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Preface

Credit risk has become one of the most intensely studied topics in quanti-
tative finance in the last decade. A large number of books on the topic have
been published in recent years, while on the excellent homepage maintained
by Greg Gupton there are more than 1200 downloadable working papers
related to credit risk. The increased interest in modeling and management
of credit risk in academia seems only to have started in the mid-1990s.
However, due to the various issues involved, including the ability to effec-
tively apply quantitative modeling tools and techniques and the dramatic
rise of credit derivatives, it has become one of the major fields of research
in finance literature.

As a consequence of an increasingly complex and competitive finan-
cial environment, adequate risk management strategies require quantitative
modeling know-how and the ability to effectively apply this expertise and
its techniques. Also, with the revision of the Basel Capital Accord, various
credit risk models have been analyzed with respect to their feasibility, and
a significant focus has been put on good risk-management practices with
respect to credit risk. Another consequence of Basel II is that most financial
institutions will have to develop internal models to adequately determine
the risk arising from their credit exposures. It can therefore be expected
that in particular the use and application of rating based models for credit
risk will be increasing further.

On the other hand, it has to be acknowledged that rating agencies
are at the center of the subprime mortgage crisis, as they failed to pro-
vide adequate ratings for many diverse products in the credit and credit
derivative markets like mortgage bonds, asset backed securities, commercial
papers, collateralized debt obligations, and derivative products for compa-
nies and also for financial institutions. Despite some deficiencies of the
current credit rating structure—recommendations for their improvements
are thoroughly analyzed in Crouhy et al. (2008) but are beyond the scope
of this book—overall, rating based models have evolved as an industry
standard. Therefore, credit ratings will remain one of the most important
variables when it comes to measurement and management of credit risk.

The literature on modeling and managing credit risk and credit deriva-
tives has been widely extended in recent years; other books in the area
include the excellent treatments by Ammann (2002), Arvanitis and Gre-
gory (2001), Bielecki and Rutkowski (2002), Bluhm et al. (2003), Bluhm
and Overbeck (2007b), Cossin and Pirotte (2001), Duffie and Singleton
(2003), Fabozzi (2006a,b), Lando (2004), Saunders and Allen (2002), and
Schönbucher (2003), just to mention a few. However, in our opinion, so
far there has been no book on credit risk management mainly focusing
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on the use of transition matrices, which, while popular in academia, is
even more widely used in industry. We hope that this book provides a
helpful survey on the theory and application of transition matrices for
credit risk management, including most of the central issues like estimation
techniques, stability and comparison of rating transitions, VaR simula-
tion, adjustment and forecasting migration matrices, corporate-yield curve
dynamics, dependent migrations, and the modeling and pricing of credit
derivatives. While the aim is mainly to provide a review of the existing
literature and techniques, a variety of very recent results and new work
have also been incorporated into the book. We tried to keep the presenta-
tion thorough but also accessible, such that most of the chapters do not
require a very technical background and should be useful for academics,
regulators, risk managers, practitioners, and even students who require
an introduction or a more extensive and advanced overview of the topic.
The large number of applications and numerical examples should also help
the reader to better identify and follow the important implementation issues
of the described models.

In the process of writing this book, we received a lot of help from various
people in both academia and industry. First of all, we highly appreciated
feedback and comments on the manuscript by many colleagues and
friends. We would also like to thank various master, research, and PhD
students who supplied corrections or contributed their work to several of
the chapters. In particular, we are grateful to Arne Benzin, Alexander
Breusch, Jens Deidersen, Stefan Harpaintner, Jan Henneke, Matthias
Laub, Nicole Lehnert, Andreas Lorenz, Christian Menn, Jingyuan Meng,
Emrah Özturkmen, Peter Niebling, Jochen Peppel, Christian Schmieder,
Robert Soukup, Martin Sttzel, Stoyan Stoyanov, and Wenju Tian for their
contributions. Finally, we would like to thank Roxana Boboc and Stacey
Walker at Elsevier for their remarkable help and patience throughout the
process of manuscript delivery.

Stefan Trueck and Svetlozar T. Rachev

Sydney and Karlsruhe, August 2008



1
Introduction: Credit Risk Modeling,
Ratings, and Migration Matrices

1.1 Motivation

The aim of this book is to provide a review on theory and application of
migration matrices in rating based credit risk models. In the last decade,
rating based models in credit risk management have become very popular.
These systems use the rating of a company as the decisive variable and
not—like the formerly used structural models the value of the firm—when
it comes to evaluate the default risk of a bond or loan. The popularity is
due to the straightforwardness of the approach but also to the new Capital
Accord (Basel II) of the Basel Committee on Banking Supervision (2001), a
regulatory body under the Bank of International Settlements (BIS). Basel
II allows banks to base their capital requirements on internal as well as
external rating systems. Thus, sophisticated credit risk models are being
developed or demanded by banks to assess the risk of their credit port-
folio better by recognizing the different underlying sources of risk. As a
consequence, default probabilities for certain rating categories but also the
probabilities for moving from one rating state to another are important
issues in such models for risk management and pricing. Systematic changes
in migration matrices have substantial effects on credit Value-at-Risk (VaR)
of a portfolio but also on prices of credit derivatives like Collaterized Debt
Obligations (CDOs). Therefore, rating transition matrices are of particular
interest for determining the economic capital or figures like expected loss
and VaR for credit portfolios, but can also be helpful as it comes to the
pricing of more complex products in the credit industry.

This book is in our opinion the first manuscript with a main focus in
particular on issues arising from the use of transition matrices in model-
ing of credit risk. It aims to provide an up-to-date reference to the central
problems of the field like rating based modeling, estimation techniques,
stability and comparison of rating transitions, VaR simulation, adjust-
ment and forecasting migration matrices, corporate-yield curve dynamics,
dependent defaults and migrations, and finally credit derivatives modeling
and pricing. Hereby, most of the techniques and issues discussed will be
illustrated by simplified numerical examples that we hope will be helpful
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to the reader. The following sections provide a quick overview of most of
the issues, problems, and applications that will be outlined in more detail
in the individual chapters.

1.2 Structural and Reduced Form Models

This book is mainly concerned with the use of rating based models for
credit migrations. These models have seen a significant rise in popula-
rity only since the 1990s. In earlier approaches like the classical structural
models introduced by Merton (1974), usually a stochastic process is used
to describe the asset value V of the issuing firm

dV (t) = μV (t)dt + σV (t)dW (t)

where μ and σ are the drift rate and volatility of the assets, and W (t)
is a standard Wiener process. The firm value models then price the bond
as contingent claims on the asset. Literature describes the event of default
when the asset value drops below a certain barrier. There are several model
extensions, e.g., by Longstaff and Schwartz (1995) or Zhou (1997), including
stochastic interest rates or jump diffusion processes. However, one fea-
ture of all models of this class is that they model credit risk based on
assuming a stochastic process for the value of the firm and the term struc-
ture of interest rates. Clearly the problem is to determine the value and
volatility of the firm’s assets and to model the stochastic process driving
the value of the firm adequately. Unfortunately using structural models,
especially short-term credit spreads, are generally underestimated due to
default probabilities close to zero estimated by the models. The fact that
both drift rate and volatility of the firm’s assets may also be dependent on
the future situation of the whole economy is not considered.

The second major class of models—the reduced form models—does not
condition default explicitly on the value of the firm. They are more gen-
eral than structural models and assume that an exogenous random variable
drives default and that the probability of default (PD) over any time inter-
val is non-zero. An important input to determine the default probability
and the price of a bond is the rating of the company. Thus, to determine
the risk of a credit portfolio of rated issuers one generally has to consider
historical average defaults and transition probabilities for current rating
classes. The reduced form approach was first introduced by Fons (1994)
and then extended by several authors, including Jarrow et al. (1997) and
Duffie and Singleton (1999). Quite often in reduced form approaches the
migration from one rating state to another is modeled using a Markov chain
model with a migration matrix governing the changes from one rating state
to another. An exemplary transition matrix is given in Table 1.1.
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TABLE 1.1. Average One-Year Transition Matrix of Moody’s Corporate Bond
Ratings for the Period 1982–2001

Aaa Aa A Baa Ba B C D

Aaa 0.9276 0.0661 0.0050 0.0009 0.0003 0.0000 0.0000 0.0000
Aa 0.0064 0.9152 0.0700 0.0062 0.0008 0.0011 0.0002 0.0001
A 0.0007 0.0221 0.9137 0.0546 0.0058 0.0024 0.0003 0.0005
Baa 0.0005 0.0029 0.0550 0.8753 0.0506 0.0108 0.0021 0.0029
Ba 0.0002 0.0011 0.0052 0.0712 0.8229 0.0741 0.0111 0.0141
B 0.0000 0.0010 0.0035 0.0047 0.0588 0.8323 0.0385 0.0612
C 0.0012 0.0000 0.0029 0.0053 0.0157 0.1121 0.6238 0.2389
D 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 1.0000

Besides the fact that they allow for realistic short-term credit spreads,
reduced form models also give great flexibility in specifying the source of
default. We will now give a brief outlook on several issues that arise when
migration matrices are applied in rating based credit modeling.

1.3 Basel II, Scoring Techniques, and Internal
Rating Systems

As mentioned before, due to the new Basel Capital Accord (Basel II) most
of the international operating banks may determine their regulatory capital
based on an internal rating system (Basel Committee on Banking Super-
vision, 2001). As a consequence, a high fraction of these banks will have
ratings and default probabilities for all loans and bonds in their credit
portfolio. Therefore, Chapters 2 and 3 of this book will be dedicated to the
new Basel Capital Accord, rating agencies, and their methods and a review
on scoring techniques to derive a rating. Regarding Basel II, the focus
will be set on the internal ratings based (IRB) approach where the banks
are allowed to use the results of their own internal rating systems. Conse-
quently, it is of importance to provide a summary on the rating process of
a bank or the major rating agencies. As will be illustrated in Chapter 6,
internal and external rating systems may show quite a different behavior
in terms of stability of ratings, rating drifts, and time homogeneity.

While Weber et al. (1998) were the first to provide a comparative study
on the rating and migration behavior of four major German banks, recently
more focus has been set on analyzing rating and transition behavior also
in internal rating systems (Bank of Japan, 2005; Euopean Central Bank,
2004). Recent publications include, for example, Engelmann et al. (2003),
Araten et al. (2004), Basel Committee on Banking Supervision (2005), and
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Jacobson et al. (2006). Hereby, Engelmann et al. (2003) and the Basel
Committee on Banking Supervision (2005) are more concerned with the
validation, respectively, classification of internal rating systems. Araten
et al. (2004) discuss issues in evaluating banks’ internal ratings of borrow-
ers comparing the ex-post discrimination power of an internal and external
rating system. Jacobson et al. (2006) investigate internal rating systems
and differences between the implied loss distributions of banks with equal
regulatory risk profiles. We provide different technologies to compare rating
systems and estimated migration matrices in Chapters 2 and 7.

Another problem for internal rating systems arises when a continuous-
time approach is chosen for modeling credit migrations. Since for bank
loans, balance sheet data or rating changes are reported only once a year,
there is no information on the exact time of rating changes available.
While discrete migration matrices can be transformed into a continuous-
time approach, Israel et al. (2000) show that for several cases of discrete
transition matrices there is no “true” or valid generator. In this case, only
an approximation of the continuous-time transition matrix can be chosen.
Possible approximation techniques can be found in Jarrow et al. (1997),
Kreinin and Sidelnikova (2001), or Israel et al. (2000) and will be discussed
in Chapter 5.

1.4 Rating Based Modeling and the Pricing
of Bonds

A quite important application of migration matrices is also their use for
determining the term structure of credit risk. In 1994, Fons (1994) devel-
oped a reduced form model to derive credit spreads using historical default
rates and a recovery rate estimate. He illustrated that the term structure of
credit risk, i.e., the behavior of credit spreads as maturity varies, depends
on the issuer’s credit quality, i.e., its rating. For bonds rated investment
grade, the term structures of credit risk have an upward sloping struc-
ture. The spread between the promised yield-to-maturity of a defaultable
bond and a default-free bond of the same maturity widens as the matu-
rity increases. On the other hand, speculative grade rated bonds behave in
the opposite way: the term structures of the credit risk have a downward-
sloping structure. Fons (1994) was able to provide a link between the rating
of a company and observed credit spreads in the market.

However, obviously not only the “worst case” event of default has influ-
ence on the price of a bond, but also a change in the rating of a company can
affect prices of the issued bond. Therefore, with CreditMetrics JP Morgan
provides a framework for quantifying credit risk in portfolios using histor-
ical transition matrices (Gupton et al., 1997). Further, refining the Fons
model, Jarrow et al. (1997) introduced a discrete-time Markovian model
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to estimate changes in the price of loans and bonds. Both approaches
incorporate possible rating upgrades, stable ratings, and rating downgrades
in the reduced form approach. Hereby, for determining the price of credit
risk, both historical default rates and transition matrices are used. The
model of Jarrow et al. (1997) is still considered one of the most important
approaches as it comes to the pricing of bonds or credit derivatives and
will be described in more detail in Chapter 8.

Both the CreditMetrics framework and Markov chain approach heavily
rely on the use of adequate credit migration matrices as will be illustrated in
Chapters 4 and 5. Further, the application of migration matrices for deriv-
ing cumulative default probabilities and the pricing of credit derivatives
will be illustrated in Chapter 11.

1.5 Stability of Transition Matrices, Conditional
Migrations, and Dependence

As mentioned before, historical transition matrices can be used as an input
for estimating portfolio loss distributions and credit VaR figures. Unfor-
tunately, transition matrices cannot be considered to be constant over a
longer time period; see e.g., Allen and Saunders (2003) for an extensive
review on cyclical effects in modeling credit risk measurement. Further,
migrations of loans in internal bank portfolios may behave differently than
the transition matrices provided by major rating agencies like Moody’s or
Standard & Poor’s would suggest (Krüger et al., 2005; Weber et al., 1998).
Nickell et al. (2000) show that there is quite a big difference between tran-
sition matrices during an expansion of the economy and a recession. The
results are confirmed by Bangia et al. (2002) who suggest that for risk man-
agement purposes it might be interesting not only to simulate the term
structure of defaults but to design stress test scenarios by the observed
behavior of default and transition matrices through the cycle. Jafry and
Schuermann (2004) investigate the mobility in migration behavior using 20
years of Standard & Poor’s transition matrices and find large deviations
through time. Kadam and Lenk (2008) report significant heterogeneity in
default intensity, migration volatility, and transition probabilities depend-
ing on country and industry effects. Finally, Trueck and Rachev (2005)
show that the effect of different migration behavior on exemplary credit
portfolios may lead to substantial changes in expected losses, credit VaR,
or confidence sets for probabilities of default (PDs). During a recession
period of the economy the VaR for one and the same credit portfolio can
be up to eight times higher than during an expansion of the economy.

As a consequence, following Bangia et al. (2002), it seems necessary
to extend transition matrix application to a conditional perspective using
additional information on the economy or even forecast transition matrices
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using revealed dependencies on macroeconomic indices and interest rates.
Based on the cyclical behavior of migration, the literature provides some
approaches to adjust, re-estimate, or change migration matrices according
to some model for macroeconomic variables or observed empirical prices.
Different approaches suggest conditioning the matrix based on macroeco-
nomic variables or forecasts that will affect future credit migrations. The
first model developed to explicitly link business cycles to rating transi-
tions was in the 1997 CreditPortfolioView (CPV) by Wilson (1997a,b).
Kim (1999) develops a univariate model whereby ratings respond to busi-
ness cycle shifts. The model is extended to a multifactor credit migration
model by Wei (2003) while Cowell et al. (2007) extend the model by replac-
ing the normal with an α-stable distribution for modeling the risk factors.
Nickell et al. (2000) propose an ordered probit model which permits migra-
tion matrices to be conditioned on the industry, the country domicile, and
the business cycle. Finally, Bangia et al. (2002) provide a Markov switch-
ing model, separating the economy into two regimes. For each state of
the economy—expansion and contraction—a transition matrix is estimated
such that conditional future migrations can be simulated based on the state
of the economy.

To approach these issues, the major concern is to be able to judge
whether one has an adequate model or forecast for a conditional or uncon-
ditional transition matrix. It raises the question: What can be considered
to be a “good” model in terms of evaluating migration behavior or risk for
a credit portfolio? Finally, the question of dependent defaults and credit
migration has to be investigated. Knowing the factors that lead to changes
in migration behavior and quantifying their influence may help a bank
improve its estimates about expected losses and Value-at-Risk. These issues
will be more thoroughly investigated in Chapters 8, 9, and 10.

1.6 Credit Derivative Pricing

As mentioned before, credit migration matrices also play a substantial role
in the modeling and pricing of credit derivatives, in particular collaterized
debt obligations (CDOs). The market for credit derivatives can be consid-
ered as one of the fastest growing in the financial industry. The importance
of transition matrices for modeling credit derivatives has been pointed out
in several studies. Jarrow et al. (1997) use historical transition matrices and
observed market spreads to determine cumulative default probabilities and
credit curves for the pricing of credit derivatives. Bluhm (2003) shows how
historical one-year migration matrices can be used to determine cumulative
default probabilities. This so-called calibration of the credit curve can then
be used for the rating of cash-flow CDO tranches.

In recent publications, the effect of credit migrations on issues like credit
derivative pricing and rating is examined by several authors, by Bielecki
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et al. (2003), Hrvatin et al. (2006), Hurd and Kuznetsov (2005), and Picone
(2005), among others. Hrvatin et al. (2006) investigate CDO near-term
rating stability of different CDO tranches depending on different factors.
Next to the granularity of the portfolio, in particular, credit migrations
in the underlying reference portfolio are considered to have impact on the
stability of CDO tranche ratings. Pointing out the influence of changes in
credit migrations, Picone (2005) develops a time-inhomogeneous intensity
model for valuing cash-flow CDOs. His approach explicitly incorporates
the credit rating of the firms in the collateral portfolio by applying a set of
transition matrices, calibrated to historical default probabilities. Finally,
Hurd and Kuznetsov (2005) show that credit basket derivatives can be
modeled in a parsimonious and computationally efficient manner within
the affine Markov chain framework for multifirm credit migration while
Bielecki et al. (2003) concentrate on dependent migrations and defaults in
a Markovian market model and the effects on the valuation of basket credit
derivatives. Both approaches heavily rely on the choice of an adequate
transition matrix as a starting point.

Overall, the importance of credit transition matrices in modeling credit
derivatives cannot be denied. Therefore, Chapter 11 is mainly dedicated
to the application of migration matrices in the process of calibration,
valuation, and pricing of these products.

1.7 Chapter Outline

Chapters 2, 3, and 4 provide a rather broad view and introduction to rating
based models in credit risk and the new Basel Capital Accord. Chapter 2
aims to give a brief overview on rating agencies, rating systems, and an
exemplary rating process. Then different scoring techniques discriminant
analysis, logistic regression, and probit models are described. Further, a sec-
tion is dedicated to the evaluation of rating systems by using cumulative
accuracy profiles and accuracy ratios. Chapter 3 then illustrates the new
capital accord of the Basel Committee on Banking Supervision. Since 1988,
when the old accord was published, risk management practices, supervisory
approaches, and financial markets have undergone significant transforma-
tions. Therefore, the new proposal contains innovations that are designed
to introduce greater risk sensitivity into the determination of the required
economic capital of financial institutions. This is achieved by taking into
account the actual riskiness of an obligor by using ratings provided by
external rating agencies or internally estimated probabilities of default. In
Chapter 4 we review a number of models for credit risk that rely heavily on
company ratings as input variables. The models are focused on risk man-
agement and give different approaches to the determination of the expected
losses, unexpected losses, and Value-at-Risk. We will focus on rating based
models including the reduced-form model suggested by Fons (1994) and
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extensions of the approach with respect to default intensities. Then we will
have a look at the industry models CreditMetrics and CreditRiskPlus. In
particular the former also uses historical transition matrices to determine
risk figures for credit portfolios.

Chapters 5, 6, and 7 are dedicated to various issues of rating transi-
tions and the Markov chain approach in credit risk modeling. Chapter 5
introduces the basic ideas of modeling migrations with transition matrices.
We further compare discrete and continuous-time modeling of rating migra-
tions and illustrate the advantages of the continuous-time approach. Fur-
ther, the problems of embeddability and identification of generator matrices
are examined and some approximation methods for generator matrices
are described. Finally, a section is dedicated to simulations of rating
transitions using discrete time, continuous-time, and nonparametric tech-
niques. In Chapter 6 we focus on time-series behavior and stability of migra-
tion matrices. Two of the major issues to investigate are time homogeneity
and Markov behavior of rating migrations. Generally, both assumptions
should be treated with care due to the influence of the business cycle
on credit migration behavior. We provide a number of empirical studies
examining the issues and further yielding results on rating drifts, changes
in Value-at-Risk figures for credit portfolios, and on the stability of prob-
ability of default estimated through time. Chapter 7 is dedicated to the
study of measures for comparison of rating transition matrices. A review
of classical matrix norms is given before indices based on eigenvalues and
eigenvectors, including a recently proposed mobility metric, are described.
The rest of the chapter then proposes some criteria that should be help-
ful to compare migration matrices from a risk perspective and suggests
new risk-adjusted indices for measuring those differences. A simple sim-
ulation study on the adequacy of the different measures concludes the
chapter.

Chapters 8 and 9 deal with determining risk-neutral and conditional
migration matrices. While the former are used for the pricing of credit
derivatives based on observed market probabilities of defaults, the latter
focus on transforming average historical transition matrices by taking into
account information on macroeconomic variables and the business cycle.
In Chapter 8 we start with a review of the seminal paper by Jarrow et al.
(1997) and then examine a variety of adjustment techniques for migra-
tion matrices. Hereby, methods based on a discrete and continuous-time
framework as well as a recently suggested adjustment technique based on
economic theory are illustrated. For each of the techniques we give numer-
ical examples illustrating how it can be conducted. Chapter 9 deals with
conditioning and forecasting transition matrices based on business cycle
indicators. Hereby, we start with the approach suggested in the indus-
try model CreditPortfolioView and then review techniques that are based
on factor model representations and other techniques. An empirical study
comparing several of the techniques concludes the chapter.
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Chapters 10 and 11 deal with more recent issues on modeling dependent
migrations and the use of transition matrices for credit derivative pricing.
In Chapter 10 we start with an illustration on how dependency between
individual loans may substantially affect the risk for a financial institution.
Then different models for the dependence structure with a focus on cop-
ulas are suggested. We provide a brief review on the underlying ideas for
modeling dependent defaults and then show how a framework for model-
ing dependent credit migrations can be developed. In an empirical study on
dependent migrations we show that both the degree of dependence entering
the model as well as the choice of the copula significantly affects determined
risk figures for credit portfolios. Chapter 11 finally provides an overview
on the use of transition matrices for the pricing of credit derivatives. The
chapter illustrates how derived credit curves can be used for the pricing
of single-named credit derivatives like, e.g., credit default swaps and fur-
ther shows the use of migration matrices for the pricing of more complex
products like collaterized debt obligations. Finally we also have a look at
the pricing of step-up bonds that have been popular in particular in the
Telecom sector.



2
Rating and Scoring Techniques

This chapter aims to provide an overview on rating agencies, the rating
process, scoring techniques, and how rating systems can be evaluated.
Hereby, after a brief look at some of the major rating agencies, different
qualitative and quantitative techniques for credit scoring will be described.
The focus will be set on the classic methods of discriminant analysis and
probit and logit models. The former was initially suggested in the seminal
paper by Altman (1968) and after four decades is still an often-used tool for
determining the default risk of a company. Further we will illustrate how
the quality of rating systems can be evaluated by using accuracy ratios.

2.1 Rating Agencies, Rating Processes,
and Factors

In this section we will take a brief look at rating agencies, categories, and the
rating process. In particular we will provide a rough overview of the rating
procedure as it is implemented by Standard & Poor’s (S&P)—one of the
major credit rating agencies. Rating agencies have a long tradition in the
United States. For example, S&P traces its history back to 1860 and began
rating the debt of corporate and government issuers more than 75 years ago.
The Securities and Exchange Commission (SEC) has currently designated
several agencies as “nationally recognized statistical rating organizations”
(NRSROs), including, e.g., Moody’s KMV, Standard & Poor’s, Fitch, or
Thomson BankWatch.

Even though methodologies and standards differ from one NRSRO to the
other, regulators generally do not make distinctions among the agencies.
Although there is a high congruence between the rating systems of Moody’s
and S&P, different agencies might assign slightly different ratings for the
same bond. For studies on split ratings and their effects on bond prices or
yields, see, e.g., Cantor et al. (2005); Billingsley et al. (1985); Perry et al.
(2008). Today, the S&P’s Ratings Services is a business unit of McGraw-
Hill Inc., a major publishing company. S&P now rates more than USD 10
trillion in bonds and other financial obligations of obligors in more than
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50 countries. Its ratings also serve as input data for several credit risk
software models such as CreditMetrics of JP Morgan, a system that
evaluates risks individually or across an entire portfolio.

Generally the rating agencies provide two different sorts of ratings:

• Issue-specific credit ratings and

• Issuer credit ratings

Issue-specific credit ratings are current opinions of the creditworthiness
of an obligor with respect to a specific financial obligation, a specific class
of financial obligations, or specific financial program. Issue-specific ratings
also take into account the recovery prospects associated with the specific
debt being rated. Issuer credit ratings, on the other hand, give an opin-
ion of the obligor’s overall capacity to meet its financial obligations—that
is, its fundamental creditworthiness. These so-called corporate credit rat-
ings indicate the likelihood of default regarding all financial obligations of
the firm. The practice of differentiating issues in relation to the issuer’s
overall creditworthiness is known as “notching.” Issues are notched up or
down from the corporate credit rating level in accordance with established
guidelines.

Some of the rating agencies have historically maintained separate rating
scales for long-term and short-term instruments. Long-term credit ratings,
i.e., obligations with an original maturity of more than one year, are divided
into several categories ranging from AAA, reflecting the strongest credit
quality, to D, reflecting occurrence of default. Ratings in the four highest
categories, AAA, AA, A, and BBB, generally are recognized as being invest-
ment grades, whereas debts rated BB or below generally are regarded as
having significant speculative characteristics and are also called noninvest-
ment grade. Ratings from AA to CCC may be modified by the addition
of a plus or minus sign to show the relative standing within the major
rating categories. The symbol R is attached to the ratings of instruments
with significant noncredit risks. It highlights risks to principal or volatility
of expected returns that are not addressed in the credit rating. Examples
include obligations linked or indexed to equities, currencies, or commodi-
ties and obligations exposed to severe prepayment risk such as interest-only
or principal-only mortgage securities. In case of default, the symbol SD
(Selective Default) is assigned when an issuer can be expected to default
selectively, that is, continues to pay certain issues or classes of obligations
while not paying others. The issue rating definitions are expressed in terms
of default risk and the protection afforded by the obligation in the event of
bankruptcy. Table 2.1 gives a qualitative description of how the different
rating categories should be interpreted.

Of course, in the end the rating of a company or loan should also be
transferable to a corresponding default probability. Obviously, as we will
see later on in Chapter 6, for example, default probabilities for different
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TABLE 2.1. Rating Categories and Explanation of Ratings
Source: S&P’s Corporate Ratings Criteria (2000)

Rating Definition

AAA The obligor’s capacity to meet its financial commitment on the
obligation is extremely strong.

AA An obligation rated AA differs from the highest rated obligations
only to a small degree. The obligor’s capacity to meet its financial
commitment on the obligation is very strong.

A An obligation rated A is somewhat more susceptible to the adverse
effects of changes in circumstances and economic conditions than
obligations in higher rated categories.

BBB An obligation rated BBB exhibits adequate protection parameters.
However, adverse economic conditions or changing circumstances are
more likely to lead to a weakened capacity of the obligor to meet its
financial commitments on the obligation.

BB An obligation rated BB is less vulnerable to nonpayment than other
speculative issues. However, it faces major ongoing uncertainties or
exposure to adverse business, financial, or economic conditions that
could lead to the obligor’s inadequate capacity to meet its financial
commitment on the obligation.

B The obligor currently has the capacity to meet its financial commitment
on the obligation. Adverse business, financial, or economic conditions
will likely impair the obligor’s capacity or willingness to meet financial
commitments.

CCC An obligation rated CCC is currently vulnerable to nonpayment, and is
dependent upon favorable business, financial, and economic conditions
for the obligor to meet its financial commitment on the obligation.

CC An obligation rated CC is currently highly vulnerable to nonpayment.
C The C rating may be used to cover a situation where a bankruptcy

petition has been filed or similar action has been taken but payments
on this obligation are being continued.

D The D rating, unlike other ratings, is not prospective. Rather, it is used
only where a default has actually occurred and not where a default is
only expected.

rating categories vary substantially through time. Therefore, it is difficult
to provide a unique or reliable mapping of ratings to default probabilities.
A possible mapping, following Dartsch and Weinrich (2002), is provided in
Table 2.2 where default probabilities for rating systems with the typical 7
and 18 states (default is not considered a rating state here) are given. Note,
however, that due to cyclical effects, these numbers have to be treated very
carefully. Further note that other sources, depending on the considered
time horizon, might provide quite different default probabilities associated
with the corresponding rating categories.
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TABLE 2.2. Rating Categories and Correspond-
ing Default Probabilities According to Dartsch and
Weinrich (2002)

18 classes 7 classes Lower PD Upper PD

AAA AAA 0.00% 0.025%

AA+ 0.025% 0.035%
AA AA 0.035% 0.045%
AA− 0.045% 0.055%

A+ 0.055% 0.07%
A A 0.07% 0.095%
A− 0.095% 0.135%

BBB+ 0.135% 0.205%
BBB BBB 0.205% 0.325%
BBB− 0.325% 0.5125%

BB+ 0.5125% 0.77%
BB BB 0.77% 1.12%
BB− 1.12% 1.635%

B+ 1.635% 2.905%
B B 2.905% 5.785%
B− 5.785% 11.345%

CCC+ 11.345% 17.495%
CCC CCC 17.495% −

2.1.1 The Rating Process
Most corporations approach rating agencies to request a rating prior to
sale or registration of a debt issue. For example, S&P assigns and pub-
lishes ratings for all public corporate debt issues over USD 50 million—with
or without a request from the issuer; but in all instances, S&P’s analyt-
ical staff will contact the issuer to call for cooperation. Generally, rating
agency analysts concentrate on one or two industries only, covering the
entire spectrum of credits within those areas. Such specialization allows
accumulation of expertise and competitive information better than if, e.g.,
speculative grade issuers were monitored separately from investment-grade
issuers. For basic research, analysts expect financial information about the
company consisting of five years of audited annual financial statements,
the last several interim financial statements, and narrative descriptions of
operations and products. The meeting with corporate management can be
considered an important part of an agency’s rating process. The purpose
is to review in detail the company’s key operating and financing plans,
management policies, and other credit factors that have an impact on
the rating. Additionally, facility tours can take place to convey a better
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understanding of a company’s business to a rating analyst. Shortly after
the issuer meeting, the industry analyst convenes a rating committee in
connection with a presentation. It includes analysis of the nature of the
company’s business and its operating environment, evaluation of the com-
pany’s strategic and financial management, financial analysis, and a rating
recommendation.

Once the rating is determined, the company is notified of the rating and
the major considerations supporting it. It is usually the policy of rating
agencies to allow the issuer to respond to the rating decision prior to its
publication by presenting new or additional data. In the case of a decision
to change an existing rating, any appeal must be conducted as quickly as
possible, i.e., within a day or two. The rating committee reconvenes to
consider the new information. After the company is notified, the rating is
published in the media—or released to the company for publication in the
case of corporate credit ratings.

Corporate ratings on publicly distributed issues are monitored for at
least one year. For example, the company can then elect to pay the rating
agency to continue surveillance. Ratings assigned at the company’s request
have the option of surveillance, or being on a “point-in-time” basis. Where
a major new financing transaction is planned such as, e.g., acquisitions,
an update management meeting is appropriate. In any event, meetings are
routinely scheduled at least annually to discuss industry outlook, business
strategy, and financial forecasts and policies.

As a result of the surveillance process, it sometimes becomes apparent
that changing conditions require reconsideration of the outstanding debt
rating. After a preliminary review, which may lead to a so-called Credit-
Watch listing of the company or outstanding issue, a presentation to the
rating committee follows to arrive at a rating decision. Again, the company
is notified and afterwards the agency publishes the rating. The process is
exactly the same as the rating of a new issue. Reflecting this surveillance,
the timing of rating changes depends neither on the sale of new debt issues
nor on the agency’s internal schedule for reviews.

Ratings with a pi-subscript are usually based on an analysis of an issuer’s
published financial information. They do not reflect in-depth meetings and
therefore consist of less comprehensive information than ratings without a
pi-subscript. Ratings with a pi-subscript are reviewed annually based on
the new year’s financial statements, but may be reviewed on an interim
basis if a major event that may affect the issuer’s credit quality occurs.
They are neither modified with + or − signs nor subject to CreditWatch
listings or rating outlooks.

CreditWatch and rating outlooks focus on scenarios that could result
in a rating change. Ratings appear on CreditWatch lists when an event
or deviation from an expected trend has occurred or is expected and
additional information is necessary to take a rating action. For exam-
ple, an issue is placed under such special surveillance as the result of
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mergers, recapitalizations, regulatory actions, or unanticipated operating
developments. Such rating reviews normally are completed within 90 days,
unless the outcome of a specific event is pending. However, a listing does
not mean a rating change is inevitable, but in some cases, the rating
change is certain and only the magnitude of the change is unclear. In those
instances—and generally wherever possible—the range of alternative rat-
ings that could result is shown. A rating outlook also assesses potential for
change, but has a longer time frame than CreditWatch listings and incor-
porates trends or risks with less certain implications for credit quality. Note
that, for example, S&P regularly publishes CreditWatch listings with the
corresponding designations and rating outlooks to notify both the issuer
and the market of recent developments whose rating impact has not yet
been determined.

2.1.2 Credit Rating Factors
Table 2.3 exemplarily illustrates possible business risk and financial risk fac-
tors that enter the rating process of S&P. All categories mentioned above
are scored in the rating process and there are also scores for the over-
all business and financial risk profile. The company’s business risk profile
determines the level of financial risk appropriate for any rating category.
S&P computes a number of financial ratios and tracks them over time.
S&P claims that industry risk—their analysis of the strength and stability
of the industry in which the firm operates—probably receives the high-
est weight in the rating decision, but there are no formulae for combining
scores to arrive at a rating conclusion. Generally all of the major rating
agencies agree that a rating is, in the end, an opinion and considers both
quantitative and qualitative factors.

In the world of emerging markets, rating agencies usually also incor-
porate country and sovereign risk to their rating analysis. Both business
risk factors such as macroeconomic volatility, exchange-rate risk, govern-
ment regulation, taxes, legal issues, etc., and financial risk factors such
as accounting standards, potential price controls, inflation, and access

TABLE 2.3. Corporate Credit Analysis Factors
Source: S&P’s Corporate Ratings Criteria (2000)

Business Risk Financial Risk

Industry Characteristics Financial Characteristics
Competitive Position Financial Policy
Marketing Profitability
Technology Capital Structure
Efficiency Cash Flow Protection
Regulation Financial Flexibility
Management
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to capital are included in the analysis. Additionally, the anticipated ups
and downs of business cycles—whether industry-specific or related to the
general economy—are factored into the credit rating.

2.1.3 Types of Rating Systems
Recently, there has been quite some literature dealing with the philoso-
phy, dynamics, and classification of different types of rating systems (see,
e.g., Altman and Rijken (2006); Basel Committee on Banking Supervision
(2005); Varsany (2007)). First of all, we have to decide whether a rating
system is an obligor-specific one. Usually, the borrowers who share a similar
risk profile are assigned to the same rating grade. Afterwards a probability
of default (PD) is assigned. Very often the same PD is assigned to all bor-
rowers of the same rating grade. For such a rating methodology the PDs
do not discriminate between better and lower creditworthiness inside one
rating grade. Consequently, the probability to migrate to a certain other
rating grade is the same for all borrowers having the same rating.

An important classification of rating systems is the decision whether a
rating system is point-in-time (PIT) or through-the-cycle (TTC). A PIT-
PD describes the actual creditworthiness within a certain time horizon,
whereas TTC-PDs also take into account possible changes in the macro-
economic conditions. A TTC-PD will not be affected when the change of
the creditworthiness is caused only by a change of macroeconomic variables
which more or less describe the state of the economy and which more or less
affect the creditworthiness of all borrowers in a similar way. These two types
have to be considered as extreme types of possible ratingmethodologies.Most
rating systems are somewhere in between these two methods and are neither
PIT nor TTC in a pure fashion. The question whether a rating system is of
the type TTC or PIT is quite important. Obviously, we would expect that a
TTC-rating method shows fewer rating migrations as the assignment of an
upper and lower threshold for the PDs may be adjusted because the state of
the economy is taken into consideration. Very often expert judgments over-
ride a rating assignment which originally resulted from a rating algorithm.
For a further discussion of these issues we refer to Altman and Rijken (2006),
Basel Committee on Banking Supervision (2005), or Varsany (2007).

In the following section we will take a closer look at quantitative techniques
for determining credit ratings.Note, however, thatwhenquantitative balance
sheet data are used as the only input, these techniques should be considered
as only a part of the complete rating procedure of an agency.

2.2 Scoring Systems

Credit scoring systems can be found in virtually all types of credit analy-
sis, from consumer credit to commercial loans. The idea is to pre-identify
certain key factors that determine the PD and combine or weight them



18 2. Rating and Scoring Techniques

into a quantitative score. This score can be either directly interpreted as a
probability of default or used as a classification system.

The first research on bankruptcy prediction goes back to the 1930s
(Fitzpatrick, 1932); however, two of the seminal papers in the area were
published in the 1960s by Altman (1968) and Beaver (1966). Since then an
impressive body of theoretical and especially empirical research concern-
ing this topic has evolved. The most significant reviews can be found in
Zavgren (1985), Altman (1983), Jones (1987), Altman and Narayanan
(1997), Altman and Saunders (1998), and Balcaena and Oogh (2006). The
latter provide a detailed survey of credit risk measurement approaches.
Also, the major methodologies for credit scoring should be mentioned:
linear probability models, logit models, probit models, discriminant analy-
sis models, and, more recently, neural networks.

The linear probability model is based on a linear regression model, and
makes use of a number of accounting variables to try to predict the prob-
ability of default. The logit model assumes that the default probability
is logistically distributed and was initially suggested in Ohlson (1980).
The usefulness of the approach in bankcruptcy predicting is illustrated,
for example, in Platt and Platt (1991). Probit models were initially sug-
gested for bankcruptcy prediction by Zmijewski (1984). They are quite
similar to logistic regression (logit); however, the assumption of a normal
distribution is applied. The multiple discriminant analysis (MDA), initially
proposed and advocated by Beaver (1966) and Altman (1968), is based on
finding a linear function of both accounting and market-based variables
that best discriminate between the groups of firms that actually defaulted
and firms that did not default. The models are usually based on empiri-
cal procedures: they search out the variables that seem best in predicting
bankruptcies.

During the 1990s artificial neural networks also became more popu-
lar, since the method often produced very promising results in predicting
bankruptcies; see, e.g., Wilson and Sharda (1994), Atiya (1997), and Tucker
(1996). However, often no systematic way of identifying the predictive
variables for the neural networks has been used in these studies. Genetic
algorithms are a new promising method for finding the best set of indica-
tors for neural networks. These algorithms have been applied successfully
in several optimization problems, especially in technical fields. Note that
a description of neural networks for rating procedures is beyond the scope
of this chapter. For further reading we refer, e.g., to Wilson and Sharda
(1994), Atiya (1997), Tucker (1996), and the references mentioned there.

Generally, in bankruptcy prediction, two streams of research can be dis-
tinguished: the most often investigated research question has been the
search for the optimal predictors or financial ratios leading to the lowest
misclassification rates. Another stream of literature has been concentrated
on the search for statistical methods that would also lead to improved
prediction accuracy.
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Altman (1968) pioneered the use of a multivariate approach in the
context of bankruptcy models. After the Altman study the multivariate
approach became dominant in these models and until the 1980s discrimi-
nant analysis was the preferred method in failure prediction. However, it
suffered from assumptions that were violated very often: the assumption of
normality of the financial ratio distributions was problematic, particularly
for the failing firms. During the 1980s the method was replaced by logit or
probit models, which until recently were still the most popular statistical
method for failure prediction purposes.

2.3 Discriminant Analysis

Discriminant analysis (DA) or multiple discriminant analysis (MDA) tries
to derive the linear combination of two or more independent variables that
will discriminate best between a priori defined groups, which in the most
simple case are failing and nonfailing companies. In the two-group case,
discriminant function analysis can also be thought of as (and is analogous
to) multiple regression. If we code the two groups in the analysis as 1 and 2
and use that variable as the dependent one in a multiple regression analysis,
analogous results to using a discriminant analysis could be obtained. This
is due to the statistical decision rule of maximizing the between-group
variance relative to the within group variance in the discriminant analysis
technique. DA derives the linear combinations from an equation that takes
the following form:

Z = w0 + w1X1 + w2X2 + · · · + wnXn (2.1)

where Z is the discriminant score (Z score), w0 is a constant, wi (i =
1, 2, . . . , n) the discriminant coefficients, and Xi(i = 1, 2, . . . , n) the inde-
pendent variables, i.e., the financial ratios.

Probably the most famous MDA model goes back to Altman (1968). The
Altman Z-score-model can be used as a classificatory model for corporate
borrowers, but may also be used to predict default probabilities. In his
analysis, based on empirical samples of failed and solvent firms and using
linear discriminant analysis, the best fitting scoring model for commercial
loans took the form

Z = 0.012X1 + 0.014X2 + 0.033X3 + 0.006X4 + 0.999X5 (2.2)

where

X1 = working capital/total assets

X2 = retained earnings/total asset
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X3 = earnings before interest and taxes/total asset

X4 = market value of equity/book value of total liabilities

X5 = sales/total assets

The weights of the factors were initially based on data from publicly
held manufacturers, but the model has since been modified for various
other industries. To evaluate the resulting scores, when weighted by the
estimated coefficients in the Z-function, results below a critical value (in
Altman’s initial study this was 1.81) would be classified as “bad” and the
loan would be refused. Some basic ideas of Altman’s model may be doubtful
to still fulfill the needs of a powerful default prediction model: first, the
model is based on linear relationships between the Xi’s, whereas the path
to bankruptcy may be highly nonlinear. Second, the model is based only
on backward-looking accounting ratios. It is therefore questionable whether
such models can pick up a firm whose condition is rapidly deteriorating.
Therefore, during periods with a high number of defaults like, e.g., the
Asian crisis in 1998 or the burst of the dot-com bubble in 2001, the model
might not have a reliable predictive power.

Overall, the interpretation of the results of a DA or MDA two-group
problem is straightforward and closely follows the logic of multiple regres-
sion: those variables with the largest standardized regression coefficients
are the ones that contribute most to the prediction of group membership.
In the end each firm receives a single composite discriminant score, which
is then compared to a cut-off value that determines to which group the
company belongs. Discriminant analysis does assume that the variables in
every group follow a multivariate normal distribution and the covariance
matrices for each group are equal. However, empirical experiments have
shown that especially failing firms violate the normality condition (Press
and Wilson, 1978). In addition, the equal group variances condition often
is also violated. Moreover, multicollinearity among independent variables
is often a serious problem, especially when stepwise procedures for the
variable selection are employed. However, empirical studies have proven
that the problems connected with normality assumptions were not weak-
ening its classification capability, but its prediction ability. The two most
frequently used methods in deriving the discriminant models have been
the simultaneous (direct) method and the stepwise method. The former
is based on model construction by, e.g., theoretical grounds, so that the
model is ex ante defined and then used in discriminant analysis. When
the stepwise method is applied, the procedure selects a subset of variables
to produce a good discrimination model using forward selection, backward
elimination, or stepwise selection. For further details on discrimant analysis
and its application to credit risk modeling, we refer to, e.g., Altman and
Saunders (1998).
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2.4 Logit and Probit Models

In this section we will have a brief look at logistic regression and probit
models that can be considered to be among the most popular approaches
in the empirical default-prediction literature; see, e.g., Ohlson (1980), Platt
and Platt (1991), and Zmijewski (1984). These models can be fairly easily
applied to cases where the dependent variable is either nominal or ordinal
and has two or more levels. Further, the independent variables can be any
mix of qualitative and quantitative predictors.

The logit and probit regression models regress a function of the proba-
bility that a case falls in a certain category of the dependent variable Y ,
on a linear combination of Xi variables. The general form of both
models is

Y = f

(
β0 +

n∑
i=1

βiXi

)
(2.3)

where β0 has a constant value and the βi’s are the estimated weights of Xi,
the transformed raw data. The whole term on the right side is the value that
enters into a distribution function, which is either from the logistic (logit) or
normal (probit) distribution. The right sides of the logit and probit, then,
are the same as they are in the classical normal linear regression model.
The slope coefficients tell us about the effect of a unit change in X on a
function of the probability of Y , which will be explained later.

The difference between the logit and probit lies on the left side of the
equation. In the logit approach the left side is the logit of Y, i.e., the log of
the odds that a case falls in one category on Y versus another. For example,
if Y denotes whether a child was born to a woman in a given year, the logit
model would express the effects of X on the log of the odds of a birth
versus a nonbirth. On the other hand, the left side of the probit model
can be thought of as being a score similar to the discriminant analysis.
In the probit model, a unit change in Xi produces a βi unit change in
the cumulative normal probability, or score, that Y falls in a particular
category. For example, the probit model would express the effect of a unit
change in X on the cumulative normal probability that a woman had a
birth within a year.

Note that generally both the logit and the probit regression models
are estimated by maximum likelihood. Consequently, goodness of fit and
inferential statistics are based on the log likelihood and chi-square test
statistics. One of the main challenges with logit and probit models is the
interpretation of the descriptive statistics (the estimated regression func-
tion). A number of approaches are commonly used, and these will also be
briefly examined below. For further details on logistic regression and probit
models we refer, e.g., to Hosmer and Lemeshow (1989), Greene (1993),
Maddala (1983), or Mccullagh and Nelder (1989).
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2.4.1 Logit Models
Logistic regression analysis has also been used particularly to investigate
the relationship between binary or ordinal response probability and
explanatory variables. For bankruptcy prediction the binary response prob-
ability is usually the default probability, while a high number of explanatory
variables can be used. The method usually fits linear logistic regression
models for binary or ordinal response data by the method of maximum
likelihood (Hosmer and Lemeshow, 1989). One of the first applications
of the logit analysis in the context of financial distress can be found in
Ohlson (1980) followed, e.g., by Zavgren (1985) to give only a few refer-
ences. A good treatment on different logistic models, estimation problems,
and applications can also be found in Greene (1993) or Maddala (1983).
Similar to the discriminant analysis, this technique weights the indepen-
dent variables and assigns a Y score in a form of failure probability (PD)
to each company in a sample.

Let yi denote the response of company i with respect to the outcome of
the explanatory variables x1i, . . . , xki. For example, let Y = 1 denote the
default of the firm and Y = 0 its survival. Then, using logistic regression,
the PD for a company is denoted by

P (Y = 1|x1, . . . , xk) = f(x1, . . . , xk) (2.4)

The function f denotes the logistic distribution function such that we get

P (Y = 1|x1, . . . , xk) =
exp(β0 + β1x1 + · · · + βnxn)

1 + exp(β0 + β1x1 + · · · + βnxn)
. (2.5)

Obviously, the logistic distribution function transforms the regression
into the interval (0, 1). Further defining the logit(x) as

logit(x) = log

(
x

1 − x

)
(2.6)

the model can be rewritten as

logit(P (Y = 1|x1, . . . , xk)) =β0 + β1x1 + · · · + βnxn (2.7)

with real constants β0, β1, . . . , βn. As mentioned above, the logit model can
be estimated via maximum likelihood estimation using numerical methods.
The advantage of the approach is that it does not assume multivariate nor-
mality and equal covariance matrices as, e.g., discriminant analysis does
(Press and Wilson, 1978). In addition, logistic regression is well suited for
problems when the predictor variable is binary or has multiple categori-
cal levels, or even when there are multiple independent variables in the
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problem. For further reading on logit models, we refer to Maddala (1983)
and Greene (1993).

2.4.2 Probit Models
Next to the logistic regression approach, probit models also have become
quite popular to predict default probabilities of companies. For example,
in one of its approaches, the rating agency Moody’s KMV uses a probit
model. Similar to the idea of logit models, the probability for a company
defaulting is modeled based on a nonlinear function f :

P (Y = 1|x1, . . . , xk) = f(x1, . . . , xk) (2.8)

However, for the probit model the following relationship is assumed:

P (Y = 1|x1, . . . , xk) = Φ(β0 + β1x1 + · · · + βnxn) (2.9)

where Φ denotes the distribution function of the standard normal dis-
tribution. Note that similar to the logistic distribution function, Φ also
transforms the regression into the interval (0, 1). Generally, the results for
the probit model are supposed to be quite similar to the logistic regression
model, unless the probabilities being predicted are very small or very large.
Figure 2.1 displays the logit and probit distribution function for an exem-
plary model with only one independent variable and an exemplary choice
of the parameters β0 = 0.1 and β1 = 0.5. Note that the interpretation of
the probit coefficients is, in some senses, rather easier than it is for the
logit model. The regression coefficients of the probit model are effects on a
cumulative normal function of the probabilities that Y = 1 (i.e., the prob-
ability that a firm defaults). As such, they are already in a metric that can
easily be understood: the metric of a standard normal score. Using this,
one can interpret the coefficients directly. Note that also probit models are
generally estimated using the maximum likelihood technique.

So far we have considered only the binary case, but it is straightforward to
extend the logit and probit approach to a framework with ordered values
for a higher number of rating categories. Applications of ordered probit
models to credit rating can be found in, e.g., Amato and Furfine (2004),
Hamerle et al. (2004), and Nickell et al. (2000). Recall that for a binary case
we were assuming only two rating categories default: yi = 1 and nondefault
yi = 0. Further, the outcome of a latent variable zi according to the model
determines whether company i is in default or not:

zi = β0 + β1x1i + · · · + βnxni + εi (2.10)

where εi denotes a random variable with a standard normal distribution.
We further observe default yi = 1 or nondefault yi = 0 for the company
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FIGURE 2.1. The logit (dashed line) and probit (solid line) function for
parameters β0 = 0.1 and β1 = 0.5.

which is related to an unobserved threshold t1 such that

yi =

{
0 if zi ≤ t1,

1 if zi > t1.
(2.11)

By introducing K − 1 thresholds tk for the rating classes k = 1, . . . , K,
we can extend the approach in a way that, instead of having two rating
levels for the binary model, we will then have K levels and K−1 thresholds
t1, . . . , tK−1.

yi =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

1 if zi ≤ t1,

2 if t0 < zi ≤ t2

3 if t1 < zi ≤ t3

· · · · · ·
K if zi > tK−1

(2.12)

Note that also the tk’s are unknown parameters which collectively define
a series of ranges into which the latent variable zi may fall. Similar to the
β’s they will need to be estimated. As mentioned above it is assumed that
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εi is the standard normally distributed such that the probabilities for yi

taking the values k = 1, . . . , K can be estimated by

P (yi = 1) = Φ(t1 + βXi) − Φ(βXi) (2.13)

P (yi = 2) = Φ(t2 + βXi) − Φ(t1 + βXi) (2.14)

· · · · · · (2.15)

P (yi = K) = 1 − Φ((tK−1) + βXi). (2.16)

Note that hereby we define β = (β1, . . . , βn)′ and Xi = (x1i, . . . , xki).
For further reading, applications, and results on the use of ordered probit
models, we refer to Amato and Furfine (2004), Hamerle et al. (2004), or
Nickell et al. (2000). Note that with a similar procedure, it is also possible
to extend the binary logit model to an ordered one with different cate-
gories. Overall, logit and probit are very close and rarely lead to different
qualitative conclusions. As a general proposition, the question of the choice
between them is unsolved (Greene, 1993).

2.5 Model Evaluation: Methods and Difficulties

The Basel Committee on Banking Supervision highlights the relatively
informal nature of the credit model validation approaches at many financial
institutions. In particular, the committee emphasized data sufficiency and
model sensitivity analysis as significant challenges to validation. Overall,
the committee has identified validation as a key issue in the use of quantita-
tive default models and concluded that the area of validation will prove to
be a key challenge for banking institutions in the foreseeable future (Basel
Committee on Banking Supervision, 2001).

This section briefly describes a number of techniques that can be
regarded as valuable for quantitative default model validation and bench-
marking. More precisely, we focus on robust segmentation of the data for
model validation and testing, and measures of model performance and
inter-model comparison that are informative and currently used. These
performance measures can be used to complement standard statistical
measures.

2.5.1 Model Performance and Benchmarking
Here we will investigate two objective metrics to measure and compare
the performance of credit rating risk models to predict default events; see
Sobehart et al. (2000) to learn more about the cumulative accuracy profiles,
also called power curves. To learn more about other accuracy ratios like
Gini coefficients, Somers’ D, or Kendall’s Tau, see Somers, 1962a, 1938.
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The techniques are quite general and can be used to compare a variety of
model types.

The cumulative accuracy profiles (CAPs) can be used to make visual
qualitative assessments of model performance. While similar tools exist
under a variety of different names (lift-curves, dubbed-curves, receiver-
operator curves (ROC), power curves, etc.), in the following we use the
term “CAP” which refers specifically to the case where the curve repre-
sents the cumulative probability of default over the entire population. To
plot a CAP, one first orders companies by their model score, from riskiest
to safest. For a given fraction x of the total number of companies, a CAP
curve is constructed by calculating the percentage y(x) of the defaulters
whose risk score is equal to or lower than the one for x.

Obviously, a good model concentrates the defaulters at the riskiest scores
and, therefore, the cumulative percentage of all defaulters identified on the
y axis increases quickly as the companies with the highest risk score are
considered. If the model-assigned risk scores randomly, we would expect
to capture a proportional fraction of the defaulters with about x% of the
observations, generating approximately a straight line or random CAP.
On the other hand, a perfect model would produce the ideal CAP curve,
which is a straight line capturing 100% of the defaults within a fraction of
the population equal to the fraction of defaulters in the sample. Because
the fraction of defaulters is usually a small number, the ideal CAP is
very steep.

Figure 2.2 exemplarily illustrates three CAP curves for a portfolio with
a fraction of approximately 10% defaulted firms. Hereby, CAP curves for
a random model, an exemplary scoring model, and the perfect model are
provided. Obviously, one of the most useful properties of CAPs is that
they reveal information about the predictive accuracy of the model over its
entire range of risk scores for a particular time horizon. For the exemplary
model in the figure, we find that among the 10% of companies with the
highest risk score, approximately 35% of the defaulted firms were identified,
while approximately 60% of defaulted companies were classified within the
group of the 20% with highest risk scores. This kind of information may be
particularly helpful to interpret the quality of a rating system with respect
to different intervals of the scores.

It is often also convenient to have a single measure that summarizes
the predictive accuracy of a model. To calculate one such summary statis-
tic, one generally considers the area that lies above the random power
curve and below the model power curve. The greater the area between the
model power curve and the random power curve, the better is the overall
performance of the model. The maximum area that can be enclosed above
the random power curve is identified by the ideal power curve. There-
fore, the ratio of the area between a model’s power curve and the random
power curve to the area between the ideal power curve and the random
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FIGURE 2.2. Illustration of the cumulative accuracy profile (CAP) for a portfolio
with a fraction of 10% defaulted firms. The graph provides the CAP curves for
a random model (dashed line), an exemplary scoring model (solid line), and the
perfect model (bold line).

power curve summarizes the predictive power over the entire range of
possible risk values:

AR =
A − Arandom

Aperfect − Arandom
(2.17)

This measure is called the accuracy ratio (AR), which is a fraction between
0 and 1. Obviously, values of the AR close to 0 display little advantage
over a random assignment of risk scores, while those with AR values near
1 display almost perfect predictive power. Mathematically, the AR value
can be calculated according to

AR =
2
∫ 1
0 y(x)dx − 1

1 − f
(2.18)

Hereby, y(x) is the power curve for a population x of ordered risk scores,
and f = D/(N +D) is the fraction of defaults, where D is the total number
of defaulting obligors and N is the total number of nondefaulting obligors.
The AR is a global measure of the discrepancy between the power curves.
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Note, however, that because the comparison of ARs is relative to a
database, our definition of the AR is not restricted to having completely
independent samples. In fact, AR based on panel databases can pro-
vide aggregated information about the time correlation of the risk scores.
Generally, most models provide an AR in the range of 50% to 75% for
(out-of-sample and out-of-time) validation tests. Additionally, the absolute
deviation of the AR due to resampling is generally not significantly different
from the original AR (Moody’s KMV, 2004).

Next to the AR, the literature also suggests a number of alternative
measures to evaluate the performance of a scoring system. In the following,
we will briefly describe the following accuracy measures:

• Gini-coefficient

• Somers’ D

• Kendall’s Tau

The Gini-measure is a very popular measure to quantify the accuracy of a
rating system. Let x1, x2, x3, . . . , xn be the ordered cumulative percentages
of a regarded sample, and thus 0 ≤ x1 ≤ x2 ≤ x3 ≤ · · · ≤ xn ≤ 1. Further,
the cumulative relative distribution of the feature (default) is F1, F2, . . . , Fn

with the quality that Fi+1−Fi ≥ Fi−Fi−1 for i = 2, 3, . . . , n−1. Therefore,
the curve through the observations (xi, Fi) is the called the power curve
or CAP. The area under this curve can be calculated according to the
following expression:

A =
1
2
x1F1 +

1
2

n−1∑
i=1

(Fi + Fi+1)(xi+1 − xi). (2.19)

Further, let B be the area between the diagonal and the power curve
with B = 0.5 − A. Then the Gini-coefficient G is calculated based on the
following ratio:

G =
B

B + A
(2.20)

Note that often an adjusted version of the Gini-coefficient is also used as
reference to the perfect model and is able to compare samples with different
fractions of the total defaults within a sample. For further reading on the
application of the Gini-coefficient in credit scoring models, we refer, e.g.,
to Servigny and Renault (2004).

The measure Somers’ D (Somers, 1962a) is a so-called asymmetric index
of association between an independent variable and a dependent variable
that can be measured on an ordinal scale. For the application to a rating
system, it is based on a pairwise examination of the assigned risk scores and
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the ordinal-dependent variable default. Assume that two companies with
an associated risk score—the independent variable—are examined in terms
of their default behavior—the dependent variable. Then they must either
be concordant, in the sense that the one ranked higher in terms of the risk
score is also ranked higher than the other on the dependent variable. This
means that a pair of companies is concordant if company A has a higher
risk score than company B and A has defaulted while company B hasn’t.
The pair would be discordant if, despite the lower risk score, company B
defaulted while company A didn’t. Note that Somers’ D allows for ties
such as for the cases when both companies survived or both companies
defaulted. The coefficient is defined as the difference between the number
of concordant pairs Nc and the number of discordant pairs Nd divided by
the total number of pairs that are not tied N :

D =
Nc − Nd

N
(2.21)

Values range from −1.0 (all pairs disagree) to 1.0 (all pairs agree). Two
versions exist, a symmetric and asymmetric version, based on the sym-
metry of the sample. The symmetric version penalizes for tied pairs by
averaging both variables, and the asymmetric version penalizes pairs tied
on the dependent variable. The symmetric version is equal to Kendall’s
Tau-b that will be described in the following.

Kendall’s Tau is an index of the degree of association between two vari-
ables measured on an ordinal scale or based on ranks (Somers, 1938). It is
a directional, symmetric measure of association that is generally used for
square tables. Similar to Somers’ D, its computation involves examining
every pair of items. Then the number of pairs that are similarly ranked
and the number of pairs that are differently ranked relative to each other
on the two variables are calculated. Kendall’s coefficient of concordance,
or Kendall’s Tau, is then the difference between the number of concor-
dant minus the number of discordant pairs divided by the total number
of pairs. Again its value ranges from −1.0 (no association) to 1.0 (perfect
association).

For further similarities and differences between Somers’ D, Kendall’s Tau,
and alternative measures of association, we refer, e.g., to Somers (1962b),
for a review of validation methodologies for default risk models to Sobehart
et al. (2000).

2.5.2 Model Accuracy, Type I and II Errors
Measures like the accuracy ratio, Somers’ D, or Kendall’s Tau may be only
one of many dimensions of model quality, as pointed out by Dhar and Stein
(1997). Overall, when used as classification tools, default risk models can be
mistaken in one of two ways. First, the model can indicate low risk when,
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TABLE 2.4. Types of Errors in Assignment of Credit Ratings

Model Actual

Low Credit Quality High Credit Quality

Low Credit Quality Correct Prediction Type II Error
High Credit Quality Type I Error Correct Prediction

in fact, the risk is high. This Type I error corresponds to the assignment
of high credit quality to issuers who nevertheless default or come close to
defaulting in their obligations. The cost to the investor can be the loss
of principal and interest, or a loss in the market value of the obligation.
Second, the model can assign a low credit quality when, in fact, the quality
is high. Potential losses resulting from this Type II error include the loss
of return and origination fees when loans are either turned down or lost
through noncompetitive bidding. These accuracy and cost scenarios are
described schematically in Table 2.4.

Obviously, there are different costs involved with the two types of errors.
The Type II error refers mainly to opportunity costs and lost potential
profits from lost interest income and origination fees. Further there might
be a loss from premature selling of a loan at disadvantageous prices. On
the other hand the Type I error refers to lost interest and principal through
defaults, recovery costs, and potential loss in market value. Unfortunately,
minimizing one type of error usually comes at the expense of increasing the
other. The trade-off between these errors is a complex and important issue.
It is often the case, for example, that a particular model will outperform
another under one set of cost assumptions, but can be disadvantaged under
a different set of assumptions. Since different institutions have different cost
and pay-off structures, it is difficult to present a single cost function that
is appropriate across all firms. Therefore, it is very difficult to provide a
general framework for optimal decision making of a financial institution
with respect to wrong classification. Overall, this should be kept in mind
when rating systems are calibrated or cut-off values are determined based
on scoring methodologies.



3
The New Basel Capital Accord

3.1 Overview

This chapter is dedicated to the new Basel Capital Accord with respect to
rating based modeling, probabilities of default, and the required economic
capital of financial institutions. Almost two decades have passed since the
Basel Committee on Banking Supervision1 (the Committee) introduced its
1988 Capital Accord (the Accord). The major impetus for this Basel I
Accord was the concern of the governors of the central banks that the
capital—as a “cushion” against losses—of the world’s major banks had
become dangerously low after persistent erosion through competition.

Since 1988 the business of banking, risk management practices, super-
visory approaches, and financial markets have undergone significant trans-
formations. Consequently, the Committee released a proposal in June 1999
to replace the old Accord with a more risk-sensitive framework, the New
Basel Capital Accord (Basel II). After the committee received several com-
ments by the industry and research institutions in January 2001, the second
consultative document was published. Again the suggestions were criti-
cized a lot, and according to the committee, some features will be changed
again. Reflecting the comments on the proposal and the results of the
ongoing dialogue with the industry worldwide, the Committee published
a revised version in 2004 with the new corrections (Basel Committee on
Banking Supervision, 2004). In June 1999, the initial consultative pro-
posal contained three fundamental innovations, each designed to introduce
greater risk sensitivity into the accord:

1. The current standard should be supplemented with two additional
“pillars” dealing with supervisory review and market discipline. They
should reduce the stress on the quantitative pillar one by providing a
more balanced approach to the capital assessment process.

2. Banks with advanced risk management capabilities should be permit-
ted to use their own internal systems for evaluating credit risk—known

1
The Basel Committee on Banking Supervision (BCBS) is a committee of central

banks and bank supervisors from the major industrialized countries that meet every
three months at the Bank for International Settlements (BIS) in Basel.
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as “internal ratings”—instead of standardized risk weights for each
class of asset.

3. Banks should be allowed to use gradings provided by approved external
credit assessment institutions to classify their sovereign claims into five
risk buckets and their claims on corporates and banks into three risk
buckets.

In addition, there were a number of other proposals including the refine-
ment of the risk weightings as well as the introduction of a capital charge
for other sources of risk. However, the basic definition of capital stayed the
same. The comments on the June 1999 paper were numerous and reflected
the important impact the old accord had. Nearly all welcomed the inten-
tion to refine the accord supported by the three-pillar approach because
safety and soundness in today’s dynamic and complex financial system can
be attained only by the combination of effective bank-level management,
market discipline, and supervision. Nevertheless, many details of the pro-
posal were criticized. In particular, the threshold for the use of internal
ratings should not be set so high as to prevent well-managed banks from
using them.

The 1988 Accord focused on the total amount of bank capital, which is
vital in reducing the risk of bank insolvency and the potential cost of a
bank’s failure for depositors. Building on this, the new framework intends
to improve safety and soundness in the financial system by placing more
emphasis on banks’ own internal control and management, the supervisory
review process, and the market discipline. Table 3.1 provides a summary
of some of the reasons for a new capital accord. Although the new frame-
work’s focus is primarily on internationally active banks, its underlying
principles are suitable for application to banks of varying levels of com-
plexity and sophistication, so that the new framework can be adhered to
by all significant banks within a certain period of time.

The 1988 Accord provided essentially only one option for measuring
the appropriate capital of banks, although the way to measure, manage,
and mitigate risks differs from bank to bank. In 1996 an amendment was

TABLE 3.1. Rationale for a New Accord and Differences Between Basel I and
Basel II

Basel I Accord Basel II Accord

Focus on a single risk measure Emphasis on banks’ own internal methodolo-
gies, supervisory review, and market discipline

One size fits all Flexibility, menu of approaches, incentives for
better risk management

Broad brush structure More risk sensitive
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FIGURE 3.1. The three pillars of the new Basel Capital Accord.

introduced focusing on trading risks and allowing some banks for the first
time to use their own systems to measure their market risks. The new
framework provides a spectrum of approaches from simple to advanced
methodologies for the measurement of both credit risk and operational
risk in determining capital levels. Therefore, due to the less prescriptive
guidelines of the new accord, capital requirements should be more in line
with underlying risks and allow banks to manage their businesses more effi-
ciently. Thus, credit ratings and the estimation of probabilities of default
are major input variables for the new Accord.

The new Accord consists of three mutually reinforcing pillars, which
together contribute to safety and soundness in the financial system.
Figure 3.1 displays the three pillars: minimum capital requirements, super-
visory review process, and market discipline. The Committee stresses the
need for a rigorous application of all three pillars and plans to achieve the
effective implementation of all aspects of the Accord.

3.1.1 The First Pillar—Minimum Capital Requirement
The first pillar sets out the minimum capital requirements and defines the
minimum ratio of capital to risk-weighted assets. Therefore, it is necessary
to know how the total capital is adequately measured by banks. The new
framework maintains both the current definition of the total capital and
the minimum requirement of at least 8% of the bank’s capital to its risk
weighted assets (RWA).

Capital Ratio =
Total Capital

Credit Risk + Market Risk + Operational Risk
(3.1)
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FIGURE 3.2. Different approaches to credit risk measurement in Basel II.

As one can see from formula 3.1, the calculation of the denominator of
the capital ratio is dependent on three different forms of risk: credit risk,
market risk, and operational risk. In particular the credit risk measurement
methods are more elaborate than those in the current accord, whereas the
market risk measure remains unchanged. Nevertheless, the new framework
proposes for the first time a measure for operational risk.

For the measurement of credit risk two principal options are proposed
that will briefly be discussed later. The first option is the standardized
(STD) approach and the second the internal ratings based (IRB) approach.
As illustrated in Figure 3.2, the latter offers two different options: a foun-
dation and an advanced IRB approach. The use of the IRB approach is
subject to an approval by the supervisors, based on standards established
by the Committee.

The STD Approach: This approach is conceptually the same as the
present Accord, but it is more risk sensitive. The bank allocates a risk
weight to each of its assets and off-balance-sheet positions and produces
a sum of RWA values. A risk weight of 100% means that an exposure
is included in the calculation of RWA at its full value, which translates
into a capital charge equal to 8% of that value. Similarly, a risk weight of
20% results in a capital charge of 1.6% (i.e., 20% of 8%). Individual risk
weights currently depend on the broad category of the borrowers, which
are sovereigns, banks, and corporates. Under the new Accord, the risk
weights are refined by the reference to a rating provided by an external
credit assessment institution (ECAI), such as rating agencies described in
the previous chapter. For example, for corporate lending, the old Accord
provided only one risk weight category of 100%, while the new Accord
provides four categories: 20%, 50%, 100%, and 150%.

The IRB Approach: Under this approach, banks are allowed to use
their internal estimates of borrower creditworthiness to assess credit
risk in their portfolios, subject to strict methodological and disclosure
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standards. Distinct analytical frameworks are provided for different types
of loan exposures whose loss characteristics are different. Under the IRB
approach, banks estimate each borrower’s creditworthiness and translate
the results into estimates of a potential future loss amount, which forms
the basis of MCR. The framework allows, on the one hand, a foundation
method and, on the other hand, more advanced methodologies for cor-
porate, sovereign, and bank exposures. In the foundation methodology,
banks estimate the probability of default associated with each borrower,
and the supervisors supply the other inputs. In the advanced method-
ology, a bank with a sufficiently developed internal capital allocation
process is permitted to supply other necessary inputs as well. Under
both IRB approaches, the range of risk weights is far more diverse than
those in the STD approach, resulting in greater risk sensitivity.

Concerning the overall capital, the Committee’s goal remains to neither
raise nor to lower the aggregate regulatory capital—inclusive of operational
risk—for internationally active banks using the STD approach. With regard
to the IRB approach, the ultimate goal is to ensure that the regulatory
capital requirement is sufficient to address underlying risks and contains
incentives for banks to migrate from the STD to the more sophisticated
IRB approach.

3.1.2 The Second Pillar—Supervisory Review Process
The supervisory review pillar requires supervisors to undertake a qualita-
tive review of their bank’s capital allocation techniques and compliance
with relevant standards (Basel Committee on Banking Supervision, 2001).
Supervisors have to ensure that each bank has sound internal processes to
assess the adequacy of its capital based on a thorough evaluation of its
risks. The new framework stresses the importance of bank management
developing an internal capital assessment process and setting targets for
capital that are commensurate with the bank’s particular risk profile and
control environment. Thus, supervisors are responsible for evaluating how
well banks are assessing their capital adequacy needs relative to their risks.
This internal process is—where it is appropriate—subject to supervisory
review and intervention.

3.1.3 The Third Pillar—Market Discipline
The third pillar aims to bolster market discipline through enhanced dis-
closure requirements by banks which facilitate market discipline (Basel
Committee on Banking Supervision, 2001). Effective disclosure is essential
to ensure that market participants do better understand banks’ risk profiles
and the adequacy of their capital positions. The new framework sets out dis-
closure requirements and recommendations in several areas, including the
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way a bank calculates its capital adequacy and risk assessment methods.
The core set of disclosure recommendations applies to all banks with more
detailed requirements for supervisory recognition of internal methodologies
for credit risk, mitigation techniques, and asset securitization.

3.2 The Standardized Approach

This section describes the STD approach to credit risk in the banking book,
which is the simplest of the three broad approaches to credit risk and is
not based on banks’ internal rating systems like the other two approaches.
Instead it assumes the use of external ratings provided by rating agen-
cies. Compared to the old Accord, the STD approach aligns regulatory
capital requirements more closely with the key elements of banking risk
by introducing a wider differentiation of risk weights and a wider recogni-
tion of credit risk mitigation (CRM) techniques, while avoiding excessive
complexity. Accordingly, the STD approach produces capital ratios more
in line with the actual economic risks that banks are facing. This should
improve the incentives for banks to enhance their risk management and
measurement capabilities and reduce the incentives for regulatory capital
arbitrage. In this review we will concentrate on the most discussed feature—
the assignment of risk weights for sovereigns, banks, and, in particular,
corporates.

Along the lines of the proposals in the consultative paper to the new
capital adequacy framework, the RWA in the STD approach continue to
be calculated as the product of the amount of exposures and supervisory
determined risk weights:

RWA = E · r (3.2)

where: E is the value of the exposure
r is the risk weight of the exposure

As in the old Accord, the risk weights are determined by the category—
sovereigns, banks, and corporates—of the borrower. However, there is no
distinction on the risk weighting depending on whether the country is a
member of the OECD. Instead the risk weights for exposures depend on
external credit assessments like rating agencies.

3.2.1 Risk Weights for Sovereigns and for Banks
Despite the concerns regarding the use of external credit assessments—
especially credit ratings—the old Accord (with the 0% risk weight for
all sovereigns) was replaced by an approach that relies on sovereign
assessments of eligible ECAI. Following exemplarily the notation of
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Standards & Poor’s, the risk weights of sovereigns and their central banks
are displayed in Table 3.2.

The assessments used should generally be with respect to the sovereign’s
long-term rating for domestic and foreign currency obligations. At national
discretion, a lower risk weight may be applied to banks’ exposures to
the sovereign or central bank of incorporation denominated in domestic
currency and funded in that currency. To address at least in part the
concern expressed over the use of credit ratings and to supplement pri-
vate sector ratings for sovereign exposures, there is also the possibility of
using country risk ratings assigned to sovereigns by export credit agencies
(ECAs). The key advantage of using publicly available ECA risk scores for
sovereigns is that they are available for a far larger number of sovereigns
than private ECAI ratings. Banks may then choose to use the risk scores
produced by an ECA recognized by their supervisor. As displayed in
Table 3.3, each of these ECA risk scores corresponds to a specific risk weight
category.

Further there are also two options for deciding the risk weights on expo-
sures to banks, but national supervisors have to apply one option to all
banks in their jurisdiction. As a general rule for both options, no claim
on an unrated bank may receive a risk weight less than that applied to its

TABLE 3.2. Risk Weights of Sovereigns—Option
1 in the New Basel Capital Accord

Rating Risk Weights
AAA to AA− 0%
A+ to A− 20%
BBB+ to BBB− 50%
BB+ to B− 100%
Below B− 150%
Unrated 100%

TABLE 3.3. ECA Risk Score and Risk Weights
of Sovereigns—Option 2 in the New Basel Capital
Accord

Risk Scores Risk Weights
1 0%
2 20%
3 50%
4 to 6 100%
7 150%
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sovereign of incorporation. Under the first option—as shown in Table 3.4—
all banks incorporated in a given country are assigned a risk weight one
category less favorable than that assigned to claims on the sovereign of
incorporation. Therefore, for banks within countries with a credit rating
between AAA to AA−, the Committee remained with the 20% risk weight
of the old Accord for all bank claims. However, for claims to banks in
sovereigns rated BB+ to B− and unrated countries, the risk weight is
capped at 100%. For banks in countries rated below B−, the risk weight is
the same as for sovereigns and equals 150%.

The second option bases the risk weighting on the external credit assess-
ment of the bank itself and is provided in Table 3.5. Note that under this
option, a preferential risk weight can be applied to short-term claims of
three months or less. Hereby, supervisors should ensure that claims with
an original maturity under three months which are expected to be rolled
over—i.e., where the effective maturity is longer than three months—do
not qualify for this preferential treatment. This treatment is available
to both rated and unrated bank claims, but not to banks risk weighted
at 150%.

TABLE 3.4. Risk Weights for Exposures to Banks—Option 1 in the
New Basel Capital Accord

Rating Sovereign Risk Weights Bank Risk Weights
AAA to AA− 0% 20%
A+ to A− 20% 50%
BBB+ to BBB− 50% 100%
BB+ to B− 100% 100%
Below B− 150% 150%
Unrated 100% 100%

TABLE 3.5. Risk Weights for Exposures to Banks—Option 1 in the
New Basel Capital Accord

Rating Risk Weights Short-Term Claim Risk Weights
AAA to AA− 20% 20%
A+ to A− 50% 20%
BBB+ to BBB− 50% 20%
BB+ to B− 100% 50%
Below B− 150% 150%
Unrated 50% 20%
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3.2.2 Risk Weights for Corporates
The maybe most-discussed feature of the new Basel Capital Accord is the
assignment of different risk weights on corporate claims. Table 3.6 illus-
trates the risk weighting of rated corporate claims according to the new
Accord, including claims on insurance companies. As a general rule, no
claim on an unrated corporate may be given a risk weight preferential to
that assigned to its sovereign of incorporation and the standard risk weight
for unrated claims on corporates is 100%. As with the case of exposures
to banks, there is no sovereign floor, recognizing that there are legitimate
cases where a corporate can have a higher assessment than the sovereign
assessment of its home country.

Note that the assignment of a risk weight of 100% to unrated companies
might be questionable in some cases. One might argue that it provides an
incentive to companies with lower credit quality to remain unrated and
obtain better conditions for loans. However, the fact that a borrower is
not rated does not signal low credit quality. In balancing these conflicting
considerations, the Committee assigned a 100% risk weight to unrated cor-
porates. This is the same risk weighting that all corporate exposures receive
under the present Accord in order to not cause an unwarranted increase in
the costs of funding for small and medium-sized businesses, which in most
countries are a primary source of job creation and of economic growth.
However, in countries with higher default rates, national authorities may
increase the standard risk weight for unrated claims where they judge that
a higher risk weight is warranted by their overall default experience.

3.2.3 Maturity
Although maturity is a relevant factor in the assessment of credit risk, it
is difficult to pursue greater precision in differentiating among the maturi-
ties of claims within the STD approach given the rather general nature of
the counterparty risk weighting. The STD approach is designed to be suit-
able for application by banks of varying degrees of size and sophistication.
However, the costs of increasing the complexity of the STD approach are
relatively high. In general, the benefits of improved risk sensitivity would
be outweighed by the costs of greater complexity. Despite its improved risk

TABLE 3.6. Risk Weights of Corporates

Rating Risk Weights
AAA to AA− 20%
A+ to A− 50%
BBB+ to BB− 100%
Below BB− 150%
Unrated 100%
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sensitivity, the new STD approach remains intentionally simple and broad-
brush. Therefore, a maturity dimension is not incorporated throughout the
STD approach in contrast to the IRB approach. As set out above, the only
maturity elements which are included are the distinction between short-
and long-term commitments as is discussed below.

3.2.4 Credit Risk Mitigation
Credit risk mitigation (CRM) relates to the reduction of credit risk by, for
example, taking collateral, obtaining credit derivatives or guarantees, or
taking an offsetting position subject to a netting agreement.

The old Accord recognizes only collateral instruments and guarantees
deemed to be identifiably of the very highest quality. This led to an all-
or-nothing approach to credit risk mitigants: Some forms were recognized,
while others were not. Since 1988, the markets for the transfer of credit risk
have become more liquid and complex, and thus, the number of suppliers
of credit protection has increased. New products such as credit derivatives
have allowed banks to unbundle their credit risks in order to sell those risks
that they do not wish to retain. These innovations result in greater liquidity
in itself, reduce the transaction costs of intermediating between borrowers
and lenders, and also encourage a more efficient allocation of risks in the
financial system. In the new framework design for CRM, three main aims
were pursued:

• Improving incentives for banks to manage credit risk in an effective
manner.

• Offering an approach that may be adopted by a wide range of banks.

• Relating capital treatments to the economic effects of different CRM
techniques and greater consistency in the treatment of different forms
of CRM.

The revised approach allows a wider range of credit risk mitigants to be rec-
ognized for regulatory capital purposes and depart from the all-or-nothing
approach. It also offers a choice of approaches that allow different banks to
strike different balances between simplicity and risk sensitivity. As a result,
there are three broad treatments to CRM depending on which credit risk
approach is used by the banks. However, the treatment of CRM in the STD
and in the foundation IRB approach is very similar. While CRM techniques
generally reduce credit risk, they do not fully eliminate it. In such trans-
actions, banks—often for good business reasons—leave some residual risks
unhedged. Therefore, three forms of residual risk are explicitly addressed:
asset, maturity, and currency mismatch. As a consequence the determi-
nation of CRM numbers offers a lot of options and is too manifold to
be described in this chapter. For further reading we refer to the original
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publications by the Bank of International Settlement (Basel Committee on
Banking Supervision, 2001, 2004).

3.3 The Internal Ratings Based Approach

In this section we give a brief overview of the main ideas and input
parameters of the IRB approach for corporate exposures in the new Basel
Capital Accord. We further illustrate the one-factor model that is used
for derivation of the so-called benchmark risk weight function in the IRB
approach. Interestingly, factor models will also be used in later chapters, as
it comes to calculating the impact of business cycle effects on conditional
migration matrices. The IRB approach relies—opposite to Basel I or the
STD—heavily upon a bank’s internal assessment of its counterparties and
exposures by rating systems as they were discussed in the previous chapter.

3.3.1 Key Elements and Risk Components
According to the consultative document (Basel Committee on Bank-
ing Supervision, 2001), the IRB approach has five key elements:

1. A classification of the exposures by broad exposure type.

2. For each exposure class, certain risk components which a bank must
provide, using standardized parameters or its internal estimates.

3. A risk-weight function which provides risk weights (and hence capital
requirements) for given sets of these components.

4. A set of minimum requirements that a bank must meet in order to be
eligible for IRB treatment for that exposure.

5. Across all exposure classes, supervisory review of compliance with the
minimum requirements.

The capital charge for the exposures then depends on a set of four risk
components (inputs) which are provided either through the application
of standardized supervisory rules (foundation methodology) or internal
assessments (advanced methodology), subject to supervisory minimum
requirements.

Probability of Default (PD): All banks—whether using the foun-
dation or the advanced methodology—have to provide an internal
estimate of the PD associated with the borrowers in each borrower
grade. Each estimate of PD has to represent a conservative view of a
long-run average PD for the grade in question and has to be grounded
in historical experience and empirical evidence. The preparation of the
estimates, the risk management processes, and the rating assignments
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that lie behind them have to reflect full compliance with supervisory
minimum requirements to qualify for the IRB recognition.

Loss Given Default (LGD): While the PD—associated with a given
borrower—does not depend on the features of the specific transac-
tion, LGD is facility-specific. Losses are generally understood to be
influenced by key transaction characteristics such as the presence of
collateral and the degree of subordination. The LGD value can be deter-
mined in two ways: in the first way—respectively under the foundation
methodology—LGD is estimated through the application of standard
supervisory rules. The differentiated levels of LGD are based upon the
characteristics of the underlying transaction, including the presence and
the type of collateral. The starting point is a value of 45% for senior
claims, whereas a higher value of 75% is applied to subordinated expo-
sures, but the percentage can be scaled to the degree to which the
transaction is secured. If there is a transaction with financial collat-
eral, a so-called haircut methodology is used. Note that a separate set
of LGD values is applied to transactions with real estate collateral. In
the advanced methodology LGD, which is applied to each exposure, is
determined by the banks themselves. Thus, banks using internal LGD
estimates for capital purposes are able to differentiate LGD values on
the basis of a wider set of transaction and borrower characteristics.

Exposure at Default (EAD): As with LGD, EAD is also facility-
specific. Under the foundation methodology, EAD is estimated through
the use of standard supervisory rules and is determined by the banks
themselves in the advanced methodology. In most cases, EAD is equal
to the nominal amount of the exposure but for certain exposures—e.g.,
those with undrawn commitments—it includes an estimate of future
lending prior to default.

Maturity (M): Where maturity is treated as an explicit risk com-
ponent, as in the advanced approach, banks are expected to provide
supervisors with the effective contractual maturity of their exposures.
Where there is no explicit adjustment for maturity, a standard super-
visory approach is presented for linking effective contractual maturity
to capital requirements.

After introducing the input parameters of the IRB approach, we will now
briefly describe how the benchmark risk weight function in the new accord
can be derived based on a so-called one-factor credit risk model.

3.3.2 Derivation of the Benchmark Risk Weight Function
In credit risk models the discrete event of default is often modeled with a
random variable Y which follows a Bernoulli law. This means that Y can
take on either 0 or 1 where we assume that Y = 1 indicates that the firm
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defaults. Since the seminal work of Merton in 1972, the so-called structural
models using the value of the firm as input variable for determining default
probabilities are very popular in credit risk management. In a Merton-
style model a firm is said to default if the value of the total assets drops
below a certain threshold D, the contractual value of its obligations. The
probability of default thus becomes

P (Y = 1) = P (V < D) (3.3)

The idea of a company defaulting if the value of its assets falls below a
threshold ci is also used in the derivation of the credit Value-at-Risk model
of the Basel Committee; see, e.g., Gordy (2002). Let Zi,t therefore be the
asset change of company i within a time interval t. In the so-called one-
factor models (Belkin et al., 1998a), Zi,t is considered to have a Gaussian
distribution with mean 0 and variance 1. This variable can be decomposed
in the following way:

Zi,t =
√

ρ Xt +
√

1 − ρ εi,t (3.4)

with Xt ∼ N(0, 1) and εi,t ∼ N(0, 1). The interpretation is that the random
effect of the asset value of borrower i is a combination of a systematic risk
factor Xt which affects all borrowers, and an idiosyncratic risk factor εi,t

affecting only borrower i. Hereby, it is assumed that the εi,t are indepen-
dent identically distributed (iid) for all i and t, while the Xt are also iid.
The parameter

√
ρ is often called the factor loading of the systematic risk

factor and is interpreted as the sensitivity against systematic risk. Put
mathematically, it is simply the square root of the correlation coefficient of
the asset value process with the systematic risk factor.

The probability of default can now be formulated as

P (Yi,t = 1) = P (Zi,t < ci) = Φ(ci) (3.5)

This is the unconditional default probability. If the outcome of the system-
atic risk factor was known, we could calculate the conditional probability
of default

P (Yi,t = 1|Xt = x) = P (Zi,t ≤ ci|Xt = x) (3.6)

= P (
√

ρ Xt +
√

1 − ρ εi,t ≤ ci|Xt = x)

= P

(
εi,t <

ci − √
ρXt√

1 − ρ
|Xt = x

)

= Φ
(

ci − √
ρx√

1 − ρ

)
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Hereby, Φ denotes the cumulative standard normal distribution function.
Having modeled the probability of default for an individual loan, we now
have to establish a model for a whole loan portfolio. Consider a portfolio
consisting of n loans to different borrowers where each borrower’s proba-
bility of default is modeled as described above. We further assume that all
borrowers have the same default threshold c. Then, conditional on the state
of the economy X, the probability of having k defaults in the portfolio is
binomially distributed:

P

(
n∑

i=1

Yi,t = k
∣∣Xt = x

)
=
(

n

k

)
p(x)k(1 − p(x))n−k (k = 0, . . . , n) (3.7)

with p(x) = Φ[(c − √
ρx)/(

√
1 − ρ)]. Using the law of iterated expecta-

tions, the probability of k defaults is the expected value of the conditional
probability of k defaults:

P

(
n∑

i=1

Yi,t = k

)
=
∫ ∞

−∞
P

(
n∑

i=1

Yi,t = k
∣∣Xt = x

)
φ(x)dx

=
∫ ∞

−∞

(
n

k

)(
Φ
(

c − √
ρx√

1 − ρ

))k (
1 − Φ

(
c − √

ρx√
1 − ρ

))n−k

φ(x)dx (3.8)

Having described the theoretical model of defaults, we will now investigate
how these equations are linked to the IRB framework of Basel II. As it was
mentioned above, the IRB functions are based on the VaR measure. With
the probability of k defaults in a homogenous portfolio of size n, given in
equation (3.8), the cumulative loss distribution function of the portfolio is

P

(
n∑

i=1

Yi,t ≤ m

)
=

m∑
k=0

∫ ∞

−∞

(
n

k

)
(p(x))k(1 − p(x))n−kφ(x)dx,

m = 0, . . . , n. (3.9)

Thus, to determine, for example, the Value-at-Risk at the 99.9% level, one
would need to compute P−1(0.999). This is tedious work and will have to
be done numerically. Fortunately, VaR can be approximated efficiently in
one-factor models. For example, Gordy (2002) provides a portfolio-invariant
rule for capital charges at the level of a single loan and thus the foundation
of the Basel IRB function.

Let α0.999 denote the adverse 99.9% quantile of the state of the economy
Xt, meaning that a worse outcome of the systematic risk factor has only a
0.01% chance. Since Xt is standard normally distributed with small values
of Xt being unfavorable to a firm, VaR(99.9%) = Φ−1(0.001). Conditional
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on this bad state of the economy, the probability of default for an individual
loan is

P (Yi,t = 1|Xt = α0.999) = Φ
(

ci − √
ρΦ−1(0.001)√
1 − ρ

)

and the expected loss on the loan is

E[Li|Xt = α0.999] = LGD · Φ
(

ci − √
ρΦ−1(0.001)√
1 − ρ

)
(3.10)

Gordy shows in his work how the sum of these expected conditional losses
approaches the true VaR(99.9%) of the whole loan portfolio. Note that for
the needed regularity conditions and the exact type of convergence, we refer
to Gordy (2002). The threshold ci can be determined from the PD of the
respective loan in the following way:

PDi = P (Yi,t = 1) = P (Zi,t < ci)

Since Zi,t ∼ N(0, 1) it follows that

PDi = Φ(ci) ⇔ Φ−1(PDi) = ci (3.11)

Taken together (3.10) and (3.11) yield the core of the Basel IRB function
to determine the regulatory capital charge on a single loan. With the fact
that the standard normal distribution is symmetric around the origin, we
get the formula for the so-called worst-case default rate (WCDR) that is
used in the Basel II IRB approach:

WCDR = Φ
(

Φ−1(PDi) +
√

ρΦ−1(0.999)√
1 − ρ

)
(3.12)

This can be considered as the core of the function for calculating the RWA
in the Basel II IRB approach. Overall, the formula for RWA suggested in
the final version of the new Basel Capital Accord is

RWA = 12.5 × EAD × LGD × (WCDR − PD) × MA (3.13)

Note that the RWA equals 12.5 times the capital required, so that the
required capital is 8% of RWA. Obviously next to the probability of default
PD, the worst-case default rate WCDR, and the factors exposure at default
(EAD), loss given default (LGD), and a maturity adjustment (MA) enter
the calculation of RWA. Further, the calculated WCDR is dependent on a
correlation parameter ρ. Let us now have a look at these parameters and
how they actually enter the calculation of the RWA.
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3.3.3 Asset Correlation
The initial version of the new Accord made an implicit assumption that
asset correlation for all exposures is equal to 0.2. There has been quite
some criticism about this assumption, and the Basel Committee decided
to implement a revised formula for RWA where the correlation parameter
depends on the estimated PD. Following Lopez (2004), the relationship
between PD and correlation can be described by the following expression:

ρ(PD) = 0.12 ·
(

1 − e−50PD

1 − e−50

)
+ 0.24 ·

(
1 −

(
1 − e−50PD

1 − e−50

))
(3.14)

A very close approximation of this relationship is provided by the more
simple expression

ρ(PD) = 0.12 · (1 + e−50PD) (3.15)

Obviously, according to these expressions, the correlation declines with
increasing PD as illustrated by Figure 3.3. Lopez (2004) suggests the fol-
lowing reasons for this relationship: as the PD of a company increases,
default becomes more dependent on the idiosyncratic risk of the company
and is less affected by overall market conditions. Therefore, the correlation
parameter ρ decreases when a company becomes less creditworthy. Note
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FIGURE 3.3. Relationship between the correlation parameter and the probability
of default (PD) in the new Basel Capital Accord.



3.3 The Internal Ratings Based Approach 47

that results from other studies (Dietsch and Petey, 2004; Düllmann and
Scheule, 2003; Rösch, 2002) have not confirmed this relationship; also see,
e.g., Henneke and Trueck (2006) for a review on the issue.

However, the assumption of a decrease in correlation with increasing
PD also has the effect that WCDR increases not as fast as it would if ρ
was assumed to be constant. This was also a reaction to the fact that a
lot of criticism was directed towards the initial version of the new Accord,
which gave extremely risky weights to companies with higher probability of
defaults; see, e.g., Henneke and Trueck (2006). The suggestions of the IRB
approach of the second consultative document were subject to extensive
discussions. Especially small and medium-sized companies (SMEs) were
afraid of higher capital costs for banks that would lead to worse credit
conditions for these companies. Also the desired incentive character of the
IRB approach for banks was very questionable, since risk weights in many
cases were rather higher for the IRB approach than for the STD approach.
There was a clear tendency in the IRB approach of assigning lower risk
weights to companies with a very good rating and much higher risk weights
to such companies with a lower rating. Therefore, the assumption of a
decreasing coefficient of correlation in the final version of the Accord keeps
the WCDR on a lower level for more risky companies. The relationship
between WCDR and PD is illustrated in Figure 3.4.
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FIGURE 3.4. Relationship between the worst-case default rate (WCDR) and the
probability of default (PD) in the new Basel Capital Accord.
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3.3.4 The Maturity Adjustment
Especially in the advanced IRB approach, maturity is treated as an
explicit risk component. The sensitivity of a loan’s end-of-horizon value
to a credit quality deterioration short of default is dependent on its
maturity. As a consequence, maturity has a substantial influence on
economic capital within so-called mark-to-market (MTM) models, with
longer-maturity loans requiring greater economic capital. However, also
the initially assumed relationship between maturity and the assigned risk
weights of the second consultative document was subject to criticism.
Figure 3.5 illustrates the extremely high risk weights allocated to com-
panies with a lower rating and long maturities as it was suggested in the
initial version of the new Accord.

Comparing the assigned risk weights to actually observed spreads in the
market—see, for example, in Chapter 4—one could find that especially for
lower rated bonds, market credit spreads do not show a positive correla-
tion with maturity. For Ba rated bonds the spreads are constant, while for
single B rated bonds the spreads usually fall as maturity increases. The
problems and criticism mentioned above were also confirmed by so-called
quantitative impact studies (QIS) conducted by banks for the Basel com-
mittee. Therefore, in the final and revised version of the accord for the
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IRB foundation approach, all exposures are assumed to have an average
maturity of 2.5 years. Additionally, in the advanced IRB approach in recog-
nition of the unique characteristics of national markets, supervisors will
have the option of exempting smaller domestic firms from the maturity
framework. In this framework smaller domestic firms are defined as those
with consolidated sales and consolidated assets of less than Euro 500 mil-
lion. If the exemption is applied, those firms will be assumed to have an
average maturity of 2.5 years, as under the foundation IRB approach.

For firms with sales greater than Euro 500 million in the advanced
IRB approach, the maturity adjustment will be included according to the
following factor:

MA =
(1 + b(PD) · (M − 2.5)

1 − 1.5b(PD)
(3.16)

with

b(PD) = (0.11852 − 0.05478 log(PD))2 (3.17)

The denominator in the fraction can be interpreted as an adjustment
to the average maturity of 2.5 years, while the numerator is the maturity
adjustment based on the PD of the exposure and its maturity.

Table 3.7 shows the exemplary maturity adjustments compared to a
one-year maturity of an exposure. Obviously for exposures with higher
default probabilites the effect of the maturity is much smaller than
for higher rated exposures. This points out the intention of the Basel

TABLE 3.7. Maturity Adjustment in the June 2004 Version of the Basel Capital
Accord (Factors in Comparison to an Exposure with a One-Year Maturity)

PD M = 1 M = 2 M = 2.5 M = 3 M = 4 M = 5
0.03% 1.000 1.604 1.906 2.208 2.811 3.415

0.05% 1.000 1.501 1.752 2.002 2.504 3.005

0.10% 1.000 1.392 1.588 1.784 2.177 2.569

0.50% 1.000 1.223 1.334 1.446 1.669 1.892

1.00% 1.000 1.173 1.260 1.346 1.520 1.693

5.00% 1.000 1.091 1.136 1.182 1.272 1.363

10.00% 1.000 1.066 1.099 1.132 1.197 1.263

15.00% 1.000 1.053 1.080 1.107 1.160 1.214

20.00% 1.000 1.046 1.068 1.091 1.137 1.183

25.00% 1.000 1.040 1.060 1.080 1.120 1.160

30.00% 1.000 1.036 1.054 1.072 1.108 1.143
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Committee to avoid extremely high benchmark risk weights and, thus,
capital requirements for more risky exposures with longer maturities.

3.3.5 Expected, Unexpected Losses and the Required Capital
Finally, a novelty in Basel II is the calibration of the risk weights only to
unexpected losses. Therefore, in equation (3.13) the probability of default—
corresponding to the expected loss—is subtracted from the worst-case
default rate. For illustration, consider the following expression:

UL = LGD · Φ
(

Φ−1(PDi) +
√

ρΦ−1(0.999)√
1 − ρ

)
︸ ︷︷ ︸

EL+UL

−LGD · PDi︸ ︷︷ ︸
EL

= LGD × (WCDR − PD) (3.18)

Thus, for the first time the required capital is based only on unexpected
losses, and not the sum of expected plus unexpected losses. This also leads
to a reduction of the regulatory capital. One concern that has been iden-
tified in the Committee’s prior impact surveys has been the potential gap
between the capital required under the Basel I approach and the standard-
ized, foundation, and advanced IRB approaches. The overall relationship
between the risk-weighted assets (RWA) and the probability of default
(PD) for corporate exposures assuming LGD = 0.45 for senior claims and
LGD = 0.75 for subordinated claims is provided in Figure 3.6. Note that
for comparison, the comparable risk weight of 100% under the old capital
accord is displayed.

We conclude that the capital requirements for the various exposures in
the final document have been designed to be consistent with the Commit-
tee’s goal of neither significantly decreasing nor increasing the aggregate
level of regulatory capital in the banking system. The main focus in the
final changes of the benchmark risk-weight function of the IRB approach
was to reduce the relatively high risk weights for risky exposures as they
were allocated in the initial version of the new Accord. From this angle
one can conclude that the final version of the Capital Accord gives banks
dealing with such companies a much better position than earlier versions.

3.4 Summary

In 1988 when the first Capital Accord was published, there was only one
option for measuring the appropriate capital of internationally active banks.
Since then the business of banking and the financial markets have under-
gone significant changes. Therefore, the Committee was obliged to develop
a new Accord which should be more comprehensive and more risk sensi-
tive to the default risk of the obligor than the old one. As a consequence,
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FIGURE 3.6. Relationship between the risk-weighted assets (RWA) and the prob-
ability of default (PD) for corporate exposures. The figure provides the RWA
for senior claims (LGD = 0.45) (solid line), subordinated claims (LGD = 0.75)
(dotted line), and under the old capital (dashed line).

under the new Basel Capital Accord, banks will have the opportunity to
choose one of three approaches to credit risk for their portfolios. The choice
whether a bank uses the STD, the foundation IRB, or the advanced IRB
approach depends critically on the ability of estimating its own risk compo-
nents and on meeting supervisory requirements. However, in the long run
all internationally active banks should use the advanced IRB approach or
at least the foundation IRB approach in line with improvements in their
risk management practices and in line with the benefit in holding their
intrinsic amount of credit risk.

Overall, one can conclude that due to the new Basel Capital Accord
the importance of rating based models for credit risk has been enhanced.
This might also lead to an extended and more sophisticated use of credit
rating systems and migration matrices. Overall, banks will not only be
interested in ratings to determine their capital charges, but also in the cal-
culation of the Value-at-Risk, migration behavior, and other related issues
for their credit or loan portfolios. Based on internal ratings that have to be
provided within the new Basel Capital Accord, the application of a migra-
tion matrix approach that also takes into account rating changes and not
just the default case will be straightforward.



4
Rating Based Modeling

In the previous chapters we gave a brief overview of the ideas and applica-
tion of the rating processes to credit risk and how ratings and estimates of
PDs are incorporated into the new Basel Capital Accord. In reduced form or
rating based models, ratings are the decision variable as it comes to deter-
mining the loss distribution of portfolios or the credit VaR. The popularity
of these models comes from the straightforwardness of the approach but is
also a consequence of the upcoming new Capital Accord of the Basel Com-
mittee on Banking Supervision (2001) that was described in the previous
chapter.

Despite some deficiencies of the current credit rating structure and the
fact that rating agencies failed to provide adequate ratings for several prod-
ucts in the credit and credit derivative markets (Crouhy et al., 2008), the
importance of credit ratings in financial risk management cannot be under-
estimated. Rating based models of credit risk have evolved as an industry
standard and ratings of a company or product will remain one of the most
important variables when it comes to modeling and measurement of credit
risk.

4.1 Introduction

Note that in this chapter we will not elaborate on structural or firm-value
models, but concentrate only on a number of academic and industry models
that have been suggested in the literature. For further reading on structural
models, we refer, e.g., to Crosbie and Bohn (2002), Lando (2004), or a more
recent review by Elizalde (2006) and the references provided there. Fons
(1994) was the first who developed a so-called reduced form model and
derived credit spreads using historical default rates and recovery rate esti-
mates. In his model he used the rating of a company and historical default
probabilities as decisive variables and not the value of the firm. Although
his approach is rather simple compared to other theoretical models of credit
risk, the predicted credit spreads derived by the model showed strong sim-
ilarity towards real market data. Since then a variety of intensity models
have been developed using ratings and corresponding default intensities as
a starting point for the evaluation of credit risk. In this chapter we will also
briefly review some of the earlier models in this area. However, these models
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generally do not explicitly deal with rating migrations to other states but
are rather concerned with transitions to default only. Therefore, we will
outline only the basic underlying ideas here and refer to more compre-
hensive treatments of such models in Duffie and Singleton (2003), Lando
(2004), or Schönbucher and Schubert (2001).

Overall, not only the worst case event of default has influence on the
price of a bond, but also a change in the rating of a company can affect
prices of the issued bond. Clearly, deterioration or improvement in the
credit quality of the issuer is highly important. One common way to express
changes in the credit quality of market participants is to consider the ratings
given by agencies like Standard & Poor’s or Moody’s, etc. Downgrades or
upgrades by the rating agencies are taken very seriously by market players
for pricing bonds and loans and, thus, affect the risk premium and the yield
spreads. With CreditMetrics JP Morgan provides a framework (Gupton
et al., 1997) for quantifying credit risk in portfolios using historical transi-
tion matrices. Further, refining Fons model, Jarrow et al. (1997) introduced
a discrete-time Markovian model to estimate changes in the price of loans
and bonds. Further, Wilson (1997b) and the suggested CreditPortfolioView
model (CreditPortfolioView, 1998) take into account the risk arising from
credit migrations and suggest use of conditional transition matrices based
on a business cycle index. All three approaches incorporate possible rating
upgrades, stable ratings, and rating downgrades (with default as a special
event) in the reduced-form approach. For determining the price of credit
risk, both historical default rates and transition matrices are used. While
the CreditMetrics framework will be described in this section for the semi-
nal work of Jarrow et al. (1997), we refer to Chapter 5 where we deal with
risk-neutral and real-world migration matrices. The CreditPortfolioView
model is described in more detail in Chapter 9 where we deal explicitly
with adjusting and forecasting conditional migrations.

Finally, we will also give brief a description of Credit Suisse First Boston’s
CreditRisk+ model that applies actuarial techniques commonly used for
insurance matters to the modeling of credit risk (Credit Suisse Finan-
cial Products, 1998). Here, default as the elementary event that drives
credit risk is modeled directly by assuming a Bernoullian default game for
every firm. Note that while for this model ratings and default probabilities
are a substantial input parameter for determination of the risk, generally
downgrade risk is not captured as well.

4.2 Reduced Form and Intensity Models

In 1994, Jerome S. Fons developed a reduced form model to derive credit
spreads using historical default rates and a recovery rate estimate (Fons,
1994). The approach is based on the results of Moody’s corporate bond
default studies, which at that time covered 473 defaults of issuers that
ever held a Moody’s corporate bond rating between January 1, 1970, and
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December 31, 1993. He found out that the term structure of credit risk,
i.e., the behavior of credit spreads as maturity varies, seems to depend on
the issuer’s credit quality, i.e., its rating. For bonds rated investment grade,
the term structures of credit risk have an upward sloping structure. The
spread between the promised yield-to-maturity of a defaultable bond and
a default-free bond of the same maturity widens as the maturity increases.
On the other hand, speculative grade rated bonds behave in the opposite
way: the term structures of the credit risk have a downward sloping struc-
ture. Fons’s findings are equivalent to the crisis at maturity hypothesis
which assumes that highly leveraged firms with near term debt face a great
uncertainty with respect to their ability to meet their obligations. Spec-
ulative grade rated firms, once past these obstacles and having survived
without a default, face a lower risk of default for time horizons of five years
or more. Well-established, large, and solid investment grade firms, on the
other hand, face a low default risk on the near term, while their credit out-
look over longer time horizons, such as 10 or more years, is less certain. In
every rating category, Fons compares term structures of credit spreads with
weighted-average marginal default rates, using data from Moody’s inves-
tigations. In his model, Fons assumes that investors are risk neutral. The
risky bond price B(0, T ) with face value B maturing at time T supplied
by Fons can be used to infer the credit spread on that bond by means of
a formula which links the price of the bond to its yield to maturity. The
price of a risky bond in t = 0 can be expressed in terms of its yield, with
r being the riskless yield and s being the credit spread:

B(0, T ) = B · e−(r+s)·T

whereas the price of a riskless security is

B′(0, T ) = B · e−r·T

We denote dR(t) as the probability of default in year t after the bond
was assigned rating R, given that the bond has not defaulted before that
date. Seen from date t = 0, SR(t) is the survival probability at date t. In
the event of default the investor receives a fraction μ of par, the recovery
rate. SR(t) is given by

SR(t) =
t∏

j=1

(1 − dR(j))

whereas the probability that the bond rated R will default in year t is
given by

DR(t) = SR(t − 1) · dR(t) =
t−1∏
j=1

(1 − dr(j)) · dR(t)
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The expected value of the random flow Xt received in t is such that

E(Xt) = SR(t − 1) · dR(t) · μ · B′(0, t)

The price of zero-coupon bond with initial rating R maturing at T is
then the sum of the expected returns in each year:

BR(0, T ) =
T∑

t=1

E(xt)

︸ ︷︷ ︸
+SR(T ) · B′(0, T )

=
T∑

t=1

SR(t − 1) · dr(t) · μ · B · e−r·t

︸ ︷︷ ︸
Bond defaults in t = 1 . . . T

+ SR(T ) · B · e−r·T︸ ︷︷ ︸
No Default

Thus, with this formula we can compute the spread s of the risky zero
bond:

s = − 1
T

ln

[
T∑

t=1

SR(t − 1) · dr(t) · μ · e−r(t−T ) + SR(T )

]

Fons determines the term structure of credit risk by calculating the
spreads for zero bonds of every maturity T . Obviously, Fons’s model also
requires an estimate of the recovery rate of a bond, which usually does not
depend on the initial rating, but on its seniority and the bankruptcy laws
of the issuer’s home country. Figures 4.1 and 4.2 show the term structures of
credit spreads calculated by Fons’s model, using historical probabilities
of Moody’s default database, assuming a fixed recovery rate of 48.38%
of the par value.

The model by Fons (1994) was based on relating the observed term struc-
ture of credit spreads to cumulative default rates observed by one of the
major rating agencies. Therefore, unlike in structural models using the firm
value as the input variable for determining probability of defaults or credit
spreads, his approach relates observed market spreads and default proba-
bilities to the rating of company or bond. His model can be considered as
one of the first reduced form approaches to the modeling of credit spreads
and default risk. Since then various intensity models have been developed
using ratings and corresponding default intensities as a starting point for
the evaluation of credit risk. In the following we will provide a brief review
of earlier models in this area. Note that since these models generally do
not explicitly deal with rating migrations to other states but are rather
concerned with transitions to default only, we will outline only the basic
underlying ideas here. For further reading, we refer to, e.g., the excellent
treatments of these models in Duffie and Singleton (2003), Lando (2004),
or Schönbucher and Schubert (2001).
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FIGURE 4.1. Term structure of credit spreads for investment grade rating
categories Aaa, Aa, and A (Source: Fons, 1994).

Maturity

0.00%

1.00%

2.00%

3.00%

4.00%

5.00%

1 3 5 7 9 11 13 15 17 19

B Ba Baa

Risk-neutral credit spreads

FIGURE 4.2. Term structure of credit spreads for rating categories Baa, Ba, and
B (Source: Fons, 1994).
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Generally, reduced-form models allow for surprise defaults. They model
the time of default as an exogenous process without making assumptions
from some underlying asset. Therefore, the default event is modeled as
more aggregated than in the structural models where the time of default
depends on the firm value that may depend on or be correlated with other
variables. At the heart of the reduced-form models lies the instantaneous
rate of default, i.e., the default intensity λ. Let Ft be the information up
to time t, τ the default time, Δt a marginally short time interval, and λ(t)
the default intensity as a function of time. Mathematically expressed is the
default intensity (assuming no default up to time t)

P (τ ∈ (t + Δt) | Ft) ≈ λ(t)Δt (4.1)

approximately the proportionality factor between the default probability
within a given time interval Δt and the length of this time interval. In other
words, λ is the intensity of the process that specifies the default time τ . In
the literature, often Poisson processes are used to model the default time as
they suit to model rare and discretely countable events such as radioactive
decay, number of people in a queue or, in this case, default. In this context,
the time of default is interpreted as the first jump of the Poisson process.
After default, the intensity is usually set equal to zero. For models with
multiple defaults, see, e.g., Schönbucher and Schubert (2001).

TABLE 4.1. Key Assumptions of Different Reduced-Form Models
Source: Uhrig-Homburg (2002)

Default Magnitude of Interest Rate
Model Time Default Model Correlations
Jarrow/
Turnbull
(1995)

constant
intensity

recovery of face;
ϕ constant

any desired process
for r via some spot or
forward-rate model

r, τ , and ϕ
mutually
independent
under Q

Madan/
Ünal
(1998)

intensity
depends on
stock price

recovery of
treasury; ϕ
stochastic

any desired process
for r via some spot
or forward rate

r, τ , and ϕ
mutually
independent
under Q

Lando
(1998)

intensity
depends on
some state
variable Y

recovery-of-face
or treasury; ϕ
can depend
on Y

any desired process
for r via some spot
or forward rate; r can
depend on Y

correlations
allowed

Duffie/
Singleton
(1999)

intensity
depends on
some state
variable Y

recovery-of-
market; ϕ can
depend on Y

any desired process
for r via some spot
or forward-rate; r can
depend on Y

correlations
allowed
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One important advantage of reduced-form models is that their frame-
work is capable of reducing the technical difficulties of modeling defaultable
claims to modeling the term structure of nondefaultable bonds and related
derivatives. Reduced-form models differ in their assumptions about the
default time (indirectly the default intensity), the correlations between
the risk-free interest rates and the default time, and the way they model
the recovery rate ϕ. Following Uhrig-Homburg (2002), Table 4.1 summa-
rizes the aspects of the reduced-form models we will briefly discuss in the
following.

4.2.1 The Model by Jarrow and Turnbull (1995)
Jarrow and Turnbull (1995) were the first ones to develop an intensity-
based approach for the valuation of risky debt. The key assumptions in
their paper are the following:

• Nonexistence of arbitrage opportunities and the market completeness.
This assumption is equivalent to the existence and uniqueness of an
equivalent martingale measure Q under which the discounted prices of
the default-free and risky zero bonds are martingales.

• A constant recovery-of-face value ϕ given exogenously.

• The independence of the short-term spot interest rate r(t) and the
default process under the martingale measure Q.

Under these assumptions the price of a risky bond can be determined
according to

v(t, T ) = EQ
t

(
e−∫ T

t
r(s)ds

)
EQ

t

(
1(τ >T ) + ϕ1(τ <T )

)
(4.2)

v(t, T ) = p(t, T )EQ
t

(
1(τ >T ) + ϕ1(τ <T )

)
(4.3)

Note that hereby it is implicitly assumed that the recovery payment is
done at maturity. The equation would not change, however, if we assume
a recovery payment at default. In that case, we would roll over the recov-
ery payment ϕ with the money market account until maturity and then
discount it again with the default-free zero bond. The price of the risky
zero-coupon bond at time t with maturity T is equal to the expected payoff
at maturity T under the martingale measure discounted with the default-
free zero-coupon bond with the same maturity. The equation can be further
simplified to

v(t, T ) = p(t, T ) [ϕ + (1 − ϕ)Q(τ > T )]

v(t, T ) = p(t, T )ϕ + p(t, T )(1 − ϕ)Q(τ > T ) (4.4)
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with Q(τ > T ) the survival probability until maturity under the martingale
measure. The first term on the right side of the equation can be interpreted
as the time t value of the recovery rate that will be received surely at
maturity. The second term is the time t value of the promised payment if
the zero-bond survives beyond the maturity.

4.2.2 The Model Suggested by Madan and Ünal (1998)

Madan and Ünal (1998) decompose the risky debt into the following secu-
rities: the survival security making the promised payments at maturity
in case of survival and paying nothing otherwise, and the default security
paying the recovery rate in default and nothing otherwise. Thus, differ-
ent types of risk are addressed by different securities. While the survival
security faces only the timing risk of default, the default security faces the
recovery risk of default. This simultaneously means that the assumption of
constant recovery rates in Jarrow and Turnbull (1995) is relaxed, implying
recovery rate uncertainty. Based on this model architecture, the authors
state the following assumptions:

• The default payouts are independently and identically distributed
across time and interest rate states. This implies the time-homogeneity
of recovery rate ϕ.

• Default timing risks are functions of firm-specific information that are
independent of interest rate movements. This is a further relaxation
of Jarrow and Turnbull’s assumptions. Although the independence
between short-term spot interest rate process and the default process
remains, the default intensity is not constant anymore, but depends
on the stock price of the firm. Thus, Madan and Ünal build a bridge
between the structural and the reduced-form models.

• The recovery rate is referenced to an identical default-free zero-bond
(recovery-of-treasury).

According to Madan and Ünal (1998), the firm’s equity is a sign for the
firm’s financial strength, and hence, changes in the equity levels will be
reflected to the default probabilities. The authors use for their model
the (by the money market account B(t) = e− ∫ t

0 r(s)ds discounted) equity
value s(t). The dynamics of the equity value is described by the following
stochastic differential equation:

ds(t) = σs(t)dW (t)

where σ is the constant standard deviation of the equity value and W is a
standard Brownian motion.
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Based on this assumption, the default intensity equals

λ(s, t) =
c(

ln
(

s

scritic

))2 (4.5)

where scritic is the critical equity value and c is a constant parameter. The
choice of such a function is, first, based on the requirement that equity value
and default intensity should be inversely related; i.e., an increase in the
equity level decreases the probability of default. Second, if the (exogenously
given) critical equity level is reached, the default probability goes to infin-
ity; i.e., the firm defaults certainly. This is somewhat equivalent to the
default boundary in the structural models. The distance to the critical
level determines the default probability.

After having set the foundation for the timing risk of default, which is
only relevant for the survival security, Madan and Ünal (1998) model the
recovery rate risk. The recovery rate ϕ is a random variable with a density
function q(ϕ). Thus, the expected payout at default equals

E(ϕ) =
∫ 1

0
ϕq(ϕ)dϕ (4.6)

Based on the above models and under the assumption of the indepen-
dence between the default intensity and the risk-free interest rate process,
our fundamental equation simplifies to

v(t, T ) = EQ
t

(
e− ∫ T

t
r(s)ds

)
EQ

t

(
1(τ >T ) + E(ϕ)1(τ <T )

)
v(t, T ) = p(t, T )EQ

t

(
1(τ >T ) + E(ϕ)1(τ <T )

)
v(t, T ) = p(t, T )E(ϕ) + p(t, T )(1 − E(ϕ))Q(τ > T ) (4.7)

The main difference between the value of the bond according to Jarrow and
Turnbull (1995) and Madan and Ünal (1998) is that the certain payment of
p(t, T )ϕ is not certain anymore but depends on the magnitude of recovery.
The uncertainty is therefore extended by including the stochastic nature
by the recovery rate.

So far, we have concentrated on a model that assumed independence
between interest rates and default intensities. Now, we will have a look at
two further intensity models where this assumption is relaxed.

4.2.3 The Model Suggested by Lando (1998)
The main feature of the approach suggested in Lando (1998) is to model
the default time using a Cox process. Hereby, it is assumed that the default
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intensity is a function of some state variable, the stochastic process X(t)
which may include riskless interest rates, stock prices, growth rate in the
economy, or other variables relevant to predict the likelihood of default.
Thus, the state variable captures the correlation between the default time
process and the interest rates, relaxing the key assumption made in the
previous models. In Lando’s model, the default time is the first jump time
of the Cox process with intensity λ(X(t)).

Assuming a recovery payment at maturity, Lando models it as

ϕT 1(τ≤T ) = ϕT − ϕT 1(τ>T ) (4.8)

Assuming a constant recovery rate, we obtain the following equation for
the price of the risky bond:

v(t, T ) = EQ
t

(
e− ∫ T

t
r(s)ds1(τ >T ) + e− ∫ T

t
r(s)ds(ϕT − ϕT 1(τ >T ))

)

= EQ
t

(
e− ∫ T

t
r(s)ds1(τ >T )

)
+ EQ

t

(
e− ∫ T

t
r(s)dsϕT (1 − 1(τ >T ))

)

= EQ
t

(
e− ∫ T

t
r(s)ds1(τ >T )

)
+ ϕT EQ

t

(
e− ∫ T

t
r(s)ds− e− ∫ T

t
r(s)ds1(τ >T )

)

= EQ
t

(
e− ∫ T

t
r(s)ds1(τ>T )

)
+ ϕT EQ

t

(
e− ∫ T

t
r(s)ds

)

− ϕT EQ
t

(
e− ∫ T

t
r(s)ds1(τ >T )

)

= p(t, T )ϕT + (1 − ϕT )EQ
t

(
e− ∫ T

t
r(s)ds1(τ >T )

)
(4.9)

Lando further shows that the expectation on the right side of the pricing
equation can be expressed as

EQ
t

(
e− ∫ T

t
r(s)ds1(τ >T )

)
= EQ

t

(
e− ∫ T

t
r(s)+λ(X(s))ds

)
(4.10)

That is the current value of the promised payment at maturity T , if there
has been no default until T .

Overall, similar to the model suggested by Jarrow and Turnbull (1995),
the equation can be decomposed into two parts: a certain payment of the
recovery rate and a promised payment in case of survival. While the certain
payment is still the same, the promised payment additionally depends on
the correlation between the interest rate and default processes, for a change
in the interest rates will be reflected in the default probabilities. In the
model of Jarrow and Turnbull (1995), however, an interest rate change
changes only the discounting factor of the promised payment, but not the
default probabilities. Besides the value of a promised payment at maturity
T , Lando also derives equations for the value of a stream of payments (e.g.,
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swaps), which terminates when default occurs, and for the resettlement
payment at the time of default. For further details on the model, we refer
to Lando (1998).

4.2.4 The Model of Duffie and Singleton (1999)
Probably one of the most popular intensity-based models goes back to
Duffie and Singleton (1999). The special feature of their model is the
recovery-of-market value assumption; i.e., the recovery rate is a fraction
of the market value of the risky debt prior to default. Under this assump-
tion, the authors construct an adjusted short rate accounting for both the
probability and the timing of default and the losses at default:

R(t) = r(t) + λ(t)(1 − ϕ) (4.11)

Given an exogenous default process and a recovery rate, the risky security
can be valued as if it were default-free:

v(t, T ) = EQ
t

(
e− ∫ T

t
R(s)ds

)
(4.12)

As a special case of their model, Duffie and Singleton (1999) also intro-
duce some state variable Y , of which both the short-term interest rate and
the default processes are exogenously given functions. Hereby, the authors
consider two cases for the state variable Y . The first one is that Y is a con-
tinuous time Markov process under the martingale measure Q. The second
approach considers a jump-diffusion process to allow sudden changes of Y .
Also the case where the recovery rate and the default intensity depend on
the current price of the risky security is discussed. Thus, the model is also
able to incorprate the correlation between interest rates and default intensi-
ties. For further details on the framework, see Duffie and Singleton (1999),
while for further reading on intensity models, we refer, e.g., to Duffie and
Singleton (2003), Lando (2004), Schönbucher and Schubert (2001).

4.3 The CreditMetrics Model

The CreditMetrics approach also departs from the assumption that the
market value of a bond or its default probability can be derived by using
the value of a firm’s assets as its main input variable. As a risk man-
agement tool, the model must be applicable to all kinds of financial
instruments with inherent credit risk. Besides, the valuation procedure
must be consistent with actual market prices (Gupton et al., 1997). There-
fore, CreditMetrics uses for the valuation the rating of a company, historical
transition matrices, and empirically derived bond prices. It is further
assumed that all variables, except the current rating state of the issuer,
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TABLE 4.2. Average One-year Transition Matrix of Moody’s Corporate Bond
Ratings for the Period 1982–2001

Aaa Aa A Baa Ba B C D
Aaa 0.9276 0.0661 0.0050 0.0009 0.0003 0.0000 0.0000 0.0000
Aa 0.0064 0.9152 0.0700 0.0062 0.0008 0.0011 0.0002 0.0001
A 0.0007 0.0221 0.9137 0.0546 0.0058 0.0024 0.0003 0.0005
Baa 0.0005 0.0029 0.0550 0.8753 0.0506 0.0108 0.0021 0.0029
Ba 0.0002 0.0011 0.0052 0.0712 0.8229 0.0741 0.0111 0.0141
B 0.0000 0.0010 0.0035 0.0047 0.0588 0.8323 0.0385 0.0612
C 0.0012 0.0000 0.0029 0.0053 0.0157 0.1121 0.6238 0.2389
D 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 1.0000

behave deterministically over time. Thus, the value of the bond or loan at
the risk time horizon T is essentially dependent on the rating state of the
issuer at this point of time, i.

CreditMetrics assumes that if the issuer is not in a state of default at the
risk time horizon, the value of the bond or loan is determined by discounting
the outstanding cash flows using credit spreads over the riskless interest
rate r. The spreads correspond to the rating state i of the issuer in T . The
distribution of bond or loan values in T is thus given by the probabilities
P (X = i) of the different rating states in T , together with the corresponding
values of the bond Vi,T .

In the first stage of the model, we determine the distribution of ratings of
the exposure at the end of a given risk time horizon t. This is done with the
help of a transition matrix P ; an exemplary transition matrix is provided
in Table 4.2.

Suppose that the initial rating of the exposure at time 0 is
i∈ {1, 2, . . . K}. This initial setting can be represented by the vector

pi·(0) = δi

In the CreditMetrics framework in order to obtain the distribution of possi-
ble ratings at t, the initial rating vector is multiplied with a t-step transition
matrix. If the risk horizon is more than one year, it is suggested to compute
the required vector of transition probabilities pi·(t) either with a multiple
of a one-year transition matrix P , thus, pi·(t) = δi ·P t or, if available, with
a directly estimated t-year transition matrix pi·(t) = δi · P (t).

Thus, we obtain all possible future ratings at time t and the correspond-
ing transition probabilities:

Rating at t 1 2 . . . K − 1 K
Migration probability pi1(t) pi2(t) . . . pi(K−1)(t) piK(t)
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For example, assuming a constant transition matrix for a BB rated bond
and a two-year risk time horizon, we obtain the distribution of ratings by

p
(2)
BB· = δBB · P 2

= (0, 0, 0, 0, 1, 0, 0, 0) · P 2. (4.13)

In a second step a risk-adjusted forward price is derived for each rating
state. The cases of default and nondefault states are considered separately.
The remaining cash flows from t to T in nondefault categories are dis-
counted with state-specific forward rates. The forward-zero curve for each
rating category can be found by calibrating forward rates to observed credit
spreads of different maturities.

In the case of nondefault states, agreed payments before t will be fully
received and can be added—including the earned interest until t—to the
risk-adjusted value of the bond at time t:

Bj(t, T ) =
t∑

k=1

Ck(1 + f∗(k, t))t−k

+
T∑

k=t+1

Ck

(1 + fj(t, k))k−t
+

B

(1 + fj(t, T ))T−t
(4.14)

with Ck denoting the nominal coupon in year k, B the nominal principal, f∗

being the riskless forward rate, and fj the forward rate for j-rated bonds.
In case the bond defaults before t, a recovery payment is assigned:

BK(t, T ) = R ·
(

T∑
k=1

Ck + B

)
(4.15)

where R is the expected fraction of the bond’s nominal cash flows that
is paid back. The parameter R is estimated as the average return in prior
default experience and depends on the seniority class of the bond. Unfortu-
nately, as we will see in Chapter 6, recovery payments are highly uncertain.
In CreditMetrics the recovery rate is simulated by a beta distribution whose
mean and standard deviation are calibrated in order to fit the parameters
of the historically observed recovery rate that corresponds to the seniority
of the item.

Regarding the bond price Bj as a random variable, the mass distribution
of this random variable is given by the vector pi·. Hence, the so-called
Distribution of Values (DoV) for a given initial rating and the considered
risk time horizon can be obtained by using adequate transition matrices
and forward curves. Credit risk measures like the expected or unexpected
loss can be derived from the DoV. The DoV gives for each predicted bond
price the probability of being assigned to this rating. Due to the shape
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of the DoV, credit risk cannot be handled with established VaR methods.
Most models in finance assume normal distributed returns for changes in
stock prices, interest rates, or other variables that are affected by market
risk. However, a symmetric distribution is unsuitable for returns subject
to credit risk, since there is a large probability of earning a small profit
(riskless interest rate plus risk premium) and a very small probability of
losing a large amount of investment in the case of default. As a consequence
distributions are highly skewed to the right with a “fat tail” on the loss side.

Keeping the new Basel Capital Accord and the required economic capital
in mind, one needs to know the average return of a bond and the average
loss that a bank may suffer from the default of a bond. This average loss is
the minimum amount of capital that should be set aside for compensation.
Besides, it is also important to know how much a bank can lose if the
outcome is really bad. These issues are treated by the so-called expected
and unexpected loss. Figure 4.3 illustrates an exemplary loss distribution
for a bond portfolio, the expected loss as the expected value of the loss
distribution, the unexpected loss as a more extreme outcome under a worst-
case scenario and the corresponding 95% VaR.

The expected return (ER) of an i-rated bond to the risk time horizon t
is defined as the expectation of its DoV:

ERi(t) =
K∑

j=1

pij(t)Bj(t, T ) (4.16)
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FIGURE 4.3. Exemplary loss distribution, expected loss, and unexpected loss.
A worse outcome than the VaR (95%) is a loss in the shaded region.
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In risk management tools it is more common to express future values in
terms of losses. The expected loss (EL) is defined as the difference between
the expected return and the value of a riskless bond with the same cash
flows (or simply the expected value of the credit spreads):

ELi(t) = B∗(t, T ) − ERi(t) (4.17)

=
K∑

j=1

pij(t)(B∗(t, T ) − Bj(t, T )).

The unexpected loss (UL) is an indicator of the amount of money that
can be lost in a worst-case scenario. There are two possibilities to mea-
sure the UL: calculating the standard deviation or the percentile levels of
the DoV.

The UL of an i-rated exposure can be defined as the standard deviation
of its DoV:

ULi(t) =

√√√√ K∑
j=1

pij(t)Bj(t, T )2 − ERi(t)2 (4.18)

As we mentioned before, recovery rates are always highly uncertain.
Therefore, it is recommended that the volatility of the recovery rate
also enters into the calculation of the unexpected losses. In this case we
obtain

ULi(t) =

√√√√ K∑
j=1

pij(t)(Bj(t, T )2 + σ2
j ) − ERi(t)2 (4.19)

with

σ2
j = 0; j �= K

For a derivation of this formula, refer to Appendix D of Gupton et al.
(1997). As a second measure for the unexpected loss of an exposure with
rating i for a given confidence level α, we can define the α-percentile level
of the DoV:

UL∗
i = Qα(DoV ) (4.20)

When one uses these UL definitions, the uncertainty of future bond val-
ues comes only from potential rating transitions and from the volatility of
recovery rates. One might yield more realistic results by taking into account
the volatility of predicted bond values in each rating category.
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Obviously, CreditMetrics offers a quite different approach for measuring
credit risk than the firm value models or intensity based models. The model
provides a rather empirical Value-at-Risk approach for measuring credit
risk that should be consistent with actual market prices. Besides, it is rather
interested in potential losses during worst-case scenarios. In this framework
historical transition matrices and forward prices are more important than
the value of the firm. However, we should not forget to mention that, as it
comes to deriving joint transition matrices for two or more individual com-
panies, the company’s asset value is considered as the key driver of rating
changes; see Gupton et al. (1997). For measuring asset return correlations,
one uses the issuers’ equity returns from publicly available quotations. For
more on this, see Chapter 10. Further, the model also provides a method
for calculating conditional transition matrices based on an outcome of a
business cycle index that will be described in Chapter 9.

Overall, CreditMetrics should not be considered as a reduced-form model
only. It is rather a hybrid model that uses both structural and reduced-form
approaches in order to measure VaR figures for bond or loan portfolios.

4.4 The CreditRisk+ Model

Credit Suisse First Boston’s CreditRisk+ model applies an actuarial ap-
proach that has been commonly used for insurance matters. Thus, default
as the elementary event that drives credit risk is modeled directly by assum-
ing a Bernoullian default game for every firm. Unlike in other frameworks
discussed earlier, generally no assumptions are made about the causes of
default, and downgrade risk is not captured. For a better understanding
of the CR+ approach, we will initially describe a simplified way of model-
ing that reveals the basic ideas and analyzes the problems arising. We will
introduce an extended version of the CR+ model that overcomes some of
the initial deficiencies.

4.4.1 The First Modeling Approach
The derivation of the default loss distribution in the CR+ model comprises
the following steps:

• Modeling the frequencies of default for the portfolio.

• Modeling the severities in the case of default.

• Linking these distributions together to obtain the default loss distri-
bution.

Hereby, for every firm, a single stationary default probability for the risk
horizon under consideration, pi, is assigned. Furthermore, default events
are assumed to be independent of each other, and the number of defaults is
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assumed to be independent over periods. Thus, starting with a probability
generating function (pgf) for a single obligor i

Fi(z) = (1 − pi) z0 + piz
1 = 1 + pi(z − 1)

the pgf for the portfolio yields

F (z) =
∏

i

(1 + pi(z − 1)). (4.21)

Using the approximation

1 + pi(z − 1) � epi(z−1) (4.22)

and setting μ =
∑

i pi, equation (4.21) becomes

F (z) = e
∑

i pi(z−1) = eμ(z−1) = e−μeμz =
∞∑

n=0

e−μμn

n!
zn (4.23)

Hence the probability for n defaults in the portfolio is

P ( n defaults ) =
e−μμn

n!
(4.24)

which is the well-known Poisson distribution with parameter μ, mean μ, and
standard deviation

√
μ. Note that the approximation in (4.22) is, from a sta-

tistical point of view, equivalent to approximating the sum of independent
Bernoulli draws by the Poisson distribution.

4.4.2 Modeling Severities
In the case of default, a loss arises that is equal to the (gross) exposure
minus the recovery rate. The CR+ model assumes that the recovery rates
are exogenously given and for that reason requires adjusted (net) exposures
as an input. Thus, talking about exposures here relates to the remaining
part of exposure once netted with the recoveries. For computational effi-
ciency, equal exposures are grouped into bands. This is done by assuming
some base unit of exposure L and expressing all exposures in rounded
multiples of L.

Let

• νj be the common exposure in band j in units of L;

• εj be the expected loss in band j in units of L;

• μj be the expected number of defaults in exposure band j; and

• nj be the actual number of defaults in exposure band j.
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Since default events are assumed to be independent, one can treat every
band j as an independent portfolio. The loss in one of those subportfolios
expressed in units of L is then njνj .

Assume for example N = 100 loans in a band with loss exposure of
L= 20.000 Euro. Let further p = 0.03 be the default rate assumed to follow
a Poisson distribution.

Then we get for μj the expected number of defaults in band j

μ = N · p = 100 · 0.03 = 3 (4.25)

and for the probability of k defaults in band j

P (k defaults) =
e−33n

n!
(4.26)

Using the results for frequency and severity of the losses in the portfolio,
one can easily derive the distribution of default losses through the following
steps:

• Identify the pgf Gj(z) for the default loss distribution of band j.

• Combine the pgfs into a single pgf.

• Find a computationally efficient way of calculating the actual distri-
bution of credit losses on the basis of the combined pgf.

The pgf for a loss of njνj units of L in band j is

Gj(z) =
∞∑

nj=0

P (loss of njνj) znjνj

=
∞∑

nj=0

P (number of defaults is nj) znjνj

and using equation (4.24)

Gj(z) =
∞∑

nj=0

e−μj μnj

nj !
znjνj (4.27)

= e−μj+μjzνj (4.28)

gives the pgf for the default loss distribution of band j. Since independence
is assumed between the bands, the combined pgf is just the product over
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the exposure band pgfs.

G(z) =
m∏

j=1

Gj(z)

=
m∏

j=1

e−μj+μjzνj

= e− ∑m
j=1 μj+

∑m
j=1 μjzνj (4.29)

The final task is now to find a computationally efficient way of calculating
the actual distribution of credit losses on the basis of this combined pgf.
Since equation (4.29) cannot be transformed into the standard pgf form
that offers a closed solution for P (n), the following useful property of a pgf
is used.

For an arbitrary pgf F (z) =
∑∞

n=0 P (n)zn holds

∂kF (z)
∂zk

=
∞∑

n=k

P (n)
n!

(n − k)!
zn−k

∂kF (z)
∂zk

∣∣∣∣
z=0

= P (k)k!

⇒ P (n) =
1
n!

∂kF (z)
∂zk

∣∣∣∣
z=0

(4.30)

When one uses this property, CSFB1 derives a recurrence relationship for
the probability of an overall portfolio loss of n units of L:

P (n) =
∑

j: νj≤n

εj

n
P (n − νj)

P (0) = e
− ∑m

j=1
εj
νj (4.31)

These probabilities can be expressed in closed form and obviously depend
only on the parameters εj and νj .

4.4.3 Shortcomings of the First Modeling Approach
Initially, the distribution of the number of defaults in a portfolio was
inferred to be Poisson with parameter μ. This is based on the hypothesis
that—in the long term—the average observed volatility should converge
towards

√
μ. However, empirical evidence shows that the observed stan-

dard deviation of the number of defaults is significantly larger than
√

μ. To

1
See CSFB (1997), Section A4.1.
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overcome this problem, CR+ assumes the default rate itself to be stochas-
tic. While the expected number of default events remains the same, the
distribution becomes significantly skewed and fat-tailed when introducing
default rate volatility.

Another questionable core assumption is the independence of default
events. Though there might be no direct dependence between individual
events, there is a clear link between the co-movements of default probabil-
ities or default rates, respectively. In an economic recession, for example,
one can observe a significantly higher number of defaults than on average.
Since the state of the economy is surely not the only explanatory variable
for the co-movement of default probabilities, CR+ introduces a multifactor
model that influences the variable default rates of the obligors, and thus
induces interdependence among them.

4.4.4 Extensions in the CR+ Model
As mentioned above, the basic CR+ model has some limitations. Some of
them are overcome by the extensions in the CR+ model. For example, when
stochastic default rates are incorporated, a factor model is introduced that
explains the dependence between the variation of the stochastic default
rates of the different obligors by attributing their default rate processes to
common factors.

For the matter of simplification, we make the assumption that every
obligor is driven by exactly one factor. However, a generalization of the
model allowing for an arbitrary number of factor affiliations for the different
obligors is straightforward.

4.4.5 Allocating Obligors to One of Several Factors
Define a set of n independent background factors that allow the decompo-
sition of the set of obligors into disjoint subsets, each of which is affiliated
to exactly one background factor. In CR+ terminology, the subsets are also
called sectors. Each background factor influences the expected default rate
and the standard deviation of default rate of its sector.

Therefore let Xk be a random variable with mean μk and standard devia-
tion σk that represents the average default rate of the kth factor. Let every
obligor A in sector k have an actual default probabiliy of XA with mean
pA and standard deviation σA and denote the set of obligors that belong
to sector k as K.

At this point, the CR+ model assumes that XA is modeled proportional
to xk by

XA = pA
Xk

μk
(4.32)
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and sets

μk =
∑
A∈K

pA

For any proposed relationship between Xk and XA, we will demand

E

(∑
A∈K

XA

)
= μk

and

VAR

(∑
A∈K

XA

)
= σ2

k

as Xk is supposed to represent the average default rate for sector k.
The actual sector parameters are thus obtained by estimating the param-

eters pA and σA for every obligor which determines the sector parameters
as follows:

μk =
∑
A∈K

pA

and

σk =
σk

μk

(∑
A∈K

pA

)
=
∑
A∈K

pA

μk
σk =

∑
A∈K

σA

which shows that the sector standard deviation is just the sum over the
standard deviations of all obligors which belong to the sector.

4.4.6 The pgf for the Number of Defaults
Having modeled the background factor dependency, the next step is to
develop the pgf for the number of defaults in the kth factor. Overall, the
way of proceeding is analogous to the case of a fixed default rate. Recall
that, assuming a fixed default rate μ, the pgf as stated in equation (4.23)
turned out to be

F (z) = eμ(z−1)

Since the random variable Xk represents the average default rate for sec-
tor k, it follows that conditional on the value of Xk, the pgf remains the
same:

Fk(z |Xk = x) = ex(z−1)
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To obtain the unconditional pgf for sector k, we integrate over the density
function of Xk which is supposed to be fk(x):

Fk(z) =
∞∑

n=0

P (n defaults in sector k)zn

=
∞∑

n=0

zn

∫ ∞

x=0
P (n defaults in sector k |x)fk(x)dx

=
∫ ∞

x=0
Fk(z |Xk = x)fk(x)dx =

∫ ∞

x=0
ex(z−1)fk(x)dx (4.33)

To continue solving the integral, one needs a key assumption about the den-
sity function fk(x). Here, the CR+ model assumes a Gamma distribution
Γ(α, β) with mean μk and standard deviation σk. Therefore, the parameters
of the Gamma distribution are

αk =
μ2

k

σ2
k

and βk =
σ2

k

μk

After resolving the integral, setting an additional auxiliary variable

pk :=
βk

1 + βk

and expanding the obtained pgf

Fk(z) =
(

1 − pk

1 − pkz

)αk

in its Taylor series, we obtain the following explicit formula for the
probability of n defaults in sector k:

P (n defaults in sector k) = (1 − pk)αk

(
n + αk − 1

n

)
pn

k (4.34)

which is the probability density function of the negative binomial distribu-
tion.

To obtain the pgf for the number of defaults in the whole portfolio com-
prising n sectors, recall that the sectors are assumed to be independent.
Thus, the pgf is just the product over the sector pgfs:

F (z) =
n∏

k=1

Fk(z) =
n∏

k=1

(
1 − pk

1 − pkz

)αk

(4.35)
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Note that the corresponding default event distribution is, accordingly, the
sum of the independent negative binomial sector distributions and therefore
not negative binomial in general.

4.4.7 The pgf for the Default Loss Distribution
Let Gk(z) be the pgf for the default loss distribution of sector k:

Gk(z) =
∞∑

n=0

P (loss of nL in sector k)zn

=
∞∑

n=0

zn

∫ ∞

x=0
P (loss of nL in sector k|xk)fk(xk)dxk (4.36)

This pgf has a similar integral form like the pgf obtained in equation
(4.33) and can be solved similarly. The result is2

Gk(z) =

⎛
⎝ 1 − pk

1 − pk

μk

∑
A∈K

pAzνA

⎞
⎠

αk

(4.37)

Since the sectors are defined to be independent, the overall pgf for the
default loss distribution is just the product over the sector pgfs:

G(z) =
n∏

k=1

Gk(z)

Again, a recurrence relation is derived that allows a numerical approxima-
tion of the underlying distribution.3

4.4.8 Generalization of Obligor Allocation
So far, we have assumed that every obligor can be assigned to one of sev-
eral mutually independent sectors. Every sector is again driven by one
underlying background factor. In another extension (see CSFB, 1997) this
assumption can also be relaxed and the default rate of an obligor can now
depend on a weighted subset of the set of background factors. The weights
θA,k are combined to an obligor-specific weight vector θA that represents
the extent to which the default probability of obligor A is affected by the
background factors k. One obligor’s weights have to sum up to the unit
over all sectors.

2
For detailed calculation, see CSFB (1997), Section A9.

3
See CSFB (1997), Section A10.1.
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4.4.9 The Default Loss Distribution
After estimation of the means and standard deviations of the obligors, and
of the weights θA,k representing the obligors’ sensitivity to the background
factors, one can use the above relationships to calculate the mean μk and
standard deviation σk for all factors. The equations developed for a single
factor setup are still valid and can be applied directly using the modified
parameters. Note that the incorporation of firm-specific factors is directly
possible in the factor setup just discussed. Since firm-specific factors are
idiosyncratic and uncorrelated to other factors and other firms’ idiosyn-
cratic components, it is sufficient to assign them to one common factor
with variance zero. This causes the covariance of this specific factor, with
all other factors, to be zero.

Overall, CreditRisk+ is an approach derived from an actuarial science
framework that is rather easy to implement. Only a few inputs—the
probability of default and the exposure for each instrument—are needed.
Providing closed-form solutions for the probability of portfolio loan losses
and the implementation of marginal risk contributions to obligors makes
the model also attractive from the computational point of view. How-
ever, there are also some limitations of the approach. CreditRisk+ is a
so-called default mode model that does not incorporate migration or mar-
ket risk of an obligor. Also the exposure for each obligor is fixed and cannot
depend on changes on the credit quality of an issuer. This rather unrealistic
assumption is not overcome even in the most general form of the model.



5
Migration Matrices and the Markov
Chain Approach

Jarrow et al. (1997) (hereafter JLT) were the first to model default and
transition probabilities by using a Markov chain on a finite state space
S = {1, . . . , K}. The model and its relevance for determining risk-neutral
migration matrices will be descibed in more detail in Chapter 5. Here we will
concentrate on the definition and properties of discrete and continuous-time
transition matrices.

5.1 The Markov Chain Approach

The state space S represents the different rating classes. Hereby, state S = 1
denotes the best credit rating; state K represents the default case. Hence,
in the discrete case, the (K × K) one-period transition matrix looks as
follows:

P =

⎛
⎜⎜⎜⎜⎝

p11 p12 · · · p1K

p21 p12 · · · p2K

· · · · · · · · · · · ·
pK−1,1 pK−1,2 · · · pK−1,K

0 0 · · · 1

⎞
⎟⎟⎟⎟⎠ (5.1)

where pij ≥ 0 for all i, j, i �= j, and pii ≡ 1−∑K
j=1
j �=i

pij for all i. The variable
pij represents the actual probability of going to state j from initial rating
state i in one time step.

Thus, rating based models can be seen as a special case of the intensity
model framework; see, e.g., Duffie and Singleton, 1999 where randomness
in the default arrival is simply modeled via a Markov chain.

Alternatively, credit migration can also be modeled by a continuous-
time Markov chain. Therefore, we will also introduce the idea of generator
matrices and continuous-time modeling of rating transitions.1

1
Some of the results of this section were originally published in Trueck and

Özturkmen (2004). The structure of the section follows the original publication.
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5.1.1 Generator Matrices
A continuous-time time-homogeneous Markov chain is specified via a K×K
generator matrix of the following form:

Λ =

⎛
⎜⎜⎜⎜⎝

λ11 λ12 · · · λ1K

λ21 λ22 · · · λ2K

· · · · · · · · · · · ·
λK−1,1 λK−1,2 · · · λK−1,K

0 0 · · · 0

⎞
⎟⎟⎟⎟⎠ (5.2)

where λij ≥ 0, for all i, j and λii = −∑K
j=1
j �=i

λij , for i = 1, . . . , K. The
off-diagonal elements represent the intensities of jumping from rating i to
rating j. The default K is an absorbing state.

Definition 5.1 Noris (1998): A generator of a time-continuous Markov
chain is given by a matrix Λ = (λij)1≤i,j≤k satisfying the following
properties:

1.
∑8

j=1 λij = 0 for every i = 1, . . . , K;

2. 0 ≤ −λii ≤ ∞ for every i = 1, . . . , K;

3. λij ≥ 0 for all i, j = 1, . . . , K with i �= j.

Further, see Noris (1998), the following theorem holds:

Theorem 5.2 The following two properties are equivalent for matrixΛ ∈
R

k×k satisfying the following properties:

1. Λ satisfies the properties in Definition 5.1.

2. exp(tΛ) t ≥ 0.

Hence, the K × K t-period transition matrix is then given by

P (t) = etΛ =
∞∑

k=0

(tΛ)k

k!
= J + (tΛ) +

(tΛ)2

2!
+

(tΛ3)
3!

+ · · · (5.3)

On the other hand, under certain conditions that will be investigated in
more detail in the next section, given a discrete-time one-year transition
matrix, the corresponding generator matrix can be calculated using the
following expression:

Λ =
∞∑

k=1

(−1)k+1 (P − I)k

k
(n ∈ N (5.4)
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For example, consider the transition matrix P

P A B D

A 0.90 0.08 0.02
B 0.1 0.80 0.1
D 0 0 1

where the corresponding generator matrix is of the form

Λ A B D

A −0.1107 0.0946 0.0162
B 0.1182 −0.2289 0.1107
D 0 0 0

The use of generator matrices in credit risk is manifold. A main issue is,
for example, the construction of so-called credit curves, giving information
about cumulative default rates; see, e.g., Jarrow et al. (1997). For a given
generator matrix Λ the cumulative default rate PDi

t for rating class i is
given by the Kth entry of the vector:

pi
t = exp(tΛ)xt

i (5.5)

where xt
i denotes the row of the corresponding transition matrix to the

given rating R. Figure 5.1 shows a chart of the credit curves to the
corresponding matrix P on our example.

Similar to the discrete-time framework, JLT transform the empirical gen-
erator matrix into a risk-neutral generator matrix by multiplying it with
a matrix of risk premiums. This corresponds to an adjustment in order
to transform the actual probabilities into the risk-neutral probabilities for
valuation purposes:

Λ̃(t) ≡ U(t)Λ(t) (5.6)

where U(t) = diag(μ1(t), . . . , μK−1(t), 1) is a K × K diagonal matrix with
strictly positive entries μi(t) for i = 1, . . . , K −1 as deterministic functions
of t.

The t-period transition matrix under the martingale measure can then
be computed by the Kolmogorov forward and backward equations:

∂Q̃(t, T )
∂T

= Q̃(t, T )Λ̃(T ) (5.7)

∂Q̃(t, T )
∂t

= −Λ̃(t)Q̃(t, T ) (5.8)

Assuming constant risk premiums (μ1, . . . , μK−1, 1), the risk-neutral
transition matrix under the martingale measure is the solution of

Q̃(t, T ) = eUΛ(T−t)
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FIGURE 5.1. Credit curves for exemplary transition matrix with three rating
states. Cumulative PDs for exemplary rating classes A (solid line) and B (dashed
line).

JLT define a methodology to value risky bonds as well as credit deriva-
tives that is based on ratings that allow for changes in credit quality before
default. In the following section we will give a brief outline of the advantages
of continuous- versus discrete-time models.

5.2 Discrete Versus Continuous-Time Modeling

Lando and Skødeberg (2002) as well as Christensen et al. (2004) focus
on the advantages of the continuous-time modeling over the discrete-time
approach used by rating agencies in order to analyze rating transition
data. Generally, rating agencies estimate transition probabilities using the
multinomial method by computing

p̂ij =
Nij

Ni
(5.9)

for j �= i. Where Ni is the number of firms in rating class i at the beginning
of the year and Nij is the number of firms that migrated from class i to
rating class j.
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The authors argue that these transition probabilities do not capture rare
events such as a transition from rating AAA to default as they may not be
observed. However, it is possible that a firm reaches default through sub-
sequent downgrades from AAA—even within one year and the probability
of moving from AAA to default must be non-zero. Following Küchler and
Sorensen (1997) a maximum-likelihood estimator for the continuous-time
method is proposed:

λ̂ij =
Nij(T )∫ T

0 Yi(s)ds
(5.10)

The variable Yi(s) denotes the number of firms in rating class i at time s
and Nij(T ) is the total number of transitions over the period from i to j,
where i �= j. Under the assumption of time homogeneity over the considered
period, the transition matrix for a time interval t can be computed by the
formula P (t) = etΛ.

Following Lando and Skødeberg (2002), we consider now an example
with three rating classes A, B, and D for default. It is assumed that at the
beginning of the year there are 10 firms in A, 10 in B, and none in default.
Now one A-rated company is downgraded to B after one month and stays
there for the rest of the year; a B-rated company is upgraded to A after
two months and remains there for the rest of the period, and a B-rated
company defaults after six months. The discrete-time multinomial method
then estimates the following one-year transition matrix:

P A B D

A 0.90 0.10 0
B 0.1 0.80 0.1
D 0 0 1

The maximum-likelihood estimator for the continuous-time approach com-
putes the following generator matrix:

Λ̂ A B D

A −0.10084 0.10084 0
B 0.10909 −0.21818 0.10909
D 0 0 0

For instance, the nondiagonal element λ̂AB equals

λ̂AB =
NAB(1)∫ 1
0 YA(s)ds

=
1

9 + 1
12 + 10

12

= 0.10084

The diagonal element λ̂AA is computed such that the row sums to
zero. Exponentiating the generator gives the following one-year transition
matrix:
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P A B D

A 0.90887 0.08618 0.00495
B 0.09323 0.80858 0.09819
D 0 0 1

Thus, we have a strictly positive default probability for class A although
there have been no observations from A to default in this period. However,
this makes sense as the migration probability from A to B and from B to
default is non-zero. Hence, it could happen within one year that a company
is downgraded from rating state A to B and then defaults from rating state
B within one year.

For the time-inhomogeneous case, the Nelson-Aalen estimator [see, e.g.,
Küchler and Sorensen (1997)] can be used:

λ̂hj(t) =
∑

{k:Thjk≤t}

1
Yh(Thjk)

where Thj1 < Thj2 < . . . are the observed times of transitions from state h
to j and Yh(t) counts the number of firms in rating class h at a time just
prior to t. The transition matrix is then computed by

P̂ (s, t) =
m∏

i=1

(J + ΔΛ̂(T )) (5.11)

where J is the identity matrix, Ti is a jump time in the interval (s, t], and

ΔΛ̂(T ) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

−ΔN1(Ti)
Y1(Ti)

ΔN12(Ti)
Y1(Ti)

· · · ΔN1K(Ti)
Y1(Ti)

ΔN21(Ti)
Y2(Ti)

−ΔN2(Ti)
Y2(Ti)

· · · ΔN2K(Ti)
Y2(Ti)

· · · · · · · · · · · ·
ΔNK−1,1(Ti)

YK−1(Ti)
ΔNK−1,2(Ti)

YK−1(Ti)
· · · −ΔNK−1,K(Ti)

YK−1(Ti)

0 0 · · · 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

The diagonal elements count the total number of transitions from class
i to another rating state divided by the number of exposed firms. The off-
diagonal elements count the number of migrations to the corresponding
class also divided by the number of exposed firms. This estimator can be
interpreted as a cohort method applied to very short time intervals.

Applying this approach to our example, we obtain the following matrices:

ΔΛ(T 1
12

) =

⎛
⎝−0.1 0.1 0

0 0 0
0 0 0

⎞
⎠
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ΔΛ(T 2
12

) =

⎛
⎜⎝

0 0 0
1
11 − 1

11 0
0 0 0

⎞
⎟⎠

ΔΛ(T 6
12

) =

⎛
⎝ 0 0 0

0 −0.1 0.1
0 0 0

⎞
⎠

Using equation (5.2), we get

P̂ (0, 1) =

⎛
⎝0.90909 0.08181 0.00909

0.09091 0.81818 0.09091
0 0 1

⎞
⎠

As in the time-homogeneous case, we obtain a strictly positive default
probability for class A, although the entries in the matrix above are
slightly different than in the time-homogeneous case. However, Lando and
Skødeberg (2002) indicate that in most cases the results are not dra-
matically different for large data sets. Compared to the estimator for
the transition matrix using the discrete multinomial estimator, we obtain
obvious deviations.

Summarizing the key advantages of the continuous-time approach, we
find that we get more realistic non-zero estimates for probabilities of rare
events, whereas the multinomial method leads to estimates that are zero.
Further, using generator matrices, it is also possible to obtain transition
matrices for arbitrary time horizons. We will see in later chapters that the
continuous time framework also permits us to generate confidence sets for
default probabilities in higher rating classes. Finally, in the continous-time
approach we do not have to worry which yearly periods we consider. Using
a discrete-time approach may lead to quite different results depending on
the starting point of our consideration.

However, the last issue is also a critical point for the estimation of gen-
erator matrices. In internal rating systems it is often the case that rating
changes are reported only once a year and that the exact time of the change
is not provided. Then it is not appropriate to use the maximum-likelihood
or the Nelson-Aalen estimator for estimation of the transition matrix.

So far we have described the basic ideas of rating based credit risk evalu-
ation methods and the advantages of continuous-time transition modeling
over the discrete-time case. Despite these advantages of continuous-time
modeling, there are also some problems to deal with, like the existence,
uniqueness, or adjustment of the generator matrix to the corresponding
discrete transition matrix.

In many cases in the internal rating system of a bank, only discrete-time
historical transition matrices are reported. To benefit from the advantages
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of continuous-time modeling, the bank might still be interested in finding
the correspondent generator matrix. In this case an important issue is
whether for a given discrete one-year transition matrix a so-called “true”
generator exists. For some discrete transition matrices, there is no genera-
tor matrix at all, while for some there exists a generator that has negative
off-diagonal elements. This would mean that, considering short time inter-
vals, transition probabilities may be negative, which is not acceptable from
a practical point of view. Examining the question of existence and suggest-
ing numerical methods for finding true generators, or approximations for
true generators, we will follow an approach by Israel et al. (2000).

In their paper they first identify conditions under which a true generator
does or does not exist. Then they provide a numerical method for finding
the true generator once its existence is proved and show how to obtain an
approximate one in case of the absence of a true generator. The authors
define two issues concerning transition matrices: embeddability, which is
to determine if an empirical transition matrix is compatible with a true
generator or with a Markov process; and identification, which is to search
for the true generator once its existence is known.

Given the one-year N × N transition matrix P , we are interested in
finding a generator matrix Λ such that

P = eΛ =
∞∑

k=0

Λk

k!
= J + Λ +

Λ2

2!
+

Λ3

3!
+ · · · (5.12)

Dealing with the question if there exists a generator matrix, we can use
the following theorem (Noris, 1998):

Theorem 5.3 If a migration matrix P = (pij)i,j=1,...,k is strictly diagonal
dominant, i.e., pii > 0.5 for every i, then the log-expansion

Λn =
n∑

k=1

(−1)k+1 (P − I)k

k
(n ∈ N (5.13)

converges to a matrix Λ = (λij)i, j = 1, . . . , k satisfying

1.

8∑
j=1

λij = 0 for every i = 1, . . . , k; (5.14)

2. exp(Λ) = P. (5.15)

The convergence Λn → Λ is geometrically fast and denotes an N × N
matrix having row-sums of zero and satisfying P = eΛ∗

exactly. For the
proof, see Israel et al. (2000).
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However, it is important to note that even if the series Λ∗ does not
converge or converges to a matrix that cannot be a true generator, P may
still have a true generator.

There is also a simpler way to check if S < 1, namely if the transition
matrix consists of diagonal elements that are greater than 0.5. In this case
we get S < 1 and the convergence of (5.3) is guaranteed. In practice, for
historical transition matrices of the major rating agencies, this will be true,
so we can assume that generators having row-sums of zero and satisfying
P = eΛ∗

can be found.
For the existence of an exact generator matrix, Israel et al. (2000) state

the following proposition.

Proposition 5.4 Let P be a transition matrix. If one of the following three
conditions holds

• det(P ) ≤ 0

• det(P ) >
∏

i pii

• there are states and j such that j is accessible from i, but pij = 0

then there does not exist an exact generator matrix for P.

However, often there remains another problem: the main disadvantage
of (5.3) is that Λn may converge but does not have to be a true generator
matrix in economic sense; it is particularly possible that some off-diagonal
elements are negative.

We will illustrate this with an example. Consider the one-year transition
matrix:

P A B C D

A 0.9 0.08 0.0199 0.0001
B 0.050 0.850 0.090 0.010
C 0.010 0.090 0.800 0.100
D 0 0 0 1

Calculating the generator that exactly matches P = eΛ∗
by using (5.3),

we get

Λ A B C D

A −0.1080 0.0907 0.0185 −0.0013
B 0.0569 −0.1710 0.1091 0.0051
C 0.0087 0.1092 −0.2293 0.1114
D 0 0 0 0

having a negative entry in the off-diagonal element λAD.
From an economic viewpoint, this is not acceptable because a negative

entry in the generator may lead to negative transition probabilities for

i
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very short time intervals. Israel et al. (2000) show that it is possible that
sometimes there exists more than one generator. They provide conditions
for the existence or nonexistence of a valid generator matrix and further a
numerical algorithm for finding this matrix.

5.2.1 Some Conditions for the Existence
of a Valid Generator

In this section we will examine conditions for the existence and nonexistence
of a valid generator matrix. We will first define the conditions to conclude
the uniqueness of a generator matrix.

Since a transition matrix P sometimes has more than one valid generator,
there is also the problem of its uniqueness. Following Singer and Spilerman
(1976), we provide the following theorem.

A theorem for the uniqueness of the generator is as follows:

Theorem 5.5 Let P be a transition matrix.

• If det(P ) > 0.5, then P has at most one generator.

• If det(P ) > 0.5 and ||P − J || < 0.5, then the only possible generator
for P is the one obtained by (5.3).

• If P has distinct eigenvalues and det(P ) > e−π, then the only possible
generator is the one obtained by (5.3).

For the proofs of the above conditions and further material, we refer to the
original article (Singer and Spilerman, 1976).

If there exists more than one valid generator matrix, the question is
which one to choose. Since it is unlikely for a firm to migrate to a “far”
rating from its current rating, Israel et al. (2000) suggest to choose among
valid generators the one with the lowest value of

J =
∑
i,j

|j − i||λij |

which ensures that the chance of jumping too far is minimized.
Investigating the existence or nonexistence of a valid generator matrix

with only positive off-diagonal elements, we start with another result
obtained by Singer and Spilerman (1976):

Proposition 5.6 Let P be a transition matrix that has real distinct
eigenvalues.

• If all eigenvalues of P are positive, then the matrix obtained by (5.3)
is the only real matrix Λ such that exp(Λ) = P .
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• If P has any negative eigenvalues, then there exists no real matrixΛ
such that exp(Λ) = P .

Using the conditions above, we can conclude for the nonexistence of a
valid generator.

Proposition 5.7 Let P be a transition matrix such that the (5.3) con-
verges to a matrix Λ with negative off-diagonal elements. If at least one of
the following three conditions hold

• det (P ) > 1/2 and |P − I| < 1/2 or

• P has distinct eigenvalues and det(P ) > e−π or

• P has distinct real eigenvalues

then there does not exist a valid generator for P.

For the considered example

P =

⎛
⎜⎜⎝

0.9 0.08 0.0199 0.0001
0.050 0.850 0.090 0.010
0.010 0.090 0.800 0.100

0 0 0 1

⎞
⎟⎟⎠

we get the following results:

• det(P ) = 0.6015 ≥ 1/2.

• P has the distinct positive eigenvalues 0.9702, 0.8529, 0.7269, and
1.0000 and det(P ) = 0.6015 > 0.0432 ≈ e−π.

• P has distinct real eigenvalues.

So we conclude that the conditions in proposition 5.5 for the uniqueness
of a generator hold. Since (5.3) converges to

Λ =

⎛
⎜⎜⎝

−0.1080 0.0907 0.0185 −0.0013
0.0569 −0.1710 0.1091 0.0051
0.0087 0.1092 −0.2293 0.1114

0 0 0 0

⎞
⎟⎟⎠

we find with proposition 5.7 that there exists no true generator for the
transition matrix P . Israel et al. (2000) also suggest a search algorithm for
a valid generator if the series (5.3) fails to converge or converges to a matrix
that has some off-diagonal terms but is not unique. For a further description
we refer to the original publication. In the following we will provide some
approximation methods for generator matrices that are useful in the case
of negative off-diagonal elements.



88 5. Migration Matrices and the Markov Chain Approach

5.3 Approximation of Generator Matrices

In the preceding section we saw that despite the manifold advantages of
continuous-time transition modeling there is a chance of the nonexistence
of a valid generator matrix to a given discrete-time transition. This may
lead to some difficulties in practical implementations. Especially for matri-
ces having rows with several zeros (e.g., no transitions to default states),
often no valid generator matrix exists. In this case, some approximation
methods can be used to determine an adequate generator matrix that will
be discussed in the following.

If we find a generator matrix with negative off-diagonal entries in a
row, we will have to correct this. The result may lead to a genera-
tor not providing exactly P = eΛ∗

but only an approximation, though
ensuring that from an economic viewpoint the necessary condition that
all off-diagonal row entries in the generator are nonnegative is guaran-
teed. The literature suggests different methods to deal with this problem;
see, e.g., Jarrow et al. (1997), Israel et al. (2000), Araten and Angbazo
(1997), Kreinin and Sidelnikova (2001). In this section we will describe the
approaches suggested in Jarrow et al. (1997) and Israel et al. (2000). For
approaches using regularization algorithms that approximate the root of
the annual transition matrix, we refer to the original publiations by Araten
and Angbazo (1997) and Kreinin and Sidelnikova (2001).

5.3.1 The Method Proposed by Jarrow, Lando,
and Turnbull (1997)

The first apporach to deal with off-diagonal row entries in the generator
was initially suggested by Jarrow et al. (1997). Note that we will describe
this in more detail in Chapter 5, which focuses on risk-neutral migration
matrices. In this section we restrict ourselves to a review of their suggestion
of how to adjust a generator matrix. In their approach every firm is assumed
to have either zero or only one transition throughout the year. Under this
hypothesis it can be shown that for λi �= 0 for i = 1, . . . , K − 1

exp(Λ) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

eλ1 λ12(eλ1−1)
λ1

· · · λ1K(eλ1−1)
λ1

λ21(eλ2−1)
λ2

eλ2 · · · λ2K(eλ2−1)
λ2

· · · · · · · · · · · ·
λK−1,1(e

λK−1−1)
λK−1

λK−1,2(e
λK−1−1)

λK−1
· · · λK−1,K(eλK−1−1)

λK−1

0 0 · · · 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(5.16)
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the estimates of Λ̂ can be obtained by solving the system

q̂ii = eλ̂i for i = 1, . . . , K − 1 and

q̂ij = λ̂ij(eλ̂i − 1) for i, j = 1, . . . , K − 1

JLT provide the solution to this system as

λ̂i = log(q̂ii) for i = 1, . . . , K − 1 and

λ̂ij = q̂ij · log(q̂ii)
(q̂ii − 1)

for i �= j and i, j . . . , K − 1

This leads only to an approximate generator matrix; however, it is guaran-
teed that the generator will have no nonnegative entries except the diagonal
elements.

For our example, the JLT method gives the associated approximate
generator

Λ A B C D

A −0.1054 0.0843 0.0210 0.0001
B 0.0542 −0.1625 0.0975 0.0108
C 0.0112 0.1004 −0.2231 0.1116
D 0 0 0 0

with nonegative entries; however, exp(Λ) is only close to the original
transition matrix P :

PJLT A B C D

A 0.9021 0.0748 0.0213 0.0017
B 0.0480 0.8561 0.0811 0.0148
C 0.0118 0.0834 0.8041 0.1006
D 0 0 0 1

Especially in the last column, high deviations (from 0.0001 to 0.0017 in the
first row or 0.0148 instead of 0.010 in the second) for low default probabil-
ities have to be considered as a rather rough approximation. We conclude
that the method suggested by JLT in 1997 solves the problem of negative
entries in the generator matrix, though we get an approximation that is
not really close enough to the “real” transition matrix.

5.3.2 Methods Suggested by Israel, Rosenthal,
and Wei (2000)

Due to the deficiencies of the method suggested by JLT, in their paper Israel
et al. (2000) suggest a different approach to finding an approximate true
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generator. They suggest using (5.3) to calculate the associated generator
and then adjust this matrix using one of the following methods:

• Replace the negative entries with zero and add the appropriate value
back in the corresponding diagonal entry to guarantee that row-sums
are zero. Mathematically,

λij = max(λij , 0), j �= i; λii = λii +
∑
j �=i

min(λij , 0)

The new matrix will not exactly satisfy P = eΛ∗
.

• Replace the negative entries with zero and add the appropriate value
back into all entries of the corresponding row proportional to their
absolute values. Let Gi be the sum of the absolute values of the
diagonal and nonnegative off-diagonal elements and Bi the sum of
the absolute values of the negative off-diagonal elements:

Gi = |λii| +
∑
j �=i

max(λij , 0); Bi =
∑
j �=i

max(−λij , 0)

Then set the modified entries

λij =

⎧⎨
⎩

0, i �= j and λij < 0
λij − Bi|λij |

Gi
otherwise if Gi > 0

λij , otherwise if Gi = 0

In our example where the associated generator was

Λ A B C D

A −0.1080 0.0907 0.0185 −0.0013
B 0.0569 −0.1710 0.1091 0.0051
C 0.0087 0.1092 −0.2293 0.1114
D 0 0 0 0

applying the first method and setting λAD to zero and adding −0.0013
to the diagonal element λAA, we would get for the adjusted generator
matrix Λ∗

Λ∗ A B C D

A −0.1093 0.0907 0.0185 0
B 0.0569 −0.1710 0.1091 0.0051
C 0.0087 0.1092 −0.2293 0.1114
D 0 0 0 0

which gives us for the approximate one-year transition matrix
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PIRW1 A B C D

A 0.8989 0.0799 0.0199 0.0013
B 0.0500 0.8500 0.0900 0.0100
C 0.0100 0.0900 0.8000 0.1000
D 0 0 0 1

Obviously the transition matrix PIRW1 is much closer to the “real” one-
year transition than the result for the method by Jarrow et al. (1997).
Especially for the second and third row, we get almost exactly the same
transition probabilities than for the “real” transition matrix. Also the devi-
ation for the critical default probability λAD is clearly reduced compared
to the JLT method described above.

Applying the second suggested method and again replacing the negative
entries with zero but redistributing the appropriate value to all entries of
the corresponding row proportional to their absolute values gives us the
adjusted generator

Λ∗ A B C D

A −0.1086 0.0902 0.0184 0
B 0.0569 −0.1710 0.1091 0.0051
C 0.0087 0.1092 −0.2293 0.1114
D 0 0 0 0

and the associated one-year transition matrix

PIRW1 A B C D

A 0.8994 0.0795 0.0198 0.0013
B 0.0500 0.8500 0.0900 0.0100
C 0.0100 0.0900 0.8000 0.1000
D 0 0 0 1

Again we get results that are very similar to the ones using the
first method by Israel et al. (2000). The authors state that gener-
ally by testing various matrices, they found similar results. To compare
the goodness of the approximation, they used different distance matrix
norms.

While the approximation of the method suggested by JLT in their 1997
seminal paper is rather rough, the methods suggested by Israel et al.
(2000) give better approximations of the true transition matrix. Note,
however, that these results are rather qualitative at the moment. For dif-
ferent measures to compare the goodness of the approximation, we refer to
Chapter 7.
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5.4 Simulating Credit Migrations

In this section we will review some techniques that can be used to
simulate credit migration matrices. Simulation results from migration
matrices are of particular interest when it comes to calculations of Value-
at-Risk or expected shortfall for a credit or loan portfolio. This section
provides a quick guide to different simulation techniques and presents
algorithms for the time-discrete, time-continuous, and a nonparametric
approach.

5.4.1 Time-Discrete Case
In the time-discrete case the simulation procedure is straightforward and
can be conducted the following way: depending on the initial rating i
of the firm, the interval [0, 1] is divided into subintervals according to
the migration probabilities pij for j = 1, . . . , K. For example, for each
rating class i, the intervals can be determined according to the following
procedure:

I1,i = [0, pi,1)
I2,i = [pi,1, pi,1 + pi,2)
... ....

Ij,i = [
∑j−1

k=1 pi,k,
∑j

k=1 pi,k)
... ....

IK,i = [
∑K−1

k=1 pi,k, 1]

(5.17)

Then a uniform distributed random variable ut between 0 and 1 is drawn.
Depending on which subinterval the random variable lies in, the company
stays in the same rating class i or migrates to rating class j. The migration
process for a company or loan in rating class i is determined by the following
function f : [0, 1] → S:

fsi =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

S1, for ut ∈ I1,i

S2 for ut ∈ I2,i

... ....

... ....
SK for ut ∈ IK,i

(5.18)

If more than one time-period is considered and a migration to rating state
j occurs, new subintervals have to be calculated based on the migration
probabilities pjk for k = 1, . . . , K and a new random number ut+1 is drawn
for the following period. The procedure is either going to be repeated for
t = 1, . . . , T periods or terminated, if the company migrates to the absorbing
default state.
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5.4.2 Time-Continuous Case
Recall that a continuous-time, time-homogeneous Markov chain is specified
via the a K × K generator matrix of the following form:

Λ =

⎛
⎜⎜⎜⎜⎝

λ11 λ12 · · · λ1K

λ21 λ22 · · · λ2K

· · · · · · · · · · · ·
λK−1,1 λK−1,2 · · · λK−1,K

0 0 · · · 0

⎞
⎟⎟⎟⎟⎠ (5.19)

where λij ≥ 0, for all i, j and λii = − ∑K
j=1
j �=i

λij , for i= 1, . . . , K. The
off-diagonal elements represent the intensities of jumping from rating i to
rating j. The default state K is considered to be absorbing.

In the following we will illustrate two different techniques that might be
used to simulate credit migrations from a continuous-time Markov chain.
The first one is applied, for example, in Christensen et al. (2004) or Trueck
and Rachev (2005).

As the waiting time for leaving state i has an exponential distribution
with the mean 1

−λii
we draw an exponentially distributed random variable

t1 with the density function

f(t1) = −λiie
λiit1

for each company with initial rating i. Depending on the considered time
horizon T for t1 > T , the company stays in its current class during the
entire period T . If we get t1 < T , we have to determine to which rating
class the company migrates.

Hence, similar to the discrete-time approach the interval [0, 1] is divided
into subintervals according to the migration intensities calculated via λij

−λii
.

Then a uniform distributed random variable between 0 and 1 is drawn.
Depending on which subinterval the random variable lies in, we determine
the new rating class j the company migrates to. Then we draw again from
an exponentially distributed random variable t2—this time with parameter
λjj from the generator matrix. If we find that t1 + t2 > T , the considered
company stays in the new rating class and the simulation is completed for
this firm. If t1 + t2 < T , we have to determine the new rating class. The
procedure is repeated until we get

∑
tk > T or the company migrates

to the absorbing default state where it will remain for the rest of the
considered time period.

An alternative procedure that could be used follows an algorithm that
is, e.g., described in Glasserman (1992). Recall that the waiting times for
leaving state i to any other rating state j have exponential distributions
with mean 1/λij . Therefore, we draw for each of the companies with initial
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rating iK−1 exponentially distributed random variables tij with density
functions

f(tij) = λijexp(λijtij) (5.20)

We then determine the minimum of the drawn waiting times tmin1 =
min(tij) for j �= i. Depending on the time horizon T , if tmin1 > T ,
the company stays in its current rating state i for the entire period
T . If tmin1 < T , the company migrates to the rating class j with the
smallest drawn waiting time tij . In the case of migration we again draw
seven exponentially distributed random variables tjk with density func-
tions f(tjk) = λjkexp(λjktjk) and determine tmin2 . If tmin1 + tmin2 > T ,
the company stays in the new rating class j and the simulation for this firm
is completed. If tmin1 +tmin2 < T , the company migrates to the rating class
k with the smallest drawn waiting time tjk. The procedure is repeated until∑

i tmini
> T or the company migrates to default state.

5.4.3 Nonparametric Approach
Finally, we will describe the underlying idea of nonparametric simulation
of credit migrations. For an empirical application, see, e.g., Schuermann
and Hanson (2004). The authors use a nonparametric simulation procedure
to estimate confidence intervals for probabilities of default. Note that for
this approach the estimated discrete or continuous-time migration matrix
will not be sufficient. To apply a nonparametric approach, the actual indi-
vidual migrations of the loans or bonds need to be available. Based on
the observed migrations, for each of the rating classes, a data table can
be constructed containing the duration times and the rating class the
corresponding company migrated to.

The simulation procedure can be described as follows: for each of the
companies we draw randomly a row in the corresponding duration time
data table. If the duration time t in the drawn row is greater than the
considered time horizon T , the company stays in the initial rating class.
For t < T we have to differentiate between two cases. If the initial rating
and the end rating of the drawn row coincide, the company stays, of course,
in the initial rating. We then have to randomly draw another row from the
same duration time data table, whereas the considered time horizon T has
to be reduced by t. If the end rating j and the initial rating i of the drawn
row vary, a migration to rating j occurs. In this case we have to randomly
draw a row from the duration time data table of the new rating class j.
The procedure is repeated until either a default occurs or the sum of the
drawn duration times exceed the simulated time horizon T .

The following example may help to illustrate the procedure. Table 5.1
gives an exemplary representation for hypothetical duration times in rating
class AA. Assume that for each of the other rating classes a similar table was
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TABLE 5.1. Parts of the Duration Time Table for Rating Class AA

Row Duration Time t (in months) Initial Rating i End Rating j

1 36 AA AA
2 4 AA AAA
3 71 AA AA
4 17 AA BBB
· · · · · · · · · · · ·

constructed. Hereby, also the duration records of companies which remained
in the initial rating class for the considered time period were included. The
simulation is then conducted according to the algorithm described above.
Depending on the drawn random number, the corresponding row in the
table is considered to simulate the duration time in the rating class and
the migration.

Note that in this section we assumed that all individual migrations are
independent. For approaches that can also be used to simulate dependent
credit migrations, we refer to Section 10.5.



6
Stability of Credit Migrations

This chapter is dedicated to the examination of the stability of rating
migration with the focus on credit transition matrices. After a first glance
at rating behavior through the business cycle, we will provide tests for two
major assumptions that are often made about transition matrices: time
homogeneity and Markov behavior. Generally, both assumptions should be
treated with care. Several studies have shown that migration matrices are
not homogeneous through time and that also the assumption of first-order
Markov behavior is rather questionable; see, e.g., Bangia et al. (2002), Jafry
and Schuermann (2004), Krüger et al. (2005), Nickell et al. (2000), Weber
et al. (1998). As a major reason for this, many authors name the influence
of macroeconomic variables and their effects on migration behavior (Nickell
et al., 2000; Trueck, 2008; Wei, 2003). However, such business cycle effects
might have a substantial influence on homogeneity of migration behavior,
but they do not implicitly contradict the idea of Markov behavior. For some
theoretical explanations of non-Markov behavior in credit migrations, see,
e.g., Löffler (2004, 2005). For a framework on stochastic migration matrices
and a study on serially correlated rating transitions in the French mar-
ket, we refer to Gagliardini and Gourieroux (2005a,b). Overall, while the
assumption of first-order Markov behavior for credit migrations might be a
simplification of the real world, departing from this assumption makes the
modeling, estimation, or simulation of rating transitions much more compli-
cated. In this chapter we will review methods that can be used to investigate
time homogeneity and Markov behavior of credit migration matrices. They
might be helpful to examine deviations from these properties but can also
be used to compare different rating systems with respect to their migration
behavior. Several of the issues raised will also be illustrated using empirical
examples of an internal rating system as well as a history of Moody’s yearly
credit migration matrices.

6.1 Credit Migrations and the Business Cycle

This section tries to give a first glance at the link between the current
state of the economy and default risk or migration behavior of a company.
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Intuition gives the following view: when the economy worsens, both
downgrades as well as defaults will increase. The contrary should be true
when the economy becomes stronger. Figures 6.1 and 6.2 show Moody’s
historical default frequencies for noninvestment grade bonds of rating class
CCC and B for the years 1984 to 2001. Clearly there is a high devia-
tion from the average. For CCC-rated bonds the default frequencies range
from 5% in 1996 in high market times to more than 45% in 2001, when
there was a deep recession in the American economy. We conclude that
taking average default probabilites of a longer time horizon as estimators
for future default probabilities might not give correct risk estimates for a
portfolio.

Note that also the second major determinant of credit risk, the recovery
rate, shows large variations through time. Figure 6.3 illustrates the issuer
weighted recovery rates for corporate loans from 1982–2003 according to
Moody’s KMV investor services. For further results on the investigation of
the relation between default and recovery rates, see Altman and Kishore
(1996), Altman et al. (2005), Schuermann (2004).

Since our focus is mainly on credit migration matrices, in Tables 6.1
and 6.2 we also provided information on Moody’s average one-year tran-
sition probabilities for unsecured long-term corporate and sovereign bond
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FIGURE 6.1. Moody’s historical default rates for rating class B and time horizon
1984–2001.
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FIGURE 6.2. Moody’s historical defaults rates for rating class Caa and time
horizon 1984–2001.
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FIGURE 6.3. Issuer weighted recovery rates for corporate loans (1982–2003).
Source: Moody’s KMV.
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TABLE 6.1. Average One-Year Transition Probabilities for Unsecured Moody’s
Long-Term Corporate and Sovereign Bond Ratings, Business Cycle Recession
Source: Nickell et al. (2000)

Aaa Aa A Baa Ba B Caa C D

Aaa 89.60 10.00 0.40 0.00 0.00 0.00 0.00 0.00 0.00
Aa 0.90 88.30 10.70 0.10 0.00 0.00 0.00 0.00 0.00
A 0.10 2.70 91.10 5.60 0.40 0.20 0.00 0.10 0.00
Baa 0.00 0.30 6.60 86.80 5.60 0.40 0.20 0.00 0.10
Ba 0.00 0.10 0.50 5.90 83.10 8.40 0.30 0.00 1.70
B 0.00 0.10 0.20 0.80 6.60 79.60 2.20 1.00 9.40
Caa 0.00 0.00 0.00 0.90 1.90 9.30 63.00 1.90 23.10
C 0.00 0.00 0.00 0.00 0.00 5.90 5.90 64.70 23.50

TABLE 6.2. Average One-Year Transition Probabilities for Unsecured Moody’s
Long-Term Corporate and Sovereign Bond Ratings, Business Cycle Peak
Source: Nickell et al. (2000)

Aaa Aa A Baa Ba B Caa C D

Aaa 92.20 7.40 0.30 0.00 0.10 0.00 0.00 0.00 0.00
Aa 1.50 87.50 10.10 0.70 0.20 0.00 0.00 0.00 0.00
A 0.10 1.80 91.70 5.40 0.80 0.20 0.00 0.10 0.00
Baa 0.10 0.20 5.20 88.10 4.90 1.20 0.00 0.00 0.20
Ba 0.10 0.00 0.30 5.40 85.70 6.70 0.20 0.00 1.50
B 0.10 0.10 0.40 0.80 6.60 83.60 1.60 0.30 6.60
Caa 0.00 0.00 0.00 0.00 2.80 9.30 59.80 8.40 19.60
C 0.00 0.00 0.00 0.00 0.00 8.30 8.30 70.80 12.50

ratings for the case of business cycle trough and peak from 1970–1997. The
data are taken from a study by Nickell et al. (2000) and show the clear
tendency of higher downgrade probability for investment and speculative
grade issues during recessions compared to expansions of the economy. Sim-
ilar results were obtained by Bangia et al. (2002), who considered Standard
& Poor’s (S&P) historical transition matrices from 1981 to 1998.

The question arises when two migration matrices or rows of these
matrices differ from each other significantly and when they differ from
the unconditional average transition matrix. To examine this issue more
thoroughly, we will provide tests to detect significant differences between
transition matrices in the next section.

Considering assigned new ratings by S&P for the period from 1984–2001
in Table 6.3, we find that in years of economical contraction, as in 1990
or 1991, the lowest percentages of new issuers in speculative grade could
be observed. This could be due to the fact that in these times fewer risky
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TABLE 6.3. S&P’s Assigned Ratings in Investment and Speculative Grade to
New Issuers and Downgrade to Upgrade Ratio for all Issuers
Source: Standard & Poor’s

Year % Investment Grade % Speculative Grade Downgrade/Upgrade Ratio

1984 54.3 45.7 1.23
1985 60.6 39.4 2.13
1986 40.3 59.7 2.21
1987 43.5 56.5 1.57
1988 59.6 40.4 1.56
1989 55.5 44.5 1.40
1990 77.6 22.4 2.56
1991 86.0 14.0 2.25
1992 62.0 38.0 1.41
1993 50.9 49.1 1.25
1994 65.0 35.0 1.63
1995 54.2 45.8 1.06
1996 53.0 47.0 0.67
1997 43.2 56.8 1.00
1998 37.0 62.5 1.81
1999 39.6 60.4 1.91
2000 49.4 50.6 2.24
2001 56.5 43.5 2.90

businesses emerge and issue debt. Further, in these years as well as during
the economic downturn in the year 2001, a very high downgrade to upgrade
ratio considering all issuers could be observed. So obviously, ratings them-
selves but also changes in these ratings, i.e., credit migrations, seem to
exhibit different behavior through time and are dependent on the overall
macroeconomic situation. Considering the coefficients of variation, a study
by Bangia et al. (2002) finds that most of the coefficients of variation dur-
ing an economic recession are much lower than for all years considered.
According to the authors for the expansion matrix, the coefficients of vari-
ation are on average reduced by only 2% compared to the unconditional
matrix, while the contraction matrix exhibits about 14% less volatility.
Furthermore it is striking that many of the largest reductions in variation
coefficients for the contraction matrix actually stem from elements on or
close to the diagonal supporting the reliability of the results. Overall, these
results could be a sign for the fact that migration probabilities are more
stable in economic contractions than they are on average, supporting the
existence of two distinct economic regimes. The difference in the matrices
observed indicates that the historical defaults develop differently during
expansions and contractions.
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TABLE 6.4. Correlations Between Macroeconomic Variables
and Moody’s Historical Default Frequencies for Rating Classes
Baa-C 1984–2000

Rating Class Baa Ba B C

Δ GDP −0.1581 −0.4516 −0.6414 −0.3066
Δ CPI 0.4046 0.5691 0.2271 0.2010
Annual Saving 0.4018 0.5663 0.2258 0.1983
Δ Consumption −0.0902 −0.0132 −0.3099 −0.1686

Let us finally examine the correlations between yearly default rates in
the speculative grade area and macroeconomic variables. Assuming that
the variables will have an effect on default rates, we considered the GDP
growth, changes in the consumer price index, annual savings, and changes in
the personal consumption expenditures for the United States. The correla-
tions were calculated based on an assumed effect of the exogenous variables
on rating migrations for the same year (see Table 6.4).

We find that some of the considered variables clearly have a signifi-
cant impact on the considered migrations. The sign of the correlation in
Table 6.4 is in the direction we would expect for all variables. In Chapter 9
we will take a closer look at the relationship between business cycle indica-
tors and credit migration matrices. In this chapter we will mainly focus on
the assumptions of Markov behavior and time homogeneity of migration
matrices and provide a study on the significant effects changes in migration
behavior may have on VaR and estimated probabilities of default for credit
portfolios.

6.2 The Markov Assumptions and Rating Drifts

In most rating based models for credit risk management, rating transitions
are modeled via a discrete or continuous-time Markov chain. However, in
several applications, [see Lando and Skødeberg (2002); Nagpal and Bahar
(2000); Frydman and Schuermann (2008)] non-Markov migration behavior
also is investigated, and the authors provide methods for detecting higher
order Markov behavior or rating drifts in migration models. In this section
we summarize tests for Markov behavior or so-called rating drift in credit
migrations. The tests will be illustrated using some empirical results for an
internal rating system.

The term “Markov behavior” generally denotes Markov behavior of first
order. However, later we will also investigate Markov behavior of a higher
order. Therefore, we denote that unless it is not explicitly indicated, the
term “Markov behavior” refers to first order Markov behavior. We define
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Definition 6.1 A random variable Xt exhibits (first-order) Markov behav-
ior, if its conditional distribution of Xt on past states is a function of Xt−1
alone, and does not depend on previous states {Xt−2, Xt−3, . . .}:

P (Xt = xt | Xt−1 = xt−1, Xt−2 = xt−2, . . . , X0 = x0)

= P (Xt = xt | Xt−1 = xt−1)

As mentioned above, the term “Markov behavior” usually describes a
first-order Markov chain. If the probability of moving to a certain state in
the next period is not only dependent on the current state Xt−1 but also
on past states Xt−2, . . . Xt−n (but not on state Xt−(n+1), . . .), one uses the
term “Markov behavior of nth order”:

P (Xt = xt | Xt−1 = xt−1, Xt−2 = xt−2, . . . , X0 = x0)

= P (Xt = xt | Xt−1 = xt−1, . . . , Xt−n = xt−n)

6.2.1 Likelihood Ratio Tests
Following Goodman (1958), we suggest testing the Markov property using
a likelihood ratio test. The test is based on comparing two likelihood func-
tions LB and LA while one of the models is assumed to show Markov
behavior of a higher order. The test statistic

LR = 2 ln
(

LB

LA

)
= 2 ln(LB − LA) ∼ χ2(b − a) (6.1)

is approximately χ2 distributed; the number of degrees of freedom is the dif-
ference between the estimated parameters in model B minus the estimated
parameters in model A.

Testing for first-order Markov behavior against independence then is
equivalent to testing the hypothesis of an independent identical distribution
(iid) against the hypothesis of a first-order Markov chain (MK1). We obtain
the likelihood functions

LA(P̂ ) =
n∏

j=1

p
nj

j

and

LB(P̂ ) =
n∏

i=1

n∏
j=1

p
nij

ij
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Clearly, in order to test on the same data basis, we can include only those
records in LA having at least one period of history. With LA and LB the
likelihood ratio becomes

LR = 2 ln

(∏n
i=1
∏n

j=1 p
nij

ij∏n
j=1 p

nj

j

)
= 2

⎛
⎝ n∑

i=1

n∑
j=1

nij ln pij −
n∑

j=1

nj ln pj

⎞
⎠ (6.2)

The likelihood ratio is supposed to be χ2-distributed with Δm degrees of
freedom, where Δm is the difference in the number of estimated parameters
in both models.

For higher order Markov behavior, a second test can be deducted on the
null-hypothesis of first-order Markov property (MK1) against the hypoth-
esis of second-order Markov property (MK2). The matter of interest is
whether the actual distribution depends only on the last state Xt−1 or
also incorporating the second last state Xt−2 provides higher likelihoods.
The likelihood functions read

LB(P̂ ) =
∏n

i=1
∏n

j=1 p
nij

ij and LC(P̂ ) =
∏n

i=1
∏n

j=1
∏n

k=1 p
nijk

ijk

Hence, the likelihood ratio is calculated according to the expression

LR = 2

⎛
⎝ n∑

i=1

n∑
j=1

n∑
k=1

nijk ln pijk −
n∑

i=1

n∑
j=1

nij ln pij

⎞
⎠ (6.3)

Following Goodman (1958) the expression LR also is χ2-distributed with
Δm degrees of freedom. Again Δm is equal to the difference of the number
of estimated parameters in both models. Testing for second-order Markov
behavior (MK2) against the hypothesis of third-order Markov behavior
(MK3) is straightforward. We therefore exclude the test statistics and sim-
ply provide some empirical results on these tests of an empirical study on
the internal rating system described above.

6.2.2 Rating Drift
In a number of publications (Altman and Kao, 1992a,b; Bangia et al.,
2002; Lando and Skødeberg, 2002), first-order Markov property has been
rejected by testing for rating drift or so-called path dependence. Rating
changes from the previous period have continued in the actual period
in most cases. In a first-order Markov chain, the rating distribution of
the next period is dependent only on the present state and not on any
developments in the past. If there is a so-called rating drift or path depen-
dence, then it is assumed that loans that have been downgraded before
are less frequently upgraded in the next period, while loans that have
experienced prior upgrading are prone to further upgrading. Therefore,
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two-period changes like “Down-Down”1 or “Up-Up” are generally consid-
ered to be more probable than alternating rating changes like “Down-Up”
or “Up-Down”—the former is the so-called rating drift.

In order to investigate if such a rating drift exists in our data, we rely
on the matrix M , which includes the total number of transitions from
one rating grade to another; i.e., {M(t)}ij gives the number of transitions
from rating grade i at time t to rating grade j at time t + 1. The matrix
M is split into the sum of three matrices, called Up-Momentum-Matrix,
Maintain-Momentum-Matrix, and Down-Momentum-Matrix.2 These three
matrices are defined element-by-element in the following way:

{MUp(t)}ij := number of transitions from i to j of companies
which were upgraded during the year t − 1 to t,

{MMaintain(t)}ij := number of transitions from i to j of companies
which had no rating change during the year t − 1 to t,

{MDown(t)}ij := number of transitions from i to j of companies
which had no rating change during the year t − 1 to t.

By construction we have

M(t) = MUp(t) + MMaintain(t) + MDown(t).

As mentioned above, the issues of Markov bahvior and rating drifts have
been studied by various authors (Altman and Kao, 1992a; Bangia et al.,
2002; Lando and Skødeberg, 2002). In most of the cases, higher order
Markov behavior and rating drift can be detected. However, most of the
studies conducted deal with data provided by the major rating agencies.
In the following we will illustrate the use of the methods described above
to an internal rating system of a financial institution.

6.2.3 An Empirical Study
In the following some empirical results for an internal rating system based
on balance sheet data rating process of a German bank are provided.3 The
default probabilities and corresponding ratings were determined based on
a logit model (Engelmann et al., 2003) and were used to investigate the
time series behavior of the migration matrices for the period from 1988 to
2003. We will start with overview on the observed transitions and average
one-year migration matrix for the considered time period; see Krüger et al.
(2005).

Hereby, the transition probabilities were calculated by Maximum Likeli-
hood estimation as p̂ij = Nij

Ni
where Nij denotes the number of transitions

1
For example, a series of subsequent downgrades like AAA −→ AA −→ A.

2
This procedure is the same as in Bangia et al. (2002).

3
The results were originally published in Krüger et al. (2005).
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TABLE 6.5. Average Rounded One-Year Transitions for the Considered Rating
System

AAA AA A BBB BB B CCC D Σ Portion

AAA 3249 679 479 263 61 13 0 2 4744 14.73%
AA 686 721 744 400 71 12 0 1 2635 8.18%
A 431 744 1805 1648 259 32 0 4 4923 15.29%
BBB 218 368 1552 6609 2288 259 0 31 11325 35.17%
BB 45 56 192 2034 3672 864 1 82 6946 21.57%
B 8 6 22 180 748 762 3 71 1800 5.59%
CCC 0 0 0 0 1 3 0 0 4 0.02%

TABLE 6.6. Average One-Year Transition Probabilities for the Considered
Rating System

AAA AA A BBB BB B CCC D

AAA 68.48% 14.30% 10.10% 5.54% 1.29% 0.27% 0.00% 0.03%
AA 26.01% 27.37% 28.24% 15.19% 2.69% 0.46% 0.00% 0.04%
A 8.76% 15.12% 36.66% 33.46% 5.26% 0.65% 0.00% 0.08%
BBB 1.93% 3.25% 13.70% 58.36% 20.20% 2.29% 0.00% 0.27%
BB 0.65% 0.80% 2.76% 29.29% 52.86% 12.43% 0.02% 1.18%
B 0.45% 0.35% 1.24% 10.00% 41.54% 42.33% 0.15% 3.94%
CCC 0.00% 2.91% 0.97% 5.83% 19.90% 66.02% 4.37% 0.00%

D 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 100.00%

TABLE 6.7. Results from the LR-Tests for the Considered Internal
Rating System

H0 H1 # Companies Likelihood Ratio f χ2(f)

iid MK1 32,380 26426 39 54.57
MK1 MK2 27,912 1852 192 225.33
MK2 MK3 24,575 800 783 849.21

from rating i to j and Ni denotes the total number of transitions from rat-
ing i. The average rounded one-year number of transitions and transition
probabilities for the considered rating system are reported in Tables 6.5
and 6.6. In a next step the estimated yearly migration matrices were inves-
tigated by conducting the likelihood ratio tests on Markov behavior and
examining rating drifts.

The results for tests on first or higher order Markov behavior are shown
in Table 6.7; significant test results are highlighted in bold letters. The
first test was on the hypothesis of independent identical distribution (iid)
against the hypothesis of a MK1. The results were significant rejecting the
iid hypothesis. In a second test the hypothesis of MK1 is tested against
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second-order Markov property. Based on the results, we also reject MK1 in
favor of second-order Markov property. We conclude that for the considered
rating system at least a rating history of two periods should be used to
estimate the actual state distribution as precisely as possible or make fore-
casts on future rating distributions. In a third test we examine whether
the hypothesis of third-order Markov property (MK3) leads to even better
results. Again the number of companies included decreases, because only
records with a three-period history could be taken into account. In that
case the test is not significant, so we conclude that the hypothesis of MK2
cannot be rejected. We conclude that for the considered internal rating
system, the rating state distribution seems to depend on two periods of
history.

The average transition probabilities we obtained based on MUp,
MMaintain, and MDown for the the years 1990 until 2003 can be found in
Table 6.8, Table 6.9, and Table 6.10. Note that due to the very small num-
ber of observations in the CCC rating category, we excluded the category
from the analysis.

We found an interesting result for our rating system: companies in a
rating category that were upgraded in the previous period are more likely
to be downgraded than companies in the same rating category that were
downgraded in the previous period. Considering transition probabilities
obtained from the Up-Momentum-Matrix, we find that upgrades (elements

TABLE 6.8. Average Transition Probabilities Obtained from the Up-
Momentum-Matrix

AAA AA A BBB BB B CCC D

AAA 49.37% 21.30% 16.67% 9.80% 2.35% 0.47% 0.00% 0.05%
AA 20.40% 24.83% 32.05% 18.64% 3.43% 0.59% 0.00% 0.06%
A 6.15% 11.15% 33.57% 40.93% 7.13% 0.93% 0.01% 0.12%
BBB 1.27% 1.86% 7.42% 51.81% 32.88% 4.31% 0.00% 0.46%
BB 0.35% 0.74% 1.90% 17.68% 52.76% 24.28% 0.06% 2.24%
B 0.00% 1.96% 0.00% 7.84% 0.00% 78.43% 11.8% 0.00%

TABLE 6.9. Average Transition Probabilities Obtained from the Maintain-
Momentum-Matrix

AAA AA A BBB BB B CCC D

AAA 75.87% 12.07% 7.42% 3.66% 0.80% 0.15% 0.00% 0.03%
AA 24.42% 32.48% 28.71% 12.39% 1.80% 0.19% 0.00% 0.01%
A 6.55% 14.98% 41.60% 32.55% 3.95% 0.32% 0.00% 0.06%
BBB 1.12% 2.16% 11.90% 63.58% 19.25% 1.75% 0.00% 0.24%
BB 0.29% 0.47% 1.58% 23.66% 59.54% 13.17% 0.01% 1.27%
B 0.39% 0.26% 0.71% 5.64% 34.22% 54.06% 0.17% 4.54%
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TABLE 6.10. Average Transition Probabilities Obtained from the Down-
Momentum-Matrix

AAA AA A BBB BB B CCC D

AAA — — — — — — — —
AA 34.50% 26.89% 23.37% 12.70% 2.20% 0.28% 0.00% 0.04%
A 13.88% 18.95% 35.23% 27.04% 4.26% 0.55% 0.00% 0.10%
BBB 4.01% 6.44% 22.34% 51.97% 13.35% 1.66% 0.00% 0.21%
BB 0.93% 1.11% 4.10% 38.60% 45.77% 8.57% 0.02% 0.88%
B 0.38% 0.40% 1.45% 12.21% 45.89% 35.69% 0.08% 3.90%

at the left side of the diagonal) have lower probabilities than downgrades
(elements at the right side of the diagonal). In the Down-Momentum-
Matrix we see that upgrades have higher probabilities than downgrades.
To illustrate this behavior, in Tables 6.8, 6.9, and 6.10 some transition
probabilities for upgrades and downgrades of AA rated records have been
highlighted in bold. More formally, our observations concerning condi-
tional upgrade and downgrade probabilities of a rating process X can be
written as

P (Xt+1 > Xt | Xt < Xt−1) > P (Xt+1 > Xt | Xt > Xt−1)

P (Xt+1 < Xt | Xt > Xt−1) > P (Xt+1 < Xt | Xt < Xt−1)

To investigate whether the differences are significant for single states
(rows) and for the entire matrices, we used Pearson’s χ2 test. We con-
sidered the values of the Maintain-Momentum-Matrix as expected events
and transitions of the Up-Momentum-Matrix (Down-Momentum-Matrix)
as observed events. The result both for row-wise comparison and
matrix-wise comparison confirms that the matrices are significantly
different.

Summarizing the results of this section, we find that for the considered
rating system rating transitions tend to compensate previous-period rating
changes. These results are quite different to the rating drift observed in
previous studies—for example, Altman and Kao (1992b), Bangia et al.
(2002) or Lando and Skødeberg (2002). The authors found a tendency
that companies in a certain rating category which were downgraded in
the previous period are more likely to be downgraded in the next period
than other companies in the same rating category which were upgraded
in the previous period. An analogous statement was found for upgrades.
Our results may be a consequence of the fact that, in contrast to other
studies, we investigate rating transitions which are based on changes in
credit scores only. Personal judgements or so-called soft factors included in
the rating procedure by the major rating agencies that might induce effects
like a rating drift were not considered.
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6.3 Time Homogeneity of Migration Matrices

In the following we will review some techniques that can be used to
investigate time homogeneity of migration matrices. While it is well known
that generally transition matrices do not exhibit homogeneous migration
behavior through time (Bangia et al., 2002; Nickell et al., 2000; Trueck and
Rachev, 2005; Weber et al., 1998), for the sake of simplification average his-
torical migration matrices are used as a starting point for evaluating credit
risk or also to derive risk-neutral migration matrices as in Jarrow et al.
(1997). Nevertheless, this property includes some element of idealization,
since different states of the economy will generally result in a different
migration behavior of companies in terms of rating upgrades, down-
grades, or defaults. Recall, however, that in Section 2.1 it was explained
that so-called through-the-cycle ratings should take into account possible
changes in the macroeconomic conditions and not be affected when the
change of the creditworthiness is caused only by a change of macroeconomic
variables.

We will now investigate some methods for detecting time inhomogeneity
of transition matrices. The most prominent tests for comparing transition
matrices were developed by Anderson and Goodman (1957), Goodman
(1958), and Billingsley (1961). They use chi-square and likelihood-ratio
tests comparing transition probabilities estimated simultaneously from the
entire sample to those estimated from subsamples obtained by dividing the
entire sample into at least two mutually independent groups of observa-
tions. In our empirical study we will focus on the chi-square test; the LR
test statistic is asymptotically equivalent.

For the definition of time homogeneity, let us consider the two years s and
u and the corresponding state vectors Xs, Xu. Let us denote the transition
matrix which transforms Xs into Xu by Pt(s), where t := u − s denotes
the time horizon in years.

Definition 6.2 A Markov chain is time homogeneous if the property

P (Xs = xs | Xs−1 = xs−1) = P (Xu = xu | Xu−1 = xu−1)

holds for the state vectorsXs and Xu at two different datess and u, where
s and u are arbitrary.

As a consequence of this definition, for t = v − u = s − r we have

Xv = Pv−uXr = Ps−rXr = PtXr (6.4)

where Pt does not depend on the initial date r or u but only on the difference
t between the initial date r and s or u and v, respectively.
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In the nonhomogeneous case the transition probability matrix would
depend on the initial date r or u as well as on the distance t between the
dates; i.e., we have Xv =Pt(u)Xu instead of (6.4), whereas in the homoge-
neous case the transition probability matrix is a function of the distance
between dates and not the dates themselves.

For simplicity, let us denote the transition probability matrix for two
subsequent years by P . The property time homogeneity offers the nice
feature that the state vector xv at any future date v can be calculated in
terms of the initial state vector xu by xv =P txu, where P t denotes the tth
power of the matrix P .

6.3.1 Tests Using the Chi-Square Distance
In tests using the chi-square distance, time stationarity is simply checked
by dividing the entire sample into T periods. Then it is tested whether
the transition matrices estimated from each of the T subsamples differ
significantly from the matrix estimated from the entire sample.

The test statistic used is

Qt =
T∑

t=1

N∑
i=1

∑
j∈Vi

ni(t)
(p̂ij(t) − pij)2

pij
∼ χ2

(
N∑

i=1

(ui − 1)(vi − 1)

)
(6.5)

Clearly, pij denotes the average probability of transition from the ith to the
jth class estimated from the entire sample, p̂ij(t) the corresponding tran-
sition probability estimated from subsample in t. Further we should note
that only those transition probabilities are taken into account which are
positive in the entire sample; thus, we set Vi = {j : p̂ij > 0} and exclude
transitions for which no observations are available in the entire sample.
Q has an asymptotic chi-square distribution with degrees of freedom equal
to the number of summands in T minus the number of estimated transi-
tion probabilities p̂ij corrected for the number of restrictions (

∑
j pij = 1

and
∑

j pij(t) = 1 for t = 1, . . . , T ). Thus, we get for the degrees of freedom
(
∑

i(ui − 1)(vi − 1)).

6.3.2 Eigenvalues and Eigenvectors
Another possibility to investigate time homogeneity is obtained by consid-
ering the eigenvalues and eigenvectors of transition matrices P for different
time horizons. For example, Bangia et al. (2002) use this method in an
empirical study on the stability of migration matrices of Standard &
Poors. Note that a transition matrix P can be decomposed into a diagonal
matrix of eigenvalues diag(Θ1) of P and the basis-transformation matrix
Φ = {φ1, . . . , φn}

P = Φ diag(Θ1) Φ−1 (6.6)
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where the diagonal elements are given by θ1, θ2, . . . , θn. Without loss of
generality, it can be assumed that the column indices are ordered such that

|θ1| ≥ |θ2| ≥ · · · ≥ |θn|

Then the ordered column indices for the average one-period transition
matrix P1 are

|θ11| ≥ |θ12| ≥ · · · ≥ |θ1n|

Note that in this notation the first index is used for the time horizon in years
in the time-homogeneous case, whereas the second index is the number of
the eigenvalue. Let further Pt denote the tth power of the estimated tran-
sition matrix for one period P1. Using the same decomposition as above,
we can express the tth power of P1 as

Pt = Φ diag(Θ1)t Φ−1

with

(diag(Θ1))t =

⎛
⎜⎜⎜⎜⎝

θ11
t 0 . . . 0

0
. . .

...
...

. . . 0
0 . . . 0 θ1n

t

⎞
⎟⎟⎟⎟⎠

Obviously, the eigenvalues of Pt are given by (θi)t. Note that due to the
fact that the row sum of a transition matrix must equal one per definition,
the largest of the eigenvalues θ1 must be identically equal to 1. When the
matrix is raised to the tth power, the eigenvalue of 1 persists while all the
other (nonunity) eigenvalues have magnitudes less than 1. Therefore, when
raised to the tth power, they eventually decay away; see Jafry and Schuer-
mann (2004) for further details. Because of ln θ1i

t = t ln θ1i the sequence
θ1i, θ2i, θ3i, . . . , θri of the ith eigenvalues of the matrices P1, P2, P3, . . . , Pr

is a log-linear function of t. For example, we get for the relationship
between the second eigenvalue of the matrix P1 and P4 =P 4

1 : ln θ42 =
4 ln θ12.

With this in mind, it is straightforward to investigate the property of
time homogeneity based on the eigenvalues of estimated k-period migration
matrices: consider, for example, the average transition matrices P̄1, P̄2, P̄3,
and P̄4 for the time horizons of 1, 2, 3, and 4 years from an empirical data
set and plot the logarithms ln(θ̄2(t)), ln(θ̄3(t)), ln(θ̄4(t)), and ln(θ̄5(t)) of
the eigenvalues smaller than 1 of these 4 matrices. Under the assump-
tion of time homogeneity, one could expect that each sequence ln θ̄j(t)
(j ∈ {2, . . . , 5}) of eigenvalues can be fit by a straight regression line.
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FIGURE 6.4. Relationship between second up to fifth log-eigenvalues of the
estimated average transition matrices P̄1, P̄2, P̄3, and P̄4.

A plot of the relation between the logarithm of the eigenvalues P̄1, P̄2, P̄3,
and P̄4 for the considered internal rating system is provided in Figure 6.4.
Obviously, the fourth and fifth eigenvalues do not show log-linear behavior,
as the plotted lines are not really straight. Further the log-eigenvalues for
periods of two or more years are not t-multiples of the log-eigenvalue for
one year.

Based on the results in Figure 6.4, we rather assume that the property
of time homogeneity should be rejected for the considered rating system.
Note, however, that we have not provided a formal test procedure for
time homogeneity here, but rather a qualitative way to investigate the
issue.

Another way of approaching time homogeneity is analyzing the eigen-
vectors of a migration matrix P1. Following Bangia et al. (2002), in the
case of time homogeneity the matrices P1 and any arbitrary power Pt = P t

1
have the same set of eigenvectors. Thus, plotting the ith eigenvectors for
different time horizons t should always yield approximately the same result,
independently of t. However, when we compute the second eigenvector for
t = 1, . . . , 4 years and assign the components to the corresponding rating
grades, Figure 6.5 shows that the eigenvectors are far from being equal. The
curve is getting less steep as the time horizon increases. Based on Figure 6.5,
the hypothesis that the process of rating distributions is a homogeneous
one should be rejected. Note, however, that with the eigenvector analysis, a
rather qualitative procedure to investigate time homogeneity of transition
matrices was considered.
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FIGURE 6.5. Second eigenvector for the average migration matrices with time
horizon one year, two years, three years, and four years.

Overall, our empirical examination suggests that the considered internal
rating system does not exhibit first-order Markov behavior nor time homo-
geneity. We provided a number of methods investigating these issues and
pointed out a particular behavior of the considered internal rating system
according to the detected second-order Markov behavior. Opposed to for-
mer studies for the considered rating system, downgrade probabilities were
higher for companies that were upgraded in the previous period compared
to those being downgraded in the period before and vice versa. We con-
clude that issues like time homogeneity, Markov behavior, and rating drift
cannot be assumed to be the same for different rating systems and have to
be examined as the case arises. In the following sections we will investigate
the consequences of observed business cycle effects and time inhomogeneity
in rating migrations on risk capital of credit portfolios and PD estimates
through time.

6.4 Migration Behavior and Effects on Credit VaR

This section aims to illustrate how changes in credit migration matrices may
have a substantial impact on the associated risk of a credit portfolio.4 In
the previous sections we reviewed methods for investigating the stability
of migration matrices and a rating system based on financial ratios and

4
The results of this section were originally provided in Trueck and Rachev (2005).
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found that transition matrices showed significant changes over the years.
We will now consider the effects of such changes in migration behavior on
capital requirements in terms of expected losses and VaR figures for an
exemplary credit portfolio. It is well known that the loss distribution for a
credit portfolio as well as capital requirements vary between recession and
expansion times of the business cycle (Bangia et al., 2002). We will find
that for a considered exemplary portfolio these numbers vary substantially
and that the effect of different migration behavior through the cycle should
not be ignored in credit risk management.

To illustrate the effects, let us consider an exemplary loan portfolio of
an international operating major bank consisting of 1120 companies. The
average exposure is dependent on its rating class. In the considered port-
folio higher exposures could be observed in higher rating classes, while for
companies with a non-investment grade rating Baa, B, or Caa, the average
exposures were between 5 and 10 million Euro. The distribution of ratings
and average exposures in the considered rating classes of the loan portfolio
are displayed are Table 6.11.

We further make the following assumptions for the loans. For each of
the simulated years, we use the same portfolio and rating distribution to
keep the figures comparable. We also assume an average yearly recovery
rate of R = 0.45 for all companies. This is clearly a simplification of real
recovery rates, but since we are mainly interested in the effects of different
migration behavior on credit VaR and PDs, it is not a drawback for our
investigation. Further, not having enough information on the seniority of
the considered loans, it may be considered as an adequate assumption for
empirical recovery rates.

For the investigation we use Moody’s credit transition histories of a
20-year period from 1982–2001 and a continuous-time simulation approach
for determining VaR figures based on N = 5000 simulations. Note that the
actual reported one-year migration matrices by Moody were in discrete
form. However, using the log-expansion 5.4 for Λ and the approximation
methods suggested by Israel et al. (2000), we could calculate the corre-
sponding approximate generator matrix. To illustrate the differences in
migration behavior, Figures 6.6 and 6.7 show the cumulative default prob-
abilities or credit curves based on years belonging to two different phases
of the business cycle. The year 2001 was a year of economic turmoil with
high default rates and many downgrades, while in 1997 the macroeco-
nomic situation was stable and the economy was growing. Lower default
probabilities and more upgrades than downgrades were the consequences.

TABLE 6.11. Ratings and Exposures for the Considered Credit Portfolio

Rating Aaa Aa A Baa Ba B Caa

No. 11 106 260 299 241 95 148
Average Exposure (million Euro) 20 15 15 10 10 5 5
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FIGURE 6.6. Credit curves for speculative grade issuers according to Moody’s
migration matrix 1997 (solid lines) and 2001 (dashed lines).
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FIGURE 6.7. Credit curves for investment grade issuers according to Moody’s
migration matrix 1997 (solid lines) and 2001 (dashed lines).
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Both for investment grade issuers and speculative grade issuers, we
find completely different credit curves with cumulative default probabil-
ities being substantially higher when the 2001 transition matrix is used as
describing the underlying migration behavior. The graphs were plotted for
a 10-year time horizon. Clearly, it is rather unrealistic that the macroe-
conomic situation stays in a recession or expansion state for such a long
time. However, in the following we will illustrate that even for a considered
shorter time horizon, differences can be quite substantial.

In a second step we investigated the effect of different migration behavior
on risk figures for time horizons of six months, one year, and three years.
Two typical loss distributions for the years 1998 and 2001 and an assumed
one-year time horizon are displayed in Figure 6.8. The distributions have
an expected loss of μ= 148.55 million Euro with a standard deviation of
σ = 16.67 million for 1998 and μ= 223.15 million with σ = 21.15 million for
2001. Both distributions were slightly skewed to the right with γ = 0.1217
for 1998 and γ = 0.1084 for 2001. The kurtosis for the loss distributions
with k = 2.99 for 1998 and k = 2.97 for 2001 is very close to the kurtosis
of the normal distribution.

Comparing loss distributions for different years, we find that in many
cases the distributions do not even coincide. We plotted a comparison of
the simulated loss distributions for the years 2000 and 2001 in Figure 6.9
and for the years with minimal (1996) and maximal (2001) portfolio risk in
the considered period in Figure 6.10. While for the subsequent years 2000
and 2001 the distributions at least coincide at very low (respectively high)
quantiles, we find no intersection at all for the years 1996 and 2001. This
points out the substantial effect of migration behavior on risk figures for a
credit portfolio.
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FIGURE 6.8. Typical shape of simulated loss distributions for the years 1998
and 2001.
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FIGURE 6.9. Simulated loss distributions for the years 2000 (left side) and 2001
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A closer picture of the significant changes in the Value-at-Risk for the
considered period is provided in Figure 6.11 and in Table 6.12. We find that
both expected loss and simulated VaR figures show great variation through
the business cycle for all three considered time horizons of six months,
one year, and three years. While in the years 1983 and 1996 the average
expected loss for the portfolio would be only 31.29 million or 28.84 million
Euro in a one-year period, during the recession years 1991 and 2001, the
simulated average loss for the portfolio would be 227.25 million or 258.75
million Euro, respectively. The maximum of the simulated average losses
for the portfolio is about eight times higher than the minimum amount in
the considered period. Similar numbers were obtained considering Value-at-
Risk or expected shortfall for the portfolio. The one-year 95%-VaR varies
between 45 million and 258.75 million Euro, while the one-year 99%-VaR
lies between a minimum of 56.25 million in 1996 and 273.37 million in the
year 2001. This illustrates the enormous effect the business cycle might
have on migration behavior and, thus, on the risk of a credit portfolio.
Ignoring these effects may lead to completely wrong estimates of credit
VaR and capital requirements for a loan or bond portfolio. We conclude
the necessity to use credit models that include variables measuring the
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FIGURE 6.11. Simulated one-year VaR alpha=0.95 for the years 1982–2001
(solid line), average one-year VaR for the whole period (dashed line).



TABLE 6.12. Simulated Average Loss, 95%-, and 99%-VaR for the Exemplary Portfolio for 1982–2001.
Considered was a Six-Month, One-Year and Three-Year Time Horizon

Year 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991

Mean, 6 months 83.48 14.46 44.05 34.66 52.50 27.07 57.42 87.58 97.30 102.21
Mean, 1 year 157.83 31.29 84.67 69.71 105.96 53.03 108.13 158.47 183.59 191.93
Mean, 3 years 343.50 88.95 198.83 178.30 275.23 127.73 233.95 314.05 413.67 411.20

Year 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001

Mean, 6 months 60.05 35.13 42.50 61.57 14.11 30.66 85.91 79.89 79.56 121.17
Mean, 1 year 111.60 61.30 81.54 113.48 28.84 58.05 148.55 146.30 148.84 223.15
Mean, 3 years 240.16 113.84 176.37 235.14 68.33 129.68 280.51 305.39 312.74 477.26

Year 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991

V aR0.95, 6 months 108.00 27.00 63.00 51.75 72.00 40.50 76.50 110.25 123.75 128.25
V aR0.95, 1 year 191.25 49.50 108.00 92.25 132.75 72.00 135.00 185.62 217.12 227.25
V aR0.95, 3 years 393.75 119.25 234.00 216.00 321.75 157.50 272.25 353.25 463.50 461.25

Year 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001

V aR0.95, 6 months 78.75 50.62 58.50 81.00 24.75 45.00 108.00 101.25 101.25 148.50
V aR0.95, 1 year 135.00 81.00 101.25 139.50 45.00 76.50 175.50 174.37 177.75 258.75
V aR0.95, 3 years 274.50 139.50 207.00 270.00 90.00 157.50 317.25 343.12 351.00 531.00

Year 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991

V aR0.99, 6 months 120.37 33.75 74.25 58.50 83.25 47.25 84.37 119.25 132.75 139.50
V aR0.99, 1 year 209.25 58.50 120.37 105.75 148.50 79.87 148.50 200.25 231.75 243.00
V aR0.99, 3 years 421.87 132.75 253.12 236.25 338.62 171.00 285.75 370.12 487.12 482.62

Year 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001

V aR0.99, 6 months 85.50 56.25 65.25 90.00 31.50 51.75 115.87 112.50 110.25 164.25
V aR0.99, 1 year 147.37 87.75 112.50 150.75 56.25 87.75 186.75 187.87 190.12 273.37
V aR0.99, 3 years 288.00 153.00 218.25 283.50 99.00 172.12 333.00 357.75 371.25 553.50
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state of the business cycle or the use of conditional migration matrices. In
the next section we will further investigate the effect of different migration
behavior on confidence sets for PDs.

6.5 Stability of Probability of Default Estimates

Another main issue of credit risk modeling is the modeling of probability
of defaults. In the internal rating based approach of the new Basel Capital
Accord, PDs are the main input variables for determining the risk and the
necessary regulatory capital for a portfolio. Of course, regulators are not
the only constituency interested in the properties of PD estimates. PDs
are inputs to the pricing of credit assets, from bonds and loans to more
sophisticated instruments such as credit derivatives. However, especially
for companies with an investment grade rating, default is a rare event.
Often high credit quality firms make up the majority of the large corporate
segment in a bank’s portfolio. But with only little information on actual
defaulted companies in an internal credit portfolio, observed PDs for the
investment grade categories are likely to be very noisy. The question arises
how reliable confidence interval estimates for PDs may be obtained. This is
of particular importance, since similar to the VaR or expected shortfall of a
credit portfolio, PDs and also PD confidence sets may vary systematically
with the business cycle. Thus, investment grade rating PDs are also rather
unlikely to be stable over time. Therefore, in this section we tackle the
question of obtaining reliable estimates for default probabilities also in the
investment grade sector and compare these PDs for the considered time
period from 1982–2001.

Christensen et al. (2004) estimate PD confidence intervals for default
probabilities for different rating classes by using a continuous-time
approach similar to the one suggested in the previous section. They find
that a continuous-time bootstrap method can be more appropriate for
determining PD distributions than using the estimates based on actual
default observations. This is especially true for investment grade ratings
where defaults are very rare events.

To illustrate the advantages of the bootstrapping idea, let us first consider
a binomial random variable X ∼ B(pi, ni) where pi denotes the probability
of default for rating class i and ni the number of companies in the rating
class. Now assume that there is an investment grade rating class in the
internal rating system where no actual defaults were observed in the con-
sidered time period. Clearly, the corresponding estimator for the PD in this
rating class is pi = 0. However, for VaR calculations a bank is also inter-
ested in confidence intervals for PDs of the investment grade rating classes.
Based on the binomial distribution, one could compute the largest default
probability not being rejected for a given confidence level α by solving the
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following equation:

(1 − pi)ni = α

Therefore, the corresponding upper value pmax of a confidence interval for
a rating class with no observed defaults is

p̂max(ni, α) = 1 − ni
√

α

The disadvantage of this estimation technique becomes obvious in
Table 6.13. Let Xi be the number of observed defaults in the two rat-
ing classes. Generally, the confidence intervals are dependent on Xi, the
number of defaults observed, and ni, the number of firms in the considered
rating class. However, if no defaults are observed for a rating class, the
lower ni, the wider becomes the confidence interval. This is illustrated in
Table 6.13 for an exemplary portfolio with 50 companies in the rating class
Aaa and 500 companies in rating class Aa. We find that using the binomial
distribution, the intervals for rating class Aaa are about ten times wider
than those for rating Aa. From an economic point of view, this is rather
questionable and simply a consequence of the fact that more companies
were assigned with the lower rating.

Of course, the binomial distribution can also be used for calculating
two-sided confidence intervals for lower rating classes where transition to
defaults also were observed. What is needed is the total number of firms
with certain rating i at the beginning of the period and the number of firms
among them that defaulted until the end of the considered period. Then,
for a given confidence level α, the standard Wald confidence interval is

p̂i,max/min = p̂i ± qα

√
p̂i(1 − p̂i)

ni
(6.7)

where ni is the total number of firms in rating class i and qα is the
α-quantile of the standard normal distribution. Unfortunately, as pointed
out by Schuermann and Hanson (2004), the estimates for confidence inter-
vals obtained by the Wald estimator are not very tight. Christensen et al.
(2004) state that the only advantage in the binomial case is that using this
method, one is able to derive genuine confidence sets, i.e., to analyze the

TABLE 6.13. Example for PD Confidence
Interval Estimated Based on the Binomial
Distribution

ni Xi KIα = 0.05 KIα = 0.01

Aaa 50 0 [0, 0.0582] [0, 0.0880]
Aa 500 0 [0, 0.0060] [0, 0.0092]
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set of parameters which an associated test would not reject based on the
given observations. The authors point out that obtained confidence sets by
a continuous-time bootstrap method are much tighter than those using the
standard Wald estimator.

To compare confidence intervals through the business cycle, we therefore
used the method described in Christensen et al. (2004). An introduction to
bootstrapping can be found in Efron and Tibshirani (1993), so we will only
briefly describe the idea of the bootstrap and our simulation algorithm. For
our continuous-time simulation, the same procedure as in Section 5.4 is used
to obtain histories for each of the considered companies. Note that unlike
Schuermann and Hanson (2004) who apply a nonparametric bootstrapping
approach, we based our simulations on the parametric assumption of a
continuous-time Markov chain with a given migration matrix. For each
year we simulate N = 5000 times using a fake data set with a number of
1000 issuers in each rating category. Then the issuer’s history background
Markov process is simulated using the observed historical transition matrix
for each year. The simulated rating changes are translated into a history
of observed rating transitions. For each replication the generator matrix
of the hidden Markov chain model is re-estimated, using the companies’
rating history and the maximum-likelihood estimator described above:

λ̂ij =
Nij(T )∫ T

0 Yi(s)ds

From the estimated transition structure, we calculate the one-year
default probability for each true state. Exponentiating this matrix gives
an estimator of the one-year migration matrix, and the last column of
the transition matrix provides the vector of estimated default probabili-
ties for each replication. Thus, for each year or following Christensen et al.
(2004)—each true state of the background process—we have N = 5000
one-year default probabilities for each rating class.

Another possibility to find confidence sets would have been to develop
asymptotic expressions for the distribution of test statistics in the
continuous-time formulation and use those for building approximate con-
fidence sets. However, in practice the bootstrap method seems both easier
to understand and to implement. The maximum-likelihood estimator does
not have a simple closed form expression for its variance-covariance matrix.
This makes it difficult to provide information about the confidence sets
for estimated parameters. In fact, we would need to use asymptotics
twice—first to find the variance of the estimated generator Λ̂ and addi-
tionally to find an expression for the variance of exp(Λ̂). The second step
again only seems feasible using an asymptotic argument. Unfortunately the
asymptotic variance of Λ̂ is hardly a good estimator, since many types of
transitions occur only rarely in the data set. Thus, the bootstrap method
provides tighter intervals and is also more understandable.
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As mentioned earlier, confidence intervals for PDs can alternatively be
obtained by a nonparametric bootstrap as illustrated in Schuermann and
Hanson (2004). Here, the resampling is directly based on the observed
rating histories and not on the estimated generator matrix. It basically
follows the steps described in Section 5.4 for the nonparametric simulation
approach. The method can be considered as a recommendable alternative
if additional information on rating transitions is available.

Based on the bootstrapped generator matrices, for each year the rele-
vant quantiles and distribution of the PDs can be obtained. The results
for investment grade rating classes Aa–Baa can be found in Table 6.14 as
well as in Figure 6.12 and 6.13 where boxplots of the PDs for the whole

TABLE 6.14. Descriptive Statistics of the Width of Confidence Intervals for
Different Rating Classes

Rating Aaa Aa A Baa Ba B Caa

mean 0.0001 0.0006 0.0019 0.0049 0.0126 0.0262 0.0473
σ 0.0002 0.0009 0.0017 0.0030 0.0053 0.0065 0.0140
min 0.0000 0.0000 0.0000 0.0002 0.0049 0.0172 0.0021
max 0.0007 0.0040 0.0057 0.0095 0.0246 0.0424 0.0605
v = σ

mean
1.5994 1.6162 0.9361 0.6125 0.4210 0.2493 0.2955
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FIGURE 6.12. Boxplot for bootstrapped confidence intervals for rating class Aa
from 1982–2001.
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FIGURE 6.13. Boxplot for bootstrapped confidence intervals for rating class A
from 1982–2001.

considered period are provided. It becomes obvious that confidence inter-
vals vary substantially through time. This includes not only the level of
the mean of the bootstrapped PDs but also the width of the confidence
interval. Comparing, for example, the 95% interval for rating class A, we
find that the interval in 2001 KIA,2001 = [0.0005, 0.0054] compared to the
interval in 1993 KIA,1993 = [0.000, 0.0001] is about 50 times wider. The
variation of the lower and upper boundary of the intervals is illustrated for
rating classes Ba and A in Figure 6.14 and 6.15. We also find that with
the level the width of an estimated confidence set for the PD increases
substantially. Histograms of bootstrapped PD distributions for rating class
Ba and different periods—1991 and 1996—can be found in Figure 6.16.
Obviously the plotted histograms for the two periods do not coincide. Note
that similar results in terms of variation are observed by Schuermann and
Hanson (2004) using Standard & Poor’s credit rating history.

For noninvestment grade ratings the variations in the level of average PDs
is also extreme. However, as one can see in Table 6.15, the width of the
intervals does not show the extreme variations as for the investment grade
ratings. This is best illustrated by the coefficient of variation v = σ

mean ,
comparing the standard deviation of the width of the confidence intervals
through time to its mean. We find a decreasing coefficient of variation
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FIGURE 6.16. Histogram of bootstrap PDs for rating class Ba in 1991 (left) and
1996 (right).

for deteriorating credit quality. Thus, we conclude that the fraction PD
volatility divided by average PD decreases with increasing PD.

Overall, the results point out the substantial effects of variations in the
economy on the expected loss and VaR for a credit portfolio if a rating
based credit risk system is used. The estimated one-year VaR for the con-
sidered portfolio was more than twice the average for the period of economic
turmoil in 2001 and about eight times higher than VaR in the year 1996.
The effect of changes in migration behavior on confidence sets for default
probabilities is even more dramatic. Variations in the width and level of
confidence intervals for investment grade rating classes were significant. In
several cases the intervals did not even coincide in periods of economic
expansion or recession. We further found a decreasing coefficient of varia-
tion for PD confidence sets with increasing riskiness of the loan. This may
also be a useful result for credit derivative modeling, where PD volatilities
are also of particular interest. Using average historical transition matrices
as input for portfolio risk calculations should be handled with care. The
effect of the business cycle on changes of migration behavior and therefore
also on Value-at-Risk and PDs might be too imminent to be neglected. To
overcome these problems, one could adjust or forecast migration behavior
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TABLE 6.15. Bootstrap-95%-Confidence Intervals for Investment Grade
Ratings. Figures Based on Moody’s Historical Transition Matrices 1982–2001

Year Aaa Aa A Baa

1982 [0.0000, 0.0005] [0.0000, 0.0010] [0.0000, 0.0057] [0.0019, 0.0062]
1983 [0.0000, 0.0000] [0.0000, 0.0001] [0.0000, 0.0007] [0.0004, 0.0073]
1984 [0.0000, 0.0001] [0.0000, 0.0003] [0.0000, 0.0010] [0.0026, 0.0121]
1985 [0.0000, 0.0001] [0.0000, 0.0014] [0.0000, 0.0010] [0.0008, 0.0034]
1986 [0.0000, 0.0001] [0.0000, 0.0010] [0.0001, 0.0050] [0.0014, 0.0069]
1987 [0.0000, 0.0000] [0.0000, 0.0000] [0.0000, 0.0011] [0.0001, 0.0015]
1988 [0.0000, 0.0003] [0.0000, 0.0004] [0.0000, 0.0007] [0.0008, 0.0032]
1989 [0.0000, 0.0000] [0.0000, 0.0001] [0.0000, 0.0014] [0.0026, 0.0106]
1990 [0.0000, 0.0000] [0.0000, 0.0010] [0.0000, 0.0018] [0.0023, 0.0101]
1991 [0.0000, 0.0000] [0.0000, 0.0002] [0.0000, 0.0015] [0.0042, 0.0128]
1992 [0.0000, 0.0000] [0.0000, 0.0000] [0.0000, 0.0004] [0.0002, 0.0015]
1993 [0.0000, 0.0000] [0.0000, 0.0000] [0.0000, 0.0001] [0.0001, 0.0010]
1994 [0.0000, 0.0002] [0.0000, 0.0009] [0.0000, 0.0039] [0.0000, 0.0006]
1995 [0.0000, 0.0000] [0.0000, 0.0001] [0.0000, 0.0006] [0.0002, 0.0074]
1996 [0.0000, 0.0000] [0.0000, 0.0000] [0.0000, 0.0000] [0.0000, 0.0002]
1997 [0.0000, 0.0000] [0.0000, 0.0004] [0.0000, 0.0007] [0.0002, 0.0058]
1998 [0.0000, 0.0002] [0.0000, 0.0001] [0.0000, 0.0008] [0.0012, 0.0090]
1999 [0.0000, 0.0007] [0.0000, 0.0040] [0.0000, 0.0030] [0.0002, 0.0052]
2000 [0.0000, 0.0000] [0.0000, 0.0002] [0.0000, 0.0029] [0.0008, 0.0072]
2001 [0.0000, 0.0000] [0.0000, 0.0003] [0.0005, 0.0054] [0.0024, 0.0075]

and PDs in credit risk models with respect to the macroeconomic situation.
We will further investigate this issue in Chapter 9, where several approaches
for conditioning transition matrices on business cycle effects are reviewed
and compared.



7
Measures for Comparison
of Transition Matrices

This chapter reviews the literature on distance measures or indices for
credit migration matrices. It summarizes several measures based on cell-
by-cell distances, eigenvalues (Geweke et al., 1986), eigenvectors (Arvanitis
et al., 1999), or metrics based on singular values (Jafry and Schuermann,
2004). Finally, it derives criteria for risk-adjusted difference indices that
can also be used to examine migration matrices with respect to their risk-
iness (Trueck, 2008) for credit portfolios. Recall from the previous chapter
that transition matrices for both of the major rating agencies as well as
for internal rating systems show significant variations through time and
cannot be considered to be constant through time. In Chapter 5 we also
saw that for many discrete time migration matrices there is no correspond-
ing “true” or valid generator (Israel et al., 2000). In this case, following
the techniques suggested in Jarrow et al. (1997), Kreinin and Sidelnikova
(2001), or Israel et al. (2000), only an approximation of the continous-time
transition matrix can be chosen. Again, it might be important to know
what can be considered a “good” approximation in a sense that the Value-
at-Risk of the portfolio is not significantly under- or overestimated if the
approximation is used. In this chapter we will also provide techniques in
order to transform real-world transition matrices into risk-neutral ones,
while in Chapter 9 we will calculate conditional migration matrices based
on macroeconomic conditions. For this purpose it will also be necessary to
have a measure of difference or comparison of several migration matrices.
In the following we will start with a review of traditional matrix norms and
metrics before we provide mobility-based metrics (Jafry and Schuermann,
2004) and risk-adjusted difference indices (Trueck, 2005) for transition
matrices.

7.1 Classical Matrix Norms

The first group to be mentioned are the classical cell-by-cell distance
measures. Probably the most intuitive and prominent among this class
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of measures are the L1, L2, or Lmax metrics. These metrics can be
denoted as

DL1(P, Q) =
n∑

i=1

n∑
j=1

|pij − qij |, (7.1)

DL2(P, Q) =

√
n∑

i=1

n∑
j=1

(pij − qij)2, and (7.2)

DLmax(P, Q) = maxi,j |pij − qij | (7.3)

where n is the number of columns and rows, as migration matrices are
symmetric. The L1 metric is used, for example, in Israel et al. (2000) for
comparing migration matrices, while Bangia et al. (2002) suggest the L2
metric as a distance measure. The literature provides several variations and
extensions of the L1 and L2 metric. Some of them were used in order to
solve optimization problems, e.g., in input-output analysis (Jackson and
Murray, 2004). Most of them can be represented by a category of distance
measures of the form

Dweight(P, Q) =
n∑

i=1

n∑
j=1

pk
ij |pij − qij |p (7.4)

with k varying from −1 to 1 and p varying from 1 to infinity. For k less
than 0, the elements pij cannot be zero, or the fraction will be undefined.
Note that obviously (7.4) does not define a metric or distance in the usual
sense; see Rachev (1991). That is why we prefer using the term “index,”
“difference index,” or “deviation” to denote a quantity like that in (7.4).

Lahr (2001) suggests a so-called weighted absolute difference (WAD)
measure for input-output analysis. The measure is expressed as1

DWAD(P, Q) =
n∑

i=1

n∑
j=1

pij |pij − qij | (7.5)

Matuszewski et al. (1964) suggest a different version of the absolute dif-
ferences using normalized-absolute differences (NAD). In this formulation,
differences in large coefficients will contribute less to the value of distance

1
Note that DWAD(P, Q) �= DWAD(Q, P ), so DWAD does not satisfy the sym-

metry condition. This could be guaranteed, for example, by defining a distance
measure DWADsymm = 0.5 · (DWAD(P, Q) + DWAD(Q, P )) or DWADsymm =
max{(DWAD(P, Q), DWAD(Q, P )}.
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than will equally sized differences in small coefficients. Clearly, this imposes
a greater penalty on changes in small coefficients:

DNAD(P, Q) =
n∑

i=1

n∑
j=1

|pij − qij |
pij

(7.6)

Again, the elements pij cannot be zero, or the fraction will be undefined.
This makes a straightforward application to transition matrices rather dif-
ficult, since it is quite likely that some migration probabilities can be zero.
Also, since DNAD(P, Q) �= DNAD(Q, P ), again the symmetry condition is
not satisfied, but could be ensured by using the same procedure as was
suggested for DWAD. Similar expressions for the L2 metric are straightfor-
ward. The measures obtained are then called weighted squared differences
(WSD) and normalized squared differences (NSD).

For application to credit migration matrices, it becomes obvious that
the cell-by-cell measures do not distinguish between differences in default
or nondefault transitions. Also there is no distinction between differences
that appear in cells to the left (upgrades) or right (downgrades) of the
diagonal. As we will see later, these difference indices are far from optimal
to measure changes in transition matrices in terms of risk.

7.2 Indices Based on Eigenvalues
and Eigenvectors

We will now consider difference measures that are based on the eigenvalues
or eigenvectors of a transition matrix P . We will first consider some of the
indices described in Geweke et al. (1986) that are based on eigenvalues.
Let λi denote the ith largest eigenvalue of P and det(P ) the determinant
of the n × n transition matrix P . Then, Geweke et al. (1986), among oth-
ers, propose the following metrics to measure the mobility of a transition
matrix:

M1(P ) =
1

N − 1
(N −

∑
i=1

N |λi(P )|, (7.7)

M2(P ) = 1 − |λ2(P )|, and (7.8)

M3(P ) = 1 − det(P ). (7.9)

To compare the similarity of two matrices in terms of these mobility met-
rics, we then need to take the difference between the values of a metric Mi

for two different migration matrices:

DEVAL(P, Q) = Mi(P ) − Mi(Q) (i = 1, 2) (7.10)
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Arvanitis et al. (1999) provide a metric that is based on the eigenvectors
of a transition matrix. Note that most credit migration matrices derived
from actual market data incorporate an absorbing default state. Thus, the
first eigenvector of the transpose of the migration matrix that is equivalent
to the the steady-state solution is ineffective as a basis for comparing matri-
ces. However, it makes sense to consider the information that is contained
in the remaining eigenvectors. Therefore, Arvanitis et al. (1999) propose
to assess the similarity of all eigenvectors between two matrices by com-
puting a ratio of matrix norms. They define a distance metric between two
matrices P and Q according to

DAGL(P, Q) =
‖PQ − QP‖

‖PQ‖ (7.11)

with 0 ≤ DAGL(P, Q) ≤ 2. If P and Q have exactly the same eigenvectors
(regardless of their eigenvalues), the distance metric takes the value of zero.
In Arvanitis et al. (1999) it is concluded that values for the difference mea-
sure of around 0.08 for two matrices at an annual frequency are assumed to
be similar, since in this case the eigenvectors vary by only a small amount.
Unfortunately, the authors neither give an explanation why they chose a
value of 0.08 nor a decision rule when similarity can be rejected.

A more appealing approach in terms of interpretation is provided by
Jafry and Schuermann (2004). They developed a scalar metric that cap-
tures the overall dynamic size of given matrices and contains sufficient
information to facilitate meaningful comparisons between different credit
migration matrices. Primarily, a so-called mobility matrix P̃ is calculated
by subtraction of the identity matrix I from the original transition matrix
P . Obviously, the identity matrix can be considered as a static migration
matrix. The authors conclude that by subtracting the identity matrix, only
the dynamic part of the originial matrix remains. Following Strang (1988)
the mobility of a matrix can be captured by its so-called amplifying power
on a state vector x. In Strang (1988), therefore, it is suggested to use the
largest singular value of a matrix as a mobility norm. However, Jafry and
Schuermann (2004) conclude that the maximally amplified vector x is not
representative of a feasible state vector. Thus, it is proposed to use the
average of all singular values of P to capture the general characteristics
of P .2 The metric is defined as the average of the singular values of the
mobility matrix:

MSVD(P ) =

∑n
i=1

√
λi(P̃ ′P̃ )

n
(7.12)

2
The singular values of P̃ are equal to the eigenvalues λi of P̃ ′P̃ .
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The authors show that this metric captures the so-called amplification
factor or the dynamic part of the migration matrix. Therefore, it approx-
imates the average probability of migration which can be considered as a
meaningful magnitude calibration for a metric. Similar to equation (7.10),
to measure the difference between two migration matrices in terms of
mobility, one has to calculate

DSVD(P, Q) = MSVD(P ) − MSVD(Q) (7.13)

Expression (7.13) gives a directional deviation between two matrices in
terms of the mobility or approximate average probability of migration. Due
to its advantages in terms of interpretation, in our empirical analysis we
will choose the SVD metric as representative of the distance measures based
on eigenvectors or eigenvalues. In the following, we will investigate the
derivation of risk-sensitive difference indices for comparison of migration
matrices.

7.3 Risk-Adjusted Difference Indices

We will now analyze differences in migration behavior as they affect risk
measurement or VaR calculations for credit portfolios.3 Clearly, there are
several issues that contribute to different risk estimates based on tran-
sition matrices. We will illustrate the issues with some examples based
on simplified matrices and then devise risk-sensitive distance measures for
migration matrices. For illustration purposes we consider exemplary tran-
sition matrices P1, . . . , P9 with four rating categories {A, B, C, D}. Hereby,
state A denotes the highest rating, B a rating state with a higher proba-
bility of default, state C a speculative grade rating, and D the absorbing
default state. Starting from the matrix P1, we will illustrate how shifts in
the probability mass may affect the associated risk for a credit portfolio.

P1 A B C D
A 0.80 0.10 0.08 0.02
B 0.05 0.85 0.05 0.05
C 0.05 0.1 0.7 0.15
D 0 0 0 1

7.3.1 The Direction of the Transition (DIR)
An important issue for effects on the estimated risk for a credit portfolio
based on changes in migration behavior is whether the probability mass
is shifted to an upgrade or downgrade transition. Thus, a risk-sensitive

3
Results of this section were originally published in Trueck and Rachev (2007).
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criterion may consider whether the probability is shifted to the left or to
the right side of the diagonal. Assume that the change in migration behavior
for a portfolio could be denoted by a change from P1 to P2, respectively,
from P1 to P3. In the following, the cells where actual deviations from the
initial migration matrix P1 took place are highlighted in bold:

P2 A B C D
A 0.80 0.10 0.08 0.02
B 0.08 0.82 0.05 0.05
C 0.05 0.1 0.7 0.15
D 0 0 0 1

P3 A B C D
A 0.80 0.10 0.08 0.02
B 0.05 0.82 0.08 0.05
C 0.05 0.1 0.7 0.15
D 0 0 0 1

We are interested in the difference between matrix P1 and P2, and
between P1 and P3. In both cases the probability mass 0.03 for rating cat-
egory B is shifted from the diagonal element—in P2 to the first columns,
in P3 to rating category C. Obviously, the distance according to most of
the considered cell-by-cell distance measures would be the same between
matrix P1 and P2 or P3, respectively. However, from a risk perspective for
a hypothetical credit portfolio, there is a difference between a shift of the
probability mass as in matrix P2 or in matrix P3. In the first case we would
expect the risk to be reduced, while in the second case due to a higher
downgrade probability for companies with a rating B, a higher risk will
be associated with the changes in migration behavior. We conclude that to
examine whether probability mass is shifted to the left or right side of the
diagonal elements will be a necessary criterion for devising a risk-sensitive
distance measure. In the following we will call this the direction of the
change (DIR) in migration behavior.

7.3.2 Transition to a Default or Nondefault State (TD)
Examining the related risk for a portfolio, it is also important to consider if
the difference between two migration matrices refers to a cell that denotes
a transition to a default or nondefault state. For illustration, consider the
migration matrices P4 and P5:

P4 A B C D
A 0.80 0.10 0.08 0.02
B 0.05 0.88 0.05 0.02
C 0.05 0.1 0.7 0.15
D 0 0 0 1
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P5 A B C D
A 0.80 0.10 0.08 0.02
B 0.05 0.88 0.02 0.05
C 0.05 0.1 0.7 0.15
D 0 0 0 1

In comparison to P1, for both matrices the probability mass 0.03 is shifted
to the diagonal element of rating category B: in P4 the mass is shifted
from a transition to default, in P5 from rating category C. Again, the
difference D(P1, P4) and D(P1, P5) between P1 and each of the two matrices
would be the same according to most of the considered cell-by-cell measures.
However, from a risk perspective, for a hypothetical credit portfolio there
is a significant difference between a migration behavior according to P4 or
P5. Deviations in the default column will make a substantial difference,
while for transitions to other categories the difference may not change the
risk that much.

We conclude that a distance measure allowing for the inclusion of a risk
perspective should be able to distinguish between transitions to the default
column from other columns. In the following, we will call this the transition-
to-default (TD) criterion that should also be included when devising a
risk-sensitive distance measure.

7.3.3 The Probability Mass of the Cell (PM)
It will make sense to set the change in a cell of a migration matrix in relation
to the usual transition probability. For illustration consider the matrices P6
and P7: comparing the matrices with P1, for P6 the probability mass 0.03
is shifted from the diagonal element of rating category A to the default
column. For P7 the mass is shifted from transition C → A to the default
column.

P6 A B C D
A 0.77 0.10 0.08 0.05
B 0.05 0.85 0.05 0.05
C 0.05 0.1 0.7 0.15
D 0 0 0 1

P7 A B C D
A 0.80 0.10 0.08 0.02
B 0.05 0.85 0.05 0.05
C 0.02 0.1 0.7 0.18
D 0 0 0 1

While the absolute change in both default columns is 0.03, the default
probabilites for A rated bonds or loans in the portfolio has more than
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doubled for P6 from 0.02 to 0.05. In P7, however, the default probability
increased by only 20%. Hence, the former change in migration behavior may
be more grave than the latter in terms of risk measurement. We conclude
that a risk-sensitive difference index should also include the probability
mass of the cell (PM) where the change took place.

7.3.4 Migration Distance (MD)
From a risk perspective, far migrations have a different effect on a portfolio
than near migrations. As the most obvious example, we discussed migra-
tions to the default state in comparison to migrations to a nondefault state.
Let us now consider the transition matrices P8 and P9:

P8 A B C D
A 0.77 0.13 0.08 0.02
B 0.05 0.85 0.05 0.05
C 0.05 0.1 0.7 0.15
D 0 0 0 1

P9 A B C D
A 0.77 0.10 0.11 0.02
B 0.05 0.85 0.05 0.05
C 0.05 0.1 0.7 0.15
D 0 0 0 1

In both examples, the probability mass 0.03 is shifted from the diagonal
element of rating category A to downgrades. When we examine the dif-
ferences D(P1, P8), respectively, D(P1, P9) and further take into account
longer time horizons, the change in the first row of P9 is more severe: when
more companies migrate to a C rating within the next period, they will
have a significantly higher default probability in later periods in comparison
to companies migrating to rating state B.

We conclude that a risk-sensitive difference index should also take into
account whether changes in migration matrices take place in near or far
migrations. We will refer to this criterion as migration distance (MD).

7.3.5 Devising a Distance Measure
Based on the criteria introduced, we will now devise indices for measuring
the distance between two migration matrices. Clearly the idea is to take
into account as many of the criteria DIR, TD, PM, and MD as possible. The
suggested criteria will also be based on a weighted cell-by-cell comparison
of the matrices. However, the weighting will be more specific and complex
than the difference measures suggested in equations (7.1) to (7.6). Hence,
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as a starting point we suggest a generalization of the representation in
equation (7.4):

D∗(P, Q) =
n∑

i=1

n∑
j=1

wij(pij − qij)p (7.14)

where wij is a function dependent on the derived criteria suggested above.
The question is how to define adequate functions for the weights wij and the
order p. For the order p we will follow the classical cell-by-cell matrix norm
approach. Therefore, we suggest measuring the difference between pij and
qij either by using the actual difference (pij−qij) or squared difference (pij−
qij)2. Note that since our measures should also provide the idea of direction
of the difference, namely (pij >qij) or (pij <qij), for the squared differences
the sign of (pij − qij) will also be included. More effort will be dedicated
to deriving an adequate choice of the function wij . In the following we will
provide some straightforward functional relations to capture the introduced
criteria.

As illustrated, a risk-sensitive difference index for migration matrices
should incorporate the direction of the shift in probability mass that has
been denoted by the criterion DIR. If more mass is shifted to upgrades,
there will be fewer defaults to expect, and a shift of the probability mass
to downgrades will end in a higher risk for the credit portfolio. To capture
this circumstance in a weighted cell-by-cell comparison of two matrices, we
define the direction coefficient for each cell as

dir(i, j) =

⎧⎨
⎩
−1 for i < j

0 for i = j
1 for i > j

(7.15)

According to the criterion TD, devising a risk-sensitive difference index,
we would also like to seperate deviations in the default columns from the
other columns. Therefore, we suggest multiplying differences between two
matrices in cells of the default column, depending on the dimension n of
the transition matrix P . Possible multipliers, for example, may be

• n

• 2n

• n2

• exp(n)

Of course, other multipliers may be chosen depending on needs. However, as
we will see later, choosing a multiplier to be n and n2 gave quite promising
results.
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To capture the criterion probability mass (PM) in an individual cell, we
will use the normalized weights NAD or NSD for the differences as they are
suggested, e.g., in Matuszewski et al. (1964). It is reasonable to assume that
differences in large coefficients will contribute less to the value of distance
than will equally sized differences in small coefficients. Thus, when we are
incorporating MD, in the following, the difference between individual cells
of two migration matrices will be given a weight of 1/pij .

Finally, to capture the difference between close and far migrations (MD),
we simply define a coefficient for measuring a cell’s distance from the
diagonal:

md(i, j) = |i − j| (7.16)

Obviously, the increase in weight will be a linear function of the distance
of a cell from the diagonal. Note that both upgrades and downgrades are
treated in a similar way according to the chosen MD criterion. However,
recall that the default column will get an additionally higher weight due to
the TD criterion.

Based on the developed criteria, we suggest the following functions for
the weights of an individual cell (i, j) when calculating a difference index
for two transition matrices P and Q. We will start with the following simple
weighting functions d1 and d2:

d1(i, j) = (i − j) · (pij − qij) (7.17)

d2(i, j) =
(i − j)

pij
· (pij − qij), pij �= 0 (7.18)

Obviously, the weights d1 and d2 include the mentioned criteria DIR and
MD. Far transitions get a higher weight than near transitions. Further, the
sign multiplied by the difference between the cells leads to a higher value of
the measure when more probability mass is shifted to the right side of the
diagonal. Note that d2 is simply an extension of d1 including normalized
weights and, therefore, taking into account the original transition proba-
bility PM where the deviation occurred. Since d2 requires that pij �= 0, the
weight can only be calculated for cells with a non-zero entry.

Alternatively, one may also want to consider the squared differences (pij−
qij)2 in a cell. As mentioned above, in this case it will also be necessary to
include the sign of (pij −qij). Therefore, we suggest the following weighting
functions d3 and d4:

d3(i, j) = (i − j) · sign(pij − qij) · (pij − qij)2 (7.19)

d4(i, j) =
(i − j)

pij
sign(pij − qij) · (pij − qij)2, pij �= 0 (7.20)
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We are well aware of the fact that measuring the cell-by-cell differences of
two migration matrices with d1, d2, d3, d4 will give us difference indices that
cannot satisfy the required conditions for a metric. This seems to be critical
from a mathematical point of view at first sight. However, we will show that
the advantages over standard deviation measures for matrices or norms
are so clearcut that we are willing to accept this. From the perspective
of application for risk management purposes, we will show the superior
properties of the weighting functions in our empirical study.

Based on the weights for individual cells of two migration matrices, we
define the following indices measuring the difference between migration
matrices in terms of risk:

Dk(P, Q) =
n∑

i=1

n∑
j=1

dk(i, j), k = 1, 2, 3, 4 (7.21)

Note that the criterion TD has not been considered yet. However, tran-
sition to defaults is clearly the credit event with the most influence on the
loss in the portfolio. Therefore, following the suggestions of a multiplier for
the default column, we additionally suggest the following indices:

D5(P, Q) =
n∑

i=1

n−1∑
j=1

d3(i, j) +
n∑

i=1

n · d3(i, n) (7.22)

and

D6(P, Q) =
n∑

i=1

n−1∑
j=1

d3(i, j) +
n∑

i=1

n2 · d3(i, n) (7.23)

Note that D5 and D6 use squared differences (pij −qij)2 between the cells
of two migration matrices. Alternatively, we will also suggest a multiplier
for the default column in combination with a measure that uses absolute
differences between the cells. Therefore, we define the difference indices D7
and D8 according to

D7(P, Q) =
n∑

i=1

n−1∑
j=1

d1(i, j) +
n∑

i=1

n · d1(i, n) (7.24)

and

D8(P, Q) =
n∑

i=1

n−1∑
j=1

d1(i, j) +
n∑

i=1

n2 · d1(i, n) (7.25)

We will now investigate how the introduced indices will measure the
difference between the exemplary transition matrices P1 − P9.
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7.3.6 Difference Indices for the Exemplary Matrices
We will now examine the adequacy of the reviewed and newly introduced
indices to measure the changes and differences in transition matrices from
a risk perspective. We will take a look at the distances of the exemplary
matrices P2 − P9 from matrix P1 to show the deficiencies of most of the
distance measures suggested in the literature so far. To begin with, recall
the expected effect of changes in the matrix P1 to P2 − P9 in terms of risk
for a credit portfolio. The expected directions are displayed in Table 7.1.
Hereby, the second column of the table indicates whether the migration
behavior according to the matrix Pi, i = 2, . . . , 9 involves a higher (+) or
lower (−) risk in comparison to P1 for a credit portfolio. Therefore, we
would expect a higher risk for the migration matrices P6, P7, P8, P9 and a
lower risk for the matrices P2, P4, P5.

In a first step we consider the classical cell-by-cell distance measures
L1, L2, and Lmax, since they are suggested in the literature to measure
the difference between two migration matrices (Israel et al., 2000; Bangia
et al., 2002). The results are displayed in the upper part of Table 7.2. We
find that for the simplified exemplary transition matrices according to the
norms L1, L2, and Lmax, the differences between P1 and all other matrices
P2 −P9 are the same. The distance for L1 is constantly D(P1, Pi) = 0.0600
for i = 2, . . . , 9 while for L2 and Lmax we obtain D(P1, Pi) = 0.0424
and D(P1, Pi) = 0.0300, respectively, for i = 2, . . . , 9. However, as illus-
trated earlier, from an economic point of view there is quite a big difference
between the considered changes in the matrices P1 − P9. Recall, for exam-
ple, the substantial effect on a credit portfolio the change from P1 to P4
has in comparison to the change from P1 to P6. While in the first case we
should expect a clear reduction of risk capital for a credit portfolio, in the
second case there will be a substantial increase in terms of risk. From a
first glance at the results, we conclude that the distance measures L1, L2,
and Lmax are not able to capture changes in migration matrices from a
risk calculation angle.

The next step is to analyze the results for weighted cell-by-cell distance
measures WAD, NAD, WSD, and NSD. Again the results are not really
promising. For the weighted absolute and squared differences, the distance
between P1 and P2 − P9 is approximately the same for all matrices. There
is no distinction between differences on the right side of the diagonal or on

TABLE 7.1. Expected Effect on Risk Capital When
Changing the Matrix P1 to P2 − P9

Matrix P2 P3 P4 P5 P6 P7 P8 P9

δ(P1, Pi) − + − − + + + +



TABLE 7.2. Distances for Exemplary Migration Matrices D(P1, Pi) for i = 2, . . . , 8 According to
Weighted Cell-by-cell Distance Indices L1, L2, Lmax WAD, NAD, WSD, NSD, the SVD Metric, and
for the Risk-Sensitive Indices D1 − D8

Classical Distance Measures
Measure Expected L1 L2 Lmax WAD NAD WSD NSD SVD

D(P1, P1) 0 0 0 0 0 0 0 0 0
D(P1, P2) − 0.0600 0.0424 0.0300 0.0270 0.5234 0.0008 0.1246 −0.0064
D(P1, P3) + 0.0600 0.0424 0.0300 0.0270 0.5234 0.0008 0.1246 −0.0075
D(P1, P4) − 0.0600 0.0424 0.0300 0.0270 1.0847 0.0008 0.1763 0.0103
D(P1, P5) − 0.0600 0.0424 0.0300 0.0270 1.0847 0.0008 0.1763 0.0070
D(P1, P6) + 0.0600 0.0424 0.0300 0.0246 1.0882 0.0008 0.1766 −0.0091
D(P1, P7) + 0.0600 0.0424 0.0300 0.0060 1.2333 0.0008 0.1893 −0.0041
D(P1, P8) + 0.0600 0.0424 0.0300 0.0270 0.3036 0.0002 0.0953 −0.0088
D(P1, P9) + 0.0600 0.0424 0.0300 0.0264 0.3621 0.0008 0.1040 −0.0085

Risk-Sensitive Distance Indices
Measure Expected D1 D2 D3 D4 D5 D6 D7 D8

D(P1, P1) 0 0 0 0 0 0 0 0 0
D(P1, P2) − −0.0300 −0.6000 −0.0009 −0.0180 −0.0009 −0.0009 −0.0300 −0.0300
D(P1, P3) + 0.0300 0.6000 0.0009 0.0180 0.0009 0.0009 0.0300 0.0300
D(P1, P4) − −0.0600 −1.2000 −0.0018 −0.0360 −0.0072 −0.0288 −0.2400 −0.9600
D(P1, P5) − −0.0300 −0.6000 −0.0009 −0.0180 −0.0009 −0.0009 −0.0300 −0.0300
D(P1, P6) + 0.0900 4.5000 0.0027 0.1350 0.0108 0.0432 0.3600 1.4400
D(P1, P7) + 0.0700 1.0000 0.0017 0.0220 0.0044 0.0152 0.1600 0.5200
D(P1, P8) + 0.0300 0.3000 0.0009 0.0090 0.0009 0.0009 0.0300 0.0300
D(P1, P9) + 0.0600 0.7500 0.0018 0.0225 0.0018 0.0018 0.0600 0.0600
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the left side. Also the results for the distance measures using the normalized
absolute and squared differences do not suggest that the differences capture
the changes according to the direction displayed in Table 7.1. We conclude
that the classic cell-by-cell distance measures that are generally used in
the literature to compare migration matrices are not capable of giving
information that could be interpreted in terms of risk for a credit portfolio.

Examining the SVD metric, we obtain clearly better results. Recall that
the value of the SVD metric can be interpreted as a proxy for the aver-
age probability of migration. We are calculating the distance between the
matrix P1 and Pi by DSVD(P1, Pi) = MSVD(P1)−MSVD(Pi). Since migra-
tion matrices with a higher probability mass outside the diagonal elements
are more risky, we would expect DSVD(P1, Pi) to be negative if Pi involves
more risk and to be positive for Pi being less risky. As Table 7.2 indicates,
for P3 − P9 the sign shows the expected direction. Only for the matrix P2
we find a negative sign despite a lower risk which can be explained by the
fact that probability mass was shifted from the diagonal to the left side of
the diagonal. So in this case, for P2, despite a higher mobility the matrix
is actually less risky. In general, measuring differences between migration
matrices using the SVD metric will provide good results, assuming that
in periods of higher risk there will also be a higher mobility in migration
behavior.

Overall, the most promising results are obtained for the introduced
directed difference indices D1 − D8. All of the indices show a strong ten-
dency to vary with the changes in the considered migration matrices. For
each of the suggested difference indices D1 − D8, we observe the changes
in a direction we would expect from a risk perspective: a positive value for
the index, if Pi involves a higher risk than the original matrix and vice
versa. Note that we will not give an interpretation of the actual magnitude
of the changes for each of the indices yet. However, we observe that for
all risk-sensitive indices the increase in risk seems to be the highest for
D(P1, P6) where the default probability for the rating category A is more
than doubled. On the other hand the magnitude of risk reduction is the
highest for D(P1, P6) when the default probability for rating category B is
reduced substantially.

7.4 Summary

Overall the results of this chapter point out that further research on ade-
quate difference measures for credit migration matrices will be needed.
Most of the distance measures for matrices as they have been suggested
in the literature so far are not really capable of measuring the difference
between two migration matrices from a risk perspective. Based on some
exemplary transition matrices, in this chapter it was illustrated that the
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metric suggested by Jafry and Schuermann (2004) as well as so-called
risk-adjusted difference indices provide promising results for comparing
migration matrices from a risk perspective. For further application of the
Jafry-Schuermann metric or risk-adjusted difference indices, we refer to
Bank of Japan (2005), Frydman and Schuermann (2008), Kadam and Lenk
(2008), Trueck and Rachev (2007), Trueck (2008) and Chapter 9.



8
Real-World and Risk-Neutral
Transition Matrices

In this chapter we will investigate how real-world or historical transition
matrices can be transformed into risk-neutral ones. As we have seen in the
previous chapters, the former are rather used to determine Economic Cap-
ital or Value-at-Risk for credit portfolios. On the other hand, the use of
the latter is rather to construct risk-neutral credit curves for different time
horizons and adequately price credit derivatives. Using credit spreads from
empirically observed bond prices, in their seminal paper Jarrow et al. (JLT
1997) were the first to suggest methods for transforming real-world transi-
tion and default probabilties into risk-neutral ones. Due to some difficulties
with the initially suggested approach in practice, alternative techniques
have been suggested by different authors (see Lando (2000); Kijima and
Komoribayashi (1998); Lando and Mortensen (2005)). In the following
we will review techniques for deriving risk-neutral transition matrices out
of historical migration matrices and empirically observed credit spreads.
The methods will be illustrated by numerical examples using a simplified
transition matrix with only three rating states.

Note that an alternative approach on deriving implied migration rates
from barrier models is suggested by Albanese and Chen (2006). Their model
is characterized by an underlying stochastic process representing credit
quality and default events associated with barrier crossings. For further
description of their approach on deriving risk-neutral migration rates, we
refer to the original publication.

8.1 The JLT Model

The model by Fons (1994) concentrates on the default event, its timing,
and magnitude and does not consider any changes in the credit quality up
to the default event. However, deterioration or improvement in the credit
quality of the issuer is highly important if someone wants to value credit
derivatives like credit spread options whose payouts depend on the yield
spreads that are influenced by such changes. One common way to express
these changes to market participants is the ratings given by agencies like
Standard & Poor’s and Moody’s. Downgrades or upgrades by the rating
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agencies are taken very seriously by market players to price bonds and
loans, thus effecting the risk premium and the yield spreads.

Jarrow et al. (1997) model default and transition probabilities by
using a discrete, time-homogeneous Markov chain on a finite state space
S = {1, . . . , K}. The state space S represents the different rating classes.
While state S = 1 denotes the best credit rating, state K represents the
default case. Hence, the (K × K) one-period transition matrix looks
as follows:

P =

⎛
⎜⎜⎜⎜⎝

p11 p12 · · · p1K

p21 p12 · · · p2K

· · · · · · · · · · · ·
pK−1,1 pK−1,2 · · · pK−1,K

0 0 · · · 1

⎞
⎟⎟⎟⎟⎠ (8.1)

where pij ≥ 0 for all i, j, i �= j, and pii ≡ 1−∑K
j=1
j �=i

pij for all i. The variable
pij represents the actual probability of going to state j from initial rating
state i in one time step.

Thus, rating based models can be seen as a special case of the so-called
intensity model framework (Duffie and Singleton, 1999) where randomness
in the default arrival is simply modeled via a Markov chain. A key issue
of the JLT model is the assumption of complete markets with no arbi-
trage opportunities. Thus, JLT assume the existence and uniqueness of the
martingale measure Q̃. Further it is assumed that the interest rates and
the default process are independent under the martingale measure Q̃ and
that the transition matrix is time homogeneous. The default state is an
absorbing state, represented by pKi = 0 for i = 1, . . . , K − 1 and pKK = 1.

Under the assumption of time homogeneity, the multiperiod transition
matrix equals

P0,n = Pn

while under the martingale measure the one-period transition matrix equals

Q̃t,t+1 =

⎛
⎜⎜⎜⎜⎝

q̃11(t, t + 1) q̃12(t, t + 1) · · · q̃1K(t, t + 1)
q̃21(t, t + 1) q̃22(t, t + 1) · · · q̃2K(t, t + 1)
· · · · · · · · · · · ·
q̃K−1,1(t, t + 1) q̃K−1,2(t, t + 1) · · · q̃K−1,K(t, t + 1)
0 0 · · · 1

⎞
⎟⎟⎟⎟⎠
(8.2)

where q̃ij(t, t + 1) ≥ 0, for all i, j, i �= j, q̃ij(t, t + 1) ≡ 1 −∑K
j=1
j �=i

q̃ij , and
q̃ij(t, t + 1) > 0 if and only if qij > 0.

JLT argue that, without additional restrictions, the martingale proba-
bilities q̃ij(t, t + 1) can depend on the entire history up to time t, i.e., the
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Markov property is not satisfied anymore. Therefore, they assume that the
martingale probabilities q̃ij(t, t + 1) satisfy the following equation:

q̃ij(t, t + 1) = πi(t)pij (8.3)

for all i, j, i �= j where πi(t) denotes a deterministic function of time.
In other words, given a current state i, the martingale probabilities of

moving from state i to j are proportional to the actual probabilities, and
the proportionality factor depends on time t and the current rating state i
but not on the next state j. JLT call this factor the risk premium.

Equation (8.3) can also be written in matrix notation:

Q̃t,t+1 − J = Π(t)[P − J ] (8.4)

where J is the (K × K) identity matrix and Π(t) = diag(π1(t), . . . , πK−1
(t), 1) is a (K ×K) diagonal matrix. Given the time dependence of the risk
premium, one gets a time-inhomogeneous Markov chain under the mar-
tingale measure Q̃. In the theoretical framework constructed so far, JLT
define the survival probability given the current rating state i under the
martingale measure as

Q̃i
t(τ > T ) =

∑
j �=K

q̃ij(t, T ) = 1 − q̃iK(t, T ) (8.5)

where τ denotes the default time of the bond.
Given the current state i, JLT rewrite the valuation formula for risky

zero-coupon debt with recovery rate ϕ in Jarrow and Turnbull (1995) as
follows:

vi(t, T ) = p(t, T )ϕ + p(t, T )(1 − ϕ)Q̃i
t(τ > T ) (8.6)

In order to compute the theoretical prices for risky zero-coupon bonds,
one needs the risk premium for all rating classes. However, they cannot be
observed directly on the market; therefore, the risk premium is chosen such
that the theoretical prices equal the market prices of the risky bonds. Given
the market prices of the default-free and defaultable bonds with maturity
of one year, at initial time (t = 0), given initial rating i and a constant
recovery rate ϕ, equation (8.4) can be rewritten as

Q̃i
0(τ ≤ 1) =

(
p(0, 1) − vi(0, 1)
p(0, 1)(1 − ϕ)

)
(8.7)

for i= 1, · · · , K − 1. This is the one-period default probability of an issuer
with rating i under the martingale measure Q̃. Given the empirical
transition matrix P and equation (8.6), we get

πi(0) =
(

p(0, 1) − vi(0, 1)
p(0, 1)(1 − ϕ)piK

)
(8.8)
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Thus, we can calculate the risk premium for all rating classes and then
compute the one-period risk-neutral transition matrix Q̃0,1.

Finally, we have the time-homogeneous empirical transition matrix P and
the one-period time-inhomogeneous risk-neutral transition matrix Q̃0,1.
Calculating Q̃0,2, Q̃0,3, etc., can then be conducted by an iterative pro-
cedure using equation (8.3). In practical applications the nonnegativeness
and some additional conditions of the risk premium have to be checked
in order to ensure that the resulting matrices are indeed probability
matrices.

Overall, JLT define a methodology that can be used to value risky bonds
as well as credit derivatives based on ratings allowing changes in credit
quality before default. Before we go to extensions of this model, let us have
a quick look at some disadvantages of JLT; see Uhrig-Homburg (2002). The
term structures of interest rates for all rating classes are rarely available.
This is especially the case for low rated bonds. Hence, it might be diffi-
cult to find the necessary information of risk-neutral default probabilities
for all rating classes and time horizons. The second critical assumption is
that all bonds are driven by the same Markov chain. Thus, in a real-world
application, one has to make the unrealistic assumption that all debtors
of a rating class are subject to the same rating transitions. Another crit-
ical point refers to the adjustment of the migration matrices. In practice
market prices of defaultable claims often do not reflect historical default
or transition probabilities. Therefore, using the method described here,
quite extreme adjustments have to be conducted to transform a historical
transition matrix into the transition matrix Q̃ under the martingale mea-
sure. Under certain circumstances this can even lead to nonvalid transition
matrices.

8.2 Adjustments Based on the Discrete-Time
Transition Matrix

Obviously, there is not a unique way, based on a historical transition
matrix (8.1) and the calculated risk premiums (8.1), a risk-neutral transi-
tion matrix (8.2) can be obtained. In this chapter we will provide a variety
of possible techniques that can be used to achive this goal.1

To illustrate the suggested methods, we will always give an example
based on a hypothetical one-year transition matrix P with three possi-
ble rating categories {A, B, C} and a default state {D} of the following
form:

1
The following sections provide results originally published in Prokopczuk and Trueck

(2008).
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P A B C D
A 0.900 0.080 0.017 0.003
B 0.050 0.850 0.090 0.010
C 0.010 0.090 0.800 0.100
D 0 0 0 1

Let us further assume that based on empirically observed credit spreads,
we have calculated the risk-neutral one-year default probabilities q̃iK for
the three rating classes.

A B C
q̃iK 0.006 0.030 0.200

To start with, we will describe the technique that was initially suggested
in Jarrow et al. (1997). The approach is quite simple and uses the follow-
ing procedure to transform the real-world transition matrix into a risk-
neutral one:

q̃ij(t, T ) =
{

πi(t, T )pij(t, T ) for j �= i
1 − πi(t, T )(1 − pii(t, T )) for j = i

for i = 1, . . . , K − 1, and j = 1, . . . , K.
Obviously for this approach, the relationship between the risk premium,

historical, and risk-neutral transition probability is the following:

πi(0, 1) =
q̃iK(0, 1)
piK(0, 1)

(8.9)

Thus, for our numerical example we get the risk premiums πA = 2, πB = 3,
and πC = 2. The adjustment procedure then yields the risk-neutral migra-
tion matrix:

Q̃(0, 1) =

⎛
⎜⎜⎝

0.8000 0.1600 0.0340 0.0060
0.1500 0.5500 0.2700 0.0300
0.0200 0.1800 0.6000 0.2000
0.0000 0.0000 0.0000 1.0000

⎞
⎟⎟⎠ (8.10)

Obviously, this method effectively speeds up the rating process or slows
it down, depending on whether the calculated risk premium πi is greater
(up) or less (down) than one. It implies that in each row the upgrade
and default entries are adjusted in the same direction. Unfortunately, in
real-world applications often extremely high πi’s may be needed, since the
empirical default probabilities are very low for high credit ratings.

Since each entry—apart from the diagonal element—in a row of the his-
torical transition matrix P is multiplied by the calculated risk premium,
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this may even make the method infeasible, as we shall see in the following
example.

Assume that the risk-neutral default probability for rating class B de-
rived from bond prices is q̃BD = 0.1 instead of q̃BD = 0.03. Then we obtain
a risk premium πB = 10 and the algorithm yields the following (infeasible)
risk-neutral transition matrix:

Q̃(0, 1) =

⎛
⎜⎜⎝

0.8000 0.1600 0.0340 0.0060
0.5000 −0.5000 0.9000 0.1000
0.0200 0.1800 0.6000 0.2000
0.0000 0.0000 0.0000 1.0000

⎞
⎟⎟⎠ (8.11)

Obviously in matrix Q̃(0, 1) the diagonal element q̃BB = −0.5 is negative
such that the matrix is not valid.

As pointed out by Lando (2004), even small changes in the uncertain
empirical estimates of high-grade default probabilities may lead to
extremely high changes in risk adjustments with this method.

The numerical problems of the method are investigated and addressed
by Kijima and Komoribayashi (1998). To overcome these difficulties, the
authors propose an alternative procedure that equally multiplies all ele-
ments in a row—excluding the default element but including the diagonal
element—such that the change in the default entry is distributed over the
row. The algorithm that needs to be followed for each row is

q̃ij(t, T ) =
{

πi(t, T )pij(t, T ) for j �= K
1 − πi(t, T )(1 − piK(t, T )) for j = K

Note that for the method suggested by Kijima and Komoribayashi
(1998), the relationship between the risk premium, historical, and risk-
neutral transition probability is

πi(0, 1) =
1 − q̃iK(0, 1)
1 − piK(0, 1)

(8.12)

For our numerical example, the π’s will then be estimated to be πA =
0.9970, πB = 0.9798, and πC = 0.8889. Further, the adjusted risk-neutral
transition matrix will be of the form

Q̃(0, 1) =

⎛
⎜⎜⎝

0.8973 0.0798 0.0169 0.0060
0.0490 0.8328 0.0882 0.0300
0.0089 0.0800 0.7111 0.2000
0.0000 0.0000 0.0000 1.0000

⎞
⎟⎟⎠ (8.13)

The procedure suggested by Kijima and Komoribayashi (1998) guaran-
tees numerical stability, but adjusts the default and all other entries in
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opposite directions. This may be counterintuitive, since one might assume
that when for a certain rating state the risk-neutral default probability is
higher than the real-world one, the same should hold for the probabilities
for a downgrade.

8.3 Adjustments Based on the Generator Matrix

In this section2 we will provide some numerical adjustment methods
suggested by Lando (2000). Similar to the methods described in the
previous section, the methods were designed to match historical transition
matrices with default probabilities implied in bond prices observed in the
market. The difference, however, is that the methods conduct a numerical
adjustment procedure that is based on the continuous-time generator
matrix and not the discrete-time transition matrix. Let us therefore con-
sider the continuous-time case where the time-homogeneous Markov chain
is specified via the (K × K) generator matrix such that the series

P (t) = exp(tΛ) =
∞∑

k=0

(tΛ)k

k!
(8.14)

gives the K ×K t-period transition matrix. Lando (2000) extends the JLT
approach and describes three different methods to modify the transition
matrices such that default probabilities implied in bond prices are matched.
Again, using (8.7) the risk-neutral default probabilities are calculated and
the aim is to create a family of transition matrices (Q̃(0, t))t>1 in a way that
the default probabilities implied in bond prices for each maturity match the
corresponding entries in the last column of Q̃(0, t).

In the suggested procedure the generator matrix Λ is modified such that

Q̃ = eΛ̃

and the default column of the risk-neutral transition matrix equals the
risk-neutral default probabilities derived from bond prices q̃iK(0, 1) for all
rating classes i.

Note that the generator matrix has to be checked to see if it still fulfills
the criteria, namely nonnegative off-diagonal elements and row sums of
zero for each row. To illustrate the suggested methods, we will stick to the
numerical example of the previous section of our hypothetical transition
matrix P with three possible rating categories {A, B, C} and a default
state {D}.

2
Some of the results of this section were originally published in Trueck and

Özturkmen (2004). The structure of the section follows the original publication.
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The associated generator Λ to the real-world transition matrix P is

Λ =

⎛
⎜⎜⎝

−0.1080 0.0909 0.0151 0.0020
0.0569 −0.1710 0.1092 0.0050
0.0087 0.1092 −0.2293 0.1114
0.0000 0.0000 0.0000 0.0000

⎞
⎟⎟⎠ (8.15)

Now the unconditional migration matrix should be adjusted in a way that
it fits the risk-neutral default probabilities with q̃AD = 0.006, q̃BD = 0.030,
and q̃CD = 0.200. Lando (2000) suggests three different adjustment methods
that will be outlined in the following.

8.3.1 Modifying Default Intensities
The first method we describe modifies the default column of the generator
matrix and simultaneously modifies the diagonal element of the generator
according to

λ̃1K = π1 · λ1K and λ̃11 = λ11 − (π1 − 1) · λ1K

λ̃2K = π2 · λ2K and λ̃22 = λ22 − (π2 − 1) · λ2K

· · · · · ·

and for row K − 1:

λ̃K−1,K = πK−1 · λK−1,K and

λ̃K−1,K−1 = λK−1,K−1 − (πK−1 − 1) · λK−1,K

such that for the new transition matrix Q̃ with

Q̃ = exp(tΛ̃) =
∞∑

k=0

(tΛ̃)k

k!
(8.16)

the last column equals the risk-neutral PDs. Obviously, after the modifi-
cations Λ̃ will also be a generator matrix with rows summing to zero. The
modifications are done numerically such that all conditions are matched
simultaneously.

Using a numerical solution algorithm, we get π1 = 1.7443, π2 = 4.1823,
π3 = 2.1170 and thus, for the modified generator matrix

Λ̃ =

⎛
⎜⎜⎝

−0.1095 0.0909 0.0151 0.0034
0.0569 −0.1869 0.1092 0.0209
0.0087 0.1092 −0.3537 0.2358

0 0 0 0

⎞
⎟⎟⎠ (8.17)
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and the associated risk-neutral migration matrix:

Q̃(0, 1) =

⎛
⎜⎜⎝

0.8987 0.0793 0.0161 0.0060
0.0496 0.8365 0.0840 0.0300
0.0094 0.0840 0.7066 0.2000

0 0 0 1.0

⎞
⎟⎟⎠ (8.18)

We find that due to the fact that the changes in the generator take place
only in the last column and in the diagonal elements, for the new prob-
ability transition matrix most of the probability mass is shifted from the
default probability to the diagonal element—especially when the new (cal-
culated) default probability is significantly higher. Still, if a jump occurs,
interpreting −λij

λii
as the probability for a jump into the new rating class

j also, these probabilities slightly change since λii is modified. In our case
we find that, for example, for rating class A, the conditional probability
for a jump to default has increased from 1.8% to more than 3% while the
other conditional probabilities slightly decrease from 84% to 83% and from
14% to 13.8%. These results are confirmed by taking a look at the other
rows and also by the associated new one-year risk-neutral transition matrix.
Overall, we conclude that for this method the main adjustments take place
in the diagonal element and in the default entry of the transition matrix.

8.3.2 Modifying the Rows of the Generator Matrix
This method is very similar to the adjustment suggestd in Jarrow et al.
(1997); however, the multiplication of the row is conducted using the cor-
responding generator and not the discrete-time migration matrix. The idea
is not only to adjust the last column and the diagonal elements of the gen-
erator matrix but multiply each row by a factor such that the calculated
or forecasted default probabilities are matched.

Thus, we get

Λ̃ =

⎛
⎜⎜⎜⎜⎜⎜⎝

π1 · λ11 π1 · λ12 · · · π1 · λ1K

π2 · λ21 π2 · λ22 · · · π2 · λ2K

· · · · · · · · · · · ·
πK−1 · λK−1,1 πK−1 · λK−1,2 · · · πK−1 · λK−1,K

0 0 · · · 0

⎞
⎟⎟⎟⎟⎟⎟⎠

(8.19)

Applying this method, then

Q̃(t) = exp(tΛ̃) =
∞∑

k=0

(tΛ̃)k

k!
(8.20)
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needs to be solved subject to the condition that the last column of the
new transition matrix equals the risk-neutral default probabilities: q̃ =
(q̃1K , q̃2K , . . . , q̃K−1,K , 1).

For our numerical example we get

Λ̃ =

⎛
⎜⎜⎝

−0.1455 0.1225 0.0204 0.0027
0.1149 −0.3457 0.2207 0.0101
0.0198 0.2482 −0.5212 0.2532

0 0 0 0

⎞
⎟⎟⎠ (8.21)

and for the associated risk-neutral transition matrix:

Q̃(0, 1) =

⎛
⎜⎜⎝

0.8706 0.0988 0.0246 0.0060
0.0926 0.7316 0.1458 0.0300
0.0247 0.1639 0.6114 0.2000

0 0 0 1

⎞
⎟⎟⎠ (8.22)

In this case due to the different adjustment procedure, more probability
mass is shifted from the diagonal element of the transition matrix to the
other row entries. Considering, for example, the new transition matrix,
we find that for rating state B the probability for staying in the same
rating category decreases from 0.85 to approximately 0.73, while for all the
other row entries the probability significantly increases—e.g., from 0.05
to 0.09 for moving from rating state B to rating state A. These results
were confirmed by applying the method to different transition matrices,
so we conclude that the method that modifies the complete row of the
generator spreads clearly more probability mass from the diagonal element
to the other elements than the first method does. It could be used when the
transition matrix should be adjusted to an economy in a rather unstable
situation.

8.3.3 Modifying Eigenvalues of the Transition
Probability Matrix

The third method described here adjusts the real-world migration matrix
by modifying the eigenvalues of the generator matrix. To do this, one
has to assume that the transition matrix and, thus, also the generator
are diagonalizable. Let M be a matrix of eigenvectors of the transition
matrix P and D a diagonal matrix of eigenvalues of P . Then the generator
matrix is changed by numerically modifying the eigenvalues by multiply-
ing the matrix D with a diagonal matrix Π(t) with diagonal elements
(π11, π12, . . . , π1K , 0). Therefore, the new generator matrix Λ̃ will be

Λ̃ = M Π(t)D M−1 (8.23)
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Again, (8.23) needs to be solved subject to the condition that the
last column of the new transition matrix equals the risk-neutral default
probabilities: q̃ = (q̃1K , q̃2K , . . . , q̃K−1,K , 1).

For our empirical example, the numerical solution yields for the diagonal
matrix

Π =

⎛
⎜⎜⎝

2.1747 0.0000 0.0000 0.0000
0.0000 2.2893 0.0000 0.0000
0.0000 0.0000 2.3081 0.0000
0.0000 0.0000 0.0000 0.0000

⎞
⎟⎟⎠ (8.24)

Therefore, the adjusted generator matrix is

Λ̃ =

⎛
⎜⎜⎝

−0.2459 0.2108 0.0347 0.0003
0.1319 −0.3925 0.2537 0.0069
0.0200 0.2538 −0.5278 0.2540
0.0000 0.0000 0.0000 0.0000

⎞
⎟⎟⎠ (8.25)

and the corresponding risk-neutral transition matrix is

Q̃(0, 1) =

⎛
⎜⎜⎝

0.7930 0.1587 0.0423 0.0060
0.0991 0.7065 0.1644 0.0300
0.0253 0.1643 0.6104 0.2000
0.0000 0.0000 0.0000 1.0000

⎞
⎟⎟⎠ (8.26)

Obviously, for our empirical example, the third method shifts most of
the probability mass from the diagonal elements to the other elements
of the row. The results are more similar to those when we modified the
complete row of the generator than to those where only the default inten-
sities were modified. For other transition matrices that were examined, we
found similar results. It seems that the methods modifying the eigenval-
ues and the complete rows of the generator should be used if rather grave
changes in transition probabilities are expected, while the method that
modifies the default intensities changes the transition probabilities more
cautiously.

Unfortunately Lando doesn’t give any information on the size of the
change. However, it should be pointed out that in adjusting transition
matrices the degree of the changes could be very important. Recall the
strong impact of changes in migration matrices on the risk for a portfolio
as it was illustrated in Section 6.4. To tackle this task, in the next section we
will suggest some methods to measure the difference between two migration
matrices in portions of risk.
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8.4 An Adjustment Technique Based
on Economic Theory

Alternatively, Lando and Mortensen (2005) suggest that the adjustment
might be conducted based on another approach that is inspired by economic
theory. Let us consider a one-period model from t to t + 1 with discrete
state space given by the usual K rating classes. The authors further assume
that in a stylized economic setting all agents allocate their utility according
to a power utility function u(w) of the form

u(w) =
w1−θ

1 − θ
(8.27)

Note that this assumption implies a constant relative risk aversion of θ.
Now it is further assumed that traded assets are the riskless bank account
and a risky zero-coupon bond with maturity T , rating i priced at Vi(t).
Further, the riskless interest rate r is assumed to be constant and so are
the credit spreads sj for each of the rating classes. Therefore, the price of
the risky bond with rating state j is Vj(t) = e(r+sj)T . Further, the real-
world transition probabilities are denoted by a transition matrix P = (pij).
Then by the end of one period the new rating state of the zero-coupon bond
will be j with probability pij for j = 1, . . . , K.

Further using the first-order condition for utility-maximizing agents
implying that the state price density is proportional to the marginal utility
given optimal investment (Lando and Mortensen, 2005), the authors derive
the following relationship between real-world and risk-neutral transition
probabilities:

pij

q̃ij
=

(1 − ai(1 − esj+(si−sj)T )−θi∑K
k=1 pik(1 − ai((1 − esk+(si−sk)T )−θi

(8.28)

From this expression, in a first step using real-world transition probabil-
ities pij , risk-neutral default probabilities q̃iK , credit spreads sj , maturity
T , and a value of ai, the parameter θi can be determined. Then in a sec-
ond step, the other risk-neutral transition probabilities are calculated based
on the estimated θi. Note that ai actually denotes the optimal fraction of
wealth that should be invested in the risky asset. Ensuring internal consis-
tency in the stylized setting of the economy, the parameters ai would have
to be determined in agreement with the price of the bond using risk-neutral
transition probabilities q̃ij : Vi(t)=

∑K
j=1 q̃ije

−rVj(t+1). However, as stated
by the authors, the risk adjustments θi are rather insensitive to the value
of ai such that the condition of internal consistency is not applied in the
calculation of q̃ij . The authors further point out that, in a more realistic
setting, one had to allow for more states of nature, heterogenous agents,
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multiple risky assets, and time periods as well as stochastic interest rates
and credit spreads (Lando and Mortensen, 2005). However, it is argued by
Lando and Mortensen (2005) that even without considering these aspects,
the functional form of the risk adjustments still provides a good approxi-
mation. Overall, it seems that the results for adjustments of the real-world
transition matrix based on economic theory are more reasonable than for
the methods that were discussed in Section 8.2. For example, the method
overcomes the infeasibility of the Jarrow et al. (1997) method and the
deficiency of the Kijima and Komoribayashi (1998) method to counterin-
tuitively adjust the default probability and all other entries in opposite
directions.

Let us now have a look at a numerical example. We assume the following
credit spreads (in bp) for the four rating categories:

Rating Class A B C D
Credit Spreads (bp) 80 200 800 1800

We further set the values for ai = 0.5 for all rating categories and assume
that T = 2 for the bonds. Then, when we plug in the transition matrix

P =

⎛
⎜⎜⎝

0.900 0.080 0.017 0.003
0.050 0.850 0.090 0.010
0.010 0.090 0.800 0.100
0.000 0.000 0.000 1.000

⎞
⎟⎟⎠ (8.29)

and the risk-neutral default probabilities q̃AD = 0.006, q̃BD = 0.030, q̃CD =
0.200 into (8.28), the optimization procedure yields θA = 8.5243, θB =
14.7619, and θC = 13.0577.

Based on these estimates, we then calculate the elements q̃ij , for j =
1, . . . , K −1 of the risk-neutral transition matrix by using expression (8.28)
and obtain

Q̃ =

⎛
⎜⎜⎝

0.8898 0.0832 0.0209 0.0060
0.0436 0.8110 0.1154 0.0300
0.0064 0.0627 0.7309 0.2000
0.0000 0.0000 0.0000 1.0000

⎞
⎟⎟⎠ (8.30)

8.5 Risk-Neutral Migration Matrices and Pricing

In this chapter we have reviewed several techniques that can be used to
transform real-world transition matrices into risk-neutral ones. Some of
them were applied using discrete time migration matrices (Jarrow et al.,
1997; Kijima and Komoribayashi, 1998), while others used the correspond-
ing continuous-time generator matrix for the adjustment (Lando, 2004).
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Finally, following Lando and Mortensen (2005), an approach was described
where the adjustment is inspired by economic theory.

Overall, so far there has been no extensive empirical study comparing
the different adjustment techniques in terms of which method works best
for pricing credit derivatives. The few exceptions on comparing the meth-
ods rather deal with the feasibility of the approaches. Lando and Mortensen
(2005) find that the method intially suggested by Jarrow et al. (1997) yields
infeasible results in a real-world application for pricing step-up bonds,
while the adjustments using the utility-based method inspired by eco-
nomic theory provide more intuitive results than the method by Kijima and
Komoribayashi (1998). However, they also point out that the utility-based
method is very sensitive to the values of real-world default probabilities. To
overcome this problem by using a smoothed version of the empirical rating
transition matrix, see Lando and Mortensen (2005). On the other hand,
Trueck (2008) finds that in particular the numerical adjustment method
that modifies the whole row of the generator by multiplying with a factor
πi spreads too much of the probability mass and yields rather bad results for
forecasting future migration matrices. Note, however, that in this analysis
the focus is not on pricing of credit derivatives, but conditioning migration
matrices on business cycle effects. For a further discussion on the different
adjustment techniques and their results, we also refer to Prokopczuk and
Trueck (2008). As mentioned above, an alternative approach on deriving
implied migration rates from barrier models is suggested by Albanese and
Chen (2006).

Another problem in practical applications is the assumption that each
rating state is associated with a risk-adjusted default intensity that deter-
mines the price of the bond. However, as pointed out in Lando (2004), the
rating process is to some extent disconnected from the default intensity
process. This is also illustrated by the fact that default intensities implied
by a Merton-type or the KMV model that are based on the value of the firm
are much more volatile than the actual rating process. If a rating change
happens every time the expected default frequency passes a certain thresh-
old, then the rating process was much more volatile than can be observed
in the real world.

Finally, one has to keep in mind that important information related to a
single company might be ignored when transition matrices are used to price
credit derivatives. By using the rating of the company and the correspond-
ing migration probabilities as input variables, one measures the dynamics
of the rating class but not those of the individual firm. Unfortunately, many
characteristics of a company affecting the default process or rating changes
may not be captured by the rating class. As we will see in Chapter 11,
one usually tries to overcome this problem by only considering the bond of
the particular issuer and conducting the adjustment based on the observed
spread and implied default probability. However, in real-world applications,
often there are too few bonds available to conduct a proper adjustment.



9
Conditional Credit Migrations:
Adjustments and Forecasts

9.1 Overview

In Chapter 6 we illustrated methods for detecting significant differences
between transition matrices. While Bangia et al. (2002) examined the sta-
bility of migration matrices of a major agency, we found that transition
matrices of an internal rating system also could not be considered as being
time homogeneous or a first-order Markov chain. We further investigated
the substantial effects of changes in migration behavior on expected loss,
VaR, and especially on confidence intervals for PDs. One finding was that,
especially in times of an economic downturn, the risk of a credit portfolio
can be several times higher than during an expansion of the economy. The
findings are similar to some other studies in the field. Helwege and Kleiman
(1997) as well as Alessandrini (1999) have shown, respectively, that default
rates and credit spreads clearly depend on the stage of the business cycle.
Belkin et al. (1998b) developed a simple model for adjustment of transi-
tion matrices to the economy, while Nickell et al. (2000) have shown that
probability transition matrices of bond ratings depend on business cycles.
By separating the economy into two states or regimes, expansion and con-
traction, and conditioning the migration matrix on these states, Bangia
et al. (2002) showed significant differences in the loss distribution of credit
portfolios.

Still, despite the obvious importance of recognizing the impact of busi-
ness cycles on rating transitions, the literature is rather sparse on this issue.
The first model developed to explicitly link business cycles to rating tran-
sitions was in the 1997 CreditPortfolioView (CPV) by Wilson (1997a,b)
and McKinsey & Company. Belkin et al. (1998b) developed a univariate
model whereby ratings respond to business cycle shifts. Nickell et al. (2000)
proposed an ordered probit model which permits migration matrices to be
conditioned on the industry, the country domicile, and the business cycle.
In this chapter we will first review some of the approaches on adjusting
migration matrices to the business cycle mentioned above. Then we will
illustate the adjustment methods suggested in Lando (2000), as we will
use them later for our own adjustment procedure. The methods suggested
there were actually not introduced for linking transition matrices to the
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business cycle but to obtain risk-neutral migration matrices being in line
with market credit spreads. However we will show that they can also be used
for the purpose of linking macroeconomic variables to changes in migration
matrices.

9.2 The CreditPortfolioView Approach

In the so-called macro simulation approach by Wilson (1997b), a time series
model for the macroeconomic situation is used to forecast an index Yj,t for
each rating class j at time t. This index is then used in a logit model to
determine the conditional default probability pj,t in period t:

pj,t =
1

1 + e−Yj,t
(9.1)

The index Yj,t is derived from a multifactor time-series model of the form

Yj,t = βj,0 + βj,1Xj,1,t + βj,2Xj,2,t + . . . + βj,mXj,m,t + vj,t (9.2)

According to the model the index Yj,t is dependent on economic variables
Xj,k with k = 1, . . . , m using the coefficients βj . Further, vj,t represents
an error term. In the CPV model the error term vj,t is interpreted as
the index innovation vector and assumed to be independent of the Xj,k

and identically normally distributed. Thus, we get vj,t ∼ N(0, σj) and
vj ∼ N(0,Σv). Hence, Σv denotes the variance/covariance matrix of the
index innovations.

The macroeconomic factors Xj,k are assumed to follow an autoregressive
process of order 2 AR(2):

Xj,k,t = γj,k,0 + γj,k,1Xj,k,t−1 + γj,k,2Xj,k,t−2 + ej,k,t (9.3)

Here Xj,i,t−1 and Xj,i,t−2 denote the lagged values of variable Xj,k, and
ej,k,t denotes an error term that is assumed to be iid, i.e.,

e ∼ N(0, σej,k,t
)

where Σe is the covariance matrix of the error terms. The author points out
that a better strategy might have been an ARMA(p, q) or a vector autore-
gressive moving average model. However, the model with two independent
AR(2) processes was chosen due to its simplicity.

Combining equations (9.1), (9.2), and (9.3), we have to solve a system
of equations to calibrate the model using the following assumptions:

Et =
[

vt

et

]
∼ N(0,Σ) (9.4)
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where

Σ =
[

Σv Σv,e

Σe,v Σe

]
(9.5)

After the estimation of equations (9.1), (9.2), and (9.3), simulations are
used to calculate a macroeconomic index and, thus, conditional default
probabilities. Then the unconditional or average migration matrix has to
be adjusted to simulate portfolio migrations and default behavior.

We will now illustrate the adjustment procedure for the transition matri-
ces by a simplified example using a discrete approach taken from Saunders
and Allen (2002). Let us consider a transition matrix with only four rat-
ing categories A, B, C, D. Let’s further assume that the unconditional or
average default probability for C-rated debt is p̄CD = 0.15, while, e.g., the
migration probability from state C to state B is p̄CB = 0.04 and from state
C to state A is p̄CA = 0.01, as denoted in Table 9.1.

Now suppose that based on current macroeconomic conditions the esti-
mated conditional value of the default probability for a C-rated bond given
by the model equations (9.1)–(9.3) is pCD,t = 0.174. In this case without
adjusting the transition matrix we were likely to underestimate the VaR
of a loan portfolio and especially the default probability of a C-rated loan.
Hence, we have to adjust the transition matrix according to this estimate
for pCD,t.

With ΔpCD = pCD,t − p̄CD = 0.174 − 0.15 = 0.024 a so-called diffu-
sion term or shift parameter is determined. This parameter is then used to
change the respective row in the unconditional transition matrix to obtain
the conditional transition matrix. Clearly the shift in transition probabili-
ties must be diffused throughout the row in a way ensuring that the sum
of all probabilities equals one.1 The procedure aims ΔpCC = −0.0204,
ΔpCB = −0.006 and ΔpCA = +0.0024 and the obtained row of the
conditional migration matrix as is denoted in Table 9.2.

TABLE 9.1. Unconditional or
Average Transition Probabilities
for Rating Category C

A B C D

A . . . . . . . . . . . .

B . . . . . . . . . . . .

C 0.01 0.04 0.80 0.15

1
For a more detailed description of the procedure, we refer to Saunders and Allen

(2002). Unfortunately, the described procedure contains some mistakes and does not
give correct insight into how the final result is obtained.
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TABLE 9.2. Conditional Transition
Matrix

A B C D

A . . . . . . . . .

B . . . . . . . . . . . .

C 0.0124 0.034 0.7796 0.174

Saunders and Allen (2002) point out that to determine the complete
transition matrix, this procedure is repeated for each row of the uncondi-
tional transition matrix.

In the documentation of CreditPortfolioView, a continuous-time ap-
proach using generator matrices is applied. To describe the complete adjust-
ment procedure, Wilson uses a so-called shift operator that redistributes
the probability mass within each row of the unconditional migration matrix.
The shift operator is then written in terms of a matrix S = {Sij} and the
shift procedure is accomplished by

P ∗ = Pcond = (I + τS)Puncond

Thus, the unconditional average transition matrix is multiplied by a
matrix that consists of the identity matrix plus the shift matrix multi-
plied by a factor τ ≥ 0. According to Wilson the factor τ that determines
the amplitude of the shift in segment j is calculated according to the follow-
ing rule:

τj =
pjD,t

p̄jD
− 1 for

pjD,t

p̄jD
≥ 1 (9.6)

and

τj = −(
pjD,t

p̄jD
− 1) for

pjD,t

p̄jD
< 1 (9.7)

where pjD is the unconditional default probability for the jth segment
(taken from the unconditional migration matrix). Thus, the amplitude is
ensured to be ≥ 1. Obviously, the shift operator (or the shift matrix) should
satisfy the following conditions for the adjusted migration matrix.

• It should preserve the sum of the migration probabilities in each row
to be 1; thus

∑K
j=1 p∗

ij = 1 for i = 1, . . . , K.
• The shift operator should ensure that the new migration and default

probabilities are all greater than or equal to zero and less than 1; thus
0 ≤ p∗

ij ≤ 1 for i, j = 1, . . . , K.
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This leads, according to Wilson, to the following shift operator restric-
tions, given

Pcond(τ) = (I + τS)Puncond, τ ≥ 0 and S = {Sij} (9.8)

and

• −τ ≤ sjj ≤ 0 for j = 1, . . . , K

• sij ≥ 0 for all i �= j

• ∑n
i=1 sij = 0 for j = 1, . . . , K

Obviously, the conditions imposed to the shift operator matrix make it
look very similar to a generator matrix. Wilson states that the conditions
on S ensure that the conditional matrix Pcond is a valid migration matrix
as long as Puncond is a valid migration matrix. For the proof we refer to the
technical document of CreditPortfolioView (CreditPortfolioView, 1998).
The problem, however, in dealing with discrete matrices is that the bound-
edness condition on τ is almost impossible to guarantee for any arbitrary
series of speculative default rates—especially not for historical specula-
tive default series which have a relatively high standard deviation-to-mean
ratio. Under τ violating the boundedness condition, the resulting matrix
could contain negative probabilities or also probabilities greater than one.
Therefore, Wilson changes from a discrete shift operator to a continuous
shift operator:

Pcond(τ + Δτ) = (I + ΔτS)Pcond(τ) (9.9)

Equation (9.9) leads to the differential equation

dP

dτ
= SPcond with P (0) = Puncond (9.10)

and the solution

Pcond(τ) = exp(τS)Puncond

Since we already defined how the amplitude of the shift operator is
calculated, the remaining task is how to determine the shift matrix S.
A right shift operator can be considered as a matrix shifting probability
mass in the direction of increased downgrades and defaults. Alternatively,
a left shift operator can be considered as a matrix shifting probability mass
in economic expansion in the direction of higher rating grades.

Wilson defines a possible systematic right shift operator according to the
following equation:

p∗
j.(τ + Δτ) = p∗

j.(τ) + (sj−1p
∗
j−1.(τ) − sjp

∗
j.(τ))Δτ
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If the amplitude of the shift operator changes, the new migration
probability equals the original migration probability plus a proportion from
the higher class j −1 minus the mass that is shifted to the lower class j +1.
Then the systematic right shift operator has the following form:

S =

⎛
⎜⎜⎜⎜⎜⎜⎝

−s1 · · · 0
s1 −s2 · · · 0
· · · · · · · · · · · ·
· · · sK−2 −sK−1 0
0 · · · sK−1 0
0 · · · 0 0

⎞
⎟⎟⎟⎟⎟⎟⎠

(9.11)

The systematic left shift operator is defined along the lines of the right
shift operator. Clearly the relation that should be expressed is that as the
speculative default rate increases, credit downgrades are more likely, while
upgrades have lower probabilities and vice versa. Wilson suggests defining
sj = α for downgrades (j ≥ r) and sj = β for upgrades (j < r) with r
being the rating class to which S relates. But in further documentation, the
systematic shift operator is restricted according to s = α = β to govern the
form of the left- and right-shift operators. This restriction is supposed to
ensure that in the absence of macroeconomic shocks, the mean of the sim-
ulated cumulative migration matrix equals the unconditional cumulative
migration matrix; see CreditPortfolioView (1998).

In addition to calibrating expected defaults by the systematic shift oper-
ator according to CreditPortfolioView, it is also important to calibrate
the ratio of expected to unexpected default rates. Since investment grade
segments tend to be less sensitive to cyclical movements, the amount of
volatility of default rates which can be described by the systematic risk
models is lower for investment grade counterparties. Thus, while one can
expect defaults to vary over the cycle in a more or less predictable manner
for noninvestment grade categories, default events for highly rated counter-
parties have to be considered as more unsystematic and surprising. Hence,
in addition to the systematic shift operator, there is also added a source of
uncertainty which is independent of the state of the economy. It is called
the unsystematic shift operator. It affects the higher rated companies more
than the lower rating categories. The probability mass is directly moved
from the default entry to each entry in a row of the migration matrix or
vice versa. The unsystematic right shift matrix U is of the form

U =

⎛
⎜⎜⎜⎜⎝

−u1 · · · 0
−u2 · · · 0

· · · · · · · · · · · · · · ·
· · · −uK−1 0
u1 u2 · · · uK−1 0

⎞
⎟⎟⎟⎟⎠ (9.12)
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However, the task is not only to determine the form of S and U but
also its values. Unfortunately, this part of the adjustment is not avail-
able in the published documentation of CreditPortfolioView, which has
to be considered a major drawback of the model. For a simpified exam-
ple of the adjustment procedure, see, e.g., Saunders and Allen (2002). In
an empirical study, Wehrspohn (2004) examines the estimated long-term
default probabilities by CreditPortfolioView and compares them to Stan-
dard & Poor’s cumulated default probabilities. To investigate the effect of
the adjustment procedure in the Wilson model, he tested model forecasts
both under an average macroeconomic situation and a recession scenario.
His findings are rather disenchanting. The estimated default probabilities
under the average macroeconomic scenario are on average 5 times higher
than the cumulative 10-year default probabilities of Standard & Poor’s;
for rating class A the estimated default probability is approximately 10%,
and thus more than 8 times higher than the numbers provided by the rat-
ing agency. Hence, CreditPortfolioView is not able to estimate long-term
default probabilities similar to the market. Further, the difference between
simulated long-term default probabilities under the conditional recession
and the average macroeconomic scenario are comparatively small. For the
considered 10-year horizon, Wehrspohn (2004) obtained less than 10% dif-
ference, which is negligible compared to the differences in the deviations
from cumulated default probabilities by the rating agencies. He concludes
that the model has some deficiencies in representing market cumulative
default probabilities, especially for longer time horizons, and should be
refined in several ways.

9.3 Adjustment Based on Factor Model
Representations

Kim (1999) developed a model for estimating conditional transition matri-
ces. In his model he adopts a one-factor model to incorporate credit cycle
dynamics into the transition matrix. Similar to CreditPortfolioView, the
main idea is to improve the accuracy of credit loss simulation based on
the technique of conditional transition matrices. He also points out that
another goal is to yield an efficient method for stress testing according to
the analyst’s view of the future economic state.

To implement the technique, in a first step one builds a credit cycle
index, which indicates the credit state of the financial market as a whole.
The model of the credit cycle index needs to include the most relevant
macroeconomic and financial series, such that the forecasted credit cycle
index will represent the credit state well. Then in a next step the transition
matrix is conditioned on the forecasted credit cycle index. Unlike in the one-
factor default mode model, the model of conditioning the transition matrix



166 9. Conditional Credit Migrations: Adjustments and Forecasts

should cover events that lead to upgrading and downgrading, as well as
default. Furthermore, in the face of the animadversion on the CreditPort-
folioView model, the estimated results should be stable enough to apply to
forecasting or stress testing of the transition matrix.

9.3.1 Deriving an Index for the Credit Cycle
The so-called credit cycle index Zt defines the credit state based on macro-
economic conditions shared by all obligors during period t. The index is
designed to be positive in good days and to be negative in bad days.
A positive index implies a lower downgrading and default probability and
a higher upgrading probability and vice versa. To calibrate the index one
uses the default probabilities of speculative grade bonds, since, similar to
Wilson, Kim (1999) points out that highly rated bonds have very low
default probabilities that are rather insensitive to the economic state.

Further, Zt is supposed to follow a standard Gaussian distribution and
is standardized according to

Zt =
Φ−1(SDPt) − μt

σt
(9.13)

where SDPt is the speculative grade default probability of period t;
μ and σ denote the historical average and the standard deviation of the
inverse normal transformation of the speculative grade default probability.
Since the SDP is restricted to lie between 0 and 1, a simple regression
model cannot be used and a transformation is needed. Thus, the rela-
tionship between the business cycle and SDPt is derived similarly to the
CreditPortfolioView model. However, instead of the logit model suggested
by Wilson (1997b), a probit model is suggested. Following CreditMetrics
he assumes that the underlying, continuous credit-change indicator has a
standard normal distribution:

SDPt = Φ(Xt−1β + εt) (9.14)

with Xt−1 denoting a set of macroeconomic variables of the previous period
and εt a random error term with Et−1(εt) = 0. After estimation of the
coefficients β̂, the forecast for the inverse normal CDF of the speculative
grade default probability is

E(Φ−1(SDPt)) = Xt−1β̂ (9.15)

Kim points out that the probit model allows an unbiased forecast of the
inverse normal CDF of SDP to be created, given recent information about
the economic state and the estimated coefficient.



9.3 Adjustment Based on Factor Model Representations 167

After testing several macroeconomic variables, the author chose the
spread between Aaa and Baa bonds, the yield of 10-year treasury bonds,
the quarterly CPI inflation, and the quarterly growth of GDP for X. For
the estimated model all coefficients showed the signs one would expect, and
in backtesting, using mean absolute error as performance criteria provided
better forecasts for average SDP than simply using the average speculative
grade default probabilities as a forecast.

9.3.2 Conditioning of the Migration Matrix
Similar to the CreditPortfolioView model, the second step is to adjust
the transition matrix according to estimated or forecasted values of the
credit cycle index. Following the one-factor model suggested by Belkin
et al. (1998b) we described in the previous section, it is assumed that rat-
ings transitions reflect an underlying, continuous credit-change indicator Y
following a standard normal distribution. The credit-change indicator Yt

is assumed to have a linear relationship with the systematic credit cycle
index Zt and an idiosyncratic error term εt, so we get the one-factor model
parameterization:

Yt = γZt +
√

1 − γ2εt (9.16)

Since both Zt and εt are scaled to the standard normal distribution with
the weights chosen to be γ and

√
1 − γ2, we get Yt also to be standard

normal. Recall that γ2 represents the correlation between the credit change
indicator Yt and the systematic credit cycle index Zt.

Figures 9.1 and 9.2 illustrate the effect of the shift of the credit-change
indicator Yt depending on the outcome of the credit cycle index Zt. On
average days we obtain Zt = 0 for the systematic risk index and the credit-
change indicator Yt follows a standard normal distribution. If the assumed
default event threshold is −2, the unconditional default probability is equal
to the probability that the idiosyncratic risk factor εt is less than −2√

1−0.32 .
Therefore, we obtain for the unconditional PD

P (Yt < −2.1945) = Φ(
−2√

1 − 0.32
) = 0.0180 (9.17)

Let’s now assume that the correlation γ between Yt and Zt is 0.3. Hence,
a positive outcome of the credit cycle index Zt = 1.5 shifts the credit-change
indicator to the right side by γ ·Zt = 0.3 ·1.5 = 0.5. The conditional default
probability dependent on Zt = 1.5 is equal to

P (Yt < −2) = P (εt <
−2.5√
1 − 0.32

) = Φ(
−2.5√
1 − 0.32

) = 0.0180 (9.18)

The lower conditional PD is illustrated by Figure 9.1.
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FIGURE 9.1. Average and conditional credit-change indicator for expansion
scenario (Zt = 1.5).

In the case of a bad outcome of the systematic credit cycle index, the
distribution moves to the left side. For example, assume that Zt = −1.5,
so the distribution is shifted to the left by 0.5. Therefore, we get for the
conditional PD

P (Yt < −2) = P (εt <
−1.5√
1 − 0.32

) = Φ(
−1.5√
1 − 0.32

) = 0.0579 (9.19)

The effect on the conditional distribution for the PDs is illustrated in
Figure 9.2.

To apply the above scheme to a multirating system, the author follows a
procedure suggested by Belkin et al. (1998b). Following the CreditMetrics
approach by Gupton et al. (1997) described in Section 4.3, it is assumed
that, conditional on an initial credit rating i at the beginning of a year,
one partitions values of the credit change indicator Y into a set of disjoint
bins. According to Belkin et al. the bins are defined in a way that the
probability that Yt falls within a given interval equals the corresponding
historical average transition rate. The mapping procedure is illustrated in
Figure 9.3. The methodology can be understood as mapping a firm’s future
asset returns to possible ratings. The underlying assumption is that higher
returns correspond to higher ratings, and vice versa. It should be noted
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FIGURE 9.2. Average and conditional credit-change indicator for recession
scenario (Zt = −1.5).

that to calculate the scores, any meaningful statistical distribution could
be used for the mapping. However, given the absence of preference for a
particular distribution, for ease of calculation and estimation, the author
chose the Gaussian distribution.

The mapping procedure is straightforward. Since the row sum in a tran-
sition matrix is always 1, one could, for each rating class in the average
transition matrix, construct a sequence of joint bins covering the domain of
the Gaussian variable. This can be done simply by inverting the cumulative
normal distribution function starting from the default column. To illus-
trate the procedure, we will consider an issuer, one in the speculative grade
rating class Ba. For Ba-rated issuers, we have the average transition prob-
abilities given in Table 9.3. A default probability of 0.0141 corresponds to
xBa

D = Φ−1(0.0141) = −2.1945. Hence, the first bin is (−∞,−2.1945]. For
the next entry, summing 0.0141 and 0.0111 gives us the total probability
that the new rating is either C or a migration to default. The cor-
responding score is xBa

C = Φ−1(0.0252) = −1.9566, and the next bin is
(−2.1945,−1.9566]. Repeating this procedure gives the other scores, and
finally the last bin corresponding to a transition to Aaa is (3.5402,∞).

When one uses the bins calculated from the average transition matrix, it
is then straightforward to calculate the conditional transition probability



170 9. Conditional Credit Migrations: Adjustments and Forecasts

Firm remains
BBB

BB A

BBB

B AA

CCC AAA

Default

Lower Higher

FIGURE 9.3. Corresponding credit scores to transition probabilities for a
company with BBB rating [compare Belkin et al. (1998b)].

TABLE 9.3. Average One-Year Transition Probabilities (TP) and Correspond-
ing Scores for an Issuer with Rating Baa

Aaa Aa A Baa Ba B C D
p(Ba, i) 0.0002 0.0011 0.0052 0.0712 0.8229 0.0742 0.0111 0.0141
ScoreBa − 3.5402 3.0115 2.4838 1.4207 −1.2850 −1.9566 −2.1945

on the credit cycle index. In any year, the observed transition rates will
deviate from the average migration matrix. It is possible to find a value
of Z so that the probabilities associated with the bins defined above best
approximate the given year’s observed transition rates. Thus, Zt is deter-
mined so as to minimize the weighted, mean-squared discrepancies between
the model transition probabilities and the observed transition probabili-
ties. The conditional transition probability pt(i, j|Zt) for rating state i to
another rating state j has the ordered probit model:

pt(i, j|Zt) = Φ

(
xi

j+1 − γZt√
1 − γ2

)
− Φ

(
xi

j − γZt√
1 − γ2

)
(9.20)

The estimation problem then results in minimizing the following expres-
sion:

min
∑

j

∑
i

nt,j [pt(i, j) − pt(i, j|Zt)]
2

pt(i, j|Zt)(1 − pt(i, j|Zt))
(9.21)

where nt,j denotes the number of transitions from initial grade i to j in the
year t. Further observations are weighted by the inverses of the approximate
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sample variances pt(i, j|Zt). For the procedure of estimating the ordered
probit model, we refer to Maddala (1983). In an empirical study by Kim,
estimating equation (10.5) is done by using the transition matrix and the
credit cycle index of 56 quarters from 1984 to 1998. The method for esti-
mating the ordered (multicategorical) probit model in equation (9.3) is
the same except that the ordered probit model uses the bin of credit rat-
ing thresholds as intercepts of the equation. The estimated parameter γ is
γinv = 0.0537 for the investment grade and γspec = 0.3384 for the spec-
ulative grade. To illustrate the adjustment procedure, we consider again
the transition probabilities and related scores of a Ba-rated issuer given in
Table 9.3. Suppose that the outcome of the credit cycle index for year t∗

is Zt∗ = 1.5. Since the estimated correlation for speculative grade issuers is
γspec = 0.3384, we get a shift of the credit-change indicator distribution by
0.3384 · 1.5 = 0.5076.

9.3.3 A Multifactor Model Extension
Wei (2003) extends the factor model representation by a multifactor,
Markov chain model for rating migrations and credit spreads. The model
allows transition matrices to be time varying and further driven by
rating-specific latent variables. These variables can encompass a variety
of economic factors including business cycles.

Similar to Wilson and Kim, Wei starts with the assumption that there
exists an average transition matrix similar to P̄ , whose fixed entries rep-
resent average, per-period transition probabilities across all credit cycles.
Further he assumes that the entries in a transition matrix for a particular
year will deviate from the averages, and the size of the deviations is depen-
dent on the condition of the economy. A further assumption is that the size
of the deviations can be different for different rating categories.

Since in his model the author works with several variables that drive the
time-variations of the transition probabilities, he defines a set of average
credit scores corresponding to the average transition matrix. To reflect the
period-specific transition matrices, in the following, the movement of these
credit scores is modeled—not the movement of the transition probabilities.
Using the same procedure as Belkin et al. (1998b) or Kim (1999), this is
done by partitioning the domain of a standard normal variable by a series of
z-scores. The transition matrix can then be represented as a z-score matrix.
Since the upper limit of rating Aa is equivalent to the lower limit of the
highest rating Aaa and it doesn’t make sense to model the absorbing default
state, the z-score matrix will be of dimension (K − 1) × (K − 1). Alterna-
tively, given a z-score matrix, a corresponding transition matrix can also be
obtained. Obviously for a given rating, a downward shift in the credit scores
leads to an increase in probabilities of transitting to ratings higher than or
equal to the rating in question, while an upward shift in the z-scores leads
to the opposite. Table 9.4 gives the matrix of z-scores corresponding to



172 9. Conditional Credit Migrations: Adjustments and Forecasts

TABLE 9.4. Corresponding Z-Scores Matrix to Average One-Year Migration
Matrix for Moody’s Corporate Bond Ratings Period 1982–2001

Aa A Baa Ba B C D
Aaa −1.4583 −2.4981 −3.0327 −3.4062 −∞ −∞ −∞
Aa 2.4890 −1.4160 −2.3931 −2.8485 −2.9926 −3.4035 −3.7643
A 3.1777 1.9987 −1.5262 −2.3688 −2.7364 −3.1758 −3.3046
Baa 3.3057 2.7128 1.5692 −1.5031 −2.1488 −2.5773 −2.7624
Ba 3.5872 3.0107 2.4813 1.4201 −1.2857 −1.9567 −2.1936
B ∞ 3.0784 2.6116 2.3564 1.4908 −1.2835 −1.5448
C 3.0384 3.0384 2.6432 2.3492 1.9583 1.0928 −0.7098

the average one-year migration matrix for Moody’s corporate bond ratings
from 1982–2001, as reported in Table 1.1.

The next step is then to model deviations from the scores of the average
transition matrix. As an extension of the model suggested by Kim, Wei
assumes that the deviations are driven by K mutually independent, Gaus-
sian distributed factors. Hence, his multifactor credit migration model is of
the form

zij = α(x + xi) +
√

1 − 2α2εij (9.22)

with rating classes i = 1, . . . , K − 1 and j = 1, . . . , K. The first variable x
denotes the common factor for all ratings, and the xi denote rating class
specific factors, and εij represents the idiosyncratic factor. Similar to the
described one-factor model, here the factors x, xi and εij are also scaled
to a standard normal distribution. The factors x and xi encompass the
impacts of all economic variables relevant to rating changes. Further the
correlation between any two rating classes is

corr(zij , zkl) = α2 (9.23)

where i �= k. According to Wei, for an average year the realized deviations
for all rating classes should be close to zero.

Trying to find the fitted transition matrix for each year, Wei suggests
the following procedure:

In a first step the historical average transition matrix is calculated and
converted into a z-score matrix. Then for each period t and for each row,
the shift of the z-score matrix that minimizes the sum of deviations Δzit is
sought. Therefore, a key assumption of the procedure is the equal magni-
tude of shifts in z-scores for a particular rating class. This procedure yields
a time series of z-score deviations for all rating classes and all periods Δzit

for all t = 1, . . . , T and i = 1, . . . , K − 1. To improve the estimation results
for each row, one weighs the square of deviations by the inverse of the
approximate sample variance of each entry’s probability estimate. Then



9.4 Other Methods 173

the average of the seven shifts for each year is calculated, denoting the
systematic shift for all rating classes Δ̄zt for period t. In the next step
the variance V (Δ̄z) of the systematic shift time series is calculated. The

estimator for the α is then α̂ =
√

V (Δ̄z). Then for each period t the
common shift

x̄t =
Δ̄zt

α
(9.24)

is calculated. In the next step for period t and each rating class i, the
rating-specific deviation is calculated. Finally, the fitted transition matrix
for each period is calculated by using the average historical matrix and the
z-score adjustments or deviations estimated in the previous steps.

The author points out that in the univariate model such as that of Belkin
et al. (1998b), where there is no rating-specific shift, the same procedure is
applied to the whole matrix for a particular year to find the common shift
Δzit. Then the parameter α is estimated in a similar fashion.

9.4 Other Methods

In the following we will briefly review two additional methods suggested for
estimation of conditional migration matrices including ordered probit mod-
els (Nickell et al., 2000; Hu et al., 2002) and a regime-switching approach
by Bangia et al. (2002). Note that both approaches will not be investigated
in the empirical part.

Nickell et al. (2000) and Hu et al. (2002) propose the use of Bayesian
methods in combination with an ordered probit model for conditioning
credit migration matrices. The idea is to combine information from the his-
torical average transition matrix estimate and results from other exogenous
variables. The techniques are related to Bayesian methods for estimating
cell probabilities in contingency tables. The transition matrix is smoothed
via a function of covariates. In the first step a so-called appropriate prior
is specified and then updated with a new estimator based on the observed
data:

Pt = λ · P̄ + (1 − λ) · Qt (9.25)
Here P̄ denotes some average historical transition matrix, Qt is the esti-
mator for the transition matrix in period t obtained by an ordered probit
model, and λ a weighting coefficient. Since the matrix P̄ is itself an esti-
mator of the true transition matrix, updating this using other information
actually corresponds to a pseudo (or empirical) Bayes approach. Clearly,
the problem, next to the estimation of Qt, is how to find an appropriate
value for λ. For further explanation of the model, we refer to original arti-
cles by Nickell et al. (2000) and Hu et al. (2002). Wei (2003) points out
that a large quantity of data is needed to estimate reliable parameters.
Note that not only the model parameters for the probit model and λ have
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to be determined, but also parameters for modeling of the business cycle
as a Markov chain.

A similar approach to estimate conditional migrations is suggested by
Kadam and Lenk (2008). Exploring sources of heterogeneity in rating
migration behavior, they adopt a Bayesian estimation procedure to esti-
mate for each issuer profile its own continuous time Markov chain generator.
While Nickell et al. (2000) employ a probit framework to compute condi-
tional transition probabilities in a discrete-time model, Kadam and Lenk
(2008) use a continuous-time model where the state durations are expo-
nential and transition probabilities are logistic functions. Using Moody’s
corporate bond default database, the authors further identify significant
country and industry effects with respect to rating migration volatility,
default intensity, and conditional transition probabilities. They further
show that other characteristics, such as how long the issuer has been in
existence, may also affect the rating migration behavior.

Bangia et al. (2002) link business cycle effects and transition matrices by
a regime-switching model. The authors estimate a regime-switching model
for quarterly expansion and contraction classifications. Further, average
expansion and contraction transition matrices are determined. For applica-
tions it is straightforward to link the regime-switching and the estimated
migration matrices. Based on estimated probabilities for being either in an
expansion or contraction of the economy, using the regime-switching pro-
cess one-period ahead forecasts for migration matrices can be obtained.
However, simulating rating distributions based on their approach, the
authors find no significantly different results for short-term migration and
default behavior compared to using an average migration matrix (Bangia
et al., 2002).

A more advanced application of Markov mixture models can be found
in Frydman and Schuermann (2008). The authors propose a parsimonious
model that is a mixture of (two) Markov chains. Hereby, the mixing is on the
rate of movement among credit ratings. The estimation of the model is per-
formed using credit rating histories and an algorithm originally suggested
in Frydman (2005). The authors further provide evidence that the mixture
model statistically dominates the simple Markov model and that the dif-
ferences between two models can be economically meaningful. Therefore,
Frydman and Schuermann (2008) find further evidence for the fact that the
future distribution of a firm’s ratings depends not only on its current rating
but also on its rating history in the past. This also confirms the results by
Lando and Skødeberg (2002), Krüger et al. (2005), or in Chapter 5 of this
book on the Markov property and rating drifts where migration behavior
was found to exhibit higher order Markov behavior.

Of course, it is also possible to apply the adjustment methods that were
reviewed in Chapter 5. Obviously, the methods were initially designed
to match transition matrices with default probabilities implied in bond
prices observed in the market. However, given estimates for conditional
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default probabilities based on the macroeconomic situation, they can also
be used to adjust transition matrices subject to anticipated changes in the
business cycle. Hereby, both methods implementing the adjustment based
on a discrete (Jarrow et al., 1997; Kijima and Komoribayashi, 1998) or
continuous-time (Lando, 2000) transition matrix can be used. Further it
is also possible to carry out the adjustments using the method suggested
in Lando and Mortensen (2005). In the next section an empirical analysis
will be conducted that actually uses the numerical adjustment techniques
originally suggested in Lando (2000) using conditional default probabilities
based on a macroeconomic index.

9.5 An Empirical Study on Different
Forecasting Methods

This section will provide an empirical analysis on forecasting credit migra-
tion matrices based on a business cycle credit index.2 Hereby, we compare
the in-sample and out-of-sample performance of different adjustment meth-
ods for forecasting credit migration matrices. We consider Moody’s credit
migration matrices for the U.S. market from 1984–1999. The in-sample
period includes a history of 10 years from 1984–1993, while we use a six-
year period from 1994 to 1999 to evaluate the out-of-sample forecasting
ability of our models. The compared approaches include one-factor models
based on the approach by Belkin et al. (1998a) and Kim (1999) as they were
described in the previous section, and numerical adjustment procedures
following Lando (2000). As benchmark results, we will also use the aver-
age historical migration matrices and the transition matrix of the previous
period as forecasts for next year’s migration matrix.

To determine one-period ahead forecasts of conditional PDs and the
credit cycle index, we use a multiple regression model of the form

Φ−1(St) = c0 +
d∑

j=1

cjXj,t−1 + εt t ∈ N (9.26)

The process dynamic is influenced by the vector Xt−1 of d exogenous
macroeconomic variables of the previous period. Using equation (11.3) and
(9.3), we can then calculate forecasts for the one-period ahead credit cycle
index Zt and the conditional default probabilities p̂t(i, D|Zt) for each rating
class. Table 9.5 displays the included variables in the multiple regression
model. Both a variety of macroeconomic variables as well as credit spreads
and differences between long-term and short-term treasury bonds were

2
Results of this section were originally published in Trueck (2008).
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TABLE 9.5. Included Variables for the Multiple Regres-
sion Model for Credit Cycle Indices

Variable Notation
Change in consumer price index CPIt−1

Change in GDP growth GDPt−1

Change in annual savings SAVt−1

Change in manufacturing & sales MANt−1

Change in working output per hour OUTt−1

Change in consumption expenditures CONt−1

Change in unemployment rate UNt−1

Treasury Yields 10, 5, 3 and 1 year TY 10t−1 etc.
Spread between 10-y and 1-y treasury STRt−1

Spreads on investment grade bonds SINVt−1

Spreads on speculative grade bonds SSPEt−1

considered. Having only 10 observations from 1984–1993 for both default
probabilities and macroeconomic variables, to avoid overfitting, not more
than five exogenous variables were permitted in the regression model. In
the following we will now describe the procedure of model estimation and
conditioning of the migration matrices.

9.5.1 Forecasts Using the Factor Model Approach
Following Kim (1999) the multiple regression model (11.3) is used for mod-
eling and forecasting the continuous credit cycle index Zt. It is assumed
that the index follows a standardized normal distribution. Thus, a probit
model will allow us to create unbiased forecasts of the inverse normal CDF
of Zt, given the recent information of the last period about the economic
state and the estimated coefficients. Note that unlike Kim (1999), who uses
only one credit cycle index based on speculative default probabilities, we
will consider two credit cycle indices: one for speculative grade and one for
investment grade issues. For the investment grade issues, we use cumula-
tive defaults of issuers rated Aaa, Aa, A, and Baa, while for the speculative
grade issues, default probabilities from Ba to C were included. Figure 9.4
exemplarily reports the observed default frequencies for the noninvestment
grade rating classes Ba, B, and C that were used for estimation of the
speculative grade credit cycle index.

In a second step the forecasts of the credit cycle indices are used for
determining conditional migration probabilities p̂t(i, j|Zt). The adjustment
is conducted following the procedure described in Section 3.1. However,
for finding the optimal weights for the systematic risk indices wInv and
wSpec, minimizing the discrepancies between the forecasted conditional and
the actually observed transition probabilities, we introduce some model
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FIGURE 9.4. Moody’s historical default rates for speculative rating classes Ba
(dotted), B (dashed), and C (solid) for the period 1984–1999.

extensions. We allow for a more general weighting of the difference between
forecasted and empirical observation for the transition probability in each
cell. Hence, the weights for each of the cells are assigned according to some
function f :

min
∑

j

∑
i

f(i, j, pt(i, j), p̂t(i, j|Zt)) (9.27)

where the outcome of f(i, j, pt(i, j), p̂t(i, j|Zt)) may be dependent on the
row i and column j of the cell as well as on the forecasted and actually
observed transition probabilities p̂t(i, j|Zt) and pt(i, j).

To achieve a better interpretation of the results, we will also use risk-
sensitive difference indices suggested in Chapter 7 as optimization criteria
for the distance between forecasted and actual migration matrix. Recall
that based on the estimated model, the parameter w and the shifts on the
migrations according to some optimization criteria are determined. In fact,
this a crucial point of the model as it comes to forecasting credit migration
matrices. While Belkin et al. (1998b) suggest minimizing a weighted expres-
sion of the form, Wei (2003) uses the absolute percentage deviation based on
the L1 norm or a pseudo R2 as goodness-of-fit criteria. As it was illustrated
in Chapter 7, most of the distance measures suggested in the literature so
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far do not quantify differences between migration matrices adequately in
terms of risk. However, forecasts for transition matrices will be especially
used for determining credit VaR, portfolio management, and risk manage-
ment purposes. Therefore, especially risk-sensitive difference indices may
be a rewarding approach for measuring the difference between forecasted
and observed matrices. Following the results in Chapter 7, we suggest that
the difference between a migration matrix P = (pij) and Q = (qij) can
be determined in a weighted cell-by-cell calculation. Following Trueck and
Rachev (2007), we will include two risk-sensitive directed difference indices
in our analysis as optimization criteria:

D1(P, Q) =
n∑

i=1

n−1∑
j=1

d(i, j) +
n∑

i=1

n · d(i, n) (9.28)

D2(P, Q) =
n∑

i=1

n−1∑
j=1

d(i, j) +
n∑

i=1

n2 · d(i, n) (9.29)

To compare the results with standard criteria we will consider the classic
L1 and L2 metric

DL1(P, Q) =
n∑

i=1

n∑
j=1

|pij − qij | (9.30)

and

DL2(P, Q) =

√√√√ n∑
i=1

n∑
j=1

(pij − qij)2 (9.31)

Further, the measure of so-called normalized squared differences NSDsymm

DNSD(P, Q) =
n∑

i=1

n∑
j=1

(pij − qij)2

pij
for pij �= 0 (9.32)

is included in the analysis. Note that these criteria can also be used to
evaluate the distance between forecasted and observed transition matrices
for the numerical adjustment methods and the chosen benchmark models.

9.5.2 Forecasts Using Numerical Adjustment Methods
The second approach involves the numerical adjustment method suggested
by Jarrow et al. (1997) and Lando (2000) that were reviewed in Chapter 5.
Again we use a multiple regression model of the form (11.3.1). However,
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since the method needs estimates p̂t(i, K) for the individual rating classes,
for each speculative rating grade Ba, B, C as well as for the rating class
Baa, a separate model is estimated. For the investment grade rating classes
Aaa, Aa, A, we have to follow a different approach. Considering Moody’s
historical default frequencies in several years, we could observe no default
for the three rating classes. To develop a regression model with only 10
observations, among them several with PD, we should avoid zero. Hence,
for rating grades Aaa, Aa and A, we decided to use default probabilities
from the average historical migration matrix P̄ as estimators for the next
period’s PDs in these rating classes. Based on these assumptions for each
year, we can estimate the vector for next year’s default probabilities in the
individual rating classes:

p̂ = (p̂Aaa,D, p̂Aa,D, p̂A,D, p̂Baa,D, p̂Ba,D, p̂B,D, p̂C,D, 1)′

In this section we will provide in-sample and out-of-sample results for
the described models and compare them to benchmark results. Hereby, we
will evaluate the performance of the chosen models against the standard
approach of using historical average transitions or last year’s migration
matrix for the calculation of credit VaR.

9.5.3 Regression Models
In a first step, the regression models for the credit cycle index and default
probability scores are estimated. Recall that in order to avoid overfitting,
at the most, five explanatory variables were permitted in each regression
model. The in-sample period comprised the empirical default frequencies
and the suggested macroeconomic variables for the period from 1984–
1993. Among the tested models, the best results for the speculative grade
credit cycle index were obtained using the macroeconomic variables change
in GDP growth GDPt−1, change in annual savings SAVt−1, the change
in consumption expenditures CONt−1, the change in unemployment rate
UNt−1, and the spread between a 10-year and 1-year treasury STRt−1
bond. The model gave a coefficient of determination of R2 = 0.98, an
F-statistic of 43.38 and a corresponding p-value of 0.001, so it was highly
significant. For the investment grade credit cycle index, the best results
were obtained with a model including the macroeconomic variables change
in the consumer price index CPIt−1, change in GDP growth GDPt−1,
change of consumption expenditures CONt−1, and the change in unem-
ployment rate UNt−1. The model gave an R2 statistic of 0.82, an F-statistic
of 5.52, and a corresponding p-value of 0.045, so the model was still signifi-
cant at the 5% level. Further, all regression coefficients were significant
and showed the anticipated sign. Note that the fit for cumulated invest-
ment grade defaults was clearly worse, but it is generally accepted that
investment grade defaults are less dependent on business cycle effects than
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TABLE 9.6. Parameter Estimates for the Multiple Regression Model (In-Sample
Period from 1984–1993)

Variable Notation ZInv ZSpec

Constant β0 −0.3973 −0.6182
Change in consumer price index CPIt−1 0.2187 −
Change in GDP growth GDPt−1 −0.9338 −0.2461
Change in annual savings SAVt−1 − 0.1838
Change in consumption expenditures CONt−1 −1.3744 −0.2509
Change in unemployment rate UNt−1 0.3616 0.2351
Spread between 10-y and 1-y treasury STRt−1 − −0.0057

speculative grade issuers (Nickell et al., 2000; Belkin et al., 1998a). The
regression coefficients for speculative and investment grade credit cycle
indices ZSpec, ZInv are displayed in Table 9.6. Estimation of the models for
individual rating classes yield R2 statistics between 0.79 and 0.98. Further
information on parameter estimates and statistics are available on request
to the author.

9.5.4 In-Sample Results
After estimation of the regression model for the credit cycle index, in the
next step we will determine conditional forecasts for migration matrices
based on the outcome of the credit cycle index. We first consider the results
for the estimated weights of the systematic credit cycle indices ZSpec and
ZInv. Recall that in the chosen one-factor model approach, w is determined
numerically in order to minimize the difference between the conditional
forecast p̂t(i, j|Zt) and empirically observed migrations pt(i, j) for all con-
sidered transition matrices in the in-sample period. The shift in the credit
change indicator and, hence, the shift in transition and default probabili-
ties, is then an outcome of the forecasted credit cycle index of the next
period and the estimated weight w for the systematic risk factor Z.

Table 9.7 provides the weights wInv and wSpec for investment grade
and speculative grade ratings giving the minimal distance between fore-
casts and observed migration matrices for the in-sample period 1984–1993.
Note that depending on the chosen distance measures, we obtain different
outcomes for the weights. For the speculative grade model, we find sig-
nificantly higher weights of the systematic credit cycle index than for the
investment grade model for all optimization criteria. We observe the lowest
estimate for the weight wNSD,Spec = 0.1698 for the NSD distance crite-
rion, while for the other distance measures the weight for the speculative
credit cycle index is estimated to be between 0.2115 and 0.2544. For invest-
ment grade issues the estimated weights range from 0.0318 to 0.1762. As
mentioned previously, this is in line with previous results in the literature
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TABLE 9.7. Estimated Weights w for the Credit Cycle Index Z, Representing the
Influence of Z on the Change Indicators Y . Results Refer to the In-Sample Period
1984–1993 and are Estimated Based on a One-Factor Approach for Investment
Grade (Inv) and Speculative Grade Ratings (Spec)

Optimization Criteria L1 L2 NSD D1 D2

wInv 0.0504 0.1143 0.0318 0.1089 0.1762
wSpec 0.2176 0.2544 0.1698 0.2115 0.2288

(Belkin et al., 1998a; Wilson, 1997b). Especially when the shift is con-
ducted to minimize the distance according to the L1 and NSD distance
measure, the influence of the systematic risk factor becomes very small,
wL1,Inv = 0.0318 and wNSD,Inv = 0.0504, respectively. This means that for
these criteria the systematic risk index gives very little explanation for
changes in rating behavior. The highest estimate for the weight wD2,Inv =
0.1762 is obtained when the distance is minimized subject to the risk-
sensitive D2 difference index criteria. It seems as if, according to D2 changes
in investment grade, migration behavior also could be explained by the
systematic credit cycle index to a certain degree.

We will now investigate the in-sample one-period ahead forecast results
for the different approaches. Table 9.8 provides in-sample results for mean
absolute forecast errors according to the applied difference measures. As
mentioned above, next to a factor-model approach (Factor) and the nu-
merical adjustment methods (Num I, Num II), two standard benchmark
methods were included in the results: using the average migration matrix
of the in-sample periods (Naive I) or the transition matrix of the previ-
ous period (Naive II) as a forecast for the next period’s migration matrix.
Best results for each distance measure are highlighted in bold. Note that
the mean error or standard deviation of the errors for different indices
within the columns cannot be compared due to a different scale. However,
the results in the rows can be compared and provide the forecasting per-
formance in comparison to other approaches. For each of the considered
distance criteria, the one-factor model outperforms all other approaches
including the numerical adjustment procedures. In contrast to these results,
the numerical adjustment methods fail to provide better results than the
naive approach for the criteria L1, L2, and NSD. Especially Num II that
was applied in the seminal work by Jarrow et al. (1997) gives rather
bad one-year ahead forecasts based on the estimated default probabilities
with the credit cycle index. Considering these results and the relevance of
the approach in the literature, we recommend a more thorough investiga-
tion on how migration probabilities are changed by these methods in the
future.

It is not surprising that the best in-sample results are obtained for the
one-factor model approach. Based on the optimization procedure in (9.5)
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TABLE 9.8. In-Sample Results for Mean Forecast Errors According to Applied
Difference Measures and Adjustment Techniques. The Estimation Period
Included 10 Years from 1984–1993. (Best results for each distance measure are
highlighted in bold)

Method Factor Num I Num II Naive I Naive II

Dist. Distance Statistics D(P̂ , Pobs)

L1 MAE 0.8058 1.3461 1.7092 0.8809 1.0245
Std (0.2665) (0.1415) (0.2966) (0.2414) (0.3056)

L2 MAE 0.0580 0.1802 0.2947 0.0725 0.1022
Std (0.0483) (0.0503) (0.0885) (0.0510) (0.0948)

NSD MAE 0.2956 0.4773 0.8774 0.3483 0.5911
Std (0.1363) (0.1356) (0.2544) (0.1800) (0.4556)

D1 MAE 0.3218 0.7592 1.1505 1.2417 1.4969
Std (0.2189) (0.3765) (0.9526) (0.8903) (0.7522)

D2 MAE 1.9926 6.2919 9.4428 9.6931 10.8898
Std (1.3993) (3.2154) (4.8858) (7.1228) (5.5701)

that chooses the weight for the systematic risk factor in order to minimize
the distance between the forecasted and empirical transition probabilities,
these results could be expected. However, it is interesting to investigate
how much the results improved subject to the considered optimality cri-
teria. For the L1, L2 metric and the NSD difference index, we observe a
reduction in the mean absolute error (MAE) by a fraction between 10%
up to 50% compared to the naive approaches. The reduction for the risk-
adjusted difference indices D1 and D2 are clearly higher. Comparing mean
absolute errors between conditional and unconditional estimates for the D1
and D2 criteria, we find that according to the chosen criteria, the improve-
ment is highly significant. Forecasting errors for the naive approaches are
approximately 4–5 times higher; e.g., using naive approaches, the MAE for
the risk-sensitive D2 criterion are approximately D2,NaiveI = 9.6931 and
D2,NaiveII = 10.89, while for the one-factor model, we obtain an MAE of
D2,Factor = 1.99. For these criteria also the numerical adjustment meth-
ods Num I and Num II give better results. Since more weight is allocated
in the default column, the additional information of PD forecasts for the
next period improves the results. Overall, in comparison to the one-factor
model, for the numerical adjustment techniques, the forecast errors are still
significantly higher.

We also investigated whether the improvement of the forecasting results
of the one-factor model was mainly due to the speculative or investment
grade rating classes of the migration matrix. Table 9.9 provides the results
of the one-factor model and the naive approaches separately for initial



9.5 An Empirical Study on Different Forecasting Methods 183

TABLE 9.9. In-Sample Results (Mean Absolute Errors) Separately
for Speculative Grade (Ratings Ba, B, and C) and Investment Grade
(Aaa, Aa, A, and Baa) Ratings

Speculative Grade Investment Grade
Dist. Factor Naive I Naive II Factor Naive I Naive II
L1 0.5060 0.5756 0.6558 0.2997 0.3052 0.3687
L2 0.0423 0.0557 0.080 0.0157 0.0168 0.0222
NSD 0.1913 0.2425 0.3548 0.1043 0.1058 0.2363
D1 0.2770 1.1620 1.3375 0.0449 0.1197 0.1628
D2 1.6544 8.8322 8.8505 0.3382 0.8609 1.0393

speculative and investment grade ratings. We find that especially for the
risk-sensitive evaluation criteria the improvement using a credit cycle index
comes from better forecasts for the speculative grade default probabilities
and rating changes. For the rating classes Ba–C the forecast error is reduced
up to 80% when the risk-sensitive measures D1 or D2 are applied. Further,
as it is indicated by Table 9.9, the large deviations from actual observed
migration matrices take place in the speculative grade area of the matrix
where more variation can be observed.

At this point we should also emphasize the advantage of the directed dif-
ference indices D1 and D2 as a measure for the goodness-of-fit. It concerns
the question of interpretation of the results. Obviously, an MAE of 0.8058
for the L1 norm cannot be interpreted in terms of risk. Though, using the
risk-sensitive difference indices, we are able to give an interpretation of the
results from a risk perspective. Trueck and Rachev (2007) show that for
credit portfolios, differences between migration matrices are highly corre-
lated with the estimated credit VaR. Using Moody’s historical migration
matrices, for an exemplary credit portfolio, a relationship between credit
VaR and the deviation of a transition matrix from Moody’s average histo-
rical migration matrix is derived. Setting the recovery rates to a constant,
the relationship between VaR for the exemplary loan portfolio and D2 is
then approximately expressed by (in Mill. Euro)

VaR95%,t = 138.7675 + 4.7110 · D2,t + εt (9.33)

The estimated regression model yields an R2 > 0.9 (Trueck and Rachev,
2007). Hence, due to the very high correlations between the directed differ-
ence index and credit VaR, for exemplary loan portfolios we would be
able to measure our errors on migration matrix forecasts in terms of
risk. This means that the mean error of 9.6931 from Table 9.8, using
the average migration matrix P̄ as an estimator, could be interpreted for
the exemplary portfolio as an average misspecification of VaR of approx-
imately 4.7110 · 9.6931 ≈ 45 Mill. Euro per year. For using the migration
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matrix of the previous year, we obtain an approximate error of 51 Mill.
Euro. When one uses the one-factor model in order to condition migra-
tion matrices to business cycle effects, the mean absolute error is reduced
to 1.9926, yielding an average error on one-year VaR forecasts of 9.38
Mill. Euro for the exemplary portfolio. It is important to point out that
these are just approximate numbers for an exemplary portfolio, ignoring
variations in LGD figures and other components. However, as a gen-
eral result, we argue that using the risk-sensitive difference indices as
a goodness-of-fit measure, the forecast error may also be quantified in
terms of risk. We point out that further research on this issue will be
needed, especially on the sensitivity of the difference indices. Overall, the
advantage of an index giving a strong interpretation in terms of risk is
obvious.

9.5.5 Out-of-Sample Forecasts
Finally, we used the developed models for out-of-sample forecasting of rat-
ing migration behavior. The considered period was the subsequent years
from 1994–1999. Based on a yearly re-estimation of the regression model
and the weights of the systematic credit cycle index in the chosen one-factor
model, and conditional PD estimates, forecasts for the migration matrix of
the following year were calculated. Hereby, the in-sample estimation period
was increased each year from 1984–1993 to 1984–1994, 1984–1995, . . . ,
1984–1998. Results for the yearly re-estimated weights wInv and wSpec

of the systematic credit cycle index using D2 are described in Table 9.10.
Results for the other distance measures are available on request from the
author. As it could be expected, the weights change through time and vary
between 0.234 and 0.191 for the speculative grade issuers and between
0.168 and 0.149 for the investment grade credit cycle index. Generally, the
weight of the systematic credit cycle index decreases for both investment
categories through time.

Table 9.11 finally investigates the out-of sample performance of the con-
sidered models. We find that especially for the conditional approaches

TABLE 9.10. Re-Estimated Weights of the Credit Cycle Index
for Investment and Speculative Grade Ratings in the One-
Factor Model Approach Using the Distance Index D2

Year 1994 1995 1996 1997 1998 1999
Speculative Grade

D2 0.2340 0.2058 0.2005 0.1914 0.1961 0.1964
Investment Grade

D2 0.1663 0.1681 0.1579 0.1493 0.1529 0.1489
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TABLE 9.11. Out-of-Sample Results for Mean Absolute Forecast
Errors According to Applied Difference Measures D2 and Adjust-
ment Techniques. The Out-of-Sample Period Included Six Years from
1994–1999. (Best results for each year are highlighted in bold)

Method Factor Num I Num II Naive I Naive II

Year Distance Statistics D2(P̂ , Pobs)

1994 3.2563 6.9856 9.2745 8.7058 4.4462
1995 1.9834 3.5110 4.2809 1.0289 7.6769
1996 8.8284 14.3459 21.7397 18.9697 17.9408
1997 5.2049 10.8375 14.5619 12.4049 6.5649
1998 2.5774 8.9729 8.0307 5.5436 17.9484
1999 3.1936 7.2204 9.7712 8.5408 2.9973

Average 4.1740 8.6456 11.2765 9.1989 9.5958

(Factor, Num I, and Num II) that use the credit cycle index, the results
are not as good as for the in-sample period. This can be explained by
the decreasing influence of the systematic credit cycle index, for the out-
of-sample period that was reported in Table 9.11. Still the factor model
significantly outperforms the numerical adjustment methods Num I and
Num II and the benchmark models Naive I and Naive II. Except for the
years 1996 and 1999, it gives the best forecasts of next year’s migration
matrix in each year. Further, clearly the lowest average forecast error
is obtained using the factor model approach. However, compared to the
in-sample estimation, the average forecasting error is higher, and we obtain
a mean absolute error of 4.1740. For the naive models the results for
in-sample and out-of-sample periods are similar, while for the numerical
adjustment methods, the error increased as well. Note that Num II pro-
vides the worst results of all models and is outperformed even by the naive
approaches.

We point out that the results could have been improved by changing
the variables of the macroeconomic forecasting model for the credit cycle
index. However, in order to guarantee a genuine out-of-sample test of the
model, we choose the macroeconomic variables to be the same for in-sample
and out-of-sample model evaluation. Still we conclude that a regular re-
estimation of the model for the credit cycle indices may be recommendable.



10
Dependence Modeling
and Credit Migrations

10.1 Introduction

The traditional and often discussed starting point in approaching credit
risk issues is a single loan or bond. This special case makes it fairly easy to
derive meaningful statistics like the expected loss, the likelihood of default
in a given period of time or the expected loss, VaR, etc., that allow us to
quantify inherent credit risk.

But when it comes to the question of how to proceed in the case of
a portfolio of such instruments where diversification or concentration
effects play an important role, methodology starts to differ considerably.
All approaches, though, have one thing in common: in order to capture
portfolio effects, they all consider implicitly or explicitly some interdepen-
dence between different items in the portfolio. When dealing with more
than one random variable at a time, one immediately faces the prob-
lem of understanding and modeling the dependence between them. The
first, and maybe decisive, step to tackle this problem is the understand-
ing of the statistical concept of dependence, and a precise definition of
terms.

This chapter focuses on dependence as an issue of special interest in
credit risk. First a simple example is used to illustrate the importance
and the impact of dependence when it comes to assessing a portfolio.
Then we compare the notions of correlation and dependence and capturing
the dependence structure. Then we provide a brief review on the defini-
tion and structure of copulas. In subsequent sections we investigate the
use of copulas in modeling rating transitions and examine how correlated
and dependent migrations can be modeled in a Markov chain framework.
Assessing credit risk on a portfolio level requires the combination of two
components: information on the risk of all portfolio items, and information
on the level and structure of interaction between them. Conversely, the
final goal of portfolio risk considerations—the distribution function of the
portfolio value for the risk horizon—will be substantially determined and
influenced by these components.
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In order to illustrate the impact of the degree of dependence between the
portfolio items, consider the following example:

We assume a portfolio of 50 different items that are all subject to default
risk. Let every individual item have a default probability of p = 0.2—this
corresponds roughly to the one that has a CCC-rated bond or loan—and
a survivorship probability of (1 − p) over some given time period T . In the
case of independence of the individual defaults, we can calculate the dis-
tribution of the defaults by using a binomial distribution with n = 50 and
p = 0.2.

We now focus on the probability distribution of the sum of surviving
firms, X, and observe changes in the shape of this distribution when chang-
ing the degree of dependence between the portfolio items. Note that it is
straightforward to extend this example and consider the probability dis-
tribution of portfolio value by assuming some value V for every surviving
firm.

10.1.1 Independence
As the sum of independent Bernoulli distributed random variables is bino-
mially distributed, we obtain a Bin(50, 0.8) distribution here. The expected
value for the number of survivors is E = n(1 − p) = 40 and the variance is
Var = n(1 − p)p = 8. See Figure 10.1 for the corresponding histogram for
this case.
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FIGURE 10.1. Histogram for the case of independence.
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FIGURE 10.2. Histogram for β = 0.95.

10.1.2 Dependence
Now we include some dependence to the marginals. In our example the
dependence is modeled by applying a Gumbel copula with parameter
β ∈ (0, 1].1 For a choice of β = 1, the defaults are independent and the
results correspond to the case discussed above. As β approaches zero, the
dependence between the items increases. Note that irrespective of β, all
sum-of-survivor distributions have a mean of 40.

Figure 10.2 plots the histogram for β = 0.95. In comparison to the β = 1
case, we obtain a flatter distribution with more probability mass to the
right. Note the substantial increase for the probability of all firms surviving
from 0.00143 to 0.036.

This effect can be explained by decomposing the sum into successive
Bernoulli draws. Now consider the conditional probability for the remaining
firms if the outcome of the Bernoulli game is already known for some firms.
In the case of independence, the conditional probability remains the same,
irrespective of the number of defaults that have already occurred. Whereas
in the case of dependence, the fact that all firms have survived so far
influences the next Bernoulli draw and increases the probability of survival
for the next firm.

The distribution obtained when decreasing β to 0.8 can be seen in
Figure 10.3. Here, one can observe that the mass of the distribution also

1
See Section 10.3 for further discussion on copulas and the definition of the Gumbel

copula.
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FIGURE 10.3. Histogram for β = 0.8.

TABLE 10.1. Statistical Parameters for Different Values of β

β 1 0.95 0.8 0.4 0.2 0.05 → 0+

μ 40 40 40 40 40 40 40
σ2 8 19.4 58.7 203.0 295.7 373.0 400

moves partially to the left when increasing β, which translates into a pro-
nounced left tail. Comparing, for example, P (X ≤ 30) for both distributions
yields P (Xβ=1 ≤ 30) = 0.00093 and P (Xβ=0.8 ≤ 30) = 0.128.

Driven by the distribution’s tendency to broaden and spread to the
extremes, the variance increases. Table 10.1 gives an overview over the
mean and variance for different values of β.

As β approaches zero, the distribution converges towards a two-point
distribution with

P (X = 0) = 0.2 and P (X = 50) = 0.8

where the probabilities for no default and total default correspond to the
default and nondefault probabilities of the individual items in the port-
folio, respectively. The case β = 0.05 comes close to this extreme (see
Figure 10.4).

This example has shown that the distribution of the number of defaults
in the portfolio—and at the same time the distribution of overall portfo-
lio default loss—is substantially influenced by the degree of dependence
between the items in the portfolio.
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FIGURE 10.4. Histogram for β = 0.05.

10.2 Capturing the Structure of Dependence

Intuitively, two events A and B are independent, if the fact that B has
occurred alters nothing about the chance of A occurring. In formula
notation

P (A |B) = P (A)

However, this definition of independence requires P (B) > 0 and therefore
we use the more general definition on the basis of the probability of the
joint occurrence of A and B here:

Definition 10.1 Two events A B are said to be independent if

P (A ∩ B) = P (A) · P (B)

Often, more than two events will be of interest and definition 10.1 is
generalized to

Definition 10.2 Let B = {Bλ : λ ∈ Λ} be a set of events. These events
are said to be independent if for every positive integern and each n distinct
elements λ1, . . . , λn in the indexing set Λ we have

P (Bλ1 ∩ · · · ∩ Bλn) =
n∏

j=1

P (Bλj )
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Transferring the concept of independence from events to random
variables (rv’s), one defines

Definition 10.3 Let {Xλ : λ ∈ Λ}
independent if for every integer n ≥ 1 and every n distinct λ1, . . . , λn ∈ Λ,

FXλ1 ,...,Xλn
(x1, . . . , xn) =

n∏
j=1

FXλj
(xj) ∀xj ∈ R, j = 1, . . . , n

This definition can be transformed into a well-known lemma stating that
for independent rv’s, their joint (multivariate) distribution function (df) is
just the product over their individual (univariate) df’s:

Lemma 10.4 The rv�s X1, . . . , Xn are independent if

FX1,...,Xn
(x1, . . . , xn) =

n∏
j=1

FXj
(xj) ∀xj ∈ R, j = 1, . . . , n

When one is dealing with real-world cases, independence is often assumed
in order to obtain models that are mathematically and statistically easy
to handle. However, this assumption is a very strong one and has to be
tested for. Especially in the area of risk, where effects of diversification and
concentration exist and have to be considered with care, the assumption of
independence is often untenable. For this reason, concepts of how to incor-
porate the structure of dependence into statistical modeling are needed. In
the next section, we take a closer look at the measurement and modeling
of dependence.

Although commonly used as a synonym for dependence, the term correla-
tion in the original meaning of the word stands for a measure of dependence
between two rv’s. Here, we consider linear correlation and rank correlation.

Linear correlation is a measure of linear dependence between rv’s. It is
important to bear in mind that nonlinear dependence structures are not
captured by this statistical parameter. Its definition is

Definition 10.5 The linear correlation coeffcient between the real-valued,
nondegenerate rv�s X and Y with finite variances is

ρ(X, Y ) =
cov(X, Y )√

VAR(X)VAR(Y )
(10.1)

Some properties of linear correlation are used in the following:

• If the rv’s X and Y are independent, then ρ(X, Y ) = 0; whereas the
reverse is not necessarily true.
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• In the case of perfect linear dependence, i.e.,

Y = aX + b a.s. a ∈ R\{0}, b ∈ R

we have ρ(X, Y ) = ±1.

• Finally, linear correlation fulfills the linearity property

ρ(aX + b, cY + d) = sgn(a · c)ρ(X, Y ) a, c ∈ R\{0}; b, d ∈ R (10.2)

For a generalization of more than two rv’s, pairwise correlations between
two rv’s are considered and combined to a correlation matrix. Let X=
(X1, . . . , Xn)t be a vector of rv’s with finite variances. Then

ρn×n :=

⎛
⎜⎝

ρ(X1, X1) . . . ρ(X1, Xn)
...

. . .
...

ρ(Xn, X1) . . . ρ(Xn, Xn)

⎞
⎟⎠

Correlation matrices have the property of being symmetric and positive
semi-definite.

Although rank correlation is somewhat more difficult to handle in certain
contexts than linear correlation, and for this reason is not as popular as
the latter, it has some substantial advantages. It does not require finite
variances, is invariant under nonlinear transformations of the rv’s, and
indicates co(counter)monotonicity by taking values of ±1. The concept
of comonotonicity indicates that each random variable within a vector of
random variables is a strictly increasing function of any of the others; see,
e.g., McNeil et al. (2005).

The definition of Spearman’s rank correlation coefficient is

ρS(Xi, Xj) = ρ(Fi(Xi), Fj(Xj))

where ρ(X, Y ) is the linear correlation coefficient as defined in
equation (10.1).

However, rank correlation is just another scalar measure of dependence
and therefore not able to fully describe a dependence structure. Fur-
thermore, there remain some profound deficiencies, like the fact that a
correlation of zero does not generally imply independence.

For this reason, and for the fact that linear correlation is much more
frequently used in credit risk modeling issues, rank correlation will not be
treated with more detail in this paper. Thus, henceforth, whenever talking
about correlation, we refer to it as linear correlation .

Linear correlation is one particular measure of (linear) stochastic depen-
dence amongst many. Under certain circumstances, however, the linear
correlation coefficient gains additional meaning.
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FIGURE 10.5. Density of a nonbivariate normal distribution with standard
normal marginals.

If the joint distribution function of two rv’s X and Y is bivariate normal,
the linear correlation coefficient ρX,Y contains all information about the
dependence structure between them.

• ρX,Y = 0 ⇐⇒ X and Y are independent

• The parameters of the marginal distributions (these are univariate
normal) μX , σX and μY , σY together with ρX,Y fully and uniquely
determine the joint bivariate distribution.

At this point it is important to note the fact that two rv’s X and Y are
both (univariate) normally distributed and that ρX,Y exists does not imply
that the joint (bivariate) distribution function is bivariate normal.

Consider Figure 10.5 for a graphical illustration of this point.2 The figure
illustrates the two-dimensional plot of the density of a bivariate distri-
bution that is clearly not bivariate normal. Nevertheless, the marginal
distributions for X and Y are univariate standard normal and a finite
ρX,Y exists. This distribution has been constructed by using a copula for
modeling dependence structure between the two marginals. We will further
investigate copulas in Section 10.3.

The class of spherical distributions is a family of symmetric distributions
for uncorrelated random vectors with mean zero whose density is constant

2
The example and the graph were taken from Embrechts et al. (1999).
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on spheres. This class extends and comprises the standard multivariate
normal distribution. A further generalization leads to the class of elliptical
distributions whose density is constant on ellipsoids. In this environment,
the matrix of linear correlation coefficients fully captures the dependence
structure amongst rv’s. Note however, that the property of the multivariate
normal case where zero correlation implies independence is not valid for the
generalized case.

However, in the elliptical world the variance-covariance approach to opti-
mizing portfolios makes sense, and VAR is a coherent measure of risk here.
For this reason, the class of elliptical distributions represents an ideal envi-
ronment for standard (market) risk managing approaches. When it comes
to credit risk issues, however, the elliptical distribution assumption often
underestimates the joint occurrence of extreme events.

10.2.1 Under General Multivariate Distributions
Unfortunately, for various multivariate distributions, correlation generally
gives no indication about the degree or structure of dependence. A list of
deficiencies and problems in the general case shall illustrate this point; see,
e.g., McNeil et al. (2005); Rachev et al. (2005):

1. Correlation is simply a scalar measure of dependency; it cannot tell
us everything we would like to know about the dependence structure
of risks.

2. Possible values of correlation depend on the marginal distribution of
the risks. All values between −1 and 1 are not necessarily attainable.

3. Perfectly positively dependent risks do not necessarily have a correla-
tion of 1; perfectly negatively dependent risks do not necessarily have
a correlation of −1.

4. A correlation of zero does not indicate independence of risks.

5. Correlation is not invariant under transformations of the risks. For
example, log(X) and log(Y ) generally do not have the same correlation
as X and Y .

6. Correlation is defined only when the variances of the risks are finite. It
is not an appropriate dependence measure for very heavy-tailed risks
where variances appear infinite.

An illustration of point 2 and 4 is, for example, provided in Embrechts
et al. (1999), where two rv’s X and Y following a lognormal distribu-
tion with μX =μY = 0, σX = 1, and σY = 2 are considered. The authors
show that by an arbitrary specification of the joint distribution with the
given marginals, it is not possible to attain any correlation in [−1, 1]. In
fact, there exist boundaries for a maximal and a minimal attainable cor-
relation [ρmin, ρmax] which in the given case is [−0.090, 0.666]. Allowing
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FIGURE 10.6. Maximum and minimum attainable correlation for X ∼ Log-
normal(0, 1) and Y ∼ Lognormal(0, sigma).

σY to increase, this interval becomes arbitrarily small, as one can see in
Figure 10.6. Hereby, it is interesting to note that the two boundaries rep-
resent the case where the two rv’s are perfectly positive dependent (the
max. correlation line) or perfectly negative dependent (the min. correlation
line), respectively. Thus, although the attainable interval for ρ as σY > 1
converges to zero from both sides, the dependence between X and Y is by
no means weak. This indicates that for general multivariate distributions,
it might be wrong to interpret low values of the correlation also as weak
dependence.

In the following section we will therefore provide a brief overview on
a more general specification of dependence between random variables by
using copulas.

10.3 Copulas

As we saw in the previous section, in general, linear correlation will
not be able to capture entirely the dependence structure between two
random variables. At this point a general concept of describing the



.1]2.

10.3 Copulas 197

dependence structure within multivariate distributions is needed. Since
marginal distributions are very illustrative, easy to handle, and often used
as basic building blocks for the design of a multivariate distribution, the
idea of separating the description of the joint multivariate distribution into
the marginal behavior and the dependence structure is very attractive. One
representation of the dependence structure that satisfies this concept is a
copula. A copula is a function that combines the marginal distributions
to form the joint multivariate distribution that was initially introduced by
Sklar (1959); Schweizer and Sklar (1983). For an introduction to copulas,
see Nelsen (1999); for applications to various issues in financial economet-
rics and risk management, see Cherubini et al. (2004); McNeil et al. (2005);
Frey and McNeil (2003); Hull and White (2004); Mashal et al. (2003), and
Schönbucher and Schubert (2001), to name a few.

Definition 10.6 A copula is the distribution function of a random vector
in R

n with standard uniform marginals.

One can alternatively define a copula as a function and impose certain
restrictions.

Definition 10.7 A copula is any real valued function C : [0, 1]n → [0, 1],
i.e., a mapping of the unit hypercube into the unit interval, which has the
following three properties:

1. C(u1, . . . , un) is increasing in each component of ui.

C(1, . . . , 1, ui, 1, . . . , 1) = ui for all i ∈ {1, . . . , n}, ui ∈ [0,

3. For all (a1, . . . , an), (b1, . . . , bn) ∈ [0, 1]n with ai ≤ bi:

2∑
i1=1

· · ·
2∑

in=1

(−1)i1+···+inC(u1i1 , . . . , unin) ≥ 0

where uj1 = aj and uj2 = bj for all j ∈ {1, . . . , n}.

Let X = (X1, . . . , Xn)′ be a random vector of real-valued rv’s whose
dependence structure is completely described by the joint distribution
function

F (x1, . . . , xn) = P (X1 < x1, . . . , Xn < xn) (10.3)

Each rv Xi has a marginal distribution of Fi that is assumed to be continu-
ous for simplicity. Recall that the transformation of a continuous rv X with
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its own distribution function F results in an rv F (X), which is standardly
uniformly distributed. Thus, transforming equation (10.3) component-wise
yields

F (x1, . . . , xn) = P (X1 < x1, . . . , Xn < xn)

= P [F1(X1) < F1(x1), . . . , Fn(Xn) < Fn(xn)]

= C(F1(x1), . . . , Fn(xn)) (10.4)

where the function C can be identified as a joint distribution function
with standard uniform marginals—the copula of the random vector X. In
equation (10.4), one can clearly see how the copula combines the marginals
to the joint distribution.

Sklar’s theorem provides a theoretic foundation for the copula concept
(Schweizer and Sklar, 1983).

Theorem 10.8 (Sklar’s theorem) Let F be a joint distribution function
with continuous margins F1, . . . , Fn. Then there exists a unique copulaC :
[0, 1]n → [0, 1] such that for all x1, . . . , xn in R = [−∞,∞] (10.4) holds.
Conversely, if C is a copula and F1, . . . , Fn are distribution functions, then
the function F given by (10.4) is a joint distribution function with margins
F1, . . . , Fn.

For the case that the marginals Fi are not all continuous, it can be
shown (Schweizer and Sklar, 1983) that the joint distribution function can
also be expressed as in equation (10.4), although C is no longer unique in
this case.

10.3.1 Examples of Copulas
1. If the rv’s Xi are independent, then the copula is just the product

over the Fi

Cind(x1, . . . , xn) = x1, . . . , xn

2. The Gaussian copula is

CGa
ρ (x, y) =

∫ Φ−1(x)

−∞

∫ Φ−1(y)

−∞

1
2π
√

(1 − ρ2)
exp

−(s2 − 2ρst + t2)
2(1 − ρ2)

dsdt,

where ρ ∈ (−1, 1) and Φ−1(α) = inf{ x |Φ(x) ≥ α} is the univariate
inverse standard normal distribution function. Applying CGa

ρ to two
univariate standard normally distributed rv’s results in a standard
bivariate normal distribution with correlation coefficient ρ.
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Note that, since the copula and the marginals can be arbitrar-
ily combined, this (and any other) copula can be applied to any
set of univariate rv’s. The outcome will then surely not be mul-
tivariate normal, but the resulting multivariate distribution has
inherited the dependence structure from the multivariate normal
distribution.

3. Similar to the Gaussian copula, we can also define the multivariate
Student t copula:

TΣ,v(u1, u2, . . . , un) = tΣ,v(t−1
v (u1), t−1

v (u1), . . . , t−1
v (un))

where tσ,v is the multivariate Student t distribution with correlation
matrix Σ.

4. As a last example, the Gumbel or logistic copula

CGu
β (x, y) = exp

[
−
{

(− log x)
1
β + (− log y)

1
β

}β
]
,

where β ∈ (0, 1] indicates the dependence between X and Y . β = 1
gives independence and β → 0+ leads to perfect dependence.

10.3.2 Properties of Copulas
According to theorem 10.8, a multivariate distribution is fully determined
by its marginal distributions and a copula. Therefore, the copula contains
all information about the dependence structure between the associated ran-
dom variables. In the case where all marginal distributions are continuous,
the copula is unique and therefore often referred to as the dependence struc-
ture for the given combination of multivariate and marginal distribution.
If the copula is not unique because at least one of the marginal distribu-
tions is not continuous, it can still be called a possible representation of
the dependence structure.

A very useful feature of a copula is the fact that it is invariant under
increasing and continuous transformation of the marginals.

Lemma 10.9 (X1, . . . , Xn)t has copula C and T1, . . . , Tn are
increasing continuous functions, then (T1(X1), . . . , Tn(Xn))t also has
copula C.

For the proof we refer to Embrechts et al. (1999). One application of
lemma 10.9 would be that the transition from the representation of a ran-
dom variable to its logarithmic representation does not change the copula.
Note that the linear correlation coefficient does not have this property. It
is only invariant under linear transformations as stated in equation (10.2).
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10.3.3 Constructing Multivariate Distributions
with Copulas

From the concept of a copula, it is immediately clear that the easiest way
to construct a multivariate distribution using a copula is to assume some
marginal distributions and apply the copula. A practical problem, however,
will be set up the other way round: The multivariate distribution has to
be estimated by fitting the copula to data. A discussion of this topic is
beyond the scope of this chapter; we refer to McNeil et al. (2005) for further
discussion. In the following, we provide some examples for different copulas
for illustration purposes.

Example 10.10 3 Let X and Y be two rv�s that are both identical
gamma (3,1) distributed. Now we apply two diffierent copulas and compare
the characteristics by simulating 1000 bivariate draws from both models.
First, we use a Gaussian copula with parameter ρGa = 0.7. The second dis-
tribution is then derived by applying a Gumbel copula whose parameterβ
is adjusted in a way that the linear correlation coeffcient for the resulting
bivariate distribution is also ρGu = 0.7.

Figure 10.7 shows the scatter plot of the 1000 draws for both distribu-
tions. The 99% quantile q0 .99 for the marginal Gamma distribution has
been added as an indicator line for extreme values.

Note that despite the fact that both distributions have the same linear
correlation coeffcient, the dependence between X and Y is obviously quite
diffierent in both models. Using the Gumbel copula, extreme events have a
tendency to occur together, as one can observe by comparing the number
of draws where x and y exceed q0 .99 simultaneously. Those are 12 for the
Gumbel and 3 for the Gaussian case.

Additionally, the probability of Y exceeding q0 .99 given that X has
exceeded q0 .99 can be roughly estimated from the figure:

P̂Ga(X > q0.99|Y > q0.99) =
3
9

= 0.3̄

P̂Gu(X > q0.99|Y > q0.99) =
12
16

= 0.75

This is another indicator of the increased probability for the joint occurrence
of extreme events.

In the previous section we considered a bivariate distribution to show
that marginal distributions and correlation are insufficient information to
fully specify the joint distribution. This example was constructed in the
following way, using a copula.

3
The example and the graph were taken from Embrechts et al. (1999), pages 2 and 22f.
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X1 X2

Y
1

Y
2

FIGURE 10.7. In this example, 1000 draws from two distributions that were
constructed using Gamma(3,1) marginals and two different copulas, both having
a linear correlation of ρ = 0.7.

Let X and Y be two rv’s with standard normal distributions. Obvi-
ously the outcome for the bivariate distribution when applying an arbitrary
copula is not bivariate normal in general. This is only the case when
choosing the Gaussian copula C = CGa

ρ .
Thus, the following copula has been constructed:

f(x) = 1{(γ,1−γ)}(x) +
2γ − 1

2γ
1{(γ,1−γ)c}(x)

g(y) = −1{(γ,1−γ)}(y) − 2γ − 1
2γ

1{(γ,1−γ)c}(y)

with γ ∈ [ 14 , 1
2 ]. For γ < 1

2 , the joint density disappears on the square
[γ, 1 − γ]2 which can be seen in Figure 10.5. This shows that the joint
distribution is surely not bivariate normal. However, the linear correla-
tion coefficient between X and Y exists. From symmetry considerations
(C(u, v) = c(1 − u, v), 0 ≤ u, v ≤ 1) it can be deducted that ρX,Y = 0,
irrespective of γ. Therefore, uncountably many bivariate distributions with
standard normal marginals and zero correlation exist that are not bivariate
normal.

10.4 Modeling Dependent Defaults

While in this book we will concentrate on how dependent credit migra-
tions can be modeled in a Markov chain framework; we will at least briefly
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discuss the use of copulas in modeling dependent defaults. There has been
a large number of publications on the issue with a variety of different
techniques. An excellent overview on different methods for modeling depen-
dent defaults can be found, e.g., in Lando (2004); McNeil et al. (2005); or
Bluhm and Overbeck (2007). The latter concentrate on the application of
the techniques to structured credit portfolio analysis and CDOs.

A common approach to model dependent defaults are mixed binomial
models. As illustrated in the introductory section of this chapter, the bino-
mial distribution is a straightforward approach to study the number of
defaults in a portfolio over a given period of time. A mixture distribution
is then used to add a dependence structure randomizing the default prob-
abilities of the binomial distribution. This can be interpreted as having a
background variable conditioning the probability of default and affecting
a number of companies in the portfolio. The higher the variablility in the
mixture distribution, the higher will be the possible correlation of defaults
and the more weight will be given to the tails of the loss distribution. It
is further possible to set up the model in a way that the losses in case of
default are a function of the background variable.

An approach based on the binomial distribution that was initially sug-
gested by the industry is so-called diversity scores (Moody’s Investment
Service, 1997; Cifuentes et al., 1998). Moody’s diversity scores go back
to a so-called binominal expansion technique, first introduced by Moody’s
Investment Service (1997). The idea behind this technique is to approxi-
mate the number of losses of a large portfolio of N correlated loans with the
losses on a smaller number D of independent loans with larger face value.
This number equals the diversity score D which translates the portfolio into
an equivalent number of uncorrelated defaults. The approximation portfo-
lio is determined by assuming that each of the D firms in the portfolio with
independent defaults has the same face value and same default probability.
Then by matching the total promised principal, the mean, and variance of
the loss of the principal of the model portfolio with the original portfolio,
one can determine D and F . Usually, for calculation of the diversity scores,
it is assumed that issuers in the same industry sector are related, while
issuers in different industry sectors are treated as independent. For further
details on diversity scores dependent on the number of firms in each indus-
try, we refer to Moody’s Investment Service (1997). However, it should be
noted that diversity scores will give the same approximating portfolio with
D independent firms and F to portfolios that might actually exhibit large
variations in their tail probabilities. Therefore, the accuracy of the approxi-
mation of the original portfolio might be of significantly different quality
depending on the nature of dependence. Especially when the underlying
portfolio is very heterogenous in terms of credit quality, diversity scores
may not provide an accurate approximation.

An alternative popular approach is the binomial contagion or infectious
default model that is suggested in Davis and Lo (2001). Hereby, it is
distinguished between direct defaults and defaults triggered through a
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so-called contagion event. A contagion event can be interpreted as the
default of a firm also bringing down other companies and making them
default. Given the basic infection model within a group of n bonds, the
authors also extend the model to a more complex setup with several dif-
ferent subsets. Here, default infection is allowed within any subset but
not across different subsets. This represents the notion that bonds in dif-
ferent industry sectors default independently, whereas infection patterns
exist within each industry. For further reading on how the binomial model
can be extended to a continuous-time dynamic version using a pure-death
process, we refer to Lando (2004). More on binomial, Bernoulli, and factor
mixture models can also be found in McNeil et al. (2005).

An intensity based model of dependent defaults is suggested in Duffie
and Garleanu (2001). Default intensity models generally assume that an
obligor defaults with a certain intensity during a given period of time and
go back to Duffie and Singleton, 1999; Jarrow and Turnbull, 1995; Madan
and Ünal, 1998. In the model of Duffie and Garleanu (2001), the intensity
is governed by basic affine processes. The basic notion is that at each time
t before the default time of the individual obligor, the default arrives at
some intensity. The intensity is modeled as a mean reverting process with
jumps. Immediately after default, the intensity drops to zero and the default
probability becomes zero. As opposed to the infectious default models, this
model is dynamic as the intensity also allows for stochastic variations over
time. Correlations across obligors are modeled through correlation in the
stochastic processes for the default intensities. One of the key results used
in the model is that the sums of basic affine processes are also basic affine;
i.e., the class of basic affine function is closed against summation. Therefore,
when applying the basic model for one obligor to a multi-obligor model,
one exploits the fact that a basic affine model can be written as the sum
of independent basic affine models, having the same intensity process in
common; see Duffie and Garleanu (2001) for further details.

Finally, copulas have become a very popular tool to model dependent
defaults. Initially suggested by Vasicek (1987); Li (2000), a substantial num-
ber of publications has been dedicated to the topic in recent years. Refer-
ences include Frey and McNeil (2003); Giesecke (2004); Laurent and Gregory
(2005); Hull and White (2004); Mashal and Naldi (2002); Schönbucher and
Schubert (2001); Schönbucher (2003), just to name a few. An excellent
treatment on the issue can also be found in McNeil et al. (2005). While
Li (2000) suggests the use of of the Gaussian copula, a variety of copulas
has been applied to model the dependence structure of defaults by other
authors. Frey and McNeil (2003) and Mashal and Naldi (2002) suggest
the use of the Student t-copula, while Schönbucher and Schubert (2001)
propose the Clayton copula for dependent defaults. Applications of fac-
tor copulas can be found in Laurent and Gregory (2005), while Giesecke
(2004) suggests an approach linking the marginal survival function with a
joint survival function, the so-called survival copula. Hull and White (2004)
show how many different copula models can be generated by assuming
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different distributional assumptions within a factor model approach and find
that a model using Student t-copulas fits CDO market prices reasonably well.

Overall, a large number of publications has been dedicated to mod-
eling dependent defaults. Unfortunately, the same interest seems to be
lacking in modeling joint or dependent migrations in a Markov chain
framework. In the following section we will provide some techniques that
focus on modeling dependencies in rating transitions within a factor model
approach.

10.5 Modeling Dependent Migrations

To model dependent migrations in a credit portfolio, one has to have some
approach for including the dependence structure in migrations. As men-
tioned above, there is only a limited number of publications focusing on
dependencies in credit migrations. While there are several applications
of copulas in credit risk for modeling joint defaults, they lack the same
interest towards modeling dependence in rating migrations. Exceptions
include Hamilton et al. (2002) who apply a framework using copulas for
credit migrations in an intensity based framework and use them to price
credit derivatives. Further investigating the issue, Gagliardini and Gourier-
oux (2005a,b) present a general framework for rating dynamics, based on
stochastic migration matrices. In an empirical study using French corporate
data, they focus on serial correlation between migration matrices. McNeil
and Wendin (2006) provide a standard statistical framework for ordered
categorical variables and induce dependence between migrations by means
of latent risk factors. The dynamics of the risk factors are assumed to follow
a Markov process; therefore, the model can be interpreted as a state space
model. The authors argue that latent risk factors with serial dependence
should be able to also capture the effects of cross-sectional dependence.
Then an ordered logit model with serially correlated latent factors is fit-
ted using computational Bayesian techniques for model inference by Gibbs
sampling (McNeil and Wendin, 2006).

In the following we will suggest a simpler approach to integrate the
dependence structure either by using correlations or a copula framework.
We will start with an approach using correlations initially suggested by
Belkin et al. (1998b) and Kim (1999) and illustrated in the previous chap-
ter for forecasting conditional transition matrices. Hereby, credit migrations
are modeled as being dependent on a systematic risk factor and an idiosyn-
cratic, firm-specific factor. The dependence in credit migrations can then
be triggered by the degree of correlation with the systematic risk factor.
We also suggest the use of copulas for modeling the joint dynamics of credit
rating changes. Hereby, the Gaussian and Student t-copula will be used to
show the effects of different assumptions about the degree of dependence
and the choice of the copula.
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10.5.1 Dependence Based on a Credit Cycle Index
Let us first consider an approach based on a factor model including a
systematic and idiosyncratic risk component as it suggested in Belkin et al.
(1998b), Finger (2001), and Kim (1999). As illustrated in the previous
chapter, the model was initially designed to adjust migration matrices for
business cycle effects and derive conditional transition matrices instead of
using average historical ones. Recall that in the first step the so-called
credit cycle index Zt is determined, which defines the credit state based
on macroeconomic conditions shared by all obligors during period t. The
index is designed to be positive in good days and to be negative in bad
days. A positive index implies a lower PD and downgrading probability but
a higher upgrading probability and vice versa. A forecast of the index Zt

is then calculated based on the outcome of some macroeconomic variables.
Different degrees of dependence in migration behavior can then be added

by adjusting the transition matrix according to an estimated or forecasted
value of the credit cycle index. Hereby, it is assumed that rating transi-
tions reflect an underlying continuous credit-change indicator Yt following
a standard normal distribution. Further, the credit-change indicator is
assumed to be influenced by both a systematic and unsystematic risk com-
ponent. Therefore, Yt has a linear relationship with the systematic credit
cycle index Zt and an idiosyncratic error term ut. Recall from previous
Chapters 3 and 9 that the typical one-factor model parameterization
(Belkin et al., 1998a; Finger, 2001) can then be denoted by

Yt = wZt +
√

1 − w2ut (10.5)

Since both Zt and ut are scaled to the standard normal distribution,
with the weights chosen to be w and

√
1 − w2, Yt is also standard normally

distributed. Hereby, w2 provides a straightforward interpretation as the
correlation between the the systematic credit cycle index Zt and the credit
change indicator Yt. The probability distribution for the rating change of a
company then takes place according to the outcome of the systematic risk
index. In particular, default happens when the value of Yt drops below a
defined threshold T :

P (Yt < T ) = P (wZt +
√

1 − w2ut < T ) (10.6)

= P

(
ut <

T − wZt√
1 − w2

)
= Φ

(
T − wZt√

1 − w2

)

In the previous chapter it was illustrated how the shift of the credit-
change indicator Yt depended on the outcome of the credit cycle index
Zt. To extend this scheme to a multirating system, it is assumed that
conditional on an initial credit rating i at the beginning of a year, one
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partitions values of the credit change indicator Yt into a set of disjoint
bins. The bins are defined in a way that the probability of Yt falling in a
given interval equals the corresponding historical average transition rate.
This can be done by simply inverting the cumulative normal distribution
function starting from the default column, which is illustrated in Figure 9.4.
The bins for the credit migrations can then be calculated by partitioning
(−∞,∞) into K subintervals for each rating class i:

t1 = Φ−1(1 − pi,1)
t2 = Φ−1(1 − (pi,1 + pi,2))
... ....

tj = Φ−1(1 −∑j
k=1 pi,k)

... ....

tK−1 = Φ−1(1 −∑K−1
k=1 pi,k)

(10.7)

The migrations can then be described by the following function
f : [0, 1] → S:

fs =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

S1, for ut ∈ (t1,−∞)
S2 for ut ∈ (t2, t1]
. . . . . .
Sj for ut ∈ (tj , tj−1]
. . . . . .
SK for ut ∈ (tK−1,∞]

(10.8)

Using the bins calculated from the average historical transition matrix,
one can calculate the conditional transition probabilities based on the out-
come of the credit cycle index Zt. On average days, one obtains Zt = 0 for
the systematic risk index. A positive outcome of the credit cycle index Zt

shifts the credit-change indicator to the right side, while in the case of a
bad outcome of the systematic risk index, the distribution moves to the
left side. Thus, for each year with a positive or negative outcome of the
systematic credit cycle index, the conditional transition rates will deviate
from the average historical migration matrix.

10.5.2 Dependence Based on Individual Transitions
Alternatively to the changes in migration behavior due to a credit cycle
index, one can also add dependence between migration by using corre-
lated random numbers ut for the simulation. Assume that a conditional
or unconditional migration matrix has been calculated according to the
predicted outcome of the credit cycle index Zt. Then, when we use the
thresholds (10.7) and the function (10.8), it is straightforward to sim-
ulate individual migrations for a loan or bond portfolio. In the case of
the ui being uncorrelated, we can generate them by drawing iid. random
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numbers (u1, u2, . . . , un) from a standard normal distribution function Φ.
However, when we use the Cholesky decomposition, it is straightforward
to also include a dependence structure to the migrations. Let us, therefore,
denote the correlation matrix for the ui by C. Then C is a positive definite
matrix, and we can use the Cholesky decomposition to obtain matrices A
and AT such that

C = AT A (10.9)

The matrix A can then be used to transform a vector of uncorre-
lated random variates (u1, u2, . . . , un) into correlated random numbers
(uc

1, u
c
2, . . . , u

c
n) by

(uc
1, u

c
2, . . . , u

c
n) = (u1, u2, . . . , un) · A (10.10)

To simulate correlated credit migrations, then one simply applies func-
tion (10.8) to determine the outcome of the next rating state.

10.5.3 Approaches Using Copulas
As illustrated in previous sections, often a single statistical parameter like
the linear correlation coefficient will not be able to capture the entire
dependence structure between two random variables in the general case. In
this case a general concept of describing the dependence structure within
multivariate distributions is needed. Since marginal distributions are very
illustrative, easy to handle, and often used as basic building blocks for the
design of a multivariate distribution, the idea of separating the description
of the joint multivariate distribution into the marginal behavior and the
dependence structure is very attractive also for dependent migrations. Then
the dependence between the individual marginal distributions is modeled
by a copula. As mentioned above, the literature provides many suggestions
of copulae for credit risk (Frey and McNeil, 2003; Giesecke, 2004; Laurent
and Gregory, 2005; Hull and White, 2004; Li, 2000; Mashal and Naldi, 2002;
Schönbucher and Schubert, 2001; Schönbucher, 2003) that will permit var-
ious dependence structures among the rating migrations. In the following
we will restrict ourselves to the use of the Gaussian copula and the Student
t-copula to simulate dependent credit migrations. However, the extension
of the approach to using various other copulas is straightforward.

Recall the multivariate Gaussian copula as probably the simplest
example:

CNormal(u1, . . . , un) = Φn
Σ(Φ−1(u1), . . . ,Φ−1(un)) (10.11)

Hereby, Φ denotes the standard normal cumulative distribution function,
Φ−1 the inverse of the standard normal cumulative distribution function,
and Φn

Σ the standard multivariate normal distribution with correlation
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matrix Σ. As it was mentioned above, the multivariate normal copula cor-
relates the random variables rather near the mean and not in the tails and,
therefore, fails to incorporate tail dependence. To add more dependence in
the tails, alternatively, we also provide the framework using the Student
t-copula. To generate correlated uniform numbers (u1, . . . , un), we can use
the Cholesky decomposition; see, e.g., Cherubini et al. (2004). Let therefore
R denote the correlation matrix for the ui. Then R is a positive definite
matrix, and we can use the Cholesky decomposition to obtain matrices A
and AT such that

R = AT A (10.12)

The matrix AT can then be used to generate random variates from
the Gaussian or Student t-copula. An algorithm for generating random
numbers from the Gaussian copula is provided, e.g., in Cherubini et al.
(2004):

1. Find the Cholesky decomposition of R = AT A.

2. Simulate n independent random numbers (z1, z2, . . . , zn) from
N(0, 1).

3. Set

(x1, x2, . . . , xn) = AT · (z1, z2, . . . , zn)′

4. Set (uR
1 , uR

2 , . . . , uR
n ) = (Φ(x1),Φ(x2), . . . ,Φ(xn)) where Φ denotes

distribution function of univariate standard normal distribution.

On the other hand, to generate random numbers from the Student
t-copula with v degrees of freedom, we can use the following algorithm:

1. Find the Cholesky decomposition of R = AT A.

2. Simulate n independent random numbers (z1, z2, . . . , zn) from
N(0, 1).

3. Simulate a random number s from χ2
v independent of z.

4. Set (y1, y2, . . . , yn) = AT · (z1, z2, . . . , zn)′.

5. Set (x1, x2, . . . , xn) =
√

(v/s) · (y1, y2, . . . , yn).

6. Set ui = Tv(xi) for i= 1, . . . , n where Tv denotes the univariate
Student t distribution function.

Similar algorithms are available to simulate random numbers from other
copulas like the Gumbel, Clayton, or Frank copula. While the Gaussian
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TABLE 10.2. Ratings and Exposures for the Considered Credit Portfolio

Rating AAA AA A BBB BB B CCC

No. 11 106 260 299 241 95 148
Average Exposure (Mio. Euro) 20 15 15 10 10 5 5

and Student t-copula are symmetric, alternative copulas will also allow for
more complex dependence structures for rating migrations. As the results
in the next section indicate, not only the estimated degree of dependence,
but also the choice of the copula significantly affects the results on credit
migrations.

10.6 An Empirical Study
on Dependent Migrations

This section presents empirical results on simulating dependent migrations
using the Gaussian and Student t-copula.4 We compare the different simu-
lation methods in the following way: using an exemplary portfolio and the
average historical migration matrix introduced in Section 6.4, we apply the
Gaussian and Student t-copula to simulate dependent credit migrations for
a one-year time horizon and compare these results to independently simu-
lated transitions. Recall that the exemplary loan portfolio consists of 1120
companies with rating distribution and exposures according to Table 10.2.
After a copula correlation parameter ρ is chosen for the Gaussian and
Student t-copula, for each scenario n = 1000 simulations for the portfolio
were run.

10.6.1 Distribution of Defaults
In the first step we investigate the distribution of the number of defaults
in the portfolio dependent on the chosen copula correlation parameter.
Hereby, we illustrate the case of independent migrations as well as depen-
dent migrations from the Gaussian and t-copula model for different choices
of the copula correlation parameter ρ. For our study we decided to com-
pare three different cases for the correlation parameter: ρ = 0.1, ρ = 0.2, and
finally ρ = 0.5. Note that the latter will be rather unrealistic in empirical
applications; however, to illustrate the significant effect, dependencies

4
The structure of this section will follow the results initially provided in Trueck

(2007). In the original publication results for alternative time horizons and copulas are
also provided.
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in migration behavior may have, we decided to also allow for such a
comparably high value of the copula correlation parameter.

Figure 10.8 provides the number of defaults in the portfolio after one year
for independent migrations, dependent migrations from the Gaussian and
Student t-copula for the different copula correlation parameters ρ = 0.1,
ρ = 0.2, and ρ = 0.5. The corresponding descriptive statistics are given
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FIGURE 10.8. Number of defaults in the portfolio after one year for independent
migrations (upper left panel), for dependent migrations from Gaussian copula
ρ = 0.1 (upper right panel), ρ = 0.2 (mid left panel), and ρ = 0.5 (mid right panel)
and for dependent migrations using the Student t-copula with ρ = 0.2 (lower left
panel) and ρ = 0.5 (lower right panel).
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TABLE 10.3. Descriptive Statistics for the Simulated Distribution of the Number
of Defaults in the Portfolio After One Year for Independent Migrations and
Dependent Migrations from Gaussian and Student t-copula

Number of Defaults
Dependence q0.01 q0.05 Mean q0.95 q0.99 Std
ρ = 0 31 35 45.6100 56 59 6.2436
Gaussian ρ = 0.1 15 22 45.1000 74 90 16.0518
Gaussian ρ = 0.2 9 14 46.0860 90 118 23.3681
Gaussian ρ = 0.5 0 3 45.4780 121 143 38.2871
Student t ρ = 0.1 6 11 45.9920 92 127 25.2758
Student t ρ = 0.2 1 7 46.9270 104 139 31.5953
Student t ρ = 0.5 0 1 46.0300 125 157 42.0739

in Table 10.3. Obviously we find that the simulated distribution for the
number of defaults is almost symmetric in the case of independence. We
observe a mean of approximately 46 defaults and a 90% confidence inter-
val for the number of defaults would be [35, 56]. What we observe from
Figure 10.8 is that the higher the copula correlation parameter, the more
right-skewed becomes the distribution of defaults and the higher becomes
the standard deviation of the distribution. While for the case of independent
migration the simulated distribution has a standard deviation of σ = 6.24,
for an increase in the copula correlation parameter the corresponding num-
bers are 16.05 (for ρ = 0.1), 23.37 (for ρ = 0.2), and 38.29 (for ρ = 0.5). This
also has a dramatic effect on the confidence intervals for the number of
defaults: for ρ = 0.5 the 90% confidence interval for the number of defaults
is [3, 121].

The effects are even more pronounced when the Student t-copula is used
adding more dependence in the tails. Choosing ρ = 0.5 for a small number of
simulations, one could observe even more than 200 defaults for the portfolio.
In general, the distribution of defaults is even more skewed and exhibits
higher variance than for the Gaussian copula with the same coefficient
of correlation. Note, however, that despite the substantial changes in the
shape and variance of the distribution, the average number of defaults for
all simulation experiments is around 46. So the mean number of defaults
is not affected by the copula or correlation parameter. On the other hand,
for the distribution and calculated default quantiles, both the choice of the
copula and the correlation parameter yield significantly different results.
Still, these results are not surprising and could also be obtained by using
copulas just to model dependent defaults only. Therefore, we will now also
have a look at the distribution of ratings for the exemplary portfolio, which
usually can not be investigated by modeling dependent defaults.
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10.6.2 The Distribution of Rating Changes
Let us first have a look at the distribution of ratings for noninvestment
grade rating class C that is displayed in Table 10.4. Recall that for the
usual portfolio there were approximately 150 companies in this rating state.
Figure 10.9 displays the number of companies in the rating state after one
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FIGURE 10.9. Number of companies in rating state C after one year for inde-
pendent migrations (upper left panel), for dependent migrations from Gaussian
copula ρ = 0.1 (upper right panel), ρ = 0.2 (mid left panel), and ρ = 0.5 (mid
right panel) and for dependent migrations using the Student t-copula with ρ = 0.2
(lower left panel) and ρ = 0.5 (lower right panel).
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year. Again the simulation results are provided for independent migrations
and for dependent migrations from the Gaussian copula and Student
t-copula with different correlation parameters. In the case of independence,
the simulated distribution for the number of companies in rating state C is
quiet symmetric. Again we find for the Gaussian copula that the higher the
choice of the correlation parameter, the more skewed and volatile becomes
the distribution. Note, however, that in this case the distribution is skewed
to the left and not to the right. Again, for the Student t-distribution the
effects on the volatility of the rating distribution are more pronounced. The
standard deviation of the number of companies in rating class C ranges
from approximately 29.75 to 37.54 depending on the choice of the copula
correlation parameter. In comparison, the standard deviation for indepen-
dently simulated transitions is 6.40. Despite the higher volatility for the
Student t-copula, the simulated distributions of companies in rating class
C are less skewed than for the Gaussian copula. Overall, we find that when
applying a model with independent individual migrations, the number of
companies in rating state C would be expected to be reduced from 148 to
somewhere between 89 and 110 with 90% confidence. Assuming that credit
migrations show a dependence structure that could be modeled by a Gaus-
sian or Student t-copula, this interval becomes substantially wider. The
simulated 90% confidence interval, for example, is [72, 117] for a Gaussian
copula with correlation parameter ρ = 0.2, while it increases to [45, 144]
when a Student t-copula with the same copula correlation parameter is
used. This means that while the expected value of companies in a rat-
ing state stays approximately the same, confidence intervals significantly
become wider when the dependence for credit migrations is increased or
when a copula with more dependence in the tails is used.

We finally investigate the results for companies in the investment
grade rating state A that are provided in Table 10.5. Initially, there

TABLE 10.4. Descriptive Statistics for the Simulated Distribution of the Number
of Companies in Rating State C After One Year for Independent Migrations and
Dependent Migrations from Gaussian and Student t-copula

Companies in C
Dependence q0.01 q0.05 Mean q0.95 q0.99 Std
ρ = 0 85 89 99.2760 110 113 6.4041

Gaussian ρ = 0.1 73 84 99.8740 114 120 8.9141
Gaussian ρ = 0.2 52 72 98.8960 117 125 14.0366
Gaussian ρ = 0.5 17 38 98.8940 134 152 29.5456

Student t ρ = 0.1 28 47 99.3500 144 156 29.7486
Student t ρ = 0.2 29 45 98.3220 144 157 30.2874
Student t ρ = 0.5 12 30 97.9860 150 165 37.5379
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were 260 companies in this rating state. Figure 10.10 displays the
number of companies in rating state A after one year. Also here the
simulation results are provided for independent migrations, for depen-
dent migrations from Gaussian copula and Student t-copula with the
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FIGURE 10.10. Number of companies in rating state A after one year for inde-
pendent migrations (upper left panel), for dependent migrations from Gaussian
copula ρ = 0.1 (upper right panel), ρ = 0.2 (mid left panel), and ρ = 0.5 (mid
right panel) and for dependent migrations using the Student t-copula with ρ = 0.2
(lower left panel) and ρ = 0.5 (lower right panel).
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same correlation parameters ρ = 0.1, ρ = 0.2 and ρ = 0.5. For all
simulation experiments the expected value of companies in the rat-
ing state after one year is slightly increased to a number between 262
and 265. However, while the mean of the distribution remains approxi-
mately the same, the shape of the distribution is substantially affected by
the chosen copula and the correlation parameter. For the Gaussian copula,
we find that the higher the choice of ρ, the more leptokurtic the distribu-
tion becomes. Further the standard deviation of the distribution increases
substantially from σ = 6.78 in case of independent migrations to σ = 45.35
when the Gaussian copula with ρ = 0.5 is applied (see Table 10.5). How-
ever, unlike for the number of defaults or companies in rating state C,
we find that the distribution remains rather symmetric in this case. As
expected, for the Student t-copula the distribution is more leptokurtic
and exhibits even higher standard deviation. Simulated 90% confidence
intervals now range from [253, 275] for independence to [146, 370] when a
Student t-copula with copula correlation parameter ρ = 0.5 is used. Note
that this interval is approximately 10 times wider than in the case of
independence.

Overall, the results point out the substantial effects of dependent credit
migrations. Hereby, unlike for models that concentrate on dependent
defaults only, a simulation model for dependent credit migrations is able
to provide results on the number of companies that are expected to be in
a certain rating class after an arbitrary number of periods. In our analy-
sis, only results for t = 1 year were provided; however, it is straightforward
to extend the time horizon. We find that, while both for the number of
defaults and number of companies in a rating state, the expected value stays
approximately the same, simulated confidence intervals are significantly
wider when the copula correlation parameter is increased or a copula with
more tail dependence is used. Further the shape of the distribution changes

TABLE 10.5. Descriptive Statistics for the Simulated Distribution of the Number
of Companies in Rating State A After One Year for Independent Migrations and
Dependent Migrations from Gaussian and Student t-copula

Companies in A
Dependence q0.01 q0.05 Mean q0.95 q0.99 Std
ρ = 0 249 253 263.5820 275 278 6.7798

Gaussian ρ = 0.1 231 241 263.7470 289 303 14.6565
Gaussian ρ = 0.2 191 227 262.5520 300 331 23.4282
Gaussian ρ = 0.5 131 197 265.0690 339 411 45.3503

Student t ρ = 0.1 101 178 263.2730 330 364 44.5682
Student t ρ = 0.2 116 180 265.0640 333 390 46.8939
Student t ρ = 0.5 73 146 263.4040 370 443 60.9158
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significantly and becomes either more skewed or leptokurtic, dependent on
the rating state. This will have substantial effects not only for the VaR of a
credit portfolio, but also when rating changes are considered for a mark-to-
market evaluation of the portfolio. We conclude that it might be beneficial
to investigate the use of different copulas for modeling dependent credit
migrations; see, e.g., Trueck (2007).
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Credit Derivatives

11.1 Introduction

Credit derivatives may be defined as a specific class of financial instruments
whose value is derived from an underlying asset bearing a credit risk of
private or sovereign debt issuers. The rationales behind credit derivatives
are various, depending on the types of players on the market. The banks,
which are the largest group of users of credit derivatives, intend to free
up capital, optimize their balance sheet, manage loan exposure without
the consent of the debtor, and compile to the regulatory offsets as well as
for risk reduction and diversification. Institutional investors like insurance
companies and fund managers, on the other hand, have the opportunity
to access new classes of credit assets, such as bank loans, which have not
been directly available to nonbank investors as a result of the absence of
necessary origination and infrastructure. In addition to that, these investor
groups also aim to hedge and diversify their portfolios and to reduce the
risk by buying credit derivative instruments.

Although the market for credit derivatives has a well diversified group
of participants with differing needs, it has been a very young market. The
market appears to have arisen out of the market for secondary loan trading
in the early 1990s. The earliest transactions appear to have been completed
around 1991/1992. The first transactions were settled with the intention
to isolate and transfer credit risk, access new classes of assets such as bank
loans, and increase returns by investing in credit risk through credit deriva-
tives. As the market has evolved, other types of transactions have emerged
with the goals to increase the credit risk spectrum (types of risk, recovery
rates, and combinations of different debt characteristics) and to manage
a credit portfolio actively. The key factors for the development can be
summarized as the following:

• concern about concentration of credit risk in bank asset portfolios;

• developments in the management of credit risk;

• focus on overcoming the inefficiency and illiquidity of available struc-
tures for transferring and trading credit risk;
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• incompleteness of the credit risk spectrum; and

• recognition of the need to develop structures which would facilitate
attracting new investment risk capital into assumption of credit risk.

Despite the substantial growth of credit derivative products and the
industry, appropriate models for pricing or hedging these products might
still have to be developed. The recent subprime mortgage crisis has expli-
citly illustrated how dangerous it can be to underestimate the risk arising
from credit derivative transactions and how difficult it is to price this risk.
This section aims to provide a brief overview on participants and a variety
of products in the credit derivatives market.

Market Participants: There are several key players on the market
for credit derivatives. By far, large commercial banks and investment
banks/securities houses followed by insurance companies are the biggest
participants. While commercial banks and investment banks/securities
houses act both as sellers and buyers of protection, insurance companies
sell more protection than purchase it, using their knowledge of risk assess-
ment. Other key players include hedge funds, pension and investment
funds, and corporates.

Commercial Banks: Banks use credit derivatives to transfer credit risk
without selling the underlying asset, mostly a loan to a client. Thus, the
relationship with the client is preserved and the client does not even
have to be informed about the transaction. In addition to that, the risk
of the bank’s credit portfolio can be easily hedged by purchasing default
protection such as portfolio default swap or basket swap. The portfolio
is managed actively with low transaction costs, as credit derivatives may
be purchased or sold to achieve the desired risk level without buying
new assets and selling the existing ones. An important motivation for
commercial banks is regulatory capital requirements. Under the current
Basel Accord, the bank is generally required to hold 8% of its expo-
sure to a corporate borrower as capital reserve. If the bank is involved
in a credit derivatives transaction to reduce the risk of its credit expo-
sure and the bank’s counterparty is again a bank in an OECD country,
providing the evidence that the risk has effectively been transferred to
the counterparty, the bank has to hold regulatory capital of only 1.6%
instead of 8%.

Investment Banks/Securities Houses: These intermediaries sell and
buy default protection in order to provide liquidity to clients and to trade
for their own account. While trading for their own account, they buy
protection against counterparty risk arising from their credit exposure
to clients or other OTC derivatives such as interest rate swaps. One key
role played by the investment banks and securities houses is bridging the
needs of protection buyers and sellers. Legal and regulatory requirements
in some countries may restrict or even prohibit the exposure of insurance
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companies to credit derivatives. However, the insurance companies may
sell protection to other insurance companies that sell default protection
such as credit default swaps. Investment banks and securities houses enter
the game here, founding insurance companies in financial centers like
Bermuda that allow insurers to enter the derivatives market. Thus, they
just pass the credit insurance to the protection buyer and the insurance
premium to the insurance company that is prevented from being involved
in derivatives contracts.

Insurance Companies: Insurance companies are net sellers of pro-
tection and their share in the market has been increasing. By selling
protection, they intend to participate in the bank’s loan market where
they have been nonexistent. They focus on creating synthetic exposure
to credit markets, especially to high yield bonds and emerging mar-
ket debt, and by assuming credit risk, the insurance companies aim for
yield enhancement. Credit derivatives also reduce the transaction costs
of constructing a well-diversified credit book.

Pension/Investment Funds and Hedge Funds: The motivation of
this group is somewhat similar to insurance companies. Like them, the
pension/investment funds and hedge funds are also net protection sell-
ers, although hedge funds have been increasingly buying protection in
recent years, especially on lower rated bonds of U.S. companies. Hedge
funds also try to use the arbitrage opportunities between the money and
derivatives markets.

Corporates: The participation of this group has been limited to a few
large multinationals with excellent credit ratings. These companies usu-
ally buy credit default swaps against credit risk associated with their
customers or suppliers.

Overall, the credit derivatives market brings together different investor
and industry groups who have varying expectations of entering a derivatives
transaction.

11.1.1 Types of Credit Derivatives
Credit derivatives can be roughly classified into two main groups: Single-
name instruments provide protection against default by a single reference
entity, i.e., underlying credit asset such as a bank loan or bond. Multiname
instruments contracts contingent on default result in a pool of reference
units, thus allowing the investors to transfer the risk of a credit portfo-
lio instead of dealing with every security separately. Single-name products
make up the majority of the market; however, multiname products have
been substantially increasing their share in recent years. In the following
two subsections, we will introduce some of the most common products in
the credit derivatives market.
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Single-Name Credit Derivatives

Credit Default Swaps (CDS): CDS are the most common products
in the credit derivatives market. In a vanilla CDS, the protection buyer
agrees to make periodic payments (swap spread or premium), generally
quarterly, to the protection seller over the lifetime of the CDS (three-,
five-, and ten-year maturities are the most common ones). In exchange
for this protection, the seller is obliged to make a payment in case the
reference entity defaults. If no default occurs during the maturity of the
CDS, the protection seller just receives the premium.

In case of default, CDS are settled either physically or in cash depend-
ing on the contract specifications. In a physically settled CDS, the
protection seller must buy the defaulted asset for the face value. In a
cash settled swap, the protection seller pays the difference between the
face value of the defaulted asset and the recovery value determined by a
poll among the market participants. In the United States, for example,
the majority of CDS are physically settled.

One major factor for the development and the size of CDS is the
standardization of the CDS transactions using the master agreements of
the International Swaps and Derivatives Association (ISDA). This has
increased the liquidity and transparency in this segment, thus reducing
the transaction costs and the insurance premium paid. However, there are
still disputes concerning the legal definition of default and the treatment
of debt restructuring.

Asset Swaps: In an asset swap the investor purchases a fixed-rate lia-
bility issued by a reference entity; i.e., the investor receives periodic
payments at a fixed rate. She simultaneously enters an interest rate
(fixed-for-floating) swap with another counterparty such as a bank, where
the investor is obliged to make fixed payments at predetermined dates
while receiving payments at a floating rate (usually spread over a short-
term LIBOR, called asset swap spread). The important point here is that
the fixed payments of the asset swap exactly match those of the reference
asset. Thus, the investor is protected against the interest rate risk of the
fixed-rate liability, which is transferred to the asset swap counterparty.
The investor merely holds the credit risk component of the reference
asset.

Credit Spread Options: Credit spread options are “derivative con-
tracts where the payoff is dependent on the credit spread of the reference
entity to some strike level.” The credit spread is defined either as the
spread relative to the risk-free benchmark (the absolute spread) or to
another credit-sensitive asset (the relative spread).

A credit spread put option gives the holder the right to sell the ref-
erence asset to the writer of the option if the spread increases above
the strike level. As an example, think of a bond of a corporate and a
bond investor. If the credit quality of the corporate declines, the bond
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price will go down, resulting in a higher yield and thus a higher spread
over, let’s say, the risk-free U.S. Treasury bonds. If the spread is over the
strike level, the holder of the credit spread put will exercise the option
at the prespecified strike level, selling the bond to the writer at a higher
price than its market value. Generally, it has to be distinguished between
the physical and the cash settlement. While the physical settlement is
similar as described above, in a cash settlement, the difference between
the current spread and the strike spread is weighted with the remaining
time-to-maturity of the underlying and multiplied with its face value.

Credit spread put options are popular among insurance companies
that are restricted to invest in speculative grade bonds. Thus, if the
reference credit is downgraded from an initial investment grade to specu-
lative grade, the holder of such a put option can get rid of the junk bond
for a higher price than it can sell at the market. A credit spread call
option, in contrast, gives the holder the right to buy a credit asset if the
spread decreases below a strike level, enabling the holder to purchase the
asset cheaper than its market value.

Total Return Swaps: In a total return swap contract, the investor
receives all the cash flows associated with a credit asset without actually
owning it. The counterparty of the contract, e.g., a bank, passes through
the cash flows of the credit asset to the investor. In exchange for these
cash flows, the investor pays a spread over short-term LIBOR.

In a total return swap, the investor takes over the entire credit risk.
Should the issuer of the credit asset default, the investor bears the loss.
Held until the maturity of the swap contract (usually three to five years),
the investor receives a payment from the counterparty if the market value
of the underlying credit asset has appreciated since the inception date of
the swap. If not, the investor is required to pay the difference resulting
from the depreciation.

Total return swaps facilitate the purchase or sale of a credit asset
in a synthetic format. A good example is the bank loan market. Total
return swaps make it possible for nonbanks such as insurance companies
to participate in the bank loan market and assume the full credit risk and
the cash flows. A bank, on the other hand, has the chance to reduce its
exposure to a client or a specific industry, free some capital, and manage
its credit lines better.

Multiname Credit Derivatives

In the following we will describe a number of multiname credit deriva-
tives. For a more detailed description of such products and various pricing
techniques, see, e.g., Bluhm and Overbeck (2007b).

Basket Swaps: A basket swap is a derivative written on a portfolio or
basket of credit assets. A common example is the “first-to-default” bas-
ket. In this case, the protection seller has to make a payment when an
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asset from the basket defaults. The payment is either the face value of the
asset in exchange for the asset or the difference between the face value
and the estimated recovery value by market participants. In exchange
for this insurance, the protection seller receives periodic premiums.
A first-to-default basket is terminated after the first default. More risk-
averse investors may purchase second-to-default, third-to-default, or nth
to default basket contracts where they also are protected against the
second, third, or nth default in the basket.

An investor purchasing a basket swap transfers some of the credit risk
to the protection seller, which is especially useful when the investor’s
portfolio is not well diversified due to high transaction costs.

Portfolio Default Swaps: Portfolio default swaps differ from basket
swaps in the sense that the protection payment is not triggered by the
number of defaults in the underlying portfolio but the size of the default-
related loss in the portfolio. For instance, a first-loss tranche of 10%
protects the investors against defaults leading to a cumulated 10% loss
in the portfolio. After that, the contract is terminated.

11.1.2 Collateralized Debt Obligations (CDO)
A CDO is a debt security issued by a special-purpose vehicle (SPV) and
backed by a diversified loan or bond portfolio. CDOs can roughly be
classified by the following criteria:

• Underlying assets: Most CDOs are based on corporate bonds (CBOs)
and commercial loans (CLOs). Further underlying assets are struc-
tured products, such as asset-backed securities and other CDOs (called
CDO squared), and emerging market debt.

• Purpose: Arbitrage CDOs aim to profit from price differences between
the components included in the CDO and the sale price of the CDO
tranches. They securitize traded assets like bonds and credit default
swaps.Balance sheet CDOs aim to shrink the balance sheet and reduce
required economic or regulatory capital.

• Credit structure: While the portfolio of a cash flow CDO is not actively
traded, market value CDOs include actively traded assets where the
portfolio manager has to meet fixed requirements concerning, for
example, credit quality of the assets or diversification.

• In opposition to cash CDOs, synthetic CDOs (CSOs) are constructed
using credit default swaps. There is no true sale of an underlying
portfolio, but the issuer sells credit default swaps on a synthetic
portfolio.

Traditionally, SPV either purchases the portfolio of bond and loan secu-
rities in the secondary market or from the balance sheet of a bank. Then,
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FIGURE 11.1. The structure of an exemplary CDO.

SPV issues CDOs divided into various tranches to satisfy the risk pref-
erences of different investors backed by the cash flows of this reference
portfolio. Typically, the risk is tranched in a senior position rated AAA,
one or several mezzanine positions, and a first-loss position, usually rated
below BBB. Figure 11.1 depicts the transactions settled in an exemplary
CDO.

Note that very often the SPV also enters into a portfolio default swap
contract with a protection buyer such as a bank to assume the credit risk of
the underlying portfolio. This setup is called “synthetic CDO.” At the same
time, it issues CDOs to investors (who are the end-sellers of protection)
and invests the proceedings in highly rated collateral securities like G7
government bonds. The investors then receive the returns on these securities
with portfolio default swap premium. In case of default on the reference
portfolio, these payments are reduced and the protection buyer has a claim
on SPV backed by the collateral.

Credit-Linked Notes (CLN): CLNs allow investors, who are pro-
hibited to enter directly into derivatives contracts, to benefit from
the advantages of credit derivatives. CLNs are debt obligations with
an embedded credit derivative. The idea behind CLNs may be best
understood by the following example:

Assume an insurance company A, two banks B1 and B2, and a risky
company C. Assume that the insurance company wants to take some credit
risk associated with the debt of company C. However, assume further, there
is no publicly traded bond of C available and its entire liabilities consist of
bank loans given by bank B1. In addition to that, A’s investment policy
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prevents it from entering into the derivatives market by selling CDS. A can
then purchase CLNs worth 100 million Euros, referenced to company C
and issued by bank B2. Bank B2 invests this amount into highly rated
collateral securities and at the same time enters into a CDS contract with
bank B1, selling protection against a default by company C. From now on,
B2 will simply pass the CDS premiums received from bank B1 to insurance
company A. If company C defaults, B2 will pay the face value of A’s debt
to B1. Insurance company A, however, will receive only the recovery value
of C’s debt, meaning if the recovery rate is 40%, C will get only 40 million
Euros back instead of the initial investment of 100 million Euros. The CLN
is then terminated. If no default occurs, insurance company C will continue
to receive the CDS premiums until the maturity date of CLN.

11.2 Pricing Single-Named Credit Derivatives

In the following we will provide an overview on how credit migration matri-
ces can be used to price single-named credit derivatives. Generally for this
purpose, the main task is the derivation of a well-calibrated PD term struc-
ture or credit curve, since this can be used to determine the probability
distribution of default times for an obligor. In this section we will describe
how this can be done using credit migration matrices. For a more general
introduction to PD term structures, we refer to Bluhm et al. (2003), for
their application to structured credit products, e.g., to Bluhm and Over-
beck (2007b). In general, every bank has its way to calibrate credit curves
to their internal and external data.

The PD term structure for some obligor with rating class i can be defined
the following way; see, e.g., Bluhm and Overbeck (2007b):

pi(t) = P (Di ≤ t) for t ≥ 0 (11.1)

where Di simply denotes the probability that obligor i defaults. Thus, pi(t)
is the probability that obligor i defaults within the time interval [0, t]. Then
the curve of these cumulative default probabilities provides the PD term
structure of the considered obligor. Note that the credit curve is naturally
increasing with increasing time. Further,

si(t) = 1 − pi(t) = P (Di > t) for t ≥ 0 (11.2)

denotes the survival probability of an obligor up to time t. Obviously, it
can be expected that for different rating classes these curves will look quite
different. To illustrate the derivation of credit curves for different rating
states based on a transition matrix, let us consider a numerical example.
Note that in this example the derivation of the credit curves is based on
using a historical transition matrix, while in real-world applications credit
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curves may be calibrated based on risk-neutral and time-inhomogeneous
migration matrices; see, e.g., Bluhm and Overbeck (2007a); Jarrow et al.
(1997). We will return to this issue later on. For the moment to illus-
trate the calculation of the PD term structure, we stick to the most simple
case of assuming a given one-year transition matrix P for the eight rat-
ing states AAA, AA, A,BBB,BB,BB,CCC,D and the assumption of a
homogeneous model. The assumed exemplary transition matrix is provided
in Table 11.1.

Since the PD term structure is denoted in continuous time, the corre-
sponding generator matrix Λ has to be used to derive the corresponding
cumulative PDs. Note that for the transition matrix, the series (5.4) con-
verges to a generator matrix with negative off-diagonal elements that is
presented in Table 11.2. Since this matrix would provide negative tran-
sition matrices for short term periods, it is not economically meaningful.
Therefore, we use one of the methods suggested by Israel et al. (2000) illus-
trated in Section 5.3 to find an adequate approximation of the generator
matrix. We decided to use the second method that replaces the negative

TABLE 11.1. Assumed Average One Year Transition Matrix P for Calculation
of PD Term Structure

AAA AA A BBB BB B CCC D
AAA 0.9276 0.0661 0.0050 0.0009 0.0003 0.0000 0.0000 0.0000
AA 0.0064 0.9152 0.0700 0.0062 0.0008 0.0011 0.0002 0.0001
A 0.0007 0.0221 0.9137 0.0546 0.0058 0.0024 0.0003 0.0005
BBB 0.0005 0.0029 0.0550 0.8753 0.0506 0.0108 0.0021 0.0029
BB 0.0002 0.0011 0.0052 0.0712 0.8229 0.0741 0.0111 0.0141
B 0.0000 0.0010 0.0035 0.0047 0.0588 0.8323 0.0385 0.0612
CCC 0.0012 0.0000 0.0029 0.0053 0.0157 0.1121 0.6238 0.2389
D 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 1.0000

TABLE 11.2. Corresponding Generator Matrix Λ to P with Negative Off-
Diagonal Elements

AAA AA A BBB BB B CCC D
AAA −0.0754 0.0718 0.0027 0.0007 0.0003 −0.0001 0.0000 0.0000
AA 0.0069 −0.0898 0.0765 0.0045 0.0005 0.0010 0.0003 0.0000
A 0.0007 0.0241 −0.0930 0.0609 0.0048 0.0021 0.0002 0.0003
BBB 0.0005 0.0024 0.0614 −0.1376 0.0592 0.0099 0.0021 0.0021
BB 0.0002 0.0011 0.0032 0.0839 −0.2007 0.0885 0.0129 0.0110
B 0.0000 0.0011 0.0036 0.0023 0.0708 −0.1904 0.0529 0.0598
CCC 0.0016 −0.0002 0.0033 0.0060 0.0159 0.1548 −0.4765 0.2951
D 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
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entries by zero and adds the appropriate value back into all entries of the
row proportional to their absolute values. The result for the approximate
generator Λ̃ is given in Table 11.3 and the corresponding approximation P̃
for P is provided in Table 11.4. Obviously, P̃ is very close to the original
transition matrix P .

The approximate generator matrix can then be used to calculate the
PD term structures for the individual rating classes. Figure 11.2 provides
the credit curves derived from the approximate continuous-time genera-
tor matrix Λ̃ for investment grade rating states AAA, AA, A, and BBB.
Figure 11.3 provides the same curves for speculative grade rating states
BB, C, and CCC. The corresponding curves for the survival probabilities
are displayed in Figures 11.4 and 11.5. The PD term structures for the
speculative grade ratings show the typical shape of a decreasing growth
rate. This is due to the fact that, conditional on having survived for some
time, the chances for further survival actually improve. Remember that
this behavior is also often reflected in the term structure of credit spreads;
see, e.g., Chapter 4 and the empricial results provided by Fons (1994).
For investment grade rating states, we observe the opposite effect. Since
companies with a very high rating have no further upside potential but are

TABLE 11.3. The Approximated Generator Matrix Λ̃

AAA AA A BBB BB B CCC D
AAA −0.0754 0.0717 0.0027 0.0007 0.0003 0.0000 0.0000 0.0000
AA 0.0069 −0.0898 0.0765 0.0045 0.0005 0.0010 0.0003 0.0000
A 0.0007 0.0241 −0.0930 0.0609 0.0048 0.0021 0.0002 0.0003
BBB 0.0005 0.0024 0.0614 −0.1376 0.0592 0.0099 0.0021 0.0021
BB 0.0002 0.0011 0.0032 0.0839 −0.2007 0.0885 0.0129 0.0110
B 0.0000 0.0011 0.0036 0.0023 0.0708 −0.1904 0.0529 0.0597
CCC 0.0016 0.0000 0.0033 0.0060 0.0159 0.1548 −0.4766 0.2951
D 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

TABLE 11.4. Approximation P̃ for Discrete-Time Average One Year Transition
Matrix P

AAA AA A BBB BB B CCC D
AAA 0.9276 0.0661 0.0050 0.0009 0.0003 0.0001 0.0000 0.0000
AA 0.0064 0.9152 0.0700 0.0062 0.0008 0.0011 0.0002 0.0001
A 0.0007 0.0221 0.9137 0.0546 0.0058 0.0024 0.0003 0.0005
BBB 0.0005 0.0029 0.0550 0.8753 0.0506 0.0108 0.0021 0.0029
BB 0.0002 0.0011 0.0052 0.0712 0.8229 0.0741 0.0111 0.0141
B 0.0000 0.0010 0.0035 0.0047 0.0588 0.8323 0.0385 0.0612
CCC 0.0012 0.0002 0.0029 0.0053 0.0157 0.1121 0.6238 0.2388
D 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 1.0000
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FIGURE 11.2. Cumulative default probabilities derived from the considered
continuous-time generator matrix for investment grade rating states AAA (solid
line), AA (dotted line), A (dashed line), and BBB (bold line).
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FIGURE 11.3. Cumulative default probabilities derived from the considered
continuous-time generator matrix for speculative grade rating states BB (solid
line), B (dotted line), and CCC (dashed line).
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FIGURE 11.4. Corresponding survival probabilities derived from the considered
continuous-time generator matrix for investment grade rating states AAA (solid
line), AA (dotted line), A (dashed line), and BBB (bold line).
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continuous-time generator matrix for speculative grade rating states BB (solid
line), B (dotted line), and CCC (dashed line).
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more likely to be downgraded with the passage of time, conditional on their
survival for some time, the probability of surviving further decreases due to
a potential deterioration of their rating over time. Further investigating the
issue and calculating quarterly forward PDs, Bluhm and Overbeck (2007b)
find a mean reversion effect in PD term structures that is also in line with
findings of the rating agency Moody’s KMV.

The derived PD term structure can then be used to derive the density
of the default time distribution by simply calculating the derivative of the
credit curve:

fi(t) =
d

dt
pi(t) (11.3)

Having a density of the default time distribution, it is then straightfor-
ward to calculate prices for single-name credit derivatives such as CDS for
different maturities. It may also be interesting to use the density function
of the default times to determine descriptive statistics like the mean or the
variance of the default times for a rating class i:

E(Di) =
∫ ∞

0
t · fi(t)dt (11.4)

σ2
Di

=
∫ ∞

0
(t − E(Di)) · fi(t)dt (11.5)

Overall, the continuous-time homogeneous Markov chain framework
provides a simple method to construct the PD term structure, survival
curves, and the density of default time distributions for individual rat-
ing classes i. However, comparing the derived PD term structure from
the homogeneous continuous-time Markov chain model with empirically
observed credit curves, the curves do not match that well; see, e.g.,
Bluhm and Overbeck (2007a). The authors therefore suggest using a non-
homogeneous continuous-time Markov chain approach of the following
form:

Starting with a time-homogeneous generator Λ = (λij) with 1 ≤ i, j ≤ K,
they relax the assumption of constant transition rates λij . Instead they
suggest a time-dependent generator matrix Λt of the following form:

Λt = Φt × Λ (11.6)

where × denotes matrix multiplication. Further Φt = (ϕij(t)) for 1 ≤ i, j ≤
K denotes a diagonal matrix of the following form:

ϕij(t) =
{

0 for i �= j
ϕαi,βi(t) for i = j

(11.7)
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Since Φt is a diagonal matrix, multiplying Λ with Φt is basically a scaling
of the row i of Λ with ϕαi,βi(t). Bluhm and Overbeck (2007a) further define
ϕα,β(t) as normalized and increasing functions according to

ϕα,β(t) =
(1 − e−αt)tβ−1

1 − e−α
for t ≥ 0 (11.8)

The term “normalized” refers to the fact that ϕα,β(t) = 1, so for t = 1
we obtain the same one-year migration matrix that was initially used for
calculating the generator matrix Λ. Note that the term (1 − e−αt) of the
function corresponds to the distribution function of an exponential distri-
bution with parameter α, while the second term tβ−1 is an adjustment
term. For β > 1, it can be considered as time-accelerating, while for β < 1
as a time-slowing-down term. Finally, the term 1 − e−α in the denomina-
tor is simply a normalizing term to guarantee ϕα,β(t) = 1. The authors
point out that ϕα,β(t) has some resemblance with the Gamma distribution
(Bluhm and Overbeck, 2007b). The function can then be used to define
time-dependent generator matrices according to expression (11.2) that can
be used to derive PD term structures. It can also be used to calculate
migration matrices for any given time period [0, t] according to

Pt = exp(tΛt) for t ≥ 0. (11.9)

Based on expression (11.2), the time-dependent generator matrix Λt can
be determined by the two vectors (α1, . . . , αK) and (β1, . . . , βK). As it was
said before, PD term structures derived using a time-homogeneous Markov
chain approach did not show the same shape as empirically observed cumu-
lative PDs as they are provided, e.g., by the major rating agencies. However,
using the time-dependent approach suggested above, the authors use empir-
ically observed cumulative PDs for the different rating classes (Standard &
Poor’s, 2005) to calibrate the two vectors (α1, . . . , αK) and (β1, . . . , βK).
This is done by minimizing the mean-squared distance between empirically
observed cumulative PDs and the model PDs based on the time-dependent
generator. Obviously, the parameters for the default state α8 and β8 are
meaningless for the approach so they are set to α8 = β8 = 1. For the
other rating states, they report the optimized α- and β-vectors provided in
Table 11.5.

The authors show that by using Standard & Poor’s adjusted one-
year migration matrix (Standard & Poor’s, 2005), the corresponding
approximated generator matrix Λ and the optimized α- and β-vectors for
time-bending functions ϕα,β(t) given in Table 11.5, credit curves match-
ing empirically observed multiple-year default frequencies can be matched.
However, the authors point out that the approach may be quite sensitive
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TABLE 11.5. Optimized α- and β-Vectors for
Time-Bending Functions ϕα,β(t) According to
Bluhm and Overbeck (2007a)

Rating State α β

AAA 0.34 0.89
AA 0.11 0.26
A 0.81 0.65
BBB 0.23 0.30
BB 0.32 0.56
B 0.23 0.40
CCC 2.15 0.46

to the model inputs and do not recommend it for extrapolation beyond
the observed time horizon of cumulative default probabilities (Bluhm and
Overbeck, 2007b).

Overall, the PD term structure obtained by a continuous-time homo-
geneous or nonhomogeneous Markov chain approach can be used in a
straightforward manner to price single-named credit derivatives like credit
default swaps or credit-linked notes. For the pricing of more complex credit
derivatives like CDOs, portfolio or basket default swaps in addition to the
PD term structure for individual obligors, a dependence structure needs to
be introduced. We will further investigate the issue in the following section.

11.3 Modeling and Pricing of Collateralized Debt
Obligations and Basket Credit Derivatives

In the previous section we were mainly concentrating on the use of credit
migrations for deriving PD term structures that can be used for the pric-
ing of single-named credit derivatives. Generally, for the extension of the
approach to basket derivatives and CDOs, the nature of the introduced
dependence structure is decisive. Hereby, various dependence structures
can be assumed using copula models. In the following we will examine the
use of transition matrices for the pricing of such complex instruments like
CDOs and portfolio or basket default swaps. While the term structure of
cumulative PDs might still be an essential tool for pricing these instru-
ments, major focus also has to be put on the issue of dependence between
the obligors, in particular dependent defaults.

Figure 11.6 illustrates the loss distribution for an exemplary loan port-
folio dependent on the assumed degree of dependence. Herby, the Gaussian
copula approach for dependent migrations discussed in Chapter 10 was
assumed for modeling the dependent migrations with a copula correlation
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FIGURE 11.6. Loss distribution for different degrees of correlation ρ = 0.1 (solid
line) and ρ = 0.4 (dotted line) for an exemplary loan portfolio. The loss dis-
tribution was simulated using the dependent migration approach suggested in
Chapter 10.

parameter of ρ=0.1 and ρ=0.4. Obviously, the distribution with the higher
copula correlation parameter yields a significantly higher probability for
extreme losses in the portfolio.

In this section we will mainly focus on the use of credit migration matrices
and derived PD term structures for determining the loss distribution and
the effects on tranche losses in a CDO. Note that this approach somehow
deviates from the very popular concept of implied correlations for CDOs.
Before we illustrate the approach based on credit migrations, let us first
briefly review the idea of implied correlations.

Implied correlations are a consequence of the the availability of mar-
ket quotes of standard tranches like the iTraxx and the CDX. Quotes of
standardized tranches also provide a market view of default correlation
between the individual credits in the portfolio at different points in the capi-
tal structure. Often market participants are quoting rather the so-called
implied correlation instead of the spread or the price of a CDO tranche.
The implied correlation of a tranche is the uniform asset correlation number
such that the fair or theoretical value of a tranche equals its market quote.
Quoted correlations are always based on an underlying model assump-
tion. The most common models used to price synthetic CDOs are currently
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variants of the one-factor Gaussian copula model (Li, 2000) which is often
also referred to as the large pool model. Until recently, the concept could
be considered as the industry standard approach for the pricing of basket
credit derivatives.

The homogeneous large pool Gaussian copula model, or simply the large
pool model, is a model very similar to the risk factor model applied in the
new Basel Capital Accord that was described in Chapter 3. It generally
employs the following assumptions:

• The default of an obligor is triggered when its asset value falls below
a certain threshold.

• The asset value is driven by one standard normally distributed factor,
which can be viewed to represent the market or the general state of
economy, and its idiosyncratic risk.

• The portfolio consists of a large number of credits of uniform size,
uniform recovery rate, and uniform probability of default.

Thus, we can describe the normalized asset value of the ith obligor xi by
a one-factor model:

xi =
√

ρm +
√

1 − ρzi (11.10)

where m denotes the normalized return of the single factor and zi is the
idiosyncratic risk with m, zi ∼ Φ(0, 1), and thus also xi ∼ Φ(0, 1).

√
ρ is

the correlation of each obligor with the market factor and ρ the uniform
pairwise correlation between the obligors. Let p denote the probability of
default; thus, the threshold of default equals Φ−1(p). Then we can denote
the expected percentage portfolio loss given m according to the following
formula (Li, 2000; Bluhm, 2003):

p(m) = φ

(
φ−1(p) − √

ρm√
1 − ρ

)
(11.11)

From this, an analytic expression for the portfolio loss distribution can
be derived. In the most simple case of a recovery rate of 0%, the function
of portfolio losses can be calculated using the following expression (Bluhm
et al., 2003):

fp,ρ(x) =
√

1 − ρ

ρ
exp[

1
2
(φ−1(x))2− 1

2ρ
(φ−1(p)−

√
1 − ρφ−1(x))2] (11.12)

Based on the determined loss distribution of the portfolio, the expected
losses for the individual tranches can also be determined. To illustrate
the concept of implied correlations, let us consider the iTraxx Europe. It
consists of the 125 most liquidly traded European CDS which are assigned
to six different industry groups. The market agreed to quoted standard
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tranches which are responsible for 0% to 3%, 3% to 6%, 6% to 9%, 9% to
12%, and 12% to 22% of the losses. As these tranche quotes are a function
of supply and demand, they reflect a market view of the correlation of the
underlying portfolio. From this, the concept of implied correlation, or “the
market view of correlation,” emerged.

Mashal et al. (2004) define the implied correlation of a tranche as the
uniform asset correlation number that makes the fair or theoretical value
of a tranche equal to its market quote. In other words, Hull and White
(2004), for example, define the implied correlation for a tranche as the
correlation that causes the value of the tranche to be zero. Due to its
analytical tractability and small number of parameters, the large pool
model initially constituted the market standard for calculating implied
correlation; see, for example, McGinty and Ahluwalia (2004a). The con-
cept enables market participants to calculate and quote implied default
correlation, to trade correlation, and to use implied default correlation for
relative value considerations when comparing alternative investments in
synthetic CDO tranches or to make use of implied correlation for arbitrage
opportunities. For further reading on implied correlations, the distinction
between compound and base correlations, the limitations of the approach,
etc., we refer to Bluhm and Overbeck (2007b), Bluhm et al. (2003), Lehnert
et al. (2006), McGinty and Ahluwalia (2004a,b), Willemann (2004), and the
literature mentioned there. We should also point out that various extensions
of the approach with different copulas have been suggested in the litera-
ture. References include Frey and McNeil (2003), Giesecke (2004), Laurent
and Gregory (2005), Hull and White (2004), Mashal and Naldi (2002),
Schönbucher and Schubert (2001), and Schönbucher (2003), just to men-
tion some of them. Some of the approaches also focus on the consequences
of the chosen copula on the pricing of CDOs. For example, Hull and White
(2004) illustrate how various copula models can be generated by assum-
ing different distributional assumptions within a factor model approach
and find that a model using Student t-copulas fitting CDO provides a
reasonable fit to market prices.

In several recent publications, the effect of credit migrations on credit
derivative pricing has been examined by several authors, among others by
Bielecki et al. (2003), Hrvatin et al. (2006), Hurd and Kuznetsov (2005), and
Picone (2005). Hereby, Hrvatin et al. (2006) investigated CDO near-term
rating stability of different CDO tranches depending on different factors.
Next to the granularity of the portfolio, in particular, credit migrations in
the underlying reference portfolio are considered to have an impact on the
stability of CDO tranche ratings. Pointing out the influence of changes in
credit migrations, Picone (2005) developed a time-inhomogeneous intensity
model for valuing cash-flow CDOs. His approach explicitly incorporates the
credit rating of the firms in the collateral portfolio by applying a set of
transition matrices, calibrated to historical default probabilities. Finally,
Hurd and Kuznetsov (2005) show that credit basket derivatives can be
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modeled in a parsimonious and computationally efficient manner within
the affine Markov chain framework for multifirm credit migration, while
Bielecki et al. (2003) concentrate on dependent migrations and defaults in
a Markovian market model and the effects on the valuation of basket credit
derivatives.

In this section we will suggest an alternative approach using a condi-
tional continuous-time rating migration model with stable risk factors that
can be used for CDO evaluation purposes. The approach is quite similar to
the continuous time-inhomogeneous Markov chain approach suggested in
Bluhm and Overbeck (2007b) or Picone (2005). The model is based on the
adjustment methods suggested in Chapter 9 and a continuous time simula-
tion approach as it was introduced in Chapter 5 for modeling the transitions
within a period. We point out that the model is typically designed for the
evaluation of CDOs consisting of SME loans or companies that are not
traded on the stock market. Usually for such companies only quarterly or
even yearly data on asset returns or changes in creditworthiness are avail-
able. Therefore, it is difficult to model asset correlations of such companies
based on a systematic risk factor like, e.g., returns of a stock market index.
So in this section we rather rely on the use of macroeconomic variables to
improve the estimates on forecasted default probabilities for SMEs.

11.3.1 Estimation of Macroeconomic Risk Factors
This section briefly describes a new model with conditional rating migra-
tions in a continuous-time framework for determining the loss distribution
of a CDO. Since usually CDOs issued by banks consist of loans having a
maturity of several years, the model will make use of a multiperiod rating
migration model and not consider only a one-year time horizon. Therefore,
multiperiod simulations of the considered risk factors will be needed. In
comparison to the approach suggested in Chapter 9, we will consider an
extension of the model allowing for skewness and heavy tails in the risk
factors. As the natural extension of the Gaussian distribution, the class of
α-stable is used to describe the return distribution of the considered risk
factors. Fur further reading on α-stable distributions and their applications
in financial models and credit risk, we refer to Rachev and Mittnik (1999)
and Rachev et al. (2001). Thus, we suggest the macroeconomic variables
available on a quarterly or yearly basis to follow a stable ARMA(p, q)
process:

Xi,t = c0 +
p∑

j=1

ajXi,t−j +
q∑

j=1

bjεt−j + εt, t ∈ N.

The residuals of the process follow an α-stable distribution with εt ∼
Sα(β, σ, 0). For variables available on a daily basis, we propose an ARMAX-
process with α-stable GARCH-residuals (see Menn and Rachev, 2004), as
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TABLE 11.6. Parameters of Fit of the Stable
Distribution to VIX Returns

VIX 1.5833 0.0777 0.6555 −0.0032
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FIGURE 11.7. Fit of stable distribution to returns of VIX.

an adequate discrete-time stochastic process for modeling the evolution of
future outcomes of the variable Y = (Yt)t∈N.

Yt = c0 +
d∑

j=1

cjX
(j)
t +

n∑
j=1

ajYt−j +
m∑

j=1

bjεt−j + εt t ∈ N (11.13)

Consider, for example, the CBOE volatility index providing extraordinarily
good forecasts for recovery rates and default probabilities of PDs for spec-
ulative grade loans. Investigating the assumption of normally distributed
returns for the variables, we observe phenomena like heavy tails and excess
kurtosis for this variable. Figure 11.7 illustrates stable and Gaussian fit to
the volatility index for the period from 01.01.1990 to 31.12.2003. We find
that returns of the variable VIX exhibit heavy tails, and using maximum
likelihood estimation, we obtain the following parameters:
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With α = 1.5833 we observe an index of stability α << 2. This indicates
the necessity of a stochastic process that can also capture heavy tails in
the return distribution. As a consequence, the proposed ARMAX model
with GARCH-residuals can be considered as an adequate model for this
risk factor.

In Chapter 9 we described the use of a continuous credit change indicator
in each rating class Yi,t, or in speculative grade and investment grade rating
classes, respectively, to be dependent on macroeconomic variables Xt−1 of
the previous periods, see Trueck (2008). Thus, based on the estimated
model and simulated macroeconomic risk factors, we propose a model

Yi,t = c0 +
d∑

j=1

cjXt−1 + εt t ∈ N

for the credit change indicator for rating class i. The conditioning of the
migration matrix is conducted using the procedure described in Chapter 9.
As optimality criteria for the numerical adjustment procedure, we suggest
the use of the risk-sensitive difference indices suggested in Chapter 6.

11.3.2 Modeling of Conditional Migrations
and Recovery Rates

For simulation of the loss distribution, we use a so-called conditional
continuous-time rating migration model, similar to the model suggested
in Bluhm and Overbeck (2007b). Note, however, that in our approach the
adjustment is made according to the credit change indicator that is based
on observed macroeconomic conditions. Further, note that the dependence
enters via the shift in credit migration and an additionally introduced
dependence based on dependent migrations according to a Gaussian or
Student t copula model. Based on an average transition matrix Pavg and
estimated credit change indicators Yi,t for time t, we adjust the transi-
tion matrix using one of the risk-sensitive optimality criteria suggested in
Chapter 6. As a result conditional migration matrices P̂t are obtained. The
next step is to calculate the corresponding conditional generator matrix for
period t Λ̂t:

Λ̂t =

⎛
⎜⎜⎜⎜⎝

λ̂11 λ̂12 · · · λ̂1K

λ̂21 λ̂22 · · · λ̂2K

· · · · · · · · · · · ·
λ̂K−1,1 λ̂K−1,2 · · · λ̂K−1,K

0 0 · · · 0

⎞
⎟⎟⎟⎟⎠ (11.14)

where λ̂ij ≥ 0, for all i, j and λ̂ii = −∑K
j=1
j �=i

λ̂ij , for i = 1, . . . , K and the off-
diagonal elements representing the intensities for a jump to rating j from
rating i. Based on the forecasts of the conditional migration matrix, we
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obtain different generators for each time period. Therefore, simulations of
credit migrations will also be based on the forecasts for the macroeconomic
situation.

For modeling the recovery rates we will use an ex-ante regression model
that can also be used for forecasting recovery rates of future periods. The
main input variables for the model were the volatility index (VIX) and
some macroeconomic variables like, for example, the weekly spreads on
investment grade AA bonds. It should be pointed out that the recovery
rates obtained by this method are estimates for average recovery rates in
a market.

11.3.3 Some Empirical Results
In the following we will apply the suggested macroeconomic continuous-
time rating migration model. We will illustrate preliminary results for the
suggested models for evaluation of an exemplary CDO consisting of loans
of SMEs. We point out that further research on real CDO markets will be
necessary.

The portfolio consists of loans of mainly small and medium-sized enter-
prises. Further, due to political reasons the portfolio is divided into two
subportfolios of different structure. In the following we will apply the
developed model to determine the CDO loss distribution under different
market scenarios. The total volume of the considered CDO is assumed to
be 300 million Euros. The portfolio actually consists of two subportfolios.
The first one includes greater exposures for 30 loans, with an exposure of
approximately 9 − 11 million Euros each. The first subportfolio consists of
investment grade companies only. Let the target distribution of ratings for
the considered subportfolio be as displayed in Table 11.7.

The second subportfolio consists of 30 small firms of speculative grade
rating class BB. For simplicity, we assume that the average exposure for
the second subportfolio is approximately 1 million Euros for each loan. The
portfolio is refinanced in the so-called build-up phase through an equity
tranche of 45 million Euros (15% of the target volume) and a credit line
divided into a mezzanine and senior line. The equity tranche itself is divided
into a so-called first loss piece of 15 million Euros and a second loss piece
of 30 million Euros taken by the second loss investors. For the sake of
completeness we point out that one third of the equity tranche as well as

TABLE 11.7. Target Distribution of Ratings for the First
Subportfolio of the SME CDO

Rating AAA AA A BBB

No. of firms 0 5 10 15
Average Exposure (Million Euros) 0 11 10 9
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FIGURE 11.8. Structure of the considered CDO.

5% of the total volume is taken by the bank. The structure of the portfolio
is displayed in Figure 11.8.

After the build-up phase of the portfolio, a maturity horizon of eight
years is assumed before the debt will be paid back by the obligors. Making
allowance for the high numbers of obligors in subinvestment grade rating
classes, we should expect several defaults to happen. Also the loss distri-
bution of the CDO will be very much dependent on the macroeconomic
situation at the issuance time. In the following we provide some simula-
tion results for the loss distribution based on the introduced multiperiod
continuous-time migration model. Let us first illustrate the effect of the
initial situation for the business cycle when the CDO is issued.

Figure 11.9 illustrates a typical loss distribution for the portfolio under
an average macroeconomic scenario. We also provided the quantiles of the
loss distribution in order to illustrate the probability for the equity tranche
to be completely eaten away as well as the probabilities that the mezzanine
or even the senior tranche will be affected. The mean loss of the considered
CDO is 9.93 million Euros, while the 0.5-quantile is 9.1 million Euros. The
difference is due to the fact that the loss distribution is skewed to the right.
We obtain a skewness parameter of β = 0.81 and a kurtosis of k = 3.61.
We find that under the considered macroeconomic scenario the probability
for the equity tranche to be eaten completely and thus the probability for a
mezzanine investor to be hit is approximately 20%. The observed maximum
of the loss distribution running 10,000 simulations with our multiperiod
continuous-time migration model gives a value of 38.2 million Euros. We
conclude that under the average market scenario the senior tranche of the
CDO was never hit.
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FIGURE 11.9. Sample loss distribution for the portfolio based on an average
economic scenario situation.

Figure 11.10 illustrates how based on the obtained loss distribution the
effect and finally credit spreads for the tranches can be obtained. The loss in
a tranche is a piecewise linear function that can be determined in a straight-
forward manner. We illustrate the procedure for the mezzanine tranche of
the portfolio. For losses below 15 million Euros investors in the mezza-
nine tranche will not be affected at all. Beginning from 15 million the loss
in the tranche increases linearly until the portfolio loss reaches 45 million
Euros. In this case the complete tranche is eaten and the senior tranche
will be affected. Thus, dependent on the loss distribution, we will be able
to determine expected and unexpected losses in each tranche.

For a scenario where the CDO was initially issued in an expansion of
the economy, we obtain other results; see Figure 11.11 and Table 11.8.
Now the mean loss of the distribution is 4.15 million Euros while the 0.5-
quantile under an initial economic expansion scenario is 2.8 million Euros.
This is due to the extremely right-skewed and leptokurtic distribution with
β = 1.38 and k = 5.05. To exceed a loss of 15 million Euros affecting the
mezzanine tranche has a probability of only 1.1%. We obtain a maximum
of the loss distribution of 26.3 million Euros. Effects on tranche spreads
will be substantial comparing the average macroeconomic scenario and the
expansion scenario.
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FIGURE 11.10. Relationship between portfolio loss and mezzanine tranche loss.
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FIGURE 11.11. Sample loss distribution for the CDO under an expansion
scenario of the macroeconomic situation.
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TABLE 11.8. Selected Quantiles of the CDO Loss Distribution According to
the Tranche Specification Under Average Macroeconomic Scenario

Quantile 0.5 0.802 0.95 0.99 Max
Loss 9.1 million 15 million 21 million 27 million 38.2 million
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FIGURE 11.12. Sample loss distribution for the CDO under an expansion
scenario of the macroeconomic situation.

Finally, Figure 11.12 displays a sample loss distribution for the CDO
when it is issued under a recession scenario of the macroeconomic situation.
We find the distribution to be less skewed β = 0.5382 and with a kurtosis
of k = 3.16 close to that of the normal. However, the probability for the
mezzanine tranche to be hit is approximately 52%, while for the first time
there is also a probability of 15 basis points to hit the senior tranche. The
maximum loss occurred was 57.5 million Euros denoting a loss in the senior
tranche of more than 12.5 million Euros. Even the investors in the most
secure tranche could be affected by the losses.

We conclude that the suggested multiperiod continuous-time migration
model based on adjustments of the transition matrix according to busi-
ness cycle effects is a model that can also be used for calculating CDO
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TABLE 11.9. Selected Quantiles of the CDO Loss Distribution According to the
Tranche Specification Under Initial Economic Expansion and Recession Scenario

Quantile 0.418 0.5 0.95 0.99 0.9985 Max

Loss (rec) 15 million 16.8 million 30.8 million 37.1 million 45 million 57.5 million
Loss (exp) 2.1 million 2.8 million 12.6 million 15.4 million 20.7 million 26.3 million

TABLE 11.10. Descriptive Statistics for CDO Loss Distribution
Dependent on Initial Macroeconomic Scenario

Mean σ Skewness Kurtosis
Average Scenario 9.9345 5.8811 0.8115 3.6117
Expansion Scenario 4.1512 3.8536 1.3824 5.0523
Recession 17.2916 7.7167 0.5382 3.1646

tranche loss distributions. Due to correlation with a systematic risk factor,
the model has the crucial advantage over a one-factor model that rating
migrations to nondefault states can be included. The model further explic-
itly showed the effect of the initial stage of the economy when the CDO was
issued. A next step would be to use the model for CDO pricing to examine
its performance on real market data.

11.4 Pricing Step-Up Bonds

Another credit derivative where the use of historical or risk-neutral tran-
sition matrices is of particular help is so-called step-up bonds. For these
instruments, the coupon depends on the issuer’s rating or possibly also on
the rating of its long-term debt. To compensate investors for a possible
decline in the credit quality, the bonds offer the following feature if the rat-
ing of the issuer deteriorates and hits a predefined level, the coupon rises
with a predefined number of basis points. In the following we will illus-
trate how transition matrices might be used to price step-up bonds, i.e.,
corporate bonds with a step-up provision. In our analysis we will follow
the methods and techniques outlined in Lando and Mortensen (2005) and
Houweling et al. (2004). Both studies concentrate on telecom bonds in the
Euro zone. While Houweling et al. (2004) focus on a comparison of different
valuation models, Lando and Mortensen (2005) investigate to what extent
step-up bonds are priced at a discount relative to fixed-coupon bonds.
In the following, we will briefly illustrate how historical and derived risk-
neutral transition matrices can be used to price bonds with such step-up
provisions.
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11.4.1 Step-Up Bonds
Step-up bonds offer a way of linking credit quality of the issuer of a bond to
cash flows. They can be considered as a special case of credit-sensitive notes,
which were first issued in the late 1980s. Recently, they have been popular
in particular in the telecom sector with quite a large volume of issuance.
An advantage of this high volume is that the secondary market for these
bonds is quite liquid. As mentioned above, the coupon of a step-up bond
is dependent on the issuer’s rating or the rating of its long-term debt and
rises when the rating deteriorates and hits a predefined level. Depending on
the type of step-up coupon, the coupon can rise even a consecutive number
of times if the rating further deteriorates. On the other hand, for many
step-up bonds, the coupon is also reduced if the issuer’s rating improves
again. This is then the so-called step-down feature. Note, however, that for
all types of step-up bonds in the market so far, the coupon can never go
below the original level at issuance.

The different step-up conditions can be used for a classification of the
bonds. Hereby, a possible discriminating condition of the step-up bonds is
the definition of a rating change: whether both Moody’s and S&P have
to downgrade the issuer or only one of them before the step-up trigger is
hit. Another discriminating condition can be based on whether the coupon
can step up and down or only step up. Further criteria could be the rating-
trigger level and the number of basis points of the step-up. For more on the
classification and definition of step-up bonds, see, e.g., McAdie et al. (2000)
or Marchakitus et al. (2001). In the following we will describe the basic
framework that can be used to price step-up bonds based on a historical
migration matrix and observed market credit spreads (Houweling et al.,
2004; Lando and Mortensen, 2005).

11.4.2 Pricing of Step-Up Bonds
In this section we will briefly describe the approach of Houweling et al.
(2004) that can be used to price step-up bonds. Generally for pricing of
a bond, it is assumed that the value of the bond equals the sum of the
discounted, expected cash flows. The difference between a plain vanilla
bond and a step-up bond’s coupons is that in the latter case the coupons
are a function of the issuer’s rating. Therefore, it is necessary to model
the issuer’s rating transition process. Hereby, the company’s credit rat-
ing Rt is initially modeled as a Markov chain on a finite state space
S = 1, . . . , K under the historical probability measure. Since we are inter-
ested in pricing the bond, the migration process should be modeled under
the equivalent martingale measure such that the Jarrow et al. (1997)
model can be used as an appropriate framework. Following the described
model in Section 5.1, it is therefore assumed the existence of a unique
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equivalent martingale measure makes all default-free and defaultable bond
prices martingales. Further, the rating process is assumed to be indepen-
dent of default-free interest rates. As pointed out in Chapter 5, various
techniques have been suggested to calculate risk-neutral transition matri-
ces from actually observed real-world ones. Houweling et al. (2004) follow
an approach similar to the one suggested by Kijima and Komoribayashi
(1998); however, they model “cumulative” probabilities q̃ij(t, T ) instead of
the usually suggested “forward” probabilities q̃ij(t, t + 1); see, e.g., Jarrow
et al. (1997), Kijima and Komoribayashi (1998), and Lando and Mortensen
(2005).

Therefore, the entries of the risk-neutral transition matrix Q̃(t, T ) are
derived by

q̃ij(t, T ) =

{
π(t, T )qij(t, T ) for j �= K

1 − π(t, T )(1 − qiK(t, T )) for j = K
(11.15)

for some risk premium π(t, T ) that can be calculated by

π(t, T ) =
1 − q̃Rt,K(t, T )
1 − qRt,K(t, T )

(11.16)

Note that hereby the authors use only one risk premium for all rating
categories because each Euro-denominated telecom issuer does not cover
the full rating spectrum. Therefore, only the risk premium derived from
the issuer’s current rating can be calculated and is applied to all rating
states. The determined risk-neutral transition matrices are then used for
the valuation of the step-up bonds.

Let us therefore consider a step-up and step-down bond with n remain-
ing coupon payments at times tj(j = 2, . . . , n) and a face value of 1. Of
course, the coupon payment j is made only if the bond has not defaulted
before tj . Dependent on the rating r at time tj , the coupon payment
is equal to cr for r = 1, . . . , K. Further, the step-up bond’s principal
amount is paid at maturity tn, again only if the issuer has not defaulted
beforehand. In case the issuer does default before maturity, a constant
recovery rate δ is paid at the default time. Note that this assumption
implies that the recovery rate δ applies to the principal only and not to
the coupons.

Then the risk-neutral valuation principle is applied to the cash flows
from coupons, principal, and recovery rate, yielding the price of the step-
up bond at time t. Assuming that default can happen only at the coupon
payment dates, the value of a rating-triggered step-up and step-down bond
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can be determined according to the following expression [see Houweling
et al. (2004) for the derivation of the expression]:

B(t, t, c) = p(t, t1)(1 − q̃Rt ,K (t, t1))cRt0

+
n∑

j=2

[
p(t, tj)

K∑
k=1

q̃Rt ,k (t , tj−1)(1 − q̃k ,K (tj − 1, tj ))ck

]

+ p(t, tn)(1 − q̃Rt ,K (t , tn))

+
n∑

j=1

p(t, tj)(q̃Rt ,K (t, tj) − q̃Rt ,K (t, tj−1))δ (11.17)

In comparison the pricing equation for a similar plain vanilla bond without
a step-up or step-down provision would be

BPV (t, t, c) =
n∑

j=1

p(t, tj)(1 − q̃Rt ,K (t, tj))c

+p(t, tn)(1 − q̃Rt ,K (t, tn))

+
n∑

j=1

p(t, tj)(q̃Rt ,K (t, tj) − q̃Rt ,K (t, tj−1))δ (11.18)

An alternative method is suggested by McAdie et al. (2000) or Fumagalli
and Tauren (2001). The authors suggest using the zero-coupon curve of
the telecom company to discount expected coupons. In their application,
however, the expectation is calculated with historical transition probabil-
ities instead of using risk-neutral ones. Using the issuers time-t discount
factor υ(t, T ) for time T and assuming that the first coupon payment is
known, the pricing equation becomes

BH(t, t, c) = υ(t, t1)cRt0
+

n∑
j=2

[υ(t, tj)
K∑

k=1

q̃Rt ,k (t, tj−1)ck] + υ(t, tn)

For empirical results of the approach, we refer to the original paper by
Houweling et al. (2004) and also to Lando and Mortensen (2005). Overall,
the step-up bonds are one of the credit derivatives where rating changes and
credit migrations to another state are of particular interest. As mentioned
before, one should keep in mind that important information related to a
single company might be ignored when transition matrices are used to price
credit derivatives. By using the rating of the company and the correspond-
ing migration probabilities as input variables, one measures the dynamics
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of the rating class but not those of the individual firm. Unfortunately,
many characteristics of a company affecting the default process or rating
changes may not be captured by the rating class. To overcome this prob-
lem, one might decide to consider only the bond of the particular issuer and
conduct the adjustment based on the observed spread and implied default
probability.
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Publications de l’Institut de Statistique de L’Université de Paris 8,
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