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Synopsis

This is a simple and concise introduction to probability and the theory of

probability. It considers some of the ways in which probability is motivated

by, and applied to, real-life problems in science, medicine, gaming, and other

subjects of interest. Probability is inescapably mathematical in character but,

as be®ts a ®rst course, the book assumes minimal prior technical knowledge

on the part of the reader. Concepts and techniques are de®ned and developed

as necessary, making the book as accessible and self-contained as possible.

The text adopts an informal tutorial style, with emphasis on examples,

demonstrations, and exercises. Nevertheless, to ensure that the book is

appropriate for use as a textbook, essential proofs of important results are

included. It is therefore well suited to accompany the usual introductory

lecture courses in probability. It is intended to be useful to those who need a

working knowledge of the subject in any one of the many ®elds of application.

In addition it will provide a solid foundation for those who continue on to

more advanced courses in probability, statistics, and other developments.

Finally, it is hoped that the more general reader will ®nd this book useful in

exploring the endlessly fascinating and entertaining subject of probability.
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On this occasion, I must take notice to such of my readers as are well versed

in Vulgar Arithmetic, that it would not be dif®cult for them to make

themselves Masters, not only of all the practical Rules in this book, but also

of more useful Discoveries, if they would take the small Pains of being

acquainted with the bare Notation of Algebra, which might be done in the

hundredth part of the Time that is spent in learning to write Short-hand.

A. de Moivre, The Doctrine of Chances, 1717





Preface

This book begins with an introduction, chapter 1, to the basic ideas and methods of

probability that are usually covered in a ®rst course of lectures. The ®rst part of the main

text, subtitled Probability, comprising chapters 2±4, introduces the important ideas of

probability in a reasonably informal and non-technical way. In particular, calculus is not a

prerequisite.

The second part of the main text, subtitled Random Variables, comprising the ®nal

three chapters, extends these ideas to a wider range of important and practical applica-

tions. In these chapters it is assumed that the student has had some exposure to the small

portfolio of ideas introduced in courses labelled `calculus'. In any case, to be on the safe

side and make the book as self-contained as possible, brief expositions of the necessary

results are included at the ends of appropriate chapters.

The material is arranged as follows.

Chapter 1 contains an elementary discussion of what we mean by probability, and how

our intuitive knowledge of chance will shape a mathematical theory.

Chapter 2 introduces some notation, and sets out the central and crucial rules and ideas

of probability. These include independence and conditioning.

Chapter 3 begins with a brief primer on counting and combinatorics, including

binomial coef®cients. This is illustrated with examples from the origins of probability,

including famous classics such as the gambler's ruin problem, and others.

Chapter 4 introduces the idea of a probability distribution. At this elementary level the

idea of a probability density, and ways of using it, are most easily grasped by analogy

with the discrete case. The chapter therefore includes the uniform, normal, and exponen-

tial densities, as well as the binomial, geometric, and Poisson distributions. We also

discuss the idea of mean and variance.

Chapter 5 introduces the idea of a random variable; we discuss discrete random

variables and those with a density. We look at functions of random variables, and at

conditional distributions, together with their expected values.

Chapter 6 extends these ideas to several random variables, and explores all the above

concepts in this setting. In particular, we look at independence, conditioning, covariance,

and functions of several random variables (including sums). As in chapter 5 we treat

continuous and discrete random variables together, so that students can learn by the use

of analogy (a very powerful learning aid).

Chapter 7 introduces the ideas and techniques of generating functions, in particular

probability generating functions and moment generating functions. This ingenious and
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elegant concept is applied to a variety of practical problems, including branching

processes, random walks, and the central limit theorem.

In general the development of the subject is guided and illustrated by as many

examples as could be packed into the text. Nevertheless, I have not shrunk from including

proofs wherever they are important, or informative, or entertaining.

Naturally, some parts of the book are easier than others, and I would offer readers the

advice, which is very far from original, that if they come to a passage that seems too

dif®cult, then they should skip it, and return to it later. In many cases the dif®culty will be

found to have evaporated.

In general it is much easier and more pleasant to get to grips with a subject if you

believe it to be of interest in its own right, rather than just a handy tool. I have therefore

included a good deal of background material and illustrative examples to convince the

reader that probability is one of the most entertaining and endlessly fascinating branches

of mathematics. Furthermore, even in a long lecture course the time that can be devoted

to examples and detailed explanations is necessarily limited. I have therefore endeavoured

to ensure that the book can be read with a minimum of additional guidance.

Moreover, prerequisites have been kept to a minimum, and mathematical complexities

have been rigorously excluded. You do need common sense, practical arithmetic, and

some bits of elementary algebra. These are included in the core syllabus of all school

mathematics courses.

Readers are strongly encouraged to attempt a respectable fraction of the exercises and

problems. Tackling relevant problems (even when the attempt is not completely success-

ful) always helps you to understand the concepts. In general, the exercises provide routine

and transparent applications of ideas in the nearby text. Problems are often less routine;

they may use ideas from further a®eld, and may put them in a new setting. Solutions and

hints for most of the exercises and problems appear before the Index.

While all the exercises and problems have been kept as simple and straightforward as

possible, it is inescapable that some may seem harder than others. I have resisted the

temptation to magnify any slight dif®culty by advertising it with an asterisk or equivalent

decoration. You are at liberty to ®nd any exercise easy, irrespective of any dif®culties I

may have anticipated.

It is certainly dif®cult to exclude every error from the text. I entreat readers to inform

me of all those they discover.

Finally, you should note that the ends of examples, de®nitions, and proofs are denoted

by the symbols s, n, and h respectively.

Oxford

January 1999
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1

Introduction

I shot an arrow into the air

It fell to earth, I knew not where.

H.W. Longfellow

O! many a shaft at random sent

Finds mark the archer little meant.

W. Scott

1.1 PREVIEW

This chapter introduces probability as a measure of likelihood, which can be placed on a

numerical scale running from 0 to 1. Examples are given to show the range and scope of

problems that need probability to describe them. We examine some simple interpretations

of probability that are important in its development, and we brie¯y show how the well-

known principles of mathematical modelling enable us to progress. Note that in this

chapter exercises and problems are chosen to motivate interest and discussion; they are

therefore non-technical, and mathematical answers are not expected.

Prerequisites. This chapter contains next to no mathematics, so there are no

prerequisites. Impatient readers keen to get to an equation could proceed directly to

chapter 2.

1.2 PROBABILITY

We all know what light is, but it is not easy to tell what it is.

Samuel Johnson

From the moment we ®rst roll a die in a children's board game, or pick a card (any card),

we start to learn what probability is. But even as adults, it is not easy to tell what it is, in

the general way.

1



For mathematicians things are simpler, at least to begin with. We have the following:

Probability is a number between zero and one, inclusive.

This may seem a tri¯e arbitrary and abrupt, but there are many excellent and plausible

reasons for this convention, as we shall show. Consider the following eventualities.

(i) You run a mile in less than 10 seconds.

(ii) You roll two ordinary dice and they show a double six.

(iii) You ¯ip an ordinary coin and it shows heads.

(iv) Your weight is less than 10 tons.

If you think about the relative likelihood (or chance or probability) of these eventualities,

you will surely agree that we can compare them as follows.

The chance of running a mile in 10 seconds is less than the chance of a double six,

which in turn is less than the chance of a head, which in turn is less than the chance of

your weighing under 10 tons. We may write

chance of 10 second mile , chance of a double six

, chance of a head

, chance of weighing under 10 tons.

(Obviously it is assumed that you are reading this on the planet Earth, not on some

asteroid, or Jupiter, that you are human, and that the dice are not crooked.)

It is easy to see that we can very often compare probabilities in this way, and so it is

natural to represent them on a numerical scale, just as we do with weights, temperatures,

earthquakes, and many other natural phenomena. Essentially, this is what numbers are

for.

Of course, the two extreme eventualities are special cases. It is quite certain that you

weigh less than 10 tons; nothing could be more certain. If we represent certainty by unity,

then no probabilities exceed this. Likewise it is quite impossible for you to run a mile in

10 seconds or less; nothing could be less likely. If we represent impossibility by zero,

then no probability can be less than this. Thus we can, if we wish, present this on a scale,

as shown in ®gure 1.1.

The idea is that any chance eventuality can be represented by a point somewhere on

this scale. Everything that is impossible is placed at zero ± that the moon is made of

0 1

certainimpossible
chance that a

coin shows heads

chance that two
dice yield double six

Figure 1.1. A probability scale.
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cheese, formation ¯ying by pigs, and so on. Everything that is certain is placed at unity ±

the moon is not made of cheese, Socrates is mortal, and so forth. Everything else is

somewhere in [0, 1], i.e. in the interval between 0 and 1, the more likely things being

closer to 1 and the more unlikely things being closer to 0.

Of course, if two things have the same chance of happening, then they are at the same

point on the scale. That is what we mean by `equally likely'. And in everyday discourse

everyone, including mathematicians, has used and will use words such as very likely,

likely, improbable, and so on. However, any detailed or precise look at probability

requires the use of the numerical scale. To see this, you should ponder on just how you

would describe a chance that is more than very likely, but less than very very likely.

This still leaves some questions to be answered. For example, the choice of 0 and 1 as

the ends of the scale may appear arbitrary, and, in particular, we have not said exactly

which numbers represent the chance of a double six, or the chance of a head. We have not

even justi®ed the claim that a head is more likely than double six. We discuss all this later

in the chapter; it will turn out that if we regard probability as an extension of the idea of

proportion, then we can indeed place many probabilities accurately and con®dently on

this scale.

We conclude with an important point, namely that the chance of a head (or a double

six) is just a chance. The whole point of probability is to discuss uncertain eventualities

before they occur. After this event, things are completely different. As the simplest

illustration of this, note that even though we agree that if we ¯ip a coin and roll two dice

then the chance of a head is greater than the chance of a double six, nevertheless it may

turn out that the coin shows a tail when the dice show a double six. Likewise, when the

weather forecast gives a 90% chance of rain, or even a 99% chance, it may in fact not

rain. The chance of a slip on the San Andreas fault this week is very small indeed,

nevertheless it may occur today. The antibiotic is overwhelmingly likely to cure your

illness, but it may not; and so on.

Exercises for section 1.2

1. Formulate your own de®nition of probability. Having done so, compare and contrast it with

those in appendix I of this chapter.

2. (a) Suppose you ¯ip a coin; there are two possible outcomes, head or tail. Do you agree that

the probability of a head is 1
2
? If so, explain why.

(b) Suppose you take a test; there are two possible outcomes, pass or fail. Do you agree that

the probability of a pass is 1
2
? If not, explain why not.

3. In the above discussion we claimed that it was intuitively reasonable to say that you are more

likely to get a head when ¯ipping a coin than a double six when rolling two dice. Do you agree?

If so, explain why.

1.3 THE SCOPE OF PROBABILITY

. . . nothing between humans is 1 to 3. In fact, I long ago come to the conclusion

that all life is 6 to 5 against.

Damon Runyon, A Nice Price

1.3 The scope of probability 3



Life is a gamble at terrible odds; if it was a bet you wouldn't take it.

Tom Stoppard, Rosencrantz and Guildenstern are Dead, Faber and Faber

In the next few sections we are going to spend a lot of time ¯ipping coins, rolling dice,

and buying lottery tickets. There are very good reasons for this narrow focus (to begin

with), as we shall see, but it is important to stress that probability is of great use and

importance in many other circumstances. For example, today seems to be a fairly typical

day, and the newspapers contain articles on the following topics (in random order).

1. How are the chances of a child's suffering a genetic disorder affected by a grand-

parent's having this disorder? And what difference does the sex of child or ancestor

make?

2. Does the latest opinion poll reveal the true state of affairs?

3. The lottery result.

4. DNA pro®ling evidence in a trial.

5. Increased annuity payments possible for heavy smokers.

6. An extremely valuable picture (a Van Gogh) might be a fake.

7. There was a photograph taken using a scanning tunnelling electron microscope.

8. Should risky surgical procedures be permitted?

9. Malaria has a signi®cant chance of causing death; prophylaxis against it carries a

risk of dizziness and panic attacks. What do you do?

10. A commodities futures trader lost a huge sum of money.

11. An earthquake occurred, which had not been predicted.

12. Some analysts expected in¯ation to fall; some expected it to rise.

13. Football pools.

14. Racing results, and tips for the day's races.

15. There is a 10% chance of snow tomorrow.

16. Pro®ts from gambling in the USA are growing faster than any other sector of the

economy. (In connection with this item, it should be carefully noted that pro®ts are

made by the casino, not the customers.)

17. In the preceding year, British postmen had sustained 5975 dogbites, which was

around 16 per day on average, or roughly one every 20 minutes during the time

when mail is actually delivered. One postman had sustained 200 bites in 39 years of

service.

Now, this list is by no means exhaustive; I could have made it longer. And such a list

could be compiled every day (see the exercise at the end of this section). The subjects

reported touch on an astonishingly wide range of aspects of life, society, and the natural

world. And they all have the common property that chance, uncertainty, likelihood,

randomness ± call it what you will ± is an inescapable component of the story.

Conversely, there are few features of life, the universe, or anything, in which chance is

not in some way crucial.

Nor is this merely some abstruse academic point; assessing risks and taking chances

are inescapable facets of everyday existence. It is a trite maxim to say that life is a lottery;

it would be more true to say that life offers a collection of lotteries that we can all, to

some extent, choose to enter or avoid. And as the information at our disposal increases, it

does not reduce the range of choices but in fact increases them. It is, for example,

4 1 Introduction



increasingly dif®cult successfully to run a business, practise medicine, deal in ®nance, or

engineer things without having a keen appreciation of chance and probability. Of course

you can make the attempt, by relying entirely on luck and uninformed guesswork, but in

the long run you will probably do worse than someone who plays the odds in an informed

way. This is amply con®rmed by observation and experience, as well as by mathematics.

Thus, probability is important for all these severely practical reasons. And we have the

bonus that it is also entertaining and amusing, as the existence of all those lotteries,

casinos, and racecourses more than suf®ciently testi®es.

Finally, a glance at this and other section headings shows that chance is so powerful

and emotive a concept that it is employed by poets, playwrights, and novelists. They

clearly expect their readers to grasp jokes, metaphors, and allusions that entail a shared

understanding of probability. (This feat has not been accomplished by algebraic struc-

tures, or calculus, and is all the more remarkable when one recalls that the literati are not

otherwise celebrated for their keen numeracy.) Furthermore, such allusions are of very

long standing; we may note the comment attributed by Plutarch to Julius Caesar on

crossing the Rubicon: `Iacta alea est' (commonly rendered as `The die is cast'). And the

passage from Ecclesiastes: `The race is not always to the swift, or the battle to the strong,

but time and chance happen to them all'. The Romans even had deities dedicated to

chance, Fors and Fortuna, echoed in Shakespeare's Hamlet: `. . . the slings and arrows of

outrageous fortune . . .'.
Many other cultures have had such deities, but it is notable that dei®cation has not

occurred for any other branch of mathematics. There is no god of algebra.

One recent stanza (by W.H. Henley) is of particular relevance to students of probability,

who are often soothed and helped by murmuring it during dif®cult moments in lectures

and textbooks:

In the fell clutch of circumstance

I have not winced or cried aloud:

Under the bludgeonings of chance

My head is bloody, but unbowed.

Exercise for section 1.3

1. Look at today's newspapers and mark the articles in which chance is explicitly or implicitly an

important feature of the report.

1.4 BASIC IDEAS: THE CLASSICAL CASE

The perfect die does not lose its usefulness or justi®cation by the fact that real dice

fail to live up to it.

W. Feller

Our ®rst task was mentioned above; we need to supply reasons for the use of the standard

probability scale, and methods for deciding where various chances should lie on this

scale. It is natural that in doing this, and in seeking to understand the concept of

probability, we will pay particular attention to the experience and intuition yielded by

¯ipping coins and rolling dice. Of course this is not a very bold or controversial decision;

1.4 Basic ideas: the classical case 5



any theory of probability that failed to describe the behaviour of coins and dice would be

widely regarded as useless. And so it would be. For several centuries that we know of,

and probably for many centuries before that, ¯ipping a coin (or rolling a die) has been the

epitome of probability, the paradigm of randomness. You ¯ip the coin (or roll the die),

and nobody can accurately predict how it will fall. Nor can the most powerful computer

predict correctly how it will fall, if it is ¯ipped energetically enough.

This is why cards, dice, and other gambling aids crop up so often in literature both

directly and as metaphors. No doubt it is also the reason for the (perhaps excessive)

popularity of gambling as entertainment. If anyone had any idea what numbers the lottery

would show, or where the roulette ball will land, the whole industry would be a dead

duck.

At any rate, these long-standing and simple gaming aids do supply intuitively con-

vincing ways of characterizing probability. We discuss several ideas in detail.

I Probability as proportion

Figure 1.2 gives the layout of an American roulette wheel. Suppose such a wheel is spun

once; what is the probability that the resulting number has a 7 in it? That is to say, what is

the probability that the ball hits 7, 17, or 27? These three numbers comprise a proportion
3

38
of the available compartments, and so the essential symmetry of the wheel (assuming it

is well made) suggests that the required probability ought to be 3
38

. Likewise the
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Figure 1.2. American roulette. Shaded numbers are black; the others are red except for the zeros.
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probability of an odd compartment is suggested to be 18
38
� 9

19
, because the proportion of

odd numbers on the wheel is 18
38

.

Most people ®nd this proposition intuitively acceptable; it clearly relies on the

fundamental symmetry of the wheel, that is, that all numbers are regarded equally by the

ball. But this property of symmetry is shared by a great many simple chance activities; it

is the same as saying that all possible outcomes of a game or activity are equally likely.

For example:

· The ball is equally likely to land in any compartment.

· You are equally likely to select either of two cards.

· The six faces of a die are equally likely to be face up.

With these examples in mind it seems reasonable to adopt the following convention or

rule. Suppose some game has n equally likely outcomes, and r of these outcomes

correspond to your winning. Then the probability p that you win is r=n. We write

p � r

n
� number of ways of winning the game

number of possible outcomes of the game
:(1)

This formula looks very simple. Of course, it is very simple but it has many useful and

important consequences. First note that we always have 0 < r < n, and so it follows that

0 < p < 1:(2)

If r � 0, so that it is impossible for you to win, then p � 0. Likewise if r � n, so that

you are certain to win, then p � 1. This is all consistent with the probability scale

introduced in section 1.2, and supplies some motivation for using it. Furthermore, this

interpretation of probability as de®ned by proportion enables us to place many simple but

important chances on the scale.

Example 1.4.1. Flip a coin and choose `heads'. Then r � 1, because you win on the

outcome `heads', and n � 2, because the coin shows a head or a tail. Hence the

probability that you win, which is also the probability of a head, is p � 1
2
. s

Example 1.4.2. Roll a die. There are six outcomes, which is to say that n � 6. If you

win on an even number then r � 3, so the probability that an even number is shown is

p � 3
6
� 1

2
:

Likewise the chance that the die shows a 6 is 1
6
, and so on. s

Example 1.4.3. Pick a card at random from a pack of 52 cards. What is the

probability of an ace? Clearly n � 52 and r � 4, so that

p � 4
52
� 1

13
: s

Example 1.4.4. A town contains x women and y men; an opinion pollster chooses an

adult at random for questioning about toothpaste. What is the chance that the adult is

male? Here

n � x� y and r � y:

1.4 Basic ideas: the classical case 7



Hence the probability is

p � y=(x� y): s

It may be objected that these results depend on an arbitrary imposition of the ideas of

symmetry and proportion, which are clearly not always relevant. Nevertheless, such

results and ideas are immensely appealing to our intuition; in fact the ®rst probability

calculations in Renaissance Italy take this framework more or less for granted. Thus

Cardano (writing around 1520), says of a well-made die: `One half of the total number of

faces always represents equality . . . I can as easily throw 1, 3, or 5 as 2, 4, or 6'.

Here we can clearly see the beginnings of the idea of probability as an expression of

proportion, an idea so powerful that it held sway for centuries. However, there is at least

one unsatisfactory aspect to this interpretation: it seems that we do not need ever to roll a

die to say that the chance of a 6 is 1
6
. Surely actual experiments should have a role in our

de®nitions? This leads to another idea.

II Probability as relative frequency

Figure 1.3 shows the proportion of sixes that appeared in a sequence of rolls of a die. The

number of rolls is n, for n � 0, 1, 2, . . . ; the number of sixes is r(n), for each n, and the

proportion of sixes is

p(n) � r(n)

n
:(3)

What has this to do with the probability that the die shows a six? Our idea of probability

as a proportion suggests that the proportion of sixes in n rolls should not be too far from

the theoretical chance of a six, and ®gure 1.3 shows that this seems to be true for large

values of n. This is intuitively appealing, and the same effect is observed if you record

such proportions in a large number of other repeated chance activities.

We therefore make the following general assertion. Suppose some game is repeated a

large number n of times, and in r(n) of these games you win. Then the probability p that

p(n)

0.20

0.18

0.16

0.14

0.12

0.10

0 10 20 30 40 50 60 70 80 90 100 n

Figure 1.3. The proportion of sixes given in 100 rolls of a die, recorded at intervals of 5 rolls.
Figures are from an actual experiment. Of course, 1

6
� 0:16 _6.
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you win some future similar repetition of this game is close to r(n)=n. We write

p ' r(n)

n
� number of wins in n games

number n of games
:(4)

The symbol ' is read as `is approximately equal to'. Once again we note that

0 < r(n) < n and so we may take it that 0 < p < 1.

Furthermore, if a win is impossible then r(n) � 0, and r(n)=n � 0. Also, if a win is

certain then r(n) � n, and r(n)=n � 1. This is again consistent with the scale introduced

in ®gure 1.1, which is very pleasant. Notice the important point that this interpretation

supplies a way of approximately measuring probabilities rather than calculating them

merely by an appeal to symmetry.

Since we can now calculate simple probabilities, and measure them approximately, it is

tempting to stop there and get straight on with formulating some rules. That would be a

mistake, for the idea of proportion gives another useful insight into probability that will

turn out to be just as important as the other two, in later work.

III Probability and expected value

Many problems in chance are inextricably linked with numerical outcomes, especially in

gambling and ®nance (where `numerical outcome' is a euphemism for money). In these

cases probability is inextricably linked to `value', as we now show.

To aid our thinking let us consider an everyday concrete and practical problem. A

plutocrat makes the following offer. She will ¯ip a fair coin; if it shows heads she will

give you $1, if it shows tails she will give Jack $1. What is this offer worth to you? That

is to say, for what fair price $ p, should you sell it?

Clearly, whatever price $ p this is worth to you, it is worth the same price $ p to Jack,

because the coin is fair, i.e. symmetrical (assuming he needs and values money just as

much as you do). So, to the pair of you, this offer is altogether worth $2 p. But whatever

the outcome, the plutocrat has given away $1. Hence $2 p � $1, so that p � 1
2

and the

offer is worth $1
2

to you.

It seems natural to regard this value p � 1
2

as a measure of your chance of winning the

money. It is thus intuitively reasonable to make the following general rule.

Suppose you receive $1 with probability p (and otherwise you receive nothing). Then

the value or fair price of this offer is $ p. More generally, if you receive $d with

probability p (and nothing otherwise) then the fair price or expected value of this offer is

given by

expected value � pd:(5)

This simple idea turns out to be enormously important later on; for the moment we

note only that it is certainly consistent with our probability scale introduced in ®gure 1.1.

For example, if the plutocrat de®nitely gives you $1 then this is worth exactly $1 to you,

and p � 1. Likewise if you are de®nitely given nothing, then p � 0. And it is easy to see

that 0 < p < 1, for any such offers.

In particular, for the speci®c example above we ®nd that the probability of a head when

a fair coin is ¯ipped is 1
2
. Likewise a similar argument shows that the probability of a six

when a fair die is rolled is 1
6
. (Simply imagine the plutocrat giving $1 to one of six people
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selected by the roll of the die.)

The `fair price' of such offers is often called the expected value, or expectation, to

emphasize its chance nature. We meet this concept again, later on.

We conclude this section with another classical and famous manifestation of prob-

ability. It is essentially the same as the ®rst we looked at, but is super®cially different.

IV Probability as proportion again

Suppose a small meteorite hits the town football pitch. What is the probability that it

lands in the central circle?

Obviously meteorites have no special propensity to hit any particular part of a football

pitch; they are equally likely to strike any part. It is therefore intuitively clear that the

chance of striking the central circle is given by the proportion of the pitch that it occupies.

In general, if jAj is the area of the pitch in which the meteorite lands, and jCj is the area

of some part of the pitch, then the probability p that C is struck is given by p � jCj=jAj:
Once again we formulate a general version of this as follows. Suppose a region A of

the plane has area jAj, and C is some part of A with area jCj. If a point is picked at

random in A, then the probability p that it lies in C is given by

p � jCjjAj :(6)

As before we can easily see that 0 < p < 1, where p � 0 if C is empty and p � 1 if

C � A.

Example 1.4.5. An archery target is a circle of radius 2. The bullseye is a circle of

radius 1. A naive archer is equally likely to hit any part of the target (if she hits it at all)

and so the probability of a bullseye for an arrow that hits the target is

p � area of bullseye

area of target
� ð 3 12

ð 3 22
� 1

4
: s

Exercises for section 1.4

1. Suppose you read in a newspaper that the proportion of $20 bills that are forgeries is 5%. If you

possess what appears to be a $20 bill, what is its expected value? Could it be more than $19? Or

could it be less? Explain! (Does it make any difference how you acquired the bill?)

2. A point P is picked at random in the square ABCD, with sides of length 1. What is the

probability that the distance from P to the diagonal AC is less than 1
6
?

1.5 BASIC IDEAS; THE GENERAL CASE

We must believe in chance, for how else can we account for the successes of those

we detest?

Anon.

We noted that a theory of probability would be hailed as useless if it failed to describe the

behaviour of coins and dice. But of course it would be equally useless if it failed to
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describe anything else, and moreover many real dice and coins (especially dice) have

been known to be biased and asymmetrical. We therefore turn to the question of assigning

probabilities in activities that do not necessarily have equally likely outcomes.

It is interesting to note that the desirability of doing this was implicitly recognized by

Cardano (mentioned in the previous section) around 1520. In his Book on Games of

Chance, which deals with supposedly fair dice, he notes that

`Every die, even if it is acceptable, has its favoured side.'

However, the ideas necessary to describe the behaviour of such biased dice had to wait

for Pascal in 1654, and later workers. We examine the basic notions in turn; as in the

previous section, these notions rely on our concept of probability as an extension of

proportion.

I Probability as relative frequency

Once again we choose a simple example to illustrate the ideas, and a popular choice is

the pin, or tack. Figure 1.4 shows a pin, called a Bernoulli pin. If such a pin is dropped

onto a table the result is a success, S, if the point is not upwards; otherwise it is a failure,

F.

What is the probability p of success? Obviously symmetry can play no part in ®xing p,

and Figure 1.5, which shows more Bernoulli pins, indicates that mechanical arguments

will not provide the answer.

The only course of action is to drop many similar pins (or the same pin many times),

and record the proportion that are successes (point down). Then if n are dropped, and

r(n) are successes, we anticipate that the long-run proportion of successes is near to p,

that is:

p ' r(n)

n
, for large n:(1)

failure ; F success ; S

Figure 1.4. A Bernoulli pin.

Figure 1.5. More Bernoulli pins.
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If you actually obtain a pin and perform this experiment, you will get a graph like that

of ®gure 1.6. It does seem from the ®gure that r(n)=n is settling down around some

number p, which we naturally interpret as the probability of success. It may be objected

that the ratio changes every time we drop another pin, and so we will never obtain an

exact value for p. But this gap between the real world and our descriptions of it is

observed in all subjects at all levels. For example, geometry tells us that the diagonal of a

unit square has length
p

2. But, as A. A. Markov has observed,

If we wished to verify this fact by measurements, we should ®nd that the ratio of

diagonal to side is different for different squares, and is never
p

2.

It may be regretted that we have only this somewhat hit-or-miss method of measuring

probability, but we do not really have any choice in the matter. Can you think of any other

way of estimating the chance that the pin will fall point down? And even if you did think

of such a method of estimation, how would you decide whether it gave the right answer,

except by ¯ipping the pin often enough to see? We can illustrate this point by considering

a basic and famous example.

Example 1.5.1: sex ratio. What is the probability that the next infant to be born in

your local hospital will be male? Throughout most of the history of the human race it was

taken for granted that essentially equal numbers of boys and girls are born (with some

¯uctuations, naturally). This question would therefore have drawn the answer 1
2
, until

recently.

However, in the middle of the 16th century, English parish churches began to keep

fairly detailed records of births, marriages, and deaths. Then, in the middle of the 17th

century, one John Graunt (a draper) took the trouble to read, collate, and tabulate the

numbers in various categories. In particular he tabulated the number of boys and girls

whose births were recorded in London in each of 30 separate years.

To his, and everyone else's, surprise, he found that in every single year more boys were

born than girls. And, even more remarkably, the ratio of boys to girls varied very little

between these years. In every year the ratio of boys to girls was close to 14:13. The

meaning and signi®cance of this unarguable truth inspired a heated debate at the time.

For us, it shows that the probability that the next infant born will be male, is

approximately 14
27

. A few moments thought will show that there is no other way of

answering the general question, other than by ®nding this relative frequency.

1

0.4

p(n)

n

Figure 1.6. Sketch of the proportion p(n) of successes when a Bernoulli pin is dropped n times.
For this particular pin, p seems to be settling down at approximately 0.4.
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It is important to note that the empirical frequency differs from place to place and from

time to time. Graunt also looked at the births in Romsey over 90 years and found the

empirical frequency to be 16:15. It is currently just under 0.513 in the USA, slightly less

than 14
27

(' 0:519) and 16
31

(' 0:516).

Clearly the idea of probability as a relative frequency is very attractive and useful.

Indeed it is generally the only interpretation offered in textbooks. Nevertheless, it is not

always enough, as we now discuss.

II Probability as expected value

The problem is that to interpret probability as a relative frequency requires that we can

repeat some game or activity as many times as we wish. Often this is clearly not the case.

For example, suppose you have a Russian Imperial Bond, or a share in a company that is

bankrupt and is being liquidated, or an option on the future of the price of gold. What is

the probability that the bond will be redeemed, the share will be repaid, or the option will

yield a pro®t? In these cases the idea of expected value supplies the answer. (For

simplicity, we assume constant money values and no interest.)

The ideas and argument are essentially the same as those that we used in considering

the benevolent plutocrat in section 1.4, leading to equation (5) in that section. For variety,

we rephrase those notions in terms of simple markets. However, a word of warning is

appropriate at this point. Real markets are much more complicated than this, and what we

call the fair price or expected value will not usually be the actual or agreed market price

in any case, or even very close to it. This is especially marked in the case of deals which

run into the future, such as call options, put options, and other complicated ®nancial

derivatives. If you were to offer prices based on fairness or expected value as discussed

here and above, you would be courting total disaster, or worse. See the discussion of

bookmakers' odds in section 2.12 for further illustration and words of caution.

Suppose you have a bond with face value $1, and the probability of its being redeemed

at par (that is, for $1) is p. Then, by the argument we used in section 1.4, the expected

value ì, or fair price, of this bond is given by ì � p. More generally, if the bond has face

value $d then the fair price is $dp.

Now, as it happens, there are markets in all these things: you can buy Imperial Chinese

bonds, South American Railway shares, pork belly futures, and so on. It follows that if

the market gives a price ì for a bond with face value d, then it gives the probability of

redemption as roughly

p � ì

d
:(2)

Example 1.5.2. If a bond for a million roubles is offered to you for one rouble, and

the sellers are assumed to be rational, then they clearly think the chance of the bond's

being bought back at par is less than one in a million. If you buy it, then presumably you

believe the chances are more than one in a million. If you thought the chances were less,

you would reduce your offer. If you both agree that one rouble is a fair price for the bond,

then you have assigned the value p � 10ÿ6 for the probability of its redemption. Of

course this may vary according to various rumours and signals from the relevant banks
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and government (and note that the more ornate and attractive bonds now have some

intrinsic value, independent of their chance of redemption). s

This example leads naturally to our ®nal candidate for an interpretation of probability.

III Probability as an opinion or judgement

In the previous example we were able to assign a probability because the bond had an

agreed fair price, even though this price was essentially a matter of opinion. What

happens if we are dealing with probabilities that are purely personal opinions? For

example, what is the probability that a given political party will win the next election?

What is the probability that small green aliens regularly visit this planet? What is the

probability that some accused person is guilty? What is the probability that a given,

opaque, small, brick building contains a pig?

In each of these cases we could perhaps obtain an estimate of the probability by

persuading a bookmaker to compile a number of wagers and so determine a fair price.

But we would be at a loss if nobody were prepared to enter this game. And it would seem

to be at best a very arti®cial procedure, and at worst extremely inappropriate, or even

illegal. Furthermore, the last resort, betting with yourself, seems strangely unattractive.

Despite these problems, this idea of probability as a matter of opinion is often useful,

though we shall not use it in this text.

Exercises for section 1.5

1. A picture would be worth $1000 000 if genuine, but nothing if a fake. Half the experts say it's a

fake, half say it's genuine. What is it worth? Does it make any difference if one of the experts is

a millionaire?

2. A machine accepts dollar bills and sells a drink for $1. The price is raised to 120c. Converting

the machine to accept coins or give change is expensive, so it is suggested that a simple

randomizer is added, so that each customer who inserts $1 gets nothing with probability 1=6, or

the can with probability 5=6, and that this would be fair because the expected value of the output

is 120 3 5=6 � 100c � $1, which is exactly what the customer paid. Is it indeed fair?

In the light of this, discuss how far our idea of a fair price depends on a surreptitious use of

the concept of repeated experiments.

Would you buy a drink from the modi®ed machine?

1.6 MODELLING

If I wish to know the chances of getting a complete hand of 13 spades, I do not set

about dealing hands. It would take the population of the world billions of years to

obtain even a bad estimate of this.

John Venn

The point of the above quote is that we need a theory of probability to answer even the

simplest of practical questions. Such theories are called models.
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Example 1.6.1: cards. For the question above, the usual model is as follows. We

assume that all possible hands of cards are equally likely, so that if the number of all

possible hands is n, then the required probability is nÿ1. s

Experience seems to suggest that for a well-made, well-shuf¯ed pack of cards, this

answer is indeed a good guide to your chances of getting a hand of spades. (Though we

must remember that such complete hands occur more often than this predicts, because

humorists stack the pack, as a `joke'.) Even this very simple example illustrates the

following important points very clearly.

First, the model deals with abstract things. We cannot really have a perfectly shuf¯ed

pack of perfect cards; this `collection of equally likely hands' is actually a ®ction. We

create the idea, and then use the rules of arithmetic to calculate the required chances. This

is characteristic of all mathematics, which concerns itself only with rules de®ning the

behaviour of entities which are themselves unde®ned (such as `numbers' or `points').

Second, the use of the model is determined by our interpretation of the rules and

results. We do not need an interpretation of what chance is to calculate probabilities, but

without such an interpretation it is rather pointless to do it.

Similarly, you do not need to have an interpretation of what lines and points are to do

geometry and trigonometry, but it would all be rather pointless if you did not have one.

Likewise chess is just a set of rules, but if checkmate were not interpreted as victory, not

many people would play.

Use of the term `model' makes it easier to keep in mind this distinction between theory

and reality. By its very nature a model cannot include all the details of the reality it seeks

to represent, for then it would be just as hard to comprehend and describe as the reality

we want to model. At best, our model should give a reasonable picture of some small part

of reality. It has to be a simple (even crude) description; and we must always be ready to

scrap or improve a model if it fails in this task of accurate depiction. That having been

said, old models are often still useful. The theory of relativity supersedes the Newtonian

model, but all engineers use Newtonian mechanics when building bridges or motor cars,

or probing the solar system.

This process of observation, model building, analysis, evaluation, and modi®cation is

called modelling, and it can be conveniently represented by a diagram; see ®gure 1.7.

(This diagram is therefore in itself a model; it is a model for the modelling process.)

In ®gure 1.7, the top two boxes are embedded in the real world and the bottom two

boxes are in the world of models. Box A represents our observations and experience of

some phenomenon, together with relevant knowledge of related events and perhaps past

experience of modelling. Using this we construct the rules of a model, represented by box

B. We then use the techniques of logical reasoning, or mathematics, to deduce the way in

which the model will behave. These properties of the model can be called theorems; this

stage is represented by box C. Next, these characteristics of the model are interpreted in

terms of predictions of the way the corresponding real system should work, denoted by

box D. Finally, we perform appropriate experiments to discover whether these predictions

agree with observation. If they do not, we change or scrap the model and go round the

loop again. If they do, we hail the model as an engine of discovery, and keep using it to

make predictions ± until it wears out or breaks down. This last step is called using or

checking the model or, more grandly, validation.
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This procedure is so commonplace that we rather take it for granted. For example, it

has been used every time you see a weather forecast. Meteorologists have observed the

climate for many years. They have deduced certain simple rules for the behaviour of jet

streams, anticyclones, occluded fronts, and so on. These rules form the model. Given any

con®guration of air¯ows, temperatures, and pressures, the rules are used to make a

prediction; this is the weather forecast. Every forecast is checked against the actual

outcome, and this experience is used to improve the model.

Models form extraordinarily powerful and economical ways of thinking about the

world. In fact they are often so good that the model is confused with reality. If you ever

think about atoms, you probably imagine little billiard balls; more sophisticated readers

may imagine little orbital systems of elementary particles. Of course atoms are not

`really' like that; these visions are just convenient old models.

We illustrate the techniques of modelling with two simple examples from probability.

Example 1.6.2: setting up a lottery. If you are organizing a lottery you have to

decide how to allocate the prize money to the holders of winning tickets. It would help

you to know the chances of any number winning and the likely number of winners. Is this

possible? Let us consider a speci®c example.

Several national lotteries allow any entrant to select six numbers in advance from the

integers 1 to 49 inclusive. A machine then selects six balls at random (without replace-

ment) from an urn containing 49 balls bearing these numbers. The ®rst prize is divided

among entrants selecting these numbers.

Because of the nature of the apparatus, it seems natural to assume that any selection of

six numbers is equally likely to be drawn. Of course this assumption is a mathematical

model, not a physical law established by experiment. Since there are approximately 14

million different possible selections (we show this in chapter 3), the model predicts that

your chance, with one entry, of sharing the ®rst prize is about one in 14 million. Figure

1.8 shows the relative frequency of the numbers drawn in the ®rst 1200 draws. It does not

seem to discredit or invalidate the model so far as one can tell.

A
experiment and
measurement

construction

use

deduction

interpretation

D
predictions

C
theorems

B
rules of
model

Real
world

Model
world

Figure 1.7. A model for modelling.
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The next question you need to answer is, how many of the entrants are likely to share

the ®rst prize? As we shall see, we need in turn to ask, how do lottery entrants choose

their numbers?

This is clearly a rather different problem; unlike the apparatus for choosing numbers,

gamblers choose numbers for various reasons. Very few choose at random; they use

birthdays, ages, patterns, and so on. However, you might suppose that for any gambler

chosen at random, that choice of numbers would be evenly distributed over the

possibilities.

In fact this model would be wrong; when the actual choices of lottery numbers are

examined, it is found that in the long run the chances that the various numbers will occur

are very far from equal; see ®gure 1.9. This clustering of preferences arises because

people choose numbers in lines and patterns which favour central squares, and they also

favour the top of the card. Data like this would provide a model for the distribution of

likely payouts to winners. s

It is important to note that these remarks do not apply only to lotteries, cards, and dice.

Venn's observation about card hands applies equally well to almost every other aspect of

life. If you wished to design a telephone exchange (for example), you would ®rst of all

construct some mathematical models that could be tested (you would do this by making

assumptions about how calls would arrive, and how they would be dealt with). You can

construct and improve any number of mathematical models of an exchange very cheaply.

Building a faulty real exchange is an extremely costly error.

Likewise, if you wished to test an aeroplane to the limits of its performance, you would

be well advised to test mathematical models ®rst. Testing a real aeroplane to destruction

is somewhat risky.

So we see that, in particular, models and theories can save lives and money. Here is

another practical example.
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Figure 1.8. Frequency plot of an actual 6±49 lottery after 1200 drawings. The numbers do seem
equally likely to be drawn.
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Example 1.6.3: ®rst signi®cant digit. Suppose someone offered the following wager:

(i) select any large book of numerical tables (such as a census, some company

accounts, or an almanac);

(ii) pick a number from this book at random (by any means);

(iii) if the ®rst signi®cant digit of this number is one of f5, 6, 7, 8, 9g, then you win $1;

if it is one of f1, 2, 3, 4g, you lose $1.

Would you accept this bet? You might be tempted to argue as follows: a reasonable

intuitive model for the relative chances of each digit is that they are equally likely. On

this model the probability p of winning is 5
9
, which is greater than 1

2
(the odds on winning

would be 5 : 4), so it seems like a good bet. However, if you do some research and

actually pick a large number of such numbers at random, you will ®nd that the relative

frequencies of each of the nine possible ®rst signi®cant digits are given approximately by

f 1 � 0:301, f 2 � 0:176, f 3 � 0:125,

f 4 � 0:097, f 5 � 0:079, f 6 � 0:067,

f 7 � 0:058, f 8 � 0:051, f 9 � 0:046:

Thus empirically the chance of your winning is

f 5 � f6 � f 7 � f 8 � f 9 � 0:3

The wager offered is not so good for you! (Of course it would be quite improper for a

mathematician to win money from the ignorant by this means.) This empirical distribu-

tion is known as Benford's law, though we should note that it was ®rst recorded by S.

Newcomb (a good example of Stigler's law of eponymy). s
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Figure 1.9. Popular and unpopular lottery numbers: bold, most popular; roman, intermediate
popularity; italic, least popular.
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We see that intuition is necessary and helpful in constructing models, but not suf®cient;

you also need experience and observations. A famous example of this arose in particle

physics. At ®rst it was assumed that photons and protons would satisfy the same statistical

rules, and models were constructed accordingly. Experience and observations showed that

in fact they behave differently, and the models were revised.

The theory of probability exhibits a very similar history and development, and we

approach it in similar ways. That is to say, we shall construct a model that re¯ects our

experience of, and intuitive feelings about, probability. We shall then deduce results and

make predictions about things that have either not been explained or not been observed,

or both. These are often surprising and even counter intuitive. However, when the

predictions are tested against experiment they are almost always found to be good. Where

they are not, new theories must be constructed.

It may perhaps seem paradoxical that we can explore reality most effectively by playing

with models, but this fact is perfectly well known to all children.

Exercise for section 1.6

1. Discuss how the development of the high-speed computer is changing the force of Venn's

observation, which introduced this section.

1.7 MATHEMATICAL MODELLING

There are very few things which we know, which are not capable of being reduced

to a mathematical reasoning; and when they cannot, it is a sign our knowledge of

them is very small and confused; and where a mathematical reasoning can be had,

it is as great a folly to make use of any other, as to grope for a thing in the dark,

when you have a candle standing by you.

John Arbuthnot, Of the Laws of Chance

The quotation above is from the preface to the ®rst textbook on probability to appear in

English. (It is in a large part a translation of a book by Huygens, which had previously

appeared in Latin and Dutch.) Three centuries later, we ®nd that mathematical reasoning

is indeed widely used in all walks of life, but still perhaps not as much as it should be. A

small survey of the reasons for using mathematical methods would not be out of place.

The ®rst question is, why be abstract at all? The blunt answer is that we have no choice,

for many reasons.

In the ®rst place, as several examples have made clear, practical probability is inescap-

ably numerical. Betting odds can only be numerical, monetary payoffs are numerical,

stock exchanges and insurance companies ¯oat on a sea of numbers. And even the

simplest and most elementary problems in bridge and poker, or in lotteries, involve

counting things. And this counting is often not a trivial task.

Second, the range of applications demands abstraction. For example, consider the

following list of real activities:

· customers in line at a post of®ce counter

· cars at a toll booth

· data in an active computer memory
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· a pile of cans in a supermarket

· telephone calls arriving at an exchange

· patients arriving at a trauma clinic

· letters in a mail box

All these entail `things' or `entities' in one or another kind of `waiting' state, before some

`action' is taken. Obviously this list could be extended inde®nitely. It is desirable to

abstract the essential structure of all these problems, so that the results can be interpreted

in the context of whatever application happens to be of interest. For the examples above,

this leads to a model called the theory of queues.

Third, we may wish to discuss the behaviour of the system without assigning speci®c

numerical values to the rate of arrival of the objects (or customers), or to the rate at which

they are processed (or serviced). We may not even know these values. We may wish to

examine the way in which congestion depends generally on these rates. For all these

reasons we are naturally forced to use all the mathematical apparatus of symbolism, logic,

algebra, and functions. This is in fact very good news, and these methods have the simple

practical and mechanical advantage of making our work very compact. This alone would

be suf®cient! We conclude this section with two quotations chosen to motivate the reader

even more enthusiastically to the advantages of mathematical modelling. They illustrate

the fact that there is also a considerable gain in understanding of complicated ideas if

they are simply expressed in concise notation. Here is a de®nition of commerce.

Commerce: a kind of transaction, in which A plunders from B the goods of C, and

for compensation B picks the pocket of D of money belonging to E.

Ambrose Bierce, The Devil's Dictionary

The whole pith and point of the joke evaporates completely if you expand this from its

symbolic form. And think of the expansion of effort required to write it. Using algebra is

the reason ± or at least one of the reasons ± why mathematicians so rarely get writer's

cramp or repetitive strain injury.

We leave the ®nal words on this matter to Abraham de Moivre, who wrote the second

textbook on probability to appear in English. It ®rst appeared in 1717. (The second

edition was published in 1738 and the third edition in 1756, posthumously, de Moivre

having died on 27 November, 1754 at the age of 87.) He says in the preface:

Another use to be made of this Doctrine of Chances is, that it may serve in

conjunction with the other parts of mathematics as a ®t introduction to the art of

reasoning; it being known by experience that nothing can contribute more to the

attaining of that art, than the consideration of a long train of consequences, rightly

deduced from undoubted principles, of which this book affords many examples. To

this may be added, that some of the problems about chance having a great

appearance of simplicity, the mind is easily drawn into a belief, that their solution

may be attained by the mere strength of natural good sense; which generally proving

otherwise, and the mistakes occasioned thereby being not infrequent, it is presumed

that a book of this kind, which teaches to distinguish truth from what seems so

nearly to resemble it, will be looked on as a help to good reasoning.

These remarks remain as true today as when de Moivre wrote them around 1717.
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1 .8 MODELLING PROBABILITY

Rules and Models destroy genius and Art.

W. Hazlitt

First, we examine the real world and select the experiences and experiments that seem

best to express the nature of probability, without too much irrelevant extra detail. You

have already done this, if you have ever ¯ipped a coin, or rolled a die, or wondered

whether to take an umbrella.

Second, we formulate a set of rules that best describe these experiments and exper-

iences. These rules will be mathematical in nature, for simplicity. (This is not paradox-

ical!) We do this in the next chapter.

Third, we use the structure of mathematics (thoughtfully constructed over the millenia

for other purposes), to derive results of practical interest. We do this in the remainder of

the book.

Finally, these results are compared with real data in a variety of circumstances: by

scientists to measure constants, by insurance companies to avoid ruin, by actuaries to

calculate your pension, by telephone engineers to design the network, and so on. This

validates our model, and has been done by many people for hundreds of years. So we do

not need to do it here.

This terse account of our program gives rise to a few questions of detail, which we

address here, as follows. Do we in fact need to know what probability `really' is? The

answer here is, of course, no. We only need our model to describe what we observe. It is

the same in physics; we do not need to know what mass really is to use Newton's or

Einstein's theories. This is just as well, because we do not know what mass really is. We

still do not know even what light `really' is. Questions of reality are best left for

philosophers to argue over, for ever.

Furthermore, in drawing up the rules, do we necessarily have to use the rather

roundabout arguments employed in section 1.2? Is there not a more simple and straight-

forward way to say what probability does? After all, Newton only had to drop apples to

see what gravity, force, and momentum did. Heat burns, electricity shocks, and light

shines, to give some other trivial examples.

By contrast, probability is strangely intangible stuff; you cannot accumulate piles of it,

or run your hands through it, or give it away. No meter will record its presence or absence,

and it is not much used in the home. We cannot deny its existence, since we talk about it,

but it exists in a curiously shadowy and ghost-like way. This dif®culty was neatly

pinpointed by John Venn in the 19th century:

It is sometimes not easy to give a clear de®nition of a science at the outset, so as to

set its scope and province before the reader in a few words. In the case of those

sciences which are directly concerned with what are termed objects, this dif®culty

is not indeed so serious. If the reader is already familiar with the objects, a simple

reference to them will give him a tolerably accurate idea of the direction and nature

of his studies. Even if he is not familiar with them they will still be often to some

extent connected and associated in his mind by a name, and the mere utterance of

the name may thus convey a fair amount of preliminary information.
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But when a science is concerned not so much with objects as with laws, the

dif®culty of giving preliminary information becomes greater.

The Logic of Chance

What Venn meant by this, is that books on subjects such as ¯uid mechanics need not

ordinarily spend a great deal of time explaining the everyday concept of a ¯uid. The

average reader will have seen waves on a lake, watched bathwater going down the plug-

hole, observed trees bending in the wind, and been annoyed by the wake of passing boats.

And anyone who has ¯own in an aeroplane has to believe that ¯uid mechanics

demonstrably works. Furthermore, the language of the subject has entered into everyday

discourse, so that when people use words like wave, or wing, or turbulence, or vortex,

they think they know what they mean. Probability is harder to put your ®nger on.

1.9 REVIEW

In this chapter we have looked at chance and probability in a non-technical way. It seems

obvious that we recognize the appearance of chance, but it is surprisingly dif®cult to give

a comprehensive de®nition of probability. For this reason, and many others, we have

begun to construct a theory of probability that will rely on mathematical models and

methods.

Our ®rst step on this path has been to agree that any probability is a number lying

between zero and unity, inclusive. It can be interpreted as a simple proportion in

situations with symmetry, or as a measure of long-run proportion, or as an estimate of

expected value, depending on the context. The next task is to determine the rules obeyed

by probabilities, and this is the content of the next chapter.

1 .10 APPENDIX I. SOME RANDOMLY SELECTED DEFINITIONS

OF PROBABILITY, IN RANDOM ORDER

One can hardly give a satisfactory de®nition of probability.

H. PoincareÂ

Probability is a degree of certainty, which is to certainty as a part is to the whole.

J. Bernoulli

Probability is the study of random experiments.

S. Lipschutz

Mathematical probability is a branch of mathematical analysis that has developed around the

problem of assigning numerical measurement to the abstract concept of likelihood.

M. Munroe

Probability is a branch of logic which analyses nondemonstrative inferences, as opposed to

demonstrative ones.

E. Nagel

I call that chance which is nothing but want of art.

J. Arbuthnot
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The concept of probability is a generalization of the concepts of truth and falsehood.

J. Lucas

The probability of an event is the reason we have to believe that it has taken place or will take

place.

S. Poisson

Probability is the science of uncertainty.

G. Grimmett

Probability is the reason that we have to think that an event will occur, or that a proposition is

true.

G. Boole

Probability describes the various degrees of rational belief about a proposition given different

amount of knowledge.

J. M. Keynes

Probability is likeness to be true.

J. Locke

An event will on a long run of trials tend to occur with a frequency proportional to its

probability.

R. L. Ellis

One regards two events as equally probable when one can see no reason that would make one

more probable than the other.

P. Laplace

The probability of an event is the ratio of the number of cases that are favourable to it, to the

number of possible cases, when there is nothing to make us believe that one case should occur

rather than any other.

P. Laplace

Probability is a feeling of the mind.

A. de Morgan

Probability is a function of two propositions.

H. Jeffreys

The probability of an event is the ratio between the value at which an expectation depending on

the happening of the event ought to be computed, and the value of the thing expected upon its

happening.

T. Bayes

To have p chances of a, and q chances of b, is worth (ap� bq)=( p� q).

C. Huygens

Probability is a degree of possibility.

G. Leibniz

The limiting value of the relative frequency of an attribute will be called the probability of that

attribute.

R. von Mises
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The probability attributed by an individual to an event is revealed by the conditions under which

he would be disposed to bet on that event.

B. de Finetti

Probability does not exist.

B. de Finetti

Personalist views hold that probability measures the con®dence that a particular individual has

in the truth of a particular proposition.

L. Savage

The probability of an outcome is our estimate for the most likely fraction of a number of

repeated observations that will yield that outcome.

R. Feynman

It is likely that the word `probability' is used by logicians in one sense and by statisticians in

another.

F. P. Ramsey

1 .11 APPENDIX II . REVIEW OF SETS AND FUNCTIONS

It is dif®cult to make progress in any branch of mathematics without using the ideas and notation of

sets and functions. Indeed it would be perverse to try to do so, since these ideas and notation are

very helpful in guiding our intuition and solving problems. (Conversely, almost the whole of

mathematics can be constructed from these few simple concepts.) We therefore give a brief synopsis

of what we need here, for completeness, although it is very likely that the reader will be familiar

with all this already.

Sets

A set is a collection of things that are called the elements of the set. The elements can be any kind of

entity: numbers, people, poems, blueberries, points, lines, and so on, endlessly.

For clarity, upper case letters are always used to denote sets. If the set S includes some element

denoted by x, then we say x belongs to S, and write x 2 S. If x does not belong to S, then we write

x =2 S.

There are essentially two ways of de®ning a set, either by a list or by a rule.

Example 1.11.1. If S is the set of numbers shown by a conventional die, then the rule is that S

comprises the integers lying between 1 and 6 inclusive. This may be written formally as follows:

S � fx: 1 < x < 6 and x is an integerg:
Alternatively S may be given as a list:

S � f1, 2, 3, 4, 5, 6g: s

One important special case arises when the rule is impossible; for example, consider the set of

elephants playing football on Mars. This is impossible (there is no pitch on Mars) and the set

therefore is empty; we denote the empty set by Æ. We may write Æ as fg.
If S and T are two sets such that every element of S is also an element of T , then we say that T

includes S, and write either S � T or S � T. If S � T and T � S then S and T are said to be equal,

and we write S � T .

Note that Æ � S for every S. Note also that some books use the symbol `�' to denote inclusion
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and reserve `�' to denote strict inclusion, that is to say, S � T if every element of S is in T , and

some element of T is not in S. We do not make this distinction.

Combining sets

Given any non-empty set, we can divide it up, and given any two sets, we can join them together.

These simple observations are important enough to warrant de®nitions and notation.

De®nition. Let A and B be sets. Their union, denoted by A [ B, is the set of elements that are in

A or B, or in both. Their intersection, denoted by A \ B, is the set of elements in both A and B. n

Note that in other books the union may be referred to as the join or sum; the intersection may be

referred to as the meet or product. We do not use these terms. Note the following.

De®nition. If A \ B � Æ, then A and B are said to be disjoint. n

We can also remove bits of sets, giving rise to set differences, as follows.

De®nition. Let A and B be sets. That part of A which is not also in B is denoted by A n B, called

the difference of A from B. Elements which are in A or B but not both, comprise the symmetric

difference, denoted by A Ä B. n

Finally we can combine sets in a more complicated way by taking elements in pairs, one from

each set.

De®nition. Let A and B be sets, and let

C � f(a, b): a 2 A, b 2 Bg
be the set of ordered pairs of elements from A and B. Then C is called the product of A and B and

denoted by A 3 B. n

Example 1.11.2. Let A be the interval [0, a] of the x-axis, and B the interval [0, b] of the y-

axis. Then C � A 3 B is the rectangle of base a and height b with its lower left vertex at the origin,

when a, b . 0. s

Venn diagrams

The above ideas are attractively and simply expressed in terms of Venn diagrams. These provide very

expressive pictures, which are often so clear that they make algebra redundant. See ®gure 1.10.

In probability problems, all sets of interest A lie in a universal set Ù, so that A � Ù for all A.

That part of Ù which is not in A is called the complement of A, denoted by Ac. Formally

Ac � Ù n A � fx: x 2 Ù, x =2 Ag:
Obviously, from the diagram or by consideration of the elements

A [ Ac � Ù, A \ Ac � Æ, (Ac)c � A:

Clearly A \ B � B \ A and A [ B � B [ A, but we must be careful when making more intricate

combinations of larger numbers of sets. For example, we cannot write down simply A [ B \ C; this

is not well de®ned because it is not always true that

(A [ B) \ C � A [ (B \ C):
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We use the obvious notation [n
r�1

Ar � A1 [ A2 [ � � � [ An,

\n

r�1

Ar � A1 \ A2 \ � � � \ An:

De®nition. If A j \ Ak � Æ, for j 6� k, and[n

r�1

Ar � Ù,

then the collection (Ar; 1 < r < n) is said to form a partition of Ù. n

Size

When sets are countable it is often useful to consider the number of elements they contain; this is

called their size or cardinality. For any set A, we denote its size by jAj; when sets have a ®nite

number of elements, it is easy to see that size has the following properties.

If sets A and B are disjoint then

jA [ Bj � jAj � jBj,
and more generally, when A and B are not necessarily disjoint,

jA [ Bj � jA \ Bj � jAj � jBj:
Naturally jÆj � 0, and if A � B then

jAj < jBj:
Finally, for the product of two such ®nite sets A 3 B we have

jA 3 Bj � jAj3 jBj:
When sets are in®nite or uncountable, a great deal more care and subtlety is required in dealing

with the idea of size. However, we can see intuitively that we can consider the length of subsets of a

line, or areas of sets in a plane, or volumes in space, and so on. It is easy to see that if A and B are

two subsets of a line, with lengths jAj and jBj respectively, then in general

jA [ Bj � jA \ Bj � jAj � jBj:
Therefore jA [ Bj � jAj � jBj when A \ B � Æ.

We can de®ne the product of two such sets as a set in the plane with area jA 3 Bj, which satis®es

the well-known elementary rule for areas and lengths

jA 3 Bj � jAj3 jBj
and is thus consistent with the ®nite case above. Volumes and sets in higher dimensions satisfy

similar rules.

A

Ω

Figure 1.10. The set A is included in the universal set Ù.
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Functions

Suppose we have sets A and B, and a rule that assigns to each element a in A a unique element b in

B. Then this rule is said to de®ne a function from A to B; for the corresponding elements we write

b � f (a):

Here the symbol f (:) denotes the rule or function; often we just call it f . The set A is called the

domain of f , and the set of elements in B that can be written as f (a) for some a is called the range

of f ; we may denote the range by R.

Anyone who has a calculator is familiar with the idea of a function. For any function key, the

calculator will supply f (x), if x is in the domain of the function; otherwise it says `error'.

Inverse function

If f is a function from A to B, we can look at any b in the range R of f and see how it arose from A.

This de®nes a rule assigning elements of A to each element of R, so if the rule assigns a unique

element a to each b this de®nes a function from R to A. It is called the inverse function and is

denoted by f ÿ1(:):

a � f ÿ1(b):

Example 1.11.3: indicator function. Let A � Ù and de®ne the following function I(:) on Ù:

I(ù) � 1 if ù 2 A,

I(ù) � 0 if ù =2 A:

Then I is a function from Ù to f0, 1g; it is called the indicator of A, because by taking the value 1 it

indicates that ù 2 A. Otherwise it is zero. s

This is about as simple a function as you can imagine, but it is surprisingly useful. For example, note

that if A is ®nite you can ®nd its size by summing I(ù) over all ù:

jAj �
X
ù2Ù

I(ù):

1.12 PROBLEMS

Note well: these are not necessarily mathematical problems; an essay may be a suf®cient answer.

They are intended to provoke thought about your own ideas of probability, which you may well have

without realizing the fact.

1. Which of the de®nitions of probability in Appendix I do you prefer? Why? Can you produce a

better one?

2. Is there any fundamental difference between a casino and an insurance company? If so, what is

it? (Do not address moral issues.)

3. You may recall the classic paradox of Buridan's mule. Placed midway between two equally

enticing bales of hay, it starved to death because it had no reason to choose one rather than the

other. Would a knowledge of probability have saved it? (The paradox is ®rst recorded by

Aristotle.)

4. Suppose a coin showed heads 10 times consecutively. If it looked normal, would you neverthe-

less begin to doubt its fairness?
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5. Suppose Alf says his dice are fair, but Bill says they are crooked. They look OK. What would

you do to decide the issue?

6. What do you mean by risk? Many public and personal decisions seem to be based on the

premise that the risks presented by food additives, aircraft disasters, and prescribed drugs are

comparable with the risks presented by smoking, road accidents, and heart disease. In fact the

former group present negligible risks compared with the latter. Is this rational? Is it compre-

hensible? Formulate your own view accurately.

7. What kind of existence does chance have? (Hint: What kind of existence do numbers have?)

8. It has been argued that seemingly chance events are not really random; the uncertainty about

the outcome of the roll of a die is just an expression of our inability to do the mechanical

calculations. This is the deterministic theory. Samuel Johnson remarked that determinism

erodes free will. Do you think you have free will? Does it depend on the existence of chance?

9. `Probability serves to determine our hopes and fears' ± Laplace. Discuss what Laplace meant

by this.

10. `Probability has nothing to do with an isolated case' ± A. Markov. What did Markov mean by

saying this? Do you agree?

11. `That the chance of gain is naturally overvalued, we may learn from the universal success of

lotteries' ± Adam Smith (1776). `If there were no difference between objective and subjective

probabilities, no rational person would play games of chance for money' ± J. M. Keynes

(1921).

Discuss.

12. A proportion f of $100 bills are forgeries. What is the value to you of a proffered $100 bill?

13. Flip a coin 100 times and record the relative frequency of heads over ®ve-¯ip intervals as a

graph.

14. Flip a broad-headed pin 100 times and record the relative frequency of `point up' over ®ve-¯ip

intervals.

15. Pick a page of the local residential telephone directory at random. Pick 100 telephone numbers

at random (a column or so). Find the proportion p2 of numbers whose last digit is odd, and

also the proportion p1 of numbers whose ®rst digit is odd. (Ignore the area code.) Is there much

difference?

16. Open a book at random and ®nd the proportion of words in the ®rst 10 lines that begin with a

vowel. What does this suggest?

17. Show that A � Æ if and only if B � AÄ B.

18. Show that if A � B and B � A then A � B.
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2

The rules of probability

Probability serves to de®ne our hopes and fears.

P. Laplace

2.1 PREVIEW

In the preceding chapter we suggested that a model is needed for probability, and that this

model would take the form of a set of rules. In this chapter we formulate these rules.

When doing this, we shall be guided by the various intuitive ideas of probability as a

relative of proportion that we discussed in Chapter 1. We begin by introducing the

essential vocabulary and notation, including the idea of an event. After some elementary

calculations, we introduce the addition rule, which is fundamental to the whole theory of

probability, and explore some of its consequences.

Most importantly we also introduce and discuss the key concepts of conditional

probability and independence. These are exceptionally useful and powerful ideas and

work together to unlock many of the routes to solving problems in probability. By the end

of this chapter you will be able to tackle a remarkably large proportion of the better-

known problems of chance.

Prerequisites. We shall use the routine methods of elementary algebra, together with

the basic concepts of sets and functions. If you have any doubts about these, refresh your

memory by a glance at appendix II of chapter 1.

2.2 NOTATION AND EXPERIMENTS

From everyday experience, you are familiar with many ideas and concepts of probability;

this knowledge is gained by observation of lotteries, board games, sport, the weather,

futures markets, stock exchanges, and so on. You have various ways of discussing these

random phenomena, depending on your personal experience. However, everyday dis-

course is too diffuse and vague for our purposes. We need to become routinely much

more precise. For example, we have been happy to use words such as chance, likelihood,

probability, and so on, more or less interchangeably. In future we shall con®ne ourselves
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to using the word probability. The following are typical statements in this context.

The probability of a head is 1
2
.

The probability of rain is 90%.

The probability of a six is 1
6
.

The probability of a crash is 10ÿ9.

Obviously we could write down an endless list of probability statements of this kind; you

should write down a few yourself (exercise). However, we have surely seen enough such

assertions to realize that useful statements about probability can generally be cast into the

following general form:

The probability of A is p:(1)

In the above examples, A was `a head', `rain', `a six', and `a crash'; and p was `1
2
', `90%',

`1
6
', and `10ÿ9' respectively. We use this format so often that, to save ink, wrists, trees, and

time, it is customary to write (1) in the even briefer form

P(A) � p:(2)

This is obviously an extremely ef®cient and compact written representation; it is still

pronounced as `the probability of A is p'. A huge part of probability depends on

equations similar to (2).

Here, the number p denotes the position of this probability on the probability scale

discussed in chapter 1. It is most important to remember that on this scale

0 < p < 1(3)

If you ever calculate a probability outside this interval then it must be wrong!

We shall look at any event A, the probability function P(:), and probability P(A) in

detail in the next sections. For the moment we continue this section by noting that

underlying every such probability statement is some procedure or activity with a random

outcome; see table 2.1.

Useful probability statements refer to these outcomes. In everyday parlance this

procedure and the possible outcomes are often implicit. In our new rigorous model this

will not do. Every procedure and its possible outcomes must be completely explicit; we

stress that if you do not follow this rule you will be very likely to make mistakes. (There

are plenty of examples to show this.) To help in this task, we introduce some very

convenient notation and jargon to characterize all such trials, procedures, and actions.

De®nition. Any activity or procedure that may give rise to a well-de®ned set of

outcomes is called an experiment. n

Table 2.1.

Procedure Outcomes

Roll a die One of 1, 2, 3, 4, 5, 6
Run a horse race Some horse wins it, or there is a dead heat (tie)
Buy a lottery ticket Your number either is or is not drawn

32 2 The rules of probability



De®nition. The set of all possible outcomes is denoted by Ù, and called the sample

space. n

The adjective `well-de®ned' in the ®rst de®nition just means that you know what all the

possibilities of the experiment are, and could write them down if challenged to do so.

Prior to the experiment you do not know for sure what the outcome will be; when you

carry out the experiment it yields an outcome called the result. Often this result will have

a speci®c label such as `heads' or `it rains'. In general, when we are not being speci®c,

we denote the result of an experiment by ù. Obviously ù 2 Ù; that is to say, the result

always lies in the set of possible outcomes. For example, if Ù is the set of possible

outcomes of a horse race in which Dobbin is a runner, then

fDobbin winsg � Ù

In this expression the curly brackets are used to alert you to the fact that what lies inside

them is one (or more) of the possible outcomes.

We conclude with two small but important points. First, any experiment can have many

different sample spaces attached to it.

Example 2.2.1. If you ¯ip a coin twice, you may de®ne

Ù � fHH , HT , TH , TTg:
This lists everything that can arise from the experiment, so no larger sample space can be

more informative. However, you may only be interested in the number of heads shown. In

this case you may de®ne

Ù � f0, 1, 2g
and be quite satis®ed. s

The second point is in a sense complementary to the ®rst. It is that you have little to

lose by choosing a large enough sample space to be sure of including every possible

outcome, even where some are implausible.

Example. 2.2.2 Suppose you are counting the number of pollen grains captured by a

®lter. A suitable sample space is the set of all non-negative integers

Ù � f0, 1, 2, 3, . . .g:
Obviously only a ®nite number of these are possible (since there is only a ®nite amount of

pollen in existence), but any cut-off point would be unpleasantly arbitrary, and might be

too small. s

Furthermore it makes a calculation much easier if any number is allowed as a

possibility, however unlikely. Otherwise it might be necessary to keep track of this bound

throughout the calculation, a prospect which is both formidable and boring.

Exercise for section 2.2

1. Describe a suitable sample space Ù for the following experiments.

(a) m balls are removed from an urn containing j jet (black) balls and k khaki balls.
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(b) The number of cars passing over a bridge in one week is counted.

(c) Two players play the best of three sets at tennis.

(d) You deal a poker hand to each of four players.

2.3 EVENTS

Suppose we have some experiment whose outcomes ù comprise Ù, the sample space. As

we have noted above, the whole point of probability is to say how likely the outcomes are,

either individually or collectively. We therefore make the following de®nition.

De®nition. An event is a subset of the sample space Ù. n

Thus each event comprises one or more possible outcomes ù. By convention, events are

always denoted by capital letters such as A, B, C, . . . , with or without suf®xes, super-

®xes, or other adornments such as hats, bars, or stars. Here are a few simple but common

examples.

Example 2.3.1: two dice are rolled

(i) If we record their scores, then the sample space is

Ù � f(i, j): 1 < i, j < 6g:
We may be interested in the event A that the ®rst die is even and the second odd,

which is

A � f(i, j): i 2 f2, 4, 6g, j 2 f1, 3, 5gg:
(ii) If we add their scores, then the sample space is

Ù � fk: 2 < k < 12g:
The event B that the sum of the scores is 7 or 11 is

B � f7, 11g s

Example 2.3.2. Suppose you record the number of days this week on which it rains.

The sample space is

Ù � f0, 1, 2, 3, 4, 5, 6, 7g:
One outcome is that it rains on one day,

ù1 � 1:

The event that it rains more often than not is

A � f4, 5, 6, 7g, s

comprising the outcomes 4, 5, 6, 7.

Example 2.3.3. A doctor weighs a patient to the nearest pound. Then, to be on the

safe side, we may agree that

Ù � fi: 0 < i < 20 000g:
Some outcomes here seem unlikely, or even impossible, but we lose little by including

them. Then

C � fi: 140 < i < 150g
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is the event that the patient weighed between 140 and 150 pounds. s

Example 2.3.4. An urn contains a amber and b buff balls. Of these, c balls are

removed without replacing any in the urn, where

c < minfa, bg � a ^ b:

Then Ù is the collection of all possible sequences of a's and b's of length c. We may

de®ne the event D that the number of a's and b's removed is the same. If c is odd, then

this is the impossible event Æ. s

Since events are sets, we can use all the standard ideas and notation of set theory as

summarized in appendix II of Chapter 1. If the outcome ù of an experiment lies in the

event A, then A is said to occur, or happen. In this case we have ù 2 A. We always have

A � Ù. If A does not occur, then obviously the complementary event Ac must occur,

since ù lies in one of A or Ac.

The notation and ideas of set theory are particularly useful in considering combinations

of events.

Example 2.3.5. Suppose you take one card from a conventional pack. Simple events

include

A � the card is an ace,

B � the card is red,

C � the card is a club:

More interesting events are denoted using the operations of union and intersection. For

example

A \ C � the card is the ace of clubs,

A [ B � the card is either red or an ace or both:

Of course the card cannot be red and a club, so we have B \ C � Æ, where Æ denotes the

impossible event, otherwise known as the empty set. s

This leads to a useful de®nition.

De®nition. Two events A and B are said to be disjoint, incompatible, or mutually

exclusive, if they have no outcome in common. That is to say

A \ B � Æ, n

Obviously for any event A it is true that

A \ Ac � Æ:

Notice that we have tacitly assumed that if we form any combination of events A and B,

such as C � A [ B or D � A \ B, then C and D are themselves events. This is almost

completely obvious, but the point needs to be stressed: unions, intersections, and

complements of events are themselves events.
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Table 2.2 gives a brief summary of how set notation represents events and their

relationships.

De®nition. If A1, A2, A3, . . . , An, . . . is a collection of events such that

Ai \ A j � Æ for all i 6� j, and
S

i Ai � Ù, then the A's are said to form a partition

of Ù. n

As we have remarked above, many important relationships between events are very

simply and attractively demonstrated by means of Venn diagrams. For example, ®gure 2.1

demonstrates very neatly that

(A [ B) \ C � (A \ C) [ (B \ C) and A [ (B \ C) � (A [ B) \ (A [ C):

Table 2.2. Events and notation

Certain event or sample space Ù
Impossible event Æ
The event A occurs A
A does not occur Ac

Both A and B occur A \ B
Either or both of A and B occur A [ B
If A occurs then B occurs A � B
A occurs, but not B A n B
A and B are disjoint A \ B � Æ

A B

C

A B

C

Figure 2.1. Venn diagrams. In the upper ®gure the shaded area is equal to (A [ B) \ C and
(A \ C) [ (B \ C). In the lower ®gure the shaded area is equal to A [ (B \ C) and also to
(A [ B) \ (A [ C).
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Exercises for section 2.3

1. Here is a list of experiments, each with an associated event of interest. In each case write down

a suitable sample space Ù, and de®ne the event of interest in terms of the elements of Ù.

(a) Two dice are rolled; their sum is 3.

(b) 100 light bulbs are tested; at most 4 are defective.

(c) A family comprises 3 children; they are all of the same sex.

(d) The height of a tree is recorded to the nearest metre; it is between 10 and 15 metres high.

(e) Rod and Fred play the best of three sets at tennis; Rod wins.

(f) Tom and Jack are weighed to the nearest pound; Jack is heavier.

2. Show that for any events A and B

(a) (A [ B)c � Ac \ Bc

(b) A \ (B [ C) � (A \ B) [ (A \ C):

2 .4 PROBABILITY; ELEMENTARY CALCULATIONS

Now that we have de®ned events, we can discuss their probabilities. Suppose some

experiment has outcomes that comprise Ù, and A is an event in Ù. Then the probability

that A occurs is denoted by P(A), where of course

0 < P(A) < 1:(1)

Thus we can think of P as a rule that assigns a number P(A) 2 [0, 1] to each event A in

Ù. The mathematical term for a rule like this is a function, as we discussed in appendix II

of chapter 1. Thus P(´) is a function of the events in Ù, which takes values in the interval

[0, 1]. Before looking at the general properties of P, it seems sensible to gain experience

by looking at some simple special cases that are either familiar, or obvious, or both.

Example 2.4.1: Bernoulli trial. Many experiments have just two outcomes, for

example: head or tail; even or odd; win or lose; ¯y or crash; and so on. To simplify

matters these are often thought of as examples of an experiment with the two outcomes

success or failure, denoted by S and F respectively. Then for the events S and F we write

P(S ) � p and P(F) � q � 1ÿ p: s

Example 2.4.2: equally likely outcomes. Suppose that an experiment has sample

space Ù, such that each of the jÙj outcomes in Ù is equally likely. This may be due to

some physical symmetry or the conditions of the experiment. Now let A be any event; the

number of outcomes in A is jAj. The equidistribution of probability among the outcomes

implies that the probability that A occurs should be proportional to jAj (we discussed this

at length in section 1.4). In cases of this type we therefore write

P(A) � jAjjÙj �
number of outcomes in A

number of outcomes in Ù
: s(2)

This is a large assumption, but it is very natural and compelling. It is so intuitively

attractive that it was being used explicitly in the 16th century, and it is clearly implicit in

the ideas and writings of several earlier mathematicians. Let us consider some further

examples of this idea in action.
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Example 2.4.3. Two dice are rolled, one after the other. Let A be the event that the

second number is greater than the ®rst. Here

jÙj � 36

as there are 6 3 6 pairs of the form (i, j), with 1 < i, j < 6. The pairs with i , j are

given by

A � f(5, 6), (4, 5), (4, 6), (3, 4), . . . , (1, 5), (1, 6)g;
it is easy to see that jAj � 1� 2 � � � � � 5 � 15. Hence

P(A) � 15

36
� 5

12
: s

Example 2.4.4. If a coin is ¯ipped n times, what is the probability that each time the

same face shows? Here Ù is the set of all possible sequences of H and T of length n,

which we regard as equally likely. Hence jÙj � 2n. The event A comprises all heads or

all tails. Hence jAj � 2 and the required probability is

2

2n
� 2ÿ(nÿ1): s

Example 2.4.5: chain. Suppose you are testing a chain to destruction. It has n links

and is stretched between two shackles attached to a ram. The ram places the chain under

increasing tension until a link fails. Any link is equally likely to be the one that snaps,

and so if A is any group of links the probability that the failed link is in A is the

proportion of the total number of links in A. Now jÙj � n, so

P(A) � jAj
n
: s

Example 2.4.6: lottery. Suppose you have an urn containing 20 tickets marked 1, 2,

. . . , 20. A ticket is drawn at random. Thus

Ù � f1, 2, . . . , 20g � fn: 1 < n < 20g:
Events in Ù may include:

A � the number drawn is even;

B � the number drawn is divisible by 5;

C � the number drawn is less than 8:

The implication of the words `at random' is that any number is equally likely to be

chosen. In this case our discussions above yield

P(A) � jAjjÙj �
10

20
� 1

2
,

P(B) � jBjjÙj �
4

20
� 1

5
,

and

P(C) � jCjjÙj �
7

20
: s
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Here is a famous example.

Example 2.4.7: dice. Three dice are rolled and their scores added. Are you more

likely to get 9 than 10, or vice versa?

Solution. There are 63 � 216 possible outcomes of this experiment, as each die has

six possible faces. You get a sum of 9 with outcomes such as (1, 2, 6), (2, 1, 6), (3, 3, 3)

and so on. Tedious enumeration reveals that there are 25 such triples, so

P(9) � 25

216
:

A similar tedious enumeration shows that there are 27 triples, such as (1, 3, 6), (2, 4, 4)

and so on, that sum to 10. So

P(10) � 27

216
. P(9):

This problem was solved by Galileo before 1642. s

An interesting point about this example is that if your sample space does not distinguish

between outcomes such as (1, 2, 6) and (2, 1, 6), then the possible sums 9 and 10 can

each be obtained in the same number of different ways, namely six. However, actual

experiments with real dice demonstrate that this alternative model is wrong.

Notice that symmetry is quite a powerful concept, and implies more than at ®rst

appears.

Example 2.4.8. You deal a poker hand of ®ve cards face down. Now pick up the ®fth

and last card dealt; what is the probability that it is an ace? The answer is

P(A) � 1

13
:

Sometimes it is objected that the answer should depend on the ®rst four cards, but of

course if these are still face down they cannot affect the probability we want. By

symmetry any card has probability 1
13

of being an ace; it makes no difference whether the

pack is dealt out or kept together, as long as only one card is actually inspected. s

Our intuitive notions of symmetry and fairness enable us to assign probabilities in

some other natural and appealing situations.

Example 2.4.9: rope. Suppose you are testing a rope to destruction: a ram places it

under increasing tension until it snaps at a point S, say. Of course we suppose that the

rope appeared uniformly sound before the test, so the failure point S is equally likely to

be any point of the rope. If the rope is of length 10 metres, say, then the probability that it

fails within 1 metre of each end is naturally P(S lies in those 2 metres) � 2
10
� 1

5
. Like-

wise the probability that S lies in any 2 metre length of rope is 1
5
, as is the probability that

S lies in any 2 metres of the rope, however this 2 metres is made up. s

Example 2.4.10: meteorite. Leaving your house one morning at 8 a.m. you ®nd that

a meteorite has struck your car. When did it do so? Obviously meteorites take no account

of our time, so the time T of impact is equally likely to be any time between your leaving
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the car and returning to it. If this interval was 10 hours, say, then the probability that the

meteorite fell between 1 a.m. and 2 a.m. is 1
10

. s

These are special cases of experiments in which the outcome is equally likely to be any

point of some interval [a, b], which may be in time or space.

We can de®ne a probability function for this kind of experiment quite naturally as

follows. The sample space Ù is the interval [a, b] of length bÿ a. Now let A be any

interval in Ù of length l � jAj. Then the equidistribution of probability among the

outcomes in Ù implies that the probability of the outcome being in A is

P(A) � jAjjÙj �
l

bÿ a
:

Example 2.4.9. revisited: rope. What is the probability that the rope fails nearer to

the ®xed point of the ram than the moving point? There are 5 metres nearer the ®xed

point, so this probability is 5
10
� 1

2
. s

This argument is equally natural and appealing for points picked at random in regions

of the plane. For de®niteness, let Ù be some region of the plane with area jÙj. Let A be

some region in Ù of area jAj. Suppose a point P is picked at random in Ù, with any point

equally likely to be chosen. Then the equidistribution of probability implies that the

probability of P being in A is

P(A) � jAjjÙj :

Example 2.4.10. The garden of your house is the region Ù, with area 100 square

metres; it contains a small circular pond A of radius 1 metre. You are telephoned by a

neighbour who tells you your garden has been struck by a small meteorite. What is the

probability that it hit the pond? Obviously, by everything we have said above

P(hits pond) � jAjjÙj �
ð

100
: s

We return to problems of this type later on.

Let us conclude this section with an example which demonstrates a simple but

important point.

Example 2.4.11: probabilistic equivalence. Consider the following three experi-

ments.

(i) A fair die is rolled, and the number shown is noted.

(ii) An urn contains 5 alabaster balls, and 1 beryl ball. They are removed until the beryl

ball appears, and the number removed is noted.

(iii) Six different numbers are drawn for a lottery and the position in which the smallest

of them is drawn is noted.

In each of these the sample space can be written

Ù � f1, 2, 3, 4, 5, 6g,
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and by construction, in all three cases,

P(ùi) � 1

6
, 1 < i < 6:

These experiments are probabilistically equivalent, since Ù and P(´) are essentially the

same for each. s

Since it makes no difference which experiment we use to yield these probabilities, there

is something to be said for having a standard format to present the great variety of

probability problems. For reasons of tradition, urns are often used.

Thus example 2.4.11(ii) would be a standard presentation of the probabilities above.

There are three main reasons for this. The ®rst is that urns are often useful in situations

too complicated to be readily modelled by coins and dice. The second reason is that using

urns (instead of more realistic descriptions) enables the student to see the probabilistic

problems without being confused by false intuition. The third reason is historical: urns

were widely used in conducting lotteries and elections (in both cases because they are

opaque, thus preventing cheating in the ®rst place and allowing anonymous voting in the

second). It was therefore natural for early probabilists to use urns as models of real

random behaviour.

Exercises for section 2.4

1. You make one spin of a roulette wheel. (Assume your wheel has 37 pockets numbered from 0 to

36 inclusive.) What is the probability that the outcome is odd?

2. You take two cards at random from a pack of 52. What is the probability that both are aces?

3. You pick a point P at random in a triangle ABC. What is the probability that is in ABD, where

D lies in the side BC?

4. You pick a point at random in a circle. What is the probability that it is nearer to the centre than

to the perimeter?

5. An urn contains a amber balls and b beryl balls. You remove them one by one. What is the

probability that the last but one ball is beryl? (Hint: No one said you looked at them as you

removed them.)

2.5 THE ADDITION RULES

Of course not all experiments have equally likely outcomes, so we need to ®x rules that

tell us about the properties of the probability function P, in general. Naturally we continue

to require that for any event A

0 < P(A) < 1,(1)

and in particular the certain event has probability 1, so

P(Ù) � 1:(2)

The most important rule is the following.

Addition rule. If A and B are disjoint events, then

P(A [ B) � P(A)� P(B):(3)
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This rule lies at the heart of probability. First let us note that we need such a rule, because

A [ B is an event when A and B are events, and we therefore need to know its probability.

Second, note that it follows from (3) (by induction) that if A1, A2, . . . , An is any

collection of disjoint events then

P
Sn

i�1 Ai

ÿ � � P(A1) � � � � � P(An):(4)

The proof forms exercise 3, at the end of this section.

Third, note that it is sometimes too restrictive to con®ne ourselves to a ®nite collection

of events (we have seen several sample spaces with in®nitely many outcomes), and we

therefore need an extended version of (4).

Extended addition rule. If A1, A2, . . . is a collection of disjoint events then

P(A1 [ A2 [ � � �) � P(A1)� P(A2) � � � � :(5)

Equation (5) together with (1) and (2),

0 < P(A) < 1 and P(Ù) � 1,

are sometimes said to be the axioms of probability. They describe the behaviour of the

probability function P de®ned on subsets of Ù. In fact, in everyday usage P is not referred

to as a probability function but as a probability distribution. Formally we state the

following.

De®nition. Let Ù be a sample space and suppose that P(´) is a probability function

on a family of subsets of Ù satisfying (1), (2), and (5). Then P is called a probability

distribution on Ù. n

The word distribution is used because it is natural to think of probability as something

that is distributed over the outcomes in Ù. The function P tells you just how it is

distributed. In this respect probability behaves like distributed mass, and indeed in many

books authors do speak of a unit of probability mass being distributed over the sample

space, and refer to P as a probability mass function. This metaphor can be a useful aid to

intuition because, of course, mass obeys exactly the same addition rule. If two distinct

objects A and B have respective masses m(A) and m(B), then the mass of their union

m(A [ B) satis®es

m(A [ B) � m(A)� m(B):

Of course mass is non-negative also, which reinforces the analogy.

We conclude this section by showing how the addition rule is consistent with, and

suggested by, all our interpretations of probability as a proportion.

First, consider an experiment with equally likely outcomes, for which we de®ned

probability as the proportion

P(A) � jAjjÙj :
If A and B are disjoint then, trivially,

jA [ Bj � jAj � jBj:
Hence in this case
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P(A [ B) � jA [ Bj
jÙj �

jAj
jÙj �

jBj
jÙj � P(A)� P(B):

Second, consider the interpretation of probability as re¯ecting relative frequency in the

long run. Suppose an experiment is repeated N times. At each repetition, events A and B

may, or may not, occur. If they are disjoint, they cannot both occur at the same repetition.

We argued in section 1.8 that the relative frequency of any event should be not too far

from its probability. Indeed, it is often the case that the relative frequency N (A)=N of an

event A is the only available guide to its probability P(A). Now, clearly

N (A [ B) � N (A)� N (B):

Hence, dividing by N, there is a powerful suggestion that we should have

P(A [ B) � P(A)� P(B):

Third, consider probability as a measure of expected value. For this case we resurrect

the benevolent plutocrat who is determined to give away $1 at random. The events A and

B are disjoint; if A occurs you get $1 in your left hand, if B occurs you get $1 in your

right hand. If (A [ B)c occurs, then Bob gets $1. The value of this offer to you is

$P(A [ B), the value to your left hand is $P(A), and the value to your right hand is $P(B).

But obviously it does not matter in which hand you get the money, so

P(A [ B) � P(A)� P(B):

Finally, consider the case where we imagine a point is picked at random anywhere in

some plane region Ù of area jÙj. If A � Ù, we de®ned

P(A) � jAjjÙj :

Since area also satis®es the addition rule, we have immediately, when A \ B � Æ, that

P(A [ B) � P(A)� P(B):

It is interesting and important to note that in this case the analogy with mass requires the

unit probability mass to be distributed uniformly over the region Ù. We can envisage this

distribution as a lamina of uniform density jÙjÿ1 having total mass unity. This may seem

a bizarre thing to imagine, but it turns out to be useful later on.

In conclusion, it seems that the addition rule is natural and compelling in every case

where we have any insight into the behaviour of probability. Of course it is a big step to

say that it should apply to probability in every other case, but it seems inevitable. And

doing so has led to remarkably elegant and accurate descriptions of the real world.

Exercises for section 2.5

1. Bernoulli trial. Show that for a Bernoulli trial P(S )� P(F) � 1.

2. Why is the extended addition rule not necessary when Ù is ®nite?

3. Show that (4) follows from (3).

4. Show that P(A \ B) < minfP(A), P(B)g.
5. Show that for any events A and B, P(A [ B) < P(A)� P(B).
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2.6 SIMPLE CONSEQUENCES

We have agreed that the probability distribution P satis®es

P(A) > 0, for any A,(1)

P(Ù) � 1,(2)

P(A [ B) � P(A)� P(B), when A \ B � Æ:(3)

These rules are simple enough, but they have remarkably extensive consequences. Let us

look at some simple applications and deductions.

Complements. We know that for any event A, Ù � A [ Ac and A \ Ac � Æ. Hence

by (3) and (2), and as illustrated in ®gure 2.2,

1 � P(Ù) � P(A [ Ac) � P(A)� P(Ac):

Thus the probability that A does not occur is

P(Ac) � 1ÿ P(A):(4)

In particular, for the impossible event Æ,

P(Æ) � P(Ùc) � 1ÿ P(Ù) � 0:

It is very pleasant to see this consistency with our intuitive probability scale. Note,

however, that the converse is not true, that is, P(A) � 0 does not imply that A � Æ, as we

now see in an example.

Example 2.6.1. Pick a point at random in the unit square, say, and let A be the event

that this point lies on a diagonal of the square. As we have seen above,

P(A) � jAjjÙj � jAj,
where jAj is the area of the diagonal. But lines have zero area; so P(A) � 0, even though

the event A is clearly not impossible. s

Let us consider some examples of the complement rule (4).

Example 2.6.2. A die is rolled. How many rolls do you need, to have a better than

evens chance of rolling at least one six?

A

Ac

Ω

Figure 2.2. P(A)� P(Ac) � P(Ù) � 1.
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Solution. If you roll a die r times, there are 6r possible outcomes. On each roll there

are 5 faces that do not show a six, and there are therefore in all 5r outcomes with no six.

Hence P(no six in r rolls) � 5r=6r: Hence, by (4),

P(at least one six) � 1ÿ P(no six) � 1ÿ 5
6

ÿ �
r:

For this to be better than evens, we need r large enough that 1ÿ 5
6

ÿ �
r . 1

2
. A short

calculation shows that r � 4. s

Example 2.6.3: de MeÂreÂ's problem. Which of these two events is more likely?

(i) Four rolls of a die yield at least one six.

(ii) Twenty-four rolls of two dice yield at least one (6, 6), i.e. double six.

Solution. Let A denote the ®rst event and B the second event. Then Ac is the event

that no six is shown. There are 64 equally likely outcomes, and 54 of these show no six.

Hence by (4)

P(A) � 1ÿ P(Ac) � 1ÿ 5
6

ÿ �
4:

Likewise

P(B) � 1ÿ P(Bc) � 1ÿ 35
36

ÿ �
24:

Now after a little calculation we ®nd that
671

1296
� P(A) . 1

2
. P(B) ' 0:491:

So the ®rst event is more likely. s

Difference rule. More generally we have the following rule for differences. Suppose

that B � A. Then

A � B [ (Bc \ A) � B [ (A n B) and B \ (Bc \ A) � Æ:
Hence

P(A) � P(B)� P(Bc \ A)

and so

P(A n B) � P(A)ÿ P(B), if B � A:(5)

Figure 2.3 almost makes this argument unnecessary.

A

B

A \ B

Figure 2.3. When B � A, then P(AnB) � P(A)ÿ P(B).
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Of course many events are not disjoint. What can we say of P(A [ B) when

A \ B 6� Æ? The answer is given by the following rule.

Inclusion±exclusion rule. This says that, for any events A and B, the probability that

either occurs is given by

P(A [ B) � P(A)� P(B)ÿ P(A \ B):(6)

Proof. Using the addition rule three times shows that

P(A) � P(A \ B)� P(A \ Bc),

P(B) � P(A \ B)� P(B \ Ac),

P(A [ B) � P(A \ B)� P(A \ Bc)� P(B \ Ac):

(Drawing the Venn diagram in Figure 2.4 makes these relations obvious.) Now, adding

the ®rst two equalities, and then subtracting that from the third, gives the result. h

Let us consider some examples of this.

Example 2.6.4: wet and windy. From meteorological records it is known that for a

certain island at its winter solstice, it is wet with probability 30%, windy with probability

40%, and both wet and windy with probability 20%.

Using the above rules we can ®nd the probability of other events of interest. For

example:

(i) P(dry) � P(not wet) � 1ÿ 0:3 � 0:7, by (4);

(ii) P(dry and windy) � P(windynwet) � P(windy)ÿ P(wet and windy) � 0:2, by (5);

(iii) P(wet or windy) � 0:4� 0:3ÿ 0:2 � 0:5, by (6). s

Example 2.6.5: alarms. A kitchen contains two ®re alarms; one is activated by

smoke and the other by heat. Experience has shown that the probability of the smoke

alarm sounding within one minute of a ®re starting is 0.95, the probability of the heat

alarm sounding within one minute of a ®re starting is 0.91, and the probability of both

sounding within a minute is 0.88. What is the probability of at least one alarm sounding

within a minute?

A

B

A ∩ B

Figure 2.4. It can be seen that P(A [ B) � P(A)� P(B)ÿ P(A \ B).
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Solution. We have, with an obvious notation,

P(H [ S ) � P(H)� P(S )ÿ P(H \ S )

� 0:91� 0:95ÿ 0:88

� 0:98: s

The inclusion±exclusion rule can be extended to cover more than two events (see the

exercises and problems), but expressions become long and tedious. Sometimes it is

enough to have bounds for probabilities; here is a famous example.

Boole's inequality. For any events A1, . . . , An, we have

P(A1 [ A2 [ � � � [ An) <
Xn

r�1

P(Ar):(7)

Proof. From (6) this is obviously true for n � 2. Suppose it is true for some n > 2;

then

P(A1 [ A2 [ � � � [ An�1) < P(A1 [ A2 [ � � � [ An)� P(An�1) <
Xn�1

r�1

P(Ar):

The result follows by induction. h

Exercises for section 2.6

1. Suppose that A � B. Show that P(A) < P(B).

2. Wet, windy and warm. Show that for any events A (wet), B (windy), and C (warm),

P(A [ B [ C) � P(A)� P(B)� P(C)ÿ P(A \ B)ÿ P(B \ C) ÿ P(C \ A)� P(A \ B \ C):

3. Two dice are rolled. How many rolls do you need for a better than evens chance of at least one

double six?

4. Galileo's problem (example 2.4.7) revisited. Let Sk be the event that the sum of the three

dice is k. Find P(Sk) for all k.

5. Pepys' problem (1693)

(a) Find the probability that at least 1 six is shown when 6 dice are rolled.

(b) Find the probability that at least 2 sixes are shown when 12 dice are rolled, and compare

with the answer to (a).

Remark. Pepys put this problem to Isaac Newton, but was then very reluctant to accept

Newton's (correct) answer.

6. Show that the probability that exactly one of the events A or B occurs is P(A) �
P(B)ÿ 2P(A \ B).

2.7 CONDITIONAL PROBABILITY; MULTIPLICATION RULE

In real life very few experiments amount to just one action with random outcomes; they

usually have a more complicated structure in which some results may be known before

the experiment is complete. Or conditions may change. We need a new rule to add to
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those given in section 2.5; it is called the conditioning rule. Before we give the rule, here

are some examples.

Example 2.7.1. Suppose you are about to roll two dice, one from each hand. What is

the probability that your right-hand die shows a larger number than the left-hand die?

There are 36 outcomes, and in 15 of these the right-hand score is larger. So

P(right-hand larger) � 15
36

(1)

Now suppose you roll the left-hand die ®rst, and it shows 5. What is the probability that

the right-hand die shows more? It is clearly not 15
36

. In fact only one outcome will do: it

must show 6. So the required probability is 1
6
. s

This is a special case of the general observation that if conditions change then results

change. In particular, if the conditions under which an experiment takes place are altered,

then the probabilities of the various outcomes may be altered. Here is another illustration.

Example 2.7.2: stones. Kidney stones are either small, (i.e. , 2 cm diameter) or

large, (i.e. . 2 cm diameter). Treatment can either succeed or fail. For a sequence of 700

patients the stone sizes and outcomes were as shown in table 2.3. Let L denote the event

that the stone treated is large. Then, clearly, for a patient selected at random from the 700

patients,

P(L) � 343
700
:(2)

Also, for a patient picked at random from the 700, the probability of success is

P(S ) � 562
700
' 0:8(3)

However, suppose a patient is picked at random from those whose stone is large. The

probability of success is different from that given in (3); it is obviously

247
343
' 0:72:

That is to say, the probability of success given that the stone is large is different from the

probability of success given no knowledge of the stone.

This is natural and obvious, but it is most important and useful to have a distinct

notation, in order to keep the conditions of an experiment clear and explicit in our minds

Table 2.3. Outcomes of 700 treatments grouped by size of

stone

Outcomes

Size success (S ) failure total

small 315 42 357
large (L) 247 96 343
total 562 138 700
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and working. We therefore denote the probability of S given L by

P(SjL) ' 0:72(4)

and refer to P(SjL) as the conditional probability of success, given L.

Likewise, we could imagine selecting a patient at random from those whose treatment

was successful, and asking for the probability that such a patient's stone had been large.

This is the conditional probability of L given S, and, from table 2.1, we easily see that

P(LjS ) � 247
562
' 0:44 s(5)

After this preamble, we can now usefully state the rule governing conditional prob-

ability.

Conditioning rule. Let A and B be events. Then the conditional probability of A

given that B occurs is de®ned as

P(AjB) � P(A \ B)

P(B)
(6)

whenever P(B) . 0.

This may seem a little arbitrary, but it is strongly motivated by our interpretation of

probability as an extension of proportion. We may run through the usual examples in the

usual way.

First, consider an experiment with equally likely outcomes, for which

P(A) � jAjjÙj and P(B) � jBjjÙj :
Given simply that B occurs, all the outcomes in B are still equally likely. Essentially, we

now have an experiment with jBj equally likely outcomes, in which A occurs if and only

if A \ B occurs. Hence under these conditions

P(AjB) � jA \ Bj
jBj :

But

jA \ Bj
jBj �

jA \ Bj
jÙj

� jBj
jÙj �

P(A \ B)

P(B)
,

which is what (6) says.

Second, we consider the argument from relative frequency. Suppose an experiment is

repeated a large number n of times, yielding the event B on N(B) occasions. Given that B

occurs, we may con®ne our attention to these N(B) repetitions. Now A occurs in just

N(A \ B) of these, and so empirically

P(AjB) ' N(A \ B)

N(B)
� N(A \ B)

n

n

N(B)

' P(A \ B)

P(B)

which is consistent with (6).

Third, we return to the interpretation of probability as a fair price. Once again a

plutocrat offers me a dollar. In this case I get the dollar only if both the events A and B
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occur, so this offer is worth $P(A \ B) to me. But we can also take it in stages: suppose

that if B occurs, the dollar bill is placed on a table, and if A then occurs the bill is mine.

Then

(i) the value of what will be on the table is $P(B),

(ii) the value of a dollar bill on the table is $P(AjB).

The value of the offer is the same, whether or not the dollar bill has rested on the table, so

P(A \ B) � P(AjB)P(B),

which is (6) yet again.

Finally consider the experiment in which a point is picked at random in some plane

region Ù. For any regions A and B, if we are given that B occurs then A can occur if and

only if A \ B occurs. Naturally then it is reasonable to require that P(AjB) is proportional

to jA \ Bj, the area of A \ B. That is, for some k,

P(AjB) � kP(A \ B):

Now we observe that obviously P(ÙjB) � 1, so

1 � kP(Ù \ B) � kP(B),

as required. Figure 2.5 illustrates the rule (6).

Let us see how this rule applies to the simple examples at the beginning of this section.

Example 2.7.1 revisited. According to the rule,

P(right die largerjleft shows 5) � P(right shows 6 and left shows 5)

P(left shows 5)

� 1

36

�
1

6
� 1

6

as we saw in (1). s

Example 2.7.2 revisited. According to the rule,

P(SjL) � P(S \ L)

P(L)
� 247

700

�
343

700
,

A

B

A ∩ B

Ω

B

A ∩ B

Figure 2.5. The left-hand diagram shows all possible outcomes Ù. The right-hand diagram
corresponds to our knowing that the outcome must lie in B; P(AjB) is thus the proportion
P(A \ B)=P(B) of these possible outcomes.

50 2 The rules of probability



which is (4), and

P(LjS ) � P(L \ S )

P(S )
� 247

700

�
562

700
,

which is (5). s

Here are some fresh applications.

Example 2.7.3. A coin is ¯ipped three times. Let A be the event that the ®rst ¯ip

gives a head, and B the event that there are exactly two heads overall. We know that

Ù � fHHH , HHT , HTH , THH , TTH , THT , HTT , TTTg
A � fHTT , HHT , HHH , HTHg
B � fHHT , HTH , THHg

A \ B � fHHT , HTHg:
Hence by (6),

P(AjB) � P(A \ B)

P(B)
� jA \ Bj
jÙj

jÙj
jBj �

2
3

and

P(BjA) � P(A \ B)

P(A)
� 1

2
: s

It is particularly important to be careful and painstaking in using conditional prob-

ability. This may seem a trite remark, but experience has shown that students are prone to

attempt intuitive short cuts leading to wrong answers. Here is an example that demon-

strates this.

Example 2.7.4. A box contains a double-headed coin, a double-tailed coin and a

conventional coin. A coin is picked at random and ¯ipped. It shows a head. What is the

probability that it is the double-headed coin?

Solution. The three coins have 6 faces, so jÙj � 6.

Let D be the event that the coin is double-headed, and A the event that it shows a head.

Then 3 faces yield A, so

P(A) � 1
2

Two faces yield A and D (as it can be either way up) so

P(A \ D) � 1
3

Finally

P(DjA) � P(A \ D)

P(A)
� 2

3
: s

The point of this example is that many people are prepared to argue as follows: `If the

coin shows a head, it is either double-headed or the conventional coin. Since the coin was

picked at random, these are equally likely, so P(DjA) � 1
2
'.
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This is super®cially plausible but, as we have seen, it is totally wrong. Notice that this

bogus argument avoids mentioning the sample space Ù; this is very typical of false

reasoning in probability problems.

We conclude this section by looking at (6) again. It assumes that we know P(A \ B) and

P(B), and de®nes P(AjB). However, in applications we quite often know P(B) and P(AjB),

and wish to know P(A \ B). In cases like this, we use the following reformulation of (6).

Multiplication rule. For any events A and B

P(A \ B) � P(AjB)P(B):(7)

Notice that we can avoid the tiresome reservation that P(B) 6� 0 in this version; when

P(B) � 0 we just assign the value zero to both sides. This is not a very interesting case, of

course.

Here is an example of (7) in use.

Example 2.7.5: socks. A box contains 5 red socks and 3 blue socks. If you remove 2

socks at random, what is the probability that you are holding a blue pair?

Solution. Let B be the event that the ®rst sock is blue, and A the event that you have a

pair of blue socks. If you have one blue sock, the probability that the second is blue is the

chance of drawing one of the 2 remaining blues from the 7 remaining socks. That is to

say

P(AjB) � 2
7
:

Here A � A \ B and so, by (7),

P(A) � P(AjB)P(B)

� 2
7

3 3
8
� 3

28
:

Of course you could do this problem by enumerating the entire sample space for the

experiment, but the above method is much easier. s

The multiplication rule can be usefully extended, thus.

Extended multiplication rule. Let A1, A2, . . . , An be any events such that

P(A1 \ A2 \ � � � \ An) . 0:(8)

then we have the extended rule

P(A1 \ A2 \ � � � \ An) � P(AnjAnÿ1 \ � � � \ A1)

3 P(Anÿ1jAnÿ2 \ � � � \ A1)

..

.

3 P(A2jA1)P(A1):

This follows immediately if we write, for all k,

P(Ak jAkÿ1 \ � � � \ A1) � P(Ak \ � � � \ A1)

P(Akÿ1 \ � � � \ A1)
:

Then successive cancellation on the right-hand side gives the result required. s
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Finally let us stress that conditional probability is not in any way an unnatural or purely

theoretical concept. It is completely familiar and natural to you if you have ever bought

insurance, played golf, or observed horse racing, to choose just three examples of the

myriad available. Thus:

Insurance. Insurance companies require large premiums from young drivers to

insure a car, because they know that P(claim|young driver) � P(claim). For similarly

obvious reasons, older customers must pay more for life insurance.

Golf. If you play against the Open Champion then P(you win) ' 0. However, given a

suf®ciently large number of strokes it can be arranged that P(you winjhandicap) ' 1
2
.

Thus any two players can have a roughly even contest.

Horse races. Similarly any horse race can be made into a much more open contest by

requiring faster horses to carry additional weights. Much of the betting industry relies on

the judgement of the handicappers in doing this.

The objective of the handicapper in choosing the weights is to equalize the chances to

some extent and introduce more uncertainty into the result. The ante-post odds re¯ect the

bookmakers' assessment of how far he has succeeded, and the starting prices re¯ect the

gambler's assessment of the position. (See section 2.12 for an introduction to odds.)

Of course this is not the limit to possible conditions; if it rains heavily before a race

then the odds will change to favour horses that run well in heavy conditions. And so on.

Clearly this idea of conditional probability is relevant in almost any experiment; you

should think of some more examples (exercise).

Exercises for section 2.7

1. On any day the chance of rain is 25%. The chance of rain on two consecutive days is 10%.

Given that it is raining today, what is the chance of rain tomorrow? Given that it will rain

tomorrow, what is the chance of rain today?

2. Show that the conditional probability P(AjB) satis®es the three axioms of probability:

(a) 0 < P(AjB) < 1,

(b) P(ÙjB) � 1,

(c) P(A1 [ A2jB) � P(A1jB)� P(A2jB)

when A1 and A2 are disjoint. Show also that P(AjB) � 1ÿ P(AcjB).

3. Extended multiplication. Show that

P(A \ B \ C) � P(AjB \ C)P(BjC)P(C):

4. Your kit bag contains 15 wrist bands, of which 6 are blue, 5 are red and 4 are green. You pick 3

at random. What is the probability that they are all (a) red? (b) the same colour?

5. Show that

P(A \ BjA [ B) < minfP(A \ BjA), P(A \ BjB)g:
6. The prosecutor's fallacy. Let G be the event that some accused person is guilty, and T the event

that some testimony or evidence presented is in fact true. It has been known for lawyers to argue

on the assumption that P(GjT ) � P(T jG). Show that this holds if and only if P(G) � P(T ).
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2.8 THE PARTITION RULE AND BAYES' RULE

In this section we look at some of the simple consequences of our de®nition of

conditional probability. The ®rst and most important thing to show is that conditional

probability satis®es the rules for a probability function (otherwise its name would be very

misleading).

Conditional probability is a probability

First, for any A and B,

0 < P(A \ B) < P(B)

and so

0 < P(AjB) < 1:(1)

Second, for any B,

P(ÙjB) � P(Ù \ B)=P(B) � 1:

Third, if A1 and A2 are disjoint then A1 \ B and A2 \ B are disjoint. Hence

P(A1 [ A2jB) � fP(A1 \ B)� P(A2 \ B)g=P(B)(2)

� P(A1jB)� P(A2jB):

Next we consider some very important applications of conditional probability. Let us

recall the multiplication rule for any events A and B,

P(A \ B) � P(AjB)P(B):(3)

Since this holds true for any pair of events, it is also true for A and Bc that

P(A \ Bc) � P(AjBc)P(Bc):(4)

But B and Bc are disjoint events, so by the addition rule

P(A \ B)� P(A \ Bc) � P((A \ B) [ (A \ Bc))(5)

� P(A):

Combining (3), (4), and (5) gives the extremely important

Partition rule

P(A) � P(AjB)P(B)� P(AjBc)P(Bc):(6)

This has a conditional form as well: for any three events A, B, and C, we have the

Conditional partition rule

P(AjC) � P(AjB \ C)P(BjC)� P(AjBc \ C)P(BcjC):(7)

The proof of this is exercise 4 at the end of the section.

The partition rule may not seem very impressive at ®rst sight, but it is in fact one of the

most important and frequently used results in probability. Here are some examples of its

use.

Example 2.8.1: pirates. An expensive electronic toy made by Acme Gadgets Inc. is

defective with probability 10ÿ3. These toys are so popular that they are copied and sold
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illegally but cheaply. Pirate versions capture 10% of the market, and any pirated copy is

defective with probability 1
2
. If you buy a toy, what is the chance that it is defective?

Solution. Let A be the event that you buy a genuine article, and let D be the event

that your purchase is defective. We know that

P(A) � 9
10

, P(Ac) � 1
10

, P(DjA) � 1
1000

, P(DjAc) � 1
2
:

Hence, by the partition rule,

P(D) � P(DjA)P(A)� P(DjAc)P(Ac)

� 9
10 000

� 1
20
' 5%: s

Example 2.8.2: tests. In a population of individuals a proportion p are subject to a

disease. A test is devised to indicate whether any given individual does have the disease;

such an indication is called a positive test. No test is perfect, and in this case the

probability that the test is positive for an individual with the disease is 95%, and the

probability of a positive result for an individual who does not have the disease is 10%. If

you test a randomly selected individual, what is the chance of a positive result?

Solution. Let R denote the event that the result is positive, and D the event that the

individual has the disease. Then by (6)

P(R) � P(RjD)P(D)� P(RjDc)P(Dc)

� 0:95p� 0:1(1ÿ p)

� 0:85p� 0:1:

For a test as bad as this you will get a lot of positive results even if the disease is rare; if it

is rare, most of these will be false positives. s

Example 2.8.3. Patients may be treated with any one of a number of drugs, each of

which may give rise to side effects. A certain drug C has a 99% success rate in the

absence of side effects, and side effects only arise in 5% of cases. However, if they do

arise then C has only a 30% success rate. If C is used, what is the probability of the event

A that a cure is effected?

Solution. Let B be the event that no side effects occur. We are given that

P(AjB \ C) � 99
100

,

P(BjC) � 95
100

,

P(AcjBc \ C) � 30
100

,

P(BcjC) � 5
100
:

Hence, by the conditional partition rule (7),
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P(AjC) � 99
100

3 95
100
� 30

100
3 5

100
� 9555

10000
' 95%: s

Of course many populations can be divided into more than two groups, and many

experiments yield an arbitrary number of events. This requires a more general version of

the partition rule.

Extended partition rule. Let A be some event, and suppose that (Bi; i > 1) is a

collection of events such that.

A � B1 [ B2 [ � � � �
[

i

Bi,

and, for i 6� j, Bi \ Bj � Æ, that is to say, the Bi are disjoint. Then, by the extended

addition rule (5) of section 2.5,

P(A) � P(A \ B1)� P(A \ B2) � � � �(8)

�
X

i

P(A \ Bi)

�
X

i

P(AjBi)P(Bi):

This is the extended partition rule. Its conditional form is

P(AjC) �
X

i

P(AjBi \ C)P(BijC):(9)

Example 2.8.4: coins. You have 3 double-headed coins, 1 double-tailed coin and 5

normal coins. You select one coin at random and ¯ip it. What is the probability that it

shows a head?

Solution. Let D, T , and N denote the events that the coin you select is double-headed,

double-tailed or normal, respectively. Then, if H is the event that the coin shows a head,

by conditional probability we have

P(H) � P(H jD)P(D)� P(H jT )P(T )� P(H jN )P(N )

� 1 3 3
9
� 0 3 1

9
� 1

2
3 5

9
� 11

18
: s

Obviously the list of examples demonstrating the partition rule could be extended

inde®nitely; it is a crucial result. Now let us consider the examples given above from

another point of view.

Example 2.8.1 revisited: pirates. Typically, we are prompted to consider this problem

when our toy proves to be defective. In this case we wish to know if it is an authentic

product of Acme Gadgets Inc., in which case we will be able to get a replacement. Pirates,

of course, are famous for not paying compensation. In fact we really want to know

P(AjD), which is an upper bound for the chance that you get a replacement. s
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Example 2.8.2 revisited: tests. Once again, for the individual the most important

question is, given a positive result do you indeed suffer the disease? That is, what is

P(DjR)? s

Of course these questions are straightforward to answer by conditional probability,

since

P(AjB) � P(A \ B)=P(B):

The point is that in problems of this kind we are usually given P(BjA) and P(BjAc).

Expanding the denominator P(B) by the partition rule gives an important result:

Bayes' rule

P(AjB) � P(BjA)P(A)

P(BjA)P(A)� P(BjAc)P(Ac)
:(10)

Here are some applications of this famous rule or theorem.

Example 2.8.2 continued: false positives. Now we can answer the question posed

above: in the context of this test, what is P(DjR)?

Solution. By Bayes' rule,

P(DjR) � P(RjD)P(D)

P(R)

� 0:95p

0:85p� 0:1
:

On the one hand, if p � 1
2

then we ®nd

P(DjR) � 19
21

and the test looks good. On the other hand, if p � 10ÿ6, so the disease is very rare, then

P(DjR) ' 10ÿ5

which is far from conclusive. Ordinarily one would hope to have further independent tests

to use in this case. s

Here is an example of Bayes' rule that has the merit of being very simple, albeit

slightly frivolous.

Example 2.8.3: examinations. Suppose a multiple choice question has c available

choices. A student either knows the answer with probability p, say, or guesses at random

with probability 1ÿ p. Given that the answer selected is correct, what is the probability

that the student knew the answer?

Solution. Let A be the event that the question is answered correctly, and S the event

that the student knew the answer. We require P(SjA). To use Bayes' rule, we need to
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calculate P(A), thus

P(A) � P(AjS )P(S )� P(AjSc)P(Sc)

� p� cÿ1(1ÿ p):

Now by conditional probability

P(SjA) � P(AjS )P(S )=P(A)

� p

p� cÿ1(1ÿ p)

� cp

1� (cÿ 1) p
:

Notice that the larger c is, the more likely it is that the student knew the answer to the

question, given that it is answered correctly. This is in accord with our intuition about

such tests. Indeed if it were not true there would be little point in setting them. s

Exercises for section 2.8

1. An insurance company knows that the probability of a policy holder's having an accident in any

given year is â if the insured is aged less than 25, and ó if the insured is 25 or over. A fraction ö
of policy holders are less than 25. What is the probability that

(a) a randomly selected policy holder has an accident?

(b) a policy holder who has an accident is less than 25?

2. A factory makes tool bits; 5% are defective. A machine tests each bit. With probability 10ÿ3 it

incorrectly passes a defective bit; with probability 10ÿ4 it incorrectly rejects a good bit. What is

the probability that

(a) a bit was good, given it was rejected?

(b) the machine passes a randomly selected bit?

3. Red ace. A pack of four cards contains two clubs and two red aces.

(a) Two cards are selected at random and a friend tells you that one is the ace of hearts. Can

you say what the probability is that the other is the ace of diamonds?

(b) Two cards are selected at random and inspected by a friend. You ask whether either of them

is the ace of hearts and receive the answer `Yes'. Can you say what the probability is that

the other is the ace of diamonds? (Your friend always tells the truth.)

4. Prove the conditional partition rules (7) and (9).

2 .9 INDEPENDENCE AND THE PRODUCT RULE

At the start of section 2.7 we noted that a change in the conditions of some experiment

will often obviously change the probabilities of various outcomes. That led us to de®ne

conditional probability.

However, it is equally obvious that sometimes there are changes that make no

difference whatever to the outcomes of the experiments, or to the probability of some

event A of interest. For example, suppose you buy a lottery ticket each week; does the

chance of your winning next week depend on whether you won last week? Of course not;

the numbers chosen are independent of your previous history. What does this mean
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formally? Let A be the outcome of this week's lottery, and B the event that you won last

week. Then we agree that obviously

P(AjB) � P(AjBc):(1)

There are many events A and B for which, again intuitively, it seems natural that the

chance that A occurs is not altered by any knowledge of whether B occurs or Bc occurs.

For example, let A be the event that you roll a six and B the event that the dollar exchange

rate fell. Clearly we must assume that (1) holds. You can see that this list of pairs A and B

for which (1) is true could be prolonged inde®nitely:

A � this coin shows a head, B � that coin shows a head;

A � you are dealt a flush, B � coffee futures fall:

Think of some more examples yourself.

Now it immediately follows from (1) by the partition rule that

P(A) � P(AjB)P(B)� P(AjBc)P(Bc)(2)

� P(AjB)fP(B)� P(Bc)g, by (1)

� P(AjB):

That is, if (1) holds then

P(A) � P(AjB) � P(AjBc):(3)

Furthermore, by the de®nition of conditional probability, we have in this case

P(A \ B) � P(AjB)P(B)(4)

� P(A)P(B), by (2)

This special property of events is called independence and, when (4) holds, A and B are

said to be independent events. The ®nal version (4) is usually taken to be de®nitive; thus

we state the

Product rule. Events A and B are said to be independent if and only if

P(A \ B) � P(A)P(B):(5)

Example 2.9.1. Suppose I roll a die and pick a card at random from a conventional

pack. What is the chance of rolling a six and picking an ace?

Solution. We can look at this in two ways. The ®rst way says that the events

A � roll a six

and

B � pick an ace

are obviously independent in the sense discussed above; that is, P(AjB) � P(A) and of

course P(BjA) � P(B). Dice and cards cannot in¯uence each other. Hence

P(A \ B) � P(A)P(B)

� 1
6

3 1
13
� 1

78
:

Alternatively, we could use the argument of chapter 1, and point out that by symmetry
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all 6 3 52 � 312 possible outcomes of die and card are equally likely. Four of them have

an ace with a six, so

P(A \ B) � 4
312
� 1

78
:

It is very gratifying that the two approaches yield the same answer, but not surprising. In

fact, if you think about the argument from symmetry, you will appreciate that it tacitly

assumes the independence of dice and cards. If there were any mutual in¯uence it would

break the symmetry. s

If A and B are not independent, then they are said to be dependent. Obviously

dependence and independence are linked to our intuitive notions of cause and effect.

There seems to be no way in which one coin can cause another to be more or less likely

to show a head. However, you should beware of taking this too far. Independence is yet

another assumption that we make in constructing our model of the real world. It is an

extremely convenient assumption, but if it is inappropriate it will yield inaccurate and

irrelevant results. Be careful.

The product rule (5) has an extended version, as follows:

Independence of n events. The events (Ar; r > 1) are independent if and only if

P(As1
\ As2

\ � � � \ As n
) � P(As1

) � � � P(Asn
)(6)

for any selection (s1, . . . , sn) of the positive integers Z�.

We give various examples to demonstrate these ideas.

Example 2.9.2. A sequence of fair coins is ¯ipped. They each show a head or a tail

independently, with probability 1
2

in each case. Therefore the probability that any given

set of n coins all show heads is 2ÿn. Indeed, the probability that any given set of n coins

shows a speci®ed arrangement of heads and tails is 2ÿn. Thus, for example, if you ¯ip a

fair coin 6 times,

P(HHHHHH) � P(HTTHTH) � 2ÿ6:

(The less experienced sometimes ®nd this surprising.) s

Let us consider some everyday applications of the idea of independence.

Example 2.9.3: central heating. Your heating system includes a pump and a boiler in

a circuit of pipes. You might represent this as a diagram like ®gure 2.6.

Let F p and Fb be the events that the pump or boiler fail, respectively. Then the event

W that your system works is

W � Fc
p \ Fc

b:

You might assume that pump and boiler break down independently, in which case, by (5),

P(W ) � P(Fc
p)P(Fc

b):(7)

However, your plumber might object that if the power supply fails then both pump and

boiler will fail, so the assumption of independence is invalid. To meet this objection we

de®ne the events
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Fe � power supply failure,

M p � mechanical failure of pump,

M b � mechanical failure of boiler:

Then it is much more reasonable to suppose that Fe, M p, and M b are independent events.

We represent this system in ®gure 2.7. Incidentally, this ®gure makes it clear that such

diagrams are essentially formal in character; the water does not circulate through the

power supply. We have now

W 9 � Fc
e \ M c

p \ M c
b,

Fc
b � M c

b \ Fc
e,

Fc
p � M c

p \ Fc
e:

Hence the probability that the system works is

P(W 9) � P(Fc
e)P(M c

p)P(M c
b):(8)

It is interesting to compare this with the answer obtained on the assumption that F p and

Fb are independent. From (7) this is

P(Fc
b)P(Fc

p) � P(M c
b)P(M c

p)[P(Fc
e)]2 � P(W 9)P(Fc

e),

pump boiler

radiators

Figure 2.6. A central heating system.

pump boiler power

Figure 2.7. The system works only if all three elements in the sequence work.
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on using independence, equation (6). This answer is smaller than that given in (8),

showing how unjusti®ed assumptions of independence can mislead. s

In the example above the elements of the system were in series. Sometimes elements

are found in parallel.

Example 2.9.3 continued: central heating. Your power supply is actually of vital

importance (in a hospital, say) and you therefore ®t an alternative generator for use in

emergencies. The power system can now be represented as in ®gure 2.8. Let the event

that the emergency power fails be E. If we assume that Fe and E are independent, then

the probability that at least one source of power works is

P(Fc
e [ Ec) � P((Fe \ E)c)

� 1ÿ P(Fe \ E)

� 1ÿ P(Fe)P(E), by (5)

> P(Fc
e):

Hence the probability that the system works is increased by including the reserve power

unit, as you surely hoped. s

Many systems comprise blocks of independent elements in series or in parallel, and

then P(W ) can be found by repeatedly combining blocks.

Example 2.9.4. Suppose a system can be represented as in ®gure 2.9. Here each

element works with probability p, independently of the others. Running through the

blocks we can reduce this to ®gure 2.10, where the expression in each box is the

probability of its working. s

emergency
    power
   supply

 power
supply

Figure 2.8. This system works if either of the two elements works.
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Sometimes elements are in more complicated con®gurations, in which case the use of

conditional probability helps.

Example 2.9.5: snow. Four towns are connected by ®ve roads, as shown in ®gure

2.11. Each road is blocked by snow independently with probability ó ; what is the

probability ä that you can drive from A to D?

p p

p p

p

pA B

Figure 2.9. Each element works independently with probability p. The system works if a route
exists from A to B that passes only through working elements.

p2

p2

p

p

p1 2 (1 2 p)(1 2 p2)2

Figure 2.10. Solution in stages, showing ®nally that P(W ) � pf1ÿ (1ÿ p)(1ÿ p2)2g, where W is
the event that the system works.
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Solution. Let R be the event that the road BC is open, and Q the event that you can

drive from A to D. Then

P(Q) � P(QjR)(1ÿ ó )� P(QjR)ó � (1ÿ ó 2)2(1ÿ ó )� [1ÿ f1ÿ (1ÿ ó )2g2]ó :

The last line follows on using the methods of example 2.9.4, because when R or Rc

occurs the system is reduced to blocks in series and parallel. s

Note that events can in fact be independent when you might reasonably expect them

not to be.

Example 2.9.6. Suppose three fair coins are ¯ipped. Let A be the event that they all

show the same face, and B the event that there is at most one head. Are A and B

independent? Write `yes' or `no', and then read on.

Solution. There are eight equally likely outcomes. We have

jA \ Bj � 1 � jfTTTgj,
jAj � 2 � jfTTT , HHHgj,
jBj � 4 � jfTTT , HTT , THT , TTHgj:

Hence

P(A \ B) � 1
8
� P(TTT ), P(A) � 1

4
� P(TTT [ HHH ), P(B) � 1

2
,

and so P(A \ B) � P(A)P(B), and they are independent. s

Very often indeed we need to use a slightly different statement of independence. Just as

P(AjC) is often different from P(A), so also P(A \ BjC) may behave differently from

P(A \ B). Speci®cally, A and B may be independent given C, even though they are not

necessarily independent in general. This is called conditional independence; formally we

state the following

De®nition. Events A and B are conditionally independent given C if

P(A \ BjC) � P(AjC)P(BjC): n(9)

Here is an example.

A

B

D

C

Figure 2.11. The towns lie at A, B, C, and D.
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Example 2.9.7: high and low rolls. Suppose you roll a die twice. Let A2 be the

event that the ®rst roll shows a 2, and B5 the event that the second roll shows a 5. Also

let L2 be the event that the lower score is a 2, and H5 the event that the higher score is

a 5.

(i) Show that A2 and B5 are independent.

(ii) Show that L2 and H5 are not independent.

(iii) Let D be the event that one roll shows less than a 3 and one shows more than a 3.

Show that L2 and H5 are conditionally independent given D.

Solution. For (i) we have easily

P(A2 \ B5) � 1
36
� P(A2)P(B5)

For (ii), however,

P(L2 \ H5) � 2
36
:

Also,

P(L2) � 9
36

and P(H5) � 9
36
:

Therefore L2 and H5 are dependent, because
1

18
6� 1

16
:

For (iii) we now have P(D) � 12
36
� 1

3
. So, given D,

P(L2 \ H5jD) � P(L2 \ H5 \ D)=P(D) � 1
18
=1

3
� 1

6
:

However, in this case

P(L2jD) � P(L2 \ D)=P(D) � 6
36
=12

36
� 1

2

and

P(H5jD) � P(H5 \ D)=P(D) � 4
36
=12

36
� 1

3

and of course 1
6
� 1

2
3 1

3
, and so L2 and H5 are independent given D. s

Conditional independence is an important idea that is frequently used surreptitiously,

or taken for granted. It does not imply, nor is it implied by, independence; see the

exercises below.

Exercises for section 2.9

1. Show that A and B are independent if and only if Ac and Bc are independent.

2. A and B are events such that P(A) � 0:3 and P(A [ B) � 0:5. Find P(B) when

(a) A and B are independent,

(b) A and B are disjoint,

(c) P(AjB) � 0:1,

(d) P(BjA) � 0:4.

3. A coin shows a head with probability p, or a tail with probability 1ÿ p � q. It is ¯ipped

repeatedly until the ®rst head occurs. Show that the probability that n ¯ips are necessary,

including the head, is pn � qnÿ1 p.
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4. Suppose that any child is equally likely to be male or female, and Anna has three children. Let

A be the event that the family includes children of both sexes and B the event that the family

includes at most one girl.

(a) Show that A and B are independent.

(b) Is this still true if boys and girls are not equally likely?

(c) What happens if Anna has four children?

5. Find events A, B, and C such that A and B are independent, but A and B are not conditionally

independent given C.

6. Find events A, B, and C such that A and B are not independent, but A and B are conditionally

independent given C.

7. Two conventional fair dice are rolled. Show that the event that their sum is 7 is independent of

the score on the ®rst die.

8. Some form of prophylaxis is said to be 90% effective at prevention during one year's treatment.

If years are independent, show that the treatment is more likely than not to fail within seven

years.

2 .10 TREES AND GRAPHS

In real life you may be faced with quite a long sequence of uncertain contingent events.

For example, your computer may develop any of a number of faults, you may choose any

of a number of service agents, they may or may not correct it properly, the consequences

of an error are uncertain, and so on ad nauseam. (The same is true of bugs in software.)

In such cases we need and use the extended form of the multiplication rule,

P(A1 \ A2 \ � � � \ An) � P(AnjA1 \ A2 \ � � � \ An) � � � P(A2jA1)P(A1):(1)

The proof of (1) is trivial and is outlined after equation (8) in section 2.7.

Now, if each of these events represents a stage in some system of multiple random

choices, it is not impossible that the student will become a little confused. In such cases it

is often helpful to use tree diagrams to illustrate what is going on. (This is such a natural

idea that it was ®rst used by C. Huygens in the 17th century, in looking at the earliest

problems in probability.) These diagrams will not enable you to avoid the arithmetic and

algebra, but they do help in keeping track of all the probabilities and possibilities. The

basic idea is best explained by an example.

Example 2.10.1: faults. (i) A factory has two robots producing capeks. (A capek is

not unlike a widget or a gubbins, but it is more colourful.) One robot is old and one is

new; the newer one makes twice as many capeks as the old. If you pick a capek at

random, what is the probability that it was made by the new machine? The answer is

obviously 2
3
, and we can display all the possibilities in a natural and appealing way in

Figure 2.12. The arrows in a tree diagram point to possible events, in this example N

(new) or N c (old). The probability of the event is marked beside the relevant arrow.

(ii) Now we are told that 5% of the output of the old machine is defective (D), but 10%

of the output of the new machine is defective. What is the probability that a randomly

selected capek is defective? This time we draw a diagram ®rst, ®gure 2.13. Now we begin

to see why this kind of picture is called a tree diagram. Again the arrows point to possible
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events. However, the four arrows on the right are marked with conditional probabilities,

because they originate in given events. Thus

P(DjN ) � 1
10

, P(DcjN c) � 19
20

,

and so on.

The probability of traversing any route in the tree is the product of the probabilities on

the route, by (1). In this case two routes end at a defective capek, so the required

probability is

P(D) � 2
3

3 1
10
� 1

3
3 1

20

� P(DjN )P(N )� P(DjN c)P(N c) ,

� 1
12

,

which is the partition rule, of course. You always have a choice of writing the answer

down by routine algebra, but drawing a diagram often helps.

It is interesting to look at this same example from a slightly different viewpoint, as

follows. By conditional probability we have easily that

P(N jD) � 4
5
, P(N cjD) � 1

5
,

P(N jDc) � 36
55

, P(N cjDc) � 19
55
:

Then we can draw what is known as the reversed tree; see ®gure 2.14. s

new 5 N old 5 Nc

Ω

2_
3

1_
3

Figure 2.12. A small tree.

Ω

N

Nc

Dc ; not defective

D

Dc

D ; defective

1
3

2
3

1
10

9
10

1
20

19
20

Figure 2.13. A tree drawn left to right: classifying capeks.
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Trees like those in ®gures 2.13 and 2.14, with two branches at each fork, are known as

binary trees. The order in which we should consider the events, and hence draw the tree,

is usually determined by the problem, but given any two events A and B there are

obviously two associated binary trees.

The notation of these diagrams is natural and self-explanatory. Any edge corresponds

to an event, which is indicated at the appropriate node or vertex. The relevant probability

is written adjacent to the edge. We show the ®rst tree again in ®gure 2.15, labelled with

symbolic notation.

The edges may be referred to as branches, and the ®nal node may be referred to as a

leaf. The probability of the event at any node, or leaf, is obtained by multiplying the

probabilities labelling the branches leading to it. For example,

P(Ac \ B) � P(BjAc)P(Ac):(2)

Furthermore, since event B occurs at the two leaves marked with an asterisk, the diagram

Ω

D

Dc

Nc

N

Nc

N

11
12

1
12

4
5

1
5

36
55

19
55

Figure 2.14. Reversed tree for capeks: D or Dc is followed by N or N c.

Ω

A

Ac

A ∩ B

A ∩ Bc

Ac ∩ B

Ac ∩ Bc
P(Bc|Ac)

P(B|Ac)

P(Bc|A)

P(B|A)

P(Ac)

P(A)

*

*

Figure 2.15. A or Ac is followed by B or Bc.
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shows that

P(B) � P(BjA)P(A)� P(BjAc)P(Ac)(3)

as we know.

Figure 2.16 is the reversed tree. If we have the entries on either tree we can ®nd the

entries on the other by using Bayes' rule.

Similar diagrams arise quite naturally in knock-out tournaments, such as Wimbledon.

The diagram is usually displayed the other way round in this case, so that the root of such

a tree is the winner in the ®nal.

Example 2.8.2 revisited: tests. Recall that a proportion p of a population is subject to

a disease. A test may help to determine whether any individual has the disease.

Unfortunately unless the test is extremely accurate, this will result in false-positive

results. One would like accurate tests, but reliable tests usually involve invasive biopsy.

This itself can lead to undesirable results; if you have not got some disease you would

regret a biopsy, to ®nd out, that resulted in your death. It is therefore customary, where

possible, to use a two-stage procedure; the population of interest is ®rst given the non-

invasive but less reliable test. Only those testing positive are subject to biopsy. The tree

may take the form shown in ®gure 2.17; T denotes that the result of the biopsy is

positive. s

Ω

B

Bc

A ∩ B

A ∩ Bc

Ac ∩ B

Ac ∩ Bc
P(Ac|Bc)

P(A|Bc)

P(Ac|B)

P(A|B)

P(Bc)

P(B)

Figure 2.16. Reversed tree: B or Bc is followed by A or Ac.

D

Dc
R

Rc

R

Rc T c

T

T

T c

accurate diagnoses

false negatives

accurate diagnoses

false positives

Ω
population

tested

Figure 2.17. Sequential tests. D, disease present; R, ®rst test positive; T , second test positive.
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Example 2.10.2: embarrassment. Privacy is important to many people. For example,

suppose you were asked directly whether you dye your hair, `borrow' your employer's

stationery, drink to excess, or suffer from some stigmatized illness. You might very well

depart from strict truth in your reply, or simply decline to respond.

Nevertheless, there is no shortage of researchers and other busybodies who would like

to know the correct answer to these and other embarrassing questions. They have invented

the following scheme.

A special pack of cards is shuf¯ed; of these cards a proportion n say `Answer `̀ no''', a

proportion p say `Answer `̀ yes''', and a proportion q say `Answer truthfully'. You draw a

card at random, secretly, the question is put, and you obey the instructions on the card.

The point is that you can afford to tell the truth when instructed to do so, because no

one can say whether your answer actually is true, even when embarrassing. However, in

this way, in the long run the researchers can estimate the true incidence of alcoholism, or

pilfering in the population, using Bayes' rule. The tree is shown in ®gure 2.18. The

researcher wishes to know m, the true proportion of the population that is embarrassed.

Now, using the partition rule as usual, we can say that the probability of the answer being

`yes' is

P(yes) � p� mq:(4)

Then the busybody can estimate m by ®nding the proportion y who answer `yes' and

setting

m � (yÿ p)=q:(5)

Conversely, the embarrassed person knows that, for the researcher, the probability that

they were truthful in answering `yes' is only

P(truthjyes) � qm

p� qm
,(6)

which can be as small as privacy requires. With this degree of security conferred by

randomizing answers, the question is very unlikely to get deliberately wrong answers. (In

fact, the risk is run of getting wrong answers because the responder fails to understand

the procedure.) s

n

p

q

m

1

1

1 2 m

no

yes

truth

no

yes

yes

no

CARD ANSWER

Figure 2.18. Evasive tree.
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We note that trees can be in®nite in many cases.

Example 2.10.3: craps, an in®nite tree. In this well-known game two dice are rolled

and their scores added. If the sum is 2, 3, or 12 the roller loses, if it is 7 or 11 the roller

wins, if it is any other number, say n, the dice are rolled again. On this next roll, if the

sum is n then the roller wins, if it is 7 the roller loses, otherwise the dice are rolled again.

On this and all succeeding rolls the roller loses with 7, wins with n, or rolls again

otherwise. The corresponding tree is shown in ®gure 2.19. s

We conclude this section by remarking that sometimes diagrams other than trees are

useful.

Example 2.10.4: tennis. Rod and Fred are playing a game of tennis, and have

reached deuce. Rod wins any point with probability r or loses it with probability 1ÿ r.

Let us denote the event that Rod wins a point by R. Then if they share the next two points

the game is back to deuce; an appropriate diagram is shown in ®gure 2.20. s

Ω

2 or 3 or 12 ; lose

7 or 11 ; win n ; win

7 ; lose

n ∈ {4, 5, 6, 8, 9, 10}
; continue

m ∉ {7, n}
; continue . . .

Figure 2.19. Tree for craps. The game continues inde®nitely.

* deuce

R

Rc

1 2 r

r

. . .

1 2 r

r

R ; Rod wins the game

Rc ; Fred wins the game

deuce

r

1 2 r

R

Rc

Figure 2.20. The diagram is not a tree because the edges rejoin at �.
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Larger diagrams of this kind can be useful.

Example 2.10.5: coin tossing. Suppose you have a biased coin that yields a head

with probability p and a tail with probability q. Then one is led to the diagram in ®gure

2.21 as the coin is ¯ipped repeatedly; we truncate it at three ¯ips. s

Exercises for section 2.10

1. Prove the multiplication rule (1).

2. In tennis a tie-break is played when games are 6±6 in a set. Draw the diagram for such a tie-

break. What is the probability that Rod wins the tie-break 7±1, if he wins any point with

probability p?

3. In a card game you cut for the deal, with the convention that if the cards show the same value,

you recut. Draw the graph for this experiment.

4. You ¯ip the coin of example 2.10.5 four times. What is the probability of exactly two tails?

2.11 WORKED EXAMPLES

The rules of probability (we have listed them in subsection 2.14.II), especially the ideas

of independence and conditioning, are remarkably effective at working together to

provide neat solutions to a wide range of problems. We consider a few examples.

Example 2.11.1. A coin shows a head with probability p, or a tail with probability

1ÿ p � q. It is ¯ipped repeatedly until the ®rst head appears. Find P(E), the probability

of the event E that the ®rst head appears at an even number of ¯ips.

Solution. Let H and T denote the outcomes of the ®rst ¯ip. Then, by the partition

rule,

P(E) � P(EjH)P(H)� P(EjT )P(T ):(1)

Now of course P(EjH) � 0, because 1 is odd. Turning to P(EjT ), we now require an odd

number of ¯ips after the ®rst to give an even number overall. Furthermore, ¯ips are

independent and so

P(EjT ) � P(Ec) � 1ÿ P(E)(2)

q

p p

q

q

p
T

H HH

TT

{TH, HT}

p

q

q

p

p

q

HHH

TTT

{THH ,  HTH ,  HHT }

{TTH ,  THT ,  HTT }*

Figure 2.21. Counting heads. There are three routes to the node marked �, so the probability of one
head in three ¯ips is 3 pq2.

72 2 The rules of probability



Hence, using (1) and (2),

P(E) � f1ÿ P(E)gq,

so P(E) � q=p:
You can check this, and appreciate the method, by writing down the probability of a

head after 2r ¯ips, that is, q2rÿ1 p, and then summing over r,X
r

q2rÿ1 p � pq

1ÿ q2
� q

p
: s

Here is the same problem for a die.

Example 2.11.2. You roll a die repeatedly. What is the probability of rolling a six for

the ®rst time at an odd number of rolls?

Solution. Let A be the event that a six appears for the ®rst time at an odd roll. Let S

be the event that the ®rst roll is a six. Then by the partition rule, with an obvious notation,

P(A) � P(AjS) 1
6
� P(AjSc) 5

6
:

But obviously P(AjS ) � 1. Furthermore, the rolls are all independent, and so

P(AjSc) � 1ÿ P(A)

Therefore

P(A) � 1
6
� 5

6
f1ÿ P(A)g

which yields

P(A) � 6
11
: s

Let us try something trickier.

Example 2.11.3: Huygens' problem. Two players take turns at rolling dice; they each

need a different score to win. If they do not roll the required score, play continues. At

each of their attempts A wins with probability á, whereas B wins with probability â. What

is the probability that A wins if he rolls ®rst? What is it if he rolls second?

Solution. Let p1 be the probability that A wins when he has the ®rst roll, and p2 the

probability that A wins when B has the ®rst roll. By conditioning on the outcome of the

®rst roll we see that, when A is ®rst,

p1 � á� (1ÿ á) p2:

When B is ®rst, conditioning on the ®rst roll gives

p2 � (1ÿ â) p1:

Hence solving this pair gives

p1 � á

1ÿ (1ÿ á)(1ÿ â)

and

p2 � (1ÿ â)á

1ÿ (1ÿ á)(1ÿ â)
: s

2.11 Worked examples 73



Example 2.11.4: Huygen's problem again. Two coins, A and B, show heads with

respective probabilities á and â. They are ¯ipped alternately, giving ABABAB . . .. Find

the probability of the event E that A is ®rst to show a head.

Solution. Consider the three events

fHg � 1st flip heads,

fTHg � 1st flip tails, 2nd flip heads,

fTTg � 1st and 2nd flips tails:

These form a partition of Ù, so, by the extended partition rule (8) of section 2.8,

P(E) � P(EjH)á� P(EjTH)(1ÿ á)â� P(EjTT )(1ÿ á)(1ÿ â):

Now obviously

P(EjH) � 1 and P(EjTH) � 0:

Furthermore

P(EjTT ) � P(E):

To see this, just remember that after two tails, everything is essentially back to the starting

position, and all future ¯ips are independent of those two. Hence

P(E) � á� (1ÿ á)(1ÿ â)P(E)

and so

P(E) � á

á� âÿ áâ
: s

Example 2.11.5: deuce. Rod and Fred are playing a game of tennis, and the game

stands at deuce. Rod wins any point with probability p, independently of any other point.

What is the probability ã that he wins the game?

Solution. We give two methods of solution.

Method I. Recall that Rod wins as soon as he has won two more points in total than

Fred. Therefore he can win only when an even number 2n� 2 of points have been played.

Of these Rod has won n� 2 and Fred has won n. Let W2n�2 be the event that Rod wins at

the (2n� 2)th point. Now at each of the ®rst n deuces, there are two possibilities: either

Rod gains the advantage and loses it, or Fred gains the advantage and loses it. At the last

deuce Rod wins both points. Thus there are 2n different outcomes in W2n�2, and each has

probability pn�2(1ÿ p)n. Hence, by the addition rule, P(W2n�2) � 2n pn�2(1ÿ p)n. If

P(W2n) is the probability that Rod wins the game at the 2nth point then, by the extended

addition rule (5) of section 2.5,

ã � P(W2)� P(W3) � � � �
� p2 � 2 p3(1ÿ p)� 22 p4(1ÿ p)2 � � � �

� p2

1ÿ 2 p(1ÿ p)
:
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The possible progress of the game is made clearer by the tree diagram in Figure 2.22.

Clearly after an odd number of points either the game is over, or some player has the

advantage. After an even number, either the game is over or it is deuce.

Method II. The tree diagram suggests an alternative approach. Let á be the probability

that Rod wins the game eventually given he has the advantage, and â the probability that

Rod wins the game eventually given that Fred has the advantage.

Further, R be the event that Rod wins the game and Wi be the event that he wins the ith

point. Then, by the partition rule,

ã � P(R)

� P(RjW1 \ W2)P(W1 \ W2)

� P(RjW c
1 \ W c

2)P(W c
1 \ W c

2)

� P Rj(W1 \ W c
2) [ (Wc

1 \ W2)
ÿ �

P (W1 \ W c
2) [ (W c

1 \ W2)� �
� p2 � 0� ã2 p(1ÿ p):

This is the same as we obtained by the ®rst method. s

Example 2.11.6. Three players, known as A, B, and C, roll a die repeatedly in the

order ABCABCA . . .. The ®rst to roll a six is the winner; ®nd their respective probabilities

of winning.

Solution. Let the players' respective probabilities of winning be á, â, and 1ÿ áÿ â,

and let the event that the ®rst roll shows a six be S. Then by conditional probability

á � P(A wins) � P(A winsjS) 1
6
� P(A winsjSc)5

6
:

Now

P(A winsjS ) � 1:

If Sc occurs, then by independence the game takes the same form as before, except that

deuce

p

1 2 p

advantage Rod

advantage Fred

p

p

1 2 p

deuce

Rod wins the game

Fred wins the game

1 2 p

Figure 2.22. Deuce.
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the rolls are in the order BCABCA . . . and A is third to roll. Hence, starting from this

point, the probability that A wins is now 1ÿ áÿ â, and we have that

á � 1
6
� (1ÿ áÿ â) 5

6

Applying a similar argument to the sequence of rolls beginning with B, we ®nd

1ÿ áÿ â � 5
6
â

because B must fail to roll a six for A to have a chance of winning, and then the sequence

takes the form CABCAB . . ., in which A is second, with probability â of winning.

Applying the same argument to the sequence of rolls beginning with C yields

â � 5
6
á

because C must fail to roll a six, and then A is back in ®rst place. Solving these three

equations gives

á � 36
91

, â � 30
91

, 1ÿ áÿ â � 25
91
: s

Another popular and extremely useful approach to many problems in probability

entails using conditioning and independence to yield difference equations. We shall see

more of this in chapter 3 and later; for the moment here is a brief preview. We start with a

trivial example.

Example 2.11.7. A biased coin is ¯ipped repeatedly until the ®rst head is shown.

Find the probability pn � P(An) of the event An that n ¯ips are required.

Solution. By the partition rule, and conditioning on the outcome of the ®rst ¯ip,

P(An) � P(AnjH) p� P(AnjT )q

� p if n � 1

0� qP(Anÿ1) otherwise,

�
by independence. Hence

pn � qpnÿ1 � q nÿ1 p1 � q nÿ1 p, n > 1: s

Of course this result is trivially obvious anyway, but it illustrates the method. Here is a

trickier problem.

Example 2.11.8. A biased coin is ¯ipped up to and including the ¯ip on which it has

®rst shown two successive tails. Let An be the event that n ¯ips are required. Show that, if

pn � P(An), pn satis®es

pn � ppnÿ1 � pqpnÿ2, n . 2:

Solution. As usual we devise a partition; in this case H , TH , TT are three appropriate

disjoint events. Then
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pn � P(An) � P(AnjH ) p� P(AnjTH ) pq� P(AnjTT )q2

� q2, n � 2

ppnÿ1 � pqpnÿ2 otherwise,

�
by independence of ¯ips. s

Here is another way of using conditional probability.

Example 2.11.9: degraded signals. A digital communication channel transmits data

using the two symbols 0 and 1. As a result of noise and other degrading in¯uences, any

symbol is incorrectly transmitted with probability q, independently of the rest of the

symbols. Otherwise it is correctly transmitted with probability p � 1ÿ q.

On receiving a signal R comprising n symbols, you decode it by assuming that the

sequence S which was sent is such that P(RjS ) is as large as possible.

For example, suppose you receive the signal 101 and the possible sequences sent are

111 and 000, then

P(101jS ) � p2q if S � 111

q2 p if S � 000:

�
Thus if p . q the signal 101 is decoded as 111. s

Next we turn to a problem that was considered (and solved) by many 18th century

probabilists, and later generalized by Laplace and others. It arose in Paris with the rather

shadowy ®gure of a Mr Waldegrave, a friend of Montmort. He is described as an English

gentleman, and proposed the problem to Montmort sometime before 1711. de Moivre

studied the same problem in 1711 in his ®rst book on probability. It seems unlikely that

these events were independent; there is no record of Waldegrave visiting the same coffee

house as de Moivre, but this seems a very likely connection. (de Moivre particularly

favoured Slaughter's coffee house, in St Martin's Lane). de Moivre also worked as a

mathematics tutor to the sons of the wealthy, so an alternative hypothesis is that

Waldegrave was a pupil or a parent.

The problem is as follows.

Example 2.11.10: Waldegrave's problem. There are n� 1 players of some game,

A0, A1, . . . , An, who may be visualized as sitting around a circular table. They play a

sequence of rounds in pairs as follows. First A0 plays against A1; then the winner plays

against A2; after that the new winner plays against A3, and so on. The ®rst player to win

n rounds consecutively (thus beating all other players) is the overall victor, and the

game stops. One may ask several questions, but a natural one is to seek the probability

that the game stops at the rth round. Each round is equally likely to be won by either

player.

Solution. As so often in probability problems, it is helpful to restate the problem

before solving it. Each round is played by a challenger and a fresh player, the challenged.

Since each round is equally likely to be won by either player, we might just as well ¯ip a

coin or roll a die. The game is then rephrased as follows.
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The ®rst round is decided by rolling a die; if it is even A0 wins, if it is odd A1 wins.

All following rounds are decided by ¯ipping a coin. If it shows heads the challenger

wins, if it shows tails the challenged wins. Now it is easy to see that if the coin shows

nÿ 1 consecutive heads then the game is over. Also, the game can only ®nish when this

occurs. Hence the ®rst round does not count towards this, and so the required result is

given by the probability pr that the coin ®rst shows nÿ 1 consecutive heads at the

(r ÿ 1)th ¯ip. But this is a problem we know how to solve; it is just an extension of

example 2.11.8.

First we note that (using an obvious notation) the following is a partition of the sample

space:

fT , HT , H2T , . . . , H nÿ2T , H nÿ1g:
Using conditional probability and independence of ¯ips, this gives

pr � 1
2
prÿ1 � 1

2

ÿ �
2 prÿ2 � � � � � 1

2

ÿ �
nÿ1 prÿn�1, r . n(3)

with

pn � 1
2

ÿ �
nÿ1

and

p1 � p2 � � � � � pnÿ1 � 0

In particular, when n � 3, (3) becomes

pr � 1
2
prÿ1 � 1

2

ÿ �
2 prÿ2, r > 4:(4)

Solving this constitutes problem 26 in section 2.16. s

Exercises for section 2.11

1. A biased coin is ¯ipped repeatedly. Let pn be the probability that n ¯ips have yielded an even

number of heads, with p0 � 1. As usual P(H) � p � 1ÿ q, on any ¯ip. Show that

pn � p(1ÿ pnÿ1)� qpnÿ1, n > 1

and ®nd pn (for a list of the basic rules, see section 2.15).

2. A die is `®xed' so that when rolled the score cannot be the same as the previous score, all other

scores having equal probability 1
5
. If the ®rst score is 6, what is the probability pn that the nth

score is 6? What is the probability qn that the nth score is j for j 6� 6?

2.12 ODDS

. . . and this particular season the guys who play the horses are being murdered by

the bookies all over the country, and are in terrible distress. . . . But personally I

consider all horse players more or less daffy anyway. In fact, the way I see it, if a

guy is not daffy he will not be playing the horses.

Damon Runyon, Dream Street Rose

Occasionally, statements about probability are made in terms of odds. This is universally

true of bookmakers who talk of `long odds', `100±1 odds', `the 2±1 on favourite', and so

on. Many of these phrases and customs are also used colloquially, so it is as well to make

it clear what all this has to do with our theory of probability.

78 2 The rules of probability



In dealing with these ideas we must distinguish very carefully between fair odds and

bookmakers' payoff odds. These are not the same. First, we de®ne fair odds.

De®nition. If an event A has probability P(A), then the fair odds against A are

öa(A) � 1ÿ P(A)

P(A)
� f1ÿ P(A)g : P(A)(1)

and the fair odds on A are

öo(A) � P(A)

1ÿ P(A)
� P(A) : f1ÿ P(A)g(2)

The ratio notation on the right is often used for odds.

For example, for a fair coin the odds on and against a head are

öo(H) � 1=2

1=2
� öa(H) � 1 : 1

These are equal, so these odds are said to be evens. If a die is rolled, the odds on and

against a six are

öo(6) � 1=6

1ÿ 1=6
� 1 : 5,

öa(6) � 1ÿ 1=6

1=6
� 5 : 1:

You should note that journalists and reporters (on the principle that ignorance is bliss)

will often refer to `the odds on A', when in fact they intend to state the odds against A.

Be careful.

Now although the fair odds against a head when you ¯ip a coin are 1:1, no bookmaker

would pay out at evens for a bet on heads. The reason is that in the long run she would

pay out just as much in winnings as she would take from losers. Nevertheless, book-

makers and casinos offer odds; where do they come from? First let us consider casino

odds.

When a casino offers odds of 35 to 1 against an event A, it means that if you stake $1

and then A occurs, you will get your stake back plus $35. If Ac occurs then you forfeit

your stake. For this reason such odds are often called payoff odds. How are they ®xed?

In fact, 35:1 is exactly the payoff odds for the event that a single number you select

comes up at roulette. In the American roulette wheel there are 38 compartments. In a

well-made wheel they should be equally likely, by symmetry, so the chance that your

number comes up is 1
38

.

Now, as we have discussed above, if you get $d with probability P(A) and otherwise

you get nothing, then $P(A)d is the value of this offer to you.

We say that a bet is fair if the value of your return is equal to the value of your stake.

To explain this terminology, suppose you bet $1 at the fair odds given in (1) against A.

You get

$1� $
1ÿ P(A)

P(A)
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with probability P(A), so the value of this to you is

$P(A) 1� 1ÿ P(A)

P(A)

� �
� $1:

This is the same as your stake, which seems fair. Now consider the case of roulette. Here

you get $(1� 35) with probability 1
38

. The value of the return is $18
19

, which is less than

your stake. Of course the difference, $ 1
19

, is what the casino charges you for the privilege

of losing your money, so this (in effect) is the value you put on playing roulette. If you get

more than $ 1
19

worth of pleasure out of wagering $1, then for you the game is worth

playing.

It is now obvious that in a casino, if the fair odds against your winning are öa, then the

payoff odds ða will always satisfy

ða ,öa:(3)

In this way the casino ensures that the expected value of the payoff is always less than the

value of the stake. It is as well to stress that if the casino has arranged that (3) is true for

every available bet, then no system of betting can be fair, or favourable to the gambler.

Such systems can only change the rate at which you lose money.

Now let us consider bookmakers' odds; for de®niteness let us consider a horse race.

There are two main ways of betting on horse races. We will consider that known as the

Tote system; this is also known as pari-mutuel betting. When you place your bet you do

not know the payoff odds; they are not ®xed until betting stops just before the race begins.

For this reason they are known as starting prices, and are actually determined by the bets

placed by the gamblers. Here is how it works. Suppose there are n horses entered for the

race, and a total of $b j is wagered on the jth horse, yielding a total of $b bet on the race,

where

b �
Xn

j�1

b j:

Then the Tote payoff odds for the jth horse are quoted as

ða( j) � 1ÿ pj

pj

(4)

where

pj � b j

(1ÿ t)b

for some positive number t, less than 1.

What does all this mean? For those who together bet a total of $b j on the jth horse the

total payoff if it wins is

b j 1� 1ÿ pj

pj

� �
� b j

pj

� (1ÿ t)b � bÿ tb(5)

which is $tb less than the total stake, and independent of j. That is to say, the bookmaker

will enjoy a pro®t of $tb, the `take', no matter which horse wins. (Bets on places and

other events are treated in a similar but slightly more complicated way.)
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Now suppose that the actual probability that the jth horse will win the race is h j. (Of

course we can never know this probability.) Then the value to the gamblers of their bets

on this horse is h jb(1ÿ t), and the main point of betting on horse races is that this may

be greater than b j. But usually it will not be.

It is clear that you should avoid using payoff odds (unless you are a bookmaker). You

should also avoid using fair odds, as the following example illustrates.

Example 2.12.1. Find the odds on A \ B in terms of the odds on A and the odds on

B, when A and B are independent.

Solution. From the de®nition (2) of odds we have

öo(A \ B) � P(A \ B)

1ÿ P(A \ B)

� P(A)P(B)

1ÿ P(A)P(B)
, by independence

� öo(A)öo(B)

1� öo(A)� öo(B)
:

Compare this horrible expression with P(A \ B) � P(A)P(B), to see why the use of odds

is best avoided in algebraic work. (Of course it suits bookmakers to obfuscate matters.) s

Finally we note that when statisticians refer to an `odds ratio', they mean a quantity

such as

R(A:B) � P(A)

P(Ac)

�
P(B)

P(Bc)
:

More loosely, people occasionally call any quotient of the form P(A)=P(B) an odds ratio.

Be careful.

Exercises for section 2.12

1. Suppose the fair odds against an event are öa and the casino payoff odds are ða. Show that the

casino's percentage take is

100
öa ÿ ða

öa � 1

� �
%:

2. Suppose you ®nd a careless bookmaker offering payoff odds of ð( j) against the jth horse in an

n-horse race, 1 < j < n, and Xn

j�1

1

1� ð( j)
, 1:

Show that if you bet $f1� ð( j)gÿ1 on the jth horse, for all n horses, then you surely win.

3. Headlines recently trumpeted that the Earth had a one in a thousand chance of being destroyed

by an asteroid shortly. The story then revealed that these were bookmakers' payoff odds.

Criticize the reporters. (Hint: do you think a `chance' is given by öa or ða?)
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2.13 POPULAR PARADOXES

Probability is the only branch of mathematics in which good mathematicians

frequently get results which are entirely wrong.

C. S. Pierce

This section contains a variety of material that, for one reason or another, seems best

placed at the end of the chapter. It comprises a collection of `paradoxes', which

probability supplies in seemingly inexhaustible numbers. These could have been included

earlier, but the subject is suf®ciently challenging even when not paradoxical; it seems

unreasonable for the beginner to be asked to deal with gratuitously tricky ideas as well.

They are not really paradoxical, merely examples of confused thinking, but, as a by-now

experienced probabilist, you may ®nd them entertaining. Many of them arise from false

applications of Bayes' rule and conditioning. You can now use these routinely and

appropriately, of course, but in the hands of amateurs, Bayes' rule is deadly.

Probability has always attracted more than its fair share of disputes in the popular

press; and several of the hardier perennials continue to enjoy a zombie-like existence on

the internet (or web). One may speculate about the reasons for this; it may be no more

than the fact that anyone can roll dice, or pick numbers, but rather fewer take the trouble

to get the algebra right. At any rate we can see that, from the very beginning of the

subject, amateurs were very reluctant to believe what the mathematicians told them. We

observe Pepys badgering Newton, de MeÂreÂ pestering Pascal, and so on. Recall the words

of de Moivre: `Some of the problems about chance having a great appearance of

simplicity, the mind is easily drawn into a belief that their solution may be attained by the

mere strength of natural good sense; which generally proves otherwise . . .'; so still today.

In the following examples `Solution' denotes a false argument, and Resolution or

Solution denotes a true argument.

Most of the early paradoxes arose through confusion and ignorance on the part of non-

mathematicians. One of the ®rst mathematicians who chose to construct paradoxes was

Lewis Carroll. When unable to sleep, he was in the habit of solving mathematical

problems in his head (that is to say, without writing anything); he did this, as he put it, `as

a remedy for the harassing thoughts that are apt to invade a wholly unoccupied mind'.

The following was resolved on the night of 8 September 1887.

Carroll's paradox. A bag contains two counters, as to which nothing is known except

that each is either black or white. Show that one is black and the other white.

`Solution'. With an obvious notation, since colours are equally likely, the possibilities

have the following distribution:

P(BB) � P(WW ) � 1
4
, P(BW ) � 1

2
:

Now add a black counter to the bag, then shake the bag, and pick a counter at random.

What is the probability that it is black? By conditioning on the three possibilities we have

P(B) � 1 3 P(BBB)� 2
3

3 P(BWB)� 1
3

3 P(WWB)

� 1 3 1
4
� 2

3
3 1

2
� 1

3
3 1

4
� 2

3
:
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But if a bag contains three counters, and the chance of drawing a black counter is 2
3
, then

there must be two black counters and one white counter, by symmetry. Therefore, before

we added the black counter, the bag contained BW, viz., one black and one white.

Resolution. The two experiments, and hence the two sample spaces, are different.

The fact that an event has the same probability in two experiments cannot be used to

deduce that the sample spaces are the same. And in any case, if the argument were valid,

and you applied it to a bag with one counter in it, you would ®nd that the counter had to

be half white and half black, that is to say, random, which is what we knew already. s

Galton's paradox (1894). Suppose you ¯ip three fair coins. At least two are alike,

and it is an evens chance whether the third is a head or a tail, so the chance that all three

are the same is 1
2
.

Solution. In fact

P(all same) � P(TTT )� P(HHH ) � 1
8
� 1

8
� 1

4
:

What is wrong?

Resolution. Again this paradox arises from fudging the sample space. This `third'

coin is not identi®ed initially in Ù, it is determined by the others. The chance whether the

`third' is a head or a tail is a conditional probability, not an unconditional probability.

Easy calculations show that

P(3rd is H jHH) � 1
4

P(3rd is T jHH) � 3
4

)
HH denotes the event that there

are at least two heads:

P(3rd is T jTT ) � 1
4

P(3rd is H jTT ) � 3
4

)
TT denotes the event that there

are at least two tails:

In no circumstances therefore is it true that it is an evens chance whether the `third' is a

head or a tail; the argument collapses. s

Bertrand's other paradox. There are three boxes. One contains two black counters,

one contains two white counters and one contains a black and a white counter. Pick a box

at random and remove a counter without looking at it; it is equally likely to be black or

white. The other counter is equally likely to be black or white. Therefore the chance that

your box contains identical counters is 1
2
. But this is clearly false: the correct answer is 2

3
.

Resolution. This is very similar to Galton's paradox. Having picked a box and

counter, the probability that the other counter is the same is a conditional probability, not

an unconditional probability. Thus easy calculations give (with an obvious notation)

P(both blackjB) � 2
3
� P(both whitejW );(1)

in neither case is it true that the other counter is equally likely to be black or white. s

Simpson's paradox. A famous clinical trial compared two methods of treating kidney

stones, either by surgery or nephrolithotomy; we denote these by S and N respectively. In
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all, 700 patients were treated, 350 by S and 350 by N. Then it was found that for cure

rates

P(curejS ) � 273

350
' 0:78,

P(curejN ) � 289

35
' 0:83:

Surgery seems to have an inferior rate of success at cures. However, the size of the stones

removed was also recorded in two categories:

L � diameter more than 2 cm,

T � diameter less than 2 cm:

When patients were grouped by stone size as well as treatment, the following results

emerged:

P(curejS \ T ) ' 0:93,

P(curejN \ T) ' 0:87,

and

P(curejS \ L) ' 0:73,

P(curejN \ L) ' 0:69:

In both these cases surgery has the better success rate; but when the data are pooled to

ignore stone size, surgery has an inferior success rate. This seems paradoxical, which is

why it is known as Simpson's paradox. However, it is a perfectly reasonable property of a

probability distribution, and occurs regularly. Thus it is not a paradox.

Another famous example arose in connection with the admission of graduates to the

University of California at Berkeley. Women in fact had a better chance than men of

being admitted to individual faculties, but when the ®gures were pooled they seemed to

have a smaller chance. This situation arose because women applied in much greater

numbers to faculties where everyone had a slim chance of admission. Men tended to

apply to faculties where everyone had a good chance of admission. s

The switching paradox: goats and cars, the Monty Hall problem. Television has

dramatically expanded the frontiers of inanity, so you are not too surprised to be faced

with the following decision. There are three doors; behind one there is a costly car,

behind two there are cheap (non-pedigree) goats. You will win whatever is behind the

door you ®nally choose. You make a ®rst choice, but the presenter does not open this

door, but a different one (revealing a goat), and asks you if you would like to change your

choice to the ®nal unopened door that you did not choose at ®rst. Should you accept this

offer to switch? Or to put it another way: what is the probability that the car is behind

your ®rst choice compared to the probability that it lies behind this possible fresh choice?

Answer. The blunt answer is that you cannot calculate this probability as the

question stands. You can only produce an answer if you assume that you know how the

presenter is running the show. Many people ®nd this unsatisfactory, but it is important

to realize why it is the unpalatable truth. We discuss this later; ®rst we show why there

is no one answer.
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I The `usual' solution. The usual approach assumes that the presenter is attempting

to make the `game' longer and less dull. He is therefore assumed to behaving as follows.

Rules. Whatever your ®rst choice, he will show you a goat behind a different door;

with a choice of two goats he picks either at random.

Let the event that the car is behind the door you chose ®rst be C f , let the event that the

car is behind your alternative choice be Ca, and let the event that the host shows you a

goat be G. We require P(CajG), and of course we assume that initially the car is equally

likely to be anywhere. Call your ®rst choice D1, the presenter's open door D2, and the

alternative door D3. Then

P(CajG) � P(Ca \ G)

P(G)
(2)

� P(GjCa)P(Ca)

P(GjC f )P(C f )� P(GjCa)P(Ca)

� P(GjCa)

P(GjC f )� P(GjCa)
,

because P(Ca) � P(C f ), by assumption.

Now by the presenter's rules

P(GjCa) � 1

because he must show you the goat behind D3. However,

P(GjC f ) � 1
2

because there are two goats to choose from, behind D2 and D3, and he picks the one

behind D3 with probability 1
2
. Hence

P(CajG) � 1

1� 1
2

� 2
3
:

II The `cheapskate' solution. Suppose we make a different set of assumptions.

Assume the presenter is trying to save some money (the show has given away too many

cars lately). He thus behaves as follows.

Rules.

(i) If there is a goat behind the ®rst door you choose, then he will open that door with

no further ado.

(ii) If there is a car behind the ®rst door, then he will open another door (D3), and hope

you switch to D2.

In this case obviously P(CajG) � 0, because you only get the opportunity to switch when

the ®rst door conceals the car.

III The `ma®a' solution. There are other possible assumptions; here is a very realistic

set-up. Unknown to the producer, you and the presenter are members of the same family.

If the car is behind D1, he opens the door for you; if the car is behind D2 or D3, he opens

the other door concealing a goat. You then choose the alternative because obviously

P(CajG) � 1: s
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Remark. This problem is also sometimes known as the Monty Hall problem, after the

presenter of a programme that required this type of decision from participants. It

appeared in this form in Parade magazine, and generated a great deal of publicity and

follow-up articles. It had, however, been around in many other forms for many years

before that.

Of course this is a trivial problem, albeit entertaining, but it is important. This

importance lies in the lesson that, in any experiment, the procedures and rules that de®ne

the sample space and all the probabilities must be explicit and ®xed before you begin.

This predetermined structure is called a protocol. Embarking on experiments without a

complete protocol has proved to be an extremely convenient method of faking results

over the years. And will no doubt continue to be so.

There are many more `paradoxes' in probability. As we have seen, few of them are

genuinely paradoxical. For the most part such results attract fame simply because

someone once made a conspicuous error, or because the answer to some problem is

contrary to uninformed intuition. It is notable that many such errors arise from an

incorrect use of Bayes' rule, despite the fact that as long ago as 1957, W. Feller wrote this

warning:

Unfortunately Bayes' rule has been somewhat discredited by metaphysical applica-

tions of the type described by Laplace. In routine practice this kind of argument can

be dangerous . . . . Plato used this type of argument to prove the existence of

Atlantis, and philosophers used it to prove the absurdity of Newtonian mechanics.

Of course Atlantis never existed, and Newtonian mechanics are not absurd. But despite

all this experience, the popular press and even, sometimes, learned journals continue to

print a variety of these bogus arguments in one form or another.

Exercises for section 2.13

1. Prisoners paradox. Three prisoners, A, B, and C, are held in solitary con®nement. The

warder W tells each of them that two are to be freed, the third is to be ¯ogged. Prisoner A, say,

then knows his chance of being released is 2
3
. At this point the warder reveals to A that one of

those to be released is B; this warder is known to be truthful. Does this alter A's chance of

release? After all, he already knew that one of B or C was to be released. Can it be that knowing

the name changes the probability?

2. Goats and cars revisited. The `incompetent' solution. Due to a combination of indolence

and incompetence the presenter has failed to ®nd out which door the car is actually behind. So

when you choose the ®rst door, he picks another at random and opens it (hoping it does not

conceal the car). Show that in this case P(CajG) � 1
2
.

2 .14 REVIEW: NOTATION AND RULES

In this chapter we have used our intuitive ideas about probability to formulate rules that

probability must satisfy in general. We have introduced some simple standard notation to

help us in these tasks; we summarize the notation and rules here.
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I Notation

Ù: sample space of outcomes

A, B, C, . . .: possible events included in Ù

Æ: impossible event

P(:): the probability function

P(A): the probability that A occurs

A [ B: union; either A or B occurs or both occur

A \ B: intersection; both A and B occur

Ac: complementary event

A � B: inclusion; B occurs if A occurs

AnB: difference; A occurs and B does not

II Rules

Range: 0 < P(A) < 1

Impossible event: P(Æ) � 0

Certain event: P(Ù) � 1

Addition: P(A [ B) � P(A)� P(B) when A \ B � Æ
Countable addition: P([i Ai) �

P
iP(Ai) when (Ai; i > 1) are disjoint events

Inclusion±exclusion: P(A [ B) � P(A)� P(B)ÿ P(A \ B)

Complement: P(Ac) � 1ÿ P(A)

Difference: when B � A, P(AnB) � P(A)ÿ P(B)

Conditioning: P(AjB) � P(A \ B)=P(B)

Addition: P(A [ BjC) � P(AjC)� P(BjC) when A \ C and B \ C are disjoint

Multiplication: P(A \ B \ C) � P(AjB \ C)P(BjC)P(C)

The partition rule: P(A) �PiP(AjBi)P(Bi) when (Bi; i > 1) are disjoint events, and

A � [i Bi

Bayes' rule: P(BijA) � P(AjBi)P(Bi)=P(A)

Independence: A and B are independent if and only if P(A \ B) � P(A)P(B)

This is equivalent to P(AjB) � P(A) and to P(BjA) � P(B)

Conditional independence: A and B are conditionally independent given C when

P(A \ BjC) � P(AjC)P(BjC)

Value and expected value: If an experiment yields the numerical outcome a with

probability p, or zero otherwise, then its value (or expected value) is ap
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2.15 APPENDIX. DIFFERENCE EQUATIONS

On a number of occasions above, we have used conditional probability and independence to show

that the answer to some problem of interest is the solution of a difference equation. For example, in

example 2.11.7 we considered

pn � qpnÿ1,(1)

in example 2.11.8 we derived

pn � ppnÿ1 � pqpnÿ2, pq 6� 0,(2)

and in exercise 1 at the end of section 2.11 you derived

pn � (qÿ p) pnÿ1 � p:(3)

We need to solve such equations systematically. Note that any sequence (xr; r > 0) in which each

term is a function of its predecessors, so that

xr�k � f (xr, xr�1, . . . , xr�kÿ1), r > 0,(4)

is said to satisfy the recurrence relation (4). When f is linear this is called a difference equation of

order k:

xr�k � a0xr � a1xr�1 � � � � � akÿ1xr�kÿ1 � g(r), a0 6� 0:(5)

When g(r) � 0, the equation is homogeneous:

xr�k � a0xr � a1xr�1 � � � � � akÿ1xr�kÿ1, a0 6� 0:(6)

Solving (1) is easy because pnÿ1 � qpnÿ2, pnÿ2 � qpnÿ3 and so on. By successive substitution we

obtain

pn � q n p0:

Solving (3) is nearly as easy when we notice that

pn � 1
2

is a particular solution. Now writing pn � 1
2
� xn gives

xn � (qÿ p)xnÿ1 � (qÿ p)nx0:

Hence

pn � 1
2
� (qÿ p)nx0:

Equation (2) is not so easy but, after some work which we omit, it turns out that (2) has solution

pn � c1ë
n
1 � c2ë

n
2(7)

where ë1 and ë2 are the roots of

x2 ÿ pxÿ pq � 0

and c1 and c2 are arbitrary constants. You can verify this by substituting (7) into (2).

Having seen these preliminary results, you will not now be surprised to see the general solution to

the second-order difference equation: let

xr�2 � a0xr � a1xr�1 � g(r), r > 0:(8)

Suppose that ð(r) is any function such that

ð(r � 2) � a0ð(r)� a1ð(r � 1)� g(r)

and suppose that ë1 and ë2 are the roots of

x2 � a0 � a1x:

Then the solution of (8) is given by

xr �
c1ë

r
1 � c2ë

r
2 � ð(r), ë1 6� ë2

(c1 � c2 r)ër
1 � ð(r), ë1 � ë2,

�
where c1 and c2 are arbitrary constants. Here ð(r) is called a particular solution, and you should

note that ë1 and ë2 may be complex, as then may c1 and c2.
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The solution of higher-order difference equations proceeds along similar lines; there are more ë's

and more c's.

2.16 PROBLEMS

1. The classic slot machine has three wheels each marked with 20 symbols. You rotate the wheels

by means of a lever, and win if each wheel shows a bell when it stops. Assume that the outside

wheels each have one bell symbol, the central wheel carries 10 bells, and that wheels are

independently equally likely to show any of the symbols (academic licence). Find:

(a) the probability of getting exactly two bells;

(b) the probability of getting three bells.

2. You deal two cards from a conventional pack. What is the probability that their sum is 21?

(Court cards count 10, and aces 11.)

3. You deal yourself two cards, and your opponent two cards. Your opponent reveals that the sum

of those two cards is 21; what is the probability that the sum of your two cards is 21? What is

the probability that you both have 21?

4. A weather forecaster says that the probability of rain on Saturday is 25%, and the probability of

rain on Sunday is 25%. Can you say the chance of rain at the weekend is 50%? What can you

say?

5. My lucky number is 3, and your lucky number is 7. Your PIN is equally likely to be any

number between 1001 and 9998. What is the probability that it is divisible by at least one of

our two lucky numbers?

6. You keep rolling a die until you ®rst roll a number that you have rolled before. Let Ak be the

event that this happens on the kth roll.

(a) What is P(A12)? (b) Find P(A3) and P(A6).

7. Ann aims three darts at the bullseye and Bob aims one. What is the probability that Bob's dart

is nearest the ball? Given that one of Ann's darts is nearest, what is the probability that Bob's

dart is next nearest? (They are equally skilful.)

8. In the lottery of 1710, one in every 40 tickets yielded a prize. It was widely believed at the

time that you needed to buy 40 tickets at least, to have a better than evens chance of a prize.

Was this belief correct?

9. (a) You have two red cards and two black cards. Two cards are picked at random; show that

the probability that they are the same colour is 1
3
.

(b) You have one red card and two black cards; show that the probability that two cards

picked at random are the same colour is 1
3
. Are you surprised?

(c) Calculate this probability when you have

(i) three red cards and three black cards, (ii) two red cards and three black cards.

10. A box contains three red socks and two blue socks. You remove socks at random one by one

until you have a pair. Let T be the event that you need only two removals, R the event that the

®rst sock is red and B the event that the ®rst sock is blue. Find

(a) P(BjT ), (b) P(RjT ), (C) P(T ):

11. Let A, B and C be events. Show that

A \ B � (Ac [ Bc)c,

and

A [ B [ C � (Ac \ Bc \ Cc)c:
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12. Let (Ar; r > 1) be events. Show that for all n > 1,[n
r�1

Ar

 !c

�
\n

r�1

Ac
r and

\n
r�1

Ar

 !c

�
[n

r�1

Ac
r:

Let A and B be events with P(A) � 3
5

and P(B) � 1
2
. Show that

1
10

< P(A \ B) < 1
2

and give examples to show that both extremes are possible. Can you ®nd bounds for P(A [ B)?

14. Show that if P(AjB) . P(A), then

P(BjA) . P(B) and P(AcjB) , P(Ac):

15. Show that if A is independent of itself, then either P(A) � 0 or P(A) � 1.

16. A pack contains n cards labelled 1, 2, 3, . . . , n (one number on each card). The cards are dealt

out in random order. What is the probability that

(a) the kth card shows a larger number than its k ÿ 1 predecessors?

(b) each of the ®rst k cards shows a larger number than its predecessors?

(c) the kth card shows n, given that the kth card shows a larger number than its k ÿ 1

predecessors?

17. Show that P(AnB) < P(A):

18. Show that

P
[n

r�1

Ar

 !
�
X

r

P(Ar)ÿ
X
r , s

P(Ar \ As) � � � � � (ÿ)n�1P
\n

r�1

Ar

 !
:

Is there a similar formula for P(
Tn

r�1 Ar)?

19. Show that

P(A \ B)ÿ P(A)P(B) � P((A [ B)c)ÿ P(Ac)P(Bc):

20. An urn contains a amber balls and b buff balls. A ball is removed at random.

(a) What is the probability á that it is amber?

(b) Whatever colour it is, it is returned to the urn with a further c balls of the same colour as

the ®rst. Then a second ball is drawn at random from the urn. Show that the probability

that it is amber is á.

21. In the game of antidarts a player shoots an arrow into a rectangular board measuring six metres

by eight metres. If the arrow is within one metre of the centre it scores 1 point, between one

and two metres away it scores 2, between two and three metres it scores 3, between three and

four metres and yet still on the board it scores 4, and further than four metres but still on the

board it scores 5. William Tell always lands his arrows on the board but otherwise they are

purely random.

(a) Show that the probability that his ®rst arrow scores more than 3 points is 1ÿ 3
16
ð.

A C
B

Figure 2.23. The mole's burrows.
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(b) Find the probability that he scores a total of exactly 4 points in his ®rst two arrows.

(c) Show that the probability that he scores exactly 15 points in three arrows is given by

1ÿ 2

3
sinÿ1 3

4

� �
ÿ 1

8

���
7
p� �3

:

22. A mole has a network of burrows as shown in ®gure 2.23. Each night he sleeps at one of the

junctions. Each day he moves to a neighbouring junction but he chooses a passage randomly,

all choices being equally likely from those available at each move.

(a) He starts at A. Find the probability that two nights later he is at B.

(b) Having arrived at B, ®nd the probability that two nights later he is again at B.

(c) A second mole is at C at the same time as the ®rst mole is at A. What is the probability

that two nights later the two moles share the same junction?

23. Three cards in an urn bear pictures of ants and bees; one card has ants on both sides, and one

card has bees on both sides, and one has an ant on one side and a bee on the other.

A card is removed at random and placed ¯at. If the upper face shows a bee, what is the

probability that the other side shows an ant?

24. You pick a card at random from a conventional pack and note its suit. With an obvious notation

de®ne the events

A1 � S [ H , A2 � S [ D, A3 � S [ C:

Show that A j and Ak are independent when j 6� k, 1 < j, k < 3.

25. A fair die is rolled repeatedly. Find

(a) the probability that the number of sixes in k rolls is even,

(b) the probability that in k rolls the number of sixes is divisible by 3.

26. Waldegrave's problem, example 2.11.10. Show that, with four players, equation (4) in this

example has the solution

pr � 1

2
���
5
p 1� ���

5
p

4

� �rÿ2

ÿ 1

2
���
5
p 1ÿ ���

5
p

4

� �rÿ2

:

27. Karel ¯ips n� 1 fair coins and Newt ¯ips n fair coins. Karel wins if he has more heads than

Newt, otherwise he loses Show that P(Karel wins) � 1
2
.

28. Arkle (A) and Dearg (D) are connected by roads as in ®gure 2.24. Each road is independently

blocked by snow with probability p. Find the probability that it is possible to travel by road

from A to D.

Funds are available to snow-proof just one road. Would it be better to snow-proof AB or BC?

B

A

C

D

Figure 2.24. Roads.
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29. You are lost on Mythy Island in the summer, when tourists are two-thirds of the population. If

you ask a tourist for directions the answer is correct with probability 3
4
; answers to repeated

questions are independent even if the question is the same. If you ask a local for directions, the

answer is always false.

(a) You ask a passer-by whether Mythy City is East or West. The answer is East. What is the

probability that it is correct?

(b) You ask her again, and get the same reply. Show that the probability that it is correct is 1
2
.

(c) You ask her one more time, and the answer is East again. What is the probability that it is

correct?

(d) You ask her for the fourth and last time and get the answer West. What is the probability

that East is correct?

(e) What if the fourth answer were also East?

30. A bull is equally likely to be anywhere in the square ®eld ABCD, of side 1. Show that the

probability that it is within a distance x from A is

px �
ðx2

4
, 0 < x < 1

(x2 ÿ 1)1=2 � ðx2

4
ÿ x2 cosÿ1 1

x

� �
, 1 < x <

���
2
p

:

8>><>>:
The bull is now tethered to the corner A by a chain of length 1. Find the probability that it is

nearer to the fence AB than the fence CD.

31. A theatre ticket is in one of three rooms. The event that it is in the ith room is Bi, and the event

that a cursory search of the ith room fails to ®nd the ticket is Fi, where

0 < P(FijBi) , 1:

Show that P(BijFi) , P(Bi), that is to say, if you fail to ®nd it in the ith room on one search,

then it is less likely to be there. Show also that P(BijFj) . P(Bi) for i 6� j, and interpret this.

32. 10% of the surface of a sphere S is coloured blue, the rest is coloured red. Show that, however

the colours are distributed, it is possible to inscribe a cube in S with 8 red vertices. (Hint: Pick

a cube at random from the set of all possible inscribed cubes, let B(r) be the event that the rth

vertex is blue, and consider the probability that any vertex is blue.)
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3

Counting and gambling

It is clear that the enormous variety which can be seen both in nature and in

the actions of mankind, and which makes up the greater part of the beauty of

the universe, arises from the many different ways in which objects are

arranged or chosen. But it often happens that even the cleverest and best-

informed men are guilty of that error of reasoning which logicians call the

insuf®cient, or incomplete, enumeration of cases.

J. Bernoulli (ca. 1700)

3.1 PREVIEW

We have seen in the previous chapter that many chance experiments have equally likely

outcomes. In these problems many questions can be answered by merely counting the

outcomes in events of interest. Moreover, quite often simple counting turns out to be

useful and effective in more general circumstances.

In the following sections, therefore, we review the basic ideas about how to count

things. We illustrate the theory with several famous examples, including birthday

problems and lottery problems. In particular we solve the celebrated problem of the

points. This problem has the honour of being the ®rst to be solved using modem methods

(by Blaise Pascal in 1654), and therefore marks the of®cial birth of probability. A natural

partner to it is the even more famous gambler's ruin problem. We conclude with a brief

sketch of the history of chance, and some other famous problems.

Prerequisites. You need only the usual basic knowledge of elementary algebra. We

shall often use the standard factorial notation

r! � r(r ÿ 1) 3 � � � 3 3 3 2 3 1:

Remember that 0! � 1, by convention.

3.2 FIRST PRINCIPLES

Recall that many chance experiments have equally likely outcomes. In these cases the

probability of any event A is just
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P(A) � jAjjÙj
and we `only' have to count the elements of A and Ù. For example, suppose you are dealt

®ve cards at poker; what is the probability of a full house? You ®rst need the number of

ways of being dealt ®ve cards, assumed equally likely. Next you need the number of such

hands that comprise a full house (three cards of one kind and two of another kind, e.g.

QQQ33). We shall give the answer to this problem shortly; ®rst we remind ourselves of

the basic rules of counting. No doubt you know them informally already, but it can do no

harm to collect them together explicitly here.

The ®rst is obvious but fundamental.

Correspondence rule. Suppose we have two ®nite sets A and B. Let the numbers of

objects in A and B be jAj and jBj respectively. Then if we can show that each element of

A corresponds to one and only one element of B, and vice versa, then jAj � jBj.

Example 3.2.1. Let A � f11, 12, 13g and B � f~, }, §g. Then jAj � jBj � 3. s

Example 3.2.2: re¯ection. Let A be a set of distinct real numbers. De®ne the set B

such that

B � fb: ÿb 2 Ag:
Then jAj � jBj. s

Example 3.2.3: choosing. Let A be a set of size n. Let c(n, k) be the number of ways

of choosing k of the n elements in A. Then

c(n, k) � c(n, nÿ k),

because to each choice of k elements there corresponds one and only one choice of the

remaining nÿ k elements. s

Our next rule is equally obvious.

Addition rule. Suppose that A and B are disjoint ®nite sets, so that A \ B � Æ. Then

jA [ Bj � jAj � jBj:

Example 3.2.4: choosing. Let A be a set containing n elements, and recall that

c(n, k) is the number of ways of choosing k of these elements. Show that

c(n, k) � c(nÿ 1, k)� c(nÿ 1, k ÿ 1):(1)

Solution. We can label the elements of A as we please; let us label one of them the

®rst element. Let B be the collection of all subsets of A that contain k elements. This can

be divided into two sets: B( f ), in which the ®rst element always appears, and B(� f ), in

which the ®rst element does not appear. Now on the one hand

jB( f )j � c(nÿ 1, k ÿ 1)
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because the ®rst element is guaranteed to be in all these. On the other hand

jB(� f )j � c(nÿ 1, k)

because the ®rst element is not in these, and we still have to choose k from the nÿ 1

remaining. Obviously jBj � c(n, k), by de®nition. Hence, by the addition rule, (1)

follows. s

The addition rule has an obvious extension to the union of several disjoint sets; write

this down yourself (exercise).

The third counting rule will come as no surprise. As we have seen several times in

chapter 2, we often combine simple experiments to obtain more complicated sample

spaces. For example, we may roll several dice, or ¯ip a sequence of coins. In such cases

the following rule is often useful.

Multiplication rule. Let A and B be ®nite sets, and let C be the set obtained by

choosing any element of A and any element of B. Thus C is the collection of ordered

pairs

C � f(a, b): a 2 A, b 2 Bg:
Then

jCj � jAi Bj:(2)

This rule is often expressed in other words; one may speak of decisions, or operations, or

selections. The idea is obvious in any case. To establish (2) it is suf®cient to display all

the elements of C in an array:

C �
(a1, b1) . . . (a1, bn)

..

. ..
.

(am, b1) . . . (am, bn)

�������
�������

Here m � jAj and n � jBj. The rule (2) is now obvious by the addition rule. Again, this

rule has an obvious extension to the product of several sets.

Example 3.2.5: sequences. Let A be a ®nite set. A sequence of length r from A is an

ordered set of elements of A (which may be repeated as often as required). We denote

such a sequence by (a1, a2, . . . , ar); suppose that jAj � n. By the multiplication rule we

®nd that there are nr such sequences of length r. s

Example 3.2.6: crossing a cube. Let A and B be diametrically opposite vertices of a

cube. How many ways are there of traversing edges from A to B using exactly three

edges?

Solution. There are three choices for the ®rst step, then two for the second, then one

for the last. The required number is 3! s

For our ®nal rule we consider the problem of counting the elements of A [ B, when A

and B are not disjoint. This is given by the inclusion±exclusion rule, as follows.
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Inclusion±exclusion rule. For any ®nite sets A and B,

jA [ Bj � jAj � jBj ÿ jA \ Bj:(3)

To see this, note that any element in A [ B appears just once on each side unless it is in

A \ B. In that case it appears in all three terms on the right, and so contributes

1� 1ÿ 1 � 1 to the total, as required.The three-set version is of course

jA [ B [ Cj � jAj � jBj � jCj ÿ jA \ Bj ÿ jA \ Cj(4)

ÿ jB \ Cj � jA \ B \ Cj:
A straightforward induction yields the general form of this rule for n sets A1, . . . , An in

the form

jA1 [ � � � [ Anj �
X

i

jAij ÿ
X
i , j

jAi \ A jj � � � � � (ÿ1)n�1jA1 \ � � � \ Anj(5)

Example 3.2.7: derangements. An urn contains three balls numbered 1, 2, 3. They

are removed at random, without replacement. What is the probability p that none of the

balls is drawn in the same position as the number it bears?

Solution. By the multiplication rule, jÙj � 6. Let Ai be the set of outcomes in which

the ball numbered i is drawn in the ith place. Then we have

jAij � 2,

jAi \ A jj � 1, i , j,

jA1 \ A2 \ A3j � 1:

Hence, by (4),

jA1 [ A2 [ A3j � 2� 2� 2ÿ 1ÿ 1ÿ 1� 1 � 4:

Therefore, by the addition rule, the number of ways of getting no ball in the same position

as its number is two. Therefore, since the six outcomes in Ù are assumed to be equally

likely, p � 2
6
� 1

3
. s

Exercises for section 3.2

1. Let A and B be diametrically opposite vertices of a cube. How many ways are there of traversing

edges from A to B, without visiting any vertex twice, using exactly (a) ®ve edges? (b) six edges?

(c) seven edges?

2. Show that equation (1), c(n, k) � c(nÿ 1, k)� c(nÿ 1, k ÿ 1), is satis®ed by

c(n, k) � n!

k!(nÿ k)!
:

3. A die is rolled six times. Show that the probability that all six faces are shown is 0.015,

approximately.

4. A die is rolled 1000 times. Show that the probability that the sum of the numbers shown is 1100

is the same as the probability that the sum of the numbers shown is 5900.
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3 .3 ARRANGING AND CHOOSING

The sequences considered in section 3.2 sometimes allowed the possibility of repetition;

for example, in rolling a die several times you might get two or more sixes. However, a

great many experiments supply outcomes with no repetition; for example, you would be

very startled (to say the least) to ®nd more than one ace of spades in your poker hand. In

this section we consider problems involving selections and arrangements without repeti-

tion.

We begin with arrangements or orderings.

Example 3.3.1. You have ®ve books on probability. In how many ways can you

arrange them on your bookshelf?

Solution. Any of the ®ve can go on the left. This leaves four possibilities for the

second book, and so by the multiplication rule there are 5 3 4 � 20 ways to put the ®rst

two on your shelf. That leaves three choices for the third book, yielding 5 3 4 3 3 � 60

ways of shelving the ®rst three. Then there are two possibilities for the penultimate book,

and only one choice for the last book, so there are altogether

5 3 4 3 3 3 2 3 1 � 5! � 120

ways of arranging them.

Incidentally, in the course of showing this we have shown that the number of ways of

arranging a selection of r books, 0 < r < 5, is

5 3 � � � 3 (5ÿ r � 1) � 5!

(5ÿ r)!
: s

It is quite obvious that the same argument works if we seek to arrange a selection of

r things from n things. We can choose the ®rst in n ways, the second in nÿ 1 ways,

and so on, with the last chosen in nÿ r � 1 ways. By the product rule, this gives

n(nÿ 1) � � � (nÿ r � 1) ways in total. We display this result, and note that the conven-

tional term for such an ordering or arrangement is a permutation. (Note also that

algebraists use it differently.)

Permutations. The number of permutations of r things from n things is

n(nÿ 1) � � � (nÿ r � 1) � n!

(nÿ r)!
, 0 < r < n:(1)

This is a convenient moment to turn aside for a word on notation and conventions. We are

familiar with the factorial notation

n! � n(nÿ 1) 3 � � � 3 2 3 1,

de®ned for positive integers n, with the convention that 0! � 1. The number of permuta-

tions of r things from n things, given in (1), crops up so frequently that it is often given a

special symbol. We write

x(xÿ 1) � � � (xÿ r � 1) � x r,(2)

which is spoken as `the rth falling factorial power of x', which is valid for any real

number x. By convention x0 � 1. When x is a positive integer,
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x r � x!

(xÿ r)!
:

In particular, r r � r!
Note that various other notations are used for this, most commonly (x)r in the general

case, and x Pr when x is an integer.

Next we turn to the problem of counting arrangements when the objects in question are

not all distinguishable.

In the above example involving books, we naturally assumed that the books were all

distinct. But suppose that, for whatever strange reason, you happen to have two new

copies of some book. They are unmarked, and therefore indistinguishable. How many

different permutations of all ®ve are possible now? There are in fact 60 different

arrangements. To see this we note that in the 120 arrangements in example 3.3.1 there are

60 pairs in which each member of the pair is obtained by exchanging the positions of the

two identical books. But these pairs are indistinguishable, and therefore the same. So

there are just 60 different permutations.

We can generalize this result as follows. If there are n objects of which n1 form one

indistinguishable group, n2 another, and so on up to nr, where

n1 � n2 � � � � � nr � n,(3)

then there are

M(n1, . . . , nr) � n!

n1!n2! � � � nr!
(4)

distinct permutations of these n objects. It is easy to prove this, as follows. For each of

the M such arrangements suppose that the objects in each group are then numbered, and

hence distinguished. Then the objects in the ®rst group can now be arranged in n1! ways,

and so on for all r groups. By the multiplication rule there are hence n1!n2! � � � nr!M
permutations. But we already know that this number is n!. Equating these two gives (4).

This argument is simpler than it may appear at ®rst sight; the following example makes

it obvious.

Example 3.3.2. Consider the word `dada'. In this case n � 4, n1 � n2 � 2, and (4)

gives

M(2, 2) � 4!

2!2!
� 6,

as we may verify by exhaustion:

aadd, adad, daad, dada, adda, ddaa:

Now, as described above we can number the a's and d's, and permute these now

distinguishable objects for each of the six cases. Thus

aadd yields

a1a2d1d2

a2a1d1d2

a1a2d2d1

a2a1d2d1

8>><>>:
and likewise for the other ®ve cases. There are therefore 6 3 4 � 24 permutations of 4

objects, as we know already since 4! � 24. s
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Once again we interject a brief note on names and notation. The numbers

M(n1, . . . , nr) are called multinomial coef®cients. An alternative notation is

M(n1, . . . , nr) � n1 � n2 � � � � � nr

n1, n2, . . . , nr

� �
:

The most important case, and the one which we see most often, is the binomial coef®cient

n

r

� �
� M(nÿ r, r) � n!

(nÿ r)!r!

This is also denoted by nCr. We can also write it as

x

r

� �
� x r

r!
,

which makes sense when x is any real number. For example

ÿ1

r

� �
� (ÿ1)r:

Binomial coef®cients arise very naturally when we count things without regard to their

order, as we shall soon see.

In counting permutations the idea of order is essential. However, it is often the case

that we choose things and pay no particular regard to their order.

Example 3.3.3: quality control. You have a box of numbered components, and you

have to select a ®xed quantity (r, say) for testing. If there are n in the box, how many

different selections are possible?

If n � 4 and r � 2, then you can see by exhaustion that from the set fa, b, c, dg you

can pick six pairs, namely

ab, ac, ad, bc, bd, cd: s

There are many classical formulations of this basic problem; perhaps the most fre-

quently met is the hand of cards, as follows.

You are dealt a hand of r cards from a pack of n. How many different possible hands

are there? Generally n � 52; for poker r � 5, for bridge r � 13.

The answer is called the number of combinations of r objects from n objects. The key

result is the following.

Combinations. The number of ways of choosing r things from n things (taking no

account of order) is

n

r

� �
� n!

r!(nÿ r)!
, 0 < r < n:(5)

Any such given selection of r things is called a combination, or an unordered sample. It

is of course just a subset of size r, in more workaday terminology.

This result is so important and useful that we are going to establish it in several

different ways. This provides insight into the signi®cance of the binomial coef®cients,

and also illustrates important techniques and applications.
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First derivation of (5). We know from (1) that the number of permutations of r things

from n things is nr. But any permutation can also be ®xed by performing two operations:

(i) choose a subset of size r;

(ii) choose an order for the subset.

Suppose that step (i) can be made in c(n, r) ways; this number is what we want to ®nd.

We know step (ii) can be made in r! ways. By the multiplication rule (2) of section 3.2

the product of these two is nr, so

c(n, r)r! � nr � n!

(nÿ r)!
:(6)

Hence

c(n, r) � n

r

� �
� n!

r!(nÿ r)!
h(7)

This argument is very similar to that used to establish (4); and this remark suggests an

alternative proof.

Second derivation of (5). Place the n objects in a row, and mark the r selected objects

with the symbol S. Those not selected are marked F. Therefore, by construction, there is

a one±one correspondence between the combinations of r objects from n and the

permutations of r S-symbols and nÿ r F-symbols. But, by (4), there are

M(r, nÿ r) � n!

r!(nÿ r)!
(8)

permutations of these S- and F-symbols. Hence using the correspondence rule (see the

start of section 3.2) proves (5). h

Another useful method of counting a set is to split it up in some useful way. This

supplies another derivation.

Third derivation of (5). As above we denote the number of ways of choosing a subset

of size r from a set of size n objects by c(n, r). Now suppose one of the n objects is in

some way distinctive; for de®niteness we shall say it is pink. Now there are two distinct

methods of choosing subsets of size r:

(i) include the pink one and choose r ÿ 1 more objects from the remaining nÿ 1;

(ii) exclude the pink one and choose r of the nÿ 1 others.

There are c(nÿ 1, r ÿ 1) ways to choose using method (i), and c(nÿ 1, r) ways to

choose using method (ii). By the addition rule their sum is c(n, r), which is to say

c(n, r) � c(nÿ 1, r)� c(nÿ 1, r ÿ 1):(9)

Of course we always have c(n, 0) � c(r, n) � 1, and it is an easy matter to check that the

solution of (9) is

c(n, r) � n

r

� �
;

we just plod through a little algebra:
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n

r

 !
� n!

r!(nÿ r)!
� n(nÿ 1)!

r(r ÿ 1)!(nÿ r)(nÿ r ÿ 1)!

� (nÿ 1)!

(r ÿ 1)!(nÿ r ÿ 1)!

1

r
� 1

nÿ r

� �
� nÿ 1

r

� �
� nÿ 1

r ÿ 1

� �
: h

(10)

Exercises for section 3.3

1. Show in three different ways that

n

r

� �
� n

nÿ r

� �
:

2. Show that the multinomial coef®cient can be written as a product of binomial coef®cients:

M(n1, . . . , nr) � sr

srÿ1

� �
srÿ1

srÿ2

� �
� � � s2

s1

� �
where sr �

Pr
i�1 ni.

3. Four children are picked at random (with no replacement) from a family which includes exactly

two boys. The chance that neither boy is chosen is half the chance that both are chosen. How

large is the family?

4. You ¯ip a fair coin n times. What is the probability that

(a) there have been exactly three heads?

(b) there have been at least two heads?

(c) there have been equal numbers of heads and tails?

(d) there have been twice as many tails as heads?

3.4 BINOMIAL COEFFICIENTS AND PASCAL'S TRIANGLE

The binomial coef®cients

c n, r� � � n

r

� �
can be simply and memorably displayed as an array. There are of course many ways to

organize such an array; let us place them in the nth row and rth column like this:

0th row! 1

1 1

1 2 1

1 3 3 1

1 4 6 4 1

1 5 10 10 5 1

1 6 15 20 15 6 1

1 7 21 35 35 21 7 1

. . .
:

0th column
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Thus for example, in the 5th column and 7th row we ®nd

7

5

� �
� 21

This array is called Pascal's triangle in honour of Blaise Pascal, who wrote a famous

book Treatise on the Arithmetic Triangle in 1654, published a decade later. In this he

brought together most of what was known about this array of numbers at the time,

together with many signi®cant contributions of his own.

Any entry in Pascal's triangle can be calculated individually from the fact that

n

r

� �
� n!

r!(nÿ r)!
,(1)

but it is also convenient to observe that rows can be calculated recursively from the

identity we proved in (10) of section 3.3, namely

n

r

� �
� nÿ 1

r ÿ 1

� �
� nÿ 1

r

� �
:(2)

This says that any entry in the triangle is the sum of the entry in the row above and its

neighbour on the left.

It is easy to see that any entry is also related to its neighbour in the same row by the

relation

n

r

� �
� nÿ r � 1

r

n

r ÿ 1

� �
:(3)

This offers a very easy way of calculating

n

k

� �
,

by starting with

n

0

� �
� 1

and then applying (3) recursively for r � 1, 2, . . . , k. Equation (3) is most easily shown

by direct substitution of (1), but as with many such identities there is an alternative

combinatorial proof. (We have already seen an example of this in our several derivations

of (5) in section 3.3.)

Example 3.4.1: demonstration of (3). Suppose that you have n people and a van with

k < n seats. In how many ways w can you choose these k travellers, with one driver?

(i) You can choose k to go in
n

k

� �
ways, and choose one of these k to drive in k ways.

So

w � k
n

k

� �
:

(ii) You can choose k ÿ 1 passengers in

n

k ÿ 1

� �
ways, and then pick the driver in nÿ (k ÿ 1) ways. So
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w � (nÿ k � 1)
n

k ÿ 1

� �
:

Now (3) follows. s

We give one more example of this technique: its use to prove a famous formula.

Example 3.4.2: Van der Monde's formula. Remarkably, it is true that for integers

m, n, and r < m ^ n, X
k

m

k

� �
n

r ÿ k

� �
� m� n

r

� �
:

Solution. Suppose there are m men and n women, and you wish to form a team with

r members. In how many distinct ways can this be done? Obviously in

m� n

r

� �
ways if you choose directly from the whole group. But now suppose you choose k men

from those present and r ÿ k women from those present. This may be done in

m

k

� �
n

r ÿ k

� �
ways, by the multiplication rule. Now summing over all possible k gives the left-hand

side, by the addition rule. s

Exercises for section 3.4

1. Show that the number of subsets of a set of n elements is 2n. (Do not forget to include the empty

set Æ.)

2. Prove that

(x� y)n �
Xn

k�0

n

k

� �
x k y nÿk :

3. Show that Xn

k�0

n

k

� �
� 2n:

4. Use the correspondence and addition rules (section 3.2) to show that

n

k

� �
�
Xn

r�1

r ÿ 1

k ÿ 1

� �
:

(Hint: How many ways are there to choose k numbers in a lottery when the largest chosen is r?)

5. Ant. An ant walks on the non-negative plane integer lattice starting at (0, 0). When at ( j, k)

it can step either to ( j� 1, k) or ( j, k � 1). In how many ways can it walk to the point (r, s)?
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3.5 CHOICE AND CHANCE

We now consider some probability problems, both famous and commonplace, to illustrate

the use of counting methods. Remember that the fundamental situation is a sample space

Ù, all of whose outcomes are equally likely. Then for any event A

P(A) � jAjjÙj �
number of outcomes in A

number of outcomes in Ù
:

We begin with some simple examples. As will become apparent, the golden rule in

tackling all problems of this kind is:

Make sure you understand exactly what the sample space Ù and the event of

interest A actually are.

Example 3.5.1: personal identi®er numbers. Commonly PINs have four digits. A

computer assigns you a PIN at random. What is the probability that all four are different?

Solution. Conventionally PINs do not begin with zero (though there is no technical

reason why they should not). Therefore, using the multiplication rule,

jÙj � 9 3 10 3 10 3 10:

Now A is the event that no digit is repeated, so

jAj � 9 3 9 3 8 3 7:

Hence

P(A) � jAjjÙj �
93

103
� 0:504: s

Example 3.5.2: poker dice. A set of poker dice comprises ®ve cubes each showing

f9, 10, J, Q, K, Ag, in an obvious notation. If you roll such a set of dice, what is the

probability of getting a `full house' (three of one kind and two of another)?

Solution. Obviously jÙj � 65, because each die may show any one of the six faces. A

particular full house is chosen as follows:

· choose a face to show three times;

· choose another face to show twice;

· choose three dice to show the ®rst face.

By the multiplication rule, and (5) of section 3.3, we have therefore that

jAj � 6 3 5 3
5

3

� �
:

Hence

P(full house) � 2
6

4

� �
5

3

� �
6ÿ5 ' 0:039 s

104 3 Counting and gambling



Here is a classic example of this type of problem.

Example 3.5.3: birthdays. For reasons that are mysterious, some (rather vague)

signi®cance is sometimes attached to the discovery that two individuals share a birthday.

Given a collection of people, for example a class or lecture group, it is natural to ask for

the chance that at least two do share the same birthday.

We begin by making some assumptions that greatly simplify the arithmetic, without in

any way sacri®cing the essence of the question or the answer. Speci®cally, we assume that

there are r individuals (none of whom was born on 29 February) who are all indepen-

dently equally likely to have been born on any of the 365 days of a non-leap year.

Let sr be the probability that at least two of the r share a birthday. Then we ask the

following two questions:

(i) How big does r need to be to make sr . 1
2
? That is, how many people do we need to

make a shared birthday more likely than not?

(ii) In particular, what is s24?

(In fact births are slightly more frequent in the late summer, multiple births do occur, and

some births occur on 29 February. However, it is obvious, and it can be proved, that the

effect of these facts on our answers is practically negligible.)

Before we tackle these two problems we can make some elementary observations. First,

we can see easily that

s2 � 1

365
' 0:003

because there are (365)2 ways for two people to have their birthdays, and in 365 cases

they share it. With a little more effort we can see that

s3 � 1093

133225
' 0:008

because there are (365)3 ways for three people to have their birthdays, there are

365 3 364 3 363 ways for them to be different, and so there are (365)3 ÿ 365 3
364 3 363 ways for at least one shared day. Hence, as required,

s3 � (365)3 ÿ 365 3 364 3 363

(365)3
:(1)

These are rather small probabilities but, at the other extreme, we have s366 � 1, which

follows from the pigeonhole principle. That is, even if 365 people have different birthdays

then the 366th person must share one. At this point, before we give the solution, you

should write down your intuitive guesses (very roughly) at the answers to (i) and (ii).

Solution. The method for ®nding sr has already been suggested by our derivation of

s3. We ®rst ®nd the number of ways in which all r people have different birthdays. There

are 365 possibilities for the ®rst, then 364 different possibilities for the second, then 363

possibilities different from the ®rst two, and so on. Therefore, by the multiplication rule,

there are

365 3 364 3 � � � 3 (365ÿ r � 1)

ways for all r birthdays to be different.
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Also, by the multiplication rule, there are (365)r ways for the birthdays to be

distributed. Then by the addition rule there are

(365)r ÿ 365 3 � � � 3 (365ÿ r � 1)

ways for at least one shared day. Thus

sr � (365)r ÿ 365 3 � � � 3 (365ÿ r � 1)

(365)r
(2)

� 1ÿ 364 3 � � � 3 (365ÿ r � 1)

(365)rÿ1

Now after a little calculation (with a calculator) we ®nd that approximately

s24 ' 0:54, s23 ' 0:51, s22 ' 0:48:

Thus a group of 23 randomly selected people is suf®ciently large to ensure that a shared

birthday is more likely than not.

This is generally held to be surprisingly low, and at variance with uninformed intuition.

How did your guesses compare with the true answer? s

At this point we pause to make a general point. You must have noticed that in all the

above examples the sample space Ù has the property that

jÙj � nr, r > 1

for some n and r. It is easy to see that this is so because the n objects could each supply

any one of r outcomes independently. This is just the same as the sample space you get

if from an urn containing n distinct balls you remove one, inspect it, and replace it, and

do this r times altogether. This situation is therefore generally called sampling with

replacement.

If you did not replace the balls at any time then

jÙj � n r � n!

(nÿ r)!
, 1 < r < n:

Naturally this is called sampling without replacement.

We now consider some classic problems of this latter kind.

Example 3.5.4: bridge hands. You are dealt a hand at bridge. What is the probability

that it contains s spades, h hearts, d diamonds, and c clubs?

Solution. A hand is formed by choosing 13 of the 52 cards, and so

jÙj � 52

13

� �
:

Then the s spades may be chosen in

13

s

� �
ways, and so on for the other suits. Hence by the multiplication rule, using an obvious

notation,

jA(s, h, d, c)j � 13

s

� �
13

h

� �
13

d

� �
13

c

� �
:
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With a calculator and some effort you can show that, for example, the probability of 4

spades and 3 of each of the other three suits is

P(A(4, 3, 3, 3)) �
13

4

� �
13

3

� �3

52

13

� � ' 0:026:

In fact, no other speci®ed hand is more likely. s

Example 3.5.5: bridge continued; shapes. You are dealt a hand at bridge. Find the

probability of the event B that the hand contains s1 of one suit, s2 of another suit and so

on, where s1 � s2 � s3 � s4 � 13 and

s1 > s2 > s3 > s4:

Solution. There are three cases.

(i) The si are all different. In this case the event B in question arises if A(s1, s2, s3, s4)

occurs, or if A(s2, s1, s3, s4) occurs, or if A(s4, s1, s2, s3) occurs, and so on. That is, any

permutation of (s1, s2, s3, s4) will do. There are 4! such permutations, so

P(B) � 4!P(A(s1, s2, s3, s4)):

(ii) Exactly 2 of s1, s2, s3, s4 are the same. In this case there are 4!=2! � 12 distinct

permutations of (s1, s2, s3, s4), so by the same argument as in (i),

P(B) � 12P(A):

(iii) Exactly 3 of s1, s2, s3, s4 are the same. In this case there are 4!=3! � 4 distinct

permutations, so P(B) � 4P(A).

With a calculator and some effort you can show that the probability that the shape of

your hand is (4, 4, 3, 2) is 0.22 approximately. And in fact no other shape is more

likely. s

Notice how this differs from the case when suits are speci®ed. The shape (4, 3, 3, 3)

has probability 0.11, approximately, even though it was the most likely hand when suits

were speci®ed.

Example 3.5.6: poker. You are dealt a hand of 5 cards from a conventional pack. A

full house comprises 3 cards of one value and 2 of another (e.g. 3 twos and 2 fours). If the

hand has 4 cards of one value (e.g. 4 jacks), this is called four of a kind. Which is more

likely?

Solution. (i) First we note that Ù comprises all possible choices of 5 cards from 52

cards. Hence

jÙj � 52

5

� �
:
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(ii) For a full house you can choose the value of the triple in 13 ways, and then you can

choose their 3 suits in

4

3

� �
ways. The value of the double can then be chosen in 12 ways, and their suits in

4

2

� �
ways. Hence

P(full house) � 13
4

3

� �
12

4

2

� ��
52

5

� �
' 0:0014:

(iii) Four of a kind allows 13 choices for the quadruple and then 48 choices for the

other card. Hence

P(four of a kind) � 13 3 48

�
52

5

� �
' 0:00024: s

Example 3.5.7: tennis. Rod and Fred are playing a game of tennis. The scoring is

conventional, which is to say that scores run through (0, 15, 30, 40, game), with the usual

provisions for deuce at 40±40.

Rod wins any point with probability p. What is the probability g that he wins the

game? We assume that all points are won or lost independently.

You can use the result of example 2.11.5.

Solution. Let Ak be the event that Rod wins the game and Fred wins exactly k points

during the game; let Ad be the event that Rod wins from deuce. Clearly

g � P(A0)� P(A1)� P(A2)� P(Ad):

Let us consider these terms in order.

(i) For A0 to occur, Rod wins 4 consecutive points; P(A0) � p4:

(ii) For A1 to occur Fred wins a point at some time before Rod has won his 4 points.

There are

4

1

� �
� 4

occasions for Fred to win his point, and in each case the probability that Rod wins 4 and

Fred 1 is p4(1ÿ p). Therefore

P(A1) � 4 p4(1ÿ p):

(iii) Likewise for A2 we must count the number of ways in which Fred can win 2

points. This is just the number of ways of choosing where he can win 2 points, namely

5

2

� �
� 10:
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Hence

P(A2) � 10 p4(1ÿ p)2:

(iv) Finally, Rod can win having been at deuce; we denote the event deuce by D. For D

to occur Fred must win 3 points, and so by the argument above

P(D) � 6

3

� �
p3(1ÿ p)3:

The probability that Rod wins from deuce is found in example 2.11.5, so combining that

result with the above gives

P(Ad) � P(AdjD)P(D)

� p2

1ÿ 2 p(1ÿ p)

6

3

� �
p3(1ÿ p)3:

Thus

g � p4 � 4 p4(1ÿ p)� 10 p4(1ÿ p)2 � 20 p5(1ÿ p)3

1ÿ 2 p(1ÿ p)
: s

Remark. The ®rst probabilistic analysis of tennis was carried out by James Bernoulli,

and included as an appendix to his book published in 1713. Of course he was writing

about real tennis (the Jeu de Paume), not lawn tennis, but the scoring system is essentially

the same. The play is extremely different.

Exercises for section 3.5

1. What is the probability that your PIN has exactly one pair of digits the same?

2. Poker dice. You roll 5 poker dice. Show that the probability of 2 pairs is

1

2!

6

3

� �
5

2, 2, 1

� �
6ÿ5 ' 0:23

Explain the presence of 1=2! in this expression.

3. Bridge. Show that the probability that you have x spades and your partner has y spades is

13

x

� �
39

13ÿ x

� �
13ÿ x

y

� �
26� x

13ÿ y

� ��
52

13

� �
39

13

� �� �
:

What is the conditional probability that your partner has y spades given that you have x spades?

4. Tennis. Check that, in example 3.5.7, when p � 1
2

we have g � 1
2

(which we know directly

in this case by symmetry).

5. Suppose Rod and Fred play n independent points. Rod wins each point with probability p, or loses

it to Fred with probability 1ÿ p. Show that the probability that Rod wins exactly k points is

n

k

� �
pk(1ÿ p)nÿk :

3 .6 APPLICATIONS TO LOTTERIES

Now in the way of Lottery men do also tax themselves in the general, though out of

hopes of Advantage in particular: A Lottery therefore is properly a Tax upon
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unfortunate self-conceited fools; men that have good opinion of their own luckiness,

or that have believed some Fortune-teller or Astrologer, who had promised them

great success about the time and place of the Lottery, lying Southwest perhaps from

the place where the destiny was read.

Now because the world abounds with this kinde of fools, it is not ®t that every man

that will, may cheat every man that would be cheated; but it is rather ordained, that

the Sovereign should have the Guardianship of these fools, or that some Favourite

should beg the Sovereign's right of taking advantage of such men's folly, even as in

the case of Lunaticks and Idiots.

Wherefore a Lottery is not tollerated without authority, assigning the proportion in

which the people shall pay for their errours, and taking care that they be not so

much and so often couzened, as they themselves would be.

William Petty (1662)

Lotto's a taxation

On all fools in the nation

But heaven be praised

It's so easily raised.

Traditional

In spite of the above remarks, lotteries are becoming ever more widespread. The usual

form of the modern lottery is as follows. There are n numbers available; you choose r of

them and the organizers also choose r (without repetition). If the choices are the same,

you are a winner.

Sometimes the organizers choose one extra number (or more), called a bonus number.

If your choice includes this number and r ÿ 1 of the other r chosen by the organizers,

then you win a consolation prize.

Lotteries in this form seem to have originated in Genoa in the 17th century; for that

reason they are often known as Genoese lotteries. The version currently operated in

England has n � 49 and r � 6, with one bonus number. Just as in the 17th century, the

natural question is, what are the chances of winning? This is an easy problem: there are

n

r

� �
ways of choosing r different numbers from n numbers, and these are equally likely. The

probability that your single selection of r numbers wins is therefore

pw � 1

�
n

r

� �
:(1)

In this case, when (n, r) � (49, 6), this gives

pw � 1

�
49

6

� �
� 1 3 2 3 3 3 4 3 5 3 6

49 3 48 3 47 3 46 3 45 3 44

� 1

13 983 816
:

It is also straightforward to calculate the chance of winning a consolation prize using the

bonus number. The bonus number can replace any one of the r winning numbers to yield

your selection of r numbers, so
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pc � r

�
n

r

� �
:(2)

When (n, r) � (49, 6), this gives

pc � 1

2330 636
:

An alternative way of seeing the truth of (2) runs as follows. There are r winning numbers

and one bonus ball. To win a consolation prize you can choose the bonus ball in just one

way, and the remaining r ÿ 1 numbers in

r

r ÿ 1

� �
ways. Hence, as before,

pc � r

r ÿ 1

� �
3 1

�
n

r

� �
:

The numbers drawn in any national or state lottery attract much more attention than

most other random events. Occasionally this gives rise to controversy because our

intuitive feelings about randomness are not suf®ciently well developed to estimate the

chances of more complicated outcomes.

For example, whenever the draw yields runs of consecutive numbers, (such as

f2, 3, 4, 8, 38, 42g, which contains a run of length three), it strikes us as somehow less

random than an outcome with no runs. Indeed it is not infrequently asserted that there are

`too many' runs in the winning draws, and that this is evidence of bias. (Similar assertions

are sometimes made by those who enter football `pools'.) In fact calculation shows that

intuition is misleading in this case. We give some examples.

Example 3.6.1: chance of no runs. Suppose you pick r numbers at random from a

sequence of n numbers. What is the probability that no two of them are adjacent, that is

to say, the selection contains no runs? We just need to count the number of ways s of

choosing r objects from n objects in a line, so that there is at least one unselected object

as a spacer between each pair of selected objects. The crucial observation is that if we

strike out or ignore the r ÿ 1 necessary spacers then we have an unconstrained selection

of r from nÿ (r ÿ 1) objects. Here are examples with n � 4 and r � 2; unselected

objects are denoted by s, selected objects by 
, and the unselected object used as a

spacer is d:


ds
 � 
s
,

s
d
 � s

,

and so on. Conversely any selection of r objects from nÿ (r ÿ 1) objects can be turned

into a selection of r objects from n objects with no runs, simply by adding r ÿ 1 spacers.

Therefore the number we seek is

s � nÿ (r ÿ 1)

r

� �
:

Hence the probability that the r winning lottery numbers contain no runs at all is
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ps � n� 1ÿ r

r

� ��
n

r

� �
(3)

For example, if n � 49 and r � 6 then

ps � 44

6

� ��
49

6

� �
' 0:505:

So in the ®rst six draws you are about as likely to see at least one run as not. This is

perhaps more likely than intuition suggests.

When the bonus ball is drawn, the chance of no runs at all is now

43

7

� ��
49

7

� �
' 0:375:

The chance of at least one run is not far short of 2
3
. s

Similar arguments will ®nd the probability of any patterns of interest.

Example 3.6.2: a run of 3. Suppose we have 47 objects in a row. We can choose 4 of

these with at least one spacer between each in

47� 1ÿ 4

4

� �
� 44

4

� �
ways. Now we can choose one of these 4 and add two consecutive objects to follow it, in

4 ways. Hence the probability that 6 winning lottery numbers contain exactly one run of

length 3, such as f2, 3, 4, 8, 38, 42g, is

4
44

4

� ��
49

6

� �
: s

Example 3.6.3: two runs of 2. Choose 4 non-adjacent objects from 47 in

47� 1ÿ 4

4

� �
� 44

4

� �
ways. Now choose two of them to be pairs in

4

2

� �
ways. Hence the chance that 6 lottery numbers include just two runs of length 2, such as

f1, 2, 20, 30, 41, 42g, is

4

2

� �
44

4

� ��
49

6

� �
: s

Exercises for section 3.6

1. A lottery selects 6 numbers from f1, 2, . . . , 49g. Show that the probability of exactly one

consecutive pair of numbers in the 6 is

112 3 Counting and gambling



5
44

5

� ��
49

6

� �
' 0:065:

2. A lottery selects r numbers from the ®rst n integers. Show that the probability that all r numbers

have at least k spacers between each pair of them is

nÿ (r ÿ 1)k

r

� ��
n

r

� �
, (r ÿ 1)k < n:

3. A lottery selects r numbers from n. Show that the probability that exactly k of your r selected

numbers match k of the winning r numbers is

r

k

� �
nÿ r

r ÿ k

� ��
n

r

� �
:

4. Example 3.6.1 revisited: no runs. You pick r numbers at random from a sequence of n

numbers (without replacement). Let s(n, r) be the number of ways of doing this such that no

two of the r selected are adjacent. Show that

s(n, r) � s(nÿ 2, r ÿ 1)� s(nÿ 1, r):

Now set s(n, r) � c(nÿ r � 1, r) � c(m, k), where m � nÿ r � 1. Show that c(m, k) satis®es

the same recurrence relation, (9) of section 3.3, as the binomial coef®cients. Deduce that

s(n, r) � nÿ r � 1

r

� �
:

3.7 THE PROBLEM OF THE POINTS

Prolonged gambling differentiates people into two groups; those playing with the

odds, who are following a trade or profession; and those playing against the odds,

who are indulging a hobby or pastime, and if this involves a regular annual outlay,

this is no more than what has to be said of most other amusements.

John Venn

In this section we consider just one problem, which is of particular importance in the

history and development of probability. In previous sections we have looked at several

problems involving dice, cards, and other simple gambling devices. The application of

the theory is so natural and useful that it might be supposed that the creation of prob-

ability parallelled the creation of dice and cards. In fact this is far from being the case.

The greatest single initial step in constructing a theory of probability was made in

response to a more recondite question, the problem of the points.

Roughly speaking the essential question is this.

Two players, traditionally called A and B, are competing for a prize. The contest takes

the form of a sequence of independent similar trials; as a result of each trial one of the

contestants is awarded a point. The ®rst player to accumulate n points is the winner; in

colloquial parlance A and B are playing the best of 2nÿ 1 points. Tennis matches are

usually the best of ®ve sets; n � 3.

The problem arises when the contest has to be stopped or abandoned before either has

won n points; in fact A still needs a points (having nÿ a already) and B still needs b

points (having nÿ b already). How should the prize be fairly divided? (Typically the

`prize' consisted of stakes put up by A and B, and held by the stakeholder.)

For example, in tennis, sets correspond to points and men play the best of ®ve sets. If
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the players were just beginning the fourth set when the court was swallowed up by an

earthquake, say, what would be a fair division of the prize? (assuming a natural reluctance

to continue the game on some other nearby court).

This is a problem of great antiquity; it ®rst appeared in print in 1494 in a book by Luca

Pacioli, but was almost certainly an old problem even then. In his example, A and B were

playing the best of 11 games for a prize of ten ducats, and are forced to abandon the game

when A has 5 points (needing 1 more) and B has 2 points (needing 4 more). How should

the prize be divided?

Though Pacioli was a man of great talent (among many other things his book includes

the ®rst printed account of double-entry book-keeping), he could not solve this problem.

Nor could Tartaglia (who is best known for showing how to ®nd the roots of a cubic

equation), nor could Forestani, Peverone, or Cardano, who all made attempts during the

16th century.

In fact the problem was ®nally solved by Blaise Pascal in 1654, who, with Fermat,

thereby of®cially inaugurated the theory of probability. In that year, probably sometime

around Pascal's birthday (19 June; he was 31), the problem of the points was brought to

his attention. The enquiry was made by the Chevalier de MeÂreÂ (Antoine Gombaud) who,

as a man-about-town and gambler, had a strong and direct interest in the answer. Within a

very short time Pascal had solved the problem in two different ways. In the course of a

correspondence with Fermat, a third method of solution was found by Fermat.

Two of these methods use ideas that were well known at that time, and are familiar to

you now from the previous section. That is, they relied on counting a number of equally

likely outcomes.

Pascal's great step forward was to create a method that did not rely on having equally

likely outcomes. This breakthrough came about as a result of his explicit formulation of

the idea of the value of a bet or lottery, which we discussed in chapters 1 and 2. That is, if

you have a probability p of winning $1 then the game is worth $ p to you.

It naturally follows that, in the problem of the points, the prize should be divided in

proportion to the players' respective probabilities of winning if the game were to be

continued. The problem is therefore more precisely stated thus.

Precise problem of the points. A sequence of fair coins is ¯ipped; A gets a point for

every head, B a point for every tail. Player A wins if there are a heads before b tails,

otherwise B wins. Find the probability that A wins.

Solution. Let á(a, b) be the probability that A wins and â(a, b) the probability that B

wins. If the ®rst ¯ip is a head, then A now needs only aÿ 1 further heads to win, so the

conditional probability that A wins, given a head, is á(aÿ 1, b). Likewise the conditional

probability that A wins, given a tail, is á(a, bÿ 1). Hence, by the partition rule,

á(a, b) � 1
2
á(aÿ 1, b)� 1

2
á(a, bÿ 1):(1)

Thus if we know á(a, b) for small values of a and b, we can ®nd the solution for any a

and b by this simple recursion. And of course we do know such values of á(a, b), because

if a � 0 and b . 0, then A has won and takes the whole prize: that is to say

á(0, b) � 1:(2)

Likewise if b � 0 and a . 0 then B has won, and so
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á(a, 0) � 0:(3)

How do we solve (1) in general, with (2) and (3)? Recall the fundamental property of

Pascal's triangle: the entries c( j� k, k) � d( j, k) satisfy

d( j, k) � d( jÿ 1, k)� d( j, k ÿ 1):(4)

You don't need to be a genius to suspect that the solution á(a, b) of (1) is going to be

connected with the solutions

c( j� k, k) � d( j, k) � j� k

k

� �
of (4). We can make the connection even more transparent by writing

á(a, b) � 1

2a�b
u(a, b):

Then (1) becomes

u(a, b) � u(aÿ 1, b)� u(a, bÿ 1)(5)

with

u(0, b) � 2b and u(a, 0) � 0:(6)

There are various ways of solving (5) with the conditions (6), but Pascal had the

inestimable advantage of having already obtained the solution by another method. Thus

he had simply to check that the answer is indeed

u(a, b) � 2
Xbÿ1

k�0

a� bÿ 1

k

� �
,(7)

and

á(a, b) � 1

2a�bÿ1

Xbÿ1

k�0

a� bÿ 1

k

� �
:(8)

At long last there was a solution to this classic problem. We may reasonably ask why

Pascal was able to solve it in a matter of weeks, when all previous attempts had failed for

at least 150 years. As usual the answer lies in a combination of circumstances: mathe-

maticians had become better at counting things; the binomial coef®cients were better

understood; notation and the techniques of algebra had improved immeasurably; and

Pascal had a couple of very good ideas.

Pascal immediately realized the power of these ideas and techniques and quickly

invented new problems on which to use them. We discuss the best known of them in the

next section.

Exercises for section 3.7

1. Check that the solution given by (8) does satisfy the recurrence (1) and the boundary conditions

(2) and (3).

2. Suppose the game is not fair, that is, A wins any point with probability p or B wins with

probability q, where p 6� q. Show that

á(a, b) � pá(aÿ 1, b)� qá(a, bÿ 1)

with solution
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á(a, b) � pa�bÿ1
Xbÿ1

k�0

a� bÿ 1

k

� �
q

p

� �k

:(9)

3. Calculate the answer to Pacioli's original problem when a � 1, b � 4, the prize is ten ducats,

and the players are of equal skill.

3.8 THE GAMBLER'S RUIN PROBLEM

In writing on these matters I had in mind the enjoyment of mathematicians, not the

bene®t of the gamblers; those who waste time on games of chance fully deserve to

lose their money as well.

P. de Montmort

Following the contributions of Pascal and Fermat, the next advances were made by

Christiaan Huygens, who was Newton's closest rival for top scientist of the 17th century.

Born in the Netherlands, he visited Paris in 1655 and heard about the problems Pascal

had solved. Returning to Holland, he wrote a short book Calculations in Games of

Chance (van Rekeningh in Speelen van Geluck). Meanwhile, Pascal had proposed and

solved another famous problem.

Pascal's problem of the gambler's ruin. Two gamblers, A and B, play with three

dice. At each throw, if the total is 11 then B gives a counter to A; if the total is 14 then A

gives a counter to B. They start with 12 counters each, and the ®rst to possess all 24 is the

winner. What are their chances of winning?

Pascal gives the correct solution. The ratio of their respective chances of winning,

pA: pB, is

150 094 635 296 999 122 : 129 746 337 890 625,

which is the same as

282 429 536 481 : 244 140 625

on dividing by 312.

Unfortunately it is not certain what method Pascal used to get this result. However,

Huygens soon heard about this new problem, and solved it in a few days (sometime

between 28 September 1656 and 12 October 1656). He used a version of Pascal's idea of

value, which we have discussed several times above:

Huygens' de®nition of value. If you are offered $x with probability p, or $y with

probability q ( p� q � 1), then the value of this offer to you is $( px� qy). n

Now of course we do not know for sure if this was Pascal's method, but Pascal was

certainly at least as capable of extending his own ideas as Huygens was. The balance of

probabilities is that he did use this method. By long-standing tradition this problem is

always solved in books on elementary probability, and so we now give a modern version

of the solution. Here is a general statement of the problem.

Gambler's ruin. Two players, A and B again, play a series of independent games.

Each game is won by A with probability á, or by B with probability â; the winner of each
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game gets one counter from the loser. Initially A has m counters and B has n. The victor

of the contest is the ®rst to have all m� n counters; the loser is said to be `ruined', which

explains the name of this problem. What are the respective chances of A and B to be the

victor?

Note that á� â � 1, and for the moment we assume á 6� â.

Just as in the problem of the points, suppose that at some stage A has a counters (so B

has m� nÿ a counters), and let A's chances of victory at that point be v(a). If A wins

the next game his chance of victory is now v(a� 1); if A loses the next game his chance

of victory is v(aÿ 1). Hence, by the partition rule,

v(a) � áv(a� 1)� âv(aÿ 1), 1 < a < m� nÿ 1:(1)

Furthermore we know that

v(m� n) � 1(2)

because in this case A has all the counters, and

v(0) � 0(3)

because A then has no counters.

From section 2.15, we know that the solution of (1) takes the form

v(a) � c1ë
a � c2ì

a,

where c1 and c2 are constants, and ë and ì are the roots of

áx2 ÿ x� â � 0:(4)

Trivially, the roots of (4) are ë � 1, and ì � â=á 6� 1 (since we assumed á 6� â). Hence,

using (2) and (3), we ®nd that

v(a) � 1ÿ (â=á)a

1ÿ (â=á)m�n
:(5)

In particular, when A starts with m counters,

pA � v(m) � 1ÿ (â=á)m

1ÿ (â=á)m�n
:

This method of solution of difference equations was unknown in 1656, so other ap-

proaches were employed. In obtaining the answer to the gambler's ruin problem, Huygens

(and later workers) used intuitive induction with the proof omitted. Pascal probably did

use (1) but solved it by a different route. (See the exercises at the end of the section.)

Finally we consider the case when á � â. Now (1) is

v(a) � 1
2
v(a� 1)� 1

2
v(aÿ 1)(6)

and it is easy to check that, for arbitrary constants c1 and c2,

v(a) � c1 � c2a

satis®es (6). Now using (2) and (3) gives

v(a) � a

m� n
:(7)

Exercises for section 3.8

1. Gambler's ruin. Find pB, the probability that B wins, and show that

pA � pB � 1:
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So somebody does win; the probability that the game is unresolved is zero.

2. Solve the equation (1) as follows.

(a) Rearrange (1) as

áfv(a� 1)ÿ v(a)g � âfv(a)ÿ v(aÿ 1)g:
(b) Sum and use successive cancellation to get

áfv(a� 1)ÿ v(1)g � âfv(a)ÿ v(0)g � âv(a):

(c) Deduce that

v(a) � 1ÿ (â=á)m

1ÿ â=á
v(1):

(d) Finally derive (5).

Every step of this method would have been familiar to Pascal in 1656.

3. Adapt the method of the last exercise to deal with the case when á � â in the gambler's ruin

problem.

4. Suppose a gambler plays a sequence of fair games, at each of which he is equally likely to lose a

point or gain a point. Show that the chance of being a points ahead before ®rst being d points

down is a=(a� d).

3.9 SOME CLASSIC PROBLEMS

I have made this letter longer than usual, because I lack the time to make it shorter.

Pascal in a letter to Fermat.

Pascal and Fermat corresponded on the problem of the points in 1654, and on the

gambler's ruin problem in 1656. Their exchanges mark the of®cial inauguration of prob-

ability theory. (Pascal's memorial in the Church of St EÂ tienne-du-Mont in Paris warrants

a visit by any passing probabilist.) These ideas quickly circulated in intellectual circles,

and in 1657 Huygens published a book on probability, On Games of Chance (in Latin and

Dutch editions); an English translation by Arbuthnot appeared in 1692.

This pioneering text was followed in remarkably quick succession by several books on

probability. A brief list would include the books of de Montmort (1708), J. Bernoulli

(1713), and de Moivre (1718), in French, Latin, and English respectively.

It is notable that the development of probability in its early stages was so extensively

motivated by simple games of chance and lotteries. Of course, the subject now extends

far beyond these original boundaries, but even today most people's ®rst brush with

probability will involve rolling a die in a simple board game, wondering about lottery

odds, or deciding which way to ®nesse the missing queen. Over the years a huge amount

of analysis has been done on these simple but naturally appealing problems. We therefore

give a brief random selection of some of the better-known classical problems tackled by

these early pioneers and their later descendants. (We have seen some of the easier

classical problems already in chapter 2, such as Pepys' problem, de MeÂreÂ's problem,

Galileo's problem, Waldegrave's problem, and Huygens' problem.)

Example 3.9.1: problem of the points revisited. As we have noted above, Pascal was

probably assisted in his elegant and epoch-making solution of this problem by the fact

that he could also solve it another way. A typical argument runs as follows.
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Solution. Recall that A needs a points and B needs b points; A wins any game with

probability p. Now let Ak be the event that when A has ®rst won a points, B has won k

points at that stage. Then

Ak \ A j � Æ, j 6� k(1)

and

P(Ak) � P(A wins the (a� k)th game and aÿ 1 of the preceding a� k ÿ 1 games)

� pP(A wins aÿ 1 of a� k ÿ 1 games)

� pa(1ÿ p)k a� k ÿ 1

aÿ 1

� �
,

by exercise 5 of section 3.5. Now the event that A wins is
Sbÿ1

k�0 Ak , and the solution

á(a, b) �PkP(Ak) follows, using (1) above. (See problem 21 also.) s

Example 3.9.2: problem of the points extended. It is natural to extend the problem

of the points to a group of n players P1, . . . , Pn, where P1 needs a1 games to win, P2

needs a2, and so on, and the probability that Pr wins any game is pr. Naturally
P

pr � 1.

The same argument as that used in the previous example shows that if P1 wins the contest

when Pr has won xr games (2 < r < n, xr , ar), this has probability

pa1

1 px2

2 � � � pxn

n

(a1 � x1 � � � � � xn ÿ 1)!

(a1 ÿ 1)!x2! � � � xn!
:(2)

Thus the total probability that P1 wins the contest is the sum of all such terms as each xr

runs over 0, 1, . . . , ar ÿ 1. s

Example 3.9.3: Banach's matchboxes. The celebrated mathematician Stefan Banach

used to meet other mathematicians in the Scottish Coffee House in LwoÂw. He arranged

for a notebook to be kept there to record mathematical problems and answers; this was

the Scottish Book. The last problem in the book, dated 31 May 1941, concerns a certain

mathematician who has two boxes of n matches. One is in his right pocket, one is in his

left pocket, and he removes matches at random until he ®nds a box empty. What is the

probability pk that k matches remain in the other box?

Solution. The mathematician must have removed the boxes from their pockets

n� 1� nÿ k times. If the last (n� 1)th (unsuccessful) removal of some box is the

right-hand box, then the previous n right-hand removals may be chosen from any of the

previous 2nÿ k. This has probability

2ÿ(2nÿk�1) 2nÿ k

n

� �
:

The same is true for the left pocket, so

pk � 2ÿ(2nÿk) 2nÿ k

n

� �
: s
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Example 3.9.4: occupancy problem. Suppose a fair die with s faces (or sides) is

rolled r times. What is the probability a that every side has turned up at least once?

Solution. Let A j be the event that the jth side has not been shown. Then

a � 1ÿ P(A1 [ A2 [ � � � [ As)(3)

� 1ÿ
Xs

j�1

P(A j)�
X
j , k

P(A j \ Ak) ÿ � � �

� (ÿ1)sP(A1 \ � � � \ As)

on using problem 18 of section 2.16. Now by symmetry P(A j) � P(Ak), P(A j \ Ak) �
P(Am \ An), and so on. Hence

a � 1ÿ sP(A1)� s

2

� �
P(A1 \ A2) ÿ � � � � (ÿ1)sP

\
j

A j

 !
:

Now, by the independence of rolls, for any set of k sides

P(A1 \ A2 \ � � � \ Ak) � 1ÿ k

s

� �r

,(4)

and hence

a � 1ÿ s 1ÿ 1

s

� �r

� s

2

� �
1ÿ 2

s

� �r

ÿ s

3

� �
1ÿ 3

s

� �r

� � � �(5)

� (ÿ1)sÿ1
s

sÿ 1

� �
1ÿ sÿ 1

s

� �r

�
Xs

k�0

(ÿ1)k
s

k

� �
1ÿ k

s

� �r

: s

Remark. This example may look a little arti®cial, but in fact it has many practical

applications. For example, if you capture, tag (if not already tagged), and release r

animals successively in some restricted habitat, what is the probability that you have

tagged all the s present? Think of some more such examples yourself.

Example 3.9.5: derangements and coincidences. Suppose the lottery machine were

not stopped after the winning draw, but allowed to go on drawing numbers until all n were

removed. What is the probability d that no number r is the rth to be drawn by the

machine?

Solution. Let Ar be the event that the rth number drawn is in fact r; that is to say, the

rth ball that rolls out bears the number r. Then
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d � 1ÿ P
[n
r�1

Ar

 !
(6)

� 1ÿ
Xn

r�1

P(Ar) � � � � � (ÿ1)nP(A1 \ � � � \ An)

� 1ÿ nP(A1)� n

2

� �
P(A1 \ A2) ÿ � � �

� (ÿ1)nP
\n
r�1

Ar

 !
by problem 18 of section 2.16 and symmetry, as usual. Now for any set of k numbers

P(A1 \ � � � \ Ak) � 1

n

1

nÿ 1
� � � 1

nÿ k � 1
� (nÿ k)!

n!
:(7)

Hence

d � 1ÿ n
1

n
� n

2

� �
(nÿ 2)!

n!
ÿ � � �(8)

� (ÿ1)k n

k

� �
(nÿ k)!

n!
� � � � � (ÿ1)n 1

n!

� 1

2!
ÿ 1

3!
� � � � � (ÿ1)n 1

n!
It is remarkable that as n!1 we have d ! eÿ1. s

Exercises for section 3.9

1. Derangements revisited. Suppose n competitors in a tournament organize a sweepstake on

the result of the tournament. Their names are placed in an urn, and each player pays a dollar to

withdraw one name from the urn. The player holding the name that wins the tournament is

awarded the pot of $n.

(a) Show that the probability that exactly r players draw their own name is

1

r!

1

2!
ÿ 1

3!
� � � � � (ÿ1)nÿr

(nÿ r)!

� �
:

(b) Given that exactly r such matches occur, what is the probability that Fred draws his own

name? (Fred is a competitor.)

2. Derangements once again. Let d n be the number of derangements of the ®rst n integers.

Show that d n�1 � nd n � nd nÿ1, by considering which number is in the ®rst place in each

derangement.

3.10 STIRLING'S FORMULA

At a very early stage probabilists encountered the fundamental problem of turning

theoretical expressions into numerical answers, especially when the solutions to a

problem involved large numbers of large factorials. We have seen many examples of this
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above, especially (for example) in even the simplest problems involving poker hands or

suit distributions in bridge hands.

For another example, consider the basic problem of proportions in ¯ipping coins.

Example 3.10.1. A fair coin is ¯ipped repeatedly. Routine calculations show that

P(exactly 6 heads in 10 flips) � 10

6

� �
2ÿ10 ' 0:2,(1)

P(exactly 30 heads in 50 flips) � 50

30

� �
2ÿ50 ' 0:04,(2)

P(exactly 600 heads in 1000 flips) � 1000

600

� �
2ÿ1000 ' 10ÿ8:(3)

These are simple but not straightforward. The problem is that n! is impossibly large for

large n. (Try 1000! on your pocket calculator.) s

Furthermore, an obvious next question in ¯ipping coins is to ask for the probability that

the proportion of heads lies between 0.4 and 0.6, say, or any other range of interest. Even

today, summing the relevant probabilities including factorials would be an exceedingly

tedious task, and for 18th century mathematicians it was clearly impossible. de Moivre

and others therefore set about ®nding useful approximations to the value of n!, especially

for large n. That is, they tried to ®nd a sequence (a(n); n > 1) such that as n increases

a(n)

n!
! 1,

and of course, such that a(n) can be relatively easily calculated. For such a sequence we

use the notation n! � a(n). In 1730 de Moivre showed that a suitable sequence is given

by

a(n) � Bnn�1=2eÿn(4)

where

log B ' 1ÿ 1

12
� 1

360
ÿ 1

1260
� 1

1680
ÿ � � � :(5)

Inspired by this, Stirling showed that in fact

B � (2ð)1=2:(6)

We therefore write:

Stirling's formula

n! � (2ðn)1=2 nneÿn:(7)

This enabled de Moivre to prove the ®rst central limit theorem in 1733. We meet this

important result later.

Remark. Research by psychologists has shown that, before the actual calculations,

many people (probabilistically unsophisticated) estimate that the probabilities de®ned in

(1), (2), and (3) are roughly similar, or even the same. This may be called the fallacy of

proportion, because it is a strong, but wrongly applied, intuitive feeling for proportionality
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that leads people into this error. Typically they are also very reluctant to believe the truth,

even when it is demonstrated as above.

Exercises for section 3.10

1. Show that the number of ways of dealing the four hands for a game of bridge is

M(13, 13, 13, 13) � 52!

(13!)4
:

Use Stirling's formula to obtain an approximate value for this. (Then compare your answer with

the exact result, 53 644 737 765 488 792 839 237 440 000:)

2. Use Stirling's formula to approximate the number of ways of being dealt one hand at bridge,

52

13

� �
� 635 013 559 600:

3 .11 REVIEW

As promised above we have surveyed the preliminaries to probability, and observed its

foundation by Pascal, Fermat, and Huygens. This has, no doubt, been informative and

entertaining, but are we any better off as a result? The answer is yes, for a number of

reasons: principally

(i) We have found that a large class of interesting problems can be solved simply by

counting things. This is good news, because we are all quite con®dent about

counting.

(ii) We have gained experience in solving simple classical problems which will be

very useful in tackling more complicated problems.

(iii) We have established the following combinatorial results.

· The number of possible sequences of length r using elements from a set of

size n is nr. (Repetition permitted.)

· The number of permutations of length r using elements from a set of size n is

n(nÿ 1) � � � (nÿ r � 1). (Repetition not permitted.)

· The number of combinations (choices) of r elements from a set of size n is

n

r

� �
� n(nÿ 1) � � � (nÿ r � 1)

r(r ÿ 1) � � � 1
· The number of subsets of a set of size n is 2n.

· The number of derangements of a set of size n is

n! 1ÿ 1

1!
� 1

2!
ÿ 1

3!
� 1

4!
ÿ � � � � (ÿ1)n 1

n!

� �
:

(iv) We can record the following useful approximations.

· Stirling's formula says that as n increases������
2ð
p

nn�1=2eÿn

n!
! 1:
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· Robbins' improved formula says that

exp
ÿ1

12n

� �
,

������
2ð
p

nn�1=2eÿn

n!
, exp

ÿ1

12n� 1

� �
:

3.12 APPENDIX. SERIES AND SUMS

Another method I have made use of, is that of In®nite Series, which in many cases will solve

the Problems of Chance more naturally than Combinations.

A. de Moivre, Doctrine of Chances, 1717

What was true for de Moivre is equally true today, and this is therefore a convenient moment to

remind the reader of some general and particular properties of series.

I Finite series

Consider the series

sn �
Xn

r�1

ar � a1 � a2 � � � � � an:

The variable r is a dummy variable or index of summation, so any symbol will suf®ce:Xn

r�1

ar �
Xn

i�1

ai:

In general Xn

r�1

(axr � byr) � a
Xn

r�1

xr � b
Xn

r�1

yr:

In particular Xn

r�1

1 � n;

Xn

r�1

r � 1
2
n(n� 1), the arithmetic sum;

Xn

r�1

r2 � 1
6
n(n� 1)(2n� 1) � 2

n� 1

3

� �
� n� 1

2

� �
;

Xn

r�1

r3 �
Xn

r�1

r

 !2

� 1
4
n2(n� 1)2;

Xn

r�0

n

r

� �
x r y nÿr � (x� y)n, the binomial theorem;

X
a�b�c�n

a,b,c>0

M(a, b, c)xa ybzc �
X

a�b�c�n
a,b,c>0

a� b� c

a� b

� �
a� b

a

� �
xa ybzc

� (x� y� z)n, the multinomial theorem;Xn

r�0

x r � 1ÿ x n�1

1ÿ x
, the geometric sum:
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II Limits

Very often we have to deal with in®nite series. A fundamental and extremely useful concept in this

context is that of the limit of a sequence.

De®nition. Let (sn; n > 1) be a sequence of real numbers. If there is a number s such that

jsn ÿ sj may ultimately always be as small as we please then s is said to be the limit of the sequence

sn. Formally we write

lim
n!1sn � s

if and only if for any å. 0, there is a ®nite n0 such that

jsn ÿ sj, å

for all n . n0. n

Notice that sn need never actually take the value s, it must just get closer to it in the long run. (For

example, let sn � nÿ1.)

III In®nite series

Let (ar; r > 1) be a sequence of terms, with partial sums

sn �
Xn

r�1

ar, n > 1:

If sn has a ®nite limit s as n!1, then the sum
P1

r�1ar is said to converge with sum s. Otherwise

it diverges. If
P1

r�1jarj converges, then
P1

r�1ar is said to be absolutely convergent.

For example, in the geometric sum in I above, if jxj, 1 then jxjn ! 0 as n!1. HenceX1
r�0

x r � 1

1ÿ x
, jxj, 1,

and the series is absolutely convergent for jxj, 1. In particular we have the negative binomial

theorem: X1
r�0

n� r ÿ 1

r

� �
x r � (1ÿ x)ÿn:

This is true even when n is not an integer, so for example

(1ÿ x)ÿ1=2 �
X1
r�0

r ÿ 1
2

r

� �
x r �

X1
r�0

(r ÿ 1
2
) r

r!
x r

� 1� 1

2
x� 3

2
3

1

2
3

x2

2!
� 5

2
3

3

2
3

1

2
3

x3

3!
� � � �

�
X1
r�0

2r

r

� �
x

4

� �r

:

In particular, we often use the case n � 2:X1
r�0

(r � 1)x r � (1ÿ x)ÿ2:

Also, by de®nition, for all x,

exp x � e x �
X1
r�0

x r

r!
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and, for jxj, 1,

ÿlog(1ÿ x) �
X1
r�1

x r

r
:

An important property of e x is the exponential limit theorem:

as n!1, 1� x

n

� �n

! e x:

This has a very useful generalization: let r(n, x) be any function such that nr(n, x)! 0 as n!1;

then

1� x

n
� r(n, x)

� �n

! e x, as n!1:

Finally, note that we occasionally use special identities such asX1
r�1

1

r2
� ð2

6
and

X1
r�1

1

r 4
� ð4

90
:

3.13 PROBLEMS

1. Assume people are independently equally likely to have any sign of the Zodiac.

(a) What is the probability that four people have different signs?

(b) How many people are needed to give a better than evens chance that at least two of them

share a sign?

(There are 12 signs of the Zodiac.)

2. Five digits are selected independently at random (repetition permitted), each from the ten

possibilities f0, 1, . . . , 9g. Show that the probability that they are all different is 0.3

approximately.

What is the probability that six such random digits are all different?

3. Four digits are selected independently at random (without repetition) from f0, 1, . . . , 9g. What

is the probability that

(a) the four digits form a run? (e.g. 2, 3, 4, 5)

(b) they are all greater than 5?

(c) they include the digit 0?

(d) at least one is greater than 7?

(e) all the numbers are odd?

4. You roll 6 fair dice. You win a small prize if at least 2 of the dice show the same, and you win a

big prize if there are at least 4 sixes. What is the probability that you

(a) get exactly 2 sixes?

(b) win a small prize?

(c) win a large prize?

(d) win a large prize given that you have won a small prize?

5. Show that the probability that your poker hand contains two pairs is approximately 0.048, and

that the probability of three of a kind is approximately 0.021.

6. Show that nr, the number of permutations of r from n things, satis®es the recurrence relation

n r � (nÿ 1) r � r(nÿ 1) rÿ1:

7. Show that

2n

n

� �
�
Xn

k�0

n

k

� �2

:
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8. A construction toy comprises n bricks, which can each be any one of c different colours. Let

w(n, c) be the number of different ways of making up such a box. Show that

w(n, c) � w(nÿ 1, c)� w(n, cÿ 1)

and that

w(n, c) � n� cÿ 1

n

� �
:

9. Pizza problem. Let Rn be the largest number of bits of a circular pizza which you can

produce with n straight cuts. Show that

Rn � Rnÿ1 � n

and that

Rn � n� 1

2

� �
� 1:

10. If n people, including Algernon and Zebedee, are randomly placed in a line (queue), what is

the probability that there are exactly k people in line between Algernon and Zebedee?

What if they were randomly arranged in a circle?

11. A combination lock has n buttons. It opens if k different buttons are depressed in the correct

order. What is the chance of opening a lock if you press k different random buttons in random

order?

12. In poker a straight is a hand such as f3, 4, 5, 6, 7g, where the cards are not all of the same suit

(for that would be a straight ¯ush), and aces may rank high or low. Show that

P(straight) � 10
4

1

� �5

ÿ10
4

1

� �( )�
52

5

� �
' 0:004:

Show also that P(straight ¯ush) ' 0:000015.

13. The Earl of Yarborough is said to have offered the following bet to anyone about to be dealt a

hand at whist: if you paid him one guinea, and your hand then contained no card higher than a

nine, he would pay you one thousand guineas. Show that the probability y of being dealt such a

hand is

y � 5394

9860 459

What do you think of the bet?

14. (a) Adonis has k cents and Bubear has nÿ k cents. They repeatedly roll a fair die. If it is

even, Adonis gets a cent from Bubear; otherwise, Bubear gets a cent from Adonis. Show

that the probability that Adonis ®rst has all n cents is k=n.

(b) There are n� 1 beer glasses fg0, g1, . . . , gng, in a circle. A wasp is on g0. At each ¯ight

the wasp is equally likely to ¯y to either of the two neighbouring glasses. Let Lk be the

event that the glass gk is the last one to be visited by the wasp (k 6� 0). Show that

P(Lk) � nÿ1.

15. Consider the standard 6 out of 49 lottery.

(a) Show that the probability that 4 of your 6 numbers match those drawn is

13 545

13 983 816
:

(b) Find the probability that all 6 numbers drawn are odd.

(c) What is the probability that at least one number fails to be drawn in 52 consecutive

drawings?
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16. Matching. The ®rst n integers are placed in a row at random. If the integer k is in the kth

place in the row, that is a match. What is the probability that `1' is ®rst, given that there are

exactly m matches?

17. You have n sovereigns and r friends, n > r. Show that the number of ways of dividing the

coins among your friends so that each has at least one is

nÿ 1

r ÿ 1

� �
:

18. A biased coin is ¯ipped 2n times. Show that the probability that the number of heads is the

same as the number of tails is

2n

n

� �
( pq)n:

Use Stirling's formula to show how this behaves as n!1.

19. Suppose n objects are placed in a row. The operation Sk is de®ned thus: `Pick one of the ®rst k

objects at random, and swap it with the object in the kth place'. Now perform Sn, Snÿ1,

. . . , S1. Show that the ®nal order is equally likely to be any one fo the n! permutations of the

objects.

20. Your computer requires you to choose a password comprising a sequence of m characters

drawn from an alphabet of a possibilities, with the constraint that not more than two consecu-

tive characters may be the same. Let t(m) be the total number of passwords, for m . 2. Show

that

t(m) � (aÿ 1)ft(mÿ 1)� t(mÿ 2)g:
Hence ®nd an expression for t(m).

21. Suppose A and B play a series of a� bÿ 1 independent games, each won by A with probability

p, or by B with probability 1ÿ p. Find the probability that A wins at least a games, and hence

obtain the solution (9) in exercise 2 of section 3.7, the problem of the points.
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4

Distributions: trials, samples, and

approximation

Men that hazard all

Do it in hope of fair advantage.

Shakespeare

4.1 PREVIEW

This chapter deals with one of the most useful and important ideas in probability, that is,

the concept of a probability distribution. We have seen in chapter 2 how the probability

function P assigns or distributes probability to the events in Ù. We have seen in chapter 3

how the outcomes in Ù are often numbers or can be indexed by numbers. In these, and

many other cases, P naturally distributes probability to the relevant numbers, which we

may regard as points on the real line. This all leads naturally to the idea of a probability

distribution on the real line, which often can be easily and obviously represented by

simple and familiar functions.

We shall look at the most important special distributions in detail: Bernoulli,

geometric, binomial, negative binomial, and hypergeometric. Then we consider some

important and very useful approximations, especially the Poisson, exponential, and

normal distributions.

In particular, we shall need to deal with problems in which probability is assigned to

intervals in the real line, or even to the whole real line. In such cases we talk of a

probability density, using a rather obvious analogy with the distribution of matter.

Finally, probability distributions and densities in the plane are brie¯y considered.

Prerequisites. We use elementary results about sequences and series, and their limits,

such as

lim
n!1 1� x

n

� �n

� e x:

See the appendix to chapter 3 for a brief account of these notions.

4.2 INTRODUCTION; SIMPLE EXAMPLES

Very often all the outcomes of some experiment are just numbers. We give some examples.
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Darts. You throw a dart, obtaining a score between 0 and 60.

Temperature. You observe a thermometer and record the temperature to the nearest

degree. The outcome is an integer.

Counter. You turn on your Geiger counter, and note the time when it has counted 106

particles. The outcome is a positive real number.

Lottery. The lottery draw yields seven numbers between 1 and 49.

Obviously we could produce yet another endless list of experiments with random

numerical outcomes here: you weigh yourself; you sell your car; you roll a die with

numbered faces, and so on. Write some down yourself. In such cases it is customary and

convenient to denote the outcome of the experiment before it occurs by some appropriate

capital letter, such as X .

We do this in the interests of clarity. Outcomes in general (denoted by ù) can be

anything: rain, or heads, or an ace, for example. Outcomes that are denoted by X (or any

other capital) can only be numerical. Thus, in the second example above we could say

`Let T be the temperature observed'.

In the third example we might say

`Let X be the time needed to count 106 particles'.

In all examples of this kind, events are of course just described by suitable sets of

numbers. It is natural and helpful to specify these events by using the previous notation; thus

fa < T < bg
means that the temperature recorded lies between a and b degrees, inclusive. Likewise

fT � 0g
is the event that the temperature is zero. In the same way

fX . xg
means that the time needed to count 106 particles is greater than x. In all these cases X

and T are being used in the same way as we used ù in earlier chapters, e.g. rainy days in

example 2.3.2, random numbers in example 2.4.11, and so on.

Finally, because these are events, we can discuss their probabilities. For the events

given above, these would be denoted by

P(0 < T < b), P(T � 0), P(X . x),

respectively.

The above discussion has been fairly general; we now focus on a particularly important

special case. That is, the case when X can take only integer values.

De®nition. Let X denote the outcome of an experiment in which X can take only

integer values. Then the function p(x) given by

p(x) � P(X � x), x 2 Z,
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is called the probability distribution of X . Obviously p(x) > 0, and we shall show thatP
x p(x) � 1. n

Note that we need only discuss this function for integer values of x, but it is convenient

(and possible) to imagine that p(x) � 0 when x is not an integer. When x is an integer,

p(x) then supplies the probability that the event fX � xg occurs. Or, more brie¯y, the

probability that X � x.

Example 4.2.1: die. Let X be the number shown when a fair die is rolled. As always

X 2 f1, 2, 3, 4, 5, 6g,
and of course

P(X � x) � 1
6
, x 2 f1, 2, 3, 4, 5, 6g: s

Example 4.2.2: Bernoulli trial. Suppose you engage in some activity that entails that

you either win or lose, for example, a game of tennis or a bet. All such activities are given

the general name of a Bernoulli trial. Suppose that the probability that you win the trial is

p.

Let X be the number of times you win. Putting it in what might seem a rather stilted

way, we write

X 2 f0, 1g
and

P(X � 1) � p:

Obviously X � 0 and X � 1 are complementary, and so by the complement rule

P(X � 0) � 1ÿ p

� q,

where p� q � 1. The event X � 1 is traditionally known as `success', and X � 0 is

known as `failure'. s

The Bernoulli trial is the simplest, but nevertheless an important, random experiment,

and an enormous number of examples are of this type. For illustration consider the

following.

(i) Flip a coin; we may let fheadg � fsuccessg � S.

(ii) Each computer chip produced is tested; S � fthe chip passes the testg.
(iii) You attempt to start your car one cold morning; S � fit startsg.
(iv) A patient is prescribed some remedy; S � fhe is thereby curedg.
In each case the interpretation of failure is obvious; F � Sc.

Inherent in most of these examples is the possibility of repetition. This leads to another

important

De®nition. By a sequence of Bernoulli trials, we understand a sequence of indepen-

dent repetitions of an experiment in which the probability of success is the same at each

trial. n
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The above assumptions enable us to calculate the probability of any given sequence of

successes and failures very easily, by independence. Thus, with an obvious notation,

P(SFS) � pqp � p2q,

P(FFFS) � q3 p,

and so on.

The choice of examples and vocabulary makes it clear in which kind of questions we

are interested. For example:

(i) How long do we wait for the ®rst success?

(ii) How many failures are there in any n trials?

(iii) How long do we wait for the rth success?

The answers to these questions take the form of a collection of probabilities, as we see in

the next few sections.

Further natural sources of distributions arise from measurement and counting. For

example, suppose n randomly chosen children are each measured to the nearest inch, and

Nr is the number of children whose height is recorded as r inches. Then we have argued

often above that çr � Nr=n is (or should be) a reasonable approximation to the

probability pr that a randomly selected child in this population is r inches tall. Of course

çr > 0 and X
r

çr � nÿ1
X

r

N r � 1:

Thus çr satis®es the rules for a probability distribution, as well as representing an

approximation to pr. Such a collection is called an empirical distribution.

Example 4.2.3: Benford's distribution revisited. Let us recall this classic problem,

stated as follows. Take any large collection of numbers, such as the Cambridge statistical

tables, or a report on the Census, or an almanac. Offer to bet, at evens, that a number

picked at random from the book will have ®rst signi®cant digit less than 5. The more

people you can ®nd to accept this bet, the more you will win.

The untutored instinct expects intuitively that all nine possible numbers should be

equally likely. This is not so. Actual experiment shows that empirically the distribution of

probability is close to

p(k) � log10 1� 1

k

� �
, 1 < k < 9:(1)

This is Benford's distribution, and the actual values are approximately

p(1) � 0:301, p(2) � 0:176, p(3) � 0:125,

p(4) � 0:097, p(5) � 0:079, p(6) � 0:067,

p(7) � 0:058, p(8) � 0:051, p(9) � 0:046:

You will notice that p(1)� p(2)� p(3)� p(4) ' 0:7; the odds on your winning are

better than two to one. This is perhaps even more ¯agrant than a lottery.

It turns out that the same rule applies if you look at a larger number of signi®cant

digits. For example, if you look at the ®rst two signi®cant digits, then these pairs lie in the

set f10, 11, . . . , 99g. It is found that they have the probability distribution
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p(k) � log10 1� 1

k

� �
, 10 < k < 99:

Why should the distribution of ®rst signi®cant digits be given by (1)? Super®cially it

seems rather odd and unnatural. It becomes less unnatural when you recall that the choice

of base 10 in such tables is completely arbitrary. On another planet these tables might be

in base 8, or base 12, or indeed any base. It would be extremely strange if the ®rst digit

distribution was uniform (say) in base 10 but not in the other bases.

We conclude that any such distribution must be in some sense base-invariant. And,

recently, T. P. Hill has shown that Benford's distribution is the only one which satis®es

this condition. s

In these and all the other examples we consider, a probability distribution is just a

collection of numbers p(x) satisfying the conditions noted above,X
x

p(x) � 1, p(x) > 0:

This is ®ne as far as it goes, but it often helps our intuition to represent the collection

p(x) as a histogram. This makes it obvious at a glance what is going on. For example,

®gure 4.1 displays p(0) and p(1) for Bernoulli trials with various values of p(0).

For another example, consider the distribution of probabilities for the sum Z of the

scores of two fair dice. We know that

p(2) � 1
36

, p(3) � 2
36

, . . . , p(7) � 6
36

,

p(8) � 5
36

, . . . , p(12) � 1
36
:

where p(2) � P(Z � 2), and so on. This distribution is illustrated in ®gure 4.2, and is

known as a triangular distribution.

Before we turn to more examples let us list the principal properties of a distribution

p(x). First, and obviously by the de®nition,

0 < p(x) < 1:(2)

Second, note that if x1 6� x2 then the events fX � x1g and fX � x2g are disjoint. Hence,

by the addition rule (3) of section 2.5,

P(X 2 fx1, x2g) � p(x1)� p(x2):(3)

0 1 x0 1 x0 1 x 0 1 x 0 1 x

p(x)

1

p(x)

22½

p(x) p(x)

e21

p(x)

1

p(0) 5 1 p(0) 5 22½ p(0) 5 p(0) 5 e21 p(0) 5 0

1
2

1
2

Figure 4.1. Some Bernoulli distributions.
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More generally, by the extended addition rule (5) of section 2.5, we have the result:

Key rule for distributions

P(X 2 C) �
X
x2C

p(x):(4)

That is to say, we obtain the probability of any event by adding the probabilities of the

outcomes in it. In particular, as we claimed above,

P(X 2 Ù) �
X
x2Z

p(x) � 1:(5)

We make one further important de®nition.

De®nition. Let X have distribution p(x). Then the function

F(x) �
X
t<x

p(t) � P(X < x)(6)

is called the distribution function of X . n

Note that this way of thinking about probability distributions suggests a neat way of

writing down the probability distribution of a Bernoulli trial.

Example 4.2.4: Bernoulli trial. The distribution of the number of successes is

p(k) � pk q1ÿk , k � 0, 1, p� q � 1: s(7)

Another extremely important but simple distribution, which we have often met before,

is the uniform distribution.

Example 4.2.5: uniform distribution on {1, . . . , n}. In this case

p(k) � nÿ1, 1 < k < n:(8)

In particular n � 6 corresponds to a conventional fair die and n � 2 to a fair coin. s

2 3 4 5 6 7 8 9 10 11 12 x

p(x)

Figure 4.2. Probability distribution of the sum of the scores shown by two fair dice.
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Returning to the histograms discussed above, we see that in these examples each bar of

the histogram is of unit width, and the bar at x is of height p(x); it therefore has area

p(x). Thus the algebraic rules laid out from (2) to (5) can be interpreted in terms of areas.

Most importantly, we can see that the probability that X lies between a and b,

P(a < X < b), is just the area of the histogram lying between a and b. This of course is

why such diagrams are so appealing. Note that the value of the distribution function F(x)

at x is just the area of the histogram to the left of x. Figure 4.3 gives an example.

This idea becomes even more appealing and attractive when we recall that not all

experiments have outcomes con®ned to the integers, or even to a countable set. Weather-

cocks may point in any direction, isotopes may decay at any time, ropes may snap at any

point. In these cases it is natural to replace the discrete bars of the histogram by a smooth

curve, so that it is still true that P(a , X , b) is represented by the area under the curve

between a and b. Such a curve is called a density. The curve has the property that the

shaded area yields P(a , X < b); we denote this by

P(a , X < b) �
�b

a

f (x) dx:(9)

We return to this idea in much more detail later.

1 2 3 4 5 6 7 8 9 x

p (x)

Figure 4.3. Benford's distribution, (1) in section 4.2. The shaded area is F(4) � P(X < 4), the
probability that you win the bet described in example 4.2.3; it equals 0.7.

a b x

f (x)

Figure 4.4. A density f (x); probability is represented by area.
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Exercises for section 4.2

1. For digital transmission of any signal, it is encoded as a sequence of zeros and ones. Owing to

imperfections in the channel (noise and so on) any digit is independently wrongly received with

probability p.

(a) What is the probability of at least one such error in a sequence of n digits?

(b) To reduce the chance of error each digit is transmitted in triplicate. Each digit of the triple

may be wrongly received with probability p, but in each triple the correct symbol is taken

to be the one which occurs more often. (Thus 101 would be taken to be 1.) What is the

probability that any digit is wrongly received?

2. Aeroplane engines fail with probability q. Assuming that failures occur independently, ®nd the

probability that:

(a) at least two of the engines on a four-engined plane do not fail;

(b) at least two of the engines on a three-engined plane do not fail.

Compare these probabilities for all values of q.

3. Explain why it is considered advantageous to own the orange set of properties when playing

Monopoly.

4 .3 WAITING; GEOMETRIC DISTRIBUTIONS

For all of us, one of the most familiar appearances of probability arises in waiting. You

wait for a server to become free, you wait for a traf®c light to switch to green, you wait

for your number to come up on the roulette wheel, you wait for a bus, and so on. Some of

these problems are too complicated for us to analyse here, but some yield a simple and

classical model.

To respect the traditions of the subject, suppose you are ¯ipping a coin, on the

understanding that you get a prize when a head appears for the ®rst time and then you

stop. How long do you have to wait? Obviously there is a physical limit to the number of

tosses; the prize-giver will go bankrupt, or the coin will wear out, or the universe may

even cease to exist, in a ®nite time. So we suppose that if you have not won the prize on

or before the Kth ¯ip, you quit. Let the probability that you stop on the kth ¯ip be p(k).

Clearly you have to ¯ip at least once to win, so

p(k) � 0, for k � 0, ÿ1, ÿ2, . . . :

Then the probability of heads on the ®rst ¯ip is 1
2
; the probability of one tail followed by a

head is 1
4
, the probability of two tails followed by a head is 1

8
, and so on. The probability of

k ÿ 1 tails followed by a head is 2ÿk , and

p(k) � 2ÿk , for k � 1, 2, . . . , K ÿ 1:

The probability of K ÿ 1 tails is 2ÿ(Kÿ1), and you stop on the next ¯ip, whatever it is, so

p(K) � 2ÿ(Kÿ1):

Since you never make more than K ¯ips,

p(k) � 0, k � K � 1, K � 2, . . . :

Putting all these together we see that the number of ¯ips until you stop has the

distribution
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p(k) �
2ÿk , 1 < k < K ÿ 1

2ÿ(Kÿ1), k � K

0 otherwise:

8<:(1)

Now, the sequence 2ÿ1, 2ÿ2, 2ÿ3, . . . is a geometric series (see the appendix to chapter 3)

with ratio 1
2
. It is therefore called the geometric distribution truncated at K, with

parameter 1
2
.

Suppose we now imagine that the coin can be ¯ipped inde®nitely. Then the distribution

is

p(k) � 2ÿk , k > 1

0 otherwise:

�
(2)

This is called the geometric distribution with parameter 1
2
.

The assumption that the coin can be tossed inde®nitely is not as unrealistic as it sounds.

After all, however many times it has been ¯ipped, you should be able to toss it once more.

And no one objects to the idea of a line being prolonged inde®nitely. In both cases we

allow continuation inde®nitely because it is almost always harmless, and often very

convenient.

Example 4.3.1: die. If you roll a die and wait for a six, then the same argument as

that used for (2) shows that the number of rolls required has the distribution

p( j) � 1

6

5

6

� � jÿ1

, j > 1: s(3)

Example 4.3.2: trials. More generally, suppose you have a sequence of independent

Bernoulli trials in which you win with probability p, or lose with probability 1ÿ p. Then

the number of trials you perform until your ®rst win has the distribution

p(i) � p(1ÿ p)iÿ1, i > 1:(4)

This is the geometric distribution with parameter p. s

A word of warning is appropriate here; you must be quite clear what you are counting.

Let p(i) be the distribution of the number of trials before you win. This number can be

zero if you win on the ®rst trial, so we should write

p(i) � p(1ÿ p)i, i > 0:(5)

This is not the geometric distribution (which is on the positive integers). It is a geometric

distribution.

In any case it is easy to see that p(i) is indeed a probability distribution, as de®ned in

(4) of section 4.2, because X
i

p(i) �
X1
i�0

pqi � p

1ÿ q
� 1:(6)

Example 4.3.3: unlucky numbers. Suppose a certain lottery takes place each week.

Let p be the probability that some given number d is drawn on any given week. After n

successive draws, let p(k) be the probability that d last appeared k weeks ago. What is

p(k)?
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Solution. Note ®rst that the probability that d does not appear in any given draw is

1ÿ p. Now the last occurrence of d is k weeks ago only if it is drawn that week and then

is not drawn on k occasions. This yields

p(k) � p(1ÿ p)k , 0 < k < nÿ 1:(7)

Obviously d fails to appear at all with probability (1ÿ p)n, and in accordance with the

principal property of a distribution, (5) in section 4.2, we do indeed haveXnÿ1

k�0

p(k)� (1ÿ p)n � 1:

Comparison of (7) with data from real lotteries shows it to be an excellent description of

reality. s

Remark. Lotteries and roulette wheels publish and keep records of their results. This

is for two incompatible reasons. The ®rst is that they wish to demonstrate that the

numbers that turn up are indeed completely random. The second is that some gamblers

choose to bet on numbers that have not appeared for a long time. The implicit assump-

tion, that such numbers are more likely to appear next time, is the gambler`s fallacy.

Other gamblers choose to bet on the numbers that have appeared most often. Do you

think this is more rational?

Example 4.3.4: `sudden death'. Suppose two players A and B undertake a series of

trials such that each trial independently yields one of the following:

(a) a win for A with probability p;

(b) a win for B with probability q;

(c) a draw (or no result, or a void trial), with probability 1ÿ pÿ q.

The game stops at the ®rst win by either A or B. This is essentially the format of the game

of craps, and such contests are also often used to resolve golf and other tournaments in

which players are tied for the lead at the end of normal play. In this context, they are

called sudden-death playoffs. We may ask:

(i) What is the probability an that A wins at the nth trial?

(ii) What is the probability á that A wins overall?

(iii) What is the probability ë(n) that the game lasts for n trials?

Solution. For (i): First we note that A wins at the nth trial if and only if the ®rst nÿ 1

trials are drawn, and A wins the nth. Hence, using independence,

an � (1ÿ pÿ q)nÿ1 p:

For (ii): By the addition rule for probabilities,

á �
X1
n�1

an � p
X1
n�1

(1ÿ pÿ q)nÿ1 � p

p� q
:(8)

Of course we already know an alternative method for this. Let Aw be the event that A is

the overall winner, and denote the possible results of the ®rst trial by A, B, and D. Then
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á � P(AwjA) p� P(AwjB)q� P(AwjD)(1ÿ pÿ q)

� p� 0� á(1ÿ pÿ q),

which gives (8).

For (iii): Here we just have Bernoulli trials with P(S) � p� q, and P(F) � 1ÿ pÿ q.

Hence

ë(n) � (1ÿ pÿ q)nÿ1( p� q): s

Exercises for section 4.3

1. A die is rolled repeatedly until it shows a six. Let An be the event that the ®rst six appears on the

nth roll, and let E be the event that the number of rolls required for the ®rst six is even.

Find P(E) and pn � P(AnjE). Is ( pn; n > 2) a geometric distribution?

2. `Sudden death' continued. Let Dn be the event that the duration of the game is n trials, and

let Aw be the event that A is the overall winner. Show that Aw and Dn are independent.

4.4 THE BINOMIAL DISTRIBUTION AND SOME RELATIVES

As we have remarked above, in many practical applications it is necessary to perform

some ®xed number, n, of Bernoulli trials. Naturally we would very much like to know the

probability of r successes, for various values of r. Here are some obvious examples, some

familiar and some new.

(i) A coin is ¯ipped n times. What is the chance of exactly r heads?

(ii) You have n chips. What is the chance that r are defective?

(iii) You treat n patients with the same drug. What is the chance that r respond well?

(iv) You buy n lottery scratch cards. What is the chance of r wins?

(v) You type a page of n symbols. What is the chance of r errors?

(vi) You call n telephone numbers. What is the chance of making r sales?

This is obviously yet another list that could be extended inde®nitely, but in every case the

underlying problem is the same. It is convenient to standardize our names and notation

around Bernoulli trials so we ask the following: in a sequence of n independent Bernoulli

trials with P(S) � p, what is the probability p(k) of k successes?

For variety, and in deference to tradition, we often speak in terms of coins: if you ¯ip a

biased coin n times, what is the probability p(k) of k heads, where P(H) � p?

These problems are the same, and the answer is given by the

Binomial distribution. For n Bernoulli trials with P(S) � p � 1ÿ q, the probability

p(k) of obtaining exactly k successes is

p(k) � P(k successes) � n

k

� �
pk q nÿk , 0 < k < n:(1)

We refer to this as B(n, p) or `the B(n, p) distribution'. We can see that this is indeed a

probability distribution as de®ned in section 4.2, because

4.4 The binomial distribution and some relatives 139



X
k

p(k) �
Xn

k�0

n

k

 !
pk q nÿk � ( p� q)n, by the binomial theorem,

� 1, since p� q � 1:

The ®rst serious task is to prove (1).

Proof of (1). When we perform n Bernoulli trials there are 2n possible outcomes,

because each yields either S or F. How many of these outcomes comprise exactly k

successes and nÿ k failures? The answer is

n

k

� �
,

because this is the number of distinct ways of ordering k successes and nÿ k failures.

(We proved this in section 3.3; see especially the lines before (8)). Now we observe that,

by independence, any given outcome with k successes and nÿ k failures has probability

pk q nÿk . Hence

p(k) � n

k

� �
pk q nÿk , 0 < k < n: h

It is interesting, and a useful exercise, to obtain this result in a different way by using

conditional probability. It also provides an illuminating connection with many earlier

ideas, and furthermore illustrates a useful technique for tackling harder problems. In this

case the solution is very simple and runs as follows.

Another proof of (1). Let A(n, k) be the event that n ¯ips show k heads, and let

p(n, k) � P(A(n, k)):

The ®rst ¯ip gives H or T, so by the partition rule (6) of section 2.8

p(n, k) � P(A(n, k)jH)P(H)� P(A(n, k)jT )P(T ):(2)

But given H on the ®rst ¯ip, A(n, k) occurs if there are exactly k ÿ 1 heads in the next

nÿ 1 ¯ips. Hence

P(A(n, k)jH) � p(nÿ 1, k ÿ 1):

Likewise

P(A(n, k)jT ) � p(nÿ 1, k):

Hence substituting in (2) yields

p(n, k) � pp(nÿ 1, k ÿ 1)� qp(nÿ 1, k):(3)

Of course we know that p(n, 0) � q n and p(n, n) � pn, so equation (3) successively

supplies values of p(n, k) just as in Pascal's triangle and the problem of the points.

It is now a very simple matter to show that the solution of (3) is indeed given by the

binomial distribution

p(n, k) � n

k

� �
pk q nÿk , 0 < k < n: h

The connection with Pascal's triangle is made completely obvious if the binomial

probabilities are displayed as a diagram (or graph) as in ®gure 4.5. This is very similar to
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a tree diagram (though it is not in fact a tree). The process starts at the top where no trials

have yet been performed. Each trial yields S or F, with probabilities p and q, and

corresponds to a step down to the row beneath. Hence any path of n steps downwards

corresponds to a possible outcome of the ®rst n trials. The kth entry in the nth row is the

sum of the probabilities of all possible paths to that vertex, which is just p(k). The ®rst

entry at the top corresponds to the obvious fact that the probability of no successes in no

trials is unity.

The binomial distribution is one of the most useful, and we take a moment to look at

some of its more important properties. First we record the simple relationship between

p(k � 1) and p(k), namely

p(k � 1) �
n

k � 1

 !
pk�1(1ÿ p)nÿk�1(4)

� nÿ k

k � 1

n!

k!(nÿ k)!

� �
p

1ÿ p

� �
pk(1ÿ p)nÿk

� nÿ k

k � 1

p

1ÿ p

� �
p(k):

This recursion, starting either with p(0) � (1ÿ p)n or with p(n) � pn, is very useful in

carrying out explicit calculations in practical cases.

It is also very useful in telling us about the shape of the distribution in general. Note

that

p(k)

p(k � 1)
� k � 1

nÿ k

1ÿ p

p

� �
,(5)

which is less than 1 whenever k , (n� 1) pÿ 1. Thus the probabilities p(k) increase up

to this point. Otherwise, the ratio in (5) is greater than 1 whenever k . (n� 1) pÿ 1;

…

1

q p

q2 2pq p2

q3 3q2p 3qp2 p3

n 5 0

n 5 1

n 5 2

n 5 3

Figure 4.5. Triangle of binomial probabilities.
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Number of successesNumber of successes

Figure 4.6. Binomial distributions. On the left, ®xed p and varying n: from top to bottom n � 10, 20, . . . , 100. On the right, ®xed n and varying p: from
top to bottom, p � 10%, 20%, . . . , 100%. The histograms have been smoothed for simplicity.



the probabilities decrease past this point. The largest term is p([(n� 1) p]), where

[(n� 1) p] is the largest integer not greater than (n� 1) p. If (n� 1) p happens to be

exactly an integer then

p([(n� 1) pÿ 1])

p([(n� 1) p])
� 1(6)

and both these terms are maximal.

The shape of the distribution becomes even more obvious if we draw it; see ®gure 4.6,

which displays the shape of binomial histograms for various values of n and p.

We shall return to the binomial distribution later; for the moment we continue looking

at the simple but important distributions arising from a sequence of Bernoulli trials. So

far we have considered the geometric distribution and the binomial distribution. Next we

have the

Negative binomial distribution. A close relative of the binomial distribution arises

when we ask the opposite question. The question above is `Given n ¯ips, what is the

chance of k heads?' Suppose we ask instead `Given we must have k heads, what chance

that we need n ¯ips?'

We can rephrase this in a more digni®ed way as follows. A coin is ¯ipped repeatedly

until the ®rst ¯ip at which the total number of heads it has shown is k. Let p(n) be the

probability that the total number of ¯ips is n (including the tails). What is p(n)? We shall

show that the answer to this is

p(n) � pk q nÿk nÿ 1

k ÿ 1

� �
, n � k, k � 1, k � 2, . . . :(7)

This is called the negative binomial distribution. It is quite easy to ®nd p(n); ®rst we

notice that to say `The total number of ¯ips is n' is the same as saying `The ®rst nÿ 1

¯ips include k ÿ 1 heads and the nth is a head'. But this last event is just A(nÿ 1,

k ÿ 1) \ H . We showed above that

P(A(nÿ 1, k ÿ 1)) � nÿ 1

k ÿ 1

� �
pkÿ1q nÿk ,

and P(H) � p. Hence by the independence of A and H,

p(n) � P(A(nÿ 1, k ÿ 1) \ H)

� P(A(nÿ 1, k ÿ 1))P(H) � pk q nÿk nÿ 1

k ÿ 1

� �
:

By its construction you can see that the negative binomial distribution tends to crop up

when you are waiting for a collection of things. For instance

Example 4.4.1: krakens. Each time you lower your nets you bring up a kraken with

probability p. What is the chance that you need n ®shing trips to catch k krakens? The

answer is given by (7). s

We can derive this distribution by conditioning also. Let p(n, k) be the probability that

you require n ¯ips to obtain k heads; let F(n, k) be the event that the kth head occurs at

the nth ¯ip. Then, noting that the ®rst ¯ip yields either H or T, we have
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p(n, k) � P(F(n, k))

� P(F(n, k)jH ) p� P(F(n, k)jT )q

But reasoning as above shows that

P(F(n, k)jH ) � p(nÿ 1, k ÿ 1)

and

P(F(n, k)jT ) � p(nÿ 1, k):

Hence

p(n, k) � pp(nÿ 1, k ÿ 1)� qp(nÿ 1, k):(8)

Since this equation is the same as (3) it is not surprising that the answer involves the same

binomial coef®cients.

Exercises for section 4.4

1. Use the recursion given in (4) to calculate the 11 terms in the binomial distribution for

parameters 10 and 1
2
, namely B(10, 1

2
).

2. Let ( p(k); 0 < k < n) be the binomial B(n, p) distribution. Show that

fp(k)g2 > p(k � 1) p(k ÿ 1) for all k:

3. Let ( p(k); 0 < k < n) be the binomial B(n, p) distribution and let ( p̂(k); 0 < k < n) be the

binomial B(n, 1ÿ p) distribution. Show that

p(k) � p̂(nÿ k):

Interpret this result.

4. Check that the distribution in (7) satis®es (8).

4.5 SAMPLING

A problem that arises in just about every division of science and industry is that of

counting or assessing a divided population. This is a bit vague, but a few examples should

make it clear.

Votes. The population is divided into those who are going to vote for the Progressive

party and those who are going to vote for the Liberal party. The politician would like to

know the proportions of each.

Soap. There are those who like `Soapo' detergent and those who do not. The

manufacturers would like to know how many of each there are.

Potatoes. Some plants are developing scab, and others are not. The farmer would like

to know the rate of scab in his crop.

Chips. These are perfect or defective. The manufacturer would like to know the

failure rate.

Fish. These are normal, or androgynous due to polluted water. What proportion are

deformed?
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Turkeys. A ®lm has been made. The producers would like to know whether viewers

will like it or hate it.

It should now be quite obvious that in all these cases we have a population or collection

divided into two distinct non-overlapping classes, and we want to know how many there

are in each. The list of similar instances could be prolonged inde®nitely; you should think

of some yourself.

The examples have another feature in common: it is practically impossible to count all

the members of the population to ®nd out the proportion in the two different classes. All

we can do is look at a part of the population, and try to extrapolate to the whole of it.

Naturally, some thought and care is required here. If the politician canvasses opinion in

his own of®ce he is not likely to get a representative answer. The farmer might get a

depressing result if he looked only at plants in the damp corner of his ®eld. And so on.

After some thought, you might agree that a sensible procedure in each case would be to

take a sample of the population in such a way that each member of the population has an

equal chance of being sampled. This ought to give a reasonable snapshot of the situation;

the important question is, how reasonable? That is, how do the properties of the sample

relate to the composition of the population? To answer this question we build a

mathematical model, and use probability.

The classical model is an urn containing balls (or slips of paper). The number of balls

(or slips) is the size of the population, the colour of the ball (or slip) denotes which group

it is in. Picking a ball at random from the urn corresponds to choosing a member of the

population, every member having the same chance to be chosen.

Having removed one ball, we are immediately faced with a problem. Do we put it back

or keep it out before the next draw? The answer to this depends on the real population

being studied. If a ®sh has been caught and dissected, it cannot easily be put back in the

pool and caught again. But voters can be asked for their political opinions any number of

times. In the ®rst case balls are not replaced in the urn, so this is sampling without

replacement. In the second case they are; so that is sampling with replacement. Let us

consider an example of the latter.

Example 4.5.1: replacement. A park contains b� g animals of a large and danger-

ous species. There are b of the ®rst type and g of the second type. Each time a ranger

observes one of these animals he notes its type. There is no question of tagging such a

dangerous beast, so this is sampling with replacement. The probability that any given

observation is of the ®rst type is b=(b� g), and of the second g=(b� g). If there are n

such observations, assumed independent, then this amounts to n Bernoulli trials, and the

distribution of the numbers of each type seen is binomial:

P(observe k of the first type) � b

b� g

� �k
g

b� g

� �nÿk n

k

� �
: s(1)

Next we consider sampling without replacement.

Example 4.5.2: no replacement; hypergeometry. Our next example of this kind of

sampling distribution arises when there are two types of individual and sampling is

without replacement. To be explicit, we suppose an urn contains m mauve balls and w
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white balls. A sample of r balls is removed at random; what is the probability p(k) that it

includes exactly k mauve balls and r ÿ k white balls?

Solution. There are

m� w

r

� �
ways of choosing the r balls to be removed; these are equally likely since they are

removed at random. To ®nd p(k) we need to know the number of ways of choosing the k

mauve balls and the r ÿ k white balls. But this is just

m

k

� �
w

r ÿ k

� �
,

using the product rule for counting. Hence

p(k) �
m

k

� �
w

r ÿ k

� �
m� w

r

� � , 0 < k < r:(2)

It is easy to show, by expanding all the binomial coef®cients as factorials, that this can be

written as

p(k) �
w

r

� �
m� w

r

� � r

k

� �
m

k

� �
wÿ r � k

k

� � :(3)

This may not seem to be a very obvious step but, as it happens, the series

H �
X1
k�0

r

k

� �
m

k

� �
wÿ r � k

k

� � xk(4)

de®nes a very famous and well-known function. It is the hypergeometric function, which

was extensively studied by Gauss in 1812, and before him by Euler and Pfaff. It has

important applications in mathematical physics and engineering.

For this reason the distribution (3) is called the hypergeometric distribution. We

conclude with a typical application of this. s

Example 4.5.3: wildlife sampling. Naturalists and others often wish to estimate the

size N of a population of more or less elusive creatures. (They may be nocturnal, or

burrowing, or simply shy.) A simple and popular method is capture±recapture, which is

executed thus:

(i) capture a animals and tag (or mark) them;

(ii) release the a tagged creatures and wait for them to mix with the remaining N ÿ a;

(iii) capture n animals and count how many are already tagged (these are recaptures).
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Clearly the probability of ®nding r recaptures in your second group of n animals is

hypergeometric:

p(r) � a

r

� �
N ÿ a

nÿ r

� ��
N

n

� �
:(5)

Now it can be shown (exercise) that the value of N for which p(r) is greatest is the

integer nearest to an=r. Hence this is a plausible estimate of the unknown population size

N , where r is what you actually observe.

This technique has also been used to estimate the number of vagrants in large cities,

and to investigate career decisions among doctors. s

Exercises for section 4.5

1. Capture recapture. Show that in (5), p(r) is greatest when N is the integer nearest to na=r.

2. Acceptance sampling. A shipment of components (called a lot) arrives at your factory. You

test their reliability as follows. For each lot of 100 components you take 10 at random, and test

these. If no more than one is defective you accept the lot. What is the probability that you accept

a lot of size 100 which contains 7 defectives?

3. In (5), show that p(r � 1) p(r ÿ 1) < fp(r)g2.

4.6 LOCATION AND DISPERSION

Suppose we have some experiment, or other random procedure, that yields outcomes in

some ®nite set of numbers D, with probability distribution p(x), x 2 D. The following

property of a distribution turns out to be of great practical and theoretical importance.

De®nition. The mean of the distribution p(x) is denoted by ì, where

ì �
X
x2D

xp(x):(1)

The mean is simply a weighted average of the possible outcomes in D; it is also known as

the expectation. n

Natural questions are, why this number, and why is it useful? We answer these queries

shortly; ®rst of all let us look at some simple examples.

Example 4.6.1: coin. Flip a fair coin and count the number of heads. Trivially

Ù � f0, 1g, and p(0) � 1
2
� p(1). Hence the mean is

ì � 1
2

3 0� 1
2

3 1 � 1
2
:

This example is truly trivial, but it does illustrate that the mean is not necessarily one of

the possible outcomes of the experiment. In this case the mean is half a head. (Journalists

and others with an impaired sense of humour sometimes seek to ®nd amusement in this;

the average family size will often achieve the same effect, as it involves fractional

children. Of course real children are fractious not fractions . . .) s
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Example 4.6.2: die. If you roll a die once, the outcome has distribution p(x) � 1
6
,

1 < x < 6. Then

ì � 1
6

3 1� 1
6

3 2� 1
6

3 3� 1
6

3 4� 1
6

3 5� 1
6

3 6 � 7
2
: s

Example 4.6.3: craps. If you roll two dice, then the distribution of the sum of their

scores is given in Figure 4.6. After a simple but tedious calculation you will ®nd that

ì � 7. s

At ®rst sight the mean, ì, may not seem very useful or fascinating, but there are in fact

many excellent reasons for our interest in it. Here are some of them.

Mean as value. In our discussions of probability in chapter 1, we considered the

value of an offer of $d with probability p or nothing with probability 1ÿ p. It is clear

that the fair value of what you expect to get is $dp, which is just the mean of this

distribution.

Likewise if you have a number of disjoint offers (or bets) such that you receive $x with

probability p(x), as x ranges over some ®nite set, then the fair value of this is just $ì,

where

ì �
X

x

xp(x),

is the mean of the distribution.

Sample mean and relative frequency. Suppose you have a number n of similar

objects, n potatoes, say, or n hedgehogs. You could then measure any numerical attribute

(such as spines, or weight, or length), and obtain a collection of observations

fx1, x2, . . . , xng. It is widely accepted that the average

x � 1

n

Xn

r�1

xr

is a reasonable candidate for a single number to represent or typify this collection of

measurements. Now suppose that some of these numbers are the same, as they often will

be in a large set of data. Let the number of times you obtain the value x be N (x); thus the

proportion yielding x is

P(x) � N (x)

n
:

We have argued above that, in the long run, P(x) is close to the probability p(x) that x

occurs. Now the average x satis®es

x � nÿ1(x1 � � � � � xn) � nÿ1
X

x

xN (x) �
X

x

xP(x) '
X

x

xp(x) � ì,

approximately, in the long run. It is important to remark that we can give this informal

observation plenty of formal support, later on.

Mean as centre of gravity. We have several times made the point that probability is

analogous to mass; we have a unit lump of probability, which is then split up among the
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outcomes in D to indicate their respective probabilities. Indeed this is often called a

probability mass distribution.

We may represent this physically by the usual histogram, with bars of uniform unit

density. Where then is the centre of gravity of this distribution? Of course, it is at the

point ì given by

ì �
X

xp(x):

The histogram, or distribution, is in equilibrium if placed on a fulcrum at ì. See ®gure

4.7.

Here are some further examples of means.

Example 4.6.4: sample mean. Suppose you have n lottery tickets bearing the

numbers x1, x2, . . . , xn (or perhaps you have n swedes weighing x1, x2, . . . , xn); one of

these is picked at random. What is the mean of the resulting distribution?

Of course we have the probability distribution

p(x1) � p(x2) � � � � � nÿ1

and so

ì �
X

xp(x) � nÿ1
Xn

r�1

xr � x:

The sample mean is equal to the average. s

Example 4.6.5: binomial mean. By de®nition (1), the mean of the binomial distribu-

tion is given by

ì �
Xn

k�0

kp(k) �
Xn

k�1

k
n!

k!(nÿ k)!
pk q nÿk

� np
Xn

k�1

(nÿ 1)!

(k ÿ 1)!(nÿ k)!
pkÿ1q nÿk � np

Xnÿ1

x�0

nÿ 1

x

� �
pxq nÿ1ÿx

� np( p� q)nÿ1

� np:

We shall ®nd neater ways of deriving this important result in the next chapter. s

µ

Figure 4.7. Mean as centre of gravity.
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Example 4.6.6: geometric mean. As usual, from (1) the mean of the geometric

distribution is

ì �
X1
k�1

kq kÿ1 p � p

(1ÿ q)2

� pÿ1:

Note that we summed the series by looking in appendix 3.12.III. s

These examples, and our discussion, make it clear that the mean is useful as a guide to

the location of a probability distribution. This is convenient for simple-minded folk such

as journalists (and the media in general); if you are replying to a request for information

about accident rates, or defective goods, or lottery winnings, it is pointless to supply the

press with a distribution; it will be rejected. You will be allowed to use at most one

number; the mean is a simple and reasonably informative candidate.

Furthermore, we shall ®nd many more theoretical uses for it later on. But it does have

drawbacks, as we now discover; the keen-eyed reader will have noticed already that while

the mean tells you where the centre of probability mass is, it does not tell you how spread

out or dispersed the probability distribution is.

Example 4.6.7. In a casino the following bets are available for the same price (a

price greater than $1000).

(i) You get $1000 for sure.

(ii) You get $2000 with probability 1
2
, or nothing.

(iii) You get $106 with probability 10ÿ3, or nothing.

Calculating the mean of these three distributions we ®nd

For (i), ì � $1000.

For (ii), ì � 1
2

3 $2000� 1
2

3 $0 � $1000.

For (iii), ì � 10ÿ3 3 $106 � (1ÿ 10ÿ3) 3 $0 � $1000.

Thus all these three distributions have the same mean, namely $1000. But obviously they

are very different bets! Would you be happy to pay the same amount to play each of these

games? Probably not; most people would prefer one or another of these wagers, and your

preference will depend on how rich you are and whether you are risk-averse or risk-

seeking. There is much matter for speculation and analysis here, but we note merely the

trivial point that these three distributions vary in how spread out they are about their

mean. That is to say, (i) is not spread out at all, (ii) is symmetrically disposed not too far

from its mean and (iii) is very spread out indeed. s

There are various ways of measuring such a dispersion, but it seems natural to begin by

ignoring the sign of deviations from the mean ì, and just looking at their absolute

magnitude, weighted of course by their probability. It turns out that the algebra is much

simpli®ed in general if we use the following measure of dispersion in a probability

distribution.
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De®nition. The variance of the probability distribution p(x) is denoted by ó 2, where

ó 2 �
X
x2D

(xÿ ì)2 p(x): n(2)

The variance is a weighted average of the squared distance of outcomes from the mean; it

is sometimes called the second moment about the mean because of the analogy with mass

mentioned often above.

Example 4.6.7 revisited. For the three bets on offer it is easy to ®nd the variance in

each case:

For (i), ó 2 � 0.

For (ii), ó 2 � 1
2
(0ÿ 1000)2 � 1

2
(2000ÿ 1000)2 � 106.

For (iii), ó 2 � (1ÿ 10ÿ3)(0ÿ 103)2 � 10ÿ3(106 ÿ 103)2 ' 109.

Clearly, as the distribution becomes more spread out ó 2 increases dramatically. s

In order to keep the same scale, it is often convenient to use ó rather than ó 2.

De®nition. The positive square root ó of the variance ó 2 is known as the standard

deviation of the distribution. n

ó �
��������������������������������X
x2D

(xÿ ì)2 p(x)

s
:(3)

Let us consider a few simple examples.

Example 4.6.8: Bernoulli trial. Here,

p(k) � pk(1ÿ p)1ÿk , k � 0, 1,

ì � p 3 1� (1ÿ p) 3 0 � p,

and

ó 2 � (1ÿ p)2 p� (0ÿ p)2(1ÿ p) � p(1ÿ p):

Thus

ó � fp(1ÿ p)g1=2: s

Example 4.6.9: dice. Here

p(k) � 1
6
, 1 < k < 6,

ì �
X6

k�1

1
6
k � 7

2
,

and

ó 2 �
X6

k�1

1
6

k ÿ 7
6

ÿ �
2 � 35

12
,

after some arithmetic. Hence ó ' 1:71. s
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Example 4.6.10. Show that for any distribution p(x) with mean ì and variance ó 2

we have

ó 2 �
X
x2D

x2 p(x)ÿ ì2:

Solution. From the de®nition,

ó 2 �
X
x2D

(x2 ÿ 2xì� ì2) p(x)

�
X
x2D

x2 p(x)ÿ 2ì
X
x2D

xp(x)� ì2
X
x2D

p(x)

�
X
x2D

x2 p(x)ÿ 2ì2 � ì2

as required. s

We end this section with a number of remarks.

Remark: good behaviour. When a probability distribution is assigned to a ®nite

collection of real numbers, the mean and variance are always well behaved. However, for

distributions on an unbounded set (the integers for example), good behaviour is not

guaranteed. The mean may be in®nite, or may even not exist. Here are some examples to

show what can happen.

Example 4.6.11: distribution with no mean. Let

p(x) � c

x2
, x � �1, �2, . . . :

Since X1
x�1

1

x2
� ð2

6
,

it follows that c � 3=ð2, because
P

p(x) � 1. Now
P1

x�1xp(x) � 1 and ÿPÿ1x�ÿ1xp(x)

� 1, so the mean ì does not exist. s

Example 4.6.12: distribution with in®nite mean. Let

p(x) � 2c

x2
, x > 1:

Then as in example 4.6.11 we have

ì �
X1
x�1

2c

x
� 1: s

Example 4.6.13: distribution with ®nite mean but in®nite variance. Let

p(x) � c

x3
, x � �1, �2, . . . :
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where cÿ1 �Px 6�0xÿ3. Then ÿPÿ1x�ÿ1xp(x) �P1x�1xp(x) � 1
6
cð2. Hence ì � 0. How-

ever,

ó 2 �
X

x2 p(x) �
X1
x�1

2c

x
� 1: s

Remark: median and mode. We have seen in examples 4.6.11 and 4.6.12 above that

the mean may not be ®nite, or even exist. Nevertheless in these examples (and many

similar cases) we would like a rough indication of location. Luckily, some fairly obvious

candidates offer themselves. If we look at example 4.6.11 we note that the distribution is

symmetrical about zero, and the values �1 are considerably more likely than any others.

These two observations suggest the following two ideas.

De®nition: median. Let p(x), x 2 D, be a distribution. If m is any number such thatX
x<m

p(x) > 1
2

and
X
x>m

p(x) > 1
2

then m is a median of the distribution. n

De®nition: mode. Let p(x), x 2 D, be a distribution. If ë 2 D is such that

p(ë) > p(x) for all x in D

then ë is said to be a mode of the distribution. n

Roughly speaking, outcomes are equally likely to be on either side of a median, and the

most likely outcomes are modes.

Example 4.6.11 revisited. Here any number in [ÿ1, 1] is a median, and �1 are both

modes. (Remember there is no mean for this distribution.) s

Example 4.6.12 revisited. Here �1 is the only mode, and it is also the only median

because 6=ð2 . 1=2. (Remember that ì � 1 in this case.) s

Example 4.6.14. Let p(x) be the geometric distribution

p(x) � (1ÿ p) pxÿ1, x > 1, 0 , p , 1;

then ë � 1. Further, let

m � min x: 1ÿ px > 1
2

� 	
:

If 1ÿ pm . 1
2
, then m is the unique median. If 1ÿ pm � 1

2
, then the interval [m, m� 1]

is the set of medians. We have shown already that the mean ì is (1ÿ p)ÿ1. s

Remark: mean and median. It is important to stress that the mean is only a crude

summary measure of the distribution. It tells you something about the distribution of

probability, but not much. In particular it does not tell you thatX
x . ì

p(x) � 1
2
:
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This statement is false in general, but is nevertheless widely believed in a vague

unfocused way. For example, research has shown that many people will agree with the

following statement:

If the average lifespan is 75 years, then it is an evens chance that any newborn

infant will live for more than 75 years.

This is not true, because the mean is not in general equal to the median. It is true that the

mean ì and median m are quite close together when the variance is small. In fact it can

be shown that

(ìÿ m)2 < ó 2

where ó 2 is the variance of the distribution.

Exercises for section 4.6

1. Uniform distribution. Let p(k) � nÿ1, 1 < k < n. Show that ì � 1
2
(n� 1), and ó 2 �

1
12

(n2 ÿ 1).

2. Binomial variance. Let

p(k) � n

k

� �
pk(1ÿ p)nÿk , 0 < k < n:

Show that ó 2 � np(1ÿ p).

3. Geometric variance. When p(k) � q kÿ1 p, k > 1, show that ó 2 � qpÿ2.

4. Poisson mean. Let p(k) � ëk eÿë=k!. Show that ì � ë.

5. Benford. Show that the expected value of the ®rst signi®cant digit in (for example) census

data is 3.44, approximately. (See example 4.2.3 for the distribution.)

4.7 APPROXIMATIONS: A FIRST LOOK

At this point the reader may observe this expanding catalogue of different distributions

with some dismay. Not only are they too numerous to remember with enthusiasm, but

many comprise a tiresomely messy collection of factorials that promise tedious calcula-

tions ahead.

Fortunately, things are not as bad as they seem because, for most practical purposes,

many of the distributions we meet can be effectively approximated by much simpler

functions. Let us recall an example to illustrate this.

Example 4.7.1: polling voters. Voters belong either to the red party or the green

party. There are r reds, g greens, and v � r � g voters altogether. You take a random

sample of size n, without asking any voter twice. Let Ak be the event that your sample

includes k greens. This is sampling without replacement, and so of course from (2) of

section 4.5 you know that
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P(Ak) � g

k

� �
r

nÿ k

� ��
g � r

n

� �
,(1)

a hypergeometric distribution. This formula is rather disappointing, as calculating it for

many values of the parameters is going to be dull and tedious at best. And results are

unlikely to appear in a simple form.

However, it is often the case that v, g, and r are very large compared with k and n.

(Typically n might be 1000, while r and g are in the millions.) In this case if we set

p � g=v, q � 1ÿ p � r=v

and remember that k=v and n=v are very small, we can argue as follows. For ®xed n and

k, as v, g and r becomes increasingly large,

g ÿ 1

v
! p, . . . ,

g ÿ k � 1

v
! p

vÿ k � 1

v
! 1,

r ÿ n� k � 1

v
! q,

and so on. Hence

P(Ak) � g!

k!(g ÿ k)!

r!

(nÿ k)!(r ÿ n� k)!

n!(r � g ÿ n)!

(r � g)!
(2)

�
n

k

 !
g

v

� �
� � � g ÿ k � 1

v

� �( )

3
r

v

� �
� � � r ÿ n� k � 1

v

� �( )
v

v

� �
� � � vÿ n� 1

v

� �( )

'
n

k

 !
pk q nÿk

for large r, g, and v. Thus in these circumstances the hypergeometric distribution is very

well approximated by the binomial distribution, for many practical purposes. s

This is very pleasing, but we can often go further in many cases.

Example 4.7.2: rare greens. Suppose in the above example that there are actually

very few greens; naturally we need to make our sample big enough to have a good chance

of registering a reasonable number of them. Now if g, and hence p, are very small, we

have

P(A1) � np(1ÿ p)nÿ1:(3)

For this to be a reasonable size as p decreases we must increase n in such a way that np

stays at some desirable constant level, ë say.

In this case, if we set np � ë, which is ®xed as n increases, we have as n!1
1ÿ 1

n

� �
! 1, . . . , 1ÿ k ÿ 1

n
! 1,

(1ÿ p)k � 1ÿ ë

n

� �k

! 1,
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and

(1ÿ p)n � 1ÿ ë

n

� �n

! eÿë:

Hence

P(Ak) � n

k

� �
pk(1ÿ p)nÿk(4)

� 1ÿ ë

n

� �n
n

k

� �
ë

n

� �k

1ÿ ë

n

� �ÿk

� 1ÿ ë

n

� �n
ëk

k!
1ÿ 1

n

� �
� � � 1ÿ k ÿ 1

n

� �
1ÿ ë

n

� �k

! eÿë
ëk

k!
, as n!1:

This is called the Poisson distribution. We should check that it is a distribution; it is,

since each term is positive and

eë �
X1
k�0

ëk=k!:

It is so important that we devote the next section to it, giving a rather different

derivation. s

Exercise for section 4.7

1. Mixed sampling. A lake contains g gudgeon and r roach. You catch a sample of size n, on

the understanding that roach are returned to the lake after being recorded, whereas gudgeon are

retained in a keep-net. Find the probability that your sample includes k gudgeon. Show that as r

and g increase in such a way that g=(r � g)! p, the probability distribution tends to the

binomial.

4.8 SPARSE SAMPLING; THE POISSON DISTRIBUTION

Another problem that arises in almost every branch of science is that of counting rare

events. Once again, this slightly opaque statement is made clear by examples.

Meteorites. The Earth is bombarded by an endless shower of meteorites. Rarely, they

hit the ground. It is natural to count how many meteorite-strikes there are on some patch

of ground during a ®xed period. (For example: on your house, while you are living there.)

Accidents. Any stretch of road, or road junction, is subject to the occasional accident.

How many are there in a given stretch of road? How many are there during a ®xed period

at some intersection?

Misprints. An unusually good typesetter makes a mistake very rarely. How many are

there on one page of a broadsheet newspaper? How many does she make in a year?
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Currants. A frugal baker adds a small packet of currants to his batch of dough. How

many currants are in each bun? How many in each slice of currant loaf?

Clearly this is another list which could be extended inde®nitely. You have to think only

for a moment of the applications to counting: colonies of bacteria on a dish; ¯aws in a

carpet; bugs in a program; earwigs in your dahlias; daisy plants in your lawn; photons in

your telescope; lightning strikes on your steeple; wasps in your beer; mosquitoes on your

neck; and so on.

Once again we need a canonical example that represents or acts as a model for all the

rest. Tradition is not so in¯exible in this case (we are not bound to coins and urns as we

were above). For a change, we choose to count the meteorites striking Bristol during a

time period of length t, [0, t], say.

The period is divided up into n equal intervals; as we make the intervals smaller

(weeks, days, seconds, . . .), the number n becomes larger. We assume that the intervals

are so small that the chance of two or more strikes in the same interval is negligible.

Furthermore meteorites take no account of our calendar, so it is reasonable to suppose

that strikes in different intervals are independent, and that the chance of a strike is the

same for each of the n intervals, p say. (A more advanced model would take into account

the fact that meteorites sometimes arrive in showers.) Thus the total number of strikes in

the n intervals is the same as the number of successes in n Bernoulli trials, with

distribution

p(k) � n

k

� �
pk(1ÿ p)nÿk , 0 < k < n,

which is binomial. These assumptions are in fact well supported by observation.

Now obviously p depends on the size of the interval; there must be more chance of a

strike during a month than during a second. Also it seems reasonable that if p is the

chance of a strike in one minute, then the chance of a strike in two minutes should be

about 2 p, and so on. This amounts to the assumption that np=t is a constant, which we

call ë. So

np � ët:

Thus as we increase n and decrease p so that ët is ®xed, we have exactly the situation

considered in example 4.7.2, with ë replaced by ët. Hence, as n!1,

P(k strikes in [0, t])! eÿë t(ët)k

k!
,

the Poisson distribution of (4) in section 4.7.

The important point about the above derivation is that it is generally applicable to many

other similar circumstances. Thus, for example, we could replace `meteorites' by

`currants' and `the interval [0, t]' by `the cake'; the `n divisions of the interval' then

become the `n slices of the cake', and we ®nd that a fruit cake made from a large batch of

well-mixed dough will contain a number of currants with a Poisson distribution, approxi-

mately.

The same argument has yielded approximate Poisson distributions observed for ¯ying

bomb hits on London in 1939±45, soldiers disabled by horse-kicks in the Prussian

Cavalry, accidents along a stretch of road, and so on. In general, rare events that occur
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independently but consistently in some region of time or space, or both, will often follow

a Poisson distribution. For this reason it is sometimes called the law of rare events.

Notice that we have to count events that are isolated, that is to say occur singly, because

we have assumed that only one event is possible in a short enough interval. Therefore we

do not expect the number of people involved in accidents at a junction to have a simple

Poisson distribution, because there may be several in each vehicle. Likewise the number

of daisy ¯owers in your lawn may not be Poisson, because each plant has a cluster of

¯owers. And the number of bacteria on a Petri dish may not be Poisson, because the

separate colonies form tightly packed groups. The colonies, however, may well have an

approximately Poisson distribution.

We have come a long way from the hypergeometric distribution but, surprisingly, we

can go further still. It will turn out that for large values of the parameter ë, the Poisson

distribution can be usefully approximated by an even more important distribution, the

normal distribution. But this lies some way ahead.

Exercises for section 4.8

1. A cook adds 200 chocolate chips to a batch of dough, and makes 40 biscuits. What is the

approximate value of the probability that a random biscuit has

(a) at least 4 chips?

(b) no chips?

2. A jumbo jet carries 400 passengers. Any passenger independently fails to show up with

probability 10ÿ2. If the airline makes 404 reservations, what is the probability that it has to

bump at least one passenger?

3. Find the mode of the Poisson distribution

p(x) � ëxeÿë=x!, x > 0:

Is it always unique?

4.9 CONTINUOUS APPROXIMATIONS

We have seen above that, in many practical situations, complicated and unwieldy

distributions can be usefully replaced by simpler approximations; for example, sometimes

the hypergeometric distribution can be approximated by a binomial distribution; this in

turn can sometimes approximated by a Poisson distribution. We are now going to extend

this idea even further.

First of all consider an easy example. Let X be the number shown by a fair n-faced die.

Thus X has a uniform distribution on f1, . . . , ng, and its distribution function is shown

in Figure 4.8, for some large unspeci®ed value of n.

Now if you were considering this distribution for large values of n, and sketched it

many times everyday, you would in general be content with the picture in Figure 4.9.

The line

y � x

n
, 0 < x < n(1)

is a very good approximation to the function
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F(x) � [x]

n
,(2)

(recall that [x] means `the integer part of x') as is obvious from the ®gures. Indeed, for

all x

jyÿ F(x)j �
���� x

n
ÿ [x]

n

���� <
1

n
,

so if we use the approximation to calculate probabilities, we ®nd that we have

P(a , X < b) ' b

n
ÿ a

n
,

where the exact result is

P(a , X < b) � [b]

n
ÿ [a]

n
:

The difference between the exact and approximate answers is always less than 2=n, which

may be negligible for large n. The function y � x=n is an excellent continuous approxi-

mation to F(x) for large n.

We can also consider a natural continuous approximation to the actual discrete

distribution

p(k) � 1

n
, 1 < k < n,

…

n x
0

1

y

Figure 4.8. The uniform distribution function y � P(X < x) � [x]=n.

n x
0

1

y

Figure 4.9. The line y � x=n provides a reasonable approximation to ®gure 4.8.
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when p(k) is displayed as a histogram; see ®gure 4.10. Clearly the constant function

y9 � 1

n
, 0 < x < n,

®ts p(k) exactly. Now remember that

F(x) �
X
k<x

p(k),

so that F(x) is just the area under the histogram to the left of x. It is therefore important

to note also that y � x=n is the area under y9 � 1=n to the left of x, as we would wish.

Even neater results are obtained by scaling X by a factor of n; that is to say, we write

P a ,
X

n
< b

� �
� [nb]

n
ÿ [na]

n

exactly, and then de®ne U (x) � x and u(x) � 1, for 0 < x < 1. Then for large n

P a ,
X

n
< b

� �
' bÿ a(3)

� U (b)ÿ U (a):

In particular note that when h is small this gives

P x ,
X

n
< x� h

� �
' h � u(x)h:

The uniform distribution is so simply dealt with as to be almost dull. Next let us

consider a much more important and interesting case. The geometric distribution

p(k) � p(1ÿ p)kÿ1, k > 1,(4)

arose when we looked at the waiting time X for a success in a sequence of Bernoulli

trials. Once again we consider two ®gures. Figure 4.11 shows the distribution function

P(X < x) � F(x) �
Xx

k�1

p(k) � 1ÿ (1ÿ p)x, x > 1,

for a reasonably small value of p. Figure 4.12 shows what you would be content to sketch

in general, to gain a good idea of how the distribution behaves. We denote this curve by

E(x).

It is not quite so obvious this time what E(x) actually is, so we make a simple

calculation.

Let p � ë=n, where ë is ®xed and n may be as large as we please. Now for any ®xed x

. . .

1 2 n k

p(k)

1
n

Figure 4.10. Histogram of the uniform discrete distribution p(k) � 1=n, 1 < k < n.
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we can proceed as follows:

P(X . nx) � P(X . [nx])(5)

� 1ÿ F([nx]) � (1ÿ p)[nx]

� 1ÿ ë

n

� �[nx]

' eÿëx

for large values of n, corresponding to small values of p.

Thus in this case the function

E(x) � 1ÿ eÿëx, x > 0,(6)

provides a good ®t to the discrete distribution

F([nx]) � 1ÿ 1ÿ ë

n

� �[nx]

:(7)

Once again we can use this to calculate good simple approximations to probabilities.

. . .
1

0

y

x

Figure 4.12. The function y � E(x) provides a reasonable approximation to ®gure 4.11.

. . .

10

1

2 3 4 5 x

y

Figure 4.11. The geometric distribution function y(x) � P(X < x) �P[x]
k�1 p(k) � 1ÿ (1ÿ p)[x].
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Thus

P a ,
X

n
< b

� �
� (1ÿ p)[na] ÿ (1ÿ p)[nb](8)

� 1ÿ ë

n

� �[na]

ÿ 1ÿ ë

n

� �[nb]

' eÿëa ÿ eÿëb

� E(b)ÿ E(a):

It can be shown that, for some constant c,���� 1ÿ ë

n

� �[na]

ÿeÿëa

���� <
c

n

so this approximation is not only simple, it is close to the correct expression for large n.

Just as for the uniform distribution, we can obtain a natural continuous approximation

to the actual discrete distribution (3), when expressed as a histogram.

From (8) we have, for small h,

P a ,
X

n
< a� h

� �
' eÿëa ÿ eÿë(aÿh) ' ëeÿëa h:

Thus, as Figure 4.13 and (8) suggest, the distribution (3) is well ®tted by the curve

e(x) � ëeÿëx:

Again, just as F(x) is the area under the histogram to the left of x, so also does E(x) give

the area under the curve e(x) to the left of x.

These results, though interesting, are supplied mainly as an introduction to our

principal task, which is to approximate the binomial distribution. That we do next, in

section 4.10.

Exercise for section 4.9

1. You roll two fair dice each having n sides. Let X be the absolute value of the difference between

their two scores. Show that

p(k) � P(X � k) � 2(nÿ k)

n2
, 1 < k < n:

. . .
. . .1 2 3 4 k

p(k)

Figure 4.13. Histogram of the geometric distribution p(k) � q kÿ1 p, together with the continuous
approximation y � ëeÿëx (broken line).
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Find functions T (x) and t(x) such that for large n

P a ,
X

n
< b

� �
' T (b)ÿ T (a),

and for small h

P x ,
X

n
< x� h

� �
' t(x)h:

4 .10 BINOMIAL DISTRIBUTIONS AND THE NORMAL

APPROXIMATION

Let us summarize what we did in section 4.9. If X is uniform on f1, 2, . . . , ng, then we

have functions U(x) and u(x) such that for large n

P
X

n
< x

� �
' U (x) � x

and for small h

P x ,
X

n
< x� h

� �
' u(x)h � h, 0 < x < 1:

Likewise if X is geometric with parameter p, then we have functions E(x) and e(x) such

that for large n, and np � ë,

P
X

n
< x

� �
' E(x) � 1ÿ eÿëx,

and for small h

P x ,
X

n
< x� h

� �
' e(x)h � ëeÿëx h, x . 0:

Of course the uniform and geometric distributions are not very complicated, so this seems

like hard work for little reward. The rewards come, though, when we apply the same ideas

to the binomial distribution

P(X � k) � n

k

� �
pk q nÿk , p� q � 1,(1)

with mean ì � np and variance ó 2 � npq (you showed this in exercise 2 of section 4.6).

In fact we shall see that, when X has the binomial distribution B(n, p) (see (1) of

section 4.4), there are functions Ö(x) and ö(x) such that for large n

P
X ÿ ì

ó
< x

� �
' Ö(x)(2)

and for small h

P x ,
X ÿ ì

ó
< x� h

� �
' ö(x)h(3)

where

ö(x) � (2ð)ÿ1=2eÿx2=2, ÿ1, x ,1:(4)

That is to say, the functions Ö(x) and ö(x) play the same role for the binomial distribution
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as U (x), u(x), E(x), and e(x) did for the uniform and geometric distributions respectively.

And Ö(x) gives the area under the curve ö(x) to the left of x; see ®gure 4.14.

This is one of the most remarkable and important results in the theory of probability; it

was ®rst shown by de Moivre. A natural question is, why is the result so important that de

Moivre expended much effort proving it, when so many easier problems could have

occupied him?

The most obvious motivating problem is typi®ed by the following. Suppose you

perform 106 Bernoulli trials with P(S) � 1
2
, and for some reason you want to know the

probability á that the number of successes lies between a � 500 000 and b � 501 000.

This probability is given by

á �
Xb

k�a

106

k

� �
2ÿ106

:(5)

Calculating á is a very unattractive prospect indeed; it is natural to ask if there is any

hope for a useful approximation. Now, a glance at the binomial diagrams in section 4.4

shows that there is some hope. As n increases, the binomial histograms are beginning to

get closer and closer to a bell-shaped curve. To a good approximation, therefore, we

might hope that adding up the huge number of small but horrible terms in (5) could be

replaced by ®nding the appropriate area under this bell-shaped curve; if the equation of

the curve were not too dif®cult, this might be an easier task. It turns out that our hope is

justi®ed, and there is such a function. The bell-shaped curve is the very well-known

function

f (x) � 1

(2ð)1=2ó
exp ÿ 1

2

xÿ ì

ó

� �2
( )

:(6)

This was ®rst realized and proved by de Moivre in 1733. He did not state his results in

this form, but his conclusions are equivalent to the following celebrated theorem.

Normal approximation to the binomial distribution. Let the number of successes in

n Bernoulli trials be X . Thus X has a binomial distribution with mean ì � np and

variance ó 2 � npq, where p� q � 1, as usual. Then there are functions Ö(x) and ö(x),

where ö(x) is given in (4), such that, for large n,

0 xy

φ(x)

Figure 4.14. The normal function ö(x) � (2ð)ÿ
1
2 exp ÿ1

2
x2

ÿ �
. The shaded area is Ö(y) �� y

ÿ1 ö(x) dx. Note that ö(ÿx) � ö(x) and Ö(ÿx) � 1ÿÖ(x).
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P(a , X < b) ' Ö
bÿ ì

ó

� �
ÿÖ

aÿ ì

ó

� �
(7)

and

P(a , X < a� 1) ' 1

ó
ö

aÿ ì

ó

� �
:(8)

Alternatively, as we did in (4.9), we can scale X and write (7) and (8) in the equivalent

forms

P a ,
X ÿ ì

ó
< b

� �
' Ö(b)ÿÖ(a)(9)

and, for small h,

P a ,
X ÿ ì

ó
< a� h

� �
' hö(a):(10)

As in our previous examples, Ö(x) supplies the area under ö(x), to the left of x; there are

tables of this function in many books on probability and statistics (and elsewhere), so that

we can use the theorem in practical applications. Table 4.1 lists Ö(x) and ö(x) for some

half-integer values of x.

We give a sketch proof of de Moivre's theorem later on, in section 4.15; for the moment

let us concentrate on showing how useful it is. For example, consider the expression (5)

above for á. By (7), to use the normal approximation we need to calculate

ì � np � 500 000

and

ó � (npq)1=2 � 500:

Now de Moivre's theorem says that, approximately,

á � Ö(2)ÿÖ(0)(11)

' 0:997ÿ 0:5

� 0:497,

from Table 4.1. This is so remarkably easy that you might suspect a catch; however, there

is no catch, this is indeed our answer. The natural question is, how good is the

approximation? We answer this by comparing the exact and approximate results in a

number of cases. From the discussion above, it is obvious already that the approximation

should be good for large enough n, for it is in this case that the binomial histograms can

be best ®tted by a smooth curve.

Table 4.1. The normal functions ö(x) and Ö(x)

Ö(x) 0.500 0.691 0.841 0.933 0.977 0.994 0.999 0.9998
ö(x) 0.399 0.352 0.242 0.13 0.054 0.018 0.004 0.0009
x 0 0.5 1 1.5 2 2.5 3 3.5
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For example, suppose n � 100 and p � 1
2
, so that ì � 50 and ó � 5. Then

p(55) � P(X � 55) � 100

55

� �
2ÿ100 ' 0:0485

and

p(50) � P(X � 50) � 100

50

� �
2ÿ100 ' 0:0796:

The normal approximation given by (8) yields for the ®rst

p(55) ' 1

ó
ö

55ÿ ì

ó

� �
� 1

5
ö(1) ' 0:0485

and for the second

p(50) ' 1

ó
ö

50ÿ ì

ó

� �
� 1

5
ö(0) ' 0:0798:

This seems very satisfactory. However, for smaller values of n we cannot expect so much;

for example, suppose n � 4 and p � 1
2
, so that ì � 2 and ó � 1. Then

p(3) � 4

3

� �
2ÿ4 � 0:25 and p(2) � 4

2

� �
2ÿ4 � 0:375:

The normal approximation (8) now gives for the ®rst

p(3) ' 1

ó
ö

3ÿ ì

ó

� �
� ö(1) � 0:242

and for the second

p(2) ' 1

ó
ö

2ÿ ì

ó

� �
� ö(0) � 0:399:

This is not so good, but is still surprisingly accurate for such a small value of n.

We conclude this section by recording an improved and more accurate version of the

normal approximation theorem. First, let us ask just how (9) and (10) could be improved?

The point lies in the fact that X actually takes discrete values and, when a is an integer,

P(X � a) � n

a

� �
paq nÿa . 0:(12)

However, if we let a! b in (9), or h # 0 in (10), in both cases the limit is zero.

The problem arises because we have failed to allow for the discontinuous nature of the

histogram of the binomial distribution. If we reconsider our estimates using the mid-

points of the histogram bars instead of the end-points, then we can improve the approxi-

mation in the theorem. This gives the so-called continuity correction for the normal

approximation.

In its corrected form, de Moivre's result (7) becomes

P(a , X < b) ' Ö
b� 1

2
ÿ ì

ó

� �
ÿÖ

aÿ 1
2
ÿ ì

ó

� �
(13)

and for the actual distribution we can indeed now allow a! b, to obtain
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P(X � a) ' Ö
a� 1

2
ÿ ì

ó

� �
ÿÖ

aÿ 1
2
� ì

ó

� �
(14)

' 1

ó
ö

aÿ ì

ó

� �
:

We omit any detailed proof of this, but it is intuitively clear, if you just remember that

Ö(x) measures the area under ö(x). (Draw a diagram.)

The result (14) is sometimes called the local limit theorem.

One further approximate relationship that is occasionally useful is Mills' ratio: for

large positive x

1ÿÖ(x) ' 1

x
ö(x):(15)

We offer no proof of this either.

It is intuitively clear from all these results that the normal approximation is better

the larger n is,

the nearer p is to q,

the nearer k is to np.

The approximation is worse

the smaller n is,

the smaller p (or q) is,

the further k is from np.

It can be shown with much calculation, which we omit, that for p � 1
2

and n > 10, the

error in the approximation (13) is always less than 0.01, when you use the continuity

correction. For n > 20, the maximum error is halved again.

If p 6� 1
2
, then larger values of n are required to keep the error small. In fact the worst

error is given approximately by the following rough and ready formula when npq > 10:

worst error ' jpÿ qj
10(npq)1=2

:(16)

If you do not use the continuity correction the errors may be larger, especially when

jaÿ bj is small.

Here are some examples to illustrate the use of the normal approximation. In each case

you should spend a few moments appreciating just how tiresome it would be to answer

the question using the binomial distribution as it stands.

Example 4.10.1. In the course of a year a fanatical gambler makes 10 000 fair

wagers. (That is, winning and losing are equally likely.) The gambler wins 4850 of these

and loses the rest. Was this very unlucky? (Hint: Ö(ÿ3) � 0:0013.)
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Solution. The number X of wins (before the year begins) is binomial, with ì � 5000

and ó � 50. Now

P(X < 4850) � P
X ÿ 5000

50
< ÿ3

� �
' Ö(ÿ3)

' 0:0013:

The chance of winning 4850 games or fewer was only 0.0013, so one could regard the

actual outcome, losing 4850 games, as unlucky. s

Example 4.10.2: rivets. A large steel plate is ®xed with 1000 rivets. Any rivet is

¯awed with probability 10ÿ2. If the plate contains more than 100 ¯awed rivets it will

spring in heavy seas. What is the probability of this?

Solution. The number X of ¯awed rivets is binomial B(103, 10ÿ2), with ì � 10 and

ó 2 � 9:9. Hence

P(X . 100) � 1ÿ P(X < 100) ' 1ÿ P
X ÿ 10

3:2
<

90

3:2

� �
' 1ÿÖ(28) ' 1

28
ö(28), by (15)

' 1
28

exp(ÿ392):

This number is so small that it can be ignored for all practical purposes. The ship would

have rusted to nothing while you were waiting. Its seaworthiness could depend on how

many plates like this were used, but we do not investigate further here. s

Example 4.10.3: cheat or not? You suspect that a die is crooked, i.e. that it has been

weighted to show a six more often than it should. You decide to roll it 180 times and

count the number of sixes. For a fair die the expected number of sixes is 1
6

3 180 � 30,

and you therefore contemplate adopting the following rule. If the number of sixes is

between 25 and 35 inclusive then you will accept it as fair. Otherwise you will call it

crooked. This is a serious allegation, so naturally you want to know the chance that you

will call a fair die crooked. The probability that a fair die will give a result in your

`crooked' region is

p(c) � 1ÿ
X35

k�25

180

k

� �
1

6

� �k
5

6

� �180ÿk

:

Calculating this is fairly intimidating. However, the normal approximation easily and

quickly gives

p(c) � 1ÿ P ÿ1 <
X ÿ 30

5
< 1

� �
' Ö(1)�Ö(ÿ1)

' 0:32:

This value is rather greater than you would like: there is a chance of about a third that

you accuse an honest player of cheating. You therefore decide to weaken the test, and

accept that the die is honest if the number of sixes in 180 rolls lies between 20 and 40.
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The normal approximation now tells you that the chance of calling the die crooked when

it is actually fair is

1ÿ P ÿ2 <
X ÿ 30

5
< 2

� �
' 1ÿÖ(2)�Ö(ÿ2)

' 0:04:

Whether this is a safe level for false accusations depends on whose die it is. s

Example 4.10.4: airline overbooking. Acme Airways has discovered by long experi-

ence that there is a 1
10

chance that any passenger with a reservation fails to show up for the

¯ight. If AA accepts 441 reservations for a 420 seat ¯ight, what is the probability that

they will need to bump at least one passenger?

Solution. We assume that passengers show up or not independently of each other. The

number that shows up is binomial B 441, 9
10

ÿ �
, and we want the probability that this

number exceeds 420. The normal approximation to the binomial shows that this prob-

ability is very close to

1ÿÖ
420ÿ 1

2
ÿ 396:9

441 3 1
10

3 9
10

ÿ �
1=2

 !
' 1ÿÖ(0:36)

' 1ÿ 0:64

' 0:36: s

Exercises for section 4.10

1. Let X be binomial with parameters 16 and 1
2
, that is, B 16, 1

2

ÿ �
. Compare the normal approxima-

tion with the true value of the distribution for P(X � 12) and P(X � 14). (Note: ö(2) ' 0:054

and ö(3) ' 0:0044:)

2. Show that the mode (� most likely value) of a binomial distribution B(n, p) has probability

given approximately by

p(m) � (2ðnpq)ÿ1=2:

3. Trials. A new drug is given to 1600 patients and a rival old drug is given to 1600 matched

controls. Let X be the number of pairs in which the new drug performs better than the old (so

that it performs worse in 1600ÿ X pairs; ties are impossible). As it happens, they are equally

effective, so the chance of performing better in each pair is 1
2
. Find the probability that it does

better in at least 880 of the pairs. What do you think the experimenters would conclude if they

got this result?

4.11 DENSITY

We have devoted much attention to discrete probability distributions, particularly those

with integer outcomes. But, as we have remarked above, many experiments have

outcomes that may be anywhere on some interval of the line; a rope may break anywhere,

a meteorite may strike at any time. How do we deal with such cases? The answer is

suggested by the previous sections, in which we approximated probabilities by expressing
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them as areas under some curve. And this idea was mentioned even earlier in example

4.2.4, in which we pointed out that areas under a curve can represent probabilities.

We therefore make the following de®nition.

De®nition. Let X denote the outcome of an experiment such that X 2 R. If there is a

function f (x) such that� for all a , b

P(a , X < b) �
�b

a

f (x) dx(1)

then f (x) is said to be the density of X . n

We already know of one density.

Example 4.11.1: uniform density. Suppose a rope of length l under tension is equally

likely to fail at any point. Let X be the point at which it does fail, supposing one end to

be at the origin. Then, for 0 < a < b , l,

P(a , X < b) � (bÿ a)l ÿ1

�
�b

a

l ÿ1 dx:

Hence X has density

f (x) � l ÿ1, 0 < x < l: s

Remark. Note that f (x) is not itself a probability; only the area under f (x) can be a

probability. This is obvious from the above example, because if the rope is short, and

l , 1, then f (x) . 1. This is not possible for a probability.

When h is small and f (x) is smooth, we can write from (1)

P(x , X < x� h) �
�x�h

x

f (x) dx

' hf (x):

Thus hf (x) is the approximate probability that X lies within the small interval (x, x� h);

this idea replaces discrete probabilities.

Obviously from (1) we have that

f (x) > 0,(2)

and �1
ÿ1

f (x) dx � 1:(3)

Furthermore we have, as in the discrete case, the following

�See appendix 4.14 for a discussion of the integral. For now, just read
� b

a
f (x) dx as the area under f (x) between

a and b.
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Key rule for densities. Let C be any subset of R such that P(X 2 C) exists. Then

P(X 2 C) �
�

x2C

f (x) dx:

We shall ®nd this very useful later on. For the moment here are some simple examples.

First, from the above de®nition of density we see that any function f (x) satisfying (2)

and (3) can be regarded as a density. In particular, and most importantly, we see that the

functions used to approximate discrete distributions in sections 4.9 and 4.10 are densities.

Example 4.11.2: exponential density. This most important density arose as an

approximation to the geometric distribution with

f (x) � ëeÿëx; x > 0, ë. 0:(4)

If we wind a thread onto a spool or bobbin and let X be the position of the ®rst ¯aw, then

in practice it is found that X has approximately the density given by (4). The reasons for

this should be clear from section 4.9. s

Even more important is our next density.

Example 4.11.3: normal density. This arose as an approximation to the binomial

distribution, with

f (x) � ö(x) � 1������
2ð
p exp ÿ x2

2

� �
:(5)

More generally the function

f (x) � 1�����������
2ðó 2
p exp ÿ 1

2

xÿ ì

ó

� �2
( )

is known as the normal density with parameters ì and ó 2, or N( ì, ó 2) for short. The

special case N(0, 1), given by ö(x) in (5), is called the standard normal density. s

We return to these later. Here is one ®nal complementary example which provides an

interpretation of the above remarks.

Example 4.11.4. Suppose you have a lamina L whose shape is the region lying

between y � 0 and y � f (x), where f (x) > 0 and L has area 1. Pick a point P at random

in L, with any point equally likely to be chosen. Let X be the x-coordinate of the point P.

Then by construction P(a , X < b) � � b

a
f (x) dx, and so f (x) is the density of X . s

Exercises for section 4.11

1. A point P is picked at random within in the unit disc, x2 � y2 < 1. Let X be the x-coordinate of

P. Show that the density of X is

f (x) � 2

ð
(1ÿ x2)1=2, ÿ1 < x < 1:
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2. Let X have the density

f (x) � a(x� 3), ÿ3 < x < 0

3a(1ÿ 1
2
x), 0 < x < 2:

�
What is a? Find P(jX j. 1).

4.12 DISTRIBUTIONS IN THE PLANE

Of course, many experiments have outcomes that are not simply a real number.

Example 4.12.1. You roll two dice. The possible outcomes are the set of ordered

pairs f(i, j); 1 < i < 6, 1 < j < 6g. s

Example 4.12.2. Your doctor weighs and measures you. The possible outcomes are

of the form (x grams, y millimetres), where x and y are positive and less than 106, say.

(We assume your doctor's scales and measures round off to whole grams and millimetres

respectively.) s

You can easily think of other examples yourself. The point is that these outcomes are

not single numbers, so we cannot usefully identify them with points on a line. But we can

usefully identify them with points in the plane, using Cartesian coordinates for example.

Just as scalar outcomes yielded distributions on the line, so these outcomes yield

distributions on the plane. We give some examples to show what is going on.

The ®rst natural way in which such distributions arise is in the obvious extension of

Bernoulli trials to include ties. Thus each trial yields one of

fS, F, Tg � fsuccess, failure, tieg:
We shall call these de Moivre trials.

Example 4.12.3: trinomial distribution. Suppose n independent de Moivre trials

each result in success, failure, or a tie. Let X and Y denote the number of successes and

failures respectively. Show that

P(X � x, Y � y) � n!

x!y!(nÿ xÿ y)!
pxq y(1ÿ pÿ q)nÿxÿ y,(1)

where p � P(S) and q � P(F).

Solution. Just as for the binomial distribution of n Bernoulli trials, there are several

different ways of showing this. The simplest is to note that, by independence, any

sequence of n trials including exactly x successes and y failures has probability

pxq y(1ÿ pÿ q)nÿxÿ y, because the remaining nÿ xÿ y trials are all ties. Next, by (4) of

section 3.3, the number of such sequences is the trinomial coef®cient

n!

x!y!(nÿ xÿ y)!
,

and this proves (1) above. s
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Example 4.12.4: uniform distribution. Suppose you roll two dice, and let X and Y

be their respective scores. Then by the independence of the dice

P(X � x, Y � y) � 1
36

, 0 < x, y < 6:

This is the uniform distribution on f1, 2, 3, 4, 5, 6g2. s

It should now be clear that, at this simple level, such distributions can be treated using

the same ideas and methods as we used for distributions on the line. There is of course a

regrettable increase in the complexity of notation and equations, but this is inevitable. All

consideration of the more complicated problems that can arise from such distributions is

postponed to chapter 6, but we conclude with a brief glance at location and spread.

Given our remarks about probability distributions on the line, it is natural to ask what

can be said about the location and spread of distributions in the plane, or in three

dimensions. The answer is immediate if we pursue the analogy with mass. Recall that we

visualized a discrete probability distribution p(x) on the line as being a unit mass divided

up so that a mass p(x) is found at x. Then the mean is just the centre of gravity of this

mass distribution, and the variance is its moment of inertia about the mean.

With this in mind it seems natural to regard a distribution in R2 (or R3) as being a

distribution of masses p(x, y) such that
P

x, y p(x, y) � 1. Then the centre of gravity is at

G � (x, y) where

x �
X
x, y

xp(x, y) and y �
X
x, y

yp(x, y):

We de®ne the mean of the distribution p( j, k) to be the point (x, y). By analogy with the

spread of mass, the spread of this distribution is indicated by its moments of inertia with

respect to the x- and y- axes,

ó 2
1 �

X
x, y

(xÿ x)2 p(x, y)

and

ó 2
2 �

X
x, y

(yÿ y)2 p(x, y):

Exercises for section 4.12

1. An urn contains three tickets, bearing the numbers 1, 2, and 3 respectively. Two tickets are

removed at random, without replacement. Let the numbers they show be X and Y respectively.

Find the distribution

p(x, y) � P(X � x, Y � y), 1 < x, y < 3:

What is the probability that the sum of the two numbers is 3? Find the mean and variance of X

and Y .

2. You roll a die, which shows X , and then ¯ip X fair coins, which show Y heads. Find

P(X � x, Y � y), and hence calculate the mean of Y .
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4 .13 REVIEW

In this chapter we have looked at the simplest models for random experiments. These

give rise to several important probability distributions. We may note in particular the

following.

Bernoulli trial

P(S) � P(success) � p � 1ÿ q

P(F) � P(failure) � q:

Binomial distribution for n independent Bernoulli trials:

p(k) � P(k successes) � n

k

� �
pk q nÿk , 0 < k < n:

Geometric distribution for the ®rst success in a sequence of independent Bernoulli trials:

p(k) � P(k trials for 1st success) � pq kÿ1, k > 1:

Negative binomial distribution for the number of Bernoulli trials needed to achieve k

successes:

p(n) � pk q nÿk nÿ 1

k ÿ 1

� �
, n > k:

Hypergeometric distribution for sampling without replacement:

p(k) � m

k

� �
w

r ÿ k

� ��
m� w

r

� �
, 0 < k < r < m ^ w:

We discussed approximating one distribution by another, showing in particular that the

binomial distribution could be a good approximation to the hypergeometric, and that the

Poisson could approximate the binomial.

Poisson distribution

p(k) � eÿëëk=k!, k > 0:

We introduced the ideas of mean and variance as measures of the location and spread

of the probability in a distribution. Table 4.2 shows some important means and variances.

Very importantly, we went on to note that probability distributions could be well

approximated by continuous functions, especially as the number of sample points

becomes large. We use these approximations in two ways. First, the local approximation,

which says that if p(k) is a probability distribution, there may be a function f (x) such
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that p(k) ' f (x). Second, the global approximation, which follows from the local:Xb

k�a

p(k) ' the area under f (x) between a and b

� F(b)ÿ F(a) for some function F(x):

Occasionally it is useful to improve these approximations by making a continuity

correction to take account of the fact that f (x) is continuous but p(k) is not.

In particular we considered the normal approximation to the binomial distribution

p(k) � n

k

� �
pk q nÿk

with mean ì � np and variance ó 2 � npq. This approximation is given by

p(k) ' 1

ó
ö

k ÿ ì

ó

� �
where

ö(x) � 1

(2ð)1=2
exp ÿ1

2
x2

ÿ �
and

F(x) � Ö(x) �
�x

ÿ1
ö(u) du:

Table 4.2. Means and variances

Distribution p(x) Mean Variance

uniform nÿ1, 1 < x < n 1
2
(n� 1) 1

12
(n2 ÿ 1)

Bernoulli px(1ÿ p)1ÿx,
x 2 f0, 1g

p p(1ÿ p)

binomial
n

x

� �
px(1ÿ p)nÿx, np np(1ÿ p)

0 < x < n

geometric (1ÿ p)xÿ1 p, x > 1 pÿ1 (1ÿ p) pÿ2

Poisson
eÿëëx

x!
, x > 1 ë ë

negative binomial
xÿ 1

k ÿ 1

� �
pk(1ÿ p)xÿk , kpÿ1 k(1ÿ p) pÿ2

x > k

hypergeometric

m

x

� �
w

nÿ x

� �
m� w

n

� � ,
nm

m� w

nmw(m� wÿ n)

(m� wÿ 1)(m� w)2

0 < x < n
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Using the continuity correction givesXb

k�a

p(k) ' Ö
b� 1

2
ÿ ì

ó

� �
ÿÖ

aÿ 1
2
ÿ ì

ó

� �
:

We shall give sketch proofs of the theorems that justify these approximations, especially

de Moivre's theorem, in appendix 4.15.

Finally, we considered distributions of probability over the plane and in higher dimen-

sions. In particular we considered sequences of independent de Moivre trials and the

multinomial distributions.

4.14 APPENDIX. CALCULUS

Fundamental to calculus is the idea of taking limits of functions. This in turn rests on the idea of

convergence.

Convergence. Let (xn; n > 1) be a sequence of real numbers. Suppose that there is a real

number a such that jxn ÿ aj is always ultimately as small as we please; formally,

jxn ÿ aj, å for all n . n0,

where å is arbitrarily small and n0 is ®nite. n

In this case the sequence (xn) is said to converge to the limit a. We write either

xn ! a as n!1,

or

lim
n!1 xn � a:

Now let f (x) be any function de®ned in some interval (á, â), except possibly at the point x � a.

Let (xn) be a sequence converging to a, such that xn 6� a for any n. Then ( f (xn); n > 1) is also a

sequence; it may converge to a limit l.

Limits of functions. If the sequence ( f (xn)) converges to the same limit l for every sequence

(xn) converging to a, xn 6� a, then we say that the limit of f (x) at a is l. We write either

f (x)! l as x! a, or lim
x!a

f (x) � l: n

Suppose now that f (x) is de®ned in the interval (á, â), and let limx!a f (x) be the limit of f (x) at

a. This may or may not be equal to f (a). Accordingly we de®ne:

Continuity. The function f (x) is continuous in (a, b) if, for all a 2 (á, â),

lim
x!a

f (x) � f (a): n

Now, given a continous function f (x), we are often interested in two principal questions about f (x).

(i) What is the slope (or gradient) of f (x) at the point x � a?

(ii) What is the area under f (x) lying between a and b?
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Question (i) is answered by looking at chords of f (x). For any two points a and x, the slope of the

chord from f (a) to f (x) is

s(x) � f (x)ÿ f (a)

xÿ a
:

If s(x) has a limit as x! a, then this is what we regard as the slope of f (x) at a. We call it the

derivative of f (x), and say that f (x) is differentiable at a.

Derivative. The derivative of f (x) at a is denoted by f 9(a), where

f 9(a) � lim
x!a

f (x)ÿ f (a)

xÿ a
: n

We also write this as

f 9(a) � df

dx

����
x�a

:

In this notation df =dx � df (x)=dx is the function of x that takes the value f 9(a) when x � a.

For question (ii), let f (a) be a function de®ned on [a, b]. Then the area under the curve f (x) in

[a, b] is denoted by �b

a

f (x) dx,

and is called the integral of f (x) from a to b. In general, areas below the x-axis are counted as

negative; for a probability density this case does not arise, because density functions are never

negative.

The integral is also de®ned as a limit, but any general statements would take us too far a®eld. For

well-behaved positive functions you can determine the integral as follows. Plot f (x) on squared

graph paper with interval length 1=n. Let Sn be the number of squares lying entirely between f (x)

and the x-axis between a and b. Set

I n � Sn=n2:

Then

lim
n!1 I n �

�b

a

f (x) dx:

The function f (x) is said to be integrable.

Of course we almost never obtain integrals by performing such a limit. We almost always use a

method that relies on the following, most important, connexion between differentiation and

integration.

Fundamental theorem of calculus

Let f (x) be a continuous function de®ned on [a, b], and suppose that f (x) is integrable. De®ne the

function Fa(x) by

Fa(x) �
�x

a

f (t) dt:

Then the derivative of Fa(x) is f (x); formally,

F9a(x) � f (x):

This may look like sorcery, but actually it is intuitively obvious. The function F9a(x) is the slope of

Fa(x), that is, it measures the rate at which area is appearing under f (x) as x increases. Now just

draw a picture of f (x) to see that extra area is obviously appearing at the rate f (x). So F9a(x) � f (x).

We omit any proof.
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Summary of elementary properties

(i) f 9(x) � df =dx � f 9. It follows that

If f is constant then f 9 � 0:

d

dx
(cf � g) � cf 9� g9:

d

dx
( fg) � f 9g � fg9:

d

dx
f (g) � f 9(g)g9:

(ii) F(x) � � x

ÿ1 f (t) dt. It follows that

If f is constant then F(b)ÿ F(a) �
�b

a

f (t) dt / bÿ a:

If f , g then

�b

a

f dx ,

�b

a

g dx:�b

a

(cf � g) dx � c

�b

a

f dx�
�b

a

g dx:�b

a

f 9g dx�
�b

a

fg9 dx �
�b

a

( fg)9 dx � f (b)g(b)ÿ f (a)g(a):

(iii) log x � � x

1
(1=y) dy.

Functions of more than one variable

We note brie¯y that the above ideas can be extended quite routinely to functions of more than one

variable. For example, let f (x, y) be a function of x and y. Then

(i) f (x, y) is continuous in x at (a, y) if limx!a f (x, y) � f (a, y).

(ii) f (x, y) is continuous at (a, b) if lim(x, y)!(a,b) f (x, y) � f (a, b).

(iii) f (x, y) is differentiable in x at (a, y) if

lim
x!a

f (x, y)ÿ f (a, y)

xÿ a
� f1(a, y)

exists. We denote this limit by @ f =@x. That is to say @ f =@x is the function of x and y that

takes the value f1(a, y) when x � a. Other derivatives, such as @ f =@ y and @ 2 f =@x@ y, are

de®ned in exactly the same way.

Finally, we note a small extension of the fundamental theorem of calculus, which is used more

often than you might expect:

@

@x

� g(x)

f (u, y)du � dg(x)

dx
f (g(x), y):

4.15 APPENDIX. SKETCH PROOF OF THE NORMAL LIMIT

THEOREM

In this section we give an outline of a proof that the binomial distribution is well approximated by

the bell-shaped curve ö(x). We will do the symmetric case ®rst, since the algebra is more transparent

and enables the reader to appreciate the method unobscured by technical details. To be precise, the

symmetric binomial distribution is

p(k) � n

k

� �
2ÿn,
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with mean ì � n=2 and variance ó 2 � n=4. It is the claim of the normal limit theorem that for large

n and moderate k ÿ ì

p(k) ' 1

(2ð)1=2ó
exp ÿ 1

2

(k ÿ ì)2

ó 2

� �
:

(It can be shown more precisely that a suf®cient condition is that (k ÿ ì)3=n2 must be negligibly

small as n increases.)

To demonstrate the theorem we need to remember three things.

Stirling's formula (2ð)ÿ1=2 n! � nn�1=2eÿn, which implies that

n

n=2

� �
� n!

(n=2)!(n=2)!
' 2n

(2ðn)1=2
(1)

Arithmetic series Xnÿ1

k�1

k � 1
2
n(nÿ 1)(2)

Exponential approximation

e x � 1� x� x2

2!
� � � � ,

which implies that for small x we can write

1

1� x
' 1ÿ x ' eÿx,(3)

and the quadratic and higher terms can be neglected.

Now to sketch the theorem. Assume k . n=2 and n even, without much loss of generality. Then

p(k) � n! 2ÿn

k!(nÿ k)!

� n! 2ÿn

n

2

� �
!

n

2

� �
!

n

2

n

2
ÿ 1

� �
� � � n

2
ÿ k ÿ n

2
ÿ 1

� �� �
k(k ÿ 1) � � � n

2
� 1

� �
Now we use Stirling's formula in the ®rst term, and divide top and bottom of the second term by

(n=2)kÿn=2, to give

p(k) '
1ÿ 2

n

� �
1ÿ 4

n

� �
� � � 1ÿ k ÿ n

2
ÿ 1

� �
2

n

� �
(2ð)1=2

n

4

� �1=2

1� 2

n

� �
1� 4

n

� �
� � � 1� k ÿ n

2

� �
2

n

� �
Now we use the exponential approximation, and then sum the arithmetic series as follows. From the

above,

p(k) ' 1

(2ðó )1=2
exp ÿ 4

n
ÿ 8

n
ÿ � � � ÿ 4

n
k ÿ n

2
ÿ 1

� �
ÿ 2

n
k ÿ n

2

� �� �
� 1

(2ðó )1=2
exp ÿ 2

n
k ÿ n

2

� �
k ÿ n

2
ÿ 1

� �
ÿ 2

n
k ÿ n

2

� �� �

� 1

(2ðó )1=2
exp ÿ 1

2

k ÿ ì

ó

� �2
( )

,

as required.
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In the asymmetric case, when p 6� q, we use exactly the same line of argument, but the algebra

becomes a bit more tedious. We have in this case

p(k) � n

k

� �
pkq nÿk :

We shall assume for convenience that k . np, and that np and nq are integers. The method can still

be forced through when they are not, but with more ®ddly details. Remember that

ì � np

and

ó 2 � npq:

Recall that we regard terms like (k ÿ np)3=n2 and (k ÿ np)=n, and anything smaller, as negligible as

n increases. Off we go:

P(k successes) � p(k) �
n

k

 !
pkqnÿk

� n! pk qnÿk

(nq)!(np)!

nq(nqÿ 1) � � � (nqÿ k � 1� np)

(np� k ÿ np)(np� k ÿ npÿ 1) � � � (np� 1)

' 1

(2ðnpq)1=2

1ÿ 1

nq

� �
� � � 1ÿ k ÿ 1ÿ np

nq

� �
1� 1

np

� �
� � � 1� k ÿ np

np

� � , by Stirling

' 1

(2ð)1=2ó
exp ÿ 1

nq
ÿ 1

np
ÿ � � � ÿ k ÿ 1ÿ np

nq

�
ÿ k ÿ 1ÿ np

np
ÿ k ÿ np

np

�
, by (3)

� 1

(2ð)1=2ó
exp ÿ 1

npq
ÿ � � � ÿ k ÿ npÿ 1

npq
ÿ k ÿ np

np

� �

' 1

(2ð)1=2ó
exp ÿ (k ÿ np)2

2npq

( )
, ignoring

(k ÿ np)

npq

( pÿ q)

2

� 1

(2ð)1=2ó
exp ÿ 1

2

k ÿ ì

ó

� �2
( )

,

as required.

4.16 PROBLEMS

1. You roll n dice; all those that show a six are rolled again. Let X be the number of resulting

sixes. What is the distribution of X? Find its mean and variance.

2. For what values of c1 and c2 are the following two functions probability distributions?

(a) p(x) � c1x, 1 < x < n.

(b) p(x) � c2=fx(x� 1)g, x > 1.

3. Show that for the Poisson distribution p(x) � ëxeÿë=x! the variance is ë. Show also that

fp(x)g2 > p(xÿ 1) p(x� 1).
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4. Let p(n) be the negative binomial distribution

p(n) � nÿ 1

k ÿ 1

� �
pk qnÿk , n > k:

For what value of n is p(n) largest? Show that fp(n)g2 > p(nÿ 1) p(n� 1).

5. Show that for the distribution on the positive integers

p(x) � 90

ð4

1

x4

� �
,

we have

fp(x)g2 < p(xÿ 1) p(x� 1):

Find a distribution on the positive integers such that fp(x)g2 � p(xÿ 1) p(x� 1).

6. You perform a sequence of independent de Moivre trials with P(S ) � p, P(F ) � q, P(T ) � r,

where p� q� r � 1. Let X be the number of trials up to and including the ®rst trial at which

you have recorded at least one success and at least one failure. Find the distribution of X , and

its mean.

Now let Y be the number of trials until you have recorded at least j successes and at least k

failures. Find the distribution of Y .

7. A coin shows a head with probability p. It is ¯ipped until it ®rst shows a tail. Let Dn be the

event that the number of ¯ips required is divisible by n. Find

(a) P(D2), (b) P(Dr), (c) P(DrjDs) when r and s are coprime.

8. Two players (Alto and Basso) take turns throwing darts at a bull; their chances of success are á
and â respectively at each attempt. They ¯ip a fair coin to decide who goes ®rst. Let X be the

number of attempts up to and including the ®rst one to hit the bull. Find the distribution of X ,

and the probability of the event E that X is even. Let B be the event that Basso is the ®rst to

score a bull. Are any of the events B, E, and fX � 2ng independent of each other?

9. Let p(n) be the negative binomial distribution,

p(n) � nÿ 1

k ÿ 1

� �
pk qnÿk , n > k;

let q! 0 and k !1 in such a way that kq � ë is ®xed. Show that

p(n� k)! ëneÿë=n!,

the Poisson distribution. Interpret this result.

10. Tagging. A population of n animals has had a number t of its members captured, tagged,

and released back into the population. At some later time animals are captured again, without

replacement, until the ®rst capture at which m tagged animals have been caught. Let X be the

number of captures necessary for this. Show that X has the distribution

p(k) � P(X � k) � t

n

t ÿ 1

mÿ 1

� �
nÿ t

k ÿ m

� ��
nÿ 1

k ÿ 1

� �
where m < k < nÿ t � m.

11. Runs. You ¯ip a coin h� t times, and it shows h heads and t tails. An unbroken sequence

of heads, or an unbroken sequence of tails, is called a run. (Thus the outcome HTTHH contains

3 runs.) Let X be the number of runs in your sequence. Show that X has the distribution

p(x) � P(X � x) � hÿ 1

xÿ 1

� �
t � 1

x

� ��
h� t

h

� �
:

What is the distribution of the number of runs of tails?
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12. You roll two fair n-sided dice, each bearing the numbers f1, 2, . . . , ng. Let X be the sum of

their scores. What is the distribution of X ? Find continuous functions T (x) and t(x) such that

for large n

P
X

n
< x

� �
' T (x)

and

P x ,
X

n
< x� h

� �
' t(x)h:

13. You roll two dice; let X be the score shown by the ®rst die, and let W be the sum of the scores.

Find

p(x, w) � P(X � x, W � w):

14. Consider the standard 6±49 lottery (six numbers are chosen from f1, . . . , 49g). Let X be the

largest number selected. Show that X has the distribution

p(x) � xÿ 1

5

� ��
49

6

� �
, 6 < x < 49:

What is the distribution of the smallest number selected?

15. When used according to the manufacturer's instructions, a given pesticide is supposed to kill

any treated earwig with probability 0.96. If you apply this treatment to 1000 earwigs in your

garden, what is the probability that there are more than 20 survivors? (Hint: Ö(3:2) ' 0:9993.)

16. Candidates to compete in a quiz show are screened; any candidate passes the screen-test with

probability p. Any contestant in the show wins the jackpot with probability t, independently of

other competitors. Let X be the number of candidates who apply until one of them wins the

jackpot. Find the distribution of X .

17. Find the largest term in the hypergeometric probability distribution, given in (2) of section 4.5.

If m� w � t, ®nd the value of t for which (2) is largest, when m, r, and k are ®xed.

18. You perform n independent de Moivre trials, each with r possible outcomes. Let X i be the

number of trials that yield the ith possible outcome. Prove that

P(X1 � x1, . . . , X r � xr) � px1

1 � � � pxr

r

n!

x1! � � � xr!
,

where pi is the probability that any given trial yields the ith possible outcome.

19. Consider the standard 6±49 lottery again, and let X be the largest number of the six selected,

and Y the smallest number of the six selected.

(a) Find the distribution P(X � x, Y � y).

(b) Let Z be the number of balls drawn that have numbers greater than the largest number not

drawn. Find the distribution of Z.

20. Two integers are selected at random with replacement from f1, 2, . . . , ng. Let X be the

absolute difference between them (X > 0). Find the probability distribution of X , and its

expectation.

21. A coin shows heads with probability p, or tails with probability q. You ¯ip it repeatedly. Let X

be the number of ¯ips until at least two heads and at least two tails have appeared. Find the

distribution of X , and show that it has expected value 2f(pq)ÿ1 ÿ 1ÿ pqg.
22. Each day a robot manufactures m� n capeks; each capek has probability ä of being defective,

independently of the others. A sample of size n (without replacement) is taken from each day's

output, and tested (n > 2). If two or more capeks are defective, then every one in that day's

output is tested and corrected. Otherwise the sample is returned and no action is taken. Let X

be the number of defective capeks in the day's output after this procedure. Show that
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P(X � x) � fm� 1� (nÿ 1)xgm!

(mÿ x� 1)!x!
äx(1ÿ ä)m�nÿx, x < m� 1:

Show that X has expected value

fm� n� äm(nÿ 1)gä(1ÿ ä)nÿ1:

23. (a) Let X have a Poisson distribution with parameter ë. Use the Poisson and normal

approximations to the binomial distribution to deduce that for large enough ë

P
X ÿ ë���

ë
p < x

� �
' Ö(x):

(b) In the years 1979±99 in Utopia the average number of deaths per year in traf®c accidents

is 730. In the year 2000 there are 850 deaths in traf®c accidents, and on New Year's Day

2001, there are 5 such deaths, more than twice the daily average for 1979±99.

The newspaper headlines speak of `New Year's Day carnage', without mentioning the

total ®gures for the year 2000. Is this rational?

24. Families. A woman is planning her family and considers the following possible schemes.

(a) Bear children until a girl is born, then stop.

(b) Bear children until the family ®rst includes children of both sexes, and then stop.

(c) Bear children until the family ®rst includes two girls and two boys, then stop.

Assuming that boys and girls are equally likely, and multiple births do not occur, ®nd the mean

family size in each case.

25. Three points A, B, and C are chosen independently at random on the perimeter of a circle. Let

p(a) be the probability that at least one of the angles of the triangle ABC exceeds að. Show

that

p(a) � 1ÿ (3aÿ 1)2, 1
3

< a < 1
2

3(1ÿ a)2, 1
2

< x < 1:

(
26. (a) Two players play a game comprising a sequence of points in which the loser of a point

serves to the following point. The probability is p that a point is won by the player who

serves. Let fm be the expected number of the ®rst m points that are won by the player who

serves ®rst. Show that

fm � pm� (1ÿ 2 p) f mÿ1:

Find a similar equation for the number that are won by the player who ®rst receives

service. Deduce that

f m � m

2
ÿ 1ÿ 2 p

4 p
f1ÿ (1ÿ 2 p)mg:

(b) Now suppose that the winner of a point serves to the following point, things otherwise

being as above. Of the ®rst m points, let em be the expected number that are won by the

player who serves ®rst. Find em. Is it larger or smaller than f m?
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Review of Part A, and preview of Part B

I have yet to see a problem, however complicated, which, when you looked at

it in the right way, did not become still more complicated.

P. Anderson, New Scientist, 1969

We began by discussing several intuitive and empirical notions of probability, and how

we experience it. Then we de®ned a mathematical theory of probability using the

framework of experiments, outcomes, and events. This included the ideas of indepen-

dence and conditioning. Finally, we considered many examples in which the outcomes

were numerical, and this led to the extremely important idea of probability distributions

on the line and in higher dimensions. We also introduced the ideas of mean and variance,

and went on to look at probability density. All this relied essentially on our de®nition of

probability, which proved extremely effective at tackling these simple problems and

ideas.

Now that we have gained experience and insight at this elementary level, it is time to

turn to more general and perhaps more complicated questions of practical importance.

These often require us to deal with several random quantities together, and in more

technically demanding ways. It is also desirable to have a uni®ed structure, in which

probability distributions and densities can be treated together.

For all these reasons, we now introduce the ideas and methods of random variables,

which greatly aid us in the solution of problems that cannot easily be tackled using the

naive machinery of Part A. This is particularly important, as it enables us to get to grips

with modern probability. Everything in Part A would have been familiar in the 19th

century, and much of it was known to de Moivre in 1750. The idea of a random variable

was ®nally made precise only in 1933, and this has provided the foundations for all the

development of probability since then. And that growth has been swift and enormous.

Part B provides a ®rst introduction to the wealth of progress in probability in the 20th

century.

185





Part B

Random Variables





5

Random variables and their distributions

5.1 PREVIEW

It is now clear that for most of the interesting and important problems in probability, the

outcomes of the experiment are numerical. And even when this is not so, the outcomes

can nevertheless often be represented uniquely by points on the line, or in the plane, or in

three or more dimensions. Such representations are called random variables. In the

preceding chapter we have actually been studying random variables without using that

name for them. Now we develop this idea with new notation and background. There are

many reasons for this, but the principal justi®cation is that it makes it much easier to

solve practical problems, especially when we need to look at the joint behaviour of

several quantities arising from some experiment. There are also important theoretical

reasons, which appear later.

In this chapter, therefore, we ®rst de®ne random variables, and introduce some new

notation that will be extremely helpful and suggestive of new ideas and results. Then we

give many examples and explore their connections with ideas we have already met, such

as independence, conditioning, and probability distributions. Finally we look at some new

tasks that we can perform with these new techniques.

Prerequisites. We shall use some very elementary ideas from calculus; see the

appendix to chapter 4.

5.2 INTRODUCTION TO RANDOM VARIABLES

In chapter 4 we looked at experiments in which the outcomes in Ù were numbers; that is

to say, Ù � R or, more generally, Ù � Rn. This enabled us to develop the useful and

attractive properties of probability distributions and densities. Now, experimental out-

comes are not always numerical, but we would still like to use the methods and results of

chapter 4. Fortunately we can do so, if we just assign a number to any outcome ù 2 Ù in

some natural or convenient way. We denote this number by X (ù). This procedure simply

de®nes a function on Ù; often there will be more than one such function. In fact it is

almost always better to work with such functions than with events in the original sample

space.
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Of course, the key to our success in chapter 4 was using the probability distribution

function

F(x ) � P(X < x ) � P(Bx),

where the event Bx is given by

Bx � fX < xg � fù: X (ù) < xg:
We therefore make the following de®nition.

De®nition. A random variable X is a real-valued function de®ned on a sample space

Ù, such that Bx as de®ned above is an event for all x. n

If ù is an outcome in Ù, then we sometimes write X as X (ù) to make the function

clearer. Looking back to chapter 4, we can now see that there we considered exclusively

the special case of random variables for which X (ù) � ù, ù 2 Ù; this made the analysis

particularly simple. The above relation will no longer be the case in general, but at least it

has helped us to become familiar with the ideas and methods we now develop. Note that,

as in chapter 4, random variables are always denoted by capital letters, such as

X , Y , U , W�, Z1, and so on. An unspeci®ed numerical value is always denoted by a

lower-case letter, such as x, y, u, k, m, n, and so forth.

Remark. You may well ask, as many students do on ®rst meeting the idea, why we

need these new functions. Some of the most important reasons arise in slightly more

advanced work, but even at this elementary level you will soon see at least four reasons.

(i) This approach makes it much easier to deal with two or more random variables;

(ii) dealing with means, variances, and related quantities, is very much simpler when

we use random variables;

(iii) this is by far the best machinery for dealing with functions and transformations;

(iv) it uni®es and simpli®es the notation and treatment for different kinds of random

variable.

Here are some simple examples.

Example 5.2.1. You roll a conventional die, so we can write Ù � f1, 2, 3, 4, 5, 6g as

usual. If X is the number shown, then the link between X and Ù is rather obvious:

X ( j) � j, 1 < j < 6:

If Y is the number of sixes shown then

Y ( j) � 1, j � 6

0 otherwise:

�
s

Example 5.2.2. You ¯ip three coins. As usual

Ù � fH , Tg3 � fHHH , HHT , . . . , TTTg:
If X is the number of heads, then X takes values in f0, 1, 2, 3g, and we have

X (HTH) � 2, X (TTT ) � 0,

and so on. If Y is the signed difference between the number of heads and the number of

tails then Y 2 fÿ3, ÿ2, ÿ1, 0, 1, 2, 3g, and Y (TTH) � ÿ1, for example. s
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Example 5.2.3: medical. You go for a check-up. The sample space is rather too large

to describe here, but what you are interested in is a collection of numbers comprising

your height, weight, and values of whatever other physiological variables your physician

measures. s

Example 5.2.4: breakdowns. You buy a car. Once again, the sample space is large,

but you are chie¯y interested in the times between breakdowns, and the cost of repairs

each time. These are numbers, of course. s

Example 5.2.5: opinion poll. You ask people whether they approve of the present

government. The sample space could be

Ù � fapprove strongly, approve, indifferent, disapprove, disapprove stronglyg:
You might ®nd it very convenient in analysing your results to represent Ù by the

numerical scale

S � fÿ2, ÿ1, 0, 1, 2g,
or if you prefer, you could use the non-negative scale

Q � f0, 1, 2, 3, 4g:
You are then dealing with random variables. s

In very many examples, obviously, it is natural to consider two or more random

variables de®ned on the same sample space. Furthermore, they may be related to each

other in important ways; indeed this is usually the case. The following simple observa-

tions are therefore very important.

Corollary to de®nition of random variable. If X and Y are random variables de®ned

on Ù, then any real-valued function of X and Y, g(X , Y ), is also a random variable, if Ù
is countable.

Remark. When Ù is not countable, it is possible to de®ne unsavoury functions g(:)
such that g(X ) is not a random variable. In this text we never meet any of these, but to

exclude such cases we may need to add the same condition that we imposed in the

de®nition: that is, that fg(X ) < xg is an event for all x.

Example 5.2.6: craps. You roll two dice, yielding X and Y . You play the game using

the combined score Z � X � Y , where 2 < Z < 12, and Z is a random variable. s

Example 5.2.7: medical. Your physician may measure your weight and height,

yielding the random variables X kilograms and Y metres. It is then customary to ®nd the

value V of your body±mass index, where

V � X

Y 2
:

It is felt to be desirable that the random variable V should be inside, or not too far outside,

the interval [20, 25]. s
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Example 5.2.8: poker. You are dealt a hand at poker. The sample space comprises

52

5

� �
possible hands. What you are interested in is the number of pairs, and whether or not you

have three of a kind, four of a kind, a ¯ush, and so on. This gives you a short set of

numbers telling you how many of these desirable features you have. s

Example 5.2.9: election. In an election, let the number of votes garnered by the ith

candidate be X i. Then in the simple ®rst-past-the-post system the winner is the one with

the largest number of votes Y (� maxi X i). s

Example 5.2.10: coins. Flip a coin n times. Let X be the number of heads and Y the

number of tails. Clearly X � Y � n: Now let Z be the remainder on dividing X by 2, i.e.

Z � X modulo 2:

Then Z is a random variable taking values in f0, 1g. If X is even then Z � 0; if X is odd

then Z � 1. s

If we take account of order in ¯ipping coins, we can construct a rich array of interesting

random variables with complicated relationships (which we will explore later).

It is important to realize that although all random variables have the above structure,

and share many properties, there are signi®cantly different types. The following example

shows this.

Example 5.2.11. You devise an experiment that selects a point P randomly from the

interval [0, 2], where any point may be chosen. Then the sample space is [0, 2], or

formally

Ù � fù: ù 2 [0, 2]g:
Now de®ne X and Y by

X (ù) � 0 if 0 < ù < 1

1 if 1 ,ù < 2

�
and Y (ù) � ù2:

Naturally X and Y are both random variables, as they are both suitable real-valued

functions on Ù. But clearly they are very different in kind; X can take one of only two

values, and is said to be discrete. By contrast Y can take any one of an uncountable

number of values in [0, 4]; it is said to be continuous. s

We shall develop the properties of these two kinds of random variable side by side

throughout this book. They share many properties, including much of the same notation,

but there are some differences, as we shall see.

Furthermore, even within these two classes of random variable there are further

subcategories, which it is often useful to distinguish. Here is a short list of some of them.

Constant random variable. If X (ù) � c for all ù, where c is a constant, then X is a

constant.
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Indicator random variable. If X can take only the values 0 or 1, then X is said to be

an indicator. If we de®ne the event on which X � 1,

A � fù: X (ù) � 1g,
then X is said to be the indicator of A.

Discrete random variable. If X can take any value in a set D that is countable, then

X is said to be discrete. Usually D is some subset of the integers, so we assume in future

that any discrete random variable is integer valued unless it is stated otherwise.

Of course, as we saw in example (5.2.11), it is not necessary that Ù be countable, even

if X is.

Finally we turn to the most important property of random variables; they all have

probability distributions. We show this in the next section, but ®rst recall what we did in

chapter 4. In that chapter we were entirely concerned with random variables such that

X (ù) � ù, so it was intuitively obvious that in the discrete case we simply de®ne

p(x ) � P(X � x ) � P(Ax),

where Ax is the event that X � x, that is, as we now write it,

Ax � fù: X (ù) � xg:
In general things are not so simple as this; we need to be a little more careful in de®ning

the probability distribution of X . Let us sum up what we know so far.

Summary

(i) We have an experiment, a sample space Ù, and associated probabilities given by P.

That is, it is the job of the function P(´) to tell us the probability of any event in Ù.

(ii) We have a random variable X de®ned on Ù. That is, given ù 2 Ù, X (ù) is some

real number, x, say.

Now of course the possible values x of X are more or less likely depending on P and X .

What we need is a function to tell us the probability that X takes any value up to x. To

®nd that, we simply de®ne the event

Bx � fù: X (ù) < xg:
Then, obviously,

P(X < x ) � P(Bx):

This is the reason why (as we claimed above) random variables have probability

distributions just like those in chapter 4. We explore the consequences of this in the rest

of the chapter.

Exercises for section 5.2

1. Let X be a random variable. Is it true that X ÿ X � 0, and X � X � 2X? If so, explain why.

2. Let X and Y be random variables. Explain when and why X � Y, XY , and X ÿ Y are random

variables.
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3. Example 5.2.10 continued. Suppose you are ¯ipping a coin that moves you 1 metre east when it

shows a head, or 1 metre west when it shows a tail. Describe the random variable W denoting

your position after n ¯ips.

4. Give an example in which Ù is uncountable, but the random variable X de®ned on Ù is

discrete.

5.3 DISCRETE RANDOM VARIABLES

Let X be a random variable that takes values in some countable set D. Usually this set is

either the integers or some obvious subset of the integers, such as the positive integers. In

fact we will take this for granted, unless it is explicitly stated otherwise. In the ®rst part of

this book we used the function P(´), which describes how probability is distributed around

Ù. Now that we are using random variables, we need a different function to tell us how

probability is distributed over the possible values of X .

De®nition. The function p(x ) given by

p(x ) � P(X � x ), x 2 D,(1)

is the probability distribution of X . It is also known as the probability distribution

function or the probability mass function. (These names may sometimes be abbreviated

to p.d.f. or p.m.f.) n

Remark. Recall from section 5.2 that P(X � x ) denotes P(Ax), where Ax �
fù: X (ù) � xg. Sometimes we use the notation pX (x ), to avoid ambiguity.

Of course p(x ) has exactly the same properties as the distributions in chapter 4,

namely

0 < p(x ) < 1(2)

and X
x2D

p(x ) � 1:(3)

Here are some simple examples to begin with, several of which are already familiar.

Trivial random variable. Let X be constant, that is to say X (ù) � c for all ù. Then

p(c) � 1: s

Indicator random variable. Let X be an indicator. Then

p(1) � p � 1ÿ p(0): s

Uniform random variable. Let X be uniform on f1, . . . , ng. Then

p(x ) � nÿ1, 1 < x < n: s

Triangular random variable. In this case we have

p(x ) � c(nÿ x ), 0 < x < n

c(n� x ), ÿn < x < 0:

�
where c � nÿ2.
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We saw an example of a triangular random variable, in a different location, when we

looked at the distribution of the sum of the scores of two dice in the game of craps. In

that case we found

p(x ) � 6ÿ2 minfxÿ 1, 13ÿ xg, 2 < x < 12: s

We have remarked several times that the whole point of the distribution p(x ) is to tell

us how probability is distributed over the possible values of X . The most important

demonstration of this follows.

Key rule for the probability distribution. Let X have distribution p(x ), and let C be

any collection of possible values of X . Then

P(X 2 C) �
X
x2C

p(x ):(4)

This is essentially the same rule as we had in chapter 4, and we prove it in the same way.

As usual Ax � fù: X (ù) � xg. Thus, if x 6� y we have Ax \ A y � Æ. Hence, by the

addition rule for probabilities,

P(X 2 C) � P
[
x2C

Ax

 !

�
X
x2C

P(Ax)

�
X
x2C

p(x ): h

An important application of the key rule (4) arises when we come to consider functions

of random variables. In practice, it is often useful or necessary (or both) to consider such

functions, as the following examples show.

Example 5.3.1: indicator function. In many industrial processes it is routine to

monitor the levels of damaging or undesirable factors. For example, let X be the number

of bacteria in a sample of water taken from a treatment plant. If X exceeds a critical level

c, then the process is stopped and the ®lter beds renewed (say). That is, we de®ne

Y (X ) � 1, X > c

0, X , c

�
and Y (X ) is the indicator of the event that the process is stopped. From (4) we have

P(Y � 1) � P(X > c)

�
X1
x�c

P(X � x ): s

Example 5.3.2: switch function. Let T denote the temperature in some air-condi-

tioned room. If T . b, then the a.c. unit refrigerates; if T , b, then the a.c. unit heats.

Otherwise it is off. The state of the a.c. unit is therefore given by S(T ), where
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S(T ) �
1 if T . b

0 if a < T < b

ÿ1 if T , a:

8<:
Naturally, using (4),

P(S � 0) �
Xb

t�a

P(T � t): s

Example 5.3.3. Let X be the score shown by a fair die. Then

P(3X < 10) � P X < 10
3

ÿ � � P(X < 3) � 1
2
;

P X ÿ 7
2

�� �� < 2
ÿ � � P 3

2
< X < 11

2

�� ��ÿ � � 2
3
;

P X ÿ 7
2

ÿ �
2 < 2

ÿ � � P
ÿ

7
2
ÿ

���
2
p

< X < 7
2
�

���
2
p �

� P(2:1 < X < 4:9) � 1
3
: s

These examples all demonstrate applications of a general argument, which runs as

follows.

One-to-one functions. If Y � g(X ) is a one-to-one function of X , where X has

probability distribution p(x ), then for any value y of Y such that g(x ) � y, we can write

P(Y � y) � P(g(X ) � y) � P(X � gÿ1(y))(5)

� p(gÿ1(y)):

Here is another example.

Example 5.3.4. Let X be the score shown by a die, and let Y � 2X . Then g(x ) � 2x,

so that gÿ1(x) � 1
2

y and

P(Y � 4) � P(X � 2)

� 1
6
,

which is obvious anyway, of course. s

If g(x ) is not a one-to-one function, then several values of X may give rise to the same

value y � g(x ). In this case we must sum over all these values to get

P(Y � y) �
X

x: g(x)� y

P(X � x ):(6)

We can write this argument out in more detail as follows. Let A y be the event that

g(X ) � y. That is,

A y � fù: g(X (ù)) � yg:
Then using the key rule (4) we have
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P(Y � y) � P(X 2 A y)

�
X

x: g(x)� y

p(x ),

as asserted. Here are some simple examples.

Example 5.3.5. Let X be Poisson with parameter ë, and set

Y � X modulo 2:

Then

P(Y � 0) � P(X is even) �
X1
r�0

eÿëë2r

(2r)!
� eÿë cosh ë:

Likewise

P(Y � 1) � eÿë sinh ë: s

Example 5.3.6. Let X have a two-sided geometric distribution given by

p(x ) � áqxÿ1 p, x > 1

(1ÿ á)qÿxÿ1 p, x < ÿ1:

�
Then if Y � jX j, it is easy to see that Y is geometric, with pY (y) � q yÿ1 p. s

Finally, we de®ne another function that is very useful in describing the behaviour of

random variables. As we have seen in many examples above, we are often interested in

quite simple events and properties of X , such as X < x, or X . x. For this reason we

introduce the distribution function, as follows.

De®nition. Let X have probability distribution p(x ). Then the cumulative distribu-

tion function (or c.d.f.) of X is F(x ), where

F(x ) � P(X < x )(7)

�
Xx

y�ÿ1
p(y), by (4): n

It is usually known simply as the distribution function of X . It has a companion.

De®nition. If X has distribution function F(x ), then

F(x ) � 1ÿ F(x ) � P(X . x )(8)

is called the survival function of X . n

Remark. If we wish to stress the role of X , or avoid ambiguity, we often use the

notation pX (x ) and FX (x ) to denote respectively the distribution and the distribution

function of X .

It is important to note that knowledge of F(x ) also determines p(x ), because

p(x ) � P(X < x )ÿ P(X < xÿ 1)(9)

� F(x )ÿ F(xÿ 1):

This is often useful when X is indeed integer valued.
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Informally, when x . 0 is not too small, F(x ) and F(ÿx ) are known as the right tail

and left tail of X , respectively.

Example 5.3.7: uniform random variable. Here

p(x ) � 1

n
, 1 < x < n,

and

F(x ) �
Xx

y�1

1

n
� x

n
, 0 < x < n: s

Example 5.3.8: geometric random variable. Here

p(x ) � qxÿ1 p, x > 1,

and

F(x ) �
X1
x�1

q yÿ1 p � qx: s

Remark. If two random variables are the same, then they have the same distribution.

That is, if X (ù) � Y (ù) for all ù then obviously

P(X � x ) � P(Y � x ):

However, the converse is not necessarily true. To see this, ¯ip a fair coin once and let X

be the number of heads, and Y the number of tails. Then

P(X � 1) � P(Y � 1) � 1
2
� P(X � 0) � P(Y � 0),

so X and Y have the same distribution. But

X (H) � 1, X (T ) � 0 and Y (H) � 0, Y (T ) � 1:

Hence X and Y are never equal.

Exercises for section 5.3

1. Find the distribution function F(x) for the triangular random variable.

2. Show that any discrete probability distribution is the probability distribution of some random

variable.

3. Change of units. Let X have distribution p(x), and let Y � a� bX , for some a and b. Find

the distribution of Y in terms of p(x), and the distribution function of Y in terms of FX (x),

when b . 0. What happens if b < 0?

5 .4 CONTINUOUS RANDOM VARIABLES; DENSITY

We discovered in section 5.3 that discrete random variables have discrete distributions,

and that any discrete distribution arises from an appropriate discrete random variable.

What about random variables that are not discrete? As before, the answer has been

foreshadowed in chapter 4.
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Let X be a random variable that may take values in an uncountable set C, which is all

or part of the real line R. We need a function to tell us how probability is distributed over

the possible values of X . It cannot be discrete; we recall the idea of density.

De®nition. The random variable X is said to be continuous, with density f (x ), if, for

all a < b,

P(a < X < b) �
�b

a

f (x ) dx: n(1)

The probability density f (x ) is sometimes called the p.d.f. When we need to avoid

ambiguity, or stress the role of X , we may use f X (x ) to denote the density.

Of course f (x ) has the properties of densities in chapter 4, which we recall as

f (x ) > 0(2)

and �1
ÿ1

f (x ) dx � 1:(3)

We usually specify densities only at those points where f (x ) is not zero.

From the de®nition above it is possible to deduce the following basic identity, which

parallels that for discrete random variables, (4) in section 5.3.

Key rule for densities. Let X have density f (x ). Then, for B � R,

P(X 2 B) �
�

x2B

f (x ) dx:(4)

Just as in the discrete case, f (x ) shows how probability is distributed over the possible

values of X . Then the key rule tells us just how likely X is to fall in any subset B of its

values (provided of course that P(X 2 B) exists).

It is important to remember one basic difference between continuous and discrete

random variables: the probability that a continuous random variable takes any particular

value x is zero. That is, from (4) we have

P(X � x ) �
�x

x

f (u) du � 0:(5)

Such densities also arose in chapter 4 as useful approximations to discrete distributions.

(Very roughly speaking, the idea is that if probability masses become very small and

close together, then for practical purposes we may treat the result as a density.) This led

to the continuous uniform density as an approximation to the discrete uniform distribu-

tion, and the exponential density as an approximation to the geometric distribution. Most

importantly, it led to the normal density as an approximation to the binomial distribution.

We can now display these in our new format. Remember that, as we remarked in chapter

4, it is possible that f (x ) . 1, because f (x ) is not a probability. However, informally we

can observe that, for small h, P(x < X < x� h) ' f (x )h: The probability that X lies in

(x, x� h) is approximately hf (x ). The smaller h is, the better the approximation.

As in the discrete case, the two properties (2) and (3) characterize all densities; that is

to say any nonnegative function f (x ), such that the area under f (x ) is 1, is a density.
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Here are some examples of common densities.

Example 5.4.1: uniform density. Let X have density

f (x ) � (bÿ a)ÿ1, 0 , x , b

0 otherwise:

�
(6)

Then X is uniform on (a, b); we are very familiar with this density already. In general,

P(X 2 B) is just jBj(bÿ a)ÿ1, where jBj is the sum of the lengths of the intervals in

(a, b) that comprise B. s

Example 5.4.2: two-sided exponential density. Let a, b, á, â be positive, and set

f (x ) � aeÿáx, x . 0,

beâx, x , 0,

�
(7)

where

a

á
� b

â
� 1:

Then f (x ) is a density, by (3). s

Example 5.4.3: an unbounded density. In contrast to the discrete case, densities not

only can exceed 1, they need not even be bounded. Let X have density

f (x ) � 1
2
xÿ1=2, 0 , x , 1:(8)

Then f (x ) . 0 and, as required, �1

0

f (x ) dx � �x1=2
�1

0
� 1,

but f (x ) is not bounded as x! 0. s

Our next two examples are perhaps the most important of all densities. Firstly:

Example 5.4.4: normal density. The standard normal random variable X has density

ö(x ), where

ö(x ) � (2ð)ÿ1=2 exp ÿ1
2
x2

ÿ �
, ÿ1, x ,1:(9)

We met this density as an approximation to a binomial distribution in chapter 4, and we

shall meet it again in similar circumstances in chapter 7. For the reasons suggested by

that result, it is a distribution that is found empirically in huge areas of science and

statistics. It is easy to see that ö(x ) > 0, but not so easy to see that (3) holds. We

postpone the proof of this to chapter 6. s

Secondly:

Example 5.4.5: exponential density with parameter ë. Let X have density function

f (x ) � ëeÿëx, x . 0

0 otherwise:

�
(10)
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Clearly we require ë. 0, so that we satisfy the requirement that�1
0

f (x ) dx � 1:

By the key rule, for 0 , a , b,

P(a , X , b) �
�b

a

ëeÿëx dx � eÿëa ÿ eÿëb: s(11)

We met the exponential density in Chapter 4 as an approximation to geometric

probability mass functions. These arise in models for waiting times, so it is not surprising

that the exponential density is also used as a model in situations where you are waiting

for some event which can occur at any nonnegative time. The following example provides

some explanation and illustration of this.

Example 5.4.6: the Poisson process and the exponential density. Recall our deriva-

tion of the Poisson distribution. Suppose that events can occur at random anywhere in the

interval [0, t], and these events are independent, `rare', and `isolated'. We explained the

meaning of these terms in section 4.8, in which we also showed that, on these assump-

tions, the number of events N (t) in [0, t] turns out to have approximately a Poisson

distribution,

P(N (t) � n) � eÿë t(ët)n

n!
:(12)

When t is interpreted as time (or length), then the positions of the events are said to form

a Poisson process. A natural way to look at this is to start from t � 0, and measure the

interval X until the ®rst event. Then X is said to be the waiting time until the ®rst event,

and is a random variable.

Clearly X is greater than t if and only if N (t) � 0. From (12) this gives

P(X . t) � P(N (t) � 0) � eÿë t:

Now from (10) we ®nd that, if X is exponential with parameter ë,

P(X . t) �
�1

t

ëeÿëu du � eÿë t:(13)

We see that the waiting time in this Poisson process does have an exponential density. s

Just as for discrete random variables, one particular probability is so important and

useful that it has a special name and notation.

De®nition. Let X have density f (x ). Then the distribution function F(x ) of X is

given by

F(x ) �
�x

ÿ1
f (u) du � P(X < x ) � P(X , x ),(14)

since P(X � x ) � 0. n
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Sometimes this is called the cumulative distribution function, but not by us. As in the

discrete case the survival function is given by

F(x ) � 1ÿ F(x ) � P(X . x ),(15)

and we may denote F(x ) by FX (x ), to avoid ambiguity. We have seen that the distribution

function F(x ) is de®ned in terms of the density f (x ) by (14). It is a very important and

useful fact that the density can be derived from the distribution function by differen-

tiation:

f (x ) � dF(x )

dx
� F9(x ):(16)

This is just the fundamental theorem of calculus, which we discussed in appendix 4.14.

This means that in solving problems, we can choose to use either F or f , since one can

always be found from the other.

Here are some familiar densities and their distributions.

Uniform distribution. When f (x ) � (bÿ a)ÿ1, it is easy to see that

F(x ) � xÿ a

bÿ a
, a < x < b:(17)

Exponential distribution. When f (x ) � ëeÿëx, then

F(x ) � 1ÿ eÿëx, x > 0:(18)

Normal distribution. When f (x ) � ö(x ), then there is a special notation:

F(x ) � Ö(x ) �
�x

ÿ1
ö(y) dy:(19)

We have already used Ö(x ) in chapter 4, of course.

Next, observe that it follows immediately from (14), and the properties of f (x ), that

F(x ) satis®es

lim
x!ÿ1 F(x ) � 0, lim

x!1 F(x ) � 1,(20)

and

F(y)ÿ F(x ) > 0, for x < y:(21)

These properties characterize distribution functions just as (2) and (3) do for densities.

Here are two examples to show how we use them.

Example 5.4.7: Cauchy density. We know that tanÿ1(ÿ1) � ÿð=2, and tanÿ1(1)

� ð=2, and tanÿ1(x ) is an increasing function. Hence

F(x ) � 1

2
� 1

ð
tanÿ1 x(22)

is a distribution function, and differentiating gives

f (x ) � 1

ð(1� x2)
,(23)

which is known as the Cauchy density. s
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Example 5.4.8: doubly exponential density. By inspection we see that

F(x ) � expfÿ exp (ÿx )g(24)

satis®es all the conditions for being a distribution, and differentiating gives the density

f (x ) � eÿx exp(ÿeÿx): s(25)

We can use the distribution function to show that the Poisson process, and hence the

exponential density, has intimate links with another important family of densities.

Example 5.4.9: the gamma density. As in example 5.4.6, let N (t) be the number of

events of a Poisson process that occur in [0, t]. Let Yr be the time that elapses from t � 0

until the moment when the rth event occurs. Now a few moments' thought show that

Yr . t if and only if N (t) , r:

Hence

1ÿ FY (t) � P(Yr . t) � P(N (t) , r)(26)

�
Xrÿ1

x�0

eÿë t(ët)x=x!, by (12):

Therefore Yr has density f Y (y) obtained by differentiating (26):

f Y (y) � (ëy)rÿ1ëeÿë y=(r ÿ 1)!, 0 < y ,1:(27)

This is known as the gamma density, with parameters ë and r. s

Remark. You may perhaps be wondering what happened to the sample space Ù and

the probability function P(:), which played a big part in early chapters. The point is that,

since random variables take real values, we might as well let Ù be the real line R. Then

any event A is a subset of R with length jAj, and

P(A) �
�

x2A

f (x ) dx:

We do not really need to mention Ù again explicitly. However, it is worth noting that this

shows that any non-negative function f (x ), such that
�

f (x ) dx � 1, is the density

function of some random variable X .

Exercises for section 5.4

1. Let X have density function f (x) � cx, 0 < x < a. Find c, and the distribution function of X .

2. Let f1(x ) and f 2(x) be densities, and ë any number such that 0 < ë < 1. Show that

ë f1 � (1ÿ ë) f2 is a density. Is f1 f2 a density?

3. Let F1(x ) and F2(x ) be distributions, and 0 < ë < 1. Show that ëF1 � (1ÿ ë)F2 is a distribu-

tion. Is F1 F2 a distribution?

4. (a) Find c when X1 has the beta density â 3
2
, 3

2

ÿ �
, f1(x ) � cfx(1ÿ x )g1=2:

(b) Find c when X2 has the arcsin density, f2(x ) � cfx(1ÿ x )gÿ1=2:

(c) Find the distribution function of X 2.
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5.5 FUNCTIONS OF A CONTINUOUS RANDOM VARIABLE

Just as for discrete random variables, we are often interested in functions of continuous

random variables.

Example 5.5.1. Many measurements have established that if R is the radius of the

trunk, at height one metre, of a randomly selected tree in Siberia, then R has a certain

density f (r). The cross-sectional area of such a tree at height one metre is then roughly

A � ðR2:

What is the density of A? s

This exempli®es the general problem, which is: given random variables X and Y, such

that

Y � g(X )

for some function g, what is the distribution of Y in terms of that of X ? In answering this

we ®nd that the distribution function appears much more often in dealing with continuous

random variables than it did in the discrete case. The reason for this is rather obvious; it

is the fact that P(X � x ) � 0 for random variables with a density. The elementary lines

of argument, which served us well for discrete random variables, sometimes fail here for

that reason. Nevertheless, the answer is reasonably straightforward, if g(X ) is a one-to-

one function. Let us consider the simplest example.

Example 5.5.2: scaling and shifting. Let X have distribution F(x ) and density f (x ),

and suppose that

Y � aX � b, a . 0:(1)

Then, arguing as we did in the discrete case,

FY (y) � P(Y < y)(2)

� P(aX � b < y)

� P X <
yÿ b

a

� �
� F

yÿ b

a

� �
:

Thus the distribution of Y is just the distribution F of X , when it has been shifted a

distance b along the axis and scaled by a factor a.

The scaling factor becomes even more apparent when we ®nd the density of Y . This is

obtained by differentiating FY (y), to give

f Y (y) � d

dy
FY (y) � d

dy
F

yÿ b

a

� �
� 1

a
f

yÿ b

a

� �
:(3)

You may wonder why we imposed the condition a . 0. Relaxing it shows the reason, as

follows. Let Y � aX � b with no constraints on a. Then we note that if a � 0 then Y is

just a constant b, which is to say that

P(Y � b) � 1, a � 0:(4)

If a 6� 0, we must consider its sign. If a . 0 then
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P(aX < yÿ b) � P X <
yÿ b

a

� �
� F

yÿ b

a

� �
:(5)

If a , 0 then

P(aX < yÿ b) � P X >
yÿ b

a

� �
� 1ÿ F

yÿ b

a

� �
:(6)

In each case, when a 6� 0 we obtain the density of Y by differentiating FY (y) to get

f (y) � 1

a
f X

yÿ b

a

� �
, a . 0,

or

f (y) � ÿ 1

a
f X

yÿ b

a

� �
, a , 0:

We can combine these to give

f Y (y) � 1

jaj f X

yÿ b

a

� �
, a 6� 0: s(7)

The general case, when Y � g(X ), can be tackled in much the same way. The basic

idea is rather obvious; it runs as follows. Because Y � g(X ), we have

FY (y) � P(Y < y) � P(g(X ) < y):(8)

Next, we differentiate to get the density of Y :

f Y (y) � d

dy
FY (y) � d

dy
P(g(X ) < y):(9)

Now if we play about with the right-hand side of (9), we should obtain useful expressions

for f Y (y), when g(:) is a friendly function.

We can clarify this slightly hazy general statement by examples.

Example 5.5.3. Let X be uniform on (0, 1), and suppose Y � ÿëÿ1 log X .

Then, following the above prescription, we have for ë > 0,

FY (y) � P(Y < y) � P(log X > ÿëy)

� P(X > eÿë y) � 1ÿ eÿë y:

Hence

f Y (y) � d

dy
FY (y) � ëeÿë y,

and Y has an exponential density. s

Example 5.5.4. Let X have a continuous distribution function F(x ), and let

Y � F(X ):

Then, as above,

FY (y) � P(Y < y) � P(F(X ) < y)

� P(X < Fÿ1(y)),
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where Fÿ1 is the inverse function of F. Hence

FY (y) � F(Fÿ1(y)) � y,

and Y is uniform on (0, 1). s

Example 5.5.5: normal densities. Let X have the standard normal density

f (x ) � ö(x ) � 1

(2ð)1=2
exp ÿ x2

2

� �
,

and suppose Y � ì� ó X , where ó 6� 0. Then, by example 5.5.2,

FY (y) �
Ö

yÿ ì

ó

� �
, ó . 0,

1ÿÖ
yÿ ì

ó

� �
, ó , 0:

8>>><>>>:
Differentiating shows that Y has density

f Y (y) � 1

(2ðó 2)1=2
exp ÿ 1

2

yÿ ì

ó

� �2
( )

:

We can write this in terms of ö(x ) as

f Y (y) � 1

jó jö
yÿ ì

ó

� �
and this is known as the N(ì, ó 2) density, or the general normal density.

Conversely, of course, if we know Y to be N(ì, ó 2), then the random variable

X � Y ÿ ì

ó

is a standard normal random variable. This is a very useful little result. s

Example 5.5.6: powers. Let X have density f and distribution F. What is the density

of Y , where Y � X 2?

Solution. Here some care is needed, for the function is not one±one. We write, as

usual,

FY (y) � P(X 2 < y)

� P(ÿ ���
y
p

< X <
���
y
p

)

� F(
���
y
p

)ÿ F(ÿ ���
y
p

)

so that Y has density

f Y (y) � d

dy
FY (y) � 1

2
���
y
p f f (

���
y
p

)� f (ÿ ���
y
p

)g: s
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Example 5.5.7: continuous to discrete. Let X have an exponential density, and let

Y � [X ], where [X ] is the integer part of X . What is the distribution of Y?

Solution. Trivially for any integer n, we have [x] > n if and only if x > n. Hence

P(Y > n) � eÿën, n > 0

and so

P(Y � n) � P(Y > n)ÿ P(Y > n� 1)

� eÿën(1ÿ eÿën), n > 0:

Thus Y has a geometric distribution. s

Exercises for section 5.5

1. Let X be a standard normal random variable. Find the density of Y � X 2.

2. Let X be uniform in [0, m] with density f X (x ) � mÿ1, 0 < x < m. What is the distribution of

Y � [X ]?

3. Let X have density f and distribution F. What is the density of Y � X 3?

4. Let X have density f � 6x(1ÿ x), 0 < x < 1. What is the density of Y � 1ÿ X?

5.6 EXPECTATION

In chapter 4 we introduced the ideas of mean ì and variance ó 2 for a probability

distribution. These were suggested as guides to the location and spread of the distribution,

respectively. Recall that for a discrete distribution ( p(x ); x 2 D), we de®ned

ì �
X

x

xp(x )(1)

and

ó 2 �
X

x

(xÿ ì)2 p(x ):(2)

Now, since any discrete random variable has such a probability distribution, it follows

that we can calculate its mean using (1). This is such an important and useful attribute

that we give it a formal de®nition.

De®nition. Let X be a discrete random variable. Then the expectation of X is

denoted by EX , where

EX �
X

x

xP(X � x ):(3)

Note that this is also known as the expected value of X , or the mean of X , or the ®rst

moment of X . Note also that we assume that the summation converges absolutely, that is

to say,
P

xjxjp(x ) ,1. n
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Now suppose that X is a continuous random variable with density f (x ). We remarked

in chapter 4 that such a density has a mean value (just as mass distributed as a density has

a centre of gravity). We therefore make a second de®nition.

De®nition. Let X be a continuous random variable with density f (x ). Then the

expectation of X is denoted by EX , where

EX �
�1
ÿ1

xf (x ) dx:(4)

This is also known as the mean or expected value. (Just as in the discrete case, it exists if�1
ÿ1 jxj f (x ) dx ,1; this is known as the condition of absolute convergence.) n

Remark. We note that (3) and (4) immediately demonstrate one of the advantages of

using the concept of random variables. That is, EX denotes the mean of the distribution

of X , regardless of its type; (discrete, continuous, or whatever). The use of the expec-

tation symbol uni®es these ideas for all categories of random variable.

Now the de®nition of expectation in the continuous case may seem a little arbitrary, so

we expend a brief moment on explanation. Recall that we introduced probability densities

originally as continuous approximations to discrete probability distributions. Very

roughly speaking, as the distance h between discrete probability masses decreases, so

they merge into what is effectively a probability density. Symbolically, as h! 0, we have

for X 2 A

P(X 2 A) �
X
x2A

f X (x ), where f X (x ) is a discrete distribution

!
�

x2A

f (x ) dx, where f (x ) is a density function.

Likewise we may appreciate that, as h! 0,

EX �
X

x f X (x )

!
�

xf (x ) dx:

We omit the details that make this argument a rigorous proof; the basic idea is obvious.

Let us consider some examples of expectation.

Example 5.6.1: indicators. If X is an indicator then it takes the value 1 with

probability p, or 0 with probability 1ÿ p. In line with the above de®nition then

EX � 1 3 p� 0 3 (1ÿ p) � p: s(5)

Though simple, this equation is more important than it looks! We recall from chapter 2

that it was precisely this relationship that enabled Pascal to make the ®rst nontrivial

calculations in probability. It was a truly remarkable achievement to combine the notions

of probability and expectation in this way. He also used the following.
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Example 5.6.2: two possible values. Let X take the value a with probability p(a), or

b with probability p(b). Of course p(a)� p(b) � 1. Then

EX � ap(a)� bp(b):(6)

This corresponds to a wager in which you win a with probability p(a), or b with

probability p(b), where your stake is included in the value of the payouts. The wager is

said to be fair if EX � 0. s

Example 5.6.3: random sample. Suppose n bears weigh x1, x2, . . . , xn kilograms

respectively; we catch one bear and weigh it, with equal probability of catching any. The

recorded weight X is uniform on fx1, . . . , xng, with distribution

p(xr) � nÿ1, 1 < r < n:

Hence

EX � nÿ1
Xn

r�1

xr � x:

The expectation is the population mean. s

Example 5.6.4. Let X be uniform on the integers f1, 2, . . . , ng. Then

EX � nÿ1
Xn

r�1

r � 1
2
(n� 1): s(7)

Example 5.6.5: uniform density. Let X be uniform on (a, b). Then

EX �
�b

a

xf (x ) dx �
�b

a

x

bÿ a
dx � 1

2

b2 ÿ a2

bÿ a

� �
(8)

� 1
2

(a� b),

which is what you would anticipate intuitively. s

Example 5.6.6: exponential density. Let X be exponential with parameter ë. Then

EX �
�1

0

xëeÿëx dx(9)

� ëÿ1: s

Example 5.6.7: normal density. If X has a standard normal density then

EX �
�1
ÿ1

xö(x ) dx

� 0, by symmetry: s

Let us return to consider discrete random variables for a moment. When X is integer

valued, and non-negative, the following result is often useful.
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Example 5.6.8: tail sum. When X > 0, and X is integer valued, show that

EX �
X1
r�0

P(X . r) �
X1
r�0

f1ÿ F(r)g:(10)

Solution. By de®nition

EX �
X1
r�1

rp(r) � p(1)(11)

� p(2)� p(2)

� p(3)� p(3)� p(3)

..

.

�
X1
r�1

p(r)�
X1
r�2

p(r)�
X1
r�3

p(r) � � � �

on summing the columns on the right-hand side of (11). This is just (10), as required. s

For an application consider this.

Example 5.6.9: geometric mean. Let X be geometric with parameter p. Then

EX �
X1
r�0

P(X . r) �
X1
r�0

q r � pÿ1: s

It is natural to wonder whether some simple expression similar to (10) holds for

continuous random variables. Remarkably, the following example shows that it does.

Example 5.6.10: tail integral. Let the non-negative continuous random variable X

have density f (x ) and distribution function F(x ). Then

EX �
�1

0

f1ÿ F(x )g dx �
�1

0

P(X . x ) dx:(12)

In general, for any continuous random variable X

EX �
�1

0

P(X . x ) dxÿ
�1

0

P(X ,ÿx ) dx:(13)

The proof is the second part of problem 25 at the end of the chapter. Here we use this

result in considering the exponential density.

Example 5.6.11. If X is exponential with parameter ë then by (12)

EX �
�1

0

eÿëx dx � ëÿ1: s

Note that expected values need not be ®nite.
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Example 5.6.12. Let X have the density

f (x ) � xÿ2, x > 1

so that

F(x ) � 1ÿ xÿ1, x > 1:

Hence, by (12),

EX �
�1

0

f1ÿ F(x )g dx �
�1

1

xÿ1 dx � 1: s

Finally in this section, we note that since the mean gives a measure of location, it is

natural in certain circumstances to obtain an idea of the probability in the tails of the

distribution by scaling with respect to the mean. This is perhaps a bit vague; here is an

example to make things more precise. We see more such examples later.

Example 5.6.13. Let X be exponential with parameter ë, so EX � ëÿ1. Then

P
X

EX
. t

� �
� P(X . tEX ) � 1ÿ F(tEX )

� exp(ÿëtëÿ1) � eÿ t;

note that this does not depend on ë. In particular, for any exponential random variable X ,

P(X . 2EX ) � eÿ2: s

Example 5.6.14: leading batsmen. In any innings a batsman faces a series of balls.

At each ball (independently), he is out with probability r, or scores a run with probability

p, or scores no run with probability q � 1ÿ pÿ r. Let his score in any innings be X .

Show that his average score is a � EX � p=r and that, for large a, the probability that

his score in any innings exceeds twice his average is approximately eÿ2.

Solution. First we observe that the only relevant balls are those in which the batsman

scores, or is out. Thus, by conditional probability,

P(scoresjrelevant ball) � p

p� r
,

P(outjrelevant ball) � r

p� r
:

Thus X is geometric, with parameter r=( p� r), and we know that

P(X . n) � p

p� r

� �n�1

, n > 0

and

a � EX � p� r

r
ÿ 1 � p

r
,
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Hence

P(X . 2a) � p

p� r

� �2a�1

� 1ÿ 1

1� p=r

� �2a�1

� 1ÿ 1

a� 1

� �2a�1

' eÿ2 for large a: s

Remark. This result is due to Hardy and Littlewood (Math. Gazette, 1934), who

derived it in connexion with the batting statistics of some exceptionally proli®c cricketers

in that season.

This is a good moment to stress that despite appearing in different de®nitions, discrete

and continuous random variables are very closely related; you may regard them as two

varieties of the same species.

Broadly speaking, continuous random variables serve exactly the same purposes as

discrete random variables, and behave in the same way. The similarities make themselves

apparent immediately since we use the same notation: X for a random variable, EX for

its expectation, and so on.

There are some differences in development, and in the way that problems are

approached and solved. These differences tend to be technical rather than conceptual, and

lie mainly in the fact that probabilities and expectations may need to be calculated by

means of integrals in the continuous case. In a sense this is irrelevant to the probabilistic

properties of the questions we want to investigate. This is why we choose to treat them

together, in order to emphasize the shared ideas rather than the technical differences.

Exercises for section 5.6

1. Show that if X is triangular on (0, 1) with density f (x ) � 2x, 0 < x < 1, then EX � 2
3
.

2. Let X be triangular on the integers f1, . . . , ng with distribution

p(x ) � 2x

n(n� 1)
, 1 < x < n:

Find EX .

3. Let X have the gamma density

f (x ) � ër

(r ÿ 1)!
x rÿ1eÿëx, x > 0:

Find EX .

5.7 FUNCTIONS AND MOMENTS

We have now seen many examples (especially in this chapter) demonstrating that we are

very often interested in functions of random variables. For example scientists or statisti-

cians, having observed some random variable X , may very well wish to consider a
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change of location and scale, de®ning

Y � aX � b:(1)

Sometimes the change of scale is not linear; it is quite likely that you have seen, or even

used, logarithmic graph paper, and so your interest may be centred on

Z � log X :(2)

Even more frequently, we need to combine two or more random variables to yield

functions like

U � X � Y , V �
Xn

1

X i, W � X Y ,

and so on; we postpone consideration of several random variables to the next chapter.

In any case such new random variables have probability distributions, and it is very

often necessary to know the expectation in each case. If we proceed directly, we can argue

as follows. Let

Y � g(X ),

where X is discrete with distribution p(x ). Then Y has distribution

pY (y) �
X

x: g(x )� y

p(x )(3)

and by de®nition

EY �
X

y

ypY (y):(4)

Likewise if X and Y are continuous, where

Y � g(X ),

then we have supplied methods for ®nding the density of Y in section 5.5, and hence its

expectation.

However, the prospect of performing the two summations in (3) and (4) to ®nd EY , in

the discrete case, is not one that we relish. And the procedure outlined when X and Y are

continuous is even less attractive. Fortunately these tedious approaches are rendered

unnecessary by the following timely, useful, and attractive result.

Theorem: expectation of functions. (i) Let X and Y be discrete, with Y � g(X ).

Then

EY �
X

x

g(x )P(X � x )(5)

�
X

x

g(x ) p(x ):

(ii) Let X be continuous with density f (x ), and suppose Y � g(X ). Then

EY �
�

R

g(x ) f (x ) dx:(6)

The point of (5) and (6) is that we do not need to ®nd the distribution of Y in order to ®nd

its mean.
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Remark. Some labourers in the ®eld of probability make the mistake of assuming

that (5) and (6) are the de®nitions of EY . This is not so. They are unconscious of the fact

that EY is actually de®ned in terms of its own distribution, as (4) states in the discrete

case. For this reason the theorem is occasionally known as the law of the unconscious

statistician.

Remark. Of course it is not true in general that

Eg(X ) � g(EX ):

You need to remember this. A simple example is enough to prove it. Let X have

distribution

p(1) � 1
2
� p(ÿ1),

so that EX � 0. Then P(X 2 � 1) � 1. Hence 0 � (EX )2 6� EX 2 � 1.

Proof of (i). Consider the right-hand side of (5), and rearrange the sum so as to group

all the terms in which g(x ) � y, for some ®xed y. Then for these termsX
x

g(x ) p(x ) �
X

x

yp(x ) � y
X

x: g(x )� y

p(x )

� ypY (y):

Now summing over all y, we obtain the de®nitive expression for EY , as required.

The proof of (ii) is similar in conception but a good deal more tedious in the exposition,

so we omit it. h

The above theorem is one of the most important properties of expectation, and it has a

vital corollary.

Corollary: linearity of expectation. Let X be any random variable and let the random

variable Z satisfy

Z � g(X )� h(X )

for functions g and h. Then

EZ � Eg(X )� Eh(X ):(7)

Proof for discrete case. By (5),

EZ �
X

x

fg(x )� h(x )g p(x )

�
X

x

g(x ) p(x )�
X

x

h(x ) p(x )

� Eg(X )� Eh(X ), by (5) again:

Proof for continuous case. The proof uses (6), and proceeds along similar lines, with

integrals replacing sums. h
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Corollary: linear transformation. Let Y � aX � b. Then by (7),

EY � aEX � b: h

Example 5.7.1: dominance. Suppose that g(x ) < c, for some constant c, and all x.

Then for the discrete random variable X

Eg(X ) �
X

x

g(x ) p(x )

<
X

x

cp(x ), since g(x ) < c,

� c, since
X

x

p(x ) � 1:

The same argument works for a continuous random variable, so in either case we have

shown that

Eg(X ) < c: s(8)

With all these new results, we can look with fresh eyes at the variance, brie¯y

mentioned in section 5.6 and de®ned by (2) in that section.

Example 5.7.2: variance. Recall that in chapter 4 we de®ned the variance of a

distribution p(x ) as

ó 2 �
X

x

(xÿ ì)2 p(x ):

Comparison of this expression with (2) of section 5.6 and (5) in this section shows that

ó 2 � Ef(X ÿ ì)2g � EfX 2 ÿ 2ìX � ì2g(9)

� EX 2 ÿ ì2

� EX 2 ÿ (EX )2:

In this new context we usually denote the variance by var X, and may write var X � ó 2
X .

s

The important point to notice here, as we did for expectation, is that if we write

ó 2
X � EX 2 ÿ (EX )2(10)

then this de®nition holds for any random variable, whether discrete or continuous. The

advantages of using random variables become ever more obvious.

Example 5.7.3: die. Let X be the number shown by rolling a fair die, numbered from

1 to 6. Then

EX 2 � 1
6

12 � 22 � 32 � 42 � 52 � 62
ÿ � � 91

6

and so

var X � 91
6
ÿ 7

2

ÿ �2� 35
12
: s
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Example 5.7.4: change of location and scale. Let X have mean ì and variance ó 2.

Find the mean and variance of Y , where Y � aX � b.

Solution. We have

E(aX � b) � aE(X )� b � aì� b

and

E(aX � b)2 � a2EX 2 � 2abEX � b2:

Hence

var Y � E(aX � b)2 ÿ fE(aX � b)g2 � a2 var X � a2ó 2: s

Here are some more examples and applications.

Example 5.7.5: normal density. Let X have the standard normal density ö(x ). Then

EX � 0, and

var X �
�1
ÿ1

x2ö(x ) dx � xeÿx2=2

(2ð)1=2

" #1
ÿ1
�
�1
ÿ1

ö(x ) dx

� 1:

Now let

Y � ì� ó X :

We have shown in example 5.6.9 that Y has the N(ì, ó 2) density, namely

f Y (y) � 1

(2ð)1=2ó
exp ÿ 1

2

(xÿ ì)2

ó 2

� �
:

By the law of the unconscious statistician (6) we can now calculate

EY � E(ì� ó X ) � ì(11)

and

var Y � Ef(Y ÿ ì)2g � E(ó 2 X 2) � ó 2:(12)

You could verify this by explicit calculation using the density of Y , if you wished. The

fact that the N(ì, ó 2) density has mean ì and variance ó 2 makes the notation even more

transparent and reasonable. s

It is by now obvious that we are very often interested simply in probabilities such as

P(X . x ), or P(jX j. x ). These are simple to ask for, but frequently hard to ®nd, or too

complicated to be useful. One important use of expectation is to provide bounds for these

probabilities (and many others).

Example 5.7.6: Markov's inequality. Let X be any random variable; show that

P(jX j > a) <
EjX j

a
, a . 0:(13)

Solution. Let Y be the indicator of the event that jX j > a. Then it is always true that

aY < jX j:
Now using (8) yields the required result. s
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Example 5.7.7: Chebyshov's inequality. Let X be any random variable; show that

P(jX j > a) <
EX 2

a2
, a . 0:

Solution. We have

P(jX j > a) � P(X 2 > a2)(14)

<
E(X 2)

a2

on using (13) applied to the random variable X 2. s

Here is one ®nal example of how we apply (5) and (6).

Example 5.7.8: fashion retailer. A shop stocks fashionable items; the number that

will be demanded by the public before the fashion changes is X , where X . 0 has

distribution function F(x ). Each item sold yields a pro®t of £a; all those unsold when the

fashion changes must be dumped at a loss of £b each. Since X is large, we shall assume

that its distribution is well approximated by some density f (x ). If the shop stocks c of

these items, what should the manager choose c to be, in order that the expected net pro®t

is greatest?

Solution. The net pro®t g(c, X ) garnered, when c are stocked and the demand is X ,

is given by

g(c, X ) � aX ÿ b(cÿ X ), X < c,

ac, X . c:

�
Hence by (6), we have approximately

Eg(c, X ) �
�c

ÿ1
faxÿ b(cÿ x )g f (x ) dx�

�1
c

acf (x ) dx

� ac� (a� b)

�c

0

(xÿ c) f (x ) dx:

The maximum of this function of c is found by equating its ®rst derivative to zero; thus

0 � a� (a� b)
d

dc

�c

0

(xÿ c) f (x ) dx

� aÿ (a� b)

�c

0

f (x ) dx

� aÿ (a� b)F(c):

Hence F(c) � a=(a� b), and the manager should order around c items, where c is the

point at which the distribution function F ®rst reaches the level a=(a� b), as x

increases. s
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Exercises for section 5.7

1. Let X be binomial B n, 1
2

ÿ �
, Y be binomial B 2n, 1

4

ÿ �
, and Z � 2X . Show that EX � EY � 1

2
EZ,

and that var X � 2
3

var Y � 1
8

var Z.

2. Let h(x ) be a non-negative function, and a . 0. Show that

P(h(X ) > a) <
Eh(X )

a
:

3. Flip a fair coin repeatedly, and let X be the number of ¯ips up to and including the ®rst head.

(a) Use Chebyshov's inequality to show that

P(jX ÿ 2j > 2) < 1
2
:

Now show that P(jX ÿ 2j > 2) � 1
16

.

(b) Use Markov's inequality to show that

P(X > 4) < 1
2
:

What is P(X > 4) exactly?

4. St Petersburg problem. You have to determine the fair entry fee for the following game. A

fair coin is ¯ipped until it ®rst shows a head; if there have been X tails up to this point then the

prize is Y � $2X . Find EY . Would anyone pay this entry fee to play?

5.8 CONDITIONAL DISTRIBUTIONS

Suppose we are considering some random variable X . Very often we may be told that X

obeys some condition, or it may be convenient to impose conditions.

Example 5.8.1. Let X be the lifetime of the lightbulb illuminating your desk.

Suppose you know that it has survived for a time t up to now. What is the distribution of

X , given this condition?

Except in very special cases, we must expect that the distribution of X given this

condition is different from the unconditional distribution prevailing before you screw

it in. s

This, and other obvious examples, lead us to de®ne conditional distributions, just as

similar observations led us to de®ne conditional probability in chapter 2.

Once again it is convenient to deal separately with discrete and continuous random

variables; conditional densities appear in section 5.9. Let X be discrete with probability

distribution p(x ). Recall that there is an event Ax � fù: X (ù) � xg, so that

p(x ) � P(X � x ) � P(Ax):

Now, given that some event B has occurred, we have the usual conditional probability

P(AxjB) � P(Ax \ B)=P(B):

It is therefore an obvious step to make the following

De®nition. The conditional distribution of X given B is denoted by pX jB(xjB), where

pX jB(xjB) � P(AxjB)

� P(X � xjB):

Sometimes we simply denote this by p(xjB). n
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Of course, just as with events, it may happen that the conditional distribution of X

given B is the same as the unconditional distribution of X . That is, we may have that for

all x

p(xjB) � p(x ):(1)

In this case we say that X is independent of B. This is of course consistent with our

previous de®nition of independence, because (1) is equivalent to

P(AxjB) � P(Ax \ B)=P(B) � P(Ax),

which says that Ax and B are independent.

Here are some examples.

Example 5.8.2: key rule. By routine operations we see that

P(X 2 CjB) � P
[
x2C

AxjB
 !

�
X
x2C

P(Ax \ B)=P(B)

�
X
x2C

p(xjB):

Thus conditional distributions obey the key rule, just like unconditional distributions;

compare this with (4) of section 5.3. s

Example 5.8.3. Let X be geometric with parameter p, and let B be the event that

X . a. Then for x . a

P(X � xjB) � P(fX � xg \ B)=P(B)

� pqxÿ1=P(B) � pqxÿ1=qa

� pqxÿaÿ1:

This is still a geometric distribution! s

Example 5.8.4. Let U be uniform on f1, . . . , ng and let B be the event that

a , U < b, where 1 , a , b , n. Then for a , r < b

P(U � rjB) � P(fU � rg \ B)=P(B)

� 1

n

�
bÿ a

n
� 1

bÿ a
:

This is still a uniform distribution! s

Example 5.8.5. Let X be Poisson with parameter ë, and let B be the event X 6� 0.

Then for x . 0

P(X � xjB) � eÿëëx

(1ÿ eÿë)x!
:

This is not a Poisson distribution, but it is still a distribution, for obviously
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X1
x�1

eÿëëx

(1ÿ eë)x!
� 1: s

This last result is generally true, and we single it out for special notice.

Lemma. Conditional distributions are still probability distributions. This is easily

seen as follows. X
x

P(X � xjB) �
X

x

P(fX � xg \ B)=P(B)

� 1: h

Since p(xjB) is a distribution, it may have an expected value. Because of the condition

that B occurs, it is naturally called conditional expectation.

De®nition. For a discrete random variable X and any event B, the conditional

expectation of X given B is

E(X jB) �
X

x

xpX jB(xjB): n(2)

Note. As usual we require that E(jX i B) ,1.

This de®nition turns out to be one of the most powerful and important concepts in

probability, but at this stage we can only give a few simple illustrations of its use. Let us

calculate a couple of examples.

Example 5.8.6. You ¯ip a fair coin three times; let X be the number of heads. Find

the conditional expectation of X given that at least two heads are shown.

Solution. Let B be the event that X > 2. Then

P(B) � 3
8
� 1

8
� 1

2
,

and

pX jB(2jB) � P(X � 2)

P(B)
� 3

4
,

pX jB(3jB) � P(X � 3)

P(B)
� 1

4
,

pX jB(xjB) � 0, for x � 0 or x � 1:

Hence

E(X jB) � 2 pX jB(2jB)� 3 pX jB(3jB)

� 9
4
:

Compare this with the unconditional EX � 3
2
. s

Example 5.8.7: runs. A biased coin shows a head with probability p, or a tail with

probability q � 1ÿ p; it is ¯ipped repeatedly. A run of heads is any unbroken sequence
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of heads, either until the ®rst tail or after the last tail, or between any two tails. A run of

tails is de®ned similarly. Find the distribution of the lengths of (i) the ®rst run, and (ii) the

second run.

Solution. The ®rst ¯ip is either H or T.

For (i): Let the ®rst run have length X . Then

P(X � xjfirst flip is H) � p(xjH) � pxÿ1q,

and

p(xjT ) � qxÿ1 p:

Hence

p(x ) � p(xjH) p� p(xjT)q � pxq� qx p, x > 1:

For (ii): Let the second run have length Y . Then

p(yjH) � q yÿ1 p,

and

p(yjT ) � p yÿ1q:

Note that in deriving these, we have used the trivial observation that if the ®rst ¯ip shows

heads, then the second run is of tails, and vice versa. Hence

p(y) � q yÿ1 p2 � p yÿ1q2, y > 1:

It is interesting that X and Y have different distributions. From the results above we may

deduce immediately that

E(X jH) �
X1
x�1

xpxÿ1q � qÿ1

and

E(X jT ) �
X1
x�1

xqxÿ1 p � pÿ1:

Likewise

E(Y jH) � pÿ1 and E(Y jT ) � qÿ1: s

A natural question is to ask how conditional expectation and unconditional expectation

are related to each other. Let us consider a simple case ®rst. For any discrete random

variable X and event B we have

p(x ) � P(X � x ) � P(X � xjB)P(B)� P(X � xjBc)P(Bc):(3)

Now multiply (3) by x and sum over all x, to give

EX �
X

x

xp(x ) �
X

x

xp(xjB)P(B)�
X

x

xp(xjBc)P(Bc)(4)

� E(X jB)P(B)� E(X jBc)P(Bc):

This is a special case of the partition rule for conditional expectation. The following

general rule is easily proved in the same way as (3).
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Partition rule for expectation. Let X be a discrete random variable, and let

(Br; r > 1) be a partition of Ù, which is to say that Bj \ Bk � Æ for j 6� k andS
r Br � Ù. Then

EX �
X

r

E(X jBr)P(Br):(5)

Note that when X is an indicator,

X � I(A) � 1 if A occurs

0 otherwise;

�
then setting X � I in (5) yields

P(A) �
X

r

P(AjBr)P(Br),(6)

the partition rule for events, which we met in section 2.8.

Example 5.8.8: runs revisited. Recall our terminology in example 5.8.7: when you

repeatedly ¯ip a biased coin, the length of the ®rst run is X and the length of the second

run is Y .

From the results of that example we now see that

EX � pE(X jH )� qE(X jT ) � p

q
� q

p
,

whereas

EY � pE(Y jH )� qE(Y jT ) � p

p
� q

q
� 2: s

Conditional expectation offers a very neat way of analysing random variables that arise

as a result of a sequence of independent actions, the archetype of which is, of course,

¯ipping a coin or coins.

Example 5.8.9: a new way of ®nding the mean and variance of the geometric distribu-

tion. Of course we already know one way of doing this: you sum the appropriate

series. The following is a typical application of conditional expectation.

We know that if a biased coin (showing a head with probability p) is ¯ipped repeatedly,

then the number of ¯ips X up to and including the ®rst head is geometric with parameter

p. Let H and T denote the possible outcomes of the ®rst ¯ip. By the partition rule (4),

EX � E(X jH)P(H)� E(X jT )P(T )(7)

� pE(X jH)� qE(X jT ):

Let us consider these terms. On the one hand, given H , we have immediately that X � 1.

Hence

E(X jH) � 1:(8)

On the other hand, given T , we know that the number of further ¯ips necessary to obtain

a head has the same distribution as X . Hence

E(X jT ) � 1� EX :(9)
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Therefore, using (7), (8), and (9),

EX � p� q(1� EX )

and this gives EX � pÿ1, which we have previously obtained by evaluating the sum in

EX �
X1
r�1

rq rÿ1 p:

Now for the variance. By the partition rule,

EX 2 � pE(X 2jH)� qE(X 2jT ):(10)

Once again, if a head occurs ®rst ¯ip then

E(X 2jH) � 1

and if a tail occurs ®rst ¯ip then

E(X 2jT ) � Ef(1� X )2g
� 1� 2EX � EX 2

� 1� 2 pÿ1 � EX 2:

Hence substituting into (10) gives

EX 2 � p� q(1� 2 pÿ1 � EX 2)

and

EX 2 � pÿ2(2ÿ p),

which we have otherwise calculated as the sum of a series:

EX 2 �
X1
r�1

r2q rÿ1 p:

Hence

var X � EX 2 ÿ (EX )2

� qpÿ2: s

There are many problems of this kind, which can be tricky if tackled head on but which

are extremely simple if conditional expectation is used correctly. (It is perhaps for this

reason that they are so often found in examinations.) We conclude this section with a few

classic examples.

Example 5.8.10: quiz. You are a contestant in a quiz show, answering a series of

questions. You answer correctly with probability p, or incorrectly with probability q; you

get $1 for every correct answer, and you are eliminated when you ®rst give two

consecutive wrong answers. The questions are independent. Find the expected number of

questions you attempt, and your expected total prize money.

Solution. Let X be the number of questions answered, and Y your total prize money.

To use conditional expectation we need a partition of the sample space; let C be the event

that you answer a question correctly. Then an appropriate partition is supplied by the

three events fC, CcC, CcCcg, where
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P(C) � p, P(CcC) � pq, P(CcCc) � q2:

Then, given C, the number of further questions you attempt has the same distribution as

X . Hence

E(X jC) � 1� EX :

Similarly

E(X jCcC) � 2� EX and E(X jCcCc) � 2:

Hence

E(X ) � p(1� EX )� pq(2� EX )� q22,

yielding

EX � qÿ2(1� q):

Likewise

EY � (1� EY ) p� (1� EY ) pq� 0,

yielding

EY � qÿ2(1ÿ q2): s

Example 5.8.11. Two archers (Actaeon and Baskerville) take it in turns to aim at a

target; they hit the bull, independently at each attempt, with respective probabilities á
and â. Let X be the number of shots until the ®rst bull. What is EX ?

Solution. Let B denote a bull. Then using our by now familiar new method, we write

EX � E(X jB)á� E(X jBBc)(1ÿ á)â� E(X jBc Bc)(1ÿ á)(1ÿ â)

� á� 2(1ÿ á)â� (2� EX )(1ÿ á)(1ÿ â):

Hence

EX � 2ÿ á

á� âÿ áâ
: s

Example 5.8.12: Waldegrave's problem revisited. Recall that a group of n� 1

players contest a sequence of rounds until one of them has beaten all the others. What is

the expected duration of the game? We showed in example 2.11.10 that the number of

rounds played is 1� X , where X is the number of ¯ips of a coin until it ®rst shows a

sequence of nÿ 1 consecutive heads. Now by conditional probability, and independence

of ¯ips (with an obvious notation),

E(X ) � 1
2
E(X jT )� 1

2

ÿ �
2E(X jHT ) � � � �

� 1
2

ÿ �
nÿ1E(X jH nÿ2T )� 1

2

ÿ �
nÿ1E(X jH nÿ1)

� 1
2
(1� EX )� 1

2

ÿ �
2(2� EX ) � � � �

� 1
2

ÿ �
nÿ1(nÿ 1� EX )� 1

2

ÿ �
(nÿ1)(nÿ 1)
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Hence

EX �
1
2
� 2
ÿ

1
2

�
2 � � � � � (nÿ 1)

ÿ
1
2

�
nÿ1 � (nÿ 1)

ÿ
1
2
�nÿ1

1ÿ �1
2
� � � � � ÿ1

2

�
nÿ1)

	
� 2n ÿ 2:

So the required expectation, E(1� X ), is 2n ÿ 1. We shall see an even neater way of

doing this in exercise 4 of section 6.11. s

Example 5.8.13: duration of gambler's ruin. Recall the gambler's ruin problem in

which you gain or lose one point with equal probabilities 1
2

at each bet. You begin with k

points; if you ever reach zero points, or n points, then the game is over. All bets are

independent. Let Tk be the number of bets until the game is over; show that

ETk � k(nÿ k).

Solution. Let W be the event that you win the ®rst bet, and ôk � ETk . Then

ôk � E(Tk jW )P(W )� E(Tk jW c)P(W c)

� 1
2
(1� ôk�1)� 1

2
(1� ôkÿ1)

� 1
2
ôk�1 � 1

2
ôkÿ1 � 1, 0 , k , n:

Naturally ô0 � ôn � 0. Hence it is easy to verify that indeed

ôk � k(nÿ k): s

Exercises for section 5.8

1. Tennis. Rod and Fred have reached 6±6 in their tie-break. Rod wins any point with

probability r. Fred wins with probability ö, where r� ö � 1.

(a) Let X be the number of points until the ®rst occasion when one or other wins two

consecutive points. Find EX .

(b) Let Y be the number of points until the tie-break is won. Find EY .

(c) Let L be the event that Rod wins the tie break. Find E(X jL) and E(Y jL).

2. Gamblers ruined unfairly. Suppose you win each point with probability p, or lose it with

probability q � 1ÿ p; as always, bets are independent. Let ôk be the expected number of bets

until the game is over, given that you start with k points. (As usual the game stops when you

®rst have either no points or n points.) Show that

ôk � pôk�1 � qôkÿ1 � 1

and deduce that for p 6� q

ôk � k ÿ n
1ÿ (q=p)k

1ÿ (q=p)n

� �( )
(qÿ p)ÿ1:

5.9 CONDITIONAL DENSITY

We have found conditional probability mass functions to be very useful on many

occasions. Naturally we expect conditional density functions to be equally useful. They

are, but they require a slightly indirect approach. We start with the conditional distribu-

tion function.
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De®nition. Let X have distribution function F(x ), and let B be an event. Then the

conditional distribution function of X given B is

FX jB(xjB) � P(X < xjB)(1)

� P(fX < xg \ B)

P(B)
: n

Sometimes we denote this simply by F(xjB).

Example 5.9.1. Let X be uniform on (0, a), and let B be the event 0 < X < b, where

b , a. Find FX jB(xjB).

Solution. By the de®nition, for x > 0,

FX jB(xjB) � P(fX < xg \ fX < bg)
P(X < b)

(2)

�
P(X < b)=P(X < b) if b < x

P(X < x )=P(X < b) if x < b

(

�
1 if b < x

x=a

b=a
if x < b

8<:
� x=b, 0 < x < b:

This is just the uniform distribution on (0, b). It is an important and intuitively natural

result: a uniform random variable conditioned to lie in some subset B of its range is still

uniform, but it is now uniform on B. s

As usual, we can often get densities from distributions.

De®nition. Let X have a conditional distribution FX jB that is differentiable. Then X

has conditional density f X jB(xjB) given by

f X jB(xjB) � d

dx
FX jB(xjB) � F9X jB(xjB): n(3)

Sometimes we denote this simply by f (xjB).

Example 5.9.1 revisited. Let X be uniform on (0, a) and let B be the event

f0 < X < bg. Then differentiating (2) gives the conditional density

f X jB(xjB) � bÿ1, 0 < x < b: s

Just as in the discrete case, f (xjB) satis®es the same key rule as any ordinary density.
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Conditional key rule

P(X 2 CjB) �
�

x2C

f (xjB) dx:

In particular, if B � C,

P(X 2 CjB) �
�

x2B

f (xjB) dx � 1,

so f (xjB) is indeed a probability density. An especially important example of this kind of

thing arises when we consider the exponential density.

Example 5.9.2: lack of memory. Let X be exponential with parameter ë, and let Bt

be the event that X . t. Show that the conditional density of X ÿ t, given Bt, is also

exponential with parameter ë.

Remark. The importance of this result is clear when we recall that the exponential

density is a popular model for waiting times. Let X be the waiting time until your light

bulb fails. Suppose X is exponential, and your light bulb has survived for a time t. Then

the above result says that the further survival time is still exponential, as it was to begin

with.

Roughly speaking, a component or device with this property cannot remember how old

it is. Its future life has the same distribution at any time t, if it has survived until t.

Solution. Let Y � X ÿ t. We introduce the conditional survival function

FY jBt
� 1ÿ FY jBt

(yjBt)

� P(Y . yjBt)

� P(fY . yg \ fX . tg)=P(X . t)

� P(X . y� t)=P(X . t)

� eÿë( y� t)=eÿë t

� eÿë y:

It follows that

FY jBt
(yjBt) � 1ÿ eÿë y(4)

and

f Y jBt
(yjBt) � ëeÿë y, y > 0:(5)

Hence X ÿ t is exponential, as claimed. s

Recall that, among discrete random variables, the geometric distribution also has this

property, as you would expect.

Example 5.9.3: conditional survival. Let X be the lifetime of your light bulb, and let

B be the event that it survives for a time a. Find the conditional distribution of X given B

for each of the following distributions of X :
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(i) P(X > x ) � xÿ1, x � 1, 2, 3, . . .
(ii) P(X > x ) � eÿx(xÿ1), x > 1.

Solution. For (i): Here P(B) � aÿ1, so for x > a

P(X > xjB) � xÿ1

aÿ1
� a

x
, x > a:

Thus

p(xjB) � P(X > xjB)ÿ P(X > x� 1jB) � a

x(x� 1)
:

For (ii): Likewise in this case

P(X > xjB) � eÿx(xÿ1)=eÿa(aÿ1) � expfa(aÿ 1)ÿ x(xÿ 1)g: s

At this point we note that a conditional density may also have a mean, called the

conditional expectation. It is given by

E(X jB) �
�1
ÿ1

x f (xjB) dx:(6)

This is just as important as the conditional expectation de®ned for discrete random

variables in (2) of section 5.8, and has much the same properties. We explore some of

these later on. Finally we record one natural and important special case. It may be that the

continuous random variable X is independent of B; formally we write

De®nition. If, for all x, we have

F(xjB) � P(X < xjB) � P(X < x ) � F(x )(7)

then we say X and B are independent. n

This is essentially our usual de®nition, for it just says that the events B and fX < xg
are independent. Differentiating gives just what we would anticipate:

f X jB(xjB) � f X (x ),(8)

whenever X and B are independent.

In any case we ®nd from the key rule that

P(fX 2 Cg \ B) � P(X 2 C)P(B),(9)

whenever X and B are independent.

Exercises for Section 5.9

1. If X is an exponential random variable with parameter ë, show that E(X jX . t) � t � ëÿ1.

What is var(X jX . t)?

2. Show that E(X ) � E(X jB)P(B)� E(X jBc)P(Bc).

3. Show that if X and B are independent, then E(X jB) � EX .
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5 .10 REVIEW

This chapter has concerned itself with random variables and their properties, most

importantly their distributions and moments.

Random variable. A random variable is a real-valued function de®ned on the sample

space Ù. Formally we write X (ù) 2 R, for ù 2 Ù. The set of all possible values of a

random variable X is called its range. If the range is countable then X is said to be

discrete; otherwise, X could be continuous.

Distribution function. Every random variable X has a distribution function F(x ),

where F(x ) � P(X < x ): Discrete random variables have a probability distribution p(x ),

and continuous random variables have a density f (x ), such that

Distributions

When X is discrete, When X is continuous,

p(x ) � P(X � x ), f (x )h ' P(x , X < x� h)

and P(X 2 A) �
X
x2A

p(x ), for small h;

and when X is integer valued P(X 2 A) �
�

x2A

f (x ) dx, and

p(x ) � F(x )ÿ F(xÿ 1). f (x ) � dF(x )=dx.

Expectation. Any random variable may have an expectation or mean EX ; if

E(X ) ,1 then

when X is discrete, when X is continuous

EX �
X

x

xp(x ) EX �
�1
1

xf (x ) dx

When X > 0 is integer valued When X . 0 is continuous

EX �
X1
x�0

P(X . x ) EX �
�1

0

P(X . x ) dx

�
X1
x�0

f1ÿ F(x )g: �
�1

0

f1ÿ F(x )g dx.

Functions. Suppose that random variables X and Y are such that Y � g(X ) for some

function g. Then

if both are discrete, if both are continuous,

pY (y) �
X

x: g(x )� y

pX (x ). f Y (y) � d

dy

�
x: g(x )< y

f X (x ) dx.
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Expectation of functions. If Y � g(X ) then the law of the unconcious statistician

says that

if X is discrete if both are continuous

EY �
X

x

g(x ) pX (x ). EY �
�1
ÿ1

g(x ) f X (x ) dx.

It follows that for any random variable X

E(ag(X )� bh(X )) � aEg(X )� bEh(X ):

Variance. For any random variable X , the variance ó 2 is de®ned to be

var X � Ef(X ÿ EX )2g � EX 2 ÿ (EX )2 � ó 2 > 0:

The number ó . 0 is called the standard deviation; we have in particular that

var(aX � b) � a2 var X

Moments. The kth moment of X is

ìk � EX k , k > 1;

usually we write ì1 � ì. The kth central moment of X is

ó k � Ef(X ÿ EX )kg, k > 2;

usually we write ó2 � ó 2.

Inequalities. For any random variable X , and a . 0,

(i) Chebyshov: P(jX j > a) < EX 2=a2,

(ii) Markov: P(jX j > a) < EjX j=a,

(iii) Dominance: If g(x ) < h(x ) always, then Eg(X ) < Eh(X ):

Conditioning. Any event B in Ù may condition a random variable X , leading to a

conditional distribution function

FX jB(xjB) � P(X < xjB):

Since this is a distribution, it may have an expectation, called the conditional expectation;

in the discrete case, in the continuous case,

E(X jB) �
X

x

xp(xjB) E(X jB) �
�

x

xf (xjB)

where where

p(xjB) � P(X � xjB). f (xjB) � d

dx
F(xjB).

In all cases

E(X ) � E(X jB)P(B)� E(X jBc)P(Bc):

We give two tables of some common random variables with their associated character-

istics, table 5.1 for the discrete case and table 5.2 for the continuous case.

230 5 Random variables and their distributions



Table 5.1. Discrete random variables and their associated characteristics

X p(x) ì ó 2

indicator p(1) � p
p(0) � 1ÿ p � q

p pq

binomial
n

x

� �
px(1ÿ p)nÿx,

np np(1ÿ p)

B(n, p) 0 < x < n

geometric pqxÿ1, x > 1 pÿ1 qpÿ2

p � 1ÿ q

negative binomial
xÿ 1

nÿ 1

� �
pnqxÿn,

npÿ1 nqpÿ2

n, p � 1ÿ q x > n

hypergeometric
a, b, n

a

x

� �
b

nÿ x

� �
a� b

n

� � n
a

a� b
n

a� bÿ n

a� bÿ 1

� �
ab

(a� b)2

Poisson
ë

eÿëëx

x!
, x > 0

ë ë

uniform
f1, 2, . . . , ng

nÿ1, 1 < x < n 1
2
(n� 1) 1

12
(n2 ÿ 1)

Table 5.2. Continuous random variables and their associated characteristics

X f (x ) EX var X

uniform (bÿ a)ÿ1, a < x < b 1
2
(b� a) 1

12
(bÿ a)2

exponential ëeÿëx, x > 0 ëÿ1 ëÿ2

normal (2ð)ÿ1=2ó ÿ1 exp ÿ 1

2

xÿ ì

ó

� �2
( )

, ì ó 2

N(ì, ó 2) ÿ1, x ,1

gamma x rÿ1eÿëx ër

(r ÿ 1)!
, x > 0 rëÿ1 rëÿ2

beta
â(a, b)

(a� bÿ 1)!

(aÿ 1)!(bÿ 1)!
xaÿ1(1ÿ x)bÿ1,

a

a� b

ab(a� b)2

(a� b� 1)
0 < x < 1

Rayleigh xeÿx2=2, x > 0
ð

2

� �1=2

2ÿ ð

2
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5.11 APPENDIX. DOUBLE INTEGRALS

For one continuous random variable, its probability distribution is supplied by integrating the density

f (x ). Soon we shall consider two continuous random variables; in this case probabilities are given

by integrating a joint density f (x, y). Just as the integral of f (x) may be interpreted as an area, the

integral of f (x, y) may be interpreted as a volume.

There are various ways of measuring volume; one way runs as follows. Let äA1, . . . , äAn be a

collection of small areas which are disjoint, and whose union is C. Let (xk , yk) be a point in äAk .

Then the volume de®ned by the surface f (x, y) above C is approximately

V �
X

k

f (xk , yk)äAk :

As the äAk become arbitrarily small, we obtain the double integral of f over C in the limit. (Many

details have been omitted here.) It only remains to choose our coordinates, and the shapes of the

areas äAk . We consider two important cases.

Cartesian coordinates. In this case it is very natural to let each äAk be a small rectangle with

sides having lengths denoted by äxk and äyk, as shown in ®gure 5.1. In the limit we obtain the

required volume, denoted by

V �
��

C

f (x, y) dx dy �
��

C

f (x, y) dy dx:(1)

This notation is familiar from the one-dimensional case.

Polar coordinates. In this case it is more natural to let each äAk be a small curvilinear

quadrilateral, as shown in ®gure 5.2. In this case äAk � rkärkäèk , and we obtain the volume in the

form

V �
��

C

f (r, è)r dr dè:(2)

Now we can again use the routines of the one-dimensional integral.

We give two examples, each with two solutions.

C

δAk

δxk

xk

δykyk

Figure 5.1. äAk � äxkäyk .
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Example 5.11.1. Find the volume under

f (x, y) � 1, 0 < x, y < 1:

(i) In Cartesian coordinates, by (1)

V �
�1

0

�1

0

dx dy �
�1

0

dx

�1

0

dy � 1:

(ii) In polar coordinates f takes the form

f (r, è) � 1
0 < r < sec è, 0 < è < ð=4

0 < r < cosec è, ð=4 < è < ð=2:

�
Then by (2)

V � 2

�ð=4

0

�sec è

0

r dr dè �
�ð=4

0

sec2è dè � [tanè]
ð=4
0 � 1: s

Example 5.11.2. Find the volume under

f (r, è) � 1

ð
, 0 < r < 1, 0 < è < 2ð:

(i) In polar coordinates, by (2),

V �
�1

0

�2ð

0

1

ð
r dr dè �

�1

0

2r dr

�2ð

0

1

2ð
dè � 1:

(ii) In Cartesian coordinates f takes the form

f (x, y) � 1

ð
, jyj <

�������������
1ÿ x2
p

; jxj < 1:

Then by (1)

V �
�1

ÿ1

� ��������1ÿx2
p

ÿ
��������
1ÿx2
p

1

ð
dy dx �

�1

ÿ1

2

ð

�������������
1ÿ x2
p

dx � 1

ð
x
�������������
1ÿ x2
p

� sinÿ1 x
h i1

ÿ1
� 1: s

The point of these examples is that you can often save yourself a great deal of effort by choosing

the most appropriate coordinates.

5.12 PROBLEMS

1. You roll 5 dice. Let X be the smallest number shown and Y the largest.

(a) Find the distribution of X , and EX .

(b) Find the distribution of Y , and EY .

O

 δθk

 δrk

rkδθk

Figure 5.2. Polar coordinates with O as origin.
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2. (a) You roll 5 dice; what is the probability that the sum of the scores is 18 or more?

(c) You roll 4 dice; what is the probability that the sum of the scores is 14 or more?

3. Let X have density f (x ) � cxÿd , x > 1. Find (a) c, (b) EX , (c) var X . In each case state for

what values of d your answer holds.

4. Let X have the exponential density. Find

(a) P(sin X . 1
2
),

(b) EX n, n > 1.

5. Show that for any random variable with ®nite mean EX ,

(EX )2 < (EX 2):

6. Which of the following can be density functions? For those that are, ®nd the value of c, and the

distribution function F(x).

(a) f (x ) � cx(1ÿ x) 0 < x < 1

0 otherwise:

�
(b) f (x ) � cxÿ1 x > 1

0 otherwise:

�
(c) f (x ) � c exp(ÿx2 � 4x ), ÿ1, x ,1:
(d) f (x ) � ce x(1� e x)ÿ2, ÿ1, x ,1:

7. Which of the following can be distribution functions? For those that are, ®nd the density.

(a) F(x ) � 1ÿ exp(ÿx2) x > 0

0 otherwise:

�
(b) F(x ) � exp(ÿxÿ1), x > 0

0 otherwise:

�
(c) F(x ) � e x(e x � eÿx)ÿ1, ÿ1, x ,1:
(d) F(x ) � eÿx2 � e x(e x � eÿx)ÿ1, ÿ1, x ,1:

8. Let X be Poisson with parameter ë. Find the distribution and expectation of X , given that X is

odd.

9. Let X have the density

f (x) � exp x

2 sinh a
, ÿa , x , a:

Show that

EX � a coth aÿ 1,

and

var X � 1ÿ a

sinh a

� �2

:

10. Your dart is equally likely to hit any point of a circular dart board. Its height above the bull is Y

(negative if below the bull), and its distance from the bull is R. Find the density and

distribution of Y , and of R. What is ER?

11. An urn contains one carmine ball and one magenta ball. A ball is drawn at random; if it is

carmine the game is over. If it is magenta then the ball is returned to the urn together with one

extra magenta ball. This procedure is repeated until 10 draws have been made or a carmine ball

is drawn, whichever is sooner. Let X be the number of draws. Find pX (x ) and EX .

Now suppose the game can only be terminated by the appearance of a carmine ball; let Y be

the number of draws. Find the distribution pY (y) and EY .
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12. You are racing around a circular track C; the pits are at a point P on the circumference of C.

Your car is equally likely to break down at any point B of the track. Let X be the distance from

B to P in a straight line. Find the density, mean, and variance of X .

13. You ®re a musket on the planet Zarg with muzzle velocity V, making an angle È with the

horizontal ground. The musket ball strikes the ground at a distance X � (V 2=g) sin 2È away,

where g is the acceleration due to gravity; in Zarg units g � 1.

(a) If V is constant and È is uniform on [0, ð=2], ®nd the density of X .

(b) If È is constant and V has density f V (x) � cx2eÿx2

, x . 0, ®nd the density of X . What is

c in this case?

14. The diameter D of a randomly selected lead shot has density f (x), x . 0. Find the density of

the weight of a randomly selected lead shot. (Assume any shot is spherical.)

15. I try to open my door with one of the three similar keys in my pocket; one of them is the

correct key, the other two will not turn. Let X be the number of attempts necessary if I choose

keys at random from my pocket and drop those that fail to the ground. Let Y be the number of

attempts necessary if I choose keys at random from my pocket and replace those that fail in my

pocket. Find EX and EY .

16. You are at the origin between two walls lying at x � �1. You shine your torch so that the beam

makes an angle È with the line x � 0; È is uniformly distributed on [0, 2ð]. Let Y be the y-

coordinate of the point where the beam strikes a wall. Show that Y has a Cauchy density.

17. Let S be the speed of a randomly selected molecule in a gas. According to the kinetic theory of

gases, S has probability density

f (s) � ás2eÿs2=(2ó 2):

Find á. The kinetic energy of a molecule of mass m is X � 1
2
mS2. Find the density of X .

18. Let X be a non-negative random variable with ®nite expectation, having distribution function

F(x) and density f (x ). Show that for x . 0,

xf1ÿ F(x)g <

�1
x

xf (x) dx,

and deduce that as x!1, xf1ÿ F(x)g ! 0. Hence show that EX � �1
0
f1ÿ F(x )gdx.

19. A fair three-sided die has its faces labelled 1, 2, 3. It is rolled repeatedly. Let X n be the number

of rolls until the sum of the numbers shown is at least n. Show that for n > 4

3EX n ÿ EX nÿ1 ÿ EX nÿ2 ÿ EX nÿ3 � 3:

Suppose now that the three faces are shown with respective probabilities p, q, and r. Write

down the equivalent equation for the expectations EX n.

20. Let X be a random variable with EX 3 ,1. The skewness of X is given by

skw X � E(X ÿ ì)3

ó 3
,

where ì � EX and ó 2 � var X .

(a) If X is Bernoulli with parameter p, show that

skw X � (qÿ p)=(qp)1=2:

(b) For any random variable X show that

skw X � (EX 3 ÿ 3ìEX 2 � 2ì3)=ó 3:

(c) If X is Poisson with parameter ë, show that skw X � ëÿ1=2.

(d) If X is geometric with parameter p, p(x) � qxÿ1 p, x > 1, show that skw X �
(1� q)=q1=2.
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21. Let X be a random variable with density f (x) � cxáÿ1eÿxá, x > 0.

(a) Find c, and evaluate EX and var X .

(a) Show that if á. 1, and s, t . 0, then

P(X . s� t j X . t) , P(X . s):

What if á, 1?

22. Beta density. Let X have density

f (x ) � cxaÿ1(1ÿ x )bÿ1, 0 < x < 1:

Find c, EX , and var X .

23. Let F(x) be a distribution function, and r a positive integer. Show that the following are

distribution functions:

(a) fF(x)gr,

(b) 1ÿ f1ÿ F(x )gr,

(c) F(x )� f1ÿ F(x)glogf1ÿ F(x)g,
(d) fF(x)ÿ 1ge� e1ÿF(x ).

24. My book has f pages, with n characters on each page. Each character is wrong with

probability p, independently of the others. If I proofread the book once, I detect any error with

probability ä independently of any other detections and of other proofreadings.

Show that the number of errors remaining has a binomial distribution.

I wish to proofread enough times that the chance of no errors remaining exceeds 1
2
. If

f � 28, n � 29, p � 2ÿ8, ä � 1
2
, show that 10 readings will do.

25. Let X . 0 have distribution F(x). Show that

EX 2 � 2

�1
0

xf1ÿ F(x )g dx

and that

EX r �
�1

0

rx rÿ1P(X . x ) dx:

26. (a) Show that if X is a random variable with var X � 0, then, for some constant a,

P(X � a) � 1.

27. Use Markov's inequality to show that, for any t . 0 and any random variable such that E(e tX )

exists,

P(X > a) < eÿatE(e tX ), for a . 0:

Deduce that

P(X > a) < inf
t . 0
feÿat Ee tXg:

Hence show that if X is Poisson with parameter ë, and x . ë,

P(X > x) < eÿë
ëe

x

� �x

:

28. A stretch of motorway is m miles long; a garage G is d miles from one end. A car is equally

likely to break down at any point of the road. Let X be the distance from the garage to the

breakdown. Find the distribution, density, mean, and variance of X . If you had a free choice,

explain where you would choose to site G on this road, and why.
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29. Bertrand's paradox.

(a) Choose a point P at random inside a circle of radius a. Let X be the length of the chord

of which P is the mid-point. Show that

P(X .
���
3
p

a) � 1
4
:

(b) Choose two points independently at random on the perimeter of a circle of radius a. Let

X be the length of the chord joining them. Show that

P(X .
���
3
p

a) � 1
3
:

30. Let 0 , a , m, and let X be a random variable such that

P(jX ÿ EX j < m) � 1:

Show that

P(jX ÿ EX j > a) >
var X ÿ a2

m2 ÿ a2
:

31. Let X have the Cauchy distribution, and let Y � (1� X 2)ÿ1. Show that Y has the arcsin

distribution.

32. Let F(x ) and G(x ) be continuous distribution functions such that F(x) > G(x ) for all x. Let U

be uniform on (0, 1) and de®ne X � Fÿ1(U ), Y � Gÿ1(U ). Show that X < Y , and ®nd the

distributions of X and Y .
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6

Jointly distributed random variables

6 .1 PREVIEW

In chapter 5 we looked at probability distributions of single random variables. But of

course we often wish to consider the behaviour of two or more random variables together.

This chapter extends the ideas of chapters 4 and 5, so that we can make probability

statements about collections and sequences of random variables.

The most important instrument in this venture is the joint probability distribution,

which we meet in section 6.2. We also de®ne the concept of independence for random

variables, and explore some consequences. Jointly distributed random variables have joint

moments, and we look at the important ideas of covariance and correlation. Finally, we

consider conditional distributions and conditional expectation in this new setting.

Prerequisites. We shall use one new technique in this chapter; see appendix 5.11 on

double integrals.

6.2 JOINT DISTRIBUTIONS

A random variable X (ù) is a real-valued function on Ù. Often there will be several

random variables of interest de®ned on Ù, and it may be important and useful to examine

their joint behaviour. For example:

(i) A meteorological station may record the wind speed and direction, air pressure,

and the air temperature.

(ii) Your physician may record your height, weight, blood pressure, cholesterol level,

and more.

(iii) The point count in the four hands dealt at bridge yields four random variables X n,

X e, Xù, X s, with X n � X e � Xù � X s � 40. The outcome of the deal depends on

their joint distribution.

Just as for one random variable, we want to know the probabilities of the joint outcomes,

and once again it is convenient to consider discrete and continuous random variables

separately.

In general we introduce ideas and de®nitions for two random variables; extending these

to larger collections is very easy, but also lengthy and tedious, and is therefore left to the

reader as an exercise.
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Looking back to chapter 4, we can see that we have already considered such pairs of

random variables, when we looked at distributions in the plane. In that case Ù � R2, and

for each outcome ù(x, y), we set

(X (ù), Y (ù)) � (x, y):

We extend these simple ideas in the same way as we did in chapter 5.

Thus, let X and Y be a pair of discrete random variables de®ned on Ù. As usual we

assume that X and Y take integer values, unless otherwise stated. As in chapter 5, the

natural function to tell us how probability is distributed over the values of the pairs

(X , Y ) is the following.

De®nition. The function

p(x, y) � P(X � x, Y � y)(1)

is the joint probability distribution of X and Y (the word `joint' is usually omitted), and

we may sometimes denote it by pX ,Y (x, y), to avoid possible ambiguity. n

Remark. As before, note that strictly speaking

P(X � x, Y � y) � P(Ax \ A y)

where Ax � fù: X (ù) � xg, A y � fù: Y (ù) � yg. In general we need to use these

underlying events no more than we did in Chapter 5; which is to say, hardly ever.

Obviously the distribution p(x, y) satis®es

0 < p(x, y) < 1(2)

and X
x, y

p(x, y) � 1:(3)

Any function satisfying (2) and (3) is a joint or bivariate probability distribution. Note

that, as usual, we specify any p(x, y) by giving its values where it is not zero. Here are

some simple examples of joint distributions.

Example 6.2.1: pair of dice. Two fair dice are rolled, yielding the scores X and Y .

We know already that

p(x, y) � 1
36

, 1 < x, y < 6 s

Example 6.2.2: pair of indicators. Let X and Y be indicators, so that X 2 f0, 1g and

Y 2 f0, 1g. Then

(X , Y ) 2 f(0, 0), (0, 1), (1, 0), (1, 1)g
and the joint distribution is just the array

p(0, 0), p(0, 1)

p(1, 0), p(1, 1)

� �
: s

Example 6.2.3: ¯ipping a coin. Suppose a coin shows a head with probability p, or a

tail with probability q. You ¯ip the coin repeatedly. Let X be the number of ¯ips until the
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®rst head, and Y the number of ¯ips until the ®rst tail. Then, obviously, the joint

probability distribution of X and Y is

p(1, y) � p yÿ1q, y > 2,

p(x, 1) � pqxÿ1, x > 2: s

Example 6.2.4: Bernoulli trials. In n Bernoulli trials let X be the number of

successes and Y the number of failures. Then x� y � n, and

p(x, y) � n!

x!y!
px(1ÿ p) y, 0 < x, y < n: s

Example 6.2.5: de Moivre trials. In n de Moivre (three-way) trials, let X , Y , and Z

denote the number in each of the three possible categories. Then x� y� z � n, and

p(x, y, z) � P(X � x, Y � y, Z � z)

� n!

x!y!z!
px

1 p
y
2 pz

3,

where p1 � p2 � p3 � 1. Note that the distribution in this example is trivariate. s

As before, questions about the joint behaviour of X and Y are answered by a key rule.

Key rule for joint distributions. Let X and Y have joint distribution p(x, y), and let

C be a collection of possible values of (X , Y ). Then

P((X , Y ) 2 C) �
X

x, y2C

p(x, y):(4)

The proof is essentially the same as that of (4) in section 5.3 and is left as a routine

exercise. This is of course the same rule that we used in chapter 4 to look at distributions

in the plane (allowing for changes in notation and emphasis).

Our ®rst application of the key rule is exceedingly important and useful.

Marginal distributions. Let X and Y have probability distributions pX (x) and pY (y)

respectively. If X and Y have joint distribution p(x, y), then from (4)

pX (x) �
X

y

p(x, y)(5)

and

pY (y) �
X

x

p(x, y):(6)

In each case the sum is taken over all possible values of y and x respectively; when

calculated in this way these are sometimes called the marginal distributions of x and y. It

is of course most important and useful that we can obtain them from p(x, y).

Remark. The use of the term `marginal' is explained if we write the joint probabil-

ities p(x, y) in the form of an array. Then the distribution pX (x) of X is given by the
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column sums and the distribution pY (y) of Y by the row sums; these are conveniently

placed at the margins.

pY (n) p(1, n) . . . p(m, n)

..

. ..
. ..

.

pY (2) p(1, 2) p(m, 2)

pY (1) p(1, 1) . . . p(m, 1)

p(x, y) pX (1) . . . pX (m)

Example 6.2.1 revisited: dice. For two dice we know that the joint distribution is

uniform; p(x, y) � 1
36

. Obviously and trivially

pX (x) �
X6

y�1

p(x, y) � 1
6
: s(7)

Remark. We have shown that p(x, y) always yields the marginals pX (x) and pY (y).

However, the converse is not true. To see this, consider two experiments, (A) and (B).

(A) Flip a fair coin; let X be the number of heads and Y the number of tails. Then

pX (0) � pX (1) � pY (0) � pY (1) � 1
2
,

with

p(0, 1) � 1
2
, p(0, 0) � 0; p(1, 0) � 1

2
, p(1, 1) � 0:

(B) Flip two fair coins; let X be the number of heads shown by the ®rst and Y the

number of heads shown by the second. Then

pX (0) � pX (1) � pY (0) � pY (1) � 1
2
,

which is the same as in (A). But

p(0, 1) � p(0, 0) � p(1, 0) � p(1, 1) � 1
4
,

which is different from (A). In general the marginals do not determine the joint

distribution. There is an important exception to this, which we examine in section 6.4.

Simple and empirical distributions are inevitably presented in the form of an array. In

theoretical applications we usually have an algebraic representation, which occupies less

space, saving trees and avoiding writer's cramp.

Example 6.2.6. A pair of dice bear the numbers 1, 2, 3 twice each, on pairs of

opposite faces. Both dice are rolled, yielding the scores X and Y respectively. Obviously

p( j, k) � 1
9
, for 1 < j, k < 3:

We could display the joint probabilities p( j, k) as a very dull array, if we wished.

Now suppose we roll these dice again, and consider the difference between their scores,

denoted by U, and the sum of their scores, denoted by V. Then

ÿ2 < U < 2 and 2 < V < 6:

We can calculate the joint distribution of U and V by running over all possible outcomes.

6.2 Joint distributions 241



For example

p(0, 4) � P(U � 0, V � 4)

� P(f2, 2g) � 1
9
:

Eventually we produce the following array of probabilities:

V

6 0 0 1
9

0 0

5 0 1
9

0 1
9

0

4 1
9

0 1
9

0 1
9

3 0 1
9

0 1
9

0

2 0 0 1
9

0 0

ÿ2 1 0 1 2 U

We could write this algebraically, but it is more informative and appealing as shown.

Observe that U and V both have triangular distributions, but U is symmetrical about 0

and V is symmetrical about 4. s

In practice we rarely display probabilities as an array, as the functional form is usually

available and is of course much more compact.

Example 6.2.7. Let X and Y have the joint distribution

p(x, y) � c(x� y), 1 < x, y < n:

What is c? Find the marginal distributions.

Solution. By (3),

1 � c
X
x, y

(x� y) � cn2(n� 1):

Next,

pX (x) � c
Xn

y�1

(x� y) � 1

n2(n� 1)
fnx� 1

2
n(n� 1)g

� 1

n(n� 1)
fx� 1

2
(n� 1)g:

Likewise,

pY (y) � 1

n(n� 1)
fy� 1

2
(n� 1)g: s

Joint distributions are discovered by perfectly natural methods.

Example 6.2.8. You roll three dice. Let X be the smallest number shown and Y the

largest. Find the joint distribution of X and Y .

Solution. Simple enumeration is suf®cient here. For x , yÿ 1 there are three possi-

bilities: the three dice show different values, or two show the larger, or two show the
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smaller. Hence

p(x, y) � 6(yÿ xÿ 1)

216
� 3� 3

216
� yÿ x

36
, x , yÿ 1:(8)

For x � yÿ 1 there are two possibilities, and

p(x, y) � 3� 3

216
� 1

36
, x � yÿ 1:

For x � y, there is one possibility, so

p(x, y) � 1

216
, x � y:

It is easy for you to check that
P

x, y p(x, y) � 1, as it must be. s

Sometimes joint distributions are empirical.

Example 6.2.9: Benford's distribution for signi®cant digits. Suppose you take a

large volume of numerical data, such as can be found in an almanac or company accounts.

Pick a number at random and record the ®rst two signi®cant digits, which we denote by

(X , Y ). It is found empirically that X has the distribution

p(x) � log10 1� 1

x

� �
, 1 < x < 9:(9)

As we noted in example 4.2.3 it has recently been proved that there are theoretical

grounds for expecting this result. Likewise it is found empirically, and theoretically, that

the pair (X , Y ) has the joint distribution

p(x, y) � log10 1� 1

10x� y

� �
, 1 < x < 9; 0 < y < 9:

Of course, we ®nd the marginal distribution of X to be

pX (x) �
X9

y�0

p(x, y) � log10

Y9

y�0

10x� y� 1

10x� y

0@ 1A � log10 1� 1

x

� �
,

which is (9). However, the marginal distribution of Y is rather repulsive. s

Obtaining the marginals in this way is attractive and useful, but the key rule can be

applied to ®nd more interesting probabilities than just the marginals. The point is that in

most applications of interest, the region C (see equation (4)) is determined by the joint

behaviour of X and Y . For example, to ®nd P(X � Y ) we set

C � f(x, y): x � yg;
to ®nd P(X . Y ) we set

C � f(x, y): x . yg;
and so on. Here is an example.

Example 6.2.10. Let X and Y have the joint distribution

p(x, y) � cëxì y, x, y > 1; 0 , ë, ì, 1:

Find (i) the value of c, (ii) P(X . Y ), (iii) P(X � Y ):
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Solution. For (i): As usual c is determined by

1 � c
X1
x�1

X1
y�1

ëxì y � cëì

(1ÿ ë)(1ÿ ì)
:

For (ii): By the key rule,

P(X . Y ) �
X1
y�1

X1
x� y�1

p(x, y) �
X1
y�1

cì y ë y�1

1ÿ ë
(10)

� cë

1ÿ ë

ìë

1ÿ ìë

� �
� ë(1ÿ ì)

1ÿ ëì
:

For (iii): Also by the key rule,

P(X � Y ) �
X1
x�1

c(ëì)x � (1ÿ ë)(1ÿ ì)

1ÿ ëì
: s

Finally we note that just as a single random variable X has a distribution function

F(x) � P(X < x), so too do jointly distributed random variables have joint distribution

functions.

De®nition. Let X and Y have joint distribution p(x, y). Then their joint distribution

function is

F(x, y) �
X
i<x

X
j< y

p(i, j) � P(X < x, Y < y): n(11)

Once again we can ®nd p(x, y) if we know F(x, y), though it is not quite so simple as

it was for one random variable:

p(x, y) � F(x, y)ÿ F(x, yÿ 1)(12)

ÿ F(xÿ 1, y)� F(xÿ 1, yÿ 1):

The proof of (12) is easy on substituting (11) into the right-hand side.

Example 6.2.11. You roll r dice. Let X be the smallest number shown and Y the

largest. Find the joint distribution of X and Y .

Solution. We could use distribution functions directly, but it is neater to use an

identity similar to (12), proved in the same way. That is,

p(x, y) � P(X > x, Y < y)ÿ P(X > x� 1, Y < y)

ÿ P(X > x, Y < yÿ 1)� P(X > x� 1, Y < yÿ 1):

Now, by independence of the dice, for 1 < x, y < 6

P(X > x, Y < y) � yÿ x� 1

6

� �r

, x 6� y:
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Hence

p(x, y) � 6ÿrf(yÿ x� 1)r ÿ 2(yÿ x)r � (yÿ xÿ 1)rg, y 6� x

6ÿr, y � x:

�
When r � 3 we recover (8), of course. s

Exercises for section 6.2

1. In example 6.2.11, what happens to p(x, y) as r!1? Explain.

2. Let X and Y have the joint distribution

p(x, y) � nÿ2, 1 < x, y < n:

Find P(X . Y ) and P(X � Y ):

3. Voter paradox. Let X , Y , Z have the joint distribution

p(2, 1, 3) � p(3, 2, 1) � p(1, 3, 2) � 1
3
:

Show that

P(X . Y ) � P(Y . Z ) � P(Z . X ) � 2
3
:

Explain why this is called the voter paradox, by considering an election in which voters are

required to place three parties in strict order of preference.

6.3 JOINT DENSITY

Just as discrete random variables may be jointly distributed, so may continuous random

variables be jointly distributed. And, just as in the discrete case, we need a function to tell

us how likely the various possibilities are. Our requirements are satis®ed by the following

De®nition. The random variables X and Y are said to be jointly continuous, with

joint density f (x, y), if for all a , b and c , d

P(a , X , b, c , Y , d) �
�d

c

�b

a

f (x, y) dx dy: n(1)

This is the natural extension of the de®nition of density for one random variable, which is

P(a , X , b) �
�b

a

f (x) dx:(2)

In (2) the integral represents the area under the curve f (x); in (1) the double integral

represents the volume under the surface f (x, y). It is clear that f (x, y) has properties

similar to those of f (x), that is,

f (x, y) > 0,(3)

and �1
ÿ1

�1
ÿ1

f (x, y) dx dy � 1:(4)

And, most importantly, we likewise have the

Key rule for joint densities. Let X and Y have joint density f (x, y). The probability

that the point (X , Y ) lies in some set C is given by
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P((X , Y ) 2 C) �
��

C

f (x, y) dx dy:(5)

The integral represents the volume under the surface f (x, y) above C. (There is a

technical necessity for C to be a set nice enough for this volume to be de®ned, but that

will not bother us here.) It is helpful to observe that (5) is completely analogous to the

rule for discrete random variables

P((X , Y ) 2 C) �
X

(x, y)2C

p(x, y):

We shall often ®nd that expressions for jointly continuous random variables just take the

form of the discrete case with
P

replaced by
�
, as was the case for single random

variables. You may ®nd this helpful in developing insight and intuition in trickier

calculations. Of course this is only an informal guide; it is still true that for continuous

random variables

P(X � x, Y � y) � 0:(6)

Here are some simple examples.

Example 6.3.1. Let X and Y have joint density

f (x, y) � cxy, 0 < x, y < 1:

What is c?

Solution. We know f > 0, so c > 0. Now by (4)�1

0

�1

0

cxy dx dy � c

�1

0

x dx

�1

0

y dy � c

4
� 1

Hence c � 4. s

Example 6.3.2. Let X and Y have joint density

f (x, y) � cxy, 0 < x , y < 1:

What is c?

Solution. Again c > 0. By (4)�1

0

�1

x

cxy dy dx �
�1

0

cx

�1

x

y dy dx

�
�1

0

cx

2
(1ÿ x2)dx � c

8
� 1:

Hence c � 8. This is also obvious from example 6.3.1, by symmetry. s

One important example is worth emphasizing as a de®nition.

De®nition. Let the region A have area jAj. Then X and Y are said to be jointly

uniform on A if they have joint density

f (x, y) � jAjÿ1, (x, y) 2 A

0 elsewhere:

�
n(7)
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In general, just as for discrete random variables, use of the key rule provides us with

any required probability statement about X and Y . In particular we note the

Marginal densities. If X and Y have density f (x, y) then X has density

f X (x) �
�1
ÿ1

f (x, y) dy(8)

and Y has density

f Y (y) �
�1
ÿ1

f (x, y) dx:(9)

These both follow from a trivial application of the key rule (5). As usual, the ideas and

de®nitions that we give for pairs of random variables extend naturally but tediously to

larger collections.

Here are several examples to illustrate what we have said.

Example 6.3.3. Let X and Y have joint density

f (x, y) � c(x� y), 0 < x, y < 1:

Find (i) the value of c, (ii) P(X . Y ), (iii) the marginal density f X (x), (iv) P(Y , 1
2
),

(v) P(X , Y 2):

Solution. For (i): By condition (4) we have

1 �
�1

0

�1

0

c(x� y) dx dy � c

�1

0

x dx�
�1

0

y dy

 !
� c:

For (ii): By symmetry, P(X . Y ) � P(Y . X ) � 1
2
.

For (iii): By (8),

f X (x) �
�1

0

(x� y) dy � x� 1
2
, 0 < x < 1:

For (iv): Likewise f Y (y) � y� 1
2
, and so

P(Y , 1
2
) �

�1=2

0

(y� 1
2
) dy � 3

8
:

For (v): By the key rule,

P(X , Y 2) �
��

0<x , y2<1

(x� y) dx dy

�
�1

0

� y2

0

(x� y) dx dy �
�1

0

1
2

y4 � y3 dy

� 7
20
: s

Example 6.3.4. Suppose X and Y have the joint density

f (x, y) � c(x� y), 0 < x� y < 1; x, y . 0:

What is c?
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Solution. As usual we must have

1 �
��

f (x, y) dx dy �
�1

0

�1ÿ y

0

c(x� y) dx dy

�
�1

0

c
(1ÿ y)2

2
� y(1ÿ y)

� �
dy � c

3
:

So c � 3. s

Example 6.3.5. Let (X , Y ) be uniformly distributed over the circle centred at the

origin, radius 1. Find (i) the joint density of X and Y, (ii) the marginal density of X .

Solution. For (i): Since the circle has area ð,

f (x, y) � 1

ð
, 0 < x2 � y2 < 1:

For (ii): As usual,

f X (x) �
�1
ÿ1

f (x, y) dy �
��(1ÿx2)1=2

ÿ(1ÿx2)1=2

1

ð
dy � 2

ð
(1ÿ x2)1=2, jxj < 1: s

Now let us consider an unbounded pair of jointly distributed random variables.

Example 6.3.6. Let (X , Y ) have joint density given by

f (x, y) � ëìeÿëxÿì y, 0 < x, y ,1:
Then f X (x) � ëeÿëx and f Y (y) � ìeÿì y, so X and Y are random variables with ex-

ponential densities having parameters ë and ì respectively.

Hence, for example, we may calculate

P(Y . X ) �
��

y . x

ëìeÿëxÿì y dx dy(10)

�
�1

0

�1
x

ëìeÿì y dy eÿëx dx

�
�1

0

ëeÿìxÿëx dx

� ë

ë� ì
: s

As in the case of a single continuous random variable, the distribution function is often

useful.

De®nition. Let X and Y have joint density f (x, y). The joint distribution function of

X and Y is denoted by F(x, y), where

F(x, y) � P(X < x, Y < y) �
�x

ÿ1

� y

ÿ1
f (u, v) dv du: n(11)

It is related to the density by differentiation also,
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@ 2

@x@ y
F(x, y) � f (x, y),(12)

and it yields the marginal distributions of X and Y :

FX (x) � F(x, 1), FY (y) � F(1, y):

Obviously 0 < F(x, y) < 1, and F is non-decreasing as x or y increases. Furthermore, as

in the discrete case we have

P(a < X < b, c < Y < d) � F(b, d)ÿ F(a, d)ÿ F(b, c)� F(a, c):(13)

The distribution function turns out to be most useful when we come to look at functions

of jointly distributed random variables. For the moment we just look at a couple of simple

examples.

Example 6.3.7. Let X and Y have joint density f (x, y) � x� y, 0 < x, y < 1. Then

for 0 < x, y < 1

F(x, y) �
� y

0

�x

0

(u� v) du dv � 1
2
xy(x� y):

For 0 < x < 1, y . 1,

F(x, y) �
�1

0

�x

0

(u� v) du dv � 1
2
x(x� 1):

For 0 < y < 1, x . 1,

F(x, y) � 1
2
y(y� 1):

Obviously for x, y . 1 we have F(x, y) � 1. s

Example 6.3.8. Let X and Y have the joint distribution function

F(x, y) � 1ÿ 1
2
xÿ2 yÿ2fx2 � y2 � (xyÿ 1)(x� y)g, x, y > 1:

What is the joint density of X and Y ? Find also the marginal densities of X and Y .

Solution. Routine differentiation shows that

f (x, y) � @ 2 F

@x@ y
� x� y

x3 y3
, x, y > 1:

Remembering that FX (x) � F(x, 1), we ®nd that

FX (x) � 1ÿ x� 1

2x2
, x . 1,

and so

f X (x) � dFX

dx
� 2� x

2x3
, x . 1:

Likewise

f Y (y) � 2� y

2y3
, y . 1: s
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Example 6.3.4 revisited. If X and Y have joint density

f (x, y) � 3(x� y), 0 < x� y < 1; 0 , x, y,

then their joint distribution is

F(x, y) �
3
2
(x2 y� y2x), 0 < x� y < 1

1
2
(x� y)(3ÿ x2 ÿ y2 � xy)ÿ 1, 1 < x� y < 2, x , 1, y , 1:

(
s

Exercises for section 6.3

1. Let X and Y have the joint density

f (x, y) � eÿ y, 0 < x , y ,1:
Find the joint distribution function of X and Y, and the marginal density and distribution

functions.

2. If U and V are jointly continuous, show that P(U � V ) � 0. Let X be uniform on [0, 1] and let

Y � X . Obviously P(X � Y ) � 1, and X and Y are continuous. Is there any contradiction here?

Explain.

3. Let F(x, y) � 1ÿ eÿxy, 0 < x, y ,1. This is zero on the axes and increases to 1 as x and y

increase to in®nity. Is F(x, y) a joint distribution function?

6.4 INDEPENDENCE

The concept of independence has been useful and important on many previous occasions.

Recall that events A and B are independent if

P(A \ B) � P(A)P(B):(1)

In section 5.9 we noted that the event A and the random variable X are independent if, for

any C,

P(fX 2 Cg \ A) � P(X 2 C)P(A):(2)

It therefore comes as no surprise that the following de®nition is equally useful and

important.

De®nition. Let X and Y have joint distribution function F(x, y). Then X and Y are

independent if and only if for all x and y

F(x, y) � FX (x)FY (y): n(3)

Remark. We can relate this to our basic concept of independence in (1) by noting

that (3) says

P(Bx \ By) � P(Bx)P(By),

where Bx � fù: X (ù) < xg and By � fù: Y (ù) < yg.

As usual, the general statement (3) implies different special forms for discrete and

continuous random variables.

Discrete case. If X and Y have the joint discrete distribution p(x, y), then X and Y

are independent if, for all x, y,

p(x, y) � pX (x) pY (y):(4)
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Continuous case. If X and Y have joint density f (x, y), then they are independent if,

for all x, y,

f (x, y) � f X (x) f Y (y):(5)

In any case the importance of independence lies in the special form of the key rule.

Key rule for independent random variables. If X and Y are independent then, for

any events fX 2 Ag and fY 2 Bg,
P(X 2 A, Y 2 B) � P(X 2 A)P(Y 2 B):(6)

The practical implications of this rule explain why independence is mostly employed in

two converse ways:

(i) We assume that X and Y are independent, and use the rule to ®nd their joint

behaviour.

(ii) We ®nd that the joint distribution of X and Y satis®es (1), and deduce that they are

independent; this simpli®es all future calculations.

Of these, (i) is the more usual. Note that all these ideas and de®nitions are extended in

obvious and trivial ways to any sequence of random variables. Here are some simple

examples.

Example 6.4.1. Pick a card at random from a conventional pack of 52 cards. Let X

denote the suit (in bridge order, so X (C) � 1, X (D) � 2, X (H) � 3, X (S) � 4), and Y

the rank with aces low (so 1 < Y < 13). Then for any x, y

P(X � x, Y � y) � 1
52
� 1

4
3 1

13

� P(X � x)P(Y � y):

So the rank and suit are independent, which is of course already known to you. s

Example 6.4.2. Pick a point (X , Y ) uniformly at random in the rectangle 0 < x < a,

0 < y < b. Then

f (x, y) � 1

ab

The marginal densities are

f X (x) �
�b

0

f (x, y)dy � 1

a
,

and

f Y (y) � 1

b
:

Hence

f (x, y) � 1

ab
� f X (x) f Y (y),

and X and Y are independent. s

In fact it follows from our de®nition of independence that if the joint distribution
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F(x, y) factorizes as the product of a function of x and a function of y, for all x, y, then

X and Y are independent.

However, a little thought is needed in applying this result.

Example 6.4.3: Bernoulli trials. In n trials the joint distribution of the number of

successes X and the number of failures Y is

p(x, y) � n!
px

x!

(1ÿ p) y

y!
:

This looks like a product of functions of x and y, but of course it is not, because it is only

valid for x� y � n. Here X and Y are not independent. s

Example 6.4.4. Let X and Y have joint density

f (x, y) � ðÿ1

for (x, y) 2 C, where C is the unit circle. This is a uniform density and resembles

example 6.4.2, but here of course X and Y are not independent. To see this, calculate the

marginal densities

f X (x) �
��(1ÿx2)1=2

ÿ(1ÿx2)1=2

ðÿ1 dy � 2ðÿ1(1ÿ x2)1=2

and

f Y (y) � 2ðÿ1(1ÿ y2)1=2:

Obviously f (x, y) 6� f X (x) f Y (y). s

Example 6.4.5. Let X and Y be discrete, with

p(x, y) � èx� y�2, 0 < x, y ,1:
Here p(x, y) does factorize for all x and y, so X and Y may be independent, provided that

p is a distribution. If we calculate

pX (x) �
X1
y�0

èx� y�2 � èx�2(1ÿ è)ÿ1

and likewise

pY (y) � è y�2(1ÿ è)ÿ1,

then we ®nd

p(x, y) � èx� y�2 � pX (x) pY (y) � èx� y�4(1ÿ è)ÿ2

provided that

è2 � (1ÿ è)2

which entails è � 1
2
. If è 6� 1

2
, then p(x, y) is not a distribution. s

Example 6.4.6: independent normal random variables. Let X and Y be independent

standard normal random variables. Then, by de®nition, their joint density is

f (x, y) � f X (x) f Y (y) � 1

2ð
expfÿ 1

2
(x2 � y2)g:(7)
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The most striking property of this density is that it has rotational symmetry about the

origin. That is to say, in polar coordinates with r2 � x2 � y2 we have

f (x, y) � 1

2ð
exp(ÿ 1

2
r2):

This does not depend on the angle è � tanÿ1(y=x). Roughly speaking, the point (X , Y ) is

equally likely to lie in any direction from the origin. Hence, for example,

P(0 , Y , X ) � P((X , Y ) lies in the first octant)

� 1
8
:

As a bonus, we can use (7) to prove what we skipped over in chapter 5, namely that�1
ÿ1

exp(ÿ1
2
x2) dx �

������
2ð
p

:

To see this, let X and Y be independent with the same density

f (x) � c exp(ÿ1
2
x2):

Then (X , Y ) has joint density

f (x, y) � c2 expfÿ1
2
(x2 � y2)g:

Since f (x, y) is a density, we have by appendix 5.11 that

1 �
��

f (x, y) dx dy �
��

c2 exp(ÿ1
2
r2) r dr dè

� c2

�2ð

0

dè

�1
0

reÿr2=2 dr

� c22ð

as required. s

Example 6.4.7: independent uniform random variables. Let X , Y , and Z be

independent, and each be uniformly distributed on (0, 1). Let U be the smallest of the

three, W the largest, and V the intermediate, so that U , V , W . Find the joint density

of U , V , and W .

Solution. Let F(u, v, w) be the joint distribution of U , V , and W . By a slight

extension of (13) in section 6.3, or by use of inclusion±exclusion, or simply by

inspection, we see that

F(u, v, w) � P(U , u , V , v , W , w)

� F(u, v, v)� F(u, u, v)ÿ F(u, u, u):

Now (U , V , W ) must be one of the six permutations of X , Y , Z, depending on whether

X , Y , Z, or Y , X , Z, or Z , Y , X , etc. For any of these permutations, say the

®rst,

P(U , u , V , v , W , w) � P(X , u , Y , v , Z , w)

� u(vÿ u)(wÿ v)
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by the independence of X , Y , and Z. Since there are six such disjoint possibilities, we have

F(u, v, w) � 6u(vÿ u)(wÿ v)� F(u, v, v)� F(u, u, v)ÿ F(u, u, u):(8)

Now we obtain the required density by differentiating (8) with respect to u, v, and w.

Hence

f (u, v, w) � 6, 0 , u , v , w , 1: s

As an application of this, suppose that three points are placed at random on [0, 1],

independently. What is the probability that no two are within a distance 1
4

of each other?

By the key rule, this is� � �
vÿu . 1=4,

wÿv . 1=4

f (u, v, w) du dv dw �
�1ÿ1=2

0

�1ÿ1=4

u�1=4

�1

v�1=4

6 dw dv du � 1
8
,

after a little calculation.

We conclude by noting that any collection of random variables X 1, . . . , X n is said to

be (mutually) independent if for all x1, . . . , xn, we have

F(x1, . . . , xn) � FX1
(x1) � � � FX n

(xn):(9)

That is to say, the joint distribution is the same as the product of all the marginal

distributions. It follows that disjoint subsets of a collection of independent random

variables are also independent.

Exercises for section 6.4

1. Let X , Y , and Z be independently and uniformly distributed over [0, 1]. Show that

P(Z < XY ) � 1
4
.

2. Let X and Y have joint distribution

p(x, y) � èx� y�2, 0 < x , y ,1:
For what values (if any) of è is this possible? Find the marginal distributions of X and Y . Are X

and Y independent?

3. Let X and Y have joint density

f (x, y) � 1, 0 < x, y < 1:

Let U � minfX , Yg, V � maxfX , Yg. Show that (U , V ) has the joint density

f (u, v) � 2, 0 < u < v < 1:

4. Let X , Y , and Z be independently distributed on [0, 1] with common density f (x): Let U be the

smallest, V the next, and W the largest. Show that U , V , and W have joint density

f (u, v, w) � 6 f (u) f (v) f (w), 0 , u , v , w , 1:

6.5 FUNCTIONS

We have seen in section 5.7 that it is very easy to deal with functions of a single random

variable. Most problems in real life involve functions of more than one random variable,

however, and these are more interesting.

Example 6.5.1. Your steel mill rolls a billet of steel from the furnace. It is 10 metres

long but, owing to the variations to be expected in handling several tons of white-hot
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metal, the height and width are random variables X and Y . The volume is the random

variable Z � 10XY .

What can we say of Z? s

The general problem for functions of two random variables amounts to this: let the

random variable

Z � g(X , Y )

be a function of X and Y ; what is the distribution of Z?

As we did for single random variables it is convenient to deal separately with the

discrete and continuous cases; also, as it was for single random variables, the answer to

our question is supplied by the key rules for joint distributions.

Discrete case. Let the discrete random variables X , Y , and Z satisfy

Z � g(X , Y ):

Then by (4) of section 6.2 we have

pZ(z) � P(Z � z) �
XX

x, y:
z� g(x, y)

p(x, y):(1)

Continuous case. Let the random variables X , Y , and Z satisfy Z � g(X , Y ), where

X and Y have density f (x, y). Then by (5) of section 6.3,

FZ(z) � P(Z < z) �
� �

x, y:
g(x, y)<z

f (x, y) dx dy:(2)

When Z is also continuous, its density f Z(z) is easily obtained by differentiating (2)

above.

These ideas are best grasped by inspection of examples.

Example 6.5.2. (i) Suppose two numbers X and Y are picked at random from

f1, 2, . . . , 49g, without replacement. What is the distribution of Z � maxfX , Yg
� X _ Y ?

(ii) Lottery revisited. Let Z be the largest of six numbers picked from f1, 2, . . . , 49g
in a draw for the lottery. What is the distribution of Z?

Solution. For (i): We know that the joint distribution of (X , Y ) is

p(x, y) �
1

49
3 1

48
, x 6� y

0, x � y:

(
Hence, by (1), Z has distribution
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p(z) �
X

x_ y�z

p(x, y)

�
Xzÿ1

x�1

p(x, z)�
Xzÿ1

y�1

p(z, y)

� (zÿ 1)
49

2

� �ÿ1

, 2 < z < 49

For (ii): With an obvious notation,

p(x1, . . . , x6) �
1
49

3 1
48

3 1
47

3 1
46

3 1
45

3 1
44

xi 6� xj, 1 < i, j < 6

0 otherwise:

(
Using (1) again gives, after a little calculation,

p(z) � zÿ 1

5

� ��
49

6

� �
, 6 < z < 49: s

Equation (2) can be used for similar purposes with continuous random variables.

Example 6.5.3. Let X and Y have joint density

f (x, y) � eÿ y, 0 , x , y ,1:
Find the density of Z � maxfX , Yg.

Solution. By (5),

P(Z < z) �
� �

x_ y<z

f (x, y) dx dy:

Since X , Y always, this calculation is rather an easy one. In fact Z � Y , so Z has the

density

f (z) � f Y (z) � zeÿz, z . 0: s

The function of X and Y that is most often of interest is their sum.

Example 6.5.4: sum of uniform random variables. Let X and Y be independent and

uniform on [0, 1]. What is the density of Z � X � Y ?

Solution. As with functions of one continuous random variable, it is convenient to

use the distribution function. Thus, by the key rule,

FZ(z) � P(X � Y < z) �
� �

x� y<z

f (x, y) dx dy,

which is just the volume of the wedge cut off by the plane x� y � z. Either by

elementary geometry, or by plodding through the integrals, you ®nd

FZ(z) �
1
2
z2, 0 < z < 1

1ÿ 1
2
(2ÿ z)2, 1 < z < 2:

(
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Hence, differentiating,

f Z(z) � z, 0 < z < 1

2ÿ z, 1 < z < 2:

�
This is a triangular density. s

Example 6.5.5. Let X and Y have the joint density derived in example 6.4.6, so that

f (x, y) � 1

2ð
exp fÿ 1

2
(x2 � y2)g:

What is the distribution of Z � (X 2 � Y 2)1=2?

Solution. From (2) we have that

FZ(z) � P(Z < z) �
� �

x, y:

x2� y2<z2

1

2ð
exp fÿ 1

2
(x2 � y2)g dx dy

�
� z

0

exp ÿ1
2
r2

ÿ �
r dr

� 1ÿ eÿz2=2, z . 0:

Since we can differentiate this, we ®nd that Z has density

f Z(z) � z exp ÿ1
2
z2

ÿ �
: s

Often the direct use of independence allows calculations to be carried out simply,

without using (1) or (2).

Example 6.5.6. Let X and Y be independent geometric random variables with

parameters á and â respectively. Find the distribution of Z � X ^ Y , their minimum.

Solution. Arguing directly,

P(Z < z) � 1ÿ P(Z . z)

� 1ÿ P(X . z, Y . z)

� 1ÿ P(X . z)P(Y . z), by independence

� 1ÿ (1ÿ á)z(1ÿ â )z:

Hence

P(Z � z) � f(1ÿ á)(1ÿ â )gzÿ1f1ÿ (1ÿ á)(1ÿ â )g, z > 1:

Thus Z is also geometric. s

Joint distributions of two or more functions of several random variables are obtained in

much the same way, only with a good deal more toil and trouble. We look at a few simple

examples here; a general approach to transformations of continuous random variables is

deferred to section 6.13.
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Example 6.5.7. Let X and Y be independent and geometric, with parameters á and â
respectively. De®ne

U � minfX , Yg � X ^ Y ,

V � maxfX , Yg � X _ Y ,

W � V ÿ U :

Find the joint probability distribution of U and V, and of U and W . Show that U and W

are independent of each other.

Solution. X and Y are independent, so

pX ,Y (x, y) � (1ÿ á)xÿ1(1ÿ â ) yÿ1áâ, 1 < x, y ,1:
Hence, since either X < Y or Y < X ,

P(U � j, V � k) � f(1ÿ á) jÿ1(1ÿ â )kÿ1

� (1ÿ á)kÿ1(1ÿ â ) jÿ1gáâ, j < k:

Likewise

P(U � j, W � k) � f(1ÿ á) jÿ1(1ÿ â ) j�kÿ1

� (1ÿ á) j�kÿ1(1ÿ â ) jÿ1gáâ
� f(1ÿ á)(1ÿ â )g jÿ1f(1ÿ â )k � (1ÿ á)kgáâ:

Hence U and W are independent, by (4) of section 6.4. s

A similar result is true for exponential random variables; this is important in more

advanced probability.

Example 6.5.8. Let X and Y be independent exponential random variables, with

parameters ë and ì respectively. De®ne

U � X ^ Y ,

W � X _ Y ÿ U :

Find the joint density of U and W, and show that they are independent.

Solution. The joint density of X and Y is

f (x, y) � ëìeÿëxÿì y, 0 < x, y ,1:
The probability P(U . u, W < w) is given by the key rule:

P(U . u, W < w) �
� �

x, y:x^ y . u
x_ yÿu<w

f (x, y) dx dy:

The region of integration is in two parts; either

u , y , x , y� w or u , x , y , x� w:

We can calculate this as follows:
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�1
u

� y�w

y

f dx dy�
�1

u

�x�w

x

f dy dx

�
�1

u

ìeÿì y eÿë y ÿ eÿë( y�w)
� 	

dy�
�1

u

ëeÿëx eÿìx ÿ eÿì(x�w)
� 	

dx

� eÿ(ì�ë)u ÿ ì

ë� ì
eÿ(ë�ì)uÿëw ÿ ë

ë� ì
eÿ(ë�ì)uÿìw:

Hence we can ®nd the joint density by differentiation, yielding

f (u, w) � ëì

ë� ì
(eÿëw � eÿìw)(ë� ì)eÿ(ë�ì)u:

Thus U and W, where U is exponential with parameter ë� ì and W has density

f W (w) � ëì

ë� ì
(eÿëw � eÿìw), 0 < w ,1,

are independent by (5) of section 6.4. s

If we are suf®ciently careful and persistent, we can establish even more surprising

results in this way. Here is one ®nal illustration.

Example 6.5.9. Let X and Y be independent and exponential, both with parameter 1.

De®ne

U � X � Y ,

V � X

X � Y
:

Find the joint density of U and V . Deduce that U and V are independent, and ®nd their

marginal density functions.

Solution. Here the joint density of X and Y is given by

f (x, y) � eÿ(x� y), 0 < x, y ,1:
Let us seek the probability P(U > u, V > v): In the X Y -plane this corresponds to

P X � Y > u,
X

X � Y
> v

� �
� P X � Y > u, Y <

1ÿ v

v
X

� �
:(3)

This probability is given by the integral of f over the in®nite shaded area in Figure 6.1.

Hence (3) becomes�uÿuv

0

�1
uÿ y

eÿxÿ y dx dy�
�1

uÿuv

�1
v y=(1ÿ v)

eÿxÿ y dx dy(4)

�
�uÿuv

0

eÿu dy�
�1

uÿuv

eÿ yeÿv y=(1ÿv) dy

� eÿu(uÿ uv� 1ÿ v):

Differentiating (4) with respect to u and v yields the joint density of U and V as

f (u, v) � ueÿu, 0 < v < 1, 0 < u ,1:
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Hence, surprisingly, we ®nd that U and V are independent, where U has a gamma density

and V is uniform on (0, 1). s

Exercises for section 6.5

1. Let X , Y , and Z be independent and uniform on [0, 1], so that their joint density is

f (x, y, z) � 1. Show that the density of their sum W � X � Y � Z is

f W (w) �
1
2
w2, 0 < w < 1

3
4
ÿ wÿ 3

2

ÿ �
2, 1 < w < 2

1
2
(3ÿ w)2, 2 < w < 3:

8><>:
2. Let Y be the minimum of six numbers drawn from f1, 2, . . . , 49g for the lottery. Find the

distribution of Y .

3. Let X and Y be geometric and independent, with parameters á and â respectively, as in example

6.5.6. Show that the distribution of Z � jX ÿ Y j is

p(z) �
áâ

á� âÿ áâ
f(1ÿ á)z � (1ÿ â )zg, z . 0

áâ

á� âÿ áâ
, z � 0:

8>><>>:
6.6 SUMS OF RANDOM VARIABLES

In the previous section we looked in a general way at how to ®nd the probability

distributions of various functions of random variables. In practical applications it most

often turns out that we are interested in the sum of random variables. For example:

· The success or failure of an insurance company or bank depends on the cumulative

sum of payments in and out.

. . .

. . .

. . .

. . .

uv u x0

u 2 uv

u

y

y 5
1 2 v

v
x

Figure 6.1. The shaded area extends inde®nitely as shown.
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· We have noted above that practical estimates or measurements very often use the

sample mean of observations X r, that is,

X � 1

n

Xn

r�1

X r:

· Quality control often concerns itself with the total sum of errors or defective items in

some process.

And so on; think of some more yourself. In this section we therefore look at various ways

of ®nding the distributions of sums of random variables. We begin with some easy

examples; in particular, we ®rst note that in a few cases we already know the answer.

Example 6.6.1: binomial sum. Let X be the number of successes in m independent

Bernoulli trials and Y the number of successes in n further Bernoulli trials, all with

parameter p. Then if Z � X � Y , it follows that Z is the number of successes in m� n

Bernoulli trials. However, by this construction we know that X is binomial B(m, p), Y is

binomial B(n, p), and their sum Z is binomial B(m� n, p). s

Example 6.6.2: craps. Let X and Y be independent and uniform on f1, 2, 3,

4, 5, 6g; de®ne Z � X � Y . Then Z is just the sum of the scores of two dice, and we

know that

f (z) �
1

36
(zÿ 1), 2 < z < 7

1
36

(13ÿ z), 7 , z < 12:

(
s

This is useful but limited; the time has come to give a general approach to this problem.

As with much else, the answer is supplied by the key rule for joint distributions.

Sum of discrete random variables. Let X and Y have joint distribution p(x, y), and

let Z � X � Y . Then, by (1) of section 6.5,

pZ(z) � P(X � Y � z) �
X
x, y:

x� y�z

p(x, y)(1)

�
X

x

p(x, zÿ x):

Convolution rules. When X and Y are independent we know that p(x, y) �
pX (x) pY (y), and (1) takes the most important form

pZ(z) �
X

x

pX (x) pY (zÿ x):(2)

When X and Y are also non-negative, the sum reduces to

pZ(z) �
Xz

x�0

pX (x) pY (zÿ x):(3)

Here are the equivalent results for the sum of continuous random variables.
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Sum of continuous random variables. When X and Y are continuous, and Z �
X � Y , the rules above take the following forms.

Probability density of a sum. If the pair (X , Y ) has density f (x, y), the density of

Z � X � Y is given by

f Z(z) �
�1
ÿ1

f (x, zÿ x) dx:(4)

Convolution rules. When X and Y are independent then

f Z(z) �
�1
1

f X (x) f Y (zÿ x) dx:(5)

And when X and Y are non-negative this becomes

f Z(z) �
� z

0

f X (x) f Y (zÿ x) dx:(6)

These rules are extremely plausible, since they are just the integral versions of the

summation rules that apply to discrete random variables. Their plausibility can be

reinforced by an informal consideration of the kind we have used before, as follows.

Roughly speaking, since Z � X � Y , when dx and dz are small

P(x , X < x� dx, z , Z < z� dz) � P(x , X < x� dx, zÿ x < Y < zÿ x� dz)

' f (x, zÿ x) dx dz:

Now integrating with respect to x gives the marginal distribution of Z:

f Z(z) dz ' P(z , Z < z� dz) �
�

f (x, zÿ x)dx

� �
dz,

which agrees with (4).

This supplies an intuitive feeling for the truth of the convolution rules; if you require a

proof, it runs as follows.

Proof of (4). Let X and Y have joint density f (x, y), with Z � X � Y . Then by the

key rule for joint densities, (5) of section 6.3,

FZ(z) � P(Z < z) �
��

x� y<z

f (x, y) dx dy(7)

�
�1

x�ÿ1

�zÿx

y�ÿ1
f (x, y) dy dx:

Now differentiating this with respect to z, and recalling the fundamental theorem of

calculus in the more general form (see appendix 4.14), gives

f Z(z) �
�1

x�ÿ1
f (x, zÿ x) dx,(8)

as required. h

Here are some examples. In each of the following X and Y are independent, with

Z � X � Y .
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Example 6.6.3: binomial sum. If X is binomial B(n, p) and Y is binomial B(m, p),

then by (2)

pZ(z) �
Xz

x�0

n

x

� �
pxq nÿx m

zÿ x

� �
pzÿxq mÿz�x

� pzq m�nÿz
Xz

x�0

n

x

� �
m

zÿ x

� �

� m� n

z

� �
pzq m�nÿz:

Thus Z is binomial B(m� n, p), as we knew already. s

Example 6.6.4: Poisson sum. If X and Y are Poisson, with parameters ë and ì
respectively, then by (2)

pZ(z) �
Xz

x�0

ëx

x!
eÿë

ìzÿx

(zÿ x)!
eÿì � eÿ(ë�ì)

z!

Xz

x�0

z

x

� �
ëxìzÿx

� eÿ(ë�ì)

z!
(ë� ì)z:

Thus Z is Poisson with parameter ë� ì. s

Example 6.6.5: geometric sum. Let X and Y be independent and geometric with

parameter p. Find the mass functions of U � X � Y and V � X ÿ Y .

Solution. By (2),

pU (u) �
Xuÿ1

1

pX (x) pY (uÿ x)

�
Xuÿ1

1

qxÿ1 pquÿxÿ1 p

� (uÿ 1)quÿ2 p, u > 2,

which is a negative binomial distribution. Now likewise, for v . 0,

pV (v) �
X

xÿ y�v

pX (x) pY (y) �
X1
y�1

pX (v� y) pY (y),

� p2
X1
y�1

qv� yÿ1q yÿ1 � p2qvÿ2 q2

1ÿ q2

� pqv

1� q
:
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For v , 0 we have

pV (v) �
X

xÿ y�v

pX (x) pY (y) �
X1
x�1

pX (x) pY (xÿ v)

�
X1
x�1

p2qxÿ1qxÿvÿ1 � p2 qÿvÿ2q2

1ÿ q2

� pqÿv

1� q
:

Finally, for v � 0,

pV (0) �
X1
x�1

p2q2xÿ2 � p2

1ÿ q2

� p

1� q
: s

Example 6.6.6: uniform sum. Let X and Y be uniform on (0, a). Then by (6)

f Z(z) �
� z

0

f X (x) f Y (zÿ x)dx

�
� z

0
aÿ2 dx � zaÿ2 0 < z < a� a

zÿa
aÿ2 dx � (2aÿ z)aÿ2, a < z < 2a,

(
which is the triangular density on (0, 2a), as we already know. s

Example 6.6.7: exponential sum. Let X and Y be exponential with parameter ë.

Then by (6)

f Z(z) �
� z

0

ë2eÿëxeÿë(zÿx) dx � ë2zeÿëz,

which is a gamma distribution. s

Next we consider the sum of two independent normally distributed random variables. It

is worth recalling that the normal density was ®rst encountered in chapter 4 as an

approximation to the binomial distribution, and that the sum of two independent binomial

random variables (with the same parameter p) was found to be binomial in example

6.6.3. We should therefore expect that the sum of two independent normal random

variables is itself normal. This is so, as we now see.

Example 6.6.8: normal sum. Let X and Y be independent and normal with zero

mean, having variances ó 2 and ô2 respectively. We let ó 2 � ô2 � ù2. Then we have from
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(5), as usual,

f Z(z) �
�1
ÿ1

1

2ðóô
exp ÿ x2

2ó 2
ÿ (zÿ x)2

2ô2

� �
dx

� 1

(2ðù2)1=2

�1
ÿ1

ù

(2ð)1=2óô
exp ÿ ù2

2ó 2ô2
xÿ ó 2

ù2
z

� �2
( )

dx

3 exp ÿ z2

2ù2

� �

� 1

(2ðù2)1=2
exp ÿ z2

2ù2

� �
:

This last step follows because the integrand is just the

N
ó 2z

ù2
,
ó 2ô2

ù2

� �
density, which when integrated over R gives 1, as always.

Thus we have shown that if X and Y are independent normal random variables, with

zero mean and variances ó 2 and ô2, then X � Y is also normal, with variance ó 2 � ô2. s

The same argument will give the distribution function or the survival function of a sum

of random variables. For example, let X and Y be discrete and independent, with

Z � X � Y . Then

FZ(z) � P(Z < z) � P(X � Y < z)(9)

�
X

y

P(X < zÿ y)P(Y � y)

�
X

y

FX (zÿ y) pY (y):

Likewise

FZ(z) � P(Z . z) �
X

y

FX (zÿ y) pY (y):(10)

As an application, let us reconsider Pepys' problem, which appeared in exercise (5) at the

end of section 2.6. We can now solve a more general case.

Example 6.6.9: extended Pepys' problem. Show that if An has 6n dice and needs at

least n sixes, then An has an easier task than An�1. That is to say, the chance of at least n

sixes in 6n rolls is greater than the chance of at least n� 1 sixes in 6(n� 1) rolls.

Solution. We can divide An�1's rolls into two groups, one of size 6n, yielding X

sixes, and the other of size 6, yielding Y sixes. Write Z � X � Y . Then we need to show

that

P(Z > n� 1) < P(X > n):

Write p(n) � P(X � n), pY (n) � P(Y � n), and F(n) � P(X > n). We know that X is
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binomial B 6n, 1
6

ÿ �
and Y is binomial B 6, 1

6

ÿ �
. From what we have proved about the

binomial distribution, we have

p(nÿ 5) < p(nÿ 4) < p(nÿ 3) < p(nÿ 2) < p(nÿ 1) < p(n),(11)

and

EY � 1:(12)

Now, by conditioning on Y , we obtain

P(Z > n� 1) � P(X � Y > n� 1)

�
X6

r�0

P(X � Y > n� 1jY � r) pY (r)

�
X6

r�0

P(X > n� 1ÿ r) pY (r)

� fF(n)ÿ p(n)gpY (0)� F(n) pY (1) � � � �
� fF(n)� p(nÿ 1)� p(nÿ 2)

� p(nÿ 3)� p(nÿ 4)� p(nÿ 5)gpY (6):

By (11) we then have

P(Z > n� 1) < fF(n)ÿ p(n)g pY (0) � � � �
� fF(n)� 4 p(n)g pY (5)� fF(n)� 5 p(n)gpY (6)

� F(n)� p(n)
X6

r�0

(r ÿ 1) pY (r)

� F(n), by (12)

� P(X > n)

as required. s

Exercises for section 6.6

1. Deduce from example 6.6.9 that

5
6

ÿ �
6
Xn

r�0

6(n� 1)

r

� �
5ÿr >

Xnÿ1

r�0

6n

r

� �
5ÿr:

Can you think of any other way of proving this inequality?

2. Let X and Y have joint density f (x, y) � eÿ y, 0 , x , y ,1: Find the density of Z � X � Y .

3. Let X1, . . . , X n be independent geometric random variables with parameter p. Show that

Z �Pn
r�1 X r has the negative binomial distribution

p(z) � zÿ 1

nÿ 1

� �
pn(1ÿ p)zÿn, z > n:

(Hint: Either use induction, or think a bit.)
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4. Let X1, . . . , X n be independent exponential random variables with parameter ë. Show that

Z �
Xn

r�1

X r

has the gamma density

f (z) � ënz nÿ1eÿëz=(nÿ 1)!

(Same hint as for exercise 3.)

6.7 EXPECTATION; THE METHOD OF INDICATORS

In the previous sections we have looked at the distribution of functions of two or more

random variables. It is often useful and interesting to know the expected value of such

functions, so the following results are very important.

Extended laws of the unconscious statistician. Let X , Y , and Z be random variables

such that

Z � g(X , Y ):

If X and Y are discrete with joint distribution p(x, y), then

EZ �
X

x

X
y

g(x, y) p(x, y):(1)

If X and Y are continuous with joint density f (x, y), then

EZ �
�

x

�
y

g(x, y) f (x, y) dx dy:(2)

(Note that expected values are always assumed to exist unless we explicitly remark

otherwise.) The proofs of these two results are very similar to those used in the case of

functions of a single random variable, and we omit them. One of the most commonly

used application of these rules is in the following result.

Addition rule for expectation. For any two random variables X and Y with a joint

distribution, we have

E(X � Y ) � EX � EY :(3)

The proof is easy. Suppose X and Y are discrete; then by (1)

E(X � Y ) �
X

x

X
y

(x� y) p(x, y)

�
X

x

X
y

xp(x, y)�
X

y

X
x

yp(x, y)

�
X

x

xpX (x)�
X

y

ypY (y), by (6) of section 6:2

� EX � EY , by (3) of section 5:6:

If X and Y have a density, then just replace
P

by
�

in this proof, and p by f . Obviously
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it follows that if X1, X2, . . . , X n are jointly distributed, then

E
Xn

r�1

X r �
Xn

r�1

EX r: h(4)

Example 6.7.1: dice. You add the scores X r from n rolls of a die. By the above,

E
Xn

r�1

X r �
Xn

r�1

EX1

�
Xn

r�1

7

2
, by (4)

� 7n

2
:

The important thing about this trivial example is that the calculation is extremely easy,

though the actual probability distribution of
Pn

r�1 X r is extremely complicated. s

Example 6.7.2: waiting for r successes. Suppose you undergo a sequence of Ber-

noulli trials with P(S) � p; let T be the number of trials until the rth success. What is ET?

Solution. We know from exercise 3 at the end of section 6.6 that T has a negative

binomial distribution, so

ET �
X1
n�r

n
nÿ 1

r ÿ 1

� �
(1ÿ p)nÿr pr:

Summing this series is feasible but dull. Here is a better way. Let X1 be the number of

trials up to and including the ®rst success, X 2 the further number of trials to the second

success, and so on for X3, X4, . . . , X r. Then each of X1, X2, . . . has a geometric

distribution with parameter p and mean pÿ1. Hence

ET � E
Xr

k�1

X k � rpÿ1: s

Example 6.7.3: coupon collecting. Each packet of some ineffably dull and noxious

product contains one of d different types of ¯ashy coupon. Each packet is independently

equally likely to contain any of the d types. How many packets do you expect to need to

buy until the moment when you ®rst possess all d types?

Solution. Let T1 be the number of packets bought until you have one type of coupon,

T2 the further number required until you have two types of coupon, and so on up to Td .

Obviously T1 � 1. Next, at each purchase you obtain a new type with probability

(d ÿ 1)=d, or not with probability 1=d. Hence T2 is geometric, with mean d=(d ÿ 1).

Likewise, Tr is geometric with mean d=(d ÿ r � 1), for 1 < r < d. Hence the ex-

pected number of packets purchased is

E(T1 � T2 � � � � � Td) �
Xd

r�1

ETr �
Xd

r�1

d=(d ÿ r � 1): s(5)
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Here is an example involving a density.

Example 6.7.4. A dart hits a plane target at the point (X , Y ) where X and Y have

density

f (x, y) � 1

2ð
expfÿ 1

2
(x2 � y2)g:

Let R be the distance of the dart from the bullseye at the origin. Find ER2.

Solution. Of course we could ®nd the density of R, and then the required expectation.

It is much easier to note that X and Y are each N(0, 1) random variables, and then

ER2 � E(X 2 � Y 2) � EX 2 � EY 2

� var X � var Y

� 2: s

We have looked ®rst at the addition law for expectations because of its paramount

importance. But, of course, the law of the unconscious statistician works for many other

functions of interest. Here are some examples.

Example 6.7.5. Let X and Y have density

f (x, y) � ðÿ1, x2 � y2 < 1:

Find (i) Ef(X 2 � Y 2)1=2g, (ii) EjX ^ Y j, (iii) E(X 2 � Y 2), (iv) EfX 2=(X 2 � Y 2)g.

Solution. It is clear that polar coordinates are going to be useful here. In each case by

application of (2) we have

For (i):

Ef(X 2 � Y 2)1=2g �
�2ð

0

�1

0

ðÿ1 r2 dr dè

� 2

3
:

For (ii): By symmetry the answer is the same in each octant, so

EjX ^ Y j � 8

��
0 , y , x

yf (x, y) dx dy � 8

ð

�ð=4

0

�1

0

r2 sin è dr dè

� 8

3ð
1ÿ 1���

2
p

� �
:

For (iii):

E(X 2 � Y 2) �
�2ð

0

�1

0

ðÿ1 r3 dr dè � 1

2
:

For (iv): By symmetry EfX 2=(X 2 � Y 2)g � EfY 2=(X 2 � Y 2)g, and their sum is 1.

Hence

EfX 2=(X 2 � Y 2)g � 1

2
: s
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In concluding this section we ®rst recall a simple but important property of indicator

random variables.

Indicator property. If X is an indicator then

EX � P(X � 1):(6)

This elementary fact is the basis of a surprisingly versatile and useful technique:

The method of indicators. The essential idea is best illustrated by examples.

Example 6.7.6: non-homogeneous Bernoulli trials. Suppose a complicated structure

has n different elements that either fail, or work as desired. What is the expected number

ç of working elements?

Solution. Let X i be the indicator of the event that the ith element works. Since the

elements are different we have EX i � pi, where pi is not necessarily equal to pj, for

i 6� j. Nevertheless

ç � E
Xn

i�1

X i �
Xn

i�1

pj:(7)

The point here is that we do not need to know anything about the joint distribution of the

failures of elements; we need only know their individual failure rates in this structure in

order to ®nd ç. s

Corollary: binomial mean. In the special case when pi � p for all i, we know that

the number of elements working is a binomial random variable X with parameters n and

p. Hence EX � np, as we showed more tediously in chapter 4.

This idea will also supply the mean of other sampling distributions discussed in

chapter 4.

Example 6.7.7: hypergeometric mean. Suppose n balls are drawn at random without

replacement from an urn containing f fawn balls and m mauve balls. What is the

expected number of fawn balls removed? As usual, n < f ^ m.

Solution. Let Y be the number of fawn balls and let X r be the indicator of the event

that the r th ball drawn is fawn. Then

EX r � f =(m� f )

and the answer is

EY � E
Xn

r�1

X r � nf =(m� f ):

Since we know that Y has a hypergeometric distribution, this shows that

EY �
X

y

yP(Y � y) �
Xn

y�0

y
f

y

� �
m

nÿ y

� ��
m� f

n

� �
(8)

� nf =(m� f ):
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You may care to while away an otherwise idle moment in proving this by brute force. s

In a number of important and useful examples we have a function of a set of indicators

that is itself an indicator. This can provide a neat way of calculating probabilities.

Example 6.7.8: inclusion±exclusion. For 1 < r < n, let I r be the indicator of the

event Ar. Then if we de®ne X by

X � 1ÿ
Yn

r�1

(1ÿ I r)

we see that X is an indicator. In fact

X � 1 if at least one of the Ar occurs

0 otherwise:

�
Hence, expanding the product and taking expectations,

EX � P
[n

r�1

� �
� E 1ÿ

Yn

r�1
(1ÿ I r)

n o
�
Xn

r�1

P(Ar)ÿ
X
r , s

P(Ar \ As) � � � � � (ÿ1)n�1P
\

n
r�1 Ar

� �
: s

Indicators can be used to prove the following useful and familiar result.

Tail-sum lemma. Let X be a non-negative integer-valued random variable. Then

EX �
X1
r�0

P(X . r):(9)

Proof. Let I r be the indicator of the event that X . r. Then

X �
X1
r�0

I r:(10)

(To see this just note that if X � k then

I0 � I1 � � � � � I kÿ1 � 1, and 0 � I k � I k�1 � � � �)
Taking expectations of each side of (10) yields (9). Note that (9) may also be written

EX �
X1
r�1

P(X > r): h

Here is an illustration.

Example 6.7.9. An urn contains c cobalt balls and d dun balls. They are removed

without replacement; let X be the number of dun balls removed before the ®rst cobalt

ball. Then X > x if and only if the ®rst x balls are dun. The probability of this is
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d

x

� ��
c� d

x

� �
:

Hence

EX �
Xd

x�1

d

x

� ��
c� d

x

� �
:

This is continued in exercise 3. s

We conclude this section with yet another look at the method of indicators.

Example 6.7.10: matching. The ®rst n integers are drawn at random out of a hat (or

urn, if you prefer). Let X be the number of occasions when the integer drawn in the rth

place is in fact r. Find var X.

Solution. This is tricky if you try to use the distribution of X , but simple using

indicators. Let I r indicate that r is drawn in the r th place. Then

X �
Xn

r�1

I r:

Furthermore

EI r � 1

n
and E(I r I s) � 1

n(nÿ 1)
, r 6� s:

Hence

var X � E(X 2)ÿ (EX )2

� Ef(Pn
r�1 I r)

2g ÿ 1

� nE(I2
r)� n(nÿ 1)E(I r I s)ÿ 1

� 1� 1ÿ 1 � 1: s

Exercises for section 6.7

1. Coupon collecting; example 6.7.3 continued. Suppose there are d different types of

coupon, and you collect n coupons. Show that the expected number of different types of coupon

you have in your collection is df1ÿ (1ÿ dÿ1)ng.

2. Boole's inequality. Use indicators to show that for events A1, . . . , An

P
[n

r�1
Ar

� �
<
Xn

r�1

P(Ar):

3. Let X 1, . . . , X n have the same mean ì, and set Sm �
Pm

r�1 X r. What is E(Sr=Sk)? Hence show

using example 6.7.9 that Xd

x�1

d

x

� ��
c� d

x

� �
� d=(c� 1):
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4. We have E(X � Y ) � EX� EY , for any X and Y . Show that it is not necessarily true that

median (X � Y ) � median X �median Y ,

nor is it necessarily true that

mode (X � Y ) � mode X �mode Y :

6.8 INDEPENDENCE AND COVARIANCE

We have seen on many occasions that independence has useful and important conse-

quences for random variables and their distributions. Not surprisingly, this is also true for

expectation. The reason for this is the following

Product rule for expectation. When X and Y are independent, we have

E(XY ) � EX EY :(1)

To see this when X and Y are discrete, recall that

p(x, y) � pX (x) pY (y)(2)

for independent discrete random variables. Then

E(XY ) �
X

x

X
y

xyp(x, y)

�
X

x

xpX (x)
X

y

ypY (y), by (2)

� EX EY :

When X and Y are jointly continuous the proof just replaces summations by integrals. h

A very common application of this result is the following

Corollary: variance of a sum of independent random variables. Let X and Y be

independent. Then by de®nition

var(X � Y ) � EfX � Y ÿ E(X � Y )g2(3)

� E(X ÿ EX )2 � E(Y ÿ EY )2

� 2Ef(X ÿ EX )(Y ÿ EY )g:
Now by (1), because X and Y are independent,

Ef(X ÿ EX )(Y ÿ EY )g � fE(X ÿ EX )gfE(Y ÿ EY )g � 0:

Hence

var(X � Y ) � var X � var Y :(4)

It is easy to see that this is true for the sum of any number of independent random

variables; that is, if X1, X 2, . . . are independent then

var
Pn

i�1 X i

ÿ � �Pn
i�1var X i:(5)

Here is a very simple illustration.
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Example 6.8.1: binomial variance. If fX 1, . . . , X ng is a collection of independent

Bernoulli trials then we know that their sum Y has a binomial distribution. By (5),

var Y �
Xn

r�1

var X r �
Xn

r�1

pq � npq: s

Compare this with your previous derivation. Here is a slightly more complicated

application.

Example 6.8.2: the coupon collector's problem. Suppose a population is known to

contain equal numbers of n different types of individual. You repeatedly pick a member

of the population at random, with replacement, until you have seen at least one of all n

types. Let X be the number of individuals you had to inspect; what is the mean and

variance of X?

For reasons of tradition and convention, this is known as the coupon collector's

problem. If each box of some product contains a coupon, and there are n different types

of coupon, and each box is independently equally likely to contain any type, then X is the

number of boxes you need to buy and open to get the complete set of all n different types.

Solution. Obviously your ®rst box supplies you with the ®rst coupon of your set. Let

N1 be the number of boxes you need to open to get a coupon different from that in the

®rst box. The probability that any coupon is the same as your ®rst is 1=n, the probability

that it is different is (nÿ 1)=n. Boxes are independent. Hence

P(N1 � x) � 1

n

� �xÿ1
nÿ 1

n

� �
, x > 1,

which is geometric with parameter (nÿ 1)=n. Now let N2 be the further number of boxes

you need to open to obtain the third coupon of your set. The same line of argument shows

that

P(N2 � x) � 2

n

� �xÿ1
nÿ 2

n

� �
, x > 1,

which is geometric with parameter (nÿ 2)=n.

Continuing in this way yields a series of geometric random variables (N k ; 1 < k

< nÿ 1) with respective parameters (nÿ k)=n. Obviously the process stops at N nÿ1,

because this yields the nth and ®nal member of your complete set. Also

X � 1� N1 � � � � � Nnÿ1,

and furthermore the random variables N1, . . . , Nnÿ1 are independent, because the boxes

are. Hence

EX � 1� EN1 � � � � � EN nÿ1

� 1� n

nÿ 1
� n

nÿ 2
� � � � � n

1

� n
Xn

k�1

1

k
:
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The variance is given by

var X � var 1� var N1 � � � � � var N nÿ1(6)

� 0� 1

n

�
nÿ 1

n

� �2

� 2

n

�
nÿ 2

n

� �2

� � � � � nÿ 1

n

�
1

n

� �2

� n
1

(nÿ 1)2
� � � � � nÿ 2

22
� nÿ 1

12

� �

� n2
Xnÿ1

k�1

1

k2
ÿ n

Xnÿ1

1

1

k
:

It is shown in calculus books that as n!1,Xn

k�1

1

k
ÿ log n! ã,

where ã is called Euler's constant, andXn

k�1

1

k2
! ð2

6
:

Hence if we are collecting a large number of `coupons', we ®nd as n!1
EX

n log n
! 1

and

var X

n2
! ð2

6
: s

When X and Y are not independent, the product rule does not necessarily hold, so it is

convenient to make the following de®nition.

De®nition. The covariance of two random variables X and Y is cov(X , Y ) where

cov(X , Y ) � Ef(X ÿ EX )(Y ÿ EY )g(7)

� E(XY )ÿ EX EY � cov(Y , X ): n

Thus for any pair of random variables, from (3),

var(X � Y ) � var X � var Y � 2 cov(X , Y )

More generally, for any sum,

var
Pn

r�1 X r

ÿ � �Xn

r�1

var X r � 2
X
j , k

cov(X j, X k):

Things are obviously simpler when cov(X j, X k) � 0, so we make the following

De®nition. If cov(X , Y ) � 0, then X and Y are said to be uncorrelated. n

Thus independent random variables are uncorrelated, by (1).
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At this point we note that while independent X and Y have zero covariance, the

converse is not true.

Example 6.8.3. Let X be any bounded non-zero random variable with a distribution

symmetric about zero; that is to say, p(x) � p(ÿx), or f (x) � f (ÿx). Let Y � X 2. Then

Y is not independent of X , but nevertheless

cov(X , Y ) � EX 3 ÿ EX EX 2 � 0: s

Despite this, their covariance is clearly a rough and ready guide to the mutual

dependence of X and Y . An even more useful guide is the correlation function.

De®nition. The correlation function r(X , Y ) of X and Y is

r(X , Y ) � cov(X , Y )

(var X var Y )1=2
: n

This may appear unnecessarily complicated, but the point is that if we change the

location and scale of X and Y then r is essentially unchanged, since

r(aX � b, cY � d) � sign(ac) r(X , Y ),(8)

where

sign(x) �
1, x . 0

0, x � 0

ÿ1, x , 0:

8<:
Thus r is scale-free, but covariance is not, because

cov(aX � b, cX � d) � ac cov(X , Y ):(9)

Here are two simple routine examples.

Example 6.8.4. Let X and Y have joint density

f (x, y) � 1

ð
, x2 � y2 < 1:

Then, easily, EX � EY � E(XY ) � 0, by symmetry, and so X and Y are uncorrelated.

They are not independent, of course.

Now let U � jX j, and V � jY j. Then

EU � EjX j � 4

ð

�1

0

�ð=2

0

r2 cos è dr dè � 4

3ð
� EV

and

E(UV ) � E(jXY j) � 4

ð

�1

0

�ð=2

0

r3 cos è sin è dr dè � 1

2ð
:

Hence

cov(U , V ) � 1

2ð
ÿ 16

9ð2
, 0: s
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Example 6.8.5. Roll two dice, yielding the scores X and Y respectively. By indepen-

dence cov(X , Y ) � 0. Now let U � minfX , Yg and V � maxfX , Yg, with joint dis-

tribution

p(u, v) �
1
18

, u , v
1
36

, u � v:

(
Then, using (9) of section 6.7 and some arithmetic, we ®nd that EV � 91

36
. Also EV �

7ÿ EU � 161
36

, with E(UV ) � E(XY ) � EX EY , and so

cov(U , V ) � 35
36

ÿ �
2: s

The use of covariance extends our range of examples of the use of indicators.

Example 6.8.6. Of b birds, a number r are ringed. A sample of size n is to be taken

from the b birds. Let X be the number in the sample with rings if sampling is with

replacement, and Y the number with rings if sampling is without replacement. Show that

var Y � bÿ n

bÿ 1
var X :

Solution. If sampling is with replacement, we know that X is binomial B(n, r=b), so

var X � n
r

b
1ÿ r

b

� �
:

If sampling is without replacement, let I k be the indicator of the event that the kth bird is

ringed. Now for any such Bernoulli trial we know that

EI k � r

b
and var I k � r

b
1ÿ r

b

� �
:

Also, we calculate

E(I j I k) � P(I j � 1jI k � 1)P(I k � 1)

� r

b

r ÿ 1

bÿ 1

� �
, j 6� k,

so that

cov(I j, I k) � ÿ r

b2

bÿ r

bÿ 1

� �
, j 6� k:(10)

Hence ®nally

var Y � var
Pn

k�1 I k

ÿ � �Xn

k�1

var I k � 2
X
j , k

cov(I j, I k)

� n
r

b
1ÿ r

b

� �
ÿ n(nÿ 1)

r

b2

bÿ r

bÿ 1

� �

� n
r

b
1ÿ r

b

� �
bÿ n

bÿ 1

� �
as required. s
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We end this section with a look at one of the most important results in probability, the

so-called law of large numbers.

At various points throughout the book we have remarked that given a set X 1, . . . , X n

of independent observations or readings, which we take to be random variables, their

average

X n � nÿ1
Xn

r�1

X r(11)

is a quantity of natural interest. We used this idea to motivate our interest in, and

de®nitions of, expectation. In the case when the X 's are indicators, we also used this

expression to motivate our ideas of probability. In that case X n is just the relative

frequency of whatever the X 's are indicating.

In both cases we claimed that empirically, as n!1, the averages X n tend to settle

down around some mean value. It is now time to justify that assertion. Obviously, we

need to do so, for if X n in (11) did not ever display this type of behaviour, it would

undermine our theory, to say the least.

We remind ourselves that the X 's are independent and identically distributed, with

mean ì and variance ó 2 ,1. Then we have the following so-called

Law of large numbers. For any å. 0, as n!1
P(jX n ÿ EX nj. å)! 0:(12)

That is to say as n increases, the probability that X n differs from EX n by more than any

given amount (however small) tends to zero. This is of course extremely gratifying, as it

is consistent with what we assumed in the ®rst place.

Proof. The proof of (12) is very simple. Recall Chebyshov's inequality

P(jX ÿ EX j. å) <
var X

å2
:

Using this gives

P(jX n ÿ EX nj. å) < fvar(nÿ1
Pn

r�1 X r)gåÿ2(13)

� ó 2 nÿ1åÿ2, by independence

! 0

as n!1, for any given å. 0. h

Here is an important application. Let X r be the indicator of an event A. Thus X n is the

relative frequency of occurrence of A in a sequence of Bernoulli trials, and EX n � P(A).

By (13) we have

P(jX n ÿ P(A)j. å) <
P(A)f1ÿ P(A)g

nå2
:(14)

Thus as n!1 the relative frequency of occurrence of the event A does indeed settle

down around P(A), in the sense that we stated above.

278 6 Jointly distributed random variables



And, in general, the fact that

var X n � var X1

n

supports our intuitive idea that when we take averages, their dispersion decreases as the

size of the set being averaged increases. However, it is important to note two things about

these conclusions. The ®rst is that if the X i do not have ®nite variance then good

behaviour of averages is not always to be expected, as the theorem does not necessarily

hold.

The second point to note is another gambler's fallacy. If (for example) some number x

fails to come up for a prolonged spell at roulette, or in a lottery, then one hears it said that

`x must be more likely next time, by the law of averages'. Of course this statement is not

true, and the law of large numbers offers no support for it. If A is the event that x turns

up, then (14) says only that the relative frequency of occurrences of x settles down. The

actual absolute ¯uctuations in the frequency of x about its expected value will tend to get

larger.

For example, it is easy for you to show that given any number m, no matter how large,

with probability unity x will eventually fail to appear on m successive occasions

(exercise).

Note ®nally that our result (12) is often called the weak law of large numbers, to

distinguish it from another called the strong law of large numbers; we do not discuss the

strong law here.

Exercises for section 6.8

1. Let EX � EY and var X � var Y . Show that

(a) cov(X � Y , X ÿ Y ) � 0 and

(b) cov(X � Y , X=(X � Y )) � 0, if X and Y have the same distribution.

2. Let X and Y have the joint distribution

p(x, y) � 1

1� 2n(n� 1)
, jxÿ yj < n; jx� yj < n:

Show that X and Y are dependent and that cov(X , Y ) � 0.

3. Recall that skw X � E(X ÿ ì)3=ó 3.

Show that if X 1, . . . , X n are independent and identically distributed then

skw
Xn

i�1

X i � nÿ1=2 skw X1:

Deduce that if X is binomial B(n, p), then

skw X � qÿ p

(npq)1=2
:

4. Show that for any pair of random variables X and Y

Ef(XY )2g < EX 2 EY 2:

This is the Cauchy±Schwarz inequality. (Hint: Consider Z2 where Z � sX ÿ tY .) Deduce that

jr(X , Y )j < 1:

5. Let X1, . . . , X n be independent and identically distributed with mean ì and variance ó 2. De®ne

X � nÿ1
Pn

r�1 X r. Show that

cov(X , X r ÿ X ) � 0, 1 < r < n:
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6. `You can never foretell what any one man will do, but you can say with precision what an

average number of men will be up to'. Attributed to Sherlock Holmes by A. Conan Doyle.

(a) Has Conan Doyle said what he presumably meant to say?

(b) If not, rephrase the point correctly.

7. Let X and Y be independent. Is it ever true that

var(XY ) � var X var Y?

6.9 CONDITIONING AND DEPENDENCE, DISCRETE CASE

Having dealt with independent random variables, it is now natural to ask what happens

when random variables are not independent. Here is a simple example.

Example 6.9.1. You roll a fair die, which shows X . Then you ¯ip X fair coins, which

show Y heads. Clearly, as always,

P(X � 1) � 1
6
:

However, suppose we observe that Y � 2. Now it is obviously impossible that X � 1.

Knowledge of Y has imposed conditions on X , and to make this clear we use an obvious

notation and write

P(X � 1jY � 2) � 0: s

What can we say in general about such conditional probabilities? Recall from chapter 2

that for events A and B

P(AjB) � P(A \ B)=P(B):(1)

Also recall from section 5.8 that for a discrete random variable X and an event B,

P(X � xjB) � P fX � xg \ B� �=P(B):(2)

The following de®nition is now almost self-evident.

De®nition. Let X and Y be discrete random variables, with distribution p(x, y). Then

the conditional distribution of X given Y is denoted by p(xjy), where

p(xjy) � P(X � x, Y � y)=P(Y � y)(3)

� pX ,Y (x, y)= pY (y): n

Remark. Of course this is just (1) written in terms of random variables, since

P(X � xjY � y) � P(AxjA y)

� P(Ax \ A y)=P(A y)

where Ax � fù: X (ù) � xg, A y � fù: Y (ù) � yg. All the above de®nition really

comprises is the name and notation.

In view of this connection, it is not surprising that the partition rule also applies.

Partition rule for discrete distributions. Let X and Y have joint distribution p(x, y).

Then we have
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pX (x) �
X

y

p(xjy) pY (y):(4)

To prove this, just multiply (3) by pY (y) and sum over y. Of course, it also follows

directly from the partition rule in chapter 2, provided always that X and Y are de®ned on

the same sample space. h

Here are some examples to show the ways in which (3) and (4) are commonly applied.

Example 6.9.1 continued. You roll a die, which shows X , and ¯ip X coins, which

show Y heads. Find p(x, y) and pY (y).

Solution. Given X � x, the number of heads is binomial B x, 1
2

ÿ �
. That is to say,

p(yjx) � 2ÿx x

y

� �
, 0 < y < x:

Hence

p(x, y) � p(yjx) pX (x)

� 1
6

3 2ÿx x

y

� �
, 0 < y < x; 1 < x < 6:

Finally

pY (y) �
X6

x� y

1
6

3 2ÿx x

y

� �
: s

Example 6.9.2. Let X and Y be independent geometric random variables, each with

parameter p. Suppose Z � X � Y . Find the distribution of X given Z.

Solution. First we recall that

pZ(z) �
Xzÿ1

x�1

pX (x) pY (zÿ x) �
Xzÿ1

x�1

qxÿ1 pqzÿxÿ1 p

� (zÿ 1) p2qzÿ2, z > 2:

Hence

p(xjz) � pX , Z(x, z)

pZ(z)
� pX ,Y (x, zÿ x)

pZ(z)
(5)

� p2qxÿ1qzÿxÿ1

(zÿ 1) p2qzÿ2
� 1

zÿ 1
, 1 < x < zÿ 1:

Thus, given Z � z, X is uniformly distributed over the possible range 1 < x < zÿ 1. s

As an amusing example of the use of a conditional mass function, consider the

following.

Example 6.9.3: Poisson number of Bernoulli trials. Suppose we perform n Bernoulli

trials, yielding U successes and V failures. We know U and V are dependent. Suppose
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now we perform N Bernoulli trials where N is Poisson with parameter ë, yielding X

successes and Y failures. Show that the number of successes X and the number of failures

Y are independent.

Solution. We have

P(X � x, Y � y) � P(X � x, Y � y, N � x� y)(6)

� P(X � x, Y � yjN � x� y)P(N � x� y)

� (x� y)!

x!y!
pxq y eÿëëx� y

(x� y)!

� (ëp)x

x!
eÿë p (ëq) y

y!
eÿëq, x, y > 0:

This factorizes for all x and y, so X and Y are independent, being Poisson with

parameters ëp and ëq respectively. s

Next we return to the probability p(xjy) de®ned in (3), and stress the point that the

conditional distribution of X given Y is indeed a distribution. That is to say,

p(xjy) > 0(7)

and X
x

p(xjy) � 1:(8)

The ®rst of these is obvious; to see the second writeX
x

p(xjy) �
X

x

p(x, y)

pY (y)
� pY (y)

pY (y)
� 1:

Even more importantly we have the

Conditional key rule

P(X 2 CjY � y) �
X
x2C

p(xjy):(9)

Thus p(xjy) has all the properties of the probability distributions that we have used in

earlier chapters. It is therefore not at all surprising to ®nd that, like them, this distribution

may have an expectation. For obvious reasons, it is called the conditional expectation.

De®nition. The conditional expectation of X given Y � y is

E(X jY � y) �
X

x

xp(xjy),(10)

with the usual proviso that
P

xjxjp(xjy) ,1. n

Naturally, expectation is related to conditional expectation in much the same way as

probability is related to conditional probability.
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Theorem. Let X and Y be discrete random variables. Then

E(X ) �
X

y

E(X jY � y) pY (y):(11)

Proof. Multiply (10) by pY (y) and sum over y. ThenX
y

E(X jY � y) pY (y) �
X

y

X
x

xp(xjy) pY (y)

�
X

x

x
X

y

p(x, y)

�
X

x

xpX (x)

� EX : h

We give two simple illustrations of this. Further interesting examples follow later. We

note that there is a conditional law of the unconscious statistician, that is,

E(g(X )jY � y) �
X

x

g(x) p(xjy):

Furthermore,

Eg(X , Y ) �
X

y

E(g(X , Y )jY � y) pY (y),

a result which is often very useful.

Example 6.9.5: dice. Your roll two dice; let U be the minimum and V the maximum

of the two numbers shown. Then, as we know,

p(u, v) �
2

36
, 1 < u , v < 6

1
36

, u � v:

(
Hence as usual

pU (u) �
X

v

p(u, v) � 1
36

(13ÿ 2u), 1 < u < 6

and

pV (v) �
X

u

p(u, v) � 1
36

(2vÿ 1), 1 < v < 6:

Thus, for example

p(ujv) �
2

2vÿ 1
, u , v

1

2vÿ 1
, u � v:

8><>:
Therefore
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E(U jV � v) �
Xv

u�1

u p(ujv) � v2

2vÿ 1

and of course

E(U ) �
X6

v�1

E(U jV � v) p(v)

�
X6

v�1

1
36

v2 � 91
36
:

which we obtained in a more tedious way earlier. s

Example 6.9.6: random sum. Suppose that we can regard insurance claims as

independent random variables X 1, X 2, . . . , having a common distribution p(x). Suppose

the number of claims next year were to be N , where N is independent of the X i. Find the

expected total of next year's claims.

Solution. We can denote this total by SN, where

SN �
XN

r�0

X r:

Then, by (11),

E(SN ) �
X

n

E(SN jN � n) pN (n)

�
X

n

E(Sn) pN (n)

�
X

n

nEX1 pN (n)

� EX1EN :

It is interesting to note that this result still holds under much weaker conditions. If we

suppose only that the X i have a common mean, and are independent of N , then the above

proof is valid as it stands. Even more remarkably, we can allow N to depend on the X i, as

we shall see in the next example. s

We conclude this section with a remarkable extension of the idea of a `random sum',

which we looked at in the above example. In that case the number of terms N in the sum

SN was independent of the summands X 1, X 2, . . .. However, this is often not the case.

For example, suppose you are a trader (or gambler), who makes a pro®t of X1, X2, . . . on

a sequence of deals until your retirement after the N th deal. This index N is a random

variable, and it can depend only on your previous deals. That is to say, you may retire

because X1 � X 2 � � � � � X N . $109, and you decide to take up golf; or you may retire

because SN ,ÿ$109, and you are ruined (or in gaol for fraud). You cannot choose to

retire on the basis of future deals. Either way, the event fN . kg that you continue trading

after the kth deal depends only on X1, . . . , X k . Then the following amazing result is

true.
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Example 6.9.7: Wald's equation. If the X i are independent and identically distrib-

uted with ®nite mean, N is integer valued with EN ,1, and fN . kg is independent of

X k�1, X k�2, . . . then

E
XN

r�1

X r � EN EX1:(12)

To prove this, let I kÿ1 be the indicator of the event fN . k ÿ 1g. Then I kÿ1 is

independent of X k , and we can write

E
XN

r�0

X r � E
X1
k�1

X k I kÿ1, because I kÿ1 � 0 for N , k

�
X1
k�1

E(X k I kÿ1), because EjX k j,1

�
X1
k�1

EX k EI kÿ1, by independence

�
X1
k�1

EX 1 P(N . k ÿ 1)

� EX1EN : s

The principal application of this is to gambling; in a casino it is always the case that

EX k , 0. It follows that no matter what system you play by, when you stop you have

ESN , 0. You must expect to lose.

Exercises for section 6.9

1. Show that X and Y are independent if and only if the conditional distribution of X given Y � y

is the same as the marginal distribution of X for all y. When X and Y are independent show that

E(X jY � y) � EX .

2. In Example 6.9.7 ®nd p(vju) and E(V jU � u). Also ®nd E(UV ) by evaluating

E(UV ) �
X

v

vE(U jV � v) pV (v):

What is cov(U , V )?

3. Let X 1, . . . , X n be independent and identically distributed, and let N be non-negative and

independent of the X i. Show that

var
XN

r�1

X r � (EX1)2 var N � EN var X1:

4. Gambler's ruin. Suppose you are a gambler playing a sequence of fair games for unit

stakes, with initial fortune k. Let N be the ®rst time at which your fortune is either 0 or n,

0 < k < n; at this time you stop playing. Use Wald's equation to show that the probability that

you stop with a fortune of size n is k=n.
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5. Derangements and matching. There are n coats belonging to n people, who make an

attempt to leave by choosing a coat at random. Those who have their own coat can leave; the

rest hang the coats up at random, and then make another attempt to leave by choosing a coat at

random. Let N be the number of attempts until everyone leaves. Use the method of proving

Wald's equation to show that EN � n. (Hint: Recall that the expected number of matches in a

derangement of n objects is 1.)

6.10 CONDITIONING AND DEPENDENCE, CONTINUOUS CASE

For discrete random variables X and Y with distribution p(x, y), we have established that

pX jY (xjy) � p(x, y)=pY (y),(1)

pX (x) �
X

y

pX jY (xjy) pY (y),(2)

P(X 2 BjY � y) �
X
x2B

pX jY (xjy),(3)

E(X jY � y) �
X

x

xp(xjy),(4)

E(X ) �
X

y

E(X jY � y) pY (y):(5)

It is natural next to consider the case when X and Y are jointly continuous random

variables with density f (x, y). Of course we cannot use the elementary arguments that

give (1), because P(Y � y) � 0 for all y. Nevertheless, as we shall show, slightly more

complicated reasoning will supply the following very appealing de®nition and results

parallelling (1)±(5).

De®nition. Let X and Y have density f (x, y). Then for f Y . 0 the conditional density

of X given Y � y is de®ned by

f X jY (xjy) � f (x, y)

f Y (y)
: n(6)

Just as in the discrete case, we can recover the unconditional density by integrating

f X jY (xjy) � f (xjy):

f X (x) �
�1
ÿ1

f (xjy) f Y (y) dy:(7)

Note crucially that f (xjy) is indeed a density, as it is non-negative and�1
ÿ1

f (xjy) dx � 1

f Y (y)

�1
ÿ1

f (x, y) dx � 1:

Therefore it has the properties of a density, including the key rule

P(X 2 CjY � y) �
�

x2C

f X jY (xjy) dx,(8)

and it may have an expectation
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E(X jY � y) �
�1
ÿ1

xf X jY (xjy) dx:(9)

From (6) and (9) we ®nd that in general

EX �
�1
ÿ1

E(X jY � y) f Y (y) dy:

In particular, if we let X be the indicator of the event that X < x, this proves that

P(X < x) �
�1
ÿ1

P(X < xjY � y) f Y (y) dy:(10)

Alternatively you can prove (10) by simply integrating (7) over (ÿ1, x].

It is extremely pleasing, and convenient in remembering them, that (6)±(9) are

essentially exactly the same as (1)±(4); in each case
P

is replaced by
�
, as usual. We

give some theoretical background to (6)±(9) a little later on; ®rst it is helpful to look at

simple examples to show what is going on, and develop understanding.

Example 6.10.1. Let X and Y be uniform on the triangle 0 < x < y < 1, so that

f (x, y) � 2, 0 < x < y < 1. First we can easily calculate the marginals:

f X (x) �
�1

x

2 dy � 2(1ÿ x) f Y (y) �
� y

0

2 dx � 2y:

Hence, by (6) we have the conditional densities:

f X jY (xjy) � f

f Y

� 1

y
, 0 < x < y,(11)

f Y jX (yjx) � f

f X

� 1

1ÿ x
, x < y < 1:(12)

Of course this just con®rms what intuition and inspection of ®gure 6.2 would tell us:

given Y � y, X is clearly uniform on [0, y]; and, given X � x, Y is clearly uniform on

[x, 1].

x0 y 1

x

y

1

Figure 6.2. The point (X , Y ) is picked uniformly at random in the triangle f(0, 0), (0, 1), (1, 1)g:
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Hence, from (9) and (11),

E(X jY � y) �
� y

0

x

y
dx � y

2
,

and from (9) and (12)

E(Y jX � x) �
�1

x

y

1ÿ x
dy � 1ÿ x

2
:(13)

Again, this is intuitively obvious. Further, given any conditional density we can work out

probabilities of interest in the usual way by (8):

P(X . 1
2
jY � y) �

� y

1=2

f X jY (xjy) dx

�
� y

1=2

yÿ1 dx

�
yÿ1(yÿ 1

2
), y . 1

2

0 otherwise:

(
s

Example 6.10.2. Let the random variables U and V have joint density

f (u, v) � eÿv, for 0 , u , v ,1:
Find the marginals f U (u), f V (v), and the conditional densities f U jV (ujv) and f V jU (vju).

What is the density of Y � V ÿ U?

Solution. By (8) of section 6.3,

f U (u) �
�1

u

f (u, v) dv � eÿu:

So U is exponential with parameter 1. Then

f V jU � f (u, v)

f U (u)
� e uÿv, v . u(14)

so the conditional density of V given U � u is exponential on (u, 1), with parameter 1.

Again

f V (v) �
�v

0

f (u, v) du � veÿv:(15)

This is a gamma density. Then

f U jV � f (u, v)

f V (v)
� 1

v
, 0 , u , v,(16)

so the conditional density of U given V � v is uniform on (0, v).

Finally, by (10),

P(V ÿ U < y) �
�1

0

P(V ÿ U < yjU � u) f U (u) du:
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Now

P(V ÿ U < yjU � u) �
� y�u

u

f V jU (vju) dv(17)

� e�u(eÿu ÿ eÿ yÿu) � 1ÿ eÿ y:

Therefore

P(V ÿ U < y) �
�1

0

(1ÿ eÿ y)eÿu du

� 1ÿ eÿ y:

Since this is the distribution function of an exponential random variable, it follows that

Y � V ÿ U has density eÿ y. Since (17) does not depend on u, it is also true that U and

V ÿ U are independent. s

Remark: link with Poisson process. We have noted above that times of occurrence of

earthquakes, meteorite strikes, and other rare random events are well described by a

Poisson process. This has the property that intervals between events are independent

exponential random variables. In view of what we have proved above, we have that U is

the time of the ®rst event, and V the time of the second event, in such a process.

Equation (16) then has the following interpretation. Given that the time of the second

event in such a sequence is V , the time of the ®rst event is uniform on (0, V ): it was

equally likely to have been any time in (0, V )!
Sometimes the use of a conditional density offers a slightly different approach to

calculations that we can already do.

Example 6.10.3. Let X and Y be independent exponential random variables with

parameters ë and ì respectively. Then by (10)

P(X , Y ) �
�1

0

P(X , Y jY � y) f Y (y) dy

�
�1

0

(1ÿ eÿë y)ìeÿì y dy

� 1ÿ ì

ë� ì

� ë

ë� ì
,

which we could alternatively ®nd using a routine double integral. s

Before we conclude this section, we return to supply additional reasons for making the

de®nition (6). Let us consider the event

B � fy , Y < y� hg:
Now by ordinary conditional probability, it follows that the conditional distribution
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function of X given B is

FX jB(xjB) � P(X < xjB)(18)

� P(X < x, y , Y < y� h)

P(B)
� F(x, y� h)ÿ F(x, y)

FY (y� h)ÿ FY (y)
,

where F(x, y) is the joint distribution function of X and Y , and FY (y) is the distribution

function of Y .

Now if we let h # 0 in (18) this supplies an attractive candidate for the conditional

distribution function of X , given Y � y. We get

F(xjY � y) � lim
h#0

FX jB(xjB)(19)

� 1

f Y (y)

�x

ÿ1
f (u, y) du:

As usual, the derivative of the distribution function (when it exists) is the density. Thus

differentiating (19) we obtain

f (xjY � y) � f (x, y)= f Y (y),

which is (6). Because this is a density, it may have an expectation given by

E(X jY � y) �
�

x f (xjY � y) dx(20)

when the integral exists. Hence, multiplying by f Y (y) and integrating over y, we obtain

E(X ) �
�

E(X jY � y) f Y (y) dy:(21)

In particular we can often use this to ®nd probabilities of interest, as follows.

Let X be the indicator of any event A; in practice A is determined by the joint

behaviour of X and Y . Then EX � P(A) and E(X jY � y) � P(AjY � y). Hence, substi-

tuting in (21) we obtain what may be called the

Continuous partition rule

P(A) �
�

R

P(AjY � y) f Y (y) dy:(22)

The name is explained by a glance at the original partition rule in section 2.8. We can use

this rule to supply a slightly different derivation of the convolution rule for the distri-

bution of sums of continuous random variables.

Example 6.10.4: convolution rule. Let X and Y have density f (x, y), and set

Z � X � Y . Then
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FZ(z) � P(Z < z)

� P(X � Y < z)

�
�

P(X � Y < zjY � y) f Y (y) dy, by (22)

�
�

P(X � y < zjY � y) f Y (y) dy

�
�

F X jY� y(zÿ yjy) f Y (y) dy:

Differentiating with respect to z gives

f Z(z) �
�

f X jY� y(zÿ yjy) f Y (y) dy

�
�

f (zÿ y, y) dy: s

This is the equivalent for continuous random variables of the expression which we

derived for discrete random variables.

Exercises for section 6.10

1. (a) Let X and Y be independent and non-negative, and identically distributed with density

f (x) and distribution F(x). Let U � minfX , Yg and V � maxfX , Yg. Find the condi-

tional density of U given V , and ®nd E(U jV � v).

(b) A satellite has two transmitters; their lifetimes are independent and exponential with

parameter ë. The satellite operates if they both work. Transmissions cease at time t. Show

that the expected failure time of the ®rst to fail is

1

ë
� t

1ÿ eë t
:

(It was launched at time 0.)

2. Let X and Y be independent exponential random variables with parameter ë. Find the density of

X given X � Y � z.

3. The random variable R is uniform in [0, 1). Given that R � r, the random variable X is

binomial with parameters n and r.

(a) Show that the unconditional probability that X � k is uniform,

P(X � k) � (n� 1)ÿ1, 0 < k < n:

(b) What is the conditional density of R given that X � k?

6.11 APPLICATIONS OF CONDITIONAL EXPECTATION

As we have seen, conditional distributions and conditional expectations can be very

useful. This usefulness is even more marked in more advanced work, so we now introduce

a new and compact notation for conditional expectation.

The essential idea that underlies this is the fact that conditional expectation is a
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random variable. This sounds like a paradox, but just recall the de®nitions. First let X

and Y be discrete; then given Y � y we have

E(X jY � y) �
X

x

xp(x, y)=pY (y):(1)

When X and Y are continuous we have

E(X jY � y) �
�

x

xf (x, y)= f Y (y) dx:(2)

In both cases (1) and (2), we observe that E(X jY � y) is a function of y. Let us denote it

by ø(y), that is

E(X jY � y) � ø(y):(3)

But y ranges over all the possible values of Y , and therefore ø(Y ) is a function of Y . And

as we noted in section 5.2, a function of a random variable is a random variable! For

clarity and consistency we can now write

ø(Y ) � E(X jY )

on the understanding that ø(Y ) is the function of Y that takes the value E(X jY � y) when

Y � y.

As a random variable, ø(Y ) may have an expectation, of course; and we know from

sections 6.9 and 6.10 that this expectation is EX . For convenience, we repeat the

argument here: suppose X and Y are discrete, then

EX �
X

y

E(X jY � y) pY (y)

�
X

y

ø( y)pY (y)

� Eø(Y ), by the law of the unconscious statistician

� EfE(X jY )g:
Exactly the same argument works when X and Y are continuous; we just replace sums by

integrals. Thus in our new notation we have found that in any case

EX � EfE(X jY )g:(4)

The really attractive and useful thing about (4) is that it holds for any pair of random

variables whatever their type; discrete, continuous, or both, and even for those that are

neither. Previously we have had to deal separately with all these types. With equation (4)

we can see that the idea of random variables has really rewarded us with economical and

helpful ways of displaying and proving important results.

Furthermore, (4) enables us to write the expected value of products in a neat way.

Obviously, for any function g(Y ) of Y we have

Efg(Y )jYg � g(Y ):

Hence, using (4), we have

E(XY ) � EfY E(X jY )g,(5)
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and this can often simplify the calculation of covariances and correlations, and other

expectations.

Here are some examples.

Example 6.11.1: potatoes. A sack contains n potatoes. The weight of the rth potato

is a random variable X r (in kilos), where the X r are independent and identically

distributed. The sack of potatoes weighs 100 kilos, and you remove m potatoes at random.

What is the expected weight of your sample of size m?

Solution. We set
Pn

r�0 X r � Sn,
Pm

r�0X r � Sm. Then the question asks for

E(SmjSn), when Sn � 100. Now it is clear (essentially by symmetry) that E(X jjSn)

� E(X k jSn), for all j and k. Hence

E(X ijSn) � Sn

n
,

E(SmjSn) �
Xm

i�1

E(X ijSn) � m

n
Sn:

Thus the expected weight of your sample is 100m=n kilos. s

Example 6.11.2: thistles. A thistle plant releases X seeds, where X is Poisson with

parameter ë. Each seed independently germinates with probability p; the total crop is Y

thistle seedlings. Find cov(X , Y ) and r(X , Y ).

Solution. By (5),

E(XY ) � EfE(XY jX )g � EfX E(Y jX )g:
The total crop number Y , now conditional on X , is binomial with parameters X and p.

Hence

E(Y jX ) � Xp

and

E(Y 2jX ) � Xp(1ÿ p)� X 2 p2:(6)

Thus

E(XY ) � E(X 2 p) � (ë2 � ë) p,

giving

cov(X , Y ) � ë p2 � ë pÿ EX EY � ëp:

Finally, using (6),

var Y � EfE(Y 2jX )g ÿ (EY )2

� ë p:

Hence

r(X , Y ) � cov(X , Y )

(var X var Y )1=2
� ë p

(ë2 p)1=2
� ����

p
p

: s
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Exercises for section 6.11

1. Show that

var Y � Efvar(Y jX )g � varfE(Y jX )g:
2. For any two jointly distributed random variables X and Y, show that for any function g(:)

E[fX ÿ g(Y )g2] > E[fX ÿ E(X jY )g2] � Efvar(X jY )g:
For this reason, E(X jY ) is the minimum mean squared error predictor of X , given Y . Show also

that Efvar(X jY )g < (1ÿ r2)var X , where r is the correlation between X and Y . (Hint: Apply

Cauchy±Schwarz to X E(Y jX ).)

3. Let X and Y be a pair of indicators with joint distribution

p(0, 0) � a, p(0, 1) � b, p(1, 0) � c, p(1, 1) � d:

Show that

E(X jY ) � c

a� c
� ad ÿ bc

(a� c)(b� d)
Y :

4. Waldegrave's problem again. Suppose a coin shows heads with probability p, and you ¯ip

it repeatedly. Let X n be the number of ¯ips until it ®rst shows a run of n consecutive heads.

Show that

E(X njX nÿ1) � X nÿ1 � 1� qEX n:

Deduce that

EX n � pÿ1 � pÿ1EX nÿ1

�
Xn

k�1

pÿk :

Hence derive the result of example 5.8.12.

5. Let X and Y have the joint density

f (x, y) � cx(yÿ x)eÿ y, 0 < x < y ,1:
(a) Find c.

(b) Show that

f (xjy) � 6x(yÿ x)yÿ3, 0 < x < y,

f (yjx) � (yÿ x) expfÿ(yÿ x)g, x < y ,1:
(c) Deduce that E(X jY ) � 1

2
Y and E(Y jX ) � X � 2.

6.12 BIVARIATE NORMAL DENSITY

We know well by now that if X and Y are independent N(0, 1) random variables, then

they have joint density

ö(x, y) � 1

2ð
expfÿ 1

2
(x2 � y2)g:(1)

Very often it is necessary to consider random variables that are separately normal but not

independent. With this in mind, de®ne

U � ó X ,(2)

V � ôrX � ô(1ÿ r2)1=2Y ,(3)

294 6 Jointly distributed random variables



where ó , ô. 0 and jrj < 1. Then, from what we know already about sums of indepen-

dent normal random variables, we ®nd that U is N(0, ó 2) and V is

N(0, ô2r2 � fô(1ÿ r2)1=2g2) � N(0, ô2):

Thus U and V are also separately normal. But what about the joint distribution of U

and V? They are clearly not independent! Proceeding in the usual way, we calculate

F(u, v) � P(U < u, V < v)

� P(ó X < u, ôrX � ô(1ÿ r2)1=2Y < v)

�
�u=ó

ÿ1

�(uÿôrx)=fô(1ÿr2)1=2g

ÿ1
ö(x, y) dy dx

where ö(x, y) is given by (1). Now make the change of variable ô(1ÿ r2)1=2 y

� wÿ ôrx, to obtain

F(u, v) �
�u=ó

ÿ1

�v

ÿ1
ö x,

wÿ ôrx

ô(1ÿ r2)1=2

� �
dw dx

ô(1ÿ r2)1=2

Differentiating with respect to u and v gives the density f (u, v) (we are using the

fundamental theorem of calculus here),

f (u, v) � ö
u

ó
,

vÿ ôru

ô(1ÿ r2)1=2

� �
1

óô(1ÿ r2)1=2
(4)

� 1

2ðóô(1ÿ r2)1=2
exp ÿ 1

2

u2

ó 2
ÿ 2ruv

óô
� v2

ô2

� �
1

(1ÿ r2)

( )
:

The density f (u, v) in (4) is called the bivariate normal density centred at the origin.

When ó � ô � 1, it is called the standard bivariate normal density with parameter r.

(We often call these binormal densities, for brevity.) By a translation

u� � ì� u, v� � í� v

we can centre it at any other point (ì, í) in the plane, but we shall not do so unless it is

necessary.

Given a bivariate distribution such as (4), it is natural to seek the value of things like

E(U jV ), E(V jU ), E(U V ), cov(U , V ), r(U , V )

and so on. This task can be accomplished using f (u, v) by routine integrations, but these

turn out to be fairly messy and tedious. It is often neater and more illuminating to use the

initial representation (2) and (3) in terms of X and Y, whose behaviour we fully

comprehend. For example, from (2) and (3),

E(U V ) � óôrEX 2 � óô(1ÿ r2)1=2 E(X Y )

� óôr

since X and Y are independent normal distributions, each N(0, 1). Hence

r(U , V ) � E(U V )

(var U var V )1=2
� r:(5)

This explains why we introduced the parameter r in the way we did, in (2) and (3).

Equally easily from (2) and (3) we see that, conditional on U � u,
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V � ôru

ó
� ô(1ÿ r2)1=2Y :

Hence given U � u, V is normally distributed with mean ôru=ó and variance ô2(1ÿ r2).

That is to say,

f V jU (vju) � 1

f2ðô2(1ÿ r2)g1=2
exp ÿ 1

2ô2(1ÿ r2)
vÿ ôru

ó

� �2
( )

:(6)

Now suppose that we require the distribution of Z � aU � bV , for constants a and b.

From (2) and (3) we ®nd

Z � (aó � bôr)X � bô(1ÿ r2)1=2Y :

Hence Z is normal with variance

ù2 � (aó � bôr)2 � b2ô2(1ÿ r2)(7)

� a2ó 2 � 2abóôr� b2ô2:

You will appreciate the merits of this approach much more if you spend a while seeking

to derive f Z(z) from (4) using a convolution integral.

The bivariate normal density gives rise to others, in the same way as the univariate

case. Here is one example.

De®nition. If log X and log Y have jointly a bivariate normal density, then X and Y

have a bivariate log normal density. n

Example 6.12.1: body±mass index. Suppose a randomly selected person's weight W

and height H have a bivariate log normal density. Find the density of the body±mass

index Z � WHÿ2.

Solution. First, remark that log Z � log W ÿ 2 log H : By assumption, log W and

log H have a bivariate normal density, centred at (ì, í) say, with parameters ó , ô, and r.

Hence logZ has a normal density with mean ìÿ 2í and variance

ó 2 ÿ 2óôr� 4ô2:

Thus Z is log normal. (See problem 24.) s

Finally we note the important point that the joint density f (u, v) in (4) factorizes as the

product of separate functions of u and v, if and only if r � 0. This tells us that U and V

are independent if and only if r � 0. That is, normal random variables are independent if

and only if they are uncorrelated, unlike most other bivariate distributions.

Remark. The bivariate normal density is of great importance in the development of

probability and statistics. Its use by F. Galton around 1885, to explain previously baf¯ing

features of inheritance, marked a breakthrough of huge signi®cance. The problem is as

follows. The height of men (aged 21 say) is well known to be approximately normally

distributed. And then the height of their sons, on reaching the age of 21, is found to have

exactly the same approximately normal distribution. But there is a dif®culty here, for it is

a matter of simple observation that taller parents tend to have taller offspring, and shorter

parents tend to have shorter offspring. So, before measuring anything, one might expect
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the spread (or variance) of the heights of successive generations to increase. But it does

not.

Galton resolved this dilemma by ®nding the distribution of the sons' heights condi-

tional on that of their parents. He found empirically that this was normal, with a mean

intermediate between the population mean and their parent's height. He called this

phenomenon regression to the mean and described it mathematically by assuming that

the heights of fathers and sons were jointly binormal about the population mean. Then the

conditional densities behaved exactly in accordance with the observations. It would be

hard to overestimate the importance of this brilliant analysis.

One curious and interesting consequence is the following.

Example 6.12.2: doctor's paradox. Suppose your doctor measures your blood

pressure. If its value X is high (where X � 0 is average), you are recalled for a further

measurement, giving a second value Y . On the reasonable assumption that X and Y have

approximately a standard bivariate normal distribution, the conditional density of Y given

X � 0 is seen from (6) to have mean rX , which is less than X . It seems that merely to

revisit your doctor makes you better, whether or not you are treated for your complaint.

This result may partly explain the well-known placebo effect. s

Exercises for section 6.12

1. Let X and Y be independent N(0, 1) random variables, and let U � ì� ó X and V �
í� ôrX � ô(1ÿ r2)1=2Y . What is the conditional density of V given U � u?

2. Let U and V be the heights of a randomly selected parent and child. Centred at the average

height, in appropriate units, U and V have approximately a standard bivariate normal density

with correlation r and ó 2 � ô2 � 1.

(a) Show that the probability that both parent and child are above average height is

P(U . 0, V . 0) � 1

4
� 1

2ð
sinÿ1 r

(b) Show that

P(0 , V , U ) � 1

8
� 1

4ð
sinÿ1 r:

(c) Show that the expected height above the average of the taller of the two is

E(maxfU , Vg) � 1ÿ r
ð

� �1=2

:

(d) Show that E(maxfU , Vg)2 � 1. (Note: No integration is required.)

3. Let X and Y have the standard bivariate normal density, with parameters r, ó , and ô. Let

U � X cosè� Y sinè, V � Y cos èÿ X sinè:

Find the values of è such that U and V are independent.

4. Let X and Y have joint density f (x, y) � ðÿ1 expfÿ1
2
(x2 � y2)g for xy . 0; f � 0 otherwise.

Show that X and Y are normally distributed. Are they jointly normally distributed? Find

r(X , Y ).

5. Let X and Y have a bivariate normal distribution centred at the origin. Show that

(a) E(X jY � y) � cov(X , Y )

var Y
y � ró

ô
y,
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(b) var(X jY � y) � ó 2(1ÿ r2),

(c) E(X jX � Y � v) � ó 2 � róô
ó 2 � 2róô� ô2

v

(d) var(X jX � Y � v) � ó 2ô2(1ÿ r2)

ô2 � 2róô� ó 2
:

(Hint: use exercise 1; no integrations are required.)

6.13 CHANGE-OF-VARIABLES TECHNIQUE; ORDER

STATISTICS

At several places in earlier sections it has been necessary or desirable to ®nd the joint

distribution of a pair of random variables U and V, where U and V are de®ned as

functions of X and Y,

U � u(X , Y ), V � v(X , Y ):(1)

In many cases of interest X and Y have joint density f (x, y); the question is, what is the

joint density f U ,V (u, v)?

We have always succeeded in answering this, because the transformations were mostly

linear (or bilinear), which simpli®es things. (The most recent example was in the previous

section, when we considered U and V as linear combinations of the normal random

variables X and Y .) Otherwise, the transformation was to polars. Not all transformations

are linear or polar, and we therefore summarize a general technique here. We consider

two dimensions for simplicity.

The proofs are not short, and we omit them, but it is worth remarking that in general it

is intuitively clear what we are doing. The point about f (x, y) is that f (x, y)äx äy is

roughly the probability that (X , Y ) lies in the small rectangle

R � (x, x� äx) 3 (y, y� äy):

The joint density of U and V has the same property, so we merely have to rewrite

f (x, y)äxäy in terms of u(x, y) and v(x, y). The ®rst bit is easy, because

f (x, y) � f (x(u, v), y(u, v)):

The problem arises in ®nding out what the transformation does to the rectangle R. We

have seen one special case: in polars, when x � r cos è and y � r sin è, we replace äx äy

by rär äè. In general, the answer is given by the following.

Change of variables. Let S and T be sets in the plane. Suppose that u � u(x, y) and

v � v(x, y) de®ne a one±one function from S to T with unique inverses x � x(u, v) and

y � y(u, v) from T to S. De®ne the determinant

J (u, v) �
@x

@u

@ y

@u

@x

@v

@ y

@v

��������
�������� �

@x

@u

@ y

@v
ÿ @x

@v

@ y

@u
,(2)

where all the derivatives are continuous in T . Then the joint density of U � u(X , Y ) and

V � v(X , Y ) is given by

f U ,V (u, v) � f X ,Y (x(u, v), y(u, v))jJ (u, v)j:(3)
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Informally we see that the rectangle R with area äx äy, has become a different shape,

with area jJ (u, v)jäu äv.

Example 6.13.1: bivariate normal. From (2) and (3) in section 6.12 we see that

x(u, v) � u

ó
and y(u, v) � vÿ ôró ÿ1u

ô(1ÿ r2)1=2

Hence

jJ j �
ó ÿ1 0

ÿr
ó (1ÿ r2)1=2

1

ô(1ÿ r2)1=2

������
������ � 1

óô(1ÿ r2)1=2

and

f (u, v) � 1

2ðóô(1ÿ r2)1=2
exp ÿ 1

2

u2

ó 2
� óvÿ ôru

óô(1ÿ r2)1=2

� �2
 !( )

just as before. s

Example 6.13.2: order-statistics. Let X 1, . . . , X n be independent and identically

distributed with density f (x) and distribution F(x).

Let X (1) be the smallest of the X i, X (2) the next smallest, and so on to X (n), which is

the largest. Thus we obtain the so-called order-statistics; obviously

X (1) , X (2) , � � � , X (n):

Note that the probability of any two being equal is zero, because they are continuous.

What is the joint density of X (1), . . . , X (n)?

The ®rst point to make is that the transformation

(X1, . . . , X n)! (X (1), . . . , X (n))

is not one-to-one. In fact for any ®xed values of the X i, any of their n! permutations give

the same order-statistics.

However, for any given permutation the map is one-to-one, and J is a matrix in which

each row and column contains nÿ 1 zeros and one entry of unity. Hence jJ j � 1 and, for

this permutation, by independence,

f (x(1), . . . , x(n)) � f (x(1)) f (x(2)) � � � f (x(n)):

Since the permutations are mutually exclusive we add their probabilities, to ®nd that the

joint density of the order statistics is

f (x(1), . . . , (x(n)) � n! f (x(1)) � � � f (x(n)), x(1) , � � � , x(n):(4)

From this it is routine, though dull, to ®nd the marginal densities of any subset of the

order-statistics by integration. Eventually you ®nd that

f X ( r)
(x) � nf (x)

nÿ 1

r ÿ 1

� �
F(x)rÿ1f1ÿ F(x)gnÿr:(5)

When the X i are uniform on (0, 1) this looks a little more attractive, and in this case even

joint densities are not too bad:

f X ( r),X (s)
(x, y) � n!

(r ÿ 1)!(sÿ r ÿ 1)!(nÿ s)!
x rÿ1(yÿ x)sÿrÿ1(1ÿ y)nÿs:(6)

The change-of-variables technique is further explored in the exercises and problems. s
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Exercises for section 6.13

1. Let X and Y be continuous random variables with joint density f (x, y).

(a) Let U � X and V � XY . Show that the joint density of U and V is

f (u, v) � 1

juj f u,
v

u

� �
and hence ®nd the density of V .

(b) Let W � X=Y and Z � Y . Show that the joint density of W and Z is

f (w, z) � jzj f (zw, z)

and hence ®nd the density of W .

(c) When X and Y are independent standard normal random variables, show that W � X=Y

has a Cauchy density.

(d) When X has density f (x) � x exp ÿ1
2
x2

ÿ �
, x . 0, and Y has density f (y) �

ðÿ1(1ÿ y2)ÿ1=2, jyj, 1, and X and Y are independent, show that XY has a normal

density.

2. Let X and Y be independent, having gamma distributions with parameters n and ë and m and ë
respectively. Let U � X � Y and V � X=(X � Y ).

Find the joint density of U and V and show that they are independent.

3. Let X (1), . . . , X (n) be the order-statistics of X 1, . . . , X n. Argue directly that

P(X (r) < x) �
Xn

k�r

n

k

� �
fF(x)gkf1ÿ F(x)gnÿk

and hence obtain (5) by differentiating.

4. Let X1, . . . , X n be independent and uniform on (0, 1). Let X (r) be the rth order-statistic of the

X i. Find the distribution of X (r), and show that

E X 2
1

ÿ � � 2=f(n� 1)(n� 2)g,

f X ( r)
(x) � n

nÿ 1

r ÿ 1

 !
x rÿ1(1ÿ x)nÿr,

E(X (r)) � r

n� 1
,

var X (r) � r(nÿ r � 1)

(n� 1)2(n� 2)
:

Note that integration is not needed for the last two. Now let X (s) be the sth order-statistic, r , s.

Show that the joint density f (x, y) of X (r) and X (s) is

f (x, y) � n!

(r ÿ 1)!(sÿ r ÿ 1)!(nÿ s)!
x rÿ1(yÿ x)sÿrÿ1(1ÿ y)nÿs:

Would you like to ®nd E(X (r) X (s)) from this? If not, how else would you ®nd it? Without using

integration, show that

cov(X (r), X (s)) � r(n� 1ÿ s)

(n� 1)2(n� 2)
:

5. Let X and Y be independent exponentially distributed random variables with parameters ë and

ì respectively. Find the density of Z � X=(X � Y ).
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6 .14 REVIEW

In this chapter we have considered jointly distributed random variables. Such variables X

and Y have a distribution function

F(x, y) � P(X < x, Y < y)

where

P(a , X < b, c , Y < d) � F(b, d)ÿ F(a, d)ÿ F(b, c)� F(a, c):

Random variables (X , Y ) when discrete have a distribution p(x, y) and when continuous

have a density f (x, y) such that:

in the discrete case in the continuous case

P((X , Y ) 2 C) �
X

(x, y)2C

p(x, y), P((X , Y ) 2 C) �
��

(x, y)2C

f (x, y) dx dy,

f (x, y) � @2 F

@x@ y
.

Marginals

In the discrete case in the continuous case

pX (x) �
X

y

p(x, y), f X (x) �
�

f (x, y) dy,

pY (y) �
X

x

p(x, y). f Y (y) �
�

f (x, y) dx.

Functions

In the discrete case in the continuous case

P(g(X , Y ) � z) �
X
g�z

p(x, y) P(g(X , Y ) < z) �
��

g<z

f (x, y) dx dy

P(X � Y � z) �
X

x

p(x, zÿ x) f X�Y (z) �
�

z

f (x, zÿ x) dx

Independence. Random variables X and Y are independent if and only if for all x

and y

F(x, y) � FX (x)FY (y);

in the discrete case in the continuous case

p(x, y) � pX (x) pY (y) f (x, y) � f X (x) f Y (y):

Conditional. The conditional distribution of X given Y is

in the discrete case in the continuous case

pX jY (xjy) � p(x, y)

pY (y)
f X jY (xjy) � f (x, y)

f Y (y)
:
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Expectation. The law of the unconscious statistician states that

in the discrete case in the continuous case

Eg(X , Y ) �
X

x

X
y

g(x, y) p(x, y) Eg(X , Y ) �
��

g(x, y) f (x, y) dx dy:

In particular this yields

Efg(X , Y )� h(X , Y )g � Eg(X , Y )� Eh(X , Y ):

Moments. The covariance of X and Y is

cov(X , Y ) � Ef(X ÿ EX )(Y ÿ EY )g � E(XY )ÿ EX EY

and the correlation coef®cient is

r(X , Y ) � cov(X , Y )

fvar X var Yg1=2

Independence. When X and Y are independent

E(XY ) � EX EY ,

so they are uncorrelated, and

cov(X , Y ) � r(X , Y ) � 0:

Conditioning. For any pair of random variables,

E(X ) � EfE(X jY )g:

6.15 PROBLEMS

1. You ¯ip a fair coin repeatedly; let X be the number of ¯ips required to obtain n heads.

(a) Show that EX � 2n.

(b) Show also that P(X , 2n) � 1
2
:

(Elaborate calculations are not required.)

(c) Atropos ¯ips a fair coin n� 1 times; Belladonna ¯ips a fair coin n times. The one with

the larger number of heads wins. Show that P(A wins) � 1
2
.

2. Each packet of Acme Gunk is equally likely to contain one of three different types of coupon.

Let the number of packets required to complete your set of the three different types be X . Find

the distribution of X .

3. Your coin shows heads with probability p. You ¯ip it repeatedly; let X be the number of ¯ips

until the ®rst head, and Y the number until the ®rst tail. Find E(minfX , Yg), and EjX ÿ Y j.
4. The random variable X is uniform on [0, 1], and conditional on X � x; Y is uniform on (0, x).

What is the joint density of X and Y? Find

(a) f Y (y), (b) f X jY (xjy), (c) E(X jY ):

5. Rod and Fred play the best of ®ve sets at tennis. Either Fred wins a set with probability ö or

Rod wins with probability r, independently of other sets. Let X be the number of sets Fred

wins and Y the number of sets Rod wins. Find the joint distribution of X and Y, and calculate

cov (X , Y ) when r � ø � 1
2
.
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6. You roll n dice obtaining X sixes. The dice showing a six are rolled again yielding Y sixes.

Find the joint distribution of X and Y . What is E(X jY )? What is var(X jY )?

7. You make n robots. Any robot is independently faulty with probability ö. You test all the

robots; if any robot is faulty your test will detect the fault with probability ä, independently of

the other tests and robots. Let X be the number of faulty robots, and Y the number detected as

faulty. Show that, given Y , the expected number of faulty robots is

E(X jY ) � nö(1ÿ ä)� (1ÿ ö)Y

1ÿ öä
:

8. Two impatient, but also unpunctual, people arrange to meet at noon. Art arrives at X hours

after noon and Bart at Y hours after noon, where X and Y are independently and uniformly

distributed on (0, 1). Each will wait at most 10 minutes before leaving, and neither will wait

after 1.00 p.m. What is the probability that they do in fact meet? What is the probability that

they meet given that neither has arrived by 12.30?

9. An urn contains three tickets bearing the numbers a, b, and c. Two are taken at random without

replacement; let their numbers be X and Y . Write down the joint distribution of X and Y .

Show that cov(X , Y ) � 1
9
(ab� bc� caÿ a2 ÿ b2 ÿ c2).

10. You roll two dice, showing X and Y . Let U be the minimum of X and Y . Write down the joint

distribution of U and Y, and ®nd cov(U , X ).

11. Runs revisited. A coin shows heads with probability p, or tails with probability q. You ¯ip

it repeatedly; let X be the length of the opening run until a fresh face appears, and Y the length

of the second run. Find the joint distribution of X and Y, and show that

cov(X , Y ) � ÿ ( pÿ q)2

pq
:

12. Let X and Y be independent standard normal random variables. Let Z � X 2=(X 2 � Y 2). Show

that EZ � 1
2

and var Z � 1
8
.

13. A casino offers the following game. There are three fair coins on the table, values 5, 10, and 20

respectively. You can nominate one coin; if its value is a, then your entry fee is a. Denote the

values of the remaining coins by b and c.

Now the coins are ¯ipped; let X be the indicator of the event that yours shows a head, and Y

and Z the indicators of heads for the other two. If aX . bY � cZ then you win all three coins;

if aX , bY � cZ then you get nothing; if aX � bY � cZ then your stake is returned. Which

coin would you nominate?

14. Suppose that X 1, . . . , X n are independent and that each has a distribution which is symmetric

about 0. Let Sn �
Pn

r�1 X r.

(a) Show that the distribution of Sn is also symmetric about zero.

(b) Is this still necessarily true if the X r are not independent?

15. Let X and Y be independent standard normal random variables. Show that

E(minfjX j, jY jg) � 2(
���
2
p
ÿ 1)=

���
ð
p

16. Let U and V have joint density f (u, v), and set X � UV . Show that

P(UV < x) �
�1

0

�x=v

ÿ1
f (u, v) du dv�

�0

ÿ1

�1
x=v

f (u, v) du dv,

and hence deduce that X has density

f X (x) �
�1
ÿ1

1

jvj f
x

v
, v

� �
dv:
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17. Buffon's needle. The ¯oorboards in a large hall are planks of width 1. A needle of length

a < 1 is dropped at random onto the ¯oor. Let X be the distance from the centre of the needle

to the nearest joint between the boards, and È the angle which the needle makes with the joint.

Argue that X and È have density

f (x, è) � ðÿ1, 0 < x < 1
2
; 0 < è < 2ð:

Deduce that the probability that the needle lies across a joint is 2a=ð.

18. An urn contains j jet and k khaki balls. They are removed at random until all the balls

remaining are of the same colour. Find the expected number left in the urn.

19. Show that cov(X , Y � Z) � cov(X , Y )� cov(X , Z). When Z and Y are uncorrelated show

that

r(X , Y � Z) � ar(X , Y )� br(X , Z),

where

a2 � b2 � 1:

Suppose Y1, . . . , Yn are uncorrelated. Show that

r(X ,
Pn

r�1Yr) �
Xn

r�1

arr(X , Yr),

where Xn

r�1

a2
r � 1

Can you see a link with Pythagoras' theorem?

20. You are the ®nance director of a company that operates an extremely volatile business. You

assume that the quarterly pro®ts in any year, X1, X2, X3, X4, are independent and identically

distributed continuous random variables. What is the probability that X1 . X2 . X 3 . X4?

Would you be very concerned if this happened? Would you be thrilled if X1 . X2 , X 3 , X4?

Would you expect a bonus if pro®ts increased monotonically for six successive quarters?

21. Let X and Y be independent and uniform on f1, 2, . . . , ng and let U � minfX , Yg and

V � maxfX , Yg. Show that

EU � (n� 1)(2n� 1)

6n
, EV � (4nÿ 1)(n� 1)

6n
,

cov(U , V ) � n2 ÿ 1

6n

� �2

, var U � var V � (n2 ÿ 1)(2n2 � 1)

36n2
,

and that

r(U , V ) � n2 ÿ 1

2n2 � 1
! 1

2
as n!1:

22. Let X and Y have joint density f (x, y) � 1, 0 < x, y < 1. Let U � X ^ Y and V � X _ Y .

Show that r(U , V ) � 1
2
. Explain the connexion with the preceding problem.

23. There are 10 people in a circle, and each of them ¯ips a fair coin. Let X be the number whose

coin shows the same as both neighbours.

(a) Find P(X � 10) and P(X � 9):

(b) Show that EX � 5
2

and var X � 25
8
.

24. Let X and Y be random variables, such that Y � e X . If X has the N(ì, ó 2) normal

distribution, ®nd the density function of Y . This is known as the log normal density, with

parameters ì and ó 2. Find the mean and variance of Y .
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25. You are selling your house. You receive a succession of offers X0, X1, X2, . . . , where we

assume that the X i are independent identically distributed random variables. Let N be the

number of offers necessary until you get an offer better than the ®rst one, X0. That is,

N � minfn: X n . X 0g, n > 1:

Show that

P(N > n) � P(X0 > X1, X0 > X2, . . . , X0 > X nÿ1)

> nÿ1:

Deduce that EN � 1. Why is this a poor model? (Hint: Let Ak be the event that no offer is

larger than the kth. Then P(N > n) � P(A0) and 1 � P(
Snÿ1

k�0 Ak); use Boole's inequality.)

26. Let X , Y , and Z be jointly distributed random variables such that P(X > Y ) � 1.

(a) Is it true that P(X > x) > P(Y > x) for all x?

(b) Is it true that P(X > Z) > P(Y > Z)?

(c) Show that EX > EY .

27. Let X and Y have the joint distribution

p(x, y) � cf(x� yÿ 1)(x� y)(x� y� 1)gÿ1
, x, y > 1:

Find the value of c, and EX .

28. You plant n seeds; each germinates independently with probability ã. You transplant the

resulting X seedlings; each succumbs independently to wilt with probability ä. Let Y be the

number of plants you raise. Find the distribution of X and Y, and calculate cov(X , Y ):

29. Are you normal? When a medical test measuring some biophysical quantity is admin-

istered to a population, the outcomes are usually approximately normally distributed, N(ì, ó 2).

If your measurement is further than 2ó from ì, you are diagnosed as abnormal and a candidate

for medical treatment. Suppose you undergo a sequence of such tests with independent results.

(a) What is the probability that any given test indicates that you are abnormal?

(b) After how many tests will you expect to have at least one abnormal result?

(c) After how many tests will the probability of your being regarded as abnormal exceed 1
2
?

30. Recall the gambler's ruin problem: at each ¯ip of a fair coin you win $1 from the casino if it is

heads, or lose $1 if it is tails.

(a) Suppose initially you have $k, and the casino has $(nÿ k). Let X k be the number of ¯ips

until you or the casino has nothing. If mk � EX k , show that for 0 , k , nÿ 1

2mk � mk�1 � mkÿ1 � 2:

Deduce that mk � k(nÿ k):

(b) Suppose initially that you have $Y where Y is binomial B(n, p) and the casino has

$(nÿ Y ), and let the duration of the game be X . Find EX and cov(X , Y ). Show that X

and Y are uncorrelated if p � 1
2
.

(c) Suppose that initially you have $Y and the casino has $Z, where Y and Z are

independent. Find EX and cov(X , Y ), where X is the duration of the game.

31. (a) Let X1, X 2, . . . , X n be independent and uniformly distributed on (0, 1), and de®ne

M n � maxfX 1, . . . , X ng. Show that as n!1,

P(n(1ÿ M n) . y)! eÿ y, y . 0:

(b) Let X1, X2, . . . , X n be independent and identically distributed on (0, 1), with density

f (x), where 0 , f (1) ,1. Let M n � maxfX1, . . . , X ng. Show that as n!1
P(n(1ÿ M n) . y)! expfÿ f (1)yg:
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32. Let X1, X 2, . . . , X n be independent with common density

f (x) � 6x(1ÿ x), 0 , x , 1:

Let M n � maxfX 1, . . . , X ng. Can you ®nd a result for M n similar to those proved in problem

31?

33. (a) A certain university faculty comprises 52 mathematicians. Examination of their birthdates

shows that three dates are each shared by two people; the remaining 46 do not share a

birthday. Would you have expected more or fewer coincidences?

(b) Suppose 52 birthdays are uniformly and independently distributed over the year; ignore

29 February. Let S be the number of birthdays enjoyed alone, D the number shared by

exactly two people, and M the number of birthdays shared by three or more. Show that,

approximately,

ES � 45:4

ED � 3

and

P(M . 0) < 0:2:

Do you need to reassess your answer to (a)?

34. (a) You roll a conventional die repeatedly. Let D be the number of rolls until all six faces

have appeared at least once. Show that ED ' 14:7.

(b) If your die is regular with 10 faces, show that the expected number of rolls for all to

appear is approximately 29.3.

35. Let X 1, . . . , X n be independent and identically distributed with mean ì and variance ó 2. Let

X � nÿ1
Pn

r�1 X r. Show thatXn

r�1

(X r ÿ X )2 �
Xn

r�1

(X r ÿ ì)2 ÿ n(X ÿ ì)2,

and deduce that

E
Xn

r�1

(X r ÿ X )2 � (nÿ 1)ó 2:

36. Let X and Y have zero mean and unit variance, with correlation coef®cient r. De®ne U � X

and V � Y ÿ rX . Show that U and V are uncorrelated.

37. Alf, Betty, and Cyril each have a torch; the lifetimes of the single battery in each are

independent and exponentially distributed with parameters ë, ì, and í respectively. Find the

probability that they fail in the order: Alf's, Betty's, Cyril's.

38. Let X and Y be independent standard normal random variables, and let Z � X � Y . Find the

distribution and density of Z given that X > 0 and Y > 0.

(Hint: No integration is required; use the circular symmetry of the joint density of X and Y .)

Show that E(ZjX . 0, Y . 0) � 2
��������
2=ð

p
.

39. Let X1, . . . , X n be a collection of random variables with the property that the collection

fX1, . . . , X rg is independent of X r�1 for 1 < r < n. Prove that the X i are all mutually

independent.

40. Let X and Y be independent and let each have the distribution N(0, 1). Let

U � 2XY

(X 2 � Y 2)1=2
and V � X 2 ÿ Y 2

(X 2 � Y 2)1=2
:

show that U and V are also N(0, 1), and independent.
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41. Let X , Y , Z be independent N(0, 1) random variables and de®ne T � X 2=(X 2 � Y 2 � Z2).

Show that T has a beta distribution and that T is independent of X 2 � Y 2 � Z2.

42. What is the distribution of T � X 2=(X 2 � Y 2 � Z2) when the point (X , Y , Z) is picked

uniformly

(a) on the surface of a sphere?

(b) in the interior of a sphere?

43. A coin shows a head with probability p, or a tail with probability q � 1ÿ p. You ¯ip the coin

n times; it yields X heads and R runs.

(Remember that a run of heads is an unbroken sequence of heads either between two tails, or at

the ends of the trial. A run of tails is de®ned likewise. Thus for the sequence HHTH , X � 3

and R � 3; for the sequence HHH , X � 3 and R � 1. Recall also that ER � 1� 2(nÿ p) pq.)

(a) Show that cov(X , R) � 2(nÿ 1) pq(qÿ p).

(b) Show that var R � 4 pqn(1ÿ 3 pq)ÿ pqf1� 5( pÿ q)2g.
(c) Show that for large n

r(X , R) ' qÿ p

(1ÿ 3 pq)1=2
:

(d) It follows from (a) that when p � q, X and R are uncorrelated. Are they independent in

this case?

44. Random stake. You make n wagers, where the probability of winning each wager is p.

The stake is the same for each, but is a random variable X chosen before the wagers. Thus

your winnings are W �Pn
r�1 XYr, where

Yr � 1 with probability p

ÿ1 with probability 1ÿ p:

�
Find cov(X , W ) and show that X and W are uncorrelated if the game is fair. Are they

independent?

45. For any random variable X with ®nite fourth moment we de®ne the kurtosis of X by

kur X � Ef(X ÿ ì)4g=fE(X ÿ ì)2g2

� ó4=ó
4

(a) If X is N(ì, ó 2), show that kur X � 3.

(b) If X is exponential with parameter ë, show that kur X � 9.

(c) If X1, . . . , X n are independent and identically distributed and Sn �
Pn

r�1 X r, show that

kur Sn � 3� (kur X1 ÿ 3)=n.

(d) If X is Poisson with parameter ë, show that kur X � 3� ëÿ1.

(e) if X is binomial B(n, p), show that kur X � 3� (1ÿ 6 pq)=(npq).

Remark. Kurtosis is an indication of how peaked the distribution of X is above its mean;

small values indicate strong peaking.

46. Let X1, X2, X3, . . . be a sequence of independent identically distributed random variables,

each uniform on (0, 1). Let

N � min n:
Xn

r�1

X r . x

( )
, 0 , x , 1:

Show that, for n > 2,

Gn(x) � P(N . n) �
�x

0

Gnÿ1(xÿ u) du �
�x

0

Gnÿ1(y) dy,

6.15 Problems 307



and deduce that

pN (k) � P(N � k) � x kÿ1

(k ÿ 1)!
ÿ x k

k!
, k > 1:

What is EN?

47. If X , Y , and Z are independent and uniformly distributed on (0, 1), ®nd var (XY ), and

rfXY , (1ÿ X )Zg.

48. Plates. Your factory produces rectangular plates of length X and width Y , where X and Y

are independent; they have respective means ìX , ìY and respective variances ó 2
X , ó 2

Y . Find

the variance of the perimeter B and the area A of any plate, and show that A and B are not

independent.

49. Chi-squared. Let X1 . . . , X n be independent N(0, 1) random variables. Show that the

density of Z �Pn
r�1 X 2

r is

2ÿn=2 Ã 1
2
n

ÿ �� 	ÿ1x n=2ÿ1eÿx=2,

known as the chi-squared density, with n degrees of freedom, ÷2(n).

50. Student's t-density. Let X have the ÷2(n) density, and let Y be N(0, 1) and independent of X .

Show that the density of Z � Y (X=n)ÿ1=2 is

Ã
ÿ

1
2
(n� 1)

�
(nð)1=2Ã 1

2
n

ÿ � 1� x2

n

� �ÿ(n�1)=2

,

known as `Student's t-density', with n degrees of freedom, t(n).
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7

Generating functions

7.1 PREVIEW

The most important thing about random variables is that they all have a distribution.

Where they have moments, we like to know those as well. However, distributions are

often cumbersome to deal with; as an example of this, recall the convolution formulas for

the sums of independent random variables in section 6.6. And even simple tasks, such as

®nding moments, are often wearisome. We may suspect, furthermore, that there are even

more tedious computations to come.

Fortunately there are miraculous devices to help us with many of these humdrum tasks;

they are called generating functions. In this chapter we de®ne the probability generating

function and the moment generating function; then we explore some of their simpler

properties and applications. These functions were ®rst used by Euler and de Moivre in the

18th century; Euler used them in number theory and de Moivre actually used them to

help with probability distributions. They seem to have hit on the idea independently, a

classic illustration of the theory that great minds think alike.

Prerequisites. We use no new mathematical techniques in this chapter.

7.2 INTRODUCTION

We introduce the basic idea with two examples. First, recall that the binomial distribution

is

p(r) � n

r

� �
prq nÿr, 0 < r < n:(1)

But we know, by the binomial theorem, that these numbers are the coef®cients of s r in

the function

G(s) � (q� ps)n �
Xn

r�0

n

r

� �
prq nÿr s r �

Xn

r�0

p(r)s r:(2)

Therefore the collection of probabilities in (1) is exactly equivalent to the function G(s)

in (2), in the sense that if we know G(s) we can ®nd the p(r), and if we know the p(r) we

can ®nd G(s). The function G(s) has effectively bundled up the n� 1 probabilities in (1)

into a single entity, and they can then be generated from G(s) whenever we so desire.
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Second, we likewise know that the moments of the exponential density are

ìr �
�1

0

x rëeÿëxdx � r!

ër
,(3)

after prolonged integration. But we also know, by Taylor's theorem, that these numbers

appear in the coef®cients of t r in the expansion of the function

M(t) � ë

ëÿ t
�
X1
r�0

t r

ër
�
X1
r�0

ìr

r!
t r:(4)

Therefore the collection of moments in (3) is exactly equivalent to the function M(t) in

(4), in the sense de®ned above. The function M(t) has effectively bundled up the

moments in (3) into a single entity, and the moments ìr can thus be generated from M(t),

whenever we so desire.

With this preliminary, the following de®nitions are obvious.

De®nition. Let X be a non-negative integer-valued random variable with distribution

p(x). Then

G(s) � p(0)� p(1)s� p(2)s2 � � � �(5)

�
X1
r�0

p(r)s r

� Es X ,

is the probability generating function of X . Sometimes we denote it by GX (s), and we

may refer to it as the p.g.f. of X . n

De®nition. Let the random variable X have moments ìr � EX r, r > 0. Then

M(t) � 1� EXt � EX 2

2!
t2 � � � �(6)

�
X1
r�0

EX r

r!
t r,

is the moment generating function of X . If the sum in (6) converges for jtj, d . 0, then

we can continue thus:

M(t) � E
X1
r�0

X r

r!
t r(7)

� E(e tX ):

Sometimes we denote it by M X (t), and we may refer to it as the m.g.f. of X . n

Note that if X has a probability generating function, then (5) and (6) yield

M X (t) � GX (e t):(8)

Next we remark that the series in (5) converges for jsj < 1, because
P

r p(r) � 1.

Moments are not so well behaved, which is why we need the extra condition to derive (7).

We shall always assume that, for some d . 0, M(t) does converge for jtj, d.
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The functions G(s) and M(t) have the following essential properties.

First, G(s) determines the probabilities p(r) uniquely; that is, GX (s) � GY (s) if and

only if pY (r) � pX (r).

Second, M(t) determines the moments uniquely; that is, if M X (t) � M Y (t) (and both

exist for jtj, d), then EX r � EY r, and conversely.

However, there is more. In fact GX (s) also determines the moments of X , and M X (t)

also determines the distribution of X . We emphasize these two results as follows:

Theorem. Let Es X � G(s), and let G(r)(s) be the rth derivative of G(s). Then

G(r)(1) � EfX (X ÿ 1) � � � (X ÿ r � 1)g:(9)

In particular

G9(1) � G(1)(1) � EX :(10)

Proof. For r � 1, we note that for jsj, 1 we can write

dG(s)

ds
� d

ds

X1
k�0

p(k)s k

�
X1
k�0

kp(k)s kÿ1:

Because the sum of the series converges for jsj, 1, we can let s! 1 to obtain (10). A

similar argument proves (9). Note that (9) may be written as

G(r)(1) � r! E
X

r

� �
h

and for this reason G(r)(1) is called the r th factorial moment.

Next we have

Theorem. Let E(e tX ) � M(t) ,1, for jtj, d, where X is continuous with density

f (x). Then

f (x) /
�

eÿ tx M(t) dt:(11)

This looks nice enough, but unfortunately the integrand is a function of a complex

variable, and the integral is taken around a curve in the Argand plane. So we neither prove

(11), nor do we ever evaluate it; it is enough to know it is there. It is called the inversion

theorem for the m.g.f. M(t).

To sum up: if we know that

G(s) �
X1
k�0

p(k)s k � Es X

then P(X � k) � p(k), and

G(r)(1) � EfX (X ÿ 1)ÿ (X ÿ r � 1)g;
if we know that

M(t) �
�1
ÿ1

e tx f (x) dx � Ee tX ,1, jtj, d,
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then X has density f (x) and

M (r)(0) � EX r:

Exercises for section 7.2

1. If Es X � G(s), show that

var X � G(2)(1)� G9(1)ÿ fG9(1)g2:

2. (a) Let X have the geometric distribution

p(k) � q kÿ1 p, k > 1:

Show that X has p.g.f.

GX (s) � ps

1ÿ qs
:

(b) What is the generating function of the distribution

p(k) � q k p, k > 0?

3. Find the distributions that have the generating functions

(a) G(s) � 1
6

s(1ÿ s7)=(1ÿ s) (b) G(s) � q� ps.

4. Let X have p.g.f. GX (s), and let Y � aX � b, where a and b are integers. Find the p.g.f. of Y ,

and use it to show that EY � a EX � b, and var Y � a2 var X .

5. Let X have density f (x) � 2x, 0 < x < 1. Find the moment generating function of X .

6. Let X have distribution

p(0) � ë, p(k) � (1ÿ ë)q kÿ1 p, k > 1:

Find the moment generating function of X , and hence ®nd EX and var X .

7 .3 EXAMPLES OF GENERATING FUNCTIONS

Before we can use generating functions we need to learn to recognize them (very much as

drivers need to learn to recognize road signs before setting off). Here are some popular

varieties.

Discrete uniform. Here p(k) � nÿ1, 1 < k < n, so

G(s) �
Xn

k�1

s k

n
� 1

n

sÿ s n�1

1ÿ s

� �
:(1)

Continuous uniform. Here f (x) � (bÿ a)ÿ1, a , x , b, so

M(t) �
�b

a

e tx

bÿ a
dx � e bt ÿ e at

(bÿ a)t
:(2)

Binomial. As we noted above, if p(k) � (n
k) pk q nÿk , then

G(s) � (q� ps)n:(3)

Hence when X is binomial B(n, p)

EX � G9(1) � np,
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and

var X � G 0(1)� G9(1)ÿ fG9(1)g2 � npq:

Poisson. Let X be Poisson with parameter ë; then X has p.g.f.

G(s) �
X1
k�0

ëk eÿë
s k

k!
� eë(sÿ1):(4)

It is very striking that G(r)(1) � ër, so the factorial moments of the Poisson distribution

are particularly simple.

Geometric. If X is geometric, then X has p.g.f.

G(s) �
X1
k�1

q kÿ1 ps k � ps

1ÿ qs
:(5)

Two-sided geometric. If X has distribution

P(X � x) � cqjxj, 0 , q , 1, ÿ1, x ,1
then X has p.g.f.

Es X �
X1
ÿ1

sxcqjxj � c 1� qs

1ÿ qs
� q=s

1ÿ q=s

� �
, q , s , qÿ1:(6)

Thus probability generating functions can be de®ned for random variables taking negative

values. We mainly use them in this case when examining the simple random walk.

Example 7.3.1. If X is exponential with parameter ë, its m.g.f. is

M(t) �
�1

0

e txëeÿëxdx � ë

ëÿ t
, when ë. t,(7)

�
X1
r�0

t r

ër
:

Hence the moments are very easily found to be

ìr � ëÿr r! s

Example 7.3.2: normal density. If X has the standard normal density ö(x), then its

m.g.f. is ������
2ð
p

M(t) �
�1
ÿ1

e txeÿx2=2 dx

�
�1
1

expfÿ1
2
(xÿ t)2 � 1

2
t2gdx

� exp 1
2
t2

ÿ ��1
ÿ1

eÿv2=2 dv, setting xÿ t � v:
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Hence

M(t) � e t2=2 �
X1
r�0

t2 t

r! 2r

and so X has moments

ì2r � (2r)!

r! 2r
: s(8)

Of course, by the law of the unconscious statistician, we do not need to ®nd the density

of g(X ) in order to ®nd the m.g.f. of g(X ), as the following demonstrates.

Example 7.3.3: squared normal. Let X be a standard normal random variable. Find

the m.g.f. of Y � X 2.

Solution. We seek

M Y (t) � Ee tY � Ee tX 2

� 1

(2ð)1=2

�1
ÿ1

exp tx2 ÿ 1
2
x2

ÿ �
dx

�
�1
ÿ1

1

(2ð)1=2

1

(1ÿ 2t)1=2
exp ÿ1

2
y2

ÿ �
dy;

on setting

x � y

(1ÿ 2t)1=2

we obtain

M Y (t) � 1

(1ÿ 2t)1=2
: s

Exercises for section 7.3

1. If X has m.g.f. M(t) and Y � a� bX, show that Y has m.g.f.

M Y (t) � e at M(bt):

Hence show that if Z has a normal density with mean ì and variance ó 2, then

M Z (t) � exp ìt � 1
2
ó 2 t2

ÿ �
:

2. If X is uniform on (0, a), show by use of the m.g.f. that

ìr � EX r � ar=(r � 1):

3. Let X have the gamma density f (x) � x rÿ1eÿëxër=(r ÿ 1)!
Show that

M X (t) � fë=(ëÿ t)gr, ë. t:

4. Find the mean and variance of the (a) binomial, (b) geometric, and (c) gamma distributions, by

using their generating functions.
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7.4 APPLICATIONS OF GENERATING FUNCTIONS

Generating functions are remarkably versatile objects, and can be used to do many things.

But for us, they are mostly used for two purposes: ®nding limits and working with sums.

I Limits

The following results are crucial.

The continuity theorems

(i) Let X , X 1, X2, . . . be a collection of random variables with distributions F(x),

F1(x), . . . and moment generating functions M(t), M1(t), M2(t), . . . , jtj, d:
Then if

lim
n!1M n(t) � M(t), jtj, d,

it follows that

lim
n!1Fn(x) � F(x):

(ii) If X , X 1, X 2, . . . have probability generating functions G(s), G1(s), G2(s), . . . and

lim
n!1Gn(s) � G(s), jsj < 1

then

lim
n!1P(X n � k) � P(X � k):

These are not easy to prove, and we make no attempt to do so.

Results like this are known as continuity theorems. Of course, in (i), if all the random

variables have densities, then f n(x)! f (x), also.

Roughly speaking, such results show that we can often investigate the limits of a

sequence of distributions by looking at the limit of their generating functions. This seems

rather devious, but the advantages are made clear by looking at some examples, several

of them familiar to us from chapter 4.

Example 7.4.1: uniform limit. Let Yn be uniform on f1, 2, . . . , ng. Then Yn=n has

moment generating function

M n(t) � Ee tYn=n � nÿ1fe t=n � e2 t=n � � � � � e nt=ng

� 1

n

e t=n ÿ e (n�1) t=n

1ÿ e t=n

� �
� 1

n

1ÿ e t

eÿ t=n ÿ 1

� �

� e t ÿ 1

t ÿ t2

2n
� t3

6n2
� � �

! e t ÿ 1

t
, as n!1,

� Ee tU

where U is uniform on [0, 1], by (2) of section 7.3. Hence, as n!1,
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P
Yn

n
< x

� �
! x, 0 < x < 1,

� P(U < x): s

Example 7.4.2: geometric-exponential limit. Let X n be geometric with parameter

p � ë=n. Then X n=n has moment generating function

M n(t) � ë

n
e t=n 1ÿ 1ÿ ë

n

� �
e t=n

� �ÿ1

� ë 1� t

n
� � � �

� �
ëÿ t � ët2 ÿ t2

2n
� � � �

� �ÿ1

! ë

ëÿ t
, as n!1,

� Ee tY ,

where Y is exponential with parameter ë. Hence, as n!1,

P
X n

n
< x

� �
! 1ÿ eÿëx, x > 0:

� P(Y < x): s

Compare the transparent simplicity of these derivations with the tedious chore of

working directly with the distributions, as we did in chapter 4. Many other limit theorems

can be proved this way, but we have to move on.

II Sums of independent random variables

Here the crucial result is already well known to you: if X and Y are independent, then

Efg(X )h(Y )g � Eg(X ) Eh(Y ):

In particular, for independent X and Y, when they have probability generating functions

GX and GY ,

Es X�Y � Es X EsY � GX (s)GY (s);

and, in any case, when X and Y are independent,

Ee t(X�Y ) � Ee tX Ee tY � M X (t)M Y (t):

Obviously, similar results hold true for any number of independent random variables.

Here are several examples that use this idea to help in dealing simply with sums of

independent random variables.

Example 7.4.3: Bernoulli trials and the binomial distribution. Let (I k ; 1 < k < n)

be a collection of independent Bernoulli trials with

P(X k � 1) � p � 1ÿ q:

Then Es I k � q� ps, and for the sum X �Pn
k�1 I k we have
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Es X �
Yn

k�1

Es I k , by independence

� (q� ps)n:

Therefore X is binomial with parameters n and p. We already know this, of course,

but compare the brevity and elegance of this line of reasoning with more primitive

methods. s

Example 7.4.4: geometric sum. Let X and Y be independent geometric random

variables with parameter p, and let Z � X � Y . Now

G Z(s) � Es Z � E(s X�Y )

� Es X EsY , by independence

� ps

1ÿ qs

� �2

, by (5) of section 7:3

�
X1
k�1

kp2q kÿ1s k�1, by expanding in series:

Hence

P(Z � k) � (k ÿ 1) p2q kÿ2:(1)

By comparison with (7) of section 4.4 we see that Z has a negative binomial mass

function. s

The above example was especially simple because X and Y had the same parameter p.

It is interesting to compare this with the case when they have different parameters.

Example 7.4.5: geometric sum revisited. Let X and Y be independent geometric

random variables, with parameters á and â respectively. That is to say,

f X (x) � (1ÿ á)xÿ1á, x > 1; GX (s) � ás

1ÿ (1ÿ á)s

and

f Y (y) � (1ÿ â) yÿ1â, y > 1; GY (s) � âs

1ÿ (1ÿ â)s
:

Hence, if Z � X � Y , we have

G Z(s) � E(s X�Y )

� ás

1ÿ (1ÿ á)s

âs

1ÿ (1ÿ â)s

� �
� áâs

áÿ â

1

1ÿ (1ÿ â)s
ÿ 1

1ÿ (1ÿ á)s

� �

� áâ

áÿ â
s
X1
r�0

f(1ÿ â)r ÿ (1ÿ á)rgs r

( )
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By looking at the coef®cient of sz we obtain

P(Z � z) � áâ

áÿ â
(1ÿ â)zÿ1 ÿ (1ÿ á)zÿ1
� 	

: s(2)

The same idea works for continuous random variables if we use the moment generating

function. Here is an illustration.

Example 7.4.6: normal sums. Let X and Y be normal and independent, with

distributions N(ì, ó 2) and N(í, ô2) respectively. Find the distribution of Z � X � Y .

Solution. We know that the N(ì, ó 2) distribution has moment generating function

M(t) � e ì t�ó 2 t2=2:

Hence, remarkably easily,

Ee tZ � Ee tX Ee tY

� e (ì�í) t�(ó 2�ô2) t2=2

Therefore Z is N(ì� í, ó 2 � ô2). Compare this with the dreary convolution integrals

necessary to ®nd f Z(z) directly. s

Example 7.4.7. Let X and Y be independent, with gamma distributions having

parameters n, ë and m, ë respectively. Find the distribution of X � Y .

Solution. First we need M X (t), which is given by

Ee tX �
�1

0

1

(nÿ 1)!
ënx nÿ1eÿëx�xtdx

� ë

ëÿ t

� �n�1
0

1

(nÿ 1)!
(ëÿ t)nx nÿ1eÿx(ëÿ t)dx

� ë

ëÿ t

� �n

,

where the last step follows because the integrand is the gamma density with parameters n

and ëÿ t. Hence

Ee t(X�Y ) � ë

ëÿ t

� �m�n

and Z is gamma with parameters m� n and ë. s

Exercises for section 7.4

1. Let X and Y be Poisson random variables with parameters ë and ì respectively. Show that

X � Y has a Poisson distribution, by ®nding its generating function.

2. Let X n have the binomial distribution with parameters n and pn � ë=n. By considering the

probability generating function, show that as n!1, for ®xed k,

P(X n � k)! eÿëëk=k!:
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3. I have a die in which the three pairs of opposite faces bear the numbers 1, 3, and 5. I roll the die

twice and add the scores, then ¯ip a fair coin twice and add the number of heads to the sum of

the scores shown by the die. Find the distribution of the total.

4. Compounding. Let X have a binomial distribution with parameters n and È, where È is

uniformly distributed on (0, 1). Find E(s X jÈ), and hence show that

Es X � 1

n� 1

1ÿ s n�1

1ÿ s

� �
:

Thus X is uniform on f0, 1, . . . , ng, a result which we showed with very much more effort in

chapter 6.

7.5 RANDOM SUMS AND BRANCHING PROCESSES

Generating functions are even more useful in dealing with the sum of a random number

of random variables. This may sound a little arcane, but it is a very commonly arising

problem, as we noted when we proved Wald's equation in chapter 6.

Example 7.5.1: insurance. Claims from an insurance company can be regarded as a

collection of independent identically distributed random variables, X 1, X 2, . . .: In one

year there are N claims, where N is a random variable independent of the X r. De®ne the

total annual payout

T �
XN

r�0

X r:(1)

What is the distribution of T? Direct evaluation by summing probabilities looks rather

foul; we prefer the following approach, which yields the generating function of T . First,

suppose T is discrete; also recall that if N � 0 we interpret the empty sum as zero, to

give T � 0. By conditional expectation,

E(sT ) � EfE(sT jN )g:(2)

Now, conditional on N � n,

E(sT jN � n) � E(s X1�X2����� X n )

� fGX (s)gn, by independence:

Hence

E(sT jN ) � fGX (s)gN ,

and substituting in (2) gives

E(sT ) � Ef(GX )Ng
� GN (GX (s)),

because E(x N ) � GN (x) for any x in [0, 1]. We usually write this argument out even more

succinctly as follows:
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E(sT ) � EfE(sT jN )g(3)

� E(GN
X ), by independence

� GNfGX (s)g: s

Now we notice that the above argument works just as well for continuous random

variables X1, X2, . . . , provided that we use the moment generating function. Thus we

have in general

Random sum of random variables. Let (X r; r > 1) be independent random vari-

ables with common moment generating function M(t), and let N be non-negative, and

independent of all the X r, with probability generating function G(s). Then when

T �PN
r�0 X r we have

M T (t) � E(e tT ) � EfE(e tT jN )g(4)

� EfM(t)Ng
� G(M(t)):

Naturally this greatly simpli®es the task of ®nding the moments of T ; for example, on

using (4) we have very easily, by differentiating,

ET � M9T (0) � G9fM(0)gM9(0)(5)

� EN EX 1,

which we have proved already in chapter 6. For the variance we calculate

ET 2 � M 0T (0) � G 0fM(0)g fM9(0)g2 � G9fM(0)gM 0(0)

� fE(N2)ÿ ENgfEX 1g2 � EN E(X 2
1)

and hence

var T � (EX 1)2 var N � EN var X 1:(6)

Very often the distribution of T can be readily found from (3) or (4).

Example 7.5.2. Let each X r be exponential with parameter ë, and let N be geometric

with parameter p. Then

M(t) � ë

ëÿ t
and G(s) � ps

1ÿ qs
:(7)

Therefore

G(M(t)) � pë

ëÿ t ÿ që
� pë

pëÿ t
:(8)

Therefore T �PN
r�1 X r has an exponential distribution with parameter ë p. (Remember

that the sum of a ®xed number of exponential random variables has a gamma dis-

tribution.) s
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Probably the most famous and entertaining application of these results is to the theory

of branching processes. This subject had its origins in the following basic question: why

do some families die out, while others survive?

The question has been posed informally ever since people started using family names.

But the ®rst person to use generating functions in its solution was H.W. Watson in 1873,

in answer to a challenge by Francis Galton. (The challenge appeared in the April 1 issue

of the Educational Times.) For this reason it is often known as the Galton±Watson

problem, though Watson's analysis was ¯awed. The correct solution in modern format

was eventually produced by J. F. Steffensen in 1930. I. J. BienaymeÂ had earlier realized

what the answer should be, but failed to supply any reasons.

The problem they were all interested in is as follows. A population reproduces itself in

generations; the number in the nth generation is Z n. The rules for reproduction are these.

(i) Each member of the nth generation produces a family (maybe of size zero) in the

(n� 1)th generation.

(ii) Family sizes of all individuals are independent and identically distributed random

variables, with distribution ( p(x); x > 0) and probability generating function G(s).

With these rules, can we describe Z n in the long run? Let Es Z n � Gn(s), and assume

Z0 � 1. Then the solution to the problem is based on the following result:

Gn(s) � G(Gnÿ1(s)) � Gnÿ1(G(s))(9)

� G(G(� � � (G(s)) � � �))
where the right-hand side is the n-fold iterate of the function G(:).

The proof of (9) relies on the following observations:

(i) every member of the nth generation has an ancestor in the ®rst generation;

(ii) the rth member of the ®rst generation has Z
(r)
nÿ1 descendants in the nth generation,

where Z
(r)
nÿ1 has the same distribution as Z nÿ1. Hence

Z n � Z
(1)
nÿ1 � � � � � Z

( Z1)
nÿ1:(10)

Now this is a random sum of independent random variables, so

Es Z n � Gn(s) � G Z1
(Gnÿ1(s)) � G1(Gnÿ1(s)):(11)

The same argument applied to the (nÿ 1)th generation shows that

Z n � Z
(1)
1 � Z

(2)
1 � � � � � Z

( Z nÿ1)
1 ,(12)

which gives

Gn(s) � Gnÿ1(G(s)):(13)

Iterating either (11) or (13) gives (9). Decompositions such as (10) and (12) lie at the

heart of many arguments in the theory of branching processes.

Now recall that our interest was motivated by the question, does the family of

descendants of the ®rst individual become extinct? We can examine this by considering

the events

An � fZ n � 0g:
Obviously if An occurs, then the descendants of the ®rst individual have become extinct

by the nth generation. Furthermore, setting s � 0 in (9) shows that
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P(An) � Gn(0) � G(Gnÿ1(0))(14)

� G(P(Anÿ1)):

At this point we assume that var Z1 . 0, to exclude trivial cases.

Because G(s) is increasing and convex, it is now a routine task in analysis (which we

omit) to prove the following.

(i) If EZ1 < 1 then, as n!1, P(An)! 1.

(ii) If EZ1 . 1 then, as n!1, P(An)! ç, where ç is the smallest positive root of the

equation G(x) � x.

In words, this says that if the expected family size is less than or equal to 1, then

extinction is certain; but if the expected family size is greater than 1, then the chance of

extinction is less than 1, and is given by G(x) � x. This result is attractive, and simple.

What is not so simple is evaluating Gn(s) explicitly. There are few really easy non-

trivial cases when we can do it; here is one.

Example 7.5.3: geometric branching. Suppose that, in the branching process de®ned

above, each family size has a type of geometric distribution such that

P(Z1 � k) � q k p, k > 0; p� q � 1:(15)

Then G(s) � p=(1ÿ qs), and we can show by induction that the nth iterate of G(:) is

Gn(s) �
pfq n ÿ pn ÿ qs(q nÿ1 ÿ pnÿ1g

q n�1 ÿ pn�1 ÿ qs(q n ÿ pn)
, p 6� q

nÿ (nÿ 1)s

n� 1ÿ ns
, p � q:

8>><>>:(16)

Now EZ1 � q=p, and from (19) we have that

Gn(0) �
p(q n ÿ pn)

q n�1 ÿ pn�1
, p 6� q

n

n� 1
, p � q

8>><>>:
!

1, q < p

pqÿ1 p , q,

(
as n!1. This all agrees with what we said above, of course. s

Exercises for section 7.5

1. Let T �PN
r�1 X r, where N has a Poisson distribution with parameter ë and the X r are inde-

pendent and identically distributed with distribution

P(X r � k) � pk

ÿk log(1ÿ p)
, k > 1; 0 < p < 1:

Show that T has a negative-binomial distribution.

2. Carry out the proof of (16) by induction.
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3. Differentiate (9) to show that EZ n � EZ1EZ nÿ1. Deduce that EZ n � (EZ1)n.

Let EZ1 � ì, and var Z1 � ó 2. Show that

var Z n � ìnÿ1ó 2(ìn ÿ 1)=(ìÿ 1), ì 6� 1

nó 2, ì � 1:

�

7.6 CENTRAL LIMIT THEOREM

Recall the normal approximation to the binomial distribution, which we sketched in

section 4.10. In our new notation, we write this as follows: if Sn is binomial with mean

np and variance npq then, as n!1,

P
Sn ÿ np

(npq)1=2
< x

� �
! Ö(x),(1)

where Ö(x) is the standard normal distribution function. The central limit theorem

extends this result to a much wider range of random variables, as follows.

Central limit theorem. Let X1, X2, . . . be a collection of independent identically

distributed random variables with EX r � ì,

0 , var X r � ó 2 ,1,

and

Ee tXr � M(t), jtj, ä. 0:

Then if we let Sn �
Pn

r�1 X r, we have

P
Sn ÿ nì

n1=2ó
< x

� �
! Ö(x):(2)

First, notice that if we let each X r be a Bernoulli trial with parameter p, then Sn is

binomial B(n, p). In this case (2) is exactly the same as (1).

Second, notice that the theorem considers a sum of independent random variables, and

then takes a scaled limit of this sum. We have seen that moment generating functions are

very adept at dealing with each of these operations separately, so we may expect them to

be particularly excellent at handling them together. This is indeed the case, as we now

see.

Proof. Let Yr � (X r ÿ ì)=ó , r > 1. Then EYr � 0 and var Yr � 1, so that

M Y (t) � Ee tYr(3)

� 1� t2

2
� skw X r

6
t3 � � � � :

(Recall that skw X � E(X ÿ ì)3=ó 3.) Next we calculate the moment generating function

of the random variables in question:
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E exp t
Sn ÿ nì

n1=2ó

� �� �
� E exp

t

n1=2

Xn

r�1

Yr

( )
(4)

� M Y

t

n1=2

� �� �n

, by independence

� 1� t2

2n
� skw X 1

6

t3

n3=2
� � � �

� �n

, by (3)

! exp
t2

2

� �
, as n!1,(5)

by the exponential limit stated in appendix 3.12.III.

Now exp(1
2
t2) is the moment generating function of a standard normal random variable.

Therefore the continuity theorem applies, and the distribution of (Sn ÿ nì)=(n1=2ó )

converges to N(0, 1) as n!1. And this is just (2), which we wished to prove. h

It follows that the techniques of approximation that we used in section 4.10 can be used

to deal with sums of any independent random variables with a moment generating

function, not just sums of Bernoulli trials.

Exercises for section 7.6

1. A fair die is rolled 12 000 times; let X be the number of sixes. Show that

P(1900 , X , 2200) ' Ö(2
���
6
p

)ÿÖ(ÿ
���
6
p

):

2. Rounding errors. Suppose that you round off 108 numbers to the nearest integer, and then

add them to get the total S. Assume that the rounding errors are independent and uniform on

[ÿ1
2
, 1

2
]. What is the probability that S is wrong by (a) more than 3, (b) more than 6?

3. Let X be Poisson with parameter ë, and let Y be gamma with parameters r and 1. Explain why

we can say, without any elaborate calculations, that (X ÿ ë)=
���
ë
p

is approximately normally

distributed as ë!1, and (Y ÿ r)=
���
r
p

is approximately normally distributed as r !1.

7.7 RANDOM WALKS AND OTHER DIVERSIONS

Generating functions can be applied to many new problems, and also provide new ways

of doing old problems. We give a few randomly selected examples here. Many of them

rely on a particular application of conditional expectation, that is, the fact that

Es X � EfE(s X jY )g(1)

for any discrete random variables X and Y . Similarly, you may sometimes use

E exp(tX ) � E[Efexp(tX )jYg],
in the continuous case.

Our ®rst example is extremely famous, and arises in a startling number of applications,

in various disguises. As usual we prefer to use a standard format and nomenclature; the

following is hallowed by tradition.

Example 7.7.1: simple random walk. Starting from the origin, a particle performs a

random walk on the integers, with independent and identically distributed jumps
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X1, X2, . . . such that

P(X1 � 1) � p and P(X1 � ÿ1) � q � 1ÿ p:(2)

Its position after n steps is Sn �
Pn

r�1 X r. Let Tr be the number of jumps until the

particle visits r for the ®rst time (r . 0), and let T0 be the number of jumps until it ®rst

revisits the origin. Show that

E(sTr ) � (EsT1 )r, r . 0:(3)

Hence ®nd EsT1 . Use this to deduce that

EsT0 � 1ÿ (1ÿ 4 pqs2)1=2:(4)

Solution. For any k, let Tk,k�1 be the number of steps from Tk until Tk�1, that is, the

number of steps to reach k � 1 after ®rst having arrived at k. Then T0,1 � T1, and the

random variables Tk,k�1 are independent and identically distributed. Furthermore

Tr � T0,1 � T1,2 � � � � � Trÿ1,r:(5)

Hence

EsTr � (EsT01 )r � (EsT1 )r:(6)

Next we observe that

EsT1 � EfE(sT1 jX 1)g:(7)

Now, trivially,

E(sT1 jX1 � 1) � s

and not quite so trivially

E(sT1 jX 1 � ÿ1) � E(s1�Tÿ1,0�T0,1 ) � s(EsT1 )2, by (6)

Therefore, by conditional expectation (conditioning on X1)

EsT1 � ps� qs(EsT1 )2:(8)

Hence EsT1 is a root of the quadratic qsx2 ÿ x� ps � 0. Only one of these roots is a

probability generating function that converges for jsj < 1, and it is

EsT1 � 1ÿ (1ÿ 4 pqs2)1=2

2qs
:(9)

For the last part we note that

EsT0 � EfE(sT0 jX 1)g:
Now E(sT0 jX 1 � 1) � Es1�T1,0 � sE(sT0,ÿ1 ) and E(sT0 jX 1 � ÿ1) � sEsT0,1 . From their

de®nitions we see that EsT0,ÿ1 is obtained from EsT0,1 by simply interchanging p and q.

Then, by conditional expectation again,

EsT0 � psEsT1,0 � qsEsT0,1(10)

� 1ÿ (1ÿ 4 pqs2)1=2: s

Remark. The name `random walk' was invented by Karl Pearson in 1905, to describe

a similar problem in two (or more) dimensions. Following the solution of that problem by

Rayleigh, Pearson noted the corollary that `. . . in open country the most likely place to

7.7 Random walks and other diversions 325



®nd a drunken man is somewhere near his starting point'. Since then it has also been

known as the `drunkard's walk' problem. The solution of Rayleigh's problem of random

¯ights leads to a similar corollary for drunken birds in the open air.

Example 7.7.2: Huygens' problem. Two coins are ¯ipped alternately; they show

heads with respective probabilities á and â. Let X be the number of ¯ips up to and

including the ®rst head. Find Es X .

Solution. The sequence must begin with one of the three mutually exclusive out-

comes H or TH or TT. Now

E(s X jH) � s, E(s X jTH) � s2, E(s X jTT ) � E(s2�X� ),
where X� has the same distribution as X . Hence

Es X � áE(s X jH)� (1ÿ á)âE(s X jTH)(11)

� (1ÿ á)(1ÿ â)E(s X jTT )

� ás� (1ÿ á)âs2 � (1ÿ á)(1ÿ â)s2Es X :

Thus

Es X � ás� â(1ÿ á)s2

1ÿ (1ÿ á)(1ÿ â)s2
:(12)

From this it is a trivial matter to calculate any desired property of X . For example, the

probability that the second coin ¯ipped ®rst shows a head is just the sum of the

coef®cients of the even powers of s in Es X , and from (12) this is simply

â(1ÿ á)

1ÿ (1ÿ á)(1ÿ â)
: s

Example 7.7.3: Waldegrave's problem revisited. In our ®nal visit to this problem, we

®nd the generating function Es N of the number of rounds played in this game. In the

usual notation we write N � 1� X , where X is the number of ¯ips of a coin until it ®rst

shows nÿ 1 consecutive heads. Then by conditional probability and independence,

Es X � 1
2
E(sX jT )� 1

2

ÿ �
2E(s X jHT ) � � � �(13)

� 1
2

ÿ �
nÿ1E(s X jH nÿ2T )� 1

2

ÿ �
nÿ1E(s X jH nÿ1)

� 1
2
s� 1

2

ÿ �
2s2 � � � � � 1

2

ÿ �
nÿ1s nÿ1

� 	
Es X � 1

2
s

ÿ �
nÿ1:

Hence

Es X �
ÿ

1
2
s
�

nÿ1

1ÿ
1
2
sÿ ÿ1

2
s
�

n

1ÿ 1
2
s

( )
and so

Es N � sEs X � s n
ÿ

1
2

�
nÿ1
ÿ
1ÿ 1

2
s
�

1ÿ s� ÿ1
2
s
�

n
: s(14)
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Example 7.7.4: tail generating functions. We have seen above that it is often useful

to know P(T . n) for integer-valued random variables. Let

T (s) �
X1
s�0

P(X . n)s n:

Show that if Es X � G(s), then

T (s) � 1ÿ G(s)

1ÿ s
:(15)

Solution. Let I(X . n) be the indicator of the event that X . n. Then

T (s) �
X1
n�0

P(X . n)s n �
X1
n�0

EI(X . n)s n

� E
X1
n�0

I(X . n)s n

� E
XXÿ1

n�0

s n, because I is an indicator

� E
1ÿ s X

1ÿ s
, summing the geometric series

� 1ÿ G(s)

1ÿ s
: s

Example 7.7.5: coupons. Suppose any packet of Acme Deathweed is equally likely

to contain any one of four different types of coupon. If the number of packets you need to

collect the set is T , ®nd EsT and P(T � k).

Solution. We know that the number of packets bought between the consecutive

appearances of a new type is geometric, with parameters 1, 3
4
, 1

2
, 1

4
respectively for each.

Hence, using the geometric p.g.f.,

EsT � s
3
4
s

1ÿ 1
4
s

 !
1
2
s

1ÿ 1
2
s

 !
1
4
s

1ÿ 3
4
s

 !
(16)

� 3
32

s4
1
2

1ÿ 1
4
s
ÿ 4

1ÿ 1
2
s
�

9
2

1ÿ 3
4
s

 !
:

Hence

P(T � k) � 3
32

1
2

1
4

ÿ �
kÿ4 ÿ 4 1

2

ÿ �
kÿ4 � 9

2
3
4

ÿ �
kÿ4

� 	
(17)

� 3 1
4

ÿ �
kÿ1

ÿ �ÿ 1
2

ÿ �
kÿ5 � 1

4
3
4

ÿ �
kÿ2

� 	
' 3

4

ÿ �
kÿ1, for large k: s

Finally we note that just as pairs of random variables may have joint distributions, so

too may they have joint generating functions.
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De®nition. Discrete random variables X and Y have joint probability generating

function

G(s, t) � E(s X tY ):(18)

Continuous random variables X and Y have joint moment generating function

M(u, v) � E(e uX�vY ): n(19)

It is easy to see that, for example,

E(XY ) � Gst(1, 1) � M uv(0, 0),(20)

where suf®ces denote differentiation. Furthermore, we have a very important result,

which we do not prove:

Theorem. Random variables X and Y are independent if and only if

M(u, v) � M X (u)M Y (v):(21)

Example 7.7.6: de Moivre trials. In a certain ballgame, suppose any pitch indepen-

dently results in a ball, a strike, or a hit, with respective probabilities p, q, and r, where

p� q� r � 1. Let n pitches yield X n balls, Yn strikes, and nÿ X n ÿ Yn hits. Then

E(s X1 tY1 ) � r � ps� qt:

Hence, by independence of the pitches

Gn(s, t) � E(s X n tYn ) � (r � ps� qs)n:

We see that

E(s X n ) � Gn(s, 1) � (r � q� ps)n(22)

so the number of balls X n is binomial, and clearly X n and Yn are not independent, by

(21). Furthermore

E(X nYn) � @
2Gn

@s@ t
(1, 1) � n(nÿ 1) pq:(23)

Hence

cov(X n, Yn) � n(nÿ 1) pqÿ npnp � ÿnpq: s

Exercises for section 7.7

1. Example 7.7.1 continued: random walk

(a) Show that if p . 1
2

then the particle is certain to visit the position �1 and that, in this case,

the expected number of steps to do so is ( pÿ q)ÿ1:

(b) Show that if p � 1
2

then the particle is certain to revisit the origin, but that in this case the

expected number of steps to do so is in®nite.

(c) Find the probability generating function of Sn, the position of the walk after n steps.

(d) If the walk is stopped after Y steps, where Y is independent of all the steps, ®nd the

generating function of the ®nal position of the walk.

2. Waldegrave's problem revisited. Four card players are bored with bridge, and play Walde-

grave's game instead. North is A0. Show that the probability that either of East or West wins is 2
5
.
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3. Waldegrave's problem once again. Suppose that in each round the challenger wins with

probability p; the conditions of the problem are otherwise unchanged. Show that

EN � 1� pÿ1 � � � � � pÿ(nÿ1)

and

Es N � s n pnÿ1(1ÿ ps)

1ÿ s� (1ÿ p) pnÿ1s n
:

The bridge players in exercise 2 want the North±South pair to have the same chance of winning

as the East±West pair; show that this is impossible for any choice of p such that 0 , p , 1.

4. Suppose any pitch results in a ball, a strike, a hit, or a foul, with respective probabilities

p, q, r, 1ÿ pÿ qÿ r. Then n independent pitches yield X n balls, Yn strikes, Z n hits, and

nÿ X n ÿ Yn ÿ Z n fouls. Find the joint p.g.f. of these four random variables. Now suppose the

number of pitches is N , where N is Poisson with parameter ë. Show that the numbers of balls,

hits, strikes, and fouls are independent Poisson random variables.

5. If X , . . . , X r jointly have the multinomial distribution, show that

E(sX1

1 sX
2 � � � sX r

r ) � ( p1s1 � p2s2 � � � � � pr sr)
n:

7.8 REVIEW

In this chapter we have introduced the idea of generating functions, in particular the

probability generating function (p.g.f.)

G(s) � Es X

and the moment generating function (m.g.f.)

M(t) � Ee tX :

You can think of such functions as organizers which store a collection of objects that

they will regurgitate on demand. Remarkably, they will often produce other information

if differently stimulated: thus the p.g.f. will produce the moments, and the m.g.f. will

produce the probability distribution (in most cases).

Furthermore, these functions are particularly adept at handling sequences, sums, and

collections of random variables, as was exempli®ed in section 7.3. We applied the idea in

looking at branching processes, the central limit theorem, and random walks.

7 .9 APPENDIX. TABLES OF GENERATING FUNCTIONS

Table 7.1. Discrete distributions

Name p(x) Probability generating function

Bernoulli px(1ÿ p)1ÿx; x � 0, 1 1ÿ p� ps

binomial
n

x

� �
px(1ÿ p)nÿx; 0 < x < n (1ÿ p� ps)n

Poisson eÿëëx=x!; x > 0 expfë(sÿ 1)g
uniform nÿ1; 1 < x < n (s n�1 ÿ s)=fn(1ÿ s)g
geometric p(1ÿ p)xÿ1; x > 1 ps=f1ÿ (1ÿ p)sg

cont.
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Table 7.1 (cont.)

Name p(x) Probability generating function

negative binomial
xÿ 1

r ÿ 1

� �
pr(1ÿ p)xÿr, x > r [ ps=f1ÿ (1ÿ p)sg]r

hypergeometric
b

x

� �
a

nÿ x

� ��
a� b

n

� �
, coef®cient of t n in

0 < x < b ^ n (1� st)b(1� t)a

�
a� b

n

� �
logarithmic ÿxÿ1 px=log(1ÿ p), x > 1 log(1ÿ sp)=log(1ÿ p):

Table 7.2. Continuous distributions

Name f (x) Moment generating function

uniform (bÿ a)ÿ1, a , x , b (e bt ÿ e at)=ft(bÿ a)g

normal (2ð)ÿ1=2 expfÿ 1
2

(xÿ ì)2=ó 2g e ì t�ó 2 t2=2

exponential ëeÿëx, x > 0 ë=(ëÿ t), t , ë

gamma ëaxaÿ1eÿëx=Ã(a), x > 0 fë=(ëÿ t)ga, t , ë

two-sided exponential 1
2
ëeÿëjxj ë2=(ë2 ÿ t2), jtj, ë

Cauchy fð(1� x2)gÿ1 none

hyperbolic 2(eðx � eÿðx)ÿ1 sec 1
2
t

ÿ �
doubly exponential exp(ÿxÿ eÿx) Ã(1ÿ t)

7.10 PROBLEMS

1. Consider the coupon-collecting problem with three different types of coupon, and let T be the

number of packets needed until you ®rst possess all three types. Find P(T � k) using a

probability generating function. Show that ET � 11
2

and var T � 63
4
.

2. Consider Huygens' problem with three coins A, B, and C, which show heads with probability,

á, â, and ã respectively. They are ¯ipped repeatedly in the order ABCABCAB . . .. Let X be the

number of ¯ips until the ®rst head. Find Es X , and hence deduce the probability that C is the

®rst to show a head.

3. Let X n have a negative binomial distribution with parameters n and p � 1ÿ ë=n. Show that

X n has probability generating function fps=(1ÿ qs)gn, and deduce that as n!1, the

distribution of X n ÿ n converges to a Poisson distribution.

4. If X has moment generating function M(t), then the function K(t) � logM(t) is called the

cumulant generating function; if the function K(t) is expanded as
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K(t) �
X1
r�1

kr t r=r!

then kr is called the r th cumulant of X . What are the cumulants when X is (a) Poisson? (b)

normal? (c) exponential?

5. You are taking a test in which the test paper contains 116 questions; you have one hour. You

decide to spend no more than one minute on any one question, and the times spent on questions

are independent, with density f (x) � 6x(1ÿ x), 0 < x < 1. Show that there is a 20% chance,

approximately, that you will not attempt all the questions.

6. Gamblers and casinos

(a) The gambler. Let X r be the outcome of your wagering $1 on red at roulette, so that

P(X r � 1) � 9
19

, P(X r � ÿ1) � 10
19

,

EX r � ÿ 1
19

, var X r � 1ÿ 1
19

ÿ �
2:

Let Sn �
Pn

r�1 X r be the outcome of n such wagers. If n � 40, show that there is only

one chance in a thousand that you win more than $19 or lose more than $23.

(b) The casino. Let Y be the yield to the casino of 400 000 such wagers of $1 each. Show that

there is only one chance in a thousand that the casino makes a pro®t of less than $19 000

or more than $23 100.

(Hint: Ö(3:3) ' 0:9995.)

7. Let X 1, X 2, . . . be independent Bernoulli random variables with parameter p � 1ÿ q. De®ne

Yn �
Xn

r�1

X r ÿ np

 !�
(npq)1=2:

Show that

Ee tYn � p exp
qt

(npq)1=2

� �
� q exp

ÿ pt

(npq)1=2

� �� �n

and hence deduce de Moivre's central limit theorem.

8. Let X be the normal distribution N(0, ó 2). Show that

EX 2k � ó 2k(2k)!2ÿk=k!

9. Let X and Y be independent normal distributions N(0, 1). Find Ee t(X 2�Y 2) and Ee tXY .

10. Let T (s) be the tail generating function of X (de®ned in example 7.7.4). Show that

EX � lim
s!1ÿ

T (s)

11. Let Z n be the size of the nth generation in an ordinary Galton±Watson branching process with

Z0 � 1. Let Tn be the total number of individuals who have ever lived, up to and including the

nth generation. If EsTn � Hn(s), show that

H n(s) � sG1(H nÿ1(s))

where G1(s) � Es Z1 .

12. Let Z n be the size of the nth generation in an ordinary Galton±Watson branching process with

EZ1 � ì. Show that

E(Z m Z n) � ìnÿmEZ2
m, m < n:

Hence ®nd cov(Z m, Z n) and r(Z m, Z n).

13. Find the probability of extinction of a Galton±Watson branching process when the initial

population Z0 is a random variable with probability generating function P(s).
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14. Let X have moments ìk � EX k , and de®ne

L(t) �
X1
k�0

(EX k)t k �
X1
k�0

ìk t k :

Why would you not use L(t) as the moment generating function of X ?

15. You ¯ip a fair coin repeatedly until the ®rst occasion when it shows two consecutive heads; this

takes X ¯ips. Show that

Es X � s2=(4ÿ 2sÿ s2) and EX � 6:

What is var X?

16. Let X n have the gamma density

f n(x) � eÿëxënx nÿ1=(nÿ 1)!, x . 0

and de®ne Z n � (ëX n ÿ n)=n1=2.

(a) Find the moment generating function M n(t) of Z n. Show that as n!1, for ®xed t

M n(t)! exp 1
2
t2

ÿ �
.

What do you deduce about Z n?

(b) Find the density of Z n and show that as n!1, for ®xed x,

f Z n
(x)! 1������

2ð
p exp ÿ1

2
x2

ÿ �
:

Hint: Take logarithms and remember Stirling's formula.)

17. Which of the following two functions can be a moment generating function? Why? What is the

corresponding distribution?

(a) M(t) � 1�Pn
r�1 pr t r, pr . 0;

(b) M(t) �Pn
r�1 pre ar t, pr . 0.

18. You are a contestant in a quiz show, answering a series of independent questions. You answer

each correctly with probability p, or wrongly with probability q � 1ÿ p. You score a point for

each correct answer, and you are eliminated when you ®rst answer two successive questions

wrongly. Let D be the number of questions put to you, and S the number of points you score.

Show that

Es D � s2q2

1ÿ psÿ pqs2
:

What is the generating function of S? Find the joint generating function E(s D tS) and hence

®nd cov (D, S).

19. Bivariate normal m.g.f. Let X and Y be independent standard normal random variables;

let U � X ; and V � rX � (1ÿ r2)1=2Y . Show that the joint moment generating function of U

and V is

M(s, t) � E(e sU� tV )

� exp 1
2

s2 � 2str� t2
ÿ �� 	

:

Hence ®nd r(U , V ).

20. Let X and Y be independent standard normal random variables and let

U � ì� ó X and V � í� ôrX � ô(1ÿ r2)1=2Y :

Find the joint moment generating function of U and V .

21. Find the moment generating functions Ee tX corresponding to the following density functions

on (ÿ1, 1):

332 7 Generating functions



(a) 1
2
eÿjx1; (b)

1

coshðx
; (c) exp(ÿxÿ eÿx):

For (b) use the fact that
�1

0
fxaÿ1=(1� x)g dx � ð=sin að:)

For what values of t do they exist?

22. You ¯ip two fair coins. Let I , J , and K be the indicators of the respective events that

(a) the ®rst shows a head,

(b) the second shows a head,

(c) they both show heads or they both show tails.

Find the joint probability generating function

GIJK (x, y, z) � E(x I y J z k):

With obvious notation, verify that

GIJ (x, y) � GI (x)GJ (y), GJK (y, z) � GJ (y)GK (z), GIK (x, z) � GI (x)GK (z),

but that
GIJK (x, y, z) 6� GI (x)GJ (y)GK (z):

The events are pairwise independent, but not independent.

23. Random walk in the plane. A particle takes a sequence of independent unit steps in the

plane, starting at the origin. Each step has equal probability 1
4

of being north, south, east, or

west. It ®rst reaches the line x� y � a after T steps, and at the point (X , Y ). Show that

GT (s) � EsT � sÿ1 1ÿ 1ÿ s2
ÿ �

1=2
n oh i

a, jsj, 1:

Deduce that

Es XÿY � GT
1
2
(s� sÿ1)

ÿ �
:

24. Two particles perform independent random walks on the vertices of a triangle; that is to say, at

any step each particle moves along the clockwise edge with probability p, or the anticlockwise

edge with probability q � 1ÿ p. At time n � 0 both are at the same vertex; let T be the

number of steps until they again share a vertex. Let S be the number of steps until they ®rst

share a vertex if initially they are at different vertices. Show that

EsT � ( p2 � q2)s� 2 pqs EsS ,

EsS � pqs� (1ÿ pq)s EsS :

Hence ®nd EsT and show that ET � 3.

25. More compounding. Let X have a Poisson distribution with parameter Ë, where Ë is a

random variable having an exponential density with parameter ì. Find E(s X jË), and hence

show that

P(X � k) � ì(ì� 1)ÿ(k�1), 0 < k:

26. Show that

G(x, y, z) � 1
8
(xyzw� xy� yz� zw� zx� yw� xz� 1)

is the joint generating function of four variables that are pairwise and triple-wise independent,

but which are nevertheless not independent.

27. Let X > 0 have probability generating function G(s). Show that

Ef(X � 1)ÿ1g �
�1

0

G(s)ds:

Hence ®nd Ef(X � 1)ÿ1g when X is (a) Poisson, (b) geometric, (c) binomial, (d) logarithmic.
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28. Let X have moment generating function M(t). Show that for a . 0:

(a) if t . 0, P(X > a) < eÿat M(t);

(b) if t , 0, P(X < a) < eÿat M(t).

Now let X be Poisson with parameter ë. Show that, for b . 1,

P(X > bë) < inf
t , 0
feÿbë t M(t)g � eÿë

e

b

� �ëb

and for b , 1

P(X < ëb) < inf
t , 0
feÿëbt M(t)g � eÿë

e

b

� �ëb

:

In particular, verify that

P(X > 2ë) <
e

4

� �ë

and P X <
ë

2

� �
<

2

e

� �ë=2

:

Compare these with the bounds yielded by Chebyshov's inequality, (ëÿ1 and 4ëÿ1, respec-

tively).

29. Three particles perform independent symmetric random walks on the vertices of a triangle; that

is to say, at any step each particle moves independently to either of the other two vertices with

equal probability 1
2
. At n � 0, all three are at the same vertex.

(a) Let T be the number of steps until they all again share a vertex. (a) Find EsT, and show

that ET � 9.

(b) Suppose that they all start at different vertices; let R be the time until they ®rst share a

vertex. Do you think ER . ET or ER , ET ? Find ER and test your conjecture.

(c) Let S be the number of steps until they all again share the same vertex from which they

began. Find ES.

30. Poisson number of de Moivre trials. Suppose any ball yields a wicket with probability p,

or one or more runs with probability q, or neither of these with probability r, where

p� q� r � 1. Suppose the total number of balls N has a Poisson distribution with parameter

ë, independent of their outcomes. Let X be the number of wickets, and Y the number of balls

from which runs are scored. Show that X and Y are independent Poisson random variables by

calculating G(s, t) � E(s X tY ).

31. Characteristic function. We have occasionally been hampered by the non-existence of a

moment generating function. In such cases, in more advanced work we de®ne the characteristic

function

ö(t) � Ee itX � E cos(tX )� iE sin(tX )

�
�1
ÿ1

e itX f (x) dx

where i2 � ÿ1. Show that

(a) jö(t)j < 1 for all t 2 R, (b) ö(0) � 1.

Remark. It can be shown that the characteristic function of a Cauchy random variable X is

öX (t) � eÿj tj.

32. Show that if X1, . . . , X n are independent Cauchy random variables and X � nÿ1
Pn

r�1 X r,

then X has the same Cauchy density as the X i.
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33. Multivariate normal. Let Y1, . . . , Yn be a collection of independent N(0, 1) random

variables, and de®ne X1, . . . , X n by

X r �
Xn

k�1

ark Yk , 1 < r < n:

Show that X r is normal, with mean zero and variance ó 2
r �

Pn
k�1a2

rk . Find the mean and

variance of the random variable Z �Pn
r�1 t r X r and hence ®nd the joint moment generating

function

E exp
Xn

r�1

t r X r

 !
:

Deduce that X j and X k are independent if and only if cov(X j, X k) � 0:

34. Normal sample. Let X1, . . . , X n be independent N(ì, ó 2) random variables; as usual set

X � nÿ1
Xn

r�1

X r and S2 �
Xn

r�1

(X r ÿ X )2:

Show that cov( X , X r ÿ X ) � 0, 1 < r < n, and deduce that X and S2 are independent.

(Hint: Consider the joint distribution of the vector ( X , X1 ÿ X , . . . , X n ÿ X ) and use the

previous question.)
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Hints and solutions for selected exercises and

problems

Section 2.2

1. (a) All sequences of j's and k's of length m.

(b) The non-negative integers.

(c) New rules: (a1, a2), (a3, a4), (a5, a6), where ai < 7 (1 < i < 6).

(d) All quadruples (x1, x2, x3, x4), where each xi is a choice of ®ve different elements from

Ù � (C, D, H , S) 3 (A, 2, 3, 4, 5, 6, 7, 8, 9, 10, J , Q, K),

and xi \ x j � Æ, i 6� j.

Section 2.3

1. (a) Ù � fi, j: 1 < i, j < 6g, A � fi, j: i� j � 3g.
(b) Ù � fi: 0 < i < 100g, A � fi: 0 < i < 4g:
(c) Ù � fB, Gg3 fB, Gg3 fB, Gg, A � fBBB, GGGg:
(d) Ù � the non-negative integers, A � the integers in [10, 15]:

(e) Ù � f(r1, f1), (r2, f2), (r3, f3)g where 0 < ri, f i < 7,

A � fr1 � r2 � 7g [ fr1 � r3 � 7g [ fr2 � r3 � 7g:
(f) Ù � fx, y: x, y > 0g, A � fx, y: x . yg:

2. Draw two Venn diagrams.

Section 2.4

1. 18
37

.

2. There are 1
2

3 52 3 51 pairs of cards, and 6 pairs of aces, so P(two aces) � (13 3 17)ÿ1 � 1
221

.

3.
area ABD

area ABC
�

1
2

3 jBDj3 height
1
2

3 jBCj3 height
� jBDj
jBCj :

4.
ð
ÿ

1
2
r
�

2

ðr2
� 1

4
.

5. b=(a� b).

Section 2.5

1. S \ F � Æ and Ù � S [ F. Hence 1 � P(Ù) � P(S)� P(F), by (3).

2. If jÙj � n, then there are at most 2n different events in Ù.
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3. P
ÿSn�1

r�1 Ar

� � P
ÿSn

r�1 Ar

�� P(An�1), by (3). Now induction yields (4).

4. A � (A n B) [ (A \ B). By the addition rule, P(A) � P(A n B)� P(A \ B): Hence P(A \ B) <

P(A). The same is true with B and A interchanged.

5. Use 1 � P(Ù) � P(A)� P(Ac) � P(Ù)� P(Æ).

Section 2.6

1. Obvious from P(B) � P(A)� P(B n A).

2. P(A [ B [ C) � P(A)� P(B [ C)ÿ P(A \ (B [ C))

� P(A)� P(B)� P(C)ÿ P(B \ C)ÿ P((A \ B) [ (A \ C))

and so on.

3. P(at least one double six in r throws) � 1ÿ 35
36

ÿ �r
,

1ÿ 35
36

ÿ �
24 ' 0:491 , 1

2
, 0:506 ' 1ÿ 35

36

ÿ �
25:

So 25 is the number needed.

4. By enumeration of cases, the probabilities are P(Sk) � ak=216, where, in order from a3 to a18,

the ai are

1, 3, 6, 10, 15, 21, 25, 27, 27, 25, 21, 15, 10, 6, 3, 1:

5. (a) 1ÿ 5
6

ÿ �6
:

(b) 1ÿ 35
36

ÿ �
12 , 1ÿ 5

6

ÿ �
6:

Section 2.7

1. 0:1=0:25 � 40%

2. (a) We know 0 < P(A \ B) < P(B). Divide by P(B).

(b) P(ÙjB) � P(Ù \ B)=P(B) � 1.

(c) P(A1 [ A2jB) � P(A1 \ B) [ (A2 \ B))=P(B). Expand this.

For the last part set A1 � A, A2 � Ac, and use (c).

3. RHS � P(A \ B \ C)

P(B \ C)

P(B \ C)

P(C)
P(C) � LHS.

4. Use the above exercise to give

P(all red) � P(3 redj2 red)P(2 redj1 red)P(1 red)

� 3
13

3 4
14

3 5
15
� 2

91
:

By the addition rule

P(same colour) � P(red)� P(green)� P(blue) � 2
91
� 4

5
3 1

91
� 4

91
:

5. LHS � P(A \ B)=P(A [ B)

< min
P(A \ B)

P(A)
,

P(A \ B)

P(B)

� �
� RHS:

Section 2.8

1. (a) öâ� (1ÿ ö)ó ; (b) öâ=föâ� (1ÿ ö)óg.
2. P(reject) � 10ÿ4 3 95

100
� (1ÿ 10ÿ3) 3 5

100
. Then we have (a) 10ÿ4 3 95

100
=P(reject);

(b) 1 ÿ P(reject).
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3. (a) You can only say what this probability is if you assume (or know) what your friend decided

to tell you in all possible circumstances. Otherwise you cannot determine this probability.

Consider two cases for example.

(i) Your friend has decided that if she has both red aces she will say `one is the ace of

diamonds'. In this case the probability that she has both red aces, if she tells you she

has the ace of hearts, is zero.

(ii) Your friend has decided that if she has one ace she will say `I have a club', but if she

has two aces, she will say `one is the ace of hearts'. In this case the probability that

she has both red aces, if she tells you she has the ace of hearts, is unity.

(b) In this case do you know what the answers would be in all cases, because you have received

a truthful answer to a ®xed question. We calculate:

P(either is A H ) � 1ÿ P(neither is A H ) � 1ÿ 3 3 2

4 3 3
� 1

2
,

P(both red aces) � 2 3 1

4 3 3
� 1

6
,

hence

P(both red acesjeither is A H ) � 1
6
=1

2
� 1

3
:

4.
P

P(AjBi \ C)P(BijC) �PP(A \ Bi \ C)=P(C) � P(A \ C)=P(C):

Section 2.9

1. P(Ac \ Bc)ÿ P(Ac)P(Bc) � P(A [ B)c)ÿ (1ÿ P(A))(1ÿ P(B)) � P(A \ B)ÿ P(A)P(B) � 0

iff A and B are independent.

2. (a) 0.35, (b) 0.2, (c) 2
9
, (d) 0.08.

3. P(nÿ 1 tails followed by head) � fP(T)gnÿ1P(H).

4. Let P(G) � q, P(B) � p, where p� q � 1.

(a) P(both sexes) � 1ÿ p3 ÿ q3, P(at most one girl) � p3 � 3 p2q,

P(both sexes and at most one girl) � 3 p2q. Then

(1ÿ p3 ÿ q3)( p3 � 3 p2q) � 3 p2q

for independence, which occurs when p � q � 1
2

and when pq � 0, and not otherwise.

(b) P(both sexes) � 1ÿ p4 ÿ q4, P(at most one girl) � p4 � 4 p3q,

P(both sexes and at most one girl) � 4 p3q. For independence

(1ÿ p4 ÿ q4)( p4 � 4 p3q) � 4 p3q,

which occurs when pq � 0 and for just one other value of p, which is approximately

p � 0:4.

5. Flip two coins, with A � ®rst coin shows head, B � second coin shows head, C � both coins

show heads.

6. See example 2.9.7.

Section 2.10

1. P(A1jA2)P(A1) � P(A1 \ A2) and so on, giving the LHS by successive cancellation.

2. As ®gure 2.20, terminated after the sixth deuce.

3. Modi®ed version of ®gure 2.19.

4. 6 p2q2.
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Section 2.11

1. Condition on the ®rst ¯ip to give

pn � P(even number in n) � P(odd number in nÿ 1)P(H)

� P(even number in nÿ 1)P(T )

� (1ÿ pnÿ1) p� qpnÿ1

� 1
2
� 1

2
(qÿ p)n:

2. By considering the nth roll we see that pn � 1
5
(1ÿ pnÿ1). We are told p1 � 1. Hence

pn � 1
6
ÿ 1

6
ÿ1

5

ÿ �
nÿ2, n > 1.

Section 2.12

1. By de®nition, for a unit stake, you get 1� ða with probability P(A). The value of this is

(1� ða)P(A), so the casino's take is

t � 1ÿ (1� ða)P(A):

From (1) we have P(A) � (1� öa)ÿ1, so

t � 1ÿ (1� ða)(1� öa)ÿ1 � (öa ÿ ða)(1� öa)ÿ1:

Section 2.16

1. (a) 1
20

ÿ �
2 3 1

2
� 2 3 1

20
3 1

2
3 19

20
; (b) 1

2
3 1

20

ÿ �
2.

2. 32
663

.

3. 15
442

, 32
663

3 15
442

.

4. (a) No; (b) 1
4

< P(rain at weekend) < 1
2
.

5. P(3 divides PIN)� 2999
8998

, P(7 divides PIN) � 1286
8998

, P(21 divides PIN) � 169
8990

, so P(either one

divides PIN) � 4116
8998

.

6. (a) P(A12) � 0; (b) P(A3) � 60=63, P(A6) � 100=64.

7. 1
4
, 1

3
.

8. No. In fact 28 will do.

9. (c) (i) 2
5
, (ii) 2

5
.

10. (c) P(T ) � 2
5

(from part (c) of the previous answer). Hence (a) 1
4
; (b) 3

4
.

11. Use a Venn diagram, or check the elements;

by the ®rst result, A [ B [ C � ((A [ B)c \ Cc)c

� (Ac \ Bc \ Cc)c.

12. Use the above problem and induction.

13. P(A \ B) � P(A)� P(B)ÿ P(A [ B).

If B � A, this gives P(A \ B) � P(B) � 1
2
.

If A [ B � Ù, this gives P(A \ B) � 1
10

.

The bounds are as given because

maxfP(A), P(B)g < P(A [ B) < 1:

14. The ®rst inequality follows from P(A \ B) . P(A)P(B). The second follows from

P(Ac \ B) � P(B)ÿ P(A \ B) , P(B)ÿ P(B)P(A) � P(B)P(Ac):

15. P(A \ A) � fP(A)g2 gives P(A) � 0 or P(A) � 1.
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16. (a) 1=k; (b) 1=k!; (c) k=n.

17. A n B � A.

18. P
Sn

r�1 Ar

ÿ � � P
ÿSnÿ1

r�1 Ar

�� P(An)ÿ P
S

(Ar \ An)� �; now use induction.

P
Tn

r�1 Ar

ÿ � �PP(Ar)ÿ
P

i , jP(Ai [ A j) � � � � (ÿ1)n�1P
Sn

r�1 Ar

ÿ �
:

19. P(A \ B)ÿ P(A) � P(B)P(Ac [ Bc)c)ÿ (1ÿ P(Ac))(1ÿ P(Bc))

� 1ÿ P(Ac [ Bc)ÿ 1� P(Ac)� P(Bc)ÿ P(Ac)P(Bc) � RHS:

20. (a) á � a=(a� b).

(b) P(amber) � P(amberj1st amber)a=(a� b)� P(amberj1st blue)b=(a� b).

21. (a) P(more than 3) � 1ÿ P(in circle radius 3) � 1ÿ (9ð=48).

(b) 10(ð=48)2 � (ð=16)2 � 19(ð=48)2.

(c) P(total score 15) � fP(dart scores 5)g3.

22. (a) 1
12

; (b) 5
16

; (c) 2
27

.

23. 1
3
.

24. P(A1) � 1
2
� P(A2) � P(A3); P(A1 \ A2) � 1

4
� P(A2 \ A3) � P(A3 \ A1) � P(A1 \ A2 \ A3).

25. (a) P(even) � pk � 5
6

pkÿ1 � 1
6
(1ÿ pkÿ1). So pk � 1

2
1� 2

3

ÿ �
k

� 	
.

(b) P(divisible by 3) � pk , P(one more than a multiple of 3) � qk ;

pk � 1
6
(1ÿ pkÿ1 ÿ qkÿ1)� 5

6
pkÿ1; qk � 1

6
pkÿ1 � 5

6
qkÿ1:

Hence pk � 1
3
(1� ëk � ìk), where ë and ì are the roots of 12x2 ÿ 18x� 7 � 0.

26. 4x2 ÿ 2xÿ 1 � 0 has roots (1� ���
5
p

)=4. Use p1 � 0 and p2 � 1
4
.

28. BC.

29. Let T denote the event that each of a series of similar answers is correct. Let Sr denote the

event that you receive r similar answers. Let V denote the event that the passer-by is a tourist.

Then in general we want P(T jSr), which we can rearrange as

P(T jSr) � P(T \ V jSr), since T \ V c � Æ

� P(T \ V \ Sr)=P(Sr)

� P(T \ SrjV P(V )=P(Sr):

(a) P(T \ S1jV ) � 3
4
; obviously P(S1) � 1. Hence P(T jS1) � 3

4
3 2

3
� 1

2
.

(b) P(T \ S2jV ) � 3
4

ÿ �
2; P(S2) � f 3

4

ÿ �
2 � 1

4

ÿ �
2g2

3
� 1

3
. Hence P(T jS2) � 1

2
:

(c) P(T \ S3jV ) � 3
4

ÿ �
3; P(S3) � 3

4

ÿ �
3 � 1

4

ÿ �
3

� 	
2
3
� 1

3
. Hence P(T jS3) � 9

20
.

(d) Now we know the speaker is a tourist, so

P(East is true jEEEW ) � 3
4

ÿ �
3 3 1

4
= 3

4

ÿ �
3 3 1

4
� 1

4

ÿ �
3 3 3

4

� 	 � 9
10
:

(e) Thus P(East correct|fourth answer East also) is found to be

3
4

ÿ �
4 3 2

3
= 3

4

ÿ �
4 � 1

4

ÿ �
4

� 	
2
3
� 1

3

� � � 9
35
:
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Section 3.2

1. (a) 6; (b) 0; (c) 6.

3. 6!=66 ' 0:015.

4. For every collection of xi such that
P1000

i�1 xi � 1100, there is a one±one map xi ! 7ÿ xi to the

collection of 7ÿ xi such that
P

(7ÿ xi) � 5900.

Section 3.3

1. (a) Use the one±one correspondence between choosing r objects from n and choosing the

remaining nÿ r.

(b) Verify trivially from (7).

(c) Set up the same difference equation for C(n, r) and C(n, nÿ r).

2. Expand RHS to give (4).

Section 3.4

1. Each element is either in or not in any set, giving 2n choices.

2. There are
n

k

� �
ways to choose the k brackets to supply x k, the rest of the brackets supply y nÿk.

3. Set x � y � 1 in exercise 2.

4. The answer to the hint is
r ÿ 1

k ÿ 1

� �
, as there are r ÿ 1 numbers less than r, of which we choose

k ÿ 1. Now sum over all possibilities for the largest number selected.

5.
r � s

r

� �
.

Section 3.5

1. jÙj � 9 3 103. jAj � number of PINs with double zero � number of PINs with single zero �
number of PINs with no zeros � 9 3 8 3 3� 9 3 8 3 3 3 3� 9 3

8

2

� �
4!=2!.

Hence P(A) � 0:432.

2. Choose three faces in
6

3

� �
ways; divide by 2! to avoid counting the pairs twice, permute these

symbols in
5

2, 2, 1

� �
ways.

3. Divide the given expression by P(you have x spades)

� 13

x

� �
39

13ÿ x

� �
.

5. Choose the points to win in
n

k

� �
ways.
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Section 3.6

1. Choose 5 non-adjacent objects from 48, and choose one to make a pair in 49 objects.

3. Choose k of your selection from the selected numbers and then choose r ÿ k from the nÿ r

unselected.

Section 3.9

1. The probability that a given choice of r players draw their own name and the remaining nÿ r

do not is

1

n

1

nÿ 1

� �
� � � 1

nÿ r � 1

� �
1

2!
ÿ 1

3
� � � � � (ÿ)nÿr

(nÿ r)!

� �

There are
n

r

� �
such choices of r players, giving the result.

Section 3.13

1. (a) 55
96

; (b) ®ve will do. (P(at least two of the five share a sign) ' 0:6).

2. (b) 0.15 approximately.

3. (a) 7

�
10

4

� �
; (b) 1

�
10

4

� �
; (c)

9

3

� ��
10

4

� �
� 2=5;

(d) 1ÿ 8

4

� ��
10

4

� �
� 2=3; (e) 5

�
10

4

� �
� 1=42.

4. (a) 1
2

5
6

ÿ �
5; (b) 1ÿ 6!=66 � 319=324; (c)

6

4

� �
52 � 6

5

� �
5� 1

� ��
66 � 406=66;

(d)
406

66

�
319

324
.

5. Choose the ranks of the pairs in
13

2

� �
ways, the suits of the pairs in

4

2

� �
4

2

� �
ways, and

the other card in 44 ways. Then

44
13

2

� �
4

2

� �
4

2

� ��
52

5

� �
' 0:48:

6. If the ®rst thing is not chosen there are (nÿ 1)r permutations of r things from the remaining

nÿ 1. The other term arises if the ®rst thing is chosen. Then use the addition rule.

Alternatively, substitute in the formula.

7. Use van der Monde, example 3.4.2.

8. Consider the boxes that include the ®rst colour, and those that do not.

9. When you make the nth cut, the previous nÿ 1 cuts divide it into n segments at most. So the

largest number of extra bits produced by this cut is n. Hence Rn � Rnÿ1 � n. Now verify the

given solution.

10. (a) 2(nÿ k ÿ 1)=n!; (b) 2=(nÿ 1)!

11. (nÿ k)!=n!.

12. Choose the start of the run in 10 ways and the suits in 45 ways; exclude the straight ¯ush.
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13.
32

13

� ��
52

13

� �
. This gives fair odds of 1800: 1, approximately, so by exercise 1 of section

2.12 the Earl's percentage take was around 44%. A nice little earner, provided he insisted on a

®nal shuf¯e himself.

14. (a) This is (7) of section 3.8.

(b) Let A be the event that the wasp has visited gkÿ1 when its last ¯ight is to gk from gk�1.

And let B be the event that the wasp has visited gk�1 is when its last ¯ight is to gk from

g kÿ1. It must do one or the other, and A \ B � Æ.

By the ®rst part, P(Lk jA) � P(Lk jB) � nÿ1. Hence, using the partition rule,

P(Lk) � P(Lk jA)P(A)� P(Lk jB)P(B) � nÿ1fP(A)� P(B)g � nÿ1:

15. (a)
6

4

� �
43

2

� ��
49

6

� �
; (b)

25

6

� ��
49

6

� �
.

(c) Let Ar be the event that the number r has failed to turn up. Then

P
[49

r�1

Ar

 !
� PP(Ar)ÿ

P
P(A5 \ As) � � � �

� 49P(A1)ÿ 49
2

� �
P(A1 \ A2) � � � � � 49

43

� �
P(A1 \ � � � \ A43):

For any set of k numbers, P(A1 \ � � � \ Ak) � 49ÿ k

6

� ��
49

6

� �
and so

P
[49

r�1

Ar

 !
� 49

48

6

� �
ÿ 49

2

� �
47

6

� �
� � � � � 49

43

� �� ��
49

6

� �

Section 4.2

1. (a) 1ÿ (1ÿ p)n; (b) 3 p2(1ÿ p)� p3.

2. (a) 1ÿ q4 ÿ 4q3(1ÿ q); (b) 1ÿ q3 ÿ 3q2(1ÿ q).

(a) > (b); the moral seems obvious.

3. Imagine that you are `in gaol', and look at Figure 4.1.

Section 4.3

1. P(An) � 5
6

ÿ �
nÿ1 3 1

6
, P(An \ E) � 5

6

ÿ �
2mÿ1 3 1

6
(n � 2m), P(E) � 5

11

and P(AnjE) � 5
6

ÿ �
2m 3 11

25
(n � 2m). Yes, but not the geometric distribution.

2. From example 4.3.4, P(AnjDn) � an=ë(n) � p=( p� q) � P(An):

Section 4.4

2.
n

k

� �2

p2k q2nÿ2k

�
n

k � 1

� �
pk�1q nÿkÿ1 n

k ÿ 1

� �
pkÿ1q nÿk�1

� �
� (k � 1)(nÿ k � 1)=f(nÿ k)kg > 1:

3. The correspondence rule in action.
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Section 4.5

1. Consider the ratio

a

r

� �
N � 1ÿ a

nÿ r

� ��
N

n

� �
:

a

r

� �
N � 1ÿ a

nÿ r

� ��
N � 1

n

� �
,

which reduces to an : r(N � 1). This gives increasing terms up to the integer nearest to an=r;

thereafter the terms decrease.

2.
93

10

� �
� 7

93

9

� �� ��
100

10

� �
.

3.
r

r � 1

nÿ r

nÿ r � 1

� �
aÿ r

aÿ r � 1

� �
N ÿ aÿ n� r

N ÿ aÿ n� r � 1

� �
< 1:

Section 4.6

1. ì �Pn
x�1xnÿ1 � nÿ1 3 1

2
n(n� 1).

ó 2 �Pn
x�1 nÿ1x2 ÿ ì2 � 1

6
(n� 1)(2n� 1)ÿ 1

4
(n� 1)2: (See subsection 3.12.I.)

3. ó 2 �P1x�1x2qxÿ1 pÿ ì2. Use the negative binomial theorem from subsection 3.12.III to sum

the series:
P1

x�1
1
2
x(x� 1)qxÿ1 � (1ÿ q)ÿ3.

4.
P

këk eÿë=k! � ë
P

ëkÿ1eÿë=(k ÿ 1)!

Section 4.8

1. n � 200, p � 1
40

, ë � np � 5. So

(a) 1ÿ P(less than 4) � 1ÿP3
r�05r eÿ5=r! ' 0:74,

(b) P(none) � eÿ5 ' 0:0067.

2. n � 404; p � 10ÿ2; ë � np � 4:04,

P(bump at least one) � eÿ4:04 1� 4:04� 1
2
(4:04)2 � 1

6
(4:04)3

� 	 ' 0:43:

3. k � [ë] if ë is not an integer. If ë is an integer then p(ëÿ 1) � p(ë) � ëëeÿë=ë!.

Section 4.9

1. T (x) � 1ÿ (1ÿ x)2; t(x) � 2(1ÿ x).

Section 4.10

1. Exact binomial, p(12) � 0:028, p(16) � 0:0018;

normal approximation, p(12) ' 0:027, p(16) ' 0:0022.

2. Show that the mode m is [np] and then use Stirling's formula.

3. ì � np � 800, ó � (npq)1=2 � 20; the probability is 1ÿÖ(4) ' 1
4
ö(4) ' 0:00003, which is

extremely small. But if observed it would suggest the new one is better.
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Section 4.11

1. By symmetry we might just as well pick a point in the semicircle 0 < y < (1ÿ x2)1=2. Now use

example 4.11.4.

2. By (5), 1
2

3 3 3 3a� 1
2

3 2 3 3a � 1; thus a � 2
15

.

P(jX j. 1) � P(ÿ3 < X < ÿ1)� P(1 < X < 2)

� 1
2

3 2 3 2a� 1
2

3 1 3 3
2
a � 11

30
:

Section 4.12

1. p(x, y) � 1
6
, x 6� y; P(X � Y � 3) � 1

3
; P(X � x) � 1

3
� P(Y � y); so each is uniform on

f1, 2, 3g with mean 2 and variance 2
3
.

2. p(x, y) � 1

6

x

y

� �
2ÿx, 0 < y < x < 6.

y �
X
x, y

y

6

x

y

� �
2ÿx �

X6

x�1

1

6
3

x

2
� 7

4
.

Section 4.16

1. X is binomial B(n, 6ÿ2) with mean 6ÿ2 n and variance 6ÿ2 n(1ÿ 6ÿ2).

2. (a) c1 � 2=fn(n� 1)g; (b) c2 � 1.

3.
P

x2ë2eÿë=x! �P x(xÿ 1)ëxeÿë=x!�P xëxeë=x! � ë2 � ë.

4. When [np] � k.

5. x8 > (x2 ÿ 1)4; the distribution is geometric.

6. P(X � x) � pf(q� r) xÿ1 ÿ r xÿ1g � qf( p� r) xÿ1 ÿ r xÿ1g, x < 2.

P(Y � y) �
yÿ 1

jÿ 1

 !
p j
Xyÿ j

i�k

yÿ j

i

 !
qi r yÿ jÿi

�
yÿ 1

k ÿ 1

 !
qk
Xyÿk

i� j

yÿ k

i

 !
pi r yÿkÿi, y > j � k:

7. (a) pq=(1ÿ p2); (b) prÿ1q=(1ÿ pr); (c) pr(1ÿ ps)=(1ÿ pr�s).

8. P(X � 2n) � 1
2
(1ÿ á)nÿ1(1ÿ â)nÿ1f(1ÿ á)â� (1ÿ â)ág;

P(X � 2nÿ 1) � 1
2
(1ÿ á)nÿ1(1ÿ â)nÿ1(á� â), n > 1.

P(E) � á� âÿ 2áâ=f2(á� âÿ áâ)g. Not in general, but B is independent of E and

fX � 2ng when á � â.

9. p(n� k) � n� k ÿ 1

k ÿ 1

� �
pk q n

� (n� k ÿ 1)(n� k ÿ 2) . . . (k � 1)k

n!
1ÿ ë

k

� �k
ë

k

� �n

� ën

n!
1� nÿ 1

k

� �
� � � 1� 1

k

� �
1ÿ ë

k

� �k

! ën

n!
eÿë.

p(n� k) is the probability that in repeated Bernoulli trials the (n� k)th trial is the kth
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success; this is the probability of exactly n failures before the kth success. The result shows

that as failures become rarer, in the long run they have a Poisson distribution. This is consistent

with everything in section 4.8.

10. P(kth recapture is mth tagged)

� P(k th is tagged) 3 P(1st k ÿ1 recaptures include exactly m ÿ 1 tagged).

Now P(kth is tagged) is t=n, and second term is hypergeometric. Hence the result.

11. (a) The total number of possible sequences is
h� t

h

� �
. The number of ways of having x

runs of heads is the number of ways of dividing the h heads into x groups, which we may

do with xÿ 1 bars placed in any of the hÿ 1 gaps, that is in
hÿ 1

xÿ 1

� �
ways. The t tails

must then be distributed with at least one in these xÿ 1 positions, and any number

(including zero) at each end. Adding 2 (notional) tails to go at the ends shows that this is

the same as the number of ways of dividing t � 2 tails into x� 1 groups, none of which is

empty. This may be done in
t � 2ÿ 1

x� 1ÿ 1

� �
ways, by problem 17 of section 3.13, and the

result follows.

12. t(x) � 1ÿ jxj, jxj < 1.

T (x) �
1
2
(1� x)2, ÿ1 < x < 0

1ÿ 1
2
(1ÿ x)2, 0 < x < 1:

�
13. p(x, w ) � 1

36
, x� 1 < w < x� 6, 1 < x < 6.

14. (a) Choose the numbers less than x in
xÿ 1

5

� �
ways.

(b)
49ÿ x

5

� ��
49

6

� �
, 1 < x < 44.

15. 7 3 10ÿ4 approximately.

16. P(X � k) � (1ÿ pt)kÿ1 pt.

17. p( k̂) in (2) of section 4.5, where in the general case k̂ is the integer part of

(m� 1)r ÿ (w� 1)

m� 1� w� 1

What are the special cases?

The ratio pt(k)=ptÿ1(k) is

(t ÿ m)(t ÿ r)

t(t ÿ mÿ r � k)
:

So p(k) is largest for ®xed m, r, and k when t � [mr=k].

19. (a)
xÿ yÿ 1

4

� ��
49

6

� �
, 1 < y , xÿ 4 < 45.

(b)
49ÿ zÿ 1

6ÿ z

� ��
49

6

� �
.

20. P(X � 0) � nÿ1, P(X � x) � 2nÿ2(nÿ x), 1 < x < nÿ 1.

mean �
Xnÿ1

x�1

xp(x) �
Xnÿ1

x�1

2

n2
(nxÿ x2) � n2 ÿ 1

3n
:

21. P(X � n) � (nÿ 1) p2qnÿ2 � (nÿ 1)q2 pnÿ2, n > 4.
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mean �P1n�4 n(nÿ 1)(q nÿ2 p2 � pnÿ2q2). Now use the negative binomial theorem from

3.12.III with n � 3 to obtain the result.

23. (b) Deaths per day may be taken to be Poisson with parameter 2: P(5 or more in one day)

� 1ÿ 7eÿ2 ' 0:054, just over 5%. This is not so unlikely. You would expect at least one

such day each month. However, as deaths per annum are approximately normal, we

calculate, using part (a),

P(X . 850) � P
xÿ 730��������

730
p .

120��������
730
p

� �
' 1ÿÖ

120��������
730
p
� �

' 3 3 10ÿ5:

So 2000 really was an extremely bad year, compared with the previous two decades.

24. (a) 2; (b) 3, using problem 6; (c) 11
2

, using problem 21.

Section 5.2

1. Yes, because for any ù 2 Ù, X (ù) is ®xed uniquely; so X (ù)ÿ X (ù) � 0, etc.

2. X and Y must be de®ned on the same sample space Ù. Then X (ù)� Y (ù) is a real-valued

function on Ù, which is a random variable if the outcomes ù such that X (ù)� Y (ù) < z are an

event. Likewise for X ÿ Y , XY. These conditions are always satis®ed if Ù is countable, so that

all its subsets are events.

3. W 2 fÿn, ÿn� 1, . . . , nÿ 1, ng, the elements denoting your position in metres east of the

start. You can write W � X ÿ Y .

4. Pick a point at random on a dartboard, and let X be the score.

Section 5.3

1. F(x) �
1
2
nÿ2(n� x)(n� x� 1), ÿn < x < 0

1ÿ 1
2
nÿ2(nÿ x)(nÿ xÿ 1), 0 < x < n:

�
2. If P(X � x) � p(x), x 2 D, then we let Ù � D and de®ne X (ù) � ù, together with

P(A) �Px2A p(x) for any event in Ù.

3. If b . 0, pY (y) � pX

yÿ a

b

� �
, FY (y) � FX

yÿ a

b

� �
.

If b � 0 then P(Y � a) � 1. If b , 0 then pY (y) is as above, but

FY (y) � P X >
yÿ a

b

� �
�

X
x> (yÿa)=b

pX (x):

Section 5.4

1. c � 2aÿ2; F(x) � x2=a2.

2. ë f1 � (1ÿ ë) f2 > 0 and
�fë1 � (1ÿ ë) f2g dx � ë� 1ÿ ë � 1.

(b) Not in general. For example, if f 1 � f2 � 1
2
, 0 < x < 2, then f2 f 2 � 1

4
, which is not a

density. But consider f 1 � f2 � 1, 0 < x < 1, when f 1 f2 is a density.

3. Check that (20) and (21) hold. Yes; likewise.
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Section 5.5

1. From example 5.5.6,

f Y ( y) � 1

2
���
y
p fö(

���
y
p

)� ö(ÿ ���
y
p

)g � 1���������
2ðy
p exp(ÿ1

2
y), y > 0:

2. Uniform on the integers f0, 1, . . . , mÿ 1g; pY (k) � mÿ1.

3. 1
3
yÿ2=3 f ( y1=3).

4. f Y (y) � f ( y), by symmetry about y � 1
2
.

Section 5.6

1.

�1

0

2x2 dx � 2
3
.

2.
2

n(n� 1)

Xn

x�1

x2 � 2

n(n� 1)
3 1

6
3 n(n� 1)(2n� 1) � 1

3
(2n� 1).

3. EX �
�1

0

fërx reÿëx=(r ÿ 1)!g dx � r

ë

�
fër�1x r eÿëx=r!g dx � r

ë
, because the integrand is a

density with integral unity.

Section 5.7

1. B(n, p) has mean np and variance npq. Hence EX � n=2, EY � 2n=4; var X � n=4,

var Y � 6n=16. Use example 5.7.4 to give EZ � n, var Z � 2n.

2. Let I be the indicator of the event h(X ) > a. Then aI < h(X ) always. Now take the expected

value of each side, and use the fact that EI � P(I � 1) � P(h(X ) > a).

3. P(X � n) � 2ÿn, EX � 2, var X � 2.

(a) P(jX ÿ 2j > 2) < E(jX ÿ 2j2)=4 � 1
4

var X � 1
2
.

Actually P(jX ÿ 2j > 2) � P(X > 4) � 2ÿ4.

(b) P(X > 4) < EjX j=4 � 2=4. Actually P(X > 4) � 2ÿ4.

Section 5.8

1. (a) Condition on the ®rst point, and then on the second, to get (with an obvious notation) ®rst

EX � rE(X jR)� öE(X jF)� 1 and second E(X jR) � 1� öE(X jF), E(X jF) � 1 �
rE(X jR). Hence E(X ) � (2� rö)=(1ÿ rö).

(b) EY � (2� EY )2rö� 2(r2 � ö2). So EY � 2=(1ÿ 2rö).

(c) E(X jL) � EX and E(Y jL) � EY .

2. Condition on the ®rst point. Check that ôk satis®es the recurrence, together with ô0 � ôn � 0.

Section 5.9

1. Given that X > t, we have shown that X � t � Y , where Y is exponential. Hence E(X jX > t)

� t � ëÿ1, and var (X jX > t) � var Y � ëÿ2.
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2. E(X jB)P(B)� E(X jBc)P(Bc)

�
�

xf (xjB)P(B)� xf (x)jBc)P(Bc)� � dx

�
�

x
d

dx
F(xjB)P(B)� x

d

dx
F(xjBc)P(Bc)

� �
dx

�
�

x
d

dx
P(fX < xg \ B)� x

d

dx
P(fX < xg \ Bc

� �
dx, by (1) of section 5:9:

�
�

x
d

dx
F(x) dx � EX :

3. Immediate from (8).

Section 5.12

1. (a) P(X > x) � f(6ÿ x� 1)=6g5, 1 < x < 6. So

p(x) � P(X � x) � P(X > x)ÿ P(X > x� 1)

� 6ÿ x� 1

6

� �5

ÿ 6ÿ x

6

� �5

:

EX �
X6

x�1

P(X > x) � 6

6

� �5

� 5

6

� �5

� � � � � 1

6

� �5

� 4062

2592
' 1:57:

(b) P(Y > y) � 1ÿ P(Y , y) � 1ÿ f(yÿ 1)=6g5. So p(y) � P(Y � y) � (y=6)5

ÿ f(yÿ 1)=6g5.

By symmetry Y has the same distribution as 7ÿ X , so EY � 7ÿ EX ' 5:43. Or do the sum.

2. (a) 1
2
, by symmetry. (b) Let Ar be the event that the ®rst two dice sum to r, and Br the event

that the other two sum to r. Then we know

P(Ar) � P(Br) � 6ÿ2 minfr ÿ 1, 13ÿ rg, 2 < r < 12:

Then P(sum of 4 dice � 14) �P12
r�2P(Ar)P(B14ÿr) �

P12
r�2fP(Ar)g2 � 6ÿ4(12 � 22 �

32 � 42 � 52 � 62 � 52 � 42 � 32 � 22 � 12) � 6ÿ4 3 146. Hence by symmetry

P(sum of 4 dice > 14) � 1
2
� 1

2
3 146

64 :

3. (a) c � d ÿ 1, d . 1; (b) EX � c=(d ÿ 2), d . 2, EX � 1, 1 , d < 2; (c) var X �
c=(d ÿ 3)ÿ fc=(d ÿ 2)g2, d . 3, var X � 1, 2 , d < 3; unde®ned for 1 , d < 2.

4. (a) P sin X . 1
2

ÿ � � P 1
6
ð, X , 5

6
ð

� 	 [ 2ð� 1
6
ð, X , 2ð� 5

6
ð

� 	 [ � � � �ÿ �
�
X1
n�0

P(2nð� 1
6
ð, X , 2nð� 5

6
ð)

�
X1
n�0

fFX (2nð� 5
6
ð)ÿ FX (2nð� 1

6
ð)g

�
X1
n�0

exp ÿë 2nð� 1
6
ð

ÿ �� 	ÿ exp ÿë 2nð� 5
6
ð

ÿ �� 	� �
� exp

ÿÿ 1
6
ëð
�ÿ exp

ÿÿ 5
6
ëð
�

1ÿ exp(ÿ2ëð)
:

(b) n!ëÿn.
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5. Trivial if EX 2 � 1. If EX 2 ,1 then (X ÿ EX )2 > 0, so by the dominance inequality,

example 5.7.1, Ef(X ÿ EX )2g � EX 2 ÿ (EX )2 > 0.

6. (a) c � 6, F(x) � 3x2 ÿ 2x3. (b) It cannot.

(c) exp (ÿx2 � 4x) � exp [ÿ1
2
f ���

2
p

(xÿ 2)g2 � 4]; compare with N 2, 1
2

ÿ �
to give c �

eÿ4ðÿ1=2, F(x) � Öf ���
2
p

(xÿ 2)g.
(d) c � 1, F(x) � e x=(1� e x).

7. (a) f (x) � 2xeÿx2

; (b) f (x) � xÿ2eÿ1=x;

(c) f (x) � 2=(e x � eÿx)2; (d) It cannot (consider F9(1)).

8. P(X � 2n� 1jX odd) � ë2n�1eÿë

(2n� 1)!

2

1ÿ eÿ2ë
,

E(X jX odd) � ë
1� eÿ2ë

1ÿ eÿ2ë
� ë coth ë.

9.
� a

ÿa
xex dx � 2a cosh aÿ 2 sinh a;� a

ÿa
x2e x dx � 2a2 sinh aÿ 4a cosh a� 4 sinh a.

10. If the board has radius a, f Y (y) � 2

ða2
(a2 ÿ y2)1=2,

FY (y) � 1

2
� 1

ð
sin ÿ1 y

a
� y

ða2
(a2 ÿ y2)1=2, jyj < a;

f R(r) � 2r

a2
, FR(r) � r2

a2
, 0 < r < a; ER � 2

3
a.

11. pX (x) � 1
2

3 2
3

3 3
4

3 � � � 3 xÿ 1

x

� �
1

x� 1

� �
, 1 < x < 9,

pX (10) � 1
10

; X � 1� 1
2
� � � � � 1

9
� 1

10
.

pY (y) � fy(y� 1)gÿ1, y > 1; EY � 1.

12. Let C have radius a. Now È � dBOP is uniform on (0, 2ð), where O is the centre of the circle.

X � 2a sin
È

2
, hence

FX (x) � P(2a sin(È=2) < x) � (2=ð)sinÿ1(x=2a), 0 < x < 2a,

f X (x) � (2=ð)(4a2 ÿ x2)ÿ1=2

EX � a

ð

�2ð

0

sin
è

2
dè � 2a

ð
.

13. (a) F(x) � (2=ð) sin ÿ1(x=V 2), 0 < x < V 2, whence

f (x) � (2=ð)(V 4 ÿ x2)ÿ1=2.

(b) f (x) � 1
2
c
���
x
p

( sin 2È)ÿ3=2 expfÿx=(sin 2È)2g, c � 4=
���
ð
p

.

14. f (w ) � 1
3
cwÿ2=3 f (cw1=3), c � f6=(ðrg)g1=3:

15. EX � 2; EY � 3.

16. FY (y) � P(tanÈ < x) � (1=ð)tanÿ1x.

17. á � (
������
2ð
p

ó 3)ÿ1; f (x) � x

ðm3ó 3

� �1=2

exp ÿ x

mó 2

� �
:

18. First note that xf1ÿ F(x)g <
�1

x
yf1ÿ F(y)g dy! 0 as x!1, since EX ,1. Now write

EX � � a

0
xf (x) dx � ÿx[1ÿ F(x)]a

0 �
� a

0
f1ÿ F(x)g dx; let a!1.

19. Use conditioning on the ®rst roll.

EX n � p(1� E(X nj1 shown))� q(1� E(X nj2 shown))� r(1� E(X nj3 shown)), whence

EX n ÿ pEX nÿ1 ÿ qEX nÿ2 ÿ rEX nÿ3 � 1.
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21. (a) c � á, EX � áÃ
á� 1

á

� �
, where Ã(a) is the gamma function

Ã(a) �
�1

0

xaÿ1eÿx dx; a . 0,

� (aÿ 1)! for integer a.

(b) P(X . s� t j X . t)=P(X . s) � áÿ1 exp fsá � tá ÿ (s� t)ág.
If á. 1 then sá � tá ÿ (s� t)á , 0, as required.

If á, 1 then sá � tá ÿ (s� t)á . 0, and

P(X . s� tjX . t) . P(X . s):

22. Let B(a, b) � � 1

0
xaÿ1(1ÿ x)bÿ1 dx. Integrate by parts to ®nd (a� bÿ 1)B(a, b) �

(bÿ 1)B(a, bÿ 1) � (aÿ 1)B(aÿ 1, b) and iterate to get B(a, b) � f(aÿ 1)!(bÿ 1)!g=
(a� bÿ 1)!. Then use EX � B(a� 1, b), EX 2 � B(a� 2, b).

24. After r readings a character is erroneous with probability p(1ÿ ä)r; there are fn characters.

So the number of errors X is binomial B( fn, p(1ÿ ä)r). P(X � 0) � f1ÿ p(1ÿ ä)rg fn,

which exceeds 1
2

for the given values if (1ÿ 2ÿ8ÿr)217

. 1
2
.

25. As in the solution for problem 18 above, note that x2f1ÿ F(x)g <
�1

x
y2f1ÿ F(y)g dy! 0

as x!1, since EX 2 ,1. Now write

EX 2 �
�a

0

x2 f (x)dx � ÿx2[1ÿ F(x)]a
0 �

�a

0

f1ÿ F(x)g2xdx,

and let a!1.

Section 6.2

1. p(1, 6)! 1, and p(x, y)! 0 otherwise.

2. (a)
nÿ 1

2n
, (b)

1

n
.

3. If the parties are P, Q, and R, then if voters' preferences are distributed like this, it follows that 2
3

of them prefer P to Q, 2
3

prefer Q to R, and 2
3

prefer R to P. So whoever is elected, 2
3

of the voters

preferred some other party.

Section 6.3

1. F(x, y) � 1ÿ eÿx ÿ xeÿ y, 0 < x < y ,1
1ÿ eÿ y ÿ yeÿ y, 0 < y < x ,1;

�
FX (x) � 1ÿ eÿx, FY (y) � 1ÿ eÿ y ÿ yeÿ y

f X (x) � eÿx, f Y (y) � yeÿ y:

2. X and Y are not jointly continuous, so there is no contradiction. (Their joint distribution is said

to be singular.)

3.
@ 2 F

@x@ y
, 0, so this cannot be a joint distribution.
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Section 6.4

1.

�1

0

�1

0

�xy

0

dz dx dy � 1
4
.

2. There is a unique è 2 (0, 1) such that è2 � èÿ 1 � 0.

pX (x) � è2x�1; pY (y) � (1ÿ è y)è y, y > 1:

3. F(u, v) � P(U , u , V , v)� F(u, u ) � 2u(vÿ u)� F(u, u ). Now differentiate.

4. Follow example 6.4.7.

Section 6.5

1. P(W < w) is the volume of the pyramid x > 0, y > 0, z > 0, x� y� z < w. The volume of

such a pyramid is 1
3

3 area of base 3 height � 1
3

3 1
2
w2 3 w � 1

6
w3. Hence, differentiating,

f W (w ) � 1
2
w2, 0 < w < 1. Consideration of other pyramids in the cube 0 < x, y, z < 1, yields

the rest of f W (w ).

2. From the solution to example 6.5.2(ii), either by symmetry or by using similar arguments

pY (y) � 49ÿ y

5

� ��
49

6

� �
, 1 < y < 44:

Section 6.6

1. P(An) � P(at least n sixes)

� 1ÿ P(less than n sixes in n rolls)

� 1ÿ
Xnÿ1

r�0

6n

r

� �
5

6

� �6nÿr
1

6

� �r

> P(An�1), as we showed in (11). The inequality follows.

Alternatively, if you have a computer big enough for symbolic algebra, it will rewrite the

expression for P(An) in a form which is monotone in n.

2. f Z(z) � eÿz=2 ÿ eÿz.

3. The number of ¯ips of an unfair coin until the nth head has the negative binomial distribution.

The waiting times between heads are geometric. (Or use induction.)

4. Recall from section 4.8 that the number of meteorites up to time t is Poisson, and the gaps

between meteorites are exponential. Or verify the induction, using� z

0

f (zÿ x)ëeÿëx dx �
� z

0

f (x)ëeÿë(zÿx) dx

�
� z

0

ënx nÿ1eÿëx

(nÿ 1)!
ëeÿë(zÿx) dx � ën�1eÿëz

(nÿ 1)j
� z

0

x nÿ1 dx:

Section 6.7

1. Let I r be the indicator of the event that your n coupons include the rth type. Find E
P

r I r.

2. Show that
Q

r(1ÿ I r) > 1ÿPr I r. (Induction is easy.)

3. E(Sr=Sk) � r=k, for r < k. The cobalt balls divide the dun balls into c� 1 groups, with the

same expectation. Hence EX � d=(c� 1), since the sum of the groups is d.
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Section 6.8

1. (a) EfX � Y )(X ÿ Y )g � EX 2 ÿ EY 2 � 0.

(b) EfX=(X � Y )g � EfY=(X � Y )g � 1
2
, if X and Y have the same distribution.

2. E(XY ) � 0 by symmetry, so cov(X , Y ) � 0, but

P(X � 0)P(Y � 0) � (2n� 1)2

f2n(n� 1)� 1g2
6� 1

2n(n� 1)� 1

� P(X � Y � 0):

3. Use the fact that skw Y � ( pÿ q)=
������
pq
p

if Y is Bernoulli.

4. 0 < Ef(sX ÿ tY )2g � s2EX 2 ÿ 2stEX EY � t2EY 2. This is a quadratic with at most one real

root, and the inequality is the condition for this to hold. For the last part consider

fs(X ÿ EX )ÿ t(Y ÿ EY )g2.

5. EX � ì, var X � ó 2=n, and so

cov(X , X r ÿ X ) � E(X r X )ÿ E(X 2)ÿ EX (EX r ÿ EX )

� nÿ1(nÿ 1)ì2 � nÿ1E(X 2
r)ÿ nÿ1ó 2 ÿ ì2 � 0:

Section 6.9

1. Discrete case: p(xjy) � pX (x), p(x, y) � pX (x) pY (y). By the above, when X and Y are

independent E(X jY ) � EX .

2. p(vju) � 2(13ÿ 2u )ÿ1, u , v
(13ÿ 2u )ÿ1, u � v:

�
E(V jU � u ) �

X6

v�u

v p(vju ) � 42ÿ u2

13ÿ 2u

E(UV ) � 49
4

; cov(U , V ) � 49
4
ÿ 91

36
3 161

36
� 5

6

ÿ �
2 7

6

ÿ �
2:

3. E
ÿPN

1 X r

�
2 � E

ÿPN
1 X 2

r � 2
P

r , s X r X s

�
� EN E(X 2

1)� fE(N2)ÿ ENg(EX 1)2:

Now subtract (E
PN

1 X r)
2.

Section 6.10

1. (a) f (u, v) � 2 f (u ) f (v), 0 < u , v; f V (v) � � v
0

2 f (u) duf (v);

f (ujv) � f (u, v)= f V (v) � f (u )=
� v

0
f (u ) du:

E(U jV � v) � � v
0

uf (u ) du=
� v

0
f (u ) du.

(b) From above.

2. Z � X � Y has density ë2zeÿëz, and X and Z have joint density ë2eÿëz, 0 < x , z ,1. This

follows either from example 6.10.2 or directly from

f (x, z) � @ 2

@x@z
P(X < x, Z < z) � @ 2

@x@z

�x

0

� zÿx

0

ë2eÿë y dy eÿëx dx,

hence f (xjz) � f (x, z)=f Z (z) � zÿ1, 0 < x < z, which is uniform.
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3. (a) Given r, P(X � kjR � r) � n

k

� �
rk(1ÿ r)nÿk : Hence

P(X � k) �
�1

0

P(X � kjR � r) dr:

Now recall the beta distribution (see problem 22 in section 5.12) to ®nd that�1

0

rk(1ÿ r)nÿk dr � k!(nÿ k)!=(n� 1)!

(b)
P(X � kjR � r) f R(r)

P(X � k)
� (n� 1)

n

k

� �
rk(1ÿ r)nÿk , which is a beta density,

â(k � 1, n� 1ÿ k).

Section 6.11

1. var(Y jX ) � E(Y 2jX )ÿ fø(X )g2, and varfø(X )g � Efø(X )2g ÿ (EY )2:

2. We need to use the fact that

E[fX ÿ E(X jY )gfE(X jY )ÿ g(Y )g] � E([EfX ÿ E(X jY )jYg]fE(X jY )ÿ g(Y )g) � 0

So E(X ÿ g)2 � E(X ÿ ø� øÿ g)2 � E(X ÿ ø)2 � E(g ÿ ø)2 � 2Ef(X ÿ ø)(g ÿ ø)g
� E(X ÿ ø)2 � E(g ÿ ø)2 > E(X ÿ ø)2.

3. pX jY (0j0) � a

a� c
, pX jY (1j0) � c

a� c
,

pX jY (0j1) � b

b� d
, pX jY (1j1) � d

b� d
.

So E(X jY � 0) � c

a� c
, E(X jY � 1) � d

b� d
, and

E(X jY ) � c(1ÿ Y )

a� c
� dY

b� d
, as required.

Section 6.12

1. By de®nition V � í� (ôr=ó )(U ÿ ì)� ô(1ÿ r2)1=2Y . Hence the conditional density of V ,

given U � u, is normal with mean E(V jU ) � í� (ôr=ó )(U ÿ ì) and variance var(V jU )

� ô2(1ÿ r2).

2. (a) Using (2) and (3) with ó � ô � 1,

P(U . 0, V . 0) � P(X . 0, rX � (1ÿ r2)1=2Y . 0):

In polar coordinates the region (x . 0, rx� (1ÿ r2)1=2 y . 0) is the region

r . 0, ÿ r
(1ÿ r2)1=2

, tan è,1
� �

� (r . 0, ÿr, sinè, 1):

Hence

P(U . 0, V . 0) �
�1

0

reÿr2=2 dr

�ð=2

ÿ(sinÿ1r)

1

2ð
dè

� 1

2ð

ð

2
� sin ÿ1r

� �
(b) P(0 , U , V ) � P(0 , V , U ) � 1

2
P(0 , U , 0 , V ), by symmetry.

(c) max(U , V ) � maxfX , rX � (1ÿ r2)1=2Yg. The line
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y � 1ÿ r
(1ÿ r2)1=2

x

divides the plane into two regions above the line

x , rx� (1ÿ r2)1=2 y:

Below the line the inequality is reversed. In polars this line is given by

tanø � 1ÿ r
1� r

� �1=2

:

Note that

sinø � 1ÿ r
2

� �1=2

, cosø � 1� r
2

� �1=2

:

Hence

Efmax(U , V )g �
�1

0

reÿr2=2

2ð

�ð�ø
ø
frr cosè� (1ÿ r2)r sinègdè�

�ø
øÿð

r cosèdè

� �
dr

�
���
ð

2

r
3

1

2ð
[rfsin(ð� ø)ÿ sinøg ÿ (1ÿ r2)fcos(ð� ø)ÿ cosøg

� fsinøÿ sin(øÿ ð)g]

� 1������
2ð
p f

���
2
p

(1ÿ r)1=2g:

3. è � 1

2
cotÿ1 ó 2 ÿ ô2

2róô

 !
. To see this, recall that U and V are independent if and only if they are

uncorrelated, which is to say that 0 � E(UV ) � (EY 2 ÿ EX 2)1
2

sin 2è� EXY cos 2è.

Section 6.13

1. (a) The inverse is x � u, y � v=u, so jJ j � 1 0

ÿv=u2 1=u

���� ���� � jujÿ1.

The density of V is the marginal
�1
ÿ1

1

juj f u,
v

u

� �
du

(b) In this case jJ j � jzj.
(c) Use (b), or use the circular symmetry and problem 16 of section 5.12.

(d) Using (a) we have

f V (v) �
�

f (u, v) du �
�

1

juj f X (u ) f Y

v

u

� �
du

�
�1

z

ðÿ1eÿu2=2(u2 ÿ v2)ÿ1=2 u du �
�1

0

ðÿ1eÿv2=2eÿy2=2dy

2. u � uv, y � uÿ uv, jJ j � v u

1ÿ v ÿu

���� ���� � juj:
f (u, v) � f X (uv) f Y (uÿ uv)juj

� u
ën

(nÿ 1)!
(uv)nÿ1eÿëuv ëm

(mÿ 1)!
fu(1ÿ v)gmÿ1eÿë(uÿuv)

� ën�m

(nÿ 1)!(mÿ 1)!
(1ÿ v)mÿ1vnÿ1u m�nÿ1eÿëu, 0 < v <, u > 0:

As this factorizes, U and V are independent.
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3. Condition on the exact number of X (i) less than x.

4. Use exercise 3, and differentiate to get the density. Now remember the beta density (®nd it in

section 5.10).

5. Set W � X � Y . Then jJ j � jwj, and

f Z(z) �
�

f (w, z) dw �
�1

0

ëìeÿëwzeÿìw�ìwzw dw

� ëì

fëz� ì(1ÿ z)g2
, 0 < z < 1:

Section 6.15

1. (a) Expected number to get one head is 2.

(b) Exploit the symmetry of the binomial B 2nÿ 1, 1
2

ÿ �
distribution.

2. X � 1� S � T , where S is geometric with parameter 2
3
, and T is geometric (and independent

of S) with parameter 1
3
. By the convolution rule,

pX (x) � P(S � T � xÿ 1) �Pxÿ2
r�1P(S � r)P(T � xÿ r ÿ 1)

�Pxÿ2
r�1

1
3

ÿ �
rÿ1 3 2

3
3 2

3

ÿ �
xÿrÿ2 3 1

3
� 2

3

ÿ �
xÿ1 1

2
ÿ 1

2

ÿ �
xÿ1

� 	
:

3. For any numbers x and y, by inspection we have

minfx, yg � 1
2
jxÿ yj � 1

2
(x� y):

Hence E minfX , Yg � 1
2
EjX ÿ Y j � 1

2
EX � 1

2
EY . But minfX , Yg � 1, EX � pÿ1; EY � qÿ1.

Hence

EjX ÿ Y j � 1

p
� 1

q
ÿ 2 � 1

pq
ÿ 2 � p

q
� q

p
:

4. f (x, y) � xÿ1, 0 < y < x < 1.

(a) f Y (y) � ÿlog y, 0 , y < 1.

(b) f X jY (xjy) � ÿxÿ1=log y.

(c) E(X jY ) � ÿ(1ÿ Y )=log Y .

5. cov(X , Y ) � 27
8
ÿ 33

16

ÿ �
2.

6. p(x, y) � n!

(nÿ x)!(xÿ y)!y!
5
6

ÿ �
nÿx 5

36

ÿ �
xÿ y 1

36

ÿ �
y.

From this, or by direct argument, p(xjy) � nÿ y

xÿ y

� �
30
35

ÿ �
nÿx 5

35

ÿ �
xÿ y, which is to say that, given

Y , X ÿ Y is binomial B nÿ Y , 5
35

ÿ �
. Hence E(X ÿ Y jY ) � (nÿ Y ) 5

35
and var (X ÿ Y jY ) �

(nÿ Y ) 30
35

3 5
35

. Therefore E(X jY ) � 1
7
(n� 6Y ), and var (X jY ) � 6

49
(nÿ Y ).

7. This is essentially the same as problem 6:

P(faultyjnot detected) � P(faulty \ not detected)

P(not detected as faulty)
� ö(1ÿ ä)

1ÿ öä
:

Hence, given Y , X is then binomial B bÿ Y ,
ö(1ÿ ä)

1ÿ öä

� �
.

8. P(meet) � 11
36

; P(meetjafter 12:30) � 5
9
.

9. p(a, b) � 1
6
, etc.; E(XY ) � 1

3
(ab� bc� ca), EX � 1

3
(a� b� c).

10. p(u, y) �
1
36

, 1 < u , y < 6
1
36

(6ÿ u� 1), u � y,

�
cov(U , X ) � ÿ35

24
.
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11. p(x, y) � px�1q y � qx�1 py; x, y > 1.

pX (x) � qpx � pqx; pY (y) � p2q yÿ1 � q2 p yÿ1.

E(XY ) � 1

q
� 1

p
; EX � q

p
� p

q
; EY � 2.

12. EZ � 1
2

by symmetry. Now if we transform to polar coordinates R2 � X 2 � Y 2, È �
tanÿ1(Y=X ), then R and È have joint density reÿr2=2=(2ð), which is to say that È is uniform

on (0, 2ð). Thus

EZ2 � E
X 2

X 2 � Y 2

� �2
( )

� E(cos4 È) � 1

2ð

�2ð

0

cos4 è dè � 3
8
:

Hence var Z � 1
8
.

13. Let U , V , and W denote your net winnings from the coins with value 5, 10, or 20 respectively.

Then, by considering cases,

P(U � 30) � 1
8
, P(U � ÿ5) � 6

8
,

P(V � 25) � 1
4
, P(V � ÿ10) � 5

8
,

P(W � 15) � 1
2
, P(W � ÿ20) � 3

8
;

P(U � 0) � P(V � 0) � P(W � 0) � 1
8
. Hence E(U ) � E(V ) � E(W ) � 0, so the expected

net gain is nil for any nomination. However, 4 var U � 525, 4 var V � 875, and 4 var W � 950,

so you will choose a if you are risk-averse, but c if you are risk-friendly.

14. (a) The random variables ÿX1, . . . , ÿX n are also independent and have the same joint

distribution as X1, . . . , X n. ThusÿPn
1 X i has the same distribution as

Pn
1 X i, as required.

(b) No. For example:

1 7
36

0 5
36

Y 0 2
36

4
36

6
36

ÿ1 3
36

8
36

1
36

ÿ1 0 1

X

Here pY ( j) � pX ( j) � 1
3
, for all j, and each is symmetric about zero, but

P(X � Y � ÿ2) � 3
36
6� 5

36
� P(X � Y � 2)

.

15. If S is the sector where 0 < è < ð=4,

EjX ^ Y j � 8

��
S

y

2ð
exp ÿ1

2
(x2 � y2)

� 	
dx dy

�
�1

0

r2 exp ÿ1
2
r2

ÿ �
dr

�ð=4

0

4

ð
sinè dè

� 2(
���
2
p
ÿ 1)=

���
ð
p

:
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17. The needle intersects a joint if j1
2
a sinÈj. x, so

P(intersection) � 2

�ð
0

�a sin è=2

0

1

ð
dx dè � 2

�ð
0

a

2ð
sin è dè � 2a

ð
:

18. P(last ball jet) � j=( j� k); P(last ball khaki) � k=( j� k). If the last is jet, then the remain-

ing jÿ 1 jet balls are divided into k � 1 groups S1, . . . , Sk�1, where ES1 � � � � � ESk�1, and

S1 � � � � � Sk�1 � jÿ 1. Hence ESk�1 � ( jÿ 1)=(k � 1), and so

E(number leftjlast is jet) � jÿ 1

k � 1
� 1 � j� k

k � 1

� �
:

Hence E(number left) � j� k

k � 1

j

k � j

� �
� j� k

j� 1

k

k � j

� �
� j

k � 1
� k

j� 1
.

19. var(Y � Z) � var Y � var Z when uncorrelated, so

a2 � var X

var X � varY
, b2 � var Y

var X � var Y

20. Since the X i are continuous, P(X i � X j) � 0 for i 6� j. Then, by symmetry, all 4! possible

orderings of X1, X2, X3, X4 are equally likely. So P(X1 . X2 . X3 . X4) � 1
24

. You expect

one such year in any 24 years, so your concern would depend on just how many times this had

happened before. Since P(X1 . X2 , X3 , X 4) � 3
16

, you should not get too excited; you

expect this around once in ®ve years.

21. (a) EU �
Xn

k�0

P(U . k) �
Xn

k�1

nÿ k

n

� �2

�
Xn

k�0

k2

n2
.

(b) EU � EV � EX � EY � n� 1.

(c) E(UV ) �
Xn

v�1

v
2

n2

Xvÿ1

u�1

u� v

n2

( )
� (n� 1)2

4
.

(d) EU2 �
Xn

k�0

k2P(U � k) � 1

n2

Xn

k�0

k2f2(nÿk) �1g

� n� 1

6n
(n2 � n� 1):

So var U � (n2 ÿ 1)(2n2 � 1)

36n2
.

(e) var V � var U , by symmetry.

22. f (u, v) � 2, 0 < u , v < 1.

f U (u ) � 2(1ÿ u ); f V (v) � v; 0 < u, v < 1.

EU � 1
3
, EU 2 � 1

6
, var U � var V � 1

18
, E(UV ) � 1

4
, etc. As n!1 the discrete uniform

distribution converges to the continuous.

23. (a) P(X � 10) � 2ÿ10 � 2ÿ10 � 2ÿ9; P(X � 9) � 0.

(b) Let I j be the indicator of the event A j that the jth coin shows the same as its neighbours; then

EX � E
P10

j�1 I j �
P10

j�1P(A j) �
P10

j�1
1
4
� 5

2
:

Now calculate var I j � 3
16

, and

cov(I j, I k) �
1
16

, j jÿ kj � 1

0 otherwise:

�
Then

var X �P var I j �
P

cov(I j, I k)

� 30
16
� 20

16
:

358 Hints and solutions



24. (a)
1

ó y
ö

log yÿ ì

ó

� �
, where ö is standard normal density.

EY � Ee X � e ì�ó 2=2

; EY 2 � Ee2X � e2ì�2ó 2

(b) log Z has mean ìÿ 2í and variance ó 2 ÿ 2óôr� 4ô2.

25. 1 � P
ÿSnÿ1

k�0 Ak

�
<
Pnÿ1

k�1P(Ak) � nP(A0), because P(A j) � P(Ak) for all j, k, by symmetry.

Early bidders try a low offer, later bidders know they have to do better. The model works if you

are opening simultaneous sealed bids.

26. (a) Yes. Let A be the event where X (ù) > x, and B the event where Y (ù) > x. Since

X (ù ) > Y (ù) with probability 1, it follows that P(B) < P(A).

(b) Yes, because wherever Y (ù) > Z(ù), X (ù ) > Y (ù) > Z(ù).

27. Use p(x, y) � c

2(x� yÿ 1)(x� y)
ÿ c

2(x� y)(x� y� 1)
and successive cancellation to ®nd

c � 2, and pX (x) � fx(x� 1)gÿ1. Hence EX is not ®nite.

28. X is binomial B(n, ã); Y is binomial Bfn, ã(1ÿ ä)g, X and Y are jointly trinomial;

E(XY jX ) � X 2(1ÿ ä), so E(XY ) � fn2ã2 � nã(1ÿ ã)g(1ÿ ä), and hence cov(X , Y ) �
nã(1ÿ ã)(1ÿ ä).

29. (a) Ö(ÿ2)� 1ÿÖ(2) � 0:046; (b) after 22 tests; (c) after 12 tests.

30. (a) Remember m0 � mn � 0.

(b) Conditional on Y , by (a) we have E(X jY ) � Y (nÿ Y ), and E(XY jY ) � Y 2(nÿ Y ).

Hence, after some algebra,

EX � nEY ÿ EY 2 � n(nÿ 1) pq,

E(XY ) � nEY 2 ÿ EY 3 � n2(nÿ 1) p2 � n2 pÿ n(nÿ 1)(nÿ 2) p3 ÿ npÿ 3n(nÿ 1) p2:

So cov(X , Y ) � n2qp(qÿ p)ÿ npq(qÿ p)

� n(nÿ 1) pq(qÿ p) � (qÿ p)EX ,

which is zero when p � 1
2
� q.

(c) EX � EY EZ; cov(X , Y ) � EZ var Y .

31. (a) P(n(1ÿ M n) . y) � P(M n , 1ÿ y=n) � (1ÿ y=n)n

(b) Using Taylor's theorem,

P M n , 1ÿ y

n

� �
� FX 1ÿ y

n

� �� �n

' 1ÿ y

n
f X (1)� O

1

n2

� �� �n

! expfÿ f (1)yg:
32. One possibility follows from the fact that FX (1ÿ x) � 1ÿ 6x2 � o(x2). Therefore

P(
���
n
p

(1ÿ M n) . y) � FX 1ÿ y���
n
p

� �� �n

� 1ÿ 6y2

n
� o(nÿ1)

� �n

! exp(ÿ6y2):

33. Let I j be the indicator of the event that the jth person does not share a birthdate. Then

P(I j � 1) � 364
365

ÿ �
51. Thus ES � E

P52
1 I j � 52 364

365

ÿ �
51 ' 45:4. Likewise, if K j is the indicator

of the event that the jth person shares a birthdate with exactly one other, then

2ED � E
X52

1

K j � 52 3
51

365

364

365

� �50

' 6:

Finally, since there are 52 individuals, S � 2D� 3M < 52, and taking expectations shows
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EM < 0:2; now use P(M . 0) < EM , which is obvious (and in any case follows from

Markov's inequality).

34. These are just special cases of the coupon collector's problem. Use your calculator.

38. f2Ö(z=
���
2
p

)ÿ 1g2 � FZ(z). Differentiate for density.

E(Z j X . 0, Y . 0) � E(X j X . 0, Y . 0)� E(Y j X . 0, Y . 0)

� 2E(X j X . 0):

43. Use indicators: I k indicates a head on the k th ¯ip; J k indicates that the (k ÿ 1)th and k th ¯ips

are different. Then X �Pn
1 I k , R � 1�Pn

2 J k , and so E(XR) � EfPn
k�1 I k(1�Pn

k�2 J k)g.
Now calculate EI k � p, EJ k � 2 pq, E(I k J k) � qp, E(I k J k�1) � pq, and so on.

Section 7.2

1. From (9), G(2)(1) � EfX (X ÿ 1)g � EX 2 ÿ EX � var X � (EX )2 ÿ EX . Now use G9(1)

� EX :

2. (a)
P1

1 q kÿ1 ps k � ps
P1

1 ( ps)kÿ1; (b)
p

1ÿ qs
.

3. (a) 1
6
s

1ÿ s7

1ÿ s

� �
�P6

r�1
1
6
s r, so p(r) � 1

6
; this is a die.

(b) p(0) � q, p(1) � p. This is an indicator, or a Bernoulli trial.

4. GY (s) � EsY � EsaX�b � sbEf(sa)Xg � sbGX (sa).

EY � G9Y (1) � bsbÿ1GX (s)� asbG9X (sa)
� �

s�1 � b� aEX :

5. 2(1ÿ e t � te t)tÿ2.

6. ë� (1ÿ ë) pe t(1ÿ qe t)ÿ1;

EX � (1ÿ ë) pÿ1, var X � (1ÿ ë)(ë� q) pÿ2.

Section 7.3

1. Ee tY � Ee t(a�bX ) � e at M X (bt). We know that if X is N(0, 1), then ì� ó X is N(ì, ó 2). Hence

M Z (t) � M X (ó t)e ì t � e ì t exp 1
2
(ó t)2

� 	
.

2. M X (t) � e at ÿ 1

at
�
X1
r�0

(at)r

(r � 1)!
�
X1
r�0

EX r

r!
t r.

3. M X (t) �
�1

0

e txÿëxx rÿ1ër=(r ÿ 1)!
� 	

dx. Now set

y � (ëÿ t)x=ë.

4. (a) G9(1) � np(q� ps)nÿ1� �s�1 � np, G(2)(1) � n2 p2 ÿ np2.

(b) G9(s) � p

1ÿ qs
� pqs

(1ÿ qs)2
, G(2)(s) � 2 pq

(1ÿ qs)3
, so

var X � 2q

p2
� 1

p
ÿ 1

p2
� q

p2
:

(c) M9(t) � rër(ëÿ t)ÿrÿ1, M (2)(t) � r(r � 1)ër(ëÿ t)ÿrÿ2, so

var X � r(r � 1)

ë2
ÿ r

ë

� �2

:
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Section 7.4

1. expf(ë� ì)(sÿ 1)g.
2. (qn � pns)n � f1� (sÿ 1)(ë=n)gn ! expfë(sÿ 1)g.
3. 1

3
(s� s3 � s5)1

2
(1� s) � 1

6
(s� s2 � s3 � s4 � s5 � s6), so the distribution is the same as that of

the sum of two conventional fair dice, namely triangular.

Section 7.5

1. Es X � ÿP (sp)k

k log(1ÿ p)
� log(1ÿ sp)

log(1ÿ p)
, so

EsT � GN (GX (s)) � eÿë exp
ë

log(1ÿ p)
log(1ÿ sp)

� �
� 1ÿ p

1ÿ ps

� �
ÿë=log(1ÿ p):

This is a negative binomial p.g.f., since (1ÿ x)ÿí is expanded in series by the negative binomial

theorem.

Section 7.6

1. nì � 2000,
���
n
p

ó � 100=
���
6
p

: So

P(1900 , X , 2200) � P
1900ÿ 2000

100=
���
6
p ,

X ÿ 2000

100=
���
6
p ,

2200ÿ 2000

100=
���
6
p

 !
:

Now use the central limit theorem.

2. nì � 0;
���
n
p

ó � 3. Hence

P(ÿ3 , error , 3) ' Ö(1)ÿÖ(ÿ1), P(ÿ6 , error , 6) ' Ö(2) ÿ Ö(ÿ2).

So (a) 2f(1ÿÖ(1)g ' 0:32, (b) 2f(1ÿÖ(2)g ' 0:04.

3. If ë is an integer then X has the same distribution as the sum of ë independent Poisson random

variables, each with parameter 1. The central limit theorem applies to this sum. Y has the same

distribution as the sum of r independent exponential random variables, each with parameter 1.

Section 7.7

1. (a) [EsTi ]s�1 � 1ÿ (1ÿ 4 pq)1=2

2q
� 1ÿ (1ÿ 2q)

2q
� 1.

We have taken as the positive root (1ÿ 4 pq)1=2 � 1ÿ 2q, because q , 1
2
. Differentiating yields

ET1; otherwise, you can write ET1 � EfE(T1jX1)g � p� qfE(T1 j X1 � ÿ1)� 1g
� p� qf2 ET1 � 1g, so ET1 � (1ÿ 2q)ÿ1 � ( pÿ q)ÿ1.

(b) [EsT1 ]s�1 � 1, but the derivative at s � 1 is in®nite.

(c) Es X1 � ps� qsÿ1, so EsSn � ( ps� qsÿ1)n.

(d) GY ( ps� qsÿ1).

2. From (14), with n � 3, P(N is even) � 1
2
fGN (1)� GN (ÿ1)g � 1

2
1ÿ 1

5

� 	
.

3. For equal chances, they need p such that GN (ÿ1) � 0, which is impossible.

4. E s X n tYn u Z n vnÿX nÿYnÿZ n� � � fps� qt � ru� (1ÿ pÿ qÿ r)vgn.
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Section 7.10

1. Like example 5, except that EsT �
2
3
s

1ÿ 1
3
s

3
1
3
s

1ÿ 2
3
s
. Now use partial fractions.

2. Es X � ás� (1ÿ á)âs2 � (1ÿ á)(1ÿ â)ãs3

1ÿ (1ÿ á)(1ÿ â)(1ÿ ã)s3
,

and we need the sum of the coef®cients of powers of s3, which is

ã(1ÿ á)(1ÿ â)

1ÿ (1ÿ á)(1ÿ â)(1ÿ ã)
:

3. Es X nÿn � sÿnEs X n � pn

(1ÿ qs)n
� (1ÿ ë=n)n

(1ÿ ës=n)n
! eÿë�ës

4. (a) k(t) � ë(e t ÿ 1), so kr � ë.

(b) k(t) � ìt � 1
2
ó 2 t2, so k1 � ì, k2 � ó 2, kr � 0, r > 3.

(c) k(t) � ÿlog(1ÿ t=ë); so kr � (r ÿ 1)!ëÿr.

5. P(attempt all questions)

� P
X116

1

X r < 60

 !
�

X116

1

X r ÿ 58

 !�
116

20

� �1=2

< 2

�
116

20

� �1=2

8<:
9=;

' Ö(0:83) ' 0:8:

6. Central limit theorem again.

7. p 1� qt

(npq)1=2
� q2 t2

2npq
� � � �

 !(
� q 1ÿ pt

(npq)1=2
� p2 t2

2npq
� � � �

 !)n

� 1� 1
2
nÿ1 t2 � � � �ÿ �

n ! e t2=2.

8. exp 1
2
ó 2 t2

ÿ � � 1� 1
2
ó 2 t2 � � � � � 1

2
ó 2 t2

ÿ �
k=k! � � � �

9. (a) Ee t(X 2�Y 2) � (Ee tX 2

)2 � (1ÿ 2t)ÿ1, by example 7.3.

(b) EfE(e tXY jY )g � E(e1=2 t2 Y 2

) � 1������
2ð
p

�
et2y2=2ÿy2=2dy � 1

(1ÿ t2)1=2

10. lim
s"1

1ÿ G(s)

1ÿ s
� G9(1), by l'HoÃpital's rule.

11. With an obvious notation, Tn � 1�PZ1

r�0T
(r)
nÿ1.

12. EfE(Z m Z njZ m)g � E(Z2
mì

nÿm) � ìn var Z m � ìn�m. Hence cov(Z m, Z n) � ìnÿm var Z m,

and

r(Z m, Z n) � ìnÿm var Z m

var Z n

� �1=2

�
ìn

ìm
3

ìm ÿ 1

ìn ÿ 1

� �1=2

, ì 6� 1

m

n

� �1=2

, ì � 1:

8>>><>>>:
13. P(ç), where ç is the extinction probability.

14. If Z � X � Y , then LZ(t) � Ef1ÿ t(X � Y )gÿ1, which is not useful. And L(t) often fails to

exist, even when M(t) exists; for example, if X is exponential with parameter 1, ìr � r!,
L(t) �Pt r r!.
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15. With an obvious notation

G � Es X � 1
2
E(s X jT )� 1

4
E(s X jHT )� 1

4
E(s X jHH)

� 1
2
sG � 1

4
s2G � 1

4
s2:

Now either EX � G9(1) � 6 or EX � 1
2
(1� EX )� 1

4
(2� EX )� 1

2
, whence EX � 6. Likewise

var X � 22.

16. (a) P(Z n < x)! Ö(x).

(b) Z n has density

���
n
p
ë

f n

���
n
p

z� n

ë

� �
� gn(z), say. Then

log g n(z) � log
nnÿ1=2

(nÿ 1)!

( )
ÿ nÿ z

���
n
p � (nÿ 1)log 1� z���

n
p

� �

� log
nnÿ1=2eÿn

(nÿ 1)!

( )
ÿ 1

2
z2 � O

z���
n
p
� �

! ÿlog(
������
2ð
p

)ÿ 1
2
z2 as n!1:

17. (a) No, because EX 2n � 0, which entails X � 0.

(b) Yes, provided that Ópr � 1. P(X � ar) � pr.

18. With an obvious notation,

G � E(s D tS) � pE(s D tS jC)� pqE(s D tS jWC)� q2E(s D tS jWW )

� pstG � pqs2 tG � q2s2:

Hence

G � q2s2

1ÿ pst ÿ pqs2 t
:

Then GD(s) � G(s, 1) and GS(t) � G(1, t). Some plodding gives cov(D, S) � p( pÿ q)qÿ4.

21. (a)
1

1ÿ t2
, jtj, 1; (b)

1

cos 1
2
t
, jtj,ð.

(c) Set eÿx � y in M(t) � �1ÿ1 e txeÿxeÿeÿx

dx, to obtain M(t) � �1
0

yÿ t eÿ y dy � Ã(1ÿ t),

where the gamma function is de®ned by Ã(x) � �1
0

eÿ y yxÿ1 dy, for x . 0.

22. G(x, y, z) � 1
4
(xyz� x� y� z). Hence

G(x, y) � 1
4
(xy� y� x� 1) � 1

2
(1� x)1

2
(1� y) � G(x)G(y)

and so on.

23. (a) Let (X n, Yn) be the position of the walk after n steps, and let Un � X n � Yn. By

inspection, Un performs a simple random walk with p � q � 1
2
, so by example 7.7.1 the

®rst result follows.

(b) Let Vn � X n ÿ Yn. It is easy to show that Vn performs a simple symmetric random walk

that is independent of Un, and hence also independent of T . The result follows from

exercise 1(d) at the end of section 7.7.

24. Condition on the ®rst step. This leads to

EsT � ( p2 � q2)s� 2 p2q2s2

1ÿ (1ÿ pq)s
:

Differentiate the equations, or argue directly, to get ET � 1� 2 pqES and ES � 1 �
(1ÿ pq)ES.
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25. E(s X jË) � eË(sÿ1); Ee tË � ì=(ìÿ t). Hence

Es X � EfE(s X jË)g � ì

ìÿ (sÿ 1)
� ì

ì� 1

�
1ÿ s

ì� 1

� �
,

which is a geometric p.g.f.

26. G(x, y, z) � 1
8
(xyz� xy� yz� xz� x� y� z� 1)

� 1
2
(x� 1)1

2
(y� 1)1

2
(z� 1) � G(x)G(y)G(z).

But G(x, y, z, w ) 6� G(x)G(y)G(z)G(w ).

27.

�1

0

G(s) ds �
�1

0

Es X ds � E

�1

0

s X ds � Ef[s X�1(X � 1)ÿ1]1
0g � Ef(X � 1)ÿ1g.

(a) (1ÿ eÿë)=ë; (b) ÿ( p=q2)(q� log p); (c) (1ÿ qn�1)=f(n� 1) pg;
(d) ÿf1� (q=p) log qg.

29. (a) There are three con®gurations of the particles:

A � all at one vertex, B � at two vertices, C � at three vertices.

Let á be the expected time to return to A starting from A, â the expected time to enter A

from B, and ã the expected time to enter A from C. Then looking at the ®rst step from

each con®guration gives á � 1� 3
4
â, â � 1� 5

8
â� 1

4
ã, ã � 1� 1

4
ã� 3

4
â.

Solving these gives á � 9 � ES.

(b) In solving the above we found ã � 12 � ER.

(c) In this case we also identify three con®gurations:

A � none at original vertex, B � one at original vertex, C � two at original vertex.

Let á be the time to enter the original state from A, and so on. Then ES � 1� á and

looking at the ®rst steps from A, B, and C gives

á � 1� 1
8
á� 3

8
ã� 3

8
â,

â � 1� 1
2
â� 1

4
á� 1

4
ã,

ã � 1� 1
2
â� 1

2
á:

Then á � 26 and ES � 27.
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Index

Remember to look at the contents for larger topics. Abbreviations used in this index: m.g.f. � moment
generating function; p.g.f. � probability generating function.

abnormality, 305
absolute convergence, 125
acceptance sampling, 147
addition rule for E, 267

extended, 268
addition rule for P, 41

extended, 42
alarms, 46
American roulette, 6
Arbuthnot, J., 19, 118
archery, 224
arcsin density, 203, 237
asteroid, 81
averages, law of, 279
axioms, 42

Banach's matchboxes, 119
batsmen, leading, 211
Bayes' rule (theorem), 57
bell-shaped curve, 164, 178
Benford's distribution, 18, 132,

135, 243
Berkeley, 84
Bernoulli pin, 11
Bernoulli random variable, see

indicator
Bernoulli trials, 37, 131, 240, 252

non-homogeneous, 270
Poisson number of, 281
sequence of, 131, 316

Bertrand's paradox, 237
Bertrand's other paradox, 83
beta density, 203, 236
BienaymeÂ, I.J., 321
binary tree, 68
binomial coef®cient, 99, 101, 124
binomial distribution, 139

mean, 149
mode, 169
p.g.f., 312
variance, 154, 274

binomial random variables, 240
sums of, 261, 263

binormal density, 295
binormal random variable,

295, 332
birthdays, 105
bivariate density, see joint density
bivariate distribution, see joint

distribution
bivariate log normal density, 296
bivariate normal density, 295

standard, 295
body±mass index, 191, 296
Boole's inequality, 47, 272
branching process, 321

extinction, 322
geometric, 322

bridge, 106
Bristol, 157
Buffon's needle, 304
bumping, 158, 169
Buridan's mule, 27

calculus, fundamental
theorem, 177

capek, 66
capture±recapture, 147
Cardano, 8, 11
cardinality, 26
Carroll, Lewis, 82
casino, 79, 331
Cauchy density, 202, 237

characteristic function, 334
Cauchy±Schwarz inequality, 279
c.d.f., see cumulative distribution

function
central heating, 60
central limit theorem, 323
centre of gravity, 148
change of units, 198, 216
change of variables, 298
characteristic function, 334
cheating with crooked die, 168
Chebyshov's inequality, 217
chi-squared density, 308

coloured sphere, 92
combinations, 99
complement, 25, 44
compounding, 319, 333
Conan Doyle, A., 280
conditional

density, 226, 286
distribution, 218, 226, 280
expectation, 220, 228, 282
independence, 64
key rule, 219, 227, 282
law of the unconscious

statistician, 283
probability, 49

conditioning rule, 49
constant random variable, 192, 194
continuity, 176
continuity correction, 166
continuity theorem, 315
continuous partition rule, 290
continuous random variable,

192, 199
convergence, 125

absolute, 125
convolution rule, 261, 290
correlation, 276
correspondence rule, 94
coupons, 268, 272, 274, 302,

327, 330
covariance, 275
craps, 71
cumulants, 331
cumulative distribution

function, 197

darts, 269
degraded signal, 77, 136
de MeÂreÂ, 114
de MeÂreÂ's problem, 45
de Moivre, A., 20, 77, 164, 309
de Moivre trials, 172, 182,

240, 328
density, 135, 170, 199
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density, cont.
arcsin, 203, 237
beta, 203, 236
Cauchy, 202, 237
chi-squared, 308
conditional, 226, 286
doubly exponential, 202
exponential, 171, 200
gamma, 203, 260
joint, 245, 248
key rule for, 171, 199
log normal, 296, 304
marginal, 247
of maximum, 305
normal, 171, 200, 202
Student's t-, 308
triangular, 257
uniform, 170, 200

derangement, 96, 120, 121, 285
derivative, 177
determinism, 28
deuce, 74
die, 75
difference, 25
difference equation, 87
difference rule, 45
discrete random variable, 192, 193
disjoint events, 35
disjoint sets, 25
dispersion, 150
distribution, 42

arcsin, 237
Benford's, 18, 132, 243
binomial, 139
bivariate, see joint distribution
conditional, 218, 226, 280
empirical, 132
exponential, 202
function, 134, 197, 201, 244
geometric, 137
hypergeometric, 146
joint, 239
key rule for, 134
limiting, 315
marginal, 240
negative-binomial, 143
normal, 202
planar, 173
Poisson, 156
probability, 42, 131
triangular, 194
trinomial, 172
trivariate, 240
trivial, 194
uniform, 134, 194, 202

doctor's paradox, 297
dominance, 215
doubly exponential, 202
drunkard's walk, 326
duration of play, 225

embarrassment, 70
empirical distribution, 132

empty set, 24
equivalence, 40
Euler, L., 309
Euler's constant, 275
evens, 79
event, 34
examination, 57
expectation, 9, 13, 147, 207

addition rule for, 267
conditional, 220, 282
linearity of, 214
of functions, 213
product rule for, 273

experiment, 32
exponential limit, 126
exponential random variable, 200

density, 171, 200
doubly exponential, 202
two-sided, 200

distribution, 202
m.g.f. for, 313
moments for, 310

extinction, 322

factorial moments, 311
factorials, 97
fairness, 9, 14
fallacy

gambler's, 138, 279
prosecutor's, 53

falling factorial power, 97
false positives, 55, 57
families, 183
fashion retailer, 217
®rst moment, see mean
®xed die, 78
friendly function, 205
function of random variable,

191, 255
expectation of, 213

functions, 27
fundamental theorem of

calculus, 177

Galileo, 39, 47
Galton, F., 296

paradox of, 82
Galton±Watson process, 321, 331
gambler's fallacy, 138, 279
gambler's ruin, 116, 225, 285
gamma density, 203, 260, 267

m.g.f., 318
generating functions, 310

cumulant, 330
joint, 328
m.g.f., 310
p.g.f., 310

Genoese lottery, 110
geometric branching, 322
geometric random variable, 198

distribution, 137
mean, 150, 210
mode, 153

p.g.f., 312, 313
variance, 154

goats and cars, 84
Graunt, J., 12
gravity, 149

histogram, 133
Holmes, Sherlock, 280
house, 304
Huygens' problem, 73, 326, 330
hypergeometric random variable

distribution, 146, 155
mean, 270
mode, 182

impossible event, 24
inclusion, 24
inclusion±exclusion, 46, 95, 271
inclusion inequality, 47
independence, 59, 219, 273

conditional, 64
key rule for, 251
pairwise, 333
of random variables, 250

index, body±mass, 191, 296
indicator, 27, 193, 194
inequality

Boole's, 47, 272
Chebyshov's, 217
dominance, 215
inclusion, 47
Markov's, 216

insurance, 58, 319
intersection, 25
inverse function, 27
inversion theorem, 311

joint density, 245
key rule for, 245

joint distribution, 239, 244, 245,
248

key rule for, 240
joint generating functions, 328
jointly uniform, 246

key rule
conditional, 219, 227, 282
for densities, 171
for distributions, 134, 195
for independent case, 251
for joint densities, 245
for joint distributions, 240

kidney stones, 48, 83
krakens, 143
kurtosis, 307

lack of memory, 227
lamina, 43
law

Benford's, 18, 132, 135
of averages, 279
of large numbers (weak), 278
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of unconscious statistician, 214,
267, 283

Stigler's, 18
leading batsmen, 211
limits, 125, 176

binomial limit of
hypergeometric
distribution, 155

central, 323
exponential limit of geometric

distribution, 161, 316
local, 167
normal, 179, 324
normal limit of binomial

distribution, 178
Poisson limit of binomial

distribution, 156, 181, 183,
318, 330

linearity of expectation E, 214
local limit theorem, 167
log normal density, 296, 304

bivariate, 296
lottery, 16, 110

marginal densities, 247
marginal distribution, 240
Markov, A.A., 12, 28
Markov inequality, 216
matching, 128, 272, 285
maximum of geometrics, 258
mean, 147, 207

binomial, 149, 270
exponential, 209
gamma, 314
geometric, 150
hypergeometric, 270
log normal, 296, 304
negative binomial, 268
normal, 209
Poisson, 154
uniform, 154, 209

median, 153
meteorite, 157
method of indicators, 270
m.g.f., 310

binormal, 332
exponential, 313
gamma, 314
normal, 313

Mills' ratio, 167
minimum

of exponential random variables,
258

of geometric random variables,
257, 258

mode, 153
binomial, 169
geometric, 153
hypergeometric, 182

modelling, 14, 16
moment generating function, see

m.g.f.
moments

factorial, 331
second, 151

Monopoly, 136
Montmort, 118
Monty Hall problem, 84
multinomial, 99, 124, 182, 329
multinormal, 334
multiplication rule, 52, 95

extended, 52
Mythy Island, 92

negative binomial distribution,
143, 266

theorem, 125
Newcomb, S., 18
Newton, I., 47
non-homogeneous Bernoulli trials,

270
normal limit theorem, 179, 323
normal

approximation, 164
density, 171, 200

bivariate, 295
m.g.f. for, 313
mean of, 209
standard, 171, 206
variance of, 216

distribution, 202
limit, 323
random variable, independent,

252
sample, 335
sum, 264

occupancy, 120
odds, 78
one-to-one function, 196, 204
opinion, 14
opinion poll, 154
order-statistics, 299

pairwise independence, 333
paradox

Bertrand's, 236
Bertrand's other, 83
Carroll's, 82
doctor's, 297
Galton's, 82
prisoners, 86
Simpson's, 83
switching, 84
voter, 245

parimutuel betting, 80
partition, 26, 36
partition rule, 54, 222, 280

continuous, 290
extended, 56

Pascal, B., 102, 114
Pearson, K., 325
Pepys' problem, 47

extended, 265
permutation, 97
Petersburg problem, 218

p.g.f., 310
pirates, 54
pizza problem, 127
placebo, 297
planar distribution, 173
plane, random walk in, 333
plates, 308
plutocrat, 9, 50
points, problem of, 113, 118, 128
Poisson±Bernoulli trials, 281
Poisson±de Moivre trials, 329, 334
Poisson

distribution, 156
generating function, 313
mean, 154
mode, 158
process, 201, 289
sum, 263, 318
variance, 180

poker, 107, 127
polling, 154
potatoes, 293
powers of random variables, 206
prisoners paradox, 86
probability, 22

conditional, 49
probability density, 170, 199
probability distribution, 42,

131, 194
probability generating function,

see p.g.f.
probability scale, 2
problem of the points, 113,

118, 128
product of two sets, 25
product rule, 59, 273
prophylaxis, 66
prosecutor's fallacy, 53
protocol, 85
Pythagoras, 304

Quetelet index, see body mass
index

quiz, 182, 223, 332

random
sample, 209
stakes, 307
sum, 284, 320

random variable, 190
Cauchy, 202, 237
continuous, 192, 199
discrete, 192, 193
doubly exponential, 202
exponential, 200
gamma, 203, 260
geometric, 198
indicator, 193, 194
log normal, 296
normal, 200
triangular, 194
trivial, 192, 194
two-sided exponential, 200
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random variable cont.
uniform, 194, 200

random walk, 324
in plane, 333
on triangle, 333

Rayleigh, 326
recurrence, 88
red ace, 58
regression, 297
ringing, 277
risk, 28
rivets, 168
Robbins' formula, 124
robot, 66, 303
roulette, 6
rounding errors, 324
ruin, gamblers', 116, 225, 285
rule,

addition, 94
extended, 42
for E, 267
for P, 41

Bayes', 57
conditional key, 219, 282
conditional partition, 54
conditioning, 49
continuous partition, 290
convolution, 261, 290
correspondence, 94
difference, 45
inclusion±exclusion, 45, 95
key

conditional, 219, 227, 282
for densities, 171
for distribution, 134, 195
for independent case, 251
for joint density, 245
for joint distribution, 240

multiplication, 52, 95
partition, 54, 222, 280
product, 59

runs, 111, 181, 220, 303

St Petersburg problem, 218
sample, normal, 335
sample mean, 148, 149
sample space, 33
scaling, 204
Schwarz, see Cauchy±Schwarz

inequality
seeds, 293
sequence, 95, 131
set, 24
sex ratio, 12
shapes, 107

Sherlock Holmes, 280
shifting, 204
signi®cant digits, 18
simple random walk, 324
Simpson's paradox, 83
size, 26
skewness, 235, 279
sparse sampling, 156
squared normal random

variable, 314
standard deviation, 151

normal, 171, 206
bivariate, 295

Steffensen, J.F., 321
Stigler's law, 18
Stirling's formula, 122
stones, 48, 83
Student's t-density, 308
sudden death, 138
sums of independent random

variables, 316
binomial, 261, 263
continuous, 262
discrete, 261
exponential, 264, 267, 320
gamma, 318
geometric, 263, 266, 317
log normal, 296
normal, 264, 296, 318
Poisson, 263, 318
random, 284, 320
uniform, 256, 264
variance, 273

survival function, 197
switch, 195
switching paradox, 84
symmetric difference, 25
symmetric distribution, 303

table of generating functions,
329±30

tables of means and variances, 231
tagging, 181
tail, left and right, 198
tail generating function, 327, 331
tail integral, 210
tail sum, 210, 271
tennis, 71, 108, 225

real, 109
test, 55, 57, 69
thistles, 293
tote, 80
tree, 67

binary, 68
trial

Bernoulli, 37, 131
de Moivre, 172

triangle random walk on, 333
triangular random variable,

194, 257
trinomial, random variable, 172
trivariate random variable, 240
trivial random variable, 192
two-sided random variable,

197, 200

unconscious statistician, laws of,
214, 267, 283

uncorrelated random variables,
275

uniform random variables,
194, 202

jointly uniform, 246, 253
sums of, 256

union, 25
uniqueness therorem, 311
unordered sample, 99
unsavoury function (Ù is not

countable), 191
urns, 41
utopia, 183

value, 9, 13, 148
Van der Monde's formula, 103
variance, 151, 215

Bernoulli, 151
binomial, 154, 274
exponential, 310
geometric, 154
normal, 216
Poisson, 180
of sum, 273
uniform, 154

vending machine, 14
Venn diagram, 25, 36
voter paradox, 245

waiting, 201
waiting times, 268
Waldegrave's problem, 77, 91,

224, 294, 326, 329
Wald's equation, 284
weak law of large numbers, 278
wildlife, 146

Yarborough, 127

Zodiac, 126
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