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Preface

When the Boston Red Sox traded Babe Ruth to the New York Yankees in 1919,
they were one of the most successful baseball teams in history. At that time, the
Red Sox held five World Series titles, with the most recent in 1918. That trade
would start an 86-year dry spell for the Red Sox, during which they would not
win a single national title. That trade would start what baseball fans know as
the Curse of the Bambino. The Curse supposedly made Johnny Pesky hesitate
at shortstop in a routine throw home in game seven of the 1946 World Series.
The Curse showed up when Bob Stanley threw a wild pitch in game six of the
1986 World Series that let the tying run in, and stayed to see Bill Buckner let
a ground ball pass between his legs at first base. The Red Sox finally broke the
curse in 2004 beating the St. Louis Cardinals. How did the Boston Red Sox
break the Curse of the Bambino? Statistics.

Ok, perhaps attributing the Red Sox’s 2004 title and the two that followed
entirely to statistics is a bit of a reach. Statistics, however, played a role. In 2002,
Theo Epstein was hired as the general manager (GM) for the Red Sox. He was
the youngest GM in the history of major league baseball. Epstein relied heav-
ily on statistics when building team rosters and making managerial decisions.
He was an early adopter of what is called sabermetrics — which is a statisti-
cal analysis of baseball. His approach focused on utilizing undervalued players,
including those who were on the verge of leaving the game because no other
team would sign them. The movement was away from flashy players with big
risks and big rewards to the more inconspicuous workhorses. It worked. Of
course, it is possible that Theo Epstein and the Boston Red Sox just got lucky.
Consider, however, that Theo Epstein was hired as the President of Baseball
Operations for the Chicago Cubs in 2011. In 2016, the Cubs would win their
first World Series in 108 years. It would end yet another curse — the Curse of
the Billy Goat — that prevented the Cubs from winning for 71 years. Again,
statistics.



Addressing Two Challenges

Over the past dozen years, I have taught courses in business statistics to thou-
sands of undergraduate students. As an instructor, one of the challenges with
teaching statistics is trying to convince students that the material is impor-
tant. I usually take two approaches. The first is to persuade students that they
need to understand statistics as consumers of information. We are bombarded
with information every single day and it is coming at us from every direction.
Our news sources and social media platforms are crawling with statistics. On
a Monday, I may learn that coffee is good for me and by Wednesday it is now
the kiss of death. In the 1980s, eggs were cholesterol-filled heart attack trig-
gers and today they are considered the perfect food. On any given day, I can
read about studies that tell me how to live longer, run faster, have more energy,
make more money, be a better parent, and be happier. These types of studies
all rely on statistics. Some of the information we get is from scientific stud-
ies — those that rely on the scientific method — but other information is very
ad hoc. Understanding what the statistics tell us, how they are calculated, and
the samples they are derived from is key to processing all of the information we
consume. Understanding statistics can help you pick out the nuggets of useful
information from the big mess of the modern information age.

The other approach I take in trying to convey the importance of statistics
is to appeal to the students as producers of information. It is probably safe to
assume that most people do not enjoy cranking through formulas and pour-
ing over spreadsheets of data. However, everyone is interested in something.
Perhaps, you are interested in investing in the stock market and you need to
decide which firms to invest in. Maybe you need to convince your boss which
social media platform to advertise on. Maybe you need to persuade your par-
ents that spending a semester studying abroad is a useful experience. The point
is that everyone has interesting questions, and answering those questions usu-
ally requires some form of data analysis. Just having data is not enough, you
need to know how to release its secrets.

The second challenge with teaching statistics is that, in my experience,
many students dread the thought of the subject, and often walk through the
door the first day of class already resigned to the idea that they will hate
it. Typically, students believe that they will dislike statistics because they
consider the subject too hard, or it requires too much math. Adding to the list
of students’ fears and concerns is the fact that most of the materials created
for undergraduate courses in business statistics try to accomplish too many
things and as a result are overwhelming. Textbooks try to balance a mix of
theory, intuition, formulas, case studies, datasets, applets, problem sets, and
the practical use of particular software programs. All of these are important
objectives, but when blended together each tends to get crowded out. In my
experience, students use their statistics textbooks as reference guides to look up



formulas or functions, but in the process miss the fundamental concepts and
intuition.

The objective of this book is to try help ease both of these challenges. The goal
of each chapter is to first motivate a particular section of business statistics and
then walk through the concepts in an intuitive fashion. The book is driven by
examples and many of the examples span over multiple chapters. The book was
written with a goal of removing many of the distractions students encounter in
their statistics textbooks. Mathematical formulas and much of the notation are
relegated to technical appendices at the end of each chapter. There are no online
applets, data downloads, or breakout case studies. The prose is written so that
it is hopefully inviting to students with different backgrounds and experiences.
The focus is more on developing intuition and understanding the fundamentals
than it is on being a comprehensive catalog of statistical tests.

How to Use This Book

This book is not designed to be used as a primary source of information for
an undergraduate statistics course. It does not cover every figure, statistic, or
hypothesis test you will find in a comprehensive textbook. It is meant to be a
supplement to a more detailed textbook and/or a set of lecture notes. It should
be thought of as a companion guide with the goal of helping students get a
better grasp on the fundamentals. In this way, the primary textbook serves as
the comprehensive catalog of information and, perhaps, the source of assess-
ment materials, while A Guide to Business Statistics serves as the source for
students to strengthen their intuition about the concepts and their applicability.
However, for classes in which the instructor provides all the required technical
details in the lecture notes and does not rely on a textbook to assign prob-
lems, homework, or practice datasets, A Guide to Business Statistics can serve
as a primary textbook. In these cases, students will read the book to comple-
ment the material covered in lecture with the goal of providing an intuitive and
example-driven approach to better understand the material. This book main-
tains the level of rigor of a standard textbook in business statistics, but with a
more streamlined approach and accessible explanation of the material.

It is not surprising that most students do not read their undergraduate statis-
tics textbooks in a linear fashion. If anything, they tend to skim through the
pages in search for formulas, tables, or functions. The chapters in most statis-
tics textbooks are very difficult to read from start to finish, and to be fair they are
not designed for that approach. This book is designed to be easy to read and,
most importantly, concise. Students should open a chapter and read it from
start to finish and at the end have a good understanding of the core concepts
for that section. The chapters include examples, simple tables and figures, and
a technical appendix with the formulas. At the end of each chapter (before the



appendix), the key elements are reinforced in a brief summary paragraph. To
maintain its readability in a linear fashion, it purposefully avoids problem sets,
animations, video clips, and interactive materials.

Another important distinction between standard textbooks and A Guide to
Business Statistics is the treatment of statistical software programs. Textbooks
are increasingly focused on how to better integrate statistics software (e.g.,
Excel, SPSS, and Minitab) with the course material. This is important because
students should be able to use technology to analyze data and produce
statistical output. However, while many students are capable of running a
statistical test in a program like Excel, there is often a lack of general under-
standing regarding the underlying concepts and interpretations of the results.
For example, most students can successfully create a confidence interval
if provided a dataset. Fewer students can correctly interpret a confidence
interval, and even fewer can still explain the theorems those interpretations
are grounded in. I would argue that understanding the underlying concepts
in statistics is more important than learning how to use a certain software
package to generate statistical output. The technology is going to change, but
the concepts and theorems that are fundamental to statistics are not tied to
specific platforms. This book does contain references to statistical functions
in Excel, especially in the chapters on regression analysis. Software programs
like Excel are absolutely required for any analysis of large datasets. The point
of this book, however, is not to develop a student’s skill set in any particular
software program. Running a regression in Excel is just as easy as in SPSS or
Minitab. The point, rather, is to help interpret the output that is produced by
any software program.

The trajectory of the chapters follows most of the standard textbooks in busi-
ness statistics. The coverage of the material in each chapter is designed to be
more “narrow and deep” rather than “broad and shallow.” That said, in my
experience, all of the key materials required in a first and second course in
undergraduate business statistics are covered in this book. The first part of the
book is concentrated on how we collect and describe data (Chapters 1-6) and
the second half is focused on how to use sample data to make inferences about
things we do not know about a population of interest (Chapters 7—13). The
chapters on inferential statistics focus on parametric tests — those that assume
that the data follow a particular type of distribution. These are the most com-
mon tests in business and other social sciences. The final three chapters of the
book cover linear regression techniques.

Target Audience

This book should serve as a useful guide for all undergraduate statistics stu-
dents in business and economics, regardless of the specific primary textbook



(if any) they are using in their course. Almost all business and economics
majors are required to complete a course in statistics, and many 4-year
business programs require two courses as part of the major. In addition, most
2-year colleges offer an introductory course in statistics. When two courses
are required, it is often the case that the same primary textbook is used in
both courses. A Guide to Business Statistics is geared to students taking both
their first and second courses in statistics. The first course is typically taken
as a freshman or sophomore and the second as a junior or senior. The book,
therefore, should prove useful over all four undergraduate years.

Although the book is geared toward students in higher education, it may be a
helpful resource to faculty and instructors who have been away from statistics
for some time. It can serve as a concise “refresher” resource for teachers and
practitioners.



Types of Data

Steven Wright once joked that “42.7% of all statistics are made up on the spot.”!

One reason that his quip is effective is because there are good reasons to be
suspicious of many of the statistics we encounter every day. Statistics are often
reported as hard facts that cannot be argued with. This is not so. Statistics, and
the data that the statistics are derived from, are generated by humans. Humans
are not infallible and neither are the numbers reported from analyzing the data.
As consumers of information, sometimes the statistics we encounter are just
simply wrong or even nonsensical. There are examples of peer-reviewed publi-
cations reporting 200% reductions in some metric. Even reductions of 12,000%
have been reported.? Without even glancing at the data analyzed in these stud-
ies, we know that such statistics are nonsense. You cannot decrease anything
by more than 100%. Once you lose 100% of stuff, you are out of stuff. We tend
to believe assertions when they are based on data. The problem is that we often
do not look carefully at what type of data is being analyzed, how the data were
gathered, and whether the results are valid. To be an active and informed citi-
zen, you need to understand a bit about how statistics are generated and what
they can tell us. It all starts with understanding the type of data being analyzed,
which is the focus of this first chapter.

In the broadest terms, statistics is the science of collecting, analyzing, and
interpreting data. One branch of statistics is concerned with how to describe
and present data in useful ways (descriptive statistics) and the other branch is
concerned with how to use samples of data to draw conclusions about unknown
characteristics of a larger population (inferential statistics). In either case, the
starting point is understanding a bit about data. Often, when students hear the
term data or data analysis, they picture some geek crunching through endless
columns of numbers in search for answers. The truth is that data are simply
organized information. Data does not have to be numeric, and not all numeric

1 He also has a line that “five out of four people have trouble with fractions.”
2 Pollack, L. and H. Weiss. (1984) “Communication satellites: Countdown for intelsat VI.”
Science 223(4636):553.



data can be treated the same way. One great thing about the modern state of
technology and connectivity is that we have access to incredible amounts of
interesting, and often peculiar, datasets. For example, you can read the last
words of every executed criminal in the state of Texas since 1982.3 Or, if you
think that is too morbid, you may be interested in the location, speed, age, and
height of amusement park rollercoasters found all over the world.* Perhaps,
you want to rank every character on the Simpsons by the number of words
they spoke between season 1 and season 26.° The point is that there is so much
data available to the public that the possibilities are endless. If you want to get
weird, get weird.® You can let your imagination lead you to data, but let this
book guide you on how to analyze it.

The important point is to recognize what type of data you are working with
because that will dictate the way you analyze it. In this chapter, we consider the
taxonomy of different data types. To begin, all data can be broadly classified as
either categorical or numerical.

1.1 Categorical Data

Categorical data (also called qualitative data) have values described by words
rather than numbers. Examples include gender, occupation, major, and loca-
tion. Often, categorical data are represented with codes to make it easier to
manage and manipulate. For example, a dataset that includes college majors
may convert accounting = 1, economics = 2, and marketing = 3. The important
distinction between these codes and numeric data is that the codes typically do
not convey a ranking, they are just a way to organize categorical data. When
data can be classified by two categories, we call that binary data. Examples
include gender in which female = 1 and male = 0. Even when data have more
than two categories, the qualitative data can often be represented in binary
form. As an example, consider the three majors: accounting, economics, and
marketing. If each observation in a dataset is a single student, then three binary
variables (accounting, economics, and marketing) could be generated. When
either of the three binary variables take a value of 1, it indicates that the stu-
dent is majoring in the respective field. A 0, on the other hand, indicates that
the student is not majoring in that field.

To illustrate the use of categorical data, consider the dataset in Table 1.1. The
dataset includes the characteristics of students taking an undergraduate course
in business statistics. The first two columns of data — Student and Dorm — are

3 https://www.tdcj.state.tx.us/death_row/dr_executed_offenders.html

4 https://www.statcrunch.com/app/index.php?dataid=1004405

5 http://toddwschneider.com/posts/the-simpsons-by-the-data/

6 An ambitious chap shared a dataset classifying every bowel movement he made over 2 years.
There is even a histogram. http://imgur.com/a/n5GmO



Table 1.1 Student characteristics from an undergraduate
course in business statistics.

Student Dorm Floor GPA SAT rank
Barry Hawthorne 5 3.98 1
Cindy Whittier 3 2.87 10
Stan Dickinson 1 1.98 9
Donna Dickinson -1 4.00 2
Drew Whittier -2 3.20 5
Wilbur Fairchild 0 2.56 6
Frank Hawthorne 4 2.98 8
Jose Emerson 2 3.12 7
Paul Hawthorne 1 3.45 4
Steve Emerson 5 3.88 3

categorical. This includes the student’s first name and the name of the dorm
each student lives in on campus. While it may be possible to apply codes to
these categorical variables (e.g., student ID’s in place of names) those numbers
would just be used as an alternative way to categorize data and would not reflect
magnitudes or ranking.

The remaining three variables: Floor, GPA, and SAT Rank in Table 1.1 are
numeric. The variable Floor denotes which floor they live on in their respec-
tive dorm. The numbers follow European conventions with 0 being the ground
floor and negative numbers indicating floors below ground. The variable GPA
is the student’s grade point average capped at 4.0, and the variable SAT Rank
ranks each student in terms of their SAT score with 1 being the student with
the highest SAT score.

1.2 Numerical Data

Numerical, or quantitative, data result from some form of counting, measure-
ment or computation. Numeric data are broken down into variables that are
discrete or continuous. Discrete data are typically thought of as variables that are
countable, in which fractions do not make sense. Often, these are integer val-
ues, and examples include the number of courses taken, number of credit hours
earned, number of children, number of flights, and the number of absences. You
may notice that the terminology “number of” often precedes the description of
a discrete variable. In our dataset in Table 1.1, the variables Floor and SAT Rank
are both discrete numeric variables. Clearly, the number of floors is countable



and fractions of a floor do not make sense.” The variable SAT Rank is also dis-
crete. The SAT rankings are integer values, can be counted, and are definitely
not divisible.

In contrast, continuous variables can take on any value within an interval.
Continuous data are not counted, and is usually measured. With continuous
data “fractions make sense.” Examples include weight, speed, height, distance,
prices, and interest rates. Even if continuous data are rounded so that only inte-
ger values are reported, the data are still continuous. Age, for example, is typ-
ically reported in integer values. However, age can be measured very precisely
by years, days, minutes, seconds, milliseconds, and so on. The same is usually
standard with prices and other financial data. These are continuous measures
that are rounded for convenience. They are not counted. The variable GPA in
Table 1.1 is continuous.

In the later chapters, we sometimes blur the lines between discrete and con-
tinuous data. For example, the number of votes candidates receive in a presi-
dential election is discrete. Why? Because votes are counted and fractions do
not make sense. However, when the range of values is so large (e.g., millions
of votes) that the difference between one unit (e.g., one vote) is so small, we
sometimes treat discrete data to be continuous.

1.3 Level of Measurement

When data are categorical (or qualitative), the level of measurement is called
nomimal. Nominal data have no meaningful order and any numbers attributed
to data values are simply for coding purposes. Denoting female observations
with the number 1 and male observations with the number zero is an example.
The numbers are not meaningful on their own and the numbers could be sub-
stituted with any other numbers without affecting the results. Dividing your
classmates into geeks, dweebs, and nerds, for instance, would require nominal
measurement. Simply coding students in one category, even if it is numeric,
has no meaning in terms of relative rank. The level of measurement for the two
categorical variables Student and Dorm in Table 1.1 is nominal.

Data that are ordinal in nature suggest that there is a meaningful ranking
among the data, but there is no clear measurement regarding the distances
between values. Placement in a race for instance could be denoted as first,
second, third, and so on. Without additional clarifying data, the rankings are
meaningful because we know that the second place runner finished before the
third place runner, but we do not know how much faster the second place run-
ner was relative to the third place runner. Another example is placement in an

7 One exception is in the film “Being John Malkovich” in which many scenes took place on the
7.5 floor of the Mertin-Flemmer building.



Olympic event, where gold is better than silver that is better than bronze. How-
ever, those rankings do not convey how much better the gold medal winner was
compared to the silver medal winner. Data on vehicle size could also be ordinal
if it were classified as 3 = full size, 2 = compact, or 1 = subcompact. Clearly,
3 > 2> 1 in terms of size, but it is unclear how much bigger a full-size car is
compared to a subcompact car. In Table 1.1, the variable SAT Rank is ordinal.
The ranking indicates which student scored higher in the SAT exam (one indi-
cating the highest grade), but it does not tell us how far the first highest score
is from the second, and so on.

Interval data are numeric and have both a meaningful ranking and measur-
able distances between values. The defining feature of interval data is that there
is no true zero. With interval data, a zero does not mean that the variable has no
value. Temperature is the classic example. A temperature of zero degree Cel-
sius does not mean there is an absence of temperature. Without a true zero, the
numeric values cannot be divided or multiplied and still retain their meaning.
A temperature of 20 degrees, for example, is not twice as warm as 10 degrees.
The intervals between measures can be interpreted with precision (e.g., there
is a 10-degree difference between 10 and 20 degrees), but we cannot say that
20 degrees is twice as warm. However, it is still possible to calculate an aver-
age with interval data (e.g., average temperature) and measures of variability.
The variable Floor in Table 1.1 is interval data. A zero value does not mean the
absence of a floor, it is simply a reference point. This reference point can change,
for example in the United States, the ground floor of most buildings is typically
a positive number. Interval data may be discrete or continuous.

The final category of measurement is ratio. Ratio data are like interval data
except that there is a true zero. Examples include weight, height, speed, the
number of children, number of classes, number of votes, calories, and grades.
GPA is ratio data. Even though we do not observe a zero value for GPA, a value
of zero is still meaningful. Ratio data may be discrete or continuous.

1.4 Cross-Sectional, Time-Series, and Panel Data

Another way to characterize data is by time period. When a dataset consists
of observations from different individual units (e.g., people, businesses, and
countries) in the same time period, we call that cross-sectional data. You can
think of cross-sectional data as information taken from one single slice in time.
US census data are cross-sectional since it consists of all individual households
in a given year. The data in Table 1.1 are cross-sectional, because they consist
of characteristics of 10 students in the same undergraduate business statistics
course.

Time-series data, on the other hand, track observations over time. Often,
time-series data follow one single individual unit (e.g., person, business, and



country) over a time period. For example, tracking the daily Dow Jones indus-
trial average over a period of 10 years would constitute a time-series dataset.
Each observation is a different point in time (e.g., day, month, year, and decade).
Another example is a dataset tracking temporal changes in a single company’s
stock price. Climate scientists rely on time-series data to understand trends
in the average temperature of the earth and how those measurements interact
with carbon emissions.

It is often useful to plot time-series data using a line chart to get a feel for spe-
cific trends, cycles, or seasons. To illustrate, consider the dataset in Table 1.2.
The dataset includes voting results for every American presidential election
after World War II. The data include the year, the candidate’s name by party,
total votes for both the democratic and republican candidates, and aggregate
votes. The dataset in Table 1.2 can be considered to be time-series data. Each
observation is from a different year, and the individual units are unique pairs of
democratic and republican presidential candidates.

The data from Table 1.2 are plotted as a line chart in Figure 1.1. The Figure
shows an increasing trend in the number of votes for candidates from both

Table 1.2 American presidential election voting results (in millions) post World War I1.

Year Democrat Republican Dem vote Rep vote Total vote
1948 Truman Dewey 24.11 21.97 46.07
1952 Stevenson Eisenhower 27.31 33.78 61.09
1956 Stevenson Eisenhower 26.74 35.58 62.32
1960 Kennedy Nixon 34.23 34.11 68.33
1964 Johnson Goldwater 42.83 27.15 69.97
1968 Humphrey Nixon 30.99 31.71 62.70
1972 McGovern Nixon 28.90 46.74 75.64
1976 Carter Ford 40.83 39.15 79.97
1980 Carter Reagan 35.48 43.64 79.12
1984  Mondale Reagan 37.45 54.17 91.62
1988 Dukakis Bush Sr. 41.72 48.64 90.36
1992 Bill Clinton Bush Sr. 44.86 38.80 83.66
1996 Bill Clinton Dole 47.40 39.20 86.60
2000 Gore Bush Jr. 51.00 50.47 101.46
2004 Kerry Bush Jr. 58.89 61.87 120.77
2008 Obama McCain 69.46 59.93 129.39
2012 Obama Romney 65.92 60.93 126.85

2016 Hillary Clinton ~ Trump 65.85 62.99 128.84
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Figure 1.1 Number of votes for each party in U.S. presidential elections after World War |I.

parties over time. Since the population is growing, it is unsurprising to see an
increase in the total number of votes. What is more interesting is how the Figure
shows repeated cycles in which one party votes more than the other.

When a dataset has multiple individual units and observations are taken at
different points of time, we call that panel data. Tracking the stock price for
multiple companies over a 5-year period would be panel data. Another example
would be data on the number of regular season wins over a span of 15 years for
all 30 teams in Major League Baseball.

1.5 Summary

The starting point with a course in statistics is understanding the differences
in the types of data you may encounter. Data are categorical (qualitative)
or numerical (quantitative). Categorical data are described by words rather
than numbers. Measurement for these variables is classified as nominal,
and they cannot be ordered in any meaningful way. Numeric data can be
either discrete (countable — fractions do not make sense) or continuous
(uncountable — fractions make sense). Measurement for numeric data can be
ordinal — can be ordered, but there is no measurable distance between values,
interval — can be ordered, distances between values can be measured, but there
is no true zero, or ratio — like interval data, but there is a true zero. Finally,
data taken from one point in time is cross-sectional, and data tracking values
over a time period is time series. When a dataset includes both cross-sectional
and time series, we call that a panel dataset.



2

Populations and Samples

The summer of 2015 was a particularly menacing one for shark attacks on the
coast of North Carolina. There were a reported 33 shark attacks in a 6-week
span in a state that had seen a total of 25 attacks in the past 10 years. Living in
North Carolina at the time, these stories were big news. The incidents received
a lot of national attention too. In response to the panic during the height of the
attacks, the Washington Post published a story online that attempted to put
the recent high frequency of reported shark attacks into perspective.! To do so,
the story reported on the average number of deaths each year in the United
States from animal encounters. They found, on average, that sharks kill one
person per year. Other creatures that were considered included snakes, spiders,
bees, cows, dogs, bears, and alligators. Dogs, for instance, kill 28 people in an
average year. Part of the take-away message was that shark attacks and fatalities
are veryrare indeed, even compared to other animal-related deaths. Continuing
with the dog comparison, the article concluded that people are 28 times more
likely to die from being attacked by a dog than being mauled by a shark.

If I can convince you of one thing in this chapter it is that the comparisons
made in the Washington Post article are not very useful ones. The reason is
that when comparing dog and shark fatalities simply by comparing their fre-
quencies, the study implicitly defines the same population of interest for all
animal attacks. To illustrate, suppose that the implicit population of interest
is 320 million Americans (so every documented resident more or less). Using
relative frequencies and the logic of the article, the likelihood of getting killed
by a shark is 1/320,000,000 compared to the 28/320,000,000 likelihood of being
killed by a dog. Since both metrics use the same denominator, it is clear that
dog-related deaths are 28 times more frequent. The problem with this analy-
sis is that the likelihood of getting killed by a shark or a dog is only positive if
a person puts himself into a situation in which an encounter is possible. Most
people probably do encounter dogs in their day-to-day life, and so maybe the

1 http://www.washingtonpost.com/news/wonkblog/wp/2015/06/16/chart-the-animals-that-
are- most-likely-to-kill-you- this-summer/



entire population of Americans is the relevant population. However, a person
can die from a shark attack only if he goes to a beach by an ocean that is popu-
lated with sharks and actually goes swimming. While I do not know how many
Americans fit that description, I am certain, it is only a small segment of the
total 320 million Americans. The point is that the likelihood of getting killed by
a shark is not 1/320,000,000. For my parents, who have not swam in the ocean
in 15 years, the probability of dying from a shark attack is zero. They are not
part of the population of interest. But, for those who do swim in the Atlantic
coast during the warm weather months, the probability of getting mauled by a
shark is certainly higher than 1/320,000,000. As an example, if about 75 million
people visit beaches and swim in the ocean each year, then that likelihood is
1/75,000,0000, making the comparison between shark and dog fatalities much
different. In this case, a person is only 6.5 times more likely to be killed by a
dog than a shark. The point is that when making statistical comparisons, the
population of interest matters a great deal.

2.1 What is the Population of Interest?

The later chapters of this book are on the topic of inferential statistics. Infer-
ential statistics is all about using a sample of data to shed light on some aspect
of a population that there is uncertainty about. Let us use national political
elections as an example. During any election season, the public is exposed to
what seems like a never-ending stream of inferential statistics. Daily reports of
a candidate’s current percentage of supporters make headline news. For cit-
izens to understand what the polling results mean requires an understand-
ing of what the population is, and the population of interest can change, even
within the same presidential campaign. During the primaries, for example, polls
are interested in finding out which candidate likely voters favor within each
party. Therefore, the population of interest is likely voters in a political party
(see Figure 2.1). For example, in mid-June of 2008, Barack Obama had an esti-
mated 52% of the Democratic party vote (compared with Hillary Clinton’s 41%).
The statistic was taken from a sample of 1500 drawn from the population of
likely Democratic party voters. However, after the primary elections were fin-
ished and the candidates from the two parties were chosen, then the relevant
population for the national polling agencies changed. At that point, polls are
focused on inferring which candidate has a larger percentage of supporters of
all likely American voters.

Clearly defining the population of interest is the starting point for any statis-
tical analysis. There is no formula for doing this correctly. Rather, it requires
careful thought about the research question. Suppose I wanted to find out
how prevalent alcohol abuse is with students in higher education. Without
any other qualifiers, the implied population of interest is very broad. The
population consists of all students, in any higher education institution, in
any part of the world at any point in time. If my question is really about the
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Figure 2.1 A comparison of populations of interest for political polls between the primary
elections and the general election.

current levels of alcohol abuse in higher education in the United States, then
the population of interest is different. The population in this case is all students
currently enrolled in an American institution of higher education. The point is
that in order to determine what the population of interest is, you first need a
clearly focused question.

OK, suppose you have a clearly defined population you want to know some-
thing about. And further suppose that you cannot get your hands on data for
the entire population. This could be for many reasons, but a lack of resources
(e.g., time and money) is one of the most important ones. In order to learn
something about the population in these cases, you need to take a sample.
A sample is just a small subset, or fraction, of the population. Just a taste. That
sample is going to give us an estimate (our best educated conjecture) about
something we want to know. I know what you are asking yourself. How do we
go about sampling from a population?

2.2 How to Sample From a Population?

A good sample is one that is a close representation of the larger population of
interest. In other words, to the best of our abilities, we want to draw a sample
that is not biased in any particular way relative to the population it is drawn
from. Using the presidential primary election example from earlier, suppose we
are interested in finding out how much support a certain Republican candidate
has by conducting a survey. A good sample would be one that closely matches
important characteristics of the larger voting population. Those characteristics,
for example, may be age, gender, income, and geographic location (there could
be many others as well). Achieving an unbiased, representative sample requires
some degree of randomization. We will start with the simplest form.

2.2.1 Simple Random Sampling

In a simple random sample, every unit in the population has the same chance
of being included in the sample. A good starting point is thinking about what
types of processes would lead to random selections for a sample. Imagine you



are a member of a statistics class of 50 students. Suppose the professor needs
one student to help assist with passing out materials to the class. The professor
has a number of options. She could, for example, call on the one nerd sitting
in the front row (note: not all nerds sit in the front row, and not all front row
students are nerds). That choice is not random, but simply convenient. Suppose
as an alternative approach, the professor has an alphabetical list of students in
descending order by last name and blindly picks one from the middle of the
list. That choice is also not random because by restricting attention to the mid-
dle of the list, Johnny Appleseed and Frank Zappa have almost zero chance of
being chosen while Phil Mickelson and Wolfgang Mozart have a decent shot.
However, if the professor numbered each student from 1 to 50 (say in alphabet-
ical order) and then rolled a 50-sided die (yes, they do exist), then that rolled
number would be random and therefore the choice of student paired with that
number would also be random. You could also use a simple computer program
(e.g., using the formula= RANDBETWEEN(1,50) in Excel) to choose a random
number between two bounds. Using a random number generator is therefore
a process that can be utilized to create a random sample from a population.

To understand simple random sampling, it is sometimes helpful to work with
an example in which the underlying population is known. Do not get confused
here. In reality, we take a sample because we do not have access to the entire
population, and therefore some aspects of the population are unknown. How-
ever, when learning about statistics, it is often useful to compare the results
from sampling with known population values in order to shed light on how
different sampling procedures can yield different results.

As an example, let us consider a population with historical relevance. Our
population of interest is the collective of passengers aboard the Titanic in 1912.
In total, 2224 passengers left Southampton, England, on the morning of April
15, 1912. Of course, only a fraction survived. Imagine we are interested in the
percentage of passengers who survived the Titanic disaster. The population
dataset is the entire passenger list and whether or not that passenger survived.
Given this, we can consider how to draw a simple random sample of 100 pas-
sengers from the population of 2224 to estimate the percentage of passengers
who survived. We will discuss how to determine appropriate sample sizes later
in Chapter 7, but for now, we will consider a sample size of 100 passengers.

With simple random sampling, every passenger must have the same chance
of being part of the sample. If all Titanic passengers were assigned a unique
passenger number from 1 to 2224, and then a random number generator chose
100 unique numbers, then the passengers corresponding to those 100 num-
bers would make up our sample. When drawing multiple random numbers
from a population, it is important to consider the implications of sampling with
replacement and sampling without replacement. Using the RANDBETWEEN
function in Excel to draw 100 numbers, for example, it is possible that the same
number is repeated in the sample more than once. This is a type of sampling



with replacement since any randomly chosen number is not removed from the
population once it is drawn. Compare this to pulling an ID number randomly
from a hat, and then not replacing that number. Continuing in this fashion
for 100 draws would result in a sample taken without replacement. For our
purposes, we are considering sampling 100 passengers from the population of
Titanic passengers without replacement.

From the sample of 100, we would calculate the percentage of passengers who
survived the crash. This sample value would be our estimate, which we call a
sample statistic. Any value calculated from a sample is a sample statistic. Using
Excel, I took a simple random sample of 100 and 35% of the passengers sampled
survived. The sample is displayed in Figure 2.2. The population percentage of
survivors, called the population parameter, is known to be 31.9% (711 of 2224).
Note that the sample statistic is not equal to the population parameter, it is just
an estimate. And if we had drawn a different sample of 100, we would likely get a
different value, but it should be pretty close. Differences between sample statis-
tics and population parameters are expected in sampling (this is called sampling
error). Different samples may lead to different values for sample statistics, but
the random nature of the methodology safeguards against potential biases.

Figure 2.2 The figure illustrates a simple random sample of size 100 taken from the
population of Titantic passengers. x indicates a survivor. In this example, 35 of the 100
passengers sampled survived the Titantic crash.



2.2.2 Stratified Sampling

Sometimes, it is possible to improve how representative a sample is by utiliz-
ing prior information about the population. Suppose the population can be
broken down into subgroups such that each exhibits certain relevant character-
istics. With the Titanic, it is likely that not all passengers had the same chance
of survival when boarding the vessel. Women and children are typically given
preference over adult males. Crew members commit to helping others before
they help themselves. And, it might be the case that survival rates vary across
passenger class. As depicted in Figure 2.3, we could divide the population of
passengers into strata. Passengers are segmented by whether they are children,
female, or male. In this example, we have three strata. Figure 2.3 also includes
the percentage of the population (all passengers) who are part of each stratum.

Once you have the strata defined, the sampling method follows the same tech-
nique as simple random sampling except that samples are taken within each
stratum. We would have three subsamples that would be combined to form
our larger sample. The most important point is that the sample size from each
stratum relative to the entire sample size is the same fraction as the population
percentages. For example, since 5% of passengers are children, which means

CHILDREN
5%

Figure 2.3 The figure illustrates a stratified sample of size 100 taken from the population of
Titantic passengers. An x indicates a survivor. In this sample, 4 of 5 children survived, 15 of
19 women survived, and 14 of 76 men survived for a total of 33/100.



5% of the observations from our entire sample should come from this stratum.
Given a total sample size of 100, it would mean that five observations should
be drawn from the population of children. An example of a stratified random
sample for the Titanic data is shown in Figure 2.3. When the data from each
stratum are combined, our sample estimate of the survival rate of passengers
is 33% (33 of the 100 sampled survived the crash). Compared with the simple
random sample approach from above, the stratified sampling method leads to
a closer estimate of the population survival rate. While this may not always be
the case, stratified random sampling prevents the possibility of over or under-
representing important subgroups.

Another approach to stratified sampling is to conduct a simple random sam-
ple and then weigh the data to reflect the percentages in each stratum. For
instance, consider the sample size of 100 from the previous section on simple
random sampling. Suppose that only 60% of the observations from that sample
were from male passengers. Since the actual percentage of male passengers is
76%, the population percentage is 1.26 times larger than the sample percentage
(76/60 = 1.27). In this case, those observations could be multiplied by a weight
of 1.27 to match the population percentages. Other groups will be overrepre-
sented and their weights would be less than one. This is considered a postsurvey
method of stratified sampling.

2.2.3 Other Methods

While simple random and stratified sampling is the most common approach
to data collection, there are other approaches worth mentioning. Systematic
sampling is the approach of choosing every kth item from a sequence or a list.
For example, given the Titanic passenger list, the sample could be compiled
by choosing every fifth person on the list. Election day exit polling typically
makes use of a mix of stratified and systematic sampling. The strata are vot-
ing districts, which are then randomly sampled. Then, pollsters use systematic
sampling methods to compile the sample data from each randomly chosen vot-
ing site. For example, every 15th voter who exits the booth may be approached
to see if they will complete a survey.? The method, like all sampling methods
in practice, is not perfect. Not everyone who is approached agrees to partic-
ipate. Therefore, even though every 15th voter may be approached, the gap
between voters in the sample may be less precise. Not responding to an invi-
tation to complete a survey triggers what is called nonresponse bias. The bias
exists because those voters who are not willing to complete the survey are part
of the population of interest, but by definition this group will be underrepre-
sented in the sample. Nonresponse bias is a potential problem with any survey
method.

2 see Levy, M. (1983) “The methodology and performance of election day polls.” Public Opinion
Quarterly 47:54—67.



Cluster sampling, another approach, is very similar to stratified sampling
except that the strata are determined by geographic areas. For example, a
state could be divided into counties and each county would be a stratum, and
samples are drawn from each stratum. The percentage of the total sample taken
from each county should mirror the percentage of the state’s total population
living in each county. Another technique that is commonly used, but not at all
scientific is convenience sampling, which is a method of using a sample that
is readily available or convenient. Common examples include web sites that
invite their users to participate in online polls. Such samples are not random
because people make a deliberate effort to access the site and only those who
opt in to participate are part of the dataset. Another example of convenience
sampling is a professor who uses student responses from their class to make
broad inferences about students in general.

2.3 Getting the Data

A huge amount of sample data is gathered through surveys. Surveys are con-
ducted over the phone (landline and/or cell phones), mail, personal interviews,
and internet. Each survey method has its own advantages and limitations.
A reputable research institution will try to blend different survey techniques
with the goal of minimizing the types of bias each can contribute to the study.
A web-based survey is going to preclude the subset of the population that does
not go online, or that does not visit a particular web site or use a particular
service. A survey posted on Facebook, for example, precludes sampling anyone
who does not use Facebook. Only using landline telephones as a survey method
would preclude many young people who only have cell phones, and only using
cell phones would underrepresent the older population. Election polling, for
example, typically relies on both landline and cell phone respondents, and uses
in-person exit polls during election days.

Another common way data are gathered for analysis is through experiments.
Clinical trials on new pharmaceuticals typically involve gathering multiple sam-
ples of participants, some of whom will be administered a new drug and others
will be given a placebo. The results are usually measured (e.g., blood pressure)
or gathered from direct observation (e.g., strength levels). The experimental
method is also used in business and economics. Examples include using experi-
ments to compare the effectiveness of different marketing strategies, sales tech-
niques, economic and public policies, and compensation incentives.

In many cases, businesses and firms self-report data, in particular when
required through government regulation. The United States Environmental
Protection Agency, for example, requires regulated firms to report on their
emissions levels of harmful pollutants. These reports include levels of pollu-
tants such as sulfur dioxide and nitric oxide. In general, government agencies



Table 2.1 Alist of useful data sources found online.

Bureau of Economic Analysis
Bureau of Labor Statistics

Central Intelligence Agency
Data.Gov

Environmental Protection Agency
Federal Reserve System

Food and Drug Administration
National Center for Education Statistics
National Center for Health Statistics
United States Census Bureau
United States Federal Statistics
World Bank

Word Health Organization

www.bea.gov
www.bls.gov
www.cia.gov
www.data.gov
WWW.epa.gov
www.federalreserve.gov
www.fda.gov
www.nces.ed.gov
www.cdc.gov/nchs
WWW.Census.gov
www.fedstats.gov
www.worldbank.org

www.who.int/en

are often a good source of data, especially for undergraduate research projects.
Of particular note, the web site www.data.gov hosts a collection of roughly
200,000 datasets that are publicly available and searchable by topic. We end
this section with a list of other helpful data sources easily found on the web
(Table 2.1).

24 Summary

All data-driven analysis requires a clear definition of the target population.
Sometimes, it is possible to get information on an entire population (we call
this a census). For example, suppose I was interested in determining the aver-
age GPA of the current students at a specific university in the United States.
In this case, my population of interest is the entire student body at the univer-
sity and it is likely that the registrar office has a record of each student’s GPA.
As a broader example, the United States Census Bureau attempts to compile a
population dataset on key demographic variables every 10 years for people liv-
ing in the United States. The method of assembling a population dataset varies
depending on the nature of the variables of interest. A population dataset can
be obtained through survey methods (e.g., US Census), record keeping (e.g.,
birth records, university records), or observation (e.g., number of polar bears in
existence). However, for many research questions, the population dataset is not
available. This can be for many reasons. Sometimes, a population is finite (e.g.,
current US citizens), but in other cases, the population of interest is effectively
infinite. If, for example, you are interested in determining whether children are



better behaved after they have been punished in response to bad behavior, then
the population of interest is children, which is constantly changing. In this case,
a population dataset is not available. In other cases, the population data exist
but it is not feasible, or too expensive and time consuming to obtain. In these
cases, population values must be estimated using sample data. In this chapter,
we explored established methods used to draw representative samples from a
given population.



3

Descriptive Statistics

During my second semester teaching undergraduate statistics, I started one
of the classes by presenting the following quote: “the average person has one
breast and one testicle.” I did not discuss the statistic, it was simply displayed
on the screen while I prepared materials for the class. When this particular
class finished, a slightly timid male student came to the front of the room to
talk with me. The class had over 90 students in it, so he first introduced him-
self. And then, he told me how shocked he was to learn that the average person
has only one testicle, and before I could reply he shared that he had one of his
testicles removed when he was younger. He finished with “I didn’t know it was
that common.” I paused for a second to figure out how to break the news to
him gently. I told him that while the statistic seems to be odd at first, since the
gender divide between humans is roughly 50-50, it is a sensible rough estimate.
Most men do have two testicles, and since most women have zero, on average
people have one. I told him that I introduce this statistic because it gets stu-
dents thinking about what the average tells us and how in some circumstances
the average can be tremendously misleading. From the color of his face, [ knew
he understood. He and I would later joke about it throughout the semester.
The average, or mean, is what we call a descriptive statistic. Descriptive statis-
tics are the topic for this chapter. In Chapter 2, we focused on defining the popu-
lation of interest and how to draw random samples from that population. In this
chapter, we start “looking” at the data (both populations and samples). In gen-
eral, there are two ways to look at, or describe, data: visually and numerically.
Most primary textbooks in business statistics dedicate a chapter to describ-
ing data visually. The material usually includes instructions on how to create
and interpret pie charts, histograms, line graphs, box and whisker plots, scatter
plots, and many others. While each of these methods for illustrating data can
be useful, when they are lumped together without context, their importance
tends to get lost on students. From experience, the chapter on describing data
visually is somewhat tedious, blasting figures and graphs one after another with
very little practical motivation. In this text, we will deal with visual descriptions



of data, but they will be peppered throughout the book in the context and sit-
uations in which they are needed.

A set of data, whether it is from a population or a sample, is typically
described by three characteristics. First, we want to know something about
where the data are centered or concentrated. Second, we want to know how
much variability there is in the data, and third we want to get a feel for the
general shape of the data. We will discuss each of these characteristics in
this chapter. We begin with a population dataset that we can use to illustrate
the concepts. For our example, we turn to the subject of violent crime in the
United States. Crime statistics are some of the most used and abused statistics
in public policy debates. At a single point in time, a state could be considered
both very safe and very dangerous depending on how crime is measured. Take
Alaska for instance. Every year Alaska has a low frequency of violent crimes
compared to the other 49 states. By the naive measure of the total crimes, it is
a relatively safe state. However, when crimes are measured per capita, it is the
most dangerous state in the United States (only D.C. is more dangerous). Both
measures — the total crimes and per-capita crimes — are based on facts. To
be active and informed citizens, we need to understand a bit about statistics,
how they are calculated, what they tell us, and, most importantly, what the
limitations are.

The violent crime rate for every state and Washington, D.C., in 2014 is con-
tained in Table 3.1. The crime rate is calculated as the number of violent crimes
per 100,000 people.!

3.1 Measures of Central Tendency

A good starting point for describing data is identifying a central position, which
is either where data values are concentrated or a value that is in the middle of
the dataset. Since a central position can mean different things, we have different
measures of central tendency (but we have our favorites). We start with the
most frequently used and therefore the most important measure, the mean.

3.1.1 The Mean

In statistics, we can use the terms mean and average interchangeably. Statis-
ticians love to have different names for the same thing, so you will have to
get used to it. In any event, the mean or average is calculated by adding up
all the values and dividing by the total number of values. Using our dataset,
the mean of the population is 364.41 violent crimes per 100,000 people
(see Formula A.1). Whenever we calculate something from population data,

1 Source: The US Federal Bureau of Investigation’s Uniform Crime Reporting (UCR) program.



Table 3.1 Violent crime rates in the United States in 2014 (per 100,000 people).

D.C. 1244  California 396  Mississippi 279
Alaska 636 Massachusetts 391 Iowa 274
Nevada 636 New York 382  North Dakota 265
Tennessee 608 Georgia 377 New Jersey 261
New Mexico 597 linois 370  Hawaii 259
Florida 541 Indiana 365 Connecticut 237
Louisiana 515 Kansas 349  Oregon 232
South Carolina 498 North Carolina 330  Minnesota 229
Delaware 489 South Dakota 327  Rhode Island 219
Arkansas 480 Montana 324  Utah 216
Maryland 446 Pennsylvania 314 Idaho 212
Missouri 443 Colorado 309  Kentucky 212
Alabama 427  West Virginia 302  Virginia 196
Michigan 427  Wisconsin 290 New Hampshire 196
Oklahoma 406 Washington 285  Wyoming 196
Texas 406 Ohio 285  Maine 128
Arizona 400 Nebraska 280  Vermont 99

we call that value a population parameter. Parameters are typically denoted
with Greek letters, and we use the letter u (pronounced “mew”) to denote the
population mean. So, for the 2014 violent crime rates in the United States,
u = 364.41. From the values in Table 3.1, we see that Indiana is the closest
to being the “average” state with a violent crime rate of 365. It turns out
that Indiana is known for being average, not just in crime. Business Insider
published a study that ranked states from “weirdest” to “most normal.”
Number one? Indiana.

The mean is a useful measure of central tendency for a couple of reasons. (1)
The mean uses all of the data, so we are not missing any information with this
measure. (2) The mean is a perfect balance of the data in the sense that positive
and negative deviations from the mean exactly offset each other. For example,
Vermont — arguably the safest state — witnessed 99 violent crimes per 100,000,
which is 265.41 less than the average. This a negative deviation from the mean.
Meanwhile, Alaska had 636 crimes per 100,000 people, which is 271.59 crimes
greater than the mean (a positive deviation). If we add up all the deviations,
both positive and negative, from the population of 50 states and D.C. it would
sum to zero.

2 http://www.businessinsider.com/state-normalness-ranking-2015-10/



The weakness of using the mean as a measure of central location is that it is
affected by extreme values. The number of violent crimes in Washington D.C. is
over 600 more than the next highest state. This high crime rate pulls the average
up by quite a bit. Indeed, if we calculated the average salary without D.C., we
get 346.82, which tells us that D.C.’s crime rate alone pulls the mean up by just
over 17.

Because the mean is very sensitive to extreme values, it is less useful as a
measure of central tendency for some common metrics. In general, data on
salaries and income are often significantly affected by a small number of high
earners. The average salary of Americans is much higher than what most Amer-
icans earn and this is because the 1% of people at the top income bracket pull
that average up substantially. The visual I have is Bill Gates and Warren Buf-
fet yanking on a pulley to lift the average up. The introductory example of the
average person having “one breast and one testicle” is another reason to some-
times be cautious of the mean. The mean can be misleading. For example, a city
that experiences extreme high temperatures and extreme lows may have a very
pleasant average temperature even though that average temperature may never
be realized. In this case, the “average” temperature has nothing to do with the
“typical” temperature. As another example, the Millennium Force roller coaster
in Cedar Point, Ohio, is one of the tallest and fastest in the world. It is an abso-
lute beast. Riders experience a drop of 300 feet at 80 degrees reaching a speed
of 93 miles/hour. However, it has an average speed of roughly 22 miles/hour,
which is safe for most children and elderly. Your Great Aunt Mary might be
in for quite a surprise if she puts too much stock in the average speed when
deciding whether to brave the Millennium Force.

Of course, in many circumstances, you will be working with a sample of data
drawn from a larger population, and we can also calculate the mean for a sample
of data. Let us look at an example in which we have a sample of data. For some of
my academic research projects, [ use the online workplace Amazon Mechanical
Turk (called M Turk) to generate data. MTurk has thousands of workers who get
paid to complete various tasks, from answering surveys to editing screen plays.
As part of designing a research survey, I needed an estimate of how long it
would take respondents to read a particular passage. Of course, I did not have
population data on how long it would take all potential respondents to read the
passage. So, I gathered a small sample of 30 people and kept track of how long it
took each of them to read the passage (and answer a comprehension question).
This sample is in Table 3.2.

The sample mean is calculated by adding up the times for the 30 respondents
and then dividing by 30, which is 2.97 minutes. The formula for the population
mean and the sample mean is the same, however the notation is different. The
sample mean is denoted as x (called x bar), and here x = 2.97. The sample mean
is the best estimate we have of a population mean when the parameter value



Table 3.2 Minutes required
to read a short passage.

222 4.33
2.32 4.24
3.25 4.35
4.11 1.38
1.97 2.81
1.65 4.55
0.97 1.28
2.43 1.72
4.58 2.33
3.50 247
2.38 4.39
3.49 3.40
2.25 3.75
3.33 2.99
3.35 3.19

is unknown. Using this sample mean, I estimated that the average respondent
would take about 3 minutes to read the passage.

3.1.2 The Median

Another measure of central tendency, and one that is particularly useful for
data on income or wealth measures is the median. The median is the value in
the middle of the dataset. The median is the 50th percentile — the value for
which 50% of observations are smaller and 50% of observations are larger. The
median is located by sorting your data from the smallest to largest and finding
the value that splits the number of observations into two equal halves. If you
have an odd number of observations, then it must be the case that one single
value lies directly in the middle of your sorted data. For example, if you have
nine observations ranked the smallest to largest, the fifth observation is the
middle, or median value. For any dataset, you can locate the median value by
first dividing the total number of observations by two. If the solution is not an
integer (meaning, your answer is a fraction), then you simply round up to the
next integer value to locate the median. If, for example, there were 89 observa-
tions, the location of the median value is 45 (because 89/2 = 44.5). Alternatively,
if the solution to dividing the total number of observations by two results in an
integer, then there is no single value that equally divides the dataset in two. In
this case, the median will be the average of the two numbers that can divide the



dataset into two. Suppose we had a dataset of 100 observations. Since 100/2 =
50, the median value is going to be the average of the 50th and 51st value in the
dataset.

The median crime rate from our population dataset of violent crime rates for
the 50 states plus D.C. is from South Dakota. Dividing 51 by two yields 25.5, so
the median crime rate is the 26th highest crime rate which is South Dakota’s
rate of 327.

3.1.3 The Mode

The mode is the most frequent value in a dataset. In Table 3.1, the mode,
or modal value, is 196 crimes. Three states, Virginia, New Hampshire, and
Wyoming witnessed a crime rate of 196. The usefulness of the mode, however,
is very limited. In some cases, there is no mode, or there are multiple modes in
the sense that a few values repeatedly appear but not one more than another.
Moreover, sometimes the value that appears the most is not a value that is a
good indication of central position. For our dataset, 196 is on the lower end of
the distribution of crime rates for 2014. While it is the value that occurs most
frequently, it is not indicative of the crime rate for the majority of the country.
In other words, while 196 is the modal crime rate, it does not provide useful
information about what the center of the dataset looks like.

3.2 Measures of Variability

The second way we describe data is by how variable it is. The mean and/or
median can provide a feel for where the data are centered, but we often want
to know whether most of the data hover around those figures or are they really
spread out. We have some simple measures for variability. One measure is the
range which is simply the largest value minus the smallest value. When report-
ing on grades in my statistics classes, I have noticed that students are always
curious about the range. Did someone earn 100? Did someone totally bomb
it? The range, however, is very limited in its usefulness. It is based on only the
two most extreme values. With just the range as a measure we are left wonder-
ing about the variability of the rest of the data. What'’s going on with the data
within the range? And since I know you too have these burning questions, I do
not want to leave you hanging. Here, we present the two most useful measures
of variability, the variance and standard deviation. As we move toward inferen-
tial statistics (hypotheses testing and regression), these measures become very
important.

3.2.1 Variance and Standard Deviation

The variance is a measure of variation that uses every value in the dataset. The
goal of the variance is to find out, on average, how much the values in our



dataset differ from the mean. However, we cannot simply add up all the devi-
ations from the mean and then divide by the number of data points. This is
because, for values greater than the mean, the deviations are positive and for
values less than the mean the deviations are negative and when you add them
together you get zero. That leaves us with a couple of options. We could either
take the absolute value of the deviations or we could square the deviations.
The average of the absolute value of the deviations is called the mean absolute
deviation (see Formula A.3).

Our chosen measure of variability — the variance — requires squaring the
deviations from the mean. Once each deviation between a value and the mean
is squared, we sum all of those squared values. When calculating a variance for
a population dataset (i.e., the population variance), we then divide the sum of
the squared deviations by the number of observations. The population variance
therefore is an average of the squared deviations from the mean. The notation
for the population variance is the lower case Greek letter sigma squared; that
is, 62. The odd part about the variance is that the units are now squared. For
example, the variance for the 2014 violent crime data is in crimes squared per
100,000 people. To better communicate this measure of variability, we want to
get it back to the original units. We do this by taking the square root of the
variance, which yields the population standard deviation, which gets rid of the
squared term. Using Formula A.5, we find that the standard deviation for our
population of state-level crime rates is 0 = 177.25 crimes. Loosely speaking, we
can interpret this finding by saying that the average deviation from the mean
crime rate is 177.25.

Because the variance and standard deviation are calculated relative to the
mean, they too are sensitive to extreme values. For example, if we excluded
Washington D.C. — the most extreme value in the crime dataset — the standard
deviation drops from 177.25 to 127.53, roughly 50 crimes. Extreme values, in
either direction, increase the standard deviation of a dataset.

The variation in sample datasets (as opposed to population datasets) is also
described by its variance and standard deviation. The sample variance and
standard deviation, however, are sample statistics not population parameters
(so we do not use Greek letters). The sample variance is denoted as s*> and the
sample standard deviation is denoted as s. These sample statistics are the best
estimates we have of the population variance and standard deviation when
these values are unknown. Although the interpretation of the standard devia-
tion (again loosely: the average deviation from the mean) is the same for both
populations or samples, the formulas do differ slightly. While the population
variance is calculated by dividing by the total number of observations, the
sample variance is calculated by dividing by the total number of observations
minus 1 (see Formula A.6). The expression of (sample size — 1) is called the
degrees of freedom. In general, the degrees of freedom for a statistic are equal
to the number of values minus the number of statistics that were calculated
on route to the one you are after. In order to estimate the variance using our



sample, we first need to calculate the sample mean x, so we subtract one.
Degrees of freedom will show up as part of many formulas in a business
statistics course (the formula for degrees of freedom will take different forms),
and when you see this term, it means that you are calculating a statistic for
which at least one other statistic is required as part of the process. The sample
standard deviation is simply the square root of the sample variance (see
Formula A.7).

For the sample dataset in Table 3.2 on how many minutes it took 30
respondents to read a passage online, the sample standard deviation is s = 1.05
minutes. Therefore, the average deviation from mean reading time is about
1 minute.

3.3 The Shape

The third way we describe data is by its shape. At first, it may seem odd to think
about the “shape” of a dataset. Is not a dataset just a bunch of numbers? Well,
what we mean by shape is the form the data take on when they are organized
in a certain way. The starting point is organizing the data from the smallest
to the largest. The next step is constructing a histogram of the dataset. This is
achieved by splitting the entire range of the dataset into segments, often called
“bins.” The bins are just smaller ranges within the overarching data range. For
example, a dataset of exam grades may go from 0 (Johnny Slackerstein) to 100
(Sally Studyhard — she kept her maiden name) and can be segmented into bins
of roughly size 10. We could form bins from 0 to 10, another from 10.01 to 20,
20.01 to 30, and so on. This is really up to you. The number of bins to include
is subjective, but a guiding rule is that you want enough segments to capture
the variation of the data, but without having so many or so few that it makes it
hard to discern a shape.

The histogram in Figure 3.1 illustrates the shape of the violent crime rate
data in the United States. Each bin covers a range of 200 crimes, from 0 to over
1200. The bars show the number of states in each bin (labeled “frequency” on
the vertical axis). Most states witnessed between 200 and 400 violent crimes in
2014 (34 of 51 fall into this bin), and all but one observation is between 99 and
636. The high crime rate in D.C. pulls the tail to the right.

A dataset that is symmetric is one in which the left side of the mean is the mir-
ror image of the right side of the mean. One easy way to tell whether a dataset
is symmetric or whether it is skewed is by comparing the median and the mean
from the same dataset. If the mean = median, then the data are symmetric.
Whenever the mean is different than the median, it indicates that the distri-
bution of data is skewed in one direction. When the mean is larger than the
median, the dataset is skewed to the right (or right-skewed). In our example,
the mean crime rate for the United States is higher than the median crime
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Figure 3.1 Crime rates in the United States in 2014.

rate (364.41 vs. 327), and therefore we know that the dataset is right-skewed.
Right-skewed distributions are also common with data on income and wealth.
Income data are right-skewed because a small number of people tend to earn
large amounts of money. Visually, a dataset is skewed in the direction of its tail.

As another example, I will use data from the first exam from my business
statistics course in the spring of 2016. There were 92 students in the class. The
mean for exam 1 was 76 and the median was 80.3 Right away, we know that
since the median is greater than the mean, the dataset is left-skewed. This is
of course typical with grade distributions. This is because a handful of people
typically score very low grades whereas most people are in the 60—100 range.
Those few slackers bring down the mean quite a bit but have a small impact on
the median. You slackers know who you are.

Figure 3.2 contains a histogram that illustrates the shape of the distribution
of exam grades. Each bar contains the frequency (i.e., the number) of grades in
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Figure 3.2 Exam grades from a business statistics course with 92 students.

3 The modal grade was an 84, the highest grade was 100, and the lowest was a 24 (range = 76).
Finally, the standard deviation of the data was roughly 15.



that particular range. The bin labeled 10 contains the number of grades from
0 to 10 (there were zero of those). Likewise, the bin labeled 50 indicates the
number of students scoring between 40 and 50 (three unhappy students found
themselves in this bin).

Knowing the shape of a dataset can be important when trying to understand
how things vary in a population or a sample. Consider the example of exam
grades. The standard deviation of the grade data is 15 (points). From the his-
togram, it is clear that most of the data is within two standard deviations relative
to the mean. Two standard deviations below the mean is 76 — 30 = 46 and two
standard deviations above is 76 + 30 = 106. In fact, only four students scored
out of that range (4.3%). In other words, about 95% of the data is within two
standard deviations of the mean. It turns out that we have a formula that can
estimate what percentage of all data in a distribution can be found within a
certain number of standard deviations around the mean. The formula actually
produces a conservative estimate — meaning in reality, the range is probably
tighter — and it can be used for any distribution of data that take on any shape.
The formula is attributed to Pafnuty Chebyshev, a Russian mathematician from
the nineteenth century. You will never forget that name. Say it out loud. Cheby-
shev. It just rolls off the tongue. Cheby’s theorem (or formula) is quite easy to
use. Suppose you want to estimate what percentage of any dataset is within two
standard deviations from the mean. Denote the number of standard deviations
from the mean with the letter k, so here k = 2. Then, just calculate 1 — 1/k2,
which yields 0.75. So by Chebyshev’s theorem, we can be confident that at least
75% of any dataset lies within two standard deviations on the either side of
the mean.

While Chebyshev’s theorem is useful, we can be much more precise in
describing data if we know more about the specific shape of the dataset we
are working with. There are many distributions to learn in statistics, but
by far the most important for a course in business statistics is the normal
distribution. Chapter 5 is dedicated entirely to the normal distribution and
how normally distributed data can be described. Before we get there, how-
ever, we will take a short departure into the world of probability in Chapter
4. We need to understand probability before diving deep into the normal
distribution.

3.4 Summary

The goal of this chapter was to introduce the three ways we describe distribu-
tions of data: where is it centered, how does it vary, and what is the shape? While
many measures exist, we concentrated in particular on the mean for our mea-
sure of central tendency and the variance/standard deviation for the measure



of variability. These metrics will be used repeatedly throughout this text and
they take important roles once we enter into inferential statistics. Recall that
descriptive statistics is the topic of describing data that we have from either a
population or a sample (the topic of this chapter) and inferential statistics uses
sample data to infer or estimate something we do not know about a popula-
tion of data (coming up). Learning how to describe data is a necessary starting
point before introducing how to use data for inference. Last but not least, we
also learned a bit about crime rates in the United States and just how “average”
the state of Indiana really is.

Technical Appendix

The population mean is denoted by the Greek letter y. The summation symbol
2 tells us to add up all the x; values where the subscript i indexes observations
from 1 to N.

The sample mean is denoted as x and is calculated as:

n

>
X = "j , (A.2)

where lower case n denotes the sample size. The mean absolute deviation of a
population is
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The population variance is denoted as o2 and is calculated as:
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Note that the population variance is in units squared. To get back to the
original units, we take the square root which leads to the population standard
deviation:

Vo2 =o. (A.5)
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The sample variance and sample standard deviation are calculated in a sim-
ilar way. The differences in comparison to the calculations for the population
parameters can be observed in the formula for the sample variance. The numer-
ator has the sample mean x in place of the population mean. Because we had to
first use the sample of data to calculate x on route to calculating the variance,
we divide by the degrees of freedom which is the sample size n minus 1.

i (x;, — ;)2
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2

s (A.6)

We again take the square root of the sample variance to get to the sample
standard deviation:

Vs =s. (A7)



4

Probability

We live in a world of uncertainty. You cannot even be certain you will finish
this sentence. Or this one. OK, you made it, but you get the point. Most of the
decisions we make in life are made under uncertainty, and most of the conse-
quences of those decisions are uncertain as well. If you are reading this book
as part of a course in statistics, then you are likely pursuing a degree in higher
education. On the other hand, if you are reading this book simply out of enjoy-
ment, then you are crazy. That is one thing we can be certain about. In the likely
case that this book is being used toward a degree program, your choice of what
degree to pursue is made under tremendous uncertainty. You cannot be sure
what career options will be available when you graduate, how much you will
earn, whether you will relocate, or whether you will want to.

In the midst of uncertainty, we often want to know the likelilhood, or chance,
of certain events happening. Before leaving the house, for example, we may
check the weather on our phones or on a weather channel. In doing so, we
are informed about the chance of specific events occurring — like rain or
snow — presented in percentage terms. For example, the weather channel may
report a 90% chance of rain today. We then use that information to make
decisions about how to dress and what to bring to protect ourselves from
the rain. When the chance is 10% we might leave behind the umbrella, but
at 99% we will take it. Thinking again about your degree and potential career
choice, it might be useful to determine how likely it is that you will find a job
after graduation. The determinants of whether or not you get a job are many,
and some of them will depend directly on your performance as a student,
what college or university you graduate from and your personality. However,
whether you get the job you want also depends on how many jobs will be
available and how many graduates will be applying for those positions. If there
are more jobs than qualified graduates, then your chances are probably high.
If, for example, there are only jobs available for half of all graduates, then the
odds of landing the job are going to be lower.

The probability is the chance, in numeric terms, of a specific event occur-
ring. We will analyze probabilities in this chapter for two main reasons.



The first is that understanding probabilities in general is very helpful with
decision-making, both personally and professionally. Indeed, in order to think
critically about the information we encounter each day, we need to know
something about probabilities. The second reason we study probabilities is
because they play a very important role in topics in inferential statistics like
confidence intervals, hypotheses testing, and regression. In my experience as
a statistics instructor, many students struggle with the probabilities section
of the course. There are a few reasons for this. Many of the probabilities we
want to calculate are conditional, that is, they depend on the outcome of other
events. For example, we could estimate the probability that you will live to
be 85 years old. Alternatively, we could estimate the probability that you
will live to 85 years old conditional on whether you are a smoker. Or, we
could estimate the probability that you will live to 85 years old conditional
on whether you are smoker and you are overweight. And so on. So, there
are many things to keep track of that make these problems challenging.
This leads to the other reason students struggle. The formulas for all the
different types of probabilities are not very approachable. There are all kinds
of mathematical symbols that distract from the nature of the problem. And
there is a whole new vocabulary that is introduced that often gets in the way
of students’ understanding. The goal of this chapter is strip away some of the
distracting elements and walk through the core of the most important aspects
of probability. We will use examples throughout. As always, the formulas can
be found in the Technical Appendix to this chapter.

4.1 Simple Probabilities

Simple or classical probabilities are those that can be determined simply
because of the nature of the study taking place. A coin flip is a good example.
There are two possible outcomes (outcomes are also often called events in
statistics) when flipping a coin, either heads or tails. When a coin is considered
“fair,” it means that getting a heads or a tails is equally likely. So, the probability
of getting one outcome, heads for example, is easy to compute. There are
two possibilities that are equally likely, so the probability of getting a heads is
1/2 = 0.50. Of course the probability of landing a tails is the same. Something
important to note right away is that probabilities are computed as relative
events. The probability of flipping a coin and landing a heads is computed
by considering that particular outcome relative to all possible outcomes. For
this reason, probabilities will always be between zero and one. If for some
reason we were playing with a trick coin that had heads on both sides, then the
probability of flipping a heads is computed as 1/1 = 1 and the probability of
getting a tails is 0/1 = 0.



Consider flipping a single “fair” coin twice. The probability of getting a heads
on the first flip is 0.5. What is the probability of getting a heads on the second
flip? Because the two events (flipping coins) are independent, the probability
of getting a heads on the second flip is also 0.5. If two events are independent,
then the probability of one event occurring is not affected by the probability of
the other event occurring. Getting a heads or a tails on the first flip of a coin
does not influence the probability of getting a heads or a tails on the second
flip. Let us compare this with another set of events that are not independent.
Suppose, I had a box with ten marbles in it, five are red and five are black and
I am going to blindly choose two marbles consecutively. For each draw, what is
the probability of choosing a red marble if we do not replace the marbles? This is
called sampling without replacement. The probability of choosing a red marble
on the firstdraw is 5/10 = 0.5, just like flipping a coin. However, the probability
of choosing a red marble on the second draw, given that I already chose a red
marble on the first is not 0.5. The two draws are dependent events because the
probability of the second draw depends on the outcome of the first draw. After
choosing a red marble with my first choice, there are now nine marbles left,
and only four of them are red. So, the probability of choosing a red marble on
my second draw is 4/9 = 0.44. Combining the two, the probability of drawing
two red marbles consecutively without replacement is 5/10 X 4/9 = 0.22. If we
replaced the marbles after each draw (i.e., sampling with replacement), then
the two draws are independent events. In this case, the probability of choosing
a red marble is 0.5 both times.

Another example where simple probabilities come into play is rolling a
six-sided die (Figure 4.1).

If a die is fair, then each of the six sides is equally likely to result from a single
roll. The probability of any of the six outcomes is simply 1/6. Another important
point is that for a single roll, only one outcome is possible. So, if you roll a

Figure 4.1 All possible Ve N N N
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one roll of a six-sided die.




six that excludes the possibility of rolling anything else. We call these kinds of
events mutually exclusive, meaning that when one outcome occurs (like rolling
a six), the other outcomes cannot also occur. Heads and tails from a single coin
flip are also mutually exclusive events. If all possible outcomes are mutually
exclusive, then it must be the case that the probabilities of each outcome add
up to one.

Now let us get crazy and roll two dice at the same time. (see statistics can be
fun.) In this situation, we will observe a pair of numbers, one from each die.
How many different pairs are possible? To help visualize the process, all of the
possible outcomes are displayed in Table 4.1.

Looking at Table 4.1, it is easy to see that there are 36 possible outcomes
from rolling two dice. The 36 possibilities are calculated from the product of
6 rows X 6 columns. The same logic can be used to figure out how many possible
outcomes can occur when rolling three dice. The answeris6 X 6 X 6 = 216. And
so on. To practice, use this line of thinking to determine how many possible
outcomes can occur if you flipped five coins at the same time. Easy, 2 X 2 X 2 X
2 X 2 or, to simplify the notation, we use 25 =32.

Consider again rolling two dice. Now, what is the probability of rolling a 7
when adding together the two dice? We know that probabilities are computed
relative to all the possible outcomes. So, we know that the denominator will
be 36. The numerator will be how many possible pairs add up to 7. First, think
about the combinations that could add to 7. There are three: 3 and 4, 5 and 2,
and 6 and 1. Each of these combinations can occur in two ways. For example,
you could get 3 and 4 or 4 and 3. In total, there are six ways that we could roll
a pair that add to 7. The probability of rolling a 7 with two dice therefore is
6/36 =1/6.

4.1.1 When to Add Probabilities Together

Paying so close attention to probabilities, it is no wonder that most statisticians
shy away from gambling. Consider the very popular casino game “craps.” One

Table 4.1 All possible pairs from simultaneously rolling
two dice.

1,1 1,2 1,3 1,4 1,5 1,6
2,1 2,2 2,3 2,4 2,5 2,6
3,1 3,2 3,3 3,4 3,5 3,6
4,1 4,2 4,3 4,4 4,5 4,6
51 5,2 53 5,4 5,5 5,6
6,1 6,2 6,3 6,4 6,5 6,6
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of the simplest bets in this game is called the Pass. You throw two dice. If your
dice sum to 7 or 11, then you win (the casino matches your bet). So, what are
the chances of winning the Pass with a 7 or an 11? We already know the proba-
bility of rolling a 7 is 6/36. So, if we add another possibility that can allow us to
win the Pass, it must be the case that the probability of winning is greater than
6/36. Once we figure out the probability of rolling an 11, then we can add them
together to determine the probability of winning. How many ways can we roll
an 11? The only combination that adds to 11 is 5 and 6, and there are two ways
that can occur. So, the probability of rolling an 11 is 2/36. Putting it all together,
the probability of rolling a 7 or 11 is = 6/36 + 2/36 = 8/36. So, about 22% of the
time (a bit more than 1 in every 5 turns) you could expect to win the Pass in
craps.

Note that we added probabilities in the previous example. We added the
probabilities because the question was an or question. When you see the term
or in probability questions that means you are going to be adding probabilities.
What is the probability it rains or it does not rain today? This question requires
adding both probabilities together. Even without having any idea of the actual
probability of it raining, we know the answer must be 1 because of two reasons.
There are only two possible outcomes (it rains or it does not) and they are mutu-
ally exclusive, so they add to one. Statisticians, just to confuse things, use the
term union to describe adding the probability of multiple events. For example,
the probability of rolling a 7 or 11 can also be described as the probability of
the union of 7 and 11 (see Formula A .4).

Let us get some more practice before we move on to a different type of prob-
ability. We are still rolling two dice, but this time we do not care about the sum
of the two numbers. Rather, we are interested in the individual result of each of
the two dice. What is the probability you roll either a 2 or a 3 on either die? As
before, we will add the probabilities of each separate outcome. However, this
time, we have to be careful not to double count the instances in which a 2 and
3 are rolled together. This is because rolling a 2 or rolling a 3 are not mutually
exclusive. Rolling a 2 does not exclude the possibility of rolling a 3 on the other
die. Since there are 36 possible outcomes, we can still refer to Table 4.1. Let us
first consider the cases in which a 2 is rolled. These possibilities are contained
in Table 4.2.

There are 11 different ways of getting a two from rolling two dice, therefore
the probability of rolling at least one 2 is 11/36. The question, however, asked
about the probability of rolling a 2 or a 3. All of the instances in which a 3 is
rolled on two dice can be found in Table 4.3.

There are also 11 instances in which a three is rolled on either die. So, the
probability of rolling a three is also 11/36. Now, to compute the probability of
rolling a 2 or a 3, we want to add the probabilities of the individual events,
but we must remember to subtract the cases that overlap. We cannot double
count. Comparing Table 4.2 with Table 4.3, we can see there are two instances



Table 4.2 Rolling a 2 from a pair of dice.

1 2 3 4 5 6

1,2
2,1 2,2 2,3 2,4 2,5 2,6
3,2
4,2
5,2
6,2
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Table 4.3 Rolling a 3 from a pair of dice.

1 2 3 4 5 6

1,3
2,3
3,1 3,2 3,3 3,4 3,5 3,6
4,3
53
6,3
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of overlap. Therefore, the probability of rolling a two or a three is 11/36 +11/36
—2/36 =20/36 or 5/9. The places where they overlap are called intersections.

4.1.2 When to Find Intersections

When probability questions have the word and that indicates you will need to
find intersections. From the previous example, if the equation was to find the
probability of rolling a 2 and a 3, then there are only two instances in which
this outcome can occur. It is the intersection of 2 and 3, and the probability
is therefore 2/36 = 1/18. Notice that this probability is much smaller than the
probability of rolling a 2 or a 3.

Consider a standard deck of 52 playing cards. In case you too shy away from
card playing and gambling, there are four of each number card and four of each
face card in a deck, two black (spades and clubs) and two red (diamonds and
hearts). First, suppose I am interested in finding the probability of drawing one
card and it being red. Since half of the cards in the deck are red, the probability is
26/52. Now, let us say I am interested in the probability of drawing a card that is
red and it is an Ace. In this case, we are interested in the intersection of the Aces
and red cards. There are only two red cards that are Aces, so the probability of



Figure 4.2 Venn diagram showing the
intersection for drawing either an Ace or
aRed card.

Red card

Intersection
(2 of 52 cards)

the intersection is 2/52. This intersection is illustrated in the Venn diagram in
Figure 4.2.

What about the probability of drawing a single card that is either red or an
Ace? There are 26 red cards and 4 Ace cards. However, two of the four Aces
are red cards. That is, red cards and Ace cards are not mutually exclusive (they
can both occur with a single draw of a card). So, when we find probabilities that
are unions (those or probabilities), we must remember to subtract the intersec-
tions. If we did not, we would be double counting cards. Therefore, the number
of unique cards that are either red or an Ace are 26 + 4 — 2 = 28. The probability
is therefore 28/52 = 0.5385.

4.2 Empirical Probabilities

When the Titanic collided with an iceberg on her maiden voyage in April of
1912, the likelihood of surviving the wreck was not the same for all passengers.
Women and children, for instance, were given preference to board emergency
raft boats. It turns out that class also affected the probability of survival. In this
section, we will use the historic data of Titanic survivors to explore probabilities
that are calculated based on the observed outcomes. This is called the empiri-
cal or the relative frequency approach to finding probabilities. With empirical
probabilities, we simply let the data do the talking. For our example, the pas-
sengers and crew aboard the Titanic are displayed in Table 4.4. Table 4.4 is an
example of what is called a contingency table, which is a cross-tabulation of
frequencies for a set of events.

Table 4.4 shows that 2224 people were aboard the ship on its voyage across
the Atlantic. There were both passengers and crew aboard segmented by men,
women, and children. The passengers are further divided into three classes.
Using the same categories, Table 4.5 shows the number of people who were
saved and survived the shipwreck.



Table 4.4 Titanic passengers and crew.

Men Women Children Total

First class 175 144 6 325
Second class 168 93 24 285
Third class 462 165 79 706
Crew 885 23 - 908
Total 1690 425 109 2224

Table 4.5 Titanic survivors.

Men Women Children Total

First class 57 140 6 203
Second class 14 80 24 118
Third class 75 76 27 178
Crew 192 20 - 212
Total 338 316 57 711

From Table 4.5, we see that 711 people survived the sinking of the Titanic.
Let us start with a broad question. What was the probability of a person aboard
the Titanic surviving? To answer this empirical probability question, we need
to calculate the relative frequency of survivors. This is simply the number that
survived divided by the total number onboard =711/2224 =0.3197. So, without
conditioning the question on the characteristic of the passenger or crew, we
can say that a person in general had slightly less than a one in three chance of
survival. However, not all groups had an equal chance of survival. To illustrate
this, consider the probability of a child surviving the wreck. In total, there were
109 children onboard and 57 of them were saved. So, the chance of surviving
the wreck given that the passenger was a child was 57/109 = 0.5229. What about
the chance of survival for a passenger who was a child and that passenger was
in first class? This probability is found at the intersection of children and first
class. We can see that 6 of 6 survived, so the probability was equal to 1.

Now consider the probability of surviving if the person was a woman or a
child. From Table 4.5, we see that 316 women survived and 57 children survived,
so the total number is 316 + 57 = 373. From Table 4.4, we see that there were
425 women and 109 children onboard, with a total of 425 + 109 = 534. So, the
probability of survival for a woman or a child was 373/534 = 0.6985, which is a
bit more than a 2 in 3 chance.

These probability examples are called conditional probabilities, which are
probabilities of events occurring given that something else has occurred. In



Table 4.6 Conditional probabilities of surviving the Titanic's
maiden voyage.

Men Women Children Combined
First class 0.3257 0.9722 1.0000 0.6246
Second class 0.0833 0.8602 1.0000 0.4140
Third class 0.1623 0.4606 0.3418 0.2521
Crew 0.2169 0.8696 - 0.2335
Combined 0.2000 0.7435 0.5229 0.3197

many problems in statistics, it is the word “given” that indicates you need to
find a conditional probability. For example, what is the probability of survival
for a male passenger, given that he had a first class ticket? The denominator
of the calculation is the given part, which is the subset of the men who had
first class tickets (175 passengers). The numerator is the number of men who
survived who were first class passengers (57). So, the probability of surviving
the shipwreck for a man, given he had a first class ticket was 57/175 = 0.3257.
All of the probabilities of survival conditional on the intersection of passenger
class and whether a male, female, or child are displayed in Table 4.6. The prob-
abilities are computed by dividing the cells in Table 4.5 by the corresponding
cells in Table 4.4. As an example, 0.3257 — the probability of survival for a male,
first-class ticket holder — is found in the upper-left corner. The Table is useful
for making quick comparisons of conditional probabilities. For example, we see
that the probability of survival for a child passenger with a first or second class
ticket is much higher than for a child in the third class. Also, males and females
had a better chance of survival if they held first class tickets compared to other
ticket classes.

4.3 Conditional Probabilities

Having a good understanding of conditional probabilities is useful for thinking
critically about some of the statistics you are confronted with every day. Statis-
tics can often be misleading if they are based on a large population of people
when in reality they should be focused on only a subset. About 610,000 people
die of heart disease in the United States each year.! That boils down to one in
every four deaths, or an empirical probability of 0.25. Does that suggest that
everyone should expect a one in four chance of dying from heart disease? No.
This statistic pools everyone together, combining all of the people who are at

1 https://www.cdc.gov/heartdisease/facts.htm



high risk (e.g., obese and smokers) with those that are at low risk (e.g., healthy
weight and nonsmokers). The conditional probabilities would be different. An
obese smoker’s chance of dying from heart disease is much higher than 0.25
and the healthy person’s chance is much lower.

A good example of how conditional probabilities can be misinterpreted is
presented in a study by Kramer and Gigerenzer.? They consider the question:
“What is the probability that a woman with a positive mammography result
actually has cancer?” They report that the probability of a woman having breast
cancer is 0.008, and if she has breast cancer, the test will show a positive result
90% of the time. The test, in other words, is 90% accurate in terms of detecting
cancer that is present. However, if a woman does not have breast cancer, the
test will reveal that she does 7% of the time. Given these statistics, what is the
probability that a woman who has a positive test result actually has cancer?

In a study of 24 experienced doctors that were provided with this informa-
tion, 22 answered incorrectly. Most answered that if the woman tests positive,
there is a 90% chance she has cancer. They were simply reporting the accu-
racy of the test at detecting cancer if a patient has cancer. They ignored all of
the women who would test positive even if they did not have cancer. Those 7%
false positives. So, what is the probability that the woman with a positive test
result actually has cancer?

Let us work through it using a contingency table (Table 4.7). From experience,
the simplest way to work through these problems is to start with an example
population size and fill in the table with the frequencies in each cell. Consider
an example population of 10,000 women. Of the 10,000, only 80 women will
have cancer (i.e., 10,000 x 0.008), and this value is found in the “Total” column
in the “Has cancer” row. Now, of those 80, 90% will be accurately diagnosed,
which yields 72 positive results and 8 negative results. Of the 9920 women who
do not have cancer, 7% of them will be told that they do. This results in 694
woman receiving false positives. Therefore, 72 4+ 694 = 766 is the total number
of women who receive a positive test result. Given a positive test result, only
72 will actually have cancer, which means the probability that a woman has
cancer, given that she tests positive, is 72 /766 = 0.094. Less than 10%. Only two

Table 4.7 Contingency table of cancer prevalence and test results.

Positive test Negative test

result result Total
Has cancer 72 8 80
Does not have cancer 694 9226 9920
Total 766 9234 10000

2 Kriamer, W. and G. Gigerenzer. (2005) “How to confuse with statistics or: The use and misuse of
conditional probabilities.” Statistical Science 20(3):223-230.



doctors who participated in the study answered correctly. While most doctors
thought the woman in question had a 90% chance of having cancer in reality
it was fairly unlikely that she did. This type of careless thinking is not trivial.
Many patients have been given poor advice about medical care by doctors who
do not understand how to interpret statistics.

You may have heard the adage that most vehicle accidents occur within three
miles of people’s homes. While this is likely true, it is not because driving is
more dangerous when we are closer to home. It is just that most trips people
take are short, and with more trips it is unsurprising we observe a higher fre-
quency of accidents. However, the probability of an accident occurring within
three miles from home is likely not higher compared to trips beyond the three
mile range. It is all about conditioning the analysis on the relevant events. Both
the medical example and the accident example highlight that conditional prob-
abilities do not work the same both ways. The probability of testing positive,
given the patient has cancer is 0.90, while the probability of having cancer, given
the patient tested positive is 0.094. Totally different. Likewise, the probability of
getting into an accident, given that the driver is within three miles from home
is different from the probability that the driver is three miles from home, given
that she got into an accident.

4.4 Summary

Every undergraduate textbook in business statistics has a chapter on proba-
bility. In other words, the probability of an undergraduate stats book having
a chapter on probability = 1.0. Apart from the difficulty many students
have with understanding probabilities, the chapter is often a bit disjointed
from the rest of the text. It usually follows chapters on sampling techniques
and descriptive statistics and it is not immediately obvious where it fits in.
However, the chapter on probability is a gateway into the world of inferential
statistics. Understanding probabilities is key to understanding how we use
sample data to infer unknown characteristics regarding a population. Random
samples lead to sample statistics that have their own distribution, and those
distributions define the probabilities of all possible outcomes. We turn to
the most important probability distribution — the normal distribution — in
Chapter 5.

The objective of this chapter was to offer an intuitive approach to under-
standing simple (or classical) and empirical probabilities. Examples of coin flips,
die rolls, and draws from a deck of cards were used to illustrate the concepts
of simple probabilities. We turned again to data from the Titanic to illustrate
empirical probabilities — those that are calculated using observed frequencies
of certain events occurring. We will rely on both simple and empirical proba-
bilities in the upcoming chapters on inferential statistics.



Technical Appendix

For any event A4, it must be the case that the probability of the event is no greater
than one and no less than zero. Notationally, we can write this as

0<PA) L1, (A1)

where P indicates probability.
If we let S denote the entire sample space of simple events, then it must be
the case that

P(S) = 1. (A.2)

For an event A, if we denote the collection of all other events as A¢, then the
Complement Rule states

P(A%) = 1 — P(A), (A.3)

which follows directly from the fact that P(S) = 1.

The probability of a union (an or probability) is computed using formula
A4 below. Formula A .4 is often referred to as the General Law of Addition.
The notation U indicates a union and the notation N indicates an intersection
(an and probability).

P(AUB) = P(A) + P(B) — P(A N B) (A.4)

Note that if events A and B are mutually exclusive, then P(A N B) = 0, and
this special case is called the Special Law of Addition.

To calculate the probability of an event, given that another event occurs, we
use the conditional probability formula
P(ANB)

PB) °
where the term | means given.

The General Law of Multiplication — used to determine joint probabilities
and intersections — is the following:

P(A N B) = P(A|B)P(B), (A.6)

and if events A and B are independent, then P(A N B) = P(A)P(B), which is the
Special Law of Multiplication.

P(A|B) = (A.5)



5

The Normal Distribution

Only a textbook in statistics could get away with entitling a chapter “The
Normal Distribution.” If you thought that the topic of distributions was less
than exciting, then what chance does a normal one have? No matter how hard
you try you cannot get away from the normal distribution. Every time you see
the results of a political poll in the news, those results are based on the normal
distribution. The findings from most scientific studies — from those telling
you that you need more exercise to those bragging their batteries last the
longest — all rely on the normal distribution. In this chapter, we will consider
attributes of datasets that are distributed normally. While it is true that some
data are naturally known to be normally distributed, the real usefulness of the
normal distribution starts in Chapter 6 on sampling distributions. However,
before we get there, we need to know the fundamentals, and introducing
those fundamentals is the goal of this chapter. The normal distribution is a
continuous probability distribution, implying that the underlying data are
continuous. Recall, continuous data can take on any value within a range (i.e.,
fractions make sense). As we will find out later, however, sometimes even
discrete data can be safely approximated as normal.

5.1 The Bell Shape

The normal distribution is probably best described as a “bell-shaped” dis-
tribution. Some textbooks call it “mound shaped.” Fancier textbooks call it
“Gaussian”, named after German mathematician Karl Gauss (1777-1855).
Sometimes, students have a hard time grasping the concept that data have a
shape. A useful visual, even if it is just made mentally, is a histogram of data.
Recall, on the horizontal axis of a histogram are the ranges of values of the
data (called bins) and the vertical axis either has the frequency (total number)
in each bin or the relative frequency (total number in a bin divided by the total
observations) in each bin. The normal distribution is symmetric and so the
part of the distribution less than the mean is the mirror image of the part of
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Figure 5.1 The figure illustrates a smooth normal distribution (dark line) drawn over a
histogram of data for a variable x.

the distribution greater than the mean. Recall from Chapter 3 on descriptive
statistics that symmetry implies that the mean equals the median. In fact, with
the normal distribution, we can say: mean = median = mode. The normal
distribution is a continuous distribution and is most often represented by a
smooth line like the one in Figure 5.1. While there are other distributions that
are mound shaped (the ¢-distribution for example), the normal distribution
has some particularly unique properties. These properties are outlined in what
is called the Empirical Rule.

5.2 The Empirical Rule

The Empirical Rule has much in common with Chebyshev’s theorem. We
cannot forget Chebyshev. Remember that Chebyshev’s formula was used to
get a lower-bound estimate of how much data is within k standard deviations
around the mean for any dataset with any shape. However, if we know that
the distribution of data is normal, then we can be more precise. The Empirical
Rule — illustrated in Figure 5.2 — says that if a dataset is normal, then it must
be the case that:

o roughly 68% of the data will be within one standard deviation around the
mean (“around” meaning the range from one standard deviation below the
mean to one standard deviation above the mean)

o roughly 95% of the data will be within two standard deviations around the
mean

e roughly 99.7% of the data will be within three standard deviations around
the mean

The z label on the horizontal axis in Figure 5.2 denotes the number of stan-
dard deviations away from the mean for the variable x. Right away, we observe
that the Empirical Rule gives us more useful information than Chebyshev’s for-
mula. Recall from Chapter 3 that Chebyshev’s formula estimated that at least



Figure 5.2 The Empirical Rule for normally distributed data.

75% of data is found within two standard deviations of the mean. Of course, this
is true of any distribution, including the normal one. However, with the normal
distribution by the Empirical Rule, we can say that approximately 95% of the
data is within the same numeric range. Note that almost all data lie within three
standard deviations. So, if a dataset is normal, the chance of a single data point
being outside of three standard deviations (either greater than or less than) is
about 0.03% (100 — 99.7%). In other words, it would be extremely rare. The con-
cept of rare events defined by the number of standard deviations away from the
mean will come up again later.

Let us get some practice using the Empirical Rule. The average height of an
adult American male is roughly 69 inches with a standard deviation of 3 inches.
Population data on height are typically normally distributed, so it is safe to
assume this is the case.

Question: What percentage of American men are between 63 and 75 inches
tall?

We need to determine how many standard deviations 63 and 75 are from the
mean. With a standard deviation of 3 inches, it should be clear that 63 inches is
two standard deviations below the mean (i.e., 69 — 2 X 3 = 63) and 75 inches is
two standard deviations above the mean. By the second element of the Empir-
ical Rule, we know that about 95% of all men will be between 63 and 75 inches
tall. In other words, of the American men reading this book, only about 5% will
either be shorter than 63 inches or taller than 75 inches.

There is another very useful way to think about the Empirical Rule. Consider
the first bullet point, stating that 68% of all the data can be found within one
standard deviation around the mean. This also implies that if we randomly
chose a single value from the entire distribution, the chance or probability that
value is within one standard deviation of the mean is 68/100 = 0.68. Therefore,
the Empirical Rule can be rewritten in probability terms. For any normally
distributed dataset:

e the probability of a randomly selected value falling within one standard devi-
ation around the mean is roughly 0.68.



o the probability of a randomly selected value falling within two standard devi-
ation around the mean is roughly 0.95.

o the probability of a randomly selected value falling within three standard
deviations of the mean is roughly 0.997.

5.3 Standard Normal Distribution

The Empirical Rule is useful for getting a feel for how dispersed a normally
distributed dataset is, but it has its limitations. Consider again the average adult
American male with a height of 69 inches and a standard deviation of 3 inches.
What percentage of men is between 67 and 71 inches tall? Or, in probability
terms, we can ask:

Question: what is the probability that a randomly selected American adult
male is between 67 and 71 inches tall?

To answer this question, we have to look beyond the Empirical Rule because
the distances from the mean in standard deviations are not integer values.
Clearly, 67 inches is less than one standard deviation from the mean of 69
(note, one standard deviation below the mean is 69 — 3 = 66). To answer
this question, we turn to what is called the standard normal distribution.
Every value from a normally distributed dataset can be transformed into
a standardized value simply by subtracting the mean and dividing by the
standard deviation (see Formula A.1). We call this a z-score. The z-score tells
us how many standard deviations a value is away from the mean. The standard
normal distribution, also known as the z distribution, has a mean of zero and
a standard deviation of 1. The distribution in Figure 5.2 is the standard normal
distribution. The graph of the standard normal distribution typically ranges
from -3 to +3 standard deviations (remember, from the Empirical Rule just
about all of the data are within this range).

Returning back to our question, the z-score can tell us how many standard
deviations an American male with a height of 67 inches is from the average of
69. This is (67—69)/3 = —2/3, which means that a man 67 inches tall is 0.67
standard deviations less than the average man. Likewise, a man 71 inches tall is
0.67 standard deviations greater than the average man (i.e., (71-69)/3 = 2/3).
This area is illustrated in Figure 5.3.

To find the probability of a man being between 67 and 71 inches tall, we
need to take these z-scores to what is called the standard normal table or more
informally the z-table. A few different versions of the standard normal table are
available in most textbooks. One version of the table makes use of the fact that
the left-hand side is the mirror image of the right-hand side for a normal dis-
tribution, and only includes positive z-scores (only the right-hand side of the
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Figure 5.3 Beyond the Empirical Rule: Finding an area under the normal distribution.

z 0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09

0.0| 05000 0.5040 0.5080 0.5120 0.5160 0.5199 0.5239 0.5279 0.5319 0.5359
0.1| 05398 0.5438 0.5478 0.5517 0.5557 0.5596 0.5636 0.5675 0.5714 0.5753
0.2| 05793 0.5832 0.5871 0.5910 0.5948 0.5987 0.6026 0.6064 0.6103 0.6141
0.3| 0.6179 0.6217 06255 0.6293 0.6331 0.6368 0.6406 0.6443 0.6480 0.6517
0.4| 0.6554 0.6591 0.6628 0.6664 0.6700 0.6736 0.6772 0.6808 0.6844 0.6879
0.5| 0.6915 0.6950 0.6985 0.7019 0.7054 0.7088 0.7123 0.7157 0.7190 0.7224
0.6 | 0.7257 07291 0.7324 0.7357 0.7389 0.7422 0.7454 [0i7486] 0.7517 0.7549
0.7| 0.7580 0.7611 0.7642 0.7673 0.7704 0.7734 0.7764 0.7794 0.7823 0.7852
0.8| 0.7881 07910 07939 0.7967 0.7995 0.8023 0.8051 0.8078 0.8106 0.8133
0.9| 08159 0.8186 0.8212 0.8238 0.8264 0.8289 0.8315 0.8340 0.8365 0.8389
1.0 | 0.8413 0.8438 0.8461 0.8485 0.8508 0.8531 0.8554 0.8577 0.8599 0.8621

Figure 5.4 A section of the cumulative z-table.

distribution). The other type of table includes both sides. We call this the cumu-
lative standard normal table, and this is the one we will refer to in this text (see
Table 5.1 in the Technical Appendix). You can use any z-table you want because
if you use them correctly you will get the same answer regardless of the format.

Rule: any z-value you look up on the cumulative z-table gives you the entire
area (probability) to the left of that z-value.

Figure 5.4 contains just a small section of the positive side of the cumulative
z-table. The first column has the z values to the first decimal place. The top row
has the second decimal place. Note that z = 0.00 is the mean value and the area
to the left of the mean is always 0.50. When we look up 2/3 = 0.67 on the table,
it tells us that the area to the left is 0.7486 (highlighted with a shaded box).
In other words, the probability of an adult male with a height of 71 inches or
less is 0.7486 (about 75% of the population). Now, to find the probability of a
male being between 67 inches and 71 inches, we have to subtract the area to
the left of 67 inches. What is that area? Simply look up —2/3 = —0.67 on the
table and find 0.2514. Or alternatively, recognizing the symmetry of the normal
distribution, that area will be equal to 1 — 0.7486 = 0.2514. So, the area between
67 and 71 inches is 0.7486—0.2514 = 0.4972. To wrap it up, we can say that the
probability of an adult male being between 67 and 71 inches tall is 0.4972. This
area is illustrated in Figure 5.3.



Itis important to reiterate that this technique can be used to find probabilities
for any normally distributed dataset. Simply find the z-values and go to the
table. The area you get is the probability of getting a z value less than the one
you looked up.

5.3.1 Probabilities with Continuous Distributions

The previous example led us to calculate the probability that a randomly cho-
sen adult male is between 67 and 71 inches tall. That is, we found a probability
of a person being within a certain range for the continuous dataset on height.
What if we wanted to find the probability of randomly selecting an adult
male who is, for example, exactly 67 inches tall? The answer to this question
is effectively zero. When data are continuous, or approximately continuous,
then there are effectively an infinite number of possible values the variable
can take. Given our example on height, someone may be 67.0001 inches tall,
while another person may be 67.543 inches tall. Remember, continuous data
are not countable. Fractions make sense. So, when there are effectively infinite
possibilities, then the probability of one exact event occurring is approximated
by 1/00 = 0. The point is, we always find probabilities within a range of values
when data are continuous.

5.3.2 Verifying the Empirical Rule Using the z-table

To get more practice using the cumulative z-table, we can use the table to ver-
ify the three parts to the Empirical Rule. The first part of the Empirical Rule
states that the probability of a value falling within one standard deviation of
the mean in either direction is 0.68. If we look up a positive z =1 on the table
(see Figure 5.4 or Table 5.1), we get a probability of 0.8413. That is, the area of
everything to the left of z = 1.0. From 0.8413, we must subtract the area less
than z = —1.0, which from the table is 0.1587. Therefore, from the z-table, the
area within one standard deviation of the mean is 0.8413 — 0.1587 = 0.6826.
Thus, we confirm the first aspect of the Empirical Rule that the probability is
approximately 0.68.

We can do the same for the other two parts of the Empirical Rule. From
the z-table, the probability of a normally distributed value falling within two
standard deviations of the mean is 0.9772 — 0.0228 = 0.9544, or roughly 0.95.
Finally, the probability of a normally distributed value falling within three stan-
dard deviations of the mean is 0.9987 — 0.0013 = 0.9974.

5.4 Normal Approximations

So far, in this chapter, we have considered continuous variables that happen
to be normally distributed. It turns out that in some situations data that are



not continuous can be safely approximated as normal distributions. One of
the most important cases is the binomial distribution. The binomial distribu-
tion arises from categorical data that can be coded in binary form (i.e., 0 or 1).
Examples are flipping a coin (heads or tails), tax audits (audited or not audited),
and voting (voted for a candidate or did not vote for a candidate). The two events
must be mutually exclusive (both cannot occur at once) and all inclusive (cover
all possibilities). Typically, the event marked with a 1 is called a “success” and
the event marked with a “0” is a failure. In this context, the terms success and
failure do not imply anything about the relative merits of the two events, it is
just a point of reference. The binomial distribution is the collection of all pos-
sible “successes” that could occur from a given number of trials. You can think
of a trial as the action being taken. Each flip of a coin, each roll of a die, each
audit, and each vote is a trial. Suppose, we flipped a coin 50 times and each flip
recorded a 1 if we got a heads (a success) or a 0 if we got a tails (a failure). The
collection of all possible successes from those 50 flips is a binomial distribu-
tion. For the distribution to be binomial, the probability of a success (or failure)
for each trial must be independent of previous trials. The example of flipping a
coin is intuitive; that is, the probability of landing a heads is 0.50 independent of
what occurred on any previous flips. However, if the trial is randomly choosing
a voter to determine whether or not they voted for a particular candidate, for
the distribution to be binomial the likelihood each voter is chosen must be the
same for each trial.! Like any distribution of data, the binomial distribution can
be characterized by its mean, standard deviation, and shape.

54.1 Mean

The mean of the binomial distribution, also called the expected value, is simply
the number of trials X the probability of a success. How many heads do you
expect to get from 50 flips of a coin? You can probably answer 25 just using
your intuition; that is, half of the time you should expect to get a heads. We use
the Greek letter 7 to denote the probability of a success, and therefore 1 — 7 is
the probability of a failure. The number of trials is denoted as 7. So, the mean
of the binomial distribution is y = nx.

5.4.2 Standard deviation

Although we might expect 25 heads from 50 flips of a coin, we are well aware
that we might not get 25 heads exactly. In fact, it is possible, although highly
improbable, that we get zero heads from 50 flips of a coin. The point is that
there will be variation in the number of successes you get from 50 flips of a coin.

1 Trials that meet the criteria to form a binomial distribution are often called Bernoulli trials
(or the experiment follows the Bernoulli process).



How much variation? The variance of the binomial distribution is the expected
number of successes X the probability of a failure. The standard deviation, as
in Chapter 3, is simply the square root of the variance. The standard deviation
can be interpreted as the average deviation from the expected value. For our
example, it is the average deviation from the expected 25 heads, and equals
3.54 heads (see Formula A.3).

5.4.3 Shape

What shape does a binomial distribution take? It turns out that if the number
of trials is large enough, then we can safely approximate the binomial distribu-
tion as normal. How many trials are required? As long as nx and n(1 — x) are
both at least 10, then we can say that the distribution of successes is normal (see
Formula A.2). That is, it has the familiar bell shape. This is great news. Given
that it is normal, we can rely on the Empirical Rule and the z-table to find prob-
abilities of specific events. Remember, any normally distributed variable can
be converted into a z-score and looked up on the z-table. Formula A.4 shows
how to find a z-score for any binomial distribution that can be approximated
as normal.

Consider again the distribution of heads for 50 flips of a coin. The distribution
can be safely approximated as normal because nz = n(1 — z) = 25. The mean
of the distribution is 25 heads and the standard deviation is 3.54 heads.

Question: what is the probability that we get 30 heads or less when flipping
a coin 50 times?

The distribution of heads for 50 coin flips is illustrated in Figure 5.5. The vari-
able x denotes the number of heads. The standard deviations have been rounded
to one decimal place to simplify the graph. To answer the question, we need to
find the z-score for 30 heads and then go to the z table to find the area. The

0:9207

14.4 179 215 25 285 321 356 X(#heads)
3 -2 - 0 1 2 3z

Figure 5.5 Probability of getting 30 heads or less from 50 flips of a coin.



z-score is simply the difference between 30 and the expected 25 over the stan-
dard deviation. Therefore, z = (30 — 25)/3.54 = 1.41; that s, 30 is 1.41 standard
deviations away from 25. If we look up 1.41 on the z-table, it gives us 0.9207. In
other words, the probability of getting 30 heads or less from 50 flips is 0.9207.

5.5 Summary

This chapter was dedicated to normally distributed data. These data are
symmetric and bell shaped. We learned how to standardize any normally
distributed variable by finding the z-score. The z-score tells us how many
standard deviations x is from the mean. The normal distribution is a specific
type of continuous probability distribution. There are many other continuous
probability distributions, including the uniform distribution, the exponential
distribution, and the triangular distribution. However, most of the tools we
learn for inferential statistics (including hypothesis testing and regression
in the coming chapters) rely on assumptions of normality. For this reason,
this chapter is uniquely focused on helping students understand the normal
distribution. We considered populations of continuous data that are normally
distributed (close examples include data on height, sleep patterns, and shoe
size). We also considered distributions of binary data that can be approximated
as normal. Examples here included flipping a coin and rolling a die. However,
the real value in understanding normal data is revealed in the next chapter
on sampling distributions. It turns out that even if population datasets are
dramatically skewed, the distributions formed from taking samples from those
populations are often normal.



Technical Appendix

Any normally distributed variable can be converted into a z-score. We call this

process “standardizing” the data. For a continuous variable x, the formula is:
x—
z=2"F (A1)
o

where p is the population mean and ¢ is the population standard deviation. The
z-score tells you how many standard deviations the x value is from its mean.

The binomial distribution (think binary data) can be approximated as normal
provided that both of the following conditions hold:

nr > 10
n(l —r) > 10, (A.2)

where 7 is the probability of a success (a successis a 1 in a sample of binary data)
and (1 — ) is the probability of a failure (a 0 in the data), and # is the number
of trials. The expected number of successes is nz. The standard deviation of the
binomial distribution is:

o =\Vnr(l-n). (A.3)

To standardize x number of successes for a normally approximated binomial
distribution, we use the following:

z= X —Nnrw ] (A.4)

Vhnr(l —x)



Table 5.1a Cumulative standard normal table — negative z-scores.

z 0.09 0.08 0.07 0.06 0.05 0.04 0.03 0.02 0.01 0.00

-3.9 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0000
-3.8 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001
-3.7 0.0002 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001
-3.6 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002
-3.5 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0002 0.0002
-3.4 0.0005 0.0005 0.0004 0.0004 0.0004 0.0004 0.0004 0.0004 0.0003 0.0003
-3.3 0.0007 0.0006 0.0006 0.0006 0.0006 0.0006 0.0005 0.0005 0.0005 0.0005
-3.2 0.0009 0.0009 0.0009 0.0008 0.0008 0.0008 0.0008 0.0007 0.0007 0.0007
-3.1 0.0013 0.0013 0.0012 0.0012 0.0011 0.0011 0.0011 0.0010 0.0010 0.0010
-3.0 0.0018 0.0018 0.0017 0.0016 0.0016 0.0015 0.0015 0.0014 0.0014 0.0013
-2.9 0.0025 0.0024 0.0023 0.0023 0.0022 0.0021 0.0021 0.0020 0.0019 0.0019
-2.8 0.0034 0.0033 0.0032 0.0031 0.0030 0.0029 0.0028 0.0027 0.0026 0.0026
-2.7 0.0045 0.0044 0.0043 0.0041 0.0040 0.0039 0.0038 0.0037 0.0036 0.0035
-2.6 0.0060 0.0059 0.0057 0.0055 0.0054 0.0052 0.0051 0.0049 0.0048 0.0047
-2.5 0.0080 0.0078 0.0075 0.0073 0.0071 0.0069 0.0068 0.0066 0.0064 0.0062
-2.4 0.0104 0.0102 0.0099 0.0096 0.0094 0.0091 0.0089 0.0087 0.0084 0.0082
-2.3 0.0136 0.0132 0.0129 0.0125 0.0122 0.0119 0.0116 0.0113 0.0110 0.0107
-2.2 0.0174 0.0170 0.0166 0.0162 0.0158 0.0154 0.0150 0.0146 0.0143 0.0139
-2.1 0.0222 0.0217 0.0212 0.0207 0.0202 0.0197 0.0192 0.0188 0.0183 0.0179
-2.0 0.0281 0.0274 0.0268 0.0262 0.0256 0.0250 0.0244 0.0239 0.0233  0.0228
-1.9 0.0351 0.0344 0.0336 0.0329 0.0322 0.0314 0.0307 0.0301 0.0294 0.0287
-1.8 0.0436 0.0427 0.0418 0.0409 0.0401 0.0392 0.0384 0.0375 0.0367 0.0359
-1.7 0.0537 0.0526 0.0516 0.0505 0.0495 0.0485 0.0475 0.0465 0.0455 0.0446
-1.6 0.0655 0.0643 0.0630 0.0618 0.0606 0.0594 0.0582 0.0571 0.0559 0.0548
-1.5 0.0793 0.0778 0.0764 0.0749 0.0735 0.0721 0.0708 0.0694 0.0681 0.0668
-1.4 0.0951 0.0934 0.0918 0.0901 0.0885 0.0869 0.0853 0.0838 0.0823 0.0808
-1.3 0.1131 0.1112 0.1093 0.1075 0.1056 0.1038 0.1020 0.1003 0.0985 0.0968
-1.2 01335 0.1314 0.1292 0.1271 0.1251 0.1230 0.1210 0.1190 0.1170 0.1151
-1.1 01562 0.1539 0.1515 0.1492 0.1469 0.1446 0.1423 0.1401 0.1379 0.1357
-1.0 0.1814 0.1788 0.1762 0.1736 0.1711 0.1685 0.1660 0.1635 0.1611 0.1587
-0.9 0.2090 0.2061 0.2033 0.2005 0.1977 0.1949 0.1922 0.1894 0.1867 0.1841
-0.8 0.2389 0.2358 0.2327 0.2296 0.2266 0.2236  0.2206 0.2177 0.2148 0.2119
-0.7 02709 0.2676 0.2643 0.2611 0.2578 0.2546 0.2514 0.2483 0.2451 0.2420
-0.6 0.3050 0.3015 0.2981 0.2946 0.2912 0.2877 0.2843 0.2810 0.2776 0.2743
-0.5 03409 0.3372 03336 0.3300 0.3264 0.3228 0.3192 0.3156 0.3121 0.3085
-0.4 03783 0.3745 0.3707 0.3669 0.3632 0.3594 0.3557 0.3520 0.3483  0.3446
-0.3 04168 04129 0409 04052 04013 0.3974 0.3936 0.3897 0.3859 0.3821
-0.2 04562 04522 04483 04443 04404 04364 04325 04286 0.4247 0.4207
-0.1 04960 04920 04880 04840 04801 04761 04721 0.4681 0.4641 0.4602
-0.0 0.5359 0.5319 0.5279 0.5239 0.5199 0.5160 0.5120 0.5080 0.5040 0.5000




Table 5.1b Cumulative standard normal table - positive z-scores.

z 0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09

0.0 0.5000 0.5040 0.5080 0.5120 0.5160 0.5199 0.5239 0.5279 0.5319 0.5359
0.1 0.5398 0.5438 0.5478 0.5517 0.5557 0.5596 0.5636 0.5675 0.5714 0.5753
0.2 05793 0.5832 05871 0.5910 0.5948 0.5987 0.6026 0.6064 0.6103 0.6141
0.3 06179 0.6217 0.6255 0.6293 0.6331 0.6368 0.6406 0.6443 0.6480 0.6517
0.4 0.6554 0.6591 0.6628 0.6664 0.6700 0.6736 0.6772 0.6808 0.6844  0.6879
0.5 0.6915 0.6950 0.6985 0.7019 0.7054 0.7088 0.7123 0.7157 0.7190  0.7224
0.6 0.7257 0.7291 0.7324 0.7357 0.7389 0.7422 0.7454 0.7486 0.7517  0.7549
0.7 07580 0.7611 0.7642 0.7673 0.7704 0.7734 0.7764 0.7794 0.7823  0.7852
0.8 0.7881 0.7910 0.7939 0.7967 0.7995 0.8023 0.8051 0.8078 0.8106 0.8133
0.9 0.8159 0.8186 0.8212 0.8238 0.8264 0.8289 0.8315 0.8340 0.8365 0.8389
1.0 08413 0.8438 0.8461 0.8485 0.8508 0.8531 0.8554 0.8577 0.8599 0.8621
1.1 08643 0.8665 0.8686 0.8708 0.8729 0.8749 0.8770 0.8790 0.8810 0.8830
1.2 08849 0.8869 0.8888 0.8907 0.8925 0.8944 0.8962 0.8980 0.8997 0.9015
1.3 09032 0.9049 0.9066 0.9082 09099 0.9115 09131 09147 09162 0.9177
1.4 09192 09207 0.9222 09236 09251 09265 0.9279 09292 0.9306 0.9319
1.5 09332 09345 09357 0.9370 0.9382 0.9394 09406 0.9418 0.9429 0.9441
1.6 09452 09463 09474 0.9484 0.9495 0.9505 0.9515 0.9525 0.9535 0.9545
1.7 09554 0.9564 0.9573 09582 09591 0.9599 0.9608 0.9616 0.9625 0.9633
1.8 09641 0.9649 0.9656 0.9664 09671 0.9678 0.9686 0.9693 0.9699 0.9706
1.9 09713 09719 09726 09732 09738 09744 09750 09756 09761 0.9767
2.0 09772 09778 09783 09788 0.9793 0.9798 0.9803 0.9808 0.9812 0.9817
2.1 09821 09826 09830 0.9834 0.9838 0.9842 09846 0.9850 0.9854 0.9857
2.2 09861 0.9864 09868 09871 0.9875 0.9878 09881 0.9884 0.9887 0.9890
2.3 09893 0989 09898 0.9901 0.9904 0.9906 0.9909 0.9911 0.9913 0.9916
2.4 09918 09920 09922 0.9925 0.9927 0.9929 09931 0.9932 0.9934 0.9936
2.5 09938 09940 09941 0.9943 0.9945 0.9946 0.9948 0.9949 0.9951 0.9952
2.6 09953 0.9955 09956 0.9957 0.9959 0.9960 0.9961 0.9962 0.9963  0.9964
2.7 0.9965 0.9966 0.9967 0.9968 0.9969 0.9970 0.9971 0.9972 0.9973 0.9974
2.8 09974 09975 09976 0.9977 0.9977 0.9978 0.9979 0.9979 0.9980 0.9981
2.9 09981 0.9982 09982 0.9983 0.9984 0.9984 0.9985 0.9985 0.9986 0.9986
3.0 0.9987 0.9987 09987 0.9988 0.9988 0.9989 0.9989 0.9989 0.9990  0.9990
3.1 09990 09991 09991 0.9991 0.9992 0.9992 0.9992 0.9992 0.9993  0.9993
3.2 09993 09993 0.9994 0.9994 0.9994 0.9994 0.9994 0.9995 0.9995 0.9995
3.3 09995 09995 09995 0.9996 0.9996 0.9996 0.9996 0.9996 0.9996  0.9997
3.4 09997 09997 09997 0.9997 0.9997 0.9997 0.9997 0.9997 0.9997 0.9998
3.5 0.9998 0.9998 0.9998 0.9998 0.9998 0.9998 0.9998 0.9998 0.9998  0.9998
3.6 09998 0.9998 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999  0.9999
3.7 09999 0.9999 09999 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999  0.9999
3.8 0.9999 0.9999 09999 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999  0.9999
3.9 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000  1.0000




6

Sampling Distributions

This chapter is a turning point. This is where we move from simply describing
data to using data to make inferences about things we do not know. It is the
beginning of inferential statistics. After all, “it’s not the figures themselves, it’s
what you do with them that matters” (K.A.C. Manderville).! Every semester, I
try to convince my students that statistics is as interesting as the problems it is
used to solve. I have taught statistics long enough to know that very few people
enjoy the act of crunching numbers in a dataset. Admittedly, you would have to
be pretty unique to like that. However, everyone is interested in something, and
to answer interesting questions about any topic, we almost always turn to data.

The goal of inferential statistics is to use sample data to estimate unknown
characteristics of a larger population. When polling agencies release early esti-
mates for an upcoming election, they are relying on inferential statistics. Bio-
chemists use inferential statistics to develop vaccines to prevent diseases. When
businesses decide which marketing platforms to invest in, they use inferential
statistics. In fact, most important data-driven decisions rely on statistical infer-
ence. In order to use sample data to gain insights into the larger population, we
first must understand sampling distributions.

6.1 Defining a Sampling Distribution

Recall from Chapter 3 on descriptive statistics that a distribution of data is sim-
ply an organized dataset. Imagine a column of data which contains peoples’
annual income, sorted from the smallest to the largest. That column is a dis-
tribution of data. In order to better visualize the data, suppose you take that
column of income values and construct a histogram. With this histogram in
mind, recall that a distribution of data has three important characteristics: (1)
its shape, (2) its mean, and (3) its standard deviation.

1 This quote is from a passage of a book titled The Undoing of Lamia Gurdleneck by K.A.C.
Manderville referenced in The Advanced Theory of Statistics by Maurice Kendall and Alan Stuart
in 1979. However, neither Manderville nor his book actually exists.



A sampling distribution is a particular type of dataset created by drawing
different samples of the same size from a given population. Each time a new
sample is drawn, a statistic (e.g., mean and proportion) is calculated and added
to the dataset. A complete sampling distribution contains statistics from all
possible samples of the same size taken from a single population. If the popula-
tion is finite (i.e., a fixed number of values), then the number of unique samples
of a given size is also finite. When a population is infinite, then the number of
unique samples is infinite and so is the sampling distribution. As long as pop-
ulation sizes are very large and sample sizes are relatively small, we can treat
finite and infinite populations equivalently. We will discuss what is meant by
“large” and “small” later in this chapter.

To illustrate the concept of a sampling distribution, suppose the population
of interest is a large statistics class of 100 students. Let us say we take a ran-
dom sample of 10 students from this population and calculate the average grade
point average (GPA). What we just calculated is a statistic, and that statistic is
random because it comes from a random sample. If we drew another random
sample of 10 students, we would likely get a different average GPA value. If
everyone in the class were identical, different samples would lead to the same
average GPA. Of course, this is not the case. The population is made up of all
kinds of students, from bookworms to slackers. And each has the same chance
of being in the sample of 10. When we say a unique sample, we mean a collec-
tion of 10 students that will not all be together in another sample. So, a single
student, call him Johnny Crabcakes, can be part of many unique samples, but
never with the same nine people more than once.

The point is that different samples of the same size will lead to different aver-
age GPAs, and so the results can vary. A sampling distribution in this example
is what we call the entire collection of average GPA values from sample sizes
of 10 students. How many unique samples of 10 students can we take from the
population of 100 students? To answer this, we rely on the combination formula
that is included in the Technical Appendix (Formula A.1). Using the formula,
we find that there are 17.3 trillion unique samples of 10 students that can be
drawn from a population of 100. That is quite a few.

Now, if we take that sampling distribution (consisting of 17.3 trillion average
GPAs) and construct a histogram, it will have its own shape, mean, and stan-
dard deviation. We will discuss these characteristics in general, why they are
important and how they relate to the underlying population distribution in the
sections that follow.

6.2 The Importance of Sampling Distributions

Whenever sample data are used to estimate something that we do not know
about a larger population, many different samples of the same size are possible.



From our example with a finite population of 100 students, we found 17.3
trillion unique samples of 10 students. When we consider much larger popu-
lations, the number of unique samples can be so numerous that it is effectively
impossible to calculate. At least not with Excel or other standard programs.
And when the population of interest is infinite (e.g., the production of bottles
of coca-cola), then the number of samples is infinite.

While trillions or even an infinite number of samples might be possible, very
often statisticians deal with only a single sample. This is because sampling is
often expensive and time consuming. They draw one sample from the popula-
tion and calculate a statistic (e.g., the sample mean). Then, that single sample
value is used as the estimate of the unknown population value. The statisti-
cian, of course, recognizes that the sample value is only an estimate and it likely
differs from the true value. The difference between sample statistics and the
population parameters they estimate is called sampling error. With this in mind,
the statistician would like to know how close the sample statistic is to the true
value.

For example, the Internal Revenue Service (IRS) may want to find out, on
average, by how much do Americans underreport their income on tax returns.
To do so, suppose they audit a random sample of taxpayers. They cannot audit
everyone because it would take too long and is extremely costly. Let us say they
audit 10,000 Americans as their one sample. The sample of audits is then used
to infer the average underreporting for all American taxpayers. Of course, they
know that their estimate is not exact because it is drawn from a sample, not the
entire population. Their next step is to determine how far their estimate could
vary from the true value, and to answer that question they need to know how
much sample mean values can vary given the sample size. In other words, they
need to know the standard deviation of the distribution of sample means.

To move forward, we need to understand the characteristics (shape, mean,
and standard deviation) of the sampling distribution. Let us start with an
example.

6.3 An Example of a Sampling Distribution

We will start with a population dataset that is relatively small, so that we can
easily construct a complete sampling distribution. Suppose the population
of interest is daily commuting times (in minutes) for six workers at a small
start-up firm.

The commuting times for the six workers are found in Table 6.1. The fre-
quency histogram in Figure 6.1 plots commuting time for the six workers and
shows the shape of the population distribution. The horizontal axis displays
the commute time and the frequency is plotted on the vertical axis. The verti-
cal axis could easily be converted into a relative frequency simply by dividing



Table 6.1 Commute time for a
population of six workers.

Commute time

Worker (in minutes)
Tim
Dave
Joe
Dennis 15
John 18
Kris 3
4
3

Frequency
N

N

N N

& T T T
7 8 9 10 11 12 13 14 15
Commute time for individual workers

d

Figure 6.1 Population distribution of commute times.

the frequency in each bin by the total number of workers. The shape of the rel-
ative frequency distribution, of course, would be identical to that in Figure 6.1.

From this population dataset, we want to form a sampling distribution. The
sampling distribution is created by taking samples from this population of six
people. For each sample we draw from this population, we are going to cal-
culate the sample mean. Therefore, the specific sampling distribution we will
construct will be the sampling distribution of a mean. Note that we can form
sampling distributions for any statistic (e.g., the standard deviation or variance),
but the mean is a particularly useful one for inference.

Suppose we choose to arbitrarily take samples of size three from the popula-
tion. How many unique samples of three people can we draw from a population
of six people? To answer this question, we again rely on the combination for-
mula and discover that 20 unique samples of size three are possible. These 20
samples are contained in Table 6.2.

For each sample of three above, the sample mean commute times are calcu-
lated and provided in Table 6.3. For example, the first cell in the first column of



Table 6.2 All 20 unique samples of size three.

Tim, Dave, Joe Tim, Joe, John Dave, Joe, Dennis Dave, John, Kris
Tim, Dave, Dennis  Tim, Joe, Kris Dave, Joe, John Joe, Dennis, John
Tim, Dave, John Tim, Dennis, John  Dave, Joe, Kris Joe, Dennis, Kris
Tim, Dave, Kris Tim, Dennis, Kris Dave, Dennis, John  Joe, John, Kris
Tim, Joe, Dennis Tim, John, Kris Dave, Dennis, Kris Dennis, John, Kris

Table 6.3 A sampling distribution of

the mean.
9 10 10
11 13
10 12 6
14
8 9 12

Table 6.2 contains workers Tim, Dave, and Joe. Their commute times are three,
nine, and six minutes, respectively. So, the average of the sample in the first
cell in the first column is (3 + 6 + 9)/3 = 6, which appears in the same relative
place in Table 6.3.

The dataset in Table 6.3 is the sampling distribution of the mean for a sam-
ple size of three people. It contains all possible average commuting times for
samples of three workers.

We can visualize the sampling distribution by constructing a frequency his-
togram. That histogram is included in Figure 6.2 along with the original his-
togram of the population data above it. When comparing both images, note
that the shape of the sampling distribution is dramatically different from the
shape of the population it is drawn from. In particular, it is more symmetric
and is less spread out. This finding is not unique to our example dataset; it will
be true for all data.

We want to make note of one other important comparison in this example.
The average commute time of the six workers that make up our population is
nine minutes; that is, the mean of the population distribution is nine minutes
(u =9). What is the mean of the sampling distribution? To figure that out, you
would have to take the average of all 20 sample averages. Be careful, the lan-
guage gets tricky here because we are talking about taking a “mean of means.”
Performing these calculations, we find the average of all 20 sample averages to
be also nine minutes. So, the two distributions have the same mean. This rela-
tionship will always be the case no matter what dataset you are working with.



Frequency
N

2y

Frequency
N

;AMIOMIMIMY ;AMOMMEMMIN
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
Average commute time for each sample of three workers

(b)

Figure 6.2 Population and sampling distributions of the mean.
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Our example with commute times for the six workers is useful to illustrate
what a sampling distribution is and how it is formed by sampling from the pop-
ulation. Of course, what we are really interested in is what sampling distribu-
tions look like for any kind of population of interest. Whether we are interested
in sales data from an advertising campaign, unemployment measures of the
national economy, caffeine in a cup of coffee, or the average miles per gallon of
a new hybrid vehicle. When we use a sample of data to estimate something we
do not know about a population, it would be useful to know what the distribu-
tion of all possible samples looks like. It turns out that we are in luck. We now
turn to the characteristics of sampling distributions that can be generalized to

any situation.



6.4 Characteristics of a Sampling Distribution
of a Mean

In our example above, we knew how big the population was, which people made
up the population, and what their commute times were. We knew everything
we needed to know about the population. In reality, we will not know all of this
information about our populations of interest. Remember, the point of inferen-
tial statistics is that we are trying to estimate something we are uncertain about.
In other words, if you know the relevant information about the whole popula-
tion, like I did in the example above, there is no need for inferential statistics
because there is nothing to infer, you already know the answer you are after.
The example was only used to illustrate what a sampling distribution is.

In practice, we will not know a great deal about our populations of interest, so
we will not be able to observe complete sampling distributions. Recall, a com-
plete sampling distribution consists of all possible unique samples of a given
size from a population. To get all possible unique samples, you would need to
have the entire population dataset. For any practical situation, this will not be
the case.

Again, think of the IRS trying to determine how much Americans under-
report their earnings on their taxes. The IRS knows what the population of
interest is; that is, adult Americans and immigrants who are required to pay
taxes. They probably do not know exactly how many Americans fall into this
population, but they have a ballpark idea. Without auditing, the IRS also does
not know the extent of underreporting. They suspect people cheat on their
taxes, they suspect it is probably somewhat prevalent, but they do not know
for sure. What is really cool about inferential statistics is that all of this uncer-
tainty does not matter. It turns out that even if you do not know much at all
about the population you are sampling from, the properties (shape, mean, and
standard deviation) of sampling distributions are all predictable.

We will look at these three properties separately. With each property, a def-
inition is presented and then followed by a discussion. We will start with the
mean.

6.4.1 The Mean

The average of all possible sample means of a given sample size will equal the
population mean.

To be cute, and to hopefully help you remember this property, “the mean of
the means is the mean.” We already discussed that this was the case from our
example of commuting times. The population mean was nine, and so was the
average of all 20 sample mean values. This property will always hold.

This property leads to another term that is often used in inferential statistics.
Whenever the average of a sample statistic equals the population value, we call



that statistic unbiased. Something that is biased has a tendency to yield one par-
ticular outcome more than others. This is not the case with our sample means.
Different samples of the same size will likely yield different results, but they will
not be skewed in any one direction. Consider again the IRS taking a sample of
audits from its population of taxpayers. If the IRS takes one sample, the aver-
age underreporting of income from the sample may be above or below the true
mean. The IRS knows this. The IRS also knows that if the sample is random,
it is equally likely to get estimates above and below the true value. Therefore,
their estimate is not biased from above or below. The notation for this property
is found in the Technical Appendix.

6.4.2 The Shape

Aslong as sample sizes are large enough, the shape of the sampling distribution
of the mean will be bell-shaped (i.e., normally distributed).

When we discuss the shape of a distribution of data, it is best to visualize it as
a histogram, like the ones from our example in the previous section. Recall that
with any interesting case in inferential statistics, we will not have the entire
population of data and so we will not know exactly how a histogram of the
population data would look. What is amazing, and probably the most impor-
tant aspect of inferential statistics, is that we do not need to know the shape
of the population data. Whether the population is skewed-right, skewed-left,
uniform, bell-shaped, bimodal, or just completely crazy, it does not matter. The
distribution of sample averages pulled from that population will be bell-shaped.

That sampling distributions will be bell-shaped is a result of one of the most
famous theorems in probability theory: the Central Limit Theorem. The Central
Limit Theorem is fundamental to our understanding and practice of inferential
statistics. By the Central Limit Theorem, as long as sample sizes of continuous
data are large enough, sampling distributions of the mean will always be nor-
mally distributed. What defines a large sample? The rule of thumb is a sample
size of 30 or more.

There is an often neglected caveat to the Central Limit Theorem. The
theorem holds under the premise that samples are drawn from an infinite
population or from a finite population with replacement. Sampling with
replacement ensures that the probability of selecting a certain value from the
population is not dependent on what values were chosen previously. Note that
almost all survey data are gathered by sampling without replacement. In other
words, with most studies once a person is surveyed, the probability of that
person being surveyed again is zero. The good news is that if the population is
big enough and the fraction of the population that is sampled is small enough,
then we can treat finite populations as if they are infinite and avoid any concern
about the with or without replacement issue. The standard rule is that if the
sample size is 5% of the population or less, then the population can be treated



as if it were infinite (of course, sample sizes need to be at least 30). If the sample
is greater than 5% of the population, then a simple correction factor for some
of the statistics is needed. We will get to this correction factor when discussing
the standard deviation of the sampling distribution.?

To illustrate the Central Limit Theorem, consider again the IRS investigat-
ing tax fraud. The IRS does not know what the population of data is shaped
like because it does not have information on underreporting from all taxpay-
ers. It could be the case that people tend to underreport by the same amount. In
this case, the population dataset would follow a uniform distribution. Alterna-
tively, it could be the case that a lot of people underreport by small amounts and
only a few people underreport by massive amounts. In this case, the population
dataset would likely be right-skewed because you will have extreme underre-
porting in the right tail of the distribution. The important point is that it does
not matter what the shape of the underlying population data is. As long as the
IRS audits 30 or more people as its sample, it can be assured that the sample
mean they calculate comes from a normally distributed dataset.

In a world of chaos and uncertainty, we can take comfort in knowing that
our sampling distributions will always be normal if our sample sizes are large
enough. Moreover, a sample size of 30 is not very big at all, so it is typically a
low bar to cross. Why is all this so important? When we turn to applications
of inferential statistics in the chapters that follow, our analysis will be based on
sampling distributions, not the populations they are drawn from. Knowing that
those distributions are normal will prove very useful indeed. We already know
a great deal about the properties of normally distributed data and we will utilize
that information starting with confidence intervals in Chapter 7.

So what about smaller samples, the ones that are less than 30 observations?
Can we predict the shape of sampling distributions of the mean for these? The
answer is yes, but only in the limited cases in which we know, or are fairly sure,
the population is bell shaped. A common example is data on human height. If
you created a histogram using height data from any population of interest, you
could expect it to be bell shaped. In these cases, when the population is bell

2 Another related caveat is that when sampling without replacement from a finite population, it
is not always the case that the sampling distribution approaches normality as the sample size
increases. In fact, it has been shown that the shape of the sampling distribution of a mean for a
sample of size # is identical to the shape of the sampling distribution of the mean for a sample of
size N — n (see Plane, D.R., and K.R. Gordon (1982)) “A simple proof of the nonapplicability of the
Central Limit Theorem to finite populations.” The American Statistician 36(3): 175-176).
Suppose that our population is of size 100 and our sample is of size 95. In this case, there is no
reason to assume that the sampling distribution for # = 95 would approach the normal
distribution. The intuition for this property can be drawn from the combination formula. The
number of unique samples for n = 95 from N = 100 is the same as the number of unique samples
of n =5 from N = 100. Since a sample size of five is too small to assume that the sampling
distribution is normal, so too is a sample size of 95 given this finite population.



shaped, then the sampling distribution of the mean will be bell shaped for any
sample size.

For all other cases with sample sizes less than 30, the ones in which we do
not have a good feel for the shape of the population, or the ones in which we
know the population is not normal, we cannot predict the shape of the sampling
distribution with such small samples. Note that our previous example of com-
muting times falls into this category. The population is clearly not bell-shaped
(Figure 6.1). The sampling distribution is certainly symmetric and is closer to
being bell-shaped compared to the population (Figure 6.2), but it is not quite
there. The reason is that the sample size is only three. The sample size is too
small to rely on the Central Limit Theorem and its shape is not quite normal.
The take-away message for this property is that if we are taking a sample of
continuous data, we should always strive for sizes greater than 30 to eliminate
uncertainty as to what shape the sampling distribution will take on.

6.4.3 The Standard Deviation

The standard deviation of the sampling distribution is always smaller than
the standard deviation of the population, and it gets even smaller with bigger
sample sizes.

From Figure 6.2, you may notice that the sampling distribution (histogram on
the bottom) is less spread out compared to the population (histogram on the
top). This relationship will always be true. Recall from Chapter 3 that a standard
deviation is an average deviation from a mean. It is our chosen measure of how
variable, or spread-out datasets are. The distribution of sample means also has a
standard deviation. To distinguish between populations and sampling distribu-
tions, we call the standard deviation of the sampling distribution the standard
error.

As the size of the sample increases, the sample means become less spread
out. To use the new jargon, as our sample sizes increase, the standard error
decreases. The reason is because with bigger samples the more extreme
values in the population become diluted with the more central values. Let
us use income data for adult Americans as an example. Even without having
population data at our disposal, we know that there is a large amount of
variability in incomes. Driving much of that variability is the small fraction
of very wealthy Americans. Figure 6.3 is a stylized graph (not produced with
real data) of income values. Rather than a histogram, for convenience, we
use a smooth line to depict the shape of the population data. Notice that the
dataset is dramatically right-skewed. The population data are very spread
out mainly because of the extreme income values (Richie Rich and the 1%
on the graph). The incomes of Richie Rich and the 1% are dramatically far
from the population mean income levels, and those deviations factor into the
calculation of the population standard deviation. This is why income data,
even if we cannot directly observe all of them, have a large standard deviation.
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Figure 6.3 Population income data of adult Americans.

Now, if we were to take a sample from this population (say a sample con-
sisting of 100 people), and calculate their average income, it is possible that we
get Richie Rich or another 1% member as part of our sample. But, that extreme
income value (or values) will be watered down with more central income values
on the left side of the distribution. It is for this reason that the average income
values (taken from samples) will vary less than individual income values (from
the population). And the bigger the sample size, the more watered down the
extreme values become. Another way to look at it is this: the closer our sam-
ple size is to the population size, the closer our sample means will be to the
population mean.

When the sampling distribution can be assumed to be normal, the standard
error is calculated by taking the standard deviation of the population and divid-
ing it by the square root of the sample size (i.e., o/ \/Z). See Formula A.3.

In the previous section, we mentioned that if the sample we take is greater
than 5% of a finite population, then we have to slightly adjust our approach. In
particular, our calculation of the standard error is made with what is called the

N-1
by the standard error (see Formula A.4). Since N — # is always smaller than
N — 1, the correction factor is less than one. Therefore, the correction reduces
the standard error of the sampling distribution as the fraction of the population
that is sampled increases. The intuition is that as the sample size approaches
the population size, we have a more precise measure of the level of variation
in the data. In reality, the correction factor can be applied to all samples drawn
from finite populations, however it becomes irrelevant (i.e., effectively equals
one) for samples less than 5% of the population and so it is dropped from the
analysis.

finite population correction factor. The correction is simply multiplying 4 /2=~

6.4.4 Finding Probabilities With a Sampling Distribution

To illustrate the relationship between a population distribution and a sampling
distribution of a mean, we can look at an example. Again, consider a large
register of grades from a course in business statistics (over 1000 students).



The grade distribution of the population, like most grade distributions, is
left-skewed because most students score in the 60—100 range while only a
small fraction totally bomb which brings down the average. The population
mean is 80 and the population standard deviation — the average deviation
around the mean — is 6 points.

Now, consider a sampling distribution of the mean for samples of size 36.
Again, the sampling distribution is the average grades for all unique samples of
36 students. We have enough information to know that (1) the mean of the sam-
pling distribution will equal the population mean of 80, (2) the distribution will
be normal by the Central Limit Theorem because the sample size exceeds 30,
and (3) the standard deviation of the sampling distribution — called the stan-
dard error — is 6/ \/% =1 point.? Both the population distribution and the
sampling distribution are illustrated in Figure 6.4.

The graph on top of Figure 6.4 is the population distribution of course grades.
Note the label x on the horizontal axis and that the shape is left-skewed. The
graph below is the sampling distribution of the mean. Take note that the mean
equals the population mean, the shape is normal and that the standard error
(i.e., the standard deviation of the sample means) is 1 point. A comparison of
the graphs reveals that the variation in the population grades is much greater
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Figure 6.4 Population distribution and sampling distribution (n = 36) of course grades in
statistics.

3 Note also that since our sample of 36 is only 3.6% of a finite population of size 1000, we do not
need to use a finite population correction factor when calculating the standard error.



than the variation in the sample mean grades. We can use these properties of
the sampling distribution to find the probabilities of specific events.

Question: What is the probability that the average grade from a sample of
36 students is less than 83?

To answer this question, we can again rely on our knowledge of the normal
distribution. A grade of 83 is clearly three standard errors above the mean of 80.
In other words, the z-score = (83 — 80)/1 = 3. The Empirical Rule tells us that
just about all of the data will fall within three standard errors of the mean. To be
more precise, we can consult the z-table. Looking up z = 3.0 yields a probability
0f 0.9987, which is the probability of getting an average grade less than 83 from
a random sample of 36 students. To flip the question on its head, there is only
a 0.0013 chance of the sample average being 83 or greater.

6.5 Sampling Distribution of a Proportion

When data are categorical in nature, the proportion, not the mean, is often the
measure of interest. The proportion is simply the number of observations that
take on a certain category divided by the total number of observations. If a
population of N = 1000 students consists of 555 females, then the population
proportion of females is 555/1000 = 0.55. We denote the population propor-
tion with the Greek letter # = 0.55 (x is the same notation we used for the
probability of a success in Chapter 5). When a proportion is calculated from
a sample of data (taken from a larger population) that statistic is denoted as p.
For example, if a sample of size # = 100 is taken and 60 out of the 100 students
are females, the sample proportion is p = 0.60.

Just like for the sampling distribution of the mean, we would like to know
how the distribution of all sample proportions for a given sample size looks like.
That is, what is the shape, the mean, and the standard deviation? We need this
information because, often, we use sample proportions to estimate an unknown
value of a population proportion. Meaning, we use p as an estimate of 7 when
we cannot get our hands on the entire population of data.

However, to understand the idea of a sampling distribution of a proportion
p, we start in a simplified word in which we have the population data. Again,
consider our example in which the population of interest is 1000 students and
555 of them are female, so that 7 = 0.55. Again, also consider a random sam-
ple of # = 100 students taken from that population. We should not expect our
random sample to yield a proportion exactly equal to the population propor-
tion. Why? Because we are getting only a partial picture of the true value. Just
a taste. If one sample of 100 yields a sample proportion of 0.60 females (600 of
1000), another random sample of 100 could easily result in a sample proportion
of 0.50 females (500 of 1000). This is again the idea of sampling error, which is



the difference between sample statistics and population parameter values. The
point is that the statistic p is a random variable because it is derived from a
random sample. That said, under certain conditions, we can be confident what
the characteristics (the shape, mean, and standard deviation) of the sampling
distribution will be.

6.5.1 The Mean

It turns out that if we took all possible unique samples of a given size n, and
for each calculated the sample proportion p, the average of all those sample
proportions would equal the population proportion. Therefore, on average, the
sample proportion will equal the population proportion. This means that the
sample proportion p is an unbiased estimate of the population proportion .
The importance of this result is that even if we did not know the value of z
(which will be the case in all real-world applications of inferential statistics), we
know that the collection of all possible sample proportions will be distributed
evenly around it. This property will hold for any sample size.

6.5.2 The Shape

Like the sampling distribution of the mean, the shape of the sampling distribu-
tion of a proportion depends on the sample size. What is cool (if statistics can
be cool) is that if the sample size is large enough, then the sampling distribution
can be approximated as normal. How large does the sample need to be? Aslong
asn X > 10 and n X (1 — ) > 10, then we can assume that the shape of the
sampling distribution is normal. When these two conditions are satisfied, we
call that the normal approximation of the binomial distribution. In those cases,
the distribution will follow a z-distribution, which means that we already have a
good understanding of what it looks like and how to calculate the probabilities.

You may be asking yourself in the real-world situations in which we do not
know the value of 7, how can we determine if our sampling distribution can
be approximated as normal? Well, in those cases, we simply plug in our sample
proportion. This would be n X p > 10 and n X (1 — p) > 10.

6.5.3 The Standard Deviation

We call the standard deviation of a sampling distribution the standard error. It
measures the average deviation of p from x for a given sample size (see formula
A.7). The intuition is that as the sample size goes up, the closer the sample pro-
portion is going to be clustered around the population proportion. Therefore,
as the sample size goes up, the standard error of a proportion goes down.

Let us take a look at a few graphs in order to get a better feel for the relation-
ship between # and the sampling distribution of a proportion. We will continue



with the example of a population of size N = 1000 and a population proportion
of 7 = 0.55. We will consider three sampling distributions, one where n =5,
one where n = 25, and one where n = 100. In each case, the graph in Figure 6.5
shows the relative frequencies of values for p for all possible samples of size
n. The axes are removed to better highlight two points regarding the relative
shapes. (1) As the sample size goes up, the sampling distribution of a propor-
tion is closer to normal in shape and (2) as the sample size goes up, there is less
variability in sample proportions.*

The usefulness of knowing these characteristics can easily be applied to
polling results we see in our everyday life. Take again the presidential approval
rating. To arrive at those ratings about 1000 people are randomly sampled and
asked whether or not they approve of how the current president is handling
his responsibilities. The dataset would have a “1” marked for each person that

Figure 6.5 Sampling
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4 As with the sampling distribution for the mean, if samples are drawn from a finite population
without replacement and the sample size exceeds 5% of the population, then the standard error is
calculated using a correction factor (see Formula A.8). When samples are drawn without
replacement from a finite population, the distribution technically follows a hypergeometric
distribution rather than a binomial distribution. However, as long as sample sizes are small
relative to the population size, the sampling distribution can be approximated using a binomial
distribution, which is the approach taken in this text as with many others.



approves and a “0” for all others. One sample is taken in a given time period
and a sample statistic is reported. Let us say 480 people indicated approval,
so the sample proportion is 480/1000 = 0.48. Of course, the approval rating
for all Americans may be different from 0.48, but we know that the sampling
distribution for samples of size 1000 can be approximated as normal, and
will be centered around the true value. This information is going to be used
directly in our analysis of confidence intervals (Chapter 7) and hypothesis
testing (Chapters 8 and 9).

6.6 Summary

Inferential statistics is all about using sample data to shed light on something we
do not know about a population. The chapters that follow on confidence inter-
vals, hypothesis testing, and regression analysis are all tools of inference, and
they all require taking samples from a population. If sampling is done randomly,
then different samples can lead to different results. This chapter on sampling
distributions was all about describing what the distribution of different sample
results will look like.

Let us reiterate the three properties of a sampling distribution of the mean
for continuous data. (1) The mean of the sampling distribution equals the
population mean. (2) By the Central Limit Theorem, if sample sizes are 30
or more, then the shape of the sampling distribution is normal. For sample
sizes smaller than 30, the sampling distribution will be normal only if the
population is known to be normal. (3) The standard deviation of the sampling
distribution — called the standard error — decreases in the sample size and is
strictly less than the population standard deviation (formula given in A.3).

Finally, the three properties of a sampling distribution of a proportion are: (1)
The mean of the sampling distribution equals the population proportion, (2) if
the sample size is large enough, then the distribution of sample proportions
can be approximated as normal, and (3) the standard deviation of the sampling
distribution — called the standard error — decreases in the sample size (formula
given in A.7).



Technical Appendix

To find out how many unique samples can be drawn from a fixed population,
we use the combination formula:
N N!
= N =
where C stands for combinations, N is the population size (e.g., the number of
people in the population of interest), and # is the sample size. The symbol ! is
the factorial symbol. For example, 4! =4 x3 X2 x 1.

Recall, the mean of a population for variable x is typically denoted as u,
(most often the x subscript is dropped for convenience). The mean of the sam-
pling distribution — the mean of all sample means — is denoted as y;. Note
the difference in the subscript. It will always be the case that the mean of the
sampling distribution is equal to the mean of the population:

Hy = U (A.2)

When the sampling distribution can be approximated as normal its standard
deviation — the standard error — is equal to the population standard deviation
divided by the square root of the sample size. The standard error of a mean is

(A.1)

- (A.3)

where o, is the population standard deviation. Note that the standard error goes
down as # goes up. In cases in which samples are drawn from a finite population
without replacement and the sample size is greater than 5% of the population,
then the standard error is calculated using a finite population correction factor.
In this case, the standard error is

ng Gx N_n, (A'4)
\/Z\/ N-1

and will be strictly less than the standard error calculated without the correc-
tion. The z-score for a sampling distribution of a mean is:

% — U
z= —ﬂx. (A.5)
Ox
The sampling distribution of a proportion can be approximated as normal if:
nr > 10
(A.6)
n(l - ) > 10.

The standard error of a proportion is

0=y 2, (A7)



In cases in which samples are drawn from a finite population without replace-
ment and the sample size is greater than 5% of the population, then the standard
error is calculated using a finite population correction factor. In this case, the
standard error is

_ [zl —=m) [N-n
ap—\/ ” \/N—l’ (A.8)

and will be strictly less than the standard error calculated without the correc-
tion. The z-score for a sampling distribution of a proportion is:

=2=" (A.9)
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7

Confidence Intervals

In the days leading up to the 2012 presidential election, my brother called me
fired up about some recent polling results. The polling agency reported that
the percentage of Americans who were planning to vote for Barack Obama on
November 6 — election day — was 49%. Roughly 200 million Americans were
registered to vote in the last election and the poll results were based on — wait
for it — 1300 people.! My brother quickly dismissed the results, arguing that
there is no way a sample of 1300 could accurately reflect the preferences of a
population of 200 million voters. “I mean, that’s a tiny fraction of Americans
that was sampled, so it must be bogus.” He is right, but only about the sample
size being small. The sample is roughly 0.00065% of the population of interest.
That is a small sample relative to the population size. I was not part of that
sample, and if [ were a betting man, I would wager that you were not either.
But, here is the thing, he was probably wrong about the results being bogus. In
fact, not only was a sample size of 1300 adequate for the election polling, it was
deliberately chosen as the target sample size.

Let us be clear though. The actual number of registered voters who planned
on voting for Obama was probably not exactly 49% like the report found. The
chance of that happening — a sample value equaling the true value — is extremely
low. It is effectively zero. The polling agency, of course, understands this and
that is why they report another statistic along with their main headline result.
That statistic is called the margin of error, and it is the fundamental building
block of what we call confidence intervals. The problem is that often the margin
of error in popular polls is demoted to a footnote or relegated to a supplemen-
tary section housed on another website. The margin of error, in other words,
often gets second shrift. This is a shame, because the margin of error contains all

1 Note that the population of interest for those conducting election polls is “likely voters” that is
less than the number of registered voters.



of the information required to actually make sense of the polling agency’s result.
The margin of error defines the range of values (called an interval) in which the
polling agency is confident the true value lies. This is the polling agency’s confi-
dence interval. As long as the sample size is less than the population size, then
this interval always exists. Make no mistake, when a polling agency publishes a
headline like 49% of likely voters are planning on voting for Barack Obama on
the election day, they do not mean exactly that. What they really mean is that
they are very confident that the percentage of Americans planning on voting
for Obama is between, for example, 46 and 52%.

The rest of this chapter walks through what the margin of error is, its role in
forming the confidence interval, and how the confidence interval can be cor-
rectly interpreted. We will cover the margin of error and confidence intervals
for both sample means and sample proportions. The concepts in this chapter
rely heavily on the material from Chapter 6 on sampling distributions. So, if
you were looking for an excuse to dive back into Chapter 6, then this is it. You
know you want to.

7.1 Confidence Intervals for Means

Derek Hamburger is a freshman at a large 4-year university. His friends, who are
clearly a clever bunch, call him “Burger.” Burger has not yet declared a major
and is weighing his options. He is considering a number of majors, and eco-
nomics is one of them (obviously, Burger is crazy). One of the most important
pieces of information Burger is using to make his decision is the average starting
salary. You see, Burger, like many of his peers, wants to make sure that he can
make a decent living in the career he pursues. In a perfect world, Burger could
look into the future, determine what his desired job will be, plan on securing
that job, and know exactly what it will pay. Of course, this is not how it works.
There is a great deal of uncertainty in Burger’s future. One thing he can do,
however, is find out on average how much money recent graduates from his
institution are earning. This information will at least give him a feel for what he
could expect to earn. He could use that information to infer what he will earn
after graduation.

So, Derek Hamburger visits the placement office in the business school.
The office keeps record of recent graduates’ starting salaries, but the dataset
is incomplete. The data are gathered by surveying recent graduates and rely
on voluntary responses. For the most recent graduating classes, there are 75
responses out of a possible 1600 graduates. That is, a sample of data is available,
not the population dataset. With this information, Derek cannot know exactly
how much the most recent graduating students earned as their starting salary.
However, he can make some informed inferences about starting salaries using
the sample data.



What Burger does next is load the dataset of 75 responses into a software pro-
gram like Microsoft Excel.? He quickly computes the sample average and sam-
ple standard deviation (see Formulas A.2 and A.7 in Chapter 3). He discovers
a mean salary of $45,000 and a standard deviation of $5000. He also observes
that the data are right-skewed because a handful of former students landed
in pretty high-paying jobs. For example, Mikey Moneybags (from a long line of
Moneybags) reported a starting salary of $100,000. On the other hand, the low-
est earner, Sally Smallchange earned $25,000. So, there is variation in salaries,
and they are not distributed symmetrically.

Most importantly, Derek is smart enough to recognize that the actual average
of the 1600 graduates is likely different from $45,000 because the sample size
is less than the population. But how different? Let us help Derek make sense of
his data.

7.1.1 The Characteristics of the Sampling Distribution

Derek is in possession of one unique sample of 75 starting salaries. How many
unique samples of 75 are possible out of a population of 1600? Again, relying on
the combination formula (Formula A.1 from Chapter 6), there are 1.41 x 103°
possible samples. That is an incredible amount (remove the decimal point and
add 128 zeros after 141). But, even with just our single sample, we have a pretty
detailed idea of what the distribution of all possible sample means looks like.
First, because of the Central Limit Theorem, we know that the collection of all
possible sample means can be approximated as normal (sample size > 30). And
the mean of all possible sample means is the population mean (whatever that
number may be).

The collection of sample means calculated from all possible samples of 75
has its own standard deviation. Recall from Chapter 6, we call this the stan-
dard error of the mean. The standard error is the population standard devia-
tion divided by the square root of the sample size. The important point is that
there is less variation in the sample means than the variation in the population
salary data.

Unfortunately, Burger does not know what the standard deviation is for the
entire population. He only has a sample standard deviation of $5000, which is
the best information he has regarding the unknown value. He will use this value
to estimate the standard error of the sampling distribution. He simply takes the
$5000 and divides by the square root of the sample size of 75. The estimate of
the standard error is $5,000/\/% = $577.35.

When an estimate of the standard error is used in place of a population value,
there is more uncertainty about the shape of the distribution. If sample sizes are

2 The analysis assumes that the sample of 75 observations is a random sample. If the sample in
reality is a nonrandom convenience sample, then it will likely introduce biases (e.g., nonresponse
bias), as it will overrepresent students who are willing to provide salary information.



large enough, it is usually still permissible to assume that it is approximately
normal and the Empirical Rule and z-table can be utilized. However, a more
conservative approach is to assume that it follows what is called a t-distribution
(or the Student’s ¢-distribution). The ¢-distribution is symmetric like the z, but
a little flatter and less bell-shaped (see Figure 7.2).

We will use the characteristics of the sampling distribution to discuss
two approaches to forming confidence intervals around a sample mean. In
the first approach, we will assume that the sampling distribution follows a
z-distribution. Since we have worked with the Empirical Rule and the z-table in
detail in Chapter 5, this approach provides a familiar starting point. Then, we
will form a confidence interval assuming that the distribution of sample means
follows a ¢-distribution and highlight the small differences in the results.

7.1.2 Confidence Intervals Using the z-Distribution

Even with all of this information, we still cannot tell Burger exactly what the
average starting salary is for all of his former classmates. We never will. But,
we can use information from the sampling distribution of the mean to get a
pretty good idea. The end goal is to establish a range around the sample mean
of $45,000 that we are confident contains the true but unknown value.

The first step toward this goal is choosing the level of confidence. If we wanted
to be absolutely 100% confident that our range contained the true value, then all
we would have to do is specify ridiculously extreme values. For example, Burger
can be 100% confident that the true average starting salary is between zero and
one trillion dollars. No one could argue with that. However, this information
is not at all informative. It is for this reason that we never specify confidence
intervals of 100%. They are not useful. The convention, however, is pretty well
established. Confidence intervals are typically calculated at the 99%, 95%, or
90% level of confidence. The most common, by far, is the 95% confidence inter-
val. In fact, if a statistical report includes a confidence interval, but does not
specify the level, you can bet it is the 95% confidence level.

Following standard practice, let us choose the 95% confidence level to build
the interval for Derek Hamburger. We need to determine the range (lower and
upper values) that defines the 95% confidence interval. A useful first step is to
think back about the Empirical Rule. If a distribution is normal, then roughly
95% of all the data is within two standard deviations of the mean. For our
data that would be two times the standard error amount of $577.35, which is
$1154.70. If we were to use this number, then the range would have a lower
bound of ($45,000 — $1154.70) and an upper bound of ($45,000 + $1154.70).
While the Empirical Rule is useful for a quick approximation, the interval we
actually use is a bit more precise.

Instead of using two standard deviations approximated from the Empirical
Rule, we are going to use what is called a critical value. The critical value is



the number of standard errors the upper and lower bounds are away from the
sample mean. If the sampling distribution is normal, then the critical value is
a z-score found using the cumulative z-table found in the Technical Appendix
in Chapter 5. You can also rely on statistical software programs to generate
critical values (see Formula A.2). Recall, a z-score tells you how many standard
deviations a certain number is away from the mean of any normal distribution.
The critical z value for the 95% confidence interval is 1.96. Note that 1.96 is
very close to the approximation of 2.0 made by the Empirical Rule. As in the
example above, the upper bound to the interval is found by adding 1.96 standard
errors to the sample mean. See Formula A.3 for the confidence interval formula
using z.

The distance between the sample mean and the upper or lower bound is
called the margin of error. The margin of error is the critical value X the standard
error (Formula A.1). Here, the margin of error is $577.35 x 1.96 = $1131.61.
The lower bound is therefore $45,000 minus the margin of error and the upper
bound is $45,000 plus the margin of error. The total width of the confidence
interval is two times the margin of error. The confidence interval in its entirety
is $43,868.39 — $46,131.61.

The interpretation of the interval is the following: Burger is 95% confident
that the true average starting salary is between $43,868.39 and $46,131.61.

Question: Why is Derek Burger 95% confident that this interval contains the
unknown population mean?

Figure 7.1 illustrates the sampling distribution for the mean. The 95% con-
fidence interval is the width between the two dotted vertical lines. That is the
exact size of any interval calculated from a sample of size 75. So, of all pos-
sible sample means, the only intervals that would not contain the true mean
are the ones that fall in the shaded areas in the tails. Each of those tails con-
tains 2.5% of all means. So, in total, only 5% of all sample means would have
intervals around them that would not contain the true mean. The other 95% of
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Figure 7.1 95% confidence intervals for the sampling distribution of the mean.



intervals will contain the true unknown value. This is where the interpretation
comes from.

Derek Burger should be pretty confident — 95% confident to be exact — that
the average starting salary for the last cohort of economics majors was between
$43,868.39 and $46,131.61.

Here is a question to think about. How would the interval change if Burger
constructed the 99% confidence interval around his sample mean of $4500
instead of the 95% confidence interval? Before even going to the z-table to find
the correct critical value and computing the upper and lower bounds, first use
your intuition about confidence intervals to answer this. If Burger wants to
be more confident that his interval contains the true value, then his interval
must be wider. Therefore, holding everything else the same, more confidence
translates into wider intervals. When the level of confidence is 99% it means
that only 1% of all possible confidence intervals for a given sample size will not
contain the true population value. Before, with a 95% confidence interval, 5%
of all intervals would not contain the true value.

When alevel of confidence is chosen, the percentage that remains out of 100%
is called the level of significance. So, for 99%, 95%, and 90% confidence, the levels
of significance are 1%, 5%, and 10%, respectively.

7.1.3 Confidence Intervals Using the t-Distribution

While it is often considered acceptable to use a critical z value to construct
the confidence interval for a mean, even when the population standard devia-
tion is unknown, there is a more conservative approach. The reason to be more
conservative is that we used the sample of 75 to estimate two statistics, the
mean and the standard deviation. If for some reason, we knew the value for the
population standard deviation, then we could safely rely on the z-distribution.
Since we do not know the value for the population standard deviation (which
is almost always the case), we must rely on our estimate of $5000. To deal with
this added uncertainty about the sampling distribution, we use a more conser-
vative distribution than z. We use what is called the Student ¢-distribution or
simply the ¢-distribution.

The t-distribution, like the normal distribution, is symmetric and
mound-shaped. In fact, when sample sizes are large, the t-distribution
and the z-distribution are effectively identical and therefore it does not matter
which distribution you use. The t-distribution only becomes influential, and
therefore important, with smaller sample sizes. With small sample sizes (0
to 30, for example), the ¢-distribution looks like a normal distribution that
has been stretched out a bit (see Figure 7.2 for a visual comparison). Imagine
someone pulling both tails of the distribution slightly. The tails become a
bit “fatter” than those in the z-distribution and the bell shape looks flatter.
In practical terms, this means that for any given level of confidence, critical
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Figure 7.2 A comparison of the z-distribution with the t-distribution when sample sizes are
small. When sample sizes get bigger, the t-distribution converges to the z-distribution.

t-values will be bigger than critical z-values when sample sizes are small. And
when critical values are bigger, confidence intervals are wider. And a wider
interval is a more conservative interval.?

Question: When do we use the ¢-distribution instead of the z-distribution
when forming a confidence interval around a mean?

Answer: When we do not know the population standard deviation and the
sampling distribution can be approximated as normal.

Now back to Derek Hamburger and his quest to understand the starting
salaries of recent economics majors. He wants to take the more conservative
approach to calculating the 95% confidence interval for average starting
salary. The approach is the same as that used in the previous section with
the z-distribution except that the critical value will now be a critical ¢ value
(see Formula A.6). Burger will get this value from the ¢-table. A version of the
t-table can be found in the Technical Appendix to this chapter (Table 7.2).

Here is how you use the table. The first column contains what are called
degrees of freedom. The formula for degrees of freedom is the sample size
minus one. So, Burger’s sample has 74 degrees of freedom. The closest row
we have to 74 is 70, so that is the value you will use. Next, we have to match
the row with 70 degrees of freedom with the appropriate column. To figure
out which column, simply calculate what fraction of the sample means fall into
each tail of the distribution. With a confidence level of 95%, we know that 2.5%
of means will fall into each tail. Therefore, the column we look for has a value of
0.025. The intersection of the row with 70 degrees of freedom and the column
of 0.025 yields a critical t-value = 1.994. Note that 1.994 is greater than 1.96
(the z critical value for the 95% confidence levels). Note that you can also use
a software program to locate critical ¢ values (see Formula A.5 for the function

3 Using the ¢-distribution for samples with fewer than 30 degrees of freedom comes with an
additional caveat. In these cases, it is assumed that the population distribution is normal.



Table 7.1 Comparing 95% confidence intervals using critical zand t values.

Critical value ~ Margin of error ~ Lower limit  Upper limit

z-distribution ~ 1.96 $1131.61 $43,868.39  $46,131.61
t-distribution 1.994 $1151.24 $43,848.76  $46,151.24

in Excel). The margin of error using the ¢ critical value is therefore $577.35 x
1.994 = $1151.24 (Formula A .4). So, as expected, the confidence interval with
t is slightly wider than that with z. A comparison of 95% confidence intervals
using z and ¢ is made in Table 7.1. As the sample size gets bigger, the differences
between z and ¢ get smaller.

7.2 Confidence Intervals for Proportions

Let us get back to the polling results I mentioned at the beginning of this
chapter. Recall, the polling agency reported that 49% of 1300 respondents were
planning on casting their vote for Barack Obama in the upcoming election
back in 2012. The sample statistic of 49% was used to infer what percentage of
all likely American voters were planning on voting for Obama on the election
day. The decision to vote for Obama is binary (yes or no), and therefore the
statistic of interest is a proportion (or a percentage if we multiple it by 100)
rather than an average. Since the sample size is such a small fraction of a
large finite population, the sampling distribution can be assumed to follow a
binomial distribution. As introduced in Chapter 6 on sampling distributions,
when data are binary and follow a binomial distribution, we treat it a bit
differently than continuous data.

The polling agency took one unique sample of 1300 from the population of
likely voters. There are hundreds of millions of unique samples that could be
drawn from such a large population and the agency only has one. So, it is prob-
ably safe to assume that their sample estimate of 49% is different from the true
population percentage. For this reason, polling agencies also must provide a
margin of error. As with the mean, the margin of error will define the upper
and lower bounds to the confidence interval for a proportion. For a 95% con-
fidence level, the agency will be able to say that they are 95% confident that
the true percentage of Americans planning on voting for Obama is between an
upper and lower bound with 49% in the middle.

To determine the size of the margin of error, we must again rely on our under-
standing of sampling distributions. In our example, the sampling distribution
is the collection of all possible sample proportions from a sample size of 1300.
Of course, we will never actually observe this distribution because we only have



one sample. However, we know some very important things about it. First, we
know that on average the sample proportion will equal the true population pro-
portion. We also know that our sample size is large enough to approximate the
sampling distribution as normal (see Formula A.1). Therefore, because it can be
assumed normal, we can use the z-distribution to form our confidence inter-
val. Note that, unlike with the mean, we never rely on the ¢-distribution when
forming confidence intervals for proportions.

The margin of error, as with the mean, is calculated as the critical z value X the
standard error. The critical z value for the 95% confidence interval is 1.96. The
standard error of a binomial distribution is estimated using Formula A.8 and
is calculated as 0.0139. Therefore, the margin of error is equal to 1.96 x 0.0139
= 0.027 or 2.7%. With this, we know the size of the 95% confidence interval
for the polling agency’s report (see equation A.9). That is, the agency was 95%
confident that the true percentage of likely voters who were planning on voting
for Obama was between 46.3% and 51.7%.

It is important to understand why the polling agency is this confident that
their interval contains the true unknown value. The reason is that 95% of all
possible intervals created from the sample size of 1300 will contain the true
value. And only 5% of all possible intervals will not contain it. The interpretation
of a confidence interval directly depends on your understanding of sampling
distributions. We will find out that understanding sampling distributions is the
key to understanding inferential statistics in general, and therefore a key to a
happy life.

7.3 Sample Size and the Width of Confidence Intervals

One of the useful things about taking a course in statistics is that you start
to view reported data through a more sophisticated lens. Hopefully, you will
start to look more deeply into what statistics are being reported in the news,
what the population of interest is, how the sample was drawn from the pop-
ulation, what the sample size is, and how large is the margin of error. Statis-
ticians have control of certain elements of their study, while some elements
are beyond their control. They can determine their sampling procedure. They
can, to some degree, determine the level of confidence they want to report.
However, the conventions of 99%, 95%, and 90% are pretty rigid. Most impor-
tantly, however, they have control over deciding the size of their sample. The
relationship between the width of a confidence interval and the sample size is
relatively straightforward. The bigger the margin of error, the wider the interval.
The bigger the sample size, the smaller the margin of error. So, holding every-
thing else the same, as the sample size increases the margin of error and the
width of the confidence interval decrease. The intervals are tighter with bigger
samples.



Consider our example of the percentage of voters who planned on voting for
Obama in a previous presidential election. The agency chose a sample size of
1300, such a small fraction of the larger population. You may ask yourself why
they did not increase their sample size to try to capture more potential voters.
After all, larger samples lead to more precise intervals. The answer is that sam-
pling is costly and so businesses would prefer to minimize their expenditures
on sampling given that they meet certain objectives. Those objectives have to
do with the margin of error. As you look more carefully at news reports with
your developing statistician’s eye, you may notice that the margin of error for
most studies is 3% or less. A 3% margin of error for the 95% confidence interval
has developed into a sort of norm for the maximum allowable margin of error.

Question: What is the smallest sample size required to meet a target of 3%
margin of error?

To answer this question, we simply equate the formula for the margin of
error to 3% and then solve for the required sample size (see Formula A.11).
When doing this, we find that a sample size of 1068 will achieve this target.
This should help explain why many polls have sample sizes between 1000 and
1500 participants. These polls meet the 3% margin of error requirement with-
out overspending on sampling.

7.4 Comparing Two Proportions From the Same Poll

On November 9, 2016, many Americans woke up to surprising news. Donald
Trump was elected the next president of the United States. Weeks before the
election almost all of the national polls had Clinton in the lead. While nobody
doubted that Trump had a significant number of supporters, the polling data
showed Clinton a clear winner. Or so it seemed.

With political horse races like the Trump—Clinton runoff, people are pri-
marily interested in the difference in support for each candidate. Given the
nature of the electoral college in the United States, the interesting polls are
those from states that historically have toggled support between political par-
ties, the so-called battleground states. One of the key battleground states is
Florida. One cable news network (CNN) poll (# = 1006) taken in early Novem-
ber reported that 49% of respondents were planning on voting for Clinton while
Trump had 47%. While this was just one poll of many, Clinton had a 1 to 3%
point lead in almost all of the polls taken during the same time period.

When the results finally came in, Trump captured 49.1% of the votes to Clin-
ton’s 47.8% and he won Florida. Many Americans seemed surprised. Did the
polls get it wrong? Probably not.*

4 Some analysts do question the integrity of the polling results from the 2016 election. There is
speculation that some voters may have indicated that they were undecided or they intended to



The margin of error for the 95% confidence interval for each statistic was
roughly 3%. Implicitly, the poll reported with 95% confidence that the true per-
centage of Americans planning on voting for Clinton was between 46 and 52
(and between 44 and 50 for Trump). The actual results from the Florida elec-
tion clearly fall within those ranges. More important, however, is to consider
the estimated difference between the two results from the same poll. The CNN
poll had Clinton leading by 2% points. If you follow election coverage, you may
have heard pollsters report that two candidates are “within the margin of error”
or “outside the margin of error.” When a lead is “outside the margin of error,”
we think of that as a statistically significant lead. A lead not attributed to the
sampling error. Here is the important point: the margin of error for the differ-
ence in two proportions from the same poll is not the same as the margin of
error reported in the study (e.g., the 3% in the CNN poll).

It is clear that the confidence intervals for the results for Trump and Clinton
overlap. Let us consider how big of a difference between the two candidates
would be required for their confidence intervals not to overlap? Let us say that
the CNN poll had Clinton in the lead by 5% (e.g., the sample percentages were
49% for Clinton vs. 44% for Trump). In this case, the 95% confidence interval
for Clinton has a lower bound of 49% — 3% = 46% and Trump has an upper
bound of 44% + 3% = 47%. They still overlap. Indeed, they touch even when
Clinton has a 6% lead. When the difference is greater than 6%, then the confi-
dence intervals will not overlap at any point. Roughly speaking, when the two
confidence intervals do not overlap, then the difference is considered to be sig-
nificant. Clinton would have to lead by over 6% points in the Florida poll for
the difference to be outside the margin of error.

Note that 6% is double the 3% margin of error reported in the study. This
“double the margin of error” rule is often what pollsters use to make quick, back
of the envelope calculations of the margin of error for the differences between
two proportions. If there are only two candidates (or only two options more
generally), then this approach is adequate. When there are other candidates
(think third party candidates in elections), then doubling the margin of error
is a less accurate measure. Doubling the margin of error becomes less accurate
the greater the support is for other third party candidates. In US presidential
elections those third party votes are typically small percentages and therefore
doubling the margin of error is almost always considered fine. To be precise, the
formula for calculating the margin of error for the difference in two proportions
is provided in the appendix (Formula A.12). Using the formula on the CNN

vote for Clinton when in reality they supported Trump. One possible explanation is there was the
perception of a social stigma attached to voting against a female candidate in favor of a white
male candidate. This hypothesis can be likened to the “Bradley Effect,” which was coined after
Tom Bradley, an African—American, lost the California governor’s race in 1982 to a white
candidate despite having a wide lead in the polls.



results leads to a margin of error for the difference in two proportions of 6.05%
which of course is very close to our estimate of 6%.

One message to take away is that when comparing support for two candi-
dates from one poll, we cannot just look at the absolute difference between two
statistics. Because the statistics vary with different samples, so will the differ-
ences in those statistics. For many polls, the difference between two candidates
must be more than twice the margin of error of the study in order for a candi-
date to have a significant lead. If you search polling results from battleground
states in early November 2016, you will find that most polls suggested that no
candidate had a statistically significant lead.

7.5 Summary

An important part of inferential statistics is using sample data to estimate
unknown characteristics of a population. Some examples include estimating
presidential approval ratings, unemployment levels, customer satisfaction
levels, and tax compliance levels. In these cases, a sample of data is randomly
drawn from a population and a sample statistic is calculated. Because different
samples can lead to different sample statistics, we know that our estimates
will likely not equal unknown parameter values. Acknowledging the difference
between sample statistics and population parameters (i.e., sampling error), and
by relying on the properties of sampling distributions, we can form confidence
intervals around our sample statistics. Using the confidence interval formulas,
we calculate an upper and lower bound. Given a 95% confidence level, for
example, we can say “we are 95% confident that the interval we construct
contains the unknown population value.” The intuition is that, of all possible
samples of a given size, only 5% will result in intervals that will not contain the
true value.

We explored two forms of confidence intervals for a mean and one for a
proportion. When constructing an interval around a sample mean, if the pop-
ulation standard deviation is known, then we rely on the z-distribution and the
corresponding critical values. Otherwise, if we are constructing a confidence
interval around a mean and the population standard deviation is unknown,
then we rely on the ¢-distribution for the critical values. When constructing
an interval around a sample proportion, we always use the z-distribution.



Technical Appendix

When the population standard deviation is known, the margin of error for a
confidence interval around the mean is:
o

ﬁ’

where = is the standard error and z, /2 is the critical value. The subscript a/2
n

e = Zar/2 (Al)

is the area in each tail of the distribution and « is the level of significance.
The critical z value can be found using the z-table or found using the Excel
function:

= NORMSINV(1 — a/2), (A.2)

where (1 — a/2) is the area to the left of the critical value.
The confidence interval for the mean in this case is:

Q_Ciza/zi- (Ag)

\n

When the population standard deviation is unknown — which defines most

cases — the margin of error for a confidence interval around the mean is:
S
\n

where \i[ is the estimate of the standard error and ¢, , is the critical value.
n

e=t,, (A.4)

The critical t-value can be found using the ¢-table or found using the Excel
function:

=TINVQA - a/2,n 1), (A.5)

where (1 — a/2) is the area to the left of the critical value and (n — 1) is the
degrees of freedom.
The confidence interval for the mean in this case is:

Xty ,——. (A.6)
n

A binomial distribution can be approximated as normal given:
np > 10
n(l-p) > 10, (A7)

where p is the sample proportion and # is the sample size. The standard error
of the proportion is

0=y "2, (A8)



where the most conservative approach is to set # = 0.5. Given a sample size #,
the widest interval is estimated when the unknown value of r is set at 7 = 0.5.
The formula for the confidence interval is therefore:

(21 =
PEz,, zd - where 7 =0.5. (A.9)
n

Note that some textbooks substitute p in place of = = 0.5, which leads to
intervals that are weakly smaller (less conservative). The alternative form, when
substituting p for # = 0.5, yields:

1 —
Ptz ﬂ%- (A.10)

To estimate the smallest sample size necessary for a desired margin of error,
we can rearrange the formula for e to solve for n:

Zuz/2
n= (1 —n) where x =0.5. (A.11)
e

When comparing the difference between two proportions from the same poll,
we estimate the margin of error as

+ — — 2
ezza/z\/pl Py n(pl pz)' (A12)




Table 7.2 Critical t values.

df 0.10 0.05 0.025 0.01 0.005

1 3.078 6.314 12.706 31.821 63.657
2 1.886 2.920 4.303 6.965 9.925
3 1.638 2.353 3.182 4.541 5.841
4 1.533 2.132 2.776 3.747 4.604
5 1.476 2.015 2.571 3.365 4.032
6 1.440 1.943 2.447 3.143 3.707
7 1.415 1.895 2.365 2.998 3.499
8 1.397 1.860 2.306 2.896 3.355
9 1.383 1.833 2.262 2.821 3.250
10 1.372 1.812 2.228 2.764 3.169
11 1.363 1.796 2.201 2.718 3.106
12 1.356 1.782 2.179 2.681 3.055
13 1.350 1.771 2.160 2.650 3.012
14 1.345 1.761 2.145 2.624 2.977
15 1.341 1.753 2.131 2.602 2.947
16 1.337 1.746 2.120 2.583 2.921
17 1.333 1.740 2.110 2.567 2.898
18 1.330 1.734 2.101 2.552 2.878
19 1.328 1.729 2.093 2.539 2.861
20 1.325 1.725 2.086 2.528 2.845
21 1.323 1.721 2.080 2.518 2.831
22 1.321 1.717 2.074 2.508 2.819
23 1.319 1.714 2.069 2.500 2.807
24 1.318 1.711 2.064 2.492 2.797
25 1.316 1.708 2.060 2.485 2.787
26 1.315 1.706 2.056 2.479 2.779
27 1.314 1.703 2.052 2.473 2.771
28 1.313 1.701 2.048 2.467 2.763
29 1.311 1.699 2.045 2.462 2.756
30 1.310 1.697 2.042 2457 2.750
40 1.303 1.684 2.021 2423 2.704
50 1.299 1.676 2.009 2.403 2.678
60 1.296 1.671 2.000 2.390 2.660
70 1.294 1.667 1.994 2.381 2.648
80 1.292 1.664 1.990 2.374 2.639
90 1.291 1.662 1.987 2.368 2.632
100 1.290 1.660 1.984 2.364 2.626
1000 1.282 1.646 1.962 2.330 2.581
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Hypothesis Tests of a Population Mean

In 2010, a business professor at the University of Central Florida confronted
the students in his strategic management course about cheating on a mid-term
exam.! The class was huge, with over 600 students. The professor was convinced
that roughly 200 students had cheated by getting the answers to the exam in
advance. The interesting part is that he had no direct evidence. The exams were
proctored in a laboratory environment and not a single student was actively
caught cheating. Rather, the professor relied on statistics to drive his initial
suspicion. The professor had been teaching the class for many semesters and
as part of the discovery process, he conducted hypothesis tests to compare that
semester’s exam grades with the historic grades from past semesters. He found
a significant difference. The difference was so significant that he was confident
that the abnormally high grades were not due to random chance. Rather, the
difference in exam grades was large enough to strongly suspect foul play. His
suspicions were later confirmed by a student who tipped the professor off about
students accessing the exam questions online. The guilty students eventually
admitted to cheating and the entire class was required to take a new exam.
While statistical analysis was not the only thing used to confirm the suspicion
of cheating, the results of hypothesis testing triggered further inquiry.

The real power of statistics is being able to use samples of data to infer some-
thing unknown about a larger population. We explored one aspect of this in
Chapter 7 on confidence intervals. Here, we move onto using sample data to
test hypotheses regarding the larger population. We start with the simplest case
in which we use one sample of data to test a single numeric value regarding
the population. Some good examples are hypothesis tests for quality control of
products and services. Starbucks, for example, reports that a 16 oz cup of reg-
ular coffee (the grande size of Pike Place) has 310 milligrams (mgs) of caffeine.?
Of course, there is going to be some variation in the actual amount of caffeine

1 http://abcnews.go.com/Business/widespread-cheating-scandal-prompts-florida-professor-
issues-ultimatum/story?id=11737137
2 https://www.starbucks.com/menu/drinks/brewed- coffee/pike- place-roast



found in every grande cup of coffee brewed across the United States and abroad.
The caffeine content can depend on the water quality, how long the beans have
been roasted, the age of the beans, the skillset of the barista, the type of filter,
and many other things. Therefore, we would not expect every single 16 oz cup
to have exactly 310 mg of coffee. Given this variation, it is possible to sample a
number of cups of coffee to test whether the average cup of coffee has 310 mg
of caffeine. Such a test could be narrowly focused on a single store or it could be
more broadly focused on larger geographic regions. The sample of data would
lead Starbucks to either reject the hypothesis by finding significantly more or
less than 310 mg in the average cup, or fail to reject the hypothesis of 310 mg
of caffeine. This is the kind of test we consider in this chapter.

8.1 Two-Tail Hypothesis Test of a Mean

Let us consider a hipster coffee company called Jittery Joe’s. Ideally, they like
their coffee just a tad stronger than Starbucks and target their medium (16 o0z)
coffee to have an average of 330 mg of caffeine. Jittery Joe’s considers more
than 330 mg too much and can lead to their customers getting overly anxious
and irritable. Overcaffeinated customers might start flipping over tables if their
mulffins turn out a bit dry. Joe’s also does not want to provide their customers
with much less than 330 mg of caffeine, because without the right boost they
may fall asleep and spend the entire day slouched over in their comfortable hip-
ster chairs. Luckily, one of their employees named Jenny Jolt has been taking an
undergraduate course in business statistics and is willing to help out the man-
agement of Jittery Joe’s. She tells them she is going to take a random sample of
cups over the next week and measure the caffeine content in each cup. Her goal,
she explains, is to use the sample values to test whether the average amount of
caffeine is different from the targeted 330 mg. The management at Jittery Joe’s
was excited, gave her a high five and sent her on task.

8.1.1 A Single Sample from a Population

Jenny Jolt has to decide how big of a sample she needs to take. All else equal, the
more the merrier. Although the population of 16 oz coffees from Jittery Joe’s is
not finite (no specific number), sampling more cups would provide more infor-
mation on the true average caffeine content. The trade-off, of course, is that
sampling coffee is expensive. Every cup that Jenny samples is a cup that is not
sold to consumers. Sampling also involves time and effort, which means more
wages paid to Jenny without her contributing to coffee service. The manage-
ment decides that they could afford a sample of 50 cups. Jenny is happy with that
sample size. She suspects that the caffeine content from all cups served by Jit-
tery Joe’s is normally distributed. She also thinks back to her stats course and the



idea of sampling distributions. That is, although she is taking only one sample of
50 cups and computing the average caffeine in those 50 cups, if she were to take
many samples of size 50, the averages would be normally distributed and follow
a z-distribution. Jenny, in other words, remembers the Central Limit Theorem.

Of course, Jenny Jolt will also have to estimate the standard deviation in caf-
feine for those 50 cups. Therefore, the distribution of average caffeine for sam-
ples of 50 cups will follow a ¢-distribution. Recall that when the population
standard deviation is unknown, we use ¢ in place of z when estimating a mean.
The t-distribution is symmetric, mound-shaped, and looks more and more like
z — the normal distribution — as the sample size goes up. Jenny, therefore, is
confident that the distribution of all possible averages from samples of size 50
would look fairly normal.

Table 8.1 contains the caffeine measurements in milligrams for all 50 cups.
Jenny Jolt uses a high-quality caffeine testing strip to produce her measure-
ments. The first thing Jenny does with her 50 values is compute the mean
(denoted as x) and the standard deviation (denoted as s) for her sample.

Jenny calculates an average of x =331 mg and a standard deviation of
s =3.12 mg. Jenny also needs to estimate how much variation there would
be in average caffeine for all possible samples of size 50. Recall, this is called
the standard error and is calculated by dividing the sample standard deviation
by the square root of the sample size (s; = 3.12/ \/5 = 0.44 mg). Loosely
speaking, the average deviation in sample mean values from 50 cups of coffee
is estimated to be 0.44 mg.

Clearly, the sample mean value of 331 mg is higher than the targeted 330 mg.
However, Jenny Jolt recognizes that she is working with only a sample of data

Table 8.1 Caffeine contentin 16 oz
cups (in mgs) for a sample of 50.

331 332 333 329 334
330 332 331 330 335
328 332 332 330 331
326 334 336 326 332
340 328 334 326 333
333 327 332 329 333
329 326 332 328 328
334 329 328 330 333
334 330 328 337 336
331 333 329 335 334




and that there is going to be variation in the sample values. If she had taken
another sample of 50 cups, she might get a different average value. Therefore,
what she has to determine is whether 331 mg is far enough away from 330 mg
to conclude that the population mean is different from 330.

8.1.2 Setting Up the Null and Alternative Hypothesis

It is always a best practice to write down the hypothesis being tested. This
is important because there are a few possible variations for a single sample
hypothesis test. First, Jenny must decide if she is conducting a one-tail or a
two-tail hypothesis test. She remembers that Jittery Joe’s is concerned with both
too much or too little caffeine. This suggests that a two-tail hypothesis test is the
best option. The two-tail hypothesis just means that she is equally interested in
finding if there is significantly more caffeine than the targeted 330 or signifi-
cantly less, so both sides of the distribution are in play. Formally, the test looks
like the following:

Hy: =330
H,:u# 330

The first line is called the null hypothesis. The null hypothesis states that the
average caffeine in Jittery Joe’s coffee is equal to its targeted level of 330 mg.
In general, the null hypothesis is the assumed value. It can also be thought
of as an established baseline. In criminal trials, for example, the null hypoth-
esis is that the person is innocent. Or when Olympic athletes are tested for
performance-enhancing drugs, the null hypothesis is that they are not using
banned substances. Likewise, with quality control, the null is that the quality of
the product or service is equal to the advertised levels.

The second equation is called the alternative hypothesis, and is often thought
of as the research hypothesis. The alternative hypothesis is really what the
researcher is interested in. For example, when athletes take required drug
tests, the goal is to determine if they are using performance-enhancing drugs.
Likewise, the alternative hypothesis is what Jenny Jolt wants to determine; that
is, does the average cup of coffee contain an amount of caffeine different from
the targeted 330 mg? The notations H, and H, denote the null and alternative
hypotheses for all examples throughout this text.?

8.1.3 Decisions and Errors

With hypothesis testing, we always report our decisions with respect to the
null hypothesis. In this way, our task is simple; we can either reject the null

3 In some business statistics textbooks, the notations H; and H, are used to denote the null and
alternative hypothesis, respectively.



hypothesis or we fail to reject the null hypothesis. If we reject the null, it means
our sample data support the alternative hypothesis. In our example, rejecting
the null means we find that the average caffeine level is different from 330 mg.
If we fail to reject the null, it means our data support the null hypothesis that
the average caffeine level is equal to 330 mg.

Before determining our decision rule, we must first explore the types of errors
we could make in the process. There are two types of errors that can be made
with hypothesis testing. A Type I error is when a null hypothesis is rejected
when in reality it is correct. For example, if our sample of 50 cups leads us to
conclude that the average caffeine content for all cups (i.e., the population of
interest) is different from 330 mg when in reality the population average is equal
to the targeted 330 mg. Recall in the chapter on probabilities, we discussed the
issue of diagnosing breast cancer. Using that example, if the null hypothesis is
that a patient does not have breast cancer, a Type I error would be rejecting
the null when it was correct. In other words, the Type I error is diagnosing a
woman with cancer when she does not have it, and in that study, there was a
7% chance of that happening.

The second type of error is called a Type II error, and is made when we fail
to reject a null hypothesis that is actually false.* For example, if our sample of
50 cups leads us not to reject the null hypothesis, but in reality the average caf-
feine content for all cups of coffee is higher than 330 mg. In the cancer diagnosis
study, the Type II error was concluding a woman does not have cancer when in
reality she does. There was a 10% chance of a Type II error in that study.

Of course, a researcher, like Jenny Jolt, does not know whether the null is
correct or incorrect when making the decision. If she did, then there would be
no reason to conduct a test — the answer is already known. However, Jenny does
have some control over the likelihood she makes an error. In particular, she has
direct control over the probability of making a Type I error.

Let us first consider the state of the world in which the null hypothesis is
correct and the average caffeine level is 330 mg. We know from Chapter 6 on
sampling distributions that a single sample of 50 cups may not lead to an aver-
age of 330 mg even when the population average is equal to 330. This is the idea
of sampling error. Remember, there is variation in caffeine levels and our sample
of 50 is pretty small. However, we do know that the values of repeated samples of
size 50 would be distributed symmetrically with 330 mg in the center. If the null
is correct, most sample means will fall close to the 330 mg. How close? Well, if
the distribution of sample means was normal, the Empirical Rule tells us that
about 95% of all sample means would fall within two standard errors of 330 mg.
Recall that our sampling distribution will follow a ¢-distribution and is there-
fore not perfectly normal. But, it is very close. In fact, with our sample size of

4 Some students find it useful to remember a Type II error with “FF” — failing to reject a false null
hypothesis — and a Type I error with “RR” — rejecting a null hypothesis that is right.



50, 95% of all sample means would be within 2.01 standard errors from 330 mg
(2.01 is found on the ¢-table in the Technical Appendix of Chapter 7). So, only
5% of all possible values would fall beyond 2.01 standard errors away from
330 in either direction. This understanding of sampling distributions and how
sample mean values are dispersed around a hypothesized value is fundamental
to understanding the decision rule in hypothesis testing.

We start by deciding what the threshold is for rejecting a null hypothesis. A
threshold is a number that if passed triggers a rejection of the null. For a two-tail
test, there is a threshold for rejection in both tails of the distribution. That is,
we can reject the null because we are too far above the hypothesized 330 mg or
too far below the hypothesized 330 mg. We will only reject the null, if we are far
enough away from the 330 to conclude that it is unlikely that the true caffeine
content is 330 mg. For instance, we could reject the null if our sample mean
value is beyond 2.01 standard errors away from 330. While we know that it is
possible that we could get values in this range if the null is true, it would only
happen with 5% of all possible samples. In particular, 2.5% of sample means
would fall in the extreme left tail and 2.5% of sample means would fall in the
extreme right tail. So, if we used 2.01 as our rejection rule, we could say that if
the null hypothesis is true, there is a 0.05 probability of making a Type I error.
In other words, with this rejection rule, we are 95% confident that we will make
the correct decision if the null hypothesis is correct. The size of the rejection
region is therefore the probability of making a Type I error — we call this the
significance level and it is denoted as a.

We decide on what the threshold for rejecting the null hypothesis is by decid-
ing on how willing we are to make a Type I error. How willing are we to reject
a null hypothesis that is correct? While in principle we could choose any level,
the standards are 1%, 5%, and 10%. Whatever percentage we choose will define
the threshold and the size of the rejection region.

8.1.4 Rejection Regions and Conclusions

To continue with our example, consider a level of significance of @ = 5%. The
thresholds for rejection in this case would be plus and minus 2.01 standard
errors away from 330 mg. The +2.01 are critical £ values. We can also write the
critical values in terms of caffeine. If we multiple 2.01 by the standard error
of 0.44, we get 0.88 mg. Therefore, the positive critical value is 330 + 0.88 =
330.88 mg and the negative critical value is 330 — 0.88 = 329.12 mg. If our sam-
ple of 50 cups yields an average caffeine level outside of our critical values, then
we reject the null hypothesis. Figure 8.1 illustrates the rejection regions and the
critical values.

We are now ready to make a conclusion. There are two ways to go about this,
and if done correctly both will yield the same result. The first is to compare the
critical £ values with the sample mean value. To do so, we have to convert our
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Figure 8.1 Two-tail hypothesis test critical values and rejection regions at the 0.05
significance level.

sample mean of 331 mg into a ¢ value. We call this a test statistic or t,, and is
found by subtracting the hypothesized value of 330 from the sample mean value
and dividing by the standard error (see equation A.1). Therefore, we have ¢, =
(331 — 330)/0.44 = 2.27. The test statistic tells us how many standard errors
331 mgis from 330 mg. In this case, 331 mg is 2.27 standard errors greater than
330 mg. While a 1 mg difference may not seem like much, it is actually quite
far away in terms of standard errors. From Figure 8.1, it is clear that the test
statistic of 2.27 passed the critical ¢ value of 2.01 and therefore we are inside
the rejection region. The conclusion is to reject the null hypothesis at the 0.05
significance level.

Alternatively, we can compare our sample mean of 331 mg with the critical
value of 330.88 mg. Since 331 > 330.88 we are inside the rejection region. One
approach compares ¢, with ¢ ;. and the other compares the sample mean
in mg with the critical value in mg. Both lead to the same conclusion, and so
either approach is fine. An important point to remember is you need to com-
pare apples with apples and oranges with oranges. We cannot compare ¢ values
with sample means reported in mgs.

In summary, we conclude that the caffeine level in the average cup of coffee is
significantly different (more than) the targeted 330 mg. Jittery Joe’s might want
to address the situation or otherwise they could be dealing with an angry mob
of fired-up hipsters with heart palpitations. Jittery Joe’s should also recognize
that there is a possibility that Jenny Jolt made a Type I error. However, if the
null hypothesis is true, we would only make such an error in 5% of all possible
samples of size 50.

8.1.5 Changing the Level of Significance

Suppose, we want to test the same set of hypotheses but want to limit the pos-
sibility of a Type I error to only 1% of the time. In other words, how would



our test change if we conduct it at the @ = 0.01 level? At this significance level,
we would be 99% confident that if the null hypothesis is true, we will make the
correct decision by failing to reject it. Using our same sample, we have the same
sample mean value of 331 mg and standard error of 0.44 mg. Only the critical
values change. We must determine how many standard errors away from the
hypothesized mean will capture 99% of the data? By the Empirical Rule, we
know just about all the data is within 3 standard errors. To be precise, however,
we will have to consult the z-table. We find with 49 degrees of freedom and
a = 0.01 that the critical t values are +2.68. The picture of the test at the 1%
significance level is shown in Figure 8.2.

Note again that the significance level is split evenly in both tails. Our test
statistic of 2.27 is clearly in the fail to reject region, since it falls short of the
2.68 critical ¢ value. Likewise, the sample mean value of 331 mg falls in the fail
to reject region, since it does not pass the 331.18 mg critical value. Therefore,
at the 1% significance level, we fail to reject the null hypothesis and find that
the average cup of coffee has a caffeine level equal to 330 mg.

Comparing our two test results, we find that 331 mg is significantly different
from 330 mg at the 5% significance level, but not at the 1% significance level.
As a researcher, I would conclude that we find some evidence that caffeine lev-
els are greater than 330 mg but not strong evidence. Note that, here, the only
type of error that is possible is a Type II error, which would occur if the null
hypothesis is actually false and we failed to reject it. While researchers do not
have direct control over the likelihood of a Type II error, they can influence it
indirectly. The trade-off is if the level of significance is decreased (and so too is
the size of the rejection region), then the probability of failing to reject a false
null hypothesis will increase. So, decreasing the probability of a Type I error
increases the probability of a Type II error (the probability of a Type Il error is
denoted as f8), holding everything else constant. In practice, businesses may find
making one type of error more costly than another. The costs associated with

Reject the null

0.005 |
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328.82 330 331.18 mg

Reject the null
Fail to reject
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0.005

Figure 8.2 Two-tail hypothesis test critical values and rejection regions at the 0.01
significance level.



the errors depend on the context and what the response is to the conclusion
of the hypothesis test. Again, consider Jittery Joe’s. If rejecting the null hypoth-
esis results in Joe’s buying all new machines and retraining their entire staff,
then a Type I error could be very costly (all of those new expenditures would
be fixing a problem that does not exist). On the other hand, a Type II error
will likely result in business as usual and they would not change anything, so it
could be a very low cost error to make. However, if the caffeine-laden customers
at Joe’s start having medical problems and sue Jittery Joe’s for gassing up their
drinks, then a Type II error could come with huge costs. It all depends on the
context.

8.2 One-Tail Hypothesis Test of a Mean

The most common type of hypothesis tests is two-tailed. However, there are
circumstances in which a one-tail test is permissible. Consider again our hipster
coffee shop Jittery Joe’s and their concern about the ideal amount of caffeine.
If for some reason they were only concerned about providing too much caf-
feine relative to the desired target of 330 mg, then they could use a one-tail test.
Meaning, they would only reject the null hypothesis, if they found the average
caffeine levels to be significantly greater than 330 mg. Most of the elements
for completing a one-tail hypothesis test are the same as those for the two-tail
hypothesis, with the exception that the rejection region is pushed entirely into
one tail. For the Jittery Joe’s example, it would be in the right tail.

8.2.1 Setting Up the Null and Alternative Hypotheses

The starting point for Jenny Jolt’s one-tail hypothesis is to set up the null and
alternative. Her research question is whether the average cup of coffee has more
than 330 mg of caffeine. Therefore, she will frame the alternative hypothesis
with a greater than symbol (>).

Hy:p <330
H,:pu>330

The null hypothesis now includes the targeted 330 mg, but it also includes
any level of caffeine less than the target. The reason is because with a one-tail
test (right tail), we cannot reject a null hypothesis for any caffeine level we
might find less than 330.° We have effectively narrowed our focus on only
one side of the distribution. For a given level of significance, say a = 5%,

5 When visualizing or drawing the rejection region for a one-tail test, the inequality in the
alternative hypothesis always points to the direction of the rejection region.



the rejection region in our right tail will be twice the size as the rejection
region in the right tail in a two-tail test. Therefore, we are more likely to
reject the null for sample means greater than the targeted 330 mg. It is for
this reason that one-tail tests are often considered to be less conservative
than two-tail tests. A more conservative approach is usually thought of as
one that makes it harder to reject a null hypothesis. Think again about the
example of performance-enhancing drugs in which the null hypothesis is that
the athlete is clean. A one-tail test would make it easier for officials to reject
the null that the athlete in question is clean. The most conservative approach
is one in which innocence is presumed as the baseline and the data need to be
compelling enough to reject that hypothesis.

8.2.2 Rejection Regions and Conclusions

The first step is to find the critical ¢ value for the 0.05 significance level given a
one-tail test. This is the same positive ¢ value we would use for a two-tail test
at the 10% significance level. Why? Because with a two-tail test, half of 10%
is in each tail, so 5% would be in the right tail. After consulting the ¢-table,
we locate the value as £_;;.,; = 1.68. This means that the critical value in mg
is 1.68 standard errors above 330 mg, which is 330 + 1.68 x 0.44 = 330.74 mg.
The critical values and rejection region are illustrated in Figure 8.3.

We conclude the one-tail hypothesis test using the same approach as the
two-tail test. Comparing ¢, = 2.27 with £ ;.. = 1.68, it is clear that the test
statistic is inside the rejection region and the conclusion is to reject the null
hypothesis at the 0.05 significance level. Alternatively, we can compare the sam-
ple mean of 331 mg with the critical value of 300.74 mg. Since 331 > 300.74,
the conclusion is to reject the null hypothesis. We find that the average caffeine

level exceeds the targeted 330 mg.

Reject the null

Fail to reject
the null

0 168 t
330 330.74 mg

Figure 8.3 One-tail hypothesis test critical values and rejection regions at the 0.05
significance level.



8.3 p-Value Approach to Hypothesis Tests

In the previous sections, we considered a few different hypothesis tests using
Jenny Jolt’s caffeine data from her sample of 50 cups. Recall, we considered
two-tail tests at both the 0.05 and 0.01 levels and a one-tail test at the 0.05 level.
In all three cases, our sample statistics remained the same and only the size of
the rejection regions (and hence the critical values) changed. Most importantly,
the test statistic in each case was ¢, = 2.27 and we just compared it to differ-
ent critical £ values. Well, there is another approach to making decisions with
hypothesis tests; one in which you do not have to keep referring to tables to
find different critical values. This approach uses what is called a p-value.

The p-value approach starts by finding the probability of getting a test statistic
that is more extreme than the one calculated from the sample. What does more
extreme mean? It does not mean chugging four energy drinks and jumping off
a plane. It simply means further into the tail of the distribution. In Jenny Jolt’s
case, she needs to find the probability of getting a test statistic greater than
Ly = 2.27. Since the t-distribution changes shape depending on the sample
size, we do not look this value up on a table. Any stats software program can dish
this out, and Excel makes it pretty easy (see A.2 for Excel formulas). Figure 8.4
illustrates the area farther into the tail than Jenny Jolt’s ¢, = 2.27. This area is
0.014. For a one-tail test, the p-value is equal to this area, so p-value = 0.014.
For a two-tail test, the p-value is double that, so p-value = 2 X 0.014 = 0.028.

The rule is: if the p-value < a then reject the null hypothesis.

8.3.1 One-Tail Tests

Let us start with the one-tail hypothesis test we discussed in section 8.2. We
conducted that test using a level of significance = 0.05. That means the right-tail
rejection region is an area of 0.05. If the p-value is less than the total size of the
rejection region, it must be the case that the test statistic is inside the rejection
region. For Jenny Jolt, the p-value of 0.014 is less than a = 0.05, so the test

P(t> ty) = 0.014

0 toar=2.27 t

Figure 8.4 Finding the probability of a test statistic farther into the tail than t ., = 2.27.

stat



statistic is inside the rejection region and she would reject the null. What is
even cooler is that Jenny Jolt can quickly use the p-value rule to make a deci-
sion at any level of significance without having to find a single critical value.
For example, what does Jenny conclude at the @ = 0.01 significance level? Just
use the rule. Since the p-value of 0.014 is greater than 0.01, Jenny would fail
to reject the null hypothesis. In fact, Jenny would reject the null hypothesis
for any significance level greater than 0.014 and fail to reject for any signifi-
cance level less than 0.014. This is why the p-value is often defined as the lowest
level of significance for which you would reject the null hypothesis. A very small
p-value indicates that the sample mean is very far from the hypothesized mean.
Most statisticians and data analysts simply report the p-values to their results
rather than stating their conclusion to a test at a given significance level. This
is because an informed reader (like you after reading this section) can quickly
look at the p-value and know the range of significance levels for which they
would reject the null hypothesis.

8.3.2 Two-tail tests

The p-value for a two-tail test is twice that of the one-tail test. You may be
asking yourself why that is the case. Well, it is because with a two-tail test, the
rejection area in each tail is only half of the significance level. Remember, we
divide a by 2 with these tests. So, we can either compare the one-tail p-value
with a/2 or we can double the one-tail p-value and compare it directly with
a. We take the second approach. That allows us to use the same p-value rule
to conclude any type of test. The rule never changes, only the calculation of
the p-value changes depending on whether it is a one- or two-tail test. Jenny
Jolt’s p-value for a two-tail test is 0.028. She knows that she will reject the null
hypothesis for any significance levels greater than 0.028, and fail to reject the
null for any significance levels less than 0.028.

8.4 Summary

In this chapter, we covered how to use sample data to test a numeric hypoth-
esis about a population mean. A sample of data was taken, the sample mean
was calculated, and then compared to the hypothesized mean. If the sample
mean was far enough away from the hypothesized mean, then we rejected the
null hypothesis. Far enough away, however, is measured in standard errors (the
average deviation of sample means), so we needed to convert the sample mean
into a test statistic. The test statistic tells us how many standard errors the sam-
ple mean is from the hypothesized mean. A conclusion is made by comparing
the test statistic to a critical value, or by comparing the p-value to the level of
significance.



Technical Appendix

When the population standard deviation ¢ is unknown, we use the sample stan-
dard deviation s and the estimate of the standard error is s/ \/Z In this case, the
distribution of all possible sample means follows a ¢-distribution and the test
statistic for a mean is calculated as:

; _ X Hy
tat — ~  —°
sta S/,\/Z

where x is the sample mean and g, is the hypothesized mean.
The p-value for a one-tail or two-tail hypothesis test can be found using the
following Excel formulas:

one-tail p-value = T.DIST.RT(t,,.,n — 1)

stat?

two-tail p-value = T.DIST 2T (¢, n — 1), (A.2)

stat>

(A.1)

where 27T indicates a two-tail test and # — 1 is the degrees of freedom. Although
there are limited applications in the real world, most textbooks cover a hypoth-
esis test of a mean when the population standard deviation is known. In this
case, the sampling distribution can be considered normal for samples of 30 or
more and the z-distribution is used. In this case, the test statistic is calculated
as:

X — U

Zo =
stat O'/\/Z’

and the p-value can be found using the z-table.

(A.3)



9

Hypothesis Tests of Categorical Data

In this chapter, we focus on hypothesis tests when data are categorical. Many
survey questions and polls result in data that fall into this category. Each week in
the United States, for example, samples of adult Americans are asked whether
they approve of the way the current president is handling his responsibilities.
This question is used to form the “presidential approval rating” by dividing the
number that approve by the total number of respondents. Another example of
categorical data is whether or not people who file their taxes get audited. A tax
filing service may be very interested in publishing an estimate of the proportion
of tax returns that get audited each year. Although categorical variables are not
numeric, we can easily convert them into binary data. Recall, with binary data
each observation (or response) can be coded as 0 or 1, where 1 is the category
of specific interest. In these cases, the statistic of interest is often the proportion
which is simply the number of 1s divided by the total number of observations.

There are two goals for this chapter. The first is to learn how to use a sin-
gle sample of data to test a hypothesis concerning an unknown population
proportion. To introduce the process and intuition of conducting a hypothe-
sis test of a proportion, we will use M&M’s as an example. The company Mars
makes many claims about their original M&M'’s candies. One is captured by
their famous slogan “M&M’s melt in your mouth, not in your hand” While it
would be possible to test this claim using a hypothesis testing approach, it is far
too messy to consider seriously. Instead, we will focus on testing another one of
their claims regarding the proportion of each color they manufacture. Specifi-
cally, Mars publishes that 24% of original M&M'’s are blue.! In this chapter, we
will use sample data to conduct hypothesis tests regarding Mars’ claim that the
population proportion (x) of blue M&M’s is 0.24.

The second goal is to explore hypothesis tests of categorical data when
our interest is the relationship between categories from a single sample.
For example, one might wonder whether there is a statistical relationship

1 The distribution of colors for original M&M'’s was published on the official web site http://www
.mms.com in 2011.



between political party affiliation and education, or whether the survival rates

from hurricanes depend on income levels. Or, to follow up with the M&M'’s

example, whether the entire distribution of colors in a randomly drawn sample

of M&M’s matches the distribution of colors published by Mars. These kinds

of tests are called chi-square tests and we will cover the basics of these as well.
We begin with a test of a single population proportion.

9.1 Two-Tail Hypothesis Test of a Proportion

Our investigation into the proportion of blue M&M’s should start with a state-
ment of the null and alternative hypothesis. Let us begin with a two-tail hypoth-
esis test in which we are interested in proportions greater than or less than
the stated 0.24. The null hypothesis in this case is Mars’ manufacturing claim
that the population proportion is equal to 0.24. Recall, the null hypothesis is
often considered to be the established baseline. The alternative hypothesis, our
research question, is that the population proportion of blue M&M’s is different
from 0.24. In equation form, this looks like the following:

HO . Thlue = 0.24
H, 7y, # 0.24

With a two-tail test, we can reject the null hypothesis if we find a significantly
higher proportion of blue M&M’s or a significantly lower proportion of blue
M&M’s relative to the stated 0.24.

9.1.1 ASingle Sample from a Population

If we consider the population of interest an entire manufacturing run of orig-
inal M&M’s, we can imagine a single representative sample taken from the
larger population. The sample is going to be used to either support Mars’ claim
that 24% of M&M'’s are blue or refute it. The hypothesis testing approach we
are going to use assumes that the distribution of sample proportions drawn
from the population is approximately normal. This means that if we were to
take repeated samples of a certain size (with replacement) from the population,
and for each sample find the proportion of blue M&M’s, then the distribu-
tion of those sample proportions would be approximately normal (bell-shaped).
Recall from Chapter 6 on sampling distributions that there was a test to deter-
mine if a sample size is big enough to make this assumption. The test requires
that the sample size X the population proportion must be 10 or greater (see
equation A.1).2 For hypothesis testing, the hypothesized proportion is used
in place of the unknown population proportion. Therefore, the distribution

2 Note that the normal approximation test requires that both nz > 10 and n(1 — z) > 10.



of sample proportions will be approximately normal if # X 0.24 > 10. Simply
dividing both sides of the equation by 0.24 tells us that as long as the sample size
is m > 41.67 (42 M&M'’s or more), then we can use the normal distribution for
hypothesis testing. To satisfy this, we will use a random sample of 50 M&M'’s to
conduct our tests and we can safely assume that the sampling distribution fol-
lows a z-distribution. While a sample of size 50 is large enough, a bigger sample
is almost always better. The sample results are contained in Table 9.1.

If the population proportion of blue M&M’s is 0.24, then we would expect,
on average, 12 out of a sample of 50 to be blue. Why? Because the expected
value is nwr = 0.24 X 50 = 12. In contrast, from Table 9.1, it is found that there
are nine blue M&M’s out of the 50 sampled. The sample proportion is there-
fore 9/50 = 0.18. Only 18% of our 50 M&M’s are blue, which is of course less
than the advertised 24%. Now, it is not the time to jump to conclusions. We
have to look further to find out if Mars is swindling us out of delicious blue
M&M’s.

Remember, we are dealing with a single sample of data. If we took another
random sample of 50 M&M’s, we should not expect to get the same results.
In fact, we can estimate how much variation we would expect in sample pro-
portions of blue M&M’s for sample sizes of 50. The average deviation in sam-
ple proportions is the standard error of the proportion and is calculated using
Formula A.2. The most important element of the formula is that as the sample
size goes up, the standard error goes down. Bigger samples should yield pro-
portions closer to the population value. For a sample of 50, the standard error
of the proportion is 0.06. So, while we expect 12 blue M&M’s in a sample of
50, the average deviation from 12 is 3 blue M&M’s (0.06 x 50 = 3). Figure 9.1
provides an illustration of the sampling distribution of blue M&M'’s for samples
of size 50, if the population proportion is 0.24.

Table 9.1 Random sample of
50 M&M'’s (1 = Blue; 0 = Not Blue).
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Figure 9.1 Sampling distribution of the proportion of blue M&M'’s for samples of 50.

9.1.2 Rejection Regions and Conclusions

We must determine whether 0.18 is far enough away from 0.24 to reject the
null hypothesis that the population proportion of blue M&M’s is 0.24. Let us
start with a significance level of & = 0.05, which means that if the null hypoth-
esis is correct, we would expect to reject it (i.e., make a Type I error) only 5%
of the time. The other 95% of the time, we would make the correct conclusion
by failing to reject a true null hypothesis. Since we are conducting a two-tail
test, half of « (i.e., 0.025) goes in each tail of the normal distribution. The crit-
ical z values for this level of significance are —1.96 and +1.96 (the same values
used in Chapter 7 on confidence intervals). It is also possible to compute the
critical values in terms of proportions. The right-tail critical value is 1.96 stan-
dard errors above the hypothesized 0.24. This yields a right-tail critical value of
0.24 4+ 1.96 x .06 = 0.3576. Likewise, the left-tail critical value is 1.96 standard
errors below 0.24. This is 0.24 — 1.96 X 0.06 = 0.1224. The rejection regions and
critical values are illustrated in Figure 9.2.

Reject the null Reject the null

Fail to reject >

the null

0.025 0.025
>
-1.96 0 1.96 z
0.1224 0.24 0.3576 p

Figure 9.2 Two-tail hypothesis test critical values and rejection regions at the 0.05
significance level.



To compare the sample results with the z critical values, we need to com-
pute the test statistic. The test statistic tells us how many standard errors 0.18
is from 0.24 (see Formula A.3). Since the standard error is 0.06, we can eas-
ily solve zy, = (0.18 — 0.24)/0.06 = —1. So, 0.18 is 1 standard error below 0.24.
Zg, 18 clearly in the fail to reject the null region. Alternatively, we could compare
the sample proportion of 0.18 to the critical values in proportions (the second
axis in Figure 9.2), in which p = 0.18 is also clearly in the fail to reject the null
hypothesis region. Thus, at the 0.05 significance level, we find evidence in sup-
port of the null (i.e., we fail to reject the null) that the population proportion of
blue M&M'’s is equal to 0.24.

9.2 One-Tail Hypothesis Test of a Proportion

Suppose that after years of eating original M&M'’s we suspected that Mars was
shortchanging us on blue M&M’s. We hypothesized that the actual proportion
of blue M&M’s is less than Mars’ published proportion of 0.24. To answer this
question, we could use a one-tail hypothesis test. Recall that the research ques-
tion is framed as the alternative hypothesis while the null hypothesis captures
the manufacturer’s claim. The test would be set up as the following:

Hy: 7y, > 0.24
HA :ﬂ-blue < 0.24

Using a significance level of 0.05, we know that with a one-tail test the
rejection region will be pushed entirely into the left side of the distribution.
If you are having a hard time remembering what side of the distribution
contains the rejection region, consider that the symbol in the alternative
hypothesis will always point to the correct tail. The critical value can be found
using the z-table and is —1.645. The rejection region and critical z value are
illustrated in Figure 9.3. Notice that we also include the critical value in terms
of proportions. This is found by finding the proportion that is 1.645 standard
errors below the hypothesized value: 0.24 — 1.645 x 0.06 = 0.1413. Therefore,
the hypothesis test can be concluded by either comparing the test statistic of
Zyo = —1 with the z_;.q = —1.645 or by comparing the sample proportion
of p = 0.18 with the critical value (in proportions) of 0.1413. In either case,
our sample statistics are not in the rejection region. We fail to reject the null
hypothesis using a one-tail test at the 0.05 significance level.

With both the one-tail and two-tail tests, we fail to reject the null hypothesis.
That means, we are finding support for Mars’ claim that the true proportion of
blue M&M'’s is 0.24. We make this conclusion even though our sample propor-
tion was only 0.18. Clearly, 0.24 and 0.18 are different, but they are not different
enough for us to reject Mars’ claim.



Reject the null
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Figure 9.3 One-tail hypothesis test critical values and rejection region at the 0.05
significance level.

9.3 Using p-Values

The p-value approach to hypothesis testing was first introduced in Chapter 8.
The p-value offers a more general way to conclude a hypothesis test by avoid-
ing having to locate critical values for different levels of significance. For the
one-tail test, the p-value is equal to the area farther into the tail relative to the
test statistic. For the two-tail test, the p-value is double that area. In either case,
the rule remains the same:

The p-value rule: if the p-value is less than «, then reject the null hypothesis.

9.3.1 One-Tail Tests Using the p-Value

The starting point is considering the test statistic of z,,, = —1. Given our sam-
ple, the p-value for the one-tail test is the area to the left of —1. This is found
using the z-table and we get p-value = 0.1587. Since this area is greater than
the significance level of 0.05, we fail to reject the null hypothesis. In fact, the
level of significance would have to be higher than 0.1587 for us to reject the
null. Since we normally only consider values for a equal to 0.10, 0.05, and 0.01,
this indicates we are not really close to rejecting for any reasonable level of
significance.

9.3.2 Two-Tail Tests Using the p-Value

If you fail to reject a null hypothesis using a one-tail test at a given level of signif-
icance, then you will certainly fail to reject the null hypothesis for a two-tail test.
This is because the rejection region in each tail is going to be half the size of the
rejection region in the one-tail test. A smaller rejection region means a lower
likelihood of rejecting. The fact that « is divided by two is the reason why we
multiple the one-tail p-value by two when calculating the two-tail p-value. This



means that the two-tail test p-value is always twice that of the p-value for the
one-tail test. Therefore, p-value = 2 X 0.1587 = 0.3174. As is always the case,
we compare the p-value directly with a. Using the rule, we would fail to reject
the null for any level of significance less than or equal to 0.3174 and reject only
if the level of significance was greater than 0.3174. The takeaway message is that
we are not close to rejecting the null hypothesis with our sample of data.

9.4 Chi-Square Tests

In the previous sections, we covered how to use a single sample of data to test
whether the unknown population proportion takes on a specific value. Here, we
turn to a different set of hypothesis tests for categorical data. Our goal is not to
compare a sample proportion to a given value, but rather to compare the fre-
quencies between categories. As a motivating example, consider the following
question: Is a voter’s political party affiliation independent of their gender? In
other words, we are interested in discovering whether there is a gender divide
by party line. To answer this, we need to jointly compare the distribution of
men and women in a single sample by their breakdown of party affiliation by
Republican, Democrat, Independent, and others. To answer this question, we
will use what is called a chi-square test of independence. In general, these kinds
of tests will tell us whether two (or more) categorical variables are “indepen-
dent” of each other. The cool (and useful) thing about these tests is that we do
not have to assume anything about the shape of the populations from which
samples are drawn. Chi-square tests are part of a club called distribution-free
tests.

9.4.1 The Datain a Contingency Table

Chi-square tests of independence for two variables lend themselves nicely to
contingency tables. Table 9.2 contains data from a Gallup study on gender and
political party affiliation from a sample of 149,192 survey respondents. The total
sample was divided evenly between men and women yielding 74,596 observa-
tions by gender.

The null hypothesis for all chi-square tests of independence is that the
variables are independent and the alternative hypothesis is that the variables
depend on each other. For our specific example in Table 9.2, the frequencies in
each cell are clearly different by gender, but the question is are they different
enough to reject the null hypothesis?

To answer this, we have to find out whether we can attribute the differences
we observe to random chance or whether the differences are striking enough
to conclude that the variables are dependent on each other. The first step is
to ask what frequencies would we expect to see if the variable was indeed



Table 9.2 Observed gender and political party affiliation from a sample of n =149,192.

Democrat Republican Independent Other Totals
Men 23871 20887 25363 4476 74596
‘Women 30584 18649 19395 5968 74596
Totals 54455 39536 44758 10443 149192

independent? Let us form an expected frequency table. First, consider that the
gender of respondents in our sample is a 50—50 split. So, if gender and political
party are independent, we would expect 50% of each political party affiliation
to be men and the other 50% to be women. Now, just go column by column
and look at the totals for political party and divide the totals equally by gender.
Note if the gender divide was not even, this is no problem. Just multiply the
column totals by the observed percentage. For the 54,455 total democrats in
our study, we would expect 27,227.5 (or 27,228 if we round) to be males and
an equal amount to be females. Likewise, for the 39,536 total republicans, we
would expect 19,768 females and the same amount of males. Continuing in
the same way, we arrive at the contingency table of expected frequencies in
Table 9.3.

Note that the column and row totals in Tables 9.2 and 9.3 must match up.
The next step is to compute a statistic that captures the total variation we have
between the observed frequencies and expected frequencies. If the null were
true, the differences between the observed and expected frequencies would be
small. In the extreme, zero differences would be the strongest result in favor of
the null. If we calculated the difference between each corresponding cell in the
two tables, we would have both positive and negative differences. Since we are
interested in differences in either direction, we will square those differences.
As an example, consider female democrats. We observe 30,584 but we would
expect 27,228 if gender and political party were independent. The difference
is 3356 and if we square that difference we get 11,262,736. The last step for
each cell is to get a relative measure of the difference in cells, and to do this,
we take the squared difference and divide it by the expected frequency, which
yields 11,262,736/27,228 = 413.45. Then, do that for each cell so you have eight

Table 9.3 Expected gender and political party affiliation from a sample of n =149,192.

Democrat Republican Independent Other Totals
Men 27228 19768 22379 5222 74596
Women 27228 19768 22379 5222 74596

Totals 54455 39536 44758 10443 149192




values in total. Then, add the values and you have the chi-square test statistic.
For our example, the chi-square test statistic y? = 1963. At this moment, you
want to pause and admire your work. Remember, if there were no differences
between observed and expected frequencies, then the test statistic would be
zero. Our statistic of 1963 is pretty far from zero, indicating that we will reject
the null hypothesis, but we should make sure.

In order to make a conclusion we need to compare our test statistic of 1963
with a critical value. The critical value, as always, is the threshold we need to
cross in order to reject the null hypothesis. It is the goal post. Chi-squared
statistics are measures of variance with a lower bound of zero (because we
square the differences there are no negative terms). The distribution of pos-
sibilities is right-skewed with most of the values hovering close to zero and
fewer large values out into the right tail (see Figure 9.4). The exact critical value
depends on the degrees of freedom and the significance level. The calculation
for degrees of freedom is the number of columns—1 X the number of rows—1.
In our example, we have four columns and two rows, which resultsin3 x1 =3
degrees of freedom.

A table of chi-square critical values is provided in the appendix for this
chapter. For a significance level of 0.05 and three degrees of freedom, the
critical value is 7.815. Since 1963 is light years away from 7.815, we find strong
evidence to reject the null hypothesis. The conclusion is that the gender and
political party affiliation are dependent variables.

9.4.2 Chi-Square Test of Goodness of Fit

We can use the same technique of comparing the observed and expected
frequencies to test whether a sample of data fits a particular kind of population.
Recall the M&M'’s example at the beginning of this chapter. We previously
focused on Mars’ claim that the proportion of blue M&M'’s is 0.24 and learned

Reject the null

Fail to reject
the null

0.05

0 7815 »2

Figure 9.4 Chi-square distribution and critical value at the 0.05 significance level with three
degrees of freedom.



how to test whether our sample supports this claim. Using a chi-square test of
goodness of fit, we can jointly test whether the entire distribution of colors in
our sample match the distribution Mars has published. In particular, they state
that 0.13 are brown, 0.13 are red, 0.24 are blue, 0.20 are orange, 0.16 are yellow,
and 0.14 are green. The null hypothesis is that the distribution is equal to these
proportions. The alternative is that at least one of the proportions differs from
Mars’ claim.

We calculate the test statistic in the same way. We have to compare the
observed frequencies with the expected ones. Consider our previous sample
of 50 M&M’s in which nine were blue. Table 9.4 contains the full breakdown
of colors for our sample of 50 and the expected number given the posted
proportions by Mars. Note that the observed numbers are different from
the expected numbers. But are they different enough for us to reject the null
hypothesis?

The chi-square test statistic is calculated in the same way as before. We find
the difference between the observed and expected frequencies for each color.
Take those differences and square them to get rid of the negative deviation issue.
Then, divide each of the squared terms by the expected number. Let us work
through the value for blue M&M’s. The difference is 9 — 12 = —3. When we
square the difference we have 9, and then dividing it by 12 yields 0.75. We make
the same calculations for each color. Take a shot at the calculation for orange
and you should get 1.6. Now, add up your six calculated values and you have
your chi-square test statistic. With our sample, it is y? = 6.07.

The final step is comparing the test statistic with a critical value to see if the
differences are large enough to reject the null. The critical value can be found
in Table 9.5 with five degrees of freedom (six categories minus one). Given a
significance level of 0.05, the critical value is 11.070. Since our test statistic is
less than the critical value, we fail to reject the null. Our data support Mars’
claim regarding the distribution of colors in original M&M’s. While we still do

Table 9.4 Number of M&M’s by color in a
sample of 50 and the expected number.

Color Observed Expected
Brown 8 6.5

Red 4 6.5

Blue 9 12
Orange 14 10
Yellow 5

Green 10

Totals 50 50




Table 9.5 Chi-square (y?) critical values.

Confidence: 80% 90% 95% 99% 99.9%
Signficance:  0.20 0.10 0.05 0.01 0.001

af

1 1.642 2.706 3.841 6.635 10.828
2 3.219 4.605 5.991 9.210 13.816
3 4.642 6.251 7.815 11.345 16.266
4 5.989 7.779 9.488 13.277 18.467
5 7.289 9.236 11.070 15.086 20.515
6 8.558 10.645 12.592 16.812 22.458
7 9.803 12.017 14.067 18.475 24.322
8 11.030 13.362 15.507 20.090 26.124
9 12.242 14.684 16.919 21.666 27.877
10 13.442 15.987 18.307 23.209 29.588
11 14.631 17.275 19.675 24.725 31.264
12 15.812 18.549 21.026 26.217 32.909
13 16.985 19.812 22.362 27.688 34.528
14 18.151 21.064 23.685 29.141 36.123
15 19.311 22.307 24.996 30.578 37.697
16 20.465 23.542 26.296 32.000 39.252
17 21.615 24.769 27.587 33.409 40.790
18 22.760 25.989 28.869 34.805 42.312
19 23.900 27.204 30.144 36.191 43.820
20 25.038 28.412 31.410 37.566 45.315
21 26.171 29.615 32.671 38.932 46.797
22 27.301 30.813 33.924 40.289 48.268
23 28.429 32.007 35.172 41.638 49.728
24 29.553 33.196 36.415 42.980 51.179
25 30.675 34.382 37.652 44.314 52.620
26 31.795 35.563 38.885 45.642 54.052
27 32.912 36.741 40.113 46.963 55.476
28 34.027 37.916 41.337 48.278 56.892
29 35.139 39.087 42.557 49.588 58.301
30 36.250 40.256 43.773 50.892 59.703
35 41.778 46.059 49.802 57.342 66.619
40 47.269 51.805 55.758 63.691 73.402

(Continued)



Table 9.5 (Continued)

Confidence:  80% 90% 95% 99% 99.9%
Signficance:  0.20 0.10 0.05 0.01 0.001

df

45 52.729 57.505 61.656 69.957 80.077
50 58.164 63.167 67.505 76.154 86.661
60 68.972 74.397 79.082 88.379 99.607
70 79.715 85.527 90.531  100.425 112.317
80 90.405 96.578  101.879  112.329  124.839
90 101.054 107.565 113.145 124.116  137.208
100 111.667 118.498  124.342  135.807  149.449

not know whether M&M’s really “melt in your mouth and not in your hand’,
we can rest easy that we are not being misled about the color breakdown.

9.5 Summary

This chapter covered how to conduct hypothesis tests of categorical data using
a single sample. We collected a sample of binary data (zeros or ones), calcu-
lated the sample proportion, and compared it to the hypothesized value. As is
always the case in inferential statistics, we do not make conclusions by simply
observing if our sample statistic is higher than the hypothesized value. Even if
the hypothesized value were true, samples could easily be drawn from the pop-
ulation that yields different sample values. We have to determine if our sample
value is far enough away from the hypothesized value to reject it. That is why
we always compute what is called the test statistic. The test statistic tells us how
many standard errors the sample value is away from the hypothesized value. We
either compare the test statistic to the critical values — the thresholds into the
rejection regions — or we compare the p-value to the level of significance.

We also considered hypothesis tests of categorical data when we are inter-
ested in comparing differences in categories from a single sample. These are
called chi-square tests, and we explored the test of independence and the good-
ness of fit test. The test of independence is useful for many applications when
you want to test whether two or more categorical variables are independent
of each other. These tests can help answer questions like: is the major field of
study independent of the graduation rate? The chi-square test of goodness of fit
allows us to test whether the distribution of responses in a single sample match
a hypothesized distribution of responses. For example, we could use this test to
know whether political support is spread evenly across five candidates.



Technical Appendix

The hypothesized value for the population proportion is denoted as 7. A sam-
ple of size n is drawn and the sample proportion, denoted as p, is calculated.
The distribution of p can be assumed to be normal provided that the following
two conditions hold:

nXxm, > 10
nx (1 - m,) > 10. (A.1)

The standard error for the sampling distribution of p is estimated as:

o, = \/M. (A.2)

The test statistic for a sample proportion is calculated using the following
formula:

p—r

stat — .
wy(1—7,)
n

The test statistic tells us how many standard errors the sample proportion is
from the hypothesized proportion.

The chi-square test statistic is computed by comparing differences between
observed and expected frequencies in each cell in a contingency table. If we
denote Rj the total for row j where j = (1,2, 3, ..., r), and C, the total for column
kwherek = (1,2,3, ...,¢). Also, let ﬁk and €jx denote the observed and expected
frequencies, respectively, for each column and row. The test statistic is

r c (f —e. )2
fn= DT = (A4)

j=1 k=1

z (A.3)



10

Hypothesis Tests Comparing Two Parameters

Remember Derek “Burger” Hamburger from Chapter 7 on confidence inter-
vals? Burger was interested in how much money he could expect to earn after
graduating from college. This makes sense because Burger is going to have some
hefty student loans to pay off. Suppose Burger has narrowed his choices to eco-
nomics or accounting. He is debating whether he wants to be labeled a “dismal
scientist” or a “bean counter.”! Part of the decision process is a comparison of
the average starting salaries between the two fields. Derek Hamburger can rely
on the hypothesis tests of two means described in this section in order to deter-
mine if there is a significant difference in average salaries between economics
and accounting.

Burger might also be interested in comparing the variability in salary amounts
between the two majors. It could be the case that the averages are pretty similar,
but there is more variation in one of the majors. If he is a gambling type, maybe
he chooses the field with bigger risk but bigger potential reward. Or, if he is a
more conservative type, he might want to choose a major with less variability in
salary amounts. For this comparison, he can rely on the hypothesis tests of two
variances described in this chapter to compare the variation in starting salaries
between economics and accounting majors.

Finally, it is also possible that Burger is interested in the likelihood he actually
lands a job with either a major in economics or accounting. Salary aside, Burger
wants a job. In this case, Burger could compare the proportion of recent gradu-
ates who secured in jobs between economics and accounting to see if there are
significant differences. To answer this question, he will lean on the hypothesis
tests of two proportions. We will cover these in this chapter as well.

1 Thomas Carlyle is credited with describing economics as the “dismal science” in the nineteenth
century. The origin of the term “bean counter” is unknown.



10.1 The Approach in this Chapter

At this point in any statistics class, students and their professors begin to rely
more on software programs. With multiple datasets that are often big, it is silly
to use calculators or hand calculations to analyze data. Using software to com-
pute statistics is faster, less prone to errors, and convenient. The downside is
that students often begin to lose sight on what they are actually doing when
they can produce results with a click of a button. The goal of this chapter is to
aid in the understanding of hypothesis tests of two parameters (means, pro-
portions, or variances). We will learn how to identify which test to run, how
the software (Excel) produces the output, and how to interpret it.

10.2 Hypothesis Tests of Two Means

You may recall from the example in Chapter 7 that the record keeping of start-
ing salaries at Burger’s university is incomplete and so he will have to compare
average starting salaries by relying on samples of data. The career services office
has compiled two independent samples of data on recent starting salaries for
economics and accounting graduates. The two samples are considered to be
independent because each sample consists of different students. The sample
of economics graduates consists of 35 observations and the accounting sam-
ple has 40. The samples do not need to be balanced for these tests, but there
are some advantages in having balanced samples. We will discuss those later in
the chapter. The two samples are shown in Table 10.1 (rounded to the nearest
dollar).

The first thing Burger does is calculate the average salary for both majors.
He finds a sample mean of $46,887.17 for economics majors and $41,895.28 for
accounting majors. If Burger was naive, he may jump to the conclusion that eco-
nomics majors earn more than accounting majors simply because $46,887.17
> $41,895.28. But, Burger understands that these values are from samples, and
different samples will likely lead to different results. What he must determine
is if the difference in the sample means is far enough away from zero to con-
clude that the average starting salaries for the entire population of economics
and accounting majors are different.

10.2.1 The Null and Alternative Hypothesis

Burger starts with a two-tail test to compare the two averages. As with all
hypothesis tests, he is going to use sample data to make a conclusion about the
relationship between the two unknown population means (what the average
earnings are for every graduate in the two majors). Therefore, his null and



Table 10.1 Starting salaries from samples of recent
graduates in economics and accounting.

Economics (n = 35) Accounting (n = 40)
51,100 34,740 35,025 34,767 34,388
48,230 50,340 48,422 47,376 39,113
49,640 55,681 56,832 49,306 33,978
42,890 33,283 30,195 40,885 34,679
62,346 45,422 38,606 30,657

47,013 57,147 43,430 43,908

58,795 41,665 44,437 49,232

38,655 45,282 52,619 35,996

50,489 36,215 30,527 33,899

56,504 35,523 44,334 29,977

50,455 37,087 37,095 42,975

36,861 59,876 39,774 54,586

36,500 56,098 47,304 34,665

57,324 58,951 50,371 49,547

35,774 41,891 51,296 38,475

53,480 40,376 32,709 50,359

43,540 51,240 32,897 43,731

40,638 52,033 55,406

alternative hypothesis will contain the Greek letters u to denote parameter
values. The two-tail test will be set up as the following:

HO : Hecon = Hacent
HA : Hecon ;é Hacent

The alternative hypothesis, which is Burger’s research interest, is that the
two majors have different average starting salaries. The null is that they are
equivalent. Notice that unlike the single sample hypothesis tests, we studied
in previous chapters there are no numbers we are testing these means against.
This formulation of the hypothesis test is concerned about the relative values,
not their absolute levels. However, we could rewrite the null and alternative



hypotheses in terms of the difference between both means to form:

HO *Hecon — Macent = 0
HA *Hecon — Macent #0

Using this formulation, it is clear that we are testing whether the difference in
population means is different from zero. All Burger has to do is determine if the
difference in the two sample means ($46,887.17 — $ 41,895.28 = $4991.90) is far
enough away from zero to reject the null hypothesis. Once again, the level of
significance will define the size of the rejection region and the test statistic will
tell us how many standard errors $4991.90 is away from zero. To help visualize
what is going on, we can sketch out the distribution centered at zero with the
two rejection regions shaded in Figure 10.1. Note that this is ¢-distribution.
Provided that the sampling distribution of the mean for both majors follows a
t-distribution, then the difference in sample means will as well.? Our sample
sizes are above 30, so we are pretty confident that the distribution looks as that
in Figure 10.1.

At this point, we want to calculate our test statistic. This will simply be the
difference in the two sample means ($4991.90) divided by the standard error.
The calculation of the standard error, however, depends on an assumption we
must make. We can either assume that the variation in salaries between eco-
nomics and accounting majors is equal (i.e., we assume equal variances of the
two populations) or we can assume that the variation in salaries is different (i.e.,
we assume unequal variances of the two populations). The assumption we make
will impact the calculation of the standard error and therefore the value of the
test statistic. In most cases, you will not know if the two populations of interest
have equal variances. It is for that reason the safest thing to do is assume that the

Reject the null Reject the null

Fail to reject
the null

0 t
0 Yecon _Yaccnt
Figure 10.1 A general two-tail hypothesis test comparing two population means.
2 We do not consider hypothesis tests in which the population standard deviations are known. In

those cases, the difference in sample means follows a z-distribution. However, there are very few
real-world examples in which the standard deviations of the two populations are known.



two populations of interest have unequal variances. To illustrate the differences
in the calculations for our sample data, we will consider the test results under
both assumptions.

10.2.2 t-Test Assuming Equal Variances

When we assume that the two populations have equal variances, it means we
can pool the sample variances together. The pooled variance can be thought
of as a weighted average of the two sample variances (see Formula A.1). The
degrees of freedom for the hypothesis test are the sum of each sample size
minus one. For our test, we will have (35 — 1) + (40 — 1) = 73 degrees of free-
dom. Let us take a look at the output generated by Excel for this hypothesis
test conducted at a significance level of 0.05 (i.e., « = 0.05). The specific soft-
ware program is not important. All programs will yield the same statistics if
using the same sample data, only the formats and labels change. The results are
shown in Figure 10.2.

The first row in Figure 10.2 contains the sample means that we have already
considered. The second row has the sample variances for both the economics
and accounting samples. Those values are used in the calculation of the test
statistic. In the next row, we have the number of observations. The pooled
variance is the combined variance of both samples. The degrees of freedom
(labeled df) are provided as well. The test statistic follows. For our samples, we
have ¢, = 2.6019. The test statistic tells us that the difference in our sample
means is roughly 2.60 standard errors above the hypothesized value of zero.
The final four rows contain the p-values and the positive critical ¢ values for the

Economics Accounting
Sample means 46887.17 41895.28
Sample variances 74353782.56 63786132.67
Observations 35 40
Pool variance 68708051.79
Hypothesized mean difference 0
df 73
Test statistic () 2.6019
p-Value (one-tail) 0.0056
t-Critical one-tail 1.6660
p-Value (two-tail) 0.0112
t-Critical two-tail 1.9930

Figure 10.2 Hypothesis test of two means assuming equal variances of the populations.
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Figure 10.3 Two-tail hypothesis test comparing two population means at the 0.05
significance level and df = 73.

one- and two-tail test. To make a conclusion, we can either compare the £,
with the critical ¢ values or compare the corresponding p-value to the level of
significance. Figure 10.3 illustrates the critical values and rejection regions for
this test at the 0.05 significance level.

The test statistic of 2.60 is beyond the positive critical ¢ value of 1.993.
Therefore, the test statistic is inside the rejection region and we reject the null
hypothesis. That is, we find evidence that the average starting salaries between
economics and accounting majors are different. Economics majors appear to
earn more money on average at the 0.05 significance level. The two-tail p-value
is 0.0112 which indicates that we would reject the null hypothesis at any level
of significance greater than 0.0112 and we would fail to reject the null at levels
of significance lower than 0.0112. If @ = 0.01 for example, we would fail to
reject the null that the average starting salaries are equal. This is fairly strong
evidence that students in economics earn more on average than accounting
students at their first place of employment.

10.2.3 t-Test Assuming Unequal Variances

With the previous hypothesis test, we assumed that the variances in starting
salaries of the two populations (economics and accounting majors) were equal.
This assumption allowed us to pool the two variances when calculating the test
statistic and combine the samples to find degrees of freedom. In most situations
(including our example), researchers cannot be confident about the relative val-
ues of two population variances. This is why in most scenarios the appropriate
test to run is a hypothesis test assuming unequal variances of the two pop-
ulations. In practical terms, conducting this test over the equal variance test
simply means choosing the correct option from a drop down menu in a soft-
ware program.

The choice will affect the calculation of the standard error and therefore the
test statistic. If the two samples are of identical size, the standard errors and test
statistics will be equivalent between the equal variance and unequal variance



tests. In all other cases, when sample sizes are not balanced (as in our example),
the standard error calculations will differ. This is because the variances are
treated independently rather than pooling them together (see Formula A.3).
The other impact is on the degrees of freedom.

The formula to estimate the degrees of freedom - called the
Welch—Satterthwaite equation — is pretty complicated (see Formula A.3). The
important point is that the degrees of freedom for the unequal variance test
are lower than for the equal variance test. How does that affect the shape
of the sampling distribution of the differences in the two means? Well, with
lower degrees of freedom, the ¢-distribution is flatter with wider tails in
comparison with larger degrees of freedom. In other words, the ¢-distribution
is further away from the normal z-distribution with the assumption of unequal
variances than it is with the assumption of equal variances. This will affect the
calculations for p-values and could impact the resulting conclusions. If sample
sizes are large enough, however, the differences are not usually dramatic. Let us
look at the output in Figure 10.4 for the unequal variance test for our example
with starting salaries.

Note the differences between the results from the equal and unequal vari-
ance hypothesis tests. We lose three degrees of freedom by assuming unequal
variances. With 75 observations and fairly balanced samples (35 vs. 40), this
difference is trivial, but it could be very meaningful with smaller or very unbal-
anced samples. Second, the test statistic calculation is different. ¢, = 2.60 for
the equal variance test and £,,, = 2.59 for the unequal variance test. The two dif-
ferences in test statistic values and degrees of freedom, though minor, interact
to produce different p-values. The p-values are just slightly larger in the unequal

Economics Accounting
Sample means 46887.17 41895.28
Sample variances 74353782.56 63786132.67
Observations 35 40
Pool variance 68708051.79
Hypothesized mean difference 0
df 70
Test statistic () 2.5885
p-Value (one-tail) 0.0059
t-Critical one-tail 1.6669
p-Value (two-tail) 0.0117
t-Critical two-tail 1.9944

Figure 10.4 Hypothesis test of two means assuming unequal variances of the populations.



variance case. This translates into a slightly increased likelihood of failing to
reject the null hypothesis with an unequal variance test. If the null hypothe-
sis was false, we would be more likely to fail to reject it (higher probability of
making a Type II error). Statisticians often use the term power to describe the
chance of rejecting a false null hypothesis, and therefore unequal ¢-tests have
less power. This is really the trade-off between the tests. As we can see, there
are only marginal differences in the results for our example.

Given a significance level of 0.05, we would reject the null hypothesis that
the two average starting salaries are equal between economics and account-
ing majors. To reach that conclusion, we either compare the two-tail p-value =
0.0117 to @ = 0.05 or we compare t ., = 2.59 with the two-tail critical ¢ value
of 1.994. In either case, we reject the null hypothesis.

Burger finds fairly strong evidence that economics majors make more money
on average than accounting majors at their first place of employment.

10.2.4 One-Tail Hypothesis Tests of Two Means

While two-tail tests are by far the more frequent, it is easy to compute a one-tail
hypothesis test using the same output. Of course, if we reject the null hypothesis
at the 0.05 level using a two-tail test, then we will certainly reject a null hypoth-
esis using a one-tail test. This is because the rejection region in the relevant tail
will be twice the size in relation to the two-tail test. To illustrate, consider the
p-value for the one-tail test in the unequal variance test in Figure 10.4 which
is p-value = 0.006. Note, as always, this is half the size of the p-value for the
two-tail test. Consider the following one-tail hypothesis test of whether the
average starting salary of economics majors is greater than that of accounting
majors:

HO : Hecon < Hacent
HA : Hecon > Hacent

We would reject the null hypothesis for any level of significance higher than
the p-value = 0.006 and fail to reject the null for any significance level lower than
0.006. Thus, Burger can conclude that the average starting salary of economics
majors is higher than the average starting salary of accounting majors at the
0.01, 0.05, and 0.10 significance levels using a one-tail test.

10.2.5 A Note on Hypothesis Tests Using Paired Observations

For a brief moment, let us turn away from the starting salary example. Instead,
suppose we were interested in determining the effect caffeine has on average
sleep time. There are different ways such a test could be conducted. We could
use two different independent samples of people, and in one sample their sleep
duration is measured without the use of caffeine and in the other sample their



sleep duration is measured under the influence of caffeine. If the samples are
randomly drawn from the same population, then we could use either of the tests
(equal or unequal variance ¢-tests depending on our assumptions) previously
described in this chapter.

However, if the study used the same sample of people to measure their sleep
both before caffeine and after caffeine, then those observations are paired (often
called dependent samples). In this case, it would not be appropriate to treat the
before and after measures as if they were drawn from two independent popu-
lations. Rather we would like to run a ¢-test using paired observations. While
most textbooks include this test in the chapter on two sample tests, it is really
a single sample hypothesis test and therefore the mechanics of the test have
already been covered in Chapter 8. The only difference is that the single sample
of data is now the difference in the before and after measures. The degrees of
freedom are the number of pairs minus one. To illustrate, consider the partial
dataset in Table 10.2.

The first column in Table 10.2 is the subject’s name. The second column is
the hours they slept for a day without consuming caffeine. The third column
shows how many hours each subject slept when consuming caffeine and the
final column, labeled d, is the difference between the two.

A two-tail hypothesis test comparing the average sleep time with and without
caffeine could be written as:

Hy:u,=0
Hy:pu,; #0

This formulation of a hypothesis test is the same as we considered in
Chapter 8. To conclude the test, we only have to consider the data from the
last column in Table 10.2 as a single sample. Therefore, the ¢-test for paired
observations is no different from a single sample ¢-test.

Table 10.2 Hours of sleep for the same participants with and
without consuming caffeine in the day.

Participant  No caffeine  With caffeine  d = difference

Carolyn 6.14 5.43 0.71
Steve 6.35 6.43 —0.08
Olive 5.89 4.87 1.02
Tim 7.34 7.01 0.33
Michele 7.21 6.51 0.7

Marta 6.34 5.87 0.47




10.3 Hypothesis Tests of Two Variances

In the earlier sections of this chapter, we were interested in comparing the
average salaries between two majors. Part of that process was making an
assumption regarding the relationship between the variance in starting salaries
between the majors. In this section, we will directly test those variances. The
goal is to find out if the variation in starting salaries is different between the
two majors Derek Hamburger is considering. Burger, for example, may want
to choose a career with less volatility in starting salary amounts.

Many statisticians (and statistics textbooks) are inclined to first conduct a
hypothesis test of the variances and use that result to inform which test to run
to compare the means. This two-step hypothesis test approach is usually not
recommended because every additional test that is conducted will reduce the
degrees of freedom (and thus the power of the test). For this reason, we consider
the test of variances independent of the test of means.

Let us consider a two-tail test of the population variances. The null and alter-
native hypotheses would be framed as the following:

H,: o2, =02

econ acent

.2 2
HA +Oecon ;é Oacent

If the null hypothesis is rejected, then Derek finds evidence that the two
majors have different variances in starting salaries. Otherwise, failing to reject
the null indicates that the variances are the same. It will be useful to rewrite
the null and alternative in terms of a ratio of the two unknown population vari-
ances. This is because it turns out that the test statistic for this test is the ratio
between the two sample variances. In this way, this test is reasonably straight-
forward. Dividing both sides by the term on the right-hand side of the null and
alternative yields:

0.2

Ho: econ _ 1
2
Gaccnt
2
O
. “econ
H,: S #1

acent

The interpretation of the null is that if the two populations have the same
variance, then the ratio should be equal to 1. The focal point of one is important.
If the ratio of our two sample variances (s /s?) is far enough away from one in
either direction, then we will reject the null. Again, far enough away is based
on a choice of the significance level.

It is here that we introduce another sampling distribution. For this test, the
distribution of the ratio of two sample variances (s? /sj2) will not be symmetric
or mound-shaped. Rather, it is right-skewed and follows what is called an



F-distribution, named after Ronald Fisher (1890-1962). We also call this
hypothesis test an F-test. As always, for a two-tail test, we divide the level
of significance equally into both tails of the distribution. The critical values
will depend on the degrees of freedom which is # — 1 for each sample size.
There are 34 degrees of freedom for the sample of economics majors and 39
for accounting majors. Most statistics textbooks provide tables to look up
critical values for the F-test. There are different tables for different levels of
significance and each table has a limited range of degrees of freedom to look
up. For this reason, it is better to rely on a software program to generate the
critical values (and the p-values) for an F-distribution (the Excel formulas can
be found in (A.7)).

Let us start by sketching out the sampling distribution, rejection regions, and
critical values for our example. In Figure 10.5, the notation F; and F, indicates
the left- and right-tail critical values. We will get to those in a minute. The test
statistic is the ratio of the two sample variances. Those two values can be found
very easily, and they have already been calculated for us in Figures 10.2 and 10.4.
The sample variance for economics majors is 74,353,782.56 and is 63,786,132.67
for accounting majors. Remember those values are in dollars squared. Clearly,
the sample variance for economics majors is higher. The question we ask: is the
difference large enough to conclude that the population variances are different?

To construct the test statistic, we simply divide one sample variance by the
other. But which one goes in the numerator? To simplify the analysis, we will
conduct what is called a Folded F-test and we will always put the larger sample
variance in the numerator and divide it by the smaller sample variance. What
this does is restrict our attention to the right side of the distribution because the
test statistic cannot be less than one. This is called the Folded F-test because
the left-hand side of the distribution is now out of play and it could be rep-
resented by folding back the part of the F-distribution less than one, so that
it is no longer in sight (see Figure 10.6). The folded F,,, = s2.,,/5%. = 1.17.

acent
The interpretation is that the sample variance in salaries for economics majors
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Fail to reject the 0.025
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Figure 10.5 Two-tail F-test of two population variances at «=0.05.
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Figure 10.6 Folded F-test of two population variances at a=0.05.

is 1.17 times the sample variance for accounting majors. To make a decision
regarding whether 1.17 is far enough away from the hypothesized value of 1,
we can either compare the F,, to the right-tail critical value Fj or compare the
p-value to a.

Using an Excel function (see Formula (A.7)), the right-tail critical value is
F, =1.92. Since F,,, < Fp, the conclusion is to fail to reject the null hypothesis.
Therefore, we find evidence that the variance in starting salaries is equal
between economics and accounting majors at the 0.05 significance level. We
can also rely on computer software to generate the p-value. The p-value is the
lowest level of significance for which we would reject the null hypothesis. Using
Excel (Formula (A.7)), the p-value = 0.3202. Therefore, the null hypothesis
would only be rejected for significance levels greater than 0.3202. Since we are
typically considering levels ranging from 0.01 to 0.10, the conclusion is to fail
to reject the null hypothesis. The two majors have equal variation in starting
salaries.

10.4 Hypothesis Tests of Two Proportions

Thus far, we have discussed methods of comparing the means and the variances
of starting salaries between economics and accounting majors. However, our
protagonist Derek Hamburger may also be interested in comparing the pro-
portion of graduates who actually secure in jobs. For instance, it may be that
economics graduates who find employment earn more than their accounting
peers, but accountants have an easier time finding jobs. If Burger is thinking
about his expected starting salary, he will have to consider the likelihood of
finding employment as well as average earnings.

To do this, he gets his hands on two different samples from the career
services department. For both samples, 100 former students were surveyed to



determine whether they found employment three months after graduating.
For the sample of economics students, 70 out of 100 students found jobs,
which is a sample proportion of p,,, = 0.70. For the sample of accountants, 90
out of 100 found jobs yielding p, .., = 0.90. Burger is learning that because he
is dealing with sample data he cannot simply compare 0.70 with 0.90 to make
a broad conclusion. He has to determine if this absolute difference of 0.20 is
statistically different from zero.

Asin the previous chapters, distributions of binary data can be assumed to be
normal as long as long as the sample sizes are large enough (see Formula (A.1)
in Chapter 7). Since both samples are large enough to satisfy this constraint,
we know that the difference in the two samples is also normal. Therefore,
the appropriate sampling distribution for the difference in proportions
(Pecon — Pacent) 18 the z-distribution.

Given a two-tail test, Derek Hamburger can form the null and alternative
hypothesis as:

Hy:x

econ — 7

acent

HA * Tecon # Tacent

The null states that the two population proportions are equal (or, alterna-
tively, that the difference in the two population proportions is equal to zero).
The alternative states that the proportion of students who find jobs is differ-
ent between majors. Suppose the test is conducted at a significance level of
0.05. As we are now familiar with the z-distribution, we can sketch out the
rejection region and critical values for our test (see Figure 10.7). Recall that
the z-distribution is not dependent on the number of observations. The critical
values in this case are the familiar —1.96 and 1.96. The hypothesized difference
of zero is at the center of the axis for the difference in the two proportions.

The test statistic — z,, — is calculated by taking the difference in the two
sample proportions p,.., — Pacent = —0-20 and dividing by a standard error. The

formula for the test statistic can be found in A.8. z,, tells us how many standard

Reject the null Reject the null
Fail to reject

the null

-1.96 0 1.96 z

0 Pecon ~Pacent

Figure 10.7 Hypothesis tests of two proportions at «=0.05.



errors the difference of —0.20 is from 0. Using A.8, we get z,,,, = —3.54 which is
well beyond the left-tail critical value of —1.96. So, the difference between the
two sample proportions is 3.54 standard errors below zero. Our knowledge of
the Empirical Rule comes in handy here. We know that with a normally dis-
tributed dataset almost 100% of the data will fall within three standard errors
of the center. Therefore, 3.54 is convincing evidence that the null hypothesis is
false and should be rejected. If the null were true, sample sizes like ours would
lead to test statistics more extreme than 3.54 about 0.04% of the time. Recall,
the p-value is found by finding the area less than —3.54 on the z-table and dou-
bling that value. This results in a p-value = 0.0004. We reject the null hypothesis
that the two proportions are equal for levels of significance greater than 0.0004.

Derek Hamburger has strong evidence that the proportion of graduates who
find jobs within three months of graduation is higher for accountants than for
economists.

10.5 Summary

In this chapter, we discussed how to conduct hypothesis tests for comparing
two parameter values. There are many situations in which these tests can prove
useful. Some examples include comparing the effectiveness of two marking
strategies, comparing the speed of two wireless internet providers and compar-
ing customer satisfaction rates between two insurance providers. We explored
how to conduct hypothesis tests comparing two means, proportions, and vari-
ances. In all cases, a sample of data was drawn from each population of interest
and the two samples were compared to make inferences about the relationship
between two unknown population parameters. When comparing two means
using independent samples, we either assumed that the two populations had
equal variances or we made the more conservative assumption that the two
populations had unequal variances. The main differences in the two approaches
appear in the calculation of the test statistic and the degrees of freedom.



Technical Appendix

When conducting a ¢-test of two means assuming equal variances of the two
populations, the formula for the test statistic is

¥ — X
by = ——2—, (A.1)

1 1 . . .
where s, / —+—is the standard error, and the pooled variance is:
1 2

n, — 1)s2 + (n, — 1)s2
s;=( 1 )+ (my 2 (A.2)
n+n,—2

The degrees of freedom for the ¢-test assuming equal variances is n; + n, — 2.
When conducting a ¢-test of two means assuming unequal variances of the
two populations, the formula for the test statistic is

X —X
1%
tstat_
/o2 2
sy/ny +s5/n,

where 4/s?/n, + s3/n, is the standard error, and the Welch—Satterthwaite for-

mula for the degrees of freedom is

) (A.3)

B [s3/ny + s3/n,)?

(S?/nl)z (53/”2)2 ’

n—1 n,—1

(A4)

With two dependent samples (e.g., before and after studies), we rely on a t-test
on the paired observations. The difference between the before and after mea-
sure is denoted as d and the average difference is denoted as d. The test statistic
is:

d-0

tstat ="
sd/\/z

where s, is the standard deviation of the variable d. When conducting a folded
F-test of two population variances, the test statistic is calculated as

(A.5)

2
Sbig
2 9
small

Fooe =

S

(A.6)

iig is the larger of the two sample variances. To find the right-tail critical

value for the folded F-test, and the associated p-value, we can use the following

where s



two Excel formulas:

Fpin Excel = FINV .RT(a/2,n, — 1,n, — 1)
p-value for F, in Excel = F.DIST (F,,,n; — 1,1, — 1), (A7)

where F.INV .RT is the formula for the critical value and /2 is the area in the
right-tail rejection region.
When conducting a z-test of two proportions, the test statistic is calculated
as
Zstat — hoPs (A.8)
Vb =p)A/ny +1/ny)

L _ Xty
where p = .
ny + ny




11

Simple Linear Regression

You may be surprised to learn that not all students love taking courses in statis-
tics. Hard to imagine right? The first day of the semester I ask students to raise
their hand if they are taking my statistics class as an elective, simply because
they are interested in the topic. In over 20 semesters, I have not witnessed
a single hand raised. Perhaps, there are dozens of keen students who are just
too embarrassed to raise their hands. Or, perhaps, students take statistics only
because they have to fulfill a requirement for their major. (I have decided not to
investigate this further and leave open the possibility the former explanation is
true.) Anyway, I usually follow this with a discussion of the course syllabus, the
required assignments, and how grades are determined. During the first class I
also cover the issue of class attendance.

I often teach fairly large statistics courses and as the semester rolls on
attendance rates seems to always fade. In that first class, I try to convey to my
students the importance of attending class in order to learn the material and
ultimately do well on the assignments. I tell my students that there are many
factors that can influence how well they will do in my course, but class atten-
dance is the strongest predictor. We discuss the potentially important role of
other factors like major, hours dedicated to studying, SAT scores, whether they
have jobs, whether they are involved in athletics, and many others. While some
of these factors are important predictors of performance in the class, I stress
that attendance is the most important factor. To bolster the point, I emphasize
that I am not guessing. Using previous semesters as samples, I have found that
on average the more classes a student attends the better they do in the course.
I make this claim because I rely on what is called regression analysis to tease
out the relationship between one variable (course grade) and other variables
(attendance). Regression analysis is the topic of this chapter and the next two.

In this chapter, we will cover what is called simple linear regression. It is simple
in the sense that we only consider two variables — often referred to as a bivari-
ate relationship — and the goal is to estimate the effect changing one variable
(e.g., attendance rate) has on another variable (e.g., course grades). In reality,
simple linear regression is in most cases too simple. There are often many things



that can affect the value of a single variable. The next chapter will cover multi-
ple regression, but for now, we will start with the simplest case. The advantage
is that we can learn the mechanics and interpretations of regression analysis in
a stripped-down setting and we can build on this in the next chapter. Let us get
into it.

11.1 The Population Regression Model

The starting point is having a theory about the relationship between two vari-
ables. Do not get put off by the word theory. It does not have to be anything
fancy, just a conjecture about the relationship between two variables, which
is logically based. Keeping with our example, my theory might be that if stu-
dents attend more classes, they will be exposed to more of the material and can
do better on assessment activities. In this simple theory, I assume that course
grades, in part, depend on attendance rates and not the other way around. In
this case, course grade is the dependent variable and the attendance rate is the
independent variable. Notationally, we use Y to denote a dependent variable
and X to denote independent variables. In general, we say that Y is a function
of X. The independent variable X is also often referred to as the explanatory
variable because it is hypothesized that X explains changes in Y.

The linear part of simple linear regression now comes into play. We assume
that there is a linear relationship between Y and X, but we also acknowledge
that there is a random element in explaining changes in the dependent variable.
The linear part is the structural or deterministic part and the random part is
exactly that, random. Specifically, with simple linear regression, we assume that
the relationship between Y and X takes the following form:

Y= b+ b X, +¢

The equation above is called the population regression model. The subscript
i denotes individual values for X. The f, + f,X; is the linear component and ¢;
is the random component at each value of the independent variable. The two f
terms and ¢ are population parameters (the Greek letters always indicate this).
We will never actually observe these parameter values. The best we can do is
use sample data to estimate them. This is the goal of regression.

The first term f, is a constant term that is independent of values for X. The
second term f, X; captures the influence the independent variable X, has on the
dependent variable. We call ¢; the error term. The error term, in part, captures
variables other than our X variable, which influence Y and are not included
(i.e., omitted variables). It also captures unobservable shocks in the relationship
between Y and X that are modeled as random. With simple linear regression,
we make quite a few important assumptions about the error term. The first
one is that the error term on average is equal to zero. The idea is that there



are deviations from the linear component of the population regression model,
but the positive deviations cancel out the negative deviations and on average
the term is equal to zero. This assumption allows us to rewrite the population
regression model in terms of its expected value (or average relationship). Using
the assumption that the error term is on average zero, we can form:

EY] = By + B X;

This equation can be interpreted as the average relationship between Y and
X. Since we assume E[g;] = 0, the random part drops out. This equation is what
we can estimate using samples of data. This equation is clearly linear. It follows
the recognizable y = mx + b definition of a line. At the end of the day, we are
going to end up with a line that contains an estimate for the constant term f,
which is the intercept and an estimate of f; which is the slope. In this format,
p, is the change in Y caused by a one unit increase in X. Since we will never
observe the f§ terms directly, we have to estimate them with sample statistics.

To differentiate between parameters and statistics, we denote the estimate of
the average relationship between X and Y as:

Y, = by + b, X,

Y, =by+b,X; is called the sample regression function. The notation Y,
denotes the average estimate of ¥ for a given X;. The term b, is the estimate
of the intercept and b, is the estimate of the slope. Now, we turn to how we
actually get numeric values for b, and b, using a sample of data.

11.2 A Lookatthe Data

The starting point is drawing a sample of data that can be used to estimate
the relationship between the two variables. The sample should be represen-
tative of the population of interest. For example, if the population of interest
is all college students in the United States taking a course in statistics, then
the sample should reflect that population. If our population is more narrow,
for example, students taking my statistics course in Boone, North Carolina,
then the sample should represent that population. For our purposes, we will
use course grades and attendance from a previous class. The sample of data is
contained in Table 11.1. The bold values are the student observation numbers,
the Y-values are percentage grades, and the X-values are the number of classes
(out of 16) that the student attended.

To get a better feel for the relationship between course grades and attendance,
we can form a scatterplot. Each diamond on the scatterplot in Figure 11.1 is a
single student’s pair of course grade and attendance. The scatterplot is useful
for illustrating patterns in the data. While there is a noticeable positive trend in
the data, it is clear that there is not a one-to-one relationship between course



Table 11.1 Sample data from 40 students of their course
grade (Y) and the number of classes attended (X).

ID Y X ID Y X
1 61 10 21 86 9
2 69 9 22 87 12
3 75 10 23 88 8
4 76 10 24 88 14
5 76 8 25 89 12
6 79 10 26 89 12
7 79 11 27 90 13
8 79 7 28 90 12
9 81 14 29 90 12

10 82 6 30 91 13

11 83 12 31 91 12

12 83 10 32 92 14

13 84 13 33 93 13

14 84 10 34 94 14

15 84 9 35 94 14

16 84 6 36 94 11

17 84 10 37 95 16

18 84 16 38 95 11

19 85 12 39 95 15

20 86 11 40 98 16
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Figure 11.1 Course grades (Y) versus classes attended (X).



grade and attendance. Before estimating the sample regression function, it is
sometimes informative to calculate how linear the sample data are. This can
be achieved by calculating the Pearson correlation coefficient, which is denoted
as r. If the measure for » = 1, it means that there is a positive one-to-one rela-
tionship between X and Y. In other words, any change in Y can be completely
accounted for by a change in X. When r = 1, the relationship between the two
variables is perfectly linear with a positive slope. Alternatively, r = —1 indicates
a perfect linear relationship with a negative slope. Using Formula A.1, the cor-
relation coefficient for our data is r = 0.55. This confirms that although there
is some degree of linearity in the relationship between course grade and atten-
dance, there is a great deal of variation unexplained by attendance.

11.3 Ordinary Least Squares (OLS)

The objective is to choose the best line to fit the data illustrated in Figure 11.1.
For our purposes, the “best” line is the one that minimizes the distances
between the points on the scatterplot and the regression line. The difference
between the estimate of Y — which is ¥; — and the actual value of Y for a given
X is called the residual. It can be expressed as e; = ¥; — Y;. The residuals (e;’s)
are our estimates of the unobserved random errors (¢,’s). The best fit line is the
one that minimizes the residuals. However, because we will have data points
above and below the chosen regression line, we will have both positive and
negative residuals. To treat positive and negative residuals with equal footing,
we square them. The criteria we use to find our best fit line is called ordinary
least squares or OLS. Using OLS, the “best” fit regression line is the line that
minimizes the sum of the squared residuals.

Now that we know the criteria used to define the best line, we can solve for
the values of b, and b, that achieve this goal. Undergraduate courses in business
statistics do not have students derive these formulas, they are simply presented.
However, it is useful to consider where they come from. The starting point is
expressing the residuals in terms of the intercept and slope estimates. Since
e; = ¥, — Y, we can rewrite the residuals as e; = b, + b, X; — Y, and then square
the residuals to form e” = [b, + b, X; — Y;]*. Now, we have an equation for the
squared residuals as a function of the intercept and slope estimates. We can
then use a bit of calculus to minimize the sum of the squared residuals (the
OLS criteria). The result will be two equations that can be solved jointly to find
the unique values for b, and b, that form the best fit line. See Formulas A.2
and A.3.

In practice, statisticians do not calculate regression equations by hand. Every
statistics software program has a tool that can estimate the sample regression
function. In Excel, the tool is called “regression” and is found in the data
Analysis Toolpak in Excel. For most versions of Excel, the Analysis Toolpak



comes standard with the program and simply needs to be activated. You can
find many instructional videos online that walk you through this.! Using
our sample of data on course grades and attendance, the output from the
regression tool in Excel is contained in Figure 11.2.

Many statistics are included in the output in Figure 11.2, but for the moment
let us concentrate on the values for b, and b,, which are our best estimates of
the unknown parameters f, and f;. Those are found in the bottom-left corner
under the column labeled “Coefficients.” The intercept is b, = 67.02 and the
slope is b; = 1.63 (rounded to two decimal places for convenience). Putting it
together, we have the following sample regression function for our data:

Y, = 67.02 + 1.63X,

This sample regression function is the line that minimizes the sum of the
squared residuals. The slope estimate of 1.63 tells us that as the number of
classes attended increases by one unit (i.e., one class), the average estimate of
the course grade increases by 1.63 units (i.e., percentage points). In other words,
for every additional class, a student attends the predicted effect is, on average,

Regression statistics

Multiple R 0.5503
R square 0.3028
Adjust R square 0.2845
Standard error 6.4261
Observations 40
ANOVA
df SS MS F-stat p-value
Regression 1 681.56 681.56 16.50 0.0002
Residual 38 1569.21 41.30
Total 39 2250.78

Coefficients Standard ¢-stat  p-value Lower 95% Upper 95%
error

Intercept 67.0249 4.7018 14.2553 0.0000 57.5067 76.5432
X (classes attended)  1.6324 0.4018 4.0626 0.0002  0.8190 2.4458

Figure 11.2 Regression output for course grades as a function of classes attended.

1 Here is one for Excel 2016 for Windows: https://www.youtube.com/watch?v=mIoS7IR036c
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Figure 11.3 Scatterplot of course grades and attendance with the fitted regression line.

a 1.63 percentage point higher course grade. With regression, it is very impor-
tant to know what units the data are in for both Y and X in order to correctly
interpret the results. Also, note that the slope estimate of 1.63 is just a point esti-
mate. That estimate is based on one single sample, and that estimate is likely to
change with different samples. Just as in Chapter 7, we can construct confidence
intervals around our estimates. The formula can be found in A.6

One useful thing we can do with the sample regression function is use it to
predict the average value for the dependent variable given a value for the inde-
pendent variable. Suppose for example a student is interested in using these
results to predict a course grade for attending only seven classes. Plugging in
X = 7into the equation yields ¥ =67.02 + 1.63(7) = 78.43, which is a C+. With
prediction using the simple linear regression, it is important to remember that
it is not typically appropriate to plug in values for X, which are outside of the
range from our dataset. Meaning, the range in attendance values in our data is
4—16 classes. We would not want to plug in values higher than 16 or lower than
4, because we have no idea what the bivariate relationship is in those ranges.
For this reason, the intercept (e.g., 67.02) cannot be interpreted as the expected
value for Y when X = 0 unless the independent variable takes on a value of
zero in our sample data. For our data, the only relevant part of the regression
line is the segment between 4 and 16 classes attended. In Figure 11.3, the fitted
regression line is included with the scatterplot on course grades and attendance.

11.4 The Distribution of by and b,

Thus far, we have used our sample of 40 observations to estimate the underly-
ing relationship between course grade and attendance in my business statistics



course. Of course, if I was to draw another sample with different students, l am
likely to get different estimates for the intercept and slope. They might be close,
but they will differ. The point is that b, and b, are random variables and will
have their own distributions (i.e., their own shape, mean, and standard devia-
tion). It turns out that under certain conditions, the sampling distributions of
these statistics follow a ¢-distribution. That is, they are symmetric and mound
shaped. The center of the distribution is the average value which will equal the
true parameter value (i.e., the fs). You may recall that when the average of a
sample statistic equals the population parameter, we call that statistic an unbi-
ased estimator. These properties rely on us making a few more assumptions
about the random component in the relationship between X and Y. Let us list
all the assumptions:

e Assumption 1: The random errors equal zero on average.

e Assumption 2: The random errors are normally distributed.

e Assumption 3: The random errors have constant variance (constant variance
is called homoskedastic).

e Assumption 4: The random errors are independent of each other.

We will cover some of the implications of violating these assumptions later
in this chapter, but for now let us discuss their meaning. Assumption 1 we have
already introduced. Recall, that was the assumption that positive errors cancel
out negative errors, so on average the errors equal zero. Assumption 2 is about
the shape of the distribution of random errors. We not only assume that positive
deviations cancel out the negative deviations (Assumption 1), but also assume
that the shape of those deviations is normal. Meaning, if we created a histogram
with all of the error terms, it would take on a normal shape. Assumption 3
is often called the assumption of homoskedasticity of the random errors. The
meaning is that at every value of the independent variable, the variability in
the random errors is the same. There is not, for example, more variation in
errors with higher values for X. If that were the case, Assumption 3 would be
violated and the variance in the error term would be considered heteroskedastic.
The fourth assumption is that the random errors associated with one X value
are not a function of the random errors for another X value. They are, by this
assumption, truly random and independent across all X values.

Given that these assumptions hold, we can say that the distributions for b,
and b, are t-distributions that are centered at f, and f,, respectively. Recall
that the standard deviation of a sampling distribution is called a standard error.
The standard errors for b, and b, are the estimates of the average deviations
around the true parameter values. These standard errors are calculated for us
in the regression output and we will analyze them shortly.

11.5 Tests of Significance

Using the OLS regression, we estimated a 1.63 percentage point increase in the
course grade for every additional class attended. While a 1.63 percentage point



increase for every class attended sounds pretty significant, we cannot say for
sure without an appropriate comparison. The comparison we make in regres-
sion is relative to zero. Imagine, for example, a variable that likely has zero
influence on a student’s course grade. The length of a student’s hair comes to
mind. If I gathered a sample of data on course grades and student hair length
and I ran a regression analysis, I could get an estimate of b, which would be
interpreted as the expected change in the course grade caused by a one-unit
increase in hair length. Even if the true underlying relationship between the
two variables is zero (i.e., f; = 0), my sample data could easily yield a nonzero
estimate. This is again the idea of sampling error which is the recognized differ-
ence between parameters and statistics. However, if the true slope is zero, my
sample estimate will likely not be too far away from zero. The objective in this
section is to conduct hypothesis tests using sample data to make a conclusion
regarding whether the slope is equal to zero or something different from zero.

The following is the null and alternative hypothesis we wish to test:

H,:p, =0
H,:p#0

Notice the familiar two-tail hypothesis test format. The null states that there
is no relationship between X and Y, which implies that X is insignificant (i.e.,
it has an insignificant effect on Y). The alternative hypothesis is that X has a
nonzero impact on Y; that is, X is significant. Given a chosen level of signifi-
cance = a, there will be a rejection region of size /2 in each tail of the distri-
bution. Since we know that b, follows a ¢-distribution, the tails are symmetric
and the critical values depend on the degrees of freedom. With regression, the
degrees of freedom are calculated by the number of observations minus the
number of estimated parameters. Since with simple linear regression we always
estimate two parameters (f, and f,), the degrees of freedom = n — 2. With our
data, df = 40 — 2 = 38. Figure 11.4 illustrates the hypothesis test at the 0.05
level.

To make a conclusion, we have to consider the test statistic. The test statis-
tic is simply calculated by taking the value of b, and dividing it by its stan-
dard error. Both are included in the regression output in Figure 11.2, but so

Reject the null Reject the null

Fail to reject >

the null
0.025

—2.024 0 2.024 t
0 b,

Figure 11.4 Test of significance of the slope at « = 0.05.



is the £, so there is no need to calculate it by hand; that is £, = 4.06. The
interpretation is that the slope estimate of 1.63 is 4.06 standard errors above
zero. Since 4.06 is beyond the positive critical ¢-value of 2.024, we reject the
null hypothesis. Rejecting the null indicates that X is significant in explaining
changes in Y at the 0.05 level. In other words, attendance is a significant vari-
able in explaining course grades. We can interpret the p-value to illustrate just
how significant attendance is. The two-tail p-value, also provided in the out-
put, is 0.0002. Therefore, we reject the null for any significance level greater
than 0.0002 suggesting that attendance is highly significant. The table also pro-
vides the 95% confidence interval around b;, which ranges from 0.819 to 2.446.
The confidence interval can also be used to complete the hypothesis test at the
0.05 level. Since zero is outside of the interval, we reject the null hypothesis that
p; = 0. What is the overarching point? Go to class.

In general, we are not too concerned about testing the significance of the
intercept f,. If we were, however, the procedure is conducted the same way but
using b, as the sample statistic.

11.6 Goodness of Fit

The regression results strongly suggest that attending class can improve grades
in an undergraduate statistics course. However, it is clear from the scatterplot
that attendance does not completely explain the performance in the class.
In this section, we measure how much of the variation in course grades is
explained by variation in attendance. Or more generally, how much of the
variation in Y is explained by variation in X. Using a scatterplot as a visual,
if all of the points in the scatterplot fell on the fitted regression line, then we
would say 100% of the variation in Y is explained by variation in X. In other
words, the line is a perfect fit of the data.

The statistic we use to measure how well the regression line fits the data is for-
mally called the coefficient of determination, but is most often referred to as r2.
The statistic 72 reports the fraction of the total variation in a dependent variable
that is explained by variation in the independent variable. To really understand
r%, we have to consider the three types of variation in the sample data.

The first is the total variation in the dependent variable Y. The total variation
is measured by taking the deviations of every individual value of Y relative to the
average value of Y. Those deviations are squared (to put positive and negative
deviations in equal footing) and then summed (to get the total). For this reason,
the total variation in Y is called the “total sum of squares” and is labeled as
(SST), where “SS” indicates the sum of squares.

The total variation in Y is the sum of two other types of variation. One is the
variation in Y that is explained by changes in X — called the “regression sum
of squares” (SSR) — and the other is the variation in Y that is left unexplained



by changes in X — called the “error sum of squares” (SSE). The term “error”
here refers to residuals. The accounting relationship is SST = SSR + SSE. The
term SSE is exactly the term that we minimize when using OLS to estimate the
regression line. If SSE = 0 it means that every data point is on the regression line
and the line is a perfect fit. Clearly, if SSE = 0, then SST = SSR which indicates
that all the variation in Y is explained by variation in X. The formulas can be
found in the Technical Appendix.

Using these three measures, we can form the equation for r* = SSR/SST. A
perfect fit is 72 = 1 which indicates both SSR = SST and SSE = 0. In reality, we
should never expect a perfect fit of a regression line to the sample of data. The
range that 72 can take is between 0 and 1, and the closer to 1 the better the line
fits the data.

All three measures of variation and the calculation of r* which can be found
in the regression output in Figure 11.2. They are found in the middle section of
the output labeled ANOVA, which stands for Analysis of Variance. The column
labeled “SS” contains the measures of variation. In our data, SST = 2250.78,
SSR = 681.56, and SSE = 1569.21. Therefore, r*> = SSR/SST = 0.3028. r* can
also be found in the top segment of the regression output. It tells us that 30.28%
of the total variation in grades is explained by the variation in the number of
classes attended. In other words, about 70% of the differences in grades is not
explained by attendance. An r? of only 30.28% should not be thought of as “bad.”
Rather, it just lets us know that there is more to the story about what affects
student’s grades. We will pick this example back up in the next chapter and add
more variables that might help explain more of the variation in grades.

11.7 Checking for Violations of the Assumptions

The assumptions we made about the random error term ¢ have some impor-
tant implications concerning our results. Because we do not observe ¢, we use
the residuals (€’s) from our sample of data for clues as to whether the assump-
tions appear to be violated. For our purposes, we will not consider structured
tests of the assumptions, rather, we will conduct simple visual checks. The first
assumption we made — that the random errors are on average zero — is imposed
when estimating the regression line, so it will always be true. Also, the fourth
assumption about the independence of the random errors is primarily a prob-
lem with time series data (datasets that track activity over time) and so we do
not address it here.

11.7.1 The Normality Assumption

Assumption 2 was that the random errors are distributed normally. This
assumption is required to justify the use of the ¢-distribution when describing
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Figure 11.5 Histogram of the 40 residuals for grades and attendance.
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Figure 11.6 A violation of the assumption that the errors are distributed normally (the
residuals appear to be left-skewed).

the sampling distribution of b, and b,. If the assumption is violated, our
estimates of b, and b, remain unbiased, but the tests of significance would
be suspect. One way to check for normality of the error terms is to create a
histogram with all of the residuals. We have 40 observations in our dataset, so
we have 40 residuals. The histogram of the residuals will have a mean value
of zero (by construction) and it is the shape we are interested in. The more
skewed the distribution looks, the more likely we are violating the assumption
of normality. Let us take a look at the histogram of our 40 errors.

Looking at Figure 11.5, the shape of the distribution of residuals looks fairly
normal. There are no dramatic signs of skewness. The histogram provides a con-
firmation that our assumption of normality regarding the unobserved errors is
not violated. See Figure 11.6 for an example of residuals that appear to violate
the assumption of normality.

11.7.2 The Constant Variance Assumption

Assumption 3 was that the random errors have the same variance over all values
of X. When the random errors have constant variance, they are homoskedas-
tic, but if this assumption is violated, then the errors are heteroskedastic.
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Figure 11.7 Residuals plotted against the number of classes attended.

Heteroskedastic errors do not affect the estimates of f, or f;, and these
estimates will remain unbiased. However, if errors are heteroskedastic, then
the standard errors will be biased and potentially understated (i.e., too low).
When standard errors are lower than they should be, the test statistic is higher
than it should be, and we are more likely to reject a null hypothesis. In other
words, we might find evidence that a variable is more significant than it should
be if the assumption of homoskedasticity is violated.

One way to visually check the integrity of this assumption is to create a scat-
terplot of the residuals on the vertical axis and the values of the independent
variable on the horizontal axis. This is illustrated in Figure 11.7.

The dark horizontal line in Figure 11.7 is the average of the residuals (equal
to zero). Observations below the line are negative deviations and observations
above the line are positive deviations. We observe variation in the residuals
around zero, but no noticeable patterns. A violation would show a noticeable
change in the variation in residuals across X. Typical examples include residuals
that “fan out” in that the variation increases with increases in X, or residuals that
“funnel in” in that the variation decreases with increases in X. See Figure 11.8
for an example of data that suggest heteroskedastic errors.

In our data, there appears to be one large (in absolute terms) residual in com-
parison to the others. There was a student who attended 10 classes and scored
61 in the class. The student’s predicted grade for 10 classes is roughly 83. The
residual attached to that student is e = —22. Apart from that observation, the
data appear to vary around the mean in a constant fashion. This evidence sup-
ports the assumption that the errors are homoskedastic. I mean, who does not
like homoskedastic errors?
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Figure 11.8 A violation of the homoskedasticity assumption that the errors have constant
variance (the residuals appear to be heteroskedastic since deviations increase as X
increases).

11.8 Summary

This chapter serves as an introduction to linear regression analysis. The term
“simple” linear regression is used when we consider only a bivariate (two vari-
able) relationship. Examples include course grades and class attendance, life
expectancy and exercise, job performance, and salary. We start with a the-
ory about the relationship between a variable Y that depends on values for
X. Hence, Y is the dependent variable and X is the independent variable. The
underlying assumption is that the relationship between Y and X takes a lin-
ear form. A sample of data is taken and the presumed linear relationship is
estimated using a criterion called ordinary least squares. The end result is a
line — called the sample regression function — that can be used for a number of
purposes. We can use the sample regression results to predict values of Y for
given values of X. The results also provide information on the expected change
in Y caused by a marginal change in X. Perhaps most importantly, we can use
the results to conduct hypothesis tests. The tests inform us of whether the vari-
able X has a significant impact on the variable Y. The fundamentals presented
in this chapter will carry over to the next two chapters in which we explore
multiple relationships.



Technical Appendix

The Pearson correlation coefficient is:
(X, - X)(Y, - Y)
r= ,
V/EX, - X220, - Y
where X and Y denote the mean values for X and Y, respectively. The OLS
equation for the slope estimate is
X, - X)(Y, - Y)
(X, — X)?

where b, is the estimate of the unknown ;. The equation to estimate the inter-
ceptis

by=Y — b, X, (A.3)

(A.1)

b, (A.2)

where b, is the estimate of the unknown f,,. When testing the significance of X
on Y, the test statistic is

bl_ﬂl
s,

(A4)

L stat —
1

where s, is the standard error. The standard error of the slope estimate is

SSE/(n—2
) s
VE(x; — x)?
The confidence interval for the slope estimate is
by £ tyS) s (A.6)

where ¢, , is the critical ¢-value. The total sum of squares = SST is calculated
as:

SST = 2(Y, - Y). (A7)
The regression sum of squares = SSR is calculated as
SSR=3(Y, - Y), (A.8)
where Y is the estimate of Y for a given X;. The error sum of squares = SSE is
calculated as
SSE = (¥, - Y,)%. (A.9)
The coefficient of determination = r? is calculated as

»_ SSR _ | _ SSE

_ SSR _ | _SSE Al
" T SsT SST (A.10)
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Multiple Regression

In Chapter 11, we used regression analysis to estimate the relationship between
grades and attendance rates. The results suggested that attending more classes
will lead to higher grades on average. However, attendance only explained a
fraction of the differences observed in students’ grades. There must be more
to the story. There are of course other variables that may affect the perfor-
mance, and if we can gather data on those variables, we should include them
in our analysis. In this chapter, we analyze regression using multiple indepen-
dent variables. A simple linear regression is really just a special case of multiple
regression, and outside of undergraduate classes in statistics they are both just
called regression.

In this chapter, we will dig deeper into the question of what affects students’
course grades in my undergraduate statistics courses. Some of the additional
variables we will include are more continuous in nature, including scholastic
aptitude test (SAT) scores, hours spent studying, and a score on a logical think-
ing test. Other variables will be categorical (or qualitative) in nature, including
the gender and year of study. We will discuss the differences in interpretations
between continuous and binary data in regression. We will also consider how
variables may interact with each other. The overarching objectives are the same
from Chapter 11. The goal is to estimate the relationship between grades, and
the independent variables then use the results for prediction, tests of signifi-
cance, and goodness of fit. With multiple independent variables, there are some
additional statistics and tests we can analyze, but the process is largely the same.

12.1 Population Regression Model

The first step is to write down a model that captures the assumed relation-
ship between the dependent variable and the independent variables. Because
we have multiple X variables, we can refer to them in total as a vector of Xs.
In general, we can label the X variables with subscripts from 1 to the number
of independent variables included in the model. For example, X;, X,, X, ..., X},



where k denotes the number of independent variables. In the population regres-
sion model below k = 6.

Y= ﬁo + ﬂ1X1 + ﬂzXz + ﬂ3X3 + ﬁ4X4 + ﬂsXS + ﬂ6X6 te

However, because we have a lot to keep track of with multiple regression, it
often provides clarity to substitute the variable names in the model in place
of the Y and X notation. Continuing with our example, suppose we model the
relationship between course grades and the other variables as:

Grade = f, + f, Attend + f,SAT + p;Female + §,HrsStuding
+ fsSenior + fsLogic + ¢

Note that we have dropped the subscript i that indexes each individual. Those
subscripts are there implicitly, but we have removed them to simplify the expo-
sition. The f terms (from 1 to 6) are the parameter values that measure the
impact each of the variables has on grade (the Y variable). The f, term is the
constant term and ¢ is again the random error term. We make the same assump-
tions about the random errors that we did with simple linear regression; that
is, they are distributed normally, independent, with mean zero, and constant
variance. However, we will add one more assumption with multiple regres-
sions, which will be addressed a bit later. The variable Attend is the attendance
rate, SAT is the student’s SAT score on the combined math and verbal sections,
Female will capture gender, HrsStuding is time spent studying outside of class,
Senior captures whether the student is a senior, and Logic is a test score from a
logic exercise.

The parameter values in the population regression model (the Greek letters)
are not directly observable. Rather, we must use a sample of data to estimate
the values for the g terms. For that, we turn to the sample regression function.

12.2 The Data

The dataset we will use to estimate the population regression model consists
of 40 observations (n = 40) from a previous statistics course. The dataset is
too cumbersome to include in a table, so we will discuss the units of the vari-
ables in detail. Grade is again measured as the percentage grade out of 100
a student earned in the course. Attend is measured by the number of classes
attended from O to 16, SAT score is the combined score ranging from 400 to
1600, HrsStudying is the number of hours a student reports studying the mate-
rial outside of class in an average week, and Logic is a score from 0 to 100% on
a logical thinking test.

The two variables Female and Senior are different in the sense that they are
categorical variables that follow a binary form. The variable Female takes on a
value of 1 if the student identifies as female and a value of 0 if the student iden-
tifies as male. The variable Senior takes a value of 1 if the student is a senior and
takes a value of 0 if the student is a junior (note only seniors and juniors take



this class). Binary, or qualitative, variables are often called dummy variables in
regression. The label “dummy” does not imply the variables are stupid or mean-
ingless. The important thing to understand about dummy variables is that are
interpreted differently than continuous variables. For example, the parameter
estimate for female - f; - is the impact on Grade from the student being female
relative to a male student. In general, the parameter attached to a binary vari-
able is the impact on Y of X taking on a value of 1 relative to when X takes on
a value of 0.

12.3 Sample Regression Function

The objective is again to use ordinary least squares (OLS) to estimate an
equation that “best” fits the data. That equation is chosen by minimizing the
sum of the squared deviations from the estimated values of ¥ compared to
the actual values of Y for each student. Recall, those deviations are referred
to as residuals and are denoted as e’s. The estimate of the average relationship
between Y and the vector of Xs is called the sample regression function. It will
take the form:

Y = by + b, X, + b, X, + by X5 + by X, + b X5 + b X,

We will again rewrite the equation to include the variable names for clarity.
Therefore, the sample regression function is:

Grade = b, + b, Attend + b,SAT + b,Female + b,HrsStuding
+ b;Senior + byLogic

The calculations of the b’s can be made using any statistical software program,
and we will use the regression feature of Excel’s Analysis Toolpak. The results
are shown in Figure 12.1. In comparison to the simple linear regression output
from Figure 12.2 in Chapter 11, there are more rows of output in the bottom
table. Each row provides statistics for the intercept and the six independent
variables.

Using the parameter estimates (labeled “Coefficients” in the output), we can
fill in the values for our sample regression function (estimates are rounded to
two decimal places):

Grade = 51.45 + 0.83Attend + 0.02SAT + 1.87Female
+ 0.15HrsStuding — 1.44Senior + 0.08Logic

The sample regression function is the estimate of the average relationship
between grades and our explanatory variables. The sign in front of each
parameter estimate indicates the direction in which the variable impacts
course grades. The only negative sign is attached to the variable Senior. This
suggests that seniors in the class score lower than students taking the class as
juniors. The other variables have a positive influence on course grades. Let us
use the sample regression function and the regression output to (1) interpret



Regression statistics

Multiple R 0.8910
R square 0.7940
Adjust R square 0.7565
Standard error 3.7487
Observations 40
(b)
ANOVA
df SS MS F-stat p-value

Regression 6 1787.03 297.84 21.19 0.0000
Residual 33 463.74 14.05
Total 39 2250.78
(©

Coefficients Standard error t-stat p-value Lower 95% Upper 95%
Intercept 51.4536 7.9080  6.5066 0.0000 35.3648 5.5425
Attend 0.8349 0.2968  2.8130 0.0082 0.2310 1.4387
SAT 0.0164 0.0072 22711 0.0298 0.0017 0.0311
Female 1.8710 1.3488 1.3872  0.1747 —0.8731 4.6151
HrsStudying 0.1450 0.1177 1.2316  0.2268 —0.0945 0.3844
Senior —1.4422 1.2381 -1.1649 0.2524 -3.9611 1.0766
Logic 0.0822 0.0385  2.1380  0.0400 0.0040 0.1605

Figure 12.1 Regression output for course grades as a function of a vector of independent

variables.

the individual variables, (2) predict a course grade, (3) test the significance of
the independent variables, and (4) determine the overall fit.

12.4 Interpreting the Estimates

Our estimates inform us on how changes in each individual X variable
influence Y. For continuous variables, the interpretation is that b is the



change in Y caused by a one-unit increase in X. When interpreting changes
in individual variables, we always make the assumption that everything else
remains unchanged. Or, in Latin ceteris paribus.

12.4.1 Attendance

The estimate for Attend is b, = 0.83. For each additional class, a student attends
the predicted course grade increases by 0.83 percentage points. You may recall
from the previous chapter that the estimate of b, was 1.63 when it was the only
independent variable. That the estimate of b; changes when more variables are
included is not shocking. It suggests that the omission of important variables
when using simple linear regression was introducing bias to the estimated effect
of attendance. In other words, the attendance measure was capturing effects
that were at least partially explained by other variables. This issue is called
omitted-variable bias.

12.4.2 SAT

The estimate for the SAT score is b, = 0.02. This suggests as the SAT score goes
up by one point, the predicted course grade goes up by 0.02 percentage points.
Since the effect is linear, a 100 point increase in the SAT score would result in
a 10 x 0.02 = 2 percentage point increase.

12.4.3 Hours Studying

The estimate for HrsStudying is b, = 0.15. For every additional hour, a student
spends studying outside of class in a given week, the predicted course grade
increases by 0.15 percentage points. We could ask the question how many addi-
tional hours of studying would be required to raise the expected course grade
by 1 percentage point. To figure this out, we can solve hours X 0.15 = 1 to find
that a student would need to study 6 and 2/3 more hours per week.

12.4.4 Logic Test

The estimate for Logic is b, = 0.08. For every additional percentage point
increase in the logic test score, the predicted course grade increases by 0.08
percentage points.

For the two binary (i.e., dummy) variables, the interpretation is that b is the
change in Y when X = 1 relative to when X = 0.

12.4.5 Female

The estimate for Female is b, = 1.87. The predicted course grade for females is
1.87 percentage points higher than that for male students.



12.4.6 Senior

The estimate for Senior is by = —1.44. The predicted course grade for seniors is
1.44 percentage points lower than that for juniors.

12.5 Prediction

Using the sample regression function, we can predict a course grade for a stu-
dent with a given set of characteristics. To illustrate, let us predict an overall
course grade for a student named Brad Crispens. Brad is a senior, and he is
also a bit lazy. He attended eight classes and studies a shocking 2 hours in a
given week. His SAT score was 1000 and he scored a 75 on the logic test. What
is Brad’s expected course grade? To answer this question, we can just plug in
Brad’s values into the sample regression function. We get:

Grade = 51.45 + 0.83(8) + 0.02(1000) + 1.87(0) + 0.15(2)
— 1.44(1) + 0.08(75) = 82.95

Even with his slacker work ethic, Brad can expect 82.95 in the class. Almost
a B. As you can see, I am a pretty easy grader. They do not call me “Gravy Dav-
ey” for nothing. Of course, 82.95 is just a point estimate. It is possible to also
construct a confidence interval around the estimate of 82.95. Although the for-
mulas differ, the process of constructing confidence intervals around sample
statistics and their interpretation is covered in Chapter 7.

12.6 Tests of Significance

Which, if any, of the variables significantly affect course grades? To answer
this, we will conduct the same form of hypothesis test used in simple linear
regression. Here, however, we have to make one more important assumption.
We assume that there is no multicollinearity among the independent variables.
Multicollinearity describes a situation in which two or more of the independent
variables are highly correlated with one another. The assumption is just stated
here, but we will investigate it in detail later in this chapter.

To determine whether each individual variable is significant on its own, we
test the following:

H,: p=0
Hy : B, #0,

where the subscript i denotes each variable from 1 to 6. The fastest and most
general way to make a conclusion to this test is using the p-value provided in
the regression output. Recall, if the p-value is less than a, then we reject the



null hypothesis. Rejecting the null hypothesis suggests that the variable X has
a nonzero effect on Y. In other words, if we reject the null hypothesis, then X
is considered a significant variable.

In our entire regression, only Attend is significant at the 0.01 level (p-value
= 0.008). At the 0.05 level, Attend, SAT, and Logic are all significant variables
in explaining course grades. The other variables are not significant at either
the 0.01, 0.05, or 0.10 levels. This means that there is no significant difference
between females and males or between seniors or juniors. It also means that
studying another hour in a given week has an insignificant effect on grades.
The findings suggest that course grades depend on some things that the stu-
dents have before they even sign up for the class. SAT scores, for instance, are
determined before college and the logic test is a general measure of the analyt-
ical mindset of the student. However, coming to class also matters. Attendance
is something students have direct control of and has proved to be helpful in
the data.

12.6.1 Joint Hypothesis Test

Individual tests are nice for sure, but sometimes you just want to put it all on
the line. I am talking about testing all the parameters of the model together. I
am talking about getting crazy. The null hypothesis is that all the parameters are
jointly equal to zero (i.e., all X's have zero impact on Y). The alternative is that at
least one of the parameters is nonzero. For our example, with six independent
variables, it can be set up as the following:

Hy:pp=P=P=P=P=P=0
H, : Atleast one of the parameters # 0

This test is called a joint hypothesis test and is concluded by comparing two
measures of variability in the dependent variable. Remember that OLS fits the
equation by minimizing the sum of the squared residuals. Also, recall that the
sum of the squared residuals is denoted as SSE and can be found in the regres-
sion output in the Analysis of Variance (ANOVA) section under the column
labeled “SS” SSE is one measure of variation used to make a conclusion to the
joint hypothesis test. The better the regression fits the data, the smaller the mea-
sure of SSE. And a small SSE implies that the regression variables are doing a
good job explaining changes in Y. The measure of the variation in ¥ explained
by the regression variables is labeled SSR — the regression sum of squares. This is
also found in the regression output. Now, consider the SSR/SSE ratio. The big-
ger the ratio, the better our regression is in explaining the observed changes in
the dependent variable. The test statistic for the joint hypothesis test (i.e., Fy,)
is this ratio times a measure for degrees of freedom (see Formula A.1). Since it
is a ratio of two variances, it follows an F-distribution (like the one introduced
in Chapter 10) and the bigger the F,,,, the more likely we are going to reject the



null hypothesis. A big F,,,, indicates that a big fraction of the total variation in
Y is explained by the variables we included in our regression. Bigger, in other
words, is better.
F. = 21.19 in our regression output. The p-value linked to the F, is listed
directly to the right of it and the p-value = 0.0000. Since the p-value equals zero
up to four decimal places, we know that we can reject the null hypothesis at any
reasonable level of significance. Rejecting the null suggests that our regression
equation is significant. In other words, taken collectively, our regression does
better at predicting Y than just simply using the average of Y for prediction.
In general, rejecting the null of the joint hypothesis test is a very low bar
to cross. It just means that at least one of the variables we included actually
matters. Failing to reject the null, on the other hand, would be strong evidence
that the regression model is fairly useless in explaining differences in Y
values.

12.7 Goodness of Fit

Closely related to the joint hypothesis just described, we can con-
sider the measure of > which tells us what fraction of the variation
in Y is explained by changes in the regression variables (as before,
r* = SSR/ Total sum of squares (SST)). In our results, r2 = 0.7940, so 79.40% of
changes in grades are explained by our independent variables. Recall that when
we only considered attendance rates in the chapter on simple linear regression
r?* = 0.3028. Our multiple regressions do a much better job in explaining why
students get different grades. Still, about 20% of the variation in grades is left
unexplained.

It is important to note that the estimate of 7> cannot decrease when including
additional variables. It can only go up. The intuition is that adding variables
cannot lead to less explanatory power, and it might lead to more. The problem
is that if statisticians want to increase measures of r%, they may be tempted to
add a slew of variables just to improve the measure of “fit.” To discourage this,
we can take a look at a statistic called adjusted r*. which can be found in the
regression output in Figure 12.1.

Adjusted r* is denoted as r2 i (see Formula A.2). The adjustment is that the
measure of 7> now includes a penalty (or reduction) for every independent vari-
able included. While 7? will go up when we include an additional X variable,
whether r: 4 8oes up or down depends on if the increase in 72 is bigger than
the penalty imposed by increasing the number of variables. The bigger the gap
between r? and rf o the stronger the signals that there are likely useless predic-
tors to the model. A wide gap suggests that the researcher tried to overfit the
model by including variables that likely should not be included.



12.8 Multicollinearity

The additional assumption we made when moving from bivariate to multiple
regression is that the X variables are not too highly correlated with one another.
This was the assumption of no multicollinearity. Now, some degree of corre-
lation between your independent variables is expected (and even necessary).
Problems arise when variables are so closely tied together that our regression
analysis is not able to parse out the individual effects of each variable. And, as
it turns out, the individual estimates can be pretty nonsensical in the presence
of multicollinearity. When we have multicollinearity we have a violation of the
assumption of no multicollinearity.

In the extreme case that two variables are included that are identical (or even
perfect linear functions of one another), the regression cannot be estimated
and one of the variables will be dropped. Obviously, this is an extreme case but
sometimes it is useful to start in the extremes. Now, if two or more variables
that are highly but not perfectly correlated are included then the regression can
be estimated. This is where we can observe problems. One important point is
that the existence of multicollinearity does not affect r? the overall measure of
fit of the model. It can, however, affect the individual parameter estimates and
their standard errors. The parameter estimates could become unstable (switch-
ing signs) and the standard errors could be inflated. Why should we care about
inflated standard errors? Because high-standard errors reduce test statistics
and therefore increase p-values. High-standard errors could lead you to deter-
mine a variable is insignificant when it really is significant. In fact, one way to
diagnose the existence of multicollinearity is if the ? value is high but the indi-
vidual variables are insignificant. Another way to diagnose the problem is to
calculate what is called a variance inflation factor (VIF).

12.8.1 Variance Inflation Factor (VIF)

The VIF is a very simple statistic that can indicate how correlated one indepen-
dent variable is with all the other independent variables. In fact, we can ignore
the Y variable completely when talking about the VIF. It is calculated by running
additional regressions, but this time, using each of the independent variables as
adependent variable. Crazy I know, but just stick with me. Consider our data on
course grades. To get the VIF I would first take one of my variables, say Attend,
and use this as my dependent variable and regress it on the other five variables
(SAT, Female, HrsStudying, Senior, Logic). My only interest in the regression
results would be 2. r* would tell us what percentage of the variation in atten-
dance is explained by the other five variables. The higher the r?, the higher the
degree of collinearity between Attend and the other variables. It will not tell us
which ones exactly, but if we do this for all six variables we will get a pretty good
picture. The VIF is actually equal to 1/(1 — r?) using the regression results.



(@)

Regression statistics

Multiple R 0.7963
R square 0.6340
Adjust R square 0.5802
Standard error 2.1661
Observations 40
(b)
ANOVA
df SS MS F-stat p-value
Regression 5 276.37 55.27 11.78 0.0000
Residual 34 159.53 4.69
Total 39 435.90

(c)

Coefficients Standard error ~ t-stat p-value Lower 95% Upper 95%

Intercept 0.2674 4.5692 0.0585 0.9537 -9.0183 9.5531
SAT 0.0051 0.0041 1.2502 0.2198 —0.0032 0.0134
Female 0.6514 0.7713 0.8445 0.4043 —0.9161 2.2188
HrsStudying 0.0818 0.0665 1.2296 0.2273 —0.0534 0.2171
Senior 0.8291 0.7011 1.1826  0.2452 —0.5957 2.2540
Logic 0.0605 0.0196 3.0812  0.0041 0.0206 0.1005

Figure 12.2 Regressing attendance on the other independent variables.

Let us explore the calculation of the VIF for the variable Attend. The
regression results are in Figure 12.2.

Note that 7> = 0.6340. Plugging this into the VIF equation =1/(1 — 0.6340) =
2.73. The value of 2.73 is the variance inflation factor for the variable Attend.
Here is the rule: if the VIF is greater than 10, it indicates you have a problem
with that variable. Some statisticians use a threshold of 5 instead of 10. In either
case, we do not observe a violation of our assumption with Attend. In fact, the
VIFs for all six variables are under 5. This tells me that we have not violated
the assumption of no multicollinearity in our dataset. Note that if we use the
rule that a VIF > 10 indicates multicollinearity in our data, that is equivalent
to having r? for the regression being 0.90 or higher.



12.8.2 An Example of Violating the Assumption of no
Multicollinearity

To highlight the existence of multicollinearity and show how devastating it can
be to our parameter estimates, let us use an example dataset on housing prices.
Suppose we wanted to estimate how the size of a home (in square feet), the
lot size (in acres), and the number of bathrooms affect the price of a home. In
general, people are willing to pay more for larger homes, larger lot sizes, and
more bathrooms so we might expect our estimates to be positive. We have 30
different homes in our dataset. To get a feel for the data, Table 12.1 shows the
data for only six homes where Price is the home price in thousands of dollars,
SqFt is the size of the home in square feet, Acres is the lot size in acres, and
Baths is the number of bathrooms.

Estimating the regression equation yields the results in Figure 12.3. Note that
r? = 0.9570, which means that about 96% of the variation in housing prices
is explained by square footage, lot size, and the number of bathrooms. The
p-values for each variable are less than 0.10 indicating that each variable sig-
nificantly explains changes in housing price at the 0.10 significance level. The
variables SgFt and Acres are significant at the 0.01 level. The interpretation of
the variable Baths is that increasing the number of bathrooms in a home by one
results in an increase in the price of the home by $16,024. Overall, the high 72
and the p-values for the three variables suggest that our variables are explaining
most of the differences in prices of homes in our data. In other words, we have
a pretty good fit of the data.

Now let us add an additional variable. We also have data on the number
of bathroom sinks in each of the 30 homes. While it may seem to be silly to
consider such a variable, it is not completely off-the-wall. People like sinks
and many bathrooms have more than one sink. The problem is, as we will find
out, that the number of bathroom sinks is highly correlated with the number
of bathrooms. The two variables are not perfectly correlated however as some

Table 12.1 Housing prices as a function of
square footage, lot size, and the number of
bathrooms (6 of 30 observations shown).

Price SqFt Acres Baths

505.5 2192 0.4 2.5
784.1 3429 0.6 4.0
649.0 2842 0.4 4.0
689.8 2987 0.5 3.5
709.8 3029 0.5 3.0

590.2 2616 0.5 3.0




(@)

Regression statistics

Multiple R 0.9783
R square 0.9570
Adjust R square 0.9520
Standard error 20.05
Observations 30
(b)
ANOVA
df SS MS F-stat p-value

Regression 5 232715.97 77571.99 192.92 0.0000
Residual 26 10454.37 402.09
Total 29 243170.34
(©

Coefficients  Standard error t-stat p-value Lower 95% Upper 95%
Intercept —27.5742 29.2456 —0.9429 03544  —87.6893 32.5408
SqFt 0.1707 0.0148 11.5528  0.0000 0.1403 0.2010
Acres 287.0230 60.8623 4.7159  0.0001 161.9188 412.1272
Baths 16.0236 8.4690 1.8920 0.0697 —1.3848 33.4319

Figure 12.3 Regression results on home prices.

Table 12.2 Housing prices as a function of square
footage, lot size, the number of bathrooms, and
number of bathroom sinks (6 of 30 observations

shown).

Price SqFt Acres Baths BathSinks
505.5 2192 0.4 2.5 3.0

784.1 3429 0.6 4.0 4.0

649.0 2842 0.4 4.0 4.0

689.8 2987 0.5 3.5 4.0

709.8 3029 0.5 3.0 3.0

590.2 2616 0.5 3.0 3.0




(@)

Regression statistics

Multiple R 0.9804
R square 0.9612
Adjust R square 0.9549
Standard error 19.4379
Observations 30
(b)
ANOVA
df SS MS F-stat p-value
Regression 4 233724.58 58431.14 154.65 0.0000
Residual 25 9445.76 377.83
Total 29 243170.34

(©)

Coefficients Standard error t-stat p-value Lower 95% Upper 95%

Intercept —45.9666 30.5027 -1.5070 0.1444 —108.7882 16.8549
SqFt 0.1698 0.0143 11.8517  0.0000 0.1403 0.1994
LotSize 7.4987 1.4638 5.12269  0.0000 4.4839 10.5135
Baths —11.3593 18.6623 —0.6087  0.5482 —49.7951 27.0765
BathsSinks 26.4340 16.1789 1.6339  0.1148 —6.8871 59.7551

Figure 12.4 Regression results on home prices with a number of bathrooms and a number
of bathroom sinks.

bathrooms are half bathrooms (no shower) and some bathrooms have more
than one sink, but no bathroom has zero sinks. Table 12.2 has the first six
observations of the larger sample with the new variable BathSinks included.
Again, estimating the regression yields the results in Figure 12.4 highlight
how highly correlated independent variables can influence regression results.
First, note that the 2 measure remains high. This should not be shocking as
it is always true that r* cannot decrease when more variables are added. Note,
however, that the individual variable estimate for Baths is very different. Most
shocking is that the parameter estimate for Baths is now negative, suggesting
a reduction in housing prices in response to additional bathrooms. We know



that this result is nonsense. What we are observing is multicollinearity reek-
ing havoc on our estimates and causing the parameter estimates to be unstable
and switching signs. Also, note that Baths is no longer significant at the 0.10
level. This is because multicollinearity has caused the estimate of the standard
error to be inflated (high) and thus the test statistic is lower and the p-value is
bigger. These results show textbook (literally) multicollinearity problems. High
r?, insignificant variables (both Baths, and BathSinks) and crazy signs on the
estimates.

Now, calculating the VIFs for each of the four variables reveals that Baths and
BathSinks are too highly correlated with one another. The VIF for Baths is 11.53
and the VIF for BathSinks is 10.94. Both exceed 10 and suggest the existence
of multicollinearity. Of course, in this case, the obvious implication is to drop
the variable BathSinks. This example is purposefully simplistic. In reality, it may
not be obvious ex ante that two or more variables are very highly correlated and
in those cases, the VIF may be surprising. Shocking even.

12.9 Summary

In this chapter, we expanded the use of linear regression to allow for multiple
independent variables. Along the way, we considered how to include qualitative
variables - dummy variables - into the analysis and how to interpret the results.
The OLS criterion was used to estimate the regression model and we made one
additional assumption to those made in the previous chapter on simple linear
regression. That assumption was that the vectors of Xs are not too highly cor-
related with one another. The assumption is called no multicollinearity. As with
simple linear regression, the regression results were used for prediction, tests
of significance, and goodness of fit. An additional test - the joint hypothesis test
- was introduced to simultaneously test the significance of all of the parameters
in the regression model. Finally, we explored how to diagnose problems with
multicollinearity in the data.



Technical Appendix

The test statistic for the joint hypothesis test is:

SSR (n—k—1
_ Al
Fstat SSE < k > ’ ( )

where SSR is the regression sum of squares, SSE is the error sum of squares, n
is the sample size, and k is the number of independent variables. The formula
for the adjusted r? is:

ray=1- <%> (A.2)



13

More Topics in Regression

One of the goals for this chapter is to link regression analysis with some of
the hypothesis tests we conducted in Chapter 10. In Chapter 10, we compared
two parameter values. We will show that the same test we learned for com-
paring two population means can be implemented using ordinary least squares
(OLS) regression. Moreover, we can use regression to compare more than two
population means. In most statistics textbooks, there is a dedicated chapter for
comparing multiple means that is titled Analysis of Variance (ANOVA). The
ANOVA chapter spends time walking through a separate testing procedure to
compare more than two means. However, the results of that testing procedure
are fully contained in the ANOVA section of the regression output produced
by any statistical software program. In this way, the chapter on ANOVA is usu-
ally a bit awkward because the regression techniques learned in the regression
chapter cover ANOVA plus much more. Part of this chapter will walk through
the process of using the ANOVA section in regression to conduct hypothesis
tests of multiple means.

We will also take a brief look at other regression topics covered in some
business statistics courses. We will explore how to use OLS regression to esti-
mate relationships that are not predicted to be linear. The chapter also explores
how to estimate and interpret the interactions between independent variables.
Finally, we will comment on time-series regression and forecasting.

13.1 Hypothesis Tests Comparing Two Means
With Regression

Think back to Chapter 10 where Derek Hamburger wanted to test whether
the average starting salary was different between economics and accounting
majors. The data were provided in Table 10.1 and he had a sample of 35 eco-
nomics majors and 40 accounting majors. In that chapter, we compared the
two average salaries using a two sample ¢ test. Our goal in this section is to use



the regression tool to conduct the same hypothesis test. We will show that our
conclusion using the regression tool — relying on the OLS criterion — is identical
to the conclusions we made using the two-sample ¢ test.

To begin, we have to format the dataset a bit differently. We are going to
stack all of the salaries together in one column (our dependent variable) and
then use a dummy variable to indicate whether the salary is from an economics
or accounting major (no double majors in this study). In total, there will be
35+ 40 = 75 observations on salary. In Table 13.1, we include just a subset of
the sample to illustrate how the dummy variable is used without taking up too
much space. In Table 13.1, the variable economics is a dummy variable that takes
on a value of “1” when the student earned an economics degree and a “0” when
the student studied accounting.

Note that although there are two majors, only one dummy variable is
required. This is because one dummy variable provides all the information
needed and if we tried to include another variable accounting the regression
could not be estimated with both included (in fact, most software programs
would just drop one of them). The variable salary is the dependent variable
and economics is the single independent variable. Once again, using the
regression tool in Excel on the full sample of 75 observations yields the output
in Figure 13.1.

The most important pieces of information are ¢, for the variable economics
and its corresponding p-value. Note that £,,, = 2.6019 and p-value = 0.0112,
which are the exact results we found in Figure 10.2 in Chapter 10 in which
we conducted a two-sample ¢-test assuming equal variances of the population.
Therefore, whenever a regression is used in this way, the underlying assumption

Table 13.1 Starting salaries of economics
and accounting majors using a dummy
variable (10 of 75 observations).

Salary Economics

32,897
33,283
33,899
33,978
34,388
34,665
34,679
34,740
34,767
35,025

SO O B O O O O O = O




is that the variance in the dependent variable (in our example salary) is the
same for both populations (in our example economics and accounting majors).
It is also useful to understand how to interpret the parameter estimates. The
intercept in this simple regression is the average starting salary for account-
ing majors (where economics=0), which is $41,895.28. The estimate of $4991.90
attached to the variable economiics is the difference in starting salaries between
the two majors. That difference in salaries is significantly different from zero
at the 0.0112 significance level (i.e., the p-value). Just as we concluded before,
economics majors earn about $5000 dollars more than accounting majors in
starting salaries.

Finally, it is worth pointing out some of the statistics in the ANOVA section of
the regression output in Figure 13.1. Notice that the p-value that corresponds to
the F,,, is 0.0112, which is the same as the p-value for the t,,, for the economics

sta.
variable. When we have only one independent variable, this will always be the

()

Regression statistics

Multiple R 0.2913
R square 0.0849
Adjust R square 0.0723
Standard error 8289.0320
Observations 75
(b)
ANOVA
df SS MS F-stat  p-value

Regression 1 465155225.80  465155225.80  6.7700 0.0112
Residual 73 5015687780.95 68708051.79
Total 74 5480843006.75

(c)

Coefficients Standard error ~ t-stat  p-value Lower 95% Upper 95%

Intercept 41895.28 1310.61 31.9662 0.0000 39283.2310 44507.3190
Economics 4991.90 1918.54 2.6019 0.0112 1168.2555  8815.5374

Figure 13.1 Comparing average starting salaries between economics and accounting
majors using regression.



case. In fact, F,,,, = 6.77 is simply the ¢,,,, squared. The ANOVA section of the
regression output is going to play a bigger role in the next section in which we
conduct hypothesis tests comparing more than two means. In general, F,,, in
the ANOVA section is the test statistic for the null hypothesis that all of the

independent variables have zero effect on the dependent variable.

13.2 Hypothesis Tests Comparing More Than Two
Means (ANOVA)

In this section, we will shed light on one of the most important questions
humanity has ever faced. Does the average Grade Point Average (GPA) differ
among geeks, dweebs, and nerds during their freshman year in college? Of
course, we could spend an entire 200 pages debating the definitions of each,
but for our purposes, we will assume that each student in our dataset fits into
one category and only one category. In other words, geeks, dweebs, and nerds
are mutually exclusive (note that the term “mutually exclusive” is pretty nerdy).
We want to conduct a hypothesis test to jointly compare the three means. The
null hypothesis is that the average GPAs for all three types are equal. That is,
H, @ p, = puy = p, and the alternative hypothesis is that at least one is different
from another.

We can use regression to conduct such a test. Our dataset will have one
column of GPAs for all students in the sample and then dummy variables to
indicate whether each student is a geek, dweeb, or nerd. There are 50 observa-
tions in the dataset, and a subset of 10 observations is included in Table 13.2
to provide a feel for the data. Since there are three categories of students, we

Table 13.2 GPAs for a sample of geeks, dweebs,
and nerds (10 of 50 observations shown).

GPA dweeb nerd
3.88 0 1
3.88 0 0
3.79 0 1
3.77 1 0
3.74 0 0
3.74 1 0
3.72 0 0
3.60 1 0
3.59 1 0
3.59 0 1




will need 3—1 = 2 dummy variables. This is always the rule. Given the num-
ber of mutually exclusive categories, you will need # of categories - 1 dummy
variables.

The first column of data is the student’s GPA, which is the dependent variable.
The variables dweeb and nerd are dummy variables (independent variables).
We do not include a variable for geeks because whenever there are zeros for
both the variables dweeb and nerd that indicates the student is a geek. That is
why a third dummy variable would be redundant and including it would pre-
vent us from estimating the regression. For example, the second student in the
dataset in Table 13.2 is a geek with a GPA of 3.88. The first student, of course,
is a nerd.

The regression model we are estimating takes the following form (in expected
value):

E[GPA] = p, + p,dweeb + f,nerd.

The term f; captures the difference in the average GPA for a dweeb relative to
a geek (the category we omitted). Likewise, the term g, captures the difference
in the average GPA for a nerd relative to a geek. The intercept f, will be the
average GPA for geeks. The regression results are shown in Figure 13.2.

In order to jointly test the average GPA for all three student types, we form
the following null and alternative hypotheses:

Hy: p=p=0
H, : Atleast one of the parameters # 0

If both p terms are equal to zero (as in the null hypothesis), it means that
geeks, dweebs, and nerds all have the same average GPAs. Therefore, if we fail
to reject the null, then we can conclude that the average GPA is the same for all
three student types. Rejecting the null, on the other hand, simply suggests that
at least one of the f terms is nonzero.

The statistics for the joint hypothesis test are contained in the ANOVA
section of the regression output in Figure 13.2. The F,,, is the ratio of two types
of variability. The numerator is the variance in GPAs between student types
(geeks, dweebs, and nerds) and the denominator is the variance within each
student type. The bigger the F,,,, the bigger the variance in GPAs between
geeks, dweebs, and nerds relative to the variance within each category.
F,,, = 0.2493 for our data with a corresponding p-value = 0.7804. Since the
p-value is greater than any reasonable level of significance (1%, 5%, or 10%),
we clearly fail to reject the null hypothesis. Thus, we find that the average
GPA is equivalent for geeks, dweebs, and nerds. From the bottom table of
Figure 13.2, we observe that the individual variable estimates for dweeb and
nerd are also insignificant (p-values of 0.7950 and 0.4911, respectively). This is
unsurprising. Failing to reject the joint hypothesis from the ANOVA section



Regression statistics

Multiple R 0.1025
R square 0.0105
Adjust R square —-0.0316
Standard error 0.7907
Observations 50
ANOVA
daf SS MS F-stat p-value
Regression 2 0.3117 0.1558 0.2493 0.7804
Residual 47 29.3836 0.6252
Total 49 29.6953

Coefficients  Standard error t-stat p-value Lower 95% Upper 95%

Intercept 2.8017 0.2042 13.7236  0.0000 2.3910 3.2124
dweeb —0.0706 0.2701 -0.2613  0.7950 —-0.6139 0.4727
nerd —-0.2004 0.2887 —0.6941  0.4911 —-0.7812 0.3804

Figure 13.2 Comparing average starting salaries using regression.

suggests that none of the variables significantly influence the values for the
dependent variable.

Given the available data, this approach can be used to jointly test any num-
ber of population means. Remember that the null hypothesis is that all of the
parameters are equal to zero. If you can fail to reject the null that provides quite
a bit of information because you know that there is no difference between cat-
egories. However, if you reject the null hypothesis, it only suggests that at least
one parameter is not equal to zero. In those cases, you want to refer to the
individual variable estimates and p-values to discover which variables are sig-
nificant.

13.3 Interacting Variables

In some cases, we may expect that the interaction of two or more variables may
influence a dependent variable. Consider a dataset that attempts to estimate the
extent of gender discrimination in the labor market. Suppose, we hypothesize



that wages paid for a job depend on the worker’s level of experience and his or
her gender. We could estimate the following model:

E[Wage] = p, + p,Experience + p,Female.

The variable Experience is the number of years of experience in the job and
the variable Female is a dummy variable that equals one if the worker is a female
(and zero if the worker is a male). In this model, §; captures the change in wage
from an additional year of experience and f, captures the difference in wages
between males and females given the same level of experience. This model could
be used to estimate wage discrimination in terms of starting salaries (when
Experience=0) for both men and women. If this form of wage discrimination
exists, then f, < 0 and it is significant.

However, it is also possible that there is an additional form of gender-driven
wage discrimination in the labor market. Female workers may not only start
earning less money than men in the same profession, but they also may earn
less than men for each additional year of experience. To get at this question, we
need to interact Experience with Female. To create this interaction variable, we
multiply the two variables together to form ExpFemale. With observations for
male workers ExpFemale = 0 and for female workers ExpFemale = Experience.
The new model takes the following form:

E[Wage] = B, + p,Experience + f,Female + f;ExpFemale.

With this model, the change in wage from an additional year of experience for
men is ff;. However, the change in wage for an additional year of experience for
women is ff; + f;. The parameter f; can be interpreted as the difference in what
women are paid for each additional year of experience relative to men. Again, if
p; < 0 and significant, then we can conclude that there is gender-driven wage
discrimination in the labor market based on experience.

To estimate the model, we have a sample dataset of 35 observations. The
dependent variable Wage is in thousands of dollars and ranges from 22 to 114.
The variable Experience ranges from 0 to 10 years and there is a mix of male
and female workers. The regression output is shown in Figure 13.3.

Let us first examine some of the results for the overall fit of the regression
model. An 7> = 0.9311 tells us that about 93% of the variation in wages is
explained by experience, gender, and the interaction of the two. F,,,, = 139.59

stat

and p-value= 0.0000 tell us that we can reject the null that f; = f, = f; = 0.

13.3.1 Gender Differences in Starting Wages

Focusing on the estimates for the individual variables, males with zero years
of experience are expected to earn $33,014 (i.e., the value for b,). Females,
on the other hand, are expected to earn $14,147 less than males given zero
years of experience (i.e., the starting wage for females is b, + b, = $33,014 —



Regression statistics

Multiple R 0.9649
R square 0.9311
Adjust R square 0.9244
Standard error 8.0612
Observations 35
ANOVA
df SS MS F-stat p-value
Regression 3 27213.43 9071.14 139.59 0.0000
Residual 31 2014.46 64.98
Total 34 29227.89

Coefficients Standard error t-stat p-value Lower 95% Upper 95%

Intercept 33.0138 4.1556  7.9445  0.0000 24.5385 41.4892
Exp 8.6106 0.7065 12.1882  0.0000 7.1697 10.0515
Female —-14.1467 5.8174 -2.4318 0.0210 -26.0114 -2.2820
Femaleexp -5.1459 1.0225 -5.0328  0.0000 -7.2313 -3.0605

Figure 13.3 Wage as a function of experience and gender.

$14,147 = $18,867). Since the p-value = 0.0210 for b,, we can say that this dif-
ference in starting wage amounts is significant at the 0.025 level and above.

13.3.2 Gender Differences in Wage Increase from Experience

For each additional year of experience, males are expected to increase their
wage by b, = $8611, which is highly significant with a p-value = 0.0000. The
estimated change in wage for an additional year of experience for females is b; +
by = $8611 — $5146 = $3465. Therefore, males earn $5146 more than females
for each additional year of experience. The p-value for b, is 0.0000 and therefore
this difference is significant.

Both the dummy variable for gender and the interaction term illustrate that
there is gender-based wage discrimination in the labor market. Females start
with lower salaries and then earn less for each additional year of experience.
Figure 13.4 illustrates the wage differences from the regression. The top line is
the sample regression function for males (plug 0 in for Fermale) and the bottom



Wage e = 33.014 + 8.611Exp

Wage
33.014 /
18.867 Wag€temaie = 18.867 + 3.465Exp

Experience

Figure 13.4 Sample regression functions for both males and females.

line is the sample regression function for females. The starting points are differ-
ent and so are the slopes. The gender wage gap increases with every additional
year of experience.

In general, interaction variables are constructed by multiplying one variable
by another. While it is possible to create interaction variables by combining
three or more variables, the interpretation of the results quickly becomes very
difficult.

13.4 Nonlinearities

Over the past few chapters have used the OLS criterion to estimate linear
regression models. Even with multiple independent variables, the implicit
assumption is that the models we estimate are linear in the parameters. In all
the cases we have considered thus far, a one-unit change in the variable X is
expected to have the same impact on Y over the entire range of X values. While
this may be true for some relationships, it may not be true for others. Consider
the relationship between the exam grade (a dependent variable) and study
time (the independent variable). For most students, studying is beneficial and
the expectation is that the hours spent studying will have a positive effect on
exam grades. However, there comes a point where additional hours studying
do not have the same impact on performance. This is the idea of diminishing
marginal productivity of studying. The first few hours may have a big payoff,
but the last few hours may have little impact or could even have a negative
impact (e.g., lack of sleep decreases the performance).

As another example, consider the impact increasing carbon emissions has
on the average temperature of the earth. Most scientists agree that an increase
in carbon emissions causes an increase in average temperature. They also pre-
dict that the marginal increase in temperature intensifies as carbon emissions



increase. In this case, there is an increasing marginal impact of carbon emis-
sions on temperature.

It is possible to use OLS to estimate these types of nonlinear relationships
between Y and X. We can achieve this by adding a squared term as an additional
independent variable. The regression equation would then take a quadratic
form. Consider the following bivariate relationship between Y and X.

E[Y]= By + B X + pX*

The squared term is the simple calculation of X X X. The term f, captures
potential changes in X’s marginal influence on Y for larger values of X. The
important point now is that the estimated change in Y caused by a one-unit
increase in X is not f;, but g, + 2X.! With this specification, the size of the
change in Y caused by a one-unit increase in X depends on the reference
value for X. In other words, the relationship between Y and X is nonlinear if
By # 0.

The mostimportant thing is interpreting the signs on the parameter estimates
for g, and f,. Note that if g, = 0, then we are back to the linear relationship
between Y and X. When f, # 0, there are four possibilities we need to consider
regarding the combined signs for g, and f,. They are illustrated in Figure 13.5.

The upper-left quadrant (a) of Figure 13.5 illustrates a case of increasing
marginal influence of X on Y. Higher levels of X cause more dramatic changes
in Y. The graph in (a) could represent the example of carbon emissions on
temperature: higher levels of carbon have more devastating incremental
impacts on average temperatures. The graph in the upper-right quadrant (b)
illustrates the case of decreasing marginal productivity. We discussed the
case of studying for exams as an example of such nonlinearity between X and
Y. Studying leads to improvements in average grades until a point in which
more studying has perverse effects. The graph in quadrant (c) shows an initial
negative relationship between X and Y that turns positive with larger values for
X. An example of this could be an average cost curve as a function of output for
a firm. A firm’s average cost decreases with initial increases in output because
marginal costs are low and fixed costs do not change. However, as the marginal
costs increase with production so does the average cost curve. The graph in
quadrant (d) shows X having a negative effect on Y and that the negative effect
intensifies with larger values for X. This graph could represent the impact
drug use has on long-term memory. Relatively low levels of drug use reduce
long-term memory and that memory loss is exacerbated with increases in drug
use. Again, in the reference case in which g, = 0, the relationship between X
and Y is the familiar straight line.

1 The term §, + 2X is found by taking the partial derivative of E[Y] = §, + , X + ,X? with
respect to X.



(@) $1>0; >0 (b) p1>0; <0

(¢) p1<0; >0 (d) p1<0; p,<0

Figure 13.5 Potential nonlinear relationships between expected Y (vertical axes) and X
(horizontal axes).

13.5 Time-Series Analysis

Most of the datasets we have worked with in this book are cross-sectional
in nature. Cross-sectional data consist of many observations gathered from
one point in time. In that sense, there is no obvious order or sequence to the
data. Student course grades from a statistics class in a given semester are an
example of cross-sectional data. Time-series data, on the other hand, consist of
observations spanning over different points in time. These data have a natural
chronological order. An example of time-series data would be measures of
attendance taken for each class period over the entire semester. You may
be shocked to learn that attendance in my business statistics course is not
100%. Even more shocking is that the data show a trend in which attendance
rates fall as the semester drags on (with the predicable spike on review days
before exams). Fitting trend is often an important goal of analyzing time-series
data. Investors often follow a company’s stock price over time to get a feel for
performance and perhaps to forecast into the near future. Climate scientists
pour over time-series data on average temperatures and carbon emissions to
try and isolate a causal relationship. Measures of economic well-being (e.g.,
Gross Domestic Product (GDP)) and standard of living are tracked over time
to provide an indication of whether or not we are making progress.



Time-series analysis is really a topic that can stand alone as part of undergrad-
uate course in business and economics. There are many different approaches
to fitting time trends and understanding temporal relationships between vari-
ables. The objective in this section is just to highlight how we can use the linear
regression techniques covered over the past few chapters to fit trend lines to
time-series data and how these can be used in forecasting.

Let us consider time-series data on world records for women’s long jump.
World records for women’s long jump date back to 1922. 2 Figure 13.6 is a scat-
terplot of women’s long jump world records in meters from 1922-1988.

Looking at the progression of data over time in Figure 13.6, it is clear that the
data suggestalinear trend. We can fit a trend line using OLS regression. The line
chosen using OLS will be the one that minimizes the sum of the squared devi-
ations from the line. The data lead to the following sample regression function

Meters = 4.6894 + 0.031Year

where Year equals O for the year 1900 and increases by one for every year after
1900. For example, using the regression line to predict the world record in 1985
would result in 4.6894 + 0.031(85) = 7.32 meters (in reality, it was 7.44 meters).
The trend line fits the data very well. Using r? as a measure of overall fit, we get
r* = 0.9652. With r* = 1 being a perfect fit, | would say the linear trend line fits
the data extremely well.

With such a clearly defined trend, it is tempting to forecast women’s long
jump world records into the future. While there is no harm in experiment-
ing, we must be careful about how much weight we put in these results. If a
new world record in women’s long jump will be recorded at the next summer
Olympics in 2020, our model would predict that record would be set at 8.41
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Figure 13.6 Women'’s long jump world records.

2 The Federation Sportive Feminine Internationale (FSFI) maintained records from 1922 up to
1936 when it was absorbed by the International Association of Athletics Federations (IAAF).



meters (plug in 120 for Year). Of course, this forecast is made assuming the
linear trend continues. Perhaps it will. But, considering that the model would
also suggest that the women’s long jump record was 0 meters back in 1749, we
should remain suspect of persistent linear trends.

13.6 Summary

This chapter concludes the material on linear regression analysis. One goal was
to link regression results to the two sample ¢ tests we explored in Chapter 10
and then to demonstrate that regression can be used to conduct hypothesis
tests comparing more than two means. That is, linear regression can be used
to achieve the same goals as single-factor ANOVA. We also explored the use
of interaction variables and how to use linear regression to estimate potential
nonlinearities in the data. We concluded by discussing the use of linear trend
lines in time-series data and forecasting.
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