). In 
this case, the interpretation of the coefficient is relatively straightforward 
as it expresses the resulting change in the measurement scale of the de­
pendent variable for a unit change in the independent variable. For ex­
ample, if in a regression of weight on height of male adolescents the 
slope is 5, then we would conclude that an increase of 1 inch in height is 
associated with an increase of 5 pounds in weight. 

In the logistic regression model, the slope coefficient represents the 
change in the logit corresponding to a change of one unit in the inde­
pendent variable (i.e., ,81 = g(x + 1)- g(x)). Proper interpretation of the 
coefficient in a logistic regression model depends on being able to place 
meaning on the difference between two logits. Interpretation of this 
difference is discussed in detail on a case-by-case basis as it relates di­
rectly to the definition and meaning of a one-unit change in the inde­
pendent variable. In the following sections of this chapter we consider 
the interpretation of the coefficients for a univariate logistic regression 
model for each of the possible measurement scales of the independent 
variable. In addition we discuss interpretation of the coefficients in 
multivariable models. 

3. 2 DICHOTOMOUS INDEPENDENT VARIABLE 

We begin our consideration of the interpretation of logistic regression 
coefficients with the situation where the independent variable is nominal 
scale and dichotomous (i.e., measured at two levels). This case provides 
the conceptual foundation for all the other situations. 

We assume that the independent variable, x, is coded as either zero 
or one. The difference in the logit for a subject with x = 1 and x = 0 is 
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g(l)- g(O) = [,80 + ,BI)- [.Bo] = .81 · 

The algebra shown in this equation is rather straightforward. We present 
it in this level of detail to emphasize that the first step in interpreting the 
effect of a covariate in a model is to express the desired logit difference 
in terms of the model. In this case the logit difference is equal to ,81 • 

In order to interpret this result we need to introduce and discuss a meas­
ure of association termed the odds ratio. 

The possible values of the logistic probabilities may be conveniently 
displayed in a 2 x 2 table as shown in Table 3.1. The odds of the out­
come being present among individuals with x = 1 is defined as 
n(l)/[1-n(l)]. Similarly, the odds of the outcome being present among 

individuals with x=O isdefinedas n(0)/[1-n(O)]. The odds ratio, de­
noted OR, is defined as the ratio of the odds for x = 1 to the odds for 
x = 0, and is given by the equation 

OR= n(1)/[1-n(1)] 
lt'(0)/[1- n(O)] 

(3.1) 

Substituting the expressions for the logistic regression model shown in 
Table 3.1 into (3.1) we obtain · 

Table 3.1 Values of the Logistic Regression Model 
Wh th I d d t V . bl I D' h t en e n epen en ana e s 1c o omous 

Independent Variable (X) 

Outcome 
Variable (Y) x=l x=O 

y=l ePo +P1 ePo 
n(l)- n(O)=---l+ePo+PI 1 +ePo 

y=O 1 1 
1-n(l) = 1-n(O)=--

1 + ePo +P1 l+ePo 
Total 1.0 1.0 
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ef3o+f3t 

-~ 

= e(f3o+f3d-f3o 

Hence, for logistic regression with a dichotomous independent variable 
coded 1 and 0, the relationship between the odds ratio and the regres­
sion coefficient is 

(3.2) 

This simple relationship between the coefficient and the odds ratio is the 
fundamental reason why logistic regression has proven to be such a 
powerful analytic research tool. 

The odds ratio is a measure of association which has found wide 
use, especially in epidemiology, as it approximates how much more 

· likely (or unlikely) it is for the outcome to be present among those with 
x = 1 than among those with x = 0. For example, if y denotes the pres­
ence or absence of lung cancer and if x denotes whether the person is a 

"' smoker, then OR= 2 estimates that lung cancer is twice as likely to oc-
cur among smokers than among nonsmokers in the study population. 
As another example, suppose y denotes the presence or absence of heart 
disease and x denotes whether or not the person engages in regular 

"' strenuous physical exercise. If the estimated odds ratio is OR = 0.5, 
then occurrence of heart disease is one half as likely to occur among 
those who exercise than among those who do not in the study popula­
tion. 

The interpretation given for the odds ratio is based on the fact that 
in many instances it approximates a quantity called the relative risk. 
This parameter is equal to the ratio n-(1)/n(O). It follows from (3.1) that 

the odds ratio approximates the relative risk if [1-n(O) ]/[1-n-(1)]"" 1. 
This holds when n(x) is small for both x = 1 and 0. 

Readers who have not had experience with the odds ratio as a 
measure of association would be advised to spend some time reading 
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about this measure in one of the following texts: Breslow and Day 
(1980), Kelsey, Thompson, and Evans (1986), Rothman and Greenland 
(1998) and Schlesselman (1982). 

An example may help to clarify what the odds ratio is and how it is 
computed from the results of a logistic regression program or from a 
2 x 2 table. In many examples of logistic regression encountered in the 
literature we find that a continuous variable has been dichotomized at 
some biologically meaningful cutpoint. A more detailed discussion of 
the rationale and implications for the modeling of such a decision is 
presented in Chapter 4. With this in mind we use the data displayed in 
Table 1.1 and create a new variable, AGED, which takes on the value 1 
if the age of the subject is greater than or equal to 55 and zero other­
wise. The result of cross classifying the dichotomized age variable with 
the outcome variable CHD is presented in Table 3.2. 

The data in Table 3.2 tell us that there were 21 subjects with values 
(x = 1, y = 1 ), 22 with (x = 0, y = 1 ), 6 with (x = 1, y = 0), and 51 with (x 

= 0, y = 0). Hence, for these data, the likelihood function shown in (1.3) 

simplifies to 

Use of a logistic regression program to obtain the estimates of {30 and 
{31 yields the results shown in Table 3.3. 

The estimate of the odds ratio from (3 .2) is OR= e2
·
094 = 8.1. 

Readers who have had some previous experience with the odds ratio un­
doubtedly wonder why a logistic regression package was used to obtain 
the maximum likelihood estimate of the odds ratio, when it could have 
been obtained directly from the cross-product ratio from Table 3 .2, 
namely, 

Table 3.2 Cross-Classification of AGE Dichotomized 
a t SS Y d CHD fi 100 S b' t ears an or u ~jec s 

AGED(x) 
CHD(y) ~55 (1) <55 (0) Total 

Present (1) 21 22 43 
Absent (0) 6 51 57 

Total 27 73 100 
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OR= 
21

/
6 

=8.11. 
22/51 

Thus /31 =ln[(21/6)/(22/51))=2.094. We emphasize here that logistic 

regression is, in fact, regression even in the simplest case possible. The 
fact that the data may be formulated in terms of a contingency table 
provides the basis for interpretation of estimated coefficients as the log 
of odds ratios. 

Along with the point estimate of a parameter, it is a good idea to 
use a confidence interval estimate to provide additional information 
about the parameter value. In the case of the odds ratio, OR, for a 2 x 2 
table there is an extensive literature dealing with this problem, much of 
which is focused on methods when the sample size is small. The reader 
who wishes to learn more about the available exact and approximate 
methods should see the papers by Fleiss (1979) and Gart and Thomas 
(1972). A good summary may be found in the texts by Breslow and 
Day (1980), Kleinbaum, Kupper, and Morgenstern (1982), and Roth­
man and Greenland (1998). 

The odds ratio, OR, is usually the parameter of interest in a logistic 
" regression due to its ease of interpretation. However, its estimate, OR, 

tends to have a distribution that is skewed. The skewness of the sam-
" piing distribution of OR is due to the fact that possible values range 

between 0 and oo, with the null value equaling 1. In theory, for large 

" enough sample sizes, the distribution of OR is normal. Unfortunately, 
this sample size requirement typically exceeds that of most studies. 
Hence, inferences are usually based on the sampling distribution of 

In( OR)= ,81, which tends to follow a normal distribution for much 

smaller sample sizes. A lOOx(l-a)% confidence interval (CI) estimate 
for the odds ratio is obtained by first calculating the endpoints of a con-

Table 3.3 Results of Fitting the Logistic 
Model to the Data in Table 3.2 

Regression 

Variable Coeff. Std. Err. 
AGED 2.094 0.5285 

Constant -0.841 0.2551 

Log likelihood = -58.9795 

z 
3.96 

-3.30 

P>lzl 

<0.001 
0.001 
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fidence interval for the coefficient, {31, and then exponentlatmg these 
values. In general, the endpoints are given by the expression 

As an example, consider the estimation of the odds ratio for the 
" dichotomized variable AGED. The point estimate is OR = 8.1 and the 

endpoints of a 95% CI are 

exp(2.094 ± 1.96 x 0.529) = (2.9, 22.9). 

This interval is typical of the confidence intervals seen for odds ratios 
when the point estimate exceeds 1. The confidence interval is skewed to 
the right. This confidence interval suggests that CHD among those 55 
and older in the study population could be as little as 2.9 times or much 
as 22.9 times more likely than those under 55, at the 95 percent level of 
confidence. 

Because of the importance of the odds ratio as a measure of asso­
ciation, many software packages automatically provide point and confi­
dence interval estimates based on the exponentiation of each coefficient 
in a fitted logistic regression model. These quantities provide estimates 
of odds ratios of interest in only a few special cases (e.g., a dichotomous 
variable coded zero or one that is not involved in any interactions with 
other variables). The major goal of this chapter is to provide the meth­
ods for using the results of fitted models to provide point and confi­
dence interval estimates of odds ratios that are of interest, regardless of 
how complex the fitted model may be. 

Before concluding the dichotomous variable case, it is important to 
consider the effect that the coding of the variable has on the computa­
tion of the estimated odds ratio. In the previous discussion we noted 

that the estimate of the odds ratio was OR= exp(/31). This is correct 

when the independent variable is coded as 0 or 1. Other coding may 
require that we calculate the value of the logit difference for the specific 
coding used, and then exponentiate this difference to estimate the odds 
ratio. 

We illustrate these computations in detail, as they demonstrate the 
general method for computing estimates of odds ratios in logistic re­
gression. The estimate of the log of the odds ratio for any independent 
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variable at two different levels, say x =a versus x = b, is the difference 
between the estimated logits computed at these two values, 

ln[oR(a,b)]= g(x =a)- g(x =b) 

= (/3o + /31 X a)-(/3o + /31 x b) 
A 

= /31 x (a - b). ( 3 . 3 ) 

The estimate of the odds ratio is obtained by exponentiating the logit 
difference, 

OR( a, b)= exp[/31 x (a- b)]. (3 .4) 

Note that this expression is equal to exp(/31) only when (a - b) = 1. In 

" (3.3) and (3.4) the notation OR(a,b) is used to represent the odds ratio 

" ( b)- n(x=a)/[1-n(x=a)] 
OR a, - A( )/[ A( ] 1r x=b 1-n x=b) 

(3.5) 

and when a= 1 and b = 0 we let OR= OR(1,0). 
Some software packages offer a choice of methods for coding de­

sign variables. The "zero-one" coding used so far in this section is 
frequently referred to as reference cell coding. The reference cell 
method typically assigns the value of zero to the lower code for x and 
one to the higher code. For example, if SEX was coded as 1 = male and 
2 = female, then the resulting design variable under this method, D, 
would be coded 0 = male and 1 = female. Exponentiation of the esti­
mated coefficient for D would estimate the odds ratio of female relative 
to male. This same result would have been obtained had sex been 
coded originally as 0 = male and 1 = female, and then treating the vari­
able SEX as if it were interval scaled. 

Another coding method is frequently referred to as deviation from 
means coding. This method assigns the value of -1 to the lower code, 
and a value of 1 to the higher code. The coding for the variable SEX 
discussed above is shown in Table 3.4. 



DICHOTOMOUS INDEPENDENT VARIABLE 

Table 3.4 Illustration of the Coding of the Design 
Variable Usin the Deviation from Means Method 

Male (1) 
Female 2 

Design Variable 
D 

-1 

55 

Suppose we wish to estimate the odds ratio of female versus male 
when deviation from means coding is used. We do this by using the 
general method shown in (3.3) and (3.4), 

In[ OR( female, male)] = g( female)- g( male) 

=g(D= I)- g(D = -1) 

= [ fio + fit X ( D = 1)] - [ fio + fit X ( D = -I)] 

= 2f3t 

and the estimated odds ratio is OR( female, male)= exp( 2fi1). Thus, if we 

had exponentiated the coefficient from the computer output we would 
have obtained the wrong estimate of the odds ratio. This points out 
quite clearly that we must pay close attention to the method used to 
code the design variables. 

The method of coding also influences the calculation of the end­
points of the confidence interval. For the above example, using the de­
viation from means coding, the estimated standard error needed for 

confidence interval estimation is s'E( 2fit) which is 2 X s'E(fit). Thus the 

endpoints of the confidence interval are 

In general, the endpoints of the confidence interval for the odds ratio 
given in (3.5) are 
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where ja- hj is the absolute value of (a-b). Since we can control how 
we code our dichotomous variables, we recommend that, in most situa­
tions, they be coded as 0 or 1 for analysis purposes. Each dichotomous 
variable is then treated as an interval scale variable. 

In summary, for a dichotomous variable the parameter of interest is 
the odds ratio. An estimate of this parameter may be obtained from the 
estimated logistic regression coefficient, regardless of how the variable is 
coded. This relationship between the logistic regression coefficient and 
the odds ratio provides the foundation for our interpretation of all lo­
gistic regression results. 

3. 3 POL YCHOTOMOUS INDEPENDENT VARIABLE 

Suppose that instead of two categories the independent variable has 
k > 2 distinct values. For example, we may have variables that denote 
the county of residence within a state, the clinic used for primary health 
care within a city, or race. Each of these variables has a fixed number 
of discrete values and the scale of measurement is nominal. We saw in 
Chapter 2 that it is inappropriate to model a nominal scale variable as if 
it were an interval scale variable. Therefore, we must form a set of de­
sign variables to represent the categories of the variable. In this section 
we present methods for creating design variables for polychotomous 
independent variables. The choice of a particular method depends to 
some extent on the goals of the analysis and the stage of model devel­
opment. 

We begin by extending the method presented in Table 2.1 for a 
dichotomous variable. For example, suppose that in a study of CHD the 
variable RACE is coded at four levels, and that the cross-classification of 

Table 3.5 Cross-Classification of Hypothetical Data on 
RACE d CHD S t f 100 S b" an ta us or u •Jects 
CHD Status White Black Hispanic Other Total 

Present 5 20 15 10 50 
Absent 20 10 10 10 50 

Total 25 30 25 20 100 
Odds Ratio 1 8 6 4 
95% CI (2.3, 27.6) (1.7, 21.3) (1.1, 14.9) 

In( OR) 0.0 2.08 1.79 1.39 
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Table 3.6 Specification of the Design Variables 
for RACE Using Reference Cell Coding with 
White as the Reference Group 

Design Variables 

RACE 2 RACE 3 RACE 4 

White 0 0 0 
Black 1 0 0 
Hispanic (3) 0 0 
Other 4 0 0 

57 

RACE by CHD status yields the data in Table 3.5. These data are hy­
pothetical and have been formulated for ease of computation. The ex­
tension to a situation where the variable has more than four levels is not 
conceptually different, so all the examples in this section use k = 4. 

At the bottom of Table 3.5, the odds ratio is given for each race, 
using White as the reference group. For example, for Hispanic the esti­
mated odds ratio is 15x20/5X10. The log of each odds ratio is given 
in the last row of Table 3.5. This table is typical of what is found in the 
literature. The reference group is indicated by a value of 1 for the odds 
ratio. These same estimates of the odds ratio may be obtained from a 
logistic regression program with an appropriate choice of design vari­
ables. The method for specifying the design variables involves setting 
all of them equal to zero for the reference group, and then setting a sin­
gle design variable equal to 1 for each of the other groups. This is il­
lustrated in Table 3.6. As noted in Section 3.2 this method is usually 
referred to as reference cell coding and is the default method in many 
packages. 

Use of any logistic regression program with design variables coded 
as shown in Table 3.6 yields the estimated logistic regression coeffi­
cients given in Table 3. 7. 

A comparison of the estimated coefficients in Table 3.7 to the log 
odds ratios in Table 3.5 shows that 

In[ OR(Black, White)]= fi1 = 2.079, 

In[ OR( Hispanic, White) J = fi2 = 1.792, 

and 
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Table 3.7 Results of Fitting the Logistic 
Regression Model to the Data in Table 3.5 
Using the Design Variables in Table 3.6 

Variable Coeff. Std. Err. z P>lzl 
RACE_2 2.079 0.6325 3.29 0.001 
RACE_3 1.792 0.6466 2.78 0.006 
RACE_4 1.386 0.6708 2.07 0.039 
Constant -1.386 0.5000 -2.77 0.006 

Log likelihood = -62.2937 

ln[ OR( Other, White)]= /33 = 1.386. 

Did this happen by chance? Calculation of the logit difference shows 
that it is by design. The comparison of Black to White is as follows: 

ln[oR(Black, White)]= §(Black)- §(White) 

=[/30 + /31 x(RAC~_2 = 1)+ /32 x(RACE _3 = 0)] 

+ ,83 x (RACE_ 4 = 0) 

~ [/30 + /31 x(RA:E_2 = 0)+ /32 x(RACE_3 = 0)] 

+ ,83 x(RACE_ 4 = 0) 

Similar calculations would demonstrate that the other coefficients esti­
mated using logistic regression are also equal to the log of odds ratios 
computed from the data in Table 3.5. 

A comment about the estimated standard errors may be helpful at 
this point. In the univariate case the estimates of the standard errors 
found in the logistic regression output are identical to the estimates ob­
tained using the cell frequencies from the contingency table. For ex­
ample, the estimated standard error of the estimated coefficient for the 
design variable RACE_2 is 

/'\ A [ 1 1 1 1 ]
0

'
5 

sE(.B1)= -+-+-+- =0.6325. 
5 20 20 10 



POL YCHOTOMOUS INDEPENDENT VARIABLE 59 

A derivation of this result may be found in Bishop, Feinberg, and Hol­
land (1975). 

Confidence limits for odds ratios are obtained using the same ap­
proach used in Section 3.2 for a dichotomous variable. We begin by 
computing the confidence limits for the log odds ratio (the logistic re­
gression coefficient) and then exponentiate these limits to obtain limits 
for the odds ratio. In general, the limits for a 100(1- a)% CIE for the 
coefficient are of the form 

The corresponding limits for the odds ratio, obtained by exponentiating 
these limits, are as follows: 

(3.6) 

The confidence limits given in Table 3.5 in the row beneath the esti­
mated odds ratios were obtained using the estimated coefficients and 
standard errors in Table 3.7 with (3.6) for j=1,2,3 with a=0.05. 

Reference cell coding is the most commonly employed coding 
method appearing in the literature. The primary reason for the wide­
spread use of this method is the interest in estimating the risk of an 
"exposed" group relative to that of a "control" or "unexposed" 
group. 

As discussed in Section 3.2 a second method of coding design 
variables is called deviation from means coding. This coding expresses 
effect as the deviation of the "group mean" from the "overall mean." 
In the case of logistic regression, the "group mean" is the logit for the 

Table 3.8 Specification of the Design Variables for 
RACE Using Deviation from Means Coding 

Design Variables 

RACE 2 RACE 3 RACE 4 

White -1 -1 -1 

Black (2) 1 0 0 
Hispanic (3) 0 0 
Other 4 0 0 
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Table 3.9 Results of Fitting the Logistic 
Regression Model to the Data in Table 3. 5 
Using the Design Variables in Table 3.8 

Variable Coeff. Std. Err. z 
RACE_2 0.765 0.3506 2.18 
RACE_3 0.477 0.3623 1.32 
RACE_4 0.072 0.3846 0.19 
Constant -0.072 0.2189 -0.33 

Log likelihood = -62.2937 

P>lzl 

0.029 
0.188 
0.852 
0.742 

group and the "overall mean" is the average logit over all groups. This 
method of coding is obtained by setting the value of all the design vari­
ables equal to -1 for one of the categories, and then using the 0, 1 cod­
ing for the remainder of the categories. Use of the deviation from 
means coding for race shown in Table 3.8 yields the estimated logistic 
regression coefficients in Table 3.9. 

In order to interpret the estimated coefficients in Table 3.9 we 
need to refer to Table 3.5 and calculate the logit for each of the four 
categories of RACE. These are 

A ( 5/25) ( 5 ) g1 = ln 
20125 

= ln 
20 

= -1.386 

g2 =ln(20/10)=0.693, g3 =ln(15/10)=0.405, g4 =ln(l0/10)=0, and 

their average is g = _Lg;/4- 0.072. The estimated coefficient for de­

sign variable RACE_2 in Table 3.9 is g2 - g = 0.693- (-0.072) = 
0.765. The general relationship for the estimated coefficient for design 
variable RACEj is gj - g, for j = 2, 3, 4. 

The interpretation of the estimated coefficients is not as easy or 
clear as in the situation when a reference group is used. Exponentiation 
of the estimated coefficients yields the ratio of the odds for the particu­
lar group to the geometric mean of the odds. Specifically, for RACE_2 
in Table 3.9 we have 
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exp(0.765) = exp(g2- g) 

= exp(g2)/ exp(Lgjj4) 

= (20 /10)/[(5/20) X (20/10) X (15/10) X (10/10) f 25 

= 2.15. 
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This number, 2.15, is not a true odds ratio because the quantities in the 
numerator and denominator do not represent the odds for two distinct 
categories. The exponentiation of the estimated coefficient expresses 
the odds relative to an "average" odds, the geometric mean. The inter­
pretation of this value depends on whether the "average" odds is in fact 
meaningful. 

The estimated coefficients obtained using deviation from means 
coding may be used to estimate the odds ratio for one category relative 
to a reference category. The equation for the estimate is more compli­
cated than the one obtained using the reference cell coding. However, it 
provides an excellent example of the basic principle of using the logit 
difference to compute an odds ratio. 

To illustrate this we calculate the log odds ratio of Black versus 
White using the coding for design variables given in Table 3.8. The 
logit difference is as follows: 

ln[ o"'R(Black, White)]= g(Black)- §(White) 

= [[30 + [31 X (RAC~E_2 = 1) + [32 X (RACE _3 = 0)] 

+ /33 x(RACE_ 4= 0) 

-[[30 + [31 X (RAC~_2 = -1)+ [32 X (RACE _3 = -1)] 

+ /33 x(RACE_ 4 = -1) 

(3.7) 

To obtain a confidence interval we must estimate the variance of 
the sum of the coefficients in (3.7). In this example, the estimator is 

V~r{ln[oR(Black, White)]}= 4 x V~r([31 )+ V~r([32 ) 

+ v~r([33 ) + 4 x Cov([3t ,[32) 

+ 4 x cav(,Bl> ,83) + 2 x c0v(,82 , ,83). (3. 8) 
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Values for each of the estimators in (3.8) may be obtained from output 
that is available from logistic regression software. Confidence intervals 
for the odds ratio are obtained by exponentiating the endpoints of the 
confidence limits for the sum of the coefficients in (3.7). Evaluation of 
(3.7) for the current example gives 

ln[OR(Black, White)]= 2(0.765)+0.477 +0.072 = 2.079. 

The estimate of the variance is obtained by evaluating (3.8) which, for 
the current example, yields 

V~r {1n[ o"'R(Black, White)]}= 4(0.351)2 + (0.362)2 + (0.385)2 

+4(-0.031) + 4( -0.040) + 2( -0.044) = 0.400 

and the estimated standard error is 

sE:{ ln[ OR( Black, White)]}= 0.6325. 

We note that the values of the estimated log odds ratio, 2.079, and 
the estimated standard error, 0.6325, are identical to the values of the 
estimated coefficient and standard error for the first design variable in 
Table 3. 7. This is expected, since the design variables used to obtain the 
estimated coefficients in Table 3.7 were formulated specifically to yield 
the log odds ratio relative to the White race category. 

It should be apparent that, if the objective is to obtain odds ratios, 
use of deviation from means coding for design variables is computa­
tionally much more complex than reference cell coding. 

In summary, we have shown that discrete nominal scale variables 
are included properly into the analysis only when they have been 
recoded into design variables. The particular choice of design variables 
depends on the application, though the reference cell coding is the easi­
est to interpret, and thus is the one we use in the remainder of this text. 
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3. 4 CONTINUOUS INDEPENDENT VARIABLE 

When a logistic regression model contains a continuous independent 
variable, interpretation of the estimated coefficient depends on how it is 
entered into the model and the particular units of the variable. For pur­
poses of developing the method to interpret the coefficient for a con­
tinuous variable, we assume that the logit is linear in the variable. Other 
modeling strategies that examine this assumption are presented in 
Chapter 4. 

Under the assumption that the logit is linear in the continuous co­
variate, x, the equation for the logit is g(x) = {30 + {31x. It follows that the 
slope coefficient, /31, gives the change in the log odds for an increase of 
"1" unit in x, that is, {31 =g(x+I)-g(x) for any value of x. Most often 
the value of "1" is not clinically interesting. For example, a 1 year in­
crease in age or a 1 mm Hg increase in systolic blood pressure may be 
too small to be considered important. A change of 10 years or 10 mm 
Hg might be considered more useful. On the other hand, if the range of 
x is from zero to I, then a change of I is too large and a change of 0.01 
may be more realistic. Hence, to provide a useful interpretation for 
continuous scale covariates we need to develop a method for point and 
interval estimation for an arbitrary change of "c" units in the covariate. 

The log odds ratio for a change of c units in x is obtained from the 
logit difference g(x+c)-g(x)=c/31 and the associated odds ratio is ob­
tained by exponentiating this logit difference, OR( c)= OR(x +c,x) 
= exp( c/31). An estimate may be obtained by replacing {31 with its 

maximum likelihood estimate S1 • An estimate of the standard error 
needed for confidence interval estimation is obtained by multiplying the 
estimated standard error of {31 by c. Hence the endpoints of the 
100(1- a)% CI estimate of OR( c) are 

Since both the point estimate and endpoints of the confidence in­
terval depend on the choice of c, the particular value of c should be 
clearly specified in all tables and calculations. The rather arbitrary na­
ture of the choice of c may be troublesome to some. For example, why 
use a change of 10 years when 5 or 15 or even 20 years may be equally 
good? We, of course, could use any reasonable value; but the goal must 
be kept in mind: to provide the reader of your analysis with a clear indi-
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cation of how the risk of the outcome being present changes with the 
variable in question. Changes in multiples of 5 or 10 may be most 
meaningful and easily understood. 

As an example, consider the univariate model in Table 1.3. In that 
example a logistic regression of AGE on CHD status using the data of 
Table 1.1 was reported. The resulting estimated logit was 
g(AGE)=-5.310+0.111xAGE. The estimated odds ratio for an in-

" crease of 10 years in age is OR(10)=exp(10x0.111)=3.03. This indi-
cates that for every increase of 10 years in age, the risk of CHD in­
creases 3.03 times. The validity of such a statement is questionable in 
this example, since the additional risk of CHD for a 40 year-old com­
pared to a 30 year-old may be quite different from the additional risk 
of CHD for a 60 year-old compared to a 50 year-old. This is an un­
avoidable dilemma when continuous covariates are modeled linearly in 
the logit. If it is believed that the logit is not linear in the covariate, then 
grouping and use of dummy variables should be considered. Alterna­
tively, use of higher order terms (e.g., x2,x\ ... ) or other nonlinear 
scaling in the covariate (e.g., log(x)) could be considered. Thus, we see 
that an important modeling consideration for continuous covariates is 
their scale in the logit. We consider this in considerable detail in Chap­
ter 4. The endpoints of a 95% confidence interval for this odds ratio 
are 

exp(lO x 0.111 ±1.96 x 10 x0.024) = (1.90,4.86). 

Results similar to these may be placed in tables displaying the results of 
a fitted logistic regression model. 

In summary, the interpretation of the estimated coefficient for a 
continuous variable is similar to that of nominal scale variables: an esti­
mated log odds ratio. The primary difference is that a meaningful 
change must be defined for the continuous variable. 

3. 5 THE MULTIV ARIABLE MODEL 

In the previous sections in this chapter we discussed the interpretation of 
an estimated logistic regression coefficient in the case when there is a 
single variable in the fitted model. Fitting a series of univariate models 
rarely provides an adequate analysis of the data in a study since the in­
dependent variables are usually associated with one another and may 
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have different distributions within levels of the outcome variable. Thus, 
one generally considers a multivariable analysis for a more comprehen­
sive modeling of the data. One goal of such an analysis is to statistically 
adjust the estimated effect of each variable in the model for differences 
in the distributions of and associations among the other independent 
variables. Applying this concept to a multivariable logistic regression 
model, we may surmise that each estimated coefficient provides an esti­
mate of the log odds adjusting for all other variables included in the 
model. 

A full understanding of the estimates of the coefficients from a 
multivariable logistic regression model requires that we have a clear un­
derstanding of what is actually meant by the term adjusting, statistically, 
for other variables. We begin by examining adjustment in the context 
of a linear regression model, and then extend the concept to logistic re­
gression. 

The multivariable situation we examine is one in which the model 
contains two independent variables - one dichotomous and one con­
tinuous - but primary interest is focused on the effect of the dichoto­
mous variable. This situation is frequently encountered in epidemi­
ologic research when an exposure to a risk factor is recorded as being 
either present or absent, and we wish to adjust for a variable such as age. 
The analogous situation in linear regression is called analysis of covari­
ance. 

Suppose we wish to compare the mean weight of two groups of 
boys. It is known that weight is associated with many characteristics, 
one of which is age. Assume that on all characteristics except age the 
two groups have nearly identical distributions. If the age distribution is 
also the same for the two groups, then a univariate analysis would suf­
fice and we could compare the mean weight of the two groups. This 
comparison would provide us with a correct estimate of the difference in 
weight between the two groups. However, if one group was much 
younger than the other group, then a comparison of the two groups 
would be meaningless, since at least a portion of any difference ob­
served would likely be due to the difference in age. It would not be 
possible to determine the effect of group without first eliminating the 
discrepancy in ages between the groups. 

This situation is described graphically in Figure 3.1. In this figure 
it is assumed that the relationship between age and weight is linear, with 
the same significant nonzero slope in each group. Both of these as­
sumptions would usually be tested in an analysis of covariance before 
making any inferences about group differences. We defer a discussion 
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Figure 3.1 Comparison of the weight of two groups of boys with different 
distributions of age. 

of this until Chapter 4, as it gets to the heart of modeling with logistic 
regression. We proceed as if these assumptions have been checked and 
are supported by the data. 

The statistical model that describes the situation in Figure 3.1 states 
that the value of weight, w, may be expressed as w = {30 + {31 x + {32a, 
where x = 0 for group 1 and x == 1 for group 2 and "a" denotes age. 
In this model the parameter {31 represents the true difference in weight 
between the two groups and {32 is the rate of change in weight per year 
of age. Suppose that the mean age of group 1 is a1 and the mean age 
of group 2 is a2 • These values are indicated in Figure 3.1. Comparison 
of the mean weight of group 1 to the mean weight of group 2 amounts 
to a comparison of w1 to w2 • In terms of the model this difference is 
( w2 - w1) = /31 + {32 ( a2 - a1). Thus the comparison involves not only the 
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Table 3.10 Descriptive Statistics for Two Groups of 
50 Men on AGE and Whether They Had Seen a 
Physician (PHY) (1 = Yes, 0 = No) Within the Last 
Six Months 

Group 1 Group2 
Variable Mean Std. Dev. Mean Std. Dev 

PHY 0.36 0.485 0.80 0.404 

AGE 39.60 5.272 47.34 5.259 
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true difference between the groups, {31, but a component, {32 ( a2 - a1), 
which reflects the difference between the ages of the groups. 

The process of statistically adjusting for age involves comparing 
the two groups at some common value of age. The value usually used is 
the mean of the two groups which, for the example, is denoted by a in 
Figure 3 .1. In terms of the model this yields a comparison of w 4 to w3 , 

( w 4 - w3) = f3t + {32 (a- a) = f3t' the true difference between the two 
groups. In theory any common value of age could be used, as it would 
yield the same difference between the two lines. The choice of the 
overall mean makes sense for two reasons: it is biologically reasonable 
and lies within the range for which we believe that the association be­
tween age and weight is linear and constant within each group. 

Consider the same situation shown in Figure 3.1, but instead of 
weight being the dependent variable, assume it is a dichotomous variable 
and that the vertical axis denotes the logit. That is, under the model the 
logit is given by the equation g(x,a)=f30 +{31x+f32a. A univariate 
comparison obtained from the 2 x 2 table cross-classifying outcome 
and group would yield a log odds ratio approximately equal to 
/31 + /32 ( a2 - a1). This would incorrectly estimate the effect of group 
due to the difference in the distribution of age. To account or adjust 
for this difference, we include age in the model and calculate the logit 
difference at a common value of age, such as the combined mean, a. 
This logit difference is g(x = l,a)- g(x = O,a) = {31• Thus, the coeffi­
cient {31 is the log odds ratio that we would expect to obtain from a uni­
variate comparison if the two groups had the same distribution of age. 

The data summarized in Table 3.10 provide the basis for an exam­
ple of interpreting the estimated logistic regression coefficient for a di­
chotomous variable when the coefficient is adjusted for a continuous 
variable. 
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It follows from the descriptive statistics in Table 3.10 that the uni­
variate log odds ratio for group 2 versus group 1 is 

In( OR)= In( 0.8/0.2) -In( 0.36/0.64) = 1 .962, 

" and the unadjusted estimated odds ratio is OR = 7.11. We can also see 
that there is a considerable difference in the age distribution of the two 
groups, the men in group 2 being on average more than 7 years older 
than those in group 1. We would guess that much of the apparent dif­
ference in the proportion of men seeing a physician might be due to 
age. Analyzing the data with a bivariate model using a coding of 
GROUP= 0 for group 1, and GROUP= 1 for group 2, yields the esti­
mated logistic regression coefficients shown in Table 3. 11. The age­
adjusted log odds ratio is given by the estimated coefficient for group in 

Table 3.11 and is [31 = 1.263. The age adjusted odds ratio is 
" OR= exp(l .263) = 3.54. Thus, much of the apparent difference between 

the two groups is, in fact, due to differences in age. 
Let us examine this adjustment in more detail using Figure 3. 1. An 

approximation to the unadjusted odds ratio is obtained by exponentiat­
ing the difference w2 - w1• In terms of the fitted logistic regression 
model shown in Table 3.11 this difference is 

[ -4.866 + 1.263 + 0.1 07( 47.34)]- [ -4.866 + 0.1 07(39.60)] = 
1.263 + 0.1 07( 47.34- 39 .60). 

The value of this odds ratio is 

e(L263+0.I07(47.34-39.60)] = 8.09 . 

The discrepancy between 8.09 and the actual unadjusted odds ratio, 
7.11, is due to the fact that the above comparison is based on the differ­
ence in the average logit, while the crude odds ratio is approximately 
equal to a calculation based on the average estimated logistic probability 
for the two groups. The age adjusted odds ratio is obtained by expo­
nentiating the difference w 4 - w3 , which is equal to the estimated coeffi-
cient for GROUP. In the example the difference is 

[-4.866+ 1.263+0. 107(43.47)]- [-4.866+ 0. 107(43.47)] = 1.263' 
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Table 3.11 Results of Fitting the Logistic Regression 
Model to the Data Summarized in Table 3.10 

Variable Coeff. Std. Err. z 
GROUP 1.263 0.5361 2.36 

AGE 0.107 0.0465 2.31 
Constant -4.866 1.9020 -2.56 

Log likelihood= -54.8292 

P>lzl 
0.018 
0.021 
0.011 

69 

Bachand and Hosmer ( 1999) compare two different sets of criteria 
for defining a covariate to be a confounder. They show that the nu­
meric approach used in this Section, examining the change in the mag­
nitude of the coefficient for the risk factor from logistic regression 
models fit with and without the potential confounder, is appropriate 
when the logistic regression model containing both risk factor and con­
founder is not fully S-shaped. A more detailed evaluation is needed 
when the fitted model yields fitted values producing a full S-shaped 
function within the levels of the risk factor. This is discussed in greater 
detail in Chapter 4. 

The method of adjustment when the variables are all dichotomous, 
polychotomous, continuous or a mixture of these is identical to that just 
described for the dichotomous-continuous variable case. For example, 
suppose that instead of treating age as continuous it was dichotomized 
using a cutpoint of 45 years. To obtain the age-adjusted effect of 
group we fit the bivariate model containing the two dichotomous vari­
ables and calculate a logit difference at the two levels of group and a 
common value of the dichotomous variable for age. The procedure is 
similar for any number and mix of variables. Adjusted odds ratios are 
obtained by comparing individuals who differ only in the characteristic 
of interest and have the values of all other variables constant. The ad­
justment is statistical as it only estimates what might be expected to be 
observed had the subjects indeed differed only on the particular char­
acteristic being examined, with all other variables having identical distri­
butions within the two levels of outcome. 

One point should be kept clearly in mind when interpreting statisti­
cally adjusted log odds ratios and odds ratios. The effectiveness of the 
adjustment is entirely dependent on the adequacy of the assumptions of 
the model: linearity and constant slope. Departures from these may 
render the adjustment useless. One such departure, where the relation­
ship is linear but the slopes differ, is called interaction. Modeling inter­
actions is discussed in Section 3.6 and again in Chapter 4. 
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3. 6 INTERACTION AND CONFOUNDING 

In the last section we saw how the inclusion of additional variables in a 
model provides a way of statistically adjusting for potential differences 
in their distributions. The term confounder is used by epidemiologists 
to describe a covariate that is associated with both the outcome variable 
of interest and a primary independent variable or risk factor. When 
both associations are present then the relationship between the risk fac­
tor and the outcome variable is said to be confounded. The procedure 
for adjusting for confounding, described in Section 3.5, is appropriate 
when there is no interaction. In this section we introduce the concept of 
interaction and show how we can control for its effect in the logistic re­
gression model. In addition, we illustrate with an example how con­
founding and interaction may affect the estimated coefficients in the 
model. 

Interaction can take many different forms, so we begin by de­
scribing the situation when it is absent. Consider a model containing a 
dichotomous risk factor variable and a continuous covariate, such as in 
the example discussed in Section 3.5. If the association between the 
covariate (i.e., age) and the outcome variable is the same within each 
level of the risk factor (i.e., group), then there is no interaction between 
the covariate and the risk factor. Graphically, the absence of interaction 
yields a model with two parallel lines, one for each level of the risk fac­
tor variable. In general, the absence of interaction is characterized by a 
model that contains no second or higher order terms involving two or 
more variables. 

When interaction is present, the association between the risk factor 
and the outcome variable differs, or depends in some way on the level 
of the covariate. That is, the covariate modifies the effect of the risk 
factor. Epidemiologists use the term effect modifier to describe a vari­
able that interacts with a risk factor. In the previous example, if the logit 
is linear in age for the men in group 1, then interaction implies that the 
logit does not follow a line with the same slope for the second group. 
In theory, the association in group 2 could be described by almost any 
model except one with the same slope as the logit for group 1. 

The simplest and most commonly used model for including inter­
action is one in which the logit is also linear in the confounder for the 
second group, but with a different slope. Alternative models can be 
formulated which would allow for a relationship that is non-linear be­
tween the logit and the variables in the model within each group. In any 
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Figure 3.2 Plot of the logits under three different models showing the 
presence and absence of interaction. 

model, interaction is incorporated by the inclusion of appropriate 
higher order terms. 

An important step in the process of modeling a set of data is de­
termining whether there is evidence of interaction in the data. This as­
pect of modeling is discussed in Chapter 4. In this section we assume 
that when interaction is present it can be modeled by nonparallel 
straight lines. 

Figure 3.2 presents the graphs of three different logits. In this 
graph, 4 has been added to each of the logits to make plotting more 
convenient. The graphs of these logits are used to explain what is meant 
by interaction. Consider an example where the outcome variable is the 
presence or absence of CHD, the risk factor is sex, and the covariate is 
age. Suppose that the line labeled 11 corresponds to the logit for fe­
males as a function of age. Line 12 represents the logit for males. 
These two lines are parallel to each other, indicating that the relationship 
between age and CHD is the same for males and females. In this situa­
tion there is no interaction and the log odds ratios for sex (male versus 
female), controlling for age, is given by the difference between line /2 
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Table 3.12 Estimated Logistic Regression Coefficients, Devi­
ance, and the Likelihood Ratio Test Statistic (G) for an Example 
Showing Evidence of Confounding but No Interaction (n = 400) 

Model Constant SEX AGE SEXxAGE Deviance G 

1 
2 
3 

0.060 1.981 
-3.374 1.356 0.082 
-4.216 4.239 0.103 -0.062 

419.816 
407.780 
406.392 

12.036 
1.388 

and 11, 12 -11 • This difference is equal to the vertical distance between 
the two lines, which is the same for all ages. 

Suppose instead that the logit for males is given by the line 13 • 

This line is steeper than the line /1, for females, indicating that the rela­
tionship between age and CHD among males is different from that 
among females. When this occurs we say there is an interaction between 
age and sex. The estimate of the log-odds ratios for sex (males versus 
females) controlling for age is still given by the vertical distance be­
tween the lines, 13 -/1, but this difference now depends on the age at 
which the comparison is made. Thus, we cannot estimate the odds ratio 
for sex without first specifying the age at which the comparison is being 
made. In other words, age is an effect modifier. 

Tables 3.12 and 3.13 present the results of fitting a series of logis­
tic regression models to two different sets of hypothetical data. The 
variables in each of the data sets are the same: SEX, AGE, and the out­
come variable CHD. In addition to the estimated coefficients, the devi­
ance for each model is given. Recall that the change in the deviance 
may be used to test for the significance of coefficients for variables 
added to the model. An interaction is added to the model by creating a 
variable that is equal to the product of the value of the SEX and the 
value of AGE. Some programs have syntax that automatically creates 
interaction variables in a statistical model, while others require the user 
to create them through a data modification step. 

Examining the results in Table 3.12 we see that the estimated coef­
ficient for the variable SEX changed from 1.981 in model 1 to 1.356, a 
46 percent decrease, when AGE was added in model 2. Hence, there is 
clear evidence of a confounding effect due to age. When the interaction 
term "SEXXAGE" is added in model 3 we see that the change in the 
deviance is only 1.388 which, when compared to the chi-square distri­
bution with 1 degree of freedom, yields a p-value of 0.24, which is 
clearly not significant. Note that the coefficient for sex changed from 
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Table 3.13 Estimated Logistic Regression Coefficients, 
Deviance, and the Likelihood Ratio Test Statistic (G) 
for an Example Showing 
Interaction (n = 400) 

Model Constant SEX 
1 0.201 2.386 
2 -6.672 I .274 

Evidence of Confounding and 

AGE SEXxAGE Deviance 

0.166 
3 -4.825 -7.838 0.121 0.205 

376.712 
338.688 
330.654 

G 

38.024 
8.034 
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1.356 to 4.239. This is not surprising since the inclusion of an interac­
tion term, especially when it involves a continuous variable, usually pro­
duces fairly marked changes in the estimated coefficients of dichoto­
mous variables involved in the interaction. Thus, when an interaction 
term is present in the model we cannot assess confounding via the 
change in a coefficient. For these data we would prefer to use model 2 
that suggests age is a confounder but not an effect modifier. 

The results in Table 3:13 show evidence of both confounding and 
interaction due to age. Comparing model 1 to model 2 we see that the 
coefficient for sex changes from 2.386 to 1.274, an 87 percent de­
crease. When the age by sex interaction is added to the model we see 
that the change in the deviance is 8.034 with a p-value of 0.005. Since 
the change in the deviance is significant, we prefer model 3 to model 2, 
and should regard age as both a confounder and an effect modifier. 
The net result is that any estimate of the odds ratio for sex should be 
made with reference to a specific age. 

Hence, we see that determining whether a covariate, X, is an effect 
modifier and/or a confounder involves several issues. The plots of the 
logits shown in Figure 3.2 show us that determining effect modification 
status involves the parametric structure of the logit, while determination 
of confounder status involves two things. First the covariate must be 
associated with the outcome variable. This implies that the logit must 
have a nonzero slope in the covariate. Second the covariate must be 
associated with the risk factor. In our example this is characterized by 
having a difference in the mean age for males and females. However, 
the association may be more complex than a simple difference in 
means. The essence is that we have incomparability in our risk factor 
groups. This incomparability must be accounted for in the model if we 
are to obtain a correct, unconfounded, estimate of effect for the risk 
factor. 
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In practice, one method to check for the confounder status of a 
covariate is to compare the estimated coefficient for the risk factor vari­
able from models containing and not containing the covariate. Any 
"clinically important" change in the estimated coefficient for the risk 
factor suggests that the covariate is a confounder and should be in­
cluded in the model, regardless of the statistical significance of its esti­
mated coefficient. As noted above, Bachand and Hosmer ( 1999) show 
that the change in coefficient method does not always provide evidence 
that a variable is a confounder and a more detailed evaluation may be 
required. We return to this point in Chapter 4. 

On the other hand, we believe that a covariate is an effect modifier 
only when the interaction term added to the model is both clinically 
meaningful and statistically significant. When a covariate is an effect 
modifier, its status as a confounder is of secondary importance since the 
estimate of the effect of the risk factor depends on the specific value of 
the covariate. 

The concepts of adjustment, confounding, interaction, and effect 
modification, may be extended to cover the situations involving any 
number of variables on any measurement scale(s). The dichotomous­
continuous variables example illustrated in this section has the advan­
tage that the results are easily shown graphically. This is not the case 
with more complicated models. The principles for identification and 
inclusion of confounder and interaction variables in the model are the 
same regardless of the number of variables and their measurement 
scales. 

3. 7 ESTIMATION OF ODDS RATIOS IN THE 
PRESENCE OF INTERACTION 

In Section 3.6 we showed that when there was interaction between a risk 
factor and another variable, the estimate of the odds ratio for the risk 
factor depends on the value of the variable that is interacting with it. In 
this situation we may not be able to estimate the odds ratio by simply 
exponentiating an estimated coefficient. One approach that will always 
yield the correct model-based estimate is to (1) write down the expres­
sions for the logit at the two levels of the risk factor being compared, (2) 
algebraically simplify the difference between the two logits and com­
pute its value (3) exponentiate the value obtained in step 2. 

As a first example, we develop the method for a model containing 
only two variables and their interaction. In this model, denote the risk 
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factor as F, the covariate as X and their interaction as F x X. The logit 
for this model evaluated at F = f and X = x is 

(3.9) 

Assume we want the odds ratio comparing two levels of F, F = iJ versus 
and F = f 0 , at X= x. Following the three step procedure first we evalu­
ate the expressions for the two logits yielding 

and 

Second we compute and simplify their difference to obtain the log-odds 
ratio yielding 

In[ OR( F = iJ, F = fo, X = x)] = g(IJ, x) - g(f0 , x) 

= (f3o + f3tiJ + f12x + f331J X x) 
- (f3o + f3tfo + f12x + f3do X x) 

= f3t(.ft- fo)+ f33x(IJ- fo)· (3.10) 

Third we obtain the odds ratio by exponentiating the difference ob­
tained at step 2 yielding 

(3 .11) 

Note that the expression for the log-odds ratio in (3 .1 0) does not sim­
plify to a single coefficient. Instead, it involves two coefficients, the dif­
ference in the values of the risk factor and the interaction variable. The 
estimator of the log-odds ratio is obtained by replacing the parameters 
in (3.10) and (3.11) with their estimators. 

We obtain the endpoints of the confidence interval estimator 
using the same approach used for models without interactions. We cal­
culate the endpoints for the confidence interval for the log-odds ratio 
and then exponentiate the end points. The basic building block of the 
endpoints is the estimator of the variance of the estimator of the log-



76 INTERPRETATION OF THE FmED MODEL 

odds ratio in (3.10). Using methods for calculating the variance of a 
sum we obtain the following estimator, 

(3.12) 

+[x(J;- fo)t xV~r(,B3 )+2x(J;- fo)2 xCov(,Bp,B3). 

Most logistic regression computer packages have the option to provide 
output showing estimates of the variances and covariances of the esti­
mated parameters in the model. Substitution of these estimates into 
(3.12) obtains an estimate of the variance of the estimated log-odds ra­
tio. The endpoints of a 100 x (1- a)% confidence interval estimator for 
the log-odds ratio are: 

[.81 (J; - fo) + ,83x(J; - fo)) 

± Z]-a/2sE:{tn[oR(F = J;,F = fo,X = x)]}. (3.13) 

where the standard error in (3.13) is the positive square root of the vari­
ance estimator in (3.12). We obtain the endpoints of the confidence 
interval estimator for the odds ratio by exponentiating the endpoints in 
(3.13). 

The estimators for the log-odds and its variance simplify in the case 
when F is a dichotomous risk factor. If we let J; = l and / 0 = 0 then the 
estimator of the log-odds ratio is 

In[ OR( F = 1, F = 0, X = x)] = ,81 + ,83x, (3.14) 

the estimator of the variance is 

V~r{In[oR(F= l,F=O,X = x)]} 
= V~r(P1 )+x2V~r(P3 )+ 2xCov(P]'P3) (3.15) 

and the endpoints of the confidence interval are 

(3.16) 
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Table 3.14 Estimated Logistic Regression Coefficients, 
Deviance, the Likelihood Ratio Test Statistic (G), and the 
p-value for the Change for Models Containing L WD and 
AGE from the Low Birthweight Data (n = 189) 

Model Constant LWD AGE LWD><AGE ln(l(fJ)] G P 

0 
1 
2 
3 

-0.790 
-1.054 1.054 
-0.027 1.010 -0.044 

0.774 -1.944 -0.080 

-117.34 
-113.12 
-112.14 

0.132 -110.57 

8.44 0.004 
1.96 0.160 
3.14 0.076 

As an example, we consider a logistic regression model using the 
low birth weight data described in Section 1.6 containing the variables 
AGE and a dichotomous variable, LWD, based on the weight of the 
mother at the last menstrual period. This variable takes on the value 1 if 
L WT < 110 pounds, and is zero otherwise. The results of fitting a series 
of logistic regression models are given in Table 3.14. 

Using the estimated coefficient for LWD in model 1 we estimate the 
odds ratio as exp(1.054)= 2.87. The results shown in Table 3.14 indi-

cate that AGE is not a strong confounder, !!.P% = 4.2, but it does inter­
act with LWD, p = 0.076. Thus, to assess the risk of low weight at the 
last menstrual period correctly we must include the interaction of this 
variable with the women's age because the odds ratio is not constant 
over age. 

An effective way to see the presence of interaction is via a graph of 
the estimated logit under model 3 in Table 3 .14. This is shown in Fig 
ure 3.3. The upper line in Figure 3.3 corresponds to the estimated logit 
for women with L WD = 1 and the lower line is for women with 
LWD = 0. Separate plotting symbols have been used for the two L WD 
groups. The estimated log-odds ratio for LWD = 1 versus LWD = 0 at 
AGE= x from (3.14) is equal to the vertical distance between the two 
lines at AGE= x. We can see in Figure 3.3 that this distance is nearly 
zero at 15 years and progressively increases. Since the vertical distance 
is not constant we must choose a few specific ages for estimating the 
effect of low weight at the last menstrual period. We can see in Figure 
3.3 that none of the women in the low weight group, LWD = 1, are older 
than about 33 years. Thus we should restrict our estimates of the effect 
of low weight to the range of 14 to 33 years. Based on these observa­
tions we estimate the effect of low weight at 15, 20, 25 and 30 years of 
age. 
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.6 LWD= 1 

LWD=O 

-3 

10 15 20 25 30 35 40 45 
AGE 

Figure 3.3 Plot of the estimated logit for women with LWD = 1 and for 
women with LWD=O from Model3 in Table 3.17. 

Using (3.14) and the results for model 3 the estimated log-odds 
ratio for low weight at the last menstrual period for a women of AGE = 
a is 

ln[OR(LWD = 1,LWD = O,AGE =a)]= -1.944+0.132a. (3.17) 

In order to obtain the estimated variance we must first obtain the 
estimated covariance matrix for the estimated parameters. Since this 
matrix is symmetric most logistic regression software packages print the 

Table 3.15 Estimated Covariance Matrix for the 
Estimated Parameters in Model 3 of Table 3 14 . 
Constant 0.828 
LWD -0.828 2.975 
AGE -0.353-02 -0.353-01 0.157-02 
LWDxAGE -0.353-01 -0.128 -0.157-02 0.573-02 

Constant LWD AGE LWDxAGE 
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Table 3.16 Estimated Odds Ratios and 95% Confidence 
Intervals for LWD1 Controlling for AGE 

Age 15 20 25 30 
OR l.04 2.01 3.90 7.55 

95% CIE 0.29, 3.79 0.91, 4.44 1.71, 8.88 1.95, 29.19 

results in the form similar to that shown in Table 3.15. 
The estimated variance of the log-odds ratio given (3.16) is ob­

tained from (3.14) and is 

var{ln[OR(LWD = 1,LWD = O,AGE =a)]} 
= 2.975+a2 x0.0057 +2 xa x(-0.128). (3.19) 

Values of the estimated odds ratio and 95% CI computed using 
(3.16) and (3.19) for several ages are given in Table 3.16. The results 
shown in Table 3.16 demonstrate that the effect of LWD on the odds of 
having a low birth weight baby increase exponentially with age. The 
results also show that the increase in risk is significant for low weight 
women 25 years and older. In particular low weight women of age 3 0 
are estimated to have a risk that is about 7.5 times that of women of the 
same age who are not low weight. The increase in risk could be as little 
as two times or as much as 29 times with 95 percent confidence. 

3.8 A COMPARISON OF LOGISTIC REGRESSION 
AND STRATIFIED ANALYSIS FOR 2 x 2 TABLES 

Many users of logistic regression, especially those coming from a back­
ground in epidemiology, have performed stratified analyses of 2x2 ta­
bles to assess interaction and to control confounding. The essential ob­
jective of such analyses is to determine whether the odds ratios are con­
stant, or homogeneous, over the strata. If the odds ratios are constant, 
then a stratified odds ratio estimator such as the Mantel-Haenszel esti­
mator or the weighted logit-based estimator is computed. This same 
analysis may also be performed using the logistic regression modeling 
techniques discussed in Sections 3.6 and 3.7. In this section we com­
pare these two approaches. An example from the low birth weight data 
illustrates the similarities and differences in the two approaches. 
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Table 3.17 Cross-Classification of Low Birth 
Weight by Smoking Status 

SMOKE 
0 Total 

1 30 29 59 

LOW 
0 44 86 130 

Total 74 115 189 

Consider an analysis of the risk factor smoking on low birth 
weight. The crude (or unadjusted) odds ratio computed from the 2x2 
table shown in Table 3.17, cross-classifying the outcome variable LOW 

"' with SMOKE, is OR= 2.02. 
Table 3.18 presents these data stratifying by the race of the mother. 

We can use these tables as the basis for computing either the Mantel­
Haenszel estimate or the logit-based estimate of the odds ratio. 

The Mantel-Haenszel estimator is a weighted average of the stratum 

specific odds ratios, OR;={a;Xd;)/{b;Xc;),where a;, b;. c;, andd; are 

the observed cell frequencies in the 2x2 table for stratum i. For exam­
ple, in stratum 1 a1 = 19, b1 = 4, c1 = 33, and d1 = 40 and the total num­
ber of subjects is N1 = 96. The Mantel-Haenszel estimator of the odds 
ratio is defined in this case as follows: 

"' ""\:'a.xd/N. 
OR _,£..J1 I I 

MH- ""\:' · 
£..Jbi XC; IN; 

(3.20) 

Evaluating (3.20) using the data in Table 3.18 yields the Mantel­
Haensze1 estimate 

OR = 13.067 = 3.09. 
MH 4.234 
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The logit-based summary estimator of the odds ratio is a weighted 
average of the stratum specific log-odds ratios where each weight is the 
inverse of the variance of the stratum specific log-odds ratio, 

(3.21) 

Table 3.19 presents the estimated odds ratio, log-odds ratio, esti­
mate of the variance of the log~odds ratio and the weight, w. 

The logit-based estimator based on the data in Table 3.18 is 

ORL = exp(7.109j6.582) = 2.95, 

Table 3.18 Cross-Classification of Low 
Birth Weight by Smoking Status Stratified 
bl: RACE 
White 

SMOKE 
1 0 Total 

19 4 23 
LOW 

0 33 40 73 
Total 52 44 96 

Black 
SMOKE 
1 0 Total 

6 5 11 
LOW 

0 4 11 15 
Total 10 16 26 

Other 
SMOKE 

0 Total 

5 20 25 
LOW 

0 7 35 42 
Total 12 55 67 
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Table 3.19 Tabulation of the Estimated Odds 
Ratios, ln(Estimated Odds Ratios), Estimated 
Variance of the Jn(Estimated Odds Ratios), and the 
Inverse of the Estimated Variance, w, for Smoking 
Status Within Each Stratum of RACE 

" OR 
" In( OR) 

" var[ln(OR)] 
w 

White Black 
5.758 3.300 
1.751 

0.358 

2.794 

1.194 

0.708 

1.413 

Other 
1.250 
0.223 

0.421 

2.375 

which is slightly smaller than the Mantel-Haenszel estimate. The high 
fluctuation in the odds ratio across the race strata suggests that there 
may be either confounding or effect modification due to RACE, or 
both. In general, the Mantel-Haenszel estimator and the logit based es­
timator are similar when the data are not too sparse within the strata. 
One considerable advantage of the Mantel-Haenszel estimator is that it 
may be computed when some of the cell entries are zero. 

It is important to note that these estimators provide a correct esti­
mate of the effect of the risk factor only when the odds ratio is constant 
across the strata. Thus, a crucial step in the stratified analysis is to assess 
the validity of this assumption. Statistical tests of this assumption are 
based on a comparison of the stratum specific estimates to an overall 
estimate computed under the assumption that the odds ratio is, in fact, 
constant. The simplest and most easily computed test of the homoge­
neity of the odds ratios across strata is based on a weighted sum of the 
squared deviations of the stratum specific log-odds ratios from their 
weighted mean. This test statistic, in terms of the current notation, is 

(3.22) 

Under the hypothesis that the odds ratios are constant, X1 has a chi­
square distribution with degrees-of-freedom equal to the number of 
strata minus 1. Thus, we would reject the homogeneity assumption 
when X1 is large. 
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Using the data in Table 3.19 we have X~ = 3.017 which, with 2 de­
grees-of-freedom, yields a p-value of 0.221. Thus, in spite of the ap­
parent differences in the odds ratios seen in Table 3.19, the logit-based 
test of homogeneity indicates that they are within sampling variation of 
each other. It should be noted that the p-value calculated from the chi­
square distribution is accurate only when the sample sizes are not too 
small within each stratum. This condition holds in this example. 

Another test that also may be calculated by hand, but not as easily, 
is discussed in Breslow and Day (1980) and is corrected by Tarone 
(1985). This test compares the value of a1 to an estimated expected 
value, e1, if the odds ratio is constant. As noted by Breslow (1996) the 
correct formula for the test statistic is 

(3.23) 

The quantity e1 is obtained as one of the solutions to a quadratic equa­
tion given by the following formula 

" where n11 = a1 + b1, m11 = a1 + c1 and n01 = c1 + d1• The quantity OR in 
" (3.24) is an estimate of the common odds ratio and either ORL or 

ORMH may be used. The quantity v1 is an estimate of the variance of 
a; computed under the assumption of a common odds ratio and is 

A ( 1 1 1 1 )-I v.=-+ + +-, A A A A 

e1 n11 - e1 mli - e1 n01 - m1; + e1 

(3.25) 

" If we use the value of the Mantel-Haenszel estimate, ORMH = 3.086 in 
(3.23) then the resulting values of e and v are: el =17.01, v, =3.56, 
e2 =5.91, v2 =1.43, e3 =7.16, and v3 =2.33. The value of the Breslow­
Day statistic obtained is X~0 = 3.11-0.0081 = 3.10, which is similar to 
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Table 3.20 Estimated Logistic Regression Coefficients for 
the Variable SMOKE, Log-Likelihood, the Likelihood Ratio 
Test Statistic (G), and Resulting p-Value for Estimation of 
the Stratified Odds Ratio and Assessment of Homogeneity of 
Odds Ratios Across Strata Defined by RACE 

Model SMOKE Log-Likelihood G 

1 0.704 -114.90 
2 1.116 -109.99 9.83 
3 1.751 -108.41 3.16 

2 
2 

p 

0.007 
0.206 

the value of the logit-based test. Some packages, for example SAS, re­
port the value of the first term in (3.23) as the Breslow-Day test 

The same analysis may be performed much more easily by fitting 
three logistic regression models. In model 1 we include only the vari­
able SMOKE. We then add the two design variables for RACE to obtain 
model 2. For model 3 we add the two RACExSMOKE interaction 
terms. The results of fitting these models are shown in Table 3.20. 
Since we are primarily interested in the estimates of the coefficient for 
SMOKE, the estimates of the coefficients for RACE and the RACE 
xSMOKE interactions are not shown in Table 3.20. 

Using the estimated coefficients in Table 3.20 we have the follow-
" ing estimated odds ratios. The crude odds ratio is OR= exp(0.704) 
" = 2.02. Adjusting for RACE, the stratified estimate is OR = exp(1.116) 

= 3.05. This value is the maximum likelihood estimate of the estimated 
odds ratio, and it is similar in value to both the Mantel-Haenszel esti-

" " mate, ORMH =3.086, and the logit-based estimate, ORL =2.95. The 
change in the estimate of the odds ratio from the crude to the adjusted is 
2.02 to 3.05, indicating considerable confounding due to RACE. 

Assessment of the homogeneity of the odds ratios across the strata 
is based on the likelihood ratio test of model 2 versus model 3. The 
value of this statistic from Table 3.20 is G = 3.156. This statistic is 
compared to a chi-square distribution with 2 degrees-of-freedom, since 
two interaction terms were added to model 2 to obtain model 3. This 
test statistic is comparable to the ones from the logit-based test, X~, and 
the Bres1ow-Day test, X~n- If we had used the maximum likelihood es­
timate of the stratified odds ratio, exp(l.l16), in computing the 
Breslow-Day test, then the resulting statistic would have been equal to 
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the Pearson chi-square goodness-of-fit test of model 2, since model 3 is the 
saturated model. 

The previously described analysis based on likelihood ratio tests may 
be used when the data have either been grouped into contingency tables in 
advance of the analysis, such as those shown in Table 3.17, or have re­
mained in casewise form. When the data have been grouped it is possible 
to point out other similarities between classical analysis of stratified 2x2 

tables and an analysis using logistic regression. Day and Byar (1979) have 
shown that the 1 degree of freedom Mantel-Haenszel test of the hypothesis 
that the stratum specific odds ratios are 1 is identical to the Score test for 
the exposure variable when added to a logistic regression model already 
containing the stratification variable. This test statistic may be easily ob­
tained from a logistic regression package with the capability to perform 
Score tests such as the EGRET or SAS packages. 

Thus, use of the logistic regression model provides a fast and effec­
tive way to obtain a stratified odds ratio estimator and to assess easily the 
assumption of homogeneity of odds ratios across strata. 

3.9 INTERPRETATION OF THE FITTED VALUES 

In previous sections in this chapter we discussed use of estimated coeffi­
cients to construct estimated odds in a number of settings typically en­
countered in practice. In our experience this accounts for the vast majority 
of the use of logistic regression modeling in applied settings. However 
there are situations where the fitted values from the model are equally, if 
not more, important. For example, Lemeshow, Teres, Klar, Avrunin, 
Gehlbach and Rapoport (1993) used logistic regression modeling methods 
to estimate a patient's probability of hospital mortality after admission to 
an intensive care unit.. We discussed in Section 1.4 and Section 2.5 the 
basic methods for computing the fitted values and confidence interval es­
timates. In this section, we expand on this work and include graphical 
presentation of fitted values and confidence bands. In addition we discuss 
prediction of the outcome for a subject not in the estimation sample. 

As an example consider the model fit to the low birth weight data 
shown in Table 2.3. In Section 2.5 we illustrated the computations for a 
150 pound white woman. A subject with these values was among the 189 
subjects in the data set; thus estimates of the fitted value, logit and standard 
error of the logit are readily available from standard output. 

Suppose instead that we wanted to present a graph illustrating the ef­
fect of weight of the mother at the last menstrual period on birth weight 
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Figure 3.4 Graph of the estimated logit of low weight birth and 95 percent 
confidence intervals as a function of weight at the last menstrual period for white 
women. 

holding race constant and equal to white. To accomplish this we take ad­
vantage of the fact that we can obtain the values of (2.6) and (2. 7) for all 
subjects in the data set used to fit the model from standard logistic regres­
sion software. The graph for the estimated logit and its confidence bands 
is presented in Figure 3.4. The point and interval estimates for the logit are 
easily transformed to corresponding point and interval estimates for the 
logistic probability using the fundamental relationship between the two, 
see (1.19) and (1.21). These are presented in Figure 3.5. Note that we 
could have presented graphs for any of the three racial groups or for all 
three racial groups on the same graph. We arbitrarily chose the white 
mothers in order to keep the graph from getting unnecessarily complicated. 
The estimates in the figures are plotted at each observed value of L WT for 
the 96 white mothers. The estimated logit and probability decrease due to 
the fact that the estimated coefficient for LWT in Table 2.3 is negative. 
Note that the confidence bands in Figure 3.4 are narrowest near the mean 
value of L WT, approximately 130 pounds. The width increases in the 
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same hyperbolic manner seen in similar plots from fitted linear regression 
models. The same pattern, transformed, can be seen in Figure 3.5. 

Each point, and associated confidence interval, in Figure 3.5 is an es­
timate of the mean of the outcome, low birthweight, among white mothers 
of the specified value of L WT. Using the results in Section 2.5 at 150 
pounds the point and interval estimates are 0.191 and (0.120, 0.289) re­
spectively. The interpretation is that estimated proportion of low weight 
births among 150 pound white women is 0.191 and it could be as low as 
0.12 or as high as 0.289 with 95 percent confidence. We would interpret 
estimates and confidence intervals at other values of LWT in a similar 
manner. 

Suppose we wanted to use our fitted model to estimate the probability 
of low birthweight for a population of women not represented in the 189 in 
the estimation sample. As an example, suppose 150-pound black women. 
We obtain the value of the estimated logit from (2.6) using the estimated 
coefficients in Table 2.3 as follows 

g(LWT == 150,RACE =Black)= 0.806-0.015 x 150+1.081 x 1 + 0.481 xO 

=-0.363 

.6 

~ .45 

:g 
.0 
0 ... 

Q., 
.3 "0 

0 
E 
.g 
"' J;l.l 

.15 

0 
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Figure 3.5 Graph of the estimated probability of low weight birth and 95 
percent confidence intervals as a function of weight at the last menstrual 
neriod for white women. 

250 
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and the estimated logistic probability is 

~ e-0.363 

7r(LWT=150,RACE=Black)= 
1

+e-<J.363 =0.410. 

The interpretation is the same as for patterns of data seen in the estimation 
sample. Namely, the model estimates that the 41 percent of 150 pound 
black women will have a low birthweight baby. 

In order to obtain the confidence interval for this estimate we need to 
evaluate (2. 7) or (2.9) using the covariance matrix in Table 2.4 with the 
data vector x' = (1, 150, 1, 0 ). The resulting standard error from this com­
putation is 

SE[g(LWT = 150,RACE =Black)]= .1725, 

yielding a 95 percent confidence interval for the probability of 
(0.331, 0.494). The interpretation of this interval is that the proportion of 

150 pound black women who give birth to a low weight baby could be as 
little as 0.331 or as high as 0.494 (with 95 percent confidence). 

As is the case with any regression model we must take care not to 
extend model-based inferences out of the observed range of the data. The 
range of weight at the last menstrual period among the 26 black mothers is 
98 to 241 pounds. We note that 150 pounds is well within this range. It is 
also important to keep in mind that any estimate is only as good as the 
model it is based on. In this section we did not attend to many of the im­
portant model building details that are discussed in Chapter 4. We have 
implicitly assumed that these steps have been performed. 

EXERCISES 

1. Consider the ICU data described in Section 1.6.1 and use as the outcome 
variable vital status (ST A) and CPR prior to ICU admission (CPR) as a 
covariate. 

(a) Demonstrate that the value of the log-odds ratio obtained from the 
cross-classification of ST A by CPR is identical to the estimated 
slope coefficient from the logistic regression of ST A on CPR. 
Verify that the estimated standard error of the estimated slope co­
efficient for CPR obtained from the logistic regression package is 
identical to the square root of the sum of the inverse of the cell fre-
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quencies from the cross-classification of STA by CPR. Use either 
set of computations to obtain 95% CI for the odds ratio. What as­
pect concerning the coding of the variable CPR makes the calcula­
tions for the two methods equivalent? 

(b) For purposes of illustration, use a data transformation statement to 
recode, for this problem only, the variable CPR as follows: 4 = no 
and 2 = yes. Perform the logistic regression of STA on CPR 
(recoded). Demonstrate how the calculation of the logit difference 
of CPR = yes versus CPR = no is equivalent to the value of the 
log-odds ratio obtained in problem 1(a). Use the results from the 
logistic regression to obtain the 95% CI for the odds ratio and ver­
ify that they are the same limits as obtained in Exercise 1 (a). 

(c) Consider the ICU data and use as the outcome variable vital status 
(STA) and race (RACE) as a covariate. Prepare a table showing 
the coding of the two design variables for RACE using the value 
RACE = 1, white, as the reference group. Show that the estimated 
log-odds ratios obtained from the cross-classification of STA by 
RACE, using RACE = 1 as the reference group, are identical to 
estimated slope coefficients for the two design variables from the 
logistic regression of STA on RACE. Verify that the estimated 
standard errors of the estimated slope coefficients for the two de­
sign variables for RACE are identical to the square root of the sum 
of the inverse of the cell frequencies from the cross-classification 
of STA by RACE used to calculate the odds ratio. Use either set 
of computations to compute the 95% CI for the odds ratios. 

(d) Create design variables for RACE using the method typically em­
ployed in ANOVA. Perform the logistic regression of STA on 
RACE. Show by calculation that the estimated logit differences of 
RACE= 2 versus RACE= 1 and RACE= 3 versus RACE= I are 
equivalent to the values of the log-odds ratio obtained in problem 
1 (c). Use the results of the logistic regression to obtain the 95% CI 
for the odds ratios and verify that they are the same limits as ob­
tained in Exercise 1 (c). Note that the estimated covariance matrix 
for the estimated coefficients is needed to obtain the estimated 
variances of the logit differences. 

(e) Consider the variable AGE in the ICU data set. Prepare a table 
showing the coding of three design variables based on the empiri­
cal quartiles of AGE using the first quartile as the reference group. 
Fit the logistic regression of ST A on AGE as recoded into these 
design variables and plot the three estimated slope coefficients ver­
sus the midpoint of the respective age quartile. Plot as a fourth 
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point a value of zero at the midpoint of the first quartile of age. 
Does this plot suggest that the logit is linear in age? 

(f) Consider the logistic regression of ST A on CRN and AGE. Con­
sider CRN to be the risk factor and show that AGE is a confounder 
of the association of CRN with ST A. Addition of the interaction 
of AGE by CRN presents an interesting modeling dilemma. Ex­
amine the main effects only and interaction models graphically. 
Using the graphical results and any significance tests you feel are 
needed, select the best model (main effects or interaction) and jus­
tify your choice. Estimate relevant odds ratios. Repeat this analy­
sis of confounding and interaction for a model that includes CPR 
as the risk factor and AGE as the potential confounding variable. 

(g) Consider an analysis for confounding and interaction for the model 
with ST A as the outcome, CAN as the risk factor, and TYP as the 
potential confounding variable. Perform this analysis using logis­
tic regression modeling and Mantel-Haenszel analysis. Compare 
the results of the two approaches. 

2. Use the data from the Prostatic Cancer Study described in Section 1.6.3 
to answer the following questions: 

(a) By fitting a series of logistic regression models show that RACE is 
not a confounder of the PSA CAPSULE odds ratio but is an effect 
modifier (at the 10 percent level). 

(b) Graph the estimated logits from the interactions model versus PSA 
and interpret the two lines that appear on the graph. Use the graph 
to illustrate the log-odds of Black versus White for a subject with 
PSA = 7. Use the graph to illustrate the log-odds for a 5-unit in­
crease in PSA for Whites and for Blacks. 

(c) Estimate the point and 95 percent confidence interval estimates of 
the odds ratios corresponding to each of the log-odds illustrated in 
problem 2(b). Add the 95 percent confidence bands to the graph of 
the estimated logits from the interactions model in Exercise 2(b). 
Transform the lines and bands in this plot to obtain a plot of the 
estimated probability with its 95 percent confidence bands. Use 
the graph to estimate, point and interval, the probability of pene­
tration for both a White and Black with PSA = 7. Interpret the two 
point and interval estimates. 



CHAPTER 4 

Model-B~ilding Strategies and 
Methods for Logistic Regression 

4.1 INTRODUCTION 

In the previous chapters we focused on estimating, testing, and inter­
preting the coefficients in a logistic regression model. The examples 
discussed were characterized by having few independent variables, and 
there was perceived to be only one possible model. While there may be 
situations where this is the case, it is more typical that there are many 
independent variables that could potentially be included in the model. 
Hence, we need to develop a strategy and associated methods for han­
dling these more complex situations. 

The goal of any methgd is to select those variables that result in a 
"best" model within the scientific context of the problem. In order to 
achieve this goal we must have: (1) a basic plan for selecting the vari­
ables for the model and (2) a set of methods for assessing the adequacy 
of the model both in terms of its individual variables and its overall fit. 
We suggest a general strategy that considers both of these areas. 

The methods to be discussed in this chapter are not to be used as a 
substitute for, but rather as an addition to, clear and careful thought. 
Successful modeling of a complex data set is part science, part statistical 
methods, and part experience and common sense. It is our goal to pro­
vide the reader with a paradigm that, when applied thoughtfully, yields 
the best possible model within the constraints of the available data. 

91 
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4. 2 VARIABLE SELECTION 

The criteria for including a variable in a model may vary from one 
problem to the next and from one scientific discipline to another. The 
traditional approach to statistical model building involves seeking the 
most parsimonious model that still explains the data. The rationale for 
minimizing the number of variables in the model is that the resultant 
model is more likely to be numerically stable, and is more easily gener­
alized. The more variables included in a model, the greater the esti­
mated standard errors become, and the more dependent the model be­
comes on the observed data. Epidemiologic methodologists suggest 
including all clinically and intuitively relevant variables in the model, 
regardless of their "statistical significance." The rationale for this ap­
proach is to provide as complete control of confounding as possible 
within the given data set. This is based on the fact that it is possible for 
individual variables not to exhibit strong confounding, but when taken 
collectively, considerable confounding can be present in the data, see 
Rothman and Geenland (1998), Maldonado and Greenland (1993 ), 
Greenland (1989) and Miettinen (1976). The major problem with this 
approach is that the model may be "overfit," producing numerically 
unstable estimates. Overfitting is typically characterized by unrealisti­
cally large estimated coefficients and/or estimated standard errors. This 
may be especially troublesome in problems where the number of vari­
ables in the model is large relative to the number of subjects and/or 
when the overall proportion responding (y = 1) is close to either 0 or 1 . 

In an excellent tutorial paper, Harrel, Lee and Mark (1996) discuss 
overfitting along with other model building issues. 

There are several steps one can follow to aid in the selection of 
variables for a logistic regression model. The process of model build­
ing is quite similar to the one used in linear regression. 

(1) The selection process should begin with a careful univariable 
analysis of each variable. For nominal, ordinal, and continuous vari­
ables with few integer values, we suggest this be done with a contingency 
table of outcome (y = 0,1) versus the k levels of the independent vari­

able. The likelihood ratio chi-square test with k -1 degrees-of-freedom 
is exactly equal to the value of the likelihood ratio test for the signifi­
cance of the coefficients for the k -1 design variables in a univariable 
logistic regression model that contains that single independent variable. 
Since the Pearson chi-square test is asymptotically equivalent to the 
likelihood ratio chi-square test, it may also be used. In addition to the 
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overall test, it is a good idea, for those variables exhibiting at least a 
moderate level of association, to estimate the individual odds ratios 
(along with confidence limits) using one of the levels as the reference 
group. 

Particular attention should be paid to any contingency table with a 
zero cell. This yields a point estimate for one of the odds ratios of ei­
ther zero or infinity. Including such a variable in any logistic regres­
sion program causes undesirable numerical outcomes to occur. These 
are addressed in the last section of this chapter. Strategies for handling 
the zero cell include: collapsing the categories of the independent vari­
able in some sensible fashion to eliminate the zero cell; eliminating the 
category completely; or, if the variable is ordinal scaled, modeling the 
variable as if it were continuous. 

For continuous variables, the most desirable univariable analysis 
involves fitting a univariable logistic regression model to obtain the es­
timated coefficient, the estimated standard error, the likelihood ratio test 
for the significance of the coefficient, and the univariable Wald statistic. 
An alternative analysis, which is equivalent at the univariable level, may 
be based on the two-sample t-test. Descriptive statistics available from a 
two-sample t-test analysis generally include group means, standard de­
viations, the t statistic, and its p-value. The similarity of this approach to 
the logistic regression analysis follows from the fact that the univariable 
linear discriminant function estimate of the logistic regression coeffi­
cient is 

and that the linear discriminant function and the maximum likelihood 
estimate of the logistic regression coefficient are usually quite close 
when the independent variable is approximately normally distributed 
within each of the outcome groups, y =0,1, [see Halpern, Blackwelder, 
and Verter (1971)]. Thus, univariable analysis based on the t-test 
should be useful in determining whether the variable should be included 
in the model, since the p-value should be of the same order of magni­
tude as that of the Wald statistic, Score test, or likelihood ratio test from 
logistic regression. 

For continuous covariates, we may wish to supplement the evalua­
tion of the univariable logistic fit with some sort of smoothed scatter­
plot. This plot is helpful, not only in ascertaining the potential impor-
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tance of the variable and possible presence and effect of extreme (large 
or small) observations, but also its appropriate scale. One simple and 
easily computed form of a smoothed scatterplot was illustrated in Figure 
1.2 using the data in Table 1.2. Other more complicated methods that 
have greater precision are available. 

Kay and Little ( 1987) illustrate the use of a method proposed by 
Copas (1983). This method requires computing a smoothed value for 
the response variable for each subject that is a weighted average of the 
values of the outcome variable over all subjects. The weight for each 
subject is a continuous decreasing function of the distance of the value 
of the covariate for the subject under consideration from the value of 
the covariate for all other cases. For example, for covariate x for the ith 
subject we compute 

where w (x;,xj) represents a particular weight function. For example if 

we use STAT A's scatterplot smooth command, ksm, with the weight op­
tion and band width k, then 

where ~ is defined so that the maximum value for the weight is ::::; 1 and 
the two indices defining the summation, i1 and iu, include the k percent 
of the n subjects with x values closest to X;. Other weight functions are 
possible as well as additional smoothing using locally weighted least 
squares regression, called lowess in some packages. See Cleveland 
( 1993) for a more complete discussion of scatterplot smoothing meth­
ods. In general, when using STATA, we prefer to use the lowess option 
with a band width of k = 80. We plot the triplet {x;, Y;. )i; ), i.e., observed 
and smoothed values of y on the same set of axes. The shape of the 
smoothed plot should provide some idea about the parametric relation­
ship between the outcome and the covariate. Some packages, including 
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STATA, provide the option for plotting the smoothed values on the 
logit scale, thus making it a little easier to make decisions about the pos­
sible scale of the covariate. 

We discuss and illustrate methods for identification of the scale of 
continuous covariates in the logit later in this section. 

(2) Upon completion of the univariable analyses, we select variables 
for the multivariable analysis. Any variable whose univariable test has a 
p-value < 0.25 is a candidate for the multivariable model along with all 
variables of known clinical importance. Once the variables have been 
identified, we begin with a model containing all of the selected variables. 

Our recommendation that 0.25 level be used as a screening crite­
rion for variable selection is based on the work by Bendel and Afifi 
(1977) on linear regression and on the work by Mickey and Greenland 
(1989) on logistic regression. These authors show that use of a more 
traditional level (such as 0.05) often fails to identify variables known to 
be important. Use of the higher level has the disadvantage of including 
variables that are of questionable importance at the model building 
stage. For this reason, it is important to review all variables added to a 
model critically before a decision is reached regarding the final model. 

One problem with any univariable approach is that it ignores the 
possibility that a collection of variables, each of which is weakly associ­
ated with the outcome, can become an important predictor of outcome 
when taken together. If this is thought to be a possibility, then we 
should choose a significance level large enough to allow the suspected 
variables to become candidates for inclusion in the multivariable model. 
The best subsets selection technique, discussed briefly below and in 
greater detail in Section 4.4, is an effective model-building strategy for 
identifying collections of variables having this type of association with 
the outcome variable. 

As noted above, the issue of variable selection is made more com­
plicated by different analytic philosophies as well as by different statisti­
cal methods. One school of thought argues for the inclusion of all sci­
entifically relevant variables into the multivariable model regardless of 
the results of univariable analyses. In general, the appropriateness of 
the decision to begin the multivariable model with all possible variables 
depends on the overall sample size and the number in each outcome 
group relative to the total number of candidate variables. When the data 
are adequate to support such an analysis it may be useful to begin the 
multivariable modeling from this point. However, when the data are 
inadequate, this approach can produce a numerically unstable multivari-
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able model, discussed in greater detail in Section 4.5. In this case the 
Wald statistics should not be used to select variables because of the un­
stable nature of the results. Instead, we should select a subset of vari­
ables based on results of the univariable analyses and refine the defini­
tion of "scientifically relevant." 

Another approach to variable selection is to use a stepwise method 
in which variables are selected either for inclusion or exclusion from the 
model in a sequential fashion based solely on statistical criteria. There 
are two main versions of the stepwise procedure: (a) forward selection 
with a test for backward elimination and (b) backward elimination fol­
lowed by a test for forward selection. The algorithms used to define 
these procedures in logistic regression are discussed in Section 4.3. The 
stepwise approach is useful and intuitively appealing in that it builds 
models in a sequential fashion and it allows for the examination of a 
collection of models which might not otherwise have been examined. 

"Best subsets selection" is a selection method that has not been 
used extensively in logistic regression. With this procedure a number of 
models containing one, two, three variables, and so on, are examined to 
determine which are considered the "best" according to some specified 
criteria. Best subsets linear regression software has been available for a 
number of years. A parallel theory has been worked out for nonnormal 
errors models [Lawless and Singhal (1978, 1987a, 1987b)]. We show 
in Section 4.4 how logistic regression may be performed using any best 
subsets linear regression program. 

Stepwise, best subsets, and other mechanical selection procedures 
have been criticized because they can yield a biologically implausible 
model [Greenland (1989)] and can select irrelevant, or noise, variables 
[Flack and Chang (1987), Griffiths and Pope (1987)]. The problem is 
not the fact that the computer can select such models, but rather that the 
analyst fails to scrutinize the resulting model carefully, and reports such 
results as the final, best model. The wide availability and ease with 
which stepwise methods can be used has undoubtedly reduced some 
analysts to the role of assisting the computer in model selection rather 
than the more appropriate alternative. It is only when the analyst under­
stands the strengths, and especially the limitations, of the methods that 
these methods can serve as useful tools in the model-building process. 
The analyst, not the computer, is ultimately responsible for the review 
and evaluation of the model. 

(3) Following the fit of the multivariable model, the importance of 
each variable included in the model should be verified. This should 
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include (a) an examination of the Wald statistic for each variable and (b) 
a comparison of each estimated coefficient with the coefficient from the 
model containing only that variable. Variables that do not contribute to 
the model based on these criteria should be eliminated and a new model 
should be fit. The new model should be compared to the old, larger, 
model using the likelihood ratio test. Also, the estimated coefficients 
for the remaining variables should be compared to those from the full 
model. In particular, we should be concerned about variables whose 
coefficients have changed markedly in magnitude. This indicates that 
one or more of the excluded variables was important in the sense of 
providing a needed adjustment of the effect of the variable that re­
mained in the model. This process of deleting, refitting, and verifying 
continues until it appears that all of the important variables are included 
in the model and those excluded are clinically and/or statistically unim­
portant. 

At this point, we suggest that any variable not selected for the 
original multivariable model be added back into the model. This step 
can be helpful in identifying variables that, by themselves, are not sig­
nificantly related to the outcome but make an important contribution in 
the presence of other variables. 

We refer to the model at the end of step (3) as the preliminary main 
effects model. 

(4) Once we have obtained a model that we feel contains the essen­
tial variables, we should look more closely at the variables in the model. 
The question of the appropriate categories for discrete variables should 
have been addressed at the univariable stage. For continuous variables 
we should check the assumption of linearity in the logit. 

Assuming linearity in the logit at the variable selection stage is a 
common practice and is consistent with the goal of determining whether 
a particular variable should be in the model. The graphs for several dif­
ferent relationships between the logit and a continuous independent 
variable are shown in Figure 4.1. The figure illustrates the case when 
the logit is (a) linear, (b) quadratic, (c) some other nonlinear continuous 
relationship, and (d) binary where there is a cutpoint above and below 
which the logit is constant. In each of the situations described in Figure 
4.1 fitting a linear model would yield a significant slope. Once the vari­
able is identified as important, we can obtain the correct parametric re­
lationship or scale in the model refinement stage. The exception to this 
would be the rare instance where the function is U-shaped. Specific 
methods to assess scale of continuous variables are discussed in detail 
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Figure 4.1 Different types of models for the relationship between the logit 
and a continuous variable. 
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later in this section. We refer to the model at the end of step (4) as the 
main effects model. 

(5) Once we have refined the main effects model and ascertained 
that each of the continuous variables is scaled correctly, we check for 
interactions among the variables in the model. In any model an inter­
action between two variables implies that the effect of one of the vari­
ables is not constant over levels of the other. For example, an interac­
tion between sex and age implies that the slope coefficient for age is 
different for males and females. The final decision as to whether an 
interaction term should be included in a model should be based on sta­
tistical as well as practical considerations. Any interaction term in the 
model must make sense from a clinical perspective. 

We address the clinical plausibility issue by creating a list of possi­
ble pairs of variables in the model that have some scientific basis to in­
teract with each other. The interaction variables are created as the 
arithmetic product of the pairs of main effect variables. We add the in­
teraction variables, one at a time, to the model containing all the main 
effects and assess their significance using a likelihood ratio test. We feel 
that interactions must contribute to the model at traditional levels of sta­
tistical significance. Inclusion of an interaction term in the model that is 
not significant typically increases the estimated standard errors without 
changing the point estimates. In general, for an interaction term to alter 
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both point and interval estimates, the estimated coefficient for the inter­
action term must be statistically significant. 

We refer to the model at the conclusion of step (5) as the prelimi­
nary final model. Before we use any model for inferences we must as­
sess its adequacy and check its fit. We discuss these methods in Chapter 
5. 

As noted in step ( 4 ), an important step in refining the main effects 
model is to determine whether the model is linear in the logit for con­
tinuous variables. We discuss two methods to address this problem: ( 1) 
design variables and (2) fractional polynomials. 

In step (1) we mentioned that one way to examine the scale of the 
covariate is to use a scatterplot smooth, plotting the results on the logit 
scale. Unfortunately scatterplot smoothing methods are not easily ex­
tended to multivariable models and thus have limited applicability in the 
model refinement step. However, it is possible to extend the grouping 
type smooth shown in Figure 1.2 to multivariable models. 

The procedure is easily implemented within any logistic regression 
package and is based on the following observation. The difference, 
adjusted for other model covariates, between the logits for two different 
groups is equal to the value of an estimated coefficient from a fitted lo­
gistic regression model that treats the grouping variable as categorical. 
We have found that the following implementation of the grouped 
smooth is usually adequate for purposes of visually checking the scale 
of a continuous covariate. 

First, using the descriptive statistics capabilities of most any statisti­
cal package, obtain the quartiles of the distribution of the variable. Next 
create a categorical variable with 4 levels using three cutpoints based on 
the quartiles. Other grouping strategies can be used but one based on 
quartiles seems to work well in practice. Fit the multivariable model re­
placing the continuous variable with the 4-level categorical variable. To 
do this, 3 design variables must be used with the lowest quartile serving 
as the reference group. Following the fit of the model; plot the esti­
mated coefficients versus the midpoints of the groups. In addition, plot 
a coefficient equal to zero at the midpoint of the first quartile. To aid in 
the interpretation we connect the four plotted points. Visually inspect 
the plot and choose the most logical parametric shape(s) for the scale of 
the variable. 

The next step is to refit the model using the possible parametric 
forms suggested by the plot and choose one that is significantly differ­
ent from the linear model and makes clinical sense. It is possible that 
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two or more different parametrizations of the covariate will yield similar 
models in the sense that they are significantly different from the linear 
model. However, it is our experience that one of the possible models 
will be more appealing clinically, thus yielding more easily interpreted 
parameter estimates. 

Another more analytic approach is to use the method of fractional 
polynomials, developed by Royston and Altman (1994), to suggest 
transformations. We wish to determine what value of xP yields the best 
model for the covariate. In theory, we could incorporate the power, p, 
as an additional parameter in the estimation procedure. However, this 
greatly increases the complexity of the estimation problem. Royston 
and Altman propose replacing full maximum likelihood estimation of 
the power by a search through a small but reasonable set of possible 
values. Hosmer and Lemeshow (1999) provide a brief introduction to 
the use of fractional polynomials when fitting a proportional hazards 
regression model. This material provides the basis for our discussion of 
its application to logistic regression. 

The method of fractional polynomials may be used with a multi­
variable logistic regression model, but, for sake of simplicity, we de­
scribe the procedure using a model with a single continuous covariate. 
The logit, that is linear in the covariate, is 

where p denotes the vector of model coefficients. One way to general­
ize this function is to specify it as 

J 

g(x,p) = /30 + LJj(x)f3j 
j=l 

The functions Fj(x) are a particular type of power function. The value 

of the first function is F; ( x) = xP1 
• In theory, the power, p1 , could be 

any number, but in most applied settings it makes sense to try to use 
something simple. Royston and Altman ( 1994) propose restricting the 
power to be among those in the set &J={-2,-1,-0.5,0,0.5,1,2,3}, where 
p1 = 0 denotes the log of the variable. The remaining functions are de­
fined as 
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F(x) = x ,pj Pj-1 
{ 

I'} * 
1 Fj_1(x)ln(x),pj = Pj-1 

for j = 2, ... , J and restricting powers to those in f.J. For example, if we 
chose J = 2 with p1 = 0 and p2 = -0.5, theri the logit is 

1 
g(x.~) = {30 + {31 ln(x)+ [32 .fX. 

As another example, if we chose J = 2 with p1 = 2 and p2 = 2, then the 
logit is 

The model is quadratic in x when J = 2 with p1 = 1 and p 2 = 2 . Again, 
we could allow the covariate to enter the model with any number of 
functions, J; but in most applied settings an adequate transformation 
may be found if we use J = 1 or 2. 

Implementation of the method requires, for J = 1, fitting 8 models, 
that is, p1 E f.J. The best model is the one with the largest log likeli­
hood. The process is repeated with J = 2 by fitting the 36 models ob­
tained from the distinct pairs of powers, that is, (PP p2) E f.J x f.J, and the 
best model is again the one with the largest log likelihood. 

The relevant question is whether either of the two best models is sig­
nificantly better than the linear model. Let L(1) denote the log likeli­
hood for the linear model, that is, J = 1 and p1 = 1, and L(p1) denote 

the log likelihood for the best J = 1 model and L(p1,p2) denote the log 
likelihood for the best J = 2 model. Royston and Altman (1994) sug­
gest, and verify with simulations, that each term in the fractional poly­
nomial model contributes approximately 2 degrees of freedom to the 
model, effectively one for the power and one for the coefficient. Thus, 
the partial likelihood ratio test comparing the linear model to the best 
J =1 model, 

G(1, p1) = -2{ L(1)- L(p1)}, 
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is approximately distributed as chi-square with 1 degree of freedom un­
der the null hypothesis of linearity in x. The partial likelihood ratio test 
comparing the best J = 1 model to the best J = 2 model, 

is approximately distributed as chi-square with 2 degrees of freedom 
under the null hypothesis that the second function is equal to zero. 
Similarly, the partial likelihood ratio test comparing the linear model to 
the best J = 2 model is distributed approximately as chi-square with 3 
degrees of freedom. Note that to keep the notation simple, we use p1 to 
denote the best power both when J = 1 and as the first of the two powers 
for J = 2. These are not likely to be the same numeric value in prac­
tice. 

The only software package that has fully implemented the method 
of fractional polynomials is STATA. In addition to the method de­
scribed above, STATA's fractional polynomial routine offers the user 
considerable flexibility in expanding the set of powers searched; how­
ever, in most settings the default set of values should be adequate. 

The previous discussion introduced the basic approach to the use 
of fractional polynomials in the setting of a simple univariable logistic 
regression model. In practice most models are multivariable and can 
contain numerous continuous covariates, each of which must be 
checked for linearity. Recently Royston and Ambler (1998, 1999) ex­
tended the original fractional polynomial software in STAT A to incor­
porate an iterative examination for scale with multivariable models. The 
default method incorporates recommendations discussed in detail in 
Sauerbrei and Royston (1999). In our discussion of the method we as­
sume that the fractional polynomial analysis will not incorporate any 
variable selection. That is, all the covariates remain in the model. The 
variables are ordered by the Wald statistics with the most significant (i.e., 
smallest p-value) first. The following two step procedure is performed 
on each covariate that is being checked for the scale in the logit. The 
first step is the 3 degree-of-freedom test of the best J = 2 versus the lin­
ear model, G [1, (p~' p2 ) ). If this test is not significant at a user-specified 
level of significance, a !P, then the covariate is modeled as linear in the 

logit. If the test is significant, the second step is the 2 degree-of­
freedom test of the best J = 2 versus the best J = 1 fractional polyno-
mial models, G[p1, (p1,p2 )). If this test is significant at the a1P level 

then the best J = 2 model is chosen, otherwise the best J = 1 model is 
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chosen. After checking each covariate, the process recycles through 
each covariate using the results of the first cycle in the sense that covari­
ates not being checked are included in the model using the results from 
the first cycle. The purpose of recycling is to ascertain whether a trans­
formation of one covariate changes the transformation of one or more 
of the other covariates. The process keeps cycling until no further 
transformations are indicated. It is rare for the method to require more 
than two cycles and it usually stops after one cycle. 

In an applied setting, we recommend that if a more complicated 
model is selected for use then it should provide a statistically significant 
improvement over the linear model, and it is vital that the transformation 
make clinical sense. 

Kay and Little (1987) suggest another method for examining the 
scale of continuous covariates. They illustrate how examination of the 
marginal distribution of the continuous covariates within outcome 
groups may help suggest the appropriate scale. For example, they show 
that if the distribution of a particular covariate, X, is normal within each 
outcome group but with different means and variances, then a linear 
term, X, and a quadratic term, X2

, are needed in the logit. This pa­
rametrization corresponds to a fractional polynomial with J = 2 and 
p1 = 1 and p2 = 2. If X follows a gamma distribution, skewed right, 
then we need to include X and ln{X) in the model, equivalently a frac­
tional polynomial with J = 2 and p1 = 1 and p2 = 0. If X follows a beta 
distribution with different parameters within outcome groups, then in­
clusion of ln{X) and ln(l- X) is necessary to correctly model the co­
variate. Due to the need for ln{1- X) this parametrization cannot be 
expressed in terms of a fractional polynomial. This should be kept in 
mind as occasionally one encounters a covariate with a fixed range. For 
example we may use the logistic probability from one model as a co­
variate in a second model. The approach of Kay and Little may be 
most useful for continuous variables when there are enough observa­
tions within each outcome group to obtain an accurate approximation to 
the distribution of the covariate. 

Another approach to scale selection that can be thought of as a 
non-parametric generalization of fractional polynomials is to fit a gen­
eralized additive model. Hastie and Tibshirani (1986, 1987, and 1990) 
discuss the use of a generalized additive model for the analysis of bi­
nary data. The results of fitting such a model may be used to plot an 
adjusted non-parametrically smoothed estimate of the effect of a covari­
ate. The plot can then be visually checked for nonlinearity and a possi­
ble parametric transformation. The models are quite sophisticated and 
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require considerable experience to be used effectively. For these rea­
sons we do not consider them in any detail. In addition, their use re­
quires special software not typically available in most packages. 
Royston and Ambler (1998) have written a module that may be used in 
conjunction with STATA to fit additive models. 

Before proceeding to an example illustrating the proposed method 
for building a logistic regression model we need to discuss one special 
type of variable that does occur reasonably often in practice. Consider 
a study in which subjects are asked to report their lifetime use of ciga­
rettes. All the non-smokers report a value of zero. A one-half pack-a­
day smoker for 20 years has a value of approximately 73,000 cigarettes. 
What makes this covariate unusual is the fact that the zero value occurs 
with a frequency much greater than expected for a fully continuous 
distribution. In addition, the non-zero values typically exhibit right 
skewness. Robertson, Boyle, Hsieh, Macfarlane, and Maisonneuve 
(1994) show that the correct way to model such a covariate is to include 
two terms, one that is dichotomous recording zero versus non-zero and 
one for the actual recorded value. Thus, the logit for a univariable 
model is 

where d = 0 if x = 0 and d = 1 if x > 0. The advantage of this param­
eterization is that it allows us to model two different odds ratios, 

and 
OR(x= x+c,x = x) = ef32c. 

Note that during the modeling process we still need to check the scale in 
the logit for the positive values of the covariate. 

Example 

As an example of the model-building process, consider the analysis 
of the UMARU IMPACT study (UIS). The study is described in Sec­
tion 1.6.4 and a code sheet for the data is shown in Table 1.8. Briefly, 
the goal of the analysis is to determine whether there is a difference 
between the two treatment programs after adjusting for potential con-
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Table 4.1 Univariable Logistic Regression Models for the 
UIS (n = 575) 

" Variable Coeff. Std. Err. OR 95% CI G p 

AGE O.Q18 0.0153 1.20* {0.89, 1.62) 1.40 0.237 

BECK -0.008 0.0103 0.96+ (0.87, 1.06) 0.64 0.425 
NDRGTX -0.075 0.0247 0.93 (0.88, 0.97) 11.84 <0.001 
IVHX_2 -0.481 0.2657 0.62 (0.37, 1.04) 
IVHX_3 -0.775 0.2166 0.46 (0.30, 0.70) 13.35 0.001 
RACE 0.459 0.2110 1.58 (1.04, 2.39) 4.62 0.032 

TREAT 0.437 0.1931 1.55 ( 1.06, 2.26) 5.18 0.023 

SITE 0.264 0.2034 1.30 ~0.87, 1.94~ 1.67 0.197 

*:Odds Ratio for a 10 year increase in AGE 
+: Odds Ratio for a 5 point increase in BECK 

founding and interaction variables. One outcome of considerable pub­
lic health interest is whether or not a subject remained drug free for at 
least one year from randomization to treatment (DFREE in Table 1.8). 
A total of 147 of the 575 subjects (25.57%), considered in the analyses 
presented in this text, remained drug free for at least one year. The 
analyses in this chapter are primarily designed to demonstrate specific 
aspects of logistic model building. Hosmer and Lemeshow (Chapter 5, 
1999) present an analysis based on the actual length of time to return to 
drug use. The analyses in this chapter and in Hosmer and Lemeshow 
(1999) should not be considered definitive. One should see the papers 
written by our colleagues cited in Section 1.6.4 for more detailed analy­
ses of the UIS data and a discussion of study results. 

The results of fitting the univariable logistic regression models to 
these data are given in Table 4.1. In this table we present, for each vari­
able listed in the first column, the following information. (1) The esti­
mated slope coefficient(s) for the univariable logistic regression model 
containing only this variable, (2) The estimated standard error of the 
estimated slope coefficient, (3) The estimated odds ratio, which is ob­
tained by exponentiating the estimated coefficient. For the variable 
AGE the odds ratio is for a 10-year increase and for Beck depression 
score (BECK) the odds ratio is for a 5-point increase. This was done 
since a change of 1 year or I point would not be clinically meaningful. 
(4) The 95% CI for the odds ratio. (5) The likelihood ratio test statistic, 
G, for the hypothesis that the slope coefficient is zero. Under the null 
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Table 4.2 Results of Fitting a Multivariable 
Model Containing the Covariates Significant at 
the 0.25 Level in Table 4.1 
Variable Coeff. Std. Err. z P>lzl 
AGE 0.050 0.0173 2.91 0.004 
NDRGTX -0.062 0.0256 -2.40 0.016 
NHX_2 -0.603 0.2873 -2.10 0.036 
NHX_3 -0.733 0.2523 -2.90 0.004 
RACE 0.226 0.2233 1.01 0.311 
TREAT 0.443 0.1993 2.22 0.026 
SITE 0.149 0.2172 0.68 0.494 
Constant -2.405 0.5548 -4.34 <0.001 

Log likelihood== -309.6241 

hypothesis, this quantity follows the chi-square distribution with 1 de­
gree of freedom, except for the variable IVHX, where it has 2 degrees of 
freedom. (6) The significance level for the likelihood ratio test. 

With the exception of Beck score there is evidence that each of the 
variables has some association (p<0.25) with the outcome, remaining 
drug free for at least one year (DFREE). The covariate recording his­
tory of intravenous drug use (IVHX) is modeled via two design vari­
ables using "1 = Never" as the reference code. Thus its likelihood ra­
tio test has two degrees-of-freedom. We begin the multivariable model 
with all but BECK. The results of fitting the multivariable model are 
given in Table 4.2. 

The results in Table 4.2, when compared to Table 4.1, indicate 
weaker associations for some covariates when controlling for other vari­
ables. In particular, the significance level for the Wald test for the coef­
ficient for SITE is p = 0.494 and for RACE is p = 0.311. Strict adher­
ence to conventional levels of statistical significance would dictate that 
we consider a smaller model deleting these two covariates. However, 
due to the fact that subjects were randomized to treatment within site we 
keep SITE in the model. On consultation with our colleagues we were 
advised that race is an important control variable. Thus on the basis of 
subject matter considerations we keep RACE in the model. 

The next step in the modeling process is to check the scale of the 
continuous covariates in the model, AGE and NDRGTX in this case. 
One approach to deciding the order in which to check for scale is to 
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Figure 4.2 Univariable lowess smoothed logit versus AGE. 
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56 

rank the continuous variables by their respective significance levels. 
Results in Table 4.2 suggest that we consider AGE and then NDRGTX. 

To explore the scale of AGE we use three different methods: (1) a 
univariable smoothed scatterplot on the logit scale, (2) design variables 
based on the quartiles of the distribution and (3) the method of frac­
tional polynomials. We begin with the lowess smoothed univariable 
logit shown in Figure 4.2. This plot shows a linear increase from age 20 
to about age 40 and then a steeper linear increase to age 56. Overall, 
the plot supports treating AGE as linear in the logit. 

Results from an analysis using design variables with the first quar-

Table 4.3 Results of the Quartile Analyses of AGE from the 
Multivariable Model Containing the Variables Shown in the 
Model in Table 4.2 

~-~ 1 2 3 4 
Midpoint 24 30.5 35.5 47.5 
Number 148 144 166 117 
Coeff. 0.0 -0.166 0.469 0.596 

95 %CI (-0.74, 0.40) (-0.06, 1.00) (-0.02, 1.21) 
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Figure 4.3 Plot of estimated logistic regression coefficients versus 
approximate quartile midpoints of AGE. 

tile as the reference group are shown in Table 4.3 and Figure 4.3. The 
coefficients in Table 4.3 show an initial decrease followed by an in­
crease in the log odds. The results do not conclusively support linearity 
in the legit for AGE nor do they rule it out. One possible scaling sug­
gested by these results is to create a dichotomous covariate at the me­
dian. This suggestion is based on the observation that zero is well within 
the confidence interval for the coefficient for the second quartile and 
zero is barely contained in the confidence intervals for the other two 
coefficients. In addition, there is considerable overlap in the confidence 
intervals for the coefficients for the third and fourth quartiles. Wald 
tests, left as an exercise, support these observations. However, the quar­
tile analysis is not an especially powerful diagnostic tool. Its strength is 
that it is easily explained to and understood by subject matter scientists. 

The results of the fractional polynomial analysis are presented in 
Table 4.4. A detailed description of the results is as follows: 

( 1) The significance level in the second line of Table 4.4, p = 
0.003 is for the single degree-of-freedom likelihood ratio test 
of a model not containing AGE versus the model containing 
AGE as a single linear term, e.g. the model in Table 4.2. 

(2) The significance level in the third line of Table 4.4, p = 0.545, 
is for the single degree-of-freedom likelihood ratio test of a 
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model containing AGE as a single linear term versus the model 

containing AOE3 ,i.e., 0=0.366 and Pr[x2 (1)~0.366)=0.545. 
(3) The significance level in the fourth line of Table 4.4, p = 

0.945 is for the two degree-of-freedom likelihood ratio test of 
a model containing AOE3 versus the model containing AOE-2 

and AOE3
, i.e., 0=618.882-618.769=0.113 and 

Pr[x2 (2) ~ 0.113] = 0.945. 

( 4) The likelihood ratio test statistic for the best J = 2 model ver­
sus the linear model is 0 = 619.248-618.769 = 0.479 and its 

p-value (not shown in Table 4.4) is Pr[x2 (3) ~ 0.479) = 0.923. 

The best non-linear transformations are not significantly different from 
the linear model and thus the fractional polynomial analysis supports 
treating age as linear in the logit. 

In summary, the smoothed logit and fractional polynomial analysis 
support treating age as continuous and linear in the logit. The quartile 
based design variable analysis, while not conclusive, suggests using a 
dichotomous variable with the median age as the cutpoint. Results not 
shown, left as an exercise, indicate that modeling age as a dichotomous 
variable provides a model that is not better than one treating age as con­
tinuous and linear in the logit. Hence we choose to treat age as con­
tinuous and linear in the logit. 

We use the same three methods to assess the scale of NDRGTX and 
begin with the univariable smoothed logit in Figure 4.4. The plot shows 
an initial increase in the logit at 1 and 2 previous treatments. This is 
followed by a nearly linear decrease in the range of 3 to about 15 pre­
vious treatments. The logit appears to have no consistent trend in the 

Table 4.4 Summary of the Use of the Method of Fractional 
Polynomials for AGE 

GforModel Approx. 
df Deviance vs. Linear p-Value Powers 

Not in model 0 627.801 
Linear 1 619.248 0.000 0.003* 1 
J = 1 2 618.882 0.366 0.545+ 3 
1=2 4 618.769 0.479 0.945# -2, 3 

• Compares linear model to model without AGE 
+ Compares the J = 1 model to the linear model 
# Compares the J = 2 model to the J = 1 model 



110 MODEL-BUILDING STRATEGIES AND METHODS 

-.7306 

-1.9305 

012 5 10 15 20 25 30 35 40 
Number of Previous Drug Treatments 

Figure 4.4 Univariable Iowess smoothed logit versus number of previous 
drug treatments (NDRGTX). 

range from 15 to 40 previous treatments. It is of particular interest to 
determine whether the initial increase in the logit is significant or simply 
a numerical artifact of the smoothing. We explore this possibility using 
a design variable analysis. We choose cutpoints using Figure 4.4 as a 
guide. The results of the design variable analysis are shown in Table 
4.5 and Figure 4.5. 

The results in Table 4.5 and Figure 4.5 agree with the pattern seen 
in Figure 4.4 of an increase followed by a progressive decrease in the 
logit. Since zero is contained in each of the confidence intervals none 

Table 4.5 Results of the Design Variable Analysis of Number of 
Previous Drug Treatments (NDRGTX) from the Multivariable 
Model Containing the Variables Shown in the Model in Table 4.2 

Group 1 2 3 4 
Interval 0 1-2 3-15 16-40 
Number 79 173 294 29 
Coeff. 0.0 0.406 -0.154 -0.585 

95% CI (-0.20, 1.01) (-0.76, 0.46) (-1.80, 0.63) 
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Figure 4.5 Plot of estimated logistic regression coefficients from Table 4.4 
versus the midpoints of number of previous drug treatment groups. 

28 

of the coefficients is significantly different from zero. This result does 
not agree with the fact that NDRGTX is significant in Table 4.2. 

We next use the method of fractional polynomials. The results of 
this analysis, presented in Table 4.6, (see Addendum, page 352) suggest 
that we consider the J = 2 model as a possible non-linear transforma­
tion of NDRGTX. This model is significantly different from the best 
J = 1 model, at the 10 percent level. The significance level of the J = 2 

model versus the linear model is Pr[z2 (3) ~ 5.797 J = 0.122, which indi­

cates that the model offers a small improvement over the linear model. 
Recall that the goals are to see whether a fractional polynomial trans­
formation of NDRGTX is able to provide a parametric model similar in 
shape to the smoothed logit in Figure 4.4, and to determine whether 
such a model is significantly better than the linear model from both a 
statistical and a clinical perspective. 

A graph of the univariable smoothed logit and the two term frac­
tional polynomial model, adjusted for other model covariates, is shown 
in Figure 4.6. We explain how the graph was obtained shortly. The 
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Figure 4.6 Plot of the univariable lowess smoothed logit (o) and the mul­
tivariable adjusted logit ( +) from the J = 2 fractional polynomial model versus 
number of previous drug treatments (NDRGTX). 

fractional polynomial model has the desired shape, a sharp rise followed 
by a gradual fall and there is good agreement between the two sets of 
plotted points. At this point, we consulted our colleagues to see if the 
shape of the two term fractional polynomial model made any clinical 
sense. They advised us that, in fact, the basic shape makes sense from a 
clinical point of view. Namely, subjects with no previous drug treat­
ments tend to be less likely to return to drug use than subjects with one 
or two previous treatments. The rate of return to drug use tends to de­
crease thereafter for larger numbers of treatments. They also found the 
fact that this pattern could be described by a parametric function quite 
an interesting result. Hence we proceed with the two term fractional 
polynomial model. The results of fitting this model are shown in Table 
4.7. 

The two fractional polynomial transformations are 

NDRGFPl = [ (NDR~OTX + 1) r 
and 
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Table 4. 7 Results of Fitting the Multivariable 
Model with the Two Term Fractional Polynomial 
Transformation of NDRGTX 

Variable Coeff. Std. Err. 
AGE 0.054 0.0175 
NDRGFP1 0.981 0.2888 
NDRGFP2 0.361 0.1099 
NHX_2 -0.609 0.2911 
NHX_3 -0.724 0.2556 
RACE 0.248 
TREAT 0.422 
SITE 0.173 
Constant -2.928 
Log likelihood= -306.7256 

0.2242 
0.2004 
0.2210 
0.5867 

z 
3.11 
3.40 
3.29 

-2.09 
-2.83 

1.11 
2.11 
0.78 

-4.99 

P>lzl 
0.002 
0.001 
0.001 
0.036 
0.005 
0.269 
0.035 
0.433 

<0.001 

NDRGFP2 = NDRGFPI x In[ (NDR~OTX +I) l 
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It should be noted that there are several alternative ways of incorporat­
ing fractional polynomial transformed variables. STATA uses a scaled 
and centered version. Alternatively, one could use an uncentered trans­
formation or a transformation that is neither centered nor scaled. In this 
example, we chose to use the scaled but uncentered transformation 
shown above. It should be noted that, in the equations above, I is added 
to NDRGTX to avoid problems with NDRGTX = 0 and to control the 
range of the transformed covariate. We note that the Wald statistics for 
the coefficients of NDRGFPl and NDRGFP2 are statistically significant. 

We obtained the plot presented in Figure 4.6 using the following 
procedure. First we requested that STATA create and save a new vari­
able containing the values of the smoothed Jogit plotted in Figure 4.4. 
Suppose we named this variable LGTSM. Next, we used the coefficients 
in Table 4.7 to compute an estimated logit as a function of NDRGFPI 
and NDRGFP2 as follows: 

LGTFP= -4.314 +0.981 x NDRGFPl +0.361 x NDRGFP2. 

Before plotting, we added the difference between the mean of LGTSM 
and LGTFP to the values of LGTFP so that the two plotted variables 
would have the same mean, namely, 
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LGTFP* = LGTFP + ( LGTSM- LGTFP). 

We plotted LGTSM and LGTFP. versus the values of NDRGTX to ob­
tain Figure 4.6. 

The two curves in Figure 4.6 are quite similar after adjusting for 
the difference in the means. This may not always be the case. The low­
ess scatterplot smooth does not take into account all the covariates in the 
model whereas the plot of the fractional polynomial does. In addition, 

k 

we note that we get -4.314 from Po+ 'LAx;, where the summation is 
i=l 

over all but the fracploy covariate. We could have computed LGTFP 
using a different set of typical values for the other covariates (e.g., the 
median age and some choice of zero and one for each of the dichoto­
mous covariates). The net effect would have been to change the value 
of the constant from -4.314 to some other value. This would have pro­

duced a different mean value for LGTFP and, therefore, a different 
value for LGTSM- LGTFP; however, once done, the plot would be 
identical to that seen in Figure 4.6. 

The current model building example demonstrates that the family 
of fractional polynomial transformations provides the ability to model a 
surprisingly complex function parametrically. This method is an ex­
tremely powerful analysis tool, the results of which must be examined 
carefully using statistical and clinical criteria. It is absolutely vital that 
any fractional polynomial transformation makes clinical sense. 

Before moving on to assess interactions we check to make sure that 
any main effects not included in the model still are neither significant 
nor important confounding variables. In this case the only variable not 
included in the model is BECK. It was neither significant (p = 0.932) 
nor an important confounder when added to the main effects model in 
Table 4. 7. We used the iterative multi variable fractional polynomial 
procedure as a final check on the scale of AGE and NDRGTX. This 
analysis yielded the same results: no need to transform AGE and use the 
( -1, -1) transformation for NDRGTX. 

The model in Table 4. 7 is our main effects model. The next step 
in the model building process is to assess the need to include interac­
tions. At this point we recommend that a list be prepared of the clini­
cally plausible interactions that can be formed from the main effects in 
the model. This list may or may not consist of all possible interactions. 
Our main effects model contains six covariates, hence there are 15 pos­
sible pairwise interactions. We think that each one offers the possibility 
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Table 4.9 Preliminary Final Model Containing 
Significant Main Effects and Interactions 

Variable Coeff. Std. Err. z P>lzl 
AGE 0.117 0.0289 4.04 <0.001 
NDRGFP1 1.669 0.4072 4.10 <0.001 
NDRGFP2 0.434 0.1169 3.71 <0.001 
NHX_2 -0.635 0.2987 -2.13 0.034 
NHX_3 -0.705 0.2616 -2.70 0.007 
RACE 0.684 0.2641 2.59 0.010 
TREAT 0.435 0.2038 2.14 0.033 
SITE 0.516 0.2549 2.03 0.043 
AGExNDRGFP1 -0.015 0.0060 -2.53 0.011 
RACExSITE -1.429 0.5298 -2.70 0.007 
Constant -6.844 1.2193 -5.61 <0.001 

.Log likelihood= -298.9814 

of a clinically plausible modification of the covariate effects. The re­
sults of adding each of the 15 interactions one at a time to the main ef­
fects model in Table 4.7 are presented in Table 4.8 (see Addendum, 
page 352). 

The results in Table 4.8 show that only the AGExNDRGTX, 

AGExTREAT and RACExSITE interactions are significant at the 10 
percent level. Next we add these three interactions (i.e., four terms) to 
the main effects model. The fit of this model (not presented) yields 
Wald statistics for the two coefficients for the AGExNDRGTX interac­
tion that are not significant yet the two degree of freedom likelihood 
ratio test for exclusion of the two interaction terms is highly significant, 
p = 0.026. We attribute this conflict in results to high correlation be­
tween NDRGFP1 and NDRGFP2. To explore this further we fit a model 
(not shown) containing three interaction terms: AGExNDRGFPl, 

AGExTREAT and RACExSITE. In this model the Wald statistic for the 

AGExTREAT interaction term is not significant, p = 0.113, and the 
likelihood ratio test for its exclusion hasp = 0.111. Thus we feel that 
this interaction term should not be included in the model. We present in 
Table 4.9 the results of fitting the model containing the main effects in 
Table 4.7 and the two significant interaction terms. 

We refer to the model in Table 4.9 as the preliminary final model 
as we have not checked its goodness of fit or other diagnostic statistics 
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of model adequacy. These methods are presented in detail in Chapter 
5. Following the assessment of fit we discuss, in Section 5.5, the inter­
pretation and presentation of the results from a fitted model using our 
final model from the UIS as an example. 

4. 3 STEPWISE LOGISTIC REGRESSION 

Stepwise selection of variables is widely used in linear regression. All 
the major software packages have either a separate program or an op­
tion to perform this type of analysis. Currently, most, if not all, major 
software packages offer an option for stepwise logistic regression. At 
one time, stepwise regression was an extremely popular method for 
model building. In recent years there has been a shift away from de­
terministic methods for model building to purposeful selection of vari­
ables. However, we feel that the procedure provides a useful and effec­
tive data analysis tool. In particular, there are times when the outcome 
being studied is relatively new and the important covariates may not be 
known and associations with the outcome not well understood. In these 
instances most studies collect many possible covariates and screen them 
for significant associations. Employing a stepwise selection procedure 
can provide a fast and effective means to screen a large number of vari­
ables, and to fit a number of logistic regression equations simultane­
ously. 

Any stepwise procedure for selection or deletion of variables from 
a model is based on a statistical algorithm that checks for the "i mpor­
tance" of variables, and either includes or excludes them on the basis of 
a fixed decision rule. The "importance" of a variable is defined in 
terms of a measure of the statistical significance of the coefficient for 
the variable. The statistic used depends on the assumptions of the 
model. In stepwise linear regression an F-test is used since the errors 
are assumed to be normally distributed. In logistic regression the errors 
are assumed to follow a binomial distribution, and significance is as­
sessed via the likelihood ratio chi-square test. Thus, at any step in the 
procedure the most important variable, in statistical terms, is the one that 
produces the greatest change in the log-likelihood relative to a model 
not containing the variable (i.e., the one that would result in the largest 
likelihood ratio statistic, G). 

We discussed in Chapter 3 that a polychotomous variable with k 
levels is appropriately modeled through its k -1 design variables. Since 
the magnitude of G depends on its degrees-of-freedom, any procedure 
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based on the likelihood ratio test statistic, G, must account for possible 
differences in degrees-of-freedom between variables. This is done by 
assessing significance through the p-value for G. 

we' describe and illustrate the algorithm for forward selection fol­
lowed by backward elimination in stepwise logistic regression. Any 
variants of this algorithm are simple modifications of this procedure. 
The method is described by considering the statistical computations that 
the computer must perform at each step of the procedure. 

Step (0): Suppose we have available a total of p possible independ­
ent variables, all of which are judged to be of plausible "clinical" im­
portance in studying the outcome variable. Step (0) begins with a fit of 
the "intercept only model" and an evaluation of its log-likelihood, 4. 
This is followed by fitting each of the p possible univariable logistic re­
gression models and comparing their respective log-likelihoods. Let the 
value of the log-likelihood for the model containing variable xj at step 

zero be denoted by L)0l. The subscript j refers to the variable that has 

been added to the model, and the superscript (0) refers to the step. This 
notation is used throughout the discussion of stepwise logistic regression 
to keep track of both step number and variables in the model. 

Let the value of the likelihood ratio test for the model containing 

xj versus the intercept only model be denoted by G~o) = -2( Lo - L)0l), 

and its p-value be denoted by p~o). Hence, this p-value is determined 

by the tail probability Pr[ X2(v) > G) 0
)] = p~O)' where v = 1 if xj is con­

tinuous and v = k- 1 if xj is polychotomous with k categories. 

The most important variable is the one with the smallest p-value. If 

we denote this variable by xe
1

, then p~~)=min(p)0l), where "min" 

stands for selecting the minimum of the quantities enclosed in the 
brackets. The subscript " e1" is used to denote that the variable is a 
candidate for entry at step 1. For example, if variable x2 had the small-

est p-value, then p~o) = min(p~o)), and e1 = 2. Just because xe 
1 

is the 

most important variable, there is no guarantee that it is "statistically sig­
nificant." For example, if p;~) = 0.83, we would probably conclude that 

there is little point in continuing this analysis because the ''most im­
portant" variable is not related to the outcome. On the other hand, if 

Pi~) = 0.003, we would like to look at the logistic regression containing 

this variable and then see if there are other variables that are important 
given that xe is in the model. 

I 
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A crucial aspect of using stepwise logistic regression is the choice 
of an "alpha" level to judge the importance of variables. Let PE de­
note our choice where the "E" stands for entry. The choice for PE 
determines how many variables eventually are included in the model. 
Bendel and Afifi ( 1977) have studied the choice of PE for stepwise lin­
ear regression, and Costanza and Afifi ( 1979) have studied the choice 
for stepwise discriminant analysis. More recently Lee and Koval ( 1997) 
examined the issue of significance level for forward stepwise logistic 
regression. The results of this research have shown that the choice of 
PE = 0.05 is too stringent, often excluding important variables from the 
model. Choosing a value for PE in the range from 0.15 to 0.20 is 
highly recommended. 

Sometimes the goal of the analysis may be broader, and models 
containing more variables are sought to provide a more complete pic­
ture of possible models. In these cases, use of PE = 0.25 or even larger 
might be a reasonable choice. Whatever the choice for PE, a variable is 
judged important enough to include in the model if the p-value for G is 

less than PE. Thus, the program proceeds to step (1) if p~~) < PE; oth­

erwise, it stops. 
Step (1): Step (1) commences with a fit of the logistic regression 

model containing x,, . Let 41
,) denote the log-likelihood of this model. 

To determine whether any of the remaining p -1 variables are impor­
tant once the variable xe is in the model, we fit the p-I logistic regres-

' sion models containing x,, and xi, j = 1,2,3, ... , p andj :;t: e1• For the 

model containing x,
1 
and xi let the log-likelihood be denoted by 41,~, 

and let the likelihood ratio chi-square statistic of this model versus the 

model containing only x,, be denoted by Gjl) = -2( L~~l- L~~~~). The p-

value for this statistic is denoted by p)Il. Let the variable with the small­

est p-value at step (1) be xe
2 
where p~:) = min(pY) ). If this value is less 

than PE then we proceed to step (2); otherwise we stop. 
Step (2): Step (2) begins with a fit of the model containing both 

x,
1 
and xe

2 
• It is possible that once x.

2 
has been added to the model, xe, 

is no longer important. Thus, step (2) includes a check for backward 
elimination. In general this is accomplished by fitting models that de­
lete one of the variables added in the previous steps and assessing the 

continued importance of the variable removed. At step (2) let L~2J de-
' note the log-likelihood of the model with x,. removed. In similar fash-

' 
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ion let the likelihood ratio test of this model versus the full model at step 

(2) be G~;~ = -2( L<}]
1 

- L~~;2 ) and p~;~ be its p-value. 

To ascertain whether a variable should be deleted from the model 
the program selects that variable which, when removed, yields the 

maximum p-value. Denoting this variable as x, , then p~2) = 
2 2 

max( l;~, p~:~). To decide whether x,
2 

should be removed, the program 

compares p~2
2>to a second pre-chosen "alpha" level, PR• which indi­

cates some minimal level of continued contribution to the model where 
"R" stands for remove. Whatever value we choose for PR• it must ex­
ceed the value of PE to guard against the possibility of having the pro­
gram enter and remove the same variable at successive steps. 

If we do not wish to exclude many variables once they have entered 
then we might use PR = 0.9. A more stringent value would be used if a 
continued "significant" contribution were required. For example, if we 
used PE = 0.15, then we might choose PR = 0.20. If the maximum p-

value to remove, p~:>, exceeds PR then x,
2 

is removed from the model. 

If p~2 l is less than PR then x, remains in the model. In either case the 
2 2 

program proceeds to the variable selection phase. 
At the forward selection phase each of the p- 2 logistic regression 

models are fit containing xe,• xe
2 

and xj for j=l,2,3, ... p,j::Fe1,e2• 

The program evaluates the log-likelihood for each model, computes the 
likelihood ratio test versus the model containing only xe, and Xe

2 
and 

determines the corresponding p-value. Let xe
1 

denote the variable with 

the minimum p-value, that is, p;~> = min(p?l). If this p-value is smaller 

than PE, P!~l < PE, then the program proceeds to step (3 ); otherwise, it 

stops. 
Step (3): The procedure for step (3) is identical to that of step (2). 

The program fits the model including the variable selected during the 
previous step, performs a check for backward elimination followed by 
forward selection. The process continues in this manner until the last 
step, step (S). 

Step (S): This step occurs when: (1) all p variables have entered the 
model or (2) all variables in the model have p-values to remove that are 
less than PR, and the variables not included in the model have p-values 
to enter that exceed PE. The model at this step contains those variables 
that are important relative to the criteria of PE and PR. These may or 
may not be the variables reported in a final model. For instance, if the 
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chosen values of PE and PR correspond to our belief for statistical sig­
nificance, then the model at step S may well contain the significant vari­
ables. However, if we have used values for PE and PR which are less 
stringent, then we should select the variables for a final model from a 
table that summarizes the results of the stepwise procedure. 

There are two methods that may be used to select variables from a 
summary table; these are comparable to methods commonly used in 
stepwise linear regression. The first method is based on the p-value for 
entry at each step, while the second is based on a likelihood ratio test of 
the model at the current step versus the model at the last step. 

Let "q" denote an arbitrary step in the procedure. In the first 

method we compare p~q-l) to a pre-chosen significance level such as a 
IJ 

= 0.15. If the value p~q-J) is less than a, then we move to step q. We 
IJ 

stop at the step when p~q-l) exceeds a. We consider the model at the 
q 

previous step for further analysis. In this method the criterion for entry 
is based on a test of the significance of the coefficient for x, condi-

'1 

tional on xe, ,xel , ... ,xe,H being in the model. The degrees-of-freedom 

for the test are I or k -I depending on whether xe is continuous or 
q 

polychotomous with k categories. 
In the second method, we compare the model at the current step, 

step q, not to the model at the previous step, step q -I but to the model 
at the last step, step (S). We evaluate the p-value for the likelihood ratio 
test of these two models and proceed in this fashion until this p-value 
exceeds a. This tests that the coefficients for the variables added to the 
model from step q to step (S) are all equal to zero. At any given step it 
has more degrees-of-freedom than the test employed in the first 
method. For this reason the second method may possibly select a larger 
number of variables than the first method. 

It is well known that the p-values calculated in stepwise selection 
procedures are not p-values in the traditional hypothesis testing context. 
Instead, they should be thought of as indicators of relative importance 
among variables. We recommend that one err in the direction of se­
lecting a relatively rich model following stepwise selection. The vari­
ables so identified should then be subjected to the more intensive analy­
sis described in the previous section. 

A common modification of the stepwise selection procedure just 
described is to begin with a model at step zero which contains known 
important covariates. Selection is then performed from among other 
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variables. One instance when this approach may be useful is to select 
interactions from among those possible from a main effects model. 

One disadvantage of the stepwise selection procedures just de­
scribed is that the maximum likelihood estimates for the coefficients of 
all variables not in the model must be calculated at each step. For large 
data files with large numbers of variables this can be quite time con­
suming. An alternative to a full maximum likelihood analysis that is 
available in some packages, for example SAS, selects new variables 
based on the Score tests for the variables not included in the model. 
Another less time consuming method available in some packages, for 
example STATA, is based on a multivariable Wald test first suggested by 
Peduzzi, Hardy, and Holford (1980). To date there has been no work 
published which has compared these different selection methods al­
though it does seem likely that an important variable would be identi­
fied, regardless of method used. For comparison purposes we present, 
in the example, results based on using full maximum likelihood, the 
Score test and the Wald test. 

Freedman (1983) urges caution when considering a model with 
many variables, noting that significant linear regressions may be ob­
tained from "noise" variables, completely unrelated to the outcome 
variable. Flack and Chang (1987) have shown similar results regarding 
the frequency of selection of "noise" variables. Thus, a thorough 
analysis that examines statistical and clinical significance is especially 
important following any stepwise method. 

As an example, we apply the stepwise variable selection procedure 
to the UIS data analyzed using purposeful selection earlier in this chap­
ter. The reader is reminded that this procedure should be viewed as a 
first step in the model building process - basic variable selection. Sub­
sequent steps such as determination of scale as described in Section 4.2 
would follow. The results of this process are presented in Table 4.10 
(see Addendum, page 353) in terms of the p-values to enter and remove 
calculated at each step. These p-values are those of the relevant likeli­
hood ratio test described previously. The order of the variables given 
column-wise in the table is the order in which they were selected. In 
each column the values below the horizontal line are PE values and val­
ues above the horizontal lines are PR values. The program was run us­
ing PE = 0.15 and PR = 0.20. This particular analysis was performed 
using program BMDPLR. One reason we used BMDPLR is it is one of 
the few stepwise logistic regression programs that correctly considers the 
design variables formed from a polychotomous variable together for 
entry or removal from a model. 
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Step (0): At step (0) the program selects as a candidate for entry at 
step (I) the variable with the smallest p-value in the first column of Ta­
ble 4.10. This is the variable NDRGTX with a p-value of 0.0006. Since 
this p-value is less than 0.15, the program proceeds to step (1 ). 

Step (] ): At step (1) a model is fit containing NDRGTX. The pro­
gram does not remove the variable just entered since PR > PE and the p­
value to remove at step (1) is equal to the p-value to enter at step (0). 
This is true for the variable entered at any step - not just the first step. 
The variable with the smallest p-value to enter at step (1) is TREAT with 
a value of 0.0249, which is less than 0.15 so the program moves to step 
(2). 

Step (2): The p-values to remove appear first in each row. The 
largest p-value to remove is indicated with an "*". The model con 
taining both NDRGTX and TREAT is fit at step (2). The largest p-value 
to remove is 0.0249, which does not exceed 0.20, thus the program 
moves to the variable selection phase. The smallest p-value to enter 
among the remaining variables not in the model is for the variable 
IVHX and is 0.0332. This value is less than 0.1 5 so the program pro­
ceeds to step (3). 

Step (3) At step (3) the largest p-value to remove is 0.0332, which 
does not exceed 0.20, thus the program moves to the variable selection 
phase. The smallest p-value to enter among the remaining variables not 
in the model is for the variable AGE and is 0.0021. This value is less 
than 0.15 so the program proceeds to step (4). 

Step (4): At step (4) the program finds that the maximum p-value 
to remove is 0.0224 for TREAT. This value is less than 0.20, so 
TREAT is not removed from the model. In the selection phase the pro­
gram finds that the minimum p-value for entry is 0.350 for the variable 
RACE. Since this value exceeds 0.15, no further variables may be en­
tered into the model, and the program stops. 

Since the program was run with PE = 0.15, a value we believe se­
lects variables with significant coefficients, it is not strictly necessary to 
go to the summary table to select the variables to be used in a final 
model. However, we illustrate the calculations for the two methods of 
variable selection from the summary table in Table 4.1 1. 

For method 1, we compare the p-value for entry at each step to our 
chosen level of significance. For purposes of illustration only we use 
the value of 0.03, even though we noted earlier in this section that it is 
too stringent for actual practice. The information for method 1 is in the 
second panel of Table 4.11. 
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Table 4.11 Log-Likelihood for the Model at Each Step and 
Likelihood Ratio Test Statistics (G), Degrees-of-freedom (df), 
and p-Values for Two Methods of Selecting Variables for a 
Final Model from a Summary Table 

Variable Method 1 Method2 
Step Entered Log Like. G df p G df p 

0 -326.864 33.14 5 <0.001 

2 
3 
4 

NDRGTX -320.945 
TREAT -318.430 
NHX -315.025 

11.84 <0.001 21.30 
5.03 0.025 16.27 
6.81 2 0.033 9.46 

AGE -310.293 9.46 0.002 

4 <0.001 
3 <0.001 

0.002 

The value of the likelihood ratio test for the model at step (0) com­
pared to that containing NDRGTX at step (1) is 

G = -2 [-326.864- (-320.945 )] = 11.84. 

The p-value for G is <0.001, which is less than 0.03, so we conclude that 
the coefficient for NDRGTX is significant and move to step (2). The p­
value for the variable, TREAT, entered at step (2) is 0.025. This is the 
p-value for the likelihood ratio test of the significance of the coefficient 
for TREAT, given that NDRGTX is in the model. The value of the test 
statistic is 

G = -2 [-320.945- (-318.430 )] = 5.03. 

Since the p-value for G is less than 0.03 we move to step (3). At 
step (3) we find that the value of the likelihood ratio test of the model at 
step (3) versus that at step (2) is 

G = -2 [-318.430- (-315.025 )] = 6.81, 

resulting in a p-value of 0.033. This value is greater than 0.03 so we 
conclude that TREAT does not provide a significant addition to the 
variables already selected at step (2). Hence, the final model would be 
the one with all variables entered through step (2) even though the vari­
able entered at step (4), AGE, has a p-value of less than 0.03. 
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The information for method 2 is in the last panel of Table 4.11. In 
the second method the model at each step is compared to the model at 
the last step via a likelihood ratio test. This is a test of the joint signifi­
cance of variables added at subsequent steps. We again proceed until 
the p-value for the test exceeds the chosen significance level. For pur­
poses of illustration only we use 0.03 again. The value of G at step (0) 
IS 

G = -2(-326.864-{-310.293)) = 33.14 

with a p-value of <0.001 based on 5 degrees-of-freedom. Since this p­
value is less than 0.03 we proceed to step (1). At step (I) the test of this 
model versus that at the last step is 

G = -2 [-320.945- (-310.293 )] = 21.304 

with a p-value of <0.001 based on 4 degrees-of-freedom. Since the p­
value is less than 0.03 we proceed to step (2). 

At step (2) the test of this model versus that at the last step is 

G = -2( -318.430- { -31 0.293)) = 16.27 

with a p-value of <0.001 based on 3 degrees-of-freedom. Since the p­
value is less than 0.03 we proceed to step (3). 

At step (3) the test of this model versus that at the last step is 

G = -2[-315.025-{-310.293)] = 9.46 

with a p-value of 0.002 based on 1 degree of freedom. This value is 
less than 0.03, so we use the model at step ( 4 ). 

In this example methods I and 2 have identified different sets of 
variables. Each method provides a test of a different hypothesis at each 
step. The number of parameters being tested in method 2 is, except for 
the last step, larger than that for method 1. Thus, method 2 may select, 
as it does in this example, more variables than method 1. In cases where 
this occurs, one should carefully examine the additional variables and 
include them if they seem clinically relevant. In this case we would un­
doubtedly opt for the richer model selected by method 2. Again we 
wish to emphasize that had we used the recommended level of signifi­
cance of 0.15 both methods suggest the same model. 
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At the conclusion of the stepwise selection process we have only 
identified a collection of variables which seem to be statistically impor­
tant. Thus, any known clinically important variables, for example 
RACE, or variables that must be controlled for due to the design of the 
study, such as SITE, should be added before proceeding with the steps 
necessary to obtain the final main effects model. As noted earlier, this 
should include determining the appropriate scale of continuous covari­
ates. 

Once the scale of the continuous covariates has been examined, and 
corrected if necessary, we may consider applying stepwise selection to 
identify interactions. The candidate interaction terms are those that 
seem clinically reasonable given the main effect variables in the model. 
We begin at step (0) with the main effects model and sequentially select 
from among the possible interactions. We use the summary table to se­
lect the significant interactions using either method 1 or method 2. 
Consequently the final model contains previously identified main ef­
fects and significant interaction terms. 

As we noted, some packages use various combinations of the com­
putationally more efficient Score and Wald tests. For example, SPSS 
uses the score test for selection and the likelihood ratio test for removal 
of covariates. SAS also uses the score test to select covariates but uses 
individual Wald statistics to check for removal of covariates. STAT A 
has the option to use the Wald test for both entry and removal of covari­
ates. The results shown in Table 4.12 are from SPSS. At each step, the 
p-values from the score test to enter are below the horizontal line. The 
p-values for the likelihood ratio test to remove are above the horizontal 
line. Since we use these p-values in exactly the same manner as dis­
cussed in detail when selection for entry and removal is based on the 
likelihood ratio test we do not repeat it. Instead we focus on comparing 
similarities and differences between the results in Table 4.10 and Table 
4.12. 

We note that the order of variable entry into the models in Tables 
4.10 and 4.12 is different. SPSS (Table 4.12) selects IVHX first, fol­
lowed by AGE, NDRGTX and TREAT. BMDP (Table 4.1 0) selected 
NDRGTX first, followed by TREAT, IVHX and AGE. After four steps, 
the variables selected by both methods were the same and no other vari­
ables were significant at the 0.15 level and so were unable to enter the 
model at step 5. Thus the composition of the final model selected is the 
same using the two approaches. The p-values for entry for the likeli­
hood ratio test in Table 4.10 are quite similar to those for the Score test 
in Table 4.12. This is in agreement with the discussion of these two tests 
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Table 4.12 Results of Applying Stepwise Variable Selection 
Using the Score Test to Select and Maximum Likelihood Test 
to Remove Covariates at Each Step to the UIS Data. Results 
Are Presented at Each Step in Terms of the p-Values to Enter 
(Below the Horizontal Line), and the p-Value to Remove (Above 
the Horizontal Line) in Each Column. The Asterisk Denotes 
the Maximum p ·Value to Remove at Each Step 

V ariable/Ste 0 2 3 4 
MD(+ 0.0012 0.0024 0.0027 
AGE 0.2357 0.0021 
NDRGTX 0.0018 0.0264 0.0062 
TREAT 0.0231 0.0329 0.0253 0.0224* 
RACE 0.0288 0.1462 0.2330 0.2725 0.3470 
SITE 0.1933 0.4549 0.4762 0.6231 0.5676 
BECK 0.4262 0.7738 0.9630 0.9739 0.9948 
+ IVHX is entered with 2 degrees-of-freedom corresponding to its 2 design 

variables. 

in Chapters 1 and 2. Use of SAS and STATA yields results similar to 
those shown in Table 4.12 (results are not presented). 

Given a choice, we prefer to use the likelihood ratio test for both 
entry and removal as research has shown it has the best statistical prop­
erties. However the results in Table 4.10 and Table 4.12 are typical of 
our experience in using stepwise methods. Namely, with different tests 
there may be some swapping in the order selected but the total set is 
usually the same. 

The variables identified using stepwise selection are the same as 
those identified earlier by purposeful selection. Therefore, the work 
necessary to check the scale of the continuous covariates, NDRGTX and 
AGE, is not repeated and we begin stepwise selection of the interactions 
listed in Table 4.8. 

In order to simplify the presentation somewhat we use the fact that 
all sets of interactions involving the two fractional polynomial transfor­
mations of NDRGTX are quite highly correlated. Thus, as was the case 
in purposeful selection, we only consider interactions with NDRGFPl. 
We note that interactions involving history of IV drug use, IVHX, are 
computed using the design variables, IVHX_2 and IVHX_3. 

The same software may be used for stepwise selection of interac­
tions as was used for the selection of main effects. The difference is that 
all main effect variables are forced into the model at Step (0) and selec­
tion is restricted to interactions. In total there are 15 possible interac-
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Table 4.13 Results of Applying Stepwise Variable Selection 
to Interactions from the Main Effects Model from the UIS 
Data, Using the Maximum Likelihood Method Presented at 
Each Step in Terms of the p-Values to Enter (Below the Hori­
zontal Line), and the p-Values to Remove (Above the Horizon­
tal Line) in Each Column. The Asterisk Denotes the Maxi­
mum p-Value to Remove at Each Step 

Variable/Ste 0 1 2 3 

RACExSITE 0.0035 0.0064 

AGExNDRGFP1 0.0055 0.0080 

AGExTREAT 0.0693 0.1174 0.1110* 

AGExiVHX 0.6910 0.6075 0.2341 0.2577 
NDRGFP1xTREAT 0.0900 0.1816 0.1376 0.2837 

RACExTREAT 0.3315 0.3449 0.2885 0.2871 
IVHXxRACE 0.9798 0.5902 0.4139 0.3844 
IVHXxSITE 0.6475 0.4097 0.4487 0.4610 
NDRGFP1xiVHX 0.3291 0.3726 0.6063 0.5682 
AGExRACE 0.6568 0.5441 0.4489 0.5734 
IVHXxTREAT 0.9798 0.9223 0.9779 0.6271 
TREATxSITE 0.8542 0.9591 0.8706 0.7962 
NDRGFP1xSITE 0.9587 0.6876 0.7664 0.8260 
AGExSITE 0.2062 0.2908 0.6643 0.8583 
NDRGFP1xRACE 0.3679 0.8855 0.9521 0.8815 

tions listed in Table 4.13 where they are inverse rank ordered by the p­
values at the last step. 

The results in Table 4.13 indicate that only 3 interactions entered 
the model using the 15 percent level of significance and none were re­
moved at the 20 percent level of significance. These are the same 3 in­
teractions identified previously via purposeful selection. At this point 
the analysis proceeds in exactly the same manner as discussed in detail 
earlier in this chapter. In that analysis we concluded that only the 
RACE by SITE and AGE by NDRGFPl interactions should be in the 
model. Hence the preliminary final model obtained via stepwise selec­
tion turns out to be the same as the one obtained via purposeful selec­
tion. This may not always be the case. In our experience models ob­
tained by these two approaches rarely differ by more than a couple of 
variables. In a situation where different approaches yield different 
models we recommend proceeding with a combined larger model via 
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purposeful selection using both confounding and statistical significance 
as criteria for model simplification. 

We note that the same three interactions were identified as signifi­
cant when both the Score and Wald test options were used. Thus we do 
not present this output or discuss the results. 

In conclusion, we emphasize that stepwise selection identifies vari­
ables as candidates for a model solely on statistical grounds. Thus, fol­
lowing stepwise selection of main effects all variables should be care­
fully scrutinized for clinical plausibility. In general, interactions must 
attain statistical significance to alter the point and interval estimates from 
a main effects model. Thus, stepwise selection of interactions using sta­
tistical significance can provide a valuable contribution to model identi­
fication, especially when there are large numbers of clinically plausible 
interactions generated from the main effects. 

4. 4 BEST SUBSETS LOGISTIC REGRESSION 

An alternative to stepwise selection of variables for a model is best sub­
set selection. This approach to model building has been available for 
linear regression for a number of years and makes use of the branch 
and bound algorithm of Fumival and Wilson (1974). Typical software 
implementing this method for linear regression identifies a specified 
number of "best" models containing one, two, three variables, and so 
on, up to the single model containing all p variables. Lawless and Sing­
hal (1978, 1987a, 1987b) proposed an extension that may be used with 
any non-normal model. The crux of their method involves application 
of the Fumlval-Wilson algorithm to a linear approximation of the cross­
product sum-of-squares matrix that yields approximations to the maxi­
mum likelihood estimates. Selected models are then compared to the 
model containing all variables using a likelihood ratio test. Hosmer, 
Jovanovic, and Lemeshow (1989) have shown that, for logistic regres­
sion, the full generality of the Lawless and Singhal approach is not 
needed. Best subsets logistic regression may be performed in a straight­
forward manner using any program capable of best subsets linear re­
gression. Also, some packages, including SAS, have implemented the 
Lawless and Singhal method in their logistic regression modules. 

Applying best subsets linear regression software to perform best 
subsets logistic regression is most easily explained using vector and ma­
trix notation. In this regard, we let X denote the n x (p + 1) matrix 
containing the values of all p independent variables for each subject, 
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with the first column containing 1 to represent the constant term. Here 
the p variables may represent the total number of variables, or those se­
lected at the univariable stage of model building. We let V denote an 
n X n diagonal matrix with general element V; = fr;{1- ft;) where fr; is 
the estimated logistic probability computed using the maximum likeli­

hood estimate ~and the data for the i'h case, X;. 

For the sake of clarity of presentation in this section, we repeat the 
expression for X and V given in Chapter 2. They are as follows: 

1 X11 X12 xlp 

X= 
X21 Xn x2p 

1 xnl xn2 ... xnp 

and 

n1(1-nl) 0 0 

0 n2(1-n2) 0 
V= 

0 

0 0 nn(l-nn) 

As noted in Chapter 2, the maximum likelihood estimate is deter­
mined iteratively. It may be shown [see Pregibon (1981)] that 

~=(X'VXtX'Vz, where z=X~+V-1r and r is the vector of residuals, 

r = (y- ft). This representation of ~ provides the basis for use of linear 
regression software. It is easy to verify that any linear regression pack­
age, that allows weights, produces coefficient estimates identical to ~ 
when used with Z; as the dependent variable and case weights, V;, equal 
to the diagonal elements of V . 

To replicate the results of the maximum likelihood fit from a lo­
gistic regression package using a linear regression package, we calculate 
for each case, the value of a dependent variable as follows: 
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-ln --A- +A A _ ( ir1 ) (Y1 -ir1) 

1-n1 n1(1-n1) 
(4.1) 

and a case weight 

(4.2) 

Note that all we need is access to the fitted values, it1, to compute the 
values of z1 and v1• Next, we run a linear regression program using the 
values of z1 as the dependent variable, the values of x1 for our vector of 
independent variables, and the values of v1 for our case weights. 

Proceeding further with the linear regression, it can be shown that 
the residuals from the fit are 

and the weighted residual sum-of-squares produced by the program is 

n n ( A )2 
~ ( A )2 ~ Y1 -n1 t:t Vt Z;- Z; = ~ it;{l- it,) , 

which is X2
, the Pearson chi-square statistic from a maximum likeli­

hood logistic regression program. It follows that the mean residual 
sum-of-squares is s2 =X2/(n-p-1). The estimates of the standard er­
ror of the estimated coefficients produced by the linear regression pro­
gram are s times the square root of the diagonal elements of the matrix 
(X'VXf1 

• Thus, to obtain the correct values given in equation (2.5) we 
need to divide the estimates of the standard error produced by the linear 
regression program by s, the square root of the mean square error (or 
standard error of the estimate). 

The ability to duplicate the maximum likelihood fit in a linear re­
gression package forms the foundation of the suggested method for 
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performing best subsets logistic regression. In particular, Hosmer, 
Jovanovic, and Lemeshow (1989) show that use of any best subsets lin­
ear regression program with values of zi in equation ( 4.1) for the de­
pendent variable, case weights vi shown in equation (4.2), and covari­
ates X;. produces for any subset of q variables the approximate coeffi­
cient estimates of Lawless and Singhal (1978). Hence, we may use any 
best subsets linear regression program to execute the computations for 
best subsets logistic regression. 

The subsets of variables selected for "best" models depend on the 
criterion chosen for "best." In best subsets linear regression three cri­
teria have primarily been used to select variables. Two of these are 
based on the concept of the proportion of the total variation explained 
by the model. These are R2

, the ratio of the regression sum-of-squares 
to the total sum-of-squares, and adjusted R2 (or AR2

), the ratio of the 
regression mean squares to the total mean squares. Since the adjusted 
R2 is based on mean squares rather than sums-of-squares, it provides a 
correction for the number of variables in the model. This is important, 
as we must be able to compare models containing different variables 
and different numbers of variables. If we use R2

, the best model is al­
ways the model containing all p variables, a result that is not very help­
ful. An obvious extension for best subsets logistic regression is to base 
the R2 measures, in a manner similar to that shown in Chapter 5, on de­
viance rather than Pearson chi-square. However, we do not recommend 
the use of the R2 measures for best subsets logistic regression. Instead, 
we prefer to use the third measure used in best subsets linear regression 
that was developed by Mallow (1973). This is a measure of predictive 
squared error, denoted Cq. This measure is denoted as CP by other 

authors. We use "q" instead of "p" in this text since the letter p refers 
to a total number of possible variables while q refers to some subset of 
variables. 

A summary of the development of the criterion Cq in linear regres-

sion may be found in many texts on this subject, for example Ryan 
(1997). Hosmer, Jovanovic, and Lemeshow (1989) show that when best 
subsets logistic regression is performed via a best subsets linear regres­
sion package in the manner described previously in this section, Mal­
low's Cq has the same intuitive appeal as it does in linear regression. In 

particular they show that for a subset of q of the p variables 

x2 +A* 
cq = 2/( ) +2(q+1)-n, X n-p-1 
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where X2 = L { (Y; -it; )2 /[it; ( 1- it;) n' the Pearson chi-square statistic 

for the model with p variables and X is the multivariable Wald test sta­
tistic for the hypothesis that the coefficients for the p- q variables not 
in the model are equal to zero. Under the assumption that the model fit 
is the correct one, the approximate expected values of X2 and A.* are 
( n- p -1) and p- q respectively. Substitution of these approximate 
expected values into the expression for Cq yields Cq = q + 1. Hence, 

models with Cq near q + 1 are candidates for a best model. The best 

subsets linear regression program selects as best that subset with the 
smallest value of Cq. 

Use of the best subsets linear regression package should help select, 
in the same way its application in linear regression does, a core of q im­
portant covariates from the p possible covariates. At this point, we sug­
gest that further modeling proceed in the manner described for pur­
poseful selection of variables using a logistic regression package. Users 
should not be lured into accepting the variables suggested by a best sub­
set strategy without considerable critical evaluation. 

We illustrate best subsets selection with the UIS data. The variables 
used were those indicated in Table 1.8. History of previous IV drug 
use, IVHX, was coded into the same two design variables, IVHX_2 and 
IVHX_3, used in previous sections. A logistic regression package was 
used to obtain the estimated logistic probabilities for the model con­
taining all p = 7 variables. Following the fit of the full model the values 
of z and v were created using equations (4.1) and (4.2). A best subsets 
linear regression package was used with z as the dependent variable and 
v as the case weights. The possible independent variables were the 6 
continuous variables plus two design variables for IVHX, for a total of 
8. The best subsets linear regression program used did not have a pro­
vision for the creation of design variables from categorical scaled co­
variates so the design variables for IVHX were created prior to the best 
subsets analysis. 

In Table 4.14 we present the results of the five best models selected 
using Cq as the criterion. In addition to the variables selected, we show 

the values of Cq, the values of A.*, and the values of the likelihood ratio 

test, G, for the variables excluded from the model, the corresponding 
degrees of freedom and p-values. We note that the test statistics G and 
A.* have similar values, as expected, since they test the same hypothesis 
and have the same asymptotic distribution. 
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Table 4.14 Five Best Models Identified Using Mallow's C
9

• 

Model Covariates, Mallow's C
9

, the Wald Test (A.*), and the 
Likelihood Ratio Test for· the Excluded Covariates, Degrees-of-
Freedom and f·Value 

Model Model Covariates cq X G df p 

1 AGE, NDRGTX, IVHX_2, IVHX_3, TREAT 4.31 1.35 1.34 3 0.72 
2 AGE, NDRGTX, IVXH_2, IVHX_3, TREAT, RACE 5.46 0.47 0.47 2 0.79 

3 AGE, NDRGTX, IVHX_2,IVHX_3, TREAT, SITE 6.00 1.03 1.01 2 0.60 
4 AGE, NDRGTX, IVHX_2, IVHX_3, TREAT, BECK 6.31 1.35 1.34 2 0.51 

5 AGE, NDRGTX, IVHX 3, TREAT 6.98 6.13 6.34 4 0.18 

Using only the summary statistics, we would select model 1 as the 
best model since it has the smallest value of Cq and the Wald and likeli-

hood ratio tests for the excluded variables are not significant. Note that 
four of the five models identified as being "best" include AGE, 
NDRGTX, the two design variables for IVHX and TREAT. Thus these 
variables are important and should be in any model. The best model 
contains neither RACE, which is an important clinical variable, nor 
SITE, the study design variable. Hence, we recommend adding RACE 
and SITE to model 1 and proceed to the next stage of model develop­
ment. 

At this point the model is identical to that already presented in Sec­
tion 4.2 where we focused on scale identification of continuous vari­
ables. Once we have finalized the main effects model, we could employ 
best subsets selection to decide on possible interactions. 

Some programs, for example SAS's PROC LOGISTIC, provide a 
best subsets selection of covariates based on the Score test for the vari­
ables in the model. For example, the best two variable model is the one 
with the largest Score test among all two variable models. The output 
lists the covariates and Score test for a user specified number of best 
models of each size. The difficulty one faces when presented with this 
output is that the Score test increases with the number of variables in the 
model. Hosmer and Lemeshow (1999) show how an approximation to 
Mallow's Cq can be obtained from Score test output in a survival time 
analysis. A similar approximation can be obtained from Cq for logistic 

regression. First, we assume that the Pearson chi-square statistic is equal 
to its mean, e.g. X2 

"" ( n- p-I). Next we assume that the Wald statistic 
for the p- q excluded covariates may be approximated by the differ-
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ence between the values of the Score test for all p covariates and the 
Score test for q covariates, namely A.~ ""SP- Sq. This results in the fol­

lowing approximation 

X2 +A* cq = 2/( ) +2(q+1)-n 
X n-p-1 

(n- p-1)+(S1 -S) 
"" 

1 
q +2(q+1)-n 

1 

"" si' - sq + 2q- P + 1. 

The value of SP is the Score test for the model containing all p covari­

ates and is obtained from the computer output. The value of Sq is the 

Score test for the particular subset of q covariates and its value is also 
obtained from the output. The five best models identified using SAS's 
Score test procedure in PROC LOGISTIC are shown in Table 4.15. 

The best four models in Table 4.15 are the same models obtained 
using the best subsets linear regression method shown in Table 4.14. 
We note that the approximate values of Cq in Table 4.15 are quite close 

to the values in Table 4.14. The fifth model is the one we eventually 
selected when we considered clinical and study design criteria in addi­
tion to best subsets. Thus in this example, the approximation to Cq has 

yielded a useful rank ordering of the models. 
The advantage of the proposed method of best subsets logistic re­

gression is that many more models can be quickly screened than was 
possible with the other approaches to variable identification. There is, 
however, one potential disadvantage with the best subsets approach: we 
must be able to fit the model containing all the possible covariates. In 
analyses that include a large number of variables this may not be possi-

Table 4.15 Five Best Models Identified Using the Score 
Test Approximation to Mallow's C

9
, ( S8 = 32.6798) 

Model Model Covariates Sq Cq 

1 AGE, NDRGTX, IVHX_2, IVHX_3, TREAT 31.1565 4.52 
2 AGE, NDRGTX, IVXH_2, IVHX_3, TREAT, RACE 

3 AGE, NDRGTX, IVHX_2, IVHX_3, TREAT, SITE 

4 AGE, NDRGTX, IVHX_2, IVHX_3, TREAT, BECK 

5 AGE, NDRGTX, IVHX 2, IVHX 3, TREAT, RACE, SITE 

32.0446 
31.6135 
31.1569 
32.6795 

5.63 
6.07 
6.52 
7.00 
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ble. Numerical problems can occur when we overfit a logistic regres­
sion model. If the model has many variables, we run the risk that the 
data are too thin to be able to estimate all the parameters. If the full 
model proves to be too rich, then some selective weeding out of obvi­
ously unimportant variables with univariable tests may remedy this 
problem. Another approach is to perform the best subsets analysis 
using several smaller "full" models. Numerical problems are dis­
cussed in more detail in the next section. 

In summary, the ability to use weighted least squares best subsets 
linear regression software to identify variables for logistic regression 
should be kept in mind as a possible aid to variable selection. As is the 
case with any statistical selection method, the clinical basis of all vari­
ables should be addressed before any model is accepted as the final 
model. 

4. 5 NUMERICAL PROBLEMS 

In previous chapters we have occasionally mentioned various numeri­
cal problems that can occur when fitting a logistic regression model. 
These problems are caused by certain structures in the data and the 
lack of appropriate checks in logistic regression software. The goal of 
this section is to illustrate these structures in certain simple situations 
and illustrate what can happen when the logistic regression model is fit 
to such data. The issue here is not one of model correctness or specifi­
cation, but the effect certain data patterns have on the computation of 
parameter estimates. 

Perhaps the simplest and thus most obvious situation is when we 
have a frequency of zero in a contingency table. An example of such 
a contingency table is given in Table 4.16. The estimated odds ratios 
and log odds ratios using the first level of the covariate as the reference 
group are given in the first two rows below the table. The point esti­
mate of the odds ratios for level 3 versus level 1 is infinite since all 
subjects at level 3 responded. The results of fitting a logistic regression 
model to these data are given in the last two rows. The estimated coef­
ficient in the first column is the intercept coefficient. The particular 
package used does not really matter as many, but not all, packages 
produce similar output. One program that does identify the problem is 
STAT A. It provides an error message that x = 3 perfectly predicts the 
outcome and the design variable for x = 3 is not included in the fit of 
the model. Other programs may or may not provide some sort of er-
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ror message indicating that convergence was not obtained or that the 
maximum number of iterations was used. What is rather obvious, and 
the tip-off that there is a problem with the model, is the large estimated 
coefficient for the second design variable and especially its large esti­
mated standard error. 

A common practice to avoid having an undefined point estimate is 
to add one-half to each of the cell counts. Adding one-half may allow 
us to move forward with the analysis of a single contingency table but 
such a simplistic remedy is rarely satisfactory with a more complex 
data set. 

As a slightly more complex example we consider the stratified 2 
by 2 tables shown in Table 4.17. The stratum-specific point estimates 
of the odds ratios are provided below each 2 by 2 table. The results of 
fitting a series of logistic regression models are provided in Table 4.18. 

In the case of the data shown in Table 4.17 we do not encounter 
problems until we include the stratum, z, by risk factor, x, interaction 
terms, xxz_2 and xxz_3 in the model. The addition of the interaction 

terms results in a model that is equivalent to fitting a model with a sin­
gle categorical variable with six levels, one for each column in Table 
4.17. Thus, in a sense, the problem encountered when we include the 
interaction is the same one illustrated in Table 4.16. As was the case 
when fitting a model to the data in Table 4.16, the presence of a zero 
cell count is manifested by an unbelievably large estimated coefficient 
and estimated standard error. 

The presence of a zero cell count should be detected during the 
univariable screening of the data. Knowing that the zero cell count is 
going to cause problems in the modeling stage of the analysis we could 
collapse the categories of the variable in a meaningful way to eliminate 
it, eliminate the category completely or, if the variable is at least ordinal 
scale, treat it as continuous. 

The type of zero cell count illustrated in Table 4.17 results from 
spreading the data over too many cells. This problem is not likely to 
occur until we begin to include interactions in the model. When it does 
occur, we should examine the three way contingency table equivalent 
to the one shown in Table 4.17. The unstable results prevent us from 
determining whether, in fact, the interaction is important. To assess the 
interaction we first need to eliminate the zero cell count. One way to 
do this is by collapsing categories of the stratification variable. For ex­
ample, in Table 4.17 we might decide that values of z = 2 and z = 3 are 
similar enough to pool them. The stratified analysis would then have 
two 2 by 2 tables the second of which results from pooling the tables 
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Table 4.16 A Contingency Table with a Zero Cell Count and the 
Results of Fitting a Logistic Regression Model to This Data 

Outcome/ x 1 2 3 Total 
1 7 12 20 39 
0 13 8 0 21 

Total 20 20 20 60 
A 

1 2.79 inf OR 

In( OR) 0 1.03 inf 

fi -0.62 1.03 Il.7 
A 

0.47 0.65 34.9 SE 

for z = 2 and z = 3. A second approach is to define a new variable 
equal to the combination of the stratification variable and the risk fac­
tor and to pool over levels of this variable and model it as a main effect 
variable. Using Table 4.17 as an example, we would have a variable 
with six levels corresponding to the six columns in the table. We could 
collapse levels five and six together. Another pooling strategy would 
be to pool levels three and five and four and six. This pooling strategy 
is equivalent to collapsing over levels of the stratification variable. The 
net effect is the loss of degrees-of-freedom commensurate with the 
amount of pooling. Twice the difference in the log-likelihood for the 
main effects only model and the model with the modified interaction 
term added provides a statistic for the significance of the coefficients 
for the modified interaction term. 

The fitted models shown in Tables 4.16 and 4.18 resulted in large 
estimated coefficients and estimated standard errors. In some exam­
ples we have encountered, the magnitude of the estimated coefficient 
was not large enough to suspect a numerical problem; but the esti-

Table 4.17 Stratified 2 by 2 Contingency Tables 
with a Zero Cell Count Within One Stratum 

Stratum (z) I 2 3 
Outcome/ x 1 0 I 0 I 0 

I 5 2 IO 2 I5 I 
0 5 8 2 6 0 4 

Total 10 10 I2 8 15 5 
A 

4 15 inf OR 
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Table 4.18 Results of Fitting Logistic 
Regression Models to the Data in Table 4.17 

Model 1 2 
Variable Coeff. Std. Err. Coeff. Std. Err. 

X 2.77 0.72 1.39 1.0 I 
z_2 1.19 0.81 0.29 1.14 
z_3 2.04 0.89 0.00 1.37 

xxz_2 1.32 1.51 
xxz_3 11.54 50.22 

Constant -2.32 0.77 -1.39 0.79 

mated standard error always was. Hence, we believe that the best indi­
cator of a numerical problem in logistic regression is the estimated 
standard error. In general, any time the estimated standard error of an 
estimated coefficient is large relative to the point estimate we should 
suspect the presence of one of the data structures described in this sec­
tion. 

A second type of numerical problem occurs when a collection of 
the covariates completely separates the outcome groups or, in the ter­
minology of discriminant analysis, the covariates discriminate per­
fectly. For example, suppose that the age of every subject with the 
outcome present was greater than 50 and the age of all subjects with 
the outcome absent was less than 49. Thus, if we know the age of a 
subject we know with certainty the value of the outcome variable. In 
this situation there is no overlap in the distribution of the covariates 
between the two outcome groups. This type of data has been shown by 
Bryson and Johnson (1981) to have the property of monotone likeli­
hood. The net result is that the maximum likelihood estimates do not 
exist (see Albert and Anderson (1984) and Santner and Duffy (1986)). 
In order to have finite maximum likelihood estimates we must have 
some overlap in the distribution of the covariates in the model. 

A simple example illustrates the problem of complete separation 
and the results of fitting logistic regression models to such data. Sup­
pose we have the following 12 pairs of covariate and outcome, (x,y): 
(1 ,0), (2,0), (3,0), ( 4,0), (5,0), (x6 = 5.5, or 6.0, or 6.05, or 6.1, or 6.2, or 
8.0, y6 = 0), (6,1), (7,1), (8,1), (9,1), (10,1), (11,1). The results of fitting 
logistic regression models when x6 takes on one of the values 5.5, 6.0, 
6.05, 6.1, 6.2, or 8, using SAS version 6.12 are given in Table 4.19. 
When we use x6 = 5.5 we have complete separation and all estimated pa-
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Table 4.19 Estimated Slope ( /3, ), Constant, and Estimated 

Standard Errors When the Data Have Complete Separation, 

Quasicomplete Separation, and Overlap 
Estimates I X6 5.5 6.0 6.05 6.10 6.15 6.20 8.0 

S, 15.1 7.8 4.3 3.6 3.2 2.9 1.0 

" 19.0 35.4 6.1 4.2 3.3 2.8 0.5 SE 

fio -86.7 -47.0 -26.2 -22.0 -19.5 -17.8 -6.1 

" 109.4 212.0 36.7 25.4 20.3 17.3 3.6 SE 

rameters are huge, since the maximum likelihood estimates do not exist. 
SAS provides a warning but at the same time provides the values of the 
estimates at the last iteration, leaving the ultimate decision about how to 
handle the output to the user. Similar behavior occurs when the value 
of x6 = 6.0 is used. SAS notes this fact and again provides estimates. 
When overlap is at a single or a few tied values the configuration was 
termed by Albert and Anderson as quasicomplete separation. As the 
value of x6 takes on values greater than 6 the overlap becomes greater 
and the estimated parameters and standard errors begin to attain more 
reasonable values. The sensitivity of the fit to the overlap depends on 
the sample size and the range of the covariate. The tip-off that some­
thing is amiss is, as in the case of the zero cell count, the very large esti­
mated coefficients and especially the large estimated standard errors. 
Other programs, including STAT A, do not provide output when there is 
complete or quasi-complete separation, e.g. x6 = 5.5 or x6 = 6. In the 
remaining cases STATA and SAS produce similar results. 

The occurrence of complete separation in practice depends on the 
sample size, the number of subjects with the outcome present, and the 
number of variables included in the model. For example, suppose we 
have a sample of 25 subjects and only five have the outcome present. 
The chance that the main effects model demonstrates complete separa­
tion increases with the number of variables we include in the model. 
Thus, the modeling strategy that includes all variables in the model is 
particularly sensitive to complete separation. Albert and Anderson and 
Santner and Duffy provide rather complicated diagnostic procedures 
for determining whether a set of data displays complete or quasicom­
plete separation. Albert and Anderson recommend that in the absence 
of their diagnostic, one look at the estimated standard errors and if these 
tend to increase substantially with each iteration of the fit, that one sus-
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Table 4.20 Data Displaying Near Collinearity 
Among the Inde2endent Variables and Constant 

Subject XI x2 x3 y 

1 0.225 0.231 1.026 0 
2 0.487 0.489 1.022 1 
3 -1.080 -1.070 1.074 0 
4 -0.870 -0.870 1.091 0 
5 -0.580 -0.570 1.095 0 
6 -0.640 -0.640 1.010 0 
7 1.614 1.619 1.087 0 
8 0.352 0.355 1.095 1 
9 -1.025 -1.018 1.008 0 
10 0.929 0.937 1.057 

pect the presence of complete separation. As noted in Chapter 3 the 
easiest way to address complete separation is to use some careful uni­
variable analyses. The occurrence of complete separation is not likely 
to be of great clinical importance as it is usually a numerical coinci­
dence rather than describing some important clinical phenomenon. It is 
a problem we must work around. 

As is the case in linear regression, model fitting via logistic regres­
sion is also sensitive to collinearities among the independent variables 
in the model. Most software packages have some sort of diagnostic 
check, like the tolerance test employed in linear regression. Neverthe­
less it is possible for variables to pass these tests and have the program 
run, but yields output that is clearly nonsense. As a simple example, 
we fit logistic regression models to the data displayed in Table 4.20. 
In the table x1 - N(0,1) and the outcome variable was generated by 
comparing a U(0,1) variate, u, to the true probability 

rc(xl) = ex1/(1 + ex1 ) as follows: if u < rc(xl) then y = 1, otherwise y = 0. 

The notation N(0,1) indicates a random variable following the stan­
dard normal (mean= zero, variance= 1) distribution and U(a,b) indi­
cates a random variable following the uniform distribution on the in­
terval [a, b]. The other variables were generated from x1 and the con­
stantasfollows: x2 =x1 +V(0,0.1) and x3 =1+V(0,0.01). Thus, x1 

and x2 are highly correlated and x3 is nearly collinear with the con­
stant term. The results of fitting logistic regression models using SAS 
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Table 4.21 Estimated Coefficients and Standard Errors from 
F'tt' L ' t' R M d I t th D t T bl 4 20 I mg OgiS IC eg resswn o e s 0 e a am a e . 

Std. Std. Std. Std. 
Var. Coeff Err. Coeff. Err. Coeff. Err. Coeff. Err. 

XI 1.4 1.0 146.4 277.0 143.0 282.2 
x2 -276.6 276.6 -141.5 281.8 
x3 2.74 21.1 -3.62 25.0 

Cons. -1.0 0.8 0.37 1.4 -1.79 20.0 3.42 26.2 

version 6.12 to various subsets of the variables shown in Table 4.20 are 
presented in Table 4.21. 

The model that includes the highly correlated variables x1 and x2 

has both very large estimated slope coefficients and estimated standard 
errors. For the model containing x3 we see that the estimated coeffi-
cients are of reasonable magnitude but the estimated standard errors 
are much larger than we would expect. The model containing all vari­
ables is a composite of the results of the other models. In all cases the 
tip-off for a problem comes from the aberrantly large estimated stan­
dard errors. 

In a more complicated data set, an analysis of the associations 
among the covariates using a collinearity analysis similar to that per­
formed in linear regression should be helpful in identifying the de­
pendencies among the covariates. Belsley, Kuh, and Welsch (1980) 
discuss a number of methods that are implemented in many linear re­
gression packages. One would normally not employ such an in-depth 
investigation of the covariates unless there was evidence of degradation 
in the fit similar to that shown in Table 4.21. An alternative is to use 
the ridge regression methods proposed by Schaefer (1986). 

In general, the numerical problems of a zero cell count, complete 
separation, and collinearity, are manifested by extraordinarily large es­
timated standard errors and sometimes by a large estimated coefficient 
as well. New users and ones without much computer experience are 
especially cautioned to look at their results carefully for evidence of 
numerical problems. Consultation with someone more experienced 
may be required to ferret out and solve these numeric problems. 
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EXERCISES 

1. Selection of the scale for continuous covariates is an important 
step in any modeling process. The variable systolic blood pres­
sure at admission, SYS, in the ICU study described in Section 1. 6 
presents a particularly challenging example. Consider the vari­
able vital status (STA) as the outcome variable and SYS as the co­
variate for a univariable logistic regression model. What is the 
correct scale for SYS to enter the model? As a second example, 
consider a univariable model with heart rate at ICU admission 
(HRA) as the covariate. Repeat this exercise of scale identification 
for SYS and HRA using a multivariable model containing these 
two variables plus three or four other covariates of your choice. 

2. Consider the variable level of consciousness at ICU admission 
(LOC) as a covariate and vital status (ST A) as the outcome vari­
able. Compare the estimates of the odds ratios obtained from the 
cross-classification of ST A by LOC and the logistic regression of 
STA on LOC. Use LOC = 0 as the reference group for both 
methods. How well did the logistic regression program deal with 
the zero cell? What strategy would you adopt to modeling LOC in 
future analyses? 

3. Consider the variable vital status (STA) as the outcome variable 
and the remainder of the variables in the ICU data set as potential 
covariates. Use each of the variable selection methods discussed 
in this chapter to find a "best" model. Document thoroughly the 
rationale for each step in each process you follow. Compare and 
contrast the models resulting from the different approaches to 
variable selection. Note that in all cases the analysis should ad­
dress not only identification of main effects but also appropriate 
scale for continuous covariates and potential interactions. Display 
the results of your final model in a table. Include in the table 
point and 95% CI estimates of all relevant odds ratios. Document 
the rationale for choosing the final model. 

4. Repeat Exercises 1 and 3 for the Low Birthweight data and the 
Prostatic Cancer data. 



CHAPTER 5 

Assessing the Fit of the Model 

5.1 INTRODUCTION 

We begin our discussion of methods for assessing the fit of an estimated 
logistic regression model with the assumption that we are at least 
preliminarily satisfied with our efforts at the model building stage. By this 
we mean that, to the best of our knowledge, the model contains those 
variables (main effects as well as interactions) that should be in the model 
and that variables have been entered in the correct functional form. Now 
we would like to know how effectively the model we have describes the 
outcome variable. This is referred to as its goodness-of-fit. 

If we intend to assess the goodness-of-fit of the model, then we 
should have some specific ideas about what it means to say that a model 
fits. Suppose we denote the observed sample values of the outcome 
variable in vector form as y where y'=(ypy2,y3, ... ,yn)· We denote the 
values predicted by the model, or fitted values, as y where 

Y'=(y1,y2 ,y3 , ... ,yn)· We conclude that the model fits if (I) summary 

measures of the distance between y and y are small and (2) the 

contribution of each pair (yi,yi ), i = 1, 2,3, ... ,n to these summary measures 

is unsystematic and is small relative to the error structure of the model. 
Thus, a complete assessment of the fitted model involves both the 
calculation of summary measures of the distance between y and y, and a 
thorough examination of the individual components of these measures. 

When the model building stage has been completed, a series of logical 
steps may be used to assess the fit of the model. The components of the 
proposed approach are (1) computation and evaluation of overall measures 
of fit, (2) examination of the individual components of the summary 
statistics, often graphically, and (3) examination of other measures of the 
difference or distance between the components of y and y. 

143 
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5.2 SUMMARY MEASURES OF GOODNESS-OF -FIT 

We begin with the summary measures of goodness-of-fit, as they are rou­
tinely provided as output with any fitted model and give an overall indica­
tion of the fit of the model. Summary statistics, by nature, may not provide 
information about the individual model components. A small value for one 
of these statistics does not rule out the possibility of some substantial and 
thus interesting deviation from fit for a few subjects. On the other hand, a 
large value for one of these statistics is a clear indication of a substantial 
problem with the model. 

Before discussing specific goodness-of-fit statistics, we must first 
consider the effect the fitted model has on the degrees of freedom available 
for the assessment of model performance. We use the term covariate pat­
tern to describe a single set of values for the covariates in a model. For 
example, in a data set containing values of age, race, sex and weight for 
each subject, the combination of these factors may result in as many differ­
ent covariate patterns as there are subjects. On the other hand, if the model 
contains only race and sex, each coded at two levels, there are only four 
possible covariate patterns. We note that during model development it is 
not necessary to be concerned about the number of covariate patterns. The 
degrees-of-freedom for tests are based on the difference in the number of 
parameters in competing models, not on the number of covariate patterns. 
However, the number of covariate patterns may be an issue when the fit of 
a model is assessed. 

Goodness-of-fit is assessed over the constellation of fitted values de­
termined by the covariates in the model, not the total collection of covari­
ates. For instance, suppose that our fitted model contains p independent 
variables, x' = ( xp x2 , x3, ... , xP), and let J denote the number of distinct 

values of x observed. If some subjects have the same value of x then 
J<n. We denote the number of subjects with x=x1 by 

mJ, j = 1,2,3, ... ,1. It follows that .L,.mj = n. Let yj denote the number of 

positive responses, y = 1, among the mj subjects with x = x J. It follows 

that LYJ = n1 , the total number of subjects with y = 1. The distribution 

of the goodness-of-fit statistics is obtained by letting n become large. If 
the number of covariate patterns also increases with n then each value of 
m1 tends to be small. Distributional results obtained under the condition 

that only n becomes large are said to be based on n-asymptotics. If we fix 
J < n and let n become large then each value of m1 also tends to become 
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large. Distributional results based on each mj becoming large are said to 

be based on m-asymptotics. The difference between these asymptotics and 
the need to distinguish between them should become clearer as we discuss 
summary statistics in greater detail. 

Initially, we assume that Jzn, as we expect whenever there is at 
least one continuous covariate in the model. This is the case most fre­
quently encountered in practice. It also presents the greatest challenge in 
developing distributions of goodness-of-fit statistics. 

5.2.1 Pearson Chi-Square Statistic and Deviance 

In linear regression, summary measures of fit, as well as diagnostics for 
casewise effect on the fit, are functions of a residual defined as the differ­
ence between the observed and fitted value (y- y). In logistic regression 

there are several possible ways to measure the difference between the ob­
served and fitted values. To emphasize the fact that the fitted values in 
logistic regression are calculated for each covariate pattern and depend on 
the estimated probability for that covariate pattern, we denote the fitted 
value for the jth covariate pattern as yj where 

where g (x j ) is the estimated logit. 

We begin by considering two measures of the difference between the 
observed and the fitted values: the Pearson residual and the deviance resid­
ual. For a particular covariate pattern the Pearson residual is defined as 
follows: 

(5.1) 

The summary statistic based on these residuals is the Pearson chi-square 
statistic 
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(5.2) 

The deviance residual is defined as 

(5.3) 

where the sign,+ or-, is the same as the sign of (Yj- mJtj). For covari­

ate patterns with yj = 0 the deviance residual is 

and the deviance residual when y j = m j, is 

The summary statistic based on the deviance residuals is the deviance 

(5.4) 

In a setting where J = n, this is the same quantity shown in equation 
(1.10). 

The distribution of the statistics X2 and D under the assumption that 
the fitted model is correct in all aspects is supposed to be chi-square with 
degrees-of-freedom equal to J- (p + 1). For the deviance this statement 

follows from the fact that D is the likelihood ratio test statistic of a satu­
rated model with J parameters versus the fitted model with p + 1 parame-

ters. Similar theory provides the null distribution of X2
• The problem is 

that when J"" n, the distribution is obtained under n-asymptotics, and 
hence the number of parameters is increasing at the same rate as the sam­
ple size. Thus, p-values calculated for these two statistics when J"" n, 
using the X2 

( J- p- 1) distribution, are incorrect. 
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One way to avoid the above noted difficulties with the distributions of 
X2 and D when J = n is to group the data in such a way that m­
asymptotics can be used. To understand the rationale behind the various 
grouping strategies that have been proposed, it is helpful to think of X2 as 
the Pearson and D as the log-likelihood chi-square statistics that result 
from a 2 x J table. The rows of the table correspond to the two values of 
the outcome variable, y = 1, 0. The J columns correspond to the J possible 
covariate patterns. The estimate of the expected value under the hypothe­
sis that the logistic model in question is the correct model for the cell cor­
responding to the y = 1 row and /h column is m/tj. It follows that the es-

timate of the expected value for the cell corresponding to the y = 0 row 

and jth column is mj ( 1- trJ The statistics X2 and D are calculated in the 

usual manner from this table. 
Thinking of the statistics as arising from the 2 x J table gives some 

intuitive insight as to why we cannot expect them to follow the 
x2(1- p -1) distribution. When chi-square tests are computed from a 

contingency table the p-vaiues are correct under the null hypothesis when 
the estimated expected values are "large" in each cell. This condition 
holds under m-asymptotics. Although this is an oversimplification of the 
situation, it is essentially correct. In the 2 x J table described above the 
expected values are always quite small since the number of columns in­
creases as n increases. To avoid this problem we may collapse the col­
umns into a fixed number of groups, g, and then calculate observed and 
expected frequencies. By fixing the number of columns, the estimated ex­
pected frequencies become large as n becomes large. Thus, m-asymptotics 
hold. The theory required to derive the distribution of the statistics is not 
quite so straightforward but the intuitive appeal of thinking in this manner 
is most helpful. The relevant distribution theory presented in a series of 
papers by Moore (1971), and Moore and Spruill (1975), considers what 
happens to chi-square goodness-of-fit tests when the boundaries forming 
the cells are functions of random variables. 

5.2.2 The Hosmer-Lemeshow Tests 

Hosmer and Lemeshow (1980) and Lemeshow and Hosmer (1982) pro­
posed grouping based on the values of the estimated probabilities. Suppose 
for sake of discussion, that J = n. In this case we think of the n columns 
as corresponding to the n values of the estimated probabilities, with the 
first column corresponding to the smallest value, and the nth column to the 
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largest value. Two grouping strategies were proposed as follows: ( 1) col­
lapse the table based on percentiles of the estimated probabilities and (2) 
collapse the table based on fixed values of the estimated probability. 

With the first method, use of g = 10 groups results in the first group 
containing the n; = n I 10 subjects having the smallest estimated probabili­
ties, and the last group containing the n;0 = n 110 subjects having the larg­
est estimated probabilities. With the second method, use of g = 10 groups 

results in cutpoints defined at the values k/1 0, k = 1, 2, ... , 9, and the groups 

contain all subjects with estimated probabilities between adjacent cut­
points. For example, the first group contains all subjects whose estimated 
probability is less than or equal to 0.1, while the tenth group contains those 
subjects whose estimated probability is greater than 0.9. For they= 1 row, 
estimates of the expected values are obtained by summing the estimated 
probabilities over all subjects in a group. For they= 0 row, the estimated 
expected value is obtained by summing, over all subjects in the group, one 
minus the estimated probability. For either grouping strategy, the Hosmer­
Lemeshow goodness-of-fit statistic, C, is obtained by calculating the Pear­
son chi-square statistic from the g x 2 table of observed and estimated ex-

pected frequencies. A formula defining the calculation of C is as follows: 

(5.5) 

where n~ is the total number of subjects in the kth group, ck denotes the 

number of covariate patterns in the kth decile, 

is the number of responses among the ck covariate patterns, and 

is the average estimated probability. 
Using an extensive set of simulations, Hosmer and Lemeshow (1980) 

demonstrated that, when J = n and the fitted logistic regression model is 
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the correct model, the distribution of the statistic C is well approximated 
by the chi-square distribution with g- 2 degrees of freedom, X2(g-2). 
While not specifically examined, it is likely that x2 (g-2) also approxi­

mates the distribution when J = n. 

An alternative to the denominator shown in equation (5.5) is obtained 
if we consider ok to be the sum of independent nonidentically distributed 
random variables. This suggests that we should standardize the squared 
difference between the observed and estimated expected frequency by 

c, 
I,m/rJ{t-rr1). 
J=l 

It is easy to show that 

0 0 

,Lm1rrJ(l-i1) = n~ffk(I-ffd- ,LmArr1 -ffk)
2

. 
j=l j=l 

In a series of simulations Xu (1996) showed that use of 

ck 

,Lm1rrAt-rr1) 
j=l 

results in a trivial increase in the value of the test statistic. Thus, in prac­
tice we calculate C using equation (5.5). 

Additional research by Hosmer, Lemeshow, and Klar (1988) has 
shown that the grouping method based on percentiles of the estimated 
probabilities is preferable to the one based on fixed cutpoints in the sense 
of better adherence to the x2 (g-2) distribution, especially when many of 

the estimated probabilities are small (i.e., less than 0.2). Thus, unless 
stated otherwise, C is based on the percentile-type of grouping, usually 
with g == 10 groups. These groups are often referred to as the "deciles of 
risk.'' This term comes from health sciences research where the outcome y 
= 1 often represents the occurrence of some disease. Most if not all logis­
tic regression software packages provide the capability to obtain C and its 
p-value, usually based on 10 groups. In addition many packages provide 
the option to obtain the 10 x 2 table listing the observed and estimated ex­
pected frequencies in each decile. 
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The results of applying the decile of risk grouping strategy to the es­
timated probabilities computed from the model for UIS study in Table 4.9 
are shown in Table 5.1. For example, the observed frequency in the drug 
free group, (DFREE=1), for the fifth decile of risk is 16. This value is 
obtained from the sum of the observed outcomes for the 58 subjects in this 
group. In a similar fashion the corresponding estimated expected fre­
quency for this decile is 12.7, which is the sum of the 58 estimated prob­
abilities for these subjects. The observed frequency for the return to drug 
use group, (DFREE = 0), is 58-16 = 42, and the estimated expected fre­
quency is 58-12.7 = 45.3. 

The value of the Hosmer-Lemeshow goodness-of-fit statistic com­
puted from the frequencies in Table 5.1 is C = 4.39 and the corresponding 
p-value computed from the chi-square distribution with 8 degrees of free­
dom is 0.820. This indicates that the model seems to fit quite well. A 
comparison of the observed and expected frequencies in each of the 20 
cells in Table 5.1 shows close agreement within each decile of risk. 

Because the distribution of C depends on m-asymptotics, the appro­
priateness of the p-value depends on the validity of the assumption that the 
estimated expected frequencies are large. Examining Table 5.1 we see that 
only one of the estimated expected frequencies is less than five. In gen­
eral, our point of view is a bit more liberal than those who maintain that 
with tables of this size (about 20 cells), all expected frequencies must be 

Table 5.1 Observed (Obs) and Estimated Expected 
(Exp) Frequencies Within Each Decile of Risk, 
Defined by Fitted Value (Prob.) for DFREE = 1 and 
DFREE = 0 Using the Fitted Logistic Regression 
Model in Table 4 9 

DFREE= I DFREE=O 
Decile Prob. Obs Exp Obs Exp Total 

1 0.094 4 4.1 54 53.9 58 
2 O.I26 5 6.2 52 50.8 57 
3 O.I63 8 8.5 50 49.5 58 
4 0.204 I I 10.4 46 46.6 57 
5 0.234 I6 I2.7 42 45.3 58 
6 0.279 11 I4.5 46 42.5 57 
7 0.324 18 17.5 40 40.5 58 
8 0.376 24 19.8 33 37.2 57 
9 0.459 23 23.9 35 34.I 58 
10 0.728 27 29.3 30 27.7 57 
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greater than 5. In this case, we feel that there is reason to believe that the 
calculation of the p-value is accurate enough to support the hypothesis that 
the model fits. If one is concerned about the magnitude of the expected 
frequencies, selected adjacent rows of the table may be combined to in­
crease the size of the expected frequencies while, at the same time, reduc­
ing the number of degrees-of-freedom. 

A few additional comments about the calculation of C are needed. 
When the number of covariate patterns is less than n, we have the possibil­
ity that one or more of the empirical deciles will occur at a pattern with 

mi >I. If this happens then the value of C will depend, to some extent, 

on how these ties are assigned to deciles. The results presented in Table 5.1 
were obtained using STAT A's I fit command where ties are assigned to the 
same decile in such as way as to make the column totals as close to n/10 as 
possible. Other statistical packages may use different strategies to handle 
ties. For example, fitting the same model in SAS version 6.12 yielded the 

same results shown in Table 4.9 but with C = 2.873 and the corresponding 
p-value is 0.9421. The use of different methods to handle ties by different 
packages is not likely to be an issue unless the number of covariate pat­
terns is so small that assigning all tied values to one decile results in a huge 
imbalance in decile size, or worse, considerably fewer than I 0 groups. In 
this case the computed value of C may be quite different from one pack­

age to the next. In addition, when too few groups are used to calculate C, 
we run the risk that we will not have the sensitivity needed to distinguish 
observed from expected frequencies. It has been our experience that when 

C is calculated from fewer than 6 groups it will almost always indicate 
that the model fits. 

The advantage of a summary goodness-of-fit statistic like C is that it 
provides a single, easily interpretable value that can be used to assess fit. 
The great disadvantage is that in the process of grouping we may miss an 
important deviation from fit due to a small number of individual data 
points. Hence we advocate that, before finally accepting that a model fits, 
an analysis of the individual residuals and relevant diagnostic statistics be 
performed. These methods are presented in the next section. 

Our experience is that a table such as the one presented in Table 5.1 
contains valuable descriptive information for assessing the adequacy of the 
fitted model over the deciles of risk. Comparison of observed to expected 
frequencies within each cell may indicate regions where the model does 
not perform satisfactorily. 

Other grouping strategies have been proposed which lead to statistics 

similar to C. Tsiatis (1980) suggested a goodness-of-fit statistic based on 
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an explicit partition of the covariate space into g regions. A categorical 
variable with g levels is introduced into the model corresponding to the g 
groups. The goodness-of-fit test is the Score test of the coefficients for the 
new grouping variable. Tsiatis showed that the Score test for this variable 
is based on a comparison of the observed frequency to estimated expected 
frequency within each of the g groups. The test has g- 1 degrees of free-
dom. This test can be easily carried out in the EGRET and SAS packages. 
An alternative in packages not having the capability to perform the Score 
test is to use the maximum partial likelihood test for the coefficients for the 
g-1 design variables. When it is difficult or unclear how to partition the 
covariate space into meaningful groups, then an alternative to explicit par­
titioning is to use deciles of risk. Application of the maximum likelihood 
test to assess the fit of the model in Table 4.9 using the deciles of risk 
shown in Table 5.1 yields a value of 4.89 which, with 9 degrees of free­
dom, gives a p-value of 0.843. Hence, this test also supports the fit of the 
model. One disadvantage of using the maximum partial likelihood or 
Score test is that actual values of the observed and estimated expected fre­
quencies need not be obtained. These quantities may be useful, when there 
is evidence of lack of fit, in indicating those deciles where it is occurring. 

The limitation of using the Pearson chi-square statistic with 
J- (p + 1) degrees of freedom has generated quite a bit of work on good-

ness-of-fit tests in recent years. Osius and Rojek (1992) extend work by 
McCullagh (1985a, 1985b, and 1986) and derive an easily computed large 
sample normal approximation to the distribution of the Pearson chi-square 
statistic. Su and Wei (1991) propose a test based on cumulative sums of 
residuals whose p-value must be determined by complicated and time con­
suming simulations. Le Cessie and van Houwelingen (1991 and 1995) 
propose tests based on sums of squares of smoothed residuals whose p­
values may be evaluated using either a normal approximation or an easily 
computed scaled chi-square distribution. Stukel (1988) proposes a two 
degree of freedom test to ascertain whether a generalized logistic model is 
better than a standard model fit to the data. Her test is similar to, but more 
easily computed than, the test proposed by Brown (1982), although the 
Brown test is automatically computed in BMDP program LR. Hosmer, 
Hosmer, 1e Cessie, and Lemeshow (1997) the distributional properties of 
these tests examine via simulations. They recommend that overall assess­
ment of fit be examined using a combination of tests: the Hosmer­
Lemeshow decile of risks test, the Osius and Rojek normal approximation 
to the distribution of the Pearson chi-square statistic, and Stukel's test. 
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The large sample normal approximation to the distribution of the 
Pearson chi-square statistic derived by Osius and Rojek (1992) may be 
easily computed in any package that has the option to save the fitted values 
from the logistic regression model and do a weighted linear regression. 
The essential steps in the procedure when we have J covariate patterns are 
as follows: 

1. Save the fitted values from the model, denoted as itj,j = 1,2,3, ... ,1. 

. (1- 2itj) . 
3. Create the vanable cj = , 1 = 1, 2, 3, ... , J. 

vj 

4. Compute the Pearson chi-square statistic shown in (5.2)· namely, 

5. Perform a weighted linear regression of c, defined in step 3, on x, the 
model covariates, using weights v, defined in step 2. Note that the 
sample size for this regression is J, the number of covariate patterns. 
Let RSS denote the residual sum-of-squares from this regression. 
Some packages, for example STATA, scale the weights to sum to 1.0. 
In this case the reported residual sum-of-squares must be multiplied by 
the mean of the weights to obtain the correct RSS. 

6. Compute the correction factor for the variance, denoted for conven­
ience as A , as follows: 

A=2(J-±-1 
)· 

j=I mj 

7. Compute the standardized statistic 

[ X2 
- ( 1 - P - 1)] 

z= .JA+RSS . 
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8. Compute a two-tailed p-value using the standard normal distribution. 

Application of the eight-step procedure using the model in Table 4.9 
yields X2 =511.781, RSS=189.658, A=49.667 and 

z = 511.781- {521-10 -1) = 0.115 . 
.../49.667 + 189.658 

The two-tailed p-value is p = 0.908. Again, we cannot reject the null hy­
pothesis that the models fits. 

To carry out the above analysis it is necessary to form an aggregated 
data set. This is easy to do in some software packages and impossible in 
others. In these latter packages we suggest using a second package to cre­
ate the aggregated data set and then returning to the logistic regression 
package with this new data set. The essential steps in any package are: (1) 
Define as aggregation variables the main effects in the model. This defines 
the covariate patterns. (2) Calculate the sum of the outcome variable and 
the number of terms in the sum over the aggregation variables. This pro­
duces yi and mi for each covariate pattern. (3) Output a new data set 

containing the values of the aggregation variables, covariate patterns, and 
the two calculated variables, yi and mi. 

Weesie (1998) has written a STATA program implementing a method 
proposed by Windmeijer (1990) for computing the significance of the 
Pearson chi-square statistic using the standard normal distribution. The 
approach is similar to the above eight-step procedure but is only appropri­
ate in settings when there are n covariate patterns. Thus it is less general 
than the above method. 

Windmeijer (1990) points out that both the Pearson chi-square and the 
estimator of its variance used to form z in step 7 are quite sensitive to large 
or small estimated probabilities. Both values are inflated. He suggests that 
subjects with very small or large fitted values, near 0 or I, be excluded 
when using the Pearson chi-square statistic. The default exclusion criteria 
in Weesie's STATA program are .ft<l.Oxl0-5 or .1?>(1-l.Oxl0-5). In 

general we think this is good advice but urge considerable caution and 
complete honesty in reporting what was done so as to avoid possible criti­
cism that the data have been tinkered with in order to obtain a good fitting 
model. 

Stukel (1988) proposes a two degree-of-freedom test that determines 
whether two parameters in a generalized logistic model are equal to zero. 
Briefly, the two additional parameters allow the tails of the logistic regres-
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sian model (i.e., the small and large probabilities) to be either heav­
ier/longer or lighter/shorter than the standard logistic regression model. 
This test is not a goodness-of-fit test since it does not compare observed 
and fitted values. However it does provide a test of the basic logistic re­
gression model assumption and in that sense we feel it is a useful adjunct 
to the Hosmer-Lemeshow and Osius-Rojek goodness-of-fit tests. The test 
has not been implemented in any package; but it can be easily obtained 
from the following procedure: 

I. Save the fitted values from the model, denoted as ftj,j = 1,2,3, ... , J. 

2. Compute the estimated logit 

( 
it. ) " gj =In - 1

,- = xjP. j = 1,2,3 ... ,1. 
1-n-. 

J 

3. Compute two new co variates z1j = 0.5 X gJ X I( n j ~ 0.5) and z2j = 
-0.5 X gJ X I{ n-j < 0.5), j = 1,2,3, ... , J' where I(arg) =I if arg is true 

and zero if arg is false. Note that in a setting when all the fitted values 
are either less than or greater than 0.5 only one variable is created. 

4. Perform the Score test for the addition z1 and/or z2 to the model. If a 
package does not perform the Score test then the partial likelihood ra­
tio test can be used. 

Application of the four-step procedure to the fitted model in Table 4.9 
yields a value for the partial likelihood ratio test of 3.95 which, with two 
degrees of freedom, yields p = 0.139. Again we cannot reject the hy-
pothesis that the logistic regression model is the correct model. 

As we have mentioned at various points in this section, a complete 
assessment of fit is a multi-faceted investigation involving summary tests 
and measures as well as diagnostic statistics. This is especially important 
to keep in mind when using overall goodness-of-fit tests. The desired out­
come for most investigators is the decision not to reject the null hypothesis 
that the model fits. With this decision one is subject to the possibility of 
the Type II error and hence the power of the test becomes an issue. The 
simulation results reported in Hosmer, Hosmer, le Cessie and Lemeshow 
(1997) indicate that none of the overall goodness-of-fit tests is especially 
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powerful for small to moderate sample sizes n < 400. One should keep 
this firmly in mind when using goodness-of-fit tests. 

Before 'we discuss diagnostic statistics we present a few other meas­
ures of model performance that are often useful supplements to the overall 
tests of fit just discussed. 

5.2.3 Classification Tables 

An intuitively appealing way to summarize the results of a fitted logistic 
regression model is via a classification table. This table is the result of 
cross-classifying the outcome variable; y, with a dichotomous variable 
whose values are derived from the estimated logistic probabilities. 

To obtain the derived dichotomous variable we must define a cut­
point, c, and compare each estimated probability to c. If the estimated 
probability exceeds c then we let the derived variable be equal to 1; other­
wise it is equal to 0. The most commonly used value for c is 0.5. The ap­
peal of this type of approach to model assessment comes from the close 
relationship of logistic regression to discriminant analysis when the distri­
bution of the covariates is multivariate normal within the two outcome 
groups. However, it is not limited to this model (e.g., see Efron (1975)). 

In this approach, estimated probabilities are used to predict group 
membership. Presumably, if the model predicts group membership accu­
rately according to some criterion, then this is thought to provide evidence 
that the model fits. Unfortunately, this may or may not be the case. For 
example, it is easy to construct a situation where the logistic regression 
model is in fact the correct model and thus fits, but classification is poor. 
Suppose that P(Y = 1) = 81 and that X- N(O, 1) in the group withY= 0 and 

X- N(Jl, 1) in the group with Y = 1. In this discriminant analysis model 

the slope coefficient for the logistic regression model is {see equation 
(1.23)) {31 = Jl and the intercept is (see equation (1.22)) 

The probability of misclassification, PMC, may be shown to be 
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Table 5.2 Classification Table Based on the Logistic Regression Model in 
T bl 4 9 U . C f 0 5 a e . smga utpomto . 

Observed 

Classified DFREE= 1 DFREE=O Total 
Drug Free Returned to Drug Use 

DFREE= 1 16 11 27 
DFREE=O 131 417 548 
Total 147 428 575 

Sensitivity = 161147= 1 0.9%; Specificity=417 /428=97 .4% 

where <I> is the cumulative distribution function of the N(O,l) distribution. 
Thus, the expected error rate is a function of the magnitude of the slope, 
not necessarily of the fit of the model. Accurate or inaccurate classifica­
tion does not address our criteria for goodness-of-fit: that the distances 
between observed and expected values be unsystematic, and within the 
variation of the model. However, the classification table may be a useful 
adjunct to other measures based more directly on residuals. 

The results of classifying the observations of the UIS using the fitted 
model given in TabJe 4.9 are presented in Table 5.2. The classification 
table shown in Table 5.2 is fairly typical of those seen in many logistic re­
gression applications. The overall rate of correct classification is estimated 
as 75.3%=100[(16+417)/575]%, with 97.4% (417/428) of the drug free 

group (specificity) and only 10.9% (161147) of the returned to drug use 
group (sensitivity) being correctly classified. Classification is sensitive to 
the relative sizes of the two component groups and always favors classifi­
cation into the larger group, a fact that is also independent of the fit of the 
model. This may be seen by considering the expression for PMC as a 
function of 81• The disadvantage of using PMC as a criterion is that it re-
duces a probabilistic model where outcome is measured on a continuum, to 
a dichotomous model where predicted outcome is binary. For practical 
purposes there is little difference between the values of it= 0.48 and it= 



158 ASSESSING THE FIT OF THE MODEL 

0.52, yet use of a 0.5 cutpoint would establish these two individuals as 
markedly different. 

An important reason why measures derived from a 2 x 2 classifica­
tion table (such as sensitivity and specificity) should not be used as meas­
ures of model performance is that they depend heavily on the distribution 
of the probabilities in the sample. Thus, if two models are being com­
pared, differences between them with respect to sensitivity and specificity 
may depend entirely on "patient mix" rather than on the superiority of one 
model over another. 

In the discussion that follows we must keep in mind the meaning of 
probability which is that, among n subjects, each having the same prob­
ability of the outcome of interest, ic, the number who are expected to de­
velop the outcome is nic and the number expected not to develop the out­
come is n(l- ic). (This logic formed the basis of the discussion in Section 

5.2.2 on goodness-of-fit testing.) Suppose that 0.50 was the cutpoint being 
used for classification purposes and suppose that 100 subjects had a prob­
ability ic = 0.51. All of these subjects would be predicted to have the out­
come but, assuming the model is well calibrated, 51 of the subjects would 
actually develop the outcome whereas 49 would be expected not to de­
velop the outcome. Thus 49 of the 100 patients would be misclassified. 

Consider again the 2 x 2 classification table from the UIS presented 
in Table 5.2. An examination of the estimated probabilities of return to 
drug use in the two classification groups reveals that among the 27 subjects 
predicted to be drug free, probabilities ranged from 0.503 to 0. 728, with a 
mean of 0.553. Among the 548 subjects predicted to return to drug use, 
probabilities ranged from 0.029 to 0.498, with a mean of 0.241. Clearly, 
because so many of the subjects in this study have probabilities close to the 
cutpoint we expect a considerable amount of misclassification. In Table 
5.2 we see that 417 of the 548 subjects predicted to return to drug use actu­
ally did returned to drug use whereas 11 of the 27 subjects predicted to be 
drug free were misclassified. Thus, of the total 147 subjects who were ac­
tually drug free, only 16 of them were correctly predicted (i.e., sensitivity= 
16/147 = 10.9%). 

Suppose now that we keep the prediction unchanged for each subject 
but alter the distribution of probabilities among the subjects predicted to 
return to drug use and among those predicted not to return to drug use. 
The rule we use is: 

if ic < 0.50, then let ic = 0.05 

and if ic;;:: 0.50, then let ic = 0.95. 
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Table 5.3 Classification Table Based on the Logistic Regression Model in 
Table 4.9 Using a Cutpoint of 0.5, but All Probabilities ir < 0.50 Are 
Replaced with ir = 0.05 and All Probabilities ir ;:: 0.50 Are Replaced with 

ir = 0 95 
Observed 

Classified DFREE= 1 DFREE=O Total 
Drug Free R_etumed to Drug Use 

DFREE= 1 26 1 27 

DFREE=O 27 521 548 

Total 53 522 575 

Sensitivity = 26/53=49 .I%; Specificity=52l/522=99 .8% 

Clearly, this modification would reflect a population that was very polar­
ized with respect to their likelihood of remaining drug free. If the model 
was well calibrated (i.e., probabilities reflecting the true outcome experi­
ence in the data), then only 5% of those predicted to return to drug use 
would actually be misclassified and, similarly, only 5% of those predicted 
not to return to drug use would be misclassified. The resulting 2 x 2 table 
would be as presented in Table 5.3. Note that both the sensitivity and 
specificity are considerably greater than they were for the actual population 
seen in Table 5.2, where there was a wide range of probabilities. The rea­
son for the sensitivity being so low even in this highly polarized population 
is that there were relatively few subjects whose probabilities of remaining 
drug free were above 0.50. 

Now consider a second hypothetical population where 

if ir < 0.50, then let ir = 0.45 

and if it;;:: 0.50, then let ir = 0.55. 

This homogenous population is one where a great deal of misclassification 
would be expected. Assuming the probabilities accurately reflect the out­
come experience in these data, the 2 x 2 table would be as presented in 
Table 5.4. Note that the sensitivity and specificity are much worse than 
was the case with the actual, heterogeneous, population. 

For these reasons, one cannot compare models on the basis of meas­
ures derived from 2 x 2 classification tables since these measures are com­
pletely confounded by the distribution of probabilities in the samples upon 
which they are based. The same model, evaluated in two populations, 
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Table 5.4 Classification Table Based on the Logistic Regression Model in 
Table 4.9 Using a Cutpoint of 0.5, but All Probabilities n < 0.50 Are 
Replaced with n = 0.45 and All Probabilities n ;:;: 0.50 are Replaced with 
r. = 0 55 . 

Observed 

Classified DFREE= 1 DFREE=O Total 

Dr~ Free Returned to Drug_ Use 

DFREE= 1 15 12 27 

DFREE=O 301 247 548 

Total 316 259 575 

Sensitivity= 15/316=4.7%; Specificity=247/259=95.4% 

could give very different impressions of performance if sensitivity or 
specificity was used as the measure of performance. 

In summary, the classification table is most appropriate when classifi­
cation is a stated goal of the analysis; otherwise it should only supplement 
more rigorous methods of assessment of fit. 

5.2.4 Area Under the ROC Curve 

Sensitivity and specificity rely on a single cutpoint to classify a test result 
as positive. A more complete description of classification accuracy is 
given by the area under the ROC (Receiver Operating Characteristic) 
curve. This curve, originating from signal detection theory, shows how the 
receiver operates the existence of signal in the presence of noise. It plots 
the probability of detecting true signal (sensitivity) and false signal (1 -
specificity) for an entire range of possible cutpoints. 

The area under the ROC curve, which ranges from zero to one, pro­
vides a measure of the model's ability to discriminate between those sub­
jects who experience the outcome of interest versus those who do not. As 
an example, consider the model for estimating the probability that a subject 
will remain drug free as given in Table 4.9. Suppose that we were inter­
ested in predicting the outcome for each patient. One rule we might try is 
the one shown in Table 5.2, where we predict the subject will remain drug 
free if Pr(y = 1);;:: 0.50, and predict the subject will return to drug use if 

Pr(y = 1) < 0.50. There are some statistical benefits associated with using 

0.5 but we could consider what happens when we use other cutpoints. For 
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Table 5.5 Classification Table Based on the Logistic Regression Model in 
Table 4.9 Using a Cutpoint of 0.6 

Observed 

161 

Classified DFREE= I DFREE=O Total 
Drug_ Free Returned to Drug Use 

DFREE= I 5 0 5 

DFREE=O I42 428 570 
Total I47 428 575 

Sensitivity= 5/147=3.4%; Specificity=428/428=100% 

example, suppose that we used a cutpoint of 0.6 instead. This would result 
in the classification table shown in Table 5.5, where the sensitivity is only 
3.4% but the specificity is 100%. In fact, the same can be done for any 
possible choice of cutpoint. Table 5.6 summarizes the results of choosing 
all possible cutpoints between 0.05 and 0.60 in increments of 0.05. 

If our objective was to choose an optimal cutpoint for the purposes of 
classification, one might select a cutpoint that maximizes both sensitivity 
and specificity. This choice is facilitated through a graph such as the one 
shown in Figure 5.1 where we see that an "optimal" choice for a cutpoint 
might be 0.26 as that is approximately where the sensitivity and specificity 
curves cross. 

Table 5.6 Summary of Sensitivity, Specificity, and 1-Specificity for 
Classification Tables Based on the Logistic Regression Model in Table 
4.9 using a Cutpoint of 0.05 to 0.60 in Increments of 0.05 

Cutpoint Sensitivity Specificity 1 -Specificity 
0.05 99.32% 2.57% 97.43% 
0.10 95.92% I5.I9% 84.8I% 
O.I5 90.48% 31.78% 68.22% 
0.20 81.63% 46.26% 53.74% 
0.25 65.99% 61.21% 38.79% 
0.30 57.14% 72.20% 27.80% 
0.35 40.14% 82.0I% I7.99% 
0.40 29.25% 87.38% I2.62% 
0.45 18.37% 92.06% 7.94% 
0.50 10.88% 97.43% 2.57% 
0.55 5.44% 99.30% 0.70% 
0.60 3.40% IOO.OO% 0.00% 
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Figure 5.1 Plot of sensitivity and specificity versus all possible cutpoints in 
the UIS. 

A plot of sensitivity versus 1 - specificity over all possible cutpoints 
is shown in Figure 5.2. The curve generated by these points is called the 
ROC Curve and the area under the curve provides a measure of discrimi­
nation which is the likelihood that a subject who remains drug free will 
have a higher Pr(y = l)than a subject who returns to drug use. The area 

under the ROC Curve in Figure 5.2 is 0.6989. 
As a general rule: 

If ROC = 0.5: this suggests no discrimination (i.e., we 
might as well flip a coin) 

If 0. 7 ~ ROC< 0.8: this is considered acceptable discrimination 
If 0.8 ~ROC< 0.9: this is considered excellent discrimination 
If ROC~ 0.9: this is considered outstanding discrimination. 

In practice it is extremely unusual to observe areas under the ROC Curve 
greater than 0.9. In fact, as we noted in Chapter 4, Section 5, when there is 
complete separation it is impossible to estimate the coefficients of a logis­
tic regression model, yet nearly complete separation would be required for 
the area under the ROC Curve to be >90%. 

We note here that a poorly fitting model (i.e., poorly calibrated as as­
sessed by the goodness-of-fit measures presented in section 5.2.2) may still 
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0.00 0.25 0.50 0.75 
1 - Specificity 

Figure 5.2 Plot of sensitivity versus 1-specificity for all possible 
cutpoints in the UIS. The resulting curve is called the ROC Curve. 
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1.00 

have good discrimination. For example, if one added 0.25 to every prob­
ability in a good fitting logistic model with good ability to discriminate, the 
new model would be poorly calibrated whereas the discrimination would 
not be affected at all. We believe that model performance should be as­
sessed by considering both calibration and discrimination. 

Another perhaps more intuitive way to understand the meaning of the 
area under the ROC Curve is as follows: recall that we let n1 denote the 
number of subjects with y = 1 and n0 denote the number of subjects with 
y = 0. We then create n1 xn0 pairs: each subject with y = 1 is paired with 
each subject with y = 0. Of these n1 x n0 pairs, we determine the propor­
tion of the time that the subject with y = 1 had the higher of the two prob­
abilities. This proportion may be shown to be equal to the area under the 
ROC Curve. For example, in the UIS, there were 575 subjects. Of these, 
147 remained drug free while 428 did not. A total of 147x428=62,916 
comparisons are made and we count the number of times that the probabil­
ity of remaining drug free is higher for the subject that did remain drug free 
than for the subject who did not. (When the probability is the same for 
both subjects we add 112 to the count.) For these data the count of the 
number of times that the subject with y = 1 had a higher probability than 
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the subject with y = 0 was 43,972.5. (The reader may recognize that this 
count is the Mann-Whitney U statistic for these data.) The ratio 
43,972.5/62,916 = .6989 is the area under the ROC curve, the same 
value as we obtained before. 

5.2.5 Other Summary Measures 

For sake of completeness we present a short discussion of R2 measures 
that have been proposed for use with logistic regression models. In gen­
eral, these measures are based on various comparisons of the predicted 
values from the fitted model to those from model(O), the no data or inter­
cept only model and, as a result, do not assess goodness-of-fit. We think 
that a true measure of fit is one based strictly on a comparison of observed 
to predicted values from the fitted model. However there may be settings 
where the R2 measures can provide useful statistics for comparing com­
peting models fit to the same set of data. Mittlbock and Schemper (1996) 
study the properties of 12 different measures using the criteria: (1) the 
measure has an easily understood interpretation (2) the squared measure 
can attain a lower bound of 0 and an upper bound of 1 and (3) the measure 
is consistent with the character of logistic regression (i.e., not being 
changed by a linear transformation of model covariates). They recommend 
two for routine use: the squared Pearson correlation coefficient of observed 
outcome with the predicted probability and a linear regression-like sum-of­
squares R2

• All other measures, including some popular likelihood-based 
R2 statistics are judged to be inadequate on at least one of their criteria. 

In a setting with n covariate patterns the squared Pearson correlation 
coefficient is 

r' = [~(YdXi!, -~r)J 
[~(y, -y)' H~(i!, -if)' l 

where y = 1f = n1 j n. The linear regression-like measure is 

(5.6) 
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(5.7) 

The case of J < n covariate patterns was not considered by Mittlbock and 
Schemper (1996). However, the extensions of the two measures to this 
setting are 

(5.8) 

and 

(5.9) 

Using the fitted model in Table 4.9 and evaluating the squared Pearson 
correlation coefficient defined in (5.6), we obtain r2 = 0.0946. The value 
of the linear regression like sum-of-squares measure from (5.7) is 

R1s = 1- (99.061/109.4168) = 0.0946. 

The fitted model has 521 covariate patterns. Evaluating the covariate pat­
tern version of the Pearson correlation coefficient in (5.8) yields 
r/ = 0.3564. The increase from the value of 0.0946 in the J = n case is 
due to increased range of Yj (0-2) versus yi (0-1) in the values being cor-

related. The sum-of-squares measure is R.~c = 1- (94.261/104.696) 

=0.0997. 
We obtain another version of R?s when we use log-likelihoods in 

place of sums-of-squares. Mittlbock and Schemper (1996) do not recom­
mend it for routine use, as it is not as intuitively easy to explain. However 
the measure is calculated in a number of packages under various names 
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(e.g., pseudo R2 in STATA). If we let L0 and Lp denote the log­

likelihoods for models containing only the intercept and the model con­
taining the intercept plus the p covariates respectively, then the log likeli­
hood-based R2 is 

(5.10) 

The maximum value for Rf is obtained when we fit the saturated model. 

If J = n then L .. = 0 and we see that Rf is equal to 1.0. However, if J < n 
then the maximum is less than 1.0. A modification of the statistic that can 
attain 1. 0 in the J < n case is 

(5.11) 

The value of the log-likelihood from the saturated model, L5 , may be 
easily obtained from the deviance for the model with p covariates and its 
log-likelihood is computed as 

L5 = Lp +0.5D. 

Hence, it would seem prudent to calculate L5 whenever J < n and to use 

R'fs. 
As an example, we evaluate (5.10) using the fitted model in Table 4.9 

and, assuming J = 575, we obtain 

R2 = 1- -298.981 = 0.0853 . 
L -326.864 

In order to evaluate (5.11) we need the value of L5 using J = 521 covari­
ate patterns. The value of the deviance from (5.2) is D = 530.74 and from 
the above expression we obtain 

L5 = (-298.981) + 0.5 X (530.74) = -33.611 

and 

R2 = [ (-326.864)- (-298.981)) = 0.0
95

1. 
LS ((-326.864)- (-33.611)) 
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All the various R2 values for this example are low when compared to 
R2 values typically encountered with good linear regression models. Un­
fortunately low R2 values in logistic regression are the norm and this pre­
sents a problem when reporting their values to an audience accustomed to 
seeing linear regression values. As we demonstrate throughout this chap-_ 
ter, the fitted model in Table 4.9 is a good model (based on goodness-of-fit 
and discrimination). Thus we do not recommend routine publishing of R2 

values with results from fitted logistic regression models. However, they 
may be helpful in the model building stage as a statistic to evaluate com­
peting models. 

5.3 Logistic Regression Diagnostics 

The summary statistics based on the Pearson chi-square residuals described 
in the previous section provide a single number that summarizes the 
agreement between observed and fitted values. The advantage (as well as 
the disadvantage) of these statistics is that a single number is used to sum­
marize considerable information. Therefore, before concluding that the 
model "fits", it is crucial that other measures be examined to see if fit is 
supported over the entire set of covariate patterns. This is accomplished 
through a series of specialized measures falling under the general heading 
of regression diagnostics. We assume that the reader has had some experi­
ence with diagnostics for linear regression. For a brief introduction to lin­
ear regression diagnostics see Kleinbaum, Kupper, Muller and Nizam 
(1998). A more detailed presentation may be found in Cook and Weisberg 
(1982) and Belsley, Kuh, and Welsch (1980). Pregibon (1981) provided 
the theoretical work that extended linear regression diagnostics to logistic 
regression. Since that key paper, work has focused on refining the use of 
logistic regression diagnostics in assessing goodness-of-fit. We begin by 
briefly describing logistic regression diagnostics. In this development we 
assume that the fitted model contains p covariates and that they form J co­
variate patterns. Deriving the diagnostic statistics requires a higher 
mathematical level than most of the other material in this text. However, 
an understanding of the mathematical development is not required for the 
effective application of the diagnostics in practice. Thus, less sophisticated 
mathematical readers may wish to skip to Chapter 5, Section 4 where the 
discussion of the calculations and uses of the diagnostics begins. 

The key quantities for logistic regression diagnostics, as in linear re­
gression, are the components of the "residual sum-of-squares." In linear 
regression a key assumption is that the error variance does not depend on 
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the conditional mean, E( ~ Jx 1). However, in logistic regression we have 

binomial errors and, as a result, the error variance is a function of the con­
ditional mean: 

var( lj Jx 1) = m1E( lj lx 1) x [I -E( lj lx 1)] 

= m11r( X j )[I -1r( X j)] . 

Thus, we begin with residuals as defined in (5.1) and (5.3) which have 
been "divided" by estimates of their standard errors; this may not be en­
tirely obvious in the case of the deviance residual. Let r1 and dj denote 

the values of the expressions given in equation (5.1) and (5.3), respec­
tively, for covariate pattern x F Since each residual has been divided by an 

approximate estimate of its standard error, we expect that if the logistic 
regression model is correct these quantities have a mean approximately 
equal to zero and a variance approximately equal to I. We discuss their 
distribution shortly. 

In addition to the residuals for each covariate pattern, other quantities 
central to the formation and interpretation of linear regression diagnostics 
are the "hat" matrix and the leverage values derived from it. In linear re­
gression the hat matrix is the matrix that provides the fitted values as the 
projection of the outcome variable into the covariate space. Let X denote 
the J x (p + 1) matrix containing the values for all J covariate patterns 

formed from the observed values of the p covariates, with the first column 
being one to reflect the presence of an intercept in the model. The matrix 
X is often called the design matrix. In linear regression the hat matrix is 

H = X(X'Xr1 X'; for example, y = H y. The linear regression residuals, 

(y- y), expressed in terms of the hat matrix are (I - H )y where I is the 

J x J identity matrix. Using weighted least squares linear regression as a 
model, Pregibon (1981) derived a linear approximation to the fitted values, 
which yields a hat matrix for logistic regression. This matrix is 

(5.12) 

where V is a J x J diagonal matrix with general element 
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In linear regression the diagonal elements of the hat matrix are called 
the leverage values and are proportional to the distance from x J to the 

mean of the data. This concept of distance to the mean is important in lin­
ear regression, as points that are far from the mean may have considerable 
influence on the values of the estimated parameters. The extension of the 
concept of leverage to logistic regression requires additional discussion 
and clarification. 

Let the quantity h1 denote the /h diagonal element of the matrix H 

defined in equation (5.12). It may be shown that 

(5.13) 

where 

and xj = ( 1, x1J, x2j, ... xPJ) is the vector of covariate values defining the jth 

covariate pattern. The sum of the diagonal elements of H is, as is the case 

in linear regression, Lh1 = (p + 1 ), the number of parameters in the 

model. In linear regression the dimension of the hat matrix is usually n x n 
and thus ignores any common covariate patterns in the data. With this 
formulation, any diagonal element in the hat matrix has an upper bound of 
1/ k where k is the number of subjects with the same covariate pattern. If 
we formulate the hat matrix for logistic regression as an n x n matrix then 
each diagonal element is bounded from above by ljmj, where m1 is the 

total number of subjects with the same covariate pattern. When the hat 
matrix is based upon data grouped by covariate patterns, the upper bound 
for any diagonal element is 1. 

It is important to know whether the statistical package being used cal­
culates the diagnostic statistics by covariate pattern. For example, 
STATA's logistic command uses individual subject data to fit models. 
Following estimation it computes all diagnostic statistics by covariate pat­
tern but retains the size of the original data set. Thus all subjects in a par­
ticular covariate pattern have the same covariate values, fitted value and 
diagnostic statistics, but each subject has an individual outcome. On the 
other hand, SAS's logistic procedure computes diagnostic statistics based 
on the data structure in its model statement. If one assumes that there are n 
covariate patterns (and the outcome is either 0 or 1) then diagnostic statis­
tics are based on individual subjects. However, if the data have been pre-
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viously collapsed or grouped into covariate patterns and binomial trials 
input ( yj jmj) is used, then diagnostic statistics are by covariate pattern. In 

general, we recommend that diagnostic statistics be computed taking into 
account covariate patterns. This is especially important when the number 
of covariate patterns, J, is much smaller than n, or if some values of mj are 

larger than 5. For example, in the final model for the UIS data shown in 
Table 4.9 we have J = 521 and n = 575. In this situation we definitely 
should compute the diagnostic statistics by covariate pattern. If, on the 
other hand, we had a model with J = 570 and we were using SAS, we 
might not go to the trouble to aggregate the data by covariate patterns. 

When the number of covariate patterns is much smaller than n there is 
the risk that we may fail to identify influential and/or poorly fit covariate 
patterns. Consider a covariate pattern with mj subjects, yj = 0 and esti-

mated logistic probability ftj. The Pearson residual defined in equation 

(5.1 ), computed individually for each subject with this covariate pattern, is 

(o-ij) 
r;= ~i)1-ij) 

= 
ij 

while the Pearson residual based on all subjects with this covariate pattern 
is 

(o-mij) 
'i = ~mi)I-ij) 

which increases negatively as mj increases. If mj = 1 and ftj = 0.5, then 

lj = -1 which is not a large residual. On the other hand, if there were 

mj = 16 subjects with this covariate pattern, then 1j = -4.0 which is quite 

large. If we performed the analysis in STATA then the Pearson residual 
would be -4.0 for each of the 16 subjects in the covariate pattern. If we 

performed the analysis in SAS with a sample of size n then the Pearson 
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Figure 5.3 Plot of leverage (h) versus the estimated logistic probability ( n) for 

a hypothetical univariable logistic regression model. 
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residual would be -1.0 for all 16 subjects. Thus the diagnostic statistics 

are different even though both packages produce the same fitted model. 
A major point that must be kept in mind when interpreting the mag­

nitude of the leverage is the effect that vj has on hj in equation (5.13). 

Pregibon (1981) notes that the fit determines the estimated coefficients 
and, since the estimated coefficients determine the estimated probabilities, 
points with large values of hj are extreme in the covariate space and thus 

lie far from the mean. Lesaffre ( 1986, p.117) refutes this point, where he 
shows that the term vj in the expression for hj cannot be ignored. The 

following example demonstrates that, up to a point, both Pregibon and Le­
saffre are correct. 

Figure 5.3 presents a plot of the leverage values versus the estimated 
probabilities for a sample of 100 observations from a lqgistic model with 
g(x) = 0.8x and x- N(O, 9). Recall that the notation N(O, 9) describes a 
variable following a normal distribution with mean zero and variance 9. 

We see that the leverage increases as the estimated probability gets 
further from 0.5 (x gets further from its mean, nominally zero) until the 
estimated probabilities become less than 0.1 or greater than 0.9. At that 
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point the leverage decreases and rapidly approaches zero. This example 
shows that the most extreme points in the covariate space may have the 
smallest leverage. This is the exact opposite of the situation in linear re­
gression, where the leverage is a monotonic increasing function of the dis­
tance of a covariate pattern from the mean. The practical consequence of 
this is that to interpret a particular value of the leverage in logistic regres­
sion correctly, we need to know whether the estimated probability is small 
( <0.1) or large (>0. 9). If the estimated probability lies between 0.1 and 0.9 
then the leverage gives a value that may be thought of as distance. When 
the estimated probability lies outside the interval 0.1 to 0. 9, then the value 
of the leverage may not measure distance in the sense that further from the 
mean implies a larger value. 

A quantity that does increase with the distance from the mean is 

bj = xj(X'VXtx]. Thus, if we are only interested in distance then we 

should focus on bj. A plot of the bj versus the estimated probability for 

the example is shown in Figure 5.4. In this Figure we see that bj provides 

a measure of distance in the covariate space and, as a result, is more like 
the leverage values in linear regression. However, since the most useful 
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Figure 5.4 Plot of the distance portion of leverage (b) versus the estimated logistic 
probability ( n) for a hypothetical univariable logistic regression model. 
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diagnostic statistics for logistic regression are functions of the full lever­
age, h1, the distance portion, b1, is not discussed further here. 

If we use the Pregibon (1981) linear regression-like approximation for 

the residual for the jth covariate pattern, [ Y; - m1n(x;)]"" (I - h; )Y;, then 

the variance of the residual is 

which suggests that the Pearson residuals do not have variance equal to 1 
unless they are further standardized. Recall that we denote by ~ the Pear-

son residual given in equation (5.1 ). The standardized Pearson residual for 
covariate pattern X; is 

(5.14) 

Another useful diagnostic statistic is one that examines the effect that 
deleting all subjects with a particular covariate pattern has on the value of 
the estimated coefficients and the overall summary measures of fit, X2 and 
D. The change in the value of the estimated coefficients is analogous to 
the measure proposed by Cook (1977, 1979) for linear regression. It is 

obtained as the standardized difference between fJ and (J(-i}' where these 

represent the maximum likelihood estimates computed using all J covariate 
patterns and excluding the m1 subjects with pattern x J respectively, and 

standardizing via the estimated covariance matrix of (J. Pregibon ( 1981) 

showed, to a linear approximation, that this quantity for logistic regression 
is 

(5.15) 
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Using similar linear approximations it can be shown that the decrease in 
the value of the Pearson chi-square statistic due to deletion of the subjects 
with covariate pattern xi is 

(5.16) 

A similar quantity may be obtained for the change in the deviance, 

If we replace r/ by d} this yields the approximation 

(5.17) 

which is similar in form to the expression in equation (5.16). 
These diagnostic statistics are conceptually quite appealing, as they 

allow us to identify those covariate patterns that are poorly fit (large values 
of MJ and/or Wj ), and those that have a great deal of influence on the 

A 

values of the estimated parameters (large values of ~(3i ). After identifying 

these influential patterns (subjects), we can begin to address the role they 
play in the analysis. 

Before proceeding to the use of the diagnostics in an example, we 
make a few summary comments on what we might expect their application 
to tell us. Consider first the measure of fit, MJ. This measure is smallest 

when yi and mjn( xi) are close. This is most likely to happen when yi = 
0 and n( X j) < 0.1 or Yj = mj and n( X j) > 0.9. Similarly MJ is largest 

when yj is furthest from min( x J This is most likely to occur if we have 

a value of yi = 0 and n(xi) > 0.9, or with yi = mi and n(xi) < 0.1. These 

same covariate patterns are not likely to have a large ~~i since, when 

n{xi) < 0.1 or n(xi) > 0.9, ~~i "'"Mjhj, and hi is approaching zero. The 
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influence diagnostic, ~~i, is large when both MJ and h1 are at least 

moderate. This is most likely to occur when 0.1 < i( x 1) < 0.3, or 0. 7 < 

i(x 1) < 0.9. As we know from Figure 5.3, these are the intervals where 

the leverage, h1, is largest. In the region where 0.3 < i( x J < 0.7 the 

chances are not as great that either MJ or h1 is large. Table 5.7 summa­

rizes these observations. This table reports what might be expected, not 
what may actually happen in any particular example. Therefore, it should 
only be used as a guide to further understanding and interpretation of the 
diagnostic statistics. 

In linear regression essentially two approaches are used to interpret 
the value of the diagnostics often in conjunction with each other. The first 
is graphical. The second employs the distribution theory of the linear re­
gression model to develop the distribution of the diagnostics under the as­
sumption that the fitted model is correct. In the graphical approach, large 
values of diagnostics either appear as spikes or reside in the extreme cor­
ners of plots. A value of the diagnostic statistic for a point appearing to lie 
away from the balance of the points is judged to be extreme if it exceeds 
some percentile of the relevant distribution. This may sound a little too 
hypothesis-testing oriented but, under the assumptions of linear regression 
with normal errors, there is a known statistical distribution whose percen­
tiles provide some guidance as to what constitutes a large value. Presuma­
bly, if the model is correct and fits then no values should be exceptionally 
large, and the plots should appear as expected under the distribution of the 
diagnostic. 

In logistic regression we have to rely primarily on visual assessment, 
as the distribution of the diagnostics under the hypothesis that the model 
fits is known only in certain limited settings. For instance, consider the 
Pearson residual, r1. It is often stated that the distribution of this quantity 

is approximately N(O, 1) when the model is correct. This statement is only 
true when m1 is sufficiently large to justify that the normal distribution 

provides an adequate approximation to the binomial distribution, a condi­
tion obtained under m-asymptotics. For example, if m1 = 1 then r1 has 

only two possible values and can hardly be expected to be normally dis­
tributed. Jennings (l986b) has stated this point clearly and with all the 
necessary technical details. All of the diagnostics are evaluated by covari­
ate pattern; hence any approximations to their distributions based on the 
normal distribution, under binomial errors, depend on the number of sub­
jects with that pattern. When a fitted model contains some continuous 
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Table 5. 7 Likely Values of Each of the Diagnostic Statistics M 2
, 

AfJ, and h Within Each of Five Regions Defined by the Value of 

the Estimated Lo istic Probabilit (it) 

Diagnostic Statistic 
it AX2 AP h 

<0.1 Large or Small Small Small 
0.1-0.3 Moderate Large Large 
0.3-0.7 Moderate to Small Moderate Moderate to Small 
0.7-0.9 Moderate Large Large 

>0.9 Lar e or Small Small Small 

covariates then the number of covariate patterns, J, is of the same order as 
n, and m-asymptotic results cannot be relied upon. Thus, in practice, an 
assessment of "large" is, of necessity, a judgment call based on experience 
and the particular set of data being analyzed. Using the N(O,l), or 

equivalently, the X2 (1) distribution for squared quantities may provide 

some guidance as to what large is. However, we urge that these percentiles 
be used with extreme caution. There is no substitute for experience in the 
effective use of diagnostic statistics. 

We have defined seven diagnostic statistics which may be divided 
into three categories: ( 1) the basic building blocks, which are of interest in 

themselves, but also are used to form other diagnostics, h,d1,hj ); (2) de-

rived measures of the effect of each covariate pattern on the fit of the 

model, (r .. ,M~,MJ.); and (3) a derived measure of the effect of each co-•• , J J 

variate pattern on the value of the estimated parameters, ( Ll~1 ). Most lo­

gistic regression software packages provide the capability to obtain at least 
one of the measures within each group. 

A number of different types of plots have been suggested for use, 
each directed at a particular aspect of fit. Some are formed from the seven 
diagnostics while others require additional computation. For example, see 
the methods based on grouping and smoothing in Landwehr, Pregibon, and 
Shoemaker (1984) and Fowlkes (1987). It is impractical to consider all 
possible suggested plots, so we restrict attention to a few of the more easily 
obtained ones that are meaningful in logistic regression analysis. We con­
sider them to be the core of an analysis of diagnostics. These consist of the 
following: 
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(1) Plot MJ versus itj 

(2) Plot !1Dj versus itj 

(3) Plot ~~j versus itj. 

Other plots that are sometimes useful include: 
(4) Plot MJ versus hj 

(5) Plot !1Dj versus hj 

(6) Plot ~~j versus hj, 

177 

as these allow direct assessment of the contribution of leverage to the value 
of the diagnostic statistic. One additional plot that we have found espe­
cially useful is a plot of MJ versus itj where the size of the plotting sym-

bol is proportional to the size of ~~j. This plot is used in the examples 

that follow. 
To illustrate the use of the diagnostic statistics and their related plots, 

we consider the final model for UIS data given in Table 4.9. Recall that 
the summary statistics indicated that the model fits. Thus, we do not ex­
pect an analysis of diagnostics to show large numbers of covariate patterns 
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Figure 5.5 Plot of M 2 versus the estimated probability from the fitted model 
in Table 4.9, VIS J = 521 covariate patterns. 
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Figure 5.6 Plot of !ill versus the estimated probability from the fitted model in 
Table 4.9, UIS J = 521 covariate patterns. 

being fit poorly. We might uncover a few covariate patterns which do not 
fit, or which have considerable influence on the estimated parameters. The 
key plots are given in Figures 5.5 to Figure 5.8. We discuss each plot in 
tum. 

The diagnostics .6.X2 and !1D plotted versus the estimated logistic 
probabilities are shown in Figure 5.5 and Figure 5.6, respectively. We pre­
fer to use these plots instead of plots of rj and dj versus fcj. The reasons 

for this choice are as follows: (1) When J::::: n, most positive residuals 
correspond to covariate patterns where Yj = mj (e.g., 1) and negative re-

siduals to those with yj = 0. Hence, the sign of the residual is not useful. 

(2) Large residuals, regardless of sign, correspond to poorly fit points. 
Squaring these residuals further emphasizes the lack of fit and removes the 
issue of sign. (3) The shape of the plot allows us to determine which pat­
terns have Yj = 0 and which have yj = mj. 

The shapes of the plots in Figures 5.5 and 5.6 are similar and show 
quadratic like curves. The points on the curves going from the top left to 
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Figure 5.7 Plot of AP versus the estimated probability from the fitted model 
in Table 4.9, VIS J = 521 covariate patterns. 
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bottom right comer correspond to covariate patterns with yj =mi. The 

ordinate for these points is proportional to ( 1- ftj )
2 

since mi = 1 for most 

covariate patterns. The points on the other curves, going from the bottom 
left to top right comer, correspond to covariate patterns with Yj = 0. The 

ordinate for these points is proportional to ( 0- fti ( Covariate patterns 

that are poorly fit will generally be represented by points falling in the top 
left or top right comers of the plots. We look for points that fall some dis­
tance from the balance of the data plotted. Assessment of this distance is 
partly based on numeric value and partly based on visual impression. 

In Figure 5.5 we see 1 point (i.e., covariate pattern) that is extremely 
poorly fit in the top left comer of the plot, M 2 ""'30. There is one other 

point that lies a bit away from the others with M 2 
""' 12. These same two 

points are easily seen in Figure 5.6. 
The range of M 2 is much greater than AD. This is a property of 

Pearson versus deviance residuals. Whenever possible we prefer to use 
plots of both M 2 and AD versus It. 
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Figure 5.8 Plot of M 2 versus the estimated probability from the fitted model 

in Table 4.9 with size of the plotting symbol proportional to 11~, VIS J = 521 
covariate patterns. 

Aside from the two points noted, the plots show that the model fits 

reasonably well. Most of the values of M 2 and !1D are less than, or at 
least not much larger than, 4. We use 4 as a crude approximation to the 
upper ninety-fifth percentile of the distribution of M 2 and !1D as, under 
m-asymptotics, these quantities would be distributed approximately as 

X2 (1) with xJ.9s(l)=3.84. 
The influence diagnostic L\~ is plotted versus fc in Figure 5.7. We 

see four points that lie somewhat away from the rest of the data. The val­
ues themselves are not especially large, as all are less than 0.3. In our ex­
perience the influence diagnostic must be larger than 1.0 for an individual 
covariate pattern to have an effect on the estimated coefficients. However 
there are always exceptions and it is good practice to note outlying values 

of L\~, regardless of the actual magnitude. 

We noted in Table 5.7 that the largest values of L\~ are most likely to 

occur when both M 2 and leverage are at least moderately large. However 
large values can also occur when either component is large. This is the 
case in Figure 5.7 where the covariate pattern with the largest influence 
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diagnostic is the one with the largest value of M 2
• The other points are in 

the region of estimated probabilities where both M 2 and W can be mod­

erately large. 
In Figure 5.8 we plot M 2 versus it with the size of the symbol pro­

portional to LlJl. This plot allows us to ascertain the contributions of re­

sidual and leverage to LlJl. The large circle in the top left corner corre­

sponds to the largest value of M 2
. Another large circle can be partially 

seen at it"" 0.4. This point has a small value of M 2 but is in the region 
where we expect to find maximum leverage. 

One problem with the influence diagnostic LlJl is that it is a summary 
measure of change over all coefficients in the model simultaneously. For 
this reason it is important to examine the changes in the individual coeffi­
cients due to specific covariate patterns identified as influential. 

Examination of Figures 5.5 to Figure 5.8 identifies four covariate 
patterns with outlying values on one or more of the diagnostics statistics. 
These include the pattern with large values of M 2 and W, and three more 

with outlying values of LlJl. Information on these patterns is presented in 
Table 5.8. The quantity P# in Table 5.8 refers to the covariate pattern 
number. This number is somewhat arbitrary, as its value depends on how 
the data were aggregated. It should be noted that P# is not the original 
study identification code. 

The results in Table 5.8 provide examples of what can be learned 
about a fitted model through diagnostic statistics. Consider covariate pat­
tern 31. If this covariate pattern is deleted from the data set, we expect to 
see a substantial decrease in X2 and a somewhat smaller decrease in D. 
However, as shown in Table 5.9, when we delete this covariate pattern and 
refit the model the actual observed decrease in the Pearson chi-square sta­
tistic is about 7. This change is much less than the value suggested by the 
diagnostic statistic. On the other hand the deviance decreases by about 22 
even though the value of the diagnostic statistic suggests the change should 
be about 7. It has been our experience that M 2 and W tend to be mod­
estly positively correlated with actual observed changes when covariate 
patterns are deleted. Thus, we recommend that one fit the model with co­
variate pattern(s) deleted to obtain the actual change(s)/effect(s). Even 
though covariate pattern 31 has the largest value of LlJl, its numeric value 
is not large enough for us to expect to see major changes in the estimated 
coefficients. As shown in Table 5.9, the maximum change in any coeffi­
cient in the model is less than 10 percent. In summary, covariate pattern 
31 is typical of one type of pattern that has a large value of M 2 and W. 
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Namely, the fitted model predicts that it is unlikely for the subject to re­
spond when in fact they do (i.e. it is small and y = 1 ). While the opposite 
type of poor fit (it is large and y = 0) is not present in the UIS model we 
have seen it occur in many other analyses. The exercises at the end of this 
chapter contain a number of different problems designed to highlight vari­
ous aspects of the performance of the diagnostic statistics. 

The other three covariate patterns described in Table 5.8 have outly-

ing values of LlJl relative to the rest of the values of this statistic. The val­
ues of the change in fit diagnostics are modest and the leverage values are 
small. As shown in Table 5.9 there are no substantial changes in model fit 
or estimated parameters when we delete each pattern. 

The last column of Table 5.9 presents the changes when the model 
was fit deleting all four covariate patterns (a total of 5 subjects). The col­
lective effect is substantial. Numerous estimated coefficients change by 
more than 20 percent and the fit measures, X2 and D, also show substan­
tial decreases. For these reasons one might consider removing these five 
subjects from the analysis. We consulted with our colleagues and they 
found the covariate values for these five subjects to be quite reasonable and 
therefore felt that the subjects should not be deleted. With this decision 
made, we can move to the final step, presentation and interpretation of the 

Table 5.8 Covariate Values, Observed Outcome (y1), Number (m), 
Estimated Logistic Probability (it), and the Value of the Four 

Diagnostic Statistics .:\~, AX 2, AD, and Leverage (h) for the Four 

Most Extreme Covariate Patterns (P#) 

P# 31 477 105 468 

AGE 24 41 26 40 
NDRGTX 20 0 0 0 

IHVX 2 3 3 
RACE 0 1 1 1 

TREAT 0 0 0 0 
SITE 0 0 0 

Yj 2 
mj 1 1 2 1 

ft 0.033 0.163 0.403 0.168 

.:\~ 0.277 0.267 0.246 0.236 

AX2 29.925 5.403 3.191 5.192 

AD 6.909 3.812 3.916 3.735 
h 0.009 0.047 0.072 0.044 



LOGISTIC REGRESSION DIAGNOSTICS 183 

model using the fitted model from Table 4.9. However, before doing so, 
we use the results seen here as the basis of a short discussion on the rea­
sons for the changes seen in Table 5.9 and a more general discussion of the 
role of diagnostic statistics in analysis. 

We note that the values of the goodness-of-fit statistic based on 
deciles of risk, C, in Table 5.9 are all small and the smallest is for the 
original model. In practice, one cannot use C to select a "best" fitting 
model from a collection of models that all fit. The statistic shows that each 
of the six models shown in Table 5.9 seems to provide an overall fit to the 
data. 

The net effect of the deletion of the five subjects is an increase in the 
coefficients involving age, the number of previous drug treatments and 
treatment duration while the coefficient for race decreases. The reason for 
the effect on race is that 4 of the five subjects had RACE= Other and re­
mained drug free. Thus once they are removed there is a less pronounced 
difference between the two racial groups. All five subjects were on the 
shorter duration treatment and all were drug free at 12 months. Thus re-

Table 5.9 Estimated Coefficients from All Data, the Percent Change when 
the Covariate Pattern Is Deleted, and V aloes of Goodness-of-Fit Statistics 
for Each Model 

Covariate Pattern Deleted 
All All 

Variable Data 31 477 105 468 Four 

AGE 0.117 8.9 5.3 -2.8 4.8 18.0 

NDRGFPl 1.669 9.6 6.3 -1.6 5.7 22.4 

NDRGFP2 0.434 9.4 4.1 2.1 3.8 21.1 
INHX_2 -0.635 8.8 0.4 0.3 0.7 10.6 

IVHX_3 -0.705 0.5 5.6 <-0.1 5.8 12.9 

RACE 0.684 1.3 -5.8 -8.5 -5.9 -20.3 

TREAT 0.435 5.2 3.6 7.3 3.6 20.8 
SITE 0.516 -5.6 <0.1 2.9 0.1 -2.3 

AGExNDRGFPl -0.015 9.9 14.6 -8.3 13.1 33.6 

RACExSITE -1.429 -0.5 -3.6 -4.2 -3.6 -12.5 

Constant -6.844 7.7 3.3 -1.3 3.0 14.0 

Goodness-of-Fit 
D 511.78 489.94 511.57 508.70 511.61 482.63 
x2 530.74 523.62 526.85 526.88 526.94 511.11 

c 4.39 5.55 6.36 6.69 6.36 6.86 
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moving these subjects removes some of the "positive" effect of the shorter 
treatment and leads to a more pronounced difference between the two lev­
els. The reason for the observed behavior in age and the number of previ­
ous drug treatments is not clear. There is no clear pattern in the ages or 
number of previous treatments. In addition these variables interact and the 
number of previous drug treatments is highly non-linear in the model. 

The model for the UIS data is an example where the model fits well, 
and use of diagnostics identified only a few covariate patterns where the 
model did not fit, and/or the patterns were influential. Suppose instead that 
we have a model where the summary statistics indicate that there is sub­
stantial deviation from fit. In this situation, we have evidence that for 
more than a few covariate patterns, yj differs from m/tj. One or more of 

three things has likely happened: (1) the logistic model does not provide a 
good approximation to the correct relationship between the conditional 

mean, E{ Ylx j), and x j• (2) we have not measured and/or not included an 

important covariate into the model, or (3) at least one of the covariates in 
the model has not been entered in the correct scale. We discuss each of 
these in turn. 

The logistic regression model is remarkably flexible. Unless we are 
dealing with a set of data where most of the probabilities are very small or 
very large, or where the fit is extremely poor in an identifiable systematic 
manner, it is unlikely that any alternative model will provide a better fit. 
Cox ( 1970) demonstrates that the logistic and other, similar symmetric 
models are virtually identical in the region from 0.2 to 0.8. If one suspects, 
based on clinical or other reasons (such as graphical presentations, or 
Stukel's test, described in Section 5.2.2) that the logistic model is the 
wrong one, then careful thought should be given to the choice of the alter­
native model. Particular attention should be given to issues of interpreta­
tion. Are the coefficients clinically interpretable? The approach that tries 
all other possible models and selects the "best fitting" one is not recom­
mended, as no thought is given to the clinical implications of the selected 
model. In some situations, inadequacy of a fitted logistic model can be 
corrected by returning to model building and rechecking variable selection 
and scale identification. Model fitting is an iterative procedure. We rarely 
obtain a final model on the first pass through the data. However, we must 
keep in mind the distinction between getting a model to fit and having the 
theoretically correct model. 

Some interesting theoretical work has been done by White ( 1982, 
1989) and Hjort ( 1988, 1999) on the use of maximum likelihood estimation 
with a misspecified model. These authors show that the fitted logistic re-
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gression model is the one that minimizes the Kullbeck-Leibler information 
distance between the theoretically correct model and the logistic model. In 
this sense the fitted logistic regression model is a best approximation to the 
true model. Recently, Maldonado and Greenland (1993) examine the inter­
pretation of model coefficients in this setting and conclude that if one fol­
lows a thorough model building paradigm, similar to one presented in 
Chapter 4 and this chapter, then the estimated coefficients can provide use­
ful estimates of effect even when the model is somewhat misspecified. 
Along these same lines Lin, Pstay and Kronmal (1998) present a method to 
quantify the sensitivity of estimates of effect to unmeasured confounders. 
It is not clear to us how practical the method may prove to be, as it requires 
one to specify the distribution of the model covariates within each level of 
the outcome variable. 

White (1982, 1989) provides a test for the hypothesis that the fitted 
model is the theoretically correct one. The test is elegant but is difficult to 
compute in practice and its power has not been adequately studied. Hence, 
we recommend that assessment of the adequacy of the fitted logistic model 
be performed using the methods suggested in this chapter. When there is 
evidence that the logistic model does not fit the data an alternative model 
should be selected on the basis of clinical considerations. 

When performing an analysis, we hope that the study was designed 
carefully so that data on all major covariates were collected. However, it is 
possible that the clinical factors associated with the outcome variable are 
not well known and in this case a key variable may not be present in the 
observed data. The potential biases and pitfalls of this oversight are enor­
mous. Little can be done if this is the case, except to go back and collect 
these data. This approach of retroactive data collection is also impractical 
in most research situations. 

Lack of fit may also occur if the variability in the outcome variable 
exceeds what would be predicted by the model and binomial variation. 
Much of the work on this problem is motivated by toxicological experi­
ments where a dependence in the observations is present due to the out­
come being measured on littermates having the same parentage, see Hase­
man and Hogan (1975), Haseman and Kupper (1979), Legler and Ryan 
(1997), Ryan (1992), and Williams (1975). This source of lack of fit is 
often called extrabinomial ·variation. Another setting where this problem 
occurs is where the dependence is due to a general clustering of groups of 
responses (e.g., when a treatment is randomly assigned to a group of sub­
jects such as a school or patients of a physician). The clustering can also 
be due to repeated observations on subjects over time. This is an active 
area of methodological research and several software packages now incor-
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porate the capability to fit appropriately modified logistic regression mod­
els. Because of its practical importance we consider methods for the 
analysis of clustered binary data in some detail in Section 8.3. 

In summary, one should not proceed to presenting the results from a 
fitted model until the fit of model has been thoroughly assessed using both 
summary measures and diagnostic statistics. 

5.4 ASSESSMENT OF FIT VIA EXTERNAL VALIDATION 

In some situations it may be possible to exclude a subsample of our obser­
vations, develop a model based on the remaining subjects, and then test the 
model in the originally excluded subjects. In other situations it may be 
possible to obtain a new sample of data to assess the goodness-of-fit of a 
previously developed model. This type of assessment is often called model 
validation, and may be especially important when the fitted model is used 
to predict outcome for future subjects. The reason for considering this type 
of assessment of model performance is that the fitted model always per­
forms in an optimistic manner on the developmental data set. Harrell, Lee, 
and Mark (1996) discuss this within a general model building context. The 
use of validation data amounts to an assessment of goodness-of-fit where 
the fitted model is considered to be theoretically known, and no estimation 
is performed. Some of the diagnostics discussed in Section 5.3 
(AX2,W,Llp) mimic this idea by computing, for each covariate pattern, a 
quantity based on the exclusion of the particular covariate pattern. With a 
new data set a more thorough assessment is possible. 

The methods for assessment of fit in the validation sample parallel 
those described in Sections 5.2 and 5.3 for the developmental sample. The 
major difference is that the values of the coefficients in the model are re­
garded as fixed constants rather than estimated values. 

Suppose that the validation sample consists of nv observations 
(yi,xi), i == 1,2, ... ,nv, which may be grouped into lv covariate patterns. In 
keeping with previous notation, let Y; denote the number of positive re­
sponses among the m; subjects with covariate pattern x =X; for 
j = 1, 2, ... , J v. The logistic probability for the loth covariate pattern is TC;, the 
value of the previously estimated logistic model using the covariate pat­
tern, xi' from the validation sample. These quantities become the basis for 
the computation of the summary measures of fit, X2

, D, and C, from the 
validation sample. Each of these is considered in tum. 
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The computation of the Pearson chi-square statistic follows directly 
from equation (5.2), with obvious substitution of quantities from the vali­
dation sample. In this case X2 is computed as the sum of J v independent 
terms. If each m/cj is large enough to use the normal approximation to 

the binomial distribution, then X2 is distributed as z2(lv) under the hy­

pothesis that the model is correct. We expect that in practice the observed 
numbers of subjects within each covariate pattern is small, with most 
mj = 1. Hence, we cannot employ m-asymptotics. In this case we can use 

results presented in Osius and Rojek (1992) to obtain a statistic that fol­
lows the standard normal distribution under the hypothesis that the model 
is correct and Jv is sufficiently large. The procedure is similar to the one 
presented in Section 5.2. Specifically one computes the standardized sta­
tistic 

X2-J 
Z - v - ' 

(jv 

where 

The test uses a two-tailed p-value based on z. 
The same line of reasoning discussed in Section 5.2.2 to develop the 

Hosmer-Lemeshow test may be used to obtain an equivalent statistic for 
the validation sample. Assume that we wish to use 10 groups composed of 
the deciles of risk. Any other grouping strategy could be used with obvi­
ous modifications in the calculations. Let nk denote the approximately 

nvflO subjects in the k1
h decile of risk. Let ok = :~:>j be the number of 

positive responses among the covariate patterns falling in the k1
h decile of 

risk. The estimate of the expected value of ok under the assumption that 

the model is correct is ek = Lmjn-j, where the sum is over the covariate 

patterns in the decile of risk. The Hosmer-Lemeshow statistic is obtained 
as the Pearson chi-square statistic computed from the observed and ex­
pected frequencies 

(5.18) 
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where 7fk = Lmjnjjnk. The subscript, v, has been added to C to empha­

size that the statistic has been calculated from a validation sample. Under 
the hypothesis that the model is correct, and the assumption that each ek is 

sufficiently large for each term in cv to be distributed as z2 (1), it follows 
that Cv is distributed as z2(10). In general, if we use g groups then the 
distribution is z2(g). In addition to calculating a p-value to assess overall 
fit, we recommend that each term in Cv be examined to assess the fit 
within each decile of risk. The comments given in Section 5.2.2 regarding 
modification of the denominator of the test statistic, C, in equation (5.5) 
also apply to Cv in equation (5.18). 

The classification table is the remaining summary statistic that we are 
likely to use with the validation sample and then only in instances where 
classification is an important use of the model. The classification table is 
obtained in exactly the same manner as shown in Section 5.2.3, with the 
modification that probabilities are no longer thought of as being estimated. 
The resulting table may then be used to compute statistics such as sensitiv­
ity, specificity, positive and negative predictive power. Interpretation of 
these quantities depends on the particular situation. 

5.5 INTERPRETATION AND PRESENTATION OF THE 
RESULTS FROM A FITTED LOGISTIC REGRESSION 
MODEL 

Once we are satisfied that the fit of the model is adequate, we are ready to 
use the model to address the inferential goals of the particular study. In 
our experience this almost always involves using the estimates of model 
coefficients to obtain estimates of odds ratios. We use the model presented 
in Table 4.9, whose fit was checked earlier in this chapter, as an example. 
For convenience Table 5.10 presents more detailed results from the fitted 
model. 

While the model in Table 5.10 is much more complicated than the 
typical model one finds in a subject matter journal, it is an excellent exam­
ple for teaching purposes. It contains a dichotomous main effect covariate 
(TREAT), a polychotomous main effect covariate (IVHX), two dichoto­
mous covariates and their interaction (RACE and SITE), a linear continu­
ous covariate, a non-linear continuous covariate and their interaction (AGE 
and NDRGTX modeled via NDRGFPl and NDRGFP2). We begin with 
the nominal scale covariates that appear only as main effects. 
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Table 5.10 Estimated Coefficients, Standard Errors, z-Scores, Two-
Tailedp-Values and 95% Confidence Intervals for the Final Logistic 
Regression Model for the UIS (n = 575) 

Variable Coeff. Std. Err. z P>lzl 95 %CI 
AGE 0.117 0.0289 4.04 <0.001 0.060, 0.173 
NDRGFPl 1.669 0.4072 4.10 <0.001 0.871, 2.467 
NDRGFP2 0.434 0.1169 3.71 <0.001 0.205, 0.663 
IVHX_2 -0.635 0.2987 -2.13 0.034 -1.220, -0.049 

IVHX_3 -0.705 0.2616 -2.70 0.007 -1.217,-0.192 

RACE 0.684 0.2641 2.59 0.010 0.166, 1.202 
TREAT 0.435 0.2038 2.14 0.033 0.035, 0.834 
SI1E 0.516 0.2549 2.03 0.043 0.017, 1.016 
AGExNDRGFPl -0.015 0.0060 -2.53 0.011 -0.027, -0.391 

RACExSI1E -1.429 0.5298 -2.70 0.007 -2.468, -0.391 

Constant -6.844 1.2193 -5.61 <0.001 -9.234, -4.454 

As shown in Chapter 3 we obtain estimates of the odds ratios and 
their confidence intervals for dichotomous covariates (coded zero or one) 
and polychotomous covariates, with zero or one reference cell design vari­
ables, by exponentiating their respective coefficients and the end points of 
their respective confidence intervals. The odds ratios and confidence 
intervals for TREAT and IVHX obtained from the results in Table 5.10 are 
presented in Table 5.11. 

In the first column of Table 5.11 we indicate the covariate and each of 
its levels. The reference level is the one with an odds ratio equal to 1.0. 
Some readers may question the need to include all levels, preferring in­
stead to indicate the reference level by exclusion. Either approach is ac­
ceptable; however, we feel the explicit method shown in Table 5.11 is 
clearer and thus makes the discussion easier to follow. 

The estimate of the odds ratio for treatment is 1.54. The correct inter­
pretation is that the odds of remaining drug free for 12 months for a subject 
on the longer duration treatment is estimated to be 1.54 times larger than 
the odds for a similar (with respect to the other covariates in the model) 
subject on the shorter duration treatment. In many, if not most, subject 
matter journals this interpretation would be stated more concisely, but in­
correctly, as subjects on the longer treatment are 1.54 times more likely to 
remain drug free for 12 months. The second interpretation relies on the 
"odds ratio approximates relative risk" argument. We go into this in more 
detail in Chapter 6 where we discuss case-control studies, but it is suffi-
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Table 5.11 Estimated Odds Ratios and 95% 
Confidence Intervals for Treatment and History of 
IV Drug Use in the UIS (n = 575) 

Variable Value 
Treatment 

Short 
Long 

IV Drug Use 
Never 

Previous 
Recent 

Odds Ratio 

1.00 
1.54 

1.00 
0.53 
0.49 

95 %CI 

1.04, 2.30 

0.30, 0.95 
0.30, 0.83 

cient at this point to indicate that this is only true when the outcome is 
"rare". As a rule of thumb, this argument is likely to be true when the out­
come occurs less than 10 percent of the time. In our example this means 
that the logistic probability of remaining drug free should be small. This is 
not true since overall25.6 percent of the subjects remained drug free for 12 
months and the range of fitted values is from 0.02 to 0.78. In addition, 21 
percent of subjects in the shorter duration treatment group remained drug 
free for 12 months. Zhang and Yu (1998) examine the extent to which the 
odds ratio over-estimates the relative risk when the outcome is not rare. 
Their results show that the over-estimation can be quite pronounced for 
odds ratios greater than 2.5 or less than 0.5. How important their results 
are in practice depends on how the estimated odds ratio is going to be used. 
For example, in our model there is a statistically significant (p = 0.033) 
benefit to the longer treatment and, since both interpretations of the esti­
mated odds ratio provide a reasonable statement of this fact, either one 
could be used in a paper presenting the results of the study. On the other 
hand, if it is vitally important to have an accurate estimate of the increase 
in the likelihood of remaining drug free then one should present the odds 
ratio using the correct interpretation and attempt to correct the over­
estimation. One can obtain a crude correction to the odds ratio from the 
figure in Zhang and Yu (1998). For example, an odds ratio of 1.5 with an 
"incidence among the unexposed" of 21 percent corrects to a relative risk 
of about 1.3. In our experience the estimated odds ratios from the vast 
majority of fitted logistic regression models are used to present "broad­
strokes" estimates of effect and not precise estimates of the increase in the 
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likelihood of the event. Thus, in the remainder of this section, we use the 
more concise "relative risk" type interpretation of the odds ratio. 

The confidence interval estimate in Table 5.11 suggests that odds for 
the longer treatment could be as little as 1.04 or as much as 2.3 times as 
great as the odds for the shorter treatment. 

The estimates of the odds ratios for history of IV drug use in Table 
5.11 are both less than 1.0. In our experience new users of logistic regres­
sion modeling have a particularly difficult time in this case. If the odds 
ratio is less than one then the covariate is often referred to as "protective" 
for the outcome. This statement comes from the fact that in many exam­
ples the y = 1 outcome is, in a practical sense, the less desirable of the two 
outcomes. If an odds ratio is less than one then the y = 1 outcome is less 
likely to occur. In our example the situation is reversed since y = 1 corre­
sponds to the desirable outcome of remaining drug free. Consider a sub­
ject with a history of previous IV drug use, the estimate of the odds ratio in 
Table 5.11 is 0.53 with a 95 percent confidence interval of (0.30, 0.95). 
The interpretation is that a subject with a history of previous IV drug use is 
approximately 0.53 times as likely to remain drug free for 12 months as a 
similar subject with no history of previous drug use and the odds could be 
as much as 0.3 times or as little as 0.95 times smaller with 95 percent con­
fidence. The odds ratio for recent IV drug use is 0.49 with a 95 percent 
confidence interval (0.30, 0.83). Thus a subject with a recent history of 
drug use is also about one-half as likely to remain drug free for 12 months 
as a subject with no history. 

Before leaving our discussion of IVHX we note that the estimates of 
the coefficients in Table 5.10, and thus the odds ratios in Table 5.11, are 
quite similar for both previous and recent users. This suggests that we 
could consider modeling IVHX with a dichotomous covariate coded 
"never-ever". The principle of parsimony in modeling (i.e., use as few 
parameters as possible) suggests this might be a better model. We specifi­
cally kept the full three-level coding to demonstrate modeling methods 
with a multi-category covariate. We leave it as an exercise for the reader 
to examine whether we can pool the previous and recent categories and use 
the resulting dichotomous covariate. 

We now tum to interpreting the results for RACE and SITE, which 
interact in our model. The covariate SITE is included to control for the 
location of the program and is of less importance to the subject matter team 
than possible racial differences. Thus we present in Table 5.12 the esti­
mates of the odds ratios for non-white versus white within the two sites. 
The details of estimating odds ratios in the presence of this type of interac­
tion are discussed in Section 3.7 and are not repeated here. However, we 
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Table 5.12 Estimated Odds Ratios and 95% 
Confidence Intervals for Race within Site in the 
VIS (n =575) 
Site Race Odds Ratio 95% CI 
Site A 

White 1.00 
Other 1.98 1.18, 3.33 

Site B 
White 1.00 
Other 0.47 0.19, 1.18 

encourage the reader to verify that the results presented in Table 5.12 come 
from appropriately specified logit differences from Table 5.1 0. 

The int:lrpretation of the results in Table 5.12 are: (1) A non-white 
subject at Site A is almost 2 times more likely to remain drug free for 12 
months than a similar white subject. The confidence interval suggests that 
the difference could be as little as 1.2 times more likely or as much as 3.3 
times more likely. (2) At site B, a non-white subject is estimated to be 
0.47 times as likely to remain drug free for 12 months than a similar white 
subject. However, the confidence interval for the odds ratio at Site B in­
cludes 1.0 so the difference between the two racial groups is not significant 
at this site. As mentioned, we are less interested in comparing sites within 
levels of race, but we leave this comparison as an exercise. 

We next estimate odds ratios for age and the number of previous drug 
treatments. The model is quite complicated in these two covariates but the 
process is same as that used to estimate the odds ratios for race within site 
in Table 5.12. Namely, we specify the covariate of interest and the levels 
for the odds ratio and the value(s) of the interaction variable. For example 
we may be interested in calculating the odds ratio for a 5-year increase in 
age for subjects with 0, 1, 3 and 6 previous drug treatments holding all 
other covariates constant. We follow the basic steps of evaluating the two 
logits, taking their difference and exponentiating the result. Since we are 
holding IVHX, RACE, TREAT and SITE constant we do not include their 
respective coefficients and values in the expressions for the logits. Thus 
the abbreviated basic form of the estimated logit in AGE and fractional 
polynomial transformation of NDRGTX is: 
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g(AGE,NDRGTX) = 13o + 131(AGE)+ 132 (NDRGFP1)+ 133(NDRGFP2) 

+134(AGExNDRGFP1) (5.19) 

and, at AGE+ 5, it is 

g(AGE + 5, NDRGTX) = 13o + 131 (AGE+ 5) + 132(NDRGFP1) 

+133(NDRGFP2)+ 134((AGE +5)x NDRGFP1), (5.20) 

where 131.132 .133, and 134 represent the respective estimated coefficients in 
Table 5.10. Recall that the two fractional polynomial covariates are 

NDRGFP1 = ( NDR~OTX + 1 rl 
and 

NDRGFP2 = NDRGFP1 x In( NDR~:;x + l). 

It follows that the estimated logit difference is 

g(AGE + 5, NDRGTX)- g(AGE, NDRGTX) 
~ ~ 

= /31 x 5 + {34 X 5 x NDRGFP1. (5.21) 

The two logits may be complicated but their difference is a simple linear 
function of NDRGFP1 and the change in age. We estimate the odds ratio 
by evaluating (5.21) at values of NDRGFP1 at the specified values of 
NDRGTX and exponentiating the results. The estimator of the variance of 
the logit difference in (5.21) is 

V~r (131 X 5 + 134 X 5 X NDRGFP1) = 52 V~r (131) 

+ (5 X NDRGFP1)2 V~ r (134 )+ 2 X 5 X 5 X NDRGFP1 xcciv (13~>134 ) . (5.22) 

To simplify the notation, we denote the square root of the quantity from 
(5.22) as 

s'E(AGE+5,AGE) = {v~r(l3~ x 5 + 134 x 5 x NDRGFP1 )r5

. (5.23) 
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Figure 5.9 Estimated odds ratio and 95 percent confidence limits for a five-year 
increase in age based on the model in Table 5.10. 

The endpoints of the 100 X (1- a)% confidence interval estimator for the 

logit difference are 

[fi1 X5+fi4 x5xNDRGFPl]±z1_a12SE(AGE+5,AGE). (5.24) 

We obtain the endpoints of the 100 X (1- a)% confidence interval estima­
tor for the odds ratio by exponentiating the endpoints from (5.24). At this 
point we have the option of presenting a table of estimated odds ratios and 
confidence intervals at various values of NDRGTX, or we can present the 
results graphically over a range of values. In this case we feel a graphical 
presentation is more effective than a table of results. 

Figure 5.9 presents point and interval estimates of the odds ratio for a 
five-year increase in AGE for up to 10 previous drug treatments. The 
point-wise 95 percent limits are indicated by the vertical bars. The graph 
indicates that an older (by 5 years) subject with two or more previous drug 
treatments is significantly and progressively more likely to remain drug 
free than a younger subject. The estimates of the odds ratio gradually in­
crease to about 1.7 at 10 previous treatments. (Note: The lower bound of 
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the confidence interval estimator at two drug treatments is I .01 .) Since the 
confidence intervals include 1.0 for fewer than two previous drug treat­
ments we conclude that a five-year increase in age is not significant at 
these levels. Only slight additional increases in the odds ratios for a five­
year AGE increase are seen at more than 10 previous drug treatments and, 
as such, we chose not to include them in the graph. For example, at 10 
previous treatments the estimate of the odds ratio in Figure 5.9 is 1.67 and 
the 95 percent confidence interval is (1.26, 2.21). At the maximum of 40 
previous treatments we obtain, by the same methods, an estimate of the 
odds ratio of 1. 76 with a 95 percent confidence interval (1.32, 2.33). We 
feel that the graph presented in Figure 5.9 portrays the effect of older age 
at the values of previous drug treatments much more clearly than is possi­
ble in a tabulation of this same information. 

To complete the presentation of the results we need to describe the 
effect of the number of previous drug treatments controlling for age. Since 
the model is non-linear in the number of previous drug treatments the ef­
fect must be described at each value. We begin by assessing the effect of 
an increase of one previous drug treatment. The abbreviated logit at an 
increase of one drug treatment from (5.19) is 

g(AGE,NDRGTX + 1) = /30 + /31 (AGE)+ /32 (NDRGFP11) 

+ /33(NDRGFP21)+ /34 ((AGE) x NDRGFPI 1), (5.25) 

where 

NDRGFP11 = ( (NDRG~ + 1) + 1 JI = ( NDR~:: + 2 JI 
and 

NDRGFP21 = NDRGFP11 xln(NDRGTX +2
). 

10 . 

The logit difference of (5.25) and (5.19) is 

g(AGE, NDRGTX + 1)- g(AGE, NDRGTX) = 
/32(NDRGFP11- NDRGFP1) 

+ /33 (NDRGFP21- NDRGFP2) 

+ /34 (AGE) x (NDRGFP11- NDRGFP1) . (5.26) 
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In order to simplify the expressions we let 

A= NDRGFP11- NDRGFPI = ( NDR~:: + 2) -
1 

_ ( NDR~OTX + 1) -
1 

and 

B = NDRGFP21- NDRGFP2 = { NDRGFP11 x In( NDR~:: + 2)} 

- { NDRGFP1 x In( NDR~OTX +I)} . 

It follows that the logit difference in (5.26) is 

g(AGE, NDRGTX + 1)- g(AGE, NDRGTX) 
A A A 

= /32 A + {33B + f34 AGE x A. (5.27) 

We obtain estimates of odds ratios by evaluating (5.27) at particular values 
of AGE and NDRGTX. The estimates depend, in a fairly complex and not 
easily envisioned manner, on both AGE and NDRGTX. Thus we choose a 
graphical presentation but, before presenting the graph, we describe how to 
obtain the confidence interval estimator. 

The estimator of the variance of the logit difference in (5.27) is 

V~ r [,82A + ,83B + ,84 AGE x A]= A 2V~ r (,82 ) + B2V~ r (,83 ) 

+(AGE X A)2 V~r (S4) + 2AB~ v (fiz, s3) 
+2A(AGEx A)~v(,82 ,,84 ) 

+2B(AGExA)~v(,83 ,,84 ), 

and the estimator of the standard error is 

The endpoints of the 100(1- a)% confidence interval estimator are 
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(g(AGE,NDRGTX +1)- g(AGE,NDRGTX)] 
A 

±z1_a12SE(NDRGTX + 1,NDRGTX). (5.28) 

We obtain the end points for the confidence interval estimator for the odds 
ratio by exponentiating the end points in (5.28). 

Due to the complicated nature of the relationship between age and the 
number of previous drug treatments we feel that a graph is the best way to 
see the effect of increased numbers of drug treatments. Figure 5.10 pre­
sents the estimated odds ratios and associated 95 percent confidence inter­
vals for an increase of one previous drug treatment at ages 20, 25, 30 and 
35 (top left to bottom right in the figure). A horizontal line is drawn at 1.0 
in each plot to provide a quick way to see whether the odds ratio is signifi­
cantly different from 1.0. 

In each plot the odds ratio at NDRGTX = 0 is for one treatment ver­
sus zero treatments. The confidence interval covers 1.0 in all but the plot 
for AGE = 35. In this case a 35 year old subject with one previous treat­
ment is significantly more likely to remain drug free for 12 months than a 
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Figure 5.10 Estimated odds ratios and 95 percent confidence limits for an 

increase of one drug treatment from the plotted value of NDRGTX for a subject 
of age (a) 20, (b) 25, (c) 30 and (d) 35. 
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35 year old with no previous drug treatments. The remaining odds ratios in 
each plot compare subjects of a given age having 2 versus 1, 3 versus 2, up 
to 11 versus 10 previous treatments. In each plot the lines denoting the 
confidence intervals do not contain 1.0, hence the odds ratios are signifi­
cantly less than one. The odds ratios approach 1.0 as the referent number 
of drug treatments increases. The overall interpretation is that with each 
increment of one drug treatment subjects are significantly more likely to 
remain drug free for 12 months. The increment in risk decreases as the 
referent number of drug treatments increases. That is, the risk of 11 versus 
10 (a 10 percent increase) i& not as great as the risk of 2 versus 1 (a 50 per­
cent increase). In three of the four plots the smallest odds ratio for re­
maining drug free is for 2 versus 1 previous treatment. Thus the odds of 
remaining drug free is greatest for subjects with one previous treatment. 
This suggests that we calculate odds ratios comparing each number of pre­
vious dru~ treatments to a referent value of 1 treatment. 

The individuallogit difference and its confidence interval for the dif­
ference in the number of previous drug treatments at a particular AGE are 
obtained from (5.27) and (5.28) by defining A and B to be the difference in 
the fractional polynomial variables for a general value of NDRGTX and 
NDRGTX = 1 as follows: 

and 

A= NDRGFP1-( 1 1~1 r
1 

=NDRGFP1-5 

B= NDRGFP2-(\~1r
1

ln(\~1 ) 
= NDRGFP2- 5ln( ±) 
= NDRGFP2+51n(5). 

We obtain the odds ratios and their confidence intervals by exponentiating 
the results for the logit differences from (5.27) and (5.28) with A and B 
defined above. These results are shown in Figure 5.11. 

The odds ratios and confidence intervals plotted at 0 in the four plots 
in Figure 5.11 are the inverse of the odds ratios plotted in Figure 5.10. The 
odds ratios plotted at 2 are the same as those plotted at 1 in Figure 5.1 0. 
The others may be shown to be products of the odds ratios in Figure 5.10. 
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Figure 5.11 Estimated odds ratios and 95 percent confidence limits 
comparing zero, two, three up to 10 previous drug treatments to one 
previous treatment for a subject of age (a) 20, (b) 25, (c) 30 and (d) 35. 

10 

The general picture that emerges from Figure 5.11 is that at any age sub­
jects with progressively more previous drug treatments are significantly 
less likely to remain drug free for 12 months when compared to a subject 
with one previous treatment. For older subjects the odds ratio at 0 is also 
less than one and is significant at age 35. 

In general we conclude that, at most ages, a subject with one previous 
drug treatment is most likely to remain drug free for 12 months, that the 
odds ratio becomes progressively smaller (further from 1.0) with increas­
ing numbers of previous drug treatments. The figures give an impression 
of approaching an age-specific lower bound. 

Before we leave this section we make a few comments on model 
building. Comparatively speaking the model in Table 5.10 is more com­
plicated than virtually every logistic regression model we have encoun­
tered in the health sciences literature. The typical model in the literature 
has a few continuous covariates modeled linearly, a few design variables 
and, in rare instances, an interaction. There seems to be some reluctance 
on the part of subject matter scientists to consider more complicated mod­
els. We think the reason is a lack of confidence in being able to determine 
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when more complicated non-linear terms are needed and, if they are in­
cluded, insecurity on how to interpret the results. What we hope we have 
accomplished in Chapters 4 and 5 is to provide a set of methods that can 
serve a basic paradigm for model building, model evaluation and model 
presentation that will allow the reader to feel confident that he/she has de­
veloped the best possible model within the constraints of the data and to 
feel secure in his/her ability to interpret the results of the model, regardless 
of how complicated it may appear to be. In particular, we hope that 
through the discussion in this section the reader has developed a firm grasp 
of the fundamental principal that the estimate of an odds ratio comes from 
exponentiating a logit difference. 

EXERCISES 

1. As is the case in linear regression, effective use of diagnostic statistics 
depends on our ability to interpret and understand the values of the 
statistics. The purpose of this problem is to provide a few structured 
examples to examine the effect on the fitted logistic regression model 
and diagnostic statistics when data are moved away from the model 
(i.e., poorer fit), and also toward the model (i.e., better fit). Table 5.13 
lists values of the independent variable, x, and seven different columns 
of the outcome variable, y, labeled "Model." All models fit in this 
problem use the given values of x for the covariate. Different models 
are fit using the seven different columns for the outcome variable. The 
data for the column labeled "Model 0" are constructed to represent a 
"typical" realization when the logistic regression model is correct. In 
the columns labeled " Model 1" to "Model 3" we have changed some 
of the y values away from the original model. Namely some cases 
with small values of x have had y changed from 0 to I and others with 
large values of x have had the y values changed from 1 to 0. For mod­
els labeled "Model -1" and "Model -2" we have moved they values in 

the direction of the model. That is, we have changed y from 1 to 0 for 
some small values of x and have changed y from 0 to I for some large 
values of x. Fit the six logistic regression models for the data in col­
umns "Model -2" to "Model 3." Compute for each fitted model the 

values of the leverage, h, the change in chi-square, 11X2
, and the influ­

ence diagnostic, LlJl. Plot each of these versus the fitted values, pre­
dicted logistic probabilities. Compare the plots over the various mod­
els. Do the statistics pick out poorly fit and influential cases? How do 
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Table 5.13 Hypothetical Data to Illustrate the Use of 
Diagnostic Statistics to Detect Poorly Fit and 
I fl ' IS b' d C I S n uenba u IJects an ompl ete eparatlon 

Model 

X -i -2 -1 0 1 2 3 

-5.65 0 0 0 0 0 0 0 

-4.75 0 0 0 0 0 1 1 

-3.89 0 0 0 0 0 0 0 

-3.12 0 0 0 0 0 0 0 

-2.93 0 0 0 0 0 0 0 

-2.87 0 0 0 0 0 0 0 

-1.85 0 0 0 0 1 1 1 

-1.25 0 1 1 1 1 1 1 

-0.97 0 0 0 0 0 0 0 

-0.19 1 1 1 1 1 1 1 

-0.15 1 1 1 1 1 1 1 

0.69 1 1 1 1 1 1 1 

1.07 1 1 1 1 1 1 1 

!.18 1 1 1 1 1 [ [ 

1.45 1 1 0 0 0 0 0 
2.33 1 1 1 0 0 0 0 

3.57 1 1 1 1 1 1 1 

4.41 1 1 1 1 1 1 1 
4.57 1 1 1 1 1 1 0 
5.85 1 1 1 1 1 1 I 

the estimated coefficients change relative to Model 0? Fit "Model -i." 

What happens and why? Refer to the discussion in Section 4.5 on 
complete separation. 

2. In the exercises in Chapter 4, Problem 3, multivariable models for the 
ICU study were formed. Assess the fit of the model(s) that you feel 
was (were) best among those considered. This assessment should in­
clude an overall assessment of fit and use of the diagnostic statistics. 
Does the model fit? Are there any particular subjects, or covariate 
patterns, which seem to be poorly fit or overly influential? If so, how 
would you propose to deal with them? 
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3. Repeat Exercise 2 for the models developed for the low birth weight 
data and the prostate cancer data in Chapter 4, Exercise 4. 

4. Fit the final model for the UIS shown in Table 5.10 and obtain the es­
timated covariance matrix of the estimated coefficients. 

5. Use the method of logit differences to estimate the odds ratio for site A 
versus B within racial groups. 

6. As a more complicated exercise in using the method of logit differ­
ences used in Section 5.5, estimate the odds ratio for a 25 year old 
white subject with 1 previous drug treatment, no history of IV drug use 
and on the longer treatment at site A compared to a 30 year old non­
white subject with 5 previous drug treatments, a recent IV drug user 
and on the shorter treatment at site B. We make no claim that this is a 
clinically useful comparison. The purpose of the exercise is to illus­
trate the general applicability of the method of logit differences. 

7. Obtain 95 percent confidence intervals for the estimates in Exercises 5 
and6. 

8. We noted in Section 5.5 that an argument could be made for combin­
ing the previous and recent levels of IV drug use into one group yield­
ing a dichotomous "never-ever" covariate. Evaluate the model using 
this covariate in place of history of IV drug use coded at three levels. 
Is the dichotomous covariate significant? Do the coefficients for the 
other covariates in the model change? How does the fit of the model 
compare with the fit of the original model (Table 5.10)? 



CHAPTER 6 

Application of Logistic Regression 
with Different Sampling Models 

6.1 INTRODUCTION 

Up to this point we have assumed that our data have come from a simple 
random sample. Considerable progress has been made in recent years 
to extend the use of the logistic regression model to other types of sam­
pling. In this chapter we begin with a review of the classic cohort study. 
Next we consider the case-control study and the stratified case-control 
study. We conclude with a section that deals with fitting models when 
data come from a complex sample survey. The goals are to briefly de­
scribe some of the mathematics involved in fitting the model, to indicate 
how the model can be fit using available software and to discuss the in­
terpretation of the estimated parameters. References to the literature for 
more detailed treatment of these topics are provided. 

Throughout this chapter we assume that the outcome variable is 
dichotomous, coded as 0 or 1, and that its conditional probability given 
a vector of covariates is the logistic regression model. In addition, we 
assume that the number of covariate patterns is equal to the sample size. 
Modifications to allow for replication at covariate patterns are a 
notational detail, not a conceptual problem. 

6. 2 COHORT STUDIES 

Several variations of the cohort (or prospective) study are in common 
use. In the simplest design, a simple random sample of subjects is cho­
sen and the values of the covariatcs are determined. These subjects are 
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then followed for a fixed period of time and the outcome variable is 
measured. This type of sample is identical to what is often referred to as 
the regression sampling model, in which we assume that the values of the 
covariates are fixed and measured without error and the outcome is 
measured conditionally on the observed values of the covariates. Under 
these assumptions and independence of the observations, the likelihood 
function for a sample of size n is 

n 

~(p) = n P(Y; = Y;jx;)· 
i=l 

When the observed values of y and the logistic regression 
substituted into the expression for the conditional 
~(~})simplifies to the likelihood function in equation (1.3). 

( 6 .I) 

model are 
probability, 

A modification of this situation is a randomized trial where subjects 
are first chosen via a simple random sample and then allocated inde­
pendently and with known probabilities into "treatment" groups. 
Subjects are followed over time and the outcome variable is measured 
for each subject. If the responses are such that a normal errors model is 
appropriate we would be naturally led to consider a normal theory 
analysis of covariance model which would contain appropriate design 
variables for treatment, relevant covariates, and any interactions between 
treatment and covariates deemed necessary. The extension of the likeli­
hood function in equation (6.1) to incorporate treatment and covariate 
information when the outcome is dichotomous is obtained by including 
these variables in the logistic regression model. 

Another modification is for the design to incorporate a stratifica­
tion variable such as location or clinic. In this situation the likelihood 
function is the product of the stratum-specific likelihood functions, each 
of which is similar in form to~ (P). We would perhaps add terms to the 

model to account for stratum-specific responses. These might include a 
design variable for stratum and interactions between this design variable 
and other covariates. 

In each of these designs we use the likelihood function ~ (13) as a 
basis for determining the maximum likelihood estimates of the un­
known parameters in the vector p. Tests and confidence intervals for 
the parameters follow from well-developed theory for maximum likeli­
hood estimation [see Cox and Hinkley (1974)]. The estimated pa­
rameters may be used in the logistic regression model to estimate the 
conditional probability of response for each subject. The fact that the 
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estimated logistic probability provides a model-based estimate of the 
probability of response permits the development of methods for assess­
ment of goodness-of-fit such as those discussed in Chapter 5. Cham­
bless and Boyle (1985) have extended ~ (P) to the case where the data 
come from a stratified simple random sample. 

In some prospective studies the outcome variable of interest is the 
time to the occurrence of some event. In these studies the time to event 
is now frequently modeled using the proportional hazards model [see 
Hosmer and Lemeshow (1999)]. In these situations a method of analy­
sis which is sometimes used is to ignore the actual failure time and 
model the occurrence or nonoccurrence of the event via logistic regres­
sion. This method of analysis became a popular way to analyze time to 
event data when easily used logistic regression software became avail­
able in the major software packages. However, now that software to fit 
the Cox or proportional hazards model is just as available and just as 
easy to use, we no longer recommend that logistic regression analysis be 
used to approximate a time to event analysis. 

6. 3 CASE-CONTROL STUDIES 

One of the major reasons the logistic regression model has seen such 
wide use, especially in epidemiologic research, is the ease of obtaining 
adjusted odds ratios from the estimated slope coefficients when sam­
pling is performed conditional on the outcome variables, as in a case­
control study. Breslow (1996) has written an excellent review paper. 
Besides tracing the development of the case-control study he describes 
the statistical issues and controversies surrounding some famous studies 
such as the first Surgeon General's report on smoking and health (Sur­
geon General (1964)). He presents some of the newer innovative appli­
cations involving nesting and matching as well as some of the current 
limitations of this study design. We encourage any reader not familiar 
with this powerful and frequently employed study design to read this 
paper. We only consider the use of logistic regression in the simplest 
case-control designs in this section. More advanced applications may 
be found in Breslow ( 1996) and cited references. 

As noted by Breslow (1996), Cornfield (1951) is generally given 
credit for first observing that the odds ratio is invariant under study de­
sign (cohort or case-control). However, it was not until the work of 
Farewell ( 1979) and Prentice and Pyke (1979) that the mathematical 
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details justifying the common practice of analyzing case-control data as 
if they were cohort data were worked out. 

In contrast to cohort studies, the binary outcome variable in a case­
control study is fixed by stratification. The dependent variables in this 
setting are one or more primary covariates, exposure variables in x. In 
this type of study design, samples of fixed size are chosen from the two 
strata defined by the outcome variable. The values of the primary ex­
posure variables and the relevant covariates are then measured for each 
subject selected. The covariates are assumed to include all relevant ex­
posure, confounding, and interaction terms. The likelihood function is 
the product of the stratum-specific likelihood functions depend on the 
probability that the subject was selected for the sample, and the prob­
ability distribution of the covariates. 

It is not difficult algebraically to manipulate the case-control likeli­
hood function to obtain a logistic regression model in which the de­
pendent variable is the outcome variable of interest to the investigator. 
The key steps in this development are two applications of Bayes theo­
rem. Since the likelihood function is based on subjects selected, we 
need to define a variable that records the selection status for each sub­
ject in the population. Let the variable s denote the selection ( s = 1) or 
non-selection ( s = 0) of a subject. The full likelihood for a sample of 
size n1 cases ( y = 1) and n0 controls ( y = 0) is 

nl no 

flP(x;IY; =1,s; =1)flP(x;IY; =O,s; =1). (6.2) 
i=l i=l 

For an individual term in the likelihood function shown m equation 
(6.2) the first application of Bayes theorem yields 

( I 
_ ) _ P(ylx,s = 1) P(xls = 1) 

P x y,s -1 - ( I ) P ys=l 
(6.3) 

The second application of Bayes theorem is to the first term in the nu­
merator of equation (6.3). This yields, when y = 1, 

I 
P(y = 1lx) P(s = 1lx,y = 1) P( y = 1 X s = 1) = ---:---:----:--'--_;,__,,....:--_,.....;--..,......:-...,..----~ 

' P(y=Oix) P(s=1lx,y=O)+P(y=IIx) P(s=IIx,y=1)' 
(6.4) 
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Assume that the selection of cases and controls is independent of the 
covariates with respective probabilities r 1 and r 0 ; then 

and 

'r1 = P( s = lly = 1, x) = P( s = lly = 1 ), 

r 0 = P(s = lly = O,x) = P(s = lly = 0). 

Substitution of r 1, r 0 and the logistic regression model, .1r(x), for 

P(y=llx), into equation (6.4) yields 

ri.7r(x) 
P(y=lix,s=l)= [ ( )] ( )' (6.5) r 0 1-.1t'X +'r1.1t'X 

If we divide the numerator and denominator of the expression on the 
right side of equation (6.5) by r 0[1-.7r(x)], the result is a logistic regres-

sion model with intercept term {3~ = ln(rifr0 )+ {30 • To simplify the no­

tation, let .1r*(x) denote the right side of equation (6.5). Since we as­
sume that sampling is carried out independent of covariate values, 
P(xis = 1) = P(x), where P(x) denotes the probability distribution of the 
covariates. The general term in the likelihood shown in equation (6.3) 
then becomes, for y = 1, 

P(xly=l,s=l)= .1r*(x)P(x) . 
P(y =tis= 1) 

(6.6) 

A similar term for y = 0 is obtained by replacing .1r*(x) by [1-1Z'*(x)] in 

the numerator and P(y =lis= 1) by P(y =Dis= 1) in the denominator of 
equation (6.6). If we let 

L*(P)= TI .7r*(x;f';[l-1Z'*(x;)r-y,, 
i=l 

the likelihood function shown in equation (6.2) becomes 

(6.7) 
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The first term in equation ( 6. 7), L* (P), is the likelihood obtained when 

we pretend the case-control data were collected in a cohort study, with 
the outcome of interest modeled as the dependent variable. If we as­
sume that the probability distribution of x, P(x), contains no informa­
tion about the coefficients in the logistic regression model, then maxi­
mization of the full likelihood with respect to the parameters in the lo­
gistic model, .1r*(x), is only subject to the restnctton that 

P(y; = Ijs; =I)= nJ!n and P(y; = Ojs; =I)= n0 fn. The likelihood equa­

tion obtained by differentiating with respect to the parameter {3~ assures 
that this condition is satisfied. Thus, maximization of the full likelihood 
with respect to the parameters in .7r*(x) need only consider that portion 
of the likelihood which looks like a cohort study. The implication of 
this is that analysis of data from case-control studies via logistic regres­
sion may proceed in the same way and using the same computer pro­
grams as cohort studies. Nevertheless, inferences about the intercept 
parameter {30 are not possible without knowledge of the sampling frac­
tions within cases and controls, -r0 and T1• 

The assumption that the marginal distribution of x contains no in­
formation about the parameters in the logistic regression model requires 
additional discussion, as it is not true in one historically important situa­
tion, the normal theory discriminant function model. This model was 
discussed briefly in Chapters I and 2. When the assumptions for the 
normal discriminant function model hold, the maximum likelihood es­
timators of the coefficients for the logistic regression model obtained 
from conditional likelihoods such as those in equations (6.2) and (6.7) 
are less efficient than the discriminant function estimator shown in 
equation (2.11) [see Efron (1975)]. However, the assumptions for the 
normal theory discriminant function model are rarely, if ever, attained 
in practice. Application of the normal discriminant function when its 
assumptions do not hold may result in substantial bias, especially when 
some of the covariates are dichotomous variables. As a general rule, 
estimation should be based on equations (6.2) and (6.7), unless there is 
considerable evidence in favor of the normal theory discriminant func­
tion model. 

Prentice and Pyke (1979) have shown that the maximum likelihood 
estimators obtained by pretending that the case-control data resulted 
from a cohort sample have the usual properties associated with maxi­
mum likelihood estimators. Specifically, they are asymptotically nor­
mally distributed, with covariance matrix obtained from the inverse of 
the information matrix. Thus, percentiles from the N(O,l) distribution 
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may be used in conjunction with estimated standard errors produced 
from standard logistic regression software to form Wald statistics and 
confidence interval estimates. The theory of likelihood ratio tests may 
be employed to compare models via the difference in the deviance of 
the two models, assuming of course that the models are nested. Scott 
and Wild ( 1986) have shown that inferences based on this approach are 
sensitive to incorrect specifications of the logit function. They show 
that failure to include necessary higher order terms in the logit produces 
a model with estimated standard errors that are too small. These results 
are special cases of more general results obtained by White (1982). 

Modification of the likelihood function to incorporate additional 
levels of stratification beyond case-control status follows in the same 
manner as described for cohort data (i.e., inclusion of relevant design 
variables and interaction terms). Thus, model building and inferences 
from fitted models for case-control data may proceed using the meth­
ods developed for cohort data, as described in Chapters 4 and 5. How­
ever, this approach is not valid for matched or highly stratified data. 
Appropriate methods for the analysis of the latter are presented in detail 
in Chapter 7. 

Fears and Brown (1986) proposed a method for the analysis of 
stratified case-control data that arise from a two-stage sample. Breslow 
and Cain (1988) and Scott and Wild (1991) provide further discussion 
and refinement of the method. This approach requires that we know the 
sampling rates for the first stage and the total number of subjects in 
each stratum. This information is used to define the relative sampling 
rates for cases and controls within each stratum. The ratio of these is 
included in the model in the form of an additional known constant 
added to the stratum-specific logit. Specifically, suppose we let n1 be 

the total number of subjects with y = j observed out of a possible N1 
and let the kth stratum-specific quantities be n1k and N1k, j = 0,1 and 

k = 1, 2, ... K. The relative stratum-specific sampling rates are 
wlk =(nlkfNik)j(n1fN1) and w0k =(n0tfN0k)/(n0fN0 ). The Fears and 
Brown model uses stratum-specific logits of 

k = 1, 2, ... K. This model may be handled with standard logistic regres­
sion software by defining a new variable, typically referred to as an off­
set, which takes on the value ln(wlkfw0k) and forcing it into the model 
with a coefficient equal to 1.0. 
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Breslow and Cain (1988) show that the estimator proposed by 
Brown and Fears is asymptotically normally distributed and derive an 
estimator of the covariance matrix. Breslow and Zhao (1988) and Scott 
and Wild (1991) point out that the estimated standard errors produced 
when standard logistic regression software is used to implement the 
Brown and Fears method overestimates the true standard errors. They 
provide expressions for a covariance matrix that yields consistent esti­
mates of the variances and covariances of the estimated regression coef­
ficients. The matrix is complicated to compute, as it requires a special 
purpose program or a high degree of skill in using a package allowing 
matrix calculations such as SAS, STATA or S-Plus. For these reasons 
we do not present the variance estimator in detail. We note that Breslow 

and Zhao use a slightly different offset, ln[(n1dN1k)/(n0dN0k)], which 

yields the same estimates of the regression coefficients but a different 
intercept. 

Before leaving our discussion of logistic regression in the case­
control setting, we briefly consider the application of the chi-square 
goodness-of-fit tests for the logistic regression model presented in Sec­
tion 5.2. The essential feature of these tests is that for a particular co­
variate pattern, the number of subjects with the response of interest 
among m sampled is distributed binomially with parameters m and re­
sponse probability given by the hypothesized logistic regression model. 
Recall that for cohort data, the likelihood function was parameterized 
directly in terms of the logistic probability. For case-control data, the 
function tr*(x) is the probability P(y = Ilx,s = 1). For a particular co­

variate pattern, conditioning on the number of subjects m observed to 
have a given covariate pattern is equivalent to conditioning on the event, 
(x, s = 1). Thus, for case-control studies in which the logistic regression 
model assumption is correct, the conditional distribution of the number 
of subjects responding among the m observed to have a particular co­
variate pattern is binomial with parameters m and tr*(x). Hence, the 
results developed in Chapter 5 based on m-asymptotics also apply. 

It is often the case that data from case-control studies do not arise 
from simple random samples within each stratum. For example, the de­
sign may call for the inclusion of all subjects with y = 1 and a sample of 
subjects with y = 0. For these designs there is an obvious dependency 
among the observations. If this dependency is not too great, or if we 
appeal to a super-population model [see Prentice (1986)], then em­
ploying a theory that ignores it should not bias the results significantly. 
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6. 4 FITTING LOGISTIC REGRESSION MODELS TO 
DATA FROM COMPLEX SAMPLE SURVEYS 

Some of the more recent improvements in logistic regression statistical 
software include routines to perform analyses with data obtained from 
complex sample surveys. These routines may be found in STATA, 
SUDAAN (1997) and other less well-known special purpose packages. 
Our goal in this section is to provide a brief introduction to these meth­
ods and to illustrate them with an example data set. The reader who 
needs more detail is encouraged to see Kom and Graubard (1990), 
Roberts, Rao and Kumar (1987), Skinner, Holt and Smith (1989) and 
Thomas and Rao (1987). 

The essential idea, as discussed in Roberts, Rao and Kumar ( 1987), 
is to set up a function that approximates the likelihood function in the 
finite sampled population with a likelihood function formed from the 
observed sample and known sampling weights. Suppose we assume that 
the population may be broken into k = 1, 2, ... , K strata, j = 1, 2, ... , Mk 
primary sampling units in each stratum and i = 1,2, ... ,Nkj elements in 

the kjth primary sampling unit. Suppose our observed data consist of 
nlif elements from mk primary sampling units from stratum k. Denote 

the total number of observations as n = ~ K ~ mA nk, . Denote the 
L..Jk=l L..Jj=l , 

known sampling weight for the kjith observation as wkji, the vector of 
covariates as xkji and the dichotomous outcome as ykji' The approxi­

mate log-likelihood function is 

K mt nAJ 

L L L[ wkji x Ylifi) x In[ ~r( x/ifi)] + [ wlifi x (1- Ylifi)] x In[ 1-~r( x/ifi) ]. (6.8) 
k=l j=l i=l 

Differentiating this equation with respect to the unknown regression co­
efficients yields the vector of p + 1 score equations 

X'W(y- x) = 0, (6.9) 

where X is the n x (p + 1) matrix of covariate values, W is an n x n di­
agonal matrix containing the weights, y is the n x 1 vector of observed 

outcomes and 1t = { ~r( x111 ), ... , ~r( x KmKnKi) )' is the n X 1 vector of logistic 

probabilities. In theory, any logistic regression package that allows 
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weights could be used to obtain the solutions to equation (6.9). The 
problem comes in obtaining the correct estimator of the covariance ma­
trix of the estimator of the coefficients. Naive use of a standard logistic 
regression package with weight matrix W would yield estimates on the 

matrix (X'DXt where D = WV is an n x n diagonal matrix with gen-

eral element Wkji X tr( Xkji )[1- tr( Xkji) ]. The correct estimator is 

v"'ar (~) = (x'nxts(x'nxt, (6.10) 

where S is a pooled within-stratum estimator of the covariance matrix of 
the left side of equation (6.9). Denote a general element in the vector in 

(6.9) as z~; = x~;WkJ;(Ykji -n-(xkji )) , the sum over the nkJ sampled units in 

the jth primary sampling unit in the kth stratum as zkJ = I;:
1 
zkji and 

_ 1 ~m1 
their stratum-specific mean as zk = -Lr- zkJ. 

mk ;-I 

estimator for the kth stratum is 

The within-stratum 

The pooled estimator is S = L :=I ( 1-};, )S k . The quantity ( 1- fk) is 

called the finite population correction factor where };, = mk / Mk is the 
ratio of the number of observed primary sampling units to the total 
number of primary sampling units in stratum k. In settings where Mk is 
unknown it is common practice to assume it is large enough that };, is 
quite small and the correction factor is equal to one. 

The likelihood function in (6.8) is only an approximation to the 
true likelihood. Thus, we would expect that inferences about model pa­
rameters should be based on univariable and multivariable Wald statis­
tics comparing estimated coefficients to an estimate of their variance 
computed from specific elements of (6.10) in the same manner as de­
scribed in Chapter 2. However, simulations in Korn and Graubard 
( 1990) as well as Thomas and Rao ( 1987) show that when data come 
from a complex sample survey from a finite population, use of a modi­
fied Wald statistic and the F-distribution (details to follow) yield tests 
with better adherence to the stated alpha-level. STATA and SUDAAN 
report results from these modified Wald tests. The problem is that none 
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of the simulations referred to actually examines logistic regression 
models fit using continuous and categorical covariates with estimates 
obtained from (6.9) and variances from (6.10). Korn and Graubard 
appear to use a linear regression with normal errors model and refer to 
theoretical results in Anderson ( 1984) that depend on rather stringent 
assumptions of multivariate normality. Thomas and Rao examine mod­
els with a dichotomous or polychotomous outcome and a few categori­
cal covariates. Another problem, in our opinion, is the fact that software 
pacakges, for example STATA, use the t-distribution to assess signifi­
cance of Wald statistics for individual coefficients. Given the paucity of 
appropriate simulations and theory we are not convinced that there is 
sufficient evidence to support the use of the modified Wald statistic with 
the F-distribution with logistic regression models. One possible justifi­
cation is that the use of the modified W ald statistic with the F­
distribution is conservative in that significance levels using this approach 
are, in general, larger than those obtained from treating the Wald statis­
tics as being multivariate normal for sufficiently large samples (as is as­
sumed in previous chapters). We present results based on both tests in 
the example. 

The relationship between the W ald test and the modified Wald test 
is as follows. Let W denote the Wald statistic for testing that all p slope 
coefficients in a fitted model are equal to zero, i.e., 

(6.11) 

where p denotes the vector of p slope coefficients and Va r (P) is the 
pxp 

pxp sub-matrix obtained from the full (p+l)x(p+l) matrix in equa­
tion (6.10). That is, one leaves out the row and column for the constant 
term. The p-value is computed using a chi-square distribution with p 

degrees of freedom asp-value =P[;r2 (p);:::w]. 

The adjusted Wald statistic is 

F= (s- p+l) W, 
sp 

(6.12) 

where s = (:L:=l mk)- K is the total number of sampled primary sam­

pling units minus the number of strata. The p-value is computed using 
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an F-distribution with p and ( s- p + 1) degrees of freedom as p-value 

= P[F(p,s- p + 1) 2:: F]. 
As an example of a study involving stratification, clustering and 

unique sampling weights, we used data from the National Health and 
Nutrition Examination Survey (NHANES III), conducted by the Na­
tional Center for Health Statistics (NCHS) between 1988 and 1994. 
This was the third in a series of data collection programs carried out by 
the NCHS in order to obtain health and nutrition data on the population 
of the United States. (NHANES I took place between 1971-74, 
NHANES II between 1976-80.) Data were collected via physical ex­
aminations and clinical and laboratory tests. Prevalence data were col­
lected for specific diseases and health conditions. In this survey a multi­
stage probability sample of 39,695 subjects was selected representing 
more than 250 million people living in the United States. For purposes 
of this example we consider only adults 20 years of age or older. There 
were a total of 17,030 subjects in this subset who represented 177.2 mil­
lion adults living in the U.S. at that time. In the NHANES III design, 49 
pseudo-strata were created with 2 pseudo-psu' s identified within each 
such stratum (see NCHS (1996)). These features must be adhered to in 
the appropriate analysis of the data. 

A code sheet describing the variables used in this example is pre­
sented in Table 6.1. For this example, a dichotomous outcome variable, 
HBP, was generated representing whether the subject had high blood 
pressure (defined by an average systolic blood pressure PEPMNKlR > 
140 mmHg). 

It should be noted that the NHANES III, like just about any other 
large scale survey, suffers from the fact that complete data are not avail­
able for every subject. This problem is exacerbated in complex sample 
surveys since every subject carries along a unique statistical weight rep­
resenting the number of individuals in the population he or she repre­
sents. Hence, if that subject is missing a measurement on just one of the 
variables involved in a multivariable problem, then that subject will be 
eliminated from the analysis and the sum of the statistical weights of the 
subjects remaining will not equal the size of the population for which 
inference is to be made. 

This problem has been addressed extensively by survey statisticians 
and solutions to the problem range from redistributing the statistical 
weights of the dropped subjects among the subjects remaining to im­
puting every missing value so that the weights will be preserved. An­
other, perhaps simplistic, approach is simply to run the analyses with the 
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Table 6.1 Variables in the NHANES III Data Set 

Variable DescriJ2tion Codes I Values Name 
Respondent Identification SEQN 
Number 

2 Pseudo-PSU 1,2 SDPPSU6 
3 Pseudo-stratum 01-49 SDPSTRA6 
4 Statistical weight 225.93 - 139744.9 WTPFHX6 
5 Age (in years) HSAGEIR 
6 Sex 0= Female HSSEX 

1 =Male 
7 Race 1 =White DMARACER 

2 =Black 
3 =Other 

8 Body Weight (in pounds) BMPWTLBS 
9 Standing Height (inches) BMPHTIN 
10 Average Systolic BP (mmHg) PEPMNK1R 
11 Average Diastolic BP (mmHg) PEPMNK5R 
12 Has respondent smoked > 1 =Yes HAR1 

100 cigarettes in life 2=No 
13 Does repondent smoke 1 =Yes HAR3 

cigarettes now? 2=No 
14 Smoking 1 = ifHAR1 = 2 SMOKE 

2 = ifHAR1=1 & HAR3=2 
3 = ifHAR1=1 & HAR3=1 

15 Serum Cholesterol mg/lOOml TCP 
16 High Blood Pressure 0 if PEPMNK1R ::;; 140 HBP 

1 ifPEPMNK1R > 140 

subjects having complete data and assume that the relationships would 
not change had all subjects been used. Because it is our intention in this 
book to demonstrate the use of logistic regression analysis with complex 
survey data rather than to obtain precise population parameter estimates, 
we will follow this simple approach. 

A logistic regression model was fit containing HSAGEIR, HSSEX, 
two dummy variables for DMARACER, BMPWTLBS BMPHTIN and 
two dummy variables for SMOKE. The model was fit using STATA's 
svylogit command with dependent variable HBP, pweight=WTPFHX6, 
strata=SDPSTRA6 and psu=SDPPSU6. Note that in this first analysis 
complete data are available on only 16,963 of the original 17,030 
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Table 6.2 Estimated Coefficients, Standard Errors, z·Scores, 
Two-Tailed p·Values and 95% Confidence Intervals for a 
Logistic Regression Model for the NHANES III Study with 
Dependent Variable = HBP (n = 16,963) 

Variable Coeff. Std. Err. z P > lzl 95% CI 
HSAGEIR 0.081 0.0025 32.49 < 0.001 0.076, 0.086 
HSSEX 0.204 0.0755 2.70 0.009 0.052, 0.356 
RACE2 0.558 0.0744 7.51 < 0.001 0.409, 0.708 
RACE3 0.044 0.3005 0.15 0.885 -0.560, 0.647 
BMPWTLBS 0.012 0.0008 13.90 < 0.001 0.010, 0.013 
BMPHTIN -0.059 0.0126 -4.70 < 0.001 -0.085, -0.034 
SMK2 -0.076 0.0950 -0.81 0.425 -0.267, 0.114 
SMK3 0.061 0.1051 0.58 0.564 -0.150, 0.272 
CONSTANT -4.257 0.8040 -5.30 < 0.001 -5.873, -2.641 

subjects and these represent 176.9 million adults. The results are shown 
in Table 6.2. 

We assess the overall significance of the model via the multivariable 
Wald test and adjusted Wald test for the significance of the eight regres­
sion coefficients in the model. For the model in Table 6.2 the value of 
the test in (6.11) is 

where ~ is the vector of 8 estimated slope coefficients and V~ r (~) is 
8x8 

the 8x8 sub-matrix computed using (6.10). The significance level of 

the testis P[%2 (8)~1806]<0.001. The value of sfor the adjusted Wald 

test is 98-49 = 49 and the adjusted Wald test from (6.12) is 

F= (49 - 8+1) x1806=193.50 
49 X 8 

and p = P[F(8, 42) ~ 193.50] < 0.001. Both tests indicate that at least one 
of the coefficients may be different from zero. 

The results in Table 6.2 indicate, on the basis of the individual p­
values for the Wald statistics, that smoking may not be significant. As 



LOGISTIC REGRESSION WITH COMPLEX SAMPLE SURVEYS 217 

we noted, the function in equation (6.8) is not a true likelihood func­
tion. Thus, we cannot use the partial likelihood ratio test to compare a 
smaller model to a larger model. In this case we must test for the sig­
nificance of the coefficients of excluded covariates using a multi variable 
Wald test based on the estimated coefficients and estimated covariance 
matrix from the larger model. 

Application of the Wald test to assess the significance of the coeffi­
cient for smoking (SMK2 and SMK3) from the model in Table 6.2 uses 
the vector of estimated coefficients 

P'=(-o.o764019, o.o61o1os), 

and the 2 x 2 sub-matrix of estimated variances and covariances ob­
tained from the full 8x8 matrix, not shown, computed using (6.10) 

"' (A) [0,009018 0,004660] 
Var P = 

2x2 0.004660 0.011036 ' 

The Wald test statistic is 

with ap-value obtained as P[%2(2};;::1.8177]=0.403. The adjusted Wald 

test is 

F== (49 - 2 +l} xl.8177= 0.8903 
49x2 

and p=P[F(2,48};;::0.8903]=0.4172. We note that the p-value for the 
adjusted Wald test is slightly larger than that of the Wald test; however, 
neither is significant. Thus, both tests indicate that we do not have suffi­
cient evidence to conclude that the coefficients for SMOKE are signifi­
cantly different from zero. We now fit the reduced model. 

The results of fitting the model deleting SMK2 and SMK3 are 
shown in Table 6.3. The first thing we do is to compare the magnitude 
of the coefficients in Table 6.3 to those in Table 6.2 to check for con­
founding due to the excluded covariates. As can be seen there is virtu­
ally no difference in the two sets of coefficients suggesting that smoking 
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Table 6.3 Estimated Coefficients, Standard Errors, 
z·Scores, Two-Tailed p·Values and 95% Confidence Intervals 
for a Reduced Logistic Regression Model for the NHANES 
III Study with Dependent Variable = HBP (n = 16,964) 

Variable Coeff. Std. Err. z P > lzl 95% CI 

HSAGEIR 0.080 0.0027 30.04 < 0.001 0.075, 0.085 
HSSEX 0.194 0.0791 2.45 0.018 0.035, 0.353 
RACE2 0.572 0.0710 8.05 < 0.001 0.429, 0.714 
RACE3 0.052 0.3007 0.17 0.863 -0.552, 0.656 
BMPWTLBS 0.011 0.0008 13.61 < 0.001 0.010, 0.013 
BMPHTIN -0.059 0.0127 -4.65 < 0.001 -0.084, -0.033 
CONSTANT -4.211 0.7940 -5.30 < 0.001 -5.807, -2.616 

is not a confounder of the relationship between any of the remaining 
covariates and high blood pressure. 

We note that the number of subjects with complete covariate data in 
the smaller model is 16,964. Since the increase is so small we are not 
going to worry about fitting the models, full and reduced, to different 
data. If the sample sizes were substantially different then we would first 
fit the smaller model on the smaller sample size to have more compara­
ble results. Then we would fit the model on the larger data set to see 
what, if any, changes occur in estimates of the coefficients. 

Following the guidelines we have established in previous chapters, 
at this point in the analysis we would: 

• determine whether the continuous covariates in the model are 
linear in the logit. 

• determine whether there are any significant interactions among 
the independent variables in the model. 

• assess model calibration and discrimination through goodness­
of-fit tests and area under the ROC curve. 

• examine the case-wise diagnostic statistics to identify poorly fit 
and influential covariate patterns. 

Unfortunately, none of these procedures is readily available when 
modeling data from complex sample surveys. Thomas and Rao ( 1987) 
consider chi-square goodness-of-fit tests and Roberts, Rao and Kumar 
(1987) extend the diagnostics discussed in Chapter 5 to the survey sam­
pling setting. However, the tests and diagnostic statistics have not, as yet, 
been implemented into any of the commonly available packages. The 
computations required to obtain the tests, measures of leverage, h, and 
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Table 6.4 Estimated Coefficients, Standard Errors, 
z-Scores, Two-Tailed p-Values and 95% Confidence Intervals 
for a Logistic Regression Model Containing the Variables in 
Table 6.3 but Assuming the Data Come From a Simple 
Random Sample. Dependent Variable = HBP (n = 16,964) 

Variable Coeff. Std. Err. z P> lzl 95% CI 

HSAGEIR 0.070 0.0014 49.86 < 0.001 0.067, 0.072 
HSSEX 0.090 0.0613 1.48 0.140 -0.030, 0.211 
RACE2 0.477 0.0509 9.36 < 0.001 0.377, 0.576 
RACE3 0.092 0.1431 0.64 0.522 -0.189, 0.372 
BMPW1LBS 0.008 0.0006 13.74 < 0.001 0.007, 0.010 
BMPHTIN -0.045 0.0085 -5.31 < 0.001 -0.062, -0.028 
CONSTANT -3.872 0.5293 -7.32 < 0.001 -4.909, -2.834 

the contribution to fit, M 2 , are not trivial and require considerable skill 
in programming matrix calculations. In addition the version of Cook's 
distance is not an easily computed function of leverage and contribution 
to fit. Thus, at present, there is little in the way of model checking and 
fit assessment that can be done within packages like STATA and 
SUDAAN and we use the model in Table 6.3 as our final model. 

Statistical analyses of survey data that take the survey design (strati­
fication and clustering) and statistical weights into consideration are 
generally called "design-based." When such features are ignored and 
the data are handled as if they arose from a simple random sample, the 
resulting statistical analyses are termed "model-based." One approach 
that analysts have used when dealing with survey data is to estimate pa­
rameters using design-based methods but to use model-based methods 
to perform other functions. For example, in this analysis, determination 
of linearity of the logit for the continuous covariates in the model, as­
sessment of model calibration and examination of diagnostic statistics 
could be carried out by treating the data as if they resulted from a sim­
ple random sample. Any discoveries made in those analyses would then 
be implemented in the final design-based analysis. For example, using 
fractional polynomial analysis (which, as currently implemented in 
STATA, does not take into account survey features) reveals that 
HSAGEIR is not linear in the logit and that the appropriate transforma­
tion is to include two terms, x and x 3

• We also find that BMPWTLBS is 
not linear in the logit with recommended transformation ln (x ) . This 
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knowledge, obtained from the model-based analysis may then be im­
plemented into the more appropriate design-based analysis to obtain the 
slope coefficients and estimated odds ratios. Since no methods cur­
rently exist in standard software packages for assessing fit of logistic 
models derived from complex sample surveys, a similar strategy may be 
used to carry out goodness of fit testing. Coefficients from the design­
based model are used to obtain probabilities of the response for each 
subject in the study. STAT A facilitates this process by allowing the ex­
temal coefficients (obtained from the design-based analysis) to be im­
ported and used to compute probabilities of response for which good­
ness-of-fit may be assessed in a model-based environment assuming the 
data arose from a simple random sample. Exercises at the end of this 
chapter will allow readers to practice some of these methods. 

To illustrate the fact that design-based and model-based procedures 
may result in different parameter estimates, we present in Table 6.4 the 
model corresponding to the one presented in Table 6.3, but using a 
model-based analysis that ignores the survey features of stratification, 
clustering and unique statistical weights. Although in this example both 
modeling approaches produce similar coefficients and associated p­
values, this would not necessarily be true in general - especially if the 
sample sizes were somewhat smaller. It should also be noted that for 
linear estimates such as means, totals and proportions, design-based 
standard errors are typically much larger than model-based standard 
errors. In fact, for linear estimates, the design effect (defined as the ra­
tio of the variance under design-based analysis to the variance under 
simple random sampling) is typically much larger than 1. This measure 
reflects the inflation in variance that occurs due to homogeneity within 
clusters and can be expressed as 1 + (n -1 )Py, where Pv is the intracluster 

correlation coefficient and n is the average number of units in the sam­
pled cluster. These intracluster correlation coefficients can range from 
small negative values (when the data within clusters are highly heteroge­
neous) to unity (when the data in clusters are highly correlated). Only 
when the data are highly heterogeneous within clusters will the design 
effect be less than 1. However, as described by Neuhaus and Segal 
(1993), design effects for regression coefficients can be expressed as 
1 + (n -1)PxPy. Note that in this expression the intracluster correlation 

coefficient for the independent variable is multiplied by the intracluster 
correlation coefficient for the dependent variable, both of which are by 
definition smaller than 1. As a result, the design effect will be smaller 
than that seen for means, totals, or proportions. We also note that since 
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Table 6.5 Estimated Odds Ratios and 95% Confidence Inter· 
vals for Variables in Table 6.3 Using "Design-Based" versus 
"Model Based" Analysis (n = 16,964) 

''Design-Based" "Model-Based" 
Analysis" Analysis 

Variable Odds Ratio 95% CI Odds Ratio 95% CI 

HSAGEIR 1.083 1.077, 1.089 1.072 1.069, 1.075 
HSSEX 1.214 1.036, 1.423 1.095 0.971, 1.235 
RACE2 1.771 1.536, 2.043 1.611 1.458, 1. 780 
RACE3 1.053 0.576, 1.928 1.096 0.828, 1.451 
BMPWTLBS 1.012 1.010, 1.013 1.008 1.007, 1.010 
BMPHTIN 0.943 0.919, 0.967 0.956 0.940, 0.972 

Px and p,, are not necessarily in the same direction, the product of the 

intracluster correlation coefficients could be negative and the resulting 
design effect could be smaller than 1. 

The estimated odds ratios for the model co variates and their 9 5 
percent confidence intervals under both design-based and model-based 
scenarios are presented in Table 6.5. In this table we simply included 
all continuous variables as linear terms. The interpretation of the esti­
mated odds ratios and confidence intervals in Table 6.5 is the same as in 
earlier chapters. For example, the odds of high blood pressure for 
males is estimated to be 1.21 times higher (95% confidence interval: 
1.04, 1.44) than the odds of high blood pressure for females, control­
ling for age, race, weight, and height. Although not dramatic in this ex­
ample, the effect of ignoring the survey features is clear since this odds 
ratio would only have been 1.10 (95% confidence interval: 0.97, 1.24) 
if the data were incorrectly treated as a simple random sample. One in­
terprets the remaining odds ratios and confidence intervals in Table 6.5 
in a similar manner. 

In summary, we fit logistic regression models to data obtained from 
complex sample surveys via an approximate likelihood that incorporates 
the known sampling weights. We assess the overall model significance 
as well as tests of subsets of coefficients using multivariable Wald or 
adjusted Wald tests. However, the interpretation of odds ratios from a 
fitted model is the same as for models fit to less-complicated sampling 
plans. We note that work needs to be done to make available the meth­
ods of assessing fit and case-wise diagnostics obtained from complex 
sample surveys to the typical user of logistic regression software. 
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EXERCISES 

1. Use the data presented in Breslow and Zhao ( 1988) to perform the 
analyses reported in that paper and the analysis reported in Fears 
and Brown (1986). 

2. Fit the model in Table 6.3 using the suggested fractional polyno­
mials for HSAGEIR and BMPWTLBS. Use this new, non-linear 
model to provide appropriate odds ratio estimates. Use STAT A to 
import the coefficients from the design-based analysis to compute 
probabilities of response and assess goodness-of-fit. 

3. Use the data from the NHANES III survey described in Table 6.1 
to find the best model for assessing factors associated with high 
cholesterol (defined as TCP > 230 mg/lOOmL). Prepare a table of 
estimated odds ratios and 95 percent confidence intervals for all 
covariates in the final model. Compare results for the design­
based versus the model-based analysis. Assuming the data re­
sulted from a simple random sample, determine whether the con­
tinuous covariates in the model are linear in the logit, determine 
whether there are any significant interactions among the inde­
pendent variables in the model, assess model calibration and dis­
crimination, and identify poorly fit and influential covariate pat­
terns. Develop your final design-based model taking into consid­
eration all of these aspects of model development. 



CHAPTER 7 

Logistic Regression for Matched 
Case-Control Studies 

7.1 INTRODUCTION 

An important special case of the stratified case-control study discussed 
in Chapter 6 is the matched study. A discussion of the rationale for 
matched studies may be found in epidemiology texts such as Breslow 
and Day (1980), Kleinbaum, Kupper, and Morgenstern (1982), Schles­
selman (1982), Kelsey, Thompson, and Evans (1986) and Rothman and 
Greenland (1998). In this study design, subjects are stratified on the 
basis of variables believed to be associated with the outcome. Age and 
sex are examples of commonly used stratification variables. Within 
each stratum, samples of cases ( y = 1) and controls ( y = 0) are chosen. 
The number of cases and controls need not be constant across strata, but 
the most common matched designs include one case and from one to 
five controls per stratum and are thus referred to as 1- M matched 
studies. 

In this chapter we develop the methods for analyzing general 
matched studies. Greater detail is provided for the 1-1 design as it is 
the most common type of matched study. We also illustrate the meth­
ods for the general 1-M matched study with data from a 1-3 design. 

We begin by providing some motivation and rationale for the need 
for special methods for the matched study. In Chapter 6 it was noted 
that we could handle the stratified sample by including the design vari­
ables created from the stratification variable in the model. This ap­
proach works well when the number of subjects in each stratum is large. 
However, in a typical matched study we are likely to have few subjects 
per stratum. For example, in the 1-1 matched design with n case-

223 
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control pairs we have only two subjects per stratum. Thus, in a fully 
stratified analysis with p covariates, we would be required to estimate 
n + p parameters consisting of the constant term, the p slope coefficients 
for the co variates and the n -1 coefficients for the stratum-specific de­
sign variables using a sample of size 2n. The optimality properties of 
the method of maximum likelihood, derived by letting the sample size 
become large, hold only when the number of parameters remains fixed. 
This is clearly not the case in any 1-M matched study. With the fully 

stratified analysis, the number of parameters increases at the same rate as 
the sample size. For example, with a model containing one dichoto­
mous covariate it can be shown (see Breslow and Day (1980)) that the 
bias in the estimate of the coefficient is 100% when analyzing a 
matched 1-1 design via a fully stratified likelihood. If we regard the 
stratum-specific parameters as nuisance parameters, and if we are willing 
to forgo their estimation, then we can use methods for conditional infer­
ence to create a likelihood function that yields maximum likelihood 
estimators of the slope coefficients in the logistic regression model 
which are consistent and asymptotically normally distributed. The 
mathematical details of conditional likelihood analysis may be found m 
Cox and Hinkley (1974). 

Suppose that there are K strata with n1k cases and llok controls in 
stratum k, k = 1, 2, ... , K. We begin with the stratum-specific logistic re­
gression model 

(7.1) 

where ak denotes the contribution to the logit of all terms constant 
within the kth stratum (i.e., the matching or stratification variable(s)). In 
this chapter, the vector of coefficients, p, contains only the p slope coef-

ficients, f1' = (/31, {32 , ... ,f3P). It follows from the results in Chapter 3 that 

each slope coefficient gives the change in the log-odds for a one unit 
increase in the covariate holding all other covariates constant in every 
stratum. This is important to keep in mind as the steps, to be described, 
in developing a conditional likelihood result in a model that does not 
look like a logistic regression model yet it contains the coefficient vec­
tor, ll The fact that the model does not look like a logistic regression 
model leads new users to think that estimated coefficients must be modi­
fied in some way before they can be used to estimate odds ratios. This 
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is not the case and we pay particular attention in this chapter to estima­
tion and interpretation of odds ratios. 

The conditional likelihood for the kth stratum is obtained as the 
probability of the observed data conditional on the stratum total and the 
total number of cases observed, the sufficient statistic for the nuisance 
parameter. In this setting it is the probability of the observed data rela­
tive to the probability of the data for all possible assignments of nlk 

cases and n 0k controls to nk = n 1k + n 0k subjects. The number of possi­
ble assignments of case status to nlk subjects among the nk subjects, de­
noted here as ck, is given by the mathematical expression 

Let the subscript j denote any one of these ck assignments. For any as­
signment we let subjects I to nlk correspond to the cases and subjects 
nlk + 1 to nk to the controls. This is indexed by i for the observed data 
and by ij for the jth possible assignment. The conditional likelihood is 

(7 .2) 

The full conditional likelihood is the product of the lk (IJ) in (7 .2) over 

the K strata, namely, 

K 

l(lJ) = Iltk (IJ). (7 .3) 
k=l 

If we assume that the stratum-specific logistic regression model in (7 .I) 

is correct then application of Bayes theorem to each P( xly) term in 

(7 .2) yields 
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(7 .4) 

Note that when we apply Bayes theorem all terms of the form 

exp(ak)/(1 +exp(ak +13'x)) appear equally in both the numerator and 

denominator of equation (7.2) and thus cancel out. Algebraic simplifi­
cation yields the function shown in equation (7.4) where 13 is the only 
unknown parameter. The conditional maximum likelihood estimator 
for 13 is that value that maximizes equation (7.3) when lk(IJ) is as shown 
in equation (7.4). Except in one special case it is not possible to express 
the likelihood in (7.4) in a form similar to the unconditional likelihood 
in equation (1.4). However, as we noted earlier the coefficients have not 
been modified and thus have the same interpretation as those in equa­
tion (7.1). 

Software to perform the necessary calculations is available in many 
packages. For example STATA has a special conditional logistic re­
gression command. In SAS, one must use a modification of the pro­
portional hazards regression command, PHREG. The calculations for 
this chapter were performed using STATA's clogit command. Since 
not all packages have special commands for matched studies we show in 
the next section how one may use a standard logistic regression software 
package to perform the calculations for the 1-1 matched design. 

7. 2 LOGISTIC REGRESSION ANALYSIS FOR THE 
1-1 MATCHED STUDY 

The most frequently used matched design is one in which each case is 
matched to a single control, thus there are two subjects in each stratum. 
To simplify the notation, let xlk denote the data vector for the case and 
x0k the data vector for the control in the kth stratum or pair. Using this 
notation, the conditional likelihood for the kth stratum from equation 
(7.4) is 

(7.5) 
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As we described in the previous section when we made the decision 
not to estimate stratum-specific covariate effects (i.e., the intercepts) we 
changed the likelihood from one modeling the probability of the out­
come to one modeling the probability of the covariate values. Given 
specific values for 13, x1k and x0k, equation (7 .5) is the probability that 
the subject identified as the case is in fact the case under the assump­
tions that: (l) we have two subjects one of whom is the case and (2) the 
logistic regression model in equation (7 .1) is the correct model. For 
example suppose we have a model with a single dichotomous covariate 
and {3 = 0.8. If the observed data are xlk = 1 and x 0k = 0 then the value 
of equation (7 .5) is 

e0.8xl 

fk(/3=0.8)= 08 I 08 O =0.690. e . x +e . x 

Thus, the probability is 0.69 that a subject with x = 1 is the case com­
pared to a subject with x = 0. On the other hand, if x 1k = 0 and x 0k = 1 
then 

e0.8xO 

fk(/3=0.8)= 08 O 08 I =0.310 e . x +e . x 

and the probability is 0.31 that a subject with x = 0 is the case com­
pared to a subject with x = 1. 

It also follows from equation (7 .5) that if the data for the case and 
the control are identical, x1k = x0k, then lk (13) = 0.5 for any value of 13 
(i.e., the data for the case and control are equally likely under the 
model). Thus, case-control pairs with the same value for any covariate 
are uninformative for estimation of that covariate's coefficient. We use 
the term uninformative to describe the fact that the value of the covariate 
does not help distinguish which subject is more likely to be the case. 
This tends to occur most frequently with dichotomous covariates where 
common values, often called concordant pairs, are most likely to occur. 
A fact not discussed in this chapter, which can be found in Breslow and 
Day (1980), is that the maximum likelihood estimator of the coefficient 
for a dichotomous covariate in a univariable conditional logistic regres­
sion model fit to 1-1 matched data is the log of the ratio of discordant 
pairs. The practical significance of this is that the estimator may be 
based on a small fraction of the total number of possible pairs. We feel 
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it is good practice to form the 2x2 table cross-classifying case versus 
control for all dichotomous covariates in order to determine the number 
of discordant pairs. This is essentially a univariable logistic regression 
and univariable analyses of all covariates should be among the first steps 
in any model building process. The reader should be aware that if there 
are not both types of pairs, (x1k = 1, x0k = 0) and ( x1k = 0, x0k = 1), present 
in the data then the estimator is undefined. In this case software pack­
ages will either·remove the covariate from the model or give an imprac­
ticably large coefficient and standard error. This is the same zero cell 
problem discussed in Chapter 4, Section 5. The same type of problem 
can occur for polychotomous covariates but it involves more complex 
relationships than simply a zero frequency cell in the cross-classification 
of case versus control (Breslow and Day (1980)). 

As we noted, not all software packages have specific commands for 
maximizing the conditional log-likelihood. It is possible, with some 
data manipulation, to use a standard logistic regression package to 
maximize the full conditional log-likelihood for the 1-1 design. We 
begin by re-expressing equation (7 .5) by dividing its numerator and 
denominator by ell'xoA yielding 

Jl'(xll -xo!) 
l {IJ) = e k _1_+_e-:::ll77'{x-,-~ --x-ol') 

ell'x; 

- l+ell'x; . (7.6) 

The expression on the right side of equation (7 .6) is the usual logistic 
regression model with the constant term set equal to zero, {30 = 0, and 
data vector equal to the data value of the case minus the data value of 
the control, x~ = (x1k- x0k ). It follows that the full conditional likeli­
hood may be expressed as 

where Yk = 1. 
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This observation allows us to use standard logistic regression soft­
ware to compute the conditional maximum likelihood estimates and 
obtain estimated standard errors of the estimated coefficients. To do 
this we define the sample size as the number of case-control pairs, use as 
covariates the differences x:, set the values of the response variable 
equal to 1, yk = 1, and exclude the constant term from the model. Thus, 
from a computational point of view, the 1-1 matched design may be fit 
using any logistic regression program. However, the logistic regression 
package must allow the user to exclude the constant term and it must 
also allow a setting where the outcome is constant. For example 
STATA's logit command does allow the user to exclude the constant 
term but does not permit the outcome to be constant. SAS' s procedure 
LOGISTIC allows both. 

We have found that the process of creating the differences and set­
ting the outcome equal to 1 can be confusing to new users. As we noted 
earlier in this chapter, it is important to distinguish between the model 
being fit to the data and the computational manipulations used to apply 
standard logistic regression software. The process becomes less con­
fusing when considering modeling strategies if we focus on terms in the 
logistic regression model first and then perform the computations nec­
essary to obtain the parameter estimates. A few examples should serve 
to illustrate this point. 

First consider a dichotomous independent variable coded zero or 
one. It generates a single coefficient in the logit, regardless of whether 
we enter the variable as a design variable or treat it as if it were continu­
ous. It follows that the difference variable, x*, computed as the differ­
ence between the two dichotomous variables in the pair, may take on 
one of three possible values, (-1, 0, or 1). If we mistakenly thought of 

x* as being the actual data we would have created two design variables. 
This should not be done. Instead, the correct method is to treat x* as if 
it were continuous in the model. 

As a second example, consider a variable such as race, coded at 
three levels. To correctly model this variable in the 1-1 matched de­
sign we would create, for each case and control in a pair, the values of 
the two design variables representing race. Then we would compute the 
difference between the case and control for each of these two design 
variables and treat each of these differences as if they were continuous. 

The same process is followed for any categorical covariate. For 
example, suppose we wished to examine the scale in the logit of a con­
tinuous variable. One approach illustrated in Chapter 4 is to create de-
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sign variables corresponding to the quartiles of the distribution and then 
plot their estimated coefficients. (Note: the quartiles come from the 
distribution in the combined sample of 2K observations.) In the 
matched study we would do the same thing, with the one intermediate 
step of calculating the difference between the three design variables for 
case-control pairs. The software package may not have the option to 
indicate that these differences in design variables are from the same 
variable. Thus, we have to be sure that all three are included in any 
model we fit. 

One other point to keep in mind is that since the differences be­
tween variables used to form strata are zero for all strata, they do not 
enter any model in main effects form. However, we may include inter­
action terms between stratification variables and other covariates, as dif­
ferences in these are likely not to be zero. 

In summary, the conceptual process for modeling matched data is 
identical to that already illustrated for unmatched data. If we develop 
our modeling strategies in the matched 1-1 design as if we had an un­
matched design and then use the conditional likelihood, we will always 
be proceeding correctly. 

7. 3 AN EXAMPLE OF THE USE OF THE LOGISTIC 
REGRESSION MODEL IN A 1-1 MATCHED STUDY 

For illustrative purposes a 1-1 matched data set was created from the 
low birth weight data by randomly selecting for each woman who gave 
birth to a low birth weight baby, a mother of the same age who did not 
give birth to a low birth weight baby. For three of the young mothers 
(age less than 17) it was not possible to identify a match since there were 
no remaining mothers of normal weight babies of that age. The data set 
consists of 56 age matched case-control pairs. With the exception of the 
number of first trimester visits, which has been excluded by us due to its 
lack of importance in the earlier analysis, the variables are the same as 
those in the low birth weight data set described in Table 1.6. In this ex­
ample the number of prior pre-term deliveries has been coded as a yes 
(1)-no (0) variable. Thus, at the initial stage of model building we have 
available the following variables: race (RACE), smoking status 
(SMOKE), presence of hypertension (HT), presence of uterine irritabil­
ity (UI), presence of previous pre-term delivery (PTD), and the weight 
of the mother at the last menstrual period (LWT). The variable AGE is 
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available when we evaluate interactions. The data are available on the 
two web sites noted in the Preface in a file named LOWBWT1l.DAT. 

As we noted earlier, the model building in this chapter is done us­
ing STATA's clogit command. Thus, at this point we do not need to 
create the difference variables that are required if another package is 
used. 

The results of fitting univariable models are displayed in Table 7 .1. 
Only the coefficients for SMOKE and PTD are significant at the five 
percent level. The frequencies of the discordant pairs in the last column 
indicate that "thin data" may be a problem for each of the nominal 
scale covariates but HT more so than the other covariates. We will need 
to pay close attention to the estimated standard errors and confidence 
interval widths in our multivariable models. 

Before fitting multivariable models we note that the "intercept 
only" model (or base model) for assessing overall significance in the 
1-1 design is a model with likelihood 

K 

1(13 = 0) =II 0.5 = ( 0.5)K' 
k=l 

a value usually not presented in computer output. 
Since there are only six variables eligible for inclusion in the 

model, we begin model development with all variables in the model. Ta­
ble 7.2 presents the results of fitting this model. We see in Table 7.2 
that neither design variable for RACE is significant. In addition, the 
value of the partial likelihood ratio test for the exclusion of RACE is 
G = 0.885 which, with 2 degrees-of-freedom, yields a p-value of 0.642. 
However, RACE may be a confounder of the effects of the other vari­
ables in the model. To assess this, we display the results of fitting the 
model without RACE in Table 7.3. Comparing the estimated coeffi­
cients in Table 7.2 and Table 7 .3, we see that RACE seems to only mod­
estly confound the association for LWT, whose coefficient changes by 
16.7%. Because the change is not too substantial, and because we have 
a small sample size (56 pairs), we choose to exclude RACE from the 
model. We proceed to the next step in which we identify the correct 
scale for L WT. 

In general the same methods discussed in Chapter 4 can be used 
with matched studies. We demonstrate the use of fractional polynomials 
and design variables. The smoothed scatterplots cannot be used unless 
we ignore the case-control matches. We comment on breaking the 
matches at the end of the section. 
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Table 7.1 Univariable Logistic Regression Models for the 
1-1 Matched Low Birth Weight Data, n = 56 Pairs 

Discordant Pairs 
A 

hr•nm)+ Variable Coeff. Std. Err. OR 95 %CI 

LWT -0.009 0.0062 0.91" (0.81, 1.03) # 
SMOKE 1.012 0.4129 2.75 (1.22, 6.18) (22, 8) 
RACE_2 0.087 0.5233 1.09 (0.39, 3.04) # 
RACE_3 -0.029 0.3968 0.97 (0.45, 2.11) # 
PTD 1.322 0.5627 3.75 (1.24, 11.30) (15, 4) 
HT 0.847 0.6901 2.33 (0.60, 9.02) ( 7, 3) 
UI 1.099 0.5774 3.00 (0.97, 9.30) (12, 4) 

+:Discordant Pairs: n10 =frequency of (x1 = l,x0 = 0), 

*:Odds ratio for a 10 pound increase in weight 
#: Not relevant 

n01 =frequency of (x1 = O,x0 = 1) and OR= n10 Jn01 

The results of using fractional polynomials to examine the scale of 
LWT are presented in Table 7.4. The first p-value, 0.050, in the 5th 
column indicates that treating L WT as linear in the logit offers a signifi­
cant improvement over the model not including LWT. The best single 
term model uses LWT3 but the second p-value, 0.334, indicates that this 
transformation is not significantly better than the linear model. The 
best two-term model uses LWT3 and LWT3 x ln(LWT). The p-value 

Table 7.2 Estimated Coefficients, Estimated 
Standard Errors, Wald Statistics and Two-Tailed 
p-Values for the Model Containing All Covariates 
Variable Coeff. Std. Err. z P>lzi 
LWT -0.018 0.0101 -1.82 0.068 
RACE_2 0.571 0.6896 0.83 0.407 
RACE_3 -0.025 0.6992 -0.04 0.971 
SMOKE 1.401 0.6278 2.23 0.026 
PTD 1.808 0.7887 2.29 0.022 
HT 2.361 1.0861 2. 17 0.030 
UI 1.402 0.6962 2.01 0.044 
Log likelihood= -25.7943 
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Table 7.3 Estimated Coefficients, Estimated 
Standard Errors, Wald Statistics and Two-Tailed 
p-Values for the Model Excluding RACE 
Variable Coeff. Std. Err. z P>lzl 

LWT -0.015 0.0081 -1.85 0.064 
SMOKE 1.480 0.5620 2.63 0.008 
PTD 1.671 0.7468 2.24 0.025 
HT 2.329 1.0025 2.32 0.020 
Ul 1.345 0.6938 1.94 0.053 
Log likelihood= -26.2369 

comparing the best two-term fractional polynomial model to the best 
one-term model is 0.860. The value of the likelihood ratio chi-square 
test comparing the linear model to the best two-term model is 
G=52.474-51.239=1.235, which with 3 degrees-of-freedom yields a 
p-value of 0.745. Thus, we conclude that the fractional polynomial 
analysis supports treating LWT as linear in the logit. 

The second method we illustrate to assess the scale of L WT is based 
on design variables. This method is described in detail in Chapter 4. In 
the setting of a matched study the three design variables are created us­
ing the quartiles of the combined distribution of LWT (n = 112). The 
quartiles as computed by STAT A are Q1 = 106.5, Q2 = 120 and 
Q3 = 136.5. We use the first quartile as the reference group. 

The model was fit using alJ the v.::-iables shown in Table 7.3 except 
LWT, which is replaced by the three design variables for quartiles. The 
estimated coefficients for the three design variables are given in Table 

Table 7.4 Summary of the Use of the Method of Frac­
tional Polynomials for L WT 

G for Model 
df Deviance vs. Linear 

Not in model 0 56.299 
Linear 1 52.474 0.000 
J =1 2 51.541 0.933 
J =2 4 51.239 1.235 
• Compares linear model to model without L WT 
+ Compares the J = 1 model to the linear model 
# Compares the J = 2 model to the J = 1 model 

Approx. 
p-Value Powers 

o.o5o· 1 
0.334+ 3 
0.860# 3, 3 
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Table 7.5 Results of the Quartile Analyses of L WT from 
the Multivariable Model Containing the Variables Shown in 
the Table 7.3 
Quartile I 2 3 4 
Midpoint 93.25 I 13.25 I28.25 I88.75 
Coeff. 0.0 -0.399 -0.443 -0.889 
95% CI (-1.69, 0.90) (-1.76, 0.87) (-2.II, 0.34) 

7.5. 
Even though none of the three estimated coefficients in Table 7.5 

is significant their decreasing trend does lend support for linearity in the 
logit. This is more easily seen by plotting the coefficients versus the 
midpoints of the quartiles as shown in Figure 7.1 

Thus on the basis of the fractional polynomial analysis and the 
confirming evidence from the plot in Figure 7.1 we decide to model 
LWT as linear in the logit. 

The next step in model development is to assess the possibility of 
interactions among the variables. A number of clinically plausible in-
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Figure 7.1 Plot of the estimated coefficients for the quartiles of L WT 
versus the midpoint of the quartile. 
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Table 7.6 Likelihood Ratio Test Statistic (G) 
and p-Value for Interactions of Interest When 
Added to the Main Effects Model in Table 7.3 
Interaction G p 
AGExLWT 0.50 0.477 
AGExSMOKE O.ot 0.910 
AGExPTD 0.05 0.818 
AGExHT 0.35 0.557 
AGExUI 1.12 0.290 
LWTxSMOKE 0.18 0.671 
LWTxPTD 0.06 0.800 
LWTxHT 0.03 0.868 
LWTxUI 0.03 0.868 
SMOKExPTD < O.ot > 0.900 
SMOKExHT 0.39 0.532 
SMOKExUI 0.15 0.699 
PTDxHT * * 
PTDxUI 2.56 0.110 
HTxUI * * 

*:Model could not be fit due to zero cells 

teractions may be created from the variables in the model. In addition 
we examine whether the matching variable, age, interacts with any of the 
variables in the model. The potential interaction variables are shown in 
the first column of Table 7 .6. The remaining columns present the like­
lihood ratio test and its p-value comparing the model containing the 
interaction to the main effects model in Table 7.3. Since each interac­
tion generates a single covariate we do not include the degrees-of­
freedom in Table 7 .6. 

The results in Table 7.6 indicate that none of the interactions is 
significant at the 5 percent level. Thus we conclude that we do not need 
to include any interactions in our model. We note that two interactions, 
PTDxHT and HTxUI, generated at least one cell with a zero frequency 
among the discordant pairs and thus the model could not be fit. See 
Chapter 4, Section 5 for a more detailed discussion of this type of nu­
merical problem. 

We now move to model assessment using the main effects model in 
Table 7.3. 
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7. 4 ASSESSMENT OF FIT IN A MATCHED STUDY 

The approach to assessing the fit of a logistic regression model in the 1-
1 matched design is identical to that described in Chapter 5 for un­
matched designs. We begin by forming a measure of residual variation, 
and then use it to explore the sensitivity of the fit to individual case­
control pairs. In the 1-1 matched study the likelihood function is de­
fined in terms of the conditional probability of allocation of observed 
covariates to the case and control within each stratum. As discussed in 
Section 7.2 the value of the outcome variable when we use the differ­
ences method is y = 1 for all strata (case-control pairs). This corre­
sponds to assigning a conditional probability of 1 to the observed allo­
cation of covariate values to the components of the pairs. The fitted 
value is the estimate of this conditional probability under the assump­
tion that the logistic regression model is correct. The number of covari­
ate patterns is always the number of pairs or strata. This implies that 
m = 1 for all patterns and measures that were based on m-asymptotics in 
the unmatched case cannot be used in 1-1 matched designs. For exam­
ple, it is not possible to extend the Hosmer-Lemeshow chi-square good­
ness-of-fit statistic to the 1-1 matched study design. Zhang (1999) pro­
poses an overall goodness-of-fit test. However, it is not available in any 
package and it is not easy to compute. Thus, we do not discuss it in this 
section. 

Moolgavkar, Lustbader and Venzon (1985), and Pregibon (1984) 
have extended the ideas of Pregibon (1981) to matched studies. These 
authors show that, for 1-1 matched studies, the logistic regression diag­
nostics may be computed in the same manner as shown in Chapter 5 for 
unmatched studies. Bedrick and Hill (1996) present methods for as­
sessing model fit within individual matched sets. Their methods require 
exact methods not available in most software packages. Moolgavkar, 
Lustbader and Venzon and Pregibon show that we may calculate lever-

age, h, standardized residuals, r:~· and the measures ~[3, l::lX2 and /),]) 
using the formulae shown in equations (5.12)- (5.16), where the differ­
ence variable, x • = x1 - x0 , replaces x and we use the logistic model 
shown in equation (7.6). 

The Pearson residual is 

(y- n) 
r= [n(l-n)f'2 
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and, since in the difference formulation y = 1, this simplifies to 

r=~(l~n), 

where 7? is the value of equation (7 .6) using the estimated parameters. 
In this situation large residuals are only possible when the fitted value, 
7?, is small. This was the same situation as in the unmatched studies ex­
cept that poor fit was also possible when y = 0 and the fitted value was 
large. Other than this, the expected behavior of the diagnostics as a 
function of the fitted values is the same for the 1-1 matched study. 

At this time we are not aware of a package that has an option to 
calculate the diagnostic statistics for any matched design. Thus, the 
only option available to us is to create a data set containing the differ­
ence variables and calculate the diagnostic statistics using a standard lo­
gistic regression routine. We used SAS' s logistic regression procedure 
to calculate the diagnostics for the example in this section. 
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Figure 7.2 Plot of LU2 versus the estimated probability from the fitted model 
in Table 7 .3. 
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Figure 7.3 Plot of ilP versus the estimated logistic probability from the fitted 
model in Table 7.3. 

To illustrate the use of the diagnostics, we apply them to assess the 
fit of the model in Table 7.3. The change in the Pearson chi-square, 
!:lX2

, and the change in the deviance, W, due to deleting a particular 
pair, show essentially the same thing so we only present the plot for 
!:lX2

. Plots of !:lX2 and ~p versus the fitted values, fc, are shown in 
Figure 7.2 and Figure 7 .3. 

In Figure 7.2 we see, as expected, that !:lX2 increases as fc de­
creases. Two points have much larger values, greater than 8.0, than the 
other points and three others have values between about 3.0 and 5.0. 

The plot of ~p in Figure 7.3 shows two values larger than about 
0.7 and two more with values between about 0.4 and 0.5. Each of these 
four values corresponds to one of the five values identified in Figure 
7.2. 

In Figure 7.4 we plot !:lX2 versus ft with the size of the plotting 
symbol proportional to ~p. The purpose of this plot is to better show 

the relationship between ~p, !:lX2 and the leverage, h. We can see in 
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Figure 7.4 Plot of LU2 versus the estimated logistic probability from the f!t­
ted model in Table 7.3 with the size of the plotting symbol proportional to A/3. 

Figure 7.4 that the two pairs with the largest value of .!lP occur in that 
region of the estimated probability scale where leverage is expected to 

be the largest, namely, 0.2- 0.4. Thus for these two points large .!lP is 
in fact due to moderately large IJJ(1 and leverage. The next two largest 
circles in Figure 7.4 correspond to the two pairs with the largest values 
of IJJ(2

• 

The next step in the analysis is to identify the four pairs with large 
values of 8(1 and list their respective data along with the values of the 
diagnostic statistics. This step is shown in Table 7.7. The results of fit­
ting the model with each pair deleted are shown in Table 7.8. 

Specifically, the data from pair 9 show that the control is 4 8 
pounds lighter than the case and the control smoked during the preg­
nancy and the case did not smoke. The negative sign of the coefficient 
for LWT indicates that heavier women are less likely to have a low 
weight birth. Thus, deleting a pair where the control is much lighter 
should and does increase the protective effect of weight. On the other 
hand, the coefficient for SMOKE is positive indicating that women who 
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Table 7.7 Pair, Data, Estimated Probability, and the 
Three Diagnostic Statistics A~, M 2

, and Leverage (h) for 

Four Extreme Pairs 
Conti 

Pair Case LWT SMK PTD HT U1 fc A~ /),)(2 h 

9 0 100 1 0 0 0 0.10 0.50 9.53 0.05 
1 148 0 0 0 0 

16 0 169 0 1 0 1 0.31 0.92 2.92 0.24 
1 120 1 0 0 0 

27 0 95 0 0 1 0 0.20 1.25 4.97 0.20 
1 130 0 0 0 

34 0 90 1 0 0 0.11 0.42 8.19 0.05 
128 0 0 0 

smoke are more likely to have a low weight birth. Deleting a pair 
where the control smoked and the case did not should, and in fact does, 
increase the coefficient for SMOKE. The actual decrease in the Pear­
son chi-square is less than expected from the value of !:1X2 in Table 
7.7. 

When we delete pair 16 we see that the coefficients for PTD and UI 
change by over 25 percent. Examining the data in Table 7. 7 we see that 
in this pair the control had both a prior pre-term delivery and uterine 
irritability. Since the coefficients for these covariates are positive these 
conditions are more consistent with being a case. Thus deleting this pair 
increases the two coefficients. The actual change in the Pearson chi­
square is 4.39, a bit larger than expected from the value in Table 7.7. 

The effects of deleting pair 27 are large changes, at least 40 per­
cent, in the coefficients for LWT and HT. The pattern in LWT is similar 
to pair 9, a control much lighter than the case. Thus deletion of pair 27 
also increases the protective effect of L WT. The pattern in HT is similar 
to PTD and UI seen in pair 16. Here the control is hypertensive and the 
case is not, thus deletion increases the effect of HT. The fairly large 
change in the coefficient for HT, 52.8 percent, is due to the fact that 
only 10 of the 56 pairs are discordant in this covariate. 

The results when we delete pair 34 are nearly identical to those for 
pair 9. The large change in the coefficient for LWT is due to the fact 
that the case is 38 lbs. heavier than the control. Also, the control 
smoked while the case did not smoke during the pregnancy. The 
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Table 7.8 Estimated Coefficients from Table 7.3, Estimated 
Coefficients Obtained When Deleting Selected Pairs, Percent 
Change from the All Data Model and Values of Pearson Chi-
Sguare Statistic 

Data LWT SMOKE PTD HT UI x2 
All -0.015 1.480 1.671 2.329 1.345 50.76 

Delete 9 -0.019 1.878 1.883 2.719 1.498 48.52 
%Change 30.0 26.9 12.7 16.7 11.4 

Delete 16 -0.013 1.391 2.11 2.407 1.762 46.37 
%Change -16.6 -6.0 26.4 3.3 31.0 

Delete 27 -0.021 1.389 1.807 3.559 1.511 49.00 
%Change 39.6 -6.1 8.2 52.8 12.3 

Delete 34 -0.018 1.855 1.863 2.669 1.487 50.31 
%Change 24.6 25.4 11.5 14.6 10.5 

change in the Pearson chi-square is small and is much less than that ex­
pected from the value of D.X2 in Table 7. 7. 

The results from deleting each of the four pairs provide good ex­
amples of why it is important to not rely completely on the values of the 
diagnostic statistics to predict model changes. We feel it is quite impor­
tant to go through the process of refitting the model, deleting poten­
tially influential and or poorly fit subjects. Our experience has shown 
that .6.~ tends to underestimate the actual changes one sees in coeffi­
cients. The behavior of the diagnostic for fit, D.X2

, is not consistent, 
sometimes overestimating the actual change in X2

, and in other in­
stances underestimating the change. 

As in any model building process the final decision on whether to 
include or exclude any data depends on an assessment of the clinical 
plausibility of the data. This decision, as always, should be made in 
consultation with subject matter experts. We proceed to model inter­
pretation using the full data estimates from Table 7.3. 

We present the estimated odds ratios and 95 percent confidence 
intervals in Table 7.9. These point and interval estimates are computed 
using the estimated coefficients and standard errors in Table 7.3 in ex­
actly the same manner as described in Chapter 3, namely by exponen­
tiating the coefficient and the endpoints of its confidence interval. 
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Table 7.9 Estimated Odds Ratios and 95% 
Confidence Intervals for Model in Table 7.3 

Variable 

Weight at Last Menstrual Period* 
Smoking During Pregnancy 
History of Pre-Term Delivery 
History of Hypertension 

Presence of Uterine Irritability 

Odds 
Ratio 

0.9 
4.4 
5.3 

10.3 

3.8 

*: Odds ratio for a 10 pound increase in weight 

95% CI 

0.73, 1.01 
1.46, 13.21 
1.23, 22.97 
1.44, 73.28 

0.99, 14.95 

The interpretation of estimates and confidence intervals for odds 
ratios is also the same as described in Chapter 3. Specifically, the odds 
ratio for weight at last menstrual period estimates a 10 percent reduction 
in risk of a low weight baby per 10 pound increase in weight. The 
confidence interval suggests that there could be as much as a 27 percent 
decrease in risk or there could be no reduction in risk. The odds ratio 
for a history of smoking during pregnancy suggests that women who do 
smoke are 4.4 times more likely to have a low weight baby than women 
who do not smoke and the increase in risk could be as little as 1.5 times 
or as high as 13.2 times with 95 percent confidence. Having a history 
of pre-term delivery increases the risk of a low weight baby by 5.3 times 
and it could be as little as 1.2 times or as much as 23 times with 95 per­
cent confidence. Women with a history of hypertension have a 1 O-f old 
increase in risk of a low weight baby and the increase in risk could be as 
little as 1.4 times or as much as 73.3 times with 95 percent confidence. 
Presence of uterine irritability carries a 3.8 fold increase in risk of a low 
weight baby. The confidence interval suggests that there could be no 
increase to as much as a 15-fold increase in risk. 

We note that the confidence intervals are quite wide, especially for 
history of hypertension. This is due to the fact, described in the previ­
ous section and shown in Table 7.1, that there are relatively few discor­
dant pair~ in this data set. 

In sl!lmmary, the actual process of model building, assessment of fit 
and interpretation of odds ratios estimated from the final model is the 
same for the 1-1 matched case-control study as in any unmatched 
study. The only difference is that we use a conditional likelihood that 
eliminates stratum-specific effects from the basic logistic regression 
model. 
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In closing this section we note that many investigators break the 
matched pairs and proceed with the standard analysis as described in 
Chapters 4 and 5. Lynn and McCulloch (1992) provide some theoreti­
cal and simulation-based evidence for breaking the matches when the 
sample size is large. However, we believe that if data have been col­
lected using a specific matched sampling design then the analysis must 
have as its foundation the stratum-specific likelihood shown in equation 
(7.2) and the full likelihood in equation (7.3). 

We believe that investigators have used what is really an incorrect 
analysis for two basic reasons. First, the investigator is not comfortable 
with the conditional likelihood approach. He/she thinks that somehow 
the model has been changed and one cannot use estimated coefficients 
to estimate odds ratios in the usual manner. Second, until recently the 
analysis had to be performed using difference variables, a cumbersome 
and tedious data management task. We hope that the presentation of the 
example in this section convinces investigators that a matched analysis is 
no more difficult than an unmatched analysis. While software is avail­
able, developers need to bring current routines for matched analyses to 
the same level as their programs for unmatched analyses, especially in 
the area of diagnostic statistics for assessment of model adequacy and 
fit. 

7. 5 AN EXAMPLE OF THE USE OF THE LOGISTIC 
REGRESSION MODEL IN A 1-M MATCHED STUDY 

The general approach to the analysis of the 1-M matched design and, 
for that matter, general matched or highly stratified designs is similar to 
that of the 1-1 matched design. As we demonstrated in the previous 

two sections the 1-1 matched design may be fit using software for un­

conditional logistic regression in some, but not all, packages. However, 
for the 1-M design we need software, such as STATA's clogit com­
mand, that maximizes a more general conditional likelihood. The need 
for special software can be seen if we examine the contribution to the 
likelihood for an individual stratum. In this section, to keep notation 
simple and to a minimum, we consider a design where M = 3. The ex­
tension of the methods to other matched designs is not difficult. We let 
the value of the covariates for the case in stratum k be denoted by xk1 

and the values for the three controls be denoted xk2, xk3, and xk4 . The 
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contribution to the likelihood for this stratum is obtained by evaluating 
the expression shown in equation (7 .4) and is 

e~"xu 

lk (fi) = el"xu + el"x,2 + el"xo + e~''x,4 (7.7) 

The interpretation of equation (7 .7) is same as we described in Section 
7.2 for equation (7 .5). Given the value of the coefficients it gives the 
probability that the subject with data xk1 is the case relative to three 
controls with data xk2,xk3, and xk4 • We note that if the covariates are 
identical for all four subjects then the stratum is uninformative for esti­
mation of the coefficients as lk {P) = 0.25 for any value of p. For an 

individual covariate there must be at least one control that has a value 
different from the case or the stratum is uninformative for that specific 
coefficient. Unfortunately there are no simple expressions involving 
discordant pairs for the estimator of the coefficient for a dichotomous 
covariate in a univariable model. One descriptive statistic that is useful 
for visually assessing the potential for "thin data" for a dichotomous 
covariate is the 2 by M + 1 table cross-classifying the case versus the 
sum of the covariate for the controls. The strata that would not contrib­
ute to the analysis would correspond to the counts in the (0,0) and (l,M) 
cells. As always, we feel it is good practice to fit univariable models and 
use the estimated standard errors and confidence intervals as indirect 
evaluation for "thin data". 

It is not possible to express the right side of equation (7 .7) in the 
form of an unconditional logistic regression model. Hence, to perform 
an analysis of a 1-M matched design we must use software that obtains 
maximum likelihood estimators from a likelihood function whose com­
ponent terms are like those in equation (7.7). We use STATA's clogit 
command to fit the models in this section. 

To provide a data set for an example and exercises we present a 
subset of data from a large study on benign breast disease whose results 
have been published. The original data are from a hospital-based case­
control study designed to examine the epidemiology of fibrocystic 
breast disease. Cases included women with a biopsy-confirmed diagno­
sis of fibrocystic breast disease identified through two hospitals in New 
Haven, Connecticut. Controls were selected from among patients ad­
mitted to the general surgery, orthopedic, or otolaryngologic services at 
the same two hospitals. Trained interviewers administered a standard-
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ized structured questionnaire to collect information from each subject 
[see Pastides, et al (1983) and Pastides, et al (1985)]. 

A code sheet for the data is given in Table 7.10. Data are provided 
on 50 women who were diagnosed as having benign breast disease and 
150 age-matched controls, with three controls per case. Matching was 
based on the age of the subject at the time of interview. The data are 
available on the two web sites described in the Preface in a file named 
BBDM13.DAT. 

We consider covariates measuring regular medical check-ups 

Table 7.10 Description of Variables in the Benign 
Breast Disease 1-3 Matched Case-Control Study 

Variable Description CodesNalues Name 

2 

3 
4 

5 
6 

7 

8 
9 
10 

11 
12 
13 
14 

Stratum 1 - 50 
Observation within Stratum 1 =Case 

2 - 4 = Control 

STR 
OBS 

Age at Interview 
Final Diagnosis 

Years AGMT 
1 =Case FNDX 
0 =Control 

Highest Grade in School 
Degree 

5-20 HIGD 
O=None DEG 

Regular Medical Check-ups 

1 = High School 
2 = Jr. College 
3 =College 
4 =Masters 
5 =Doctoral 
1 =Yes 
2=No 

Age at First Pregnancy Years 
Age at Menarche Years 
No. of Stillbirths, Miscarriages etc. 0- 7 
Number of Live Births 0 - 11 
Weight of the Subject At Interview Pounds 
Age at Last Menstrual Period Years 
Marital Status 1 =Married 

2= Divorced 
3 =Separated 
4=Widowed 
5 =Never Married 

CHK 

AGPl 
AGMN 
NLV 
LN 
wr 
AGLP 
MST 
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Table 7.11 Univariable Logistic Regression 
Models for the 1-3 Matched Benign Breast 
Disease Study, n = 50 Strata 

"' Variable Coeff. Std. Err. OR 95 %CI 

CHK -1.245 0.3815 0.29 
AGMN 0.472 0.1110 2.57* 

wr -0.035 0.0086 0.70+ 

MST_2 -0.358 0.5605 0.70 
MST_4 -0.751 0.7904 0.47 
MST 5 1.248 0.6059 3.48 

*: Odds ratio for a 2 year increase 
+:Odds ratio for a 10 pound increase 

(0.14, 0.61) 
( 1.66, 3.97) 
(0.59, 0.83) 
(0.23, 2.1 0) 
(0.10, 2.22) 
( 1.06, 11.43) 

(CHK), age at menarche (AGMN), weight at the interview (WT) and 
marital status (MST) as an example of model building in a 1-3 matched 
study. We leave model development using all study variables as an ex­
ercise. Tabulation of the frequency distribution of marital status showed 
that only 6 subjects reported being separated. These subjects are com­
bined with the 20 subjects who reported their status as divorced. The 
results of fitting the univariable models are shown in Table 7.1 1. 

The results in Table 7.11 show that having regular check-ups and 
increasing weight significantly reduce the odds of having benign breast 
disease. Increased age at menarche significantly increases the odds of 
benign breast disease. The results for marital status suggest that subjects 
who were ever married have the same odds as those currently married. 
Women who were never married have significantly increased odds for 
benign breast disease compared to women who are currently married. 
These results suggest that a more parsimonious model might use a di­
chotomous covariate ever-never married. However, we begin by fitting 
the multivariable model containing all the covariates as coded in Table 
7 .11. These results are shown in Table 7 .12. 

The results in Table 7.12 agree, at least in terms of direction of ef­
feet and significance, with the univariable models in Table 7 .11. The 
marital status covariate presents some problems in that only 12 of the 
200 subjects report never being married. However there is a significant 
increase in risk and, as such, we proceed using the dichotomous covari­
ate never married, NVMR (0 = ever married, 1 = never married). The 
results of fitting this model are show in Table 7 .13. 
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Table 7.12 Estimated Coefficients, Estimated 
Standard Errors, Wald Statistics and Two­
Tailed p-Values for the Multivariable Model 

Variable Coeff. Std. Err. z P>lzl 

CHK -1.122 0.4474 -2.51 0.012 
AGMN 0.356 0.1292 2.76 0.006 
wr -0.028 0.0100 -2.84 0.004 
MST_2 -0.203 0.6473 -0.31 0.754 
MST_4 -0.493 0.8173 -0.60 0.548 
MST 5 1.472 0.7582 1.94 0.052 

Log likelihood= -45.2148 
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The results in Table 7.13 indicate that each of the co variates is sig­
nificant. In addition, when we compare the values of the coefficients in 
Table 7.13 to those in Table 7.12 we see that recoding marital status did 
not introduce any confounding. Also, the z-score for the dichotomous 
covariate NVMR is about the same order of magnitude as the z-scores 
for the other covariates. This provides some evidence that there is ade­
quate data. Thus we proceed to examine the scale of the continuous 
covariates AGMN and WT. 

The methods to check for the scale of a continuous variable in the 
logit for a 1-M design are the same as those illustrated in Section 7. 3 

for the 1-1 matched study, (i.e., fractional polynomials and quartile de­
sign variables). When we use these methods we find that there is sub­
stantial evidence for keeping both AGMN and WT continuous and lin-

Table 7.13 Estimated Coefficients, Estimated 
Standard Errors, Wald Statistics and Two-Tailed p-

Values for the Multivariable Model Using NVMR 
Variable Coeff. Std. Err. z P>lzl 
CHK -1.161 0.4470 -2.59 0.009 
AGMN 
wr 
NVMR 

0.359 
-0.028 

1.593 
Log likelihood = - 45.4390 

0.1279 
0.0100 
0.7361 

2.81 
-2.83 

2.17 

0.005 
0.005 
0.030 
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ear in the logit. Since the methods are the same and their results do not 
demonstrate anything new, we feel that little is to be gained by present­
ing the analysis in detail. We move to considering the need to add in­
teractions to the model in Table 7 .13. 

We examine the need for interactions using the same method used 
for the 1-1 design in the Section 7.3. We feel that there is some clinical 
plausibility for interactions involving each of the covariates in the model 
as well as ones with the matching variable. We fit models adding each of 
these to the main effects model. Two interactions, AGMTxAGMN and 

AGMTxNVMR, were significant at approximately the 0.09 level. Since 
they were not significant at the 5 percent level and since we have only 
50 strata, we chose not to include them in the model. Hence we move to 
model assessment and fit using the main effects model in Table 7.13. 

7. 6 METHODS FOR ASSESSMENT OF FIT IN A 1-M 
MATCHED STUDY 

The approach to assessment of fit in the 1-M matched study is similar to 

that used in the 1-1 matched study in that it is based on extensions of 
regression diagnostics for the unconditional logistic regression model. 
The mathematics required to develop these statistics is at a higher level 
than other sections of the book. Hence, less sophisticated mathematical 
readers may wish to skip this section and proceed to Section 7. 7 where 
the use of the diagnostic statistics is explained and illustrated. These 
diagnostic statistics are derived for a general matched design by Mool­
gavkar, Lustbader and Venzon (1985) and Pregibon (1984). These 
authors illustrate the use of the diagnostics only for the 1-1 matched 

design. We showed in Section 7.4 that the diagnostics for the 1-1 

matched design could be computed using logistic regression software 
for the conditional model. Unfortunately, currently available software 
for logistic regression in the 1-M matched design does not compute 
these same diagnostic statistics. The methods needed to obtain them are, 
in principle, easy to apply; in practice, the computations necessary to 
calculate leverage values are tedious. Once the leverage values are ob­
tained, the values of the other diagnostic statistics are calculated via sim­
ple transformations of available or easily computed quantities. To sim­
plify the notation somewhat we present the methods for the case when M 
= 3; that is, M + 1 = 4. 
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The first step is to transform the observed values of the covariate 
vector by centering them about a weighted stratum-specific mean. That 
is, we compute for each stratum, k, and each subject within each stratum, 
j, 

where 

4 

x.kj = xkj - .~:>klekl, 
1=1 

x' ~ ~ e kJ 
ek. = --:-4--J • 

~ x'IJ 
"'-' e kJ 

1=1 

and note that L~=1 ekj = 1. Let X be the n = 4K by p matrix whose 

rows are the values of i:kj• k = 1, 2, ... , K and j = 1, 2, 3, 4. Let U be an n 

by n diagonal matrix with general diagonal element {Jkj. It may be 

shown that the maximum likelihood estimate, ~. once obtained can be 
re-computed via the equation 

where z is the vector z =X'~+ u-1 ( y- 9), y is the vector of values of the 

outcome variable ( y = 1 for the case and y = 0 for the controls), and 9 
is the vector whose components are {JkJ. Recall that fJkJ is, under the as­

sumption of a logistic regression model, the estimated conditional prob­
ability that subject j within stratum k is a case. 

Thus we may recompute the maximum likelihood estimate for the 
conditional logistic regression model using a linear regression program 
allowing case weights. We use the vector X.kj as values of the independ-

ent variables, 
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as the values of the dependent variable, and case weight okj• for 
k = 1, 2, ... , K, j = 1, 2, 3, 4. It follows that the diagonal elements of the 
hat matrix computed by the linear regression are the leverage values we 
need, namely 

(7.8) 

We note that one must pay close attention to how weights are handled in 
the statistical package used for the weighted linear regression. For ex­
ample, SAS's regression procedure outputs the values as defined in 
equation (7.8). STATA users need to multiply the leverage values cre-

ated following the weighted regression by okj /fi to obtain the leverage 

- ~K~M+l")[ ) values defined in equation (7.8), where 8= £-k=l£-j=l (}kj K(M+l) 

is the mean of the estimated logistic probabilities. 
The Pearson residual is 

and the Pearson chi-square is 

The standardized Pearson residual is 

In keeping with the diagnostics for the unmatched design we define 
the square of the standardized residual as the lack of fit diagnostic 

and the influence diagnostic as 

Av2 _ r2 
UAk·- k' ' J SJ 

(7.9) 
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(7 .1 0) 

We feel that the most informative way to view the diagnostic statistics is 
via a plot of their values versus the fitted values, 9kj. These plots are 

similar to those used in Chapter 5 to assess graphically the fit of the un­
conditional logistic regression model and those used in Section 7.4 for 
the conditional logistical regression model in the 1-1 matched design. 
Examples of these plots are presented in the next section where we as­
sess the fit of the model in Table 7.13. 

Moolgavkar, Lustbader and Venzon (1985) and Pregibon (1984) 
suggest that one use the stratum-specific totals of the two diagnostics, 
/:0(2 and ~p to assess what effect the data in an entire stratum have on 
the fit of the model. These statistics are computed as quadratic forms 
involving not only the leverage values for the subjects in the stratum but 
also those terms in the hat matrix that account for the correlation among 
the fitted values. An easily computed approximation to these statistics is 
obtained by ignoring the off diagonal elements in the hat matrix. We 
feel that the approximations are likely to be accurate enough for practi­
cal purposes. For the kth stratum these are 

and 

4 
Av2 _ r2 -L,.r2 UAk- k- k' s s J 

j=l 

4 

f1~k =I. f1~kj 
j=l 

(7 .11) 

(7 .12) 

Strata with large values of these statistics would be judged to be poorly 
fit and/or have large influence respectively. One can use a box plot or a 
plot of their values versus stratum number to identify those strata with 
exceptionally large values. For these strata the individual contributions 
to these quantities should be examined carefully to determine whether 
cases and/or controls are the cause of the large values. 

We note that the diagnostic statistics described in this section can be 
used instead of the diagnostics described in Section 7.4 for the 1-1 
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matched study. However, we feel that the diagnostic statistics described 
in Section 7.4 are easier to compute since one only needs the difference 
variables and the diagnostics can be obtained from available logistic re­
gression software. In addition, the diagnostics in Section 7.4 yield one 
value per stratum. The mathematical relationships between the diagnos­
tic statistics in Section 7.4 and the ones described in this section are 
quite complex. For example, the stratum totals described in equations 
7.10 and 7.11 are not arithmetically equal to the values of M 2 and ~~ 
used in Section 7 .4. While it may appear that we have two sets of differ­
ent diagnostic statistics they do identify the same strata as being poorly 
fit or influential. Thus from a practical point of view one may use ei­
ther set to assess model adequacy. 

In identifying poorly fit or influential subjects deletion of the case 
in a stratum is tantamount to deletion of all subjects in the stratum. 
Without a case a stratum contributes no information to the likelihood 
function. If some but not all controls are deleted in a specific stratum 
then the stratum may still have enough information to contribute to the 
likelihood function. A final decision on exclusion or inclusion of cases 
(entire strata) or controls should be based on the clinical plausibility of 
the data. 

7. 7 AN EXAMPLE OF ASSESSMENT OF FIT IN A 
1-M MATCHED STUDY 

As an example we assess the fit of the model fit to the 1-3 matched data 
from the Benign Breast Disease Study in Table 7.13. The steps in the 
process are the same as those demonstrated for 1-1 matched studies. 

We begin by examining descriptive statistics for the three diagnos­
tic statistics defined in equations (7 .8) to (7 .1 0). These analyses show 
(output not presented) that there is one subject, the case in stratum 12, 
with an extraordinarily large value for the fit diagnostic statistic, 
M 1

2
2•1 = 84.546. This value is so large that it completely obscures the 

ability to assess the magnitude of the diagnostic statistic for the other 
subjects. Thus, we decide to exclude this subject from the usual plots of 
the diagnostic statistics versus the fitted values. The subject is included 
when we assess the effect of deletion of subjects on the estimated coeffi­
cients in Table 7.14 and Table 7.15 below. 
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Figure 7.5 Plot of !J.X2 versus the estimated logistic probability from the fitted 
model in Table 7.13. 

In Figure 7.5 we plot the fit diagnostic, M 2
, versus the fitted val­

ues, e. We see that there are three cases that are poorly fit with 

M 2 > 6. These large values occur in the region where B < 0.2 and re­
flect cases whose estimated probability of being the case is much smaller 
than the fitted values for the controls in that stratum. Note that the val­
ues of M 2 for the controls correspond to the points beginning at the 
origin (0,0) rising ever so slightly and end at about 0.9. 

Next, we examine the plot of the influence diagnostic statistics ver­
sus the estimated logistic probabilities shown in Figure 7.6. We note 
one point with ~~= 0.74, lies well above all the other points. We note 
three more points, with values between about 0.2 and 0.25, warrant fur­
ther examination and evaluation since they lie away from the other 
points. 

In order to explore better the relationship between fit, influence 
and leverage we plot M 2 versus the estimated logistic probabilities with 

the size of the plotting symbol proportional to ~~ in Figure 7. 7. Here 
we see that the poorly fit case with the largest influence dominates the 
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Figure 7.6 Plot of llP versus the estimated logistic probability from the fitted 

model in Table 7.13. 

plot. Also, two of the three additional points identified in Figure 7.6 
correspond to the other two poorly fit cases seen in Figure 7.5. The 
fourth influential point is not one identified as being especially poorly 
fit. In all we have four cases and their controls from these plots to ex­
amine in more detail (there are 5 all together). As we noted in Chapter 
5, for fitted logistic regression models leverage typically tends not to be 
too large when the fitted values are less than 0.2. This is the case with 
the fitted model in Table 7.13. Thus we conclude that the large values 
of ~p are due primarily to large values of M 2

, with a small to modest 
contribution of leverage. 

We examined the diagnostic statistics defined in equations (7 .11) 
and (7 .12) in two ways. First, we plotted them versus the corresponding 
stratum number. Second, we examined them using box and whisker 
plots. Both plots identified the same five strata corresponding to the 
strata for the four points identified in Figures 7.5 to 7.7 and the domi­
nant point excluded from these plots. The data for the case and three 
controls in these strata are presented in Table 7.14 along with the values 
of the diagnostic statistics. 
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Figure 7.7 Plot of llX2 versus the estimated logistic probability from the fitted 

model in Table 7.13 with the size of the plotting symbol proportional to A~. 

The next step is to exclude the subjects from the analysis and assess 
the effect of the deletions on the fitted model. Each of the five subjects 
identified as being poorly fit or influential is a case. Thus, when we de­
lete the subject only the controls are left. Hence, the outcome does not 
vary and the stratum is deleted from the analysis. The results of fitting 
the model deleting the strata in Table 7.14 are presented in Table 7.15. 

Interpreting the results of deleting an individual stratum in a 1-M 

matched study is more difficult than for the 1-1 design. The reason is 

that each subject in the stratum has his/her own diagnostic statistics yet it 
is likely that only one subject is influential and/or poorly fit. The rea­
son(s) for a particular subject's influence and/or lack of fit depend(s) 
on the relationship between his/her covariates and those of the other M 
subjects in the stratum. 

We begin with stratum 12. The case in stratum 12 is the poorest fit 
with M 1

2
2,1 =84.5. The results in Table 7.15 show that when stratum 12 

is deleted ~rJ% is between about 24 and 26 percent for AGMN and WT. 
The estimated logistic probabilities indicate that the third control has the 
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Table 7.14 Stratum, Data, Estimated ProbabiJity, and 

the Three Diagnostic Statistics ~~. M 2 and Leverage 
{h) for Five Influential and Poorly Fit Strata 

Case I 

STR Cont CHK AGMN wr NVMR {J AP AX2 h 

10 1 2 12 105 0 0.11 0.22 7.21 0.03 
0 13 115 0 0.39 0.01 0.40 0.02 
0 2 12 120 0 0.07 <.01 0.07 0.02 
0 16 150 0 0.42 0.02 0.45 0.05 

12 1 2 10 170 0 0.01 0.71 84.5 0.01 
0 13 140 0 0.26 0.02 0.27 0.06 
0 11 240 0 0.01 <.01 0.01 0.01 
0 2 16 100 0 0.72 0.02 0.75 0.03 

18 2 14 135 0 0.05 0.73 17.9 0.04 
0 14 132 1 0.89 0.01 0.90 0.01 
0 11 205 0 0.01 <.01 0.01 0.01 
0 10 127 0 0.05 <.01 0.05 0.03 

24 1 2 15 145 0 0.07 0.17 13.2 0.01 
0 13 140 0 0.12 <.01 0.12 0.01 
0 17 155 0 0.33 0.01 0.34 0.03 
0 15 116 0 0.48 0.01 0.49 0.02 

31 1 2 16 156 0 0.17 0.24 4.35 0.05 
0 2 12 161 0 0.03 <.01 0.03 0.01 
0 13 150 0 0.22 <.01 0.22 0.01 
0 13 115 0 0.58 0.01 0.59 0.02 

highest probability of being the case and the case has the lowest (within 
round off). The lack of fit diagnostic is ]arge due to the fact y12 1 = 1 

and 912,1 ""0.01. The change in the coefficients for AGMN and WT are 

large and positive because we have eliminated a case that has data fa­
voring control status (young age at menarche and heavier weight) and a 
control that has data favoring case status (older age at menarche and 
lighter weight). There is nothing particularly abnormal about the data 
for any of the subjects in stratum 12. Thus, we conclude that we should 
not delete the stratum solely on the basis of large M 2

• 

We see that the results of deleting stratum 18 are similar to those 
for stratum 12 in Table 7.15. The case in this stratum has the largest 
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Table 7.15 Estimated Coefficients from Table 7.13, 
Estimated Coefficients Obtained When Deleting a 
Selected Stratum, Percent Change from the All Data 
Model and the Pearson Chi-Sguare 

Data CHK AGMN wr NVMR x2 
All -1.161 0.359 -0.028 1.593 186.34 

Delete 10 -1.342 0.404 -0.025 1.685 178.45 
Pet. Change 15.6 12.6 -9.7 5.76 

Delete 12 -1.241 0.452 -0.035 1.679 101.51 
Pet. Change 6.8 25.7 23.9 5.4 
Delete 18 -1.479 0.368 -0.029 2.247 168.13 

Pet. Change 27.3 2.4 3.7 41.0 

Delete 24 -1.366 0.366 -0.030 1.687 172.36 
Pet. Change 17.6 2.1 5.3 5.9 

Delete 31 -1.349 0.312 -0.031 1.664 181.38 
Pet. Change 16.2 -13.1 12.5 4.5 

value of ~~% and M 2 is also quite large. In particular, we see that the 
coefficient for NVMR changes by over 40 percent when the stratum is 
deleted. The reason is one of the controls was never married while the 
case was married. Additional analysis showed that 38 of the 50 strata 
had all four subjects with NVMR = 0 and in the remaining 12 only one 
subject was never married. In essence we have removed 1112'h of the 
data available for estimating the coefficient for NVMR. The coefficient 
for CHK changes by about 27 percent. In stratum 18 the case did not 
have regular check-ups, CHK:::: 2, while each of the three controls did 
have them. The fact that the estimated coefficient is negative implies 
that not having regular check-ups is consistent with control status. Thus, 
deleting a stratum that, in a sense, goes against the model induces 
change in the direction of the effect, negative. As is the case with stra­
tum 12 all data appear to be reasonable and there is no reason, other 
than statistical, to exclude stratum 18. 

The diagnostic statistics for stratum 24 indicate that case is poorly 
fit. The estimated logistic probability for the case is small and each of 
the controls has larger estimated probabilities (two of them much 
larger). The coefficient for CHK has ~~% around 18 percent. The 
coefficient decreases since the case in this stratum did not have regular 
check-ups. Changes in the other coefficients are less than 6 percent. 
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Table 7.16 Estimated Odds Ratios and 95% 
Confidence Intervals for Model in Table 7.13 

Odds 
Variable Ratio 95 %CI 

Regular Medical Check-ups 0.31 0.130, 0.752 
Age at Menarche+ 2.05 1.243, 3.386 
Weight' 0.75 0.620, 0.917 
Never Married 4.9 1.162, 20.821 

+: Odds ratio for a 2 year increase in age 
*: Odds ratio for a 10 pound increase in weight 

Again, there is nothing unusual about the data, we just have a case that 
looks a bit more like a control and vice-versa. 

The diagnostic statistics for stratum 10 and stratum 31 are similar. 
The case is modestly influential and somewhat poorly fit. The estimated 
logistic probability for the case is not too large and two of the controls 
have much larger estimated probabilities. The coefficient for CHK has 
~~% around 16 percent. The coefficient decreases since the case in 
both strata did not have regular check-ups. Changes in the other co­
efficients are less than 15 percent. Again, there is nothing unusual 
about the data. 

In summary, the diagnostic statistics have proven quite useful for 
identifying subjects whose data may be influential in estimating coeffi­
cients and/or may lead to a fitted value more consistent with the opposite 
of the observed outcome. In order to interpret the results in the 1-M 
design we must simultaneously consider the estimated logistic probabil­
ity of the case and all controls as well as the differences in their data. 

We conclude the section by presenting, in Table 7.16, the odds ra­
tios obtained from the fitted model in Table 7 .13. These results suggest 
that women who do not have regular medical check-ups are at 69 per­
cent lower risk of having benign breast disease than women who do and 
this could be as much as a 87 percent decrease or as little as a 25 per­
cent decrease with 95 percent confidence. This may seem like an odd 
result at first; but it may be a function of the fact that detection is in­
creased with increasing medical check-ups. Women who experience 
older age at menarche are at greater risk of benign breast disease and 
the risk doubles for every two year increase. Increasing weight de­
creases the risk of benign breast disease at the rate of about 25 percent 
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per 10 pound increase. This could be between 8 and 38 percent with 9 5 
percent confidence. Never being married significantly increases the risk 
of disease by a factor of 5 but this factor could be as low as 1.2 based 
on the 95 percent confidence interval. Note: In a case such as this 
where the right endpoint is quite large we tend to focus more on the 
point estimate and left endpoint. The right endpoint is the one most 
susceptible to large estimated variance due to limited data. 

EXERCISES 

1. Data from the 1-3 matched Benign Breast Disease Study are used 

in this chapter to illustrate methods for a 1-M matched study. The 
data are described in Table 7.1 0. Find the best logistic regression 
model for a 1-1 matched design using the first of the three con­
trols. (Note: It would have been possible to use any one of the 
three controls. Designation of the first control was arbitrary.) 

2. The example in Sections 7.5 through 7.7 used only a few of the 
variables available in the Benign Breast Disease Study. Repeat the 
modeling using all the covariates. 

In each Exercise the steps in fitting the model should include: ( 1) 
a complete univariable analysis, (2) an appropriate selection of variables 
for a multivariable model (this should include scale identification for 
continuous co variates and assessment of the need for interactions), ( 3) 
an assessment of fit of the multivariable model, (4) preparation and 
presentation of a table containing the results of the final model (this ta­
ble should contain point and interval estimates for all relevant odds ra­
tios), and (5) conclusions from the analysis. 



CHAPTER 8 

Special Topics 

8.1 THE MULTINOMIAL LOGISTIC REGRESSION 
MODEL 

8.1.1 Introduction to the Model and Estimation of the Parameters 

In the previous seven chapters we focused on the use of the logistic re­
gression model when the outcome variable is dichotomous or binary. 
The model can be easily modified to handle the case where the outcome 
variable is nominal with more than two levels. For example, consider a 
study of choice of a health plan from among three plans offered to the 
employees of a large corporation. The outcome variable has three lev­
els indicating which plan, A, B or C, is chosen. Possible covariates might 
include gender, age, income, family size and others. The goal is to 
model the odds of plan choice as a function of the covariates and to ex­
press the results in terms of odds ratios for choice of different plans. 
McFadden (1974) proposed a modification of the logistic regression 
model and called it a discrete choice model. As a result the model is 
frequently referred to as the discrete choice model in business and 
econometric literature while it is called the multinomial, polychotomous 
or polytomous logistic regression model in the health and life sciences. 
We use the term multinomial in this text. 

We could use an outcome variable with any number of levels to 
illustrate the extension of the model and methods. However, the details 
are most easily illustrated with three categories. Further generalization 
to more than three categories is a problem more of notation than of 
concept. Hence, in the remainder of this section, we consider only the 
situation where the outcome variable has three categories. 

260 
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When one considers a regression model for a discrete outcome 
variable with more than two responses, one must pay attention to the 
measurement scale. In this section, we discuss the logistic regression 
model for the case in which the outcome is nominal scale. We discuss 
logistic regression models for ordinal scale outcomes in the next sec­
tion. 

We assume that the categories of the outcome variable, Y, are coded 
0, 1, or 2. In practice one should check that the software package that is 
going to be used allows a zero code since we have used packages that 
require that the codes begin with 1. Recall that the logistic regression 
model we use for a binary outcome variable is parameterized in terms of 
the logit of Y = 1 versus Y = 0. In the three outcome category model 
we need two logit functions. We have to decide which outcome catego­
ries to compare. The obvious extension is to use Y = 0 as the referent 
or baseline outcome and to form logits comparing Y = 1 and Y = 2 to it. 
We show later in this section that the logit function for Y = 2 versus 
Y = 1 is the difference between these two logits. 

To develop the model, assume we have p covariates and a constant 
term, denoted by the vector, x, of length p + 1 where x0 = 1. We denote 
the two logit functions as 

[ 
P(Y = 1lx)l 

g1{x)=ln ( I) P Y=Ox 

= /310 + /311 x 1 + /312x2 + · · · + {31PxP 

=x'P, (8.1) 

and 

[
P(Y = 2lx)l 

g2{x)=ln ( I ) P Y=Ox 

= f32o + /32,xl + f322X2 + · · · + f32pxp 

= x'P2· (8.2) 

It follows that the conditional probabilities of each outcome category 
given the covariate vector are 



262 SPECIAL TOPICS 

(8.3) 

(8.4) 

and 

eg2(x) 

P( y = 2lx) = _1_+_e_gl-:-( x..,..) -+-e-82-,..(x""') . (8.5) 

Following the convention for the binary model, we let Jr/x) = 

P(Y = jlx) for j = 0, 1, 2. Each probability is a function of the vector of 

2(p + 1) parameters W = (~;, ~;). 
A general expression for the conditional probability in the three 

category model is 

egi(x) 

P(Y = jlx) = -..,..2--

LeKL(x) 

k=O 

where the vector flo= 0 and g0 (x) = 0. 
To construct the likelihood function we create three binary vari­

ables coded 0 or 1 to indicate the group membership of an observation. 
We note that these variables are introduced only to clarify the likelihood 
function and are not used in the actual multinomial logistic regression 
analysis. The variables are coded as follows: if Y = 0 then Y0 = 1, 1'; = 0, 

and Y2 =0; ifY= 1 then fo=O, 1';=1, and1';=0; and if Y= 2 then 
Y0 = 0, 1'; = 0, and 1'2 = 1. We note that no matter what value Y takes on, 

the sum of these variables is ~ 2 
Y

1
. = 1. Using this notation it follows £..J,=o 

that the conditional likelihood function for a sample of n independent 
observations is 

n 

l(JJ) = fi[Ko( xJo' Jr1 (x;)''!i Jr2 (xi t·]. 
i=l 
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Taking the log and using the fact that LYF = 1 for each i, the log­

likelihood function is 

n 

L(IJ) = LY!igl (x;) + Y2ig2(x;) -ln(1 + e81 (x;) + eg2 (x,)} . ( 8.6) 
i=l 

The likelihood equations are found by taking the first partial derivatives 
of L(P) with respect to each of the 2 (p + 1) unknown parameters. To 

simplify the notation somewhat, we let Jrji = Kj(xJ The general form 

of these equations is: 

(8.7) 

for j=1,2 and k=O,l,2, ... ,p, with x0; =1 for each subject. 

The maximum likelihood estimator, p, is obtained by setting these 
equations equal to zero and solving for (J. The solution requires the 
same type of iterative computation that is used to obtain the estimate in 
the binary outcome case. 

The matrix of second partial derivatives is required to obtain the 
information matrix and the estimator of the covariance matrix of the 
maximum likelihood estimator. The general form of the elements in 
the matrix of second partial derivatives is as follows: 

(8.8) 

and 

(8.9) 

for j and j' = 1, 2 and k and k' = 0, 1, 2, ... , p. The observed information 

matrix, I{P), is the 2 (p + 1) by 2 (p + 1) matrix whose elements are the 

negatives of the values in equations (8.8) and (8.9) evaluated at p. The 
estimator of the covariance matrix of the maximum likelihood estimator 
is the inverse of the observed information matrix, 
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A more concise representation for the estimator of the information 
matrix may be obtained by using a form similar to the binary outcome 
case. Let the matrix X be then by p + 1 matrix containing the values of 
the covariates for each subject, let the matrix Vi be the n by n diagonal 

matrix with general element it ji ( 1- it ji} for j = 1, 2 and i = 1, 2, 3, ... , n, 

and let V3 be the n by n diagonal matrix with general element itliit2;. 

The estimator of the information matrix may be expressed as 

in=[i(i!)u ~(~t]' (8.10) 
p tC) •(JJ)22 JJ 21 

where 

i(~t = (X'V1X), 

i(~L2 =(X'V2X), 

and 

i(~)12 = i(~)21 = -(X'V3X). 

8.1.2 Interpreting and Assessing the Significance of the Estimated 
Coefficients 

Data from a study undertaken to assess factors associated with women's 
knowledge, attitude, and behavior toward mammography have been 
made available to us by Dr. J. Zapka of the Division of Preventive and 
Behavioral Medicine, University of Massachusetts Medical School. Re­
sults from the full study may be found in Zapka, Stoddard, Maul, and 
Costanza, (1991), Costanza, Stoddard, Gaw, and Zapka, (1992) and 
Zapka, Hosmer, Costanza, Harris and Stoddard, (1992). The data used 
in this text are a subset of the data from the main study and have been 
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Table 8.1 Code Sheet for the Variables in the Mammography 
Ex2erience Studl: 

Variable DescriEtion CodesN alues Name 

1 Identification Code 1-412 OBS 

2 Mammography Experience O=Never ME 
1 =Within One Year 
2 = Over One Year Ago 

3 "You do not need a I= Strongly Agree SYMPT 
mammogram unless you 2=Agree 
develop symptoms" 3 =Disagree 

4 = Strongly Disagree 
4 Perceived benefit of 5-20 PB 

mammography • 

5 Mother or Sister with a O=No HIST 
history of breast cancer I =Yes 

6 "Has anyone taught you how O=No BSE 
to examine your own breasts: I =Yes 
that is BSE?" 

7 "How likely is it that a 1 = Not likely DETC 
mammogram could find a 2 = Somewhat likely 
new case of breast cancer?" 3 = Ver;t likelx 

*The variable PB is the sum of five scaled responses, each on a four point 
scale. (Women with low values perceive the greatest benefit of mammography. 

modified to preserve subject confidentiality. The data are described in 
Table 8.1 and may be obtained from the two web sites cited in the Pref­
ace. 

To simplify the discussion of the estimation and interpretation of 
odds ratios in the multinomial outcome setting we need to generalize the 
notation used in the binary outcome case to include the outcomes being 
compared as well as the values of the covariate. We assume that the out­
come labeled with Y = 0 is the reference outcome. The subscript on the 
odds ratio indicates which outcome is being compared to the reference 
outcome. The odds ratio of outcome Y = j versus outcome Y = 0 for 
covariate values of x = a versus x = b is 

( b)
_ P(Y = ilx = a)/P(Y = Ojx =a) 

OR. a, - / ( 1 P( Y = ilx = b) P Y = Olx = b) 
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In the special case when the covariate is binary, coded 0 or 1, we sim­
plify the notation further and let OR j =OR j {1, 0). 

We begin by considering a model containing a single dichotomous 
covariate coded 0 or 1. In the binary outcome model the estimated 
slope coefficient is identical to the log-odds ratio obtained from the 2 
by 2 table cross-classifying the outcome and the covariate. As we noted 
in the previous section. when the outcome has three levels there are two 
logit functions. We define these functions in such a way that the two 
estimated coefficients, one from each logit function, are equal to the 
log-odds ratios from the pair of 2 by 2 tables obtained by cross­
classifying the y = j and y = 0 outcomes by the covariate with y = 0 as 
the reference outcome value. 

As a specific example, consider the cross-classification of mam­
mography experience (ME) by HIST displayed in Table 8.2. When we 
use ME= 0 as the reference outcome the two odds ratios calculated 
from Table 8.2 are 

and 

OR = 19x220 =3.51 1 85xl4 

OR = 11 x220 = 2_74 . 
2 63x 14 

The results of fitting a three-category logistic regression model, 
using STATA's mlogit command, to these data are presented in Table 

" 8.3. We obtain the values in Table 8.3, labeled OR, by exponentiating 
the estimated slope coefficients. We note that they are identical to the 

Table 8.2 Cross-Classification of Mammography 
Experience (ME) by Family History of Breast Cancer 
(HIST) and Estimated Odds Ratios Using Never as the 
Reference Outcome Value 

HIST 

ME No(O) Yes (1) Total " OR 

Never(O) 220 14 234 1.0 
Within 1 Year (1) 85 19 104 3.51 

Over 1 Year ~2~ 63 11 74 2.74 

Total 368 44 412 
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Table 8.3 
Model to 

Logit 

Results of Fitting the Logistic 
the Data in Table 8.2 

Variable Coeff. Std. Err. OR 

HIST 1.256 0.3747 3.51 
Constant -0.951 0.1277 

Regression 

95% CI 

1.685, 7.321 

2 HIST 1.009 0.4275 2.74 1.187, 6.342 
Constant -1.250 0.1429 

Log-likelihood=-- 396.1700 
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values obtained from Table 8.2. As is the case in the binary outcome 
setting with a dichotomous covariate, the estimated standard error of the 
coefficient is the square root of the sum of the inverse of the cell fre­
quencies. For example, the estimated standard error of the coefficient 
for HIST in the first logit is 

[ 
1 1 1 1 ]

0
'
5 

s'E(fin)= -+-+-+- =0.3747, 
19 220 85 14 

which is identical to the value in Table 8.3. 
The endpoints of the confidence interval are obtained in exactly 

the same manner as for the binary outcome case. First we obtain the 
confidence interval for the coefficient, the endpoints of which are then 
exponentiated to obtain the confidence interval for the odds ratio. For 
example, the 95% CI for the odds ratio of ME= 1 versus ME= 0 shown 
in Table 8.3 is calculated as fo11ows: 

exp(1.256 ± 1.96 x 0.3747) = (1.685, 7.321). 

The endpoints for the confidence interval for ME= 2 versus ME= 0 in 
Table 8.3 are obtained in a similar manner. 

We interpret each estimated odds ratios and its corresponding con­
fidence interval as if it came from a binary outcome setting. In some 
cases it may further support the analysis to compare the magnitude of 
the two estimated odds ratios. This can be done with or without the 
support of tests of equality. 

The interpretation of the effect of family history on frequency of 
screening is as follows: (1) The odds among women with a family his­
tory of breast cancer having a mammogram within the last year is 3.5 
times greater than the odds among women without a family history. In 
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other words. women with a family history of breast cancer are 3.5 times 
more likely to be frequent users of mammography screening than are 
women without a family history of breast cancer. The confidence inter­
val indicates that the odds could be a little as 1.7 times or as much as 7.3 
times larger with 95 percent confidence. (2) The odds among women 
with a family history of breast cancer of having a mammogram more 
than one year ago is 2.7 times greater than women without a family 
history. Put another way. women with a history of breast cancer are 2. 7 
times as likely to have had a mammogram over one year ago than are 
women without a family history of breast cancer. The odds could be a 
little as 1.2 times or as much as 6.3 times larger with 95 percent confi­
dence. Thus we see that having a family history of breast cancer is a 
significant factor in use of mammography screening. 

We note that the test of the equality of the two odds ratios. 
OR1 = OR2 • is equivalent to a test that the log-odds for ME= 2 versus 
ME = 1 is equal to zero. The simplest way to obtain the point and inter­
val estimate is from the difference between the two estimated slope coef­
ficients in the logistic regression model. For example, using the fre­
quencies in Table 8.2 and the estimated coefficients from Table 8.3 we 
have 

A A 

{321 - {311 = 1.009-1.256 

=-0.247 

= In( 11 x 85) . 
19x63 

The estimator of the variance of the difference between the two coeffi-
A A 

cients, /321 - /311 , is 

We obtain values for the estimates of the variances and covariances from 
a listing of the estimated covariance matrix, which is an option in most, 
if not all, packages. As described in Section 8.1 the form of this matrix 
is a little different from the covariance matrix in the binary setting. 
There are two matrices containing the estimates of the variances and co­
variances of the estimated coefficients in each logit and a third contain­
ing the estimated covariances of the estimated coefficients from the dif­
ferent logits. The matrix for the model in Table 8.3 is shown in Table 
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Table 8.4 Estimated Covariance Matrix for the Fitted 
Model in Table 8.3 

Logit 1 
HIST Constant 

Logit 1 HIST 0.1404 
Constant -0.0163 0.0163 

Logit 2 HIST 0.0760 
Constant -0.0045 0.0045 

Log-likelihood = -396.1700 

Logit 2 
HIST Constant 

0.1828 
-0.0204 0.0204 

269 

8.4, where Logit 1 is the logit function for ME = 1 versus ME = 0 and 
Logit 2 is the logit function for ME= 2 versus ME= 0. 

Using the results in Table 8.4 we obtain the estimate of the variance 
of the difference in the two estimated coefficients as 

V"ar (/121- PII) = 0.1404+0.1828- 2 X 0.0760 = 0.1712. 

The endpoints of a 95 percent confidence interval for this difference are 

-0.247 ± 1.96 X .J0.1712 = ( -1.058,0.564). 

Since the confidence interval includes zero we cannot conclude that the 
log odds for ME = 1 is different from the log odds for ME= 2. 
Equivalently, we can express these results in terms of odds ratios by ex­
ponentiating the point and interval estimates. This yields the odds ratio 

A 

for ME= 2 versus ME= 1 as OR= 0.781 and a confidence interval of 
{0.347, 1. 758). The interpretation of this odds ratio is that the odds of 
less recent use is 22 percent lower than the odds of recent use among 

A A 

women with a family history of breast cancer, i.e., OR2 ""0~78 x OR1 • 

In practice, if there was no difference in the separate odds ratios 
over all model covariates then we might consider pooling outcome cate­
gories 1 and 2 into a binary ("ever" versus "never") outcome. We 
return to this question following model development in the next section. 

We note that in a model with many covariates the extra computa­
tions required for these auxiliary comparisons could become a burden. 
In this setting, procedures like STAT A's test or lin com are quite help­
ful. 
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A preliminary indication of the importance of the variable may be 
obtained from the two Wald statistics; but as is the case with any multi­
degree of freedom variable, we should use the likelihood ratio test to 
assess significance. For example, to test for the significance of the coef­
ficients for HIST we compare the log-likelihood from the model con­
taining HIST to the log-likelihood for the model containing only the 
two constant terms, one for each logit function. Under the null hy­
pothesis that the coefficients are zero, minus twice the change in the log­
likelihood follows a chi-square distribution with 2 degrees of freedom. 
In the example, the log-likelihood for the constant only model 
is 4 = -402.5990. The value of the statistic is 

G = -2 X [-402.5990- {-396.1700)] = 12.86, 

which yields a p-value of 0.002. Thus, from a statistical point of view, 
the variable HIST is significantly associated with a woman's decision to 
have a mammogram. 

In general, the likelihood ratio test for the significance of the coef­
ficients for a variable has degrees of freedom equal to the number of 
outcome categories minus one times the degrees of freedom for the 
variable in each logit. For example, if we have a four category outcome 
variable and a covariate that is modeled as continuous then the degrees 
of freedom is {4-1) x 1 = 3. If we have a categorical covariate coded at 
five levels then the covariate has four design variables within each logit 
and the degrees of freedom for the test are ( 4 -1) x (5-1)= 12 . This is 
easy to keep track of if we remember that we are modeling one logit for 
comparing the reference outcome category to each other outcome cate­
gory. 

For a polychotomous covariate we expand the number of odds ra­
tios to include comparisons of each level of the covariate to a reference 
level for each possible logit function. To illustrate this we consider the 
variable DETC modeled via two design variables using the value of 1 
(not likely) as the reference covariate value. The cross-classification of 
ME by DETC is given in Table 8.5. Using the value of ME= 0 as the 
reference outcome category and DETC = 1 as the reference covariate 
value, the four odds ratios are as follows: 
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and 

Table 8.5 Cross-Classification of Mammography 
Experience (ME) by DETC 

DETC 

ME 2 3 
Never(O) 13 77 144 
Within 1 Year (1) 1 12 91 
Over 1 Year (2) 4 16 54 

Total 18 105 289 

OR (2 1) = 
12 

X 
13 

= 2.03 1 
' 77x1 ' 

OR (31)= 91 xl3 =8.22 1 
' 144 X 1 ' 

OR (21)=
16

x
13

=0.68 2 
' 77x4 ' 

OR (31)= 54 xl3 =1.22. 2 
' 144X4 

Total 

234 
104 

74 
412 

The results of fitting the logistic regression model to these data are pre­
sented in Table 8.6. 

We see that exponentiation of the estimated logistic regression co­
efficients yields the odds ratios formed from 2 by 2 tables obtained 

Table 8.6 Results of Fitting the Logistic Regression Model 
to the Data in Table 8.5 

Logit Variable Coeff. Std. Err. OR 95% CI 

1 DETC_2 0.706 1.0831 2.03 0.242, 16.928 
DETC_3 2.106 1.0463 8.22 1.057, 63.864 
Constant -2.565 1.0377 

2 DETC_2 -0.393 0.6344 0.68 0.195, 2.341 
DETC_3 0.198 0.5936 1.22 0.381, 3.901 
Constant -1.179 0.5718 

Log-likelihood= -389.2005 
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from the main 3 by 3 contingency table. The odds ratios for logit 1 are 
obtained from the 2 by 3 table containing the rows corresponding to 
ME= 0 and ME= 1 and the 3 columns. The odds ratios for logit 2 are 
obtained from the 2 by 3 table containing the rows corresponding to 
ME= 0 and ME= 2 and the 3 columns. 

To assess the significance of the variable DETC, we calculate minus 
twice the change in the log-likelihood relative to the constant only 
model. The value of the test statistic is 

G = -2 X [ -402.5990- ( -389.2005)] = 26.80 

which, with 4 degrees of freedom, yields a p-value of less than 0.001. 
Thus, we would conclude that a woman's opinion on the ability of 

a mammogram to detect a new case of breast cancer is significantly as­
sociated with her decision to have a mammogram. Examining the esti­
mated odds ratios and their confidence intervals we see that the associa­
tion is strongest when comparing the women who have had a mammo­
gram within the last year, ME= 1, to those who have never had one, and 
comparing the not likely to very likely response. The interpretation is 
that the odds of having a mammogram within the last year among 
women who feel that a mammogram is very likely to detect a new case 
of breast cancer is 8.22 times larger than the odds among women who 
feel that it is not likely that a mammogram can detect a new case of 
breast cancer. All other estimated odds ratios have confidence intervals 
that include 1.0. The fact that the confidence interval estimates for the 
logit of ME= 1 versus ME= 0 are quite wide is a function of the cell 
with one subject in Table 8.5. This follows from the fact that the esti­
mated standard errors are equal to the square root of the sum of the in­
verse of the cell counts. For example, the estimated standard error of 
the coefficient for the log odds of DETC = 3 versus DETC = 1 in first 
logit is 

[ 
1 1 1 1 J0.5 s'E(/312)= -+-+-+- =1.0463. 

91 13 144 1 

We could compare the two sets of odds ratios over the responses of 
DETC in the manner similar to that illustrated for HIST to determine 
whether the two logit functions are different. In results not presented, 
this test with two degrees-of-freedom has p = 0.045. Thus we conclude 
that for DETC we should not combine the ME= 1 and ME= 2 outcome 
categories. The fact that this result is different from the result for HIST 
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further indicates that a decision to collapse response categories to obtain 
a simpler outcome variable should not be made until we do a thorough 
modeling of the data. 

Continuous covariates that are modeled as linear in the logit have a 
single estimated coefficient in each logit function. This coefficient, 
when exponentiated, gives the estimated odds ratio for a change of one 
unit in the variable. Thus, remarks in Chapter 3 about knowing what a 
single unit is, and estimation of odds ratios for a clinically meaningful 
change apply directly to each logit function in the multinomial logistic 
regression model. 

8.1.3 Model-Building Strategies for Multinomial Logistic Regression 

In principle, the strategies and methods for multivariable modeling with 
a multinomial outcome variable are identical to those for the binary 
outcome variable discussed in Chapter 4. The theory for stepwise selec­
tion of variables has been worked out and is available in some packages. 
However, the method is not currently available in many of the other 
widely distributed statistical software packages, such as STAT A. To il­
lustrate modeling and interpretation of the results, we proceed with an 
analysis of the data from the mammography study. 

Model building in the mammography study is simplified by the 
fact that there are only five independent variables and 412 subjects. We 
do have a few decisions to make regarding how some of the variables 
are going to be entered into the model. In particular, the variable 
SYMPT is coded at four levels on an ordinal scale. Traditionally, vari­
ables of this type have either been analyzed as if they were continuous 
or categorical. We begin the model-building process with SYMPT 
coded into three design variables, using the "strongly agree" response 
as the reference value. The variable DETC is coded at three levels and is 
ordinal scale. We decided to treat it as poylchotomous with two design 
variables using the "not likely" response as the reference value. The 
rationale for coding these ordinal scale variables into design variables 
rather than treating them as if they were continuous is that the coeffi­
cients for the design variables may be plotted to assess the functional 
form of the two logits over the categories. Initially, we treat the variable 
PB as if it were continuous and linear in the logits. The results of fitting 
the full multivariable model are given in Table 8.7 

Examination of the Wald statistics in Table 8.7 suggests that, with 
the possible exception of the variable DETC, each of the variables may 



274 SPECIAL TOPICS 

Table 8. 7 Estimated Coefficients, Estimated Standard 
Errors, Wald Statistics and Two-Tailed p-Values for the 
Full Multivariable Model Fit to the Mammography 
Ex2erience Data 

Logit Variable Coeff. Std. Err. z P>lzl 

1 SYMPT_2 0.110 0.9228 0.12 0.905 
SYMPT_3 1.925 0.7776 2.48 0.013 
SYMPT_4 2.457 0.7753 3.17 0.002 
PB -0.219 0.0755 -2.91 0.004 
HIST 1.366 0.4375 3.12 0.002 
BSE 1.292 0.5299 2.44 0.015 
DETC_2 0.017 1.2619 0.02 0.988 
DETC_3 0.904 1.1268 0.80 0.422 
Constant -2.999 1.5392 -1.95 0.051 

2 SYMPT_2 -0.290 0.6441 -0.45 0.652 
SYMPT_3 0.817 0.5398 1.51 0.130 
SYMPT_4 1.132 0.5477 2.07 0.039 
PB -0.148 0.0764 -1.94 0.052 
HIST 1.065 0.4594 2.32 0.020 
BSE 1.052 0.5150 2.04 0.041 
DETC_2 -0.924 0.7137 -1.30 0.195 
DETC_3 -0.691 0.6871 -1.01 0.315 
Constant -0.986 1.1118 -0.89 0.375 

Log-likelihood= -346.9510 

contribute to the model. For the moment we keep all variables in the 
model while we examine the coding of the variable SYMPT. 

The two estimated coefficients for the design variable SYMPT_2, 
which estimate the log odds for agree versus the reference value of 
strongly agree, suggest that these two categories are similar since neither 
Wald statistic is significant. The sign and magnitude of the estimated 
coefficients for the design variables SYMPT_3 and SYMPT_4 suggest 
that the log odds of disagree and strongly disagree differ from strongly 
agree and are of similar magnitude within each of the two logit func­
tions. To examine this further we performed a Wald test for the equality 
of the coefficients for SYMPT_3 and SYMPT_ 4 within each of the 
logits. The p-values for the two tests are p = 0.070 in the first logit and 
p = 0.335 in the second logit. These results suggest that we could use a 
simpler model that dichotomizes SYMPT into two levels, coded 0 = 
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Table 8.8 Estimated Coefficients, Estimated Standard 
Errors, Wald Statistics and Two-Tailed p-Values for 
the Model Fit Using SYMPTD to the Mammography 
Ex2erience Data 

Logit Variable Coeff. Std. Err. z P>lzl 
1 SYMPTD 2.095 0.4574 4.58 <0.001 

PB -0.251 0.0729 -3.44 0.001 
HIST 1.293 0.4335 2.98 0.003 
BSE 1.293 0.5263 2.36 0.018 
DETC_2 0.090 1.1610 0.08 0.938 
DETC_3 0.973 1.1263 0.86 0.388 
Constant -2.704 1.4344 -1.89 0.059 

2 SYMPTD 1.121 0.3572 3.14 0.002 
PB -0.168 0.0742 -2.27 0.023 
HIST 1.014 0.4538 2.24 0.025 
BSE 1.029 0.5140 2.00 0.045 
DETC_2 -0.902 0.7146 -1.26 0.207 
DETC_3 -0.670 0.6876 -0.97 0.330 
Constant -0.999 1.0720 -0.93 0.351 

Log-likelihood= -348.7480 

strongly agree or agree and 1 = disagree or strongly disagree. The re­
sults of fitting the simpler model are shown in Table 8.8. The new di­
chotomous variable is labeled SYMPTD in the output. Our decision to 
use SYMPTD involved four separate Wald tests: Two tested that the co­
efficients for SYMPT_2 are zero and two more tested the equality of the 
coefficients for SYMPT_3 and SYMPT_ 4. The overall four degree-of­
freedom combined Wald test obtained using STATA's test command 
with the accumulate option yields W = 3.58 with p = 0.466. This Wald 
test is equivalent to the likelihood ratio test comparing the model in Ta­
ble 8.8 to the model in Table 8.7. The value of the test is 

G = -2[-348.7480-(-346.9510)] = 3.5940, 

which, with four degrees-of-freedom, yields a p = 0.464. Thus we con­
clude that the more complicated model is no better than the simpler 
model using SYMPTD. 
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Table 8.9 Estimated Coefficients, Estimated Standard 
Errors, Wald Statistics and Two-Tailed p-Values for 
the Model Fit Excluding DETC to the Mammography 
Exf!erience Data 

Logit Variable Coeff. Std. Err. z P>lzl 
1 SYMPTD 2.230 0.4520 4.94 <0.001 

PB -0.283 0.0713 -3.96 <0.001 
HIST 1.297 0.4293 3.02 0.003 
BSE 1.221 0.5210 2.34 0.019 
Constant -1.789 0.8471 -2.11 0.035 

2 SYMPTD 1.153 0.3514 3.28 0.001 
PB -0.158 0.0712 -2.22 0.027 
HIST 1.061 0.4527 2.35 0.019 
BSE 0.960 0.5072 1.89 0.058 
Constant -1.742 0.8087 -2.15 0.031 

Log-likelihood= -353.0190 

The next step is to evaluate the role of DETC in the model. The 
results in Table 8.8 show that none of the four Wald statistics is signifi­
cant. We fit a model excluding DETC and the results are shown in Ta­
ble 8.9. The greatest change in a coefficient is 12.7 percent for PB in 
logit 1. The next largest change is six percent. The value of the likeli­
hood ratio test of the model in Table 8.9 versus the model in Table 8.8 
is G = 8.5421 which, with four degrees-of-freedom, gives p = 0.074. 
The fact that DETC is at most a marginal confounder of only one coef­
ficient and that the likelihood ratio test is not significant at the 0.05 level 
suggests that we should exclude DETC. However, one other possibility 
is to explore collapsing DETC into two categories. We note that the ref­
erence group, DETC = 1, has a frequency of only 18. Thus we form a 
dichotomous variable DETCD, by combining the two categories "not 
likely" and "somewhat likely". Note that the new dichotomous vari­
able is equal to the design variable DETC_3. The results of fitting this 
model are shown in Table 8.10. We see that coefficient for DETCD has 
p = 0.019 in logit 1 and p = 0.720 in logit 2. The likelihood ratio test 
of the model in Table 8.10 versus the model in Table 8.9 is G = 6.9055 
which, with two degrees-of-freedom, yields p = 0.032. Thus DETCD 
contributes significantly to the model. In addition, the likelihood ratio 
test of the model in Table 8.10 versus the model in Table 8.8 has 
G = 1.6467 which, with two degrees-of-freedom, yields p = 0.441. This 
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Table 8.10 Estimated Coefficients, Estimated Standard 
Errors, Wald Statistics and Two-Tailed p-Values for 
the Model Fit Using DETCD to the Mammography 
Ex2erience Data 

Logit Variable Coeff. Std. Err. z P>lzl 
I SYMPTD 2.095 0.4574 4.58 <0.001 

PB -0.249 0.0725 -3.44 0.001 
HIST 1.310 0.4336 3.02 0.003 
BSE 1.237 0.5254 2.35 0.019 
DETCD 0.885 0.3562 2.35 0.019 
Constant -2.624 0.9264 -2.83 0.005 

2 SYMPTD 1.127 0.3564 3.16 0.002 
PB -0.154 0.0726 -2.12 0.034 
HIST 1.063 0.4528 2.35 0.019 
BSE 0.956 0.5073 1.88 0.056 
DETCD 0.114 0.3182 0.36 0.720 
Constant -1.824 0.8551 -2.13 0.033 

Log-likelihood= -349.5663 

indicates that the model that uses all three categories of DETC is not 
better than the model using the dichotomous grouped covariate 
DETCD. The largest change in a coefficient when comparing these two 
models is eight percent for PB in logit 2. This indicates that use of the 
dichotomous covariate gives as good adjustment of the effects of the 
other covariates as the full three-category covariate. Based on these re­
sults and tests we decide to use the dichotomous variable DETCD. The 
next step is to assess the scale of PB. 

In theory we have the same methods available to check the scale of 
a continuous covariate in a multinomial logistic regression model as in a 
binary model. However, not all methods have been fully implemented 
in software packages. In particular, the only method we can use with 
current multinomial logistic regression software is the design variable 
approach. An alternative is to approximate the fit of a multinomial lo­
gistic model by fitting separate binary models. Begg and Gray (19 84) 
proposed this approach. For example, in a three group problem we 
would fit a model for Y = 1 versus Y = 0, ignoring the Y = 2 data, using 
a standard logistic regression package for a binary outcome variable 
and then fit separately a model for Y = 2 versus Y = 0, ignoring the 
Y = 1 data. Begg and Gray show that the estimates of the logistic regres-
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Figure 8.1 Plot of the estimated logistic regression coefficients for the quartile 
design variables created from PB for Logit 1 (o) and Logit 2 (.1.). 

sion coefficients obtained in this manner are consistent, and under many 
circumstances the loss in efficiency is not too great. It has been our ex­
perience that the coefficients obtained from separately fit logistic mod­
els are close to those from the multinomial fit. This suggests that the 
individualized fitting approach can be useful for scale selection for 
continuous covariates. In particular we can use the software for frac­
tional polynomials and scatterplot smoothing discussed and illustrated 
in Chapter 3. 

We note that since we can approximate a full multinomial logistic 
model by separate binary logistic models, this opens up the possibility 
of performing variable selection using the stepwise or best subsets ap­
proaches discussed in Chapter 3. If at all possible, final inferences 
should be based on estimated coefficients and estimated standard errors 
from fitting the multinomial logistic regression model. 

To assess the scale of the variable PB we begin by using the method 
of creating design variables. The values of PB are integers and range 
from 5 to 17, with relatively few values exceeding 10. PB was broken 
into four approximate quartiles corresponding to the values of 5, 6-7, 
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8-9 and ~ 10. The three design variables are formed using PB = 5 as 
the reference value. A plot of the estimated logistic regression coeffi­
cients for the three design variables from the two logit functions is 
shown in Figure 8.1. We note that the fitted model contained all the 
other covariates. 

The polygons for the two logit functions in Figure 8.1 show strong 
evidence that the logits are linear in PB. In addition we checked the 
scale of PB using fractional polynomials by fitting separate binary lo­
gistic regression models. Although not shown, the results indicated that 
neither the best m = 1 nor the best m = 2 term fractional polynomial 
model improved on the linear model. Hence, we choose to include the 
variable PB in the model as continuous and linear in each of the two 
logit functions. 

As is the case when the outcome variable is binary, the next step in 
model development is to assess the need to include interaction terms in 
the model. In the mammography experience study each pair of vari­
ables creates a clinically plausible interaction. None of the 10 interac­
tions contributed significantly to the model. Thus, we take as our pre­
liminary final model the one displayed in Table 8.10. 

To illustrate the Begg and Gray method of fitting individual logis­
tic regression models we refit the model shown in Table 8.1 0. The re­
sults of this fit along with the maximum likelihood fit are given in Table 
8.11. In Table 8.11 the columns labeled ILR give the estimated coeffi­
cients and estimated standard errors from the individualized logistic re­
gressions and the maximum likelihood estimates are given in the col­
umns labeled MLE. 

Comparing the pairs of columns in Table 8.11, one set for esti­
mated coefficients and the other for estimated standard errors, we see 
that the method of individual logistic regressions proposed by Begg and 
Gray provides a good approximation to both the estimates of the coeffi­
cients and estimates of the standard errors. Thus, in the absence of 
software capable of fitting a multinomial logistic regression model, we 
could use the results of individual logistic regressions, realizing of 
course that the resulting estimates are approximations to the maximum 
likelihood estimates. 

One problem that we were not faced with in the binary outcome 
case but which can be an issue in a multinomial logistic regression 
model occurs when a covariate is significant for some but not all logit 
functions. If we model using the principle that we would like to mini­
mize the number of parameters, then we should force the coefficients to 
be zero in some logit functions and estimate their values for the other 
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Table 8.11 Comparison of the Maximum Likelihood 
Estimates, MLE, and the Estimates from Individual 
Logistic Regression Fits1 ILR 

MLE ILR MLE ILR 

Logit Variable Coeff. Coeff. Std. Err. Std. Err. 

1 SYMPTD 2.095 2.091 0.4574 0.4651 
PB -0.249 -0.243 0.0725 0.0738 
HIST 1.310 1.385 0.4336 0.4683 
BSE 1.237 1.363 0.5254 0.5339 
DETCD 0.885 0.853 0.3562 0.3655 
Constant -2.624 -2.765 0.9264 09422 

2 SYMPTD 1.127 1.153 0.3564 0.3566 
PB -0.154 -0.154 0.0726 0.0726 
HIST 1.063 1.098 0.4528 0.4593 
BSE 0.956 0.953 0.5073 0.5097 
DETCD 0.114 0.099 0.3182 0.3191 
Constant -1.824 -1.838 0.8551 0.8600 

logit functions. This strategy is not possible with currently available 
multinomial logistic regression software, but can be accommodated us­
ing the individualized logistic regression approach. As in all modeling 
situations clinical considerations should play an important role in vari­
able selection. 

Finally, if the analysis is performed via individual logistic regres­
sions, we may employ currently available software and use the variable 
selection strategies described in Chapter 4 for each logit function. 

8.1.4 Assessment of Fit and Diagnostics for the Multinomial Logistic 
Regression Model 

As with any fitted model, before we use it to make inferences, we should 
assess its overall fit and examine the contribution of each subject to the 
fit. In multinomial logistic regression, the multiple outcome categories 
make this a more difficult problem than was the case with a model for a 
binary outcome variable. When we model a binary outcome variable we 
have a single fitted value, the estimated logistic probability of the out­
come being present, P(Y = llx). When the outcome variable has three 
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categories we have two estimated logistic probabilities, the estimated 
probabilities of categories 1 and 2, P(Y = 1lx) and P(Y = 2lx). Lesaffre 
( 1986) and Lesaffre and Albert ( 1989) have proposed extensions of 
tests for goodness-of-fit and logistic regression diagnostics to the multi­
nomial logistic regression model. However, these methods are not that 
easy to calculate using available software. Thus, until software develop­
ers add these methods to their packages we recommend assessing fit and 
calculating logistic regression diagnostics using the individual logistic 
regressions approach of Begg and Gray. 

For an outcome variable with three categories, we suggest assessing 
the fit of the two logistic regression models and then integrating the re­
sults, usually descriptively, to make a statement about the fit of the mul­
tinomial logistic regression model. The procedure for assessing the fit 
of each individual logistic regression model is described in Chapter 5. 
Integration of the results requires thoughtful consideration of the effects 
of influential and poorly fit covariate patterns on each logit function. 
In particular, covariate patterns that are influential for only one Iogit 
should be examined closely with due consideration to clinical issues be­
fore they are excluded from analyses. While this process requires more 
computation than for a single logistic regression model for a binary 
outcome variable, there is nothing new conceptually. 

We illustrate the methods by considering assessment of fit of the 
multinomial logistic regression model shown in Table 8.10 for the 
mammography experience study. Summary goodness-of-fit statistics 
are presented in Table 8.12 for each of the individual logistic regression 
models. Recall that logit model 1 refers to the logistic regression com­
paring the women who had a mammogram within a year of the inter­
view (ME= 1) to the women who never had a mammogram (ME= 0) 
and logit model 2 compares the women who had a mammogram over 1 
year prior to the interview (ME= 2) to the women who never had a 
mammogram (ME= 0). These statistics are calculated using the ob­
served covariate patterns generated by the variables in the model. For 
logit model 1 there were J = 74 patterns and for logit model 2 there 

Table 8.12 Summary Goodness-of-Fit Statistics 
(p-value) for the Individual Logistic Regressions 

Logit HL (C) Pearson ( X2
) Stukel (S) 

1 12.20 (0.142) 67.84 (0.996) 1.02 (0.601) 
2 9.62 (0.293) 68.83 (0.733) 1.86 (0.393) 
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were J = 75 patterns. 
The Hosmer-Lemeshow statistics in the first column of Table 8.12 

have values of 12.20 (df = 8, p = 0.142) and 9.62 (df = 8, p = 0.293). 
The second column of Table 8.12 contains the values of the Pearson 
chi-square statistic computed by covariate pattern. The reported p­
values are calculated using the normal approximation discussed in 
Chapter 5. The third column of Table 8.12 contains the values of 
Stukel's test (see Chapter 5 for details on how it is calculated). The p­
values for all three tests in both logits are not significant, indicating 
good overall fit of the model. 

The leverage, h, and diagnostic statistics A~, AX2
, and W defined 

in equations (5.12) and (5.14)-(5.16) were calculated for each covariate 

pattern for each of the two individually fit logistic regression models. 
Plots similar to those shown in Chapter 5 identified several patterns with 
large values for one or more statistics. Information for these patterns is 
summarized in Table 8.13. The quantity P# is an arbitrary designation 
for covariate pattern within each individually fit model. Its value de­
pends on the order in which the covariate patterns are formed. Pattern 
numbers are provided to facilitate discussion of the values of the diag­
nostic statistics. 

Examining the diagnostic statistics for logit model 1 we see why 
AX2 is quite large for covariate pattern 4. The estimated logistic prob­
ability is small yet the observed probability, yj jmj, is 0.5. This differ-

ence generates an extremely large Pearson residual. The deviance re­
sidual, while not quite as large, is also considered significant. The ex­

tremely small value for the leverage is the primary reason that A~ is not 
especially large. Based on the clinical plausibility of the observed co­
variates we have little reason to exclude the two subjects in covariate 
pattern 4. 

Covariate pattern 63 for logit model 1 presents a new challenge in 
assessing the fit of a model. The responses to the variables SYMPTD, 
HIST, BSE, and DETCD in this pattern are what we might call a "mo­
dal" response. The observed pattern in these variables represents a 
woman who disagrees (SYMPTD=l) with the statement, "You don't 
need a mammogram unless you develop symptoms," has no family 
history of disease ( HIST = 0), has been taught breast self-examination 
( BSE = 1 ), and believes that it is very likely for mammography to detect 
a new case of breast cancer ( DETCD = 1 ). In fact, 149 of the 338 sub­
jects used in fitting logit model 1 had this particular response to these 
variables. The single remaining variable to differentiate outcome 
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among these subjects is the scaled variable PB and covariate pattern 6 3 
corresponds to PB = 9. For this covariate pattern the value of 

A~= 1.733, which is quite large. This agrees with the expectations set 
out in Table 5.3 of a pattern with moderate leverage and change in 
Pearson chi-square. We would not want to discard data on 18 subjects 
representing a fairly common response pattern without first trying to 
improve the model. On the other hand, we have little other additional 
information in the covariates. Addition of all interaction terms of PB 
with the other main effects did not significantly improve the model for 
logit 1. There are seven other covariate patterns with the same "m o­
dal" response as pattern 63. The logistic regression model fits each of 
these other patterns adequately. For these patterns the value of PB 
ranged from 5 to 12 so PB = 9 for pattern 63 is not an extreme re­
sponse. 

Before considering the diagnostic statistics for logit model 2, we 
point out the fact that covariate pattern 63 in logit model 1 provides an 
excellent example of why diagnostics should be calculated by covariate 
patterns formed from the main effects in a model rather than for indi­
vidual cases. Had we considered the 18 subjects with covariate pattern 

Table 8.13 Covariate Pattern, Data, Observed Outcome 
( y), Number (m), Estimated Logistic Probability it, 

and the Value of the Three Diagnostic Statistics Ap, 
AX2

, AD and Leverage (h), for Influential or Poorly Fit 

Covariate Patterns from Each Individual Logistic 
R M d I e~ress10n o e 

Logit 1 Logit 2 
Data I P # 4 63 62 63 66 
SYMPTD 0 1 1 1 ] 

PB 6 9 9 10 10 
HIST 0 0 1 0 0 
BSE 0 1 1 0 ] 

DETCD 0 1 0 0 ] 

yj 1 11 3 1 2 

"!j 2 18 3 1 19 
7r O.Dl5 0.345 0.496 0.098 0.237 
A~ 0.543 1.733 0.956 0.264 0.999 
AXz 33.585 7.037 3.818 9.490 2.534 
AD 5.820 6.586 5.268 4.781 3.014 
h 0.016 0.198 0.200 0.027 0.282 
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63 individually an entirely different picture would emerge. First, the 
leverage for each of the 18 subjects would be 0.011=0.198/18. For the 
11 subjects with the response present the diagnostic statistics would have 
had values of M.2 = 1.92 and A~= 0.021, which would indicate some 
lack-of-fit but little influence on the estimated coefficients. The 9 sub­
jects with the response absent would have had M 2 = 0.533 and 

A~= 0.006, which would support an adequate model. Thus, had we 
considered the data on an individual basis, we would have missed an im­
portant source of lack of fit and influence on the estimated coefficients. 

Examining the diagnostic statistics in Table 8.13 for logit model 2 
we see that pattern 63 is poorly fit. We remind the reader that the com­
putations for the two individual logistic regressions were performed on 
separate data sets, thus the pattern numbers for the two models do not 
refer to the same covariate patterns. In the case of pattern 63 the esti­
mated logistic probability is quite small yet the observed probability is 
1.0. This yields a large residual. The fact that the leverage is small 
moderates the effect of the large value of M 2 on the influence meas­
ure. The problem is, as was the case with pattern 4 for logit model 1, 
that the observed outcome is just contrary to the model. 

Covariate pattern 66 has the largest values of A~. This pattern also 
represents the "modal" response described above in our discussion of 
the fit of logit model 1. In the case of logit model 2 a total of 115 of 
the 308 subjects used in the analysis had the "modal" response pattern. 
We note that for pattern 66 PB = 10. Covariate pattern 62 has the sec-

ond largest value of A~. In this case there are only 3 subjects with these 
values of the four dichotomous covariates and all three had PB = 9. 
Both covariate patterns are influential due to the fact M 2 and leverage 
are moderately large. 

In Table 8.13 we see that the patterns with the largest values of A~ 
have PB equal to 9 or 10. It appears that the response of subjects with 
PB in this range is more variable than the logistic model is able to ac­
commodate. The addition of interaction terms involving PB to logit 1 
or 2 does not improve either model. 

At this point in the analysis we have few options with the available 
data. No alternative model was able to improve on the model shown in 
Table 8.10. To explore the effect the three influential covariate patterns 
have on the model we eliminate the 40 subjects with data corresponding 
to covariate pattern 63 in logit 1 and patterns 62 and 66 in logit 2. The 
results are presented in Table 8.14. 
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Table 8.14 Estimated Coefficients, Estimated Standard 
Errors, Wald Statistics and Two-Tailed p·Values for the 
Model Fit After Deleting 40 Subjects Corresponding to 
Covariate Patterns 62z 63 and 66 in Table 8.13 

Lo~it Variable Coeff. Std. Err. z P>lzl 

I SYMPTD 2.125 0.4633 4.59 <0.001 
PB -0.216 0.0854 -2.53 O.Qll 

HIST 1.243 0.4418 2.82 0.005 
BSE 1.271 0.5310 2.39 0.017 
DETCD 0.883 0.3691 2.39 0.017 
Constant -2.892 1.0416 -2.78 0.005 

2 SYMPTD 1.191 0.3610 3.30 0.001 
PB -0.080 0.0786 -1.02 0.307 
HIST 0.606 0.4952 1.22 0.221 
BSE 1.081 0.5123 2.11 0.035 
DETCD 0.477 0.3404 1.40 0.161 
Constant -2.664 0.9556 -2.79 0.005 

Log-likelihood= -313.7473 

Comparing the estimated coefficients in Tables 8.10 and 8.14, we 
see that in logit 1 the magnitude of the coefficients has not changed. 
The maximum percent change is 13 percent for PB. However, in logit 
2, three of the five coefficients have substantial changes. The coeffi­
cient for PB went from -0.154 to -0.080, a decrease of 48 percent. The 

coefficient for HIST went from 1.063 to 0.606, a decrease of 43 per­
cent. The coefficient for DETCD went from 0.114 to 0.477, an increase 
of 318 percent. Thus we see that deleting these 40 subjects has a sub­
stantial effect on the estimated odds ratios for ME = 2 versus ME = 0. 

The problems encountered in fitting the model to patterns with PB 
in the middle of its range point out one of the dangers in using sum­
mary indices. The variable perceived benefit, PB, was created from five 
other variables. Considerable variability, and hence, information, about 
the responses of individual subjects may be lost. In the current example 
a value of PB = 9 or 10 could have been obtained from many possible 
combinations of responses to its five component variables. In situations 
when the original data are available a prudent strategy would be to re­
move the summary variable and consider the individual components as 
covariates. 
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Table 8.15 Estimated Odds Ratios and 95 Percent Confidence 
Intervals for Factors Associated with Use of Mammography 
s creenm2 

Mammogram Within One Mammogram Over One Year 
Year versus Never Ago versus Never 

Variable Odds Ratio 95 %CI Odds Ratio 95 %CI 
SYMPTD 8.12 3.314, 19.911 3.09 1.536, 6.208 
PB 1.65* 1.239, 2.189 1.36* 1.024, 1,810 
HIST 3.71 1.584, 8.669 2.90 1.191, 7.033 
BSE 3.44 1.230, 9.649 2.60 0.962, 7.031 
DETCD 2.42 1.206 4.871 1.12 0.601, 2.091 

*:Odds ratio for a 2 point decrease in Perceived Benefit 

The data for the 40 subjects excluded are not unusual, thus there is 
no clinical basis for excluding them from the analysis. Thus, based on 
our assessment of model fit and the diagnostic statistics we conclude that 
the final model is the one in presented in Table 8.10. Estimated odds 
ratios and 95 percent confidence intervals based on this model are 
shown in Table 8.15. 

The estimated odds ratios in Table 8.15 show that there is an in­
crease in the odds for mammography screening for both frequency of 
use categories versus the never category. The point estimates of the 
odds ratios are numerically larger for recent versus never reflecting the 
greater disparity in the perceived value of mammography screening 
between these two groups. In general all five model covariates are asso­
ciated with increased use of screening. 

Specifically for the covariate SYMPTD, women who disagree with 
the statement "You don't need a mammogram unless you develop 
symptoms" are 8.1 times more likely to have had a recent mammogram 
and 3.1 times more likely to have had a less recent mammogram when 
compared to women who do not disagree with the statement. Both odds 
ratios are significant since the confidence intervals do not contain 1.0. 

Women with a family history of breast cancer are estimated to be 
3.7 times more likely to be recent users and 2.9 times more likely to be 
less recent users of mammography screening when compared to women 
without a family history. The confidence intervals do not contain 1. 0 
indicating that the increase is significant. 

Having been taught breast self examination is a significant factor in 
obtaining mammography in the past year with an odds ratio of 3.4. 
The estimated odds ratio for obtaining a mammogram less recently is 
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2.6. However the confidence interval indicates that odds ratios between 
0.96 and 7 are consistent with the observed data. The results are similar 
in direction but smaller for belief that it is very likely that a mammo­
gram can detect a new case of breast cancer. 

The covariate PB (Perceived Benefit) has a negative coefficient in 
Table 8.1 0, suggesting that larger values indicate less belief in the bene­
fit of mammography screening. In a case such as this we could estimate 
an odds ratio for an increase of 2 points in the score. This odds ratio 
would be less than 1 and reflect that "less belief' is significantly asso­
ciated with less frequent use. All of the other covariates in the model 
have estimated odds ratios greater than 1.0. In order for the odds ratio 
for PB to be in a similar direction we estimate the effect for a two point 
decrease, a change of -2.0. Thus the estimate of 1.65 for frequent use 
is interpreted to mean that for every 2 point decrease in the value of PB 
the odds for frequent use of mammography screening is estimated to 
increase 1.65 times. Similarly, the estimated odds ratio of 1.36 for less 
frequent use indicates that for every 2 point decrease in the score there 
is a 1.36-fold increase in the odds ratio. 

As indicated in the discussion of the results the real challenge when 
fitting a multinomial logistic regression model is the fact that there are 
multiple odds ratios for each model covariate. This certainly compli­
cates the discussion. On the other hand, using a multinomial outcome 
can provide more complete description of the process being studied. 
For example, if we had combined the two frequency of use categories 
into an "ever" versus "never" binary outcome then we would have 
completely missed the gradation in odds ratios seen in Table 8.15. 
From a statistical point of view, one should not pool the outcome cate­
gories unless the estimated coefficients in the logits are not significantly 
different from each other. In the case of the model in Table 8.10 the 
multivariable Wald test of the equality of the two logits is W = 10.87 
which, with 5 degrees-of-freedom, yields p = 0.054. Thus we feel that 
there is little statistical justification for a pooled outcome category 
analysis. 

In summary, fitting and interpreting the results from a multinomial 
logistic regression model follows the same basic paradigm as was the 
case for a binary model. The difference is that the user should be aware 
of the possibility that informative comparative statements may be re­
quired for the multiple odds ratios for each covariate. 
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8. 2 ORDINAL LOGISTIC REGRESSION MODELS 

8.2.1 Introduction to the Models, Methods for Fitting and Interpre­
tation of Model Parameters 

There are occasions when the scale of a multiple category outcome is 
not nominal but ordinal. Common examples of ordinal outcomes in­
clude variables such as extent of disease (none, some, severe), job per­
formance (inadequate, satisfactory, outstanding) and opinion on a po­
litical candidate's position on some issue (strongly disagree, disagree, 
agree, strongly agree). In such a setting one could use the multinomial 
logistic model described in Section 8.1. This analysis, however, would 
not take into account the ordinal nature of the outcome and hence the 
estimated odds ratios may not address the questions asked of the analy­
sis. In this section we consider a number of different logistic regression 
models that do take the rank ordering of the outcomes into account. 
Each model we discuss can be fit either directly or with some slight 
modification of existing statistical software. 

It has been our experience that one problem users have with ordi­
nal logistic regression models is that there is more than one logistic re­
gression model to choose from. In the next section we describe and 
then compare through an example three of the most commonly used 
models: the adjacent-category, the continuation-ratio and the propor­
tional odds models. There is a fairly large literature considering various 
aspects of ordinal logistic regression models. A few of the more general 
references include the text by Agresti ( 1990), which discusses the three 
models we consider as well as other more specialized models, and the 
text by McCullagh and Neider (1989). Ananth and Kleinbaum (1997), 
in a review paper, consider the continuation-ratio and the proportional 
odds models as well as three other less frequently used models: the un­
constrained partial-proportional odds model, the constrained partial­
proportional odds model and the stereotype logistic model. Greenland 
( 1994) also considers the continuation-ratio, the proportional odds 
models and the stereotype logistic model. 

Assume that the ordinal outcome variable, Y, can take on K + 1 val­
ues coded 0,1,2, ... ,K. We denote a general expression for the prob­
ability that the outcome is equal to k conditional on a vector, x, of p co-

variates as Pr[ Y = k I x] = q'>k (x). If we assume that the model is the mul­

tinomiallogistic model in Section 8.1 then q'>k(x)=trk(x) where, for 
K = 2 the model is given in equations (8.3) - (8.5). In the context of 
ordinal logistic regression models the multinomial model is frequently 
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called the baseline logit model. This term arises from the fact that the 
model is usually parametrized so that the coefficients are log-odds 
comparing category Y = k to a "baseline" category, Y = 0. As shown 
in Section 8.1 the fully parametrized baseline logistic regression model 
has Kx(p+1) coefficients. Under this model the logits, as shown in 

Section 8.1, are 

for k = 1,2, ... , K. 

gk (x) = ln[rck((x)] = f3ko + x'Jlk 
Teo x) 

(8.11) 

When we move to an ordinal model we have to decide what out­
comes to compare and what the most reasonable model is for the logit. 
For example, suppose that we wish to compare each response to the next 
larger response. This model is called the adjacent-category logistic 
model. If we assume that the log odds does not depend on the response 
and the log odds is linear in the coefficients then the adjacent category 
logits are as follows: 

(8.12) 

for k = 1, 2, ... , K. The adjacent-category logits are a constrained version 
of the baseline logits. To see this we express the baseline logits in terms 
of the adjacent-category logits as follows: 

ln[4Jk(x)]= ln[4J1(x)]+ln[4J2(x)]+···+ln[ 4Jk(x)] 
4Jo(x) 4Jo(x) 4JI (x) 4Jk-l (x) 

= a1 (x) +a2(x)+ · ·· +ak(x) 

= (a1 +x'Jl)+(a2 +x'Jl)+···+(ak +x'Jl) 

= (a1 +a2 +···+ak)+kx'Jl. (8.13) 

Thus we see that the model in equation (8.13) is a version of the base­
line model in equation (8.11) with intercept f3ko = ( a 1 + a 2 +···+at) 
and slope coefficients Jlk = kJl. As we show shortly in an example, an 
easy way to fit the adjacent-category model is via a constrained baseline 
logistic model. 
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Suppose instead of comparing each response to the next larger re­
sponse we compare each response to all lower responses that is Y = k 
versus Y < k for k = 1, 2, ... , K. This model is called the continuation­
ratio logistic model. We define the logit for this model as follows: 

[
P(Y=kjx)] 

'k ( x) = In P( y < k I x) 

-In[ f/Jk(x) ] 
f/Jo(x) +f/J1 (x) + · · · + f/Jk-1 (x) 

(8.14) 

for k=1,2, ... ,K. Under the parametrization in equation (8.14) the 
continuation-ratio logits have different constant terms and slopes for 
each logit. The advantage of this unconstrained parametrization is that 
the model can be fit via K ordinary binary logistic regression models. 
We demonstrate this fact via an example shortly. We can also constrain 
the model in equation (8.14) to have a common vector of slope coeffi­
cients and different intercepts, namely 

(8.15) 

Special software is required to fit the model in equation (8.15). For ex­
ample, Wolfe (1998) has developed a command for use with STAT A. 
We note that it is also possible to define the continuation ratio in terms 
of Y = k versus Y > k for k = 0, 1, ... , K- l. Unfortunately the results 
one obtains from the two parametrizations are not equivalent. We prefer 
the formulation given in equations (8.14) and (8.15) since, if K = 1, 
each of the models in equations (8.11) to (8.15) simplifies to the usual 
logistic regression model where the odds ratios compare response Y = 1 
to response Y = 0. 

The third ordinal logistic regression model we consider is the pro­
portional odds model. With this model we compare the probability of 
an equal or smaller response, Y ~ k, to the probability of a larger re­
sponse, Y> k, 
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( ) [ P(Y~klx)l ck x =In ( I ) p Y>k X 

(8.16) 

for k = 0, 1, ... , K -1. We note that in the case when K = 1 the model as 
defined in equation (8.16) simplifies to the complement of the usual 
logistic regression model in that it yields odds ratios of Y = 0 versus 
Y = 1. We negate the coefficient vector in equation (8.16) to be consis­
tent with software packages such as ST A TA and other references dis­
cussing this model. 

The method used to fit each of the models, except the uncon­
strained continuation-ratio model, is based on an adaptation of the mul­
tinomial likelihood and its log shown in equation (8.6) for K = 2. The 
basic procedure involves the following steps: (1) the expressions defin­
ing the model specific logits are used to create an equation defining 
tPk(x) as a function of the unknown parameters. (2) The values of a 

K + 1 dimensional multinomial outcome, z' = (z0,zp ... ,zK ), are created 
from the ordinal outcome as zk = 1 if y = k and zk = 0 otherwise. It 
follows that only one value of z is equal to one. The general form of 
the likelihood for a sample of n independent observations, (y;, X; ), 

i = 1, 2, ... , n, is 

n 

l{JJ)= IJ[iPo(x;to; tPJ(xJt; X .. ·XfPK(xJK;] 
i=l 

where we use " JJ" somewhat imprecisely to denote both the p slope 
coefficients and the K model-specific intercept coefficients. It follows 
that the log-likelihood function is 

n 

L{JJ) = ~:Zo; ln[iP0 (x; }] + zli ln[iP1 (x; }]+ .. · + ZK; ln[iPK(x; }] . (8.17) 
i=l 

We obtain the MLEs of the parameters by differentiating equation 
(8.17) with respect to each of the unknown parameters, setting each of 

the K + p equations equal to zero and solving for " JJ". We obtain the 
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estimator of the covariance matrix of the estimated coefficients in the 
usual manner by evaluating the inverse of the negative of the matrix of 
second partial derivatives at "P" . 

At this point in the discussion it is not especially worthwhile to 
show the specific form of q,k(x) for each model, the details of the likeli­
hood equations or the matrix of second partial derivatives. Instead, we 
focus on a simple example to illustrate the use of the models and to aid 
in the interpretation of the odds ratios that result from each of them. As 
we noted above, an ordinal scale outcome can arise in a number of dif­
ferent ways. For example, we can create an ordinal outcome by catego­
rizing an observed continuous outcome variable. Alternatively, we may 
observe categories that we hypothesize have come from categorizing a 
hypothetical and unobserved continuous outcome. This is often a use­
ful way to envision outcome scales in categories ranging from strongly 
disagree to strongly agree. Another possibility is that the outcome is a 
composite of a number of other scored variables. Common examples 
are health status or extent of disease, which arise from many individual 
clinical indicators such as the Apgar score of a baby at birth. The Ap­
gar score ranges between 0 and 10 and is the sum of 5 variables, each 
scored as either 0, 1, or 2. 

The example we use comes from the Low Birth Weight Study (see 
Section 1.6.2) where we form a four category outcome from birth 
weight (BWT) using cutpoints: 2500g, 3000g and 3500g. This example 
is not typical of many ordinal outcomes that use loosely defined "low," 
"medium" or "high" categorizations of some measurable quantity. 
Instead, here we explicitly derived this variable from a measured con­
tinuous variable. We make use of this fact when we show how the pro­
portional odds model can be derived from the categorization of a con­
tinuous variable. In addition some of the exercises are designed to ex­
tend this discussion. First, we need to give some thought to the assign­
ment of codes to the outcome variable, as this has implications on the 
definition of the odds ratio calculated by the various ordinal models. 
The obvious choice is to use the naturally increasing sequence of codes: 
0 if BWT~2500, 1 if 2500<BWT~3000, 2 if 3000<BWT~3500 and 
3 if BWT > 3500. This coding is appropriate if we want low or lower 
weight as the reference outcome. However this is in the opposite direc­
tion of how we modeled low birth weight in earlier chapters. Thus a 
decreasing sequence of codes might make more sense to use for some 
ordinal models namely: 3 if BWT~2500, 2 if 2500<BWT~3000, 1 if 
3000 < BWT ~ 3500 and 0 when BWT > 3500. With this coding, the 
heaviest births are the reference outcome. This is the coding we use for 
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Table 8.16 Cross-Classification of the Four 
Category Ordinal Scale Birth Weight Outcome 
versus Smoking Status of the Mother 

Birth Weight Smoking Status 
Category No (0) Yes (1) Total 

0: BWT > 3500 35 11 
1: 3000 < BWT ~ 3500 29 17 
2: 2500 < BWT ~ 3000 22 16 
3: BWT < 2500 29 30 

Total 115 74 

46 
46 
38 
59 

189 

293 

the outcome variable BWT4 in this section. In truth, the actual coding, 
for the most part, does not make a difference, as long one is able to fig­
ure out how to correct the signs of the coefficients obtained by software 
packages. We illustrate this with examples. 

As a starting point consider the cross-classification of BWT4 versus 
smoking status of the mother during the pregnancy shown in Table 
8.16. The odds ratios for the multinomial or baseline logit model de­
fined in equation (8.11) are 

OR(1 0)= 
17

x
35 

=1.87 
' 29 X 11 ' 

OR(2 0)= 16
x

35 =2.31 
' 22xll ' 

and 

OR(3 0)= 30
x

35 =3.29 
' 29x11 ' 

" where we use OR(k,O) to denote the odds ratio of maternal smoking for 
BWT4 = k versus BWT4 = 0. The increase in the odds ratio demon­
strates an increase in odds of a progressively lower weight baby among 
women who smoke during pregnancy. 

The adjacent-category model postulates that the log odds of each 
successively higher comparison of the baseline log odds is a constant 
multiple of the log odds of Y = 1 versus Y = 0. Under the adjacent­
category model, the relationship we require is ln[OR(k,O)) = 
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k x In[ OR(1, 0)]. The results of fitting the adjacent-category model via a 
constrained baseline model are shown in Table 8.17. 

We obtain the equations for the adjacent-category logits by using 
the algebraic relationship between the constrained baseline and adja­
cent-category models shown in equation (8.13). It follows that the first 
estimated adjacent-category logit is identical to the first estimated base­
line logit, namely 

a1 (SMOKE)= -0.110 + 0.370 x SMOKE . 

The estimated coefficient for SMOKE in the second adjacent-category 
logit is the same as in the first. The estimated coefficient for logit 2 in 
Table 8.17 is twice the value in logit 1 and reflects the constraint placed 
on the fitted baseline logit model. It follows from equation (8.13) that 
the estimate of the constant term for the second adjacent-category logit 
is equal to the difference between the two estimated constant terms in 
Table 8.17, 

a-2 = /12o- /11o = -0.441-(-0.110) = -0.331. 

Hence the equation for the second'adjacent-category logit is 

a2(SMOKE) = -0.331 +0.370 x SMOKE. 

The equation for the third adjacent-category logit is obtained in a simi­
lar manner. In particular the estimated coefficient for SMOKE shown 

Table 8.17 Estimated Coefficients, Standard 
Errors, z-Scores, Two-tailed p-Values for 
the Fitted Constrained Baseline Model 

Logit Variable Coef. Std. Err. z P>lzl 

1 SMOKE 0.370 0.1332 2.77 0.006 
constant -Q.llO 0.2106 -0.52 0.602 

2 SMOKE 0.739 0.2664 2.77 0.006 
constant -Q.441 0.2333 -1.89 0.059 

3 SMOKE 1.109 0.3996 2.77 0.006 
constant -0.175 0.2495 -0.70 0.483 

Log-likelihood = -255.6528 
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in the third logit in Table 8.17 is three times the estimated coefficient 
for the first logit. It follows from equation (8.13) that the estimate of 
constant term is a3 = /330 -/320 = -0.175 -{-0.441) = 0.266. Hence the 
third estimated adjacent-category logit is 

a2 (SMOKE)= 0.266 + 0.370 x SMOKE. 

Under the adjacent-category model the estimate of the odds ratio for 
smoking status during pregnancy of the mother is 

A 

OR(k, k -1) = exp(0.370) = 1.45 

for k = 1, 2, 3. The interpretation of this estimate is that the odds of a 
birth in the next lower weight category among women who smoke dur­
ing pregnancy are 1.45 times the odds among women who do not 
smoke. 

Since the adjacent-category model is a constrained baseline model 
we can test that the two models are not different from each other via a 
likelihood ratio test or multivariable Wald test. The log-likelihood for 
the fitted baseline model (output not shown) based on the data in Table 
8.16 is -255.4859. Thus, the likelihood ratio test is 

G = -2(-255.6528- (-255.4859)] = 0.334 

which, with two degrees-of-freedom, gives p = P(z2(2) > 0.334) = 

0.846. The two degrees-of-freedom come from the constraints de­
scribed above for adjacent-category logits two and three. In general the 
degrees-of-freedom for this test are ((K+1)-2}xp where K+l is the 
number of categories and p is the number of covariates in each model. 
In work not shown we obtained the same result with the Wald test. Thus 
we cannot say that the adjacent-category model is different from the 
baseline model. Since the adjacent-category model summarizes the ef­
fect of smoking into a single odds ratio we might prefer to use this 
model. However, this discussion considered only one covariate and the 
final decision in any practical setting should consider all model covari­
ates as well as an evaluation of model fit. 

Next we consider the continuation-ratio model. As shown in equa­
tion (8.14) the coefficients for this model yield the log odds for a birth 
in the next lower weight category relative to all heavier weight catego-
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Table 8.18 Estimated Coefficients, Standard 
Errors, z·Scores, Two-tailed p· Values for the 
Fitted Unconstrained Continuation-Ratio Model 
Logit Variable Coef. Std. Err. z P>lzl 

I SMOKE 0.623 0.4613 1.35 0.177 
constant -0.188 0.2511 -0.75 0.454 

2 SMOKE 0.508 0.3991 1.27 0.203 
constant -1.068 0.2471 -4.32 0.000 

3 SMOKE 0.704 0.3196 2.20 0.028 
constant -1.087 0.2147 -5.06 <0.001 

Log-likelihood = -62.8400 + (-77.7436) + (-114.9023) 
= -255.4859 

ries. The unconstrained model described in equation (8.14) can be fit 
via a set (3 in this case) of binary logistic regressions. Each fit is based 
on a binary outcome, y;, defined as follows: 

{ 

1 ify=k 

y; = 0 ify<k 

Missing if y > k 

for k = 1, 2, 3. The results of fitting the unconstrained continuation-ratio 
logit model containing SMOKE are shown in Table 8.18. The results of 
the three separate fits are summarized into one single table for purposes 
of emphasizing that we have fit a single multiple category outcome. 
This model is, in terms of the number of parameters and log-likelihood, 
fully equivalent to the unconstrained baseline model. Note that, as 
shown at the bottom of Table 8.18, the sum of the values of the log­
likelihoods from the three separate fits is equal to the log-likelihood 
from the unconstrained baseline model. 

The three estimated coefficients in Table 8.18 are quite similar (all 
are approximately 0.6). The estimates indicate that the odds of a birth 
in the next lower weight category relative to higher weight categories 
among women who smoked during pregnancy is about 1.8 = exp(0.6) 
times that of women who didn't smoke. 

To test for the equality of the three smoking coefficients, we make 
use of the fact that, as a result of the definition of the model, the three 
sets of parameter estimates are independent. Thus a simple test for 
equality is the two degree-of-freedom chi square statistic 
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w2 = (0.623-0.508)
2 

+ (0.623-0.704)
2 = 0.056 • 

[(0.4613)2 +(0.3991)2
] [(0.4613)2 +(0.3196)2

] 

which yields p = Pr[z2 (2) > 0.056] = 0.972. Hence we cannot say, at the 

0.05 level, that the three coefficients are different and we consider fit­
ting the constrained continuation-ratio logit model in equation (8.15). 

The results of fitting this model are shown in Table 8.19. The es­
timate of the odds ratio for smoking during pregnancy is 
1.87 = exp(0.627). The wording of the interpretation is the same as that 
given for the approximate value from the unconstrained model. This 
odds ratio is a bit larger than the estimate of 1.45 obtained under the 
adjacent-category model. The reason is that the reference group for the 
continuation-ratio model includes all heavier weight categories not just 
the next highest, which is used in the adjacent-category model. 

In general, the continuation-ratio model might be preferred over 
the baseline and adjacent-category model when the conditioning used in 
defining and fitting the model makes clinical sense. A common exam­
ple is one where the number of attempts to pass a test or attain some bi­
nary outcome is modeled. The first logit models the log odds of pass­
ing the test the first time it is taken. The second logit models the log 
odds of passing the test on the second attempt given that it was not 
passed on the first attempt. And this process continues until one is 
modeling the Kth attempt. Since this is not a common setting we do not 
consider the model in any more detail. Further elaboration and discus­
sion can be found in the references cited in this section. 

Probably the most frequently used ordinal logistic regression 
model in practice is the constrained cumulative logit model called the 
proportional odds model given in equation (8.16). Each of the previ-

Table 8.19 Estimated Coefficients, Standard 
Errors, z-Scores, Two-tailed p·Values for the 
Fitted Constrained Continuation-Ratio Model 

Variable Coef. Std. Err. z P>lzl 
SMOKE 0.627 0.2192 2.86 0.004 
constant! -0.189 0.2204 
constant2 -1.114 0.2129 
constant3 -1.052 0.1862 

Log-likelihood = - 255.5594 
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ously discussed models for ordinal data compares a single outcome re­
sponse to one or more reference responses (e.g., Y = k versus Y = k -1, 
or Y = k versus Y < k ). The proportional odds model describes a less 
than or equal versus more comparison. For example if the outcome is 
extent of disease the model gives the log odds of no more severe out­
come versus a more severe outcome. The constraint placed on the 
model is that the log odds does not depend on the outcome category. 
Thus inferences from fitted proportional odds models lend themselves 
to a general discussion of direction of response and do not have to fo­
cus on specific outcome categories. The results are much simpler to 
describe than those from any of the unconstrained models but are of 
about the same order of complexity as results from the other con­
strained models. 

This consistency of effect across response categories in the propor­
tional odds model is similar to that described for the constrained adja­
cent-category and continuation-ratio models and, as such, should always 
be tested. Modifications of the proportional odds model that allow one 
or more covariates to have category-specific effects are discussed by 
Ananth and Kleinbaum (1997). These "partial" proportional odds 
models have not, as yet, seen wide use in practice and we do not con­
sider them further in this text. 

One way of deriving the proportional odds model is via categoriza­
tion of an underlying continuous response variable. This derivation is 
intuitively appealing in that it allows us to use some concepts from lin­
ear regression modeling. For example, the cutpoints used to obtain the 
four category variable BWT4 are 2500, 3000 and 3500 grams. Due to 
the way packages handle the proportional odds model it turns out to be 
more convenient to code the ordinal outcome so it increases in the same 
direction as its underlying continuous response. Thus we define the 
outcome BWT4N as follows: 0 if BWT ~ 2500, 1 if 2500 < BWT ~ 3000, 
2 if 3000 < BWT::; 3500 and 3 when BWT > 3500 and the specific cut­
points as cp1 = 2500, cp2 = 3000 and cp3 = 3500. 

We show in Figure 8.2 a hypothetical line or model, 
BWT = A-0 + f3 x LWT, that describes mean birth weight as a function of 
mothers weight at the last menstrual period. The interval-specific cod­
ing of the BWT4N outcome variable is shown to the left of the BWT axis 
as Y = k for k = 0, 1, 2, 3 . The particular values used to obtain the line 
are A..o = 100 and f3 = 20 and are for demonstration purposes only. The 
actual linear regression of BWT on LWT could have been used; how­
ever, the resulting graph would not have had as large a range in the 
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BWT axis or as steep a slope. It is the idea that is important not the ac­
tual numbers. 

Suppose that instead of the usual normal errors linear regression 
model we have a model where the errors follow the logistic distribution. 
The statistical model for birth weight is BWT = A.0 + A.1 x LWT + 0' x e, 
where 0' is proportional to the variance and e follows the standard lo­
gistic distribution with cumulative distribution function 

(8.18) 

A concise discussion of this distribution may be found in Evans, Hast­
ings and Peacock (1993). 

The regression based on the continuous outcome models the mean 
of BWT as a function of LWT. In ordinal logistic regression we model 
the probability that BWT falls in the four intervals defined by the three 
cutpoints shown in Figure 8.2. For example, we show in Figure 8.3 the 
underlying logistic distribution for the regression model in Figure 8.2 at 

BWT = Ao+ {3 x LWT 

Y=O 

150 

100 125 150 175 200 

Mother's Weight at the Last Menstrual Period 

Figure 8.2 Plot of a hypothetical model describing mean birth weight as a 
function of mother's weight. 
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LWT == 125. The mean is 2600 grams. The probabilities for the four 
ordinal outcomes are the respective areas under this curve. The area 
below 2500 is the largest indicating that, among women who weigh 125 
pounds, a birth weight less than or equal to 2500 grams ( BWT4N = 0) 
is the most likely ordinal outcome. However, at 17 5 pounds the mean 
from the regression line is 3600 grams and the probability is largest for 
the BWT4N = 3 ordinal outcome and smallest for the BWT4N = 0 or­
dinal outcome. Under the proportional odds model we model the ratios 
of cumulative areas defined by the cutpoints. 

Consider women who weigh 125 pounds. Under our coding of the 
four category ordinal variable BWT4N we have 

P(BWT4N = Ol LWT= 125)= P(BWT~ cp11 LWT= 125) 

= P[ ( A.o + 125 x A-1 +ax e) ~ cp1 ) 

~P[e,; cp,-(Jc. :mx.<,)l 
= P[e ~ r1 -125 x /3) (8.19) 

.25 

700 2500 3000 3500 

BWT 

Figure 8.3 Plot of the hypothetical underlying logistic distribution at 
LWT=125. 

5000 
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where we let -r1 = (cp1 - A.0 )/a and f3 =~fa. Under the assumption of 
errors with the distribution function in equation (8.18), the probability 
in equation (8.19) is 

(8.20) 

It follows from equation (8.20) that 

Hence the log odds of a lighter weight baby at this cutpoint among 125 
pound women is 

(8.22) 

which is the proportional odds model in equation (8.16). If we follow 
the steps in equation (8.19) to equation (8.22) then we obtain identical 
expressions for the other outcome categories. For example, at the cut­
point cp3 we have the log odds 

In =In -+--::---~ 
[

P(BWT4N ~ 21 LWT = 125)] [P(E .:s; -r3 -125x /3)] 
P( BWT4N > 21 LWT = 125) P(E > -r3 -125 X {3) 

=-r3 -125xf3. 

By similar calculations at BWT4N = 1 among 175 pound women the 
log odds is 
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In = In ~-__;:;.. __ __;_+ 
[
P(BWT4N:::;IiLWT=l75)] [P(E:::;-r2 -175xf3)] 
P(BWT4N>liLWT=I75) P{E>-r2 -175xf3) 

=-r2 -175x{3. 

We can follow the same derivation for any covariate, x, and any 
number of categories for an ordinal outcome variable, Y, and we obtain 
as the log odds for as small or smaller outcome the equation 

It follows from equation (8.23) that the log of the odds ratio for x = x1 

versus x = x0 is 

ln -In -[
P(Y:::;klx,)] [P(Y:S;klxo)]-
P( Y > k I x1) P( Y > k I x0 ) 

=(-rk+t -x, xf3)-(-rk+r-Xo xf3) 

= -f3(x1 - x0 ). (8.24) 

How we use the results from a package and equation (8.24) to es­
timate an odds ratio depends on the package used. For example, the 
results of fitting the proportional odds model in STATA with outcome 
BWT4N and covariate LWT are shown in Table 8.20. Note that the co­
efficient for L WT in Table 8.20 is positive reflecting the direction of the 
association seen in Figure 8.3. Hence increasing values of LWT are as­
sociated with increasing values of BWT4N. Thus the output is consistent 
with the underlying hypothetical continuous outcome model. The 
negative sign in equation (8.24) reflects the fact that under a positive 
association the covariate is protective (i.e., negatively associated with 
smaller values of the ordinal outcome). Hence the estimate of the effect 
of a 10-pound increase in L WT on the odds ratio for as light or lighter 
versus a heavier baby is 

A 

OR= exp( -0.013 x 10) = 0.88. 
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Table 8.20 Results of Fitting the Proportional 
Odds Model to the Four Category Birth Weight 
Outcome, BWT4N, with Covariate LWT 
Variable Coef. Std. Err. z P>lzl 95% CI 
LWf 0.013 0.0043 2.95 0.003 0.004, 0.021 
constant! 0.832 0.5686 
constant2 1.707 0.5782 
constant3 2.831 0.6027 
Log-likelihood== -255.1477 
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This estimate implies a 12 percent reduction in the odds for a lower 
weight baby per 10-pound increase in weight. 

One feature of the proportional odds model that is identical to the 
binary logistic model is that we can reverse the direction of the model 
by simply changing the signs of the coefficients. For example, if we are 
interested in modeling heavier versus lighter weight babies then the es­
timate of the odds ratio for a 10-pound increase in weight is 

" OR= exp(0.013 x 10) = 1.14. 

This estimate indicates that there is a 14 percent increase in the odds of 
a heavier baby per 10-pound increase in weight. 

The output from SAS's logistic procedure is identical to Table 
8.20 except that the coefficient for LWT is -0.013 since SAS uses a 
model that does not negate the coefficient, fJ, in equation (8.16). 

As a second example we fit the model containing smoking status of 
the mother during pregnancy. Women who smoke during pregnancy 
tend to have lower weight births thus the association in the conceptual 
underlying continuous model is negative. The results of fitting this 
model in STATA are shown in Table 8.21 where the coefficient for 
SMOKE is negative. Hence the estimate of the odds ratio for a lower 
versus a heavier weight baby is, from equation (8.24), 

OR== exp(-(-0.761)]= 2.14. 

The interpretation is that women who smoke during pregnancy have 2.1 
times the odds of a lower versus a heavier baby than women who do not 
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smoke. Similar to the discussion for L WT the estimate of the odds ratio 
for a heavier versus lighter weight baby is 

" OR= exp (-0.761) = 0.47. 

The interpretation of this estimate is that the odds of a heavier versus 
lighter weight baby are 53 percent less for women who smoke during 
pregnancy. 

As with other constrained ordinal models, one should check to see 
whether the assumption of proportional odds is supported by the data. 
This is typically done by comparing the fitted proportional odds model 
to the unconstrained baseline logit model via either a score or likelihood 
ratio test. The problem with these tests is that the proportional odds 
model can not be obtained by placing linear constraints on the coeffi­
cients in the baseline model. While the tests are not completely statisti­
cally correct, they can be used to provide some evidence of model ade­
quacy. The degrees-of-freedom for the comparison is the same as for 
the test of the adjacent category versus the baseline model, 
( ( K + 1)-2) x p. For example, the likelihood ratio comparison of the 
proportional odds model containing smoking status of the mother 
shown in Table 8.21 to the baseline logit model is 

G = -2[ -255.6725- ( -255.4859)] = 0.373, 

which, with two degrees-of-freedom, gives p = P(z2(2) > 0.373) = 0.830. 

The SAS package uses the score test and obtains a p-value based on two 
degrees-of-freedom of 0.644. Thus, on the basis of either test, we can­
not say that the baseline and proportional odds models are different. 
Thus, at least for the covariate SMOKE, the inferences from the two 

Table 8.21 Results of Fitting the Proportional Odds 
Model to the Four Category Birth Weight Outcome, 
BWT4N, with Covariate SMOKE 
Variable Coef. Std. Err. z P>lzl 95% CI 
SMOKE -0.761 0.2719 -2.80 0.005 -1.293, -0.228 
constantl -1.116 0.1984 
constant2 -0.248 0.1819 
constant3 0.867 0.1937 
Log-likelihood= -255.6725 
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models are equivalent. 
The choice of what model to ultimately use in any problem should 

consider which odds ratios are most informative for the problem as well 
as an assessment of model adequacy. In the next section we consider a 
more complete analysis of the four category birth weight outcome. 

8.2.2 Model Building Strategies for Ordinal Logistic Regression 
Models 

The steps in model building for an ordinal logistic model are the same 
as described in Chapter 4 for the binary logistic regression model. Un­
fortunately, however, the full array of modeling tools is not available in 
software packages. 

For ordinal models we think that a sensible approach to model 
building involves the following steps: Perform the usual purposeful or 
stepwise selection of main effects. Check for the scale of continuous 
covariates using design variables in the ordinal model. In addition, one 
could check for nonlinearity using fractional polynomial analyses with 
K separate binary regressions of y = k versus y = 0. Any nonlinear 
transformation found should, of course, make clinical sense, be rea­
sonably similar across the separate logistic regressions and make a sig­
nificant improvement over treating the covariate as linear in the ordinal 
model. Next, check to make sure all omitted covariates are neither sig­
nificant nor confounders of main effects in the model. Lastly, check 
the need to include interactions using the usual selection methods. At 
this point, check any model assumptions of constant coefficients by 
comparing th'e constrained model to its unconstrained version. As 
shown in Section 8.2.1 this can be done via a likelihood ratio com pari­
son of the fitted model versus the baseline model. Diagnostic statistics 
and goodness-of-fit tests have not been extended for use with ordinal 
models. Thus one has to use the separate binary regressions approach. 
The big disadvantage of this approach is that one is really not checking 
the actual fitted model, only an approximation to it. However this 
method may help identify influential and poorly fit subjects. In general 
this approach is a bit ad-hoc and all results should be checked by de­
leting identified subjects and refitting the ordinal model. Finally, infer­
ential statements based on estimated odds ratios and their confidence 
intervals should be worded in such a way that it is clear which ordinal 
model has been used. 

Since the basic process is so similar to ones used many times in this 



306 SPECIAL TOPICS 

text we begin with a model for the four-category birth weight outcome 
containing the significant main effects. We focus on fitting the propor­
tional odds model. The results of fitting this model are shown in Table 
8.22. We include age in the model because of its known clinical im­
portance. In addition we keep the indicator variable for hypertension, 
HT, in the model because of its clinical importance and the fact that the 
likelihood ratio test for its significance yields p = 0.046 (work not 
shown). 

We used three separate binary regressions to check the scale of 
AGE and L WT and this analysis supported keeping them linear in the 
logit. A check for scale using the quartile design variables for L WT 
yielded three similar coefficients suggesting that we consider recoding 
L WT into a single dichotomous covariate comparing the first quartile to 
the other three quartiles. Replacing LWT with this dichotomous covari­
ate yielded a model with a slightly smaller log-likelihood but the coeffi­
cient for HT changed by about 18 percent. Thus it seems that keeping 
L WT continuous in the logit gives us nearly as good a model and pro­
vides better adjustment of the effect of HT. 

Next we checked for interactions. The only significant interaction 
is between L WT and HT with p = 0.044 for the likelihood ratio test and 
p = 0.062 for the Wald test of the coefficient. However the estimated 

coefficient for the main effect of HT is Pnr = -5.648 with an estimated 

Table 8.22 Results of Fitting the Proportional Odds 
model to the Four Category Birth Weight Outcome, 
BWT4N 

Variable Coef. Std. Err. z P>lzl 95%CI 
AGE 0.001 0.0275 0.02 0.982 -0.053, 0.054 
LWT 0.013 0.0049 2.65 0.008 0.003, 0.022 
RACE_2 -1.471 0.4347 -3.38 0.001 -2.323, -0.619 
RACE_3 -0.869 0.3345 -2.60 0.009 -1.535, -0.213 
SMOKE -0.988 0.3150 -3.14 0.002 -1.605, -0.370 
HT -1.194 0.6122 -1.95 0.051 -2.394, 0.006 
UI -0.913 0.4045 -2.26 0.024 -1.706, -0.120 
PTD -0.822 0.4174 -1.97 0.049 -1.640, -0.004 
Constant! -0.495 0.8798 
Constant2 0.516 0.8817 
Constant3 1.803 0.8914 
Log-likelihood = -235.6504 
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Table 8.23 Estimates of Odds Ratios for a 
Lighter versus a Heavier Birth and 95 Percent 
Confidence Intervals Obtained from the Fitted 
Proportional Odds Model in Table 8.22 

X 
Variable OR 95% CI 

AGE 0.99+ 0.582, 1.699 
LWT o.88+ o.803, o.970 
RACE_2 4.35 1.857, 10.206 
RACE_3 2.38 1.237, 4.641 

SMOKE 
Hf 
ill 
PTD 

2.69 
3.30 
2.49 
2.28 

1.448, 4.978 
0.994, 10.957 
1.127, 5.507 
1.004, 5.155 

+: Estimate for a 10 year or 10 pound increase 
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standard error of sE:(.BHT) = 2.5353 indicating considerable numerical 

instability largely due to the fact that there are only 12 subjects with 
HT = 1. Thus we decide not to include this interaction in the model. 

Next we check the assumption of proportional odds of the fitted 
model in Table 8.22. The likelihood ratio test comparing the baseline 
logit model to the proportional odds model is 

G = -2 x[(-235.6504)- (-224.7788)] = 21.7432. 

The degrees-of-freedom for this comparison are {(K+1)-2)xp= 

(4-2)x8=16 and the approximate p-value is P[%2 (16)~21.7432]= 
0.152. Thus we conclude that we cannot say that the proportional odds 
assumption does not hold. 

To assess the fit and influence of individual subjects we performed 
three separate full assessments of fit based on the binary logistic regres­
sions of BWT4N=k versus BWT4N=0. The methods are as de­
scribed and illustrated in detail in Chapter 5. The results of this analysis 
identified that subjects with identification numbers 98, 132, 133, 138 
and 188 are highly influential with A~> 1 in one of the three binary 
regressions. Examination of the data for these subjects yields no un­
usual values. However, two of these subjects are among the twelve with a 
history of hypertension. If we remove all five subjects then we do see 
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changes of greater than 20 percent in three of the eight coefficients. 
However their removal leads to two cells with zero frequency in the 
cross-tabulation of BWT4N versus HT. Due to these zero frequency 
cells we cannot fit the baseline logit model and hence are unable to test 
the proportional odds assumption with the likelihood ratio comparison. 
As a result, we decide not to remove any of these subjects and use the 
model in Table 8.22 as our final model. 

We provide estimates of the odds ratios for a lighter versus a heav­
ier birth and their confidence intervals in Table 8.23. We obtain these 
odds ratios as follows: If we follow the usual method of exponentiating 
the estimates of the coefficients in Table 8.22 then the odds ratios corn­
pare the odds for a heavier versus a lighter birth. A fact we discussed in 
detail for L WT is that the output from STAT A is set up to be consistent 
with an underlying hypothetical continuous response. Namely, positive 
coefficients imply a positive association between the covariate and the 
hypothetical continuous response. In this example the reverse direction 
is a clinically more relevant comparison, lighter versus heavier birth. 
Thus the odds ratios we present in Table 8.23 are obtained by exponen­
tiating the negative of the values in Table 8.22. 

The results of this analysis show that, after controlling for the age 
and weight of the mother, race other than white, smoking during preg­
nancy, history of hypertension, uterine irritability and history of a pre­
term delivery increase the odds of a lighter versus heavier birth. The 
increase in the odds ranges from 4.4 times for black versus white race to 
2.3 times for history of pre-term delivery. All the estimates are signifi­
cant at the five percent level except history of hypertension, which has 
p = 0.051. 

We could have selected one of the other ordinal models but we feel 
that the proportional odds model provides the most useful clinical de­
scription of the four category ordinal birth weight variable. We leave 
fitting the other models as exercises. 

8.3 LOGISTIC REGRESSION MODELS FOR THE 
ANALYSIS OF CORRELATED DATA 

Up to this point in the text we have considered the use of the logis­
tic regression model in settings where we observe a single dichotomous 
response for a sample of statistically independent subjects. However, 
there are settings where the assumption of independence of responses 
may not hold for a variety of reasons. For example, consider a study of 
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asthma in children. Suppose the study subjects are interviewed bi­
monthly for one year .. At each interview the mother is asked, during the 
previous two months, if the child had an asthma attack severe enough to 
require medical attention, whether the child had a chest cold, and how 
many smokers lived in the household. The date of the visit is also re­
corded. The child's age and race are recorded at the first interview. 
The primary outcome is the occurrence of an asthma attack. However, 
there is a fundamental lack of independence in the observations due to 
the fact that we have six measurements on each child. In this example 
each child represents a cluster of correlated observations of the out­
come. The measurements of the presence or absence of a chest cold 
and the number of smokers residing in the household can change from 
observation to observation and thus are called cluster-specific covari­
ates. The date changes in a systematic way and is recorded to model 
possible seasonal effects. The child's age and race are constant for the 
duration of the study and are referred to as cluster-level covariates. The 
terms clusters, subjects, cluster-specific and cluster-level covariates are 
general enough to describe multiple measurements on a single subject 
or single measurements on different but related subjects. An example 
of the latter setting would be a study of all children in a household. 

The goals of the analysis in a correlated data setting are, for the 
most part, identical to those discussed in earlier chapters. Specifically, 
we are interested in estimating the effect of the covariates on the di­
chotomous outcome via odds ratios. However, the models and estima­
tion methods are a bit more complicated in the correlated data setting. 

There is a large and rapidly expanding literature dealing with sta­
tistical research on methods for the analysis of correlated binary data. 
Most of the research in this area is at a mathematical level that is well 
beyond this text. However software to fit the more common and estab­
lished models for correlated binary data is available in major packages 
such as SAS and STATA. Thus the goal of this section is to introduce 
the models that can be fit with the major software packages and to dis­
cuss the strengths and limitations of these models as well as the inter­
pretation of model parameters. Two accessible review papers that discuss 
the models we consider are Neuhaus, Kalbfleisch and Hauck (1991) and 
Neuhaus (1992). Diggle, Liang and Zeger (1994) discuss methods for 
the analysis of longitudinal data and consider models for binary data. 
Ashby, Neuhaus, Hauck, Bacchetti, Heilbron, Jewell, Segal and Fusaro 
(1992) provide a detailed annotated bibliography on methods for ana­
lyzing correlated categorical data. Collett's (1991) excellent text on 
modeling binary data discusses methods for analyzing correlated binary 
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data at a level comparable to this text. Pendergast, Gange, Newton, 
Lindstrom, Palta and Fisher (1996) also review methods for clustered 
binary data. Breslow and Clayton (1993) consider mixed models for 
generalized linear models. Agresti, Booth, Hobert and Caffo (2000) 
present a summary of different methods for the analysis of correlated 
binary data via random effects models, one of which we discuss in this 
section. Their paper considers other models and different data settings 
where random effects models can be effectively used. Coull and Agresti 
(2000) consider extensions of the logistic-normal mixed model consid­
ered in this section. Rosner (1984) and Glynn and Rosner (1994) con­
sider specialized models for the analysis of paired binary outcomes. 

The basic approach with correlated binary data is to try to mimic 
the usual normal errors linear mixed effects model. Suppose we are in a 
setting with m subjects (or clusters) and n; observations per subject. We 
denote the dichotomous outcome variable as Y;i and the vector of co-

variates as xij = (1,x1ii,Xzij•· .. ,xPii) for the jth observation in the ith clus­

ter. Note that some of the covariates may be constant within subject and 
some may change from observation to observation. At this point we do 
not use different notation for each. The most frequently used subject­
or cluster-specific logistic model is the logistic-normal model. In gen­
eral, the model is referred to in the literature as a "cluster-specific" 
model as this term is a bit more general than "subject-specific". It de­
scribes the case of multiple observations on a single subject and single 
observations on related subjects. For the most part we use the term 
cluster-specific rather than subject-specific. Under this model, the cor­
relation among individual responses within a cluster is accounted for by 
adding a cluster-specific random effect term to the logit. The equation 
for the logit is 

(8.25) 

where it is assumed that the random effects follow a normal distribution 

with mean zero and constant variance, i.e., a;- N(o,a;). In practice the 

random effect terms are unobserved and this leads to complications 
when we consider estimation of the regression coefficients, Ps. We have 
added the subscript s to indicate that the coefficients apply to a logistic 
regression model that is specific to subjects with random effect a;. 
Suppose that in our hypothetical asthma study the coefficient for having 
had a chest cold in the previous two months is ln(2). The cluster-
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specific interpretation is that having a cold doubles the odds of a spe­
cific child having a severe asthma attack in the next two months. Alter­
natively, the odds among children with the same value of the unob­
served random effect who had a cold is two times that of those with the 
same value of the unobserved random effect who did not have a cold. 
The interpretation applies to a specific child or specific unobserved 
group of asthmatic children, not to broad groups of asthmatic children. 
Since the covariate "having had a cold" can change from month to 
month, the within subject interpretation provides a clear estimate of the 
increase in the odds for a specific subject. On the other hand, suppose 
that race is a dichotomous covariate coded as either white or non-white 
and its coefficient is Jn(2). The cluster-specific interpretation is that a 
non-white child with random effect a; has odds of a severe asthma at­
tack that is twice the odds of a white child with the same random effect. 
Since both the race and random effect are constant within subject and 
cannot change, this odds ratio is not likely to be useful in practice. 
These two simple examples illustrate that the logistic-normal model is 
most likely to be useful for inferences about covariates whose values can 
change at the subject level. 

The effect of the term a; in equation (8.25) is to increase the cor-
relation among responses within a cluster relative to the correlation be­
tween clusters. The basic idea is that the underlying logistic probabili­
ties for observations of the outcome in a cluster have a common value 
of a;. Thus their outcomes will be more highly correlated than the cor­
relation among outcomes when the a;' s are different. The greater the 
difference in the values of the a; 's the greater the within relative to the 
between cluster correlation. The heterogeneity in the a;'s is simply a 
function of their variance 0"~. Thus the within-cluster correlation in­

creases with increasing 0"~. 
An alternative to the cluster-specific model in equation (8.25) is the 

population average model. Under this model we average, in a sense, 
over the statistical distribution of the random effect and assume that this 
process yields the logit 

(8.26) 

Probabilities based on the logit in equation (8.26) reflect the proportion 
of subjects in the population with outcome present among subjects with 
covariates xij. We note that we have not specified the statistical distribu-

tion of the random effects, only that the marginal or population pro-
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portions have logit function given by equation (8.26). The lack of dis­
tributional assumptions presents problems when trying to estimate IJPA 
that we discuss shortly. The population average model does not make 
use of the fact that we may have covariates whose values could be dif­
ferent at different occasions measuring the same subject. For example 
the interpretation of a coefficient equal to ln(2) for having had a cold 
during the previous two months js that the odds of a severe asthma at­
tack among those who had a cold is twice the odds among those who 
did not have a cold. Thus the coefficient describes the effect of the co­
variate in broad groups of subjects rather than in individual subjects. If 
the coefficient for race is ln(2) then the log odds of a severe asthma 
attack among non-whites is twice that of whites. Since a characteristic 
like race cannot change over multiple measurements on the same sub­
ject the population average model is best suited for this covariate and 
for others that describe broad groups of subjects. 

Both the cluster-specific and population average model may be fit 
to data containing subject-specific and cluster-level covariates. The 
choice of which model to use should consider what types of inferences 
the fitted model is intended to provide. As described via the two covari­
ates "having had a cold" and "race", the cluster-specific model is 
most useful when the goal is to provide inferences incorporating indi­
vidual subject covariate values. Alternatively, the population average 
model is likely to be more useful in addressing epidemiologic type as­
sessment of exposure effects through outcome experience in larger 
groups of subjects. 

A third, slightly more specialized, model is the transitional model. 
This is a cluster-specific model where one or more of the previously 
observed values of the outcome or other covariates is used. For exam­
ple, we might include the observation of whether or not a severe asthma 
attack had occurred in the first two months when modeling the event in 
the third and fourth months. We illustrate this model with an example 
after considering the cluster-specific and population average models in 
more detail. 

As we alluded to above, estimation in correlated data models is not 
as straightforward or easily described as in the uncorrelated data setting 
where a likelihood function can be derived from the binomial distribu­
tion. We begin with the population average model. The approach used 
is the method of generalized estimating equations, usually abbreviated 
as GEE. Liang and Zeger (1986) and Zeger, Liang and Albert (1988) 
first used GEE with the population average model. 
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The GEE approach uses a set of equations that look like weighted 
versions of the likelihood equations shown in Chapters 1 and 2. The 
weights involve an approximation of the underlying covariance matrix 
of the correlated within-cluster observations. This requires making an 
assumption about the nature of the correlation. The default assumption 
used by most packages is called exchangeable correlation and assumes 
that the correlation between pairs of responses is constant, 

Cor( Y;j, Y;1) = p for j =F. l. Three other possible correlation structures 

that can be specified in most packages are independent, auto-regressive 
and unstructured. Under the independent model Cor(Yu, Y;1) = 0 for 

j =F-l and the GEE equations simplify to the likelihood equations ob­
tained from the binomial likelihood in Chapter 2. We do not consider 
this correlation structure further. The auto-regressive structure is ap­
propriate when there is a time or order component associated with the 
observations. The correlation among responses depends on the lag be­
tween the observations and is assumed to be constant for equally lagged 
observations. Since settings where there is an explicit time component 
are a bit specialized we do· not consider this type of correlation further 
in this text. Under unstructured correlation one assumes that the corre-

lation of the possible pairs of responses is different, Cor(Y;j, Y;1) = pj/ for 

j =F-l. At first glance this might seem to be the model of choice. How­
ever, it may be used only after estimating a large number of parameters 
that are, for the most part, of secondary importance. In most applica­
tions we are only interested in estimating the regression coefficients and 
need to account for correlation in responses to obtain correct estimates 
of the standard errors of the estimated coefficients. For this reason 
Liang and Zeger ( 1986) refer to the choice of correlation structure to 
use in the GEE as the working correlation. The idea is that one chooses 
a correlation structure for estimation that is plausible for the setting and 
this structure is then adjusted in the estimator of the variance. It turns 
out that, in a wide variety of settings, assuming "exchangeable correla­
tion" gives good results. Thus we develop the GEE method in some 
detail using exchangeable correlation as the working correlation. 

We need some additional notation to fully describe the application 
of GEE to the population average model. We denote the logistic prob­
ability obtained from the logit in equation (8.26) as 

(8.27) 
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We use two matrices to describe the within-cluster covariance of the cor­
related observations of the outcome variable. The first is a n; x n; di­
agonal matrix containing the variances under the model in equation 
(8.27) denoted 

(8.28) 

and the second is the n; x n; exchangeable correlation matrix denoted 

1 p p 

p 1 
R;{P)= 

p 

p p 1 

(8.29) 

Using the fact that the correlation is defined as the covariance divided 
by the product of the standard deviations it follows that the covariance 
matrix in the ith cluster is 

V. = A~·5R.(p)A~·5 
J I I I 

(8.30) 

where A?·5 is the diagonal matrix whose elements are the square roots 
of the elements in the matrix in equation (8.28). The contribution to 
the estimating equations for the ith cluster is 

where D~ = x;A; , X; is the n1 x (p + 1) matrix of covariate values and S; 

is the vector with jth element the residual sii = (Yij -1r PA ( xij)). The full 

set of estimating equations is 

m 

:Ln;v;-1S; =0. (8.31) 
i=l 

We denote the solution to the GEE in equation (8.31) as ~PA. Implicit 
in the solution of these equations is an estimator of the correlation pa­
rameter, p. Typically this is based on the average correlation among 
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within-cluster empirical residuals and as such it is also adjusted with 
each iterative change in the solution for ~PA. 

A useful exercise is to show that under the assumption of no cor­
relation, p = 0, the GEE in equation (8.31) simplify to the likelihood 
equations for the multiple logistic regression model shown in Chapters 2 
and 3. 

Liang and Zeger (1986) show that the estimator, ~PA, is asymptoti­
cally normally distributed with mean ~PA. They derive, as an estimator 
of the covariance matrix, the estimator that is often referred to as the 
information sandwich estimator. The "bread" of the sandwich is based 
on the observed information matrix under the assumption of exchange­
able correlation. The bread for the ith cluster is 

B;=D~j1D; 

=X;A;(A?·5R;(p)A?·5rA;X;. 

The "meat" of the sandwich is an information matrix that uses empiri­
cal residuals to estimate the within-cluster covariance matrix. The meat 
for the ith cluster is 

M; = n;v;-1C;v;-1D; 

= x;A;(A?·5R;(p)A7·5
)-

1 
C;(A?·5R;(p)A75

)-
1 A;X;, 

where C; is the outer product of the empirical residuals. Specifically, 
the jkth element of this n; x n; matrix is 

The equation for the estimator is obtained by evaluating all expressions 
at the estimator ~PA and the respective values of the covariates, namely 

(8.32) 

We note that some packages may offer the user the choice of using the 
information sandwich estimator, also called the robust estimator, in 
equation (8.32) or one based on the observed information matrix for 
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the specified correlation structure, the bread B;· We think that unless 
there is strong evidence from other studies or clinical considerations that 
the working correlation structure is correct, one should use the estimator 
in equation (8.32). 

One can use the estimated coefficients and estimated standard er­
rors to estimate odds ratios and to perform tests for individual coeffi­
cients. Joint hypotheses must be tested using multivariable Wald tests 
since the GEE approach is not based on likelihood theory. This does 
make model building a bit more cumbersome since in most packages it 
is more complicated to perform multivariable Wald tests than likelihood 
ratio tests. 

It is possible to formulate a likelihood function for the cluster­
specific model described in equation (8.25). If we assume that the ran­
dom effects follow a normal distribution with mean zero and constant 

variance, a; - N( 0, G~), then the contribution of the ith cluster to the 

likelihood function is 

oo[ n; ey,Jx(a,+x~P.)] 1 1 ( a~) 
P = ----ex --'- da. (~ .. ); J lJ 1 + ea, +x~P. ..J2ii G P 2<12 1 

__.,. J-l a a 

(8.33) 

and the full log likelihood is 

m 

L(~s)= Lln[P{~s);]· (8.34) 
i=l 

The problem is that complicated numerical methods are needed to 
evaluate the log likelihood, obtain the likelihood equations and then 
solve them. These methods are well beyond the mathematical level of 
this text and thus we do not consider them further. We note that in ad­
dition to the typical output about coefficients most packages include an 
estimate of the variance of the random effects and an estimate of its 
standard error. Newer versions of some major software packages have 
the capability to fit models based on the log likelihood in equation 
(8.34) (e.g., the NLMIXED procedure in SAS version 8.0 and the 
xtlogit command in STATA version 6.0). 

Neuhaus, Kalbfleisch and Hauk (1991) and Neuhaus (1992) pre­
sent summary results that compare the magnitude of the coefficients 
from the cluster-specific model and population average model. These 
authors show, for coefficients whose value is near zero, that 
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(8.35) 

where p(O) is the intracluster correlation among the observations of the 
binary outcome. This result demonstrates that we expect the estimates 
from fitted population average models to be closer to the null value, 
zero, than estimates from the fitted cluster-specific model. The shrink­
age to the null in equation (8.35) can also be obtained from results ex­
amining the effect of failing to include an important covariate in the 
model, see Neuhaus and Jewell ( 1993) and Chao, Palta and Young 
(1997). 

We fit models to computer-generated data to illustrate the effect of 
the intracluster correlation on the difference between the cluster-specific 
and population average coefficients. In each case, the fitted model 
contained a single continuous covariate distributed normal with mean 
zero, standard deviation 3 and true cluster-specific coefficient f3s = 1. 
The random effects were generated from a normal distribution with 
mean zero and standard deviation Ga = 0,0.5,1.0,1.5, ... ,10.0. As we 
noted earlier in this section, the intracluster correlation increases with 
increasing Ga. In these examples the resulting intracluster correlations, 
p(O), range from 0 to about 0.84. For each set of parameter values we 
generated data for 200 clusters of size four. Hence the equation of the 

logit is g(xif,f3s)=a;+xif with i=1,2, ... ,200, j=l,2,3,4, xij-N(0,9) 

and a; - N(O,G~ ). We fit cluster-specific and population average mod­

els containing the covariate x. The values of the respective estimated 
coefficients are plotted versus the intracluster correlation in Figure 8.5. 
In addition we plot an approximate population average coefficient ob-

tained using equation (8.35), i.e., /3PA :::: Ps[ 1- p(O)J. 
The results shown in Figure 8.5 demonstrate that the attenuation to 

the null described in equation (8.35) holds in this example. We note 
that the estimate of the cluster-specific coefficient tends to fluctuate 
about the true value of 1.0 with increased variability for large values of 
the intracluster correlation. We observed this same general pattern for 
varying numbers of clusters and observations per cluster. 

Neuhaus (1992) shows that the variability in the estimates of the 
coefficients depends on the total sample size and intracluster correla­
tion. In practice, the variability in the estimates of the population aver­
age coefficient depends to a greater extent on the number of clusters 
while that of the cluster-specific coefficient depends more on the total 
sample size and the intracluster correlation. The results in Neuhaus 



318 SPECIAL TOPICS 

1.50 

1.25 

C! 1.00 .!:! 
(.) 

IE .., 
0 u 0.75 
'0 

* e ·::: 0.50 "' IJ.1 

0.25 

0.00 

0 .I .2 .3 .4 .5 .6 .7 .8 .9 
lntracluster Correlation 

Figure 8.5 Plot of the estimated cluster specific coefficient (D), estimated popu­
lation average coefficient (0) and approximate estimated population average coeffi­
cient (l:l) versus the intracluster correlation obtained from fitting models with 200 
clusters of size 4. 

(1992) also show that the Wald statistics for population average coeffi­
cients under exchangeable correlation and the cluster-specific model 
should be approximately the same. This result also follows from the 
approximation shown in equation (8.25). 

As an example, we created a hypothetical data set based on the low 
birth weight data described in Section 1.6.2. We excluded the woman 
of age 45 years, leaving 188 women. We do not go into the details of 
how the data were constructed, as they are not essential to the discussion 
of fitting models. A hypothetical additional number of births was gen­
erated for each woman and varied between 1 and 3 yielding an average 
number of 2.6 births per woman. We did not retain all the covariates in 
the low birth weight data. Instead we retained as cluster-specific covari­
ates, the age of the mother and the weight of the mother at the last men­
strual period associated with each birth. As examples of cluster-level 
co variates we kept the race of the mother and smoking status, which was 
assumed not to change. The total data set has information on 488 
births. One may obtain the data from either of the two web sites listed 



LOGISTIC REGRESSION MODELS FOR CORRELATED DATA 319 

Table 8.24 Listing of the Data for Three Women in the 
Longitudinal Low Birth Weight Data Set 

ID OBS SMOKE RACE AGE LWT Bwr LOW 

1 3 28 120 2865 0 
1 2 1 3 33 141 2609 0 
2 1 0 29 130 2613 0 
2 2 0 34 151 3125 0 
2 3 0 1 37 144 2481 1 
43 1 2 24 105 2679 0 
43 2 2 30 131 2240 
43 3 2 35 121 2172 
43 4 2 41 141 1853 

in the preface in a file named CLSLOWBWT.DAT. Data for three 
mothers are shown in Table 8.24. We note that the identification codes 
are not the same as those in the original low birth weight data. We wish 
to remind the reader that these data are hypothetical and reflect the sta­
tistical method used to generate them and thus do not reflect actual birth 
histories. As we show when we fit models, the data do provide results 
typical of cluster-specific and population average models. 

In Table 8.24 we see that the woman with ID = 1 had two births. 
She smoked during both pregnancies and has RACE = 3 (Other). She 
was 28 years old at the first birth and 33 at her second birth. Prior to 
her first pregnancy she weighed 120 pounds and prior to her second 
pregnancy she weighed 141 pounds. Her first baby weighed 2865 
grams and thus has LOW = 0. Her second baby weighed 2609 grams 
and also has LOW = 0. The woman with ID = 2 had three births, the 
third of which weighed less than 2500 grams and has LOW = 1. The 
woman with ID = 43 had four births. She smoked during all four preg­
nancies and has RACE= 2 (Black). She was 24 years old at her first 
birth and 41 years old at her fourth birth. Prior to her first pregnancy 
she weighed 105 pounds and 141 pounds prior to her fourth preg­
nancy. Each of her last three babies weighed less than 2500 grams and 
thus were of low weight. Data for the other 185 women record similar 
information on their respective birth histories. 

The results of fitting a population average model containing AGE, 
LWT and SMOKE (using STATA's xtlogit command with option pa) 
are shown in Table 8.25. Estimates of the standard errors are based on 
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Table 8.25 Estimated Coefficients, Robust Standard Errors, 
Wald Statistics, Two-tailed p-Values and 95 Percent 
Confidence Intervals for a Population Average Model with 
Exchangeable Correlation 

Robust 
Variable Coef. Std. Err. z P>lzl 95%CI 

AGE 0.058 0.0195 2.99 0.003 0.0201, 0.0967 
LWf -0.009 0.0041 -2.23 0.026 -0.0172, -0.0011 
SMOKE 0.702 0.2829 2.48 0.013 0.1472, 1.2562 
Constant -1.342 0.5895 -2.28 0.023 -2.4975, -0.1866 

the robust estimator in equation (8.32). We see that all three covariates 
are significant at the five percent level. We defer discussion of estimated 
odds ratios from this model until after we present the results from the 
cluster-specific modeL 

The results of fitting the cluster-specific model containing AGE, 
LWT and SMOKE (using STATA's xtlogit command with option re) 
are shown in Table 8.26. The table contains two panels of output. The 
top panel contains the usual results describing the estimates of the coef­
ficients. The bottom panel contains results describing the estimate of 
the variance of the random effect. For numerical stability reasons 
STAT A chooses to estimate the log of the variance described in the row 
labeled Ln_Sig2 in Table 8.26. The resulting estimate of the standard 
deviation, displayed in the row labeled Sigma, is obtained as the square 
root of exponentiation of the estimate of the log variance, e.g., 
4.006 = ~exp(2.776). The results in the row labeled "Rho" are not the 
estimated intracluster correlations, p(O). Instead these values describe 
the proportion of the total variance accounted for by the random effect. 
Specifically, 0.941 = 4.0062

/ (1 +4.0062 
). The estimate of the intraclus­

ter correlation (obtained using STATA's loneway command with re­
sponse variable LOW and grouping variable ID) is p(O) = 0.606. Other 
packages provide similar or equivalent output on the fitted model. 

We note that the Wald statistics for the respective coefficients in 
Table 8.25 and Table 8.26 are of similar magnitude but are not as close 
to each other as theory behind the development of equation (8.35) 
would suggest. 
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Table 8.26 Estimated Coefficients, Standard Errors, Wald 
Statistics, Two-tailed p-Values and 95 Percent Confidence 
Intervals for a Cluster-seecific Model 

Variable Coef. Std. Err. z P>lzl 95%CI 
AGE 0.141 0.0493 2.86 0.004 0.044, 0.238 
Lwr -0.015 0.0082 -1.85 0.064 -0.031, 0.001 

SMOKE 1.861 0.6392 2.91 0.004 0.608, 3.114 
Constant -4.642 1.6778 -2.77 0.006 -7.931, -1.354 
Ln_Sig2 2.776 0.3675 2.055, 3.496 
Sigma 4.006 0.7361 2.795, 5.743 
Rho 0.941 0.0203 0.887, 0.971 

Log Likelihood= -232.9881 

The likelihood ratio test of the model in Table 8.26 versus the 
usual logistic regression model is used to test H 0 :CTa = 0. In this exam-
ple, twice the difference in the log likelihoods is 

G = -2(( -288.7622)- (-232.9881)] = 111.548 

and P(z2 (1) > 111.548] < 0.001. The problem with the likelihood ratio 

statistic is that the null value, zero, lies on the boundary of the parameter 
space, which violates one of the assumptions of the test. Nevertheless, 
the statistic may be used to give an indication of the magnitude of the 
variance of the random effect. In this example the point estimate, its 
corresponding Wald test and the likelihood ratio statistic all suggest sig­
nificant random effect variation. 

In order to describe the effect of the intracluster correlation we cal­
culate the approximate estimate from equation (8.35) and present all 
three estimates in Table 8.27. The results show that the shrinkage to the 
null is well described by the approximation formula. This is particu­
larly interesting in this example as the result in equation (8.35) was de­
rived assuming the true cluster-specific coefficient is near zero. Yet we 
see that equation (8.35) provides a good approximation for even the 
coefficient for SMOKE. In additional calculations, similar to those 
whose results are shown in Figure 8.5, we found that the shrinkage to 
the null is well described by equation (8.35) for coefficients as large as 
5.0. In general, the approximation improved as the intracluster correla­
tion became larger. 
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Table 8.27 Estimated Coefficients From the Cluster­
Specific Model, Population Average Model and the 
Approximation to the Population Average Model from 
Equation (8.35) 

Cluster- Population Approximate 
Specific Average Coef., Pop. Average 

Variable Coef., P. PPA /J.(l- p(O)) 
AGE 0.141 0.058 0.055 
LWf -0.015 -0.009 -0.006 

SMOKE 1.861 0.702 0.733 

We caJculate estimated odds ratios in the usual manner for both 
models. They are presented in Table 8.28. One calculates the end­
points for a confidence interval estimate for an odds ratio in the same 
manner as used for all other fitted logistic regression models. We have 
not included confidence intervals in Table 8.28 since our purpose here 
is to compare and contrast the odds ratios from the two models. In 
practice, one would use the model that best addresses the study objec­
tives. Results would then include appropriately calculated confidence 
intervaJs. 

The interpretation of the estimated odds ratios from a population 
average model is a bit easier than for a cluster-specific model. They 
compare odds computed from proportions of subjects in the population 
at the different levels of the comparison covariate holding all other co-

Table 8.28 Estimated Odds Ratios from the Cluster­
Specific Model and Population Average Model 

Variable 
AGE+ 

Lwr* 
SMOKE 

Cluster­
Specific 

Odds Ratio 

2.024 
0.861 
6.430 

+: Odds ratio for a 5 year increase in age 
*: Odds mtio for a 10 pound increase in weight 

Population 
Avemge 

Odds Ratio 

1.336 
0.914 
2.017 
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variates fixed. For example, the estimated population average odds ratio 
for smoking during pregnancy (SMOKE) is 2.02. The interpretation is 
that the odds of low birth weight computed from the proportion of 
women who smoke is twice that based on the proportion of women who 
do not smoke, holding age at delivery and weight at the last menstrual 
period constant. The population average odds ratio for a five year dif­
ference in age at delivery is 1.34. The interpretation is that the odds of 
low birth weight computed from the proportion of women who are five 
years older than some reference level for age is 1.34 times higher than 
that based on the proportion of women who are at the reference age, 
holding weight at the last menstrual period and smoking status constant. 
The fact that age is linear in the logit implies this odds ratio holds for a 
five year difference at any age. The population average odds ratio for a 
I 0 pound increase in weight at the last menstrual period is 0. 91. The 
interpretation is that the odds of low birth weight computed from the 
proportion of women who are 10 pounds heavier than some reference 
level is 9 percent less than the odds of low birth weight based on the 
proportion of women who are at the reference weight level, holding age 
at pregnancy and smoking status constant. The fact that LWT is linear 
in the logit implies this odds ratio holds for a 10 pound difference at 
any weight. These estimated odds ratios describe risk of the event via 
proportions in the population and as such are more analogous to odds 
ratios from the logistic regression models described in Chapter 3. A 
fact noted earlier in this section is that the population average model 
with p = 0 is the usual logistic regression model. Hence, the population 
average model is likely to be the best model when the objectives of the 
study are to describe in broad terms the effects of covariates. This 
broad interpretation comes at the cost of not using information available 
in repeated measurements of a covariate on study subjects. 

The interpretation of odds ratios from a fitted cluster-specific 
model applies to subjects with a common but unobserved value of the 
random effect a;. This could be a single subject or a group of subjects. 
For example the estimate of the cluster-specific odds ratio for smoking 
during pregnancy is 6.43. The interpretation is that by smoking during 
pregnancy the woman has increased her odds of a low weight baby by 
6.43 times the odds if she did not smoke holding age and weight con­
stant. In this case the odds ratio makes sense since smoking during 
pregnancy is a modifiable risk factor. However the odds ~atio for a 
non-modifiable factor such as race is more difficult to interpret. One 
would have to resort to comparisons of hypothetical groups of subjects 
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with the same random effect who differ in their race holding other co­
variates constant. We leave the details as an exercise. 

The estimate of the cluster-specific odds ratio for a five year in­
crease in age is 2.02. The interpretation is that the odds of a woman 
having a low weight baby in five years is 2.02 times the odds at the cur­
rent age holding weight and smoking status constant. This estimate 
takes full advantage of the fact that we have observed women over at 
least a portion of their reproductive years and thus expresses the influ­
ence of chronological aging at the individual level. The same would be 
true of any similarly observed longitudinal factor. 

The cluster-specific odds ratio for a 10 pound increase in weight is 
0.86. The interpretation is that the odds of a woman having a low weight 
baby if she gained 10 pounds is 14 percent less than the odds at her 
current weight, holding age at pregnancy and smoking status constant. 
This odds ratio suggests, likely incorrectly, that by simply gaining 
weight a woman can substantially reduce the risk of a low weight baby. 
In rough terms, the estimated coefficients in Table 8.26 suggest, incor­
rectly, that a 10 pound increase in weight could counteract a one year 
increase in age. In this case, the odds ratio is an artifact of weight gain 
of the women in the study over time. What is needed in the model is a 
more objective measure of size of the woman such as height or body 
mass index. However if the weight gain over time is similar for both 
small and large women then the odds ratio correctly estimates the effect 
of body size on baby weight among women with the same random ef­
fect and holding all other covariates constant. We leave fitting a cluster­
specific model using weight of the mother at last menstrual period of 
the first pregnancy as a cluster-level covariate as an exercise. 

The covariates age, weight and smoking status provide good exam­
ples of the strengths and weaknesses of population average and cluster­
specific models. In a sense, the odds ratios for covariates like smoking 
status and weight are easier to interpret from population average models 
since they describe effects in broad groups of subjects in the popula­
tion. The clear weakness of the population average model is that it can­
not address effects such age. The cluster-specific model is best suited 
for this covariate as one does not have to argue that the inferences apply 
to some hypothetical and unobservable group of subjects with the same 
random effect. However, one must pay close attention to determine 
whether covariates measured repeatedly are true longitudinal covariates 
or repeated imprecise measures of a non-longitudinal covariate. An 
example of this would be body weight when basic body size is actually 
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the covariate of interest. Both models address important clinical ques­
tions and have their place in an analysis of clustered binary data. 

There are a number of important practical issues that we have not 
discussed. Model building issues have been ignored yet they are as vital 
in developing models for correlated data as they were with uncorrelated 
data. The modeling paradigm presented in detail in Chapter 4 may be 
applied with the models discussed in this section. Statistical variable se­
lection methods such as stepwise and best subsets are not currently 
available for fitting correlated data models in software packages. Thus 
one must use some form of purposeful selection using Wald tests with 
the population average model and Wald or likelihood ratio tests with the 
cluster-specific modeL Checking the scale of continuous covariates is 
just as important as with non-correlated data models. One can always 
use the method of design variables since computer intensive methods 
such as fractional polynomials have not as yet been implemented for 
use with correlated data models. An alternative approach would be to 
assume the observations are in fact not correlated and use the usual lo­
gistic regression model with fractional polynomials to identify a poten­
tia] non-linear transformation. One would then try this transformation 
when fitting the appropriate correlated data model. Interactions should 
be specified and checked for inclusion in the same manner as described 
in Chapter 4. Diagnostic statistics, such as those described in Chapter 5, 
have not as yet been extended for use in model checking with correlated 
data models. However, one could approximate the analysis by assuming 
the observations are not correlated and using the methods in Chapter 5. 
Although not specifically developed for this situation, this analysis is 
better than not doing any model checking. 

One must be careful when fitting cluster-specific models. The nu­
merical methods are sensitive to the number of clusters and cluster size. 
The numerical methods seem to work best when the cluster size is not 
too large. STATA suggests that cluster sizes should be less than 10 un­
less the intracluster correlation is small. In addition one must be aware 
that if the intracluster correlation is quite small then the software may 
either fail to converge to a solution or output an estimate of a~ that is 
effectively zero. For example in these settings STATA typically stops 
and reports an estimate of the Jog variance of -14.0. In this case one 
should abandon the cluster-specific model in favor of the usual logistic 
regression model since the two models are equivalent when a a= 0. 
Another potential problem with the cluster-specific model is the log 
likelihood in equation (8.34) is based on the assumption that the ran-
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Table 8.29 Estimated Coefficients and Standard Errors 
Obtained from STAT A SAS and EGRET ,, 

STAT A SAS EGRET 
Variable Coef. Std. Err. Coef. Std. Err. Coef. Std. Err. 
AGE 0.141 0.0493 0.146 0.0530 0.166 0.0579 
LWf -0.015 0.0082 -0.022 O.ot13 -0.028 0.0112 
SMOKE 1.861 0.6392 1.816 0.7520 1.668 0.6879 
Constant -4.642 1.6778 -3.561 1.5872 -3.133 1.4900 

Sigma 4.006 0.7361 14.618. 5.0170 3.749 0.6252 
LogL = -232.988 LogL= -233.326 LogL = -233.35 

*: SAS reports the estimate of the variance 

dom effects are distributed normally. This assumption cannot be 
checked since we have no observations of the random effect. Thus evi­
dence of lack of fit of a model could be due to a poorly specified sys­
tematic component and/or non-normal random effects. Current soft­
ware does not permit other distributions. Thus, if casewise diagnostic 
statistics (assuming independence) provide no indication that the sys­
tematic component of the model is inadequate, then one should proba­
bly abandon the cluster-specific model in favor of the population aver­
age model. 

An additional difficulty one may encounter when fitting cluster­
specific models is that different software packages may give different 
parameter estimates. The reason is that the solution to the likelihood 
equations depends on the particular numerical method used to evaluate 
the log likelihood in equation (8.34). In addition, the rules used by the 
package to stop the iteration process are not universally applied. For 
example, SAS's NLMIX procedure has numerous options and criteria 
that the user can specify. However only expert users should consider 
using anything but the default settings. STATA's xtlogit command 
uses the same basic method to evaluate equation (8.34) as SAS but has 
far fewer optimization options. Again we think that modifying these 
options should be left to experienced users. A third package, EGRET 
(EGRET for windows (1999)), uses an entirely different method to 
evaluate equation (8.34 ). In order to compare these three packages we 
show in Table 8.29 the results of fitting the same cluster-specific model 
using each program's default settings. We note that none of the esti­
mates has exactly the same value. All the estimates of the coefficients 
are within 10 percent of each other, except for LWT. For this covariate 
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the estimate from STATA is 46 percent smaller than the estimates from 
SAS and EGRET. However, all three estimates are within two estimated 
standard errors of each other. Thus, estimates of the odds ratios for 
AGE and SMOKE, while not identical, would certainly convey the same 
message. The estimated odds ratios for a 10 pound increase in weight 
from STATA, SAS and EGRET are: 0.86, 0.80 and 0.76 respectively. 
The estimated reduction in risk ranges from 14 to 24 percent; but their 
respective confidence intervals (not shown) have considerable overlap. 

Based on the results shown in Table 8.29 and the general sensitivity 
of the numerical calculations, we think it is best to proceed cautiously 
when fitting cluster-specific models. 

It is possible to perform overall tests of fit for correlated data mod­
els. Recent unpublished work by Evans (1998) examined the perform­
ance of the Hosmer-Lemeshow test and extensions of the Pearson chi 
square and other tests described in Section 5.2.2 to the correlated data 
setting. His results indicate that the usual Hosmer-Lemeshow test may 
be used in some settings to assess fit of population average models. In 
general, one must avoid using the test when there are many tied or 
nearly tied values in the estimates of the probabilities. This is likely to 
occur under one or more of the following conditions: the model con­
tains only a few cluster-level covariates, the intracluster correlation 
among the responses is large, and settings with a few clusters and few 
observations per cluster. If, in a particular setting, none of these condi­
tions holds, then the test can be used. For example, the fitted population 
average model in Table 8.25 is based on 188 clusters, each containing 
between two and four observations and only moderate intracluster cor­
relation ,0(0) = 0.606. This represents a setting where the test may be 
used. In this case the ijosmer-Lemeshow test and its p-value can be 
easily obtained in ST ATA by using the lfit command with the beta op-
tion. This yields a value of the Hosmer-Lemeshow test of C = 11.67 
which, with eight degrees-of-freedom, yields p = 0.167 that supports 
model fit. We do not present the two by ten table of observed and pre­
dicted frequencies as there was close agreement in all ten deciles of risk. 

Evans' (1998) extension of the normal approximation to the Pear­
son chi square test requires calculations that are much more complicated 
than those required in the usual logistic regression model described in 
Section 5.2.2. As such we do not discuss it further in this text. How­
ever, Evans' simulation results show that the test is effective for assessing 
fit. Perhaps it will be added to future releases of software packages. 

The Hosmer-Lemeshow test may be used with the cluster-specific 
model. However its application requires that one use fitted values that 
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include an estimate of the random effect term, a;, as well as the regres­
sion coefficients, i.e., 

These fitted values may be obtained from SAS's version 8.0 NLMIXED 
procedure. However the Hosmer-Lemeshow test itself is not available in 
SAS. We used this test in STATA to check the fit of SAS's version of 
the fitted model, shown in Table 8.29. The calculations involve obtain­
ing the estimates of the random effects using the predict option from 
within NLMIXED and then calculating the test "by hand". The value 
of the test is C = 24.70 which, with eight degrees-of-freedom, yields 
p = 0.002. Hence we conclude that there is significant evidence of lack 
of fit. Examination of the table (not shown) of observed and expected 
numbers of low and normal weight births in the 10 deciles of risk 
showed that the model underestimated the number of normal weight 
births in the top two deciles of risk, it> 0.88. This result suggests that 
the model might be improved. We leave as an exercise examination of 
the inclusion of interactions and the affect they have on the fit of the 
model. 

We note that one should always avoid using the test with a;= 0 for 
all clusters. For example, calculation of the test using a; = 0 with coef­
ficients from the fitted model from STATA in Table 8.26 yields 

C=413.36 with p<O.OOl. 
Evans' (1998) extension of the normal approximation to the Pear­

son chi square test for the cluster-specific model is considerably more 
complicated than the extension to the population average model. As 
such we do not discuss it further in this text. Evans' simulations show 
the test performs effectively. Hopefully it will be included in future re­
leases of the software packages. 

In some settings we may want to include a previously observed 
value(s) of the outcome as a covariate(s) for future observations. These 
models are typically referred to as transitional models. The logit in this 
setting is of the form 

(8.36) 
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In this model the coefficient 8 is the log odds of the ith observation of 
the outcome conditional on the value of the previous outcome. 

The longitudinal low birth weight data provide the possibility for 
several versions of such a covariate. For example, we could model low 
birth weight in the second and subsequent births by including a covari­
ate indicating whether the previous birth was of low weight (the model 
shown in equation (8.36)). Another possible covariate is whether the 
woman ever had a low birth weight baby, (i.e., include Z; = 

max (y;_1,y;_2 , ••• ,y1 ) as a covariate in the model). A third version is to 
include information on the status of all previous births (i.e., include 
YH•Y;_2 , ••• ,y1 in the model for the ith birth). In these models one as­
sumes that including any previously observed value of the outcome ac­
counts for any intracluster correlation and we use the usual logistic re­
gression model to fit the data. 

As an example we show in Table 8.30 the results of fitting a model 
that includes the value of LOW from the previous birth. We leave fitting 
models containing the other two versions of the covariate as exercises. 
When we fit this model the sample size is reduced from 488 to 300 since 
we exclude the first birth of each woman. There is no previous birth 
history for the first birth. 

The estimate of the odds ratio for previous birth of a low weight 
" baby is OR = 30.4. The interpretation is that the odds of a low weight 

birth among women whose previous pregnancy resulted in a low weight 
birth is 30 times the odds for women whose previous pregnancy did not 
result in a low weight baby, controlling for age, weight and smoking 
status. The coefficient estimates for AGE and LWT are about the same 
order of magnitude as the estimates from the population average model 

Table 8.30 Estimated Coefficients, Standard Errors, Wald 
Statistics, Two-tailed p-Values and 95 Percent Confidence 
Intervals for a Fitted Logistic Regression Model Containing 
the Covariate Previous Birth of Low Weight, (n = 300) 

Variable Coef. Std. Err. z P>lzl 95% CI 
AGE 0.080 0.0338 2.38 0.017 0.014, 0.146 
LWT -0.017 0.0066 -2.54 0.011 -0.030, -0.004 
SMOKE 1.687 0.3613 4.67 <0.001 0.979, 2.395 
PREV_LOW 3.415 0.3892 8.77 <0.001 2.652, 4.177 
Constant -2.491 1.2596 -1.98 0.048 -4.960, -0.022 
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in Table 8.25 while the estimate of the coefficient for SMOKE is closer 
to that of the cluster-specific model in Table 8.26. The odds ratio for 
previous birth of low weight may seem unrealistically large but in any 
case it is the dominant factor in the model. 

In practice we think that transitional models should only be used in 
settings where there is an explicit time ordering in the repeated observa­
tions of the outcome. 

In summary, the cluster-specific and population average models 
provide useful and powerful modeling tools when observations of the 
outcome variable are correlated. The correlation must be due to recog­
nizable factors in the design of the study that allow one to explicitly 
identify clusters, or sets of observations, that are correlated and those 
that are uncorrelated. The cluster-specific model is likely to be most 
useful for describing the effect of covariates that are repeatedly meas­
ured on the same subject. The population average model is best suited 
to describe the effect of covariates that are constant within clusters. 
However, both models may be fit with both types of covariates. One 
must pay particular attention to signs of numerical problems when fit­
ting cluster-specific models. These include failure of the program to 
converge to a solution and a "zero" estimate of the variance of the 
random effect. 

Logistic regression models for correlated binary data is an area of 
active statistical research with new developments appearing on a regular 
basis. As these developments become accepted in the statistical com­
munity as being sound and worthwhile modeling tools, developers of 
software packages can be expected to add them to their routines. 

8.4 EXACT METHODS FOR LOGISTIC REGRESSION 
MODELS 

The methods used for testing and inference up to this point in the text 
have assumed, in addition to other mathematical assumptions, that the 
sample size is sufficiently large for parameter estimates to be normally 
distributed and for the likelihood ratio and Wald tests to follow chi 
square and normal distributions, respectively. There may be occasions 
where one would like to fit a logistic regression model but the sample 
size is such that these large sample assumptions are clearly not justified. 
Recent advances in computational methods now make it possible to fit 
models in such settings. 
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The problem of fitting a logistic regression model and then making 
inferences and tests about the parameters when the sample size is small 
is a complicated version of Fisher's exact test for a 2 x 2 contingency 
table. Cox and Snell (1989) note that the extension of the theory of 
Fisher's exact test to logistic regression models has been known since 
the 1970's. However the computations required are extremely complex 
and were considered impractical until efficient algorithms were devel­
oped by Tritchler (1984), Hirji, Mehta, and Patel (1987 and 1988) and 
Hirji (1992). Mehta and Patel (1995) review the theory and provide a 
number of insightful examples. The exact methods have been incorpo­
rated into the statistical software package, LogXact 4 for Windows 
(2000). We use this package to fit the models in this section. 

The central idea behind the theory of exact methods for logistic 
regression is to construct a statistical distribution that can, with efficient 
algorithms, be completely enumerated. The starting point in this proc­
ess is to construct a conditional likelihood similar to that used in Chap­
ter 7 for matched studies. Assume we have n independent observations 
of a binary outcome and a vector of p + 1 covariates (i.e., 
(y;,X; ), i = 1,2, . .. ,n). We assume that the functional form of the logit is 

g(x,Jl)= L;=
0
xi3j with x0 =1. In settings where we are primarily in­

terested in the slope coefficients we consider the intercept, /30 , as the 

nuisance parameter and condition on its sufficient statistic, n1 = ~ ~ Y; . "'"'•=I 
As shown in Mehta and Patel (1995) the resulting conditional likelihood 
is 

(8.37) 

where R denotes the collection of 

possible allocations of 0 and 1 to (y1,y2, ••• ,yn) such that n1 = L;=l Y;. 

The form of the likelihood in equation (8.37) suggests that the suffi­
cient statistic for f3j is 
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n 

tj = LY;Xij. (8.38) 
i=l 

(Cox and Hinkley (1974) present a discussion of sufficient statistics and 
their role in conditional inference.) Let the vector of sufficient statistics 
for the slope coefficients be denoted by t' = {tpt2, ... ,tP). The exact 

distribution of the collection of p sufficient statistics is given by the 
equation 

(8.39) 

where c(t) denotes the number of possible allocations of 0 and 1 to 

(y1,y2 , ... ,yn) such that ti = '2,;=
1
y;xij and S denotes the set of alloca-

tions of 0 and 1 to (y1,y2 , ... ,yn) such that n1 = I,;=,Y; and 

ui = '2,;=, Y;XIj denotes the resulting value of the jth sufficient statistic for 

the lth allocation. The distribution in equation (8.39) is used to obtain 
point and confidence interval estimates of the regression coefficients as 
well as tests of hypotheses that coefficients are equal to zero. The cal­
culations required for the multivariable problem are quite complex. 
Thus we illustrate the exact methods with a model containing a single 
dichotomous covariate. 

As an example, suppose we wish to model risk factors for having a 
low birth weight baby among women 30 years or older in the low birth 
weight study described in Section 1.6.2. There are 27 such women and 
4 had a low birth weight baby. It is clear that, with only 27 observations 
and four LOW= 1 outcomes, we should not use methods requiring large 
sample sizes for their validity. Consider the covariate recording the 
number of previous pre-term deliveries dichotomized into none (0) or 
at least one (1) and denoted PTD. The cross-classification of LOW by 
PTD is shown in Table 8.31. 

The results in Table 8.31 show that the observed value of the suffi­
cient statistic for the intercept term is t0 = 4 and for the coefficient for 
PTD it is t1 = 2. The later result follows from the fact that only two 
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Table 8.31 Cross-Classification of Low 
Birth Weight (LOW) by History of Pre-term 
Delivery (PTD) Among Women 30 Years of 
Age or Older 

LOW 
0 

Total 

0 

19 
2 

21 

PTD 

4 
2 

6 

Total 

23 
4 

27 
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subjects had LOW= 1 and PTD = 1 (i.e., 2 = '2,~~1 LOW; x PTD; ). It 

follows from equation (8.39) that the exact probability is 

(8.40) 

The possible values of the sufficient statistic are t1 = 0, 1, 2, 3, 4. Thus the 
term c(t1) describes the number of possible allocations of 23 values of 
zero and 4 values of one to 27 subjects with the resulting value of 

t1 = '2,:~1 LOW; x PTD; . For example, with the help of LogXact 4, we 

obtain these and they are in the column labeled "Count" in Table 8.32. 
There we see that are 5985 sequences of 23 zeros and 4 ones, where 

0 = '2,:~1 LOW; x PTD; . The simplest exact inferential question is a test 

of the hypothesis that /31 = 0. The values of equation (8.40) under the 
null hypothesis are given in the last column in Table 8.32. These prob­
abilities are calculated using the fact that 1 = exp{t1 x 0) and S contains 
17,550 sequences. Thus the first probability is 

5985 
P(t1 = 0) = --= 0.34103, 

17550 

and the others are calculated in a similar manner. We calculate the two 
tailed p-value by summing the probabilities in Table 8.32 over values of 
the sufficient statistic that are as likely, or less likely, to have a smaller 
probability than the observed value of t = 2. Thus we obtain 
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Table 8.32 Enumeration of the Exact Probability 
Distribution of the Sufficient Statistic for the 
Coefficient of PTD 

Probability 
Count: Under 

tl c(t) Ho:/31 = 0 
0 5985 0.34103 

7980 0.45469 
2 3150 0.17949 
3 420 0.02393 
4 15 0.00086 

Total 17550 1.0 

p = 0.17949+0.02393+0.00086= 0.20428. 

We note that the value is identical to the two sided p-value for Fisher's 
exact test computed from Table 8.31. In this case we cannot conclude 
that having a history of pre-term delivery is a significant risk factor for 
having a low weight birth among women who are 30 years of age or 
older. 

The exact conditional maximum likelihood point estimate of the 
coefficient is the value that maximizes the probability given in equation 
(8.40) which, given the counts in Table 8.32, is 

( 
_ ) _ c(2)exp(2/31) 

p 1J - 2 - -=-~~'--;-~ I c(u)exp(uPI) 
ueS 

= 3150exp(2/31) 

5985exp(0/31) + 7980exp(1/31) + 3150exp(2/31) + 420exp(3/31 )+ 15exp( 4/31) · 

Even in this rather simple example the computations require a package 
like LogXact 4. For comparative purposes we show the results from 
fitting the conditional exact maximum likelihood estimate (CMLE) as 
well as those from fitting the usual logistic regression model in Table 
8.33. In this example, as shown in Chapter 3, the usual MLE is simply 
the log of the odds ratio from Table 8.31. 
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Table 8.33 Results of Fitting the Usual Logistic 
Model (MLE) and the Exact Conditional Model 
'(CMLE) to the Data in Table 8.31 

Method Coeff. Std.Err. 95% CI 
PTD MLE 1.558 1.1413 -0.679, 3.795 

CMLE 1.482 1.1059 -1.383, 4.370 
Constant MLE -2.251 0.7434 -0.794, 0.409 

CMLE * * * 
*: Not computed using CMLE in this case 
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Both the point estimate of the coefficient for PTD and the estimate 
of the associated standard error are slightly smaller when the exact con­
ditional model is used. The endpoints of the confidence internal for the 

MLE are obtained in the usual manner as /31 ± 1.96SE(/31). The end­

points of the CMLE are obtained from the following procedure. 
Assume that the possible range of the sufficient statistic, given the 

observed value of t0 , is tmin :::;; t1 :::;; tmax.. In our example the range is 
0 :::;; t1 :::;; 4. The lower endpoint of a 100(1- a)% confidence interval is 
the value of /31 such that 

tmax 

aj2= L P(1J =k), (8.41) 
k=tlobs 

where t1obs denotes the observed value of t1, 2 in our example, and 

P(1J = k) is given in equation (8.40). If t1obs = tmin then the lower limit 
is set to -oo. The upper endpoint of a 100(1- a)% confidence interval 
is the value of /31 such that 

I lobs 

aj2 = L P( 1J = k). (8.42) 
k=tmin 

If t1obs = tmax then the lower limit is set to +oo. The solutions to equa­
tions (8.41) and (8.42) for a 95 percent confidence interval in our ex­
ample are shown in Table 8.33. We note that the CMLE interval is con­
siderably wider than the MLE interval, reflecting the increased uncer­
tainty in our estimate due to the small sample size. 
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Table 8.34 Cross-Classification of Low Birth 
Weight (LOW) by Smoking Status of the 
Mother during Pregnancy (SMOKE) Among 
Women 30 Years of Age or Older 

LOW 

0 

Total 

0 

17 
0 

21 

SMOKE 

6 
4 

6 

Total 

23 
4 

27 

As a second example consider the cross classification of smoking 
status during pregnancy versus low birth weight among women 30 years 
of age or older shown in Table 8.34. We note that the table contains a 
cell with zero frequency. As shown in Chapter 4, Section 5 conven­
tional logistic regression software cannot be used in this case. However 
we are able to obtain a two-tailed p-value, point and confidence interval 
estimate using exact methods. 

The exact probability distribution under the hypothesis of no effect 
due to smoking during pregnancy, {31 = 0, is shown in Table 8.35. The 
p-value in this case is 0.01197 since no other value had as small or 
smaller probability than the observed value of 4. Since the observed 
value of the sufficient statistic is 4 = tmax the upper limit of the 95 per­
cent confidence interval is +oo and the solution to equation (8 .41) is 
0.308. In settings where t1obs = tmin or t1obs =!max the CMLE does not 

Table 8.35 Enumeration of the Exact Probability 
Distribution of the Sufficient Statistic for the 
Coefficient of SMOKE 

Probability 
Count: Under 

tl c(t) Ho:fJI = 0 
0 2380 0.13561 
1 6800 0.38746 

2 6120 0.34872 
3 2040 0.11624 
4 210 0.01197 

Total 17550 1.0 
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have a finite solution and Hirji, Tsiatis and Mehta (1989) suggest using 
the median unbiased estimator (MUE). This estimator is defined as the 
average of the endpoints of a 50 percent confidence interval estimator. 
In settings where t1obs = tmin and the lower limit is -oo the MUE is set 
equal to the upper limit of the 50 percent interval. In settings where 
t1ohs = tmax and the upper limit is +oo the MUE is set equal to the lower 

limit of the 50 percent interval. In our example we have t1oh.• = tmax and 

the lower limit of the 50 percent interval is ~IMUE = 2.510. That is the 
solution to equation (8.41) using a= 0.5 is 2.510. Thus use of exact 
methods yields point and interval estimates as well as a test of signifi­
cance when none are computable using conventional approaches to 
MLE. 

We obtain point and interval estimators of odds ratios in the usual 
manner by exponentiating the respective estimators for the coefficient. 
The odds ratio for smoking during pregnancy obtained from the MUE 

A 

is OR = 12.3 and the endpoints of the 95 percent confidence interval are 
(1.36, + oo). The interpretation is that the odds of a low weight baby 
among women 30 years or older who smoke during pregnancy is 12.3 
times the odds of women 30 years or older who do not smoke during 
pregnancy and it could be as little as 1.36 times with 95 percent confi­
dence. 

One can use exact methods to fit multivariable logistic regression 
models and perform tests of subsets of parameters. Thus it is theoreti­
cally possible to use exact methods with the modeling paradigm de­
scribed in detail in Chapter 4. However the required computations are 
extensive and can be quite time consuming, even on a fast computer. 
Thus we recommend that one restrict use of exact analyses to those set­
tings where the sample sizes are small enough to question the use of the 
large sample assumption. The exception to this recommendation might 
be a setting where one has a zero frequency cell in an important, for 
clinical reasons, dichotomous covariate or a polychotomous covariate 
whose categories should not be combined to eliminate the zero fre­
quency. 

The exact methods as described above focus on exact CMLE of the 
slope coefficients. It is possible to extend the approach to estimation of 
all coefficients. The basic idea is the same but one estimates each pa­
rameter conditioning on the sufficient statistic for all other parameters. 
The result is a fitted model similar to ones discussed in detail in Chapter 
4. As an example we present in Table 8.36 the results of fitting both the 
usual and exact logistic models using women 25 years or older in the 
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Table 8.36 Results of Fitting the Usual Logistic 
Model (MLE) and the Exact Conditional Model 
(CMLE) and in the Low Birth Weight Study to 
Women 25 Years or Older 

Method Coeff. 
Lwr MLE -0.019 

CMLE -0.018 
SMOKE MLE 0.249 

CMLE 0.256 
PTD MLE 1.393 

CMLE 1.310 
Constant MLE 1.097 

CMLE 0.331 

Std.Err. 
0.0117 
0.0113 
0.6087 
0.5933 
0.6687 
0.6440 
1.5599 
0.7381 

95% CI 
-0.042, 0.004 
-0.043, 0.002 
-Q.944, 1.442 
-1.111' 1.567 

0.082, 2.703 
-0.014, 2.798 
-1.961, 4.154 
-1.331. 2.105 

low birth weight study. The covariates in the model are weight at the 
last menstrual period (LWT), smoking status during pregnancy 
(SMOKE) and history of prior pre-term delivery (PTD). There are 69 
women in this subgroup and 19 low weight births. We note that 
LogXact 4 took one hour and thirty minutes to perform the necessary 
computations on a 400MHz computer and the optimal amount of 
memory needed was 18MB. This shows that even with a small problem 
fitting exact logistic regression models requires a fast computer with a 
lot of memory and plenty of patience. 

The estimates of the slope coefficients in Table 8.36 are similar and 
would result in effectively equivalent estimates of their respective odds 
ratios. However, the exact confidence intervals are much wider, reflect­
ing the increased variability due to the small sample size. The two esti­
mates of the intercept coefficients appear to be quite different but, in 
fact, there is considerable overlap in the two confidence intervals. We 
leave as an exercise determining the effect this difference has on the 
estimated probabilities. 

In addition to fitting all parameters it is possible to evaluate fit and 
compute diagnostic statistics as described in Chapter 5 and Chapter 7. 
The LogXact 4 package has the capability to compute the Hosmer­
Lemeshow goodness-of-fit test and the casewise diagnostic statistics. 
However we do not recommend using the p-value for the Hosmer­
Lemeshow test based on a chi square distribution with eight degrees-of­
freedom as it is based on the large sample assumption that one is trying 
to avoid by using exact methods. Instead we suggest that one visually 
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check the agreement between the observed and expected frequencies in 
the two by ten table. One should examine the diagnostic statistics using 
the plots discussed in Chapter 5. Models can then be refit deleting sus­
pect cases. We leave assessing the fit of the model in Table 8.36 as an 
exercise. 

In summary we feel that exact methods for logistic regression 
should be considered when one is fitting models with a small sample 
size or unbalanced data that result in zero frequency cells. 

8. 5 SAMPLE SIZE ISSUES WHEN FITTING 
LOGISTIC REGRESSION MODELS 

In our experience there are two sample size questions, prospective and 
retrospective. The prospective question is: How many subjects do I 
need to observe to have specified power to detect that the new treatment 
is significantly better than the old or placebo treatment? The retrospec­
tive question is: Do I have enough data to fit this model? There has 
been surprisingly little work on sample size for logistic regression. The 
available methods to address sample size selection have been imple­
mented in just a few specialty software packages. The key element in 
assessing if one has adequate data to fit a particular model involves the 
number of events per covariate. Recent research by Peduzzi, Concato, 
Kemper, Holford and Feinstein (1996) provides some guidance. In this 
Section we consider methods for choosing a sample size first and then 
discuss the importance of having an adequate number of events per co­
variate. 

The basic sample size question is as follows: What sample size does 
one need to test the null hypothesis that a particular slope coefficient is 
equal to zero (without loss of generality we assume it is the first of p 
covariates in the model) versus the alternative that it is equal to some 
specified value, i.e., H

0
: {31 = 0 versus H

8
: {31 = p;. If the logistic regres­

sion model is to contain only this single dichotomous covariate, then 
one may use conventional sample size methods to test for the equality 
of two proportions (see Fteiss (1981) or Lemeshow, Hosmer, Klar and 
Lwanga (1990)). Alternatively one may use results in Whitemore 
(1981) for a logistic regression model containing a single dichotomous 
covariate. The difference in the two approaches is that the former is 
based on the sampling distribution of the difference in two proportions 
and the later on the sampling distribution of the log of the odds ratio. 
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We illustrate the two approaches using the data from the UMARU 
IMPACT Study (UIS) described in Section 1.6.4. Suppose that we con­
sider these data as being either pilot data or data from an earlier study. 
We use it to help us determine what sample size we would need in a new 
study to test for a 50 percent increase in the odds of remaining drug 
free for one year for the longer versus the shorter treatment. In terms 
of the logistic regression model the null and alternative hypotheses are 
H

0
:A =ln(1)=0 versus Ha:.f31 =ln(l.5). To determine the sample size 

with either approach we need an estimate of the response probability 
under the shorter treatment, Po= P(Y = 11 X= o). Cross classifying the 

outcome variable (DFREE) by the treatment covariate (TREAT) results 
in the observation that 21.4 percent of those on the shorter duration 
treatment remained drug free for 12 months. We round this down to 20 
percent and use this as our response probability. The response prob­
ability yielding an odds ratio of 1.5 is 

~ = P(Y = 1j x = 1) l.S X 
0·2 = 0.2728 . 

(1- 0.2) + 1.5 X 0.2 

Thus, stated in terms of proportions the null and alternative hypotheses 
are H0 :P0 = ~ = 0.2 and Ha:Po = 0.2, ~ = 0.2728. 

The sample size one needs in each of two groups for a one sided 
test at the a level of significance of H0 : Po = ~ and power 1- 8 for the 
alternative Ha: Po < ~ is given by the equation 

(8.43) 

where P = ( P0 + ~ )/2 and z1_a and z1_8 denote the upper a and 8 per­
cent points respectively of the standard normal distribution. We use a 
one sided test here for better comparability with the results in White­
more (1981). For a two sided test one would use z1_a12 in place of z1_a 

in equation (8.43). 
Thus the number we would need in our two treatment groups for a 

5 percent level test to have power 80 percent is 
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n = (1.645...)2x0.2364 x0.7636 +0.842..J0.2x0.8+0.2728 x0.7272 )
2 

(0.2728- 0.2)2 

=420.29, 

or 421 subjects in each group for a total sample size of approximately 
842 subjects. 

Whitemore (1981) approaches the sample size problem via the 
sampling distribution of the Wald statistic for the estimate of the logistic 
regression coefficient. For a univariable logistic regression model con­
taining a single dichotomous covariate, x, coded 0 or 1 the total sample 
size needed to test H0 : /31 = 0 versus Ha: /31 = Pt is 

( )

2 
1 1 1 1 Z1-a~ + +zHJ --+-{3. 

1-lf 1f 1-lf 1fe I 

n = {1 + 2Po) X •2 

Po/31 
(8.44) 

where 1r = P(X = 0) denotes the fraction of subjects in the study ex­
pected to have x = 0. In our example we want the sample size for an 
odds ratio of 1.5 or f3t = ln(1.5) and we plan to use equal numbers of 
subjects in the two treatment groups. Thus the value of equation (8.44) 
with 1r = 0.5 is 

(1.645~ 1 + 1 +0.842 _1_+ [~n{l.5)] )2 
( ) 

0.5 0.5 0.5 0.5e 
n = 1 + 2 X 0.2 X 2 

0.2 x [ ln(1.5)] 

( 1.645 X 2 + 0.842...)2 + 2 X 0.6666 t 
= 1.4x~----------~ 

0.2x0.1644 
= 992.19. 

This suggests that, rounding up to be divisible by 2, we would need ap­
proximately 994 subjects or 497 in each group. This is 76 more sub­
jects per group than the sample size given by equation (8.43). The dif­
ference in the two sample sizes stems from a number of assumptions 
made by Whitemore to obtain equation (8.44). This equation is derived 
under the assumption that the logistic probabilities are small. The lead 
term in equation (8.44) is proposed as a way to adjust the sample size 
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when this is not the case. To our knowledge no research has been pub­
lished that compares the results from equations (8.43) and (8.44) in a 
systematic manner. Our recommendation for univariable models is that 
one should use equation (8.43) as it relies on fewer assumptions than 
equation (8.44). 

If the single covariate we plan to include in the model is continu­
ous, then we may use results for this setting derived by Whitemore 
(1981) and Hsieh (1989). We must assume that the covariate is stan­
dardized to have mean 0 and standard deviation 1.0. Thus the logistic 
regression coefficient is the effect of a one standard deviation increment 
in the unstandardized covariate. The sample size needed for a one sided 
test, at the a level of significance and power 1-6, of H0 : {31 = 0 versus 
Ha: {31 = f3t is given by the equation 

( 

•2 )2 Z + Z e-o.2Sp1 

n = (1 + 2R o) X t-a t-s 
0 p, {3*2 , 

0 I 

(8.45) 

where 

(8.46) 

and Po is the value of the logistic probability evaluated at the mean of 
the standardized covariates, i.e., 

ef3o 
P,---

0 -l+ePo . (8.47) 

As an example, suppose we consider the covariate age in the UIS 
study and ignore all of the other covariates. In these data the mean age 
of the subjects is approximately 32 years with a standard deviation of 6 
years. We would like to determine what sample size we would need in 
order to be able to detect that the effect of a one standard deviation in­
crease in age is a 50 percent increase in the odds of remaining drug free 
(i.e., f3t = ln(1.5)). To obtain an estimate of Po in (8.47) we fit a uni­
variable logistic regression model containing the standardized covariate 

AGES= (AGE- 32)/6. The estimate of the intercept term is Po= 
-1.079 (results not shown) and equation (8.47) becomes 
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e-1.079 
Po = 1 + e-1.079 = 0.25 . 

The value of equation (8.46) in this example is 

1 + (1 + [ln(1.5) Y)e1.25[1n(1.5)]2 
0= 2 = 1.24 

1 + e -o.25[ ln(l.5)] 

and the sample size from equation (8.45) 

( 1.645 + 0.842e -o.2S[ln(I.S)]
2 r 

n=(1+2X0.25x1.24)x [ )2 
0.25 ln(1.5) 

=237.19. 

This result suggests that if the true effect of age is to increase by 50 per­
cent the odds of remaining drug free for every increment of 6 years, 
then we need a total 238 subjects in our study. This same result may 
also be obtained from Table II in Hsieh (1989). In addition it may also 
be obtained from the PASS 6.0 (1996) software package. 

However it is extremely rare in practice to have final inferences 
based on a univariable logistic regression model. The major problem is 
that the only sample size results currently available are for multivariable 
models containing continuous covariates that are assumed to be distrib­
uted normal, exponential or Poisson. For example Hsieh's multivari­
able adaptation of equation (8.45) suggests using the sample size given 
by the equation 

(8.48) 

where p2 is the squared multiple correlation of the covariate of interest, 
x1, and the remaining p -1 covariates in the model. This is the equa­
tion used by the PASS 6.0 package. 

In spite of these rather stringent assumptions we think that one can 
use a modification of equation (8.45) or equation (8.48) as a first step 
in obtaining an approximate sample size in practical settings (i.e., ones 
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Table 8.37 Results of Fitting a Logistic 
Regression 

Variable 
AGES 
NDRGTXS 
IVHX_2 
IVHX_3 
RACE 
TREAT 
Constant 

Model to the UIS Data (n = 575) 
Coef. Std. Err. z P>z 
0.306 0.1038 2.94 0.003 

-0.316 0.1283 -2.46 0.014 
-0.593 0.2864 -2.07 0.038 
-0.760 0.2490 -3.05 0.002 

0.208 0.2215 0.94 0.347 
0.439 0.1991 2.20 0.028 

-1.041 0.2097 -4.96 <0.001 

where models are fit containing a mix of continuous and discrete co­
variates). 

As a first multivariable example we consider the sample size needed 
to test for an age effect of ln(1.5) per 6 year increment where we also 
include the number of previous drug treatments, history of IV drug use, 
race and treatment in the model. In this example we consider treatment 
to be just another potential confounder of the age effe·~t. The results of 
fitting a logistic regression model to the UIS data with age standardized, 
AGES= (AGE- 32 )/6, and number of previous drug treatments stan­
dardized, NDRGTXS = (NDRGTX. -5)/5 are shown in Table 8.37. 

Based on the results in Table 8.37 the estimated probability of re­
maining drug free with all covariates equal to zero is 

e-t.04t 

Po = -1 041 = 0.261. 
l+e · 

In this case a subject with all covariates equal to zero corresponds to a 
subject who is 32 years old, has had 5 previous drug treatments, no pre­
vious history of IV drug use, is white and on the shorter treatment. 

Suppose we perform our test at the a = 0.05 level and would like 
power 1-6 = 0.8. Use of a multiple linear regression package with 
AGES as the dependent variable and the remaining variables as covari­
ates yields R2 = 0.1473. The value of equation (8.46) is the same as that 
determined for the univariable model, 8 = 1.24, and the sample size 
from equation (8.48) is 
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( 
2)2 --{).25[1n(1.5)] 

(1 + 2 X 0.261 X 1.24) 1.645 + 0.842 X e 
n = x = 270.92. 

(1- 0. 1473) 0.261 x [ln(1.5)]
2 

Thus application the Hsieh modification of the Whitemore formula sug­
gests that only about 271 subjects are needed to have 80 percent power 
to test for the stated effect of age. We note that if the average fitted lo­
gistic probability is approximately equal to Po= 0.261 then we would 
expect to have 71 "events" or subjects who remain drug free for 12 
months. We comment on the importance of this number shortly. 

As a second multivariable example we consider sample size for a 
study where treatment is the main covariate of interest. What sample 
size is necessary to have 80 percent power to detect a treatment coeffi­
cient ln(1.5) when we adjust for age, the number of previous drug 
treatments, history of IV drug use and race? Application of Hsieh's 
correction factor for multiple covariates to equation (8.44) yields sam­
ple size 

(8.49) 

In this case, since the covariate of interest is dichotomous, we suggest 
using one of the R2 measures discussed in Chapter 5. One possibility is 
the squared correlation between the values of the dichotomous covariate 
and fitted values from a logistic regression of this covariate on all other 
variables in the model (i.e., the value of equation (5.6)). In our exam-
ple this yields p2 = (0.1123}2 = 0.0126. Thus the multi variable adjusted 
sample size from equation (8.49) is 

(1 645~ 1 
+ 

1 
+0 842 -

1
-+ 

1 
)

2 

n = (1 + 2 X 0.261) X . 0.5 0.5 · 0.5 0.5e[tn(I.S)] 

(1- 0.0126) 0.261 X [ln(1.5)]
2 

( 1.645 X 2 + 0.842.J2 + 2 X 0.6666) 
2 

= 1.541 X~---------...!.-
0.261 x0.1644 

= 836.86 0 
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This suggests that, rounding up to be divisible by 2, a total sample size 
of about 838, or 419 per treatment group would be required. 

There are a number of potential problems with the sample size 
formula in equation (8.49). One is the ad-hoc use of the Hsieh's cor­
rection factor to account for multiple covariates. A second problem 
involves the earlier noted discrepancy in sample sizes suggested by 
equation (8.43) and equation (8.44). We think that the sample size 
suggested by equation (8.49) may be unnecessarily large but could be 
the starting point for a more in depth sample size analysis using pilot 
data do some model fitting. For example, one way to assess the preci­
sion obtained from modeling with a sample of 838 subjects is to con­
struct a pseudo-study by combining the original 575 subjects with a 
random sample of 263 of the 575 subjects. We would then fit the pro­
posed multivariable logistic regression model and examine the estimated 
coefficient for treatment, its estimated standard error, Wald statistic and 
p-value. These results can be used to provide guidance as to how sig­
nificant the results may be expected to be in the new, larger study. Ide­
ally we would repeat this process a number of times to obtain an ap­
proximate sampling distributions of the estimated quantities. If in the 
end we think the estimated standard error is too small and confidence 
intervals are too narrow then we would repeat the process using a 
smaller sample size. This could be repeated until we had empirical evi­
dence that the sample size provides about the desired precision in the 
multivariable model. 

A second consideration, and one relevant to any model being fit, is 
the issue of events per covariate. Peduzzi, Concato, Kemper, Holford 
and Feinstein (1996) examine the issue of how many events per covari­
ate are needed to obtain reliable estimates of regression coefficients 
when fitting a logistic regression model. Peduzzi et. al. consider single 
term main effects models. In order to extend their ideas to more com­
plex models that may have multiple terms for a number of covariates, 
we prefer to use the terminology events per parameter. In general the 
relevant quantity is the frequency of the least frequent outcome, 
m =min( n1, n0 ). In our experience this is usually the number of sub­
jects with the event present, y = 1 but it could just as well be the number 
with the event absent, y = 0. Peduzzi et. al. show that a minimum of 1 0 
events per parameter are needed to avoid problems of over estimated 
and under estimated variances and thus poor coverage of Wald-based 
confidence intervals and Wald tests of coefficients. Thus the simplest 
answer to the "do I have enough data" question is to suggest that the 
model contain no more than p + 1 ~ min( n1, no) /10 parameters. For ex-
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ample in the UIS study we have 147 = min(147,428) events. The rule of 
10 suggests that models should contain no more than 14 parameters. 
The model fit in Chapter 4 and evaluated in Chapter 5, see Table 5.10, 
using the UIS data contains 11 parameters. Note that with the sample 
size of 271 that we obtain when the goal is to test the coefficient age we 
expect about 71 events. In this case the rule of 10 suggests that models 
should contain no more than 7 parameters. 

As is the case with any overly simple solution to a complex prob­
lem, the rule of 10 should only be used as a guideline and a final de­
termination must consider the context of the total problem. This in­
cludes the actual number of events, the total sample size and most im­
portantly the mix of discrete, continuous and interaction terms in the 
model. Peduzzi et. al. considered only discrete covariates and provide 
no information about the bivariate distributions of outcome by covari­
ates. We think that the ten events per parameter rule may work well for 
continuous covariates and discrete covariates with a balanced distribu­
tion. However, we are less certain about its applicability in settings 
where the distribution of discrete covariates is weighted heavily to one 
value. Here one may require that the minimum observed frequency be, 
say 10, in the contingency table of outcome by covariate. Research is 
needed to determine if 10 is too stringent a requirement. 

In summary, having an adequate sample size is just as important 
when fitting logistic regression models as any other regression model. 
However, the performance of model-based estimates may be determined 
more by the number of events rather than the total sample size. 

EXERCISES 

1. Data from the mammography experience study are described in 
Section 8.1. Use a subset of these data and fit a multinomial logistic 
regression model. For example, you may choose to use only the 
first 200 subjects. The purpose of the exercise is to obtain practice 
when there are more than two categories of outcome. Hence, any 
alternative strategy for identifying a subset of subjects is acceptable. 

2. The data for the low birth weight study are described in Section 
1.6.2. These data are used in Section 8.2 to illustrate ordinal logis­
tic regression models via the four category outcome BWT4, 
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0 if BWT > 3500 

1 if 3000 < BWT ~ 3500 
BWT4= 

2 if 2500 < BWT ~ 3000 

3 if BWT ~ 2500. 

Use the outcome variable BWT4 and fit the multinomial or baseline 
logistic regression model. 

In each of the above problems the steps in fitting the model should 
include: (1) a complete univariate analysis, (2) an appropriate se­
lection of variables for a multivariate model (this should- include 
scale identification for continuous covariates and assessmt:nt of the 
need for interactions), (3) an assessment of fit of the multivariate 
model, (4) preparation and presentation of a table containing the re­
sults of the final model (this table should contain point and interval 
estimates for all relevant odds ratios), and (5) conclusions from the 
analysis. 

3. Using the final models identified in problems 1 and 2 compare the 
estimates of the coefficients obtained from fitting the multinomial 
logistic regression model to those obtained from fitting the adja­
cent-category, continuation-ratio and proportional odds ordinal lo­
gistic regression models. For the mammography experience data 
recode the outcome variable, ME, to 0 = Never, 1 = Over one year 
ago and 2 = Within one year in order that its codes increase with 
frequency of use. 

4. The following exercise is designed to enhance the idea expressed in 
Figure 8.2 and Figure 8.3 that one way to obtain the proportional 
odds model is via categorization of a continuous variable. 
(a) Form the scatter plot of BWT versus LWT. 
(b) Fit the linear regression of BWT on L WT and add the estimated 

regression line to the scatterplot in 4(a). Let Xo denote the es­

timate of the intercept, i 1 the estimate of the slope and s the 
root mean squared error from the linear regression. 

(c) It follows from results for the logistic distribution that the rela­
tionship between the root mean squared error in the normal er­
rors linear regression and the scale parameter for logistic errors 
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linear regression is approximately a= s../3/rc. Use the results 
from the linear regression in 4(b) and obtain a. 

(d) Use the results from 4(b) and 4(c) and show that the estimates 

presented in Table 8.20 are approximately f 1 =(2500-io)ja, 

f2=(3ooo-io)ja, f3=(350o-io)/a and /31=~/a. 
(e) By hand draw a facsimile of the density function shown in Fig­

ure 8.3 with the three vertical lines at the values 2500, 3000 and 
3500. Using the results in equation (8.20), equation (8.21) and 
the estimates in Table 8.20 compute the value of the four areas 
under the hand-drawn curve. Using these specific areas demon­
strate that the relationship shown in equation (8.22) holds at 
each cutpoint. 

(f) Repeat problem 4.5 for LWT = 135 and show by direct calcula­
tion using areas under the two curves that the relationship in 
equation (8.24) holds at each cutpoint. 

5. Using the data from the longitudinal low birth weight study and 
considering all the covariates (be sure to consider the possibility of 
interactions among the covariates): 
(a) Find the best cluster-specific and population average models. 
(b) Evaluate the fit of the two models obtained in problem 5(a). 
(c) Prepare separate table for each model obtained in 5(a) contain­

ing estimates of the odds ratios with 95 percent confidence in­
tervals. 

(d) Compare the interpretation of the point estimates of the odds 
ratios from the cluster-specific model and population average 
model. 

6. Using the cluster-specific and population average models obtained 
in problem 5(a) explore alternative ways of including the weight of 
the mother at the last menstrual period. For example, one alterna­
tive is to use the weight at the first birth as a cluster level covariate. 
Others representations are possible. For each alternative fit the 
cluster-specific and population average model, estimate an odds ra­
tio for weight and compare their interpretation. 

7. Using the covariates in the population average model obtained in 
problem 5(a) explore alternative ways of including history of a low 
birth weight baby. For reach model compute and interpret the esti-
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mate of the odds ratio and a 95 percent confidence interval for the 
previous low birth weight covariate. Recall that we fit these models 
using the usual logistic regression model. 
(a) Fit the model that adds the outcome of the previous birth to the 

model. In this problem explore the use of two versions of this 
covariate: one that assigns a missing value for the first birth and 
one that assigns a value of zero to the first birth. 

(b) Fit the model that includes a dichotomous covariate indicating if 
any previous birth was of low weight. In this problem explore 
the use of two versions of this covariate: one that assigns a 
missing value for the first birth and one that assigns a value of 
zero to the first birth. 

8. Using the data from the ICU Study described in Chapter 1, Section 
1.6.1, attempt to fit the usual logistic regression model containing 
type of admission (TYP) using subjects 25 years of age or younger. 
Why does the usual MLE have problems in this example? Fit the 
exact logistic regression model. Compute the point and 95 percent 
confidence interval estimates of the odds ratio. 

9. Repeat problem 8 fitting models conta,ining systolic blood pressure 
(SYS). 

10. Evaluate the fit of the usual and exact logistic regression models 
shown in Table 8.36. 

11. Consider the low birth weight study. What sample size would be 
needed in a new study to be able to detect that the odds of a low 
birth weight baby among women who smoke during pregnancy is 
2.5 times that of women who do not smoke, using a 5 percent type I 
error probability and 80 percent power? 

12. Consider the low birth weight study. What sample size would be 
needed in a new study to be able to detect that the odds of a low 
birth weight baby decrease at a rate of 10 percent per 10 pound in­
crease in weight at the last menstrual period, using a 5 percent type I 
error probability and 80 percent power? 

13. Repeat problem 11 assuming that you plan to use a model that 
contains age, weight of the mother at the last menstrual period and 
race. 
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14. Repeat problem 12 assuming that you plan to use a model that 
contains age, smoking status during pregnancy and race. 

15. If the sample size obtained in problems 13 or 14 is larger than the 
original study size of 189 then use the suggested method for ob­
taining a larger study to explore the effect the larger study size has 
on estimated coefficients, standard errors and confidence intervals. 



ADDENDUM 
Applied Logistic Regression, Second Edition, by David W Hosmer 
and Stanley Lemeshow. © 2000 by John Wiley & Sons, Inc. 
ISBN 0-471-35632-8. 

Tables 4.6, 4.8. 4.10 
Table 4.6 Summary of the Use of the Method of Fractional 
Polynomials for NDRGTX 

G for Model Approx. 
cf Deviance vs. Linear p-Value Powers 

Not in model 0 626.176 
Linear 1 619.248 0.000 o.oo8· 1 
J =1 2 618.818 0.430 0.512+ 0.5 
J =2 4 613.451 5.797 0.06811 -1, -1 

• Compares linear model to model without NDRGTX. 
+ Compares the J = 1 model to the linear model 
# Compares the J = 2 model to the J = 1 model 

Table 4.8 Log-likelihood, Likelihood Ratio Test Statistic 
(G), Degrees of Freedom (df), and p-Value for Interactions of 
Interest When Added to the Main Effects Model in Table 4.7. 

Interaction Log-Likelihood G cf e-value 
Main Effects Model -306.7256 
AGExNDRGTX' -302.8314 7.79 2 0.020 
AGExiVHX -306.3559 0.74 2 0.691 
AGExRACE -306.6269 0.20 0.657 
AGExTREAT -305.3410 2.76 0.096 
AGExSITE -305.9265 1.60 0.206 
NDRGTX'xiVHX -304.0092 5.43 4 0.246 
NDRGTX'xRACE -304.6541 4.14 2 0.126 
NDRGTX'xTREAT -305.2580 2.94 2 0.231 
NDRGTX'xSITE -306.7239 0.01 2 0.998 
IVHXxRACE -305.8361 1.78 2 0.411 
IVHXXTREAT -306.7051 0.04 2 0.980 
IVHXxSITE -306.2910 0.87 2 0.648 
RACExTREAT -306.2541 0.94 0.332 
RACExSITE -302.4533 8.54 0.004 
TREATxSITE -306.7087 0.03 0.854 

*: All Interactions involving NDRGTX are formed using 
NDRGFP1 and NDRGFP2 
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Table 4.10 Results of Applying Stepwise Variable Selection 
Using the Maximum Likelihood Method to the UIS Data 
Presented at Each Step in Terms of the p-Values to Enter, Be­
low the Horizontal Line, and the p·Value to Remove, Above 
the Horizontal Line in Each Column. The Asterisk Denotes 
the Maximum p·Value to Remove at Each Step. 

Variable/Ste 0 1 2 3 4 

NDRGTX 0.0006 0.0006 0.0006 0.0164 0.0062 

TREAT 0.0229 0.0224 

IVHX 0.0013 0.0273 0.0027 

AGE 0.2371 0.0458 0.0356 0.0021" 

RACE 0.0315 0.0663 0.0914 0.2107 0.1350 
SITE 0.1968 0.3644 0.3382 0.4987 0.5688 
BECK 0.4250 0.5582 0.5436 0.7744 0.9938 
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Additive models. 103-104 
Adjacent-category logistic model, 289. 293-295, 

297-298 
Adjustment, statistical, 65, 67, 69 
Algorithms, variable selection, 96 
Analysis of covariance, 65 
Analysis of variance table, 11-12 
Asthma study. correlated data analysis. 309-312 
Asymptotically equivalent. 21 
Asymptotic distribution, 132 
Auto-regressive model. correlated data analysis, 

313 

Baseline logit model. 289 
Best subsets linear re£lression. model-building: 

applications. generally. 128-129 
interaction. 136-13 7 
matrix notation. 128-131 
multivariable analysis, 132 
O\erfitting. 134-135 
sum-of-squares. 130-131 
univariable stage. 129-130 
UIS case illustration, 132-135 
variable selection. 96 
vector notation. 128-129 

Binary logistic models. I, 278. 307-308 
Binomial distribution. 7. 116 
BMDPLR. 121-122 
Breslow-Day test. 83-84 

Calibration, goodness-of-fit assessment, 159 
Case-control studies: 

components of. 189-190. 205-210 
matched. see Matched case-control studies 

Chi-square distribution: 
best subsets logistic regression, 133 

fitted logistic regression, 72, 82, 85 
logistic regression, 14, 16 

Chi-square test. variable selection: 
benefits of. 92-93, I 02 
stepwise logistic regression, 116 

Classification, 21 
Classification tables, goodness-of-fit assessment, 

156-160, 188 
Clustering, 185-186 
Cluster-level covariates. 309 
Cluster-specific model, correlated data analysis, 

310-312.316-317,320-328 
Coefficients, generally: 

correlated. see Correlated data analysis 
testing for significance of. 11-17 
in variable selection, 97 

Cohort studies. 203-205 
Collinearity, 140-141 
Complex sample surveys, fitting logistic 

regression models to data from. 211-221 
Conditional exact maximum likelihood estimate 

(CMLE}, 334-337 
Conditional maximum likelihood estimators, 23 
Conditional mean, 4, 6-7. 168 
Confidence interval: 

estimation. see Confidence interval estimation 
in goodness-of: fit assessment, 191, 195-198 
Wald-based, 19-20 

Confidence interval estimation: 
fitted logistic regression, 52-53, 55. 62, 88 
logistic regression, 17-21 
multiple logistic regression. 35, 40-42 

Confidence limits, 59 
Confounding: 

fitted logistic regression, 70-74 
goodness-of-fit assessment. 185 
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Confounding (cm7linuec!J 
1 ariable selection. 128 

Constrained cumulative logit model, 297 
:-'ontingency table. 92--93 
Continuation-ratio logistic model. 290, 295-29ll 
t 'ontinuous co~ariates: 

goodne~s-of-tit, 175-176 
1 ariable selection. 93-94, 103, 126 

( ontinuous independent 1 uriable: 
fitted logistic regression. 63-64, 67. 97 
l'ariable selection. 97 

< ontinuous variables: 
defined.22 
independent. see Continuous independent 

1·ariable 
1 ariuble selection. 93 

Coronary heart disease (CHD) study: 
fitted logistic regre~sion. 51-53, 56-57, 64. 

71-71 
logistic regression, 2-7 

Correlnlo.!d data anal)~is: 
duster-specitk. 310-312. 316-317. 320-328 
population a1·erage model, 311-323. 329-330 
subject-specific. 310. 312 
transitional model. 312 

Col'ariance matrix: 
case-control studies, 206-210 
correlated data annlysis. 315 
fitted logistic regre~sion. 78 
lo~,u,tic regres~ion. 19 
multiple log1stic regression. 34. 41-43 

Co1 ariate pattern: 
defined. 144 
diagnostics and, 169. 172-183 
goodness-of-fit assessment, 178-179. 182. 

282-287 
model-building strategies, 138 

Cox model. 205,331-332 

Data sets: 
IClJ study. 23-25 
low birth weight study, 25 
prostate cancer study, 25-26 
UMARU IMPACT study. 26-28 

Degrees-of-freedom: 
complex sample surveys. 214 
correlated data analysis. 328 
exact computation methods. 338 
fitted linear regression. 72. 82-83. 85 
goodness-of-tit assessment, 154 
multinomial logistic regression, 275 
multiple logistic regression. 38-39 
ordinal logistic regression model. 295. 304 
stepwise logistic regression. I 16. 120 

variable selection and, 92, I 02, 116 
Dependent outcome, I 
Design matrix, 168 
Design variables: 

fitted logistic regression, 60-61 
multiple logistic regression. 32. 38 

Deviance, Pearson,l45-147, 152-154, 179 
Deviation from mean coding, 59 
Deviation from means, 54 
Diagnostics: 

basic building blocks, 176-178 
coefficient estimation, 182 
confounding. 185 
correlated data analysis. 325-326 
covariate patterns. 172-183 
design matrix. 168-169 
distribution theory. 175 
leverage values, 169-172. 177 

INDEX 

maximum likelihood estimate ( MLE). 184-185 
multinomial logistic regression model. 

280-287 
Pearson chi-square statistic. 174 
residuals, 178-179 
residual sum-of-square. 167-168 
UIS case study. 184 

Dichotomous covariate. 339-340 
Dichotomous independent variable, fitted logistic 

regression, 48-56 
Dichotomous logistic regression. I. 43 
Discrete choice model. 260 
Discrete variables, 22. 33 
Discriminant analysis. 21, 138 
Discriminant function: 

analysis. see Discriminant function analysis 
multiple logistic regression, 43-44 

Discrimination, goodness-of-fit assessment. 160, 
163 

Distribution functions. 5-6 
Due regression sum-of-squares. 12 
Dummy variables. 32 

Effect modifier, 70 
EGRET. 85, 152.326-327 
Error: 

estimated standard. 138-139 
fitted logistic regression, 58 
logistic regression. 6-7 
multiple logistic regression. 34. 42 

Estimation methods: 
logistic regres~ion models. 21-23 
multinomial logistic regression. 2M-273 

Events per parameter, 346 
Exchangeable correlation, correlated data 

analysis. 313 
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Exchangeable correlation matrix, 314 
Explanatory variables, I 
External validation, goodness-of-fit, 186-188 
Extrabinomial variation, 185 

F-distribution, 213-214 
Fisher's exact test, 334 
Fit assessment: 

exercises, 20Q-202 
external validation, 186--118 
logistic regression diagnostics, 16 7-186 
1-M matched study, 248-259 
1-1 matched study, 236--243 
results, interpretation and presentation of, 

188-200 
summary measures of goodness-of-fit, see 

Goodness-of-fit assessment factors 
Fitted logistic regression model, interpretation of: 

confounding, 70-74 
continuous independent variable, 63-64 
dichotomous independent variable, 48-56 
exercises, 88-90 
fitted values, 85-88 
interaction, 70-74 
link function, 48 
multi variable model, 64-69 
odds ratio, estimation in presence of 

interaction, 74-79 
polychotomous independent variable, 56-72 
2 x 2 tables, stratified analysis compared with, 

79-85 
Fitted values, fitted logistic regression, 85-88 
Fitting: 

assessment of, see Fit assessment; Goodness-
of-fit assessment 

correlated data analysis, 320, 326-330 
multinomial logistic regression, 279-287 
ordinal logistic regression model, 291-292 
stepwise logistic regression, 117-120 

Fractional polynomials, variable selection, 
100-103.109,111 

F-test, 116 
Fumivai-Wilson algorithm, 128 

GEE (generalized estimating equations), 312-316 
Generalized additive model, variable selection, 

103-104 
Goodness-of-fit: 

assessment of, see Goodness-of-fit assessment 
factors 

defined, 143 
fitted logistic regression, 85 
logistic regression, generally, II, 13 
sample size issues, 339-347 
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Goodness-of-fit assessment factors: 
classification tables, 156-160, 188 
Hosmer-Lemeshow tests, 147-156, 327, 338 
interaction, 188-189 
interpretation of, 164, 183-184 
Pearson chi-square statistic and deviance, 

145-147, 152-154, 181,218,327 
Pearson correlation coefficient, 164-165 
ROC Curve, area under, 160-164 

Grouping, goodness-of-fit, 176 

Hat matrix, 168 
Homogeneity test, 82-83 
Hosmer-Lemeshow tests, 147-156, 187,327,338 

ICU study, 23-25 
Identity function, 47 
Independent model, correlated data analysis, 313 
Independent variables: 

continuous, 63-69 
fitted logistic regression, 4 7, 54 
dichotomous, 48-56 
logistic regression, 1-2,6--7, 14 
polychotomous, 56-62 

Information sandwich estimator, 315 
Interaction: 

best subsets linear regression, 136-137 
defined, 69 
fitted logistic regression, 70-74, 98 
goodness-of-fit assessment, 188-189 
stepwise logistic regression, 125-128 
variable selection, 98-99 

Intercept coefficient, 4 7, 13 5 

Least squares: 
logistic regression, 7-8 
multiple logistic regression, 43 

Leverage values, goodness-of-fit assessment, 
169-172, 177 

Likelihood equations, 8, 33 
Likelihood function: 

logistic regression model, generally, 8 
multinomial logic regression·, 262 
multiple logistic regression, 33 
sampling models, 206, 209, 212 

Likelihood ratio: 
defined, 13 
multinomial logistic regression, 276-277 
ordinal logistic regression model, 305-307 
stepwise linear regression, 117 
test, see Likelihood ratio test 
variable selection and, 92, 117 

Likelihood ratio test: 
correlated data analysis, 321 



372 

Likelihood ratio test (continued) 
goodness-of-fit assessment, 146 
logistic regression, 13, 15-16 
multiple logistic regression, 37 
variable selection, 97. 120 

Limits, fitted logistic regression, 59 
Linear regression model, logistic distinguished 

from with, I, 6-7 
Link function, fitted logistic regression, 47-48 
Log likelihood function: 

best subsets linear regression, 123 
case-control studies, 211 
correlated data analysis, 3 16 
logistic regression model, generally, 8, 15 
multinomial logistic regression, 270 
multiple logistic regression, 34 

Logistic distribution. generally, 6 
Logistic regression model: 

coefficients, testing for significance of, 11-17 
confidence interval estimation, 17-23 
data sets, 23-28 
estimation methods, 21-23 
exact methods for. 330-339 
example of. 2-7 
exercises, 29-30 
titting, 7-10 
interpretation of. see Fitted logistic regression 

model 
model-building strategies. see Model-building 

strategies 
purpose of, I 
sample size issues. 339-347 

Log it: 
fitted logistic regression, 48, 6 7, 70-71, 

73-75 
logistic regression. 17-19 
multiple logistic regression, 31-32,40.42 
transformation. 6. 48 
variable selection, 97 

Log-odds ratio: 
fitted linear regression, 63--64, 67-68, 75-76, 

79 
linear regression, 18 

LogXact4.331,334,338 
Low birth weight study: 

correlated data analysis, 318-330 
fitted linear regression, 77, 80, 86-88 
logistic regression, 25 
matched case-control study, 230-243 
multiple logistic regression, 35-38 
ordinal logistic regression model, 292-308 

Main effects model, 98 
Mammography experience study, 265-287 

INDEX 

Mantel-Haenszel estimator, 79-80, 82-83, 85 
m-asymptotics, 145, 147, 150, 175-176, 187,210 
Matched case-control studies 

characteristics of, 223-226 
1-M matched study, 243-248 
1-1 matched study, 226-248 

Matrix notation, best subsets logistic regression, 
128-129. See also specific (vpes of 
matrices 

Maximum likelihood estimation {MLE): 
best subsets linear regression, 128, 130-131 
case-control studies, 208, 226 
fitted logistic regression, 63, 84 
goodness-of-fit assessment, 173, 184 
logistic regression, 8-10, 23 
matched case-control studies. 226-227 
multiple logistic regression, 33 
multinomial logistic regression, 263 
ordinal logistic regression models. 291 
stepwise logistic regression, 121 
variable selection, I 00 

Median unbiased estimator (MUE), 337 
Model-building strategies: 

best subsets, 128-135 
covariates, 138 
exercises, 142 
fitting, 140 
numerical problems, 135-141 
overfitting, 135-136 
pooling, 136-13 7 
stepwise logistic regression, I 16-128 
variable selection, 92-116 

Multinomial logistic regression model: 
components of, 260--264 
coefficient estimation, 264-273 
fit assessment, 280-287 
model-building strategies. 273-280 

Multiple logistic regression: 
confidence interval estimation, 40-42 
estimation methods, 43-44 
exercises. 44-46 
fitting the, 33-36 
model, 31-33 
testing for significance of, 36-40 

Multivariable analysis, variable selection, 
95-96 

Multivariable logistic regression model: 
fitted, 64-69 
sample size, 346-347 

n x n diagonal matrix, 212 
n-asymptotics, 144, 176 
NHANES (1/11/lll), 214 
Noise variables, 121 
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Noniterative weighted least squares, 21 
Nonnal distribution: 

diagnostics. 175 
logistic regression model, 6-7, 18 
stepwise logistic regression, 116 
variable selection and. 93 

Null distribution. 146 

Odds ratio: 
adjusted. 69 
defined, 49 
correlated data analysis, 322-325 
fitted logistic regression. 51-55,68,74-79,81, 

83-84 
goodness-of-fit assessment, 188-190. 

194-195 
matched case-control studies, 224 
multinomial logistic regression, 265-266 

1-1 matched study: 
example of, 230-235 
goodness-of-fit assessment, 236-243 
logistic regression analysis for, 226-230 

1-M matched study: 
example of. 243-248 
goodness-of-fit assessment, 248-259 

Ordinal logistic regression models: 
components of. 288-305 
model-building strategies. 305-308 

Osius-Rojek goodness-of-fit test, 155 
Outcome variable, defined, 7. See also specific 

(vpes of regression models 
Overfitting, 92, 134-135 

Partial likelihood ratio test. 101-102 
Partia I proportional odds model, 298 
PASS 6.0. 343 
p coefficients, 36 
Pearson chi-square statistic, goodness-of-fit 

assessment, 145-147, 152-154, 187,218, 
327. See also Chi-square distribution; 
Chi-square test 

Pearson correlation coefficient, goodness-of-fit 
assessment, 164-165 

Pearson deviance, goodness-of-fit assessment. 
145-147, 152-154 

Polychotomous independent variable, fitted 
regression analysis. 56-72 

Polychotomous logistic regression, 260 
Polychotomous variables, variable selection, 116 
Pooling. 136-137 
Population average model, correlated data 

analysis, 311-323. 329-330 
Predtction, goodness-of-fit assessment, 160 
Predictor variables, I 

Preliminary final model, 99 
Preliminary main effects model, 97 
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Probability distribution, exact methods, 334-336 
PROC LOGISTIC, 133-134 
Proportional hazards regression model, I 00-10 I. 

205 
Proportional odds model, 297-298 
Prostate cancer study, 25-26 
p-value: 

best subsets logistic regression, 131-132 
computation methods, generally. 333 
goodness-of-fit assessment, 146, 152, 154, 

188 
logistic regression model, 16-17,37 
stepwise logistic regression, 117-120, 125 
sampling models and, 213-214 

Quasicomplete separation, 139 

R2, 131,164-167,345 
Random effects models, correlated data analysis, 

310,320 
Random variable, cumulative distribution, 5-6 
Recycling, in variable selection, 102-103 
Reference cell coding, 54, 57, 59 
Refinement stage, in variable selection, 97 
Refitting, 97, 99, 339 
Regression coefficients, 220 
Regression diagnostics. defined, 167. See also 

Diagnostics 
Regression sampling model, defined. 204. See 

also Sampling models 
Residual sum-of-squares, 12-13, 167-168 
Response variable, I, 12 
Risk factor studies: 

computational methods, generally, 332 
correlated data analysis, 323-324 
goodness-of-fit assessment, 152 
multivariable logistic regression, 69, 74 

Robust estimator, 315-316 
ROC (Receiver Operating Characteristic) Curve. 

goodness-of-fit assessment. 160-164 

Sample size: 
adjustment of. 341 
continuous covariates. 343-345 
dichotomous covariates, 339-341 
multivariable logistic regression, 343-347 
univariable logistic regression. 343 
Wald statistic, 341-342 

Sample surveys, complex, 211-221 
Sampling models: 

case-control studies, 205-210 
cohort studies, 203-205 
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Sampling models (continued) 
complex sample surveys. fitting logistic 

regression models to data from, 211-221 
exercises, 222 
NHANES case illustration, 214-221 

SAS package, 85, 121, 125, 133, 139, 149, 152, 
169-170,229,237,304,309,326-327 

Saturated model, 12-13 
Scatterplot, 94, I 07 
Score test (ST): 

best subsets logistic regression, 133 
fitted logistic regression, 85 
goodness-of-fit assessment, 152, 155 
logistic regression, 16 
multiple logistic regression, 39-40 
variable selection, 125 

Simulation tests, 152, 155 
Slope coefficient, confidence interval; 

logistic regression, 17-18, 48 
multiple logistic regression, 37, 40 

Smoking and health study, 205. See also 
NHANES (1111/lll) 

Smoothing, goodness-of-fit, 176 
Software programs/packages: 

additive models, 104 
best subsets linear regression, 96, 133-134 
correlated data analysis, 309, 316, 319-320. 

325-327 
fitted logistic regression, 85 
fractional polynomials, 102 
generally, 331 
goodness-of-fit assessment, 151, 153-154, 

169-170 
logistic regression, 15-16, 19 
matched case-control studies, 228-229, 233, 

243-244,248,250 
model-building, 139 
multinomial logistic regression, 266, 269, 277 
multiple logistic regression, 32 
ordinal logistic regression models, 302-304, 

308 
sample size, 343 
sampling models, 205, 211-213, 219-220 
stepwise logistic regression, 121, 125 
variable selection, 94-95. 102, 104, 121, 125 

SSE, 12-13 
S-shaped curve, 5, 69 
SSR, 12 
STAT A, 94-95, 102, 121, 125, 135, 139, 151, 

153-154, 169-170,211-213,219-220, 
229,243-244.250,266,269,302-304, 
308-309,316,319-320,325-327 

Statistical significance, in variable selection, 116, 
128 

INDEX 

Stepwise logistic regression, model-building: 
benefits of, I 16 
continuous covariates, 125-126 
fitting, 117-120 
interactions, 126-128 
likelihood ratio. 122-123 
statistical significance, 116, 124 
variable selection, 96, 116-118, 120-122 

Stratified analysis: 
case-control studies, 206, 209 
fitted logistic regression compared with, 79-85 
model-building and, 136-137 

Stukel's test, 152, 184 
Subject-specific model, correlated data analysis, 

310,312 
SUDAAN, 211-212,219 
Sum-of-squares: 

best subsets logistic regression, IJG-131 
goodness-of-fit assessment, 165 

Transitional models, correlated data analysis. 
312,328 

t-test, 93 
2 x 2 tables, generally: 

classification, 159-160, 228 
contingency, 331 
fitted logistic regression compared with 

stratified analysis, 79-85 
model-building strategies, 136-13 7 

Type II error. 155 

UMARU IMPACT study (UIS),Iogistic 
regression illustration· 

overview, 26-28 
sample size. 339 
variable selection, 104-116 

Univariable analysis, 92-93 
Univariate models, fitted linear regression, 64 
Unstructured model, correlated data analysis, 313 
U-shaped function, 97 

Validation data, see External validation 
Values. fitted, 85-88 
Variable selection, in model-building: 

case illustration, UIS study, 104-116 
chi-square test. 92-93, I 02 
continuous covariates, 93-94 
continuous variables. 93 
fractional polynomials, I 00-103 
generalized additive model, 103-104 
independent variables, 97-98 
interaction, 98-99 
multivariable analysis, 95-96 
overfitting, 92 



INDEX 

univariable analysis and, 92-93, 95 
stepwise procedure, 96, 116-128 
weighted average. 94 

Vectors: 
best subsets logistic regression, 128-129 
confidence interval estimation, 40-41 

VerifYing, variable selection, 97 

Wald-based confidence interval, 19-20 
Wald statistic, see Wald test statistic 

correlated data analysis. J 18 
Wald tests: 

complex sample surveys, 213,216,221 
correlated data analysis. 316 
logistic re-gression. 16, 18 
multiple logistic regression, 37, 39 

statistic, see Wald test statistic 
variable selection. 125 

Wald test statistic: 
best subsets logistic regression, 132 
correlated data analysis. 318 
logistic regression model, generally, 16 
multinomial logistic regression, 270. 273 
multiple logistic regression. 38-39 
variable selection, 97. I 02, 115-116 

Weighted average, 94 
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Weighted least squares linear regression, 168 
Weighted linear regression, 153 
Working correlation, 313 

Zero cell, 93, 136, 139 
Zero-one coding, 54 
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