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xi

Preface

Why Statistics?

Those of us who teach in this area hate to admit it, but statistics is seldom listed as
the most sought-after course on campus. A high percentage of students enroll
because their department has made this a required course. Under these conditions
students have a right to ask “why?”—and there are at least two good answers to that
question. The traditional answer is that we want our students to learn a specific set
of skills about data analysis (including formulae and procedures) so that they can
understand the experimental literature and conduct analyses on their own data. The
broader answer, and one that applies to perhaps a larger number of students, is that
some more general facility with numbers and data in general is an important skill
that has lifelong and career-related value. Most of us, and not only those who do
experimental work, frequently come across numerical data as part of our jobs, and
some broad understanding of how to deal with those data is an important and mar-
ketable skill. It is my experience that students who have taken a course in statistics,
even if they think that they have forgotten every technique they ever learned, have
an understanding of numerical data that puts them ahead of their colleagues. And in
a world increasingly dominated by quantitative data, that skill is more and more in
demand. Many of my former students have told me that they were assigned an impor-
tant task because they were the only one in their office who wasn’t afraid of data.

Statistics is not really about numbers; it is about understanding our world.
Certainly an important activity for statisticians is to answer such questions as
whether cocaine taken in a novel context has more of an effect than cocaine taken
in a familiar context. But let’s not forget that what we are talking about here is drug
addiction or the effect of the environment on learning and memory. The results of
our experiment have a life beyond the somewhat limited world of the cognitive or
social scientist. And let’s also remember that the numbers that most people see do
not relate to tightly controlled experiments, but to the implications of a traffic study
for the development of a shopping center, the density of residential housing and its
impact on the local school budget, and a marketing survey for a new product. All of
these examples involve many of the basic statistical concepts covered in this book.

Why This Text?

Enough preaching on the value of a course in statistics. Presumably the instructor
was convinced before he or she started reading, and I hope that students have
become at least a bit more open minded. But the question remains, why should you



use this book instead of another of the many available texts? Part of the answer
comes down to the matter of style. I have deliberately set out to make this book
both interesting and useful for students and instructors. It is written in an informal
style, every example is put in the context of an investigation that one might rea-
sonably conduct, and almost all of the examples are taken from the published lit-
erature. It does not make much sense to ask people to learn a series of statistical
procedures without supplying examples of situations in which those techniques
would actually be applied.

This text is designed for an introductory statistics course in psychology, edu-
cation, and other behavioral sciences. It does not presuppose a background in
mathematics beyond high school algebra, and it emphasizes the logic of statistical
procedures rather than their derivation.

Over the past twenty years the world of data analysis has changed dramati-
cally. Whereas we once sat down with a calculator and entered data by hand to
solve equations, we are now much more likely to use a statistical package running
on a desktop computer. As the mechanics of doing statistics have changed, so too
must our approach to teaching statistical procedures. While we cannot, and should
not, forego all reference to formulae and computations, it is time that we relaxed
our emphasis on them. And by relaxing the emphasis on computation, we free up
the time to increase the emphasis on interpretation. That is what this book tries
to do. It moves away from simply declaring group differences to be significant or
not significant toward an explanation of what such differences mean relative to the
purpose behind the experiment. I like to think of it as moving toward an analysis
of data and away from an analysis of numbers. It becomes less important to concen-
trate on whether there is a difference between two groups than to understand what
that difference means.

In the process of moving away from a calculator toward a computer, I have
altered my approach to formulae. In the past I often gave a definitional formula,
but then immediately jumped to a computational one. But if I have to worry less
about computation, and more about understanding, then I am able to revert to the
use of definitional formulae. It is my hope that this will make students’ lives a bit
easier. 

Unique Features

Several features of this book set it apart from other books written for the same
audience. One of these was just noted: the use of examples from the research liter-
ature. I have attempted to choose studies that address problems of interest to stu-
dents. Examples include the effect of context on heroin overdose, the relationship
between daily stress and psychological symptoms, variables influencing course
evaluations, the effect of parental divorce on children’s feelings of vulnerability,
and variables controlling memory changes as a function of age. I want students to
have some involvement in the questions being asked, and I want to illustrate that
statistical analyses involve more than just applying a few equations.

xii Preface 



In most chapters a section is devoted to an example using SPSS. Readers of
previous editions have suggested that I concentrate on SPSS, which is probably
the most widely used computer data analysis package, and I have done so in this
edition. My purpose is to familiarize students with the form of computer printouts
and the kinds of information they contain. I am not trying to teach students how
to use a particular statistical package, but I want them to get a feel for what is pos-
sible. But if students are going to be using SPSS, I would hate to have them buy an
SPSS manual just to do their work. I have two SPSS manuals on the Web and
encourage students to go to them. They are not as complete as a printed book
would be, but they are more than sufficient to allow students to work with SPSS.
I recommend the shorter manual, but the longer one is there if additional informa-
tion is needed.

Data files for all of the examples and exercises used in the text are available
on the Web site that I maintain for this book. The basic URL for that site is
http://www.uvm.edu/~dhowell/fundamentals7/index.html. The first link at that
site will take you to the data. These files are formatted in ASCII, so that they can
be read by virtually any statistical program. The variable names appear on the first
line and can be directly imported to your software. The data can be saved to your
computer simply by selecting your browser’s Save option. The availability of these
files makes it easy for students and instructors to incorporate any statistical pack-
age with the text.

A Student Solutions Manual is also available at the Web site referred to above.
It provides complete solutions for half the exercises. I have included answers only
to the odd-numbered questions because many instructors prefer to assign problems
(or exam questions) on material that does not have an answer in the back of the
book or the Student Solutions Handbook. (I am very much aware that this does
annoy students, from whom I sometimes receive unhappy e-mail messages, but it
is a balance between the needs of students and those of instructors.)

On my Web pages I have also included many links to other sites, where you
can find good examples, small programs to demonstrate statistical techniques, a
more extensive glossary, and so on. People have devoted a great deal of time 
to making material available over the Internet, and it is very worthwhile to use
that material.

Why a New Edition?

When an author comes out with a new edition, I think that it is fair to ask
what was wrong with the old one, other than the fact that it is widely available
in the used book market. Normally, I design a new edition to incorporate
changes that are going on in the field and to remove things that are no longer
needed. And, despite what many people think, there is a lot of new work going
on. But in this edition I have taken a different approach. Although I have
added some new material, my major effort has been to read the book as a new
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student would and to try to find ways to clarify and repeat concepts. For exam-
ple, I know that the Y axis is the vertical one, but most people don’t, and
telling them once is not enough. So I often write something like “On the Y
(vertical) axis …” And when you start looking at a book that way, you find
many places for clarification—and for me especially, because I have a wife who
has spent most of her life in secondary education and knows more about peda-
gogy than I do. (She actually read every chapter and made many fruitful sug-
gestions.) I have also begun each chapter with a list of concepts that will be
important in that chapter, in the hopes that if you aren’t sure what they are you
will review them. Where necessary I have inserted important comments in
boxes to pull several points together, to highlight material that you really need
to understand, or to clarify difficult concepts. I have also inserted short biogra-
phies of important statisticians. Especially in the first half of the 20th century,
there were many interesting (and cantankerous) people in the field, and they
are worth meeting. Finally, I have removed the very brief and weak chapter
summaries and replaced them with much more complete ones. My goal was to
condense the chapter into a few paragraphs, and you will do well to spend some
time on them.

An important feature of this book is the emphasis on measures of effect size.
This is in line with trends in the field, but it is also important because it causes the
student, and the researcher, to think carefully about what a result means. In pre-
senting effect size measures I have tried to convey the idea that the writer is trying
to tell the reader what the study found, and there are different ways of accomplish-
ing that goal. In some situations it is sufficient to simply talk about the difference
between means or proportions. In other situations a standardized measure, such as
Cohen’s  d̂, is helpful. I have stayed away from correlation-based measures as much
as I reasonably can because I don’t think that they tell the reader much of what he
or she wants to know.

I have maintained from earlier editions a section called “Seeing Statistics.”
These sections are built around a set of Java applets written by Gary McClelland
at the University of Colorado. These allow the students to illustrate for themselves
many of the concepts that are discussed in the book. The student can open these
applets, change parameters, and see what happens to the result. A nice illustration
of this is the applet illustrating the influence of heterogeneous subsamples in a cor-
relation problem (see Chapter 9, p. 219). These applets are available directly from
my Web site referred to earlier.

In addition to the features already described, the Web site linked to this book
through the publisher’s pages (there is a link on my pages) contains a number of
other elements that should be helpful to students. These include a Statistical
Tutor, which is a set of multiple-choice questions covering the major topics in the
chapter. Whenever a student selects an incorrect answer, a box appears explaining
the material and helping the student to see what the correct answer should be.
There are also links to additional resources, a review of basic arithmetic, and links
to other examples and additional material.
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Organization and Coverage

This section is meant primarily for instructors, because frequent reference is made
to terms that students cannot yet be expected to know. Students may wish to skip
to the next section.

n The first seven chapters of the book are devoted to standard descriptive
statistics, including ways of displaying data, measures of central tendency
and variability, the normal distribution, and those aspects of probability
that are directly applicable to what follows.

n Chapter 8 on hypothesis testing and sampling distributions serves as a
nontechnical introduction to inferential statistics. That chapter was
specifically designed to allow students to examine the underlying logic of
hypothesis testing without simultaneously being concerned with learning
a set of formulae and the intricacies of a statistical test.

n Chapters 9, 10, and 11 deal with correlation and regression, including
multiple regression.

n Chapters 12–14 are devoted to tests on means, primarily t tests.

n Chapter 15 is concerned with power and its calculation and serves as an
easily understood and practical approach to that topic.

n Chapters 16 –18 are concerned with the analysis of variance. I have
included material on simple repeated-measures designs, but have
stopped short of covering mixed designs. These chapters include
consideration of basic multiple comparison procedures by way of
Fisher’s protected t, which not only is an easily understood statistic but
has also been shown to be well behaved, under limited conditions,
with respect to both power and error rates. At the request of several
users of the earlier editions, I have included treatment of the
Bonferroni test, which does a very commendable job of controlling
error rates, while not sacrificing much in the way of power when used
judiciously. Also included are measures of magnitude of effect and
effect size, a fairly extensive coverage of interactions, and procedures
for testing simple effects. The effect size material, in particular, is
considerably expanded from earlier editions.

n Chapter 19 deals with the chi-square test, although that material could
very easily be covered at an earlier point if desired.

n Chapter 20 covers the most prominent distribution-free tests.

n Chapter 21 offers the student practice in deciding upon the most
appropriate statistical procedure for use with a given experimental design.
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Not every course would be expected to cover all these chapters, and several (most
notably multiple regression, power, and distribution-free statistical methods) can
be omitted or reordered without disrupting the flow of the material. (I cover chi-
square early in my courses, but it is late in the text on the advice of reviewers.)
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1

Students usually come to any course with some doubt about just what will
be involved and how well they will do. This chapter will begin by laying out the
kinds of material that we will, and will not, cover. I will then go on to make a dis-
tinction between statistics and mathematics, which, for the most part, really are not
the same thing at all. As I will point out, all of the math that you need for this course
you learned in high school—though you may have forgotten a bit of it. I will then
go on to lay out why we need statistical procedures and what purpose they serve,
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and I will provide a structure for all of the procedures we will cover. Finally, the
chapter will provide an introduction to computer analyses of data.

For many years, when I was asked at parties and other social situations what
I did for a living, I would answer that I was a psychologist (now retired). Even
though I quickly added that I was an experimental psychologist, people would
make comments about being careful what they said and did, as if I was thinking all
sorts of thoughts that would actually never occur to me. So finally I changed tactics
and started telling people that I taught statistics—an answer that is also perfectly
true. That answer solved one problem—people no longer looked at me with bla-
tant suspicion—but it created another. Now they told me how terrible they were in
math and how successful they were in avoiding ever taking a statistics course—not
a very tactful remark to make to someone who spent his professional life teaching
that subject! Now I just tell them that I taught research methods in psychology for
35 years, and that seems to satisfy them.

Let‘s begin by asking what the field of statistics is all about. After all, you are
about to invest a semester in studying statistical methods, so it might be handy to
know what you are studying. The word statistics is used in at least three different
ways. As used in the title of this book, statistics refers to a set of procedures and rules
(not always computational or mathematical) for reducing large masses of data to
manageable proportions and for allowing us to draw conclusions from those data.
That is essentially what this book is all about.

A second, and very common, meaning of the term is expressed by such state-
ments as “statistics show that the number of people applying for unemployment benefits
has fallen for the third month in a row.” In this case statistics is used in place of the much
better word data. For our purposes, statistics will never be used in this sense.

A third meaning of the term is in reference to the result of some arithmetic or
algebraic manipulation applied to data. Thus, the mean (average) of a set of num-
bers is a statistic. This perfectly legitimate usage of statistics will occur repeatedly
throughout this book.

We thus have two proper uses of the term: (1) a set of procedures and rules and
(2) the outcome of the application of those rules and procedures to samples of data.
You will always be able to tell from the context which of the two meanings is intended.

The term statistics usually elicits some level of math phobia among many stu-
dents, but mathematics and mathematical manipulation do not need to, and often
don‘t, play a leading role in the lives of people who work with statistics. (Indeed,
Jacob Cohen, one of the clearest and most influential writers on statistical issues in the
behavioral sciences, suggested that he had been so successful in explaining concepts
to others precisely because his knowledge of mathematical statistics was so inade-
quate.) Certainly you can‘t understand any statistical text without learning a few formu-
lae and understanding many more. But the required level of mathematics is not great.
You learned more than enough in high school. Those who are still concerned should
spend a few minutes going over Appendix A, “Arithmetic Review.” It lays out some
very simple rules of mathematics that you may have forgotten, and a small investment
of your time will be more than repaid in making the rest of this book easier to follow.
I know—when I was a student I probably wouldn’t have looked at it either, but you
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really should! A more complete review of arithmetic, which is perhaps more fun to
read, can be found by going to the Web site for this book at

http://www.uvm.edu/~dhowell/fundamentals7/

and clicking on the link for “Arithmetic Review.”
Something far more important than worrying about algebra and learning to

apply equations is thinking of statistical methods and procedures as ways to tie the
results of some experiment to the hypothesis that led to that experiment. Several edi-
tions ago I made a major effort to remove as much mathematical material as possi-
ble when that material did not contribute significantly to a student’s understanding of
data analysis. I also simplified equations by going back to definitional formulae
rather than present formulae that were designed when we did everything with calcu-
lators. This means that I am asking you to think a bit more about the logic of what
you are doing. I don‘t mean just the logic of a hypothesis test. I mean the logic
behind the way you approach a problem. It doesn‘t do any good to be able to ask
if two groups have different means (averages) if a difference in means has nothing to
say about the real question you hoped to ask. When we put too much emphasis on
formulae, there is a tendency to jump in and apply those formulae to the data with-
out considering what the underlying question really is. One reviewer whose work I
respect has complained that I am trying to teach critical thinking skills along with sta-
tistics. The reviewer is right, and I enthusiastically plead guilty. You will never be
asked to derive a formula, but you will be asked to think. I leave it to you to decide
which skill is harder to learn.

Another concern that some students have, and I may have contributed to that
concern in the preceding paragraph, is the belief that the only reason to take a course
in statistics is to be able to analyze the results of experimental research. Certainly your
instructor hopes many of you will use statistical procedures for that purpose, but those
procedures and, more important, the ways of thinking that go with them, have a life
beyond standard experimental research. This is my plea to get the attention of those,
like myself, who believe in a liberal arts education. Much of the material we will cover
here will be applicable to whatever you do when you finish college. People who work
for large corporations or small family-owned businesses have to work with data.
People who serve on a town planning commission have to be able to ask how vari-
ous changes in the town plan will lead to changes in residential and business devel-
opment. They will have to ask how those changes will in turn lead to changes in school
populations and the resulting level of school budgets, and on and on. Those people
may not need to run an analysis of variance (Chapters 16 through 18), though some
acquaintance with regression models (Chapters 9 through 11) may be helpful, but the
logical approach to data required in the analysis of variance is equally required when
dealing with town planning. (And if you mess up town planning, you have everybody
mad at you.)

A course in statistics is not something you take because it is required and then
promptly forget. (Well, that probably is why many of you are taking it, but I hope
you expect to come away with more than just three credits on your transcript.)
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If taught well, knowledge of statistics is a job skill you can use (and market). That is
largely why I have tried to downplay the mathematical foundations of the field. Those
foundations are important, but they are not what will be important later. Being able
to think through the logic and the interpretation of an experiment or a set of data is
an important skill that will stay with you; being able to derive the elements of a regres-
sion equation is not. That is why most of the examples used in this book relate to work
that people actually do. Work of that type requires thought. It may be easier to under-
stand an example that starts out “Suppose we had three groups labeled A, B, and
C” than it is to understand an actual experiment. But the former is boring and doesn‘t
teach you much. A real-life example is more interesting and has far more to offer.
I devoted a great deal of time while writing this edition to finding new examples that
apply to interesting situations.

1.1 The Importance of Context

Let’s start with an example that has a great deal to say in today’s world. It may be
an old study, but it is an important one. Drug use and abuse is a major problem in
our society. Heroin addicts die every day from overdoses. Psychologists should have
something to contribute to understanding the problem of drug overdoses, and, in
fact, we do. I will take the time to describe an important line of research in this
area, because a study that derives from that line of research can be used to illus-
trate a number of important concepts in this chapter and the next. Many of you
will know someone who is involved with heroin, and because heroin is a morphine
derivative, this example may have particular meaning to you.

Morphine is a drug commonly used to alleviate pain, and you may know that
repeated administrations of morphine lead to morphine tolerance, in which a fixed
dose has less and less of an effect (pain reduction) over time. Patients suffering
from extreme pain are very familiar with these tolerance effects. A common exper-
imental task demonstrating morphine tolerance involves placing a mouse on a
warm surface. When the heat becomes too uncomfortable, the mouse will lick its
paws, and the latency of the paw-lick is used as a measure of the mouse‘s sensitiv-
ity to pain. Mice injected with morphine are less sensitive to pain and show longer
paw-lick latencies than noninjected mice. But as tolerance develops over repeated
administrations, the morphine has less effect and the paw-lick latencies shorten
until the behavior looks just like that of an untreated mouse.

Here’s where psychology enters the picture. In 1975 a psychologist at
McMaster University, Shepard Siegel, hypothesized that tolerance develops
because the cues associated with the context in which morphine is administered
(room, cage, and surroundings) come to elicit in the mouse a learned compensa-
tory mechanism that counteracts the effect of the drug. It is as if the mouse, seeing
the stimuli associated with morphine administration in the past, has learned to
turn off the brain receptors through which morphine works, making the morphine
less effective at blocking pain. As this compensatory mechanism develops over a
series of trials, an animal requires larger and larger doses of morphine to have the
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same pain-killing effect. But suppose you give that larger dose of morphine in an
entirely different context. Because the context is different, the animal doesn’t
internally compensate for the morphine because it doesn‘t recognize that the drug
is coming. Without the counterbalancing effects, the animal should now experi-
ence the full effect of that larger dose of the drug. In that case, it should take a long
time for the animal to feel the need to lick its paws, because it has received the
larger dose of morphine required by the increased tolerance without the compen-
sating mechanism elicited by the usual context.

But what do mice on a warm surface have to do with drug overdose? First,
heroin is a derivative of morphine. Second, heroin addicts show clear tolerance effects
with repeated use and, as a result, often increase the amount of each injection. By
Siegel’s theory, they are protected from the dangerous effects of the large (and to you
and me, lethal) dose of heroin by the learned compensatory mechanism associated
with the context in which they take the drug. But if they take what has come to be
their standard dose in an entirely new setting, they would not benefit from that pro-
tective compensatory mechanism, and what had previously been a safe dose could
now be fatal. In fact, Siegel noted that many drug overdose cases occur when an indi-
vidual injects heroin in a novel environment. Novelty, to a heroin user, can be deadly!

If Siegel is right, his theory has important implications for the problem of drug
overdose. One test of Siegel’s theory, which is a simplification of studies he actually
ran, is to take two groups of mice who have developed tolerance to morphine and
whose standard dosage has been increased above normal levels. One group is tested in
the same environment in which they previously have received the drug. The second
group is treated exactly the same, except that they are tested in an entirely new envi-
ronment. If Siegel is correct, the animals tested in the new environment will show a
much greater pain threshold (the morphine will have more of an effect) than the ani-
mals injected in their usual environment. This is the basic study we will build on.

Our example of drug tolerance illustrates a number of important statistical con-
cepts. It also will form a useful example in later chapters of this book. Be sure you
understand what the experiment demonstrates. It will help if you think about what
events in your own life or the lives of people around you illustrate the phenomenon
of tolerance. What effect has tolerance had on behavior as you (or they) developed
tolerance? Why is it likely that you probably feel more comfortable with comments
related to sexual behavior than do your parents? Would language that you have come
to ignore have that same effect if you heard it in a commencement speech?

You may think that an experiment conducted 30 years ago, which is before
most of the readers of this book were born, is too old to be interesting. But a quick
Google search will reveal a great many recent studies that have derived directly
from Siegel’s early work. A particularly interesting one by Mann-Jones, Ettinger,
Baisden, and Baisden has shown that a drug named dextromethorphan can coun-
teract morphine tolerance. That becomes interesting when you learn that dex-
tromethorphan is an important ingredient in cough syrup. This suggests that
heroin addicts should not be taking cough syrup any more than they should be
administering heroin in novel environments. The study can be found at

http://www.eou.edu/psych/re/morphinetolerance.doc
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1.2 Basic Terminology

Statistical procedures can be separated into roughly two overlapping areas: descrip-
tive statistics and inferential statistics. The first several chapters of this book will
cover descriptive statistics, and the remaining chapters will examine inferential
statistics. We will use the simplified version of Siegel’s morphine study to illustrate
the differences between these two terms.

Descriptive Statistics
Whenever your purpose is merely to describe a set of data, you are employing
descriptive statistics. A statement about the average length of time it takes a nor-
mal mouse to lick its paw when placed on a warm surface would be a descriptive sta-
tistic, as would be the time it takes a morphine-injected mouse to do the same thing.
Similarly, the amount of change in the latency of paw-licks once morphine has been
administered and the variability of change among mice would be other descriptive
statistics. Here we are simply reporting measures that describe average latency
scores or their variability. Examples from other situations might include an exami-
nation of dieting scores on the Eating Restraint Scale, crime rates as reported by the
Department of Justice, and certain summary information concerning examination
grades in a particular course. Notice that in each of these examples we are just
describing what the data have to say about some phenomenon.

Inferential Statistics
All of us at some time or another have been guilty of making unreasonable generaliza-
tions on the basis of limited data. If, for example, one mouse showed shorter latencies
the second time it received morphine than it did the first, we might try to claim clear
evidence of morphine tolerance. But even if there were no morphine tolerance, or
environmental cues played no role in governing behavior, there would still be a 50-50
chance that the second trial’s latency would be shorter than that of the first, assuming
that we rule out tied scores. Or you might hear or read that tall people tend to be more
graceful than short people and conclude that that is true because you once had a very
tall roommate who was particularly graceful. You conveniently forget about the 6’ 4”
klutz down the hall who couldn’t even put on his pants standing up without tripping
over them. Similarly, the man who says that girls develop motor skills earlier than boys
because his daughter walked at 10 months and his son didn’t walk until 14 months is
guilty of the same kind of error: generalizing from single (or too limited) observations.

Small samples or single observations may be fine when we want to study
something that has very little variability. If we want to know how many legs a cow
has, we can find a cow and count its legs. We don’t need a whole herd—one will
do. However, when what we want to measure varies from one individual to
another, such as the amount of milk a cow will produce or the change in response
latencies with morphine injections in different contexts, we can’t get by with only
one cow or one mouse. We need a bunch. Here you’ve just seen an important
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principle in statistics—variability. The difference between how we determine the
number of legs on a cow versus the milk production of cows depends critically on
the degree of variability in the thing we want to measure. Variability will follow
you throughout this course.

When the property in question varies from animal to animal or trial to trial,
we need to take multiple measurements. However, we can’t make an unlimited
number of observations. If we want to know whether morphine injected in a new
context has a greater effect, how much milk cows generally produce, or when girls
usually start to walk, we must look at more than one mouse, one cow, or one girl.
But we cannot possibly look at all mice, cows, or girls. We must do something in
between—we must draw a sample from a population.

Definition Population: Complete set of events in which you are interested.

POPULATIONS, SAMPLES, PARAMETERS, AND STATISTICS: A population can be defined
as the entire collection of events in which you are interested (e.g., the scores of
all morphine-injected mice, the milk production of all cows in the country, the
ages at which every girl first began to walk). Thus if we were interested in the
stress levels of all adolescent Americans, then the collection of all adolescent
Americans’ stress scores would form a population, in this case a population of
more than 50 million numbers. If, on the other hand, we were interested only in
the stress scores of the sophomore class in Fairfax, Vermont (a town of approxi-
mately 2300 inhabitants), the population would contain about 60 numbers and
could be obtained quite easily in its entirety. If we were interested in paw-lick
latencies of mice, we could always run another mouse. In this sense, the popula-
tion of scores theoretically would be infinite.

The point is that a population can range from a relatively small set of num-
bers, which is easily collected, to an infinitely large set of numbers, which can never
be collected completely. The populations in which we are interested are usually
quite large. The practical consequence is that we can seldom, if ever, collect data
on entire populations. Instead, we are forced to draw a sample of observations from
a population and to use that sample to infer something about the characteristics of
the population.

When we draw a sample of observations, we normally compute numerical
values (such as averages) that summarize the data in that sample. When such val-
ues are based on the sample, they are called statistics. The corresponding values in
the population (e.g., population averages) are called parameters. The major purpose
of inferential statistics is to draw inferences about parameters (characteristics of
populations) from statistics (characteristics of samples).1
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n Descriptive statistics: Simply describe the set of data at hand.

n Inferential statistics: Use statistics, which are measures of a
sample, to infer values of parameters,
which are measures of a population.

Definition Sample: Set of actual observations; subset of a population.
Statistics: Numerical values summarizing sample data.
Parameters: Numerical values summarizing population data.
Random Sample: A sample in which each member of the population has an equal
chance of inclusion.

We usually assume that a sample is a truly random sample, meaning that
each and every element of the population has an equal chance of being included
in the sample. If we have a true random sample, not only can we estimate param-
eters of the population but we can also have a very good idea of the accuracy of our
estimates. To the extent that a sample is not a random sample, our estimates may
be meaningless, because the sample may not accurately reflect the entire popula-
tion. In fact, we rarely take truly random samples, because that is impractical in
most settings. We usually take samples of convenience (volunteers from
Introductory Psychology, for example) and hope that their results reflect what we
would have obtained in a truly random sample.

Let’s clear up one point that tends to confuse many people. The problem
is that one person’s sample might be another person’s population. For example,
if I were to conduct a study into the effectiveness of this book as a teaching
instrument, the scores of one class on an exam might be considered by me to be
a sample, though a nonrandom one, of the population of scores for all students
who are or might be using this book. The class instructor, on the other hand,
cares only about his or her own students and would regard the same set of scores
as a population. In turn, someone interested in the teaching of statistics might
regard my population (the scores of everyone using this book) as a nonrandom
sample from a larger population (the scores of everyone using any textbook in
statistics). Thus the definition of a population depends on what you are inter-
ested in studying. Notice also that when we speak about populations, we speak
about populations of scores, not populations of people or things.

The fact that I have used nonrandom samples here to make a point should
not lead the reader to think that randomness is not important. On the contrary, it
is the cornerstone of much statistical inference. As a matter of fact, one could
define the relevant population as the collection of numbers from which the sam-
ple has been randomly drawn.

INFERENCE We previously defined inferential statistics as the branch of statistics
that deals with inferring characteristics of populations from characteristics of sam-
ples. This statement is inadequate by itself because it leaves the reader with the
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impression that all we care about is determining population parameters, such as the
average paw-lick latency of mice under the influence of morphine. There are, of
course, times when we care about the exact value of population parameters. For
example, we often read about the incredible number of hours per day the average
high school student spends sending text messages, and that is a number that is
meaningful in its own right. But if that were all there were to inferential statistics,
it would be a pretty dreary subject, and the strange looks I get at parties when
I admit to teaching statistics would be justified.

In our example of morphine tolerance in mice, we don‘t really care what the
average paw-lick latency of mice is. But we do care whether the average paw-lick
latency of morphine-injected mice tested in a novel context is greater or less than
the average paw-lick latency of morphine-injected mice tested in the same context
in which they had received previous injections. Thus in many cases inferential sta-
tistics is a tool used to estimate parameters of two or more populations, more for
the purpose of finding if those parameters are different than for the purpose of
determining the actual numerical values of the parameters.

Notice that in the previous paragraph it was the population parameters, not
the sample statistics, that I cared about. It is a pretty good bet that if I took two dif-
ferent samples of mice and tested them, one sample mean (average) would be larger
than another. (It’s hard to believe that they would come out absolutely equal.) But
the real question is whether the sample mean of the mice tested in a novel context
is sufficiently larger than the sample mean of mice tested in a familiar context to
lead me to conclude that the corresponding population means are also different.

And don’t lose sight of the fact that we really don’t care very much about
drug addiction in mice. What we do care about are human heroin addicts. But
we probably wouldn’t be very popular if we gave heroin addicts overdoses in
novel settings to see what would happen. That would hardly be ethical behavior
on our part. So we have to make a second inferential leap. We have to make the
statistical inference from the sample of mice to a population of mice, and then we
have to make the logical inference from mice to human heroin addicts. Both
inferences are critical if we want to learn anything useful to reduce the incidence
of heroin overdose.

1.3 Selection among Statistical Procedures

As we have just seen, there is an important distinction between descriptive statis-
tics and inferential statistics. The first part of this book will be concerned with
descriptive statistics because we must describe a set of data before we can use it to
draw inferences. When we come to inferential statistics, however, we need to make
several additional distinctions to help us focus the choice of an appropriate statis-
tical procedure. On the inside cover of this book is what is known as a decision
tree, a device used for selecting among the available statistical procedures to be
presented in this book. This decision tree not only represents a rough outline of
the organization of the latter part of the text, it also points up some fundamental
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issues that we should address at the outset. In considering these issues, keep in
mind that at this time we are not concerned with which statistical test is used for
which purpose. That will come later. Rather, we are concerned with the kinds of
questions that come into play when we try to do anything statistically with data,
whether we are talking about descriptive or inferential procedures. These issues are
listed at the various branching points of the tree. I will discuss the first three of
these briefly now and leave the rest to a more appropriate time.

Definition Decision tree: Graphical representation of decisions involved in the choice of
statistical procedures.
Measurement data (quantitative data): Data obtained by measuring objects or events.

Types of Data
Numerical data generally come in two kinds; there are measurement data and cat-
egorical data. By measurement data (sometimes called quantitative data) we mean
the result of any sort of measurement, for example, a score on a measure of stress,
a person’s weight, the speed at which a person can read this page, or an individual’s
score on a scale of authoritarianism. In each case some sort of instrument (in its
broadest sense) has been used to measure something.

Categorical data (also known as frequency data or count data) consist of
statements such as “Seventy-eight students reported coming from a one-parent
family, while 112 reported coming from two-parent families” or “There were
238 votes for the new curriculum and 118 against it.” Here we are counting things,
and our data consist of totals or frequencies for each category (hence the name
categorical data). Several hundred members of the faculty might vote on a proposed
curriculum, but the results (data) would consist of only two numbers—the number
of votes for and the number of votes against the proposal. Measurement data, on
the other hand, might record the paw-lick latencies of dozens of mice, one latency
for each mouse.

Definition Categorical data (frequency data, count data): Data representing counts or
number of observations in each category.

Sometimes we can measure the same general variable to produce either
measurement data or categorical data. Thus, in our experiment we could obtain a
latency score for each mouse (measurement data), or we could classify the mice as
showing long, medium, or short latencies and then count the number in each
category (categorical data).

The two kinds of data are treated in two quite different ways. In Chapter 19
we will examine categorical data to see how we can determine whether there are
reliable differences among the tumor rejection rate of rats living under three
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different levels of stress. In Chapters 9 through 14, 16 through 18, and 20 we are
going to be concerned chiefly with measurement data. But in using measurement
data we have to make a second distinction, not in terms of the type of data, but
in terms of whether we are concerned with examining differences among groups
of subjects or with studying the relationship among variables.

Differences versus Relationships
Most statistical questions fall into two overlapping categories, differences and
relationships. For example, one experimenter might be interested primarily in
whether there is a difference between smokers and nonsmokers in terms of their
performance on a given task. A second experimenter might be interested in
whether there is a relationship between the number of cigarettes smoked per
day and the scores on that same task. Or we could be interested in whether pain
sensitivity decreases with the number of previous morphine injections (a rela-
tionship) or whether there is a difference in pain sensitivity between those who
have had previous injections of morphine and those who have not. Although
questions of differences and relationships obviously overlap, they are treated by
what appear, on the surface, to be quite different methods. Chapters 12 through
14 and 16 through 18 will be concerned primarily with those cases in which we
ask if there are differences between two or more groups, while Chapters 9
through 11 will deal with cases in which we are interested in examining rela-
tionships between two or more variables. These seemingly different statistical
techniques turn out to be basically the same fundamental procedure, although
they ask somewhat different questions and phrase their answers in distinctly
different ways.

Number of Groups or Variables
As you will see in subsequent chapters, an obvious distinction between statistical
techniques concerns the number of groups or the number of variables to which
they apply. For example, you will see that what is generally referred to as an inde-
pendent t test is restricted to the case of data from two groups of subjects. The
analysis of variance, on the other hand, is applicable to any number of groups, not
just two. The third decision in our tree, then, concerns the number of groups or
variables involved.

The three decisions we have been discussing (type of data, differences ver-
sus relationships, and number of groups or variables) are fundamental to the way
we look at data and the statistical procedures we use to help us interpret those
data. One further criterion that some textbooks use for creating categories of tests
and ways of describing and manipulating data involves the scale of measurement
that applies to the data. We will discuss this topic further in the next chapter,
because it is an important concept with which any student should be familiar,
although it is no longer considered to be a critical determiner of the kind of test
we may run.

1.3 Selection among Statistical Procedures 11



1.4 Using Computers

In the not too distant past, most statistical analyses were done on calculators, and
textbooks were written accordingly. Methods have changed, and most calculations
are now done by computers, In addition to performing statistical analyses, comput-
ers now provide access to an enormous amount of information via the Internet.
We will make use of some of this information in this book.

This book deals with the increased availability of computer software by
incorporating it into the discussion. It is not necessary that you work the prob-
lems on a computer (and many students won’t), but I have used computer print-
outs in almost every chapter to give you a sense of what the results would look
like. For the simpler procedures, the formulae are important in defining the con-
cept. For example, the formula for a standard deviation or a t test defines and
makes meaningful what a standard deviation or a t test actually is. In those cases
hand calculation is included even though examples of computer solutions also
are given. Later in the book, when we discuss multiple regression, for example,
the formulae become less informative. The formula for computing regression
coefficients with five predictors would not be expected to add anything to your
understanding of the material and would simply muddy the whole discussion. In
that case I have omitted the formulae completely and relied on computer solu-
tions for the answers.

Many statistical software packages are currently available to the researcher or
student conducting statistical analyses. In this book I have focused on SPSS, an
IBM Company,2 because it is the most commonly available package for students,
and many courses rely on it. The Web pages for this book contain two manuals
written about how to use SPSS. The one called The Shorter Manual is a good place
to start, and it is somewhat more interesting to read than The Longer Manual.

Although I have deliberately written a book that does not require the student
to learn a particular statistical program, I do, however, want you to have some
appreciation of what a computer printout looks like for any given problem. You
need to know how to extract the important information from a printout and how
to interpret it. If in the process of taking this course you also learn more about
using SPSS or another program, that is certainly a good thing.

Leaving statistical programs aside for the moment, one of the great advances
in the past few years has been the spread of the World Wide Web. This has meant
that many additional resources are available to expand on the material to be found
in any text. On the Web you can find demonstrations of points made in this book,
material that expands or illustrates what I have covered, software to illustrate spe-
cific techniques, and a wealth of other information. I will make frequent reference
to Web sites throughout this book, and I encourage you to check out those sites for
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what they have to offer. I maintain a site specifically for this book, and I encour-
age you to make use of it. It contains all of the data used in this book, answers to
odd-numbered exercises (instructors generally want some answers to be unavail-
able), two primers on using SPSS, computer applets that illustrate important con-
cepts, more fully worked out answers to odd-numbered exercises, and a host of
other things. The site can be found at

http://www.uvm.edu/~dhowell/fundamentals7/

These Web pages even contain a list of typographical errors for this book. (Yes, I’m
sure there will be some, and the list will expand as I, or other people, find them.)

A dozen years ago very few students would have had any idea of how to
gain access to the World Wide Web; in fact, most people had never heard of it.
Today most people have had experience with the Web and link to Web pages on
a regular basis. This has become even more important in recent years because of
the enormous amount of information that is available on the Internet. If you do
not understand something in this book, remember that Google is your friend.
Just type in your question and you are bound to get an answer. For example,
“What is a standard deviation?” or “what is the difference between a parameter
and a statistic?”

Aside from the Web pages that I maintain, the publisher also has ancillary
material available for your use. The URL is too complicated to put here, but if you
just do a Google search with “Cengage Howell Fundamental” you will find the
page for this book, and if you click on “Student Companion Site” you will find
material to help you learn the material.

1.5 Summary

In this chapter we saw the distinction between descriptive and inferential statis-
tics. Descriptive statistics deal with simply describing a set of data by computing
measures such as the average of the scores in our sample or how widely scores are
distributed around that average. Inferential statistics, on the other hand, deal with
making an inference from the data at hand (the sample) to the overall population
of objects from which the sample came. Thus we might use a sample of 50 students
to estimate (infer) characteristics of all of the students in the university from
which that sample was drawn, or even all college students or all people between
the ages of 18 and 22. When we have a measure that is based on a sample, that
measure is called a statistic. The corresponding measure for the whole population
is referred to as a parameter.

We also saw two other important concepts. One was the concept of random
sampling, where, at least in theory, we draw our sample randomly from the popu-
lation, such that all elements of the population have an equal opportunity of
being included in the sample. We will discuss this again in the next chapter. The
other important concept was the distinction between measurement data, where
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we actually measure something (e.g., a person’s level of stress as measured by a
questionnaire about stress), and categorical data, where we simply count the num-
ber of observations falling into each of a few categories. We will come back to
each of these concepts in subsequent chapters. For those students who are worried
about taking a course that they think will be a math course, the point to keep in
mind is that there is a huge difference between statistics and mathematics. They
both use numbers and formulae, but statistics does not need to be seen as a math-
ematical science, and many of the most important issues in statistics have very
little to do with mathematics.

Some important terms in this chapter are
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Population, 7

Sample, 8

Statistics, 8

Parameters, 8

Random sample, 8

Decision tree, 10

Measurement data, 10

Categorical data, 10

1.6 Exercises

1.1 To better understand the morphine example that we have been using in this chapter,
think of an example in your own life in which you can see the role played by tolerance and
context. How would you go about testing to see whether context plays a role?

1.2 In testing the effects of context in the example you developed in Exercise 1.1, to what
would the words “population” and “sample” refer?

1.3 Give an example in everyday life wherein context affects behavior.

For Exercises 1.4 –1.6, suppose that we design a study that involves following heroin addicts
around and noting the context within which they inject themselves and the kind of reac-
tion that results.

1.4 In this hypothetical study, what would the population of interest be?

1.5 In this study, how would we define our sample?

1.6 For the heroin study, identify a parameter and a statistic in which we might be interested.

1.7 Drawing from a telephone book has always been used as an example of bad random
sampling. With the rapid expansion of Internet use, why would a standard telephone
book be an even worse example than it used to be?

1.8 Suggest some ways in which we could draw an approximately random sample from people
in a small city. (The Census Bureau has to do this kind of thing frequently.)

1.9 Give an example of a study in which we don’t care about the actual numerical value of a
population average, but in which we would want to know whether the average of one
population is greater than the average of a different population.



1.10 I mentioned the fact that variability is a concept that will run throughout the book. I said
that you need only one cow to find out how many legs cows have, whereas you need many
more to estimate their average milk production. How would you expect that variability
would contribute to the size of the sample you would need? What would you have to do if
you suspected that some varieties of cows gave relatively little milk, while other varieties
gave quite a lot of milk?

1.11 To better understand the role of “context” in the morphine study, what would you expect
to happen if you put decaf in your mother’s early morning cup of coffee?

1.12 Give three examples of categorical data.

1.13 Give three examples of measurement data.

1.14 The Mars Candy Company actually keeps track of the number of red, blue, yellow, etc.
M&MsTM there are in each batch. (These make wonderful examples for discussions of
sampling.)
(a) This is an example of ___________ data. An example of the use of M&MsTM to illus-

trate statistical concepts can be found at

http://www.maa.org/mathland/mathland_3_10.html

(b) How do the words “population,” “sample,” “parameter,” and “statistic” apply to the
example at this link?

1.15 Give two examples of studies in which our primary interest is in looking at relationships
between variables.

1.16 Give two examples of studies in which our primary interest is in looking at group differences.

1.17 How might you redesign our study of morphine tolerance to involve three groups of mice
to provide more information on the question at hand?

1.18 Connect to

http://www.uvm.edu/~dhowell/fundamentals7/Websites/Archives.html

What kinds of material can you find there that you want to remember to come back to later
as you work through the book?

1.19 Connect to any search engine on the Internet, such as Google

http://www.google.com

and search for the word “statistics.”
(a) How would you characterize the different types of sites that you find there?
(b) You should find at least one electronic textbook in addition to Wikipedia (an online,

user supported encyclopedia) that will probably show up in your Web search. Note its
address and go to it when you need help.

(c) Many statistics departments have links to statistics-related pages. What kinds of things
do you find on those pages?
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1.20 An interesting Web source contains a collection of Web pages known as “Surf Stat” main-
tained by Keith Dear at the University of Newcastle in Australia. The address is

http://surfstat.anu.edu.au/surfstat-home/surfstat-main.html

Go to these pages and note the kinds of pages that are likely to be useful to you in this
course. (I know that this text isn’t in their list of favorites, but I’m sure that was just an
oversight, and so I will forgive them.) (Note: I will check all addresses carefully just
before this book goes to press, but addresses do change, and it is very possible that an
address that I give you will no longer work when you try it. One trick is to progressively
shorten the address by deleting elements from the right, trying after each deletion. You
may then be able to work your way through a set of links to what you were originally seek-
ing. Or you could do what I just did when I found the old address didn’t work. I entered
“surfstat” in Google, and the first response was what I wanted. One final trick is to select
the name of the file you want (e.g., the file “surfstat-main.html”) and enter that name
into Google. Some sites just disappear off the face of the earth, but more commonly they
move to a new location.)
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For the rest of the book, each chapter will start with a box entitled “Concepts
you will need to recall from previous chapters.” These are important concepts that will
be referred to in the chapter. Some of them will have been developed in the previ-
ous chapter and some will come from several chapters back. Some you will see
repeated at the beginning of several chapters. I have tried to identify those concepts
that students find it hard to keep straight (“Is the X axis on a graph the horizontal or
vertical one?”), and these sometimes need to be repeated time after time. In fact,
some of the simplest ones, such as “which is the X axis?” are among the hardest to
keep straight.

I will also start each chapter with a brief paragraph concerning what you can
expect from that chapter. The goal is just to give you an overall framework for what
will be covered, and you should find the material easier if I provide some kind of a
structure.

We will begin the chapter by looking at different scales of measurement. Some
measurements carry more meaning than others (e.g., measuring people in inches rather
than classifying them as “short” or “tall”), and it is important to understand the ways in
which we refer to measurements. The things that we measure are going to be called
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Concepts you will need to recall from the
previous chapter
Population: The collection of all events in which you are 

interested

Sample: The set of observations that you have made
or the individuals who you measured

Parameter: A measure based on the population

Statistic: A measure based on the sample



“variables” (e.g., paw-link latency), so it is important to know what a variable is. We
will then bring up the distinction between dependent variables (the scores or outcomes
that we obtain) and independent variables (the things that we generally manipulate).
For example, we could sort people in terms of gender (independent variable) and then
measure their text messaging ability (dependent variable). Next we have to consider
where our samples come from. Do we randomly sample from some large population
or do we draw a selected sample? Do we randomly assign participants to groups, or
do we take what we can get? Finally, I will lay out some basic information about how
we represent variables notationally (e.g., subscripted symbols) and cover a few simple
rules about summation notation. None of this is particularly difficult.

In the preceding chapter we dealt with a number of statistical terms (e.g.,
parameter, statistic, population, sample, and random sample) that are fundamental
to understanding the statistical analysis of data. In this chapter we will consider some
additional concepts that you need. We will start with the concepts of measurement
and measurement scales, because in statistics everything we do begins with the
measurement of whatever it is we want to study.

Measurement is frequently defined as the assignment of numbers to objects, with
the words numbers and objects being interpreted loosely. That looks like a definition
that only a theoretician could love, but actually it describes what we mean quite accu-
rately. When, for example, we use paw-lick latency as a measure of pain sensitivity,
we are measuring sensitivity by assigning a number (a time) to an object (a mouse) to
assess the sensitivity of that mouse. Similarly, when we use a test of authoritarianism
(e.g., the Adorno Authoritarianism Scale) to obtain an authoritarianism score for a per-
son, we are measuring that characteristic by assigning a number (a score) to an object
(a person). Depending on what we are measuring and how we measure it, the num-
bers we obtain may have different properties, and those different properties of numbers
often are discussed under the specific topic of scales of measurement.

Definition Measurement: The assignment of numbers to objects.

2.1 Scales of Measurement

Spatz (1997) began his discussion of this topic with such a nice example that I am
going to copy it, with modifications. Consider the following three questions and
answers:

1. What was your bib number in the swimming meet? (18)

2. Where did you finish in the meet? (18)

3. How many seconds did it take you to swim a lap? (18)

The answer to each question was 18, but those numbers mean entirely
different things and are entirely different kinds of numbers. One just assigns a label
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to you, one ranks you among other contenders, and one is a continuous measure of
time. We will elaborate on each of these kinds of numbers in this section.

Scales of measurement is a topic that some writers think is crucial and oth-
ers think is irrelevant. Although this book tends to side with the latter group, it is
important that you have some familiarity with the general issue. (You do not have
to agree with something to think that it is worth studying. After all, evangelists
claim to know a great deal about sin, but they certainly don’t endorse it.) An addi-
tional benefit of this discussion is that you will begin to realize that statistics as a
subject is not merely a cut-and-dried set of facts but rather a set of facts put
together with a variety of interpretations and opinions.

Definition Scales of measurement: Characteristics of relations among numbers assigned to objects.

Probably the foremost leader of those who see scales of measurement as cru-
cially important to the choice of statistical procedures was S. S. Stevens. Basically,
Stevens defined four types of scales: nominal, ordinal, interval, and ratio.1 These
scales are distinguished on the basis of the relationships assumed to exist between
objects having different scale values. Later scales in this series have all the proper-
ties of earlier scales and additional properties as well.

Who was S. S. Stevens?

Stanley Smith Stevens (1906 –1973) was an extremely influential psychologist.
He was born in Utah, raised in a polygamous family by his grandfather, spent three
years in Europe as a missionary without even knowing the language, did poorly at
the University of Utah, where he failed an algebra course, and finally graduated
from Stanford. He could have gone to medical school at Harvard, but that would
have required that he take a course in organic chemistry, which he did not find
appealing. So he enrolled in Harvard’s School of Education, which he didn’t like
much either. (You can see that he wasn’t off to a very promising start.) By luck, he
managed to establish an academic relationship with E. G. Boring, the only profes-
sor of psychology at Harvard and a very important pioneer in the field. He began
working with Boring on perception, did a dissertation in two years on hearing, did
more work on hearing, and published what was for a long time the major work in
psychoacoustics. In the 1950s, Stevens jumped into psychophysics and developed
the idea of the four scales mentioned earlier. He never left Harvard, where he held
the title of Professor of Psychophysics. Along the way he managed to publish
The Handbook of Experimental Psychology (1951), which sat on almost every exper-
imental psychologist’s bookshelf well into the late 1960s. (I still have my copy.)
In his day he was one of the most influential psychologists in the country.
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Zumbo and Zimmerman (2000) have discussed measurement scales at
considerable length and remind us that Stevens’s system has to be seen in its his-
torical context. In the 1940s and 1950s, Stevens was attempting to defend psycho-
logical research against those in the “hard sciences” who had a restricted view of
scientific measurement. He was trying to make psychology “respectable.” Stevens
spent much of his very distinguished professional career developing measurement
scales for the field of psychophysics. However, outside of that field there has been
little effort in psychology to develop the kinds of scales that Stevens pursued, and
there has not been much real interest. The criticisms that so threatened Stevens
have largely evaporated, and with them much of the belief that measurement
scales critically influence the statistical procedures that are appropriate. But
debates over measurement have certainly not disappeared, which is why it is
important for you to know about scales of measurement.

Nominal Scales
In a sense a nominal scale is not really a scale at all, because it does not scale
items along any dimension, but rather labels items. One example is the number
that you wore on your bib during the race. Another classic example of a nomi-
nal scale is the set of numbers assigned to football players. Frequently these
numbers have no meaning whatsoever other than as convenient labels that dis-
tinguish the players, or their positions, from one another. We could just as easily
use letters or pictures of animals. In fact, gender is a nominal scale that uses
words (male and female) in place of numbers, although when we code gender in
a data set we often use 1 male and 2 female. Nominal scales generally are
used for the purpose of classification. Categorical data, which we discussed briefly
in Chapter 1, are often measured on a nominal scale because we merely assign
category labels (e.g., Male or Female, Same context group or Different context
group) to observations. Quantitative (measurement) data are measured on the
other three types of scales.

Definition Nominal scale: Numbers used only to distinguish among objects.
Ordinal scale: Numbers used only to place objects in order.

Ordinal Scales
The simplest true scale is an ordinal scale, which orders people, objects, or
events along some continuum. One example is the 18 that was assigned to you
as your finishing position (rank) in the swim meet. Here the scale tells us who in
the race was the fastest, who was second-fastest, and so on. Another example
would be a scale of life stress. Using this scale you simply count up (sometimes
with differential weightings) the number of changes in the past six months of a
person’s life (marriage, moving, new job, etc.). A person with a score of 20 is pre-
sumed to have experienced more stress than someone with a score of 15, who is
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presumed to have experienced more stress than someone with a score of 10. Thus
we order people, in terms of stress, by the changes in their lives.

Notice that these two examples of ordinal scales differ in the numbers that
are assigned. In the first case we assigned the rankings 1, 2, 3, . . ., whereas in the
second case the scores represented the number of changes rather than ranks. Both
are examples of ordinal scales, however, because no information is given about the
differences between points on the scale. This is an important characteristic of ordi-
nal scales. The difference in time between runners ranked 1 and 2 in a marathon
may be as much as a minute. The difference in time between runners ranked 256
and 257 may be on the order of a tenth of a second.

Interval Scales
An interval scale is a scale of measurement about which we can speak legitimately
of differences between scale points. A common example is the Fahrenheit scale of
temperature, in which a 10-point difference has the same meaning anywhere along
the scale. Thus, the difference in temperature between 10°F and 20°F is the same
as the difference between 80°F and 90°F. Notice that this scale also satisfies the
properties of the two preceding scales (nominal and ordinal). What we do not have
with an interval scale, however, is the ability to speak meaningfully about ratios.
Thus we cannot say, for example, that 40°F is one-half as hot as 80°F or twice as
hot as 20°F, because the zero point on the scale is arbitrary. For example, 20°F and
40°F correspond roughly to 7° and 4° on the Celsius scale, respectively, and the
two sets of ratios are obviously quite different and arbitrary. The Kelvin scale of
temperature is a ratio scale, but few of us would ever think of using it to describe
the weather.

Definition Interval scale: Scale on which equal intervals between objects represent equal
differences—differences are meaningful.
Ratio scale: A scale with a true zero point—ratios are meaningful.

The measurement of pain sensitivity is a good example of something that is
probably measured on an interval scale. It seems reasonable to assume that a dif-
ference of 10 seconds in paw-lick latency may represent the same difference in sen-
sitivity across most, but not all, of the scale. I say “not all” because in this example,
very long latencies probably come from a situation in which the animal doesn’t
notice pain and therefore leaves his or her foot on the surface for an arbitrary
amount of time. I would not expect the difference between a 1-second latency and
an 11-second latency to be equivalent to the difference between a 230-second
latency and a 240-second latency.

Notice that I said that our measure of pain sensitivity can probably be taken
as an interval measure over much of the scale. This is another way of suggesting
that it is rare that you would find a true and unambiguous example of any particu-
lar kind of scale. I can think of several reasons why I might argue that paw-lick

2
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latencies are not absolutely interval scales, but I would be willing to go along with
considering them to be that for purposes of discussion. (I might have considerable
reluctance about saying that the scale is interval at its extremes, but our experi-
menter would not work with a surface that is extremely hot or one that is at room
temperature.)

I would be very reluctant, however, to suggest that an animal that takes
25 seconds to lick its paw is twice as sensitive as one that takes 50 seconds. To be
able to make those types of statements (statements about ratios) we need to go
beyond the interval scale to the ratio scale.

Ratio Scales
A ratio scale is one that has a true zero point. Notice that the zero point must be a
true zero point, and not an arbitrary one, such as 0°F or 0°C. A true zero point is the
point that corresponds to the absence of the thing being measured. (Because 0°F and
0°C do not represent the absence of electron motion, they are not true zero points.)
The time it took you to finish the race referred to earlier, 18 seconds, is an example
of a ratio scale of time because 0 seconds really is a true zero point. Other examples
of ratio scales are the common physical ones of length, volume, weight, and so on.
With these scales not only do we have the properties of the preceding scales but we
also can speak about ratios. We can say that in physical terms 10 seconds in twice as
long as 5 seconds, 100 lbs is one-third as heavy as 300 lbs, and so on.

But here is where things get tricky. One might think that the kind of scale with
which we are working would be obvious to everyone who thought about it.
Unfortunately, especially with the kinds of measures that we collect in the social sci-
ences, this is rarely the case. Let’s start with your time in the swim meet. It is true that
your teammate who came it at 22 seconds took 1.222 times as long as you did, but does
that mean that you are 1.22 times better than she is? Here time is a ratio measure of
how long something takes, but I doubt very much if it is a ratio measure of its quality.
For a second example, consider the temperature of the room you are in right now.
I just told you that temperature, measured in degrees Celsius or Fahrenheit, is a clear
case of an interval scale. In fact, it is one of the classic examples. Well, it is and, then
again, it isn’t. There is no doubt that to a physicist the difference between 62° and 64°
is exactly the same as the difference between 72° and 74°. But if we are measuring
temperature as an index of comfort rather than as an index of molecular activity, the
same numbers no longer form an interval scale. To a person sitting in a room at 62°F,
a jump to 64°F would be distinctly noticeable and probably welcome. The same can-
not be said about the difference in room temperature between 82°F and 84°F. This
points to the important fact that it is the underlying variable being measured (e.g.,
comfort), not the numbers themselves, that define the scale.

Because there is usually no unanimous agreement concerning the scale of
measurement employed, it’s up to you, as an individual user of statistical procedures,
to make the best decision you can about the nature of the data. All that can be asked
of you is that you think about the problem carefully before coming to a decision and
not simply assume that the standard answer is necessarily the best answer. It seems a
bit unfair to dump that problem on you, but there really is no alternative.
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A review:

■ Nominal scales: Name things

■ Ordinal scales: Order or rank things

■ Interval scales: Equal intervals represent equal differences

■ Ratio scales: Allow us to use phrases such as “half as much”

The Role of Measurement Scales
I made the statement earlier that there is a difference of opinion as to the importance
assigned to scales of measurement. Some authors have ignored the problem totally, but
others have organized whole textbooks around the different scales. It seems to me that
the central issue is the absolute necessity of separating in our minds the numbers we
collect from the objects or events to which they refer. If one student had 20 items cor-
rect on a 22 item exam and another had 10 items correct, the number of questions
answered correctly was twice as large for the first student. However, we might not be
willing to say that the first knows twice as much about the subject matter.

A similar argument was made for the example of room temperature, wherein the
scale (interval or ordinal) depended on whether we were interested in measuring
some physical attribute of temperature or its effect on people. In fact, it is even more
complicated than that, because where molecular activity continues to increase as tem-
perature increases, comfort at first rises as the temperature rises, levels off briefly, and
then starts to fall. In other words, the relationship is shaped like an inverted U.

Because statistical tests use numbers without considering the objects or events
to which those numbers refer, we can carry out standard mathematical operations
(addition, multiplication, etc.) regardless of the nature of the underlying scale. An
excellent and highly recommended reference on this point is an entertaining paper by
Lord (1953) entitled “On the Statistical Treatment of Football Numbers.” Lord argues
that you can treat these numbers in any way you like. His often-quoted statement on
this issue is “The numbers do not remember where they came from.” You don’t need
a course in statistics to know that the average of 8 and 15 is 11.5, regardless of whether
that average has any sensible interpretation in terms of what we are measuring.

The problem comes when it is time to interpret the results of some form of sta-
tistical manipulation. At that point we must ask if the statistical results bear any
meaningful relationship to the objects or events in question. Here we are no longer
dealing with a statistical issue, but with a methodological one. No statistical proce-
dure can tell us whether the fact that one group received higher grades than another
on a history examination reveals anything about group differences in knowledge of
the subject matter. (Perhaps they received specific coaching on how to take multiple
choice exams.) Moreover, to be satisfied because the examination provides grades that
form a ratio scale of correct items (50 correct items is twice as many as 25 correct
items) is to lose sight of the fact that we set out to measure knowledge of history,
which may not increase in any orderly way with increases in scores. Statistical tests
can be applied only to the numbers we obtain, and the validity of statements about
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the objects or events that we think we are measuring hinges primarily on our knowl-
edge of those objects or events, not on the scale of measurement. We do our best to
ensure that our measures bear as close a relationship as possible to what we want to
measure, but our results are ultimately only the numbers we obtain and our faith in
the relationship between those numbers and the underlying objects or events.

To return for a moment to the problem of heroin overdose, notice that
in addressing this problem we have had to move several steps away from the
heroin addict sticking a needle in his or her arm under a bridge. Because we
can’t use actual addicts, we used mice. We assume that pain tolerance in mice
under morphine is a good analogue to the tolerance we see in human heroin
addicts, and it probably is. But then to measure pain tolerance we measure
changes in sensitivity to pain, and to measure sensitivity we measure paw-lick
latency. And finally, to measure changes in sensitivity, we measure changes in
paw-lick latencies. All these assumptions seem reasonable, but they are assump-
tions nonetheless. When we consider the scale of measurement, we need to
think about the relationships among these steps. That does not mean that paw-
lick latency needs to be an interval measure of heroin tolerance in human
addicts—that wouldn‘t make any sense. But it does mean that we need to think
about the whole system and not just one of its parts.

2.2 Variables

Properties of objects or events that can take on different values are referred to as
variables. Hair color, for example, is a variable because it is a property of an object
(hair) that can take on different values (brown, yellow, red, and, in recent years,
blue, green, and purple). Properties such as height, length, and speed are variables
for the same reason. Bib numbers, race positions, and the time it takes to swim a
lap are all variables, and in your case they just happen to be the same number. We
can further discriminate between discrete variables (such as gender, marital status,
and the number of television sets in a private home), in which the variable can
take on only a relatively few possible values, and continuous variables (such as
speed, paw-lick latency, amount of milk produced by a cow, and so on), in which
the variable could assume—at least in theory—any value between the lowest and
highest points on the scale. (Note that nominal variables can never be continuous
because they are not ordered along any continuum.) As you will see later in this
book, the distinction between discrete and continuous variables plays a role in
some of our procedures, but mostly in the extreme cases of discreteness. Often a
variable that is actually discrete, such as the number of items answered correctly
on an exam, will be treated as if it were continuous because there are so many dif-
ferent values of that variable that its discreteness is irrelevant. For example, we
might score students as 1, 2, 3, or 4 depending on their year in college. That is a
discrete variable and we normally would not calculate the mean value, but rather
would focus on how many fell in each year. On the other hand, we could score
classes by the number of students who were enrolled in each, and an average of
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2 Hint: The next time you come across the independent/dependent-variable distinction on a test, just
remember that dependent and data both start with a d. You can figure out the rest from there.

class sizes would seem a reasonable thing to compute even though the numbers
themselves are discrete because you cannot have 23.6 students in a class.

Definition Variables: Properties of objects or events that can take on different values.
Discrete variables: Variables that take on a small set of possible values.
Continuous variables: Variables that take on any value.
Independent variables: Those variables controlled by the experimenter.
Dependent variables: The variables being measured; the data or score.

In statistics we also distinguish between different kinds of variables in an addi-
tional way. We speak of independent variables (those that are manipulated by the
experimenter) and dependent variables (those that are not under the experi-
menter’s control—the data). In psychological research the experimenter is inter-
ested in measuring the effects of independent variables on dependent variables.
Common examples of independent variables in psychology are schedules of rein-
forcement, forms of therapy, placement of stimulating electrodes, methods of treat-
ment, and the distance of the stimulus from the observer. Common examples of
dependent variables are running speeds, depression scores, behavioral response of a
subject, number of aggressive behaviors, and apparent size. Basically what the study
is all about is the independent variable, and the results of the study (the data) are
measurements of the dependent variable. For example, a psychologist may measure
the number of aggressive behaviors in depressed and nondepressed adolescents.
Here the state of depression is the independent variable, and the number of aggres-
sive acts is the dependent variable. Independent variables can be either qualitative
(e.g., a comparison of three different forms of psychotherapy) or quantitative (a
comparison of the effects of one, three, or five units of caffeine), but dependent vari-
ables are generally—but certainly not always—quantitative.2 What are the inde-
pendent and dependent variables in our study of morphine tolerance in mice?

To be honest, although it is usually clear what a dependent variable is (it is the
number or observation that we write down on our data sheet), independent
variables are harder to tie down. If I assign participants to three groups and treat
the groups differently, groups is clearly the independent variable. However, if
I take males and females and measure them, gender is not something that I actu-
ally manipulated (I took it as I found it), but it is what I am studying and it is
also called an independent variable. If I ask how much time people spend tex-
ting and what their GPA is, both of those are, in a way, dependent variables, but
I am most interested in GPA as dependent on texting, the independent vari-
able. As I said—the distinction is a bit squishy.
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2.3 Random Sampling

In the first chapter I said that a sample is a random sample if each and every ele-
ment of the population has an equal chance of being included in the sample. I fur-
ther stated that the concept of a random sample is fundamental to the process of
using statistics calculated on a sample to infer the values of parameters of a popu-
lation. It should be obvious that we would be foolish to try to estimate the average
level of sexual activity of all high school students on the basis of data on a group
of ninth graders who happen to have a study hall at the same time. We would all
agree (I hope) that the data would underestimate the average value that would
have been obtained from a truly random sample of the entire population of high
school students.

There are a number of ways of obtaining random samples from fairly small
populations. We could assign every person a number and then use a table of ran-
dom numbers to select the numbers of those who will be included in our sample.
Or, if we would be satisfied with a nearly random sample, we could put names into
a hat and draw blindly. The point is that every score in the population should have
an approximately equal chance of being included in the sample.

It is often helpful to have a table of random numbers to use for drawing
random samples, assigning subjects to groups, and other tasks. Such a table can
be found in Appendix E (Table E.9). This table is a list of uniform random
numbers. The adjective uniform is used to indicate that every number is equally
(uniformly) likely to occur. For example, if you counted the occurrences of
the digits 1, 5, and 8 in this table, you would find that they all occur about
equally often.

Table E.9 is quite easy to use. If you wanted to draw random numbers
between 0 and 9, you would simply close your eyes and put your finger on the table.
You would then read down the column (after opening your eyes), recording the
digits as they come. When you came to the bottom of the column, you would go
to the next column and continue the process until you had as many numbers as you
needed. If you wanted numbers between 0 and 99, you would do the same thing,
except that you would read off pairs of digits. If you wanted random numbers
between 1 and 65, you again would read off pairs of digits, but ignore 00 and any
number greater than 65.

If, instead of collecting a set of random data, you wanted to use the random-
number table to assign subjects to two treatment groups, you could start at any
place in the table and assign a participant to Group I if the random number was
odd and to Group II if it was even. Common sense extrapolations of this procedure
will allow you to randomly assign participants to any number of groups.

With large populations most standard techniques for ensuring randomness
are no longer appropriate. We cannot put the names of all U.S. women between 21
and 30 into a hat (even a very big hat). Nor could we assign all U.S. women a num-
ber and then choose women by matching numbers against a random-number table.
Such a procedure would be totally impractical. Unless we have substantial
resources, about the best we can do is to eliminate as many potential sources of bias
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as possible (e.g., don’t estimate level of sexual behavior solely on the basis of a sam-
ple of people who visit Planned Parenthood), restrict our conclusions with respect
to those sources of bias that we could not feasibly control (e.g., acknowledge that
the data came only from people who were willing to complete our questionnaire),
and then hope a lot. Any biases that remain will limit the degree to which the
results can be generalized to the population as a whole. A large body of literature
is concerned with sampling methods designed to ensure representative samples,
such as techniques used in conducting the decennial census, but such methods are
beyond the scope of this book.

Random numbers don’t always look as random as you and I might expect.
Try writing down the results you think might be reasonable from five coin flips—
e.g., H (heads) T (tails) H H H. Then go to the July 1997 issue of Chance News
on the Internet for an interesting discussion of randomness (Item 13). The
address is

http://www.dartmouth.edu/~chance/chance_news/recent_news/
chance_news_6.07.html

This could form the basis of an interesting class discussion. (If you have a
minute, snoop around at this site. They have all sorts of cool things. I particularly
like the page about Barney the dinosaur.)

Two paragraphs back I spoke about using random numbers to assign subjects
to groups. This is called random assignment, and I would argue that it is even more
important than random sampling. We like to have a random sample because it
gives us confidence that our results apply to a larger population. You aren’t going
to draw a truly random sample from the population of all college sophomores in
the United States, and no one would fault you for that. But you certainly would not
want to compare two methods of teaching general survival skills by applying one
method in a large urban school and the other in a small rural school. Regardless of
the effectiveness of the teaching methods themselves, preexisting differences
between the two samples would greatly influence the results, though they are not
what we intended to study.

Definition Random assignment: The allocation or assignment of participants to groups by a
random process.

Random sampling is an important consideration, primarily in the generalizabil-
ity from the sample to the population. Random assignment, on the other hand,
is necessary to ensure that the differences between the groups reflect the differ-
ences in the experimental treatments, and nothing more. Where possible, you
should always aim for random assignment.
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2.4 Notation

Any discussion of statistical techniques requires a notational system for expressing
mathematical operations. It is thus perhaps surprising that no standard notational
system has been adopted. Although there have been several attempts to formulate a
general policy, the fact remains that textbooks do not use exactly the same notation.

The notational systems that we do have range from the very complex to the
very simple. The more complex systems gain precision at the loss of easy intelligi-
bility, and the simpler systems gain intelligibility at the loss of some precision.
Because the loss of precision is usually trivial when compared with the gain in
comprehension, this book will use an extremely simple system of notation.

Notation for Variables
The general rule for our purposes is that a variable will be represented by an upper-
case letter, often X or Y. An individual value of that variable will be represented
by the letter and a subscript. Suppose, for example, that we have the following five
scores on the length of time (in seconds) that third-grade children can sit
absolutely still:

45 42 35 23 52

This set of scores will be referred to as . The first number of this set (45) can be
referred to as , the second (42) as , and so on. To refer to a single score with-
out specifying which one, we will refer to , where can take on any value
between 1 and 5. The use of subscripts is essential to precise description of statis-
tical procedures. In practice, however, the use of subscripts is often more of a dis-
traction than an aid. In this book subscripts will generally be omitted where the
meaning is clear without them.

Summation Notation
One of the most common symbols in statistics is the uppercase Greek letter sigma

, the standard notation for summation, which means “add up, or sum, what fol-
lows.” Thus, is read “Sum the s.” To be precise, if we have 25 cases (denoted
as N 25) the notation for summing all N values of is

which translates to “Sum all the s from 1 to N.” There is seldom any need
in practice to specify what is to be done in such detail; , or even will do.
In most cases in this book subscripts will be dropped, and the notation for the sum
of the values of X will be simply .

Definition Sigma ( ): Symbol indicating summation.©

©X

©X,©Xi

5i5iXi

a
N

1
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Xi©Xi
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X
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There are several extensions of the simple case of , and you need to
understand them. One of these is , which is read, “Sum the squared values of

” (i.e., ). Another common expression is 
which means, “Sum the products of the corresponding values of and .” The use
of these terms is illustrated in the following example.

Imagine a simple experiment in which we record the number of major and minor
life events in an adolescent’s life and a measure of behavior problems. For the sake of
our example, we will use only five adolescents (i.e., N 5). The data and simple sum-
mation operations on them are illustrated in Table 2.1. Some of these operations have
been discussed already; others will be discussed in the next few chapters. Examination
of Table 2.1 reveals a set of operations involving parentheses, such as ( ) .

The general rule that always applies is to perform operations within parenthe-
ses before performing operations outside parentheses.

Thus for ( ) we would sum the values of and then square the result, as
opposed to , in which we would square the s before we sum. Confirm that

is not equal to ( ) by using simple numbers such as 2, 3, and 4.2
©X©X2

X©X2
X2

©X

2
©X

5

YX
©XY,452 1 422 1 352 1 232 1 522X

©X2
©X
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Table 2.1
Illustration of Operations Involving Summation Notation

Life Behavior 
Events Problems

X Y X 2 Y 2 X Y X Y

10 3 100 9 7 30
15 4 225 16 11 60
12 1 144 1 11 12
9 1 81 1 8 9

10 3 100 9 7 30
Sum 56 12 650 36 44 141

(10 15 12 9 10) 56

(3 4 1 1 3) 12

(102 152 122 92 102) 650

(32 42 12 12 32) 36

(7 11 11 8 7) 44

(10*3 15*4 12*1 9*1 10*3) 141

562 3136

122 144

442 1936

56*12 672551©X 2 1©Y 2
551© 1X 2 Y 2 2 2
551©Y 2 2
551©X 2 2

511115©XY

511115© 1X 2 Y 2
511115©Y 2

511115©X2

511115©Y

511115©X
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You need to have a thorough understanding of notation if you are to learn even
the most elementary statistical techniques. Given what we already know, we can go
one step further and lay out three additional rules. I leave it to you to illustrate their
correctness by taking a few simple numbers and applying the rules to them.

Rules of Summation:
1. The sum of a set of differences is the same as the

sum of the first set minus the sum of the second set.

2. The notation means to multiply every value of by
the constant and then sum the results. A constant is any number that
does not change its value in a given situation (as opposed to a variable,
which does). Constants are most often represented by the letters and ,
but other symbols may be used.

3. where represents the number of items that
are being summed and is a constant.

Definition Constant: A number that does not change in value in a given situation.

2.5 Summary

In this chapter we examined briefly the concept of measurement and considered
four different levels, or scales, of measurement. Nominal scales simply name things,
and we can use either numbers or letters or names to do that. Ordinal scales put
items in increasing or decreasing order but don’t go beyond that. With interval
scales we can meaningfully speak of the differences between points on a scale (e.g.,
the difference between 20 and 30 is the same as the difference between 30 and 40).
Finally, with ratio scales we can speak about something being twice as much as
something else.

We also discussed the different types of variables. Continuous variables can
take on any value between the lowest and highest points on the scale, whereas dis-
crete variables can take on only a limited number of values with nothing in between
those values. (Even if a variable is technically discrete, such as the number of stu-
dents in a class, we treat it as continuous if there are many possible values.) Also,
remember that dependent variables are the variables that we measure, whereas
independent variables are usually under the control of the experimenter and are the
things that we are studying, such as different methods of teaching reading.

Random sampling refers to how we select individuals or objects to be meas-
ured, whereas random assignment refers to the way participants are assigned to dif-
ferent treatment groups.

C
N© 1X 1 C 2 5 ©X 1 NC.

kC

C
X©CX©CX 5 C©X.

© 1X 2 Y 2 5 ©X 2 ©Y.
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It is very important that you understand the rules of notation, and we will
refer back to these throughout the book. At this point, you have the basic termi-
nology you will need to begin looking at data. Now we can get started.

Some important terms in this chapter are
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Measurement, 18

Scales of measurement, 19

Nominal scale, 20

Ordinal scale, 20

Interval scale, 21

Ratio scale, 21

Variables, 25

Discrete variables, 25

Continuous variables, 25

Independent variables, 25

Dependent variables, 25

Sigma ( ), 28

Constant, 30

©

2.6 Exercises

2.1 Give one example each of a nominal, ordinal, interval, and ratio measure.

2.2 At the beginning of the chapter I gave three examples of different meanings for the num-
ber 18 in terms of the underlying scale of measurement. Give an example where the num-
ber 18 would be on an interval scale but not on a ratio scale. Do not use temperature, as
that has been used several times in the chapter.

2.3 We trained rats to run a straight-alley maze for food reinforcement. All of a sudden one of
the rats laid down and went to sleep halfway through the maze. What does this say about
the scale of measurement when speed is used as an index of learning? What does this say
about speed used as an index of motivation?

2.4 If you have access to SPSS, go to the Web site for this book.

http://www.uvm.edu/~dhowell/fundamentals7/

Select the link for the short SPSS manual and read the introduction. Download the
“apgar.sav” file referenced there and open it in SPSS. To download the file, right click on
the file name and select a location to store it. After you have done that, double click on the
icon for that file and it will open in SPSS. What can you tell about the data? How would
you describe the scale of measurement of the 10 variables given there?

2.5 In Section 2.1 I talked about the chain of assumptions that take us from a human heroin
addict under a bridge to a mouse on a warm surface. List those assumptions.

2.6 Write a sentence describing the morphine tolerance experiment in terms of an independ-
ent variable and a dependent variable.

http://www.uvm.edu/~dhowell/fundamentals7/


Exercises 2.7–2.10 relate to a study conducted by Pliner and Chaiken (1990). In their study
about the social desirability of behavior, they examined the amount of food eaten by male
and female participants in the presence of a person of the same gender or a person of the
opposite gender.

2.7 What are the independent variables in the study just described?

2.8 What is the dependent variable in that study?

2.9 Experiments like this are usually done with some hypothesis in mind. What would you
expect was the experimenter’s hypothesis?

2.10 Describe the chain of assumptions underlying the measurement issues in this study.

2.11 We saw that we often treat a discrete variable as if it were continuous. Under what condi-
tions would we be likely to do so?

2.12 Give three examples of discrete variables and three examples of continuous variables.

2.13 Most people assume that random numbers are actually more orderly than they really are. For
example, they assume that if you draw 50 random numbers, nature will somehow almost ensure
that you have 25 even numbers and 25 odd ones, or very close to that. Draw 50 random
numbers from Table E.9 in Appendix E and calculate the proportion of even numbers. Then
do this two more times and record the proportion of even numbers that you obtained each
time. Do these data look the way you would expect them to look?

2.14 First write down six sequences of heads and tails that you might expect to occur on five coin
flips (e.g., HTHHT). Then take an actual coin and create another six sequences by flipping
the coin five times for each sequence. Next go to the following link at Chance News and
read the article on randomness. How does it compare with the sequences you predicted and
the sequences you actually obtained. (In that article don’t get too hung up on the idea of
writing the shortest computer program. I don’t know what he’s talking about either.)

http://www.dartmouth.edu/~chance/chance_news/recent_news/
chance_news_6.07.html

2.15 In a study of the moon illusion that we will discuss in Chapter 5, Kaufman and Rock (1962)
tested an earlier hypothesis about reasons for the moon illusion by comparing how
observers performed when they were able to look at the moon with their eyes level and
again with their eyes elevated. The data for the Eyes Level condition follow:

1.65 1.00 2.03 1.25 1.05 1.02 1.67 1.86 1.56 1.73

Using to represent this variable,
(a) What are , , and ?
(b) Calculate .
(c) Write the summation notation for (b) in its most complex form.

2.16 With reference to Exercise 2.15, the data for the Eyes Elevated condition are

1.73 1.06 2.03 1.40 0.95 1.13 1.41 1.73 1.63 1.56

Using for this variable,
(a) What are and ?
(b) Calculate .©Y

Y10Y1

Y

©X
X8X5X3

X
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2.17 Using the data from Exercise 2.15,
(a) Calculate ( )2 and 2.
(b) Calculate /N, where N the number of scores.
(c) What do you call what you just calculated?

2.18 Using the data from Exercise 2.16,
(a) Calculate ( )2 and 2.
(b) Given the answers to (a), calculate

(c) Calculate the square root of the answer to (b). (You will come across these calculations
again in Chapter 5.)

2.19 The data from Exercises 2.15 and 2.16 come from the same 10 (N) observers. In other
words, the same person had a score of 1.65 in the Eyes Level condition and 1.73 in the Eyes
Elevated condition. Therefore the data form pairs of scores.
(a) Multiply the scores in each pair together to get a variable called XY.
(b) Calculate .
(c) Calculate .
(d) Do and differ, and would you normally expect them to?
(e) Calculate

(You will come across these calculations again in Chapter 9. The result is called the covari-
ance. Very few of the calculations in this book will be any more complex than this one.)

2.20 Use the previous data to show that
(a)
(b)
(c)
(d)

2.21 Make up five data points and show that (X C) X NC, where C is any constant
(e.g., 4) and N is the number of data points.

2.22 I have been (correctly) criticized for using “the number of hairs on a goat” as an example
of a continuous variable in an earlier edition of this book. Why is this really a discrete vari-
able? Would this alter how you treat the data?

2.23 Can an ordinal variable be measured on a continuous scale?

2.24 I have argued that paw-lick latencies can reasonably be taken to be an interval scale of pain
sensitivity in mice. Suppose that someone else felt that the square root of paw-lick latency
was more appropriate. How might we decide between these two competing measures?

2.25 The Chicago Tribune of July 21, 1995 reported on a study by a fourth-grade student named
Beth Peres. In the process of collecting evidence in support of her campaign for a higher
allowance, she polled her classmates on what they received as an allowance. She was surprised
to discover that the 11 girls who responded reported an average allowance of $2.63 per week,
but the 7 boys reported an average of $3.18, 21% more than the girls. At the same time, boys

1©51©

©X2 ?  1©X 2 2©CX 5 C©X
©XY ? ©X©Y
© 1X 1 Y 2 5 ©X 1 ©Y

©XY 2
©X©Y

N
N 2 1

©X©Y©XY
©X©Y
©XY

©Y 2 2
1©Y 2 2

N
N 2 1
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had to do fewer chores to earn their allowance than did girls. The story achieved considerable
national prominence and raised the question of whether the income disparity for adult
women relative to adult men may actually have its start very early in life. (Good for Beth!)
(a) What are the dependent and independent variables in this study, and how are they measured?
(b) What kind of a sample are we dealing with here?
(c) How could the characteristics of the sample influence the results she obtained?
(d) How might Beth go about “random sampling”? How would she go about “random

assignment”?
(e) If random assignment is not possible in this study, does that have negative implications

for the validity of the study?
(f ) What are some of the variables that might influence the outcome of this study separate

from any true population differences between boys’ and girls’ income?
(g) Distinguish clearly between the descriptive and inferential statistical features of this example.

2.26 The Journal of Public Health published data on the relationship between smoking and health
(see Landwehr and Watkins [1987]). They reported the cigarette consumption per adult for
21 mostly Western and developed countries, along with the coronary heart disease rate for
each country. The data clearly show that coronary heart disease is highest in those coun-
tries with the highest cigarette consumption.
(a) Why might the sampling in this study have been limited to developed countries?
(b) How would you characterize the two variables in terms of what we have labeled “scales

of measurement”?
(c) If our goal is to study the health effects of smoking, how do these data relate to that

overall question?
(d) What other variables might need to be taken into consideration in such a study?
(e) It has been reported that tobacco companies are making a massive advertising effort in

Asia. A few years ago only 7% of Chinese women smoked (compared to 61% of Chinese
men). How would a health psychologist go about studying the health effects of likely
changes in the incidence of smoking among Chinese women?

(f ) Do a search of the Internet using Google to find articles relating secondhand smoke to
coronary heart disease. What do these articles suggest?

2.27 There has recently been discussion on the Internet concerning whether the Shuffle feature
on your iPod is truly random. (Now that is really an important issue of great concern!) How
would you go about deciding whether the playing sequence is random? What would actu-
ally constitute randomness? An item about this issue can be found at

http://ipodusers.tribe.net/thread/9c5fe30c-728a-44cf-9b6f-9ad426641d12

If it is gone by the time you search for it, it is highly likely that a Google search would bring
up closely related items.

2.28 Go to the Internet link at

http://www.stat.ucla.edu/cases/yale/

and read the very short case study there. Answer the questions on sampling and compare
your answers to the explanation given in an accompanying link labeled “Explain” in the
lower left corner of the page.
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We begin this chapter with a simple example to illustrate that plotting data
can reveal a great deal more than simply looking at the numbers themselves. We then
go on to look at histograms, which are some of the simplest plots, and learn how to
create them. But histograms are not the only way to look at data, nor are they even
the preferred way in some situations, so we continue by looking at alternative meth-
ods, including stem-and-leaf displays, bar graphs, line graphs, and related methods.
We will also look at terms that we use to describe distributions, such as symmetry and
skewness. Finally, we will use SPSS to make graphs quickly and easily.

A collection of raw data, taken by itself, is no more exciting or informative than
junk mail before election day. Whether you have neatly arranged the data in rows on
a data collection form or scribbled them on the back of an out-of-date announcement

Concepts that you will need to remember from
previous chapters
Continuous variable: One that can take on many possible values

Discrete variable: One that takes on only a few possible values

Dependent variable: The variable that you are measuring

Independent variable: The variable that you manipulate
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you tore from the bulletin board, a collection of numbers is still just a collection of num-
bers. To be interpretable, they first must be organized in some sort of logical order.

Psychologists interested in sensory perception have long wondered how peo-
ple compare two things mentally. For example, suppose that I presented you with two
visual images in different orientations. Either they are identical images that have been
rotated with respect to each other (e.g., a normal capital R and a capital R lying on
its back) or they are mirror images of each other (e.g., R and ). Your task is to tell
me as quickly as possible whether they are the same image or mirror images. This
may sound easy, but it is not. I can measure both the accuracy of your response and
its speed. I can also ask if the time it takes you to respond depends on how far the
images have been rotated from one another.

There is an excellent Web site maintained by John Krantz at Hanover College
that allows you to collect your own data on this question. Krantz and his students have
put together a number of interesting experiments, and these can be found at

http://psych.hanover.edu/JavaTest/Cognition/Cognition.html

(While you are there, take a look at all the other great stuff the department’s Web
site has to offer, much of it produced by students.) The experiment that we are going
to consider deals with mental rotation of oddly shaped objects.

Below is an example of two stimuli presented on a computer screen. The cross
in the center is the fixation point on which you should focus between trials.

R
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The observer’s task is to press the letter S or the letter M as quickly as possible,
depending on whether you think these are the Same stimulus or Mirror images of
each other. Then another pair of figures appears with the same instructions. (If you
should choose to participate in this experiment you can vary the size of the stimuli,
the number of different levels by which they can be rotated, and several other inde-
pendent variables.) I collected my own data from 600 trials that allowed for 10 dif-
ferent degrees of rotation in 20° steps. But having collected the data I now need to
make sense of what I have. There are a number of interesting questions that I could
ask of the data. For example, I could ask whether it takes longer for incorrect answers
than for correct answers. I could also ask if objects that have been rotated many
degrees from each other take longer to judge than objects that have been rotated
only a few degrees, or perhaps none. We will answer both of these questions in the
course of this book, but before I can look at questions like that I need to begin by

http://psych.hanover.edu/JavaTest/Cognition/Cognition.html


looking at all of the data without regard to the levels of the independent variables
and without regard to the accuracy of my choices.

The data that we will use were originally recorded to the nearest millisecond.
The computer can measure that precisely, so that is the way they were recorded.
However, I have rounded the data to hundredths of a second for our convenience.
Doing so does not distort the results in any way.

An example of the data file is shown in Table 3.1, and you can download the
full set of data from

http://www.uvm.edu/~dhowell/fundamentals7/DataFiles/MentalRotation.dat

The independent variables are Trial, Angle of rotation, and Stimulus (were they the
same or mirror images?). The dependent variables are Response (what key did I
press?), Accuracy, and RxTime (in seconds). Notice that on some trials it took me over
four seconds to make a response, and even then I wasn’t always correct.

3.1 Plotting Data

As you can imagine, with 600 responses times it is not possible for us to be able to
interpret them at a glance. One of the simplest methods to reorganize data to make
them more intelligible is to plot them in some sort of graphical form. Data can be
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Table 3.1
Sample Reaction Time Data from the Mental Rotation Experiment

Accuracy
Trial Angle Stimulus Response 1 correct RxTime

1 140 Same Same 1 4.42
2 60 Same Same 1 1.75
3 180 Mirror Mirror 1 1.44
4 100 Same Same 0 1.74
5 160 Mirror Mirror 1 1.94
6 180 Mirror Mirror 1 1.42
7 180 Mirror Mirror 1 1.94
8 0 Same Same 1 1.24
9 40 Mirror Mirror 1 3.30

10 140 Same Same 1 1.98
11 60 Mirror Mirror 1 1.84
12 160 Same Same 1 3.45
13 40 Mirror Mirror 1 3.00
14 180 Mirror Mirror 1 4.44
15 140 Mirror Mirror 1 2.92
... ... ... ... ... ...

600 40 Mirror Mirror 1 1.12

5

http://www.uvm.edu/~dhowell/fundamentals7/DataFiles/MentalRotation.dat


represented graphically in several common ways. Some of these methods are fre-
quency distributions, histograms, and stem-and-leaf displays, which we will discuss
in turn.

Frequency Distributions and Histograms
As a first step we can make a frequency distribution of the data as a way of organizing
them in some sort of logical order. For our example of reaction times, we would count
the number of times that each possible reaction time occurred. However, the data are
recorded to the nearest 100th of a second, which would make for a very long table.
In Table 3.1 I have collapsed the data into 10th-of-a-second intervals and shown the
center of the interval and well as the bounds on the interval. The upper and lower
bounds for an interval are known as the real lower limit and the real upper limit. Any
value that falls within these limits is classed as being in the interval. For example, a
score equal to or greater than 1.895000 and less than 1.995000 would fall in the
1.90 –1.99 interval.1 The center of the interval is usually referred to as the midpoint of
the interval. The frequency distribution for these data is presented in Table 3.2, which
reports how often each time occurred. The data are plotted in Figure 3.1.

Definition Frequency distribution: A distribution in which the values of the dependent variable
are tabled or plotted against their frequency of occurrence.
Real lower limit: The point halfway between the bottom of one interval and the top
of the one below it.
Real upper limit: The point halfway between the top of one interval and the bottom
of the one above it.
Midpoint: Center of the interval; average of the upper and lower limits.

From the distribution shown in Table 3.2, it is clear that there is a wide dis-
tribution of reaction times, with times as low as about 0.75 seconds and as high as
4.5 seconds. The data tend to cluster around about 1.5 seconds, with most of the
scores between 0.75 and 3.00 seconds. This tendency was not apparent from the
unorganized data shown in Table 3.1. Notice that the reaction times seem to tail
off to the right. This is not surprising, because there is a limit on how fast a partic-
ipant can respond to a stimulus, but there is no limit on how long it will take that
participant to respond.

In addition to tabling the data, we can graph the data in the form of a
histogram. Histograms generally collapse the data into intervals, just as we did
in Table 3.2, though the width of the intervals (e.g., 1.00 –1.09 versus
1.00 –1.19) may be selected by the computer program that does the plotting.
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1 A word about rounding! This book adopts the rule that when you want to round a number that ends in
five, you round up or down, whichever will make the result even. Thus 1.895 would round up to 1.90,
whereas 1.885 would round down to 1.88.



In the current case, the histogram was forced to use the same interval widths
as those in Table 3.2. The results are shown in Figure 3.1, and it is easier to see
the pattern in the data than it was in a table. Notice particularly how the dis-
tribution trails off on the right.

Definition Histogram: Graph in which a rectangle is used to represent frequencies 
of observations within each interval.

People sometimes ask about the optimal number of intervals to use when group-
ing data. Although there is no right answer to this question, somewhere around 10
intervals is usually reasonable unless you have a large number of observations, which
we have.2 In this example I used 35 intervals because the numbers naturally broke that
way, and because I had many observations. In general and when practical it is best to
use natural breaks in the number system (e.g., 0 –9, 10 –19 or 100 –119, 120 –139)
rather than to break up the range into exactly 10 arbitrarily defined intervals.
However, if another kind of limit makes the data more interpretable, then use those
limits. Remember that you are trying to make the data meaningful—don’t try to fol-
low a rigid set of rules made up by someone who has never seen your problem.
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2 One interesting scheme for choosing an optimal number of intervals is to set it equal to the integer closest
to the square root of the sample size (denoted as ). Applying that suggestion here would leave us with

intervals, which is close to the 35 that I actually used.1600� 5 24.49 5 25
1N

Figure 3.1 
Plot of reaction times against frequency
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3.2 Stem-and-Leaf Displays

Frequency distributions tell you how many times each value occurs, and the asso-
ciated histogram gives you a visual representation of the data. A very nice way
of retaining both the individual values and the frequency of those values is by
creating what John Tukey devised and called a stem-and-leaf display, to be dis-
cussed next.

Definition Stem-and-leaf display: Graphical display presenting original data arranged into a
histogram.
Exploratory data analysis (EDA): A set of techniques developed by Tukey for
presenting data in visually meaningful ways.

Who was John Tukey?

One of the most influential statisticians of the second half of the 20th century
was John Tukey. Tukey was born in 1915 and by the age of three he could read a
newspaper. He went to Brown University and received a master’s degree in
chemistry. He then went on to Princeton intending to get a PhD in chemistry,
but instead he took a PhD in mathematics. A few years later he had drifted into

Table 3.2
Frequency Distribution of Reaction in Times (in 10ths of seconds)

Reaction Reaction Reaction 
Time Midpoint Freq Time Midpoint Freq Time Midpoint Freq

.50 –.59 .55 0 2.00 –2.09 2.05 21 3.50 –3.59 3.55 0

.60 –.69 .65 0 2.10 –2.19 2.15 19 3.60 –3.69 3.65 0

.60 –.79 .75 7 2.20 –2.29 2.25 10 3.70 –3.79 3.75 1

.80 –.89 .85 18 2.30 –2.39 2.35 6 3.80 –3.89 3.85 2

.90 –.99 .95 39 2.40 –2.49 2.45 11 3.90 –3.99 3.95 2
1.00 –1.09 1.05 45 2.50 –2.59 2.55 11 4.00 – 4.09 4.05 0
1.10 –1.19 1.15 45 2.60 –2.69 2.65 7 4.10 – 4.19 4.15 2
1.20 –1.29 1.25 43 2.70 –2.79 2.75 7 4.20 – 4.29 4.25 1
1.30 –1.39 1.35 46 2.80 –2.89 2.85 4 4.30 – 4.39 4.35 0
1.40 –1.49 1.45 45 2.90 –2.99 2.95 5 4.40 – 4.49 4.45 2
1.50 –1.59 1.55 50 3.00 –3.09 3.05 5
1.60 –1.69 1.65 42 3.10 –3.19 3.15 2
1.70 –1.79 1.75 34 3.20 –3.29 3.25 1
1.80 –1.89 1.85 37 3.30 –3.39 3.35 3
1.90 –1.99 1.95 23 3.40 –3.49 3.45 4
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statistics, where he remained. He was a brilliant man and there are many anec-
dotes about his life, his work, and his interactions with others. Tukey spent his
entire professional life at Princeton and at the nearby Bell Labs. He worked in
many fields, but in this book we are going to see his contribution to what he
called exploratory data analysis and his work on multiple comparison procedures,
where he developed one of the best known statistical tests. You will see that there
are not a lot of fixed rules and procedures in Tukey’s exploratory data analysis.
One of his most quoted statements is to the effect that it is better to have a fuzzy
answer to the right question than a precise answer to the wrong question.

John Tukey (1977), as part of his general approach to data analysis known as
exploratory data analysis (EDA), developed a variety of methods for displaying data
in visually meaningful ways. One of the simplest of these methods is a stem-and-leaf
display. I can’t start with the reaction time data here because that would require a
slightly more sophisticated display due to the large number of observations. Instead,
I’ll use a real set of data on the number of intrusive thoughts experienced by newly
diagnosed breast cancer patients (Epping-Jordan, Compas, & Howell, 1994). As you
might expect, some of these women are troubled a great deal by thoughts that keep
coming to mind about their cancer. On the other hand, some women report very few
such thoughts.

The raw data are given in Figure 3.2. On the left side of the figure are the raw
data, and on the right is the complete stem-and-leaf display that results.

Raw Data Stem Leaf

0 1 1 2 2 3 4 4 4 5 5 5 6 6 7 7 7 7 0 0112234445556677778899
8 8 9 9 1 011122233333444555555666666666

6777888899
2 00112233444455667889

10 11 11 11 12 12 12 13 13 13 13 3 005
13 14 14 14 15 15 15 15 15 15 16
16 16 16 16 16 16 16 16 16 17 17
17 18 18 18 18 19 19

20 20 21 21 22 22 23 23 24 24 24
24 25 25 26 26 27 28 28 29

30 30 35

Figure 3.2
Stem-and-leaf display of data on intrusive thoughts

6

6
f

∂



From the raw data in Figure 3.2, you can see that there are several scores below
10, many scores in the teens, some in the 20s, and three in the 30s. We refer to the
tens’ digits—here 0, 1, 2, and 3—as the leading digits (sometimes called the most
significant digits) for these scores. These leading digits form the stem, or vertical
axis, of our display. (There are times when we will need a two-digit stem, as you will
soon see with the reaction time data.) Within the set of 32 scores that were in the
20s, you can see that there were two 20s, two 21s, two 22s, two 23s, four 24s, two 25s,
two 26s, one 27, two 28s, and one 29. The units’ digits 0, 1, 2, 3, 4, and so on, are
called the trailing (or less significant) digits. They form the leaves—the horizontal
elements—of our display.3

Definition Leading digits (most significant digits): Leftmost digits of a number.
Stem: Vertical axis of display containing the leading digits.
Trailing digits (less significant digits): Digits to the right of the leading digits.
Leaves: Horizontal axis of display containing the trailing digits.

On the right side of Figure 3.2 you can see that next to the stem entry of
2 you have two 0s, two 1s, two 2s, two 3s, four 4s, two 5s, two 6s, one 7, two 8s, and
one 9. These leaf values correspond to the units’ digits in the raw data. Similarly,
note how the leaves opposite the stem value of 1 correspond to the units’ digits of
all responses in the teens. From the stem-and-leaf display you could completely
regenerate the raw data that went into that display. For example, you can tell that
one person reported no intrusive thoughts, two people each reported one intrusive
thought, and so on. Moreover, the shape of the display looks just like a sideways his-
togram, giving you all of the benefits of that method of graphing data as well.

One apparent drawback of this simple stem-and-leaf display is that for some
data sets it will lead to a grouping that is too coarse for our purposes, thus includ-
ing too many leaves for each stem. In fact, that is why I needed to move away from
the reaction time example temporarily. If I tried to use the reaction time data, 
1 second would have 410 leaves opposite it, which would be a little silly. Not to
worry; Tukey was there before us and figured out clever ways around this problem.

Graphing the mental rotation data will take a bit more work. Part of the prob-
lem is that we just have too many observations to fit neatly in a table. (In fact, stem-
and-leaf displays are most often used for smaller data sets.) Here we are just going to
have to break down and use two-digit stems. That is not really breaking a rule, because
with exploratory data analysis there are very few firm rules. The goal is to display data
in the most meaningful way. This stem-and-leaf display is shown in Figure 3.3. Notice
the legend at the top that indicates that the decimal place in the stems lies one digit
to the left of the vertical line. In other words, the stem for the first row is actually 0.7.
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3 It is not always true that the tens’ digits form the stem and the units’ digits the leaves. For example, if the
data ranged from 100 to 1,000, the hundreds’ digits would form the stem, the tens’ digits the leaves, and we
would ignore the units’ digits.



One reason why I wanted to present these data in a stem-and-leaf display is
that the display reveals something interesting about out data. Notice that the
leaves for most of the stems contain very few values greater than five. This is not
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The decimal point is one digit(s) to the left of the “|”

07 2222233
08 111113333333333333
09 222222222222222222222222222222222224444
10 111111111122222222222333333333333333333333333
11 222222222222222222222222222222222222222222244
12 2222222222222222222223333333333334444444448
13 3333333333333333333333333333333333333333333344
14 222222222222222222224444444444444444444444444
15 11222223333333333333333333333333333333333333333335
16 222222222222222222222222444444444444444444
17 2222222333333333333444444444444458
18 3333333333333333333333334444444444489
19 24444444444444444444448
20 333333333333355555555
21 2222444444444444444
22 3333335555
23 334444
24 24444444445
25 22235555559
26 4444446
27 3555555
28 4446
29 22555
30 00555
31 79
32 7
33 004
34 5557
35
36
37 5
38 36
39 18
40
41 26
42 0
43
44 24

Figure 3.3
Stem-and-leaf display for the mental rotation data



an error; it reflects the data themselves. My guess would be that the timing func-
tion in the reaction time program interacts in some way with the cycling rate of
the computer to produce this anomaly. This will not have any material effect on
our interpretation of the data, but it does point out that stem-and-leaf displays can
show you things that you would not see in other types of displays.

Back-to-Back Stem-and-Leaf Displays
Do you attend class reliably? Does it matter? I think it matters, and the data to sup-
port that belief can best be presented by plotting two distributions on opposite sides
of the stem in a stem-and-leaf display. In a course that I once taught we asked the
laboratory assistants, at the end of the course, to indicate which of their students
came to class regularly (3), occasionally (2), or rarely (1).4 We will ignore those who
came occasionally, leaving us with the data on two groups. Figure 3.4 shows the
actual distribution of total points in the course for the two groups. These are actual
data. What we have done is to put the stems down the center and the leaves for the
two separate categories (missed often and attended regularly) on either side of the
center. So we read the stem-and-leaf for those who attended regularly by looking at
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4 The laboratory assistants came to each lecture and were in a position to make an informed judgment on
attendance.

Missed Class Often Stem Attended Regularly

8 18
5 5 19

20
21

8 5 22
9 7 3 2 23

0 24 1 3 6 9
6 6 6 0 25 0 2 4 4 5 6
8 4 4 1 26 1 2 3 4 4 4 5 7 7

7 4 4 0 0 27 0 1 2 3 6 6 7 8 8
28 0 1 2 4 8 8
29 0 1 1 2 3 4 6 6 7 8

8 30
31 0
32 0 1 8

Code |25| 6 � 256

Figure 3.4
Total points in an actual course on psychological methods plotted separately for those who
missed class often or attended regularly



the stem and right side of the figure, and we read the data for those who missed class
often by looking at the stem and the left side of the figure. Notice the code at the
bottom of the table that indicates how entries translate to raw scores. With a stem
of 25 and a leaf of 6, for example, you can’t tell whether an entry represents a score
of 25.6, of 256, or even of 2.56. The code at the bottom of the figure tells you that
a stem of 25 and a leaf of 6 actually represents 256. Finally, notice that the figure
nicely illustrates the difference in performance between those students who attend
class regularly and those who came when they couldn’t think of anything better to
do. A few got away with it, but most people who skipped got into trouble. (The folks
who came to class sporadically fell in the middle in terms of total points.)

3.3 Reading Graphs

In recent years I have heard more and more comments from my colleagues to the
effect that students are having trouble understanding graphs. It is hard to tell
whether this is just an example of the fact that my colleagues are getting older and
“students aren’t like they were in my day,” or if interpretation of graphs has become
more difficult for students. This section is my attempt at addressing the problem.

One difficulty stems from the fact that we can’t make any nice dogmatic state-
ment about whether the dependent variable goes on the Y (vertical) axis or the X
(horizontal) axis. Clear rules make life so much simpler, but they don’t apply here.
If you take the histograms that we have been looking at, you will see that the depend-
ent variable (e.g., Reaction time) is placed along the X axis, and the frequency with
which each value occurred is on the Y axis. That is true for any histogram that I can
think of. On the other hand, consider the graph shown in Figure 3.5. This is called
a bar graph, because it uses vertical bars to represent the average reaction time. The
graph shows the average response time as a function whether or not the participant
was correct in his or her choice of “Same” or “Mirror.” Notice that the independent
variable (Accuracy) is presented on the horizontal, or X, axis, and the dependent
variable (Reaction time) is on the vertical, or Y, axis. You will notice that the par-
ticipant seems to respond a bit faster on those trials in which his or her choice is cor-
rect. We will have more to say about this question later in the book.

Definition Bar graph: A graph in which the frequency of occurrence of different values of X is
represented by the height of a bar.

A second graph, with Time on the X axis, is shown in Figure 3.6. Here we
see the frequency of video game sessions as a function of age.5 The data came from
Gentile (2009).
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5 Here is an example in which the dependent variable is an ordinal measure (0 = never, 1 = less than
once/month, 2 about once/month, ,7 at least once per day), but it nevertheless seems reasonable to
average those values.

5p5
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Figure 3.5
Average reaction time as a function of whether or not the judgment was correct
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Figure 3.6
Frequency of video game sessions as a function of age

In creating this graph I have connected the data points with a line, making it
a line graph, rather than bars, which would be a bar graph. I did this because it seems
appropriate given the continuous nature of the independent variable (Age). Notice
that this graph nicely illustrates the decrease in the frequency of use as players age.
The interesting thing is that if you drew a similar graph for the mean hours per week
of video game play, the line would be relatively flat. Apparently the frequency of play
declines with age, but the amount of time spent on each occasion increases.



Definition Line graph: A graph in which the Y values corresponding to different values of X
are connected by a line.

It may seem rather obvious to say so, but the most important thing in making
sense of a graph is to first identify what is plotted on each axis. Then identify the
dependent and independent variables, and, finally, look for patterns in the data. In
histograms we are looking for the shape of the distribution and usually hoping to see
that it is at least highest toward the center. For bar graphs (Figure 3.5) and line
graphs (Figure 3.6) we are generally looking for differences between groups and/or
trends in the data. Often, the choice between a bar graph and a line graph is a
matter of preference, though there are many people with strongly held views on this
topic. If one of them is your instructor, you should pay close attention to what he
or she says.
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Axes on Graphs
Vertical axis, Y axis, ordinate: All ways of naming the vertical axis
Horizontal axis, X axis, abscissa: All ways of naming the horizontal axis

In a histogram, the X axis represents the scores on the dependent variable.
In a line graph or bar graph, the independent variable generally goes on the X axis.

3.4 Alternative Methods of Plotting Data

The previous sections dealt with only a few ways of plotting data. Data can be rep-
resented in an almost unlimited number of other ways, some of which are quite
ingenious and informative, and some of which obscure what the data have to say.

Two comments are in order about how we plot data. First, the point of rep-
resenting data graphically is to communicate to an audience. If there is a better
way to communicate, then use it. Rules of graphical presentation are intended as
guides to clearer presentation, not as prescriptive rules that may never be broken.
This point was made earlier in the discussion about the number of intervals that
should be used for a histogram, but it goes beyond histograms. So the first “rule”
is this: If it aids understanding, do it; if it doesn’t, please don’t.

The second rule is to keep things simple. Generally, the worst graphics are
those that include irrelevant features that only add to the confusion. Tufte (1983)
calls such material “chart junk,” and you should avoid it. Perhaps the worst sin, in
the opinion of many, is plotting something in three dimensions that could be bet-
ter plotted in two. There are occasionally legitimate reasons for three-dimensional
plots, but three dimensions are more likely to confuse the issue than to clarify it.
Unfortunately, most graphics packages written for corporate users (often called
“presentation graphics”) encourage the addition of unnecessary dimensions.



Graphics should look utilitarian, neat and orderly; they should rarely look “pretty.”
If you think you need three dimensions to represent the material, ask yourself if the
reader is going to be able to understand what you’re trying to show. Often the third
dimension either makes the figure visually uninterpretable or it adds a level of
complexity that many of us are not prepared to handle. If you have taken a
psychology course on perception, you will know that the eye is great at handling
three-dimensional objects in three-dimensional space. But our eyes (and brains)
play tricks on us when they try to handle three-dimensional objects in two-
dimensional space. Figure 3.7 is a poorly constructed version of a graph you will see
in Chapter 6. It purports to show the disposition of people under correctional
supervision. Can you tell whether there are more people in jail than on parole?
What percentage of those in the correctional system are on parole? Glance ahead
to Figure 6.2 (p. 114) to see a much clearer way of presenting these data.

Figure 3.8 is a back-to-back stem-and-leaf display of the distribution, by age
and gender, of the populations of Mexico, Spain, the United States, and Sweden.
This figure clearly portrays differences between countries in terms of their age dis-
tributions (compare Mexico and Sweden, for example). By having males and
females plotted back to back, we can also see the effects of gender differences in
life expectancy. The older age groups in three countries contain more females than
males. In Mexico, it appears that men begin to outnumber women in their early
twenties. This type of distribution was common in the past, when many women
died in childbirth, and we might start looking there for an explanation. The pur-
pose in presenting graphs such as these is to illustrate that very simple graphs can
tell a very compelling story.
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Figure 3.7
Disposition of those under correctional supervision



3.4 Alternative Methods of Plotting Data 49

9 7 5 3 1 10

Percent

0-4

5-9

10-14

15-19

20-24

25-29

30-34

35-39

40-44
45-49

50-54

55-59

60-64

65-69

70-74
75+

3 5 7 9 9 7 5 3 1 10

Percent

3 5 7 9

9 7 5 3 1 10

Percent

0-4

5-9

10-14

15-19

20-24

25-29

30-34

35-39

40-44
45-49

50-54

55-59

60-64

65-69

70-74
75+

3 5 7 9 9 7 5 3 1 10

Percent

United States Sweden

Mexico

Male Female Male Female

Male Female Male Female

Spain

3 5 7 9

From Social Indicators: 1976, U.S. Department of Commerce, U.S. Government Printing Office, 1977.

Figure 3.8
Population for selected countries by sex and age, 1970
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Guidelines for Plotting Data
■ Supply a main title

■ Always label the axes

■ Try to start both the X and Y axis at 0. If you can’t, break the axis with 
if that makes sense

■ Pie charts: Don’t! Please!

■ Try to never plot in more than two dimensions

■ Don’t add nonessential material

I thought that she was a nurse!
One of the most important contributors to the early use of graphics was some-
one that you probably never thought of in that way—but the early use of graphs
by Florence Nightingale (1820 –1910) showed the power of graphics and led to
a number of ways of presenting data visually.

When the Crimean War broke out in 1854, the British government sent
Nightingale to Turkey with a team of nurses. She was disturbed by the lack of
sanitary conditions and fought the military establishment for years to improve
the quality of care. Most importantly to statistics, she collected data on the
causes of death among soldiers, and used her connections to publicize her
results. She was able to show that soldiers were many times more likely to die
from illnesses contracted as a result of poor sanitation in the hospitals, or
wounds left untreated, than to die from enemy fire. She created a complicated
graphic using polar area diagrams whose areas were proportional to the cause of
deaths. Among other graphics, Nightingale created a simple line graph showing
the death rates of civilian and military personnel during peacetime. The data
were further broken down by age. The implications were unmistakable and
emphasize the importance of controlling confounding variables. Her work led to
significant improvements in health care within the military.

For the rest of her life, Florence Nightingale fought for improved health
standards and was not afraid to take on the British government on almost any
topic. Though she had no formal training in statistics, she was elected the first
female fellow of the Royal Statistical Society in 1858 and an honorary member
of the American Statistical Association a few years later.

You can read more about Florence Nightingale in Howell (2005) and at

http://www-history.mcs.st-andrews.ac.uk/PictDisplay/Nightingale.html

http://www-history.mcs.st-andrews.ac.uk/PictDisplay/Nightingale.html


3.5 Describing Distributions

The distributions of scores illustrated in Figures 3.1 and 3.2 were more or less regularly
shaped distributions, rising to a maximum and then dropping away smoothly. Not all
distributions are like that, however (see the stem-and-leaf display in Figure 3.5), and
it is important to understand the terms used to describe different distributions.
Consider the two distributions shown in Figure 3.9(a) and (b). These plots are of data
that were computer-generated to come from populations with specific shapes. They,
and the other two in Figure 3.9, are based on samples of 1,000 observations, and the
slight irregularities are just random variability. The distributions in Figure 3.9(a) and
(b) are called symmetric because they have the same shape on both sides of the cen-
ter. The distribution shown in Figure 3.9(a) came from what we will later refer to as
a normal distribution. The distribution in Figure 3.9(b) is referred to as bimodal,
because it has two peaks. The term bimodal is used to refer to any distribution that has
two predominant peaks, whether or not those peaks are of exactly the same height. If
a distribution has only one major peak, it is called unimodal. The term used to refer
to the number of major peaks in a distribution is modality.

Definition Symmetric: Having the same shape on both sides of the center.
Bimodal: A distribution having two distinct peaks.
Unimodal: A distribution having one distinct peak.
Modality: The number of meaningful peaks in a frequency distribution of the data.
Negatively skewed: A distribution that trails off to the left.
Positively skewed: A distribution that trails off to the right.

Next consider Figure 3.9(c) and (d). These two distributions obviously are
not symmetric. The distribution in Figure 3.9(c) has a tail going out to the left,
whereas that in Figure 3.9(d) has a tail going out to the right. We say that the for-
mer is negatively skewed and the latter positively skewed. (Hint: To help you
remember which is which, notice that negatively skewed distributions point to the
negative, or small, numbers, and that positively skewed distributions point to the
positive end of the scale.) There are statistical measures of the degree of asymme-
try, or skewness, but they are not commonly used in the behavioral sciences. You
have previously seen one positively skewed distribution in Figure 3.1.

Definition Skewness: A measure of the degree to which a distribution is asymmetrical.

An interesting real-life example of a positively skewed distribution is shown
in Figure 3.10. These data were generated by Bradley (1963), who instructed sub-
jects to press a button as quickly as possible whenever a small light came on. Most
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Figure 3.9
Shapes of frequency distributions: (a) Normal; (b) Bimodal; (c) Negatively skewed; (d) Positively skewed

Figure 3.10
Frequency distribution of Bradley’s reaction time data
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of the data points are smoothly distributed between roughly 7 and 17 hundredths
of a second, but a small but noticeable cluster of points lies between 30 and 70
hundredths, trailing off to the right. This second cluster of points was obtained pri-
marily from trials on which the subject missed the button on the first try and had
to try again. Their inclusion in the data significantly affects the distribution’s
shape. An experimenter who had such a collection of data might seriously consider
treating times greater than some maximum separately, on the grounds that those
times were more a reflection of the accuracy of a psychomotor response than a
measure of the speed of that response.

Nearly every textbook author feels the need to discuss another measure of the
shape of a distribution, called its kurtosis. But very few people know what it really
measures, and even fewer have ever used it. We will skip it here, but if you are
really curious, enter “kurtosis Wuensch” as search terms in Google.

It is important to recognize that relatively large samples of data are needed
before we can have a good idea about the shape of a distribution. With sample sizes
of around 30, the best we can reasonably expect to see is whether the data tend to
pile up in the center of the distribution or are markedly skewed in one direction or
another.

3.6 Using Computer Programs to Display Data

As I said earlier, almost all statistics texts once assumed that simple data analyses will
be carried out by hand with the help of a standard calculator. This may be the best
approach to teaching, though I don’t think so, but today computer programs carry out
more and more analyses. Thus you need to know how to read and interpret the
results of computer printouts. Most chapters in this book will include samples of
computer solutions for examples previously analyzed by hand. I will focus primarily
on SPSS because it is the most commonly available and most requested by instruc-
tors. But anything that I do here can probably be done with any program you can get
your hands on.

Figure 3.11 shows a histogram and a stem-and-leaf display produced by SPSS
for the data on intrusive thoughts shown in Figure 3.2. (In SPSS the stem-and-leaf
plot is found under Analyze/Descriptives/Explore.)

So far in our discussion almost no mention has been made of the numbers
themselves. We have seen how data can be organized and presented in the form
of distributions, and we have discussed a number of ways in which distributions
can be characterized. These are symmetry or its lack (skewness) and modality. As
useful as this information might be in certain situations, it is inadequate in oth-
ers. We still do not know the average speed of a simple mental rotation reaction
time nor how alike or dissimilar are the reaction times for individual trials. Nor
do we know the mean scores for students who did, and who did not, attend my
class. To obtain this knowledge, we must reduce the data to a set of measures that



carry the information we need. The questions to be asked refer to the location, or
central tendency, and to the dispersion, or variability, of the distributions along
the underlying scale. Measures of these characteristics will be considered in the
next two chapters.

3.7 Summary

In this chapter we discussed ways of describing distributions. We began by taking
data in a table and condensing them to combine observations falling within an
interval, such as 1.90 –1.99. In doing so, we record the number of observations in
each interval. We designated the lower and upper limits as those points cutting off
the ends of the intervals (e.g., 1.895 and 1.995) and the midpoint as the center of
the interval (e.g., 1.95). We then represented those data in a histogram, with the
different values of our dependent variable (e.g., reaction time) along the X, or
horizontal, axis and the frequency for each interval along the Y, or vertical, axis.

We next spent time discussing stem-and-leaf displays and their uses. In a
stem-and-leaf display the most significant (or perhaps the two most significant)
digit(s) form the stem, the next most significant digit forms the leaf, and any
other less significant digits are discarded. Such displays are particularly good when
drawn back-to-back, allowing us to compare data from two different groups or cat-
egories. We briefly touched on bar graphs and line graphs. For these, the levels of
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Figure 3.11
SPSS stem-and-leaf and histogram of data on intrusive thoughts

INTRUS Stem-and-Leaf Plot

Frequency   Stem &  Leaf

9.00    0 .  011223444
13.00    0 .  5556677778899
15.00    1 .  011122233333444
25.00 1 .  5555556666666666777888899
12.00    2 .  001122334444
8.00    2 .  55667889
2.00    3 .  00
1.00    3 .  5

Stem width:    10.00
Each leaf:      1 case(s)



the independent variable are placed on the X axis. Some outcome measure, such
as the group averages or the value of some other variable (such as life expectancy)
is plotted on the Y axis. I made the point that a graph should be as plain and sim-
ple as possible so as not to confuse the reader with irrelevant dimensions or other
information.

Finally, we examined some of the terms that are used to describe distribu-
tions. A symmetric distribution is one that has the same shape around the center
of the distribution, while a skewed distribution is asymmetric. A positively skewed
distribution has a tail going off to the right, while a negatively skewed distribu-
tion has a tail to the left.

Some important terms in this chapter are
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Frequency distribution, 38

Real lower limit, 38

Real upper limit, 38

Midpoint, 38

Histogram, 39

Stem-and-leaf display, 40

Exploratory data analysis
(EDA), 40

Leading digits (most
significant digits), 42

Stem, 42

Trailing digits (less significant
digits), 42

Leaves, 42

Bar graph, 45

Line graph, 46

Symmetric, 51

Bimodal, 51

Unimodal, 51

Modality, 51

Negatively skewed, 51

Positively skewed, 51

Skewness, 51

3.8 Exercises

3.1 Have you ever wondered how you would do on the SATs if you didn’t even bother to
read the passage you were asked about?6 Katz, Lautenschlager, Blackburn, and Harris
(1990) asked students to answer SAT-type questions without seeing the passage on

6 For those readers outside the United States, SAT exams are exams taken by many, though by no means all,
students seeking admission to American universities. Scores typically range from 200 to 800, with an aver-
age somewhere around 500. We will refer to SAT scores occasionally throughout this book. 



which the questions were based. This was called the NoPassage group. Data closely
resembling what they obtained follow, where the dependent variable was the individ-
ual’s score on the test.

(a) Plot a frequency distribution for these data.
(b) What is the general shape of the distribution?

3.2 Make a histogram for the data in Exercise 3.1 using a reasonable number of intervals.

3.3 What kind of stems would you need for a stem-and-leaf display of the data in Exercise 3.1?

3.4 If students had just guessed in the Katz et al. study, they would have been expected to earn
a score of approximately 20. Do these students appear to do better than chance even when
they haven’t read the passage?

3.5 As part of the study described in Exercise 3.1, the experimenters obtained the same kind of
data from a smaller group who had read the passage before answering the questions (called
the Passage group). Their data follow.

(a) What can you tell just by looking at these numbers? Do students do better when they
have read the passage?

(b) Plot these data on one side of a stem-and-leaf display and the NoPassage data on the
other side of the same stem-and-leaf display.

(c) What can you see by looking at this stem-and-leaf display?
(d) A further discussion of this example can be found at

http://www.uvm.edu/~dhowell/fundamentals7/Katzfolder/katz.html

although it also covers material that we will discuss later in this book.

3.6 In Chapter 2, Exercise 2.4, I asked those with access to SPSS to go to the book’s Web site,
find the short SPSS manual, and download the apgar.sav file. If you did not do that exer-
cise, go back and read the question to see how to download the file and then open it in
SPSS. The introduction to that Web page describes the data. Read the first three chapters
(they are very short) and then read Chapter 4 on describing and graphing data. (That
chapter is a bit longer, but most of that is taken up with graphics.) Recreate the frequency
distributions and graphs that are shown there, varying the courseness of the display.

3.7 Use SPSS to load and plot the data on mental rotation reaction times that were presented
(in part) in Table 3.1. These data can be found in the data files of this book’s Web site as
Tab3–1.dat, and you will probably have to read the material in Chapter 3 of the Web page
on how to import text data.

3.8 Using SPSS with the data imported in Exercise 3.7, determine the percentage of times
when the observer (myself ) gave the wrong response by looking at the Accuracy variable.
Plot and describe the distribution of reaction time data.

The next two exercises refer to a large data set in Appendix D. The data can
also be downloaded from the Web at

66 75 72 71 55 56 72 93 73 72 72 73 91 66 71 56 59

55 34 44 39 43 36 55 57 36 46 49 46 49 47

54 52 51 50 36 55 44 46 57 44 43 52 38 46
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http://www.uvm.edu/~dhowell/fundamentals7/DataFiles/Add.dat

These data come from a research study by Howell and Huessy (1985), which is
described at the beginning of the appendix. We will refer to them throughout the book

3.9 Create a histogram for the data for GPA in Appendix D, using reasonable intervals.

3.10 Create a stem-and-leaf display for the ADDSC score in Add.dat.

3.11 What three interesting facts about the populations of Mexico and Spain can be seen in
Figure 3.10?

3.12 In some stem-and-leaf displays with one or two low values, the last stem is often written as
LOW, with the complete values in the leaf section. Why and when might we do this?

3.13 How would you describe the distributions of the grades of students who did, and did not,
attend class in Figure 3.4? Why would you have expected this kind of distribution even
before you saw the data?

3.14 In Table 3.1 the reaction time data are broken down by the degrees of rotation separat-
ing the objects. (You may want to sort the data by this variable.) Use SPSS or another
computer program to plot separate histograms of these data as a function of the Angle of
rotation. These data are available at

http://www.uvm.edu/~dhowell/fundamentals7/DataFiles/MentalRotation.dat

3.15 When Krantz devised the experiment that produced the data in Table 3.1, he was interested
in seeing whether the required degree of mental rotation influenced reaction time. From
the answer to Exercise 3.14, what would you conclude about this question?

3.16 In addition to comparing the reaction times as a function of rotation, how else might you
use these data to draw conclusions about how people process information?

3.17 One frequent assumption in statistical analyses is that observations are independent of one
another (knowing one response tells you nothing about the magnitude of another
response). How would you characterize the reaction time data in Table 3.1, just based on
what you know about how it was collected? (A lack of independence would not invalidate
anything we have done with these data in this chapter, though it might have an effect on
more complex analyses.)

3.18 Figure 3.12 is adapted from a paper by Cohen, Kaplan, Cunnick, Manuck, and Rabin
(1992), which examined the immune response of nonhuman primates raised in stable and
unstable social groups. In each group animals were classed as high or low in affiliation,
measured in terms of the amount of time they spent in close physical proximity to other
animals. Higher scores on the immunity measure represent greater immunity to disease.
Write two or three sentences describing what these results would seem to suggest.

3.19 Rogers and Prentice-Dunn (1981) had 96 white male undergraduates deliver shocks to their
fellow subjects as part of a biofeedback study. They recorded the amount of shock that the
subjects delivered to white participants and black participants when the subjects had and
had not been insulted by the experimenter. Their results are shown in Figure 3.13. Interpret
these results. (One of my earlier guidelines said to start each axis at zero or break the axis.
Why does that not make sense here?)

3.20 The following data represent U.S. college enrollments by census categories as measured in
1982, 1991, and 2005. (The 2005 data are approximate.) Plot the data in a form that
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Figure 3.12
From Cohen, Kaplan, et al. (1992)
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From Cohen, Kaplan, Cunnick, Manuck, and Rabin (1992).

Figure 3.13
From Rogers and Prentice-Dunn (1981)
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represents the changing ethnic distribution of college students in the United States. (The
data entries are in 1,000s.)
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Ethnic Group 1982 1991 2005

White 9,997 10,990 11,774
Black 1,101 1,335 2,276
Native American 88 114 179
Hispanic 519 867 1935
Asian 351 637 1,164
Foreign 331 416 591

You can find additional data at

http://professionals.collegeboard.com/data-reports-research/trends

3.21 The New York Times (March 16, 2009) reported that approximately 3% of the population
of Washington, D.C., was living with HIV/AIDS. Search the Web for world-wide statistics
that would put that number in context.

3.22 The following data represent the total number of U.S. households, the number of house-
holds headed by women, and family size from 1960 to 1990. Present these data in a way
that reveals any changes in U.S. demographics. What do the data suggest about how a
social scientist might look at the problems facing the United States? (Households are
given in 1,000s.)

Households
Total Headed by 

Year Households Women Family Size

1960 52,799 4,507 3.33
1970 63,401 5,591 3.14
1975 71,120 7,242 2.94
1980 80,776 8,705 2.76
1985 86,789 10,129 2.69
1987 89,479 10,445 2.66
1988 91,066 10,608 2.64
1989 92,830 10,890 2.62
1990 92,347 10,890 2.63

3.23 Moran (1974) presented data on the relationship, for Australian births, between maternal
age and Down’s syndrome (a serious handicapping condition on which psychologists have
done a lot of work). The data follow, though in a form that may require some minor calcu-
lations on your part to be meaningful. What can you conclude from these results?

http://professionals.collegeboard.com/data-reports-research/trends


(a) How will you adjust (transform) the Psychosis and Control groups’ data so that all
three data sets can fit on the same graph?

(b) How will you plot the data?
(c) Plot the data.
(d) Do those diagnosed with psychosis appear to differ from the general population?
(e) What purpose does the Control group play?
(f ) What do you conclude?

3.25 Psychologists concerned about self-injurious behaviors (smoking, eating fatty diets, drug
abuse, etc.) worry about the effects of maternal smoking on the incidence of low birth-
weight babies, who are known to be at risk for developmental problems. The Centers for
Disease Control and Prevention has published statistics relating maternal smoking to low
birthweight. The data follow in terms of the percentage of birthweights grams.
Find a way to present these data that illustrates this relationship clearly. Why is this rela-
tionship not likely to be a statistical fluke?

62,500

Further information on Down’s Syndrome and maternal age can be found at

http://www.aafp.org/afp/20000815/825.html

3.24 Does the month in which you were born relate to your later mental health? Fombonne
(1989) took all children referred to a psychiatric clinic in Paris with a diagnosis of psychosis
and sorted them by birth month. (There were 208 such children.) He had a control group
of 1,040 children referred with other problems. The data are given below, along with the
percentage in the general population born in that month.
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Total Number Number of Births
Age of Mother of Births With Down’s Syndrome

20 or less 35,555 15
20 –24 207,931 128
25 –29 253,450 208
30 –34 170,970 194
35 –39 86,046 197
40 – 44 24,498 240
45 or more 1,707 37

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Total

Psychosis 13 12 16 18 21 18 15 14 13 19 21 28 208
Control 83 71 88 114 86 93 87 70 83 80 97 88 1040
% General
Population 8.4 7.8 8.7 8.6 9.1 8.5 8.7 8.3 8.1 8.1 7.6 8.0

http://www.aafp.org/afp/20000815/825.html
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1989 1990 1991 1992 1993

Smokers 11.36% 11.25 11.41 11.49 11.84
Nonsmokers 6.02 6.14 6.36 6.35 6.56

Additional (and more recent) data on smoking and low birthweight can be found at

http://www.smw.ch/docs/pdf200x/2005/35/smw-11122.pdf

3.26 The Journal of Statistics Education maintains a fairly extensive collection of data on a wide
variety of topics. Each data set is accompanied by a description of the data and how they
might be used. These data are available at

http://www.amstat.org/publications/jse/jse_data_archive.html

Go to this Internet link, find a set of data that interests you, and display those data in
a way that makes their meaning clear. For most of these data sets you will want to use some
sort of computer software, although that is not a requirement. There are many things that
could be done with the data that we have not yet covered, but displaying the data will
reveal much that is of interest.

3.27 The following graph plots the data on life expectancy of white and black females. What
conclusions would you draw from this graph? (Comparable data for men can be found at

http://www.elderweb.com/home/node/2838
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3.28 In 1970, at the height of the Vietnam War, the U.S. government held a lottery to deter-
mine which individuals would be drafted. Balls representing the 366 possible birthdays were
drawn from an urn, and the order in which the days were drawn represented the order in
which young males would be drafted. (If your birthday was one of those selected early,
you would have a low selection number and a very high probability of being drafted, and if
it was one of those with a high selection number, you probably would not be called.) That

http://www.smw.ch/docs/pdf200x/2005/35/smw-11122.pdf
http://www.amstat.org/publications/jse/jse_data_archive.html
http://www.elderweb.com/home/node/2838


particular lottery received considerable criticism because people born late in the year
appeared much more likely to receive a low number. (The average selection number for
those born in December was 121.5, while the average selection number for those born in
January was 201.2.)

The results appear below. Graph these data and draw appropriate conclusions. There is
every reason to believe that those that carried out the lottery did their best to be fair, but
if you were one of those eligible to be drafted, would you be satisfied with the result? How
might you explain these results? More complete data are available at

http://www.amstat.org/publications/jse/v5n2/datasets.starr.html
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Jan Feb Mar Apr May June July Aug Sept Oct Nov Dec

201.2 203.0 225.8 203.7 208.0 195.7 181.5 173.5 157.3 182.5 148.7 121.5

http://www.amstat.org/publications/jse/v5n2/datasets.starr.html
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In this chapter we are going to look at measures of what is called “central
tendency.” This term refers to measures that relate to the center of a distribution of scores.
The most common measures are the mean, which is what we usually mean by average,
the median, which is the middle score, and the mode, which is the most common
score. We will consider the advantages and disadvantages of each, because no one
measure is universally better than another. We will then look at how we can use com-
puter software to calculate these measures and will look at an actual example.

63

Measures of
Central Tendency

Concepts that you will need to remember from
previous chapters
Independent variable: The variable you manipulate or are studying

Dependent variable: The variable that you are measuring—the
data

Modality: The number of meaningful peaks in a
distribution

: The symbol for summation of what follows

Symmetric distribution: A distribution that has the same shape on
either side of the center

Variables are often labeled with a single letter, frequently X or Y

©



In Chapter 3 you saw how to display data in ways that allow us to begin to
draw some conclusions about what the data have to say. Plotting data shows the
general shape of the distribution and gives a visual sense of the general magnitude
of the numbers involved. Some of the graphs in Chapter 3 had “averages” plotted
on the Y (vertical) axis, and those averages play a central role in this chapter.

In this chapter you will see several statistics that can be used to represent the
“center” of the distribution. These statistics are called measures of central tendency.
In the next chapter we will go a step further and look at measures that deal with how
the observations are scattered around that central tendency, but first we must address
identifying the center of the distribution.

Definition Measures of central tendency: Numerical values that refer to the center of the
distribution.

The three common measures of central tendency are the mode, the median, and
the mean, and they will be discussed in turn. We will begin with what is probably the
least used (and least useful) measure, the mode.

4.1 The Mode

The mode (Mo) can be defined simply as the most common score, that is, the score
obtained from the largest number of subjects. Thus the mode is that value of X, the
dependent variable, that corresponds to the highest point on the distribution. In
the example in Chapter 3 that dealt with reaction times in a mental rotation task
(see Table 3.2), the values in the interval 1.50 to 1.59 occurred 50 times, making
that interval the modal interval. (If you want a single number as the mode, take
the midpoint of that interval, which is 1.55. This can be seen clearly in Figure 3.1)

Definition Mode (Mo): The most commonly occurring score.

If two adjacent times occur with equal (and greatest) frequency, a common
convention is to take an average of the two values and call that the mode. If, on
the other hand, two nonadjacent reaction times occur with equal (or nearly equal)
frequency, we say that the distribution is bimodal and would most likely report
both modes. You can see in Figure 3.1 that several intervals were nearly as frequent
as the one mentioned above. In reporting your results you should probably make
reference to that fact and mention that the most common responses fell between
1.00 and 1.60 or 1.70. When we are speaking of the modality of a distribution, we
are speaking of prominent characteristics of the distribution, not the results of
minor fluctuations in our particular sample.
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4.2 The Median

The median (Mdn) is most easily defined as the middle score in an ordered set or
data. By this definition the median is also called the 50th percentile.1 For example,
consider the numbers (5, 8, 3, 7, 15). If the numbers are arranged in numerical order
(3, 5, 7, 8, 15), the middle score is 7, and it would be called the median. Suppose,
however, that there were an even number of scores, for example (5, 11, 3, 7, 15, 14).
Rearranging, we get (3, 5, 7, 11, 14, 15), and there is no middle score. That point
actually falls between the 7 and the 11. In such a case, the average (9) of the two
middle scores (7 and 11) is commonly taken as the median.2

Definition Median (Mdn): The score corresponding to the point having 50% of the
observations below it when the observations are arranged in numerical order.
Median location: The location of the median in an ordered series.

A term that we will need shortly is the median location, which is the
position in an ordered distribution occupied by the median. The median location
of N numbers is defined as

Thus, for five numbers the median which simply
means that the median is the third number in an ordered series. For 12 numbers
the median the median falls between, and is the
average of, the sixth and seventh numbers.

For the data on reaction times in Table 3.1, the median 
When the data are arranged in order, the 300.5th score is

in the interval of 1.50 –1.59, and so we take the midpoint of that interval (1.55)
as our median. For the data on intrusive thoughts in the breast cancer patients
presented in Figure 3.13, there are 85 scores, and the median location is

We can tell from the stem-and-leaf display that the 43rd score
is 15, so the median would be 15.
185 1 1 2 >2 5 43.

1600 1 1 2 >2 5 300.5.
location 5

location 5 112 1 1 2 >2 5 6.5;

location 5 15 1 1 2 >2 5 3,

Median location 5 1N 1 1 2 >2
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1The specific percentile is defined as the point on a scale at or below which a specified percentage of the
scores fall.
2The definition of the median is another one of those things over which statisticians love to argue. The
definition given here, in which the median is defined as a point on a distribution of numbers, is the one most
critics prefer. It is also in line with the statement that the median is the 50th percentile. On the other hand,
there are many who are perfectly happy to say that the median is either the middle number in an ordered
series (if N is odd) or the average of the two middle numbers (if N is even). Reading these arguments is a bit
like going to a faculty meeting when there is nothing terribly important on the agenda. The less important
the issue, the more there is to say about it.



4.3 The Mean

The most common measure of central tendency is the mean, or what people gen-
erally have in mind when they use the word average. The mean ( ) is the sum of
the scores divided by the number of scores and is usually designated (read
“X bar”). (Almost everyone in statistics uses the “bar” notation, but the American
Psychological Association prefers to use the letter M. I go along with most of their
notation, but am not giving up the use of the bar notation—although I will use M
in sections that discuss how to report the results of a study.) It is defined (using the
summation notation given in Chapter 2) as

where is the sum of all values of X, and N is the number of X values. Therefore,
the mean of the numbers 3, 5, 12, and 5 is

Definition Mean : The sum of the scores divided by the number of scores.

You will see the notation , and often , used throughout the text. You need to
remember that they refer to the mean of that variable. That will always be the case
when we put a bar over the name of a variable.

For the reaction time data illustrated in Table 3.1, the sum of the
observations is 975.60 (in 10th-of-a-second units). When we divide that by

we get Notice that this answer is somewhat
higher than the mode and the median, which we found to be about 1.55. The
mean and the median will be close whenever the distribution is nearly symmet-
ric (i.e., falls off symmetrically on either side of the mean). When the distribu-
tion is nearly symmetric and unimodal, the mode will also be in general
agreement with the mean and median. But for asymmetric (i.e., nonsymmet-
ric) distributions, the mean, median, and mode can all be quite different from
one another. The fact that Figure 3.1 is positively skewed is what gives us a
somewhat larger mean.

We could calculate the mean for the intrusive-thoughts data by obtaining the
raw data values from the stem-and-leaf display in Figure 3.13, summing those
values, and dividing by 85. For that example, the sum of the values would be 1,298,
and there are values. Therefore, the mean would be 
Later in this chapter you will see how to use SPSS to save yourself considerable
work in calculating the mean for large data sets.

1,298>85 5 15.27.N 5 85

975.60>600 5 1.626.N 5 600,

YX

1X 2

13 1 5 1 12 1 5 2 >4 5 25>4 5 6.25

©X

X 5
©X
N

X
X
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n Mode: Most common value; highest region of a
distribution

n Median: Middle value or mean of two middle values

n Mean: What we normally mean by “average”; sum of
observations divided by the number of
observations

4.4 Relative Advantages and Disadvantages 
of the Mode, the Median, and the Mean

Only when the distribution is symmetric will the mean and the median be equal, and
only when the distribution is symmetric and unimodal (having one modal point) will
all three measures be the same. In all other cases—including almost all situations
with which we will deal—some measure of central tendency must be chosen. A set
of rules governing when to use a particular measure of central tendency would be
convenient, but there are no such rules. Some idea of the strengths and weaknesses
of each statistic is required to make intelligent choices among the three measures.

The Mode
The mode is the most commonly occurring score. By definition, then, it is a score that
actually occurred, whereas the mean and sometimes the median may be values that
never appear in the data. The mode also has the obvious advantage of representing the
largest number of people having the same score. Someone who is running a small store
would do well to concentrate on the mode. If 80% of your customers want the giant
economy family size and 20% want the teeny-weeny, single-person size, it wouldn’t
seem particularly wise to aim for the mean or median and stock only the regular size.
Here we want the mode, because we want to appeal to the largest number of people.

By definition, the probability that an observation drawn at random will
be equal to the mode is greater than the probability that it will be equal to any
other specific score. Expressing this algebraically, we can say

Finally, the mode has the advantage of being applicable to nominal data, which is
obviously not true of the median or the mean.

The mode has its disadvantages, however. We have already seen that the
mode depends on how we group our data. Moreover, it may not be particularly rep-
resentative of the entire collection of numbers. This is especially true when the
modal value is 0, such as would occur if we calculated the number of cigarettes
each person in a group smokes in a day. Here the mode would be 0 because of the
preponderance of nonsmokers, but it would tell us nothing about the behavior of

p1Xi 5 mode 2 7 p1Xi 5 any other score 2

1Xi 2
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smokers. (Note that the mean or median would be a lot more informative, but
they, too, would be biased by the nonsmokers.)

The Median
The major advantage of the median, which it shares with the mode, is the fact that
it is unaffected by extreme scores. Thus the medians of both (5, 8, 9, 15, 16) and
(0, 8, 9, 15, 206) are 9. Many experimenters find this characteristic to be useful in
studies in which extreme scores occasionally occur but have no particular signifi-
cance. For example, the average trained rat can run down a short runway in approx-
imately 1 to 2 seconds. Every once in a while this same rat will inexplicably stop
halfway down, scratch himself, poke his nose at the photocells, and lie down to
sleep. In that instance it is of no practical significance whether he takes 30 seconds
or 10 minutes to get to the other end of the runway. It may even depend on when
the experimenter gives up and pokes him with a pencil. If we ran a rat through three
trials on a given day and his times were (1.2, 1.3, and 20 seconds), that would have
the same meaning to us—in terms of what it tells us about the rat’s knowledge of
the task—as if his times were (1.2, 1.3, and 136.4 seconds). In both cases the
median would be 1.3. Obviously, however, his daily mean would be quite different
in the two cases (7.5 versus 46.3 seconds). In situations like this, experimenters
often work with the median score over a block of trials. Similarly, we often use the
median salary and the median cost of a home in place of the corresponding means.

The median has another point in its favor, when contrasted with the mean,
which those writers who get excited over scales of measurement like to point out.
The calculation of the median does not require any assumptions about the interval
properties of the scale. With the numbers (5, 8, and 11), the object represented by
the number 8 is in the middle, no matter how close or distant it is from objects rep-
resented by 5 and 11. When we say that the mean is 8, however, we, or our readers,
may be making the implicit assumption that the underlying distance between
objects 5 and 8 is the same as the underlying distance between objects 8 and 11.
Whether or not this assumption is reasonable is up to the experimenter to deter-
mine. I prefer to work on the principle that if it is an absurdly unreasonable assump-
tion, we will realize that and take appropriate steps. If the assumption is not absurdly
unreasonable, then its practical effect on the results most likely will be negligible.
(This problem of scales of measurement was discussed in more detail in Chapter 2.)

A major disadvantage of the median is that it does not enter readily into
equations and is thus more difficult to work with than the mean. It is also not as
stable from sample to sample as is the mean, as we will see in the next chapter,
and this often presents problems when we use the sample statistics to estimate
parameters.

The Mean
Of the three principal measures of central tendency, the mean is by far the most
common. It would not be too much of an exaggeration to say that for many 
people statistics is (unfortunately) nearly synonymous with the study of the mean.

68 Chapter 4 Measures of Central Tendency



As we have already seen, certain disadvantages are associated with the
mean. It is influenced by extreme scores, its value may not actually exist in the
data, and its interpretation in terms of the underlying variable being measured
requires at least some faith in the interval properties of the data. You might be
inclined to politely suggest that if the mean has all the disadvantages I have
just ascribed to it, then maybe it should be quietly forgotten and allowed to
slip into oblivion along with statistics like the “critical ratio,” a statistical
concept that hasn’t been heard from in years. The mean, however, is made of
sterner stuff.

The mean has several important advantages that far outweigh its disadvan-
tages. Probably the most important of these from a historical point of view (though
not necessarily from your point of view) is that the mean can be manipulated alge-
braically. In other words, we can use the mean in an equation and manipulate
it through the normal rules of algebra, specifically because we can write an equa-
tion that defines the mean. Since you cannot write a standard equation for the
mode or the median, you have no real way of manipulating those statistics using
standard algebra. Whatever the mean’s faults, this accounts in some part for its
widespread application. The second important advantage of the mean is that it has
several desirable properties with respect to its use as an estimate of the population
mean. In particular, if we drew many samples from some population, the sample
means that resulted would be more stable (less variable) estimates of the central
tendency of that population than would the sample medians or modes. The fact
that the sample mean (a statistic) is in general a better estimate of the population
mean (a parameter) than is the mode or the median is a major reason that it is so
widely used by statisticians.

Trimmed Means
We are going to go back for a moment and look at an old idea that has recently
started to take on a new life. When I discussed the mean I said that one of our
criteria for selecting a good statistic was how well it estimated the population
parameter. Although the sample mean is generally a good estimate of the pop-
ulation mean, there are times when it doesn’t do as well as we would like.
Suppose that we have a badly skewed distribution, for example, or a heavy tailed
distribution—one with an unusual number of large or small values. Repeated
samples from that population would have sample means that vary a great deal
from one another. If in one sample you had one or more large values, its mean
would be pulled in a positive direction. If the next sample didn’t have an
extreme value, its mean would be more centered on the distribution. Thus from
sample to sample we would have quite different estimates of the population
mean. One way around this problem is to use what are called trimmed means.
To calculate a trimmed mean we take one or more of the largest and smallest
values in the sample, set them aside, and take the mean of what remains. For a
10% trimmed mean, for example, we would set aside the largest 10% of the
observations and the lowest 10% of the observations. The mean of what
remained would be the 10% trimmed mean.
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Definition Trimmed mean: The mean that results from trimming away (or discarding) a fixed
percentage of the extreme observations.

A number of people (e.g., Wilcox, 2003) have argued that we should make
more use of trimmed means. They claim that doing so would overcome some of
the problems of overly wide populations and improve the conclusions we draw
from experiments. I will return to this problem later in the book and illustrate an
advantage of trimmed means. For now, all you need to know is what a trimmed
mean is.
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Trimmed means discard equal numbers of scores at each end of the distribution
and take the mean of what remains. They are becoming more common in treat-
ing particularly skewed data.

4.5 Obtaining Measures of Central Tendency Using SPSS

For small sets of data it is perfectly reasonable to compute measures of central
tendency by hand. With larger sample sizes or data sets with many variables,
however, it is much simpler to let a computer program do the work. SPSS is ide-
ally suited to this purpose since it is easy to use, versatile, and widely available. (For
instructions on the commands we would use in SPSS to obtain descriptive
statistics as well as graphs, go to this book’s Web site, navigate to the Short SPSS
Manual, and look at Chapter 4.)

In Exercise 3.1 we had data from a study by Katz et al. (1990) on the perform-
ance of students who were asked to answer multiple choice questions about a
passage they had not read. These data are illustrated in Figure 4.1. We can obtain
the mean and the median directly, but to get the mode we need to produce a
histogram (or a stem-and-leaf display) and then look for the most frequently
appearing interval. The commands for SPSS are Analyze/Descriptives/Explore.
You then move the variable in question (Score) to the Dependent Variable box,
select whatever statistics you need, and examine the results. For the histogram you
simply select Graphs/Legacy Dialogs/Histogram.

From the figure you can see that the mean (46.6), the median (46), and the
mode (44) are approximately equal, and that the distribution is fairly smooth.
We don’t really have enough data to talk about skewness. We can also see from
the histogram that there is variability in the scores of our 28 subjects. This
dispersion on either side of the mean is discussed in the next chapter. There are
many statistics in Figure 4.1 that we haven’t discussed, but they will come up
later in the book.
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Figure 4.1
Score and SPSS analysis on items when passage not read
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35.0 37.5 40.0 42.5 45.0 47.5 50.0 52.5 55.0 57.5

Std. Dev. = 6.83
Mean = 46.6
N = 28.00

Scores for Group not Reading Passage

Score

Raw Data: 54 52 51 50 36 55 44 46 57 44 43 52 38 46
55 34 44 39 43 36 55 57 36 46 49 46 49 47

Descriptives

Statistic Std. Error

Score for Mean 46.5714 1.29041
nonpassage group 95% Confidence

Interval for Mean
Lower Bound 43.9237
Upper Bound 49.2191

5% Trimmed Mean 46.6587
Median 46.0000
Variance 46.624
Std. Deviation 6.82820
Minimum 34.00
Maximum 57.00
Range 23.00
Interquartile Range 9.0000
Skewness .224 .441
Kurtosis .901 .8582
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4.6 A Simple Demonstration—Seeing Statistics

Before we end this chapter, I think that you will find it interesting to make use
of a small computer program (called a Java applet) produced by Gary
McClelland at the University of Colorado. Dr. McClelland has produced a large
number of applets and packaged them under the title Seeing Statistics. An
overview can be found at

http://www.seeingstatistics.com

though you would need to subscribe to view all of the applets. Many of those
applets have been included on the Web site established for this book and are
available free. Simply go to

http://www.uvm.edu/~dhowell/fundamentals7/

and click on the link to the Seeing Statistics applets. We will refer to them
many times throughout the text.

The purpose of using these applets is to give you an opportunity to play an
active role in learning this material and to allow you to illustrate for yourself
many of the concepts that are discussed in the text. For example, when we come
to the t test in later chapters, I will tell you what a t distribution would look like
under certain conditions. But the associated applet will allow you to vary those
conditions and actually see what that does to the distribution of t. I suspect that
you will learn far more from what you do than from what I tell you.

It is my expectation that the applets will also assist in preparing for exams.
Having worked through the short activities associated with each applet, you will
have access to yet another way of retrieving information you have stored in
memory. The more methods of access, the better the retrieval.

The first applet that we will use produces a set of meaningful data and illus-
trates an important principle of visual perception. To see this applet, simply go to

http://www.uvm.edu/~dhowell/fundamentals7/SeeingStatisticsApplets/
Applets.html

and follow the instructions. The applet you want is named Brightness
Matching. Be sure to read the instructions on the opening page about Java
applets. You may need to download free software (but probably won’t), and
sometimes the applets take a bit of time to load.

This Brightness Matching applet allows you to manipulate the brightness of
a gray circle centered within a larger circle of a lighter or darker color. An exam-
ple is shown in the accompanying figure. Your task is to adjust the center of the cir-
cle on the right to be the same shade of gray as the center of the circle on the left.
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As you move the slider to the right, the center of the right circle will
lighten. When you think that you have a match, click on the button labeled
“Record Data.” At this point another set of circles will appear and you will
repeat the process. When you have made nine settings, the applet will present
your data, showing you how accurate you were. (Write these data down or print
them out, because you can’t retrieve them once you move on.)

When I performed that task, I produced the following data.



The headings “BG1” and “BG2” refer to the grayness of the left and right
backgrounds “FG1” refers to the grayness of the fore-
ground (the center dot) on the left. “Match” refers to my setting for the dot on
the right, and “Diff ” is the difference in the setting for the two dots. A positive
difference means that my setting was less gray than it should have been to match
the dot on the left.

A general principle of human visual perception is that a dark background
will cause a spot in the center to appear lighter than it actually is. Thus, in the
example shown above, we would expect you to err by setting the center spot at
the right lighter than it really should be. This means that the difference in
brightness between the two center dots will be positive. This would apply to
trials 1, 4, and 8. The reverse should happen on trials 2, 5, and 6, where the
background on the left is lighter than the one on the right—here the differences
should be negative. Finally, trials 3, 7, and 9 were control conditions, where the
two backgrounds were the same, and we would expect the most accurate set-
tings, and relatively small (positive or negative) differences.

For your own data calculate the mean and median differences under each
of the three conditions described above. Create a table similar to Table 4.1

n What do your data show with respect to the hypothesis outlined above?

n Would you have a preference for the mean over the median as the
important statistic here?

n Why would the mode not be a useful measure?

n Why do you suppose that the three differences within any one line
are not all the same? (This will be a very important point later
when we refer to this variability of scores obtained under similar
conditions as “random error.”)

I chose to use this applet here because it serves several purposes. First, it
gives you something active to do, rather than just to plod through what I have
written. Second, it gives you a chance to collect real data on a real phenome-
non. Third, it will allow you to examine those data in light of a set of reason-
able hypotheses about human perceptions. Finally, although there are too few
data points to get too excited about the actual measures of central tendency, you

10 5 white, 1 5 black 2 .
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Table 4.1
Results of Nine Trials of Color Matching

Left Background Trials Differences Mean Median

Lighter 2, 5, 6 .30, .18. .14 .21 .18
Darker 1, 4, 8 .07, .13, .09 .10 .09
Equal 3, 7, 9 .02, .10, .03 .05 .0322222

22222



can make some interesting observations about the role of the mean and median,
although the actual observations you make will depend, at least in part, on your
personal data.

But going one step further, which will set us up for later material. 
I repeated this experiment three more times. The combined data, now with
12 observations (3 observations for each of 4 replications) for each of our
three conditions are shown in Table 4.2.
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Table 4.2
Results of 36 Trials of Color Matching

Left
Background Replication Trials Differences Mean Median

Lighter 1 2, 5, 6 .30, .18. .14 .22 .235
2 2, 5, 6 .27, .22, .28
3 2, 5, 6 .22, .12, .25
4 2, 5, 6 .27, .25, .10

Darker 1 1, 4, 8 .07, .13, .09 .07 .075
2 1, 4, 8 .17, .03 .02
3 1, 4, 8 .08, .03, .04
4 1, 4, 8 .05, .08, .12

Equal 1 3, 7, 9 .02, .10, .03 .04 .025
2 3, 7, 9 .03, .05, .06
3 3, 7, 9 .00, .00, .11
4 3, 7, 9 .01, .04, .1222

2

22

22222

2

222

222

222

22222

You will notice that the means and medians have not changed very much,
but, as we will see later, we have more faith in the stability of these new means
as estimates of the population mean.

4.7 Summary

In this chapter we considered several measures used to describe the center of a dis-
tribution. The most frequently used measure is the mean, often represented by the
symbol , which is simply what most of us learned in elementary school as the
“average.” You add up all of the scores and then divide by the number of scores,
which is usually denoted as N. We went a bit further with the mean and discussed
the trimmed mean, which is simply the mean of the data you have left when you
drop some percentage of values at each end of the distribution. Trimming 10% at
each end often proves useful. A third very useful measure of central tendency is the
median, which is the center value when you arrange your data in ascending or

X



4.8 Exercises

4.1 As part of the Katz et al. (1990) study previously described, the experimenters obtained the
same kind of data from a smaller group of students who had read the passage (called the
Passage group). Their data follow.

66 75 72 71 55 56 72 93 73 72 72 73 91 66 71 56 59

Calculate the mode, median, and the mean for these data.

4.2 The measures of central tendency for the data on Katz’s study who did not read the passages
were given in the SPSS printout in Figure 4.1. Compare those answers with the answers to
Exercises 4.1. What do they tell you about the value of reading the passage on which ques-
tions are based?

4.3 If a student in Katz’s study simply responded at random (even without reading the ques-
tions), she would be expected to get 20 items correct. How does this compare to the meas-
ures we found in Section 4.5? Why should this not surprise you?

4.4 Make up a set of data for which the mean is greater than the median.

4.5 Make up a positively skewed set of data. Does the mean fall above or below the median?

4.6 Plot the data for each of the three conditions in Figure 4.2 and describe the results.

4.7 A group of 15 rats running a straight-alley maze required the following number of trials to
perform to a predetermined criterion. The frequency distribution follows.

Trials to reach criterion 18 19 20 21 22 23 24

Number of rats (frequency) 1 0 4 3 3 3 1

Calculate the mean and median number of trials to criterion for this group. (You can either
write out the 15 numbers or you can think about how you could incorporate the frequen-
cies directly into the formula for the mean.)

descending order. (If there are an even number of values, the median is the aver-
age of the two middle values.) Finally, we have the mode, which is that value (or
set of values) that occurs most frequently in the distribution of outcomes.

The mean is the most commonly used measure of central tendency, but the
median is very useful when you want to minimize the effect of extreme scores.
When speaking about the salaries of sports figures, for example, the median salary
is a more meaningful measure of how much players make, because, unlike the
mean, it is not influenced by the huge salaries that a few players receive.

Some important terms in this chapter are
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Median location, 65
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Trimmed mean, 70
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4.8 Given the following set of data, demonstrate that subtracting a constant (e.g., 5) from every
score reduces all measures of central tendency by that amount.

8 7 12 14 3 7

4.9 Given the following data, show that multiplying each score by a constant multiplies all
measures of central tendency by that constant.

8 3 5 5 6 2

4.10 Create a sample of ten numbers that has a mean of 8.6. Notice carefully how you did this—
it will help you later to understand the concept of degrees of freedom.

4.11 Calculate the measures of central tendency for the data on ADDSC and GPA in Appen-
dix D—also available at this book’s Web site.

4.12 Why would it not make any sense to calculate the mean for SEX or ENGL in Appendix D?
If we did go ahead and compute the mean for SEX, what would the value of ( ) really
represent?

4.13 In Table 3.1 the reaction time data are broken down separately according to whether we
are looking at the same stimulus or whether the stimuli are mirror images of one
another. The data can be found by going this book’s Web site and obtaining the data
labeled as Tab3 –1.dat. Using SPSS or similar software, calculate the mean reaction time
under the two conditions. Does it take longer to respond to stimuli that are mirror
images? This question requires some thought. You can either go to the menu labeled
Data and ask it to split the data on the basis of the variable “Stimulus” and then use the
Analyze/Descriptive Statistics/Descriptives analysis, or you can not split the data but
go to Analyze/Descriptive Statistics/Explore and enter the variable “Stimulus” in the
Factor List.

4.14 With reference to Exercise 4.13, if people take longer to process an image that has been
both reversed and rotated, then the mean reaction time should depend on whether or not
the comparison stimulus has been reversed. If reversal does not alter the difficulty of pro-
cessing information, then the means should be similar. What do the answers to Exercise
4.13 suggest about how we process information?

4.15 Why is the mode an acceptable measure for nominal data? Why are the mean and the
median not acceptable measures for nominal data?

4.16 In the exercises in Chapter 2 we considered the study by a fourth-grade girl who exam-
ined the average allowance of her classmates. You may recall that 7 boys reported an aver-
age allowance of $3.18, while 11 girls reported an average allowance of $2.63. These data
raise some interesting statistical issues. This fourth-grade student did a meaningful study
(well, it was better than I would have done in fourth grade), but let’s look at the data
more closely.

The paper reported that the highest allowance for a boy was $10, while the highest for
a girl was $9. It also reported that the two lowest girls’ allowances were $0.50 and $0.51,
while the lowest reported allowance for a boy was $3.00.
(a) Create a set of data for boys and girls that would produce these results. (No, I didn’t

make an error.)
(b) What is the most appropriate measure of central tendency to report in this situation?
(c) What does the available information suggest to you about the distribution of allowances

for the two genders?
(d) What do the data suggest about the truthfulness of little boys?

X 2 1



4.17 In Chapter 3 (Figure 3.5) we saw data on grades of students who did and did not attend
class regularly. What are the mean and median scores of those two groups of students?
(The data are reproduced here for convenience.) What do they suggest about the value of
attending class?

Attended class 241 243 246 249 250 252 254 254 255 256

261 262 263 264 264 264 265 267 267 270

271 272 273 276 276 277 278 278 280 281

282 284 288 288 290 291 291 292 293 294

296 296 297 298 310 320 321 328

Skipped class 188 195 195 225 228 232 233 237 239 240

250 256 256 256 261 264 264 268 270 270

274 274 277 308

4.18 Why do you think that I did not ask you to calculate the mode? (Hint: If you calculate the
mode for those who skipped class frequently, you should see the problem.)

4.19 Search the Internet for sources of information about measures of central tendency. What
do you find there that was not covered in this chapter?

4.20 The Internet is a great resource when you don’t know how to do something. Search the
Internet to find out how to use SPSS (or whatever software you have access to) to calcu-
late the mode of a set of data. You can just go to Google and enter “How do I calculate the
mode in SPSS?”

4.21 (a) Calculate the 10% trimmed mean for the data on test performance in Figure 4.1.
(Remember that 10% trimming means removing the 10% of the scores at each end of
the distribution.)

(b) Assume that you collected the following data on the number of errors that participants
made in reading a passage under distracting conditions.

10 10 10 15 15 20 20 20 20 25 25 26 27 30 32 37 39 42 68 77

Calculate the 10% trimmed mean for these data.
(c) Trimming made more of a difference in (b) than it did in (a). Can you explain why this

might be?

4.22 Seligman, Nolen-Hecksema, Thornton, and Thornton (1990) classified participants in
their study (who were members of a university swim team) as Optimists or Pessimists. They
then asked them to swim their best event, and in each case they reported times that were
longer than the swimmer actually earned. Half an hour later they asked them to repeat the
event again. The dependent variable was so a ratio greater than 1.0 indicates
faster times on the second trial. The data follow.

Optimists

0.986 1.108 1.080 0.952 0.998 1.017 1.080 1.026 1.045 0.996 

0.923 1.000 1.003 0.934 1.009 1.065 1.053 1.108 0.985 1.001

0.924 0.968 1.048 1.027 1.004 0.936 1.040

Time1>Time2,
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Pessimists

0.983 0.947 0.932 1.078 0.914 0.955 0.962 0.944 0.941 0.831 

0.936 0.995 0.872 0.997 0.983 1.105 1.116 0.997 0.960 1.045

1.095 0.944 1.069 0.927 0.988 1.015 1.045 0.864 0.982 0.915

1.047

Calculate the mean for each group. Seligman et al. thought that optimists would try harder
after being disappointed. Does it look as if they were correct?

4.23 In Exercise 4.22 women did not show much difference between Optimists and Pessimists.
The first 17 scores in the Optimist group are for men and the first 13 scores in the Pessimist
group are for men. What do you find for men?

4.24 I have suggested that if you don’t understand something I write, go to Google and find some-
thing better. In Chapter 2 I admitted that it was pretty easy to define a dependent variable,
but the definition of an independent variable is a bit more complicated. Go to Google and
type in “What is an independent variable.” Read at least five of the links that come up (not
necessarily the first five) and write down the best definition that you find—the one that is
clearest to you.



5

We now know about measures of central tendency, but that is certainly not
the only thing that we need. This chapter will take up the topic of variability of scores
and explain why variability is such a central concept in statistical analysis. We will
see a number of different ways to measure variability. Each has its strengths and weak-
nesses, but we will focus primarily on two of them. But what makes one measure of
variability better than another? We will discuss this under the heading of estimation
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Measures of
Variability

Concepts that you will need to remember from
previous chapters
Independent variable: The variable you manipulate or are studying

Dependent variable: The variable that you are measuring—the data

Mean: The sum of the values divided by the number
of values

Trimmed sample: A sample with a fixed percentage of scores
deleted from each end

: A common symbol for the mean

: The symbol for summation of what follows

N: The number of observations

Median location: The position of the middle score in an
ordered list

©

X
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and we will see how variability can be represented graphically. Finally, we will cover
what most people see as the odd fact that when we want to average quantities to
obtain our measure we don’t just divide by the number of quantities, but we divide by
one less than the number of quantities. That seems weird.

In Chapter 3 we looked at ways to characterize and display the shape of a
distribution. In Chapter 4 we considered several measures related to the center of a
distribution. However, the shape and average value for a distribution (whether it be
the mode, the most common value, the median, the middle value, or the mean) fail
to give the whole story. We need some additional measure (or measures) to indicate
the degree to which individual observations are clustered about or, equivalently, devi-
ate from that average value. The average may reflect the general location of most of
the scores, or the scores may be distributed over a wide range of values, and the
“average” may not be very representative of the observations. Probably everyone has
had experience with examinations on which all students received approximately the
same grade and with examinations on which the scores ranged from excellent to
dreadful. Measures that refer to the differences between these two types of situations
are what we have in mind when we speak of dispersion, or variability, around the
median, the mode, or any other point we wish. In general we will refer specifically
to dispersion around the mean.

Definition Dispersion (Variability): The degree to which individual data points are distributed
around the mean.

As an example of a situation in which we might expect differences in variabil-
ity from one group to another, consider the example in the previous chapter wherein
some students answered questions about passages they had read, and other
students answered questions about the same passages, but without reading them. It
could be that those who did not read the passage simply guessed wildly, and their
performance would differ from each other only by chance—some people who
guessed were luckier in their guesses than others. But for those who read the pas-
sage, there might be more substantial differences among people. Not only would
there be chance differences, depending on how lucky they were when they didn’t
know the answer, but there would be real differences reflecting how much more of
the passage one person understood than did another. Here the means of the two
groups would most likely differ, but that is irrelevant. The difference in variability is
our focus. The groups could have different levels of variability even if their means
were comparable. Do my hypotheses correspond with your experience? If not, what
would you expect to happen? Does your expectation lead to differences in means,
variances, both, or neither?

For another illustration we will take some interesting data collected by Langlois
and Roggman (1990) on the perceived attractiveness of faces. This study was one of
several conducted by those authors examining attractiveness and its importance in life.
It generated a great deal of discussion, and you can easily find extensive reference to



that and related studies by a Google search for “Langlois and Roggman.” A valuable
discussion of their work can be found at Langlois’s Web site at the University of Texas
at Austin, where you can see good examples of what is meant by the computer
averaging of faces.

Think for a moment about some of the faces you consider attractive. Do they
tend to have unusual features (e.g., prominent noses or unusual eyebrows), or are
the features rather ordinary? Langlois and Roggman were interested in investigat-
ing what makes faces attractive. Toward that end they presented students with
computer-generated pictures of faces. Some of these pictures had been created by
averaging together actual snapshots of four different people to create a compos-
ite. We will label these photographs Set X, where the X stands for averaging over
a few faces. Other pictures (Set Y) were created by averaging across snapshots
of 32 different people. As you might suspect, when you average across four
people, there is still room for individuality in the composite. For example, some
composites show thin faces, while others show round ones. However, averaging
across 32 people usually gives results that are very “average.” Noses are neither
too long nor too short, ears don‘t stick out too far nor sit too close to the head, and
so on. Students were asked to examine the resulting pictures and rate each one on
a 5-point scale of attractiveness. The authors were primarily interested in determin-
ing whether the mean rating of the faces in Set X was less than the mean rating of
the faces in Set Y. The data came out as expected, suggesting that faces with
distinctive characteristics are judged as less attractive than more ordinary faces. In
this chapter, however, we are more interested in the degree of similarity in the
ratings of faces than in the mean. We expect that composites of many faces will
be more homogeneous, and thus would be rated more similarly, than composites
of only a few faces.

The data are shown in Table 5.1, where the scores are the consensus across
several judges rating the images on a 5-point scale, with “5” as the most attractive.1
From the table you can see that Langlois and Roggman were correct in predicting
that Set Y faces would be rated as more attractive than Set X faces. (The means
were 3.26 and 2.64, respectively.) But notice also that the ratings for the compos-
ites of 32 faces are considerably more homogeneous than the ratings of the
composites of four faces. We can plot these two sets of data as standard
histograms, as in Figure 5.1.

Although it is apparent from Figure 5.1 that there is much greater variability in the
rating of composites of four photographs than in the rating of composites of 
32 photographs, some sort of measure is needed to reflect this difference in variability.
A number of measures could be used, and they will be discussed in turn, starting with
the simplest.
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1 These data are not the actual numbers that Langlois and Roggman collected, but they have been generated
to have exactly the same mean and standard deviation as the original data. Langlois and Roggman used six
composite photographs per set. I have used 20 photographs per set to make the data more applicable to my
purposes in this chapter. The conclusions that you would draw from these data, however, are exactly the
same as the conclusions you would draw from theirs.
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5.1 Range

The range is a measure of distance, namely the distance from the lowest to the high-
est score. For our data the range for Set X is units; for Set Y it
is unit. The range is an exceedingly common measure and is
illustrated in everyday life by such statements as “The price of hamburger fluctuates
over a 70¢ range from $1.29 to $1.99 per pound.” (Although in common statements
like this one we specify the end points of the distribution, the range is really the dif-
ference or distance between the points. Here the range is 0.70.) The range suffers,
however, from a total reliance on extreme values, or, if the values are unusually
extreme, on what are called outliers. As a result, the range may give a distorted
picture of the variability. One really unusual value could change the range drastically.

Definition Range: The distance from the lowest to the highest score.
Outlier: An extreme point that stands out from the rest of the distribution.

13.38 2 3.13 2 5 0.25
14.02 2 1.20 2 5 2.82

Table 5.1
Data from Langlois and Roggman

Set X Set Y

Picture Composite of 4 Faces Picture Composite of 32 Faces

1 1.20 21 3.13
2 1.82 22 3.17
3 1.93 23 3.19
4 2.04 24 3.19
5 2.30 25 3.20
6 2.33 26 3.20
7 2.34 27 3.22
8 2.47 28 3.23
9 2.51 29 3.25

10 2.55 30 3.26
11 2.64 31 3.27
12 2.76 32 3.29
13 2.77 33 3.29
14 2.90 34 3.30
15 2.91 35 3.31
16 3.20 36 3.31
17 3.22 37 3.34
18 3.39 38 3.34
19 3.59 39 3.36
20 4.02 40 3.38

Mean � 2.64 Mean � 3.26



5.2 Interquartile Range and Other Range Statistics

If the range is too affected by one or two extreme scores, perhaps we should just get
rid of those extremes before we compute the range. The interquartile range repre-
sents an attempt to circumvent the problem of the range being heavily dependent
on extreme scores. An interquartile range is obtained by discarding the upper and
lower 25% of the distribution and taking the range of what remains. You may
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Figure 5.1
Distribution of scores for attractiveness of composite
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recognize that cutting off the upper and lower ends of the distribution is what we
referred to in the last chapter as “trimming,” and the interquartile range is the
range of a 25% trimmed sample. As such, it is the range of the middle 50% of the
observations, or the difference between the 75th percentile and the 25th per-
centile. We can calculate the interquartile range for the data on attractiveness of
faces by omitting the lowest five scores and the highest five scores and determin-
ing the range of the remainder. In this case, the interquartile range for Set X would
be 0.58 and the interquartile range for Set Y would be only 0.11.

Definition Interquartile range: The range of the middle 50% of the observations.

The interquartile range plays an important role in a useful graphical method
known as a boxplot. This method will be discussed in Section 5.8.

In many ways the interquartile range suffers from problems that are just
the opposite of those found with the range. Specifically, it discards too much of
the data. Trimming off 25% of the scores at each end of the distribution may
give us a good estimate of the mean, but it usually does not yield a very good
estimate of overall variability. If we want to know if one set of photographs is
judged more variable than another, it does not make much sense to toss out
the half of those scores that are most extreme and thus vary the most from the
mean.

There is nothing sacred about eliminating the upper and lower 25% of the
distribution before calculating the range. In fact we could eliminate any per-
centage we wanted as long as we could justify that number to ourselves and to
others. What we really want to do is eliminate those scores that are likely to be
accidents or errors without eliminating the variability that we seek to study.
Samples that have had a certain percentage (e.g., 10%) of the values in each
tail removed are called trimmed samples, and statistics calculated on such sam-
ples are called trimmed statistics (e.g., trimmed means or trimmed ranges).
Statisticians seem to like trimmed samples a lot more than psychologists do.
That is unfortunate, because trimmed samples, and their associated trimmed
statistics, have a lot to offer and can make our analyses more meaningful. As I
said earlier, trimmed samples are beginning to make a comeback, though it will
take time. It is nice to see trimmed statistics beginning to appear in research
articles, because it means that our techniques are constantly, though slowly,
improving.

Definition Trimmed samples: Samples with a percentage of the extreme scores removed.
Trimmed statistics: Statistics calculated on trimmed samples.

Ranges and interquartile ranges look at the extreme scores of a distribution
or else the extreme scores of a 25% trimmed sample. The following measures make
use of all of the data points.



5.3 The Average Deviation

At first glance it would seem that if we want to measure how scores are dispersed
around the mean ( )(i.e., deviate from the mean), the most logical thing to do
would be to obtain all the deviations (i.e., ) and average them. The more
widely the scores are dispersed, the greater the deviations of scores from their mean
and therefore the greater the average of the deviations—well, not quite. Common
sense has led us astray here. If you calculate the deviations from the mean, some
scores will be above the mean and have a positive deviation, while others will be
below the mean and have negative deviations. In the end, the positive and nega-
tive deviations will exactly balance each other out, and the sum of the deviations
will be zero. This will not get us very far.

Xi 2 X
X
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To illustrate what I mean by deviations balancing each other out, consider the
numbers 1, 2, and 3. The mean is

and the sum of the deviations from the mean is

© 1X 2 X 2
N

5
11 2 2 2 1 12 2 2 2 1 13 2 2 2

3
5
21 1 0 1 1

3
5

0
3
5 0

©X
N
5

 11 1 2 1 3 2
3

5 2

5.4 The Variance

One way to eliminate the problem of the positive and negative deviations balanc-
ing each other out would be to use absolute deviations, where we simply eliminate
the sign. Although that produces a legitimate measure of variability (the mean
absolute deviation, m.a.d.), that measure is seldom used, and so we will not say
more about it here. The measure that we will consider in this section, the sample
variance , represents a different approach to the problem that the deviations
themselves average to zero. (When we are referring to the population variance, we
use [sigma squared] as the symbol.) In the case of the variance, we take advan-
tage of the fact that the square of a negative number is positive. Thus we sum the
squared deviations rather than the deviations themselves. Because we want an
average, we next divide that sum by a function of N, the number of scores.
Although you might reasonably expect that we would divide by N, we actually
divide by We use as a divisor for the sample variance because,
as I will explain shortly, it leaves us with a sample variance that is a better estimate
of the corresponding population variance. For now, just accept that we need to use

for the sample variance. (The population variance is calculated by1s2 21N 2 1 2

1s2 21N 2 1 21N 2 1 2 .

s2

1s2 2
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dividing the sum of the squared deviations, for each value in the population, by N
rather than but we rarely actually calculate a population variance. Other
than in writing textbooks, I don’t think that I can recall a time that I calculated a
population variance, though there are countless times when I have estimated them
with a sample variance.) If it is important to specify more precisely the variable to
which refers, we can subscript it with a letter representing the variable. Because
we have denoted the sample using only the images averaged over four faces as X,
the variance could be denoted as 

Definition Sample variance : Sum of the squared deviations about the mean divided by

Population variance : Variance of a population; usually estimate, rarely computed.

For our example, we can calculate the sample variances of Set X and Set Y as
follows:2
Set X
The mean of X is

then

Set Y
The mean of Y is

Y 5
©Y
N
5

65.23
20

5 3.26

 5
8.1567

19
5 0.4293

 5
 11.20 2 2.64 2 2 1 11.82 2 2.64 2 2 1 p 1 14.02 2 2.64 2 2

20 2 1

 s2
X 5
© 1X 2 X 2 2

N 2 1

X 5
©X
N
5

52.89
20

5 2.64

1s2 2
N 2 1.

1s2 2

s2
X 5
© 1X 2 X 2 2

N 2 1

s2
X.

s2

1N 2 1 2 ,

2 In these calculations and others throughout the book, my answers may differ slightly from those that you
obtain for the same data. If so, the difference is most likely due to rounding. If you repeat my calculations
and arrive at a similar answer, that is sufficient.



then

From these calculations we see that the difference in variances reflects the
differences we see in the distributions. The variance of Set Y is very much smaller
than the variance of Set X.

Although the variance is an exceptionally important concept and one of
the most commonly used statistics, it does not have the direct intuitive inter-
pretation we would like. Because it is based on squared deviations, the result is
in terms of squared units. Thus Set X has a mean attractiveness rating of 2.64
and a variance of 0.4293 squared unit. But squared units are awkward things to
talk about and have little intuitive meaning with respect to the data.
Fortunately, the solution to this problem is simple: Take the square root of the
variance.

5.5 The Standard Deviation

The standard deviation (s or ) is defined as the positive square root of the
variance and, for a sample, is symbolized as s (with a subscript identifying the
variable if necessary). When used in a publication in psychology to report results,
the symbol SD is used. (The notation is used only in reference to a population
standard deviation.) The following formula defines the standard deviation:

For our example,

For convenience I will round these answers to 0.66 and 0.07, respectively.

Definition Standard deviation (s or ): The square root of the variance.s

 sY 5 2s2
Y 5 20.0048 5 0.0689

 sX 5 2s2
X 5 20.4293 5 0.6552

sX 5 B© 1X 2 X 2 2
N 2 1

s

s

 5
0.0902

19
5 0.0048

 5
13.13 2 3.26 2 2 1 13.17 2 3.26 2 2 1 p 1 13.38 2 3.26 2 2

20 2 1

 s2
Y 5
© 1Y 2 Y 2 2

N 2 1
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If you look at the formula, you will see that the standard deviation, like the
mean absolute deviation, is basically a measure of the average of the deviations of
each score from the mean. Granted, these deviations have been squared, summed,
and so on, but at heart they are still deviations. And even though we have divided
by instead of N, we still have obtained something very much like a mean
or an “average” of these deviations. Thus we can say without too much distortion
that attractiveness ratings for Set X deviated positively or negatively, on the aver-
age, 0.66 unit from the mean, whereas attractiveness ratings for Set Y deviated, on
the average, only 0.07 unit from the mean. This rather loose way of thinking about
the standard deviation as a sort of average deviation goes a long way toward giving
it meaning without doing serious injustice to the concept.

These results tell us two interesting things about attractiveness. The fact that
computer averaging of many faces produces similar composites would be reflected
in the fact that ratings of pictures in Set Y do not show much variability—all those
images are judged to be pretty much alike. Second, the fact that those ratings have
a higher mean than the ratings of faces in Set X reveals that averaging over many
faces produces composites that seem more attractive. Does this conform to your
everyday experience? I, for one, would have expected that faces judged attractive
would be those with distinctive features, but I would have been wrong. Go back
and think again about those faces you class as attractive. Are they really distinc-
tive? If so, do you have an additional hypothesis to explain the findings?

We can also look at the standard deviation in terms of how many scores fall
no more than a standard deviation above or below the mean. For a wide variety of
reasonably symmetric and mound-shaped distributions, we can say that approxi-
mately two-thirds of the observations lie within one standard deviation of the
mean (for a normal distribution, which will be discussed in Chapter 6, it is almost
exactly two-thirds). Although there certainly are exceptions, especially for badly
skewed distributions, this rule is still useful. If I told you that for traditional jobs
the mean starting salary for liberal arts college graduates in 2009 was expected to
be $36,445 with a standard deviation of $4,000, you probably would not be far off
to conclude that about two-thirds of graduates who take these jobs will earn
between about $32,500 and $40,500.

1N 2 1 2

Measures of Variability

■ Range: Distance from lowest to highest score

■ Interquartile Range: The range remaining after we delete the
highest and lowest 25% of the scores.
The range of the middle 50% of the scores

■ Mean Absolute Deviation: Sum of the absolute deviations from the
mean divided by the sample size



5.6 Computational Formulae for the Variance 
and the Standard Deviation

The previous expressions for the variance and the standard deviation, although
perfectly correct, are unwieldy if you are doing the calculations by hand for any
reasonable amount of data. They are also prone to rounding errors, since they
usually involve squaring fractional deviations. They are excellent definitional
formulae, but we will now briefly consider a more practical set of calculational
formulae. These formulae are algebraically equivalent to the ones we have seen,
so they will give the same answers but with much less effort. (Interestingly, in
earlier editions of this book I emphasized the computational formulae that I’m
about to produce over the definitional ones. But as people rely more and more
on computers, and less and less on calculators, I find myself swinging more in
the direction of definitional formulae. If you want to understand what the stan-
dard deviation is, concentrate on the formula we just used. If you have to actu-
ally carry out a calculation with more than a few numbers, then move to the
formula that follows.)

The definitional formula for the sample variance was given as

A more practical computational formula, which is algebraically equivalent, is

s2
X 5

©X2 2
1©X 2 2

N
N 2 1

s2
X 5
© 1X 2 X 2 2

N 2 1
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■ Variance: Sum of the squared deviations from the
mean divided by one less than the 

sample size 

■ Standard Deviation: Square root of the variance

s2
X 5 B© 1X 2 X 2 2

N 2 1

s2
X 5
© 1X 2 X 2

N 2 1

1X 2
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Similarly, for the sample standard deviation

Applying the computational formula for the sample variance for Set X, with
observations, we obtain

You should notice that to use this formula we first summed all of the scores.
That gives us Then we squared all of the scores and summed those squares,
which gave us N is just the number of scores. We substituted each of those
values in the equation, carried out the necessary arithmetic, and had our answer.
Note that the answer we obtained here is exactly the same as the answer we
obtained by the definitional formula. Note also, as pointed out in Chapter 2, that

148.0241 is quite different from Summing
squared terms and squaring a sum are two very different things. I leave the calcu-
lation of the standard deviation for Set Y to you, but the answer is 0.0689.

You might be somewhat reassured that the level of mathematics required for
the previous calculations is about as much as you will need anywhere in this book.
(I told you that you learned it all in high school.)

5.7 The Mean and the Variance as Estimators

Mention was made in Chapter 1 of the fact that we generally calculate measures
such as the mean and the variance as estimates of the corresponding values in the
populations. Characteristics of samples are called statistics and are designated by

1©X 2 2 5 52.892 5 2,797.35.©X2 5

©X2.
©X.

 5
148.0241 2
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20
19

5 0.4293

 5
1.202 1 1.822 1 p 1 4.022 2
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 s2
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©X2 2
1©X 2 2
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N 2 1

N 5 20

 5R
©X2 2

1©X 2 2
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 sX 5 B© 1X 2 X 2 2
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Roman letters (e.g., and ). Characteristics of populations, on the other hand,
are called parameters and are designated by Greek letters. Thus the population mean
is symbolized by (lowercase mu) and the population standard deviation as 
(lowercase sigma). In general, then, we use statistics as estimates of parameters.

If the purpose of obtaining a statistic is to use it as an estimator of a popula-
tion parameter, it should come as no surprise that our choice of a statistic (and even
how we define it) is partly a function of how well that statistic functions as an esti-
mator of the parameter in question. In fact, the mean is usually preferred over other
measures of central tendency precisely because of its performance as an estimator of

The sample variance is defined as it is specifically because of the advantages
that accrue when is used to estimate the population variance, signified by 

The Sample Variance as an Estimator 
of the Population Variance
The sample variance offers an excellent example of a property of estimators known
as bias. A biased sample statistic is one whose long-range average is not equal to
the population parameter it is supposed to estimate. An unbiased statistic, as you
might guess, is one whose long-range average is equal to the parameter it estimates.
Unbiased statistics, like unbiased people, are nicer to have around. If you calculate
the sample variance in the right way, it is unbiased.

Definition Bias: A property of a statistic whose long-range average is not equal to the
parameter it estimates.
Degrees of freedom (df ): The number of independent pieces of information
remaining after estimating one or more parameters.

Earlier I sneaked in the divisor of instead of N for the calculation of
the variance and the standard deviation. The quantity is referred to as the
degrees of freedom (df) and represents an adjustment to the sample size to
account for the fact that we are working with sample values. To be a bit more spe-
cific, in estimating the sample standard deviation we first had to calculate and use

to estimate the population mean Because we did that we need to adjust the
sample size accordingly. Now is the time to explain why we do this. You need to
have a general sense of the issues involved, but you don’t need to worry about the
specifics. Whenever you see a variance or a standard deviation, it will have been
computed with in the denominator. You can say “It’s probably because of
some obscure statistical argument,” and skip this section, or you can read this
section and see that makes a good deal of sense.

The reason why sample variances require as the denominator can
be explained in a number of ways. Perhaps the simplest is in terms of what has been
said already about the sample variance as an unbiased estimate of the popula-
tion variance Assume for the moment that we had an infinite number of
samples (each containing N observations) from one population and that we knew

1s2 2 . 1s2 2
1N 2 1 21N 2 1 2

1N 2 1 2

1m 2 .X

1N 2 1 21N 2 1 2

s2.s2
1s2 2m.

sm
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the population variance Suppose further that we were foolish enough to cal-
culate sample variances as (note the denominator). If we took the
average of these sample variances, we would find

where E( ) is read as “the expected value of” whatever is in parentheses. Here we
see that the expected value of the variance, when calculated with N in the denom-
inator, is not equal to , but to times Well, that doesn’t seem like
such a good thing!

Definition Expected Value, E( ): The long-range average of a statistic over repeated samples.

But we can easily get out from under this problem. If

then with a small amount of algebra we can see that

In other words, when we use as the divisor instead of N, our result
is an unbiased estimate of s2.
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Degrees of freedom

Throughout this book you will come across the concept of degrees of freedom.
Degrees of freedom (df) come into play whenever we use sample statistics to
estimate population parameters. Often, the degrees of freedom will be 
but in some situations (for example, Chapters 9–11) they will be or

But in all cases they are an adjustment that we apply to the sample size.
In other cases, when we have 5 groups or 3 categories, the degrees of freedom
for groups will be and the degrees of freedom for categories will be

You will do best if you just think of degrees of freedom as an adjust-
ment to some other value, such as the sample size, the number of groups, the
number of pairs of observations, and so on. In each case where you need to use
the degrees of freedom, I will be careful to tell you how to calculate them.

3 2 1 5 2.
5 2 1 5 4,

N 2 3.
N 2 2

N 2 1,



5.8 Boxplots: Graphical Representations of Dispersion
and Extreme Scores

In Chapter 3 you saw how stem-and-leaf displays can represent data in several
meaningful ways at the same time. Such displays combine data into something
very much like a histogram, while retaining the individual values of the observa-
tions. In addition to the stem-and-leaf display, John Tukey developed other ways
of looking at data, one of which gives greater prominence to the dispersion of the
data. This method is known as a boxplot, or sometimes, box-and-whisker plot.
Tukey’s method of calculating the ingredients of a boxplot is more complicated
than it really needs to be, and in recent years most people have adopted a
somewhat simpler approach that produces nearly the same plot with more easily
understood steps. That is the approach that I will adopt in this edition.

Definition Boxplot: A graphical representation of the dispersion of a sample.
Box-and-whisker plot: A graphical representation of the dispersion of a sample.

The data and the accompanying stem-and-leaf display in Table 5.2 were
taken from normal- and low-birthweight infants participating in a study at the
University of Vermont, and they represent preliminary data on the length of
hospitalization of 38 normal-birthweight infants. Data on three infants are miss-
ing for this particular variable and are represented by an asterisk (*). (They are
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Table 5.2  
Data and Stem-and-Leaf Display on Length of Hospitalization
for Full-Term Newborn Infants (in days)

Data Stem-and-Leaf

2 1 7 1 000
1 33 2 2 000000000
2 3 4 3 00000000000
3 * 4 4 0000000
3 3 10 5 00
9 2 5 6 0
4 3 3 7 0

20 6 2 8
4 5 2 9 0
1 * * 10 0
3 3 4 HI 20, 33
2 3 4
3 2 3 Missing � 3
2 4
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included to emphasize that we should not just ignore missing data.) Because the
data are integers between 1 and 10, with two exceptions, all the leaves are zero
because there are no “less significant” digits to serve as leaves. The zeros really
just fill in space to produce a histogram-like distribution. Examination of the
data as plotted in the stem-and-leaf display reveals that the distribution is posi-
tively skewed with a median stay of three days. Near the bottom of the stem you
will see the entry HI and the values 20 and 33. These are extreme values, or
outliers, and are set off in this way to highlight their existence. Whether they are
large enough to make us suspicious is one of the questions a boxplot is designed
to address. The last line of the stem-and-leaf display indicates the number of
missing observations.

To help understand the next few points, I have presented the boxplot of the
data listed in Table 5.2. This is shown in Figure 5.2. It was constructed using a
programming language/statistical package called R, but looks similar to boxplots
produced by other software. I will discuss each part of that figure in turn.

To understand how a boxplot is constructed, we need to invoke a number of
concepts we have already discussed and then add a few more. In Chapter 4 we
defined the median location of a set of N scores as When the median
location is a whole number, as it will be when N is odd, then the median is simply
the value that occupies that location in an ordered arrangement of data. When the
median location is a decimal number (i.e., when N is even), the median is the
average of the two values on either side of that location. For the data in Table 5.2,
the median location is and the median is 3. Notice that the
horizontal line in the middle of the small box in Figure 5.2 is drawn at the median.
The next step in constructing a boxplot is to take what amounts to the medians of
each half of the ordered distribution. These are the locations of the first and third
quartiles (i.e., the 25th and 75th percentiles), which Tukey referred to as “hinges.”

138 1 1 2 >2 5 19.5,

1N 1 1 2 >2.

Figure 5.2 
Boxplot of data on length of hospitalization from Table 5.2
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To calculate the quartiles, we first need to obtain the quartile location, which is
defined as

Definition Quartile location: The location of the quartile in an ordered series.
Whisker: Line from top and bottom of the box to the farthest point that is no more
than 1.5 times the interquartile range from the box.

If the median location is a fractional value, the fraction should be dropped
from the numerator before you compute the quartile location. The quartile loca-
tion is to a quartile what the median location is to the median. It tells us where,
in an ordered series, the quartile values are to be found. For the data on hospital
stay, the quartile location is Thus the quartiles are going to be
the tenth scores from the bottom and from the top. These values are 2 and 4,
respectively. For data sets without tied scores, or for large samples, the first and
third quartiles will bracket the middle 50% of the scores. Notice that the top and
bottom of the box in Figure 5.2 are at 2 and 4, and correspond to the first and third
quartiles.

The next concept we need goes back to our interquartile range, which is sim-
ply the range of values remaining after we cut off the lower and upper quartiles.
Tukey called it the “H-spread,” but that terminology seems to be dropping by the
wayside. For our data the interquartile range (or H-spread) is The next
step in drawing the boxplot, then, is to draw a line (whisker) from the top and
bottom of the box to the farthest point that is no more than 1.5 times the interquar-
tile range from the top and bottom of the box. Because the interquartile range is
2 for our data, the whisker will be no farther than units out from the
box. (It won’t be a full three units unless there is an obtained value at that point.
Otherwise it will go as far as the most extreme value that is not more than three
units from the box.) Three units below the box would be at but
the smallest value in the data is 1, so we will draw the whisker to 1. Three units
above the box would be at There is a 7 in the data, so we will draw that
whisker to 7. The calculations for all the terms we have just defined are shown in
Table 5.3.

The steps above were all illustrated in Figure 5.2. The only question is
“where did those asterisks come from?” The asterisks in that plot represent values
that are so extreme that they lie outside the whiskers. They are commonly referred
to as outliers. They could be honest values that are just extreme, or they could be
errors. The nice thing about that boxplot is that it at least directs our attention to
those values. I will come back to them in just a minute.

From Figure 5.2 we can see several important things. First, the central por-
tion of the distribution is reasonably symmetric. This is indicated by the fact that

4 1 3 5 7.

2 2 3 5 21,

2 3 1.5 5 3

4 2 2 5 2.

119 1 1 2 >2 5 10.

Quartile location 5
Median location 1 1

2
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the median lies in the center of the box and was apparent from the stem-and-leaf
display. We can also see that the distribution is positively skewed, because the
whisker on the top is substantially longer than the one on the bottom. This also
was apparent from the stem-and-leaf display, although not so clearly. Finally, we see
that we have four outliers, where an outlier is defined here as any value more
extreme than the whiskers. The stem-and-leaf display did not show the position of
the outliers nearly so graphically as does the boxplot.

Outliers deserve special attention. An outlier could represent an error in
measurement, in data recording, or in data entry, or it could represent a legitimate
value that just happens to be extreme. For example, our data represent length of
hospitalization, and a full-term infant might have been born with a physical defect
that required extended hospitalization. Because these are actual data, it was possi-
ble to go back to hospital records and look more closely at the four extreme cases.
On examination, it turned out that the two most extreme scores were attributable
to errors in data entry and were readily correctable. The other two extreme scores
were caused by physical problems of the infants. Here a decision was required by
the project director as to whether the problems were sufficiently severe to cause the
infants to be dropped from the study (both were retained). The two corrected
values were 3 and 5 instead of 33 and 20, respectively, and a new boxplot on the
corrected data is shown in Figure 5.3. This boxplot is identical to the one shown
in Figure 5.2 except for the spacing and the two largest values. (You should verify
for yourself that the corrected data set would indeed yield this boxplot.) These data
look more like we would like them to look.

From what has been said, it should be evident that boxplots are extremely
useful tools for examining data with respect to dispersion. I find them particularly
useful for screening data for errors and for highlighting potential problems before
subsequent analyses are carried out. Boxplots are presented often in the remainder
of this book as visual guides to the data.

†Drop any fractional value

Table 5.3  
Calculation and Boxplots for Data from Table 5.2

Median location
Median 3
Quartile location Median location†

Lower quartile 10th lowest score 2
Upper quartile 10th highest score 4
Interquartile range Upper hinge Lower hinge
Interquartile range 1.5
Maximum lower whisker First quartile Interquartile

range
Maximum upper whisker Third quartile Interquartile

range
End lower whisker Smallest value
End upper whisker Largest value # 7 5 7

$ 21 5 1
5 4 1 3 5 7

1 1.5 3
5 2 2 3 5 21

2 1.5 3
2 3 1.5 5 33

5 4 2 2 5 22

5

5

1 1 2 >2 5 119 1 1 2 >2 5 101
1N 1 1 2 >2 5 138 1 1 2 >2 5 19.5



There are a number of sites on the Web that either illustrate useful ways in
which boxplots can be used or allow you to draw your own. But as soon as I point
to a specific site, its address changes and students can’t reach it. Instead, I recom-
mend a Google search for “boxplot” or “boxplot applet.”
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Figure 5.3 
Corrected boxplot
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For People in a Hurry

A boxplot really doesn’t take all that long to draw, but some people just don’t
have any patience. For those who don’t want to fuss too much and just want a
general sense of the data, the simplest thing is to find the median and the first
and third quartile. Then draw your box. Assuming that you have a large num-
ber of scores, you can set aside the largest 2.5% and the smallest 2.5% and draw
the whiskers to the largest and smallest values that remain. Then put those
extreme values in as outliers. In fact, some computer programs look as if that’s
exactly the way they construct boxplots.

5.9 A Return to Trimming

As you should recall from Chapter 4, one technique for dealing with outliers that
distort the mean is to trim the sample, meaning that we lop off a certain number of
values at each end of the distribution. We then find the mean of the observations
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that remain. You might logically think that we should do the same thing when
examining the variance or standard deviation of that sample. But, instead, we are
going to modify the procedure slightly.

Winsorized Variance
For a 20% trimmed mean we set aside the 20% of the highest and lowest values
and find the mean of what remains. There is also a statistic called the Winsorized
mean, which replaces the extreme observations with the highest (and lowest)
value remaining after trimming. For example, suppose that we had the following
observations.

12 14 19 21 21 22 24 24 26 27 27 27 28 29 30 31 32 45 50 52

With 20 values, 20% trimming would remove the lowest and highest 4 observa-
tions, giving us

21 22 24 24 26 27 27 27 28 29 30 31  

which gives a trimmed mean of (The original mean was 28.05.)

Definition Winsorized variance: The variance of a Winsorized sample.

When we Winsorize the data we replace the lowest scores that we have
eliminated with 21 (the lowest value remaining) and the highest scores with 31
(the highest value remaining.) This gives us

21 21 21 21 22 24 24 26 27 27 27 28 29 30 31 31 31 31 31

Then the Winsorized mean would be which is actually quite close
to the trimmed mean.

For technical reasons that I won’t elaborate, we rarely use the Winsorized
mean, but use the trimmed mean instead. However, when it comes to calculat-
ing a variance or standard deviation, we fall back on Winsorizing. When we
work with a trimmed mean we find that the Winsorized variance or Winsorized
standard deviation is a more useful statistic. And to compute a Winsorized
variance we simply compute the variance of the Winsorized sample. So we want
the variance of

21 21 21 21 22 24 24 26 27 27 27 28 29 30 31 31 31 31 31

which is 16.02. (The variance of the trimmed sample would have been only 9.52.)

Definition Winsorized standard deviation: The standard deviation of a Winsorized
sample.

524>20 5 26.2,

316>12 5 26.33.



We will return to Winsorized variance and standard deviations later in the
book, but for now you simply need to understand what they are. And if you know
that, you will be ahead of most people around you.

5.10 Obtaining Measures of Dispersion Using SPSS

We will use SPSS to calculate measures of dispersion on the reaction time data
discussed in Chapter 3 (see page 37). I calculated the output using Descriptive
Statistics/Explore and broke the data down by whether I made the correct or
incorrect choice. In Figure 5.4a you can see both the descriptive statistics
calculated separately for those trials on which the response was correct and for
those on which it was wrong. You will notice that in the upper right of each sec-
tion is a statistic called the Standard Error. For now you can ignore that statistic,
but in case you are curious it refers to how variable the mean would be over
repeated samples, whereas the standard deviation refers to the variability of the
individual observations. In Figure 5.4b are the corresponding boxplots.

From Figure 5.4a you can see that the mean reaction time was slightly
longer on those trials in which my choice was incorrect, but the median values
are identical. The boxplot in Figure 5.4b shows that the data for wrong choices
were positively skewed (the median in not centered in the box). SPSS also
labeled the outliers by their ID number. For example, responses 179 and 202
were two of the outliers.

5.11 The Moon Illusion

I’m sure that you all experience nights when you drive along and see this absolutely
huge moon sitting just above the horizon. How did it get that way? Did someone
just blow it up like a balloon? Hardly! Then why does the moon appear to be so
much larger when it is near the horizon than when it is directly overhead? This
simple question has produced a wide variety of theories from psychologists.
Kaufman and Rock (1962) carried out a very complete series of studies. They pro-
posed that the moon illusion is caused by the greater apparent distance of the moon
when it is at the horizon than when it is at its zenith (something along the idea
that “if it is really that far away, it must be really big”).3 When we discuss the t test
in Chapters 12 through 14, we will examine Kaufman and Rock’s data in more
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3 For an interesting discussion of the recent work by Kaufman and his son, go to

http://www.xs4all.nl/~carlkop/moonillu.html

The brief historical section near the end of that page is interesting, and shows that the moon illusion has
been around for a very long time, as has what has now come to be the dominant theory used to explain it.

http://www.xs4all.nl/~carlkop/moonillu.html
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Figure 5.4a
Distribution and measures of central tendency and dispersion on reaction time data set

Descriptives

Accuracy Statistic Std. Error

RTsec Correct Mean 1.6128 .02716

95% Confidence 

Interval for Mean

Lower Bound 1.5595

Upper Bound 1.6662

5% Trimmed Mean 1.5549

Median 1.5300

Variance .402

Std. Deviation .63404

Minimum .72

Maximum 4.44

Range 3.72

Interquartile Range .73

Skewness 1.522 .105

Kurtosis 3.214 .209

Wrong Mean 1.7564 .08906

95% Confidence 

Interval for Mean

Lower Bound 1.5778

Upper Bound 1.9349

5% Trimmed Mean 1.7192

Median 1.5300

Variance .436

Std. Deviation .66052

Minimum .72

Maximum 3.45

Range 2.73

Interquartile Range .60

Skewness 1.045 .322

Kurtosis .444 .634

detail, but first we have to ask if the apparatus they used really produced a moon
illusion in the first place. Table 5.4 gives measures of the moon illusion collected
by Kaufman and Rock. For these data a score of 1.73, for example, means that the
moon appeared to the subject to be 1.73 times larger when on the horizon than
when overhead. Ratios greater than 1.00 are what we would expect if the apparatus
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Figure 5.4b
Reaction times displayed separately by accuracy of response
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Table 5.4  
Moon Illusion Data

Illusion (X ) X 2

1.73 2.9929
1.06 1.1236
2.03 4.1209
1.40 1.9600
.95 .9025

1.13 1.2769
1.41 1.9881
1.73 2.9929
1.63 2.6569
1.56 2.4336

�X 14.63 �X 2 22.448355

works correctly (producing an illusion). Ratios close to one would indicate little or
no illusion. Moreover, we hope that if the task given the subjects is a good one,
there would not be much variability in the scores.

From the data in Table 5.4 we have the necessary values needed to calculate
the statistics we need.
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Mean:

Variance:

Standard deviation:

So we have a mean illusion of 1.46, which tells us that the horizon moon looked
almost one and a half times the size of the moon overhead (the zenith moon).
With a standard deviation of .34, we can estimate that about two-thirds of the
observations fell between 1.12 and 1.97, which is just the mean plus and minus a
standard deviation. Now let’s see what this looks like graphically.

Boxplots:
We can go about calculating the boxplot by systematically working through a num-
ber of steps.

First rearrange the observations in ascending order:

.95 1.06 1.13 1.40 1.41 1.56 1.63 1.73 1.73 2.03

Calculate the median location so that we can get the median:

Now get the quartile locations so that we can find the first and third quartile:

(Drop fraction from median location if necessary.)

Quartiles The third observations from the top and the bottom of the
ordered series

Now work on the whiskers

Interquartile range Distance between third and first quartiles

1.5 3 Interquartile range 5 1.510.60 2 5 0.90

5 1.73 2 1.13 5 0.60

5

5 1.13 and 1.73

5

Quartile location 5 1Median location 1 1 2 >2 5 15 1 1 2 >2 5 3

Median 5 11.41 1 1.56 2 >2 5 1.485

Median location 5 1N 1 1 2 >2 5 11>2 5 5.5

s 5 20.1161 5 0.3407

s2 5

©X2 2
1©X 2 2

N
N 2 1

5

22.4483 2
114.63 2 2

10
9

5 0.1161

X 5
©X
N
5

14.63
10

5 1.463



Values closest to but not exceeding whisker lengths:

Lower whisker end .95

Upper whisker end 2.03

Resulting boxplot:

From these results we can see that the average moon illusion is well above
1.00; in fact only one measurement was less than 1. With a mean of 1.46, we can
say that, on average, the horizon moon appears to be about half again as large
(46% more) as the zenith moon. More important for our purposes here, the vari-
ability of the illusion is reasonably small; the standard deviation 
meaning that the measurements are in pretty good agreement with one another,
and there are no outliers. It looks as if Kaufman and Rock’s apparatus works well
for their purpose.

5.12 Seeing Statistics

Earlier I told you that we use the divisor of in calculating the variance
and standard deviation because it leads to a less biased estimate of the popula-
tion variance. I largely left it to you to accept my statement on faith. However,
using one of McClelland’s applets from Seeing Statistics, you can illustrate this for
yourself. You will see that while does not always produce the better
estimate, it certainly does on average.

The applet can be found at

www.uvm.edu/~dhowell/fundamentals7/SeeingStatisticsApplets/Applets.html 

and is named “Why divide by ?” In this applet we have created a popula-
tion consisting of each of the numbers between 0 and 100. Because we have the
whole population, we know that the true mean is and the variance is

The population standard deviation is thus 29.2. (You could1s 2s2 5 853.
m 5 50,

N 2 1

N 2 1

N 2 1

1s 2 5 0.34,

0 1
Ratio

2 3

5

5

Maximum of lower whisker 5 1.13 2 0.90 5 0.23

Maximum of upper whisker 5 1.73 1 0.90 5 2.63

Maximum whisker length 5 Quartiles ;  1.5 3  1Interquartile range 2
104 Chapter 5 Measures of Variability
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calculate those for yourself if you are compulsive.) The applet itself, before any
samples have been collected, looks like the one shown.

You can draw individual samples of size 3 from this population and display
the results using both N and as the denominator by clicking on the New
Sample button. First, draw individual samples and note how they vary. Note
that sometimes one denominator produces the closer estimate, and sometimes
the other denominator does so. Now click on the “10 samples” button. This will
draw 10 samples of at once, and will give you the average values for these
10 samples. Such a display is illustrated next.

N 5 3

N 2 1



Usually, though not always, with 10 samples you can see that the
divisor of produces the better average estimate. (Remember that the
true population standard deviation is 29.2.) For this example, I have drawn
10 samples. The display shows you the estimated standard deviations for
those 10 samples, as computed by using both and N as the denom-
inator. It also shows you the averages of the 10 values for each of those two
estimates.

If you keep clicking on this button you will be adding 10 new samples to
your collection each time. Clicking on the next button will add 100 samples at
a time. I drew a total of 500 samples. Using as the denominator, our
average estimate was 31.8, which is too high by 2.6 units. Using N as the
denominator, we were off, on average, by units. Clearly

was more accurate.
Click on the “100 Samples” button until you have accumulated about

5,000 samples. What is your average estimate of the population standard devia-
tion using the two different divisors?

It should be evident that as N, the size of an individual sample, increases,
the relative difference between N and will decrease. This should mean
that there will be less of a difference between the two estimates. In addition,
with larger sample sizes, the average sample standard deviation will more closely
approximate . The second applet on your screen allows you to repeat the
process above, but to use a sample size of 15. What effect does this have on your
results?

5.13 Summary

In the last three chapters we have learned how to plot data, how to calculate sen-
sible measures of the center of the distribution, and how to calculate measures of
dispersion. In the rest of the book you will learn more about plotting data, but you
basically have the information you will need about descriptive statistics, such as
the mean and standard deviation.

We began with the simplest measure of dispersion, the range, which is just
the difference between the lowest and highest scores. We built on the range to
cover the interquartile range, which is the range after you remove the lowest and
highest 25% of the scores. The interquartile range can also be thought of as the
range of a 25% trimmed sample, because a 25% trimmed sample would discard the
lowest and highest 25%. In fact, there is nothing uniquely important about
the interquartile range, and we can take the range of a sample that has been
trimmed of any specific percentage of cases.

s

N 2 1

1N 2 1 2 29.2 2 26 5 3.2

1N 2 1 2

1N 2 1 2

N 2 1
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The most commonly used measures of dispersion are the sample variance 
and the sample standard deviation (s). The variance is essentially the average of the
squared distances between each observation and the sample mean. To compute the
variance, we “average” by dividing by one less than the sample size (i.e., ),
rather than by the full sample size. This gives us an unbiased estimate of the
population variance The sample standard deviation (s) is simply the square
root of the variance. An unbiased estimator is one whose long-term average is equal
to the population parameter that it is intended to estimate. We also saw that when
it comes to working with trimmed samples, we calculate our sample variance and
standard deviation by creating a Winsorized sample, which is just a trimmed sample
with the elements that were dropped being replaced by the lowest and highest ele-
ments that remain.

We looked at computational formulae for the variance and standard
deviation. Unless you are doing calculations by hand, these formulae are not
particularly important, though in the past they were very important and saved a
great deal of time.

Boxplots were presented as an excellent way of creating a visual representa-
tion of our data. We draw a horizontal line at the median, then draw a box around
the data from the first quartile to the third quartile, and then draw whiskers from
each end of the box. The whiskers are equal in length to no more than1.5 times
the interquartile range. (They actually go to the observation that is no more than
that distance from the box.) Anything that lies beyond the end of the whiskers is
considered an outlier and deserves serious attention.

Some important terms in this chapter are

1s2 2 .
N 2 1

1s2 2

Dispersion (variability), 81

Range, 83

Outlier, 83

Interquartile range, 85

Trimmed samples, 85

Trimmed statistics, 85

Sample variance , 87

Population variance , 87

Standard deviation (s or ), 88s

1s2 2
1s2 2

Bias, 92

Degrees of freedom (df), 92

Expected value, 93

Boxplot, 94

Box-and-whisker plot, 94

Quartile location, 96

Whisker, 96

Winsorized variance and
standard deviation, 99



5.14 Exercises

5.1 Calculate the range, the variance, and the standard deviation for data that Katz et al. col-
lected on SAT performance without reading the passage. The data follow.

54 52 51 50 36 55 44 46 57 44 43 52

38 46 55 34 44 39 43 36 55 57 36 46

49 46 49 47

5.2 Calculate the range, the variance, and the standard deviation for the Katz et al. data on
SAT performance after reading the passage.

66 75 72 71 55 56 72 93 73 72 72 73

91 66 71 56 59

5.3 Compare the answers to Exercises 5.1 and 5.2. Is the standard deviation for performance
when people do not read the passage different from the standard deviation when people do
read the passage?

5.4 In Exercise 5.1, what percentage of the scores fall within two standard deviations from the
mean?

5.5 In Exercise 5.2, what percentage of the scores fall within two standard deviations from the
mean?

5.6 Create a small data set of about seven scores and demonstrate that adding or subtracting a
constant to each score does not change the standard deviation. What happens to the mean
when a constant is added or subtracted?

5.7 Given the data you created in Exercise 5.6, show that multiplying or dividing by a constant
multiplies or divides the standard deviation by that constant. How does this relate to what
happens to the mean under similar circumstances?

5.8 Using what you have learned from Exercises 5.6 and 5.7, transform the following set of data
to a new set with a standard deviation of 1.00.

5 8 3 8 6 9 9 7

5.9 Use the answers to Exercises 5.6 and 5.7 to modify the answer to Exercise 5.8 to have a
mean of 0 and a standard deviation of 1.00. (Note: The solution to Exercises 5.8 and 5.9
will be important in Chapter 6.)

5.10 Create two sets of scores with equal ranges but different variances.

5.11 Create a boxplot for the data in Exercise 5.1.

5.12 Create a boxplot for the data in Exercise 5.2.

5.13 Create a boxplot for the variable ADDSC in Appendix D. These data are available at

http://www.uvm.edu/~dhowell/fundamentals7/DataFiles/Add.dat 
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5.14 Using the data for ENGG in Appendix D:
(a) Calculate the variance and the standard deviation for ENGG.
(b) These measures should be greater than the corresponding measures on GPA. Can you

explain why this should be? (We will come back to this later in Chapter 12, but see if
you can figure it out.)

5.15 The mean of the data used in Exercise 5.1 is 46.57. Suppose that we had an additional sub-
ject who had a score of 46.57. Recalculate the variance for these data. (You can build on
the intermediate steps used in Exercise 5.1.) What effect does this score have on the
answers to Exercise 5.1?

5.16 Instead of adding a score equal to the mean (as in Exercise 5.15), add a score of 40 to the
data used in Exercise 5.1. How does this score affect the answers to Exercise 5.1?

5.17 Use SPSS, or other software, to draw a set of boxplots (similar to Figure 5.4b) to illustrate
the effect of increase the angle of rotation in the Mental Rotation data set. The data can
be found at http://www.uvm.edu/~dhowell/fundamentals7/DataFiles/MentalRotation.dat
(A file with the “sav” extension is the SPSS file itself.)

5.18 Given the following data:

1 3 3 5 8 8 9 12 13 16 17 17 18 20 21 30

(a) Draw a boxplot.
(b) Calculate the standard deviation of these data and divide every score by the standard

deviation.
(c) Draw a boxplot for the data in (b).
(d) Compare the two boxplots.

5.19 The following graph came from the JMP statistical package applied to the data in Table 5.2
on length of hospitalization. Notice the boxplot on the top of the figure. How does that
boxplot compare with the ones we have been using? (Hint: The mean is 4.66.)

http://www.uvm.edu/~dhowell/fundamentals7/DataFiles/MentalRotation.dat


5.20 In Section 5.10, statistics were computed from the reaction time data in Chapter 3. What would
you conclude from these data about the relationship between accuracy and reaction time?

5.21 Everitt, as reported in Hand et al. (1994), presented data on the amount of weight gained by
72 anorexic girls under one of three treatment conditions. The conditions were Cognitive
Behavior Therapy, Family Therapy, and a Control group who received no treatment. The
data follow:

Cog. 1.7 0.7 0.1 0.7 3.5 14.9 3.5 17.1 7.6 1.6 11.7 6.1 1.1 4.0
Behav. 20.9 9.1 2.1 1.4 1.4 0.3 3.7 0.8 2.4 12.6 1.9 3.9 0.1 15.4

0.7

Family 11.4 11.0 5.5 9.4 13.6 2.9 0.1 7.4 21.5 5.3 3.8 13.4 13.1 9.0
3.9 5.7 10.7

Control 0.5 9.3 5.4 12.3 2.0 10.2 12.2 11.6 7.1 6.2 0.2 9.2 8.3 3.3
11.3 0.0 1.0 10.6 4.6 6.7 2.8 0.3 1.8 3.7 15.9 10.2

(a) What would you hypothesize about central tendency and variability?
(b) Calculate the relevant descriptive statistics and graphics for each condition separately.
(c) What kind of conclusions would you feel comfortable in drawing, and why? (We

haven’t covered hypothesis testing, but you are doing an elementary hypothesis test
here. Think carefully about how you are doing it—it may help you in Chapter 8.)

5.22 Compare the mean, standard deviation, and variance for the data in Exercise 5.1 with their
trimmed and Winsorized counterparts.

5.23 Compare the mean, standard deviation, and variance for the data for the Cognitive
Behavior condition in Exercise 5.21 with their 20% trimmed and Winsorized counterparts.
Why is the Winsorized variance noticeably smaller than the usual variance?
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The Normal
Distribution

Concepts that you will need to remember from
previous chapters
Independent variable: The variable you manipulate or are studying

Dependent variable: The variable that you are measuring—the data

X axis: The horizontal axis, also called the abscissa

Y axis: The vertical axis, also called the ordinate

Histogram: A plot of data with the values of the dependent
variable on the X axis and the frequency with
which those occurred on the Y axis

Bar chart: A graph with the independent variable on
the X axis and the mean or other measure on
the Y axis

: A common symbol for the mean

s: A common symbol for the variance

: The symbol for summation of what follows

N: The number of observations

©

X

In this chapter we will look at the normal distribution, which is a distribution
that is very important to statisticians. I assume that the word “normal” came from the
fact that at one time people thought that the distribution was extremely common and



applied to such things as weight, intelligence, level of self-confidence, and so on.
Because there are an unlimited number of normal distributions, one for each combi-
nation of mean and variance, we are going to look at ways to rein them in and work
with a common scale. We will then show that we can use the normal distribution to
derive probabilities of events and will see how to do that. We will also see that there
are many other distributions that are similar to the normal distribution and are used in
many applications. Finally, we will use applets to show how to work with the normal
distribution.

From the preceding chapters it should be apparent that we are going to be
very much concerned with distributions—distributions of data, hypothetical distribu-
tions of populations, and sampling distributions. Of all the possible forms that distri-
butions can take, the class known as the normal distribution is by far the most
important for our purposes.

Definition Normal distribution: A specific distribution having a characteristic bell-shaped 
form.

Before elaborating on the normal distribution, however, it is worth a short
digression to explain just why we are so interested in distributions in general. The crit-
ical factor is that there is an important link between distributions and probabilities. If
we know something about the distribution of events (or of sample statistics), we know
something about the probability that one of those events (or statistics) is likely to occur.
To see the issue in its simplest form, take the lowly pie chart. (This is the only time you
will see a pie chart in this book. I am one of those people who stand too long in
cafeteria lines, trying to figure out which slice of pie is the largest, and afraid that I’ll
make the wrong choice. We shouldn’t be using graphics whose message isn’t
obvious.)

The pie chart shown in Figure 6.1 is taken from a U.S. Department of Justice
report on probation and parole. It shows the status of all individuals convicted of
a criminal offense. From this figure you can see that 9% were in jail, 19% were
in prison, 61% were on probation, and the remaining 11% were on parole. You
can also see that the percentages in each category are directly reflected in the
percentage of the area of the pie that each wedge occupies. The area taken up
by each segment is directly proportional to the percentage of individuals in that
segment. Moreover, if we declare that the total area of the pie is 1.00 unit, the
area of each segment is equal to the proportion of observations falling within that
segment.1

It is easy to go from speaking about areas to speaking about probabilities.
The concept of probability will be elaborated on in Chapter 7, but even without
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1 Some students think that it is rather cavalier to just decide on your own that the area of the pie is 1.0 unit.
If you have that problem, just imagine redrawing the pie chart, to scale, so that its total area is one square
inch. Then a slice of the pie that represents 25% of the incarcerations, will actually measure 0.25 square inch.



a precise definition of probability we can make an important point about areas of
a pie chart. For now, simply think of probability in its common everyday usage,
referring to the likelihood that some event will occur. From this perspective it is log-
ical to conclude that, because 19% of those convicted of a federal crime are cur-
rently in prison, if we were to randomly draw the name of one person from a list
of convicted individuals, the probability is .19 that the individual would be in
prison. To put this in slightly different terms, if 19% of the area of the pie is allo-
cated to prison, then the probability that a randomly chosen person would fall into
that segment is .19.

This pie chart also allows us to explore the addition of areas. It should be
clear that if 19% are in prison and 9% are in jail, % are incarcer-
ated. In other words, we can find the percentage of individuals in one of several
categories just by adding the percentages for each category. The same thing holds
in terms of areas, in the sense that we can find the percentage of incarcerated indi-
viduals by adding the areas devoted to prison and to jail. And finally, if we can
find percentages by adding areas, we can also find probabilities by adding
areas. Thus the probability of being incarcerated is the probability of being in one
of the two segments associated with incarceration, which we can get by summing
the two areas (or their associated probabilities). I hope that I haven’t really told you
anything that you didn’t already know. I’m just setting the stage for what follows.

19 1 9 5 28
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Figure 6.1
Pie chart showing persons under correctional supervision, by type of supervision in 19822

Probation
61%

Prison
19%

Jail
9%

Parole
11%

2 For 2004, the figures were Jail = 10%, Prison = 20%, Probation = 60%, and Parole = 10%. What does this
tell us about changes in how we deal with convictions? A search of the Internet under the words “correctional
supervision” reveals all sorts of interesting statistics, which seem to vary with the politics of the 
person reporting them. In particular, you might try

http://www.ojp.usdoj.gov/bjs/glance/corr2.htm

( Just double click on the graphic to see the raw data.) The alarming thing is that the percentages haven’t
changed all that much but the total numbers have gone up drastically.

http://www.ojp.usdoj.gov/bjs/glance/corr2.htm


There are other, and better, ways to present data besides pie charts. One of the
simplest is a bar chart, where the height of each bar is proportional to the percentage
of observations falling in that category. (We saw a bar chart in Figure 3.5, where the
Y axis represented the mean reaction time.) Figure 6.2 is a redrawing of Figure 6.1
in the form of a bar chart. Although this figure does not contain any new information,
it has two advantages over the pie chart. First, it is easier to compare categories
because the only thing we need to look at is the height of the bar, rather than trying
to compare the lengths of two different arcs in different orientations. The second advan-
tage is that the bar chart is visually more like the common distributions we will deal
with, in that the various levels or categories are spread out along the horizontal
dimension, and the percentages in each category are shown along the vertical dimen-
sion. Here again you can see that the various areas of the distribution are related to
probabilities. Further, you can see that we can meaningfully sum areas in exactly the
same way that we did in the pie chart. When we move to more common distributions,
particularly the normal distribution, the principles of areas, percentages, probabilities,
and the addition of areas or probabilities carry over almost without change.

6.1 The Normal Distribution

Now let’s move closer to the normal distribution. I stated earlier that the normal
distribution is one of the most important distributions we will encounter. There are
several reasons for this:

1. Many of the dependent variables with which we deal are commonly assumed
to be normally distributed in the population. That is to say, we frequently
assume that if we were to obtain the whole population of observations, the
resulting distribution would closely resemble the normal distribution.

2. If we can assume that a variable is at least approximately normally
distributed, then the techniques that are discussed in this chapter allow
us to make a number of inferences (either exact or approximate) about
values of that variable.
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Figure 6.2
Bar chart showing persons under correctional supervision, by type of supervision
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3. The theoretical distribution of the hypothetical set of sample means
obtained by drawing an infinite number of samples from a specified
population can be shown to be approximately normal under a wide
variety of conditions. Such a distribution is called the sampling
distribution of the mean and is discussed and used extensively
throughout the remainder of this book.

4. Most of the statistical procedures we will employ have, somewhere in
their derivation, an assumption that a variable is normally distributed.

To introduce the normal distribution, we will look at one additional data set
that is approximately normal (and would be closer to normal if we had more obser-
vations). The data we are going to look at were collected using the Achenbach
Youth Self-Report form (Achenbach,3 1991). This is one of the most frequently
used measures of behavior problems, and it produces scores on a number of differ-
ent dimensions. The one we are going to look at is the dimension of Total
Behavior Problems, which represents the total number of behavior problems
reported by the child’s parent (weighted by the severity of the problem). (Examples
of Behavior Problem categories are “Argues,” “Impulsive,” “Shows off,” and
“Teases.”) Figure 6.3 is a histogram of data from 289 junior high school students.
A higher score represents more behavior problems. (For the moment, ignore the
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3 Tom Achenbach has developed several extremely important scales for looking at behavior problems in
children, and these scales are widely used in clinical work with children.

Figure 6.3
Histogram showing distribution of total behavior problem scores
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smooth curve that is superimposed on the figure.) You can see that this distribu-
tion has a center very near 50 and is fairly symmetrically distributed on either side
of that value, with the scores ranging between about 25 and 75. The standard
deviation of this distribution is approximately 10. The distribution is not perfectly
even—it has some bumps and valleys—but overall it is fairly smooth, rising in the
center and falling off at the ends. (The actual mean and standard deviation for this
particular sample are 49.13 and 10.56, respectively.)

One thing that you might note from this distribution is that if you add the
frequencies of subjects falling into the intervals 52–53, 54 –55, and 56 –57, you
will find that 64 students obtained scores between 52 and 56. Because there are
289 observations in this sample, of the observations fell in this
interval. This illustrates the comments made earlier on the addition of areas.

If we take this same set of data and represent it by a line graph rather than a
histogram, we obtain Figure 6.4. There is absolutely no information in this figure
that was not in Figure 6.3. I merely connected the tops of the bars in the histogram
and then erased the bars themselves. Why, then, waste an artist’s time by putting
in a figure that has nothing new to offer? The reason is simply that I want to get
people to see the transition from a histogram, which you often see when you open
a newspaper or a magazine, to a line graph. The next transition from there to the
smoothed curves you will often see in the rest of the book. You can see that
smoothed curve in Figure 6.3, where I instructed SPSS to superimpose the best
fitting normal distribution on top of the histogram. The major difference between
the line graph (frequency polygon) and the smoothed curve is that the latter is a
stylized version that leaves out the bumps and valleys. If you would prefer, you can

64>289 5 22%
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Figure 6.4
Frequency polygon showing distribution of total behavior problem scores
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always think of the smoothed curve as sitting on top of an invisible histogram
(with very narrow bars).

Now we are ready to go to the normal distribution. First, we will consider it
in the abstract, and then we will take a concrete example, making use of the
Achenbach Youth Self Report Total Behavior Problem scores that we saw in
Figures 6.3 and 6.4.

The distribution shown in Figure 6.5 is a characteristic normal distribution.
It is a symmetric, unimodal distribution, frequently referred to as “bell shaped,” and
has limits of The abscissa, or horizontal axis, represents different possible
values of X, while the ordinate, or vertical axis, is referred to as the density, often
denoted and is related to (but not the same as) the frequency or probability
of occurrence of X. The concept of density is discussed in further detail in the next
chapter.

Definition Abscissa: Horizontal (X ) axis.
Ordinate: Vertical (Y ) axis.
Density: Height of the curve for a given value of X ; closely related to the probability
of an observation falling in an interval around X.

The normal distribution has a long history. It was originally investigated by DeMoivre
(1667–1754), who was interested in its use to describe the results of games of chance
(gambling). The distribution was defined precisely by Pierre-Simon Laplace

f 1x 2 ,
;q.
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Figure 6.5
A characteristic normal distribution with values of X on the abscissa and density 
on the ordinate
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(1749–1827) and put in its more usual form by Carl Friedrich Gauss (1777–1855),
both of whom were interested in the distribution of errors in astronomical observa-
tions. In fact, the normal distribution often is referred to as the Gaussian distribution
and as the “normal law of error.” Adolph Quetelet (1796 –1874), a Belgian
astronomer, was the first to apply the distribution to social and biological data. He
collected chest measurements of Scottish soldiers and heights of French soldiers. 
(I can’t imagine why—he must have had too much time on his hands.) He found that
both sets of measurements were approximately normally distributed. Quetelet inter-
preted the data to indicate that the mean of this distribution was the ideal at which
nature was aiming, and observations to either side of the mean represented error 
(a deviation from nature’s ideal). (For males like me, it is somehow comforting
to think of all those bigger guys as nature’s errors, although I don’t imagine they think
of themselves that way.) Although we no longer think of the mean as nature’s ideal,
this is a useful way to conceptualize variability around the mean. In fact, we still use
the word error to refer to deviations from the mean. Francis Galton (1822–1911) car-
ried Quetelet’s ideas further and gave the normal distribution a central role in psycho-
logical theory, especially the theory of mental abilities. Some would insist that Galton
was too successful in this endeavor, and that we tend to assume that measures are
normally distributed even when they are not. I won’t argue the issue here, but it is very
much a point of debate among statisticians.

Mathematically the normal distribution is defined as

where and e are constants and , and and are the
mean and the standard deviation, respectively, of the distribution. Given that 

and are known, the height of the curve, or ordinate, for any value of X
is obtained simply by substituting the appropriate values for and X and solv-
ing the equation. This is not nearly as difficult as it looks, but in practice you will
probably never to have to make the calculations. The cumulative form of this dis-
tribution is tabled, and we can simply read the information we need from the table.

Most people are happy to take this formula on faith, especially because they
will never have to use it. But for those who like formulae or don’t take things on
faith, assume that we had a population with a mean and a standard
deviation We want to know how high the curve will be (its density) at a
score of Then

Those of you who have had a course in calculus may recognize that the area
under the curve between any two values of X (say, and ), and thus the prob-
ability that a randomly drawn score will fall within that interval, could be found
by integrating the function over the range from to —although that is not aX2X1

X2X1
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simple task. Those of you who have not had such a course can take comfort from
the fact that tables are readily available in which this work has already been done
for us or by use of which we can easily do the work ourselves. Such a table appears
in Appendix E (Table E.10), and an abbreviated version of that table is shown in
Table 6.1. For those who think that paper and pencil tables and calculations went
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Table 6.1
The Normal Distribution (Abbreviated Version of Table E.10)

Mean to Larger Smaller Mean to Larger Smaller 
z z Portion Portion z z Portion Portion

0.00 0.0000 0.5000 0.5000 0.45 0.1736 0.6736 0.3264
0.01 0.0040 0.5040 0.4960 0.46 0.1772 0.6772 0.3228
0.02 0.0080 0.5080 0.4920 0.47 0.1808 0.6808 0.3192
0.03 0.0120 0.5120 0.4880 0.48 0.1844 0.6844 0.3156
0.04 0.0160 0.5160 0.4840 0.49 0.1879 0.6879 0.3121
0.05 0.0199 0.5199 0.4801 0.50 0.1915 0.6915 0.3085
. . . . . . . . . . . . . . . . . . . . . . . .
0.97 0.3340 0.8340 0.1660 1.42 0.4222 0.9222 0.0778
0.98 0.3365 0.8365 0.1635 1.43 0.4236 0.9236 0.0764
0.99 0.3389 0.8389 0.1611 1.44 0.4251 0.9251 0.0749
1.00 0.3413 0.8413 0.1587 1.45 0.4265 0.9265 0.0735
1.01 0.3438 0.8438 0.1562 1.46 0.4279 0.9279 0.0721
1.02 0.3461 0.8461 0.1539 1.47 0.4292 0.9292 0.0708
1.03 0.3485 0.8485 0.1515 1.48 0.4306 0.9306 0.0694
1.04 0.3508 0.8508 0.1492 1.49 0.4319 0.9319 0.0681
1.05 0.3531 0.8531 0.1469 1.50 0.4332 0.9332 0.0668
. . . . . . . . . . . . . . . . . . . . . . . .
1.95 0.4744 0.9744 0.0256 2.40 0.4918 0.9918 0.0082
1.96 0.4750 0.9750 0.0250 2.41 0.4920 0.9920 0.0080
1.97 0.4756 0.9756 0.0244 2.42 0.4922 0.9922 0.0078
1.98 0.4761 0.9761 0.0239 2.43 0.4925 0.9925 0.0075
1.99 0.4767 0.9767 0.0233 2.44 0.4927 0.9927 0.0073
2.00 0.4772 0.9772 0.0228 2.45 0.4929 0.9929 0.0071
2.01 0.4778 0.9778 0.0222 2.46 0.4931 0.9931 0.0069
2.02 0.4783 0.9783 0.0217 2.47 0.4932 0.9932 0.0068
2.03 0.4788 0.9788 0.0212 2.48 0.4934 0.9934 0.0066
2.04 0.4793 0.9793 0.0207 2.49 0.4936 0.9936 0.0064
2.05 0.4798 0.9798 0.0202 2.50 0.4938 0.9938 0.0062

0

Larger portion

Smaller
portion

z



out in the very dim past before instant messaging and the iPod, you can go to the
Web and find sites that will do the calculations for you.

You might be excused at this point for wondering why anyone would want to
table such a distribution in the first place. Just because a distribution is common
(or at least commonly assumed) doesn’t automatically suggest a reason for having
an appendix that tells all about it. But there is a reason. By using Table E.10, we
can readily calculate the probability that a score drawn at random from the
population will have a value lying between any two specified points ( and ).
Thus by using statistical tables we can make probability statements in answer to a
variety of questions. You will see examples of such questions in the rest of this
chapter. They will also appear in many other chapters throughout the book.

6.2 The Standard Normal Distribution

A problem arises when we try to table the normal distribution, because the
distribution depends on the values of the mean and the standard deviation

of the population. To do the job right, we would have to make up a differ-
ent table for every possible combination of the values of and which
certainly is not practical. What we actually have in Table E.10 is what is called
the standard normal distribution, which has a mean of 0 and a standard
deviation and variance of 1. Such a distribution is often designated as 
where N refers to the fact that it is normal, 0 is the value of and 1 is the value
of is the more general expression. Given the standard normal
distribution in the appendix and a set of rules for transforming any normal
distribution to standard form and vice versa, we can use Table E.10 to find the
areas under any normal distribution.

Definition Standard normal distribution: A normal distribution with a mean equal to 0 and a
standard deviation equal to 1; denoted as N(0,1).

43N1m, s2 2s2.
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You might think about what we are doing here as vaguely similar to letter grades
that you get on an exam. You might take a 100-question exam and get 90 ques-
tions right. I might take a 50-item exam and get 45 items right. Someone else
may take a 10-question exam and get 9 questions correct. We all have different
numbers correct, but we will all probably get an A on the exam. What we are
doing with the letter grade is essentially adjusting for the different scales on
which those numbers are measured.

Consider the distribution shown in Figure 6.6, with a mean of 50 and a stan-
dard deviation of 10 (variance of 100). It represents the distribution of an entire
population of Total Behavior Problem scores from the Achenbach Youth Self



Report form, of which the data in Figures 6.3 and 6.4 are a sample. If we knew
something about the areas under the curve in Figure 6.6, we could say something
about the probability of various values of Behavior Problem scores and could
identify, for example, those scores that are so high that they are obtained by only
5% or 10% of the population.

The only tables of the normal distribution that are readily available are those
of the standard normal distribution. Therefore, before we can answer questions
about the probability that an individual will get a score above some particular
value, we must first transform the distribution in Figure 6.6 (or at least specific
points along it) to a standard normal distribution. That is, we want to be able to
say that a score of from a normal distribution with a mean of 50 and a variance
of 100—often denoted —is comparable to a score of from a distribu-
tion with a mean of 0 and a variance, and standard deviation, of 1—denoted

Then anything that is true of is also true of and z and X are compa-
rable variables.

From Exercise 5.6 we know that subtracting a constant from each score in a
set of scores reduces the mean of the set by that constant. Thus if we subtract 50
(the mean) from all the values for X, the new mean will be (More
generally, the distribution of has a mean of 0.) The effect of this transfor-
mation is shown in the second set of values for the abscissa in Figure 6.6. We are
halfway there, because we now have the mean down to 0, although the standard
deviation (s) is still 10. We also know from Exercise 5.7 that if we divide all val-
ues of a variable by a constant (e.g., 10), we divide the standard deviation by that
constant. Thus the standard deviation will now be which is just what10>10 5 1,

3X 2 m 4 50–50 5 0.

Xi,ziN10, 1 2 .
ziN150, 100 2Xi
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Figure 6.6
A normal distribution with various transformations on the abscissa
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we wanted. We will call this transformed distribution z and define it, on the basis
of what we have done, as

Notice that we subtract the mean before we divide by the standard deviation.
For our particular case, where and 

The third set of values (labeled z) for the abscissa in Figure 6.6 shows the
effect of this transformation. Note that aside from a linear transformation4 of the
numerical values, the data have not been changed in any way. The distribution has
the same shape and the observations continue to stand in the same relation to
each other as they did before the transformation. It should not come as a great
surprise that changing the unit of measurement does not change the shape of the
distribution or the relative standing of observations. Whether we measure the
quantity of alcohol that people consume per week in ounces or in milliliters really
makes no difference in the relative standing of people. It just changes the numer-
ical values on the abscissa. (The town drunk is still the town drunk, even if now
his liquor is measured in milliliters.)

If we had a score of 43, the value of z would be

It is important to realize exactly what converting X to z has accomplished. 
A score that used to be 60 is now 1. That is, a score that used to be one standard
deviation (10 points) above the mean remains one standard deviation above the
mean, but now is given a new value of 1. A score of 43, which was 0.7 standard
deviation below the mean, now is given the value of and so on. In other
words, a z score represents the number of standard deviations that is above or
below the mean—a positive z score being above the mean and a negative z score
being below the mean.

Xi
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4 A linear transformation involves only multiplication (or division) of X by a constant and/or adding or sub-
tracting a constant to or from X. Such a transformation leaves the relationship among the values unaffected.
In other words, it does not distort values at one part of the scale more than values at another part. Changing
units from inches to centimeters is a good example of a linear transformation.



Definition Linear transformation: A transformation involving addition, subtraction,
multiplication, or division of or by a constant.
z score: Number of standard deviations above or below the mean.

The equation for z is completely general. We can transform any distribution
to a distribution of z scores simply by applying this equation. Keep in mind, how-
ever, the point that was just made. The shape of the distribution is unaffected by
the transformation. That means that if the distribution was not normal before it was
transformed, it will not be normal afterward. Some people believe that they can “nor-
malize” (in the sense of producing a normal distribution) their data by transform-
ing them to z. It just won’t work.
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The standard normal distribution is a normal distribution with a mean of 0 and
a standard deviation of 1. It serves as the basis for much that follows and values
along that distribution are often referred to as z scores. A z score represents the
number of standard deviations an object is above or below the mean.

You can see what happens when you draw random samples from a population
that is normal by going to

http://surfstat.anu.edu.au/surfstat-home/surfstat-main.html

and clicking on “Hotlist for Java Applets.” Just click on the histogram and it will
come up with another page that contains a histogram that you can modify in
various ways. By repeatedly clicking “start” without clearing, you can add cases to
the sample. It is useful to see how the distribution approaches a normal distribu-
tion as the number of observations increases.

Using the Tables of the Standard Normal Distribution
As I have mentioned, the standard normal distribution is extensively tabled. Such
a table can be found in Table E.10, part of which is reproduced in Table 6.1.5 To
see how we can make use of this table, consider the normal distribution
represented in Figure 6.7. This might represent the standardized distribution of the
Behavior Problem scores as seen in Figure 6.6. Suppose we want to know how

5 An online video displaying properties of the normal distribution is available at

http://huizen.dds.nl/~berrie/normal.html

Later in this chapter we will use McClelland’s Seeing Statistics applets to explore the normal distribution
further.

http://surfstat.anu.edu.au/surfstat-home/surfstat-main.html
http://huizen.dds.nl/~berrie/normal.html


much of the area under the curve is above one standard deviation from the mean
if the total area under the curve is taken to be 1.00. (We care about areas because
they translate directly to probabilities.) We already have seen that z scores
represent standard deviations from the mean, and thus we know that we want to
find the area above 

Only the positive half of the normal distribution is tabled. Because the
distribution is symmetric, any information given about a positive value of z applies
equally to the corresponding negative value of z. From Table 6.1 (or Table E.10)
we find the row corresponding to Reading across that row, we can see
that the area from the mean to is 0.3413, the area in the larger portion is
0.8413, and the area in the smaller portion is 0.1587. (If you visualize the distribu-
tion being divided into the segment below [the unshaded part of Figure 6.7]
and the segment above [the shaded part], the meanings of the terms larger
portion and smaller portion become obvious.) Thus the answer to our original ques-
tion is 0.1587. Because we already have equated the terms area and probability, we
now can say that if we sample a child at random from the population of children,
and if Behavior Problem scores are normally distributed with a mean of 50 and a
standard deviation of 10, then the probability that the child will score more than
one standard deviation above the mean of the population (i.e., above 60) is .1587.
Because the distribution is symmetric, we also know that the probability that a
child will score more than one standard deviation below the mean of the popula-
tion is also .1587.

Now suppose that we want the probability that the child will be more than one
standard deviation (10 points) from the mean in either direction. This is a simple
matter of the summation of areas. Because we know that the normal distribution is

z 5 1
z 5 1

z 5 1
z 5 1.00.

z 5 1.
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Figure 6.7
Illustrative areas under the normal distribution
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symmetric, then the area below will be the same as the area above 
This is why the table does not contain negative values of z—they are not needed.
We already know that the areas in which we are interested are each 0.1587. Then
the total area outside must be The converse is
also true. If the area outside is 0.3174, then the area between and

is equal to Thus the probability that a child will score
between 40 and 60 is .6826.

To extend this procedure, consider the situation in which we want to know
the probability that a score will be between 30 and 40. A little arithmetic will
show that this is simply the probability of falling between 1.0 standard deviation
below the mean and 2.0 standard deviations below the mean. This situation is
diagrammed in Figure 6.8.

1–0.3174 5 0.6826.z 5 21
z 5 11z 5 ;1

0.1587 1 0.1587 5 0.3174.z 5 ;1

z 5 11.z 5 21
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Figure 6.8
Areas between 1.0 and 2.0 standard deviations below the mean
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It is always wise to draw simple diagrams such as Figure 6.8. They eliminate
many errors and make clear the area(s) for which you are looking.

From Table E.10 we know that the area from the mean to is
0.4772 and from the mean to is 0.3413. The difference in these two
areas must represent the area between and This area is

Thus the probability that Behavior Problem scores
drawn at random from a normally distributed population will be between 30 and
40 is .1359.

0.4772 2 0.3413 5 0.1359.
z 5 21.0.z 5 22.0

z 5 21.0
z 5 22.0



6.3 Setting Probable Limits on an Observation

For a final example, consider the situation in which we want to identify limits
within which we have some specified degree of confidence that a child sampled at
random will fall. In other words, we want to make a statement of the form, “If I
draw a child at random from this population, 95% of the time her score will lie
between _________ and _________.” From Figure 6.9 you can see the limits we
want—the limits that include 95% of the scores in the population.

If we are looking for the limits within which 95% of the scores fall, we also
are looking for the limits beyond which the remaining 5% of the scores fall. To
rule out this remaining 5%, we want to find that value of z that cuts off 2.5% at
each end, or “tail,” of the distribution. (We do not need to use symmetric limits,
but we typically do because they usually make the most sense and produce the
shortest interval.) From Table E.10 we see that these values are Thus 
we can say that 95% of the time a child’s score sampled at random will fall
between 1.96 standard deviations above the mean and 1.96 standard deviations
below the mean.

Because we generally want to express our answers in terms of raw Behavior
Problem scores, rather than z scores, we must do a little more work. To obtain the
raw score limits, we simply work the formula for z backward, solving for X instead
of z. Thus if we want to state the limits within which 95% of the population falls,

z ;1.96.
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Figure 6.9
Values of z that enclose 95% of the behavior problem scores
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6.4 Measures Related to z

We already have seen that the z formula given earlier can be used to convert a
distribution with any mean and variance to a distribution with a mean of 0 and a
standard deviation (and variance) of 1. We frequently refer to such transformed
scores as standard scores, and the process of computing these standard scores is
called standardization. Every day, people use other transformational scoring
systems with particular properties without realizing what they are.

Definition Standard scores: Scores with a mean of 0 and a standard deviation of 1.
Standardization: The process of computing standard scores.
Percentile: The point below which a specified percentage of the observations fall.
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Although we do not use what I have called “probable limits” very much, I have
introduced them here because they are a great introduction to what we will later
see as “confidence limits.” With probable limits, we know the mean and stan-
dard deviation of a population and want to make an intelligent guess where
individual observations would fall. With confidence limits, we have individual
observations and want to make an intelligent guess about possible values of the
population mean. You don’t need to know anything about confidence limits at
this point, but remember this discussion when we come to them in Chapter 12.

we want to find those scores that are 1.96 standard deviations above or below the
mean of the population. This can be written as

where the values of X corresponding to and represent
the limits we seek. For our example the limits will be

So the probability is .95 that a child’s score (X) chosen at random would be
between 30.4 and 69.6. We may not be interested in low scores because they don’t
represent behavior problems. But anyone with a score of 69.6 or higher is a
problem to someone. Only 2.5% of children score that high.

Limits 5 50 ;  11.96 2 110 2 5 50 ;  19.6 5 30.4 and 69.6

1m 2 1.96s 21m 1 1.96s 2
 X 5 m ;1.96s

 X 2 m 5 ;1.96s

 ;1.96 5
X 2 m

s

 z 5
X 2 m

s



A good example of such a scoring system is the common IQ. Raw scores from
an IQ test are routinely transformed to a distribution with a mean of 100 and a
standard deviation of 15 (or 16 in the case of the Binet). Knowing this, you can
readily convert an individual’s IQ (e.g., 120) to his or her position in terms of stan-
dard deviations above or below the mean (i.e., you can calculate the z score).
Because IQ scores are more or less normally distributed, you can then convert 
z into a percentage measure by use of Table E.10. (In this example, a score of 120
would be 1.33 standard deviations above the mean, and would have approximately
91% of the scores below it. This is known as the 91st percentile.)

Another common example is a nationally administered examination such as
the SAT. The raw scores are transformed by the producer of the test and reported
as coming from a distribution with a mean of 500 and a standard deviation of 100
(at least, it meant this when the tests were first developed—the mean and stan-
dard deviation are no longer exactly those values). Such a scoring system is easy to
devise. We start by converting raw scores to z scores (on the basis of the raw score
mean and standard deviation). We then convert the z scores to the particular
scoring system we have in mind. Thus

where z represents the z score corresponding to the individual’s raw score. For the
SAT

Scoring systems such as the one used on Achenbach’s Youth Self Report
checklist, which have a mean set at 50 and a standard deviation set at 10, are
called T scores (the T is always capitalized). These tests are useful in psychologi-
cal measurement because they have a common frame of reference. For example,
people become accustomed to seeing a cutoff score of 63 as identifying the highest
10% of the subjects. (The true cutoff would be 62.8, but the test scores come as
integers.)

Definition T scores: A set of scores with a mean of 50 and a standard deviation of 10.

6.5 Seeing Statistics

When you open the applet named Normal Distribution from 

www.uvm.edu/~dhowell/fundamentals7/SeeingStatisticsApplets/Applets.html 

and click on the applet for this chapter, you will see a display that looks like the
display in Figure 6.10.

This applet will allow you to explore the normal distribution by changing
values of the mean, the standard deviation, the observation, or z itself, and

New score 5 1001z 2 1 500

New score 5 New SD1z 2 1 New mean
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examining the areas under the curve. When you change any value, you must
press the Enter (or Return) key to have that value take effect.

On the left of the display are the definitions of the way the different tails
of the distribution can be displayed. Make selections from the box that is cur-
rently labeled “Two-Tailed” to illustrate these various choices.

Next change the entry in the box labeled “prob:” to 0.01. Notice that the
entry in the box for “z” changes accordingly, and is the two-tailed critical value
for z to cut off the extreme 1% of the distribution.

In Exercise 6.14 I give an example of a year in which the mean Graduate
Record Exam score was 489 and the standard deviation was 126. Use this dis-
play to calculate the percentage of students who would be expected to have a
score of 500 or higher. (You simply enter the appropriate numbers in the boxes
and press the Return key after each entry.) What about the percentage expected
to score over 700? (Be sure that you select the proper tail of the distribution in
computing your percentages.)

6.6 Summary

In this chapter we examined the normal distribution. The normal distribution is a
very common distribution in statistics, and it is often taken as a good description
of how observations on a dependent variable are distributed. We very often
assumed that the data in our sample came from a normally distributed population.
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Figure 6.10
An applet illustrating various aspects of the normal distribution and z scores



6.7 Exercises

6.1 Assuming that the following data represent a population of X values with and

X � 1 2 2 3 3 3 4 4 4 4 5 5 5 6 6 7

(a) Plot the distribution as given.
(b) Convert the distribution in (a) to a distribution of 
(c) Go the next step and convert the distribution in (b) to a distribution of z.

X 2 m.

s 5 1.58:
m 5 4

This chapter began by looking at a pie chart representing people under
correctional supervision. We saw that the area of a section of the pie is directly
related to the probability that an individual would fall in that category. We then
moved from the pie chart to a bar graph, which is a better way of presenting the
data, and then moved to a histogram of data that have a roughly normal distribu-
tion. The purpose of those transitions was to highlight the fact that area under a
curve can be linked to probability.

The normal distribution is a symmetric distribution with its mode at the
center. In fact, the mode, median, and mean will be the same for a variable that is
normally distributed. We saw that we can convert raw scores on a normal distribu-
tion to z scores by simply dividing the deviation of the raw score from the popula-
tion mean by the standard deviation of the population The z score is an
important statistic because it allows us to use tables of the standards normal distri-
bution (often denoted ). Once we convert a raw score to a z score we can
immediately use the tables of the standard normal distribution to compute the
probability that any observation will fall within a given interval.

We also saw that there are a number of measures that are directly related 
to z. For example, data are often reported as coming from a population with a mean
of 50 and a standard deviation of 10. IQ scores are reported as coming from a pop-
ulation with a mean of 100 and a standard deviation of 15, and, at least originally,
the SAT college entrance exam scores were reported as coming from a distribution
with a mean of 500 and a standard deviation of 100.

Some important terms in this chapter are

N1m, s2 2
1s 2 .1m 2
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Normal distribution, 112

Abscissa, 117

Ordinate, 117

Density, 117

Standard normal distribution, 120

Linear transformation, 123

z score, 123

Standard scores, 127

Standardization, 127

Percentile, 127

T scores, 128
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6.2 Using the distribution in Exercise 6.1, calculate z scores for 6.2, and 9. Interpret
these results.

6.3 Most of you have had experience with exam scores that were rescaled so that the instruc-
tor could “grade on a curve.” Assume that a large Psychology 1 class has just taken an exam
with 300 four-choice multiple-choice questions. (That’s the kind of Psych 1 exam I took
when I was but a lad, and I had to get there over the snow banks.) Assume that the distri-
bution of grades is normal with a mean of 195 and a standard deviation of 30.
(a) What percentage of the counts will lie between 165 and 225?
(b) What percentage of the counts will lie below 195?
(c) What percentage of the counts will lie below 225?

6.4 Using the example from Exercise 6.3:
(a) What two values of X (the count) would encompass the middle 50% of the results?
(b) 75% of the counts would be less than ______.
(c) 95% of the counts would be between _______ and _______.

6.5 Do you remember the earlier study by Katz et al. that had students answer SAT-type ques-
tions without first reading the passage? (If not, look at Exercises 3.1 and 4.1.) Suppose that
we gave out the answer sheets for our Psychology 1 exam mentioned in Exercise 6.3 but for-
got to hand out the questions. If students just guessed at random, they would be expected
to have a mean of 75 and a standard deviation of 7.5. The exam was taken by 100 students.
(a) Among those who guessed randomly, what would be the cutoff score for the top 10 stu-

dents?
(b) What would be the cutoff score for the top 25% of the students?
(c) We would expect only 5% of the students to score below _______.
(d) What would you think if 25% of the students got more than 225 questions correct?

6.6 Students taking a multiple-choice exam rarely guess randomly. They usually can rule out
some answers as preposterous and identify others as good candidates. Moreover, even stu-
dents who have never taken Psychology 1 would probably know who Pavlov was, or what
we mean by sibling rivalry. Suppose that the exam above was our Psychology 1 exam, where
each question had four alternative choices.
(a) What would you conclude if the student got a score of 70?
(b) How high a score would the student have to get so that you were 95% confident that

the student wasn’t just guessing at random?

6.7 A set of reading scores for fourth-grade children has a mean of 25 and a standard deviation
of 5. A set of scores for ninth-grade children has a mean of 30 and a standard deviation of
10. Assume that the distributions are normal.
(a) Draw a rough sketch of these data, putting both groups in the same figure.
(b) What percentage of fourth graders score better than the average ninth grader?
(c) What percentage of the ninth graders score worse than the average fourth grader? (We will

come back to the idea behind these calculations when we study power in Chapter 15.)

6.8 Under what conditions would the answers to (b) and (c) of Exercise 6.7 be equal?

6.9 Many diagnostic tests are indicative of problems only if a child scores in the upper 10 per-
cent of those taking the test (at or above the 90th percentile). Many of these tests are scaled
to produce T scores, with a mean of 50 and a standard deviation of 10. What would be the
diagnostically meaningful cutoff?

X 5 2.5,



6.10 A dean must distribute salary raises to her faculty for next year. She has decided that the
mean raise is to be $2,000, the standard deviation of raises is to be $400, and the distribu-
tion is to be normal. She will attempt to distribute these raises on the basis of merit, mean-
ing that people whose performance is better get better raises.
(a) The most productive 10% of the faculty will have a raise equal to or greater than

$____.
(b) The 5% of the faculty who have done nothing useful in years will receive no more than

$____ each.

6.11 We have sent out everyone in a large introductory course to check whether people use seat
belts. Each student has been told to look at 100 cars and count the number of people wear-
ing seat belts. The number found by any given student is considered that student’s score.
The mean score for the class is 44, with a standard deviation of 7.
(a) Diagram this distribution, assuming that the counts are normally distributed.
(b) A student who has done very little work all year has reported finding 62 seat belt users

out of 100. Do we have reason to suspect that the student just made up a number rather
than actually counting?

6.12 Several years ago a friend of mine in the Communication Sciences department produced a
diagnostic test of language problems that is still widely used. A score on her scale is
obtained simply by counting the number of language constructions (e.g., plural, negative,
passive) that the child produces correctly in response to specific prompts from the person
administering the test. The test has a mean of 48 and a standard deviation of 7. Parents
have trouble understanding the meaning of a score on this scale, and my friend wanted to
convert the scores to a mean of 80 and a standard deviation of 10 (to make them more like
the kinds of grades parents are used to). How could she have gone about her task?

6.13 Unfortunately, the whole world is not built on the principle of a normal distribution. In the
preceding exercise the real distribution is badly skewed because most children do not have
language problems and therefore produce all constructions correctly.
(a) Diagram how this distribution might look.
(b) How would you go about finding the cutoff for the bottom 10% if the distribution is not

normal?

6.14 We have referred several times to data on reaction times in a mental rotation task. These
data can be found on this book’s Web site as Ex6 –14.dat. Using SPSS, read in the data and
plot a histogram of reaction times in seconds. Click on the appropriate box to superimpose
a normal distribution on the graph. What does this suggest about the normality of these
data and why might you not expect them to be normal?

6.15 In Exercise 6.14, what score would be equal to or greater than 75% of the reaction times if
this distribution were normal. What score actually has 75% of the observations below it?

6.16 The data in Appendix D, also available at 

http://www.uvm.edu/~dhowell/fundamentals7/DataFiles/Add.dat

are actual data on high school students. What is the 75th percentile for GPA in these data?
(This is the point below which 75% of the observations are expected to fall.)

6.17 Assuming that the Behavior Problem scores discussed in this chapter come from a popula-
tion with a mean of 50 and a standard deviation of 10, what would be a diagnostically
meaningful cutoff if you wanted to identify those children who score in the highest 2% of
the population? (Diagnostic cutoffs like this are a major reason for converting raw scores to
T scores on such tests.)
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6.18 In Section 6.4 I said that T scores are designed to have a mean of 50 and a standard
deviation of 10 and that the Achenbach Youth Self Report measure produces T scores. The
data in Figure 6.3 do not have a mean and standard deviation of exactly 50 and 10. Why
do you suppose that this is so?

6.19 On December 13, 2001, the Associated Press reported a story entitled “Study: American
kids getting fatter at disturbing rate.”

By 1998, nearly 22 percent of black children ages 4 to 12 were
overweight, as were 22 percent of Hispanic youngsters and 12 percent of
whites. . . . In 1986, the same survey showed that about 8 percent of black
children, 10 percent of Hispanic youngsters and 8 percent of whites were
significantly overweight. . . . Overweight was defined as having a body-
mass index higher than 95 percent of youngsters of the same age and sex,
based on growth charts from the 1960s to 1980s. . . . Disturbing trends
also were seen in the number of children who had a body-mass index
higher than 85 percent of their peers. In 1986, about 20 percent of blacks,
Hispanics and whites alike were in that category. By 1998, those figures
had risen to about 38 percent of blacks and Hispanics alike and nearly 
29 percent of whites.

This report drew a lot of attention from a statistics list server that is populated by stat-
isticians. Why do you think that a group of professional statisticians would be so excited
and annoyed by what they read here? Do these data seem reasonable?

6.20 You can use SPSS to create normally distributed variables (as well as variables having a
number of other shapes). Start SPSS, and under Data/Go To Case, tell it to go to case
1000 and then enter any value in that cell. (That just sets the size of the data set to 1000.)
Then click on Transform/Compute and create a variable named X with the formula
(rv.normal (15, 3)). That will sample from a normally distributed population with

and standard Then plot the histogram, instructing the software
to superimpose a normal distribution. Experiment with other means and standard devia-
tions. Then use the Functions menu on the Transform/Compute dialog box to try other
distributions.

6.21 Suppose that we are collecting a large data set on emotional reactivity in adults. Assume
that for most adults emotional reactivity is normally distributed with a mean of 100 and a
standard deviation of 10. But for people diagnosed with bipolar disorder, their scores are all
over the place. Some are temporarily depressed and they have low reactivity scores. Others
are temporarily in a manic phase and their scores are quite high. As a group they still have
a mean of 100, but they have a standard deviation of 30. Assume that 10% of the popula-
tion is bipolar. (The actual percentage is closer to 1%, but 10% will lead to a better exam-
ple.) This is a case of what is called a mixed normal distribution. Sketch what you think
that this distribution might look like. What would happen if we made the means very
different?

deviation 5 3.mean 5 15



7
Basic Concepts
of Probability

Concepts that you will need to remember from
previous chapters
Discrete variable: A variable that can take on only a limited

number of values

Continuous variable: A variable that can take on an infinite
number (or at least a great many) values
between the lowest and highest values

X axis: The horizontal axis, also called the abscissa

Y axis: The vertical axis, also called the ordinate

Frequency distribution: A plot showing the values of the dependent
variable on the X axis and their frequency on
the Y axis

Bar chart: A graph with the independent variable on
the X axis and the mean or other measure on
the Y axis

: A common symbol for the mean

s: A common symbol for the variance

: The symbol for summation of what follows

N: The number of observations

©

X
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In this chapter we will look at a number of aspects of the theory of probability.
It probably isn’t nice to say it, but probability theory rarely comes at the top of the list
of students’ favorite topics. But we really do need to know a bit about probability in
order to have the basic material for the rest of the book. There is not a lot of material
that is essential, but there is some. One of the things that you will see is that there is a
fundamental difference between probability theory for discrete variables and for
continuous variables. That will not represent a major stumbling block, but we need to
pay attention.

In Chapter 6 we began to make use of the concept of probability. For
example, we saw that about 68% of children have Behavior Problem scores between
40 and 60 and thus concluded that if we choose a child at random, the probability
that he or she would score between 40 and 60 is .68. When we begin concentrat-
ing on inferential statistics in Chapter 8, we will rely heavily on statements of proba-
bility. There we will be making statements of the form, “If this hypothesis were true,
the probability is only .015 that we would have obtained a result as extreme as the
one we actually obtained.” If we are to rely on statements of probability, it is impor-
tant to understand what we mean by probability and to understand a few basic rules
for computing and manipulating probabilities. That is the purpose of this chapter.

My colleagues will probably chastise me for saying it, but probability is one of
those topics that students try to avoid. Probability is scary to many, and it can be
confusing to even more. Add to this the fact that most instructors, myself included,
have a weak background in probability, and you have a bad situation. However,
just because people are anxious about a topic doesn’t constitute grounds for avoid-
ing all mention of it. There are some things you just have to know, whether you want
to or not. To avoid slurping your soup in a restaurant is one, and probability is
another. But soup can be good even if eaten properly, and probability can be
manageable, even if you hated it in high school.

The material covered in this chapter has been selected for two reasons. First, it is
directly applicable to an understanding of the material presented in the remainder of
the book. Second, it is intended to allow you to make simple calculations of probabili-
ties that are likely to be useful to you. Material that does not satisfy either of these qual-
ifications has been deliberately omitted. For example, we will not consider such things
as the probability of drawing the queen of hearts, given that 14 cards, including four
hearts, have already been drawn. Nor will we consider the probability that your desk
light will burn out in the next 25 hours of use, given that it has already lasted 250 hours.
Both of those topics may be important in some situations, but you can go miles in
statistics and have a good understanding of the methods of the behavioral sciences
without having the slightest idea about either of those probability questions.

7.1 Probability

The concept of probability can be viewed in several different ways. There is not
even general agreement as to what we mean by the word probability. The oldest
and perhaps the most common definition of a probability is what is called the
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analytic view. One of the examples that is often drawn into discussions of proba-
bility is that of one of my favorite candies, M&M’s. M&M’s are a good example
because everyone is familiar with them, they are easy to use in class demonstrations
because they don’t get your hand all sticky, and you can eat them when you’re done.
The Mars Candy Company is so fond of having them used as an example that they
keep lists of the percentage of colors in each bag—though they seem to keep
moving the lists around, making it a challenge to find them on occasions.1 The
data on the milk chocolate version is shown in Table 7.1.

Definition Analytic view: Definition of probability in terms of an analysis of possible outcomes.

Suppose that you have a bag of M&M’s in front of you and you reach in and
pull one out. Just to simplify what follows, assume that there are 100 M&M’s in the
bag, though that is not a requirement. What is the probability that you will pull
out a blue M&M? You can all probably answer this question without knowing
anything more about probability. Because 24% of the M&M’s are blue, and because
you are sampling randomly, the probability of drawing a blue M&M is .24. This
example illustrates one definition of probability:
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1 Those instructors who have used several editions of this book will be pleased to see that the caramel
example is gone. I liked it, but other people got bored with it. Well, I was getting bored too.

Table 7.1
Distribution of Colors in an Average
Bag of M&M’s

Color Percentage

Brown 13
Red 13
Yellow 14
Green 16
Orange 20
Blue 24
Total 100

Analytic view of probability:

If an event can occur in A ways and can fail to occur in B ways, and if all pos-
sible ways are equally likely (e.g., each M&M in a bag has an equal chance of
being drawn), then the probability of its occurrence is and the
probability of its failing to occur is B> 1A 1 B 2 . A> 1A 1 B 2 ,



Because there are 24 ways of drawing a blue M&M (one for each of the 24
blue M&M’s in a bag of 100 M&M’s) and 76 ways of drawing a different color,

and 
An alternative view of probability is the frequentist view. Suppose that we

keep drawing M&M’s from the bag, noting the color on each draw. In conducting
this sampling study we sample with replacement, meaning that each M&M is
replaced before the next one is drawn. If we made a very large number of draws, we
would find that (very nearly) 24% of the draws would result in a blue M&M. Thus
we might define probability as the limit2 of the relative frequency of occurrence of
the desired event that we approach as the number of draws increases.

p1A 2 5 24> 124 1 76 2 5 .24.A 5 24, B 5 76,
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Frequentistic view of probability

Here, probability is defined in terms of past performance. If we have drawn
green M&M’s 160 times out of the last 1,000 draws, the probability of drawing
a green M&M is estimated as 160>1000 5 .16.

Yet a third concept of probability is advocated by a number of theorists.
That is the concept of subjective probability. By this definition, probability
represents an individual’s subjective belief in the likelihood of the occurrence of
an event. We make all sorts of decisions based on our subjective belief in the
occurrence of something. Often we don’t have any other way to set a probability
of an event. Subjective probabilities may in fact have no mathematical basis
whatsoever. We could ask, “What is the probability that Bob and Mary’s marriage
will end in divorce?” Of course, we could find out what percentages of marriages
end in divorce, but there are so many unique things about Bob and Mary that we
would probably not be willing to base our probability on that. If we knew that
they fought all the time, we might be better off taking the percentage of divorces
for the population and adding perhaps 10 points to that. This would be a subjec-
tive probability. This is not to suggest that such a view of probability has no
legitimate claim for our attention. Subjective probabilities play an extremely
important role in human decision making and govern all aspects of our behavior.
We will shortly discuss what is called Bayes’ theorem, which is essential to the
use of subjective probabilities. Statistical decisions as we will make them here
generally will be stated with respect to frequentist or analytical approaches,
although, even so, the interpretation of those probabilities has a strong subjective
component.

2 The word limit refers to the fact that as we sample more and more M&M’s, the proportion of blue will get
closer and closer to some value. After 100 draws, the proportion might be .23; after 1,000 draws it might be
.242; after 10,000 draws it might be .2398, and so on. Notice that the answer is coming closer and closer to
p .2400000. . . . The value that is being approached is called the limit.5



Definition Frequentist view: Definition of probability in terms of past performance.
Sample with replacement: Sampling in which the item drawn on trial N is
replaced before the next draw.
Subjective probability: Definition of probability in terms of personal subjective
belief in the likelihood of an outcome.

Although the particular definition that you or I prefer may be important to
each of us, any of the definitions will lead to essentially the same result in terms of
hypothesis testing, the discussion of which runs through the rest of the book. (It
should be said that those who favor subjective probabilities often disagree with the
general hypothesis-testing orientation.) In actual fact, most people use the differ-
ent approaches interchangeably. When we say that the probability of losing at
Russian roulette is 1/6, we are referring to the fact that one of the gun’s six cylin-
ders has a bullet in it. When we buy a particular car because Consumer Reports says
it has a good repair record, we are responding to the fact that a high proportion of
these cars has been relatively trouble free. When we say that the probability of the
Colorado Rockies winning the pennant is high, we are stating our subjective belief
in the likelihood of that event (or perhaps engaging in wishful thinking). But
when we reject some hypothesis because there is a very low probability that the
actual data would have been obtained if the hypothesis had been true, it may not
be important which view of probability we hold.

7.2 Basic Terminology and Rules

Here’s where you have to start learning some probability stuff. There isn’t much,
and it isn’t hard or painful, but you have to learn it.

Definition Event: The outcome of a trial.

The basic bit of data for a probability theorist is called an event. The word
event is a term that statisticians use to cover just about anything. An event can be
the occurrence of a king when we deal from a deck of cards, a score of 36 on a scale
of likability, a classification of “female” for the next person appointed to the
Supreme Court, or the mean of a sample. Whenever you speak of the probability
of something, the “something” is called an event. When we are dealing with a
process as simple as flipping a coin, the event is the outcome of that flip—either
heads or tails. When we draw M&M’s out of a bag, the possible events are the
various possible colors. When we speak of a grade in a course, the possible events
are the letters A, B, C, D, and F.

Two events are said to be independent events when the occurrence or
nonoccurrence of one has no effect on the occurrence or nonoccurrence of the
other. The voting behaviors of two randomly chosen citizens in different parts of
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the country normally would be assumed to be independent, especially with a secret
ballot, because how one person votes could not be expected to influence how the
other will vote. However, the voting behaviors of two members of the same family
probably would not be independent events, because those people share many of the
same beliefs and attitudes. The events would probably not be independent even if
those two people were careful not to let the other see their ballot.

Definition Independent events: Events are independent when the occurrence of one has no
effect on the probability of the occurrence of the other.
Mutually exclusive: Two events are mutually exclusive when the occurrence of one
precludes the occurrence of the other.
Exhaustive: A set of events that represents all possible outcomes.

Two events are said to be mutually exclusive if the occurrence of one event
precludes the occurrence of the other. For example, the standard college classes
(under the U. S. university system) of First Year, Sophomore, Junior, and Senior
are mutually exclusive because one person cannot be a member of more than one
class. A set of events is said to be exhaustive if it includes all possible outcomes.
Thus the four college classes in the previous example are exhaustive with respect
to full-time undergraduates, who have to fall into one or another of those
categories—if only to please the registrar‘s office. At the same time, they are not
exhaustive with respect to total university enrollments, which include graduate
students, medical students, nonmatriculated students, hangers-on, and so forth.

Important probability concepts

n Independent events: The outcome for one event does not depend on
the outcome for another event. 

n Dependent events: The outcome of one event is related to the
outcome for another event.

n Mutually exclusive: If something happens one way, it cannot also
happen in another way. With one flip of a coin
you can either get a head or a tail, but not both.

n Exhaustive: The list of all possibilities. Head and tail are
the only ways a coin can come up unless you
consider landing on its edge is possible, in which
case the three events are exhaustive

As you already know—or could deduce from our definitions of probability—
probabilities range between .00 and 1.00. If some event has a probability of 1.00, then
it must occur. (Very few things have a probability of 1.00, including the probability
that I will be able to keep typing until I reach the end of this paragraph.) If some
event has a probability of .00, it is certain not to occur. The closer the probability
comes to either extreme, the more likely or unlikely is the occurrence of the event.
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Basic Laws of Probability
To illustrate the additive rule, we will use our M&M’s example and consider all six
colors. From Table 5.1 we know from the analytic definition of probability that

and so on. But what is the
probability that I will draw a blue or green M&M instead of an M&M of some
other color? Here we need the additive law of probability.

p1blue 2 5 24>100 5 .24, p1green 2 5 16>100 5 .16,
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Additive law of probability: Given a set of mutually exclusive events, the
probability of the occurrence of one event or another is equal to the sum of their
separate probabilities.

The multiplicative law of probability: The probability of the joint occurrence of
two or more independent events is the product of their individual probabilities.

Thus, Notice
that we have imposed the restriction that the events must be mutually exclusive,
meaning that the occurrence of one event precludes the occurrence of the other. If
an M&M is blue, it can’t be green. This requirement is important. About one-half
of the population of this country are female, and about one-half of the population
have traditionally feminine names. But the probability that a person chosen at ran-
dom will be female or will have a feminine name is obviously not 
Here the two events are not mutually exclusive. However, the probability that a girl
born in Vermont in 1987 was named Ashley or Sarah, the two most common girls’
names in that year, equals Here the
names are mutually exclusive because you can’t have both Ashley and Sarah as your
first name (unless your parents got carried away and combined the two with a
hyphen).

Definition Additive law of probability: The rule giving the probability of the occurrence of
one or more mutually exclusive events.
Multiplicative law of probability: The rule giving the probability of the joint
occurrence of independent events.

The Multiplicative Rule
Let’s continue with the M&M’s, where and

Suppose I draw two M&M’s, replacing the first before drawing the
second. What is the probability that I will draw a blue M&M on the first trial and a
blue one on the second? Here we need to invoke the multiplicative law of
probability.

p1other 2 5 .60.
p1blue 2 5 .24, p1green 2 5 .16,

p1Ashley 2 1 p1Sarah 2 5 .010 1 .009 5 .019.

.50 1 .50 5 1.00.

p1blue or green 2 5 p1blue 2 1 p1green 2 5 .24 1 .16 5 .40.



Thus

Similarly, the probability of a blue M&M followed by a green one is

Notice that we have restricted ourselves to independent events, meaning the
occurrence of one event can have no effect on the occurrence or nonoccurrence of
the other. Because gender and name are not independent, it would be wrong to state
that However, it most likely
would be correct to state that 

because I know of no data to suggest that gender is dependent
on birth month. (If month and gender were related, my calculation would be wrong.)

In Chapter 19 we will use the multiplicative law to answer questions about
the independence of two variables. An example from that chapter will help
illustrate a specific use of this law. In a study to be discussed in that chapter, Geller,
Witmer, and Orebaugh (1976) wanted to test the hypothesis that what someone
did with a supermarket flier depended on whether the flier contained a request not
to litter. Geller et al. distributed fliers as people entered the store. Approximately
half of these fliers included the request not to litter, and half did not. At the end
of the day they searched the store to find where the fliers had been left. Testing
their hypothesis involves, in part, calculating the probability that a flier would
contain a message about littering and would be found in a trashcan. We need to
calculate what this probability would be if the two events (contains message
about littering and flier in trash) are independent. If we assume that these two
events are independent (people don’t pay any attention to messages), the multi-
plicative law tells us that In their
study, 49% of the fliers contained a message, so the probability that a flier chosen
at random would contain the message is .49. Similarly, 6.8% of the fliers were later
found in the trash, giving Therefore, if the two events are
independent,

we would expect 3.3% of the fliers with the message would be in the trash. (In
fact, 4.5% of the fliers with messages were found in the trash, which is a bit
higher than we would expect if the ultimate disposal of the flier were inde-
pendent of the message. Assuming that this small difference between 3.3% and
4.5% is reliable, what does this suggest to you about the effectiveness of the
message?)

Finally, we can take a simple example that illustrates both the additive and
the multiplicative laws. What is the probability that over two trials (sampling with
replacement) I will draw one blue M&M and one green one, ignoring the order in
which they are drawn? First, we use the multiplicative rule to calculate

p1green, blue 2 5 .16 3 .24 5 .0384
p1blue, green 2 5 .24 3 .16 5 .0384

p1message, trash 2 5 .49 3 .068 5 .033, 

p1trash 2 5 .068.

p1message, trash 2 5 p1message 2 3 p1trash 2 .

.50 3 .083 5 .042,
p1female, born in January 2 5 .50 3 1>12 5

p1female with feminine name 2 5 .50 3 .50 5 .25.

p1blue, green 2 5 p1blue 2 3 p1green 2 5 .24 3 .16 5 .0384. 

p1blue, blue 2 5 p1blue 2 3 p1blue 2 5 .24 3 .24 5 .0576.  
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Because these two outcomes satisfy our requirement (and because they are
the only ones that do), we now need to know the probability that one or the other
of these outcomes will occur. Here we apply the additive rule:

Thus the probability of obtaining one M&M of each of those colors over
two draws is approximately .08—that is, it will occur a little less than one-tenth
of the time.

Students sometimes get confused over the additive and multiplicative laws
because they almost sound the same when you hear them quickly. One useful idea
is to realize the difference between the situations in which the rules apply. In those
situations in which you use the additive rule, you know that you are going to have
one outcome. An M&M that you draw may be blue or green, but there is only going
to be one of them. In the multiplicative case, we are speaking about at least two
outcomes (e.g., the probability that we will get one blue M&M and one green one).
For single outcomes we add probabilities; for multiple independent outcomes we
multiply them.

Joint and Conditional Probabilities
Two types of probabilities play an important role in discussions of probability: joint
probabilities and conditional probabilities.

A joint probability is defined simply as the probability of the co-occurrence
of two or more events. For example, in Geller’s study of supermarket fliers, the
probability that a flier would both contain a message about littering and be found
in the trash is a joint probability, as is the probability that a flier would both con-
tain a message about littering and be found stuffed down behind the Raisin Bran.
Given two events, their joint probability is denoted as just as we have
used p(blue, green) or p(message, trash). If those two events are independent, then the
probability of their joint occurrence can be found by using the multiplicative law,
as we have just seen. If they are not independent, the probability of their joint
occurrence is more complicated to compute. We won’t compute that probability
here.

Definition Joint probability: The probability of the co-occurrence of two or more events.
Conditional probability: The probability that one event will occur given the
occurrence of some other event.

A conditional probability is the probability that one event will occur, given
that some other event has occurred. The probability that a person will contract
AIDS, given that he or she is an intravenous drug user, is a conditional probability.
The probability that an advertising flier will be thrown into the trash, given that it
contains a message about littering, is another example. A third example is a phrase
that occurs repeatedly throughout this book: “If the null hypothesis is true, the

p1A, B 2 ,

p1blue, green 2 1 p1green, blue 2 5 .0384 1 .0384 5 .0768
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probability of obtaining a result such as this is. . . .” Here I have substituted the word
if for given, but the meaning is the same. (I‘ll define the phrase null hypothesis in
Chapter 8.)

With two events, A and B, the conditional probability of A, given B, is
denoted by use of a vertical bar, as in for example, or

We often assume, with some justification, that parenthood breeds responsi-
bility. People who have spent years acting in careless and irrational ways somehow
seem to turn into different people once they become parents, changing many of
their old behavior patterns. Suppose that a radio station sampled 100 people, 20 of
whom had children. They found that 30 of the people sampled used seat belts, and
that 15 of those people had children. The results are shown in Table 7.2.

The information in Table 7.2 allows us to calculate the simple, joint, and
conditional probabilities. The simple probability that a person sampled at random
will use a seat belt is The joint probability that a person will have
children and will wear a seat belt is The conditional probability of
a person using a seat belt given that he or she has children is Do not
confuse joint and conditional probabilities. As you can see, they are quite differ-
ent. You might wonder why I didn’t calculate the joint probability here by multi-
plying the appropriate simple probabilities. The use of the multiplicative law
requires that parenthood and seat belt use be independent. In this example they
are not, because the data show that whether people use seat belts depends very
much on whether or not they have children. (If I had assumed independence, 
I would have predicted the joint probability to be which is less
than half the size of the actual obtained value.)

To take another example, the probability that you have been drinking alco-
hol and that you have an automobile accident is a joint probability. This probabil-
ity is not very high, because relatively few people are drinking at any one time and
relatively few people have automobile accidents. However, the probability that you
have an accident given that you have been drinking, or, in reverse, the probability
that you have been drinking given that you have an accident, are both much higher.
At night, the conditional probability of approaches .50,
since nearly half of all automobile accidents at night in the United States involve
alcohol. I don’t know the conditional probability of but I do
know that it is much higher than the unconditional probability of an accident, that
is, p(accident).

p1accident Z drinking 2 ,
p1drinking Z accident 2

.30 3 .20 5 .06,

15>20 5 .75.
15>100 5 .15.

30>100 5 .30.

p1trash Z message 2 . p1AIDS Z drug user 2p1A Z B 2 ,
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Table 7.2
The Relationship between Parenthood and Seat Belt Use

Does Not 
Parenthood Wears Seat Belt Wear Seat Belt Total

Children 15 5 20
No children 15 65 80
Total 30 70 100



7.3 The Application of Probability to Controversial Issues

A number of studies have looked at the imposition of the death sentence in the 
U.S. as a function of the race of the defendant and the victim. (Data on the role
of the victim will be presented in the Exercises at the end of this chapter.) A report
on the influence of the race of the defendant was compiled by Dieter (1998) can
be found at

http://www.deathpenaltyinfo.org/article.php?scid=45&did=539

To oversimplify the issue, but not to distort the findings, we can look at the
breakdown of death sentence by race of defendant. The data are shown in Table 7.3.

Definition Unconditional probability: The probability of one event ignoring the occurrence or
nonoccurrence of some other event.
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Joint probability: You have two friends who can’t stand each other. You are
having a party and feel obligated to invite each of them. You then worry about
the joint probability that they will both show up.
Conditional probability: You have two friends that you have invited to a party.
They have started hanging around together, so you know that if Mary comes, Bob
is very likely to come as well. You are talking about a conditional probability—
the probability of Bob given Mary.

Table 7.3 
The Relationship between Death Sentence and Race of the Defendant

Death Sentence

Defendant’s Race Yes No Total

Black 95 425 520
Row %  18.3% 76.8% 78.0%
Col. % 36.8% 81.7%
Cell % 14.2% 63.7%

Nonblack 19 128 147
Row % 12.9% 23.1% 22.0%
Col. % 16.7% 87.1%
Cell % 2.8% 19.2%

Total 114 553 667
Col. % 17.1% 82.9%

http://www.deathpenaltyinfo.org/article.php?scid=45&did=539
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The row percentages are computed by dividing the frequency of “Yes” or
“No” by the number of cases in that row. The column percentages are calculated
by dividing Black or Nonblack by the column totals. The cell percentages are sim-
ply the number of observations in that cell divided by the total sample size (667).

The information in Table 7.3 allows us to calculate the simple, joint, and
conditional probabilities. The simple probability that a defendant will be given the
death penalty is

the proportion of the total cases that receive that sentence. The probability that a
defendant is Black is

The joint probability that a person is Black and is sentenced to death is

the proportion of the total observations that fell in the Black/Yes cell.
If sentencing has nothing to do with race, then the two events would be

independent. In that case we would expect that the probability of being black and
of being sentenced to death is Do
you think that the two events are independent?

What is most interesting in this table are the conditional probabilities.
The probability that a defendant will be sentenced to death given that he or she is
Black is

The conditional probability that a defendant will be sentenced to death given that
he or she is Nonblack is

There is a considerable disparity between the sentencing of Black and Nonblack
defendants. The death sentence rate for Black defendants is nearly 50% higher
than for Nonblacks.

Odds and Risk
This is a good place to introduce a few terms that you need to know and be able to
work with. Even if you did not need them for a statistics course, you would need to
know them in everyday life. Unfortunately, they are easily confused and often used
incorrectly.

I will start with risk, which is simply the probability that something will
happen. For a Black defendant in the previous example, the risk of being sentenced
to death was For a Nonblack defendant the risk of a death
sentence was which we also saw before. But we can go one step
further and compute what is called the risk ratio, which is just the ratio of the two

19>147 5 .129,
95>520 5 .183.

19>147 5 .129.

95>520 5 .183.

p1Black 2 3 p1Death 2 5 .780 3 .171 5 .134.

95>100 5 .142,

520>667 5 .780.

114>667 5 .171,



risks. In this case, that is This tells us that the risk of being
sentenced to death is 1.42 times greater for Black than for Nonblack participants.
That’s quite a difference.

Definition Risk: The number of occurrences on one event divided by the total number of
occurrences of events—a probability.
Risk ratio: The ratio of two risks.

Now let’s move to odds. On the surface they look almost like risks, but here
we take the number of Black defendants who were sentenced to death divided by
the number who were not sentenced to death. Notice that the denominator has
changed from the total number of Blacks to the number of Blacks that did not
receive a death sentence. In this case, the odds are For Nonblacks
the odds are Just as we did with the risk ratio, we can create an
odds ratio, as the ratio of the two odds. In this case, the odds ratio is

which is a bit higher than the risk ratio. We would interpret this
to say that your odds of being sentenced to death are 1.51 times higher if you are
Black than if you are Nonblack.

Definition Odds: The number of occurrences of an event divided by the number of
nonoccurrences.
Odds ratio: The ratio of two odds.

Why do we need both odds and risk? Won’t one of them be sufficient and less
confusing? Well, no. One answer is that some people feel more comfortable
speaking in terms of odds, and their ratio, rather than risks and their ratio. (I am
certainly not one of them, but I can dimly see their reasoning.) For others, risk
seems like a more reasonable statistic, because it speaks directly to the probability
that a person will fall in one category or another. When it comes to the ratios,
there is a very good technical reason for using odds ratios. Depending on how the
study was designed, there are many situations when it is not possible to compute a
risk ratio. But we can always compute an odds ratio, and when we are speaking of
unlikely events (e.g., being diagnosed with tuberculosis), the odds ratio is an excel-
lent estimate of what the risk ratio would be if we could derive it for our sample.

.224>.148 5 1.51,

19>128 5 .148.
95>425 5 .224.

.183>.129 5 1.42.
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To calculate risk, we divide by the total row frequency, whereas to calculate
odds we divide by the number of observations in the other cell of that row. Both
risk ratios and odds ratios appear to address the very same question, but for
technical reasons we can often not compute a risk ratio. For low frequency
events, an odds ratio is a very good estimate of what the risk ratio would be if
we could calculate it.
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7.4 Writing Up the Results

Throughout the remainder of this book I will insert sections describing how to
write up the results of a statistical analysis. The write-ups will be quite brief and
will not necessarily conform to the requirements of various journals. They are
intended to show the kinds of things that you need to cover. In this chapter we
have not seen a full-blown experiment with tests of statistical hypotheses, but I can
at least write up the results of the study on the death penalty as if I had shown that
the differences were reliable. (They actually are.)

I will start by listing the things that need to go into such a report. We want to
say something about what the problem is, how we approached the problem, and
where, or how, we collected the data. Don’t forget to mention how many observa-
tions were involved. Then we would want to mention the important unconditional
probabilities, such as the overall probability that a person will be sentenced to death,
and perhaps the probabilities of each race. The conditional probabilities and/or the
odds are important to include, and then we need to create and report the risk or odds
ratio. Finally, we need to draw conclusions and put the study in a context of other
work that has been done on the topic. To include all of this I would write:

- The Death Penalty Information Center issued a report edited by Dieter 
(1998) on the application of death penalties as a function of race. The
report examined the outcomes of cases in Philadelphia between 1983 and
1993. The fundamental purpose was to ask whether the death penalty
was applied evenly for defendants of different races. The authors surveyed
667 instances when a defendant faced the possibility of the death penalty
and broke the data down by the race of the defendant and the sentence
that was given.

The results revealed that in 17.1% of the cases the defendant was
sentenced to death. However, sentencing was statistically related to race.
When the defendant was Black the risk of being sentenced to death was
.183, whereas for Nonblack defendants the risk was only .129. These are
probabilities conditional on race, and directly address the problem. These
conditional probabilities produce a risk ratio of 1.42, indicating that
Blacks are approximately 40% more likely to be sentenced to death than
Nonblacks. This disparity held even when the data were split on the
basis of the severity of the offense. There would appear to be racial bias in
the assignment of death penalties.

These are data from the period 1983–1993, and it is possible that
the results would be different if more current data were used. However,
that question deserves separate study. The results were a replication of
very similar results by Radelet and Pierce (1991). The discussion
continues in both the popular press and the scientific community. As
recently as 2008, Justices John Paul Stevens and Clarence Thomas
strongly disagreed over the role that race had played in a Georgia case.3

3 See the Washington Post for October 21, 2008.



7.5 Discrete versus Continuous Variables

We have covered several terms that are used with probability, and we have looked
at two rules that allow us to calculate probabilities in simple, but very real and
common, situations. Now we need to go a bit further and look at the variables to
which these probabilities apply. It turns out that we do different things, depending
on the kind of variable we have.

In Chapter 2 I made a distinction between discrete and continuous variables.
As mathematicians view things, a discrete variable is one that can take on a
countable number of different values, whereas a continuous variable is one that
can take on an infinite number of different values. For example, the number of
people participating in an experiment on interpersonal space is a discrete variable
because we literally can count the number of people in the experiment, and
there is no such thing as a fractional person. However, the distance between two
people in a study of personal space is a continuous variable because the distance
could be or or Although the distinction given here is
technically correct, common usage is somewhat different.

In practice, when we speak of a discrete variable, we usually mean a variable that
takes on one of a relatively small number of possible values (e.g., a five-point scale of
socioeconomic status, or a three-point scale of preference [e.g., like, neutral, or dis-
like]). A variable that can take on one of many possible values is generally treated as
a continuous variable if the values represent at least an ordinal scale. Thus we usually
think of an IQ score as a continuous variable, even though we recognize that IQ
scores come in whole units and we will not find someone with an IQ of 105.317.

The distinction between discrete and continuous variables is reintroduced here
because the distributions of the two kinds of variables are treated somewhat differently
in probability theory. With discrete variables we can speak of the probability of a spe-
cific outcome. With continuous variables, on the other hand, we need to speak of
the probability of obtaining a value that falls within a specific interval.

2.8173754814¿.2.8¿,2¿,
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To elaborate on this point, assume that we have 25 M&M’s of each of four colors
and we drop them in a bag. The probability that we will draw exactly one blue
M&M is But the probability that that M&M will weigh exactly
1.000000000 grams is infinitely small, although there is some reasonable probability
that it will fall in the interval between 1 gram and 1.25 grams. With discrete variables
we can talk about the probability of a specific event, but with continuous variables
we have to talk about the probability of the event falling within some interval.

25>100 5 .25.

7.6 Probability Distributions for Discrete Variables

An interesting example of a discrete probability distribution is seen in Figure 7.1.
The data plotted in this figure come from a Scottish Government survey of
environmental attitudes, collected in 2009. They were interested in studying



environmental issues, but in the process collected data on general life satisfaction
using the Satisfaction With Life Scale (SWLS) by Edward Diener at the University
of Illinois.4 Figure 7.1 presents the distribution of responses for the question that
asked respondents to rate the sentence “In most ways my life is close to ideal.” The
possible values of X (the rating) are presented on the abscissa or X axis, and the
relative frequency (or proportion) of people choosing that response is plotted on
the ordinate or Y axis. It is interesting to see how satisfied people are with their
lives—I would not have expected such responses. Proportions translate directly to
probabilities for the sample, and the probability that a person chosen at random
will “Agree” that his or her health is close to ideal is .38. Adding together the three
positive categories, as we did with the criminal data earlier, we have 69% of the
sampled population at least slightly agreeing that their life is close to ideal.

7.7 Probability Distributions for Continuous Variables

When we move from discrete to continuous probability distributions, things
become more complicated. We dealt with a continuous distribution when we
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Figure 7.1
Distribution of importance ratings of three aspects of life
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4 You can find out more about this scale at http://www.psych.uiuc.edu/~ediener/SWLS.html. You might have
a use for such a scale in the next few years in conjunction with one or more of your courses. The particular
study cited here can be found at http://www.scotland.gov.uk/Publications/2009/03/25155151/0. 
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considered the normal distribution in Chapter 6. You may recall that in that chap-
ter we labeled the ordinate of the distribution “density.” We also spoke in terms of
intervals rather than in terms of specific outcomes. Now we need to elaborate
somewhat on those points.

Figure 7.2 shows the approximate distribution of the maternal age at first birth,
from data supplied by the Centers for Disease Control and Prevention (CDC, 2003).

http://www.cdc.gov/nchs/data/nvsr/nvsr52/nvsr52_10.pdf

Definition Density: Height of the curve for a given value of X; closely related to the probability
of an observation falling in an interval around X.

The mean is approximately 25 years, the standard deviation is approximately
5 years, and the distribution is surprisingly symmetrical. You will notice that in this
figure the ordinate (Y axis) is labeled “density,” whereas in Figure 7.1 it was labeled
“relative frequency.” Density is not synonymous with probability, and it is proba-
bly best thought of as merely the height of the curve at different values of X. At the
same time, the fact that the curve is higher near 25 years than it is near 15 years
tells us that children are more likely to be born when their mother is in her mid-
twenties than when she is in her mid-teens. That is not a particular surprise. The
reason for changing the label on the ordinate is that we now are dealing with a
continuous distribution rather than a discrete one. If you think about it for a
moment, you will realize that although the highest point of the curve is at 25 years,
the probability that a mother picked at random will give birth at exactly 25 years
(i.e., 25.00000000 years) is infinitely small—statisticians would argue that it is in
fact 0. Similarly, the probability that the mother gave birth at 25.00001 years also
is infinitely small. This suggests that it does not make any sense to speak of the
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Figure 7.2
Age of mother at birth of first child
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probability of any specific outcome, although that is just what we did with discrete
distributions. On the other hand, we know that many mothers give birth at
approximately 25 years, and it does make considerable sense to speak of the proba-
bility of obtaining a score that falls within some specified interval. For example, we
might be interested in the probability that an infant will be born when mom is
between 24.5 and 25.5 years old. Such an interval is shown in Figure 7.3. If we
arbitrarily define the total area under the curve to be 1.00, then the shaded area in
Figure 7.3 between points 24.5 and 25.5 years will be equal to the probability that
a mother will give birth at age 25. Those of you who have had calculus will prob-
ably recognize that if we knew the form of the equation that describes this distri-
bution (i.e., if we knew the equation for the curve), we would simply need to
integrate the function over the interval from 24.5 to 25.5. But you don’t need
calculus to solve this problem, because the distributions with which we will work
are adequately approximated by other distributions that have already been tabled.
In this book we will never integrate functions, but we will often refer to tables of
distributions. You have already had experience with this procedure with regard to
the normal distribution in Chapter 6.

We have just considered the area of Figure 7.3 between 24.5 and 25.5 years, which
is centered on the mean. However, the same things could be said for any interval. In
Figure 7.3 you can also see the area that corresponds to the period that is half a year on
either side of 15 years (denoted as the shaded area between 14.5 and 15.5 years).
Although there is not enough information in this example for us to calculate actual
probabilities, it should be clear by inspection of Figure 7.3 that the interval around
25 years has a higher probability (greater shaded area) than the area around 15 years.

A good way to get a feel for areas under a curve is to take a piece of transpar-
ent graph paper and lay it on top of the figure (or use a regular sheet of graph paper
and hold the two up to a light). If you count the number of squares that fall within
a specified interval and divide by the total number of squares under the whole
curve, you will approximate the probability that a randomly drawn score will fall
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Figure 7.3
Probability of giving birth at ages 15 and 25 years
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within that interval. It should be obvious that the smaller the size of the individ-
ual squares on the graph paper, the more accurate the approximation.

7.8 Summary

In this chapter we examined the various definitions of the term probability and saw
that probabilities can be based on a logical analysis of the problem (analytic prob-
ability), on a history of past experience (frequentistic probability), or on a subjec-
tive belief in the likelihood that an event will occur (subjective probability). We
considered the difference between independent and nonindependent events and
saw that “mutually exclusive” refers to the situation where the occurrence of one
event precludes the occurrence of another. Similarly, an “exhaustive” set of events
is one that includes all possible outcomes.

We considered two fundamental laws of probability, which were the addi-
tive and the multiplicative laws. The additive law concerns the situation where
our focus is on the occurrence of one outcome, where we would use the word “or”
in describing it. For example, what is the probability that your one grade will be
an A or a B? The multiplicative law applies to multiple outcomes, such as “What
is the probability that you will earn an A on the first test and a B on the second?”

Next we looked at joint and conditional probabilities. A joint probability
is the probability of two or more things occurring, such as in the example of an
A on one test and a B on another. A conditional probability is the probability
that something will occur given that something else occurs. What is the
probability that you will earn a B on the second exam given (or if) you earned an
A on the first?

We then saw two new terms, “risk” and “odds.” A risk is essentially a
probability—“What is the risk (probability) that you will have an accident on
the way home from class?” We just divide the number of people who have
accidents by the total number of people—or some similar kind of calculation.
Odds are a bit different. There we divide the number of people who have an
accident by the number of people that don’t have an accident. Both odds and
risk are legitimate ways of speaking of the likelihood that something will occur.
Odds are most commonly seen in horse racing and other forms of gambling.

With risk or with odds we can form a ratio. In our example, the risk ratio
was the risk of being sentenced to death if you were Black divided by the risk of
being sentenced to death if you were White. The odds ratio is similar except
that we divide odds rather than risks. The advantage of the odds ratio is that we
can compute it almost regardless of the design of our study, whereas we can only
compute a risk ratio under specific experimental conditions. But for low proba-
bility events the odds ratio is a good estimate of what the risk ratio would be.

Finally, we saw that there is an important difference between discrete and
continuous variables, and with the latter we generally use the term density. We will
see throughout the book that discrete variables are usually dealt with in ways that
are different from the way we treat continuous variables.

152 Chapter 7 Basic Concepts of Probability



Some important terms in this chapter are
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Analytic view, 136

Frequentist view, 138
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7.9 Exercises

7.1 Give one example each of an analytic, a frequentist, and a subjective view of probability.

7.2 Suppose that neighborhood soccer players are selling raffle tickets for $500 worth of
groceries at a local store, and you bought a $1 ticket for yourself and one for your mother.
The children eventually sold 1,000 tickets.
(a) What is the probability that you will win?
(b) What is the probability that your mother will win?
(c) What is the probability that you or your mother will win?

7.3 Now suppose that because of the high level of ticket sales, an additional $250 prize will also
be awarded.
(a) Given that you don‘t win first prize, what is the probability that you will win second

prize? (The first-prize ticket is not put back into the hopper before the second-prize
ticket is drawn.)

(b) What is the probability that your mother will come in first and you will come in
second?

(c) What is the probability that you will come in first and she will come in second?
(d) What is the probability that the two of you will take first and second place?

7.4 Which parts of Exercise 7.3 dealt with joint probabilities?

7.5 Which parts of Exercise 7.3 dealt with conditional probabilities?

7.6 Make up a simple example of a situation in which you are interested in joint probabilities.



7.7 Make up a simple example of a situation in which you are interested in conditional
probabilities. Frame the issue in terms of a research hypothesis.

7.8 In some homes a mother’s behavior seems to be independent of her baby’s and vice versa.
If the mother looks at her child a total of 2 hours each day, and if the baby looks at the
mother a total of 3 hours each day, and if they really do behave independently, what is the
probability that they will look at each other at the same time?

7.9 In Exercise 7.8 assume that both mother and child sleep from 8:00 P.M. to 7:00 A.M. What
would be the probability now?

7.10 I said that the probability of alcohol involvement, given an accident at night, was
approximately .50, but I don’t know the probability of an accident, given that you had been
drinking. How would you go about finding the answer to that question if you had sufficient
resources?

7.11 In a study of the effectiveness of “please don’t litter” requests on supermarket fliers, Geller,
Witmer, and Orebaugh (1976) found that the probability that a flier carrying a “do not
litter” message would end up in the trash, if what people do with fliers is independent of the
message that is on them, was .033. I also said that 4.5% of those messages actually ended up
in the trash. What does this tell you about the effectiveness of messages?

7.12 Give an example of a common continuous distribution for which we have some real inter-
est in the probability that an observation will fall within some specified interval.

7.13 Give an example of a continuous variable that we routinely treat as if it were discrete.

7.14 Give two examples of discrete variables.

7.15 A graduate admissions committee has finally come to realize that it cannot make valid dis-
tinctions among the top applicants. This year the committee rated all 500 applicants and
randomly chose 10 from those at or above the 80th percentile. (The 80th percentile is the
point at or below which 80 percent of the scores fall.) What is the probability that any par-
ticular applicant will be admitted (assuming you have no knowledge of his or her rating)?

7.16 With respect to Exercise 7.15, determine the conditional probability that the person will
be admitted, given the following:
(a) That he or she has the highest rating
(b) That he or she has the lowest rating

7.17 In Appendix D (or the Add.dat dataset on the Web site), what is the probability that a
person drawn at random will have an ADDSC score greater than 50?

7.18 In Appendix D, what is the probability that a male will have an ADDSC score greater
than 50?

7.19 In Appendix D, what is the probability that a person will drop out of school, given that he
or she has an ADDSC score of at least 60?

7.20 How might you use conditional probabilities to determine if an ADDSC cutoff score in
Appendix D of 66 is predictive of whether or not a person will drop out of school?

7.21 Compare the conditional probability from Exercise 7.20 with the unconditional probabil-
ity of dropping out of school.

7.22 People who sell cars are often accused of treating male and female customers differently.
Make up a series of statements to illustrate simple, joint, and conditional probabilities with
respect to such behavior. How might we begin to determine if those accusations are true?

7.23 Assume you are a member of a local human rights organization. How might you use what
you know about probability to examine discrimination in housing?
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7.24 A paper by Fell (1995) has many interesting statistics on the relationship between alcohol,
drugs, and automobile accidents in the United States. The paper is available at

http://raru.adelaide.edu.au/T95/paper/s14p1.html

With the author’s permission, a copy of the paper is also available at

http://www.uvm.edu/~dhowell/StatPages/More_Stuff/Fell.html

From the statistics in this paper create several questions illustrating the principles discussed
in this chapter. (These might make good exam questions if collected by the instructor.)

7.25 In 2000 the U. S. Department of Justice released a study of the death penalty from 1995 to
2000, a period during which U.S. Attorneys were required to submit to the Justice
Department for review and approval all cases in which they sought the death sentence.
(The report can be found at http://www.usdoj.gov/dag/pubdoc/_dp_survey_final.pdf.) The
data were broken down by whether the U.S. attorney recommended seeking the death
penalty and by the race of the victim (not the defendant). These data are summarized below.
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Death Sentence Recommendation

Victim’s race Yes No Total

Non-White 388 228 616
Row proportion .630 .370 1.000

White 202 76 278
Row proportion .726 .274 1.000

Total 590 304 894
Col. % .660 .340

What would you conclude from looking at this table?

7.26 Using the data from Exercise 7.25, compute the risk and odds ratios of punishment as a
function of race.

7.27 Recently I had a call from a friend who is a lawyer in Vermont. He was representing an
African-American client who was challenging the fairness of a jury selection. His concern
was that African-Americans were not proportionately represented in the pool from which
jurors are selected. In Vermont, 0.43% of the adult population is African-American. The
pool of 2124 names from which juries are drawn contained only four African-Americans.
It is straightforward to calculate that if the jury pool was fairly selected the probability that
the pool would have four or fewer African-Americans is almost exactly .05. (You do not yet
know how to make that calculation). My friend was asking me to explain “all of this
hypothesis-testing stuff that the expert witnesses are talking about.” Write a short answer
to his question.

http://raru.adelaide.edu.au/T95/paper/s14p1.html
http://www.uvm.edu/~dhowell/StatPages/More_Stuff/Fell.html
http://www.usdoj.gov/dag/pubdoc/_dp_survey_final.pdf
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Sampling
Distributions 
and Hypothesis
Testing

Concepts that you will need to remember from
previous chapters
Sample statistics: Here I refer to mainly the mean ( ) and

standard deviation (s) computed on a sample

Population statistics: Mainly the mean ( ) and standard deviation
( ) of a population

N: The number of observations in a sample

Conditional Probability: The probability of an event occurring given
that some other event has occurred
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Perhaps the main use of statistical techniques is to test hypotheses. (Even those
who object to most hypothesis testing use the same basic techniques.) You might, for
example, wonder if older people are more willing to continue pursuing an unreward-
ing task than younger people. We will see how to turn that question into a hypothesis
that we can test. Along the way we will have to establish the concept of a null hypoth-
esis, and we need to understand how a null hypothesis is used to answer the question
we want to ask. We will then develop the idea of a sampling distribution and see how



such distributions allow us to carry out such tests and how we use the language of
conditional probabilities to come to a conclusion.

My wife is one of those people who believes strongly in birth order effects, in
which people assert that firstborn children are more independent, middle children are
more laid back (unless they’re fighting for attention), and later children are more “what-
ever.” Well, you’re not going to see data on that phenomenon here, because despite
all her urging, I can’t get excited about it. (But if you are interested, a search of the
Internet for the key words “birth order” will result in many sources, though I can’t speak
to their quality.) However, imagine that I did care, and imagine that I had lots of data
on the independence of first-, middle-, and later-born children. How would I go about
asking if firstborn children really are different from the others? Asking questions of this
nature is the subject of much of the rest of this book, and this chapter lays out the basic
groundwork for asking those questions. Put much too extremely, this chapter discusses
how to frame the question, what kinds of things to think about, and how to evaluate
the answer, whereas the rest of the book discusses the specific logical and computa-
tional approaches that apply to certain kinds of data.

This is a transitional chapter. In the preceding chapters we examined a num-
ber of different statistics and how they might be used to describe a set of data or
present the probability of the occurrence of some event. You now have covered the
groundwork that underlies the more interesting questions that statisticians are asked
to answer. Starting in the next chapter we will begin to look at specific statistical
techniques and their application. Although the description of data is important and
fundamental to any analysis, it is not sufficient to answer many of the most interesting
problems we encounter. And although it is nice to be able to perform various
statistical tests, we need to know what to do with those tests once we have done the
arithmetic. In this chapter we are going to examine the general procedure for going
from sample statistics to conclusions about population parameters.

In a typical experiment we might treat one group in a special way and then
see if their scores differ from the scores of people in general. Descriptive statistics will
not tell us, for example, whether the difference between a sample mean and a
hypothesized population mean, or between two obtained sample means, is small
enough to be explained on the basis of chance alone or represents a true difference
that might be attributable to the effect of our experimental treatment(s). Nor will they
tell us whether the difference in rates at which prosecutors seek the death penalty is
reliably tied to race. (It is.) And as we will see in Chapters 9–11, descriptive statis-
tics will not tell us if an apparent relationship between two or more variables is real
or just a chance occurrence that would be difficult to reproduce on a second try.

Statisticians frequently use phrases such as “differ by chance” and “sampling
error” and assume you know what they mean. But this terminology and the ideas
behind it are so central to the rest of the book that if you aren’t sure about the con-
cepts you will be in trouble. So we need to take a minute to be clear about chance
and error.

In Chapter 6 we considered the distribution of Total Behavior Problem scores
from the Achenbach Youth Self-Report form. Total Behavior Problem scores are
approximately normally distributed in the population (i.e., the complete population of
such scores would be normally distributed) with a population mean of 50 and a1m 2
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population standard deviation of 10. We know that different children show
different levels of problem behaviors and therefore have different scores. Similarly, dif-
ferent samples of children are not likely to have exactly the same mean score. We
also know that if we took a sample of children their mean would probably not equal
exactly 50. One sample of children might have a mean of 49.1, while a second
sample might have a mean of 53.3. The actual sample means would depend on the
particular children who happened to be included in the sample. This expected
variability that we see from sample to sample is what is meant when we speak
of “variability due to chance.” We are referring to the fact that statistics (in this case,
means) obtained from samples naturally vary from one sample to another.

Along the same lines, the term sampling error often is used in this context as
a synonym for variability due to chance. It indicates that the value of a sample statis-
tic probably will be in error (i.e., will deviate from the parameter it is estimating) as
a result of the particular observations that are included in the sample. In this context
“error” does not imply carelessness or a mistake. In the case of behavior problems,
one random sample might just happen to include an unusually obnoxious child,
whereas another sample might happen to include an unusual number of relatively
well-behaved children. Please remember that in statistics “error” does not usually
mean what it means in standard English; it simply means random variability.

Definition Sampling error: Variability of a statistic from sample to sample due to chance.

I can illustrate this concept of sampling error by drawing samples from a popula-
tion with a mean of 50 and a standard deviation of 10. (This population could repre-
sent the population of behavior problem scores.) If I draw 15 scores at a time and
compute their mean, and then do it again, the second mean will probably not be exactly
equal to the first. Nor will a third mean likely be exactly equal to the first two. I repeated
this process 5000 times and obtained the results shown in Figure 8.1. We will have
more to say about such distributions shortly, but for now all that I want you to see is that
sampling error represents differences between one sample statistic (in this case a mean)
and another. Notice how a few means are way down in the 40s and some are in the
upper 50s, but most fall pretty much in the middle.

8.1 Two Simple Examples Involving Course Evaluations
and Human Decision Making

One example that we will investigate near the end of the next chapter looks
at the relationship between how students evaluate a course and the grade
they expect to receive in that course. This is a topic that many faculty feel
strongly about, because even the best instructors turn to the semiannual
course evaluation forms with some trepidation—perhaps the same amount
of trepidation with which many students open their grade report form.

1s 2
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Some faculty think that a course is good or bad independent of how well a
student feels he or she will do in terms of a grade. Others feel that a student
who seldom came to class and who will do poorly as a result will also
(unfairly?) rate the course as poor. Finally, there are those who argue that
students who do well and experience success take something away from the
course other than just a grade and that those students will generally rate the
course highly. But the relationship between course ratings and student
performance is an empirical question and, as such, can be answered by
looking at relevant data. Suppose that in a random sample of 50 courses we
find a general upward trend—in those courses in which students expect to
do well, they tend to rate the course highly; and in those courses in which
students expect to do poorly, they tend to rate the overall quality of the
course as low. How do we tell whether this trend in our small data set is
representative of a trend among students in general or just a fluke that
would disappear if we ran the study over? (For your own interest, make your
prediction of what kind of results we will find. We will return to this issue in
the next chapter.) ■

A second example comes from a study by Strough, Mehta, McFall, and
Schuller (2008). They were examining what is called the “sunk-cost
fallacy.” They define the fallacy as “a decision-making bias that reflects
the tendency to invest more future resources in a situation in which a
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prior investment has been made, as compared with a similar situation in
which a prior investment has not been made.” For example, suppose that
you paid $10 to watch a movie on pay TV. After a few minutes you find
that the movie is pretty awful. Are you more likely to continue watching
that movie (i.e., invest more cost in terms of your time and/or boredom or
discomfort) having paid $10 than you would be if the movie was free? 
(I suspect that I would keep watching, but not only would I be out $10,
which I wouldn’t get back anyway, but I would also have to suffer through
an awful movie.) The phrase “sunk costs” refers to costs that cannot be
recovered once they are incurred. (You are out $10 no matter what you
do.) Strough et al. asked whether older participants were more or less
likely than younger participants to keep watching. Their measure was the
sunk-cost-fallacy score that they calculated based on the participants’
behavior. A higher score means that a participant was more likely to keep
watching. They found that for 75 younger participants (college students)
the sample mean ( ) was approximately 1.39, while for 73 older
participants (ages 58 –91) the mean ( ) was 0.75. (The subscripts “Y”
and “O” stand for “young” and “old,” respectively. For both groups the
standard deviation was approximately 5.0. These results could be
explained in one of two ways:

■ The difference between 1.39 in one sample and .75 in the other
sample is simply attributable to sampling error (random variability
among samples); therefore, we cannot conclude that age influences
the sunk-cost fallacy.

■ The difference between 1.39 and .75 is large. The difference is not
just sampling error; therefore, older people are less likely to buy into
the sunk-cost fallacy and continue watching the movie.

Although the statistical calculations required to answer this question
are different from those used to answer the one about course evaluations
(because the first deals with relationships and the second deals with means),
the underlying logic is fundamentally the same. ■

These examples of course evaluations and the sunk-cost fallacy are two kinds
of questions that fall under the heading of hypothesis testing. This chapter is
intended to present the theory of hypothesis testing in as general a way as possible,
without going into the specific techniques or properties of any particular test. I will
focus largely on the situation involving differences instead of the situation
involving relationships, but the logic is basically the same. You will see additional
material on examining relationships in the next chapter.

Definition Hypothesis testing: A process by which decisions are made concerning the value
of parameters.

XO

XY
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The theory of hypothesis testing is so important in all that follows that a
thorough understanding of it is essential. Many students who have had one or
more courses in statistics and who know how to run a number of different
statistical tests still do not have a basic knowledge of what it is they are doing.
As a result they have difficulty interpreting statistical tables and must learn
every new procedure in a step-by-step, rote fashion. This chapter is designed to
avoid that difficulty by presenting the theory in its most general sense, without
the use of any formulae. You can learn the formulae later, after you understand
why you might want to use them. Professional statisticians might fuss over the
looseness of the definitions, but that will be set right in subsequent chapters.
Others may object that we are considering hypothesis testing before we consider
the statistical procedures that produce the test. That is precisely the intent. The
material covered here cuts across all statistical tests and can be discussed
independently of them. By separating the material in this way, you are free to
concentrate on the underlying principles without worrying about the mechan-
ics of calculation.

The important issue in hypothesis testing is to find some way of deciding
whether, in the sunk-costs example, we are looking at a small chance fluctuation
in differences between the two age groups or at a difference that is sufficiently large
for us to believe that older people are much less likely to “throw good after bad”
than younger people.

8.2 Sampling Distributions

The next example is one that affects a large number of children in our society.
Consider the situation in which we have five students from recently divorced
households. These five children have a mean of 56 on the Achenbach Youth Self
Report scale of Total Behavior Problems. This mean is over half a standard devia-
tion above the mean (50) in the general population, and we want to know if this
finding is sufficiently deviant for us to conclude that the stress associated with
divorce tends to elicit behavior problems in children at higher than normal levels.
Perhaps we just came up with a peculiar sample, and another sample of children
from divorced households would show normal levels of behavior. Or perhaps
divorce is a sufficiently stressful event in children’s lives to produce serious behav-
ior problems. There certainly is a lot of information in the literature that suggests
that divorce is even more stressful on children than it is on their parents.1 To
answer this kind of question, we have to use what are called sampling distribu-
tions, which tell us specifically what degree of sample-to-sample variability we can
expect by chance as a function of sampling error.
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Definition Sampling distribution: The variability of a statistic over repeated sampling from a
specified population.
Standard error: The standard deviation of a sampling distribution.

The most basic concept underlying all statistical tests is the sampling distribution of
a statistic. It is fair to say that if we did not have sampling distributions, we would
not have any statistical tests. Roughly speaking, sampling distributions tell us what
values we might (or might not) expect to obtain for a particular statistic under a set
of predefined conditions (e.g., what the obtained mean of five children might be if
the true mean of the population from which those children come is 50). Notice that
I’m talking about a conditional probability here; the probability of something
happening if something else is true.

We not only need to know what kind of value to expect for a mean Total
Behavior Problem score, but we also have to know something about how variable
those mean values might be if we had several of them. We only have one mean,
but we know that if we repeated the study our second mean would be somewhat
different. We need to know just how much different it is likely to be. The standard
deviation of the distribution of sample statistics (known as the “standard error” of
the distribution) reflects the variability that we would expect to find in the values
of that statistic over repeated trials. Sampling distributions provide the opportu-
nity to evaluate the likelihood of an obtained sample statistic, given that such
predefined conditions actually exist.

Basically, the sampling distribution of a statistic can be thought of as the
distribution of values obtained for that statistic over repeated sampling (i.e., run-
ning the experiment, or drawing samples, an unlimited number of times).
Although sampling distributions are almost always derived mathematically, it is
easier to understand what they represent if we consider how they could, in theory,
be derived empirically with a simple sampling experiment.

Definition Sampling distribution of the mean: The distribution of sample means over repeated
sampling from one population.

We will take as an illustration the sampling distribution of the mean,
because it is the most easily understood and relates directly to the example of
behavior problems. The sampling distribution of the mean is nothing more than
the distribution of means of an infinite number of random samples drawn under
certain specified conditions (e.g., under the condition that the true mean of our
population is 50 and the standard deviation is 10). You have already seen a
sampling distribution of the mean in Figure 8.1, although I did not label it as that
at the time. There we took a population with a known mean and stan-
dard deviation We then drew a very large number (theoretically an
infinite number) of random samples from this population, each sample consist-
ing of 20 scores. For each sample we calculated its mean, and when we finished

1s 5 10 2 . 1m 5 50 2
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drawing all the samples, we plotted the distribution of these means. Such a
distribution is a sampling distribution of the mean and would look like the one
presented in Figure 8.1. A second example can be seen in Figure 8.2, although
this time I drew samples of size 5, rather than size 15. (To obtain this figure, 
I generated 5,000 samples of random data, wherein each observation was the
mean of five random observations from an population. To be more
specific, my first sample of five scores contained 49.66, 49.30, 55.94, 35.39, and
48.86. The sample mean of these five scores is 47.83. I recorded that value
and repeated the whole process 5,000 times. I then plotted those 5,000 means
( to ) with a histogram. I then superimposed a normal distribution on top
of the histogram. Notice how well it fits. Notice also that the distribution in
Figure 8.2 is more spread out than the one in Figure 8.1. That is because means
based on fewer scores are less consistent.)

Referring to Figure 8.2, which is based on samples of size 5, we see that
sample means between 45 and 55, for example, are quite likely to occur when
we sample five children at random. We also can see that it is extremely
unlikely that we would draw from this population a sample of five observations
with a sample mean as low as 35, although there is some (very very small)
probability of doing so. The fact that we know the kinds of values to expect for
the mean of a sample drawn from this population is going to allow us to turn
the question around and ask if an obtained sample mean can be taken as
evidence in favor of the hypothesis that we actually are sampling from this
population.

X5000X1

1X1 2
N150,100 2
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Figure 8.2
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There are two important points to keep in mind as we go forward. A sampling
distribution is the distribution of any statistic. For example, the sampling distri-
bution of the mean is the distribution of means that we would obtain from
repeated random samples from a specific population. Also, the standard error,
which we will frequently refer to, is simply the standard deviation of a sampling
distribution. Thus the standard error of the mean is the standard deviation of
means from repeated sampling. For samples of size five, the standard error of the
mean was 4.46, which is shown in Figure 8.2.

Although I have been speaking about the sampling distribution of the
mean, we could just as easily draw samples, calculate their variances, and plot
the sampling distribution of the variance. Its standard deviation would be the
standard error of the variance.

8.3 Hypothesis Testing

We do not go around obtaining sampling distributions, either mathematically or
empirically, simply because they are interesting to look at. We have important
reasons for doing so. The usual reason is that we want to test some hypothesis. Let’s
go back to the random sample of five highly stressed children with a mean behavior
problem score of 56, as represented in Figure 8.2. We want to test the hypothesis that
such a sample mean could reasonably have arisen had we drawn our sample from a
population in which This is another way of saying that we want to know
whether the mean of stressed children is different from the mean of normal children.
The only way we can test such a hypothesis is to have some idea of the probability
of obtaining a sample mean as extreme as 56 if we actually sampled observations from
a population in which the children are normal The answer to this ques-
tion is precisely what a sampling distribution is designed to provide.

Suppose we obtained (constructed) the sampling distribution of the mean for
samples of five children from a population whose mean is 50 (the distribution
plotted in Figure 8.2). Suppose further we then determined from that distribution
the probability of a sample mean of 56 or higher. For the sake of argument, suppose
this probability is 09. Our reasoning could then go as follows: “If we did sample
from a population with the probability of obtaining a sample mean as high
as 56 is .09—a reasonably likely event. Because a sample mean that high is
obtained about 9% of the time from a population with a mean of 50, we don’t have
a very good reason to doubt that this sample came from such a population.”

Alternatively, suppose we obtained a sample mean of 62 and calculated from
the sampling distribution that the probability of a sample mean as high as 62 was
only .0037. Our argument could then go like this: “If we did sample from a popu-
lation with and the probability of obtaining a sample mean as
high as 62 is only .0037—an unlikely event. Because a sample mean that high is
unlikely to be obtained from such a population, it would be reasonable to conclude
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that this sample probably came from some other population (one whose mean is
higher than 50).”
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It is important to realize what we have done in this example, because the
logic is typical of most tests of hypotheses. The actual test consisted of several
stages:

1. We wanted to test the hypothesis, often called the research hypothesis,
that children under the stress of divorce are more likely than normal

children to exhibit behavior problems.

2. We set up the hypothesis (called the null hypothesis, ) that the
sample was actually drawn from a population whose mean, denoted 
equals 50. This is the hypothesis that stressed children do not differ from
normal children in terms of behavior problems.

3. We obtained a random sample of children under stress.

4. We then obtained the sampling distribution of the mean under the
assumption that (the null hypothesis) is true (i.e., we obtained the
sampling distribution of the mean from a population with ).

5. Given the sampling distribution, we calculated the probability of a mean
at least as large as our actual sample mean.

6. On the basis of that probability, we made a decision: either to reject
or fail to reject Because states that rejection of 
represents a belief that although the actual value of remains
unspecified.

If you remember nothing else from this chapter, be sure that you thoroughly
understand the logic of the steps listed in this shaded box. It is the basic principle
behind statistical hypothesis tests, no matter how complicated they look.

mm 7 50,
H0m 5 50,H0H0.
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Definition Research hypothesis ( ): The hypothesis that the experiment was designed to
investigate.
Null hypothesis ( ): The statistical hypothesis tested by the statistical procedure;
usually a hypothesis of no difference or no relationship.

The preceding discussion is oversimplified in several ways. First, we are not
going to have to sit down with our computer and actually draw 5,000 samples and cal-
culate their mean to get the sampling distribution of the mean. We have simple ways
to calculate what it would be. Also, we generally would prefer to test the research
hypothesis that children under stress are different from (rather than just higher than)
other children, but we will return to that point shortly. It is also oversimplified in the
sense that in practice we also would need to take into account (either directly or by

H0

H1



estimation) the value of the population variance, and N, the sample size. But
again, those are specifics we can deal with when the time comes. The logic of the
approach is representative of the logic of most, if not all, statistical tests. In each case
we follow the same steps: (1) specify a research hypothesis (2) set up the null
hypothesis (3) collect some data; (4) construct, or at least imagine, the sampling
distribution of the particular statistic on the assumption that is true; (5) compare
the sample statistic to that distribution, and find the probability of exceeding the
observed statistic’s value; and (6) reject or retain depending on the probability,
under of a sample statistic as extreme as the one we have obtained.

8.4 The Null Hypothesis

As we have seen, the concept of the null hypothesis plays a crucial role in the
testing of hypotheses. People frequently are puzzled by the fact that we set up a
hypothesis that is directly counter to what we hope to show. For example, if we hope
to demonstrate the research hypothesis that college students do not come from a
population with a mean self-confidence score of 100, we immediately set up the null
hypothesis that they do. Or if we hope to demonstrate the validity of a research
hypothesis that the means ( and ) of the populations from which two samples
are drawn are different, we state the null hypothesis that the population means are
the same (or, equivalently, ). (The term “null hypothesis” is most eas-
ily seen in this second example, in which it refers to the hypothesis that the differ-
ence between the two population means is zero, or null.) We use the null hypothesis
for several reasons. The philosophical argument, put forth by Fisher when he first
introduced the concept, is that we can never prove something to be true, but we
can prove something to be false. Observing 3,000 cows with only one head does not
prove the statement “Every cow has only one head.” However, finding one cow
with two heads does disprove the original statement beyond any shadow of a doubt.
While one might argue with Fisher’s basic position—and many people have—the
null hypothesis retains its dominant place in statistics. You might also draw the par-
allel between the null hypothesis that we usually test and the idea that someone is
innocent until proven guilty, which is the basis for our system of justice. We begin
with the idea that the defendant is innocent, and agree to convict only if the data
are sufficiently inconsistent with that belief. You can’t push that idea very far, but it
has considerable similarity with the way we test hypotheses.

A second and more practical reason for employing the null hypothesis is that
it provides us with the starting point for any statistical test. Consider the case in
which you want to show that the mean self-confidence score of college students is
greater than 100. Suppose further that you were granted the privilege of proving
the truth of some hypothesis. What hypothesis are you going to test? Should you
test the hypothesis that or maybe the hypothesis that or how
about The point is that we do not have a specific alternative (research)
hypothesis in mind (and I can’t recall any experiment that did), and without one
we cannot construct the sampling distribution we need. However, if we start off by
assuming we can immediately set about obtaining the samplingH0: m 5 100,
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distribution for and then, with luck, reject that hypothesis and conclude
that the mean score of college students is greater than 100, which is what we
wanted to show in the first place.

m 5 100
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Sir Ronald Alymer Fisher 1890–1962

Having mentioned Fisher’s name in connection with statistical hypothesis
testing, I should tell you something about him. In a discipline with many inter-
esting characters, Fisher stands out as extraordinary, and he probably made
greater contributions to the field of statistics than any other person.

Fisher started life with very poor eyesight and required special tutoring early
on. He won a scholarship to Cambridge, where he studied mathematics and then
physics and was at the top of his class. Because of his poor eyesight he had to imag-
ine problems geometrically rather than working through problems with pencil
and paper. This greatly influenced the way he thought about statistics and often
set him off from his colleagues. He developed strong interests in genetics and
eugenics and helped to form the Cambridge Eugenics Society. During World War
I his notoriously bad eyesight kept him from military service, and he bounced
around among several jobs. After the war he took a position at a small agricultural
experiment station named Rothamsted, which would probably not be remem-
bered by anyone if it weren’t for Fisher’s connection to it. While there, Fisher
worked with the mounds of agricultural data that had been collected but never
analyzed, and this work formed the basis for many of his contributions to the field.
He developed the concept of the analysis of variance, which is today one of the
most important techniques in statistical analysis. He also developed the theory of
maximum likelihood, without which many areas of statistics would not even exist.
He put forth the idea of the null hypothesis and is noted for saying that “Every
experiment may be said to exist only in order to give the facts a chance of disprov-
ing the null hypothesis.” In later years, he quarreled for at least a decade with Jerzy
Neyman and Egon Pearson, Karl Pearson’s son, who argued for a different
approach to hypothesis testing. What we now teach as “hypothesis testing” is an
amalgam of the two approaches, which would probably not satisfy either side in
that debate. No scientist today could get away with saying to others in print the
kind of remarks that went back and forth between the two groups. Statistics in
England in the first half of the 20th century was certainly interesting. (Good
[2001] has pointed out that one of the speakers who followed a presentation by
Fisher referred to Fisher’s presentation as “the braying of the Golden Ass.” You can
be sure that Fisher had something equally kind to say in reply.) But despite the
animosities, statistics in England at that time was incredibly fruitful.

Fisher was very active in the eugenics movement and was the Galton
Professor of Eugenics at University College London and then the Arthur Balfour
Professor of Genetics at Cambridge, two of the most prestigious universities in the
country. Though neither of those departments was a department of statistics, their
work was highly statistical, and it is his statistical work for which Fisher is known.



8.5 Test Statistics and Their Sampling Distributions

We have been discussing the sampling distribution of the mean, but the discussion
would have been essentially the same had we dealt instead with the median, the
variance, the range, the correlation coefficient (as in our course evaluation exam-
ple), proportions, or any other statistic you care to consider. (Technically the
shape of these distributions would be different, but I am deliberately ignoring such
issues in this chapter.) The statistics just mentioned usually are referred to as
sample statistics, because they describe samples. A whole different class of statis-
tics called test statistics is associated with specific statistical procedures and has its
own sampling distributions. Test statistics are statistics such as which you
may have run across in the past. If you are not familiar with them, don’t worry—
we will consider them separately in later chapters. This is not the place to go into
a detailed explanation of any test statistic (I put this chapter where it is because I
didn’t want readers to think that they were supposed to worry about technical
issues.) This chapter is the place, however, to point out that the sampling distribu-
tions for test statistics are obtained and used in essentially the same way as the
sampling distribution of the mean.

Definition Sample statistics: Statistics calculated from a sample and used primarily to describe
a sample.
Test statistics: The results of a statistical test.

As an illustration, consider the sampling distribution of the statistic t, which
will be discussed in Chapters 12 through 14. For those who have never heard of
the t test, it is sufficient to say that the t test is often used, among other things, to
determine whether two samples were drawn from populations with the same
means. Suppose that and represent the means of the populations from which
the two samples were drawn. The null hypothesis is the hypothesis that the two
population means ( and ) are equal, in other words, (or

). If we were extremely patient, we could empirically obtain the
sampling distribution of t when is true by drawing an infinite number of pairs
of samples, all from one population, calculating t for each pair of samples (by meth-
ods to be discussed later), and plotting the resulting values of t. In that case, 
must be true because the samples came from the same population. The resulting
distribution is the sampling distribution of t when is true. If we had a sample of
two groups that produced a particular value of t, we would test the null hypothesis
by comparing that sample t to the sampling distribution of t. We would reject the
null hypothesis if our obtained t did not look like the kinds of t values that the sam-
pling distribution told us to expect when the null hypothesis is true.

I could rewrite the preceding paragraph substituting or F, or any other test
statistic in place of t, with only minor changes dealing with how the statistic is
calculated. Thus you can see that all sampling distributions can theoretically be
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obtained in basically the same way (calculate and plot an infinite number of
statistics by sampling from a known population). Once you understand that fact,
much of the remainder of the book is an elaboration of methods for calculating the
desired statistic and a description of characteristics of the appropriate sampling
distribution. And don’t worry. We have simple techniques to calculate what those
sampling distributions would be without drawing thousands of samples.

Keep in mind the analogy to our legal system that I used. The null hypothe-
sis is roughly analogous to the idea that someone is innocent until proven guilty.
The idea of rejecting the null hypothesis is analogous to the idea that we convict
someone when we believe him or her to be guilty “beyond a reasonable doubt.” We
don’t have to “prove” that the person is innocent; we have to conclude only that
the test of “reasonable doubt” fails in this instance. To say this another way, Fisher
(1935) wrote, “In relation to any experiment we may speak of this hypothesis as
the ‘null hypothesis,’ and it should be noted that the null hypothesis is never
proved or established, but is possibly disproved, in the course of experimentation.”
I will keep coming back to this point because it is critical to understanding what a
test of significance is.

8.6 Using the Normal Distribution to Test Hypotheses

Much of the discussion so far has dealt with statistical procedures that you do not yet
know how to use. I did this deliberately to emphasize the point that the logic and the
calculations behind a test are two separate issues. You now know quite a bit about
how hypothesis tests are conducted, even if you don’t have the slightest idea how to
do the arithmetic. However, we now can use what you already know about the nor-
mal distribution to test some simple hypotheses. In the process we can deal with
several fundamental issues that are more easily seen by use of a concrete example.

An important use of the normal distribution is to test hypotheses, either
about individual observations or about sample statistics such as the mean. In this
chapter we will deal with individual observations, leaving the question of testing
sample statistics until later chapters. Note, however, that in the general case we
test hypotheses about sample statistics such as the mean rather than hypotheses
about individual observations. I am starting with an example of an individual
observation because the explanation is somewhat clearer. Since we are dealing
with only single observations, the sampling distribution invoked here will be the
distribution of individual scores (rather than the distribution of means). The basic
logic is the same, and we are using an example of individual scores only because it
simplifies the explanation and is something with which you have had experience.

For a simple example assume that we are concerned with the rate at which peo-
ple can tap their fingers. That may seem like an odd thing to worry about, but neu-
ropsychologists and neurologists frequently use finger tapping as a diagnostic tool.
Christianson and Leathem (2004) developed a computerized finger-tapping test that
produces scores from nonclinical participants with a mean of 59 and a standard
deviation of 7 (rounded) over a 10-second trial. It is known that Alzheimer’s patients
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show decreased tapping speed, as do those suffering from a variety of neurological
disorders. (Interestingly, a full year after being exposed to very high altitudes,
climbers of Mt. Everest also continued to show depressed tapping performance.)

We will assume that we know that the mean rate of finger tapping of normal
healthy adults is 59 taps in 10 seconds, with a standard deviation of 7, and that
tapping speeds are normally distributed in the population. Assume further that we
know that the tapping rate is slower among people with certain neurological prob-
lems. Finally, suppose that an individual has just been sent to us who taps at a rate
of 45 taps in 10 seconds. Is his score sufficiently below the mean for us to assume
that he did not come from a population of neurologically healthy people? This
situation is diagrammed in Figure 8.3, in which the arrow indicates the location of
our piece of data (the person’s score).

The logic of the solution to this problem is the same as the logic of hypothesis
testing in general. We begin by assuming that the individual’s score does come from the
population of healthy scores. This is the null hypothesis If is true, we auto-
matically know the mean and the standard deviation of the population from which he
was supposedly drawn (59 and 7, respectively). With this information we are in a posi-
tion to calculate the probability that a score as low as his would be obtained from this
population. If the probability is very low, we can reject and conclude that he did
not come from the healthy population. Conversely, if the probability is not particularly
low, then the data represent a reasonable result under and we would have no rea-
son to doubt its validity and thus no reason to doubt that the person is healthy. Keep
in mind that we are not interested in the probability of a score equal to 45 (which,
because the distribution is continuous, would be infinitely small) but rather in the
probability that the score would be at least as low as (i.e., less than or equal to) 45.
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Figure 8.3
Location of a person’s tapping score on a distribution of scores of neurologically healthy people
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The individual had a score of 45. We want to know the probability of obtain-
ing a score at least as low as 45 if is true. We already know how to find this—it
is the area below 45 in Figure 8.3. All we have to do is convert 45 to a z score and
then refer to Table E.10 in Appendix E.

From Table E.10 we can see that the probability of a z score of or
below is .0228. (Locate in the table and then read across to the column
headed “Smaller Portion.” Remember that the distribution is symmetric, so the
probability of is the same as the probability of )

At this point we have to become involved in the decision-making aspects of
hypothesis testing. We must decide if an event with a probability of .0228 is
sufficiently unlikely to cause us to reject Here we will fall back on arbitrary
conventions that have been established over the years. The rationale for these con-
ventions will become clearer as we go along, but for the time being keep in mind
that they are merely conventions. One convention calls for rejecting if the prob-
ability under is less than or equal to .05 while another convention
calls for rejecting whenever the probability under is less than or equal to .01.
The latter convention is more conservative with respect to the probability of reject-
ing These values of .05 and .01 are often referred to as the rejection level, or
significance level, of the test. Whenever the probability obtained under is less
than or equal to our predetermined significance level, we will reject Another
way of stating this is to say that any outcome whose probability under is less than
or equal to the significance level (i.e., the probability provides “more than a reason-
able doubt”), falls into the rejection region, since such an outcome leads us to reject

In this book we will use the .05 level of significance, keeping in mind that some
people would consider this level to be too lenient.2 For our particular example, we
have obtained a probability value of .0228, which obviously is less than .05. Because
we have specified that we will reject if the probability of the data under is less
than .05, we will conclude that we have a person whose score does not come from
a population of healthy people. More specifically, we conclude that a finger-tapping
rate of 45 could not reasonably have come from a population of scores with a mean
equal to 59 and a standard deviation equal to 7. It is important to note that we have
not proven that this person is not healthy, but we have shown that he does not look
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2 The particular view of hypothesis testing described here is the classical one that a null hypothesis is rejected
if its probability is less than the predefined significance level and not rejected if its probability is greater than
the significance level. Currently, a substantial body of opinion holds that such cut-and-dried rules are inap-
propriate and that more attention should be paid to the probability value itself. In other words, the classical
approach (using a .05 rejection level) would declare and to be (equally) “nonsignificant”
and and to be (equally) “significant.” The alternative view would think of as
“nearly significant” and as “very significant.” While this view has much to recommend it, it will
not be wholeheartedly adopted here. Most computer programs do print out exact probability levels, and
those values, when interpreted judiciously, can be useful.
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like a healthy person. On the other hand, if the person had tapped at a rate of 
50 taps per 10 seconds, the probability of 50 taps or lower would be .1003, which
would not lead to rejection of the null hypothesis. This does not necessarily mean
that the person is healthy, it just means that we do not have sufficient evidence to
reject the null hypothesis that he is. It may be that he is just acquiring a disorder
and therefore is not quite as different from normal as is usual for his condition. Or
maybe he has the disease at an advanced stage but just happens to be an unusually
fast tapper. Remember that we can never say that we have proved the null hypoth-
esis. We can conclude only that this person does not tap sufficiently slowly for a
disorder, if any, to be statistically detectable.3

Definition Decision making: A procedure for making logical decisions on the basis of sample
data.
Rejection level: The probability with which we are willing to reject when it is,
in fact, correct.
Significance level: The probability with which we are willing to reject when it is,
in fact, correct.
Rejection region: The set of outcomes of an experiment that will lead to rejection of .

It is important to remember that the rejection level (usually .05 or .01) is a
probability, and it is the probability that an observation will fall in the rejection
region. The rejection region represents those outcomes that are so unlikely
under the null hypothesis that we are lead to reject the null hypothesis based on
the reasoning that we would not reasonably expect such results if the null
hypothesis were true.

Definition Alternative hypothesis ( ): The hypothesis that is adopted when is rejected;
usually the same as the research hypothesis.

The theory of significance testing as just outlined was popularized by R. A.
Fisher in the first third of the 20th century. The theory was expanded and cast in
more of a decision framework by Jerzy Neyman and Egon Pearson between 1928
and 1938, often against the loud and abusive objections of Fisher. Current statisti-
cal practice more closely follows the Neyman-Pearson approach, which emphasizes
more than did Fisher the fact that we also have an alternative hypothesis ( )
that is contradictory to the null hypothesis (There is yet a third position put1H0 2 .
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3 The particular approach used here is designed for situations where the “population” on which our “normal”
sample parameters are based is sufficiently large to give us solid faith in the values of the mean and standard
deviation we use. Crawford and Howell (1998) noted that in many cases, especially in neuropsychology, the
sample on which the norms are based is quite small, and they proposed an alternative approach in those
situations. To further understand that approach, see Crawford, Garthwaite, and Howell (2009).



forth in recent years by Jones and Tukey, and we will come to that later in the
chapter.) If the null hypothesis is

then the alternative hypothesis could be

or

or

We will discuss alternative hypotheses in more detail shortly.

8.7 Type I and Type II Errors

Whenever we reach a decision with a statistical test, there is always a chance that
our decision is the wrong one. While this is true of almost all decisions, statistical
or otherwise, the statistician has one point in her favor that other decision makers
normally lack. She not only makes a decision by some rational process, but she can
also specify the conditional probability of a decision’s being in error. In everyday
life we make decisions with only subjective feelings about what is probably the
right choice. The statistician, however, can state quite precisely the probability
that she erroneously rejected in favor of the alternative This ability to
specify the probability of error follows directly from the logic of hypothesis testing.

Definition Critical value: The value of a test statistic at or beyond which we will reject H0.

Consider the finger-tapping example, this time ignoring the score of the
individual sent to us. The situation is diagrammed in Figure 8.4, in which the
distribution is the distribution of scores from healthy subjects, and the shaded
portion represents the lowest 5% of the distribution. The actual score that cuts off
the lowest 5% is called the critical value. Critical values are those values of X (the
variable), or a test statistic, that describe the boundary or boundaries of the
rejection region(s). For this particular example, the critical value is 47.48.
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Where did that 47.48 come from?
We are looking to reject the hypothesis that a person taps at a normal

speed if that person’s speed falls in the lowest 5% of the distribution of normal
tapping scores. A z score of cuts off the lowest 5%. We then solve for
the raw score that corresponds to a z score of 1.645.

21.645



If we have a decision rule that says to reject whenever an outcome falls in
the lowest 5% of the distribution, we will reject whenever an individual’s score
falls into the shaded area; that is, whenever a score as low as his has a probability
of .05 or less of coming from the population of healthy scores. Yet by the very
nature of our procedure, 5% of the scores from perfectly healthy people will them-
selves fall into the shaded portion. Thus if we actually have sampled a person who
is healthy, we stand a 5% chance of his score being in the shaded tail of the
distribution, causing us erroneously to reject the null hypothesis. This kind of error
(rejecting when, in fact, it is true) is called a Type I error, and its conditional
probability (the probability of rejecting the null hypothesis given that it is true) is
designated as (alpha), the size of the rejection region. In the future, whenever
we represent a probability by we will be referring to the probability of a
Type I error.

Definition Type I error: The error of rejecting when it is true.
(alpha): The probability of a Type I error.

Keep in mind the “conditional” nature of the probability of a Type I error.
I know that sounds like jargon, but what it means is that you should be sure you
understand that when we speak of a Type I error, we mean the probability of
rejecting given that it is true. We are not saying that we will reject on 5%
of the hypotheses we test. We would hope to run experiments on important and
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Figure 8.4
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meaningful variables and, therefore, to reject often. But when we speak of a
Type I error, we are speaking only about rejecting in those situations in which
the null hypothesis happens to be true.

You might feel that a 5% chance of making an error is too great a risk to take
and suggest that we make our criterion much more stringent, by rejecting, for
example, only the lowest 1% of the distribution. This procedure is perfectly
legitimate, but you need to realize that the more stringent you make your criterion,
the more likely you are to make another kind of error—failing to reject when
it is actually false and is true. This type of error is called a Type II error, and
its probability is symbolized by (beta).

Definition Type II error: The error of not rejecting when it is false.
(beta): The probability of a Type II error.

The major difficulty in terms of Type II errors stems from the fact that if 
is false, we almost never know what the true distribution (the distribution under

) would look like for the population from which our data came. We know only
the distribution of scores under . Put in the present context, we know the
distribution of scores from healthy people but not from nonhealthy people.4 It may
be that people suffering from some neurological disease tap, on average, consider-
ably more slowly than healthy people, or it may be that they tap, on average, only
a little more slowly. This situation is illustrated in Figure 8.5, in which the distri-
bution labeled represents the distribution of scores from healthy people (the set
of observations expected under the null hypothesis), and the distribution labeled

represents our hypothetical distribution of nonhealthy scores (the distribution
under ). Remember that the curve is only hypothetical. We really do not
know the location of the nonhealthy distribution, other than that it is lower
(slower speeds) than the distribution of . (I have arbitrarily drawn that distribu-
tion with a mean of 50 and a standard deviation of 7.)

The darkly shaded portion in the top half of Figure 8.5 represents the rejec-
tion region. Any observation falling into that area (i.e., to the left of about 47.48)
would lead to rejection of the null hypothesis. If the null hypothesis is true, we
know that our observation will fall into this area 5% of the time. Thus we will
make a Type I error 5% of the time.

The cross-hatched portion in the bottom half of Figure 8.5 represents the
probability of a Type II error. This is the situation of a person who was actu-
ally drawn from the nonhealthy population but whose score was not sufficiently
low to cause us to reject H0.
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4 I bet that some of you are about to say, “Well, go out and get some sick people and make them tap.” Well,
how sick would you like them to be? Very sick, with very slow speeds, or just a little sick, with slightly slow
speeds? We aren’t so much interested in classifying people as very sick or a little sick. We want to classify
them as healthy or not healthy, and in that situation the only thing we can do is to compare a patient against
healthy people.



In the particular situation illustrated in Figure 8.5, we can, in fact, calculate
by using the normal distribution to calculate the probability of obtaining a score

greater than 47.48 if and The actual calculation is not important for
your understanding of this chapter was designed specifically to avoid
calculation. I will simply state that this probability (i.e., the area labeled ) is .64.
Thus for this example, 64% of the time when we have a person who is actually
nonhealthy (i.e., is actually true), we will make a Type II error by failing to
reject when it is false (as medical diagnosticians, we leave a lot to be desired).

From Figure 8.5 you can see that if we were to reduce the level of (the prob-
ability of a Type I error) from .05 to .01 by moving the rejection region to the left, it
would reduce the probability of Type I errors but would increase the probability of
Type II errors. Setting at .01 would give us a cutoff under the null hypothesis of
42.72. This would raise to .85. Obviously, there is room for debate over what level
of significance to use. The decision rests primarily on your opinion concerning the
relative seriousness of Type I and Type II errors for the kind of study you are conduct-
ing. If it is important to avoid Type I errors (such as telling someone that he has a dis-
ease when he does not), then you would set a stringent (i.e., low) level of . If, on the
other hand, you want to avoid Type II errors (telling someone to go home and take
an aspirin when, in fact, he needs immediate treatment), you might set a fairly high
level of . (Setting in this example would reduce to .33.) Unfortunately,
in practice most people choose an arbitrary level of , such as .05 or .01, and simplya
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Figure 8.5
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ignore . In many cases, this may be all you can do. (In fact, you will probably use the
alpha level that your instructor recommends.) In other cases, however, there is much
more you can do, as you will see in Chapter 15.

I should stress again that Figure 8.5 is purely hypothetical. I was able to draw
the figure only because I arbitrarily decided that speeds of nonhealthy people were
normally distributed with a mean of 50 and a standard deviation of 7. In most
everyday situations we do not know the mean and the standard deviation of that
distribution and can make only educated guesses, thus providing only crude
estimates of . In practice, we can select a value of under that represents the
minimum difference we would like to be able to detect, since larger differences will
have even smaller s.

Definition Power: The probability of correctly rejecting a false null hypothesis.

From this discussion of Type I and Type II errors we can summarize the
decision-making process with a simple table. Table 8.1 presents the four possible
outcomes of an experiment. The items in this table should be self-explanatory, but
there is one concept—power—that we have not yet discussed. The power of a test
is the probability of rejecting when it is actually false. Because the probability
of failing to reject a false is then the power must equal Those who
want to know more about power and its calculation will find the material in
Chapter 15 relevant.

8.8 One- and Two-Tailed Tests

The preceding discussion brings us to a consideration of one- and two-tailed tests.
In our tapping example we knew that nonhealthy subjects tapped more slowly
than healthy subjects; therefore, we decided to reject only if a subject tapped
too slowly. However, suppose our subject had tapped 180 times in 10 seconds.
Although this is an exceedingly unlikely event to observe from a healthy subject,
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Table 8.1  
Possible Outcomes of the Decision-Making Process

True State of the World

Decision H0 True H0 False

Reject H0 Type I error Correct Decision 
p � a p � 1 � b� Power

Fail to Reject H0 Correct Decision Type II error 
p � 1 � a p � b



it would not fall into the rejection region, which consists solely of low rates. As a
result we find ourselves in the unenviable position of not rejecting in the face
of a piece of data that is very unlikely, but not in the direction expected.

The question then arises as to how we can protect ourselves against this type
of situation (if protection is thought necessary). The answer is to specify before
we run the experiment that we are going to reject a given percentage (say 5%) of
the extreme outcomes, both those that are extremely high and those that are
extremely low. But if we reject the lowest 5% and the highest 5%, then we would,
in fact, reject a total of 10% of the time when it is actually true, that is,

We are rarely willing to work with as high as .10 and prefer to see it set
no higher than .05. The only way to accomplish our goal is to reject the lowest
2.5% and the highest 2.5%, making a total of 5%.

The situation in which we reject for only the lowest (or only the highest)
tapping speeds is referred to as a one-tailed, or directional, test. We make a predic-
tion of the direction in which the individual will differ from the mean and our
rejection region is located in only one tail of the distribution. When we reject
extremes in both tails, we have what is called a two-tailed, or nondirectional, test.
It is important to keep in mind that while we gain something with a two-tailed test
(the ability to reject the null hypothesis for extreme scores in either direction), we
also lose something. A score that would fall into the 5% rejection region of a one-
tailed test may not fall into the rejection region of the corresponding two-tailed
test, because now we reject only 2.5% in each tail.

Definition One-tailed test: A test that rejects extreme outcomes in one specified tail of the
distribution.
Directional test: Another name for a one-tailed test.
Two-tailed test: A test that rejects extreme outcomes in either tail of the distribution.
Nondirectional test: Another name for a two-tailed test.

In the finger-tapping example, the decision between a one- and a two-tailed
test might seem reasonably clear-cut. We know that people with a given disorder
tap more slowly; therefore, we care only about rejecting for low scores—high
scores have no diagnostic importance. In other situations, however, we do not
know which tail of the distribution is important (or if both are), and we need to
guard against extremes in either tail. The situation might arise when we are con-
sidering a campaign to persuade young people not to smoke. We might find that
the campaign leads to a decrease in the rate of smoking. Or, we might find that the
campaign actually is taken by young adults as a challenge, making smoking look
more attractive instead of less. (In fact, there is some evidence that this is exactly
what happens.) In either case we would want to reject 

In general, two-tailed tests are far more common than one-tailed tests for
several reasons. One reason for this is that the investigator may have no idea what
the data will look like and therefore has to be prepared for any eventuality.
Although this situation is rare, it does occur in some exploratory work.
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Another common reason for preferring two-tailed tests is that the investiga-
tors are reasonably sure the data will come out one way but want to cover them-
selves in the event that they are wrong. This type of situation arises more often
than you might think. (Carefully formed hypotheses have an annoying habit of
being phrased in the wrong direction, for reasons that seem so obvious after the
event.) A frequent question that arises when the data may come out the other way
around is, “Why not plan to run a one-tailed test and then, if the data come out
the other way, just change the test to a two-tailed test?” I hear that question fre-
quently, and it comes from people who have no intention of being devious but who
are struggling with the logic of hypothesis testing. If you start an experiment with
the extreme 5% of the left-hand tail as your rejection region and then turn around
and reject any outcome that happens to fall into the extreme 2.5% of the right-
hand tail, you are working at the 7.5% level. In that situation you will reject 5%
of the outcomes in one direction (assuming that the data fall into the desired tail),
and you are willing also to reject 2.5% of the outcomes in the other direction
(when the data are in the unexpected direction). There is no denying that

To put it another way, would you be willing to flip a coin for
an ice cream cone if I choose “heads” but also reserve the right to switch to “tails”
after I see how the coin lands? Or would you think it fair of me to shout, “Two out
of three!” when the coin toss comes up in your favor? You would object to both of
these strategies, and you should. For the same reason, the choice between a one-
tailed test and a two-tailed one is made before the data are collected. It is also one
of the reasons that two-tailed tests are usually chosen.

Although the preceding discussion argues in favor of two-tailed tests, and
although in this book we generally confine ourselves to such procedures, there are
no hard-and-fast rules. The final decision depends on what you already know about
the relative severity of different kinds of errors. It is important to keep in mind that
with respect to a given tail of a distribution, the difference between a one-tailed
test and a two-tailed test is that the latter just uses a different cutoff. A two-tailed
test at is more liberal than a one-tailed test at a 5 .01.a 5 .05

5% 1 2.5% 5 7.5%.
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We have just covered a great deal of information, and it will be helpful to pull it
together in a paragraph or two. We are engaged in a process of decision making,
trying to decide whether one of two hypotheses is true. One is the null hypothe-
sis which states that a person did come from a specific population, or that
the mean of several people came from a specific population, or that two samples
came from populations with the same mean, or that there is no correlation
between two variables, and so on. This hypothesis, put most generally, says that
“there are no differences.” The other hypothesis is the alternative hypothesis

which states that the person did not come from a specific population, or
that the mean of several people did not come from a specific population, or that
two group means are not from the same population, or that the correlation
between two variables is not zero, and so on. In making decisions we set up a
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specific rejection level (e.g., 5%) and reject the null hypothesis if the probability
of the obtained result, when the null hypothesis is true, is less than that rejection
level. Associated with a rejection level is a critical value, which is that value of
the statistic that is exceeded with a probability of 5%, for example. In making our
decision we can make two kinds of errors. We make a Type I error when we reject
the null hypothesis when it is true, and the probability of that error is denoted as

The other kind of error is a Type II error, and that is the probability of not reject-
ing the null hypothesis when we should. Its probability is denoted as 

Finally, we considered one- and two-tailed tests. The most common
approach is to reject the null hypothesis whenever the result is either too high
or too low. Using .05 as the rejection level, this means rejecting it when the
result is in either the upper or lower 2.5% of the outcomes when the null
hypothesis is true. This is a two-tailed test. An alternative approach is to spec-
ify that we are interested in rejecting the null only if the result is too low or,
alternatively, only if the result is too high. Here we would reject it if the result
has a probability of .05 and the direction is as we predicted.

An alternative view by Jones and Tukey (2000)

But here is where things now start getting interesting. What I have just described
is the standard treatment of null hypothesis testing, and it is something that you
really need to know. And I have told you that I am a strong proponent of two-
tailed tests. But in 2000, Jones and Tukey (the same Tukey you have already read
about) came out with a somewhat different proposal. They argued that, first of
all, the null hypothesis is almost certainly false if you look hard enough. (Does
anyone really believe that the mean height of people west of the Mississippi is
exactly the same as the mean height of people east of the Mississippi? I don’t,
though I don’t know which group has the larger mean.) So Tukey and Jones rea-
soned that we can set the null hypothesis aside. Now the only mistake that we
can make is saying that people in the East are taller when, in fact, people in the
West really are, or vice versa. They argue that failing to find a significant differ-
ence may be unfortunate, but it is not an error. So, they recommend only using
a one-tailed test without specifying in advance which tail we will use.

To take a simple example, Adams, Wright, and Lohr (1996) showed a
group of homophobic heterosexual males and a group of nonhomo-
phobic heterosexual males a videotape of erotic homosexual behav-
ior and recorded their level of sexual arousal. They wanted to see if there was a
difference between the two groups. Jones and Tukey (2000) and Harris (2005)
have argued that there are three possible outcomes ( and

), and the second of those is a nonstarter. So we really have two
choices. If but we erroneously conclude that we have
made an error, but the probability of that happening is at most .025 (assuming
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that we are working with a two-tailed test at the .05 level). The same probabil-
ity holds for the opposite state of affairs. Since only one state of affairs can be
true, the probability of an error is only .025, not .05. If we can’t reject either of
those hypotheses, we simply declare that we don’t have enough data to make a
choice, and this is not an error.

So, Jones and Tukey suggest that we always do one-tailed tests, that we
don’t specify a direction beforehand, and that we put 5% in each tail. If it was-
n’t for the stature of Jones and Tukey, that idea might not have gotten off the
ground, but sensible people don’t ignore advice from John Tukey. As I said at the
beginning, the approach that I first discussed is the traditional one that most
people follow and you have to know, but the approach given here is gaining
traction.

If you have a sound grasp of the logic of testing hypotheses by use of sampling
distributions, the remainder of this course will be relatively simple. For any new
statistic you encounter, you will need to ask only two basic questions.

1. How and with which assumptions is the statistic calculated?

2. What does the statistic’s sampling distribution look like under 

If you know the answers to these two questions, your test is accomplished by
calculating the test statistic for the data at hand and comparing the statistic to the
sampling distribution. Because the relevant sampling distributions are tabled in the
appendices, all you really need to know is which test is appropriate for a particular
situation and how to calculate its test statistic. (Keep in mind, however, there is a
great deal more to understanding the field of statistics than how to calculate, and
evaluate, a specific statistical test.)

8.9 Seeing Statistics

You can easily practice manipulating probabilities, one- and two-tailed tests,
and the null hypothesis by opening Seeing Statistics at

www.uvm.edu/~dhowell/fundamentals7/SeeingStatisticsApplets/Applets.html

and going to the applets for Chapter 8. Because this applet allows you to change
any values within a problem, and to choose between one- and two-tailed tests,
you can reproduce the statistics behind the discussion of finger tapping in
Section 8.6. The output of the applet is shown here.

H0?

www.uvm.edu/~dhowell/fundamentals7/SeeingStatisticsApplets/Applets.html


Remember that we are working with individual observations, not sample
means, so we can enter our individual score of 45 in the box labeled “YMean.”
We saw earlier that our individual score fell below the 5% cutoff in the lower
tail. The null hypothesis is given by the problem, as is the standard deviation.
The sample size (N) is one because this is a single observation.

You can see that in my example the probability came out to be 0.0228,
leading us to reject the null hypothesis that this score came from a population
of normal tapping scores. You should now try varying the observed score, and
note how the probability, and the shaded portion of the graphic, change. You
can select a two-tailed test by clicking on the box in the lower left and choos-
ing “two-tailed.” You may be surprised by what happens if you select “one-tailed”
in that box. Why is the right half of the curve shaded rather than the left half?
Finally, read the next section (Section 8.10), and use the applet to reproduce
the values found there. Again, remember that we are substituting a single
observation for a mean, and the sample size is 1.

8.10 A Final Example

A number of years ago the mean on the verbal section of the Graduate Record Exam
(GRE) was 489 with a standard deviation of 126. The statistics were based on all stu-
dents taking the exam in that year, the vast majority of whom were native speakers
of English. Suppose we have an application from an individual with a Chinese name
who scored particularly low (e.g., 220). If this individual is a native speaker of
English, that score would be sufficiently low for us to question her suitability for grad-
uate school unless the rest of the documentation is considerably better. If, however,
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this student is not a native speaker of English, we would probably disregard the low
score entirely, on the grounds that it is a poor reflection of her abilities.

We have two possible choices here, namely that the individual (1) is or (2)
is not a native speaker of English. If she is a native speaker, we know the mean and
the standard deviation of the population from which her score was sampled: 489
and 126, respectively. If she is not a native speaker, we have no idea what the mean
and the standard deviation are for the population from which her score was sam-
pled, but we don’t need them. To help us to draw a reasonable conclusion about
this person’s status, we will set up the null hypothesis that this individual is a native
speaker, or, more precisely, We will identify with the hypothesis
that the individual is not a native speaker 

We now need to choose between a one-tailed and a two-tailed test. In this
particular case we will choose a one-tailed test on the grounds that the GRE is
given in English, and it is difficult to imagine that a population of nonnative
speakers would have a mean higher than the mean of native speakers of English on
a test that is given in English. (Note: This does not mean that non-English speak-
ers may not, singly or as a population, outscore English speakers on a fairly admin-
istered test. It just means that they are unlikely to do so, especially as a population,
when both groups take the test in English.) Because we have chosen a one-tailed
test, we have set up the alternative hypothesis as 

Before we can apply our statistical procedures to the data at hand, we must
make one additional decision. We have to decide on a level of significance for our
test. In this case I have chosen to run the test at the 5% level because I am using

as a standard for this book and also because I am more worried about a
Type II error than I am about a Type I error. If I make a Type I error and
erroneously conclude that the student is not a native speaker when, in fact, she is,
it is very likely that the rest of her credentials will exclude her from further
consideration anyway. If I make a Type II error and do not identify her as a
nonnative speaker, I am doing her a real injustice.

Next we need to calculate the probability of a student receiving a score at
least as low as 220 when is true. We first calculate the z score corre-
sponding to a raw score of 220:

We then go to tables of z to calculate the probability that we would obtain a z
value less than or equal to From Table E.10 we find that this probability is
.017. Because this probability is less than the 5% significance level we chose to work
with, we will reject the null hypothesis on the grounds that it is too unlikely that we
would obtain a score as low as 220 if we had sampled an observation from a popula-
tion of native speakers of English who had taken the GRE. Instead, we will conclude
that we have an observation from an individual who is not a native speaker of English.

It is important to note that in rejecting the null hypothesis we could have
made a Type I error. We know that if we do sample speakers of English, 1.7% of
them will score this low. It is possible that our applicant was a native speaker who
just did poorly. All we are saying is that such an event is sufficiently unlikely that
we will place our bets with the alternative hypothesis.
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8.11 Back to Course Evaluations and Decision Making

We started this chapter with a discussion of the relationship between how students
evaluate a course and the grade they expect to receive in that course. Our second
example looked at age differences in the tendency to endorse the sunk-costs fallacy.
As you will see in the next chapter, the first example uses a correlation coefficient to
represent the degree of relationship. The second example simply compares two means.
Both examples can be dealt with using the techniques discussed in this chapter. In the
first case, if there is no relationship between the two variables, we would expect that
the true correlation in the population of students is 0.00. We simply set up the null
hypothesis that the population correlation is 0.00 and then ask about the probability
that a sample of 15 observations would produce a correlation as large as the one we
obtained. In the second case we set up the null hypothesis that there is no difference
between the mean sunk-costs fallacy scores in the population of younger and older
participants. Then we ask, “What is the probability of obtaining a difference in means
as large as the one we obtained (in our case .34) if the null hypothesis is true?” I do
not expect you to be able to run these tests now, but you should have a general sense
of the way we will set up the problem when we do learn to run them.

8.12 Summary

The purpose of this chapter has been to examine the general theory of hypothesis
testing without becoming involved in the specific calculations required to actually
carry out a test. Hypothesis testing and related procedures are at the heart of how we
analyze data from most experiments, though there are those who do not think that
is a good state of affairs. We first considered the concept of the sampling distribution
of a statistic, which is the distribution that the statistic in question would have if it
were computed repeatedly from an infinite number of samples drawn from one pop-
ulation under certain specified conditions. (The statistic could be anything you
want, such as a mean, a median, a variance, a correlation coefficient, and so on.) The
sampling distribution basically tells us what kinds of values are reasonable to expect
for the statistic if the conditions under which the distribution was derived are met.

We then examined the null hypothesis and the role it plays in hypothesis
testing. The null hypothesis is usually the hypothesis of no difference between two
or more groups or no relationship between two or more variables. We saw that we
can test any null hypothesis by asking what the sampling distribution of the rele-
vant statistic would look like if the null hypothesis were true and then comparing
our particular statistic to that distribution. We next saw how a simple hypothesis
actually could be tested using what we already know about the normal distribution.

Finally, we looked at Type I and Type II errors and one- and two-tailed tests.
A Type I error refers to rejecting the null hypothesis when it is actually true,
whereas a Type II error refers to failing to reject a false null hypothesis. A one-tailed
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test rejects the null hypothesis only when the obtained result falls in the extreme of
that tail of the distribution that we have designated. A two-tailed test rejects the
null hypothesis whenever the result falls in the extreme of either tail.

After considering one-and two-tailed tests, we briefly looked at the proposal
by Jones and Tukey that suggests that we ignore the null hypothesis because it is
virtually never exactly true and focus instead on seeing if we can decide which of
two groups (for example) has a mean that is larger than the mean for the other
group. They suggest a one-tailed test without the requirement to specify in
advance which tail you will use.

Some important terms in this chapter are
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Sampling error, 158
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Sampling distributions, 162
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8.13 Exercises

8.1 Suppose I told you that last night’s NHL hockey game resulted in a score of 26 to 13. You
would probably decide that I had misread the paper, because hockey games almost never
have scores that high, and was discussing something other than a hockey score. In effect
you have just tested and rejected a null hypothesis.
(a) What was the null hypothesis?
(b) Outline the hypothesis-testing procedure that you have just applied.

8.2 For the past year I have spent about $4 a day for lunch, give or take a quarter or so.
(a) Draw a rough sketch of this distribution of daily expenditures.
(b) If, without looking at the bill, I paid for my lunch with a $5 bill and received $.75 in

change, should I worry that I was overcharged?
(c) Explain the logic involved in your answer to (b).



8.3 What would be a Type I error in Exercise 8.2?

8.4 What would be a Type II error in Exercise 8.2?

8.5 Using the example in Exercise 8.2, describe what we mean by the rejection region and the
critical value.

8.6 Why might I want to adopt a one-tailed test in Exercise 8.2, and which tail should I choose?
What would happen if I choose the wrong tail?

8.7 Imagine that you have just invented a statistical test called the Mode Test to determine
whether the mode of a population is some value (e.g., 100). The statistic (M) is calculated as

Describe how you could obtain the sampling distribution of M. (Note: This is a purely
fictitious statistic.)

8.8 In Exercise 8.7, what would we call M in the terminology of this chapter?

8.9 It is known that if people are asked to make an estimate of something, for example, “How
tall is the University chapel?” the average guess of a group of people is more accurate than
an individual’s guess. Vul and Pashler (2008) wondered if the same held for multiple guesses
by the same person. They asked people to make guesses about known facts. For example,
“What percentage of the world’s airports are in the United States?” Three weeks later the
researchers asked the same people the same questions and averaged each person’s responses
over the two sessions. They asked whether this average was more accurate than the first
guess by itself.
(a) What are the null and alternative hypotheses?
(b) What would be a Type I and Type II error in this case?
(c) Would you be inclined to use a one-tailed or a two-tailed test in this case?

8.10 Define “sampling error.”

8.11 What is the difference between a “distribution” and a “sampling distribution”?

8.12 How would decreasing affect the probabilities given in Table 8.1?

8.13 Magan, Dweck, and Gross (2008) asked participants to choose, for example, between 
$5 today or $7 next week. In one condition, the choices were phrased exactly that way. In
a second condition, they were phrased as “$5 today and $0 next week or $0 today and $7
next week,” which is actually the same thing. Each person’s score was the number of choices
in which the smaller but sooner choice was made. The mean for the first group was 9.24
and the mean for the second group was 6.10.
(a) What are the null and alternative hypotheses?
(b) What statistics would you compare to answer the question? (You do not yet know how

to make that comparison.)
(c) If the difference is significant with a two-tailed test, what would you conclude?

8.14 For the distribution in Figure 8.5 I said that the probability of a Type II error is .64.
Show how this probability was obtained.

8.15 Rerun the calculations in Exercise 8.14 for 

8.16 In the example in Section 8.10, what would we have done differently if we had chosen to
run a two-tailed test?

8.17 Describe the steps you would go through to flesh out the example given in this chapter
about the course evaluations. In other words, how might you go about determining if there
truly is a relationship between grades and course evaluations?

a 5 .01.

1b 2

a

M 5 Sample mode>Sample range
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8.18 Describe the steps you would go through to test the hypothesis that people are more likely
to keep watching a movie if they have already invested money to obtain the movie.

8.19 In the exercises in Chapter 2, we discussed a study of allowances in fourth-grade children.
We considered that study again in Chapter 4, where you generated data that might have
been found in such a study.
(a) Consider how you would go about testing the research hypothesis that boys receive

more allowance than girls. What would be the null hypothesis?
(b) Would you use a one-tailed or a two-tailed test?
(c) What results might lead you to reject the null hypothesis, and what might lead you to

retain it?
(d) What might you do to make this study more convincing?

8.20 Simon and Bruce (1991), in demonstrating a different approach to statistics called “resam-
pling statistics,”5 tested the null hypothesis that the price of liquor (in 1961) for the 16
“monopoly” states, where the state owned the liquor stores, was different from the mean
price in the 26 “private” states, where liquor stores were privately owned. (The means were
$4.35 and $4.84, respectively, giving you some hint at the effects of inflation.) For techni-
cal reasons, several states don’t conform to this scheme and could not be analyzed.
(a) What is the null hypothesis that we are actually testing?
(b) What label would you apply to $4.35 and $4.84?
(c) If these are the only states that qualify for our consideration, why are we testing a null

hypothesis in the first place?
(d) Identify a situation in which it does make sense to test a null hypothesis here.

8.21 Several times in this chapter I have drawn a parallel between hypothesis testing and our
judicial system. How would you describe the workings of our judicial system in terms of
Type I and Type II errors and in terms of power?

5 The home page containing information on this approach is available at http://www.statistics.com/
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9
Correlation

Concepts that you will need to remember from
previous chapters
Independent variable: The variable you manipulate or are

studying

Dependent variable: The variable that you are measuring—the
data

X axis: The horizontal axis, also called the abscissa 

Y axis: The vertical axis, also called the ordinate

, , : The mean and standard deviation of two
variables labeled X and Y

sX, sYYX
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In this chapter we are going to look at the relationship between two variables.
We will begin by seeing how we can plot the data in a way that makes sense of it.
We will then move on to develop the concept of covariance to measure that relation-
ship numerically, and then turn that covariance into a correlation coefficient: and see
why that is a better measure. Having developed the correlation coefficient for raw
data, we will take a look at what happens when those data are in the form of ranks.
You will be pleased to see that not a lot happens. Correlation coefficients can be
influenced by a number of factors, and we will next take a look at what those fac-
tors might be. Then we will develop and use a statistical test to see if the correlation
is sufficiently different from 0 to lead us to conclude that there is a true relationship
between two variables. That is a straightforward extension of what we have just
covered in Chapter 8. We will next briefly look at a few other correlation coefficients
that we might want to calculate and then see how we can use SPSS to compute our
correlations.



The previous chapters have dealt in one way or another with describing data
on a single variable. We have discussed the distribution of a variable and how to
find its mean and standard deviation. However, some studies are designed to deal
with not one dependent variable, but with two or more. In such cases we often are
interested in knowing the relationship between two variables, rather than what each
variable looks like on its own. To illustrate the kinds of studies that might involve two
variables (denoted X and Y ), consider the following research questions:

n Does the incidence of breast cancer (Y ) vary with the amount of sunlight
(X ) in a particular location? 

n Does Life Expectancy (Y ) for individual countries vary as a function of the
per capita consumption of alcohol (X )?

n Does the rating of an individual’s “likability” (Y ) have anything to do with
physical attractiveness (X )?

n Does degree of hoarding behavior in hamsters (Y ) vary as a function of
level of deprivation (X ) during development? 

n Does the accuracy of performance (Y ) decrease as speed of response 
(X ) increases? 

n Does the average life span (Y ) in a given country increase as the
country’s per capita health expenditure (X ) increases? 

In each case we are asking if one variable (Y ) is related to another variable (X ).
When we are dealing with the relationship between two variables, we are concerned
with correlation, and our measure of the degree or strength of this relationship is rep-
resented by a correlation coefficient. We can use a number of different correlation
coefficients, depending primarily on the underlying nature of the measurements, but
we will see later that in many cases the distinctions among these different coefficients
are more apparent than real. For the present we will be concerned with the most com-
mon correlation coefficient—the Pearson product-moment correlation coefficient (r).

Definition Correlation: Relationship between variables.
Correlation coefficient: A measure of the relationship between variables.
Pearson product-moment correlation coefficient (r ): The most common correlation
coefficient.

9.1 Scatter Diagrams

When we collect measures on two variables for the purpose of examining the
relationship between these variables, one of the most useful techniques for gaining
insight into this relationship is a scatterplot (also called a scatter diagram or
scattergram). In a scatterplot every experimental subject or unit or observation in
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the study is represented by a point in two-dimensional space. The coordinates of
this point (Xi, Yi) are the individual’s (or object’s) scores on variables X and Y,
respectively. Examples of three such plots appear in Figures 9.1–9.3.

Definition Scatterplot (scatter diagram, scattergram): A figure in which the individual data
points are plotted in two-dimensional space.
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Figure 9.1
Infant mortality and physicians
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Figure 9.2
Life expectancy as a function of health care expenditures
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In preparing a scatter diagram the predictor variable, or independent vari-
able, is traditionally presented on the X (horizontal) axis, and the criterion vari-
able, or dependent variable, on the Y (vertical) axis. If the eventual purpose of the
study is to predict one variable from knowledge of the other, the distinction is
obvious: The criterion variable is the one to be predicted, whereas the predictor
variable is the one from which the prediction is made. If the problem is simply one
of obtaining a correlation coefficient, the distinction may be obvious (incidence of
cancer would be dependent on amount smoked rather than the reverse, and thus
incidence would appear on the ordinate). On the other hand, the distinction may
not be obvious (neither running speed nor number of correct choices—common
dependent variables in an animal learning study—is obviously in a dependent
position relative to the other). Where the distinction is not obvious, it is irrele-
vant which variable is labeled X and which Y.

Definition Predictor variable: The variable from which a prediction is made.
Criterion variable: The variable to be predicted.
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Figure 9.3
Cancer rate and solar radiation
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Terminology here can get a bit confusing. If I tell you that I am going to survey
a group of people and measure depression and stress, we would think of both of
those variables as dependent variables because they are the data that I will
collect. However, if we wanted to know if depression varies as a function of
stress, we would think of stress as an independent variable and depression as a
dependent variable—we want to know if depression depends on stress. So the
use of the terms independent and dependent get a bit sloppy. Perhaps it is bet-
ter to fall back on predictor variable and criterion variable as descriptive terms.
But even here things get a bit messy, because if I want to know if there is a



Consider the three scatter diagrams in Figures 9.1–9.3. These all represent
real data—they have not been contrived. Figure 9.1 is plotted from data reported
by St. Leger, Cochrane, and Moore (1978) on the relationship between infant
mortality, adjusted for gross national product, and the number of physicians per
10,000 population. (The adjustment for gross national product is what leaves some
infant mortality scores negative. That is not a problem.) Notice the fascinating
result that infant mortality increases with the number of physicians. That is clearly
an unexpected result, but it is almost certainly not due to chance. (As you look at
these data and read the rest of the chapter you might think about possible expla-
nations for this surprising result.)
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relationship between height and weight, neither one of them is clearly the pre-
dictor variable—or they both are. I mention this because you are going to have
to be a bit tolerant of the terminology we use. Don’t pound your head trying to
decide which, if either, variable should be called the independent variable.

If you aren’t quite sure how to plot a scatter diagram, you can see an illustration at 

http://www.uvm.edu/~dhowell/fundamentals7/More_Stuff/PlotScatter.html

The lines superimposed on these figures represent those straight lines that
“best fit the data.” How we determine that line will be the subject of much of the
next chapter. I have included the lines in each of these figures because they help
to clarify the relationships. These lines are what we will call the regression lines
of Y predicted on X (abbreviated “Y on X”), and they represent our best prediction
of Yi for a given value of , where i represents the ith value of X or Y. Given any
specified value of X, the corresponding height of the regression line represents our
best prediction of Y (designated and read “Y hat”). In other words, we can draw
a vertical line from to the regression line and then move horizontally to the Y
axis and read off . Again, regression is covered in the next chapter.

Definition Regression line: The “line of best fit” that represents a straight line drawn through
the data points.

The degree to which the points cluster around the regression line (in other
words, the degree to which the actual values of Y agree with the predicted values)
is related to the correlation (r) between X and Y. Correlation coefficients range
between 1 and . For Figure 9.1, the points cluster very closely about the line,
indicating that there is a strong linear relationship between our two variables. If
the points fell exactly on the line, the correlation would be 1.00. As it is, the1
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correlation is actually .81, which represents a high degree of relationship for real
variables. The complete data file for Figure 9.1 can be found at

http://www.uvm.edu/~dhowell/fundamentals7/DataFiles/Fig9-1.dat

In Figure 9.2 I have plotted data on the relationship between life expectancy
(for males) and per capita expenditure on health care for 23 developed (mostly
European) countries. These data are from Cochrane, St. Leger, and Moore (1978).
At a time when there is considerable discussion nationally about the cost of health
care, these data give us pause. If we were to measure the health of a nation by life
expectancy (certainly not the only and admittedly not the best measure), it would
appear that the total amount of money we spend on health care bears no relation-
ship to the resultant quality of health (assuming that different countries apportion
their expenditures in similar ways). Several hundred thousand dollars spent on
transplanting an organ from a nonhuman primate into a 57-year-old male, as was
done several years ago, may increase the man’s life expectancy by a few years, but
it is not going to make a dent in the nation’s life expectancy. A similar amount of
money spent on the prevention of malaria in young children in sub-Saharan
Africa, however, has the potential to have a very substantial effect. Notice that the
two countries in Figure 9.2 with the longest life expectancy (Iceland and Japan)
spend nearly the same amount of money on health care as the country with the
shortest life expectancy (Portugal). The United States has the second highest rate
of expenditure but ranks near the bottom in life expectancy. Figure 9.2 represents
a situation in which there is no apparent relationship between the two variables
under consideration. If there were absolutely no relationship between the
variables, the correlation would be 0.0. As it is, the correlation is only .14, and
even that can be shown not to be reliably different from 0.0. The complete data
file for Figure 9.2 can be found at

http://www.uvm.edu/~dhowell/fundamentals7/DataFiles/Fig9-2.dat

A very good source for data on examining the relationship between health
care expenditure and life expectancy can be found at

http://ucatlas.ucsc.edu/spend.php 

Finally, Figure 9.3 presents data from a 1991 article in Newsweek on the
relationship between breast cancer and sunshine. For people like me who love
the sun, it is encouraging to find that there may be at least some benefit from
additional sunlight—though that is probably a short-sighted interpretation of
the data. Notice that as the amount of solar radiation increases, the incidence of
deaths from breast cancer decreases. (There has been considerable research on
this topic in recent years, and the reduction in rates of certain kinds of cancer is
thought to be related to the body’s production of vitamin D, which is increased
by sunlight. An excellent article, which portrays the data in a different way, can
be found in a study by Garland et al. [2006].) This graphic is a good illustration
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of a negative relationship, and the correlation here is .76. The complete data
file for Figure 9.3 can be found at

http://www.uvm.edu/~dhowell/fundamentals7/DataFiles/Fig9-3.dat

It is important to note that the sign of the correlation coefficient has no
meaning other than to denote the direction of the relationship. The correlations
of .75 and .75 signify exactly the same degree of relationship. It is only the direc-
tion of that relationship that is different. For this reason the relationships shown in
Figures 9.1 and 9.3 are approximately equally strong, though of the opposite sign.

We will look a little more closely at what produces a high or low correlation
by examining one further example. Researchers in the behavioral sciences often
work on the problem of behavioral change and health. There are interesting data
on the relationship between red wine consumption and coronary artery disease (or
heart disease). This example is presented in Figure 9.4, and it shows the relation-
ship between the incidence of death due to heart attacks in various European
countries and the consumption of wine in those countries.  These data were taken
from a paper by St. Leger, Cochrane, and Moore (1979).

There are several things that I can point out with respect to this example
that are important in your understanding of correlation and regression.

n Notice that on the X axis I have plotted the logarithm of
consumption, rather than consumption itself. This was because
consumption was heavily skewed to the right, and taking logs helps
to correct this.  (The data file on the Web contains both Wine and
Logwine, so you can plot either way.)

n Notice that, for this example, deaths due to heart disease actually
decline with an increase in consumption of wine. This was originally
a controversial finding, but there is now general agreement that it is
a real (though not necessarily causal) effect. This might be taken by
some as a license for university students to drink even more.
However, heart disease is only rarely a problem for younger people,
and no protection is needed. In addition, alcohol has many negative
effects that are not examined here. It doesn’t seem sensible to
increase the very real danger of alcohol abuse to ward off a problem
that is highly unlikely to arise. Killing yourself by driving into a tree
or developing liver problems is not a good way to reduce your risk of
dying of heart disease. 

n A third point to be made is that in this figure, and the previous
figures, the data points represent countries rather than individuals.
That just happens to be a characteristic of the data sets that I chose
to use. We could, in theory, select a large sample of people, record
each person’s age at death (admittedly not the same as incidence of
heart disease) and then plot each person’s age at death against his or
her level of wine consumption. It would not be an easy study to run

2

2
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(we would have to call each person up monthly and ask “are you
dead yet?”) but it could be done. But individuals’ age at death varies
all over the place, as does wine consumption, whereas a country’s
mean age at death and a country’s mean wine consumption are quite
stable. So we need very many fewer points when each refers to a
country than when each point refers to a person. (You saw
something about the stability of grouped data in the last chapter
when we saw that the sampling distribution of the mean had a
smaller standard error with increased sample size.)

n In Figure 9.4 I have drawn horizontal and vertical (dashed) lines
corresponding to and . Notice that in the upper left quadrant
there are 9 observations with an X value less than and a value
more than . Similarly in the lower right quadrant there are 6
instances where the value is greater than and less than . There
are only 3 cases that break this pattern by being above the mean on
both variables or below the mean on both variables. 

n An interesting discussion of studies relating wine consumption and
heart disease can be found at the Chance News site, which always
offers an entertaining way to spend time and frequently teaches me
something. The link is

http://chance.dartmouth.edu/chancewiki/index.php/Chance_News_16

YX
Y

YX
XY
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Figure 9.4
Relationship between death rate due to heart disease and consumption of wine (on log
scale). The dashed lines are at and .YX
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If there were a strong negative relationship between wine drinking and heart
disease, we would expect that most of the countries that were high (above the
mean) on one variable would be below the mean on the other. Such an idea can
be represented by a simple table in which we count the number of observations
that were above the mean on both variables, the number below the mean on both
variables, and the number above the mean on one and below the mean on the
other. Such a table is shown in Table 9.1 for the data in Figure 9.4.

With a strong negative relationship between the two variables, we would
expect most of the data points in Table 9.1 to fall into the “Above-Below” and
“Below-Above” cells with only a smattering in the “Above-Above” and “Below-
Below” cells. Conversely, if the two variables are not related to each other, we would
expect to see approximately equal numbers of data points in the four cells of the
table (or quadrants of the scatter diagram). And for a large positive relationship we
would expect a preponderance of observations falling in the “Above-Above” and
“Below-Below” Cells. From Table 9.1, we see that for the relationship between wine
consumption and heart disease, 15 out of the 18 participants fall into the cells asso-
ciated with a negative relationship between the variables. In other words, if a coun-
try is below the mean on one variable it is most likely to be above the mean on the
other, and vice versa. Only three countries break this pattern. This example, then,
illustrates in a simple way the interpretation of scatter diagrams and the relation-
ship between variables.1 For Figure 9.4 the correlation is .78.2
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Other variables may affect results

But things are not always simple. Other variables can influence the results.
Wong (2008) noted that just as wine consumption varies across Europe, so does
solar radiation. He presents data to argue that not only could red wine and
Mediterranean diet be explanations for variability in rates of coronary heart
disease, but so could solar radiation, in ways that we saw in Figure 9.3 with
breast cancer.

Table 9.1  
Examining Scatterplots by Division into Quadrants in Relation to the Means

Heart Disease

Above Below

Wine Consumption Above 0 6
Below 9 3

1 It is of interest to note that in the days before computers and electronic calculators, many textbooks showed
how to estimate the correlation coefficient by breaking the scatterplot into squares and counting the number
of observations in each square. The breakdown was finer than the four quadrants used here, but the idea was
the same. Fortunately, we no longer need to compute correlations that way, though the approach is instructive.



9.2 An Example: The Relationship Between the Pace 
of Life and Heart Disease

The examples that we have seen in the previous pages have either been examples
of very strong relationships (positive or negative) or of variables that are nearly
independent of each other. Now we will turn to an example in which the correla-
tion is not nearly as high, but is still significantly greater than 0. Moreover, it
comes even closer to the kinds of studies that behavior scientists do frequently.

There is a common belief that people who lead faster-paced lives are more
susceptible to heart disease and other forms of fatal illness. (Discussions of “Type
A” personality come to mind.) Levine (1990) published data on the “pace of life”
and age-adjusted death rates from ischemic heart disease. In his case, he collected
data from 36 cities, varying in size and geographical location. He was ingenious
when it came to measuring the pace of life. He surreptitiously used a stopwatch to
record the time that it took a bank clerk to make change for a $20 bill, the time it
took an average person to walk 60 feet, and the speed at which people spoke.
Levine also recorded the age-adjusted death rate from ischemic heart disease for
each city. The data follow, where “pace” is taken as the average of the three meas-
ures. (The units of measurement are arbitrary. The data on all pace variables are
included in the data set on the web.) Here is an example where we have two
dependent measures, but one is clearly the predictor (Pace goes on the X (horizon-
tal) axis and Heart disease goes on the Y (vertical) axis. The data are plotted in
Figure 9.5. 
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Figure 9.5
Relationship between pace of life and age-adjusted rate of heart disease



As you can see from this figure, there is a tendency for the age-adjusted
incidence of heart disease to be higher in cities where the pace of life is faster—
where people speak more quickly, walk faster, and carry out simple tasks at a faster
rate. The pattern is not as clear as it was in previous examples, but it is similar to
patterns we find with many psychological variables.

From an inspection of Figure 9.5 you can see a strong positive relationship
between the pace of life and heart disease—as pace increases, deaths from heart
disease also increase, and vice versa. It is a linear relationship because the best
fitting line is straight. (We say that a relationship is linear if the best (or nearly
best) fit to the data comes from a straight line. If the best fitting line were not
straight, we would refer to it as a curvilinear relationship.) I have drawn in this
line to make the relationship clearer. Look at the scatterplot in Figure 9.5. If you
just look at the people with the highest pace scores and those with the lowest
scores, you will see that the death rate is nearly twice as high in the former group.

Definition Linear relationship: A situation in which the best-fitting regression line is a
straight line.
Curvilinear relationship: A situation that is best represented by something other
than a straight line.

9.3 The Covariance

The correlation coefficient that we want to compute on these data is itself based
on a statistic called the covariance. The covariance is basically a number that
reflects the degree to which two variables vary together. If, for example, high scores
on one variable tend to be paired with high scores on the other, the covariance
will be large and positive. When high scores on one variable are paired about
equally often with both high and low scores on the other, the covariance will be
near zero, and when high scores on one variable are generally paired with low
scores on the other, the covariance is negative.

Definition Covariance: A statistic representing the degree to which two variables vary
together.

To define the covariance mathematically we can write 

covXY 5
© 1X 2 X 2 1Y 2 Y 2

N 2 1
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From this equation it is apparent that the covariance is similar in form to the
variance. If we changed each in the equation to X, we would have .

It is possible to show that the covariance will be at its positive maximum
whenever X and Y are perfectly positively correlated and at its
negative maximum whenever they are perfectly negatively correlated 
When there is no relationship the covariance will be zero.

9.4 The Pearson Product-Moment 
Correlation Coefficient (r)

You might expect that we could use the covariance as a measure of the degree of
relationship between two variables. An immediate difficulty arises, however, in
that the absolute value of is also a function of the standard deviations of X
and Y. For example, might reflect a high degree of correlation when
each variable contains little variability, but a low degree of correlation when the
standard deviations are large and the scores are quite variable. To resolve this
difficulty, we will divide the covariance by the standard deviations and make the
result our estimate of correlation. (Technically, this is known as scaling the covari-
ance by the standard deviations because we basically are changing the scale on
which it is measured.) We will define what is known as the Pearson product-
moment correlation coefficient (r) as2

The maximum value of turns out to be (This can be shown
mathematically, but just trust me.) Because the maximum of is , it fol-
lows that the limits on r are One interpretation of r, then, is that it is a
measure of the degree to which the covariance approaches its maximum.

An equivalent way of writing the preceding equation would be to replace the
variances and covariances by their computational formulae and then simplify by
cancellation. If we do this, we will arrive at

r 5
N©XY 2 ©X©Y2 3N©X2 2 1©X 2 2 4 3N©Y2 2 1©Y 2 2 4

;1.00.
; sXsYcovXY

; sXsY.covXY

r 5
covXY

sXsY

covXY 5 20
covXY

1r 5 0 2 , 1r 5 21 2 .1r 5 11.00 2
sX

2Y
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2 This coefficient is named after its creator (Karl Pearson). Deviations of the form and are
called “moments,” hence the phrase “product-moment.”

1Y 2 Y 21X 2 X 2



This formula is useful if you are calculating correlations by hand, and I am
including it because several reviewers asked to have it here. Those students who
have computer software available, and that includes spreadsheets like Excel, will
prefer to let the software do the calculation. (Many hand calculators will also com-
pute correlations.) But since most calculators produce some or all of the needed
statistics automatically, it is usually much simpler to work with deviation scores
and use the first formula in this section. That one at least has the advantage of
making it clear what is happening. Both equations for r will produce exactly the
same answer; the choice is up to you. I prefer the expression in terms of the covari-
ance and the standard deviations, but historically the second one has appeared in
most texts.

The covariance and the two standard deviations for the pace of life data are
given in Table 9.2. Applying the first equation to the data in Table 9.2, we have

I leave the calculations using the second formula to you. You will find that it
will give the same result.

The correlation coefficient must be interpreted cautiously. Specifically,
should not be interpreted to mean that there is 36% of a relationship

(whatever that might mean) between Pace of life and Heart disease. The correla-
tion coefficient is simply a point on the scale between 1.00 and 1.00, and the
closer it is to either of those limits, the stronger is the relationship between the two
variables. For a more specific interpretation we will prefer to speak in terms of ,
which is discussed in Chapter 10.

r2

12

r 5 .36

r 5
covXY

sXsy

5
5.74

13.015 2 15.214 2 5 .365
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Table 9.2  
Pace of Life and Death Rate Due to Heart Disease in 36 U.S. Cities

Pace  (X) 25.33 23.67 26.33 26.33 25.00 26.67 26.33 24.33 25.67
Heart (Y) 24 29 31 26 26 20 17 19 26 24
Pace  (X) 22.67 25.00 26.00 24.00 26.33 20.00 24.67 24.00 24.00 20.67
Heart (Y) 26 25 14 11 19 24 20 13 20 18
Pace  (X) 22.33 22.00 19.33 19.67 23.33 22.33 20.33 23.33 20.33 22.67
Heart (Y) 16 19 23 11 27 18 15 20 18 21
Pace  (X) 20.33 22.00 20.00 18.00 16.67 15.00
Heart (Y) 11 14 19 15 18 16

822.333 713 16,487.67
19,102.33 15,073 36

3.015 5.214sY 5sX 5

covXY 5 5.74Y 5 19.81X 5 22.84
N 5©Y 2 5©X2 5

©XY 5©Y 5©X 5



9.5 Correlations with Ranked Data

In the previous example the data for each subject were recorded in everyday units
such as the time to do three tasks and the incidence of deaths due to heart disease.
Sometimes, however, we ask judges to rank items on two dimensions; we then
want to correlate the two sets of ranks. For example, we might ask one judge to
rank the quality of the “Statement of Purpose” found in 10 applications to gradu-
ate school in terms of clarity, specificity, and apparent sincerity. The weakest would
be assigned a rank of 1, the next weakest a rank of 2, and so on. Another judge
might rank the overall acceptability of these same 10 applicants based on all other
available information, and we might be interested in the degree to which well-
written statements of purpose are associated with highly admissible applicants.
When we have such ranked data, we frequently use what is known as Spearman’s
correlation coefficient for ranked data, denoted . (This is not the only coeffi-
cient that can be calculated from ranked data, nor even the best, but it is one of
the simplest and most common.3)

rS
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Karl Pearson

Karl Pearson was one of the most influential people in statistics during the early
20th century. He developed the Pearson product-moment correlation coeffi-
cient, which is the subject of this chapter, and the chi-square statistic, which is
the subject of Chapter 19. (Unfortunately he got the latter slightly wrong,
Fisher corrected him, and the two feuded loudly ever after.) He also developed
a number of other statistical techniques that we are not going to see.

Karl Pearson was born in 1857 and was an amazing polymath; he knew a
great deal about a great many things. He was a historian, he wrote passion plays
and about religion, he was admitted to the bar, he studied mathematics and held
a chair in applied mathematics, and then founded the world’s first department
of statistics at University College, London. He also directly influenced Einstein
with his writings on antimatter, wrinkles in time, and the fourth dimension.
When he retired, his statistics department was split into two departments, with
his son, Egon, as Professor of Statistics and R. A. Fisher as Professor of Genetics.
You have to admit that he was a pretty accomplished person. At the time, the
journal Biometrika was perhaps the most prestigious journal in the field, and you
can probably guess that he was its editor until his death. The fact that he refused
to publish Fisher’s papers stirred the pot of their rivalry even more.

Pearson’s correlation coefficient was hugely influential, and along with
linear regression in the next chapter, was one of the most popular data analysis
techniques, at least until Fisher published his work on the analysis of variance
in the 1930s. It is still one of the most used statistical techniques.

3 Kendall’s tau coefficient has better properties in many cases, but we are not going to discuss that statistic here.



Definition Spearman’s correlation coefficient for ranked data (rS): A correlation coefficient
on ranked data.

In the past when people obtained correlations by hand, they could save time
by using special formulae. For example, if the data are ranks of  objects, you can
either add up all the ranks, or you can calculate . The answers
will be the same. That was fine when we had to do our calculations using pencil
and paper, but there is relatively little to be gained now by doing so. But that kind
of formula is exactly where Spearman’s formula came from. He just took Pearson’s
formula and made substitutions. (For example, he replaced X by )
But if you apply Pearson’s formula to those ranks instead of Spearman’s, you will get
the same answer—without memorizing another formula. In fact, no matter how
you calculate it, Spearman’s is a plain old Pearson product-moment correlation
coefficient, only this time it is calculated on ranks rather than on measured vari-
ables. The interpretation, however, is not quite the same as the usual Pearson cor-
relation coefficient.

Why Rank?
It is one thing to think of Spearman’s when the data naturally occur in the form
of ranks. (For example, when the participant is asked to “Rank these cookies in
terms of preference.”) But why would someone want to rank values on a continu-
ous variable? The main reason for ranking is that you either do not trust the nature
of the underlying scale or you want to down-weight extreme scores. As an exam-
ple of the former, we might measure a person’s social isolation by the number of
friends he claims to have and measure his physical attractiveness by asking an
independent judge to assign a rating on a 10-point scale. Having very little faith
in the underlying properties of either scale, we might then simply convert the raw
data on each variable to ranks (e.g., the person reporting the fewest friends is
assigned a rank of 1, and so on) and carry out our correlations with those ranks.
But what about the case where you might want to down-weight extreme values? In
Exercise 9.10 you will see data on the incidence of Down’s syndrome as a function
of age of the mother. Incidence differences due to age in younger mothers are quite
small, but among older ages incidence increases sharply. Ranking will rein in those
later increases and keep them at the same general level of magnitude as increases
as younger ages. Whether this is a smart thing to do is a different question, and it
is one you would need to consider.

The Interpretation of rS

Spearman’s and other coefficients calculated on ranked data are slightly more
difficult to interpret than Pearson’s r, partly because of the nature of the data. In
the example that I have described concerning rankings of statements of purpose,
the data occurred naturally in the form of ranks because that is the task that we set

rS

rS

rS
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©X 5 N1N 1 1 2 >2
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our judges. In this situation, is a measure of the linear (straight line) relationship
between one set of ranks and another set of ranks.

In cases where we convert the obtained data to a set of ranks, is a measure
of the linearity of the relationship between the ranks, but it is a measure only of
the monotonic relationship between the original variables. (A monotonic rela-
tionship is one that is continuously rising or continuously falling—the line does
not need to be straight; it can go up for a while, level off, and then rise again. It
just can’t reverse direction and start falling.) This relationship should not surprise
you. A correlation coefficient, regardless of whether it is a Pearson correlation or a
Spearman correlation, tells us directly only about the variables on which it is com-
puted. It cannot be expected to give very precise information about variables on
which it was not computed. As discussed in Chapter 2, it is essential to keep in
mind the similar distinction between the variables that you have actually measured
(e.g., number of friends) and the underlying property that you want to examine
(e.g., social isolation).

Definition Monotonic relationship: A relationship represented by a line that is continually
increasing (or decreasing), but perhaps not in a straight line.

9.6 Factors That Affect the Correlation

The correlation coefficient can be importantly affected by characteristics of the
sample. Three of these characteristics are the restriction of the range (or variance)
of X and/or Y, nonlinearity of the relationship, and the use of heterogeneous
subsamples.

The Effect of Range Restrictions and Nonlinearity
A common problem that arises in many instances concerns restrictions on the
range over which X and vary. The effect of such range restrictions is to alter the
correlation between X and Y from what it would have been if the range had not
been so restricted. Depending on the nature of the data, the correlation may either
rise or fall as a result of such restrictions, although most commonly r is reduced.

Definition Range restrictions: Cases wherein the range over which X or Y varies is artificially
limited.

With the exception of very unusual circumstances, restricting the range of X
will increase r only when the restriction results in eliminating some curvilinear
relationship. For example, if we correlated height with age, where age ran from 0
to 70, the data would be decidedly curvilinear (rising to about 17 years of age and

Y

rS

rS
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then leveling off or even declining), and the correlation, which measures linear
relationships, would be quite low. If, however, we restricted the range of ages to
4 to 17, the correlation would be quite high, because we have eliminated those
values of Y that were not varying linearly with X.

The more usual effect of restricting the range of X or Y is to reduce the cor-
relation. This problem is especially important in the area of test construction,
because in that area the criterion measure (Y) may be available for only the higher
values of X. Consider the hypothetical data in Figure 9.6. (An excellent demon-
stration that you can manipulate yourself has been written by David Lane at Rice
and can be found on the Connexions Web site. The URL is

http://cnx.org/content/m11196/latest/

This figure represents the relationship between college grade point averages
and scores on a standard achievement test for a sample of students. In the ideal
world of the test constructor, all people who took the exam would then be sent to
college and receive a grade point average, and the correlation between test scores
and grade point averages would be computed. As can be seen from Figure 9.6, this
correlation would be reasonably high 

In the real world, however, not everyone is admitted to college. Colleges take
only those that they think are the more able students, whether this ability is meas-
ured by achievement test scores, high school performance, or whatever. That means
college grade point averages are available mainly for students having relatively high
scores on the standardized test. This has the effect of allowing us to evaluate the
relationship between X and Y for only those values of, say, X greater than 400.

1r 5 .65 2 .
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Figure 9.6
Hypothetical data illustrating the effect of restricted range
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The effect of range restrictions must be taken into account whenever we see
a coefficient based on a restricted sample. The coefficient might be quite inappro-
priate for the question at hand. Essentially what we have done is to ask how well
a standardized test predicts a person’s suitability for college, but we have answered
that question by reference only to those people who were actually admitted to col-
lege. At the same time, it is sometimes useful to deliberately restrict the range of
one of the variables. For example, if we wanted to know the way in which reading
ability increases linearly with age, we probably would restrict the age range by
using only subjects who are at least 5 years old and less than 20 years old (or some
other reasonable limits). We presumably would never expect reading ability to
continue to rise indefinitely.

The Effect of Heterogeneous Subsamples
Another important consideration in evaluating the results of correlational analy-
ses deals with heterogeneous subsamples. This point can be illustrated with a sim-
ple example involving the relationship between height and weight in male and
female subjects. These variables may appear to have little to do with psychology,
but considering the important role both variables play in the development of peo-
ple’s images of themselves, the example is not as far afield as you might expect. In
addition, these relationships play a role in the debate over the appropriateness of
the Body Mass Index (BMI), which is used in many studies of diet and health. The
data plotted in Figure 9.7 come from sample data from the Minitab manual (Ryan
et al., 1985). These are actual data from 92 college students who were asked to
report height, weight, gender, and several other variables. (Keep in mind that
these are self-report data, and there may be systematic reporting biases.) The com-
plete data file can be found at 

http://www.uvm.edu/~dhowell/fundamentals7/DataFiles/Fig9-7.dat

Definition Heterogeneous subsamples: Data in which the sample of observations could be
subdivided into two distinct sets on the basis of some other variable.

When we combine the data from both males and females, the relationship is
strikingly good, with a correlation of .78. When you look at the data from the two
genders separately, however, the correlations fall to .60 for males and .49 for
females. (Males and females have been plotted using different symbols, with data
from females primarily in the lower left.) The important point is that the high cor-
relation we found when we combined genders is not due purely to the relation
between height and weight. It is also due largely to the fact that men are, on aver-
age, taller and heavier than women. In fact, a little doodling on a sheet of paper
will show that you could create artificial, and improbable, data where within each
gender weight is negatively related to height, while the relationship is positive
when you collapse across gender. (There is an example of this kind of relationship
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in Exercise 9.25.) The point I am making here is that experimenters must be care-
ful when they combine data from several sources. The relationship between two
variables may be obscured or enhanced by the presence of a third variable. Such a
finding is important in its own right.

A second example of heterogeneous subsamples that makes a similar point is
the relationship between cholesterol consumption and cardiovascular disease in
men and women. If you collapse across both genders, the relationship is not
impressive. But when you separate the data by male and female, there is a distinct
trend for cardiovascular disease to increase with increased consumption of choles-
terol. This relationship is obscured in the combined data because men, regardless
of cholesterol level, have an elevated level of cardiovascular disease compared to
women.

9.7 Beware Extreme Observations

An interesting data set on the relationship between smoking and drinking can be
found at the Data and Story Library (DASL) Web site. The data are from a British
government survey of households in Great Britain on household spending on
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Figure 9.7
Relationship between height and weight for males and females combined (numerical
entries represent multiple data points.)
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tobacco products and alcohol. The data are given in Table 9.3 for 11 regions in
Great Britain, where I have recorded the average amount of household income
spent on each item.

I would expect that these two variables would tend to be related, just based
on common observation. But if we compute the correlation, it is only .224, and the
p value is .509, meaning that we should not be surprised by a correlation at least
that high from 11 pairs of observations even if the null hypothesis is true. Perhaps
my intuition is wrong, or maybe there is some other explanation.

The first thing that we should do with any data, even before we jump in and
calculate the correlation, is to look at the distributions. If you do, you will see that
no region is particularly unusual on either variable. Expenditures on alcohol in
Northern Ireland are lower than elsewhere, but not dramatically so. Similarly, the
people of Northern Ireland spend a bit more on tobacco than others, but not
unduly so. However, if you create a scatterplot of these data you see a problem. The
plot is given in Figure 9.8.

Notice that everything looks fine except for the data point for Northern
Ireland. Though it is not unusually extreme on either of the variables taken alone,
the combination of the two is indeed extreme, because it is unusual to have an
observation be so high on one variable and so low on the other. If we remove
Northern Ireland from the data, we find that the remaining points show a correla-
tion of .784, and an associated two-tailed p value of .007. This is more like what
I would have expected.

So, can we just toss out observations that we don’t like? Not really. At least
you can’t just pretend they are not there. It is appropriate to leave out Northern
Ireland if we make clear what we have done, and either offer a reasonable
excuse for omitting that data point or else make clear to our reader that the
point is aberrant for unknown reasons, and also report the result of including
that point.
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Table 9.3 
Household Expenditures on Tobacco and Alcohol Products in Great Britain

Region Alcohol Tobacco

North 6.47 4.03
Yorkshire 6.13 3.76
Northeast 6.19 3.77
East Midlands 4.89 3.34
West Midlands 5.63 3.47
East Anglia 4.52 2.92
Southeast 5.89 3.20
Southwest 4.79 2.71
Wales 5.27 3.53
Scotland 6.08 4.51
Northern Ireland 4.02 4.56



9.8 Correlation and Causation

A statement that you will find in virtually every discussion of correlation is that
correlation does not imply causation. Just because two variables are correlated
doesn’t mean that one caused the other. In fact, I would guess that most of the time
that is not the case. Textbook authors usually make this statement, give one
extreme example, and move on. But I think that we need to dwell on this point a
bit longer.

I have shown you several examples of correlated variables in this chapter.
We began with the case of infant mortality and number of physicians in the area,
and I assume everyone is willing to agree that there is no way that having more
physicians causes an increase in mortality. Doctors try very hard not to kill people.
Then we had the case of life expectancy and health care expenditures, and we
really didn’t have to even consider causation because there was clearly no relation-
ship. (We might, however, wonder what causes our variables to appear so com-
pletely unrelated.) Then we saw the relationship between solar radiation and
breast cancer, and the relationship between wine consumption and heart disease.
There we have to be a great deal more careful. In both cases it would be tempting
to think in terms of causation, and actually causation might be a logical explana-
tion. Solar radiation does increase the production of vitamin D, and that might
play a protective role against breast cancer. Similarly, compounds in wine might
actually reduce the bodily processes that lead to heart disease. How are we to know
whether we are talking about causation or something else?

208 Chapter 9 Correlation

Figure 9.8
Scatterplot of expenditures on alcohol and tobacco
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Utts (2005) presents an excellent list of possible explanations of a significant
correlation between two variables. I am unabashedly following her lead in what
follows. She suggested seven possible reasons for two variables to be correlated, and
only one of them is causal.

1. The relationship actually could be causal. Sunlight does increase the
production of vitamin D, and vitamin D might very well protect the
body against breast cancer.

2. We may have the relationship backward, and the response variable could
actually cause the explanatory variable. It might appear that happiness
leads to better social relationships, but it is just as plausible that having
good social relationships leads to people feeling happier about their lives.

3. The relationship may be only partially causal. The predictor variable may
be a necessary cause, but changes in the dependent variable either only
occur, or are accentuated in the presence of some other variable.
Increased wealth may lead to increased happiness, but only if other
conditions (e.g., a supportive family, good friends, etc.) are present.

4. There may be a third, confounding, variable present. The changing size
of the population of the United States is correlated with changes in
infant mortality, but no one believes that having more people around
reduces the number of infants who die. Both of those variables are
related to time and the other changes in health care that have occurred
over that time. Similarly, as we saw earlier, Wong (2008) pointed to the
fact that areas of Europe that drink a lot of red wine also have more
sunlight, and solar radiation has been shown to also be associated with
decreases in heart disease. So is it solar radiation or wine that is
responsible for reduced hard disease, or both, or neither?

5. Both variables may be related to a third, causal, variable. Family stability
and physical illness may be correlated because both are themselves a
function of outside stresses on the individual.

6. Variables may be changing over time. Utts (2005) gives the nice example
of the high correlation between divorce rate and incidence of drug
offenses. Those variables are correlated mainly because they both are
increasing over time.

7. The correlation may be due to coincidence. Your father-in-law moves in
on you and your marriage goes down the tubes. It could be that your
father-in-law is truly a disruptive influence, but it could also be that
those two things just happened to occur at the same time. We often see
causal relationships when no cause exists. 

It is very difficult to establish causal relationships, and we need to be careful
about any assertions of cause. One important consideration is that in order for A
to cause B, A must occur before, or at the same time as B. Causation cannot work
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backward in time. Second, we need to rule out other variables. If we can show that
A leads to B in both the presence and the absence of other possible causal factors,
we have strengthened our argument. That is one reason that science is so con-
cerned with randomization, and especially with random assignment. If we take a
large group of people, randomly split them into three groups, expose the three
groups to different conditions, and show that the three groups subsequently behave
reliably differently, we have a good argument for causation. The random assign-
ment makes it highly unlikely that there are systematic differences between the
groups that were responsible for whatever differences occurred. Finally, before we
declare that one variable causes another, we need to come up with some reason-
able explanation of how this could be. If we can’t explain why we found what we
did, the best that we can say is that this is a relationship worth exploring further
to see if an explanation for the correlation can be found. This leads nicely to the
next section.

9.9 If Something Looks Too Good to Be True, Perhaps It Is

Not all statistical results mean what they seem to mean; in fact, not all results are
meaningful. This is a point that will be made repeatedly throughout this book,
and it is particularly appropriate when we are speaking about correlation and
regression.

In Figure 9.1 we saw a plot of data collected by Cochrane et al. (1978) on the
relationship between a country’s infant mortality rate and the number of
physicians per 10,000 population. This correlation ( ) was not only remark-
ably high, but positive. The data indicate that as the number of physicians
increases, the infant mortality rate also increases. What are we to make of such
data? Are physicians really responsible for deaths of children? In the previous
section I said that I strongly doubted that the relationship was causal, and I hope
that everyone would agree with that.

No one has seriously suggested that physicians actually do harm to children,
and it is highly unlikely that there is a causal link between these two variables. For
our purposes, the data are worth studying more for what they have to say about cor-
relation and regression than what they have to say about infant mortality, and it is
worth considering possible explanations. In doing so, we have to keep several facts
in mind. First, these data are all from developed countries, primarily but not exclu-
sively in Western Europe. In other words, we are speaking of countries with high
levels of health care. Although undoubtedly there are substantial differences in
infant mortality (and the number of physicians) among these countries, these dif-
ferences are nowhere near as large as we would expect if we took a random sample
of all countries. This suggests that at least some of the variability in infant mortal-
ity that we are trying to explain is probably more meaningless random fluctuation
in the system than meaningful variability. The second thing to keep in mind is that
these data are selective. Cochrane et al. did not simply take a random sample of
developed countries—they chose carefully what data to include, but did so for

r 5 .88
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reasons having little or nothing to do with this peculiar relationship. We might,
and probably would, obtain somewhat less dramatic relationships if we looked at a
more inclusive group of developed countries. A third consideration is that
Cochrane et al. selected this particular relationship from among many that they
looked at because it was a surprising finding. (If you look hard enough, you are
likely to find something interesting in any set of data, even when there is nothing
really important going on.) They were looking for predictors of mortality, and this
relationship popped out among other more expected relationships. In their paper
they give possible explanations, and the article is a good example of the need to
look beyond the numbers.

In terms of explanations for the finding shown in Figure 9.1, let’s consider a
few possible—though not terribly good—ones. In the first place, it might be
argued that we have a reporting problem. With more physicians we stand a better
chance of having infant deaths reported, causing the number of reported deaths to
increase with increases in physicians. This would be a reasonable explanation if we
were speaking of underdeveloped countries, but we are not. It is probably unlikely
that many deaths would go unreported in Western Europe or North America even
if there weren’t so many physicians. Another possibility is that physicians go where
the health problems are. This argument implies a cause-and-effect relationship, but
in the opposite direction—high infant mortality causes a high number of physi-
cians. A third possibility is that high population densities tend to lead to high
infant mortality and also tend to attract physicians. In the United States both
urban poverty and physicians tend to congregate in urban centers. (How would you
go about testing such a hypothesis?) Interestingly, the relationship is much weaker
if we limit “doctors” to pediatricians and obstetricians, who are much more likely
to have a direct effect, though it is still positive.

9.10 Testing the Significance of a Correlation Coefficient

The fact that a sample correlation coefficient is not exactly zero does not necessar-
ily mean that those variables are truly correlated in the population. For example, I
wrote a simple program that drew 25 numbers from a random number generator
and arbitrarily named that variable “income.” I then drew another 25 random
numbers and named that variable “musicality.” When I paired the first number of
each set with the first number of the other set, the second with the second, and so
on, and calculated the correlation between the two variables, I obtained a correla-
tion of .278. That seems pretty good. It looks as if I’ve shown that the more musi-
cal a person is the greater his or her income (and vice versa). But we know these
data are just random numbers, and there really isn’t any true correlation between
two sets of random numbers. I just happened to get a reasonably large value of r by
chance.

The point of this example is not to illustrate that statistics lie. (I hear too
many comments to that effect already!)  The point is that correlation coefficients,
like all other statistics, suffer from sampling error. They deviate from the true
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correlations in the population (in this case zero) by some amount. Sometimes they
are too high, sometimes too low, and sometimes, but rarely, right on. If I drew a
new set of data in the previous example, I might get , or maybe , or
maybe even . But I probably would not get or . Small
deviations from the true value of zero are to be expected; large deviations are not.

But how large is large? When do we decide that our correlation coefficient is
far enough from zero that we can no longer believe it likely that the true correla-
tion in the population is zero? This is where we come to the issue of hypothesis
testing developed in Chapter 8.

First, let’s look at an empirical sampling distribution of the correlation coef-
ficient based on 1,000 samples, each with 50 pairs of X and Y. In this case the data
were random numbers, so the true correlation in the population (denoted as 
[rho]) is 0. The distribution is shown in Figure 9.9.

Notice the range of values that we obtain.
You may recall that I began Chapter 8 with an example about course evalua-

tions and students’ anticipated grades. For each of 50 courses, I know the overall
course evaluation rating and the mean anticipated grade—in both cases averaging
across all students in the course. (These are actual data.) I have calculated that for
this sample the correlation between evaluations and anticipated grades is .30. But I
want to know whether those variables are truly correlated in the whole population
of courses. In order to arrive at some decision on this question, I will set up my null
hypothesis that the population correlation coefficient rho (denoted ) is 0 (i.e.,

). If I am able to reject , I will be able to conclude that how studentsH0H0: r 5 0
r

r

r 5 2.87r 5 .95r 5 2.30
r 5 .03r 5 .15
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Figure 9.9
Sampling distribution of the correlation when sampling from a population when the true
correlation is 0.
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evaluate a course is related to how well the students expect to do in terms of grades.
If I cannot reject , I will have to conclude that I have insufficient evidence to
show that these variables are related, and I will treat them as linearly independent.

Definition Population correlation coefficient rho ( ): The correlation coefficient for the
population.

I prefer to use two-tailed tests, so I will choose to reject if the obtained
correlation is too large in either a positive or a negative direction. In other words,
I am testing

against

But we are still left with the question, “How big is too big?” There are at least three
ways to answer, and I have chosen to discuss the two simplest ways. I’ll start with
the use of tables.

Table E.2 in Appendix E shows how large a sample correlation coefficient
must be before we declare the null hypothesis to be rejected. To use this table,
we have to know the degrees of freedom, which are directly linked to the sample
size. When we are predicting one variable from one other variable, as we are in
this chapter, the degrees of freedom , where  is the size of our sample
(the number of pairs, not the number of individual data points, which will be
2 times N). We are using an example where , so we would look up the
critical value for 48 df, which we find to be approximately .279. (I say “approxi-
mately” because the table lists 40 and 50 df but not 48, so I needed to interpo-
late. Since 48 is eight-tenths of the way between 40 and 50, I’ll take as my
critical value the value that is eight-tenths of the way between .304 and .273,
which is .279.) Thus a sample correlation greater than or equal to .279 is signif-
icant at the 5% level of significance, meaning we can reject at Our
sample correlation was .30, which is more extreme than .279, so we will reject

. To say this a little differently, if we take a situation in which we know the
null hypothesis ( ) to be true (as, for example, the random number
experiment that started this section), and if we have 50 cases with scores on the
two variables, only 5% of the time will we obtain a sample correlation greater
than or equal to . Thus a correlation of or more would occur less
than 5% of the time if were true, so we can reject .H0H0

r 5 .30; .279

H0: r 5 0
H0

a 5 .05.H0

N 5 50

5 N 2 2

H0: r ? 0

H0: r 5 0

H0

r

H0
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Because the sampling distribution that I created in Figure 9.9 was based on a
sample size of 50, you can pair up what we have just done with that figure.



I can state all this in terms of a rule. First, calculate the sample correlation
and compute where N is the number of pairs of observations. Next
look in Table E.2 and find the critical value of r. We then reject when-
ever the absolute value of r (i.e., ignore its sign for a two-tailed test) is greater than
or equal to the tabled critical value.

With virtually all computer programs used today, you don’t even need to use
a table. All programs print out the probability (either one-tailed or two-tailed)
associated with the computed value of r. This is the probability of obtaining that
value of r or one more extreme when is true. In our case a program would give
a two-tailed probability of .0338. This means that if is true, the probability that
we would obtain a sample correlation at least as large (positive or negative) as the
one obtained is .0338. We reject whenever this value is less than .05. As an
example, look ahead to Figure 9.11 (p. 218), where you will see that SPSS gives
the correlation between life expectancy and expenditures as .138. Below this is the
two-tailed significance value of .53, meaning that a correlation as extreme as this
has a probability of .53 of occurring when the null hypothesis is true. We certainly
have no reason to reject .

9.11 Intercorrelation Matrices

So far we have largely been speaking about the relationship between two variables.
Often, however, we have a whole set of variables and want to know how they
relate to each other in a pairwise fashion. In Figure 9.10 I plotted, in one table, the
correlations among several variables concerned with expenditures for education,
by state, and academic performance as measured by the SAT and ACT (two tests
often used in student selection for U.S. colleges and universities). The raw data are
available at 

http://www.uvm.edu/~dhowell/fundamentals7/DataFiles/SchoolExpend.dat  

In Figure 9.10 I first plotted what is known as an intercorrelation matrix. It
is simply a matrix in which each cell contains the correlation, and related infor-
mation, between the variables on the rows and columns.  These data are modified
from a paper by Guber (1999), who was interested in asking whether academic
performance was positively correlated with state education budgets.

I have also plotted what is called a scatterplot matrix, which is just a matrix
in whose cells are the scatterplots of the row and column variables. The variables
appear in the order Expenditures (by state), Pupil-Teacher ratio, Salary, SAT,
ACT combined score, and the percentage of students in each state taking the SAT
or the ACT.

Definition Intercorrelation matrix: A matrix (table) showing the pairwise correlations among
all variables.

H0

H0

H0

H0

H0: r 5 0
df 5 N 2 2,
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Figure 9.10
Matrix of intercorrelations and scatterplot matrix among course evaluation variables

Expend

Expend PTratio Salary SAT ACTcomp PctACT PctSAT

PTratio

Salary

SAT

ACTcomp

PctACT

PctSAT

Correlations
Expend PTratio Salary SAT ACTcomp PctACT PctSAT

Expend Pearson Correlation 1 .371** .870** �.381** .380** �.512** .593**
Sig. (2-tailed) .008 .000 .006 .007 �.000 .000
N 50 50 50 50 50 50 50

PTratio Pearson Correlation �.371** 1 �.001 .081 �.004 .120 �.213
Sig. (2-tailed) .008 .994 .575 .977 .406 .137
N 50 50 50 50 50 50 50

Salary Pearson Correlation .870** �.001 1 �.440** .355* �.566** .617**
Sig. (2-tailed) .000 .994 .001 .012 .000 .000
N 50 50 50 50 50 50 50

SAT Pearson Correlation �.381** .081 �.440** 1 .169 .877** �.877**
Sig. (2-tailed) .006 .575 .001 .240 .000 .000
N 50 50 50 50 50 50 50

ACTcomp Pearson Correlation .380** �.004 .355* .169 1 �.143 .106
Sig. (2-tailed) .007 .977 .012 .240 .323 .465
N 50 50 50 50 50 50 50

PctACT Pearson Correlation �.512** .120 �.566** .877** �.143 1 .959**
Sig. (2-tailed) .000 .406 .000 .000 .323 .000
N 50 50 50 50 50 50 50

PctSAT Pearson Correlation .593** �.213 .617** �.887** .106 �.959** 1
Sig. (2-tailed) .000 .137 000 .000 .465 .000
N 50 50 50 50 50 50 50

**. Correlation is significant at the 0.01 level (2-tailed).
*. Correlation is significant at the 0.05 level (2-tailed).



We will have much more to say about these variables in Chapter 11, but I
should point out here the interesting anomaly that SAT scores are negatively cor-
related with expenditures. This would appear to suggest that the more a state
spends on education, the worse its students do. We will see in Chapter 11 that this
does not mean what we would at first think that it means.

9.12 Other Correlation Coefficients

The standard correlation coefficient is Pearson’s r, which applies primarily to
variables distributed more or less along interval or ratio scales of measurement. We
also have seen that the same formula will produce a statistic called Spearman’s 
when the variables are in the form of ranks. You should be familiar with two other
correlation coefficients, although here again there is little that is new.

When we have one variable measured on a continuous scale and one vari-
able measured as a dichotomy (i.e., that variable has only two levels), then the cor-
relation coefficient that we produce is called the point biserial correlation ( ).
For example, we might perform an analysis of test items by correlating the total
score on the test (X) with “right/wrong” on a particular item (Y). (We might do
this to see how well that particular item discriminates between those students who
appear, from their final grade, to really know that material, and those who appear
not to. What would you suggest doing when such a correlation is very low?) In this
case X values might run from roughly 60 to 100, but Y values would be either 0
(wrong) or 1 (right). Although special formulae exist for calculating , you can
accomplish exactly the same thing more easily by computing r. The only difference
is that we call the answer instead of r to point out that it is a point biserial cor-
relation computed from data for which one variable was a dichotomy. Don’t let the
point about the calculation of pass by too quickly. I belong to several electronic
mail discussion groups dealing with statistics and computing, and once every few
weeks someone asks if a particular statistical package will calculate the point bise-
rial correlation. And every time the answer is, “Yes it will, just use the standard
Pearson r procedure.” In fact, this is such a frequently asked question that people
are beginning to be less patient with their answers.

Definition Point biserial correlation ( ): The correlation coefficient when one of the variables
is measured as a dichotomy.
Dichotomous variables: Variables that can have only two different values.

A point is in order here about dichotomous variables. In the preceding exam-
ple I scored “wrong” as 0 and “right” as 1 to make the arithmetic simple for those
who are doing hand calculations. I could just as easily score them as 1 and 2 or even
as 87 and 213—just as long as all the “right” scores receive the same number and
all the “wrong” scores receive the same (but different) number. The correlation

rpb

rpb

rpb

rpb

rpb

rS
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coefficient itself, with the possible exception of its sign, will be exactly the same no
matter what pair of numbers we use.

A slightly different correlation coefficient, (phi), arises when both variables
are measured as dichotomies. For example, in studying the relationship between
gender and religiosity we might correlate gender (coded Male 1, Female 2) with
regular church attendance (No 0, Yes 1). Again it makes no difference what two
values we use to code the dichotomous variables. Although phi has a special formula,
it is just as easy and correct to use Pearson’s formula but label the answer phi.

Definition Phi (�): The correlation coefficient when both of the variables are measured as
dichotomies.

A number of other correlation coefficients exist, but the ones given here are
the most common. All those in this text are special cases of Pearson’s r, and all can
be obtained by using the formulae discussed in this chapter. These coefficients are
the ones that are usually generated when a large set of data is entered into a
computer data file and a correlation or regression program is run. Table 9.4 shows
a diagram that illustrates the relationships among these coefficients. The empty
spaces of the table reflect the fact that we do not have a good correlation coeffi-
cient to use when we have one ranked variable and one continuous or dichoto-
mous variable. In each case you could use the standard Pearson correlation
coefficient, but remember the kinds of variables you have when it comes to
interpreting the result. Keep in mind that all the correlations shown in this table
can be obtained by using the standard Pearson formula.

9.13 Using SPSS to Obtain Correlation Coefficients

The printout in Figure 9.11 looks back to the data in Table 9.2 on the relationship
between the pace of life and incidence of heart disease. I have used SPSS to produce
these results. (Instructions on using SPSS to compute correlations can be found on this
book’s Web site as Chapter 6 in the Short SPSS Manual.) Notice in the second part of

55
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Table 9.4  
Various Correlation Coefficients

Variable X
Continuous Dichotomous Ranked

Continuous Pearson Point Biserial

Variable Y Dichotomous Point Biserial Phi

Ranked Spearman
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Figure 9.11
SPSS analysis of the relationship between pace of life and heart disease

Descriptive Statistics

Mean Std. Deviation N
Pace 22.8422 3.01462 36
Heart 19.8056 5.21437 36

Correlations

Pace Heart
Place Pearson Correlation 1.000 .365*

Sig. (2-tailed) .029
N 36.000 36

Heart Pearson Correlation .365* 1.000
Sig. (2-tailed) .029
N 36 36.000

*. Correlation is significant at the 0.05 level (2-tailed).



the figure that SPSS prints out the probability that we would have obtained this cor-
relation if the true correlation in the population is 0. In this case that probability is
.029, which, because it is less than .05, will lead us to reject the null hypothesis.

9.14 Seeing Statistics

A number of applets will help you to see the important concepts that were
developed in this chapter. These are found on the book’s Web site at 

www.uvm.edu/~dhowell/fundamentals7/SeeingStatisticsApplets/Applets.html

The first applet allows you to enter individual data points by clicking with
your mouse and then displays the resulting correlation. The following graphic
shows sample output.

Start the Seeing Statistics applets from the Web site, and click on the first
applet in Chapter 9, which is labeled Correlation Points. Now add points to the
plot to see what happens to the correlation. Try to produce data with very low,
low, medium, and high correlations, and then reverse those to produce negative
correlations.
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The next applet draws a scatterplot of a set of data and allows you to
examine the correlation as you remove or replace a data point. This is illustrated
in the following printout, using the data on alcohol and tobacco consumption
in Great Britain that we saw in Table 9.3.

The purpose of the data in Table 9.3 was to illustrate the dramatic influ-
ence that a single data point can have. If you click on the point for Northern
Ireland, in the lower right, you will remove that point from the calculation, and
will see a dramatic change in the correlation coefficient. Next, try clicking on
other points to see what effect they have.

Another way to illustrate the relationship between a scatterplot and a cor-
relation is shown in the applet named Correlation Picture. This applet allows
you to move a slider to vary the correlation coefficient and then see associated
changes in the scatterplot. Two scatterplots are shown, one with the regression
line (to be discussed in Chapter 10) superimposed. The line often makes it eas-
ier to see the relationship between the variables, especially for low correlation.
An example of the output of the applet follows.

220 Chapter 9 Correlation



9.14 Seeing Statistics 221



Practice moving the slider to vary the correlation coefficient. Then click
on the button labeled “Switch Sign” to see the same degree of correlation in a
negative relationship.

One of the important points made in this chapter was the influence of the
range of values on the correlation coefficient. The applet labeled RangeRestrict
allows you to move sliders to restrict the range of either variable and then see
the resulting effect on the correlation coefficient. This is illustrated below.

One final applet, called Heterogeneous Samples, illustrates some dramatic
effects that you can see with heterogeneous subsamples of data. 

By clicking on the buttons at the top of the display, you can plot the data
for all cases combined, for the combined data but with separate regression lines,
or for each group alone. The applets on the Web site also allow you to investi-
gate the data plotted in Figure 9.7 in similar ways.

9.15 Does Rated Course Quality Relate 
to Expected Grade?

We have used an example in this chapter and in Chapter 8 of the relationship
between course evaluations and students’ anticipated grades, but we never actually
saw data or the calculation of the correlation. The following set of observations
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represents actual data on 50 courses taken from a large data set on the evaluation
of several hundred courses. (I have shown only the first 15 cases on two variables
to save space, but the statistics given below the data were calculated for all
50 cases.) The raw data are available at 

http://www.uvm.edu/~dhowell/fundamentals7/DataFiles/albatros.dat

All six variables appear there, in the order Overall, Teach, Exam, Knowledge,
Grade, and Enroll.

Expected Overall Expected Overall 
Grade (X ) Quality (Y ) Grade (X ) Quality (Y )

3.5 3.4 3.0 3.8
3.2 2.9 3.1 3.4
2.8 2.6 3.0 2.8
3.3 3.8 3.3 2.9
3.2 3.0 3.2 4.1
3.2 2.5 3.4 2.7
3.6 3.9 3.7 3.9
4.0 4.3

Results Based on All 50 Cases

Our first step is to calculate the mean and the standard deviation of each variable,
as follows:

 sY 5R
648.57 2

177.52

50
49

5 0.6135

 Y 5
177.5

50
5 3.550

 sX 5R
613.65 2

174.32

50
49

5 0.3511

 X 5
174.3

50
5 3.486

 ©XY 5 621.94
 ©Y2 5 648.57
 ©Y 5 177.5

 ©X2 5 613.65
 ©X 5 174.3
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The covariance is given by

Finally, the correlation is given by

This is a moderate correlation, one that would lend support to the proposi-
tion that courses that have higher mean grades also have higher mean ratings. As
we saw in Section 9.9, this correlation is significant. You should realize that this
correlation does not necessarily mean higher grades cause higher ratings. It is just
as plausible that more advanced courses are rated more highly, and it is often in
these courses that students do their best work.

r 5
covXY

sXsY

5
0.0648

10.3511 2 10.6135 2 5 0.3008

covXY 5

621.94 2
1174.3 2 1177.5 2

50
49

5 0.0648
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Additional Examples

I have pulled together a few additional examples and useful material at

http://www.uvm.edu/~dhowell/StatPages/More_Stuff/CorrReg.html  

These are more complex examples than we have seen to date, involving several
different statistical procedures for each data set. However, you can get a good
idea of how correlation is used in practice by looking at these examples, and you
can just ignore the other material that you don’t recognize. Keep in mind that
even with the simple correlational material, there may be more advanced ways
of dealing with data that we have not covered here—for example, a  test on the
significance of the correlation coefficient, rather than the approach we took
here using Table E.2 in Appendix E.

Writing Up the Results of a Correlational Study
If you were asked to write up the study on course evaluations concisely but
accurately, how would you do it? Presumably you would want to say something
about the research hypothesis that you were testing, the way you collected your
data, the statistical results that followed, and the conclusions you would draw. The
two paragraphs that follow are an abbreviated form of such a report. A regular
report would include a review of the background literature and considerably more
information on data collection. It would also include an extensive discussion of the
results and speculate on future research.

http://www.uvm.edu/~dhowell/StatPages/More_Stuff/CorrReg.html


- Abbreviated Report
It is often thought by course instructors that the way in which students
evaluate a course will be related, in part, to the grades that are given in
that course. In an attempt to test this hypothesis we collected data on 
50 courses in a large state university located in the Northeast, asking
students to rate the overall quality of the course (on a five-point scale)
and report their anticipated grade (A 4, B 3, etc.) in that course.
For each of the 50 courses we calculated the overall mean rating and the
mean anticipated grade. Those means were the observations used in the
analysis.

A Pearson correlation between mean rating and mean anticipated
grade produced a correlation of , and this correlation, though
small, was significant at From this result
we can conclude that course ratings do vary with anticipated grades,
with courses giving higher grades having higher overall ratings. The
interpretation of this effect is unclear. It may be that students who expect
to receive good grades have a tendency to “reward” their instructors with
higher ratings. But it is equally likely that students learn more in better
courses and rate those courses accordingly.

9.16 Summary

In this chapter we dealt with the correlation coefficient as a measure of the rela-
tionship between two variables. We began by seeing three distinctly different scat-
terplots of data. All of the relationships were linear, meaning the relationship did
not change in form as we increased the value of either variable. The chapter briefly
introduced the concept of the covariance, pointing out that it increases in absolute
value as the relationship increases. We then used the covariance and the two stan-
dard deviations to define the correlation coefficient, commonly referred to as the
Pearson product-moment correlation. We also looked at the correlation between
ranked data, which is called the Spearman rank correlation, and later at the point-
biserial correlation and phi, which are Pearson correlations based on cases in
which one or both variables are dichotomies.

We saw that several things can affect the magnitude of the correlation
aside from the true underlying relationship between the two variables. One of
these is the restriction of the range of one or both variables, another is the use
of a sample that combines two heterogeneous samples, and a third is the inclu-
sion of outliers. There was also an important discussion of correlation and cau-
sation, and it would be well to go back and review Utts’ list of explanations for
relationships.

a 5 .05 1r 348 4 5 .30, p 6 .05 2 .r 5 .30
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Finally, we examined a test of whether a sample correlation is large enough
to imply a true relationship in the population. For this, you can either use tables
that are present in the back of the book or take a probability value from the com-
puter printout. We will later see another way of testing this relationship using what
is called the t distribution, but it is simply what the computer is doing when it gives
you a probability.

Some important terms in this chapter are
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Correlation, 189

Correlation coefficient, 189

Pearson product-moment
correlation coefficient (r), 189

Scatterplot (scatter diagram,
scattergram), 190

Predictor variable, 191

Criterion variable, 191

Regression lines, 192

Curvilinear relationship, 198

Linear relationship, 198

Covariance, 198

Spearman’s correlation
coefficient for ranked 
data ( ), 202

Monotonic relationship, 203

Range restrictions, 203

Heterogeneous subsamples, 205

Population correlation
coefficient rho ( ), 213

Intercorrelation matrix, 214

Point biserial correlation 
( ), 216

Dichotomous variables, 216

Phi ( ), 217f
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9.17 Exercises

9.1 In Sub-Saharan Africa, more than half of mothers lose at least one child before the child’s
first birthday. Below are data on 36 countries in the region, giving country, infant mortal-
ity,  per capita income (in U.S. dollars), percentage of births to mothers under 20, percent-
age of births to mothers over 40,  percentage of births less than two years apart, percentage
of married women using contraception, and percentage of women with unmet family
planning need (http://www.guttmacher.org/pubs/ib_2-02.html).

http://www.guttmacher.org/pubs/ib_2-02.html


Need 
% Mom % Mom �2 Years Using Family

Country InfMort Income � 20 � 40 Apart Contraception Planning

Benin Rep 104 933 16 5 17 3 26
Burkina Faso 109 965 17 5 17 5 26
Cameroon 80 1,573 21 4 25 7 20
Central African Rep 102 1,166 22 5 26 3 16
Chad Rep 110 850 21 3 24 1 missing
Côte d’Ivoire 91 1,654 21 6 16 4 28
Eritrea 76 880 15 7 26 4 28
Ethiopia 113 628 14 6 20 6 23
Gabon 61 6,024 22 4 22 12 28
Ghana 61 1,881 15 5 13 13 23
Guinea 107 1,934 22 5 17 4 24
Kenya 71 1,022 18 3 23 32 24
Madagascar 99 799 21 5 31 10 26
Malawi 113 586 21 6 17 26 30
Mali 134 753 21 4 26 5 26
Mozambique 147 861 24 6 19 5 7
Namibia 62 5,468 15 7 22 26 22
Niger 136 753 23 5 25 5 17
Nigeria 71 853 17 5 27 9 18
Rwanda 90 885 9 7 21 13 36
Senegal 69 1,419 14 7 18 8 35
Tanzania 108 501 19 5 17 17 22
Togo 80 1,410 13 6 14 7 32
Uganda 86 650 23 4 28 8 35
Zambia 108 756 30 4 19 14 27
Zimbabwe 60 2,876 32 4 12 50 13

(a) Make a scatter diagram of InfMort and income.
(b) Draw (by eye) the line that appears to best fit the data.
(c) What effect do you suppose that the two outliers have on income?

9.2 Calculate the correlations among all numeric variables in Exercise 9.1 using SPSS.

9.3 Using Table E.2 in Appendix E, how large a correlation would you need for the relation-
ships shown in Exercise 9.2 to be significant?

9.4 What are the strongest predictors of infant mortality in Exercise 9.2?

9.5 What can we conclude from the data on infant mortality?

9.6 In Exercise 9.1 the percentage of mothers over 40 does not appear to be important, and yet
it is a risk factor in other societies. Why do you think that this might be?

9.7 Two predictors of infant mortality seem to be significant. If you could find a way to use both
of them as predictors simultaneously, what do you think you would find?

9.8 From the previous exercises, do you think that we are able to conclude that low income
causes infant mortality?

9.9 Infant mortality is a very serious problem to society. Why would psychologists be interested
in this problem any more than people in other professions?
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9.10 Down’s syndrome is another problem that psychologists deal with. It has been proposed that
mothers who give birth at older ages are more likely to have a child with Down’s syndrome.
Plot the data below relating age to incidence. The data were taken from Geyer (1991).

Age 17.5 18.5 19.5 20.5 21.5 22.5 23.5 24.5 25.5
Births 13,555 13,675 18,752 22,005 23,796 24,667 24,807 23,986 22,860
Downs 16 15 16 22 16 12 17 22 15

Age 26.5 27.5 28.5 29.5 30.5 31.5 32.5 33.5 34.5
Births 21,450 19,202 17,450 15,685 13,954 11,987 10,983 9,825 8,483
Downs 15 27 14 9 12 12 18 13 11

Age 35.5 36.5 37.5 38.5 39.5 40.5 41.5 42.5 43.5
Births 7,448 6,628 5,780 4,834 3,961 2,952 2,276 1,589 1,018
Downs 23 13 17 15 30 31 33 20 16

Age 44.5 45.5 46.5
Births 596 327 249
Downs 22 11 7

Plot a scatter diagram for the percentage of Down’s syndrome cases (Down’s/Births) as a
function of age.

9.11 Why would you not feel comfortable computing a Pearson correlation on the data in
Exercise 9.10?

9.12 One way to get around the problem you see in Exercise 9.11 would be to convert the
incidence of Down’s syndrome to ranked data. Replot the data using ranked incidence and
calculate the correlation. Is this a Spearman’s correlation?

9.13 In the study by Katz et al. (1990), referred to previously, in which subjects answered ques-
tions about passages they had not read, the question arises as to whether there is a relation-
ship between how the students performed on this test and how they had performed on the
SAT-Verbal when they applied to college. Why is this a relevant question?

9.14 The data relevant to Exercise 9.13 are the test scores and SAT-V scores for the 28 people
in the group that did not read the passage. These data are

Score 58 48 48 41 34 43 38 53 41 60 55 44 43 49

SAT-V 590 590 580 490 550 580 550 700 560 690 800 600 650 580

Score 47 33 47 40 46 53 40 45 39 47 50 53 46 53

SAT-V 660 590 600 540 610 580 620 600 560 560 570 630 510 620

Make a scatterplot of these data and draw by eye the best-fitting straight line through the
points.

9.15 Compute the correlation coefficient for the data in Exercise 9.14. Is this correlation signif-
icant, and what does it mean to say that it is (or is not) significant?

9.16 Interpret the results from Exercises 9.11 to 9.13.

9.17 The correlation in the Katz et al. (1990) study between Score and SAT-V for the 17
subjects in the group that did read the passage was .68. This correlation is not significantly
different from the correlation you computed in Exercise 9.13, although it is significantly dif-
ferent from 0.00. What does it mean to say that the two correlations are not significantly
different from each other?
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9.18 Expand on Exercise 9.17 to interpret the conclusion that the correlations were not signifi-
cantly different.

9.19 Do the results of the Katz et al. (1990) study fit with your expectations, and why?

9.20 Plot and calculate the correlation for the relationship between ADDSC and GPA for the
data in Appendix D. Is this relationship significant? 

9.21 Assume that a set of data contains a curvilinear relationship between X and Y (the best-
fitting line is slightly curved). Would it ever be appropriate to calculate r on these data?

9.22 Several times in this chapter I referred to the fact that a correlation based on a small sam-
ple might not be reliable.
(a) What does “reliable” mean in this context?
(b) Why might a correlation based on a small sample not be reliable?

9.23 What reasons might explain the finding that the amount of money that a country spends
on health care is not correlated with life expectancy?

9.24 Considering the data relating height to weight in Figure 9.7, what effect would systematic
reporting biases from males and females have on our conclusions?

9.25 Draw a figure using a small number of data points to illustrate the argument that you could
have a negative relationship between weight and height within each gender and yet still
have a positive relationship for the combined data.

9.26 Sketch a rough diagram to illustrate the point made in the section on heterogeneous sub-
samples about the relationship between cholesterol consumption and cardiovascular disease
for males and females.

9.27 The chapter referred to a study by Wong (2008) who showed that the incidence of heart
disease varied as a function of solar radiation. What does this have to say about any causal
relationship we might infer between the consumption of red wine and a lower incidence of
heart disease?

9.28 David Lane at Rice University  has an interesting example of a study involving correlation.
This can be found at

http://www.ruf.rice.edu/~lane/case_studies/physical_strength/index.html.

Work through his example and draw your own conclusions from the data. (For now, ignore
the material on regression.)

9.29 One of the examples in this chapter dealt with the relationship between vitamin D and
cancer. Do a simple Internet search to find additional data on that question.
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10
Regression

Concepts that you will need to remember from
previous chapters
Independent variable: The variable you manipulate or are studying

Dependent variable: The variable that you are measuring—the
data

Scatterplot: A graphic in which the paired data points
are plotted in two-dimensional space

Correlation coefficient: A measure of the relationship between
variables

Regression line: The straight line that best fits the points in 
a scatterplot

Standard error: The standard deviation of the sampling
distribution of a statistic

Standardization: Converting raw scores to z scores, which
have a mean ( ) of 0 and a standard
deviation (s) of 1

X
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Correlation and regression go together so closely that they are often men-
tioned in the same breath. In this chapter we will look at how they differ and at what
regression has to tell us that correlation does not. We will see how to obtain the
equation for a regression line, which is the line that best fits a scatterplot of the data,
and we will learn how to ask how well that line fits. We will then take up hypothe-
sis testing with regression and look at the hypotheses that we are testing. Finally, we
will use SPSS to produce a complete analysis of our data.



If you think of all the people you know, you are aware that there are individual
differences in people‘s mental health. Some are cheerful and outgoing, some are
depressed and withdrawn, some are aggressive and even unpleasant, some have
trouble sleeping and spend their nights worrying about things over which they have
no control. How do we predict what any specific individual will be like?

This question is really too big and too general, so let‘s narrow it down.
Suppose we take a standard checklist and ask a large number of students to indicate
whether they have experienced a variety of psychological symptoms in the past
month. Each person’s score will be a weighted sum of the reported symptoms. The
higher the score, the more problems he or she has; conversely, the lower the score,
the better that person’s state of mental health. But again, how do we predict a
person’s score?

If all that we have is a set of symptom scores, the best prediction we can make
for any one individual is the group’s mean. Since I have never met you and don’t
know anything about you, I will be less in error, on average, if I predict the sample
mean ( ) than if I predict any other value. Obviously I won’t always be right, but it’s
the best I can do.

But let’s be a little more specific and assume that I know whether you are male
or female. Here I have another variable I can use in making my prediction. In other
words, I can use one variable to help me predict another. In this case, what predic-
tion do you think I should make? I hope you will say that I should use the mean of
males ( ) to make a prediction about a male and the mean of females ( ) to make
a prediction about a female. On the average, I will do better than if I just use the
overall mean. Notice that my prediction is conditional on gender. My prediction
would be of the form, “Given that you are female, I would predict that . . .” Notice
that this is the same word “conditional” that we used when discussing conditional
probabilities.

Now let’s go one more step and instead of using a dichotomous variable,
gender, we will use a continuous variable, stress. We know that psychological health
varies with stress, in that people who experience a great deal of stress tend to have
more symptoms than those who do not. Therefore, we can use people’s stress levels to
refine our prediction of symptoms. The process is more complicated and sophisticated
than using a dichotomous variable such as gender, but the underlying idea is similar.
We want to write an equation that explains how differences in one variable relate to
differences in another and that allows us to predict a person’s score on one variable
from knowledge of that person’s score on another variable. When we are interested in
deriving an equation for predicting one variable from another, we are dealing with
regression, the topic of this chapter.

Definition Regression: The prediction of one variable from knowledge of one or more other
variables.

Just as we did in our discussion of correlation, we will restrict our coverage of
regression to those cases in which the best-fitting line through the scatter diagram is

XFXM

X
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a straight line, or nearly so. This means that we will deal only with linear regression.
This restriction is not as serious as you might expect because a surprisingly high per-
centage of sets of data turn out to be basically linear. Even in those cases in which
the relationship is curvilinear (i.e., where the best-fitting line is a curve), a straight line
often will provide a very good approximation, especially if we eliminate the extremes
of the distribution of one or both of the variables.

10.1 The Relationship Between Stress and Health

Wagner, Compas, and Howell (1988) investigated the relationship between stress
and mental health in first-year college students. Using a scale developed to meas-
ure the frequency, perceived importance, and desirability of recent life events, they
created a measure of negative life events weighted by the reported frequency of
each event and the respondent’s subjective estimate of its impact. In other words,
more weight was given to those events that occurred frequently and/or that the
student felt had an important impact. This served as the measure of the subject’s
perceived social and environmental stress. The researchers also asked students to
complete the Hopkins Symptom Checklist, assessing the presence or absence of
57 psychological symptoms. The stem-and-leaf displays and boxplots for the
measures of stress and symptoms are shown in Table 10.1.

Before we consider the relationship between these variables, we need to
examine the variables individually. The stem-and-leaf displays for both variables
show that the distributions are unimodal but slightly positively skewed. Except for
a few extreme values, there is nothing about either variable that should disturb us,
such as extreme skewness or bimodality. Note that there is a fair amount of vari-
ability in each variable. This variability is important, because if we want to show
that different stress scores are associated with differences in symptoms, we need to
have differences to explain in the first place.

The boxplots in Table 10.1 reveal the presence of outliers on both variables.
(The double circles indicate the presence of two overlapping data points.) The
existence of outliers should alert us to potential problems that these scores may
cause. The first thing we could do is to check the data to see whether these few
subjects were responding in unreasonable ways; for example, do they report the
occurrence of all sorts of unlikely events or symptoms, making us question the
legitimacy of their responses? (Difficult as it may be to believe, some subjects have
been known to treat psychological experiments with something less than the
respect and reverence that psychologists think that they deserve.) The second
thing to check is whether the same subject produced outlying data points on both
variables. That would suggest that the subject’s data, although legitimate, might
have a disproportionate influence on the resulting correlations. The third thing to
do is to make a scatterplot of the data, again looking for the undue influence of
particular extreme data points. (Such a scatterplot will appear in Figure 10.1.)
Finally, we can run our analyses including and excluding extreme points to see
what differences appear in the results. If you carry out each of these four steps on
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Table 10.1
Description of Data on the Relationship Between Stress and Mental Health

Stem-and-Leaf for Stress Stem-and-Leaf for Symptoms

0* | 1123334 5. | 8
0. | 5567788899999 6* | 112234
1* | 011222233333444 6. | 55668
1. | 555555566667778889 7* | 00012334444
2* | 0000011222223333444 7. | 57788899
2. | 56777899 8* | 00011122233344
3* | 0013334444 8. | 5666677888899
3. | 66778889 9* | 0111223344
4* | 334 9. | 556679999
4. | 5555 10* | 0001112224

10. | 567799
HI | 58, 74 11* | 112

11. | 78
Code:    2. | 5 25 12* | 11

12. | 57
13* | 1

HI | 135, 135, 147, 186

Code: 5. | 8 585

5

0 10 20 30 40 50 60 70

Boxplot for Stress

50 60 70 80 90 100 110 120 130 140 150 180

Boxplot for Symptoms

the data, you will find nothing to suggest that the outliers we have identified here
influenced the resulting correlation or regression equation in any important way.
These steps are important precursors to any good analysis, if only because they give
us greater faith in our final results.

Preliminary steps
1. Use stem-and-leaf displays and boxplot to examine the data for unusual

features.

2. Check to see that individual participants do not produce extreme scores
on both variables in a way that will unduly influence the outcome.

3. Produce a scatterplot of the data.

4. Run the analyses below with, and without, questionable data to see if
there is a difference in the outcomes.



10.2 The Basic Data

The data are shown in Table 10.2. The full data set is available for downloading at 

http://www.uvm.edu/~dhowell/fundamentals7/DataFiles/Tab10-2.dat

From these data you can calculate the correlation coefficient (covered in Chapter 9):

For our data the result would be

This correlation is fairly substantial for real data on psychological variables such as
these. Using Table E.2 in Appendix E with and ,
two-tailed, we see that any correlation greater than about .195 would be signifi-
cant. We can therefore reject and conclude that there is a significant
relationship between stress and symptoms. As we saw in the previous chapter, it
does not tell us that stress causes symptoms, although that is a possibility.

H0: r 5 0

a 5 .05N 5 107 1df 5 105 2

r 5
134.301

113.096 2 120.266 2 5 .506

r 5
covXY

sXsY

234 Chapter 10 Regression

You should recall that when we write “ , two-tailed,” we are speaking of a
two-tailed significance test that places 5% of the sampling distribution of r, when
the null hypothesis is true, in the rejection region. We have 105 degrees of free-
dom because the degrees of freedom for correlation are equal to , where N
is the number of pairs of observations. In rejecting the null hypothesis we are con-
cluding that the obtained correlation is too extreme for us to think that it came
from a population of pairs of scores where the population correlation ( ) is 0. r

N 2 2

a 5 .05

10.3 The Regression Line

We have just seen that there is a significant relationship between stress and
psychological symptoms. We can obtain a better idea of what this relationship is like
by looking at a scatterplot of the two variables and the regression line for predicting
Symptoms (Y) on the basis of Stress (X). The scatterplot is shown in Figure 10.1,
where the best-fitting line for predicting Y on the basis of X has been superimposed.
You will see shortly where this line came from, but notice first the way in which the
predicted Symptom scores increase linearly with increases in Stress scores. Our
correlation coefficient told us that such a relationship existed, but it is easier to

http://www.uvm.edu/~dhowell/fundamentals7/DataFiles/Tab10-2.dat
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Table 10.2
Data from Wagner et al. (1988)

ID Stress Symptoms ID Stress Symptoms ID Stress Symptoms

1 30 99 37 15 66 73 37 86
2 27 94 38 22 85 74 13 83
3 9 80 39 14 92 75 12 111
4 20 70 40 13 74 76 9 72
5 3 100 41 37 88 77 20 86
6 15 109 42 23 62 78 29 101
7 5 62 43 22 91 79 13 80
8 10 81 44 15 99 80 36 111
9 23 74 45 43 121 81 33 77
10 34 121 46 27 96 82 23 84
11 20 100 47 21 95 83 22 83
12 17 73 48 36 101 84 1 65
13 26 88 49 38 87 85 3 100
14 16 87 50 12 79 86 15 92
15 17 73 51 1 68 87 13 106
16 15 65 52 25 102 88 44 70
17 38 89 53 20 95 89 11 90
18 16 86 54 11 78 90 20 91
19 38 186 55 74 117 91 28 99
20 15 107 56 39 96 92 14 118
21 5 58 57 24 93 93 7 66
22 18 89 58 2 61 94 8 77
23 8 74 59 3 61 95 9 84
24 33 147 60 16 80 96 33 101
25 12 82 61 45 81 97 4 64
26 22 91 62 24 79 98 22 88
27 23 93 63 12 82 99 7 83
28 45 131 64 34 112 100 14 105
29 8 88 65 43 102 101 24 127
30 45 107 66 18 94 102 13 78
31 9 63 67 18 99 103 30 70
32 45 135 68 34 75 104 19 109
33 21 74 69 29 135 105 34 104
34 16 82 70 15 81 106 9 86
35 17 71 71 6 78 107 27 97
36 31 125 72 58 102

Descriptive Statistics

Stress Symptoms

Mean 21.467 90.701
Std. dev. 13.096 20.266
Covariance 134.301
N 107



appreciate just what it means when you see it presented graphically. Notice also that
the degree of scatter of points about the regression line remains about the same as
you move from low values of stress to high values, although with a correlation of
approximately .50 the scatter is fairly wide. We will discuss scatter again in more
detail when we consider the assumptions on which our procedures are based.

As you may remember from high school, the equation for a straight line is of
the form (You may have used other letters in place of a and b, but
these are the ones used by most statisticians.) For our purposes we will write the
equation as

where

the predicted value of Y—pronounced “y-hat”
the slope of the regression line (the amount of difference in Y
associated with a one-unit difference in X)
the intercept (the predicted value of Y when X = 0)

X is simply the value of the predictor variable, in this case, Stress. Our task will be
to solve for those values of a and b that will produce the best-fitting linear
function. In other words, we want to use our existing data to solve for the values
of a and b such that the line (the values of for different values of X) will come as
close as possible to the actual obtained values of Y.

Ŷ

a 5

b 5
Ŷ 5

Ŷ 5 bX 1 a

Y 5 bX 1 a.
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Figure 10.1
Scatterplot of symptoms as a function of stress
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Definition Predicted value (Y ): The value estimated from a regression equation.
Slope: The amount of change in Y for a 1-unit change in X.
Intercept: The value of Y when X is 0.
Errors of prediction: The difference between Y and .
Residual: The difference between the obtained and predicted values of Y.
Least squares regression: Refers to the fact that our calculation of the regression
line is based on minimizing the squared differences between Y and .

Why, you may ask, did I use the symbol rather than Y in my equation when
I defined the equation for a straight line in terms of Y? The reason for using is to
indicate that the values we are searching for are predicted values. The symbol Y
represents, in this case, the actual obtained values for Symptoms. These are the
symptom scores that our 107 different subjects reported. What we are looking for
are predicted values ( ) that come as close as possible to the Y values actually
obtained, hence the different symbol.

Having said that we are looking for the best-fitting line, we have to define
what we mean by “best.” A logical way would be in terms of errors of prediction,
that is, in terms of the deviations. Since is the value of the symptom vari-
able that our equation would predict for a given level of stress, and Y is a value that
we actually obtained, is an error of prediction, usually called the residual.
We want to find the line (the set of s) that minimizes such errors. We cannot just
minimize the sum of the errors, however, because for any line that goes through the
point that sum will be zero. Instead, we will look for the line that minimizes
the sum of the squared errors, that is, that minimizes (I said much the
same thing in Chapter 5 when I discussed the variance. There I was discussing devi-
ations from the mean, and here I am discussing deviations from the regression
line—sort of a floating or changing mean. These two concepts—errors of predic-
tion and variance—have much in common.) The fact that we are minimizing the
squares of the residual gives our approach its name—“least squares regression.”

It is not difficult to derive the equations for the optimal values for a and b,
but I will not do so here. As long as you keep in mind that they are derived in such
a way as to minimize squared errors in predicting Y, it is sufficient to state simply

and

a 5 Y 2 bX 5
©Y 2 b©X

N

b 5
covXY

s2
X

© 1Y 2 Ŷ 2 2.1X, Y 2
Ŷ

1Y 2 Ŷ 2
Ŷ1Y 2 Ŷ 2

Ŷ

Ŷ
Ŷ

Ŷ

Ŷ

Ŷ
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You should note that the equation for a includes the value of b, so you need to solve
for b first. 

If we apply these equations (using the covariance and the variance) from
Table 10-2, we obtain

and

We can now write

This equation is our regression equation, and the values of a and b are called
the regression coefficients. The interpretation of this equation is straightforward.
Consider the intercept (a) first. If (i.e., if the participant reports no stress-
ful events in the past month), the predicted value of Y (Symptoms) is 73.891, quite
a low score on the Hopkins Symptom Checklist. In other words, the intercept is
the predicted level of symptoms when the predictor (Stress) is 0.0. Next, consider
the slope (b). You may know that a slope is often referred to as the rate of change.
In this example, . This means that for every 1-point difference in
Stress, we predict a 0.7831 point difference in Symptoms. This is the rate at which
predicted Symptom scores change with changes in Stress scores. Most people think
of the slope as just a numerical constant in a mathematical equation, but it really
makes more sense to think of it as how much different you expect Y to be for a one-
unit difference in X.

Definition Regression equation: The equation that predicts Y from X.
Regression coefficients: The general name given to the slope and the intercept;
often refers only to the slope.

b 5 0.7831

X 5 0

Ŷ 5 0.7831X 1 73.891

a 5 Y 2 bX 5 90.701 2 10.7831 2 121.467 2 5 73.891

b 5
covXY

s2
X

5
134.301
13.0962 5

134.301
171.505

5 0.7831
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I have just covered a great deal of information. That is a lot to take in, so let’s
look at another example before we move on. We will take data from an inter-
esting study by Trzesniewski, Donnellan, and Robins (2008). (See also
Trzesniewski and Donnellan (2009).) They were testing an argument put forth
by Twenge (2006), who “characterized Americans born in the 1970s, 1980s,
and 1990s as ‘Generation Me,’ a label selected to capture their purported
tendency to be more egotistical, entitled, and overconfident than previous
generations.” (If you were born during those decades, I’ll bet you are thrilled
with that characterization!) Trzesniewski et al. obtained data on the Narcissistic
Personality Index (NPI) from eight different years. (A high score represents a



more narcissistic individual.) These are mean scores of very large samples for
each year. The data follow:

Year 1982 1996 2002 2003 2004 2005 2006 2007
NPI 0.39 .038 0.37 0.38 0.38 0.38 0.38 0.39

A scatterplot of these results is shown below, and it certainly does not look as if
narcissism is increasing, as Twenge believed.

We need several sample statistics for our calculations, and they are shown in the
following table, where year is represented as X and narcissism represented as Y.

1999.375 9.680 0.381 0.006 0.018 8

The correlation is the covariance of X and Y divided by the standard deviations
of the two variables.

We have degrees of freedom, and from Appendix D.2 we find that
we would need a correlation greater than to be significant at the .05 level
(i.e., at ). So we cannot reject the null hypothesis that the correlation
in the population ( ) is 0.00.

For the regression line we have

Therefore the regression line would be 

Ŷ 5 20.00019X 1 0.758.

a 5 Y 2 bX 5 0.381 2 12.00019 2 11999.375 2 5 0.758

b 5
covXY

s2
X

5
20.018
9.6802 5

20.018
93.702

5 20.00019

r

a 5 .05
; .707

N 2 2 5 6

r 5
covXY

sXsY

5
20.018

19.680 2 10.006 2 5
20.018
0.058

5 2.29

2

NcovXYsYYsXX

0.38

0.34

0.30

N
PI

19901985 1995

Year

2000 2005
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If the correlation is not significant, then the slope of the regression line will also
be nonsignificant, meaning that there is no significant change in Narcissism as
a function of the year in which it was measured. Kids aren’t getting more narcis-
sistic, regardless of what society says! (If the relationship had been statistically
significant we would be led to conclude that Narcissism scores actually decline
by 0.00019 units for every one unit increase in Year of testing. (This implies that
at the time of the birth of Christ the mean NPI score would have been 0.758. 
I am being facetious here. When is so far from the rest of the X values,
little or no faith can be put on interpreting the intercept.) However, the
relationship was not significant, so the best that we can say is that we have no
reason to doubt that narcissism scores are not changing with time.

What If We Standardized the Data?
Now we will return to the data on Symptoms and Stress. I hope you recall from
Chapter 6 that if we convert each variable separately to a standard score (called a
z score) we will have standardized data with a mean of 0 and a standard deviation
of 1. Except for the change in mean and standard deviation, the data will be unaf-
fected. Although we rarely work with standardized data, it is worth considering
what b would represent if the data for each variable were standardized separately.
In that case a difference of one unit in X or Y would represent a difference of one
standard deviation in that variable. Thus if the slope were 0.75 for standardized
data, we would be able to say that an increase of one standard deviation in X will
be reflected in an increase of three-quarters of a standard deviation in Y. When
speaking of the slope coefficient for standardized data, we often refer to the stan-
dardized regression coefficient as (beta) to differentiate it from the coefficient
for nonstandardized data (b). Fortunately we do not have to do any additional cal-
culations, such as converting each data point to a z score, because we have other
ways of knowing what would happen if we did standardize.

Definition Standardized regression coefficient ( ): The regression coefficient that results from
data that have been standardized.

The interesting thing about the standardized slope ( ) is that when we have
one predictor variable it is equivalent to r, the correlation coefficient. Therefore we
can say that if would also equal 0.506. Here a difference of one stan-
dard deviation between two students in terms of their Stress scores would be asso-
ciated with a predicted difference of about one-half a standard deviation unit in
terms of Symptoms. That gives us some idea of what kind of a relationship we are
speaking about. When we come to multiple regression in the next chapter, we will
find other uses for .

A word is in order here about actually plotting the regression line. To plot
the line, you can simply take any two values of X (preferably at opposite ends of

b

br 5 .506,

b

b

b

X 5 0
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the scale), calculate for each, mark the coordinates on the figure, and connect
them with a straight line. I generally use three points, just as a check for accuracy.
For the data on stress and symptoms, we have   

When ,

When ,

The line then passes through the points ( ) and ( ,
), as shown in Figure 10.1. 

It is important to point out that we have constructed a line to predict symp-
toms from stress, not the other way around. Our line minimizes the sum of the
squared deviations of predicted symptoms from actual symptoms. If we wanted to
turn things around and predict stress ratings from symptoms, we could not use this
line—it wasn’t derived for that purpose. Instead we would have to find the line that
minimizes the squared deviations of predicted stress from actual stress. The sim-
plest way to do this is just to go back to the equations for a and b, reverse which
variable is labeled X and which is labeled Y, and solve for the new values of a and
b. You then can use the same formulae that we have already used.   

Y 5 113.046
X 5 50X 5 0, Y 5 73.891

Ŷ 5 0.7831 3 50 1 73.891 5 113.046

X 5 50

Ŷ 5 0.7831 3 0 1 73.891 5 73.891

X 5 0

Ŷ 5 0.7831X 1 73.891

Ŷ
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Regression to the mean

Sir Francis Galton, in the middle of 19th century, observed an interesting phe-
nomenon. He noted that tall parents tended to have offspring who were shorter
than they were, and short parents tended to have taller offspring. (He also noted
a similar pattern with many other variables.) He worked on the problem for
years, but his focus was generally on inheritance of traits. He first labeled the
phenomenon “reversion,” and then moved to “regression,” which is where the
name of this chapter came from and why the symbol for a correlation coefficient
is r. At the time he referred to “regression to mediocrity,” but the process then
became known as “regression to the mean,” which sounds a lot nicer.

From Galton’s perspective the problem, and its explanation, does not
require much in the way of statistics. Suppose that you take a test on English
grammar. Your score is going to consist of two components. One is going to be
your true knowledge of grammar, and the other is going to be an element of luck
(good or bad). Suppose that you earned a 98, which was the highest grade in the
class. If you take a similar test next week, we will probably find that you will do
worse. You still have the same component of true knowledge, but luck is more
likely to work against you than that it will work for you. (You reached into the
pile of luck and pulled out an extreme piece of luck on the first test. From what
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you know about probability you should be aware that you are not likely to draw
very high luck components on both tests.) This is analogous to Galton’s obser-
vation with heights, and he spent considerable time working out what about the
components of heredity are analogous to “luck.” To Galton this was not a prob-
lem concerning least squares regression, it was simply a question about heredity
and fitting theory to observation.

Let’s look at it another way, which does involve statistics. If you standard-
ize the class tests scores for each day separately, you will have absolutely no
effect on the correlation coefficient between them. But we know from the ear-
lier discussion that with standardized data the slope will be equal to the corre-
lation. However, for all but the most trivial examples, the correlation
coefficient is going to be less than 1. Suppose that the correlation between two
tests in .80, and your score of 98 corresponds to a z score of 2.3. Then the stan-
dardized regression coefficient is also going to be .80, and the regression line for
the standardized data will be 

(The intercept will always be 0 for standardized data). So if you were 2.3 stan-
dard deviations above the mean on the first test, my best prediction for the sec-
ond test is standard deviations above the mean. But there is
someone else in the class who received a very low grade, and the same kind of
reasoning works for him or her in reverse—his or her score will be higher on the
second test. This is what is meant by “regression to the mean.” Predicted scores
on the second test will be closer to the mean that on the first test. Notice now
that we are not working with actual scores, but with predictions of scores. In a
sense, this is the statistical side of regression to the mean.

In sports, we commonly see examples of regression to the mean. The
player who wins the “Rookie of the Year” award this year, and of whom every-
one has great expectations for next year, is likely to be a disappointment in year
two. This is called the “sophomore slump,” and it has nothing to do with the
fact that the player doesn’t try as hard next year or has become rusty. It is what
we would reasonably expect to happen.

There is a very common tendency to think that this means that over time
there will be a general trend for all variables to regress toward a common mean.
Thus if my generation is expected to be shorter than our tall parents and taller
that our short parents, then my children’s generation is likely to be shorter than
the tall people in my generation and taller than the short parents in my gener-
ation, and so on. If that were true, we would expect that in 150 years everyone
will be 58 inches tall, and of course we know that such a thing won’t happen.
Regression to the mean is a phenomenon of individual data points, not a phenomenon
of group characteristics. Although we have lower expectations for higher scorers,
there will still be variation and the performance of many in that high scoring
group will be above their expectations. Even though you probably won’t score as
well on your grammar test next time, you know from experience that test grades

.80 3 2.3 5 1.84

Ŷ 5 .80 3 2.3 1 0



(taken as a whole) will look pretty much like what they did this time.
(Regression to the mean also works backward in time. Predict parents’ heights
from children’s heights and you will have the same phenomenon.)

An interesting study that relates very directly to regression to the mean
was conducted by Grambsch (2009). She looked at regression to the mean as
explaining some of the data on gun registration and murder rates and discovered
that when you control for regression to the mean the data “give no support to
the hypothesis that shall-issue laws have beneficial effects in reducing murder
rates.” “Shall-issue” laws allow more people to carry guns and have been claimed
to reduce crime.

Finally, all of this relates in an important way to the concept of random
assignment. Suppose that you want to improve the level of mathematical
knowledge in college students. You go out and administer a test, pull out the
worst students for special tutoring, place them back in the class and then test all
the students again. You are almost certain to be able to claim improved perform-
ance. It may not be that students’ underlying knowledge improved at all. If
those people were at the bottom of the heap in part because they just happened
to have really bad luck on Day 1, the random luck component will likely not be
as bad for the retest, and scores will improve even if tutoring was absolutely use-
less. This is a very important reason why we should insist on random assignment
of participants to groups when possible.
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10.4 The Accuracy of Prediction

The fact that we can fit a regression line to a set of data does not mean that our
problems are solved. On the contrary, they have just begun. The important point
is not whether a straight line can be drawn through the data (you can always do
that), but whether that line represents a reasonable fit to the data—in other words,
whether our effort was worthwhile.

Before we discuss errors of prediction, however, it is instructive to go back
to the situation in which we want to predict Y without any knowledge of the value
of X, which we considered at the very beginning of this chapter.   

The Standard Deviation as a Measure of Error
You have the data set in Table 10.1. Suppose that I asked you to predict a particu-
lar individual’s level of symptoms (Y) without being told what he or she reported
in terms of stress for the past month. Your best prediction in that case would be the
mean Symptom score ( ). You predict the mean because it is closer, on average, to
all the other scores than any other prediction would be. Think how badly you
would generally do if your prediction were the smallest score or the largest one.
Once in a while you would be exactly right, but most of the time you would be

Y



absurdly off. With the mean you will probably be exactly right more often (because
more people actually fall in the center of the distribution), and when you are
wrong you likely won’t be off by as much as if you had made an extreme prediction.
The error associated with your prediction will be the sample standard deviation of

. This is true because your prediction is the mean, and deals with devia-
tions around the mean. Examining , we know that it is defined as

and the variance is defined as

The numerator is the sum of squared deviations from (the point you would have
predicted in this particular example). 

The Standard Error of Estimate
Now suppose we want to make a prediction about the level of psychological
distress (as measured by symptoms) that a person is likely to experience given that
we know his or her reported level of stress. Suppose that the person’s X value
(Stress) is 15. In this situation we know both the relevant value of X and the
regression equation, and our best prediction would be . In this case , and

In line with our previous measure of error
(the standard deviation), the error associated with this prediction will again be a
function of the deviations of Y about the predicted point; however, in this case the
predicted point is rather than . Specifically, a measure of error can now be
defined as

and again the sum is of squared deviations about the prediction ( ) divided by
, where N is the number of pairs. The statistic is called the standard

error of estimate and is sometimes written to indicate that it is the standard
deviation of Y predicted from X. It is the most common (though not always the best)
measure of the error of prediction. Its square, , is called the residual variance,
or error variance.

Definition Standard error of estimate: The average of the squared deviations about the
regression line.
Residual variance (error variance): The square of the standard error of estimate.
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Table 10.3
First Ten Cases from Data of Wagner et al. (1988), Including and ResidualsŶ

Subject Stress(X ) Symptoms (Y ) ( )

1 30 99 97.383 1.617
2 27 94 95.034 1.034
3 9 80 80.938 0.938
4 20 70 89.552 19.552
5 3 100 76.239 23.761
6 15 109 85.636 23.364
7 5 62 77.806 15.806
8 10 81 81.721 0.721
9 24 74 91.901 17.901

10 34 121 100.515 20.485

Descriptive Statistics from Complete Data Set

Mean 21.467 90.701
Std. dev. 13.096 20.266
Covariance 134.301

© 1Y 2 Ŷ 2 2 5 32,386.048
© 1Y 2 Ŷ 2 5 0.000

2

2

2

2

2

2

Y 2 ŶŶ

Table 10.3 shows how to calculate the standard error of estimate directly.
The raw data for the first 10 cases are given in columns 2 and 3, and the predicted
values of Y (obtained from ) are given in column 4.
Column 5 contains the values of for each observation. Note that the sum
of that column is 0, because the sum of the deviations about the pre-
diction is always 0. If we square and sum the deviations, we obtain

. From this sum we can calculate   

Finding the standard error this way is hardly a lot of fun, and I don’t recom-
mend that you do so. I present it because it makes clear what the term represents.
Fortunately, a much simpler procedure exists that not only represents a way of cal-
culating the standard error of estimate but also leads directly to even more impor-
tant matters. But don’t forget the formula we just used, because it best defines what
it is we are measuring.   

and the Standard Error of Estimate
We have defined the standard error of estimate as

sY2 Ŷ 5 B© 1Y 2 Ŷ 2 2
N 2 2

r2

sY2 Ŷ 5 B© 1Y 2 Ŷ 2 2
N 2 2

5 B32,386.048
105

5 2308.439 5 17.562

© 1Y 2 Ŷ 2 2 5 32,386.048

1© 1Y 2 Ŷ 2 2 Y 2 Ŷ
Ŷ 5 0.7831X 1 73.891



From here a small amount of algebraic substitution and manipulation, which I am
omitting, will bring us to

From our data we now can calculate in two different ways, and these give the
same answer 

Now that we have computed the standard error of estimate, we can interpret
it as a form of standard deviation. Thus it is reasonable to say that the standard
deviation of points about the regression line is 17.562. Another way of saying this is
to say that is the standard deviation of the errors that we make when using
our regression equation.

as a Measure of Predictable Variability
The squared correlation coefficient ( ) is a very important statistic to explain the
strength of the relationship we have between two variables. In what follows I am
being a bit casual with my terminology. To explain things the perfectly correct way
would require me to present several formulae and concepts that you don’t really
need to know. It is tempting to refer to several of the terms by using the word
“variance,” but they aren’t truly variances. So I am going to use the wishy-washy
terms “variation” and “variability,” which stand for the variability of whatever we
are talking about, however we choose to measure it.

When you start out with two variables (X and Y), there is probably a great
deal of variability in Y, your dependent, or criterion, variable. Some of that vari-
ability is directly related to the predictor variable (X), and some is just plain noise,
or what we call error. If X is a good predictor of Y, as it was in the example of Stress
predicting Symptoms, then a big chunk of the variability in Stress is associated
with variability in Symptoms, and this variability is measured by variation in . By
that I mean that much of the reason that you and I differ in our levels of Symptoms
is because we differ in our levels of Stress. If we had the same level of Stress we
would have the same predicted level of Symptoms. If we have different levels of
Stress then we have different predicted levels of Symptoms.   

So now assume that I write a rather vague equation of the form   

r2 5
Variation in Symptoms Explained by Stress

Variation in Symptoms

Ŷ

r2

r2

sY2 Ŷ

sY2 Ŷ 5 sYB11 2 r2 2 aN 2 1
N 2 2

b 5 20.266B11 2 .5062 2 a 106
105
b 5 17.562

sY2 Ŷ 5 B© 1Y 2 Ŷ 2 2
N 2 2

5 B32,386.048
105

5 17.562

sY2 Ŷ

sY2 Ŷ 5 sYB11 2 r2 2 aN 2 1
N 2 2

b
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If we do the arithmetic here the result will be a percentage. In other words, will
equal the percentage of the variability in Symptoms that Stress is able to predict
or explain. In our case we found an r of .506, so we can say that differences in Stress
predict about 25% of the differences in Symptoms.1 To put this another way, if we
take a group of people and measure their Symptom levels, there will be a lot of dif-
ferences between people. Some are very laid back and some are just plain “off the
wall.” But we now know that 25% of these differences among people are related to
the fact that they experience different levels of Stress. And in the behavioral sci-
ences, being able to explain 25% of the variability of some variable is impressive.

Now let’s go to our example of narcissism. If the statement is true that peo-
ple are becoming more narcissistic over time, then time should explain a large
amount of changes in mean narcissism levels. But our correlation was , which,
when squared, says that we can only explain about 9% of differences in narcissism.
Moreover, the correlation (and the regression coefficient (b)) are negative, which
means that if anything, narcissism is generally decreasing, although the correlation
is not significant.

2.29

r2

1 Students often have difficulty understanding the concept of . Suppose that I remarked that there seemed
to be large differences in crime rates on different campuses. You might suggest that a chunk of that is due to
different reporting standards. The statistic is simply putting a numeric value on what you have called “a
chunk.” Notice that we are focusing on differences in crime rates, not the rates themselves.

r2

r2

This concept is important enough that it deserves a different way of
explaining it. Suppose we are interested in studying the relationship between
cigarette smoking (X) and age at death (Y). As we watch people die off over
time, we notice several things. First we see that not all die at precisely the same
age—there is variability in age at death regardless of (i.e., ignoring) smoking
behavior. We also notice the obvious fact that some people smoke more than
others. This is variability in smoking behavior regardless of age at death. We
further find that cigarette smokers die earlier than nonsmokers, and heavy
smokers earlier than light smokers. Thus we write a regression equation to
predict Y (Age) from X (Smoking). Because people differ in their smoking
behavior, they will also differ in their predicted life expectancy ( ), and this is
the variability in —that is, does not vary unless X varies. 

We have one last source of variability, the variability in the life
expectancy of those people who smoke exactly the same amount. It is error vari-
ability, that is, variability in Y that cannot be attributed to variability in X
because these people did not differ in the amount they smoked. These several
sources of variability (i.e., sums of squares) can be neatly summarized.

Sources of Variance in Regression 

n Variability in amount smoked

n Variability in life expectancy

ŶŶ
Ŷ



n Variability in life expectancy directly attributable to variability in
smoking behavior

n Variability in life expectancy that cannot be attributable to variability in
smoking behavior

If we consider the absurd extreme in which all nonsmokers die at exactly age 72
and all smokers smoke precisely the same amount and die at exactly age 68,
then all the variability in life expectancy is directly predictable from variability
in smoking behavior. If you smoke you will die at 68, and if you don’t smoke you
will die at 72. Here the correlation will be 1 and smoking would be predicting
100% of the variability in age at death.

In a more realistic example, smokers might tend to die earlier than
nonsmokers, but within each group there would be a certain amount of vari-
ability in life expectancy. In this situation some of the variability in age at
death is attributable to smoking and some is not. We want to be able to
specify the percentage of the overall variability in life expectancy attributa-
ble to variability in smoking behavior. In other words, we want a measure
that represents

As we have seen, that measure is .
This interpretation of is extremely useful. If, for example, the correla-

tion between amount smoked and life expectancy were an unrealistically high
.80, we could say that of the variability in life expectancy is directly
predictable from the variability in smoking behavior. Obviously, this is a sub-
stantial exaggeration of the real world. If the correlation were a more likely

, we could say that of the variability in life expectancy is
related to smoking behavior, whereas the other 96% is related to other factors.
(While 4% may seem to you to be an awfully small amount, when we are talk-
ing about how long people will live, it is far from trivial, especially for those
people affected.)

One problem associated with focusing on the squared correlation coef-
ficient is maintaining an appropriate sense of perspective. If it is true that
smoking accounts for 4% of the variability in life expectancy, it might be
tempting to dismiss smoking as a minor contributor to life expectancy. You
have to keep in mind, however, that an enormous number of variables
contribute to life expectancy, including such things as automobile accidents,
homicide, cancer, heart disease, and stroke. Some of those are related to
smoking and some are not, and one that accounts for 4% or even 1% of the
variability is a fairly powerful predictor. A variable that accounts for 4% of
variability in grades in a course is probably minor. But something that
accounts for 4% of the variability in life expectancy is not to be dismissed 
quite so easily.

.202 5 4%r 5 .20

.802 5 64%

r2
r2

Perdicted variability
Total variability
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It is important to note that phrases such as “accountable for,” “attributable
to,” “predictable from,” and “associated with” are not to be interpreted as statements
of cause and effect. You could say that pains in your shoulder account for 10% of the
variability in the weather without meaning to imply that sore shoulders cause rain,
or even that rain itself causes sore shoulders. For example, your shoulder might hurt
when it rains because carrying an umbrella aggravates your bursitis.

10.5 The Influence of Extreme Values

In Table 9.3 we saw a set of real data on the relationship between expenditures on
alcohol and tobacco in 11 regions in Great Britain. We also saw that the inclusion
of an unusual data point from Northern Ireland drastically altered the correlation
from what it would have been without that observation. (Inclusion of that obser-
vation caused the correlation to drop from .784 to .224.) Let’s see what effect that
point has on the regression equation.

Table 10.4 contains the output for two solutions—the first with the aberrant
observation, and the second without it. The regression lines are shown in parts (a)
and (b) of Figure 10.2.

Table 10.4
Regression Solutions with and without the Observation from Northern Ireland

(a) With Northern Ireland

Coefficientsa

Unstandardized Standardized 
Coefficients Coefficients

Model B Std. Error Beta t Sig.

1 (Constant) 4.351 1.607 2.708 .024
TOBACCO .302 .439 .224 .688 .509

a. Dependent Variable: ALCOHOL

(b) Without Northern Ireland

Coefficientsa

Unstandardized Standardized 
Coefficients Coefficients

Model B Std. Error Beta t Sig.

1 (Constant) 2.041 1.001 2.038 .076
TOBACCO 1.006 .281 .784 3.576 .007

a. Dependent Variable: ALCOHOL



Notice the drastic change in the regression line. The slope went from .302 to
1.006, and the p value associated with those slopes exactly mirrored the p values
for the corresponding correlations. This is an illustration that one unusual value
can have a significant effect in pulling the regression line toward itself. This is a
particularly good example because the observation in question is not particularly
unusual when we look at one variable at a time. Moreover, it is a real data point,
and not just an error on the part of someone who was collecting the data.   
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Figure 10.2
Scatterplots with, and without Northern Ireland
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10.6 Hypothesis Testing in Regression

In the previous chapter we saw how to test a correlation coefficient for signifi-
cance. We tested because if the variables are linearly independ-
ent, and if the variables are related. When we come to regression problems,
we have both a correlation coefficient and a slope, and it makes sense to ask if
either is different from zero.2 You know how to deal with , but what about b?

The simplest approach to testing the slope is just to say that when you have only
one predictor you don’t need a separate test on b. If the correlation between Stress and
Symptoms, for example, is significant, it means that Symptoms are related to Stress.
If the slope is significant it means that the predicted number of symptoms increases (or
decreases) with the amount of stress. But that’s saying the same thing! As you will see
in a moment, the test for the slope is numerically equal to the test for the correlation
coefficient. The easy answer, then, is to test the correlation. If that test is significant,
then both the correlation in the population and the slope in the population are
nonzero. But keep in mind that this is true only when we have one predictor. When
we come to multiple predictors in the next chapter, that will no longer be the case.

An alternative approach is to use a test statistic we have not yet covered. I
suggest that you just skim these two paragraphs and come back to them after you
have read about t tests in Chapter 12. What we are going to do is calculate a sta-
tistic called t (using the slope, b) and look up t in a table. If the t we calculate is
larger than the tabled t, we will reject . Notice that this is the same kind of pro-
cedure we went through when we tested r. Our formula for t is   

Then

I mention the t test here, without elaborating on it, because you are about to
see that same t appear in the computer printout in the next section. (It was also in
the printout in Table 10.4.) To jump ahead, if you look at Figure 10.3, the last few
lines show the values for the slope (labeled “Stress”) and the intercept (labeled
“Constant”). To the right is a column labeled “t” and another labeled “Sig”
The entries under “t” are the t tests just referred to. (The test on the intercept is

t 5
b1sX 21N 2 1

sYB11 2 r2 2N 2 1
N 2 2

5
10.7831 2 113.096 21106

20.266B11 2 .506 2106
105

5
105.587
17.563

5 6.01

t 5
b

sY2 Ŷ

sX2N 2 1

5
b1sX 22N 2 1

sYB11 2 r2 2N 2 1
N 2 2

H0

r

r ? 0,
r 5 0,H0: r 5 0

2 You could also test the intercept, but such a test is usually not very interesting.
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Figure 10.3
Regression analysis of relationship between symptoms and stress



somewhat different, but it is still a t test.) The entries under “Sig. t” are the probabil-
ities associated with those ts under . If the probability is less than .05, we can reject

. Here we will reject and conclude that the slope relating symptoms to stress is
not zero. People with higher stress scores are predicted to have more symptoms.   

10.7 Computer Solution Using SPSS

Figure 10.3 contains the printout from an SPSS analysis of the Symptoms and
Stress data. An introduction to how we request this analysis is briefly presented in
the Short Manual at this book’s Web site. It is found in Chapter 6. The output starts
by presenting the mean, the standard deviation, and the sample size of all cases,
followed by the correlation coefficient matrix. Here you can see that the
correlation of .506 agrees with our own calculation. For some reason SPSS chooses
to report one-tailed significance probabilities, rather than the more traditional
two-tailed values that they report in other procedures. You can simply double the
p value to have a two-tailed test. The next section presents the correlation coeffi-
cient again. This section also gives you the squared correlation (.256), the adjusted
r squared, which we will skip, and the standard error of estimate These
values agree with those that we have calculated. The section headed “ANOVA”
(Analysis of Variance) is simply a test on the significance of the correlation
coefficient. The entry “Sig.” is the probability, under , of a correlation as large
as .506. Since the probability is less than .05, we will reject and conclude that
there is a significant relationship between Symptoms and Stress. Finally, in the
section headed “Coefficients” we see the slope (in column B, next to the word
STRESS) and the intercept directly above the slope. Skipping the next two
columns we come to the t tests on these coefficients and the probability of those 
t values. I have already discussed the t on the slope. This is the same value we
calculated using the formula given in Section 10.6. The t test on the intercept is
simply a test that the true intercept is zero. We rarely would expect it to be, so this
test is not particularly useful for most purposes.

Writing Up the Results
There are some pieces of information that would go into the write up of a regres-
sion analysis that we have not yet covered. I am including them anyway to be
thorough, but do not get too concerned with what they represent. We might write
up these results this way: 

- Wagner, Compas, and Howell (1988) conducted a study examining the 
relationship between stress and mental health in college students. They
asked 107 college students to complete a checklist assessing the number
and severity of negative life events that they had recently experienced.
They also asked these same students to complete a checklist of
psychological symptoms that they experienced in the past month. The
relationship between these two variables addresses the issue of stress and

H0

H0

1sY2 Ŷ2 .

H0H0

H0
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mental health, and the literature would suggest that an increase in
stressful events would be associated with an increase in the number of
symptoms reported by the students. 

The analyses of these data confirmed the prediction and produced a
correlation of .506 between the two variables , which is
significant at The regression
equation has a slope Higher levels of
stress are associated with higher levels of psychological symptoms, and stress
accounts for approximately 25% of the variation in Symptoms. (I would not
report the intercept here because it has no substantive meaning.)   

10.8 Seeing Statistics

The applets contained on the Web site provide an excellent way for you to
review what you have learned. They will also make it easier for you to recall that
material on an exam, because you will have actively worked with it. In addition,
the applets related to the t test will give you a head start on Chapters 12–14. 

One of the important concepts to understand about a scatterplot with a
regression line is just how the regression line helps us to predict Y. The applet
entitled Predict Y, shown below, illustrates this simple principle. As you move
the slider on the X axis, you vary the value of X, and can read the correspon-
ding value of . For this particular example, when , 
Additionally, by moving the sliders on the left and right, you can vary the inter-
cept and the slope, respectively, and observe how the predictions change.    

Ŷ 5 2.2.X 5 2Ŷ

5 0.78 1t 1105 2 5 6.012, p 5 .0000 2 .a 5 .05 1F11, 105 2 5 36.14, p 5 .0000 2 .1r2 5 .256 2
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Calculate values of for 2, 3, and 4. Then make the slope steeper, by
moving the slider on the right up, and again calculate for 2, 3, and 4.
What has changed?   

Now do the same thing except this time change the intercept. Now how
do the values of change as we vary X?   

I have said that the regression line is the “best fitting” line through the
data points. The following applet, named FindLine, allows you to move the
regression line vertically (i.e., changing its intercept) and to rotate it (i.e.,
changing its slope). The data in the following figure are taken from
McClelland’s original applet, and show the scores on a Statistical Knowledge
Quiz (SKQ) before and after students have taken his statistics course. 

Adjust the line until you think that it is a “best fit.” I happen to know that
the best fitting line has an intercept of 10.9, and a slope of 0.42. How does the
line you fit compare to that?   

By clicking on the icon labeled “My Data,” you can enter your own data.
Enter the data on alcohol and tobacco use from Table 9.3 in Chapter 9, and see
the results.   

One of the applets in Chapter 9 allowed you to remove individual data
points and observe the effect on the correlation between two variables. We will
return to that applet here, though this time we will concentrate on the influ-
ence of extreme points on the regression line. The applet shown below is taken
from the data in Figure 9.3.   

Ŷ

X 5Ŷ
X 5Ŷ
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By clicking on the point at approximately I have changed
the slope of the regression line from to The less steep line in this
figure is the line for all 24 observations, whereas the steeper line fits the data, 
omitting the point on which I clicked.   

You can click on each data point and see the effect on the slope and
intercept.   

One of the points in this chapter concerned the use of Student’s t test to
test the null hypothesis that the true slope in the population is 0.00 (i.e., the
hypothesis that there is no linear relationship between X and Y.)  The applet
named SlopeTest illustrates the meaning of this test with population data that
support the null hypothesis. A sample screen is illustrated here.

23.3.23.0
12.5, 26.5 2
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In this applet I have drawn 10 samples of 5 pairs of scores. I drew from a
population where the true slope, and therefore the true correlation, is 0.00, so
I know that the variables are not linearly related. For each slope that I obtained,
I calculated a t test using the formula for t given in Section 10.6. The 10 t val-
ues are given near the top of the display, and they range from to 1.776.
The distribution of these 10 values is given at the right, and the plot of the five
observations for my 10th set is given at the left. Each time I click the “10 sets”
button, I will draw 10 new sets of observations, calculate their slopes and asso-
ciated t values, and add those to the plot on the right. If I click the “100 Sets”
button, I will accumulate 100 t values at a time.   

Run this applet. First generate one set at a time and note the resulting
variation in t and how the regression line changes with every sample. Then
accumulate 100 sets at a time and notice how the distribution of t smoothes out.
Notice that our t values only rarely exceed 3.00. (In fact, the critical value of
on 3 df is 3.18.)

Now move to the lower applet on that page, which will sample 15 pairs per
sample. Note how the t distribution narrows slightly with larger sample sizes.   

We will use one final applet to illustrate the use of the t test for the slope.
Several times in Chapters 9 and 10 I have focused on the data set showing the

;

;

22.712
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relationship between alcohol and tobacco use in Great Britain, and the
influence of extreme data points. In Figure 10.3 I presented an SPSS printout
showing the slope (unstandardized) and its standard error. Along with the
sample size (N), that is all we need for calculating t.   

The applet Calculatet is shown next for the statistics from the complete
data set (including Northern Ireland). I entered 0.302 as the slope, 0.0 as the
null hypothesis to be tested (the hypothesis that the true slope is 0), and 0.439
as the standard error. I also entered the sample size as 11. Each time that I
entered a number, I pressed the Enter key—don’t just move your mouse to another
box without pressing Enter. You can see that the resulting value of t is 0.688, and
the figure at the bottom shows that the two-tailed probability is .506.   

We see that the slope here is not significantly different from 0. Now enter
the data from part (b) of Table 10.4, testing whether the relationship is significant
once we remove the outlier.   
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10.9 Course Ratings as a Function of Anticipated Grade

In Chapter 9 we obtained the correlation coefficient for the relationship between
the rated quality of a course and the difficulty of that course (as reflected by the
average expected grade for students taking the course). The data are repeated in
Table 10.5, which shows only the first 15 cases to conserve space, but the calcula-
tions are based on all 50 cases in my sample. As a stepwise review of regression cal-
culations we will solve for the regression equation for predicting rated Overall
Quality (Y) from Expected Grade (X). We will then consider the interpretation of
the coefficients in that equation.

1. Our first step is to calculate the mean and the standard deviation of
each variable, as follows:

 sX 5 B613.65 2 174.32>50

49
5 0.3511

 X 5 174.3>50 5 3.486

 sY 5 B648.57 2 177.52>50

49
5 0.6135

 Y 5 177.7>50 5 3.550
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Table 10.5
A Worked Example of Predicting Course Quality from Grades

Expected Overall Expected Overall 
Grade (X ) Quality (Y ) Grade (X ) Quality (Y )

3.5 3.4 3.0 3.8
3.2 2.9 3.1 3.4
2.8 2.6 3.0 2.8
3.3 3.8 3.3 2.9
3.2 3.0 3.2 4.1
3.2 2.5 3.4 2.7
3.6 3.9 3.7 3.9
4.0 4.3

Results Based on All 50 Cases

 ©XY 5 621.94

 ©Y 2 5 648.57

 ©Y 5 177.5

 ©X2 5 613.65

 ©X 5 174.3



2. The covariance is given as

3. To calculate the slope, we have

4. We calculate the intercept as

5. Our equation is then

6. We can interpret the result as follows. If we had a course in which
students expected a grade of 0, our best guess is that the expected course
rating would be 1.7174. That is not a meaningful statistic as far as inter-
pretation is concerned because it is difficult to imagine a course in
which everyone would expect to fail. In this case the intercept merely
serves to anchor the regression equation.

7. A slope of 0.5257 can be interpreted to mean that if two courses differ by
one point in expected grades, their overall ratings would be expected to
differ by a little over one-half a point. Such a difference, then, would be
expected between a course in which students anticipate a grade of C
(2.0) and a course in which students anticipate a grade of B (3.0). Keep
in mind, however, the earlier remarks about the fact that we are not
making a causal statement here. We have no particular reason to
conclude that lower expected grades cause lower ratings, although they
are associated with lower ratings. Poor teaching could easily lead to both.

10.10 Regression versus Correlation

We spent Chapter 9 discussing correlation and then turned around in this chapter
and said some of the same things about regression. You might be forgiven for ask-
ing why we need both. There are at least two answers to that question. When we
have only one predictor variable, as we have had in these two chapters, the two
approaches tell you many of the same things. The advantage of a correlation
coefficient is that it is a single number that allows you to quickly characterize the
degree to which two variables are related. When you can say that a specific test of
manual skills is correlated .85 with performance on the job, you are saying some-
thing important. In that example I imagine that I would be saying something much
less useful if I said that an increase of 10 points on the test is associated with a
5-point difference in job performance. On the other hand, when you are interested

Ŷ 5 0.52571X 2 1 1.7174

a 5 Y 2 b1X 2 5 3.55 2 .525713.486 2 5 1.7174

b 5
covXY

s2
X

5
0.0648
0.35112 5 0.5257

covXY 5

©XY 2
©X©Y

N
N 2 1

5

621.94 2
1174.3 2 1177.5 2

50
49

5 .0648
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in speaking about the magnitude of change, a regression coefficient is useful. If I
could tell you that making birth control information available to an additional
10% of a population of women at high risk of producing a child that will not live
for a year will decrease infant mortality by 9.7 percentage points, I am telling you
something that is probably far more useful than telling you that the correlation
between contraception and infant mortality in Sub-Saharan Africa is .44. Both
statistics have their uses, and you can choose the one that best serves your needs.

When we come to the next chapter on multiple regression we will find that
correlation and regression do not overlap so nicely. We might have a very high cor-
relation between two predictors, taken together, and an outcome variable, but that
might be due to one or the other, or both, of those predictors. The usual way of
seeing which variables are important is to look at the regression coefficient. In fact,
it is often the case that we will apply multiple regression in a setting where we
know that the overall multiple correlation is almost certain to be significant, but
we want to tease out the separate roles of the predictors.   

10.11 Summary

I began this chapter by defining regression as the prediction of one variable from
knowledge of one or more other variables, and I said that the regression line is the
straight line that best represents the relationship between two variables. A regres-
sion line is a straight line of the form where is the value of Y pre-
dicted from the value of X. The coefficient b is the slope of the regression line and
a is the intercept. The slope is the rate at which the predicted value of Y changes
for every one unit change in X. The intercept is the predicted value of Y when X
is zero. The intercept anchors the line (it determines the height of the line, but not
its slope), but frequently has little substantive meaning because is often an
unreasonable value in the data.

I next discussed the concept of regression to the mean. This refers to the fact
that someone who scores high on one test will probably score lower on the next
test, and the reverse is true for a person with unusually low scores. It also refers to
the fact that our regression equation predicts the same phenomenon. It is impor-
tant to keep in mind that this concept refers to individual observations and does
not lead to groups of scores showing reduced variability over time.   

I also discussed errors of prediction, which are the deviations between the Y
value that was obtained and the value that was predicted. These errors are com-
monly called “residuals,” because they are the differences left over after X has done
its best at predicting Y. Our regression line is drawn to minimize the squares of
these deviations, which is why we call the technique “least squares regression.”

Finally, I briefly discussed the standard error of estimate, which is basically
the standard deviation of the residuals, or deviations between Y and . If you have
large errors of prediction the standard error of estimate will be large. I drew the
comparison between the standard error of estimate, which is a standard deviation
about a regression line, and the normal standard deviation, which represents devi-
ations about the mean. From there I went to the square of  and said that itr 1r2 2

Ŷ

Ŷ

X 5 0

ŶŶ 5 bX 1 a,
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10.11 Exercises

10.1 The following data are from 10 health-planning districts in Vermont. Y is the percentage of
live births grams. is the fertility rate for women or years of age (
is known as the “high-risk fertility rate.”). is the percentage of births to unmarried
women. Compute the  regression equation for predicting the percentage of births of infants
weighing under 2,500 grams (Y) on the basis of the high-risk fertility rate.

District Y X1 X2

1 6.1 43.0 9.2
2 7.1 55.3 12.0
3 7.4 48.5 10.4
4 6.3 38.8 9.8
5 6.5 46.2 9.8
6 5.7 39.9 7.7
7 6.6 43.1 10.9
8 8.1 48.5 9.5
9 6.3 40.0 11.6

10 6.9 56.7 11.6

X2

X1$ 35# 17X1# 2,500

can be interpreted as the percentage of the variability in Y that can be predicted
from the relationship between Y and X. I suggested that this is not always an easy
measure to interpret because we don’t have a good way of knowing what is a high
or low value of in any given situation.   

In the case of two variables, a significance test on r is equivalent to a signif-
icance test on b. However, I also gave a t test for b, which will produce the same
result as a test on r, and this t test is printed in all computer printout.   

In this chapter I only looked at the case where we have one predictor. In the
next chapter I will move to the situation in which we have several predictors to
predict one criterion variable. That is known as “multiple regression,” while the
case of one predictor is often called “simple regression.”   

Some important terms in this chapter are

r2
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Intercept, 237
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Regression equation, 238
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Regression to the mean, 241

Standard error of estimate, 244

Residual variance 
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10.2 Calculate the standard error of estimate for the regression equation in Exercise 10.1.  

10.3 If, as a result of ongoing changes in the role of women in society, we saw a change in the
age of childbearing such that the high-risk fertility rate jumped to 70 in Exercise 9.1, what
would we predict for the incidence of birthweight grams?

10.4 Why should you feel uncomfortable making a prediction in Exercise 10.3 for a rate 
of 70?

10.5 In Exercise 9.1 we saw data on infant mortality and risk factors. Why might you feel more
comfortable making a prediction based on Income for Senegal than for Ethiopia or
Namibia?

10.6 What does what you know about regression contribute to your understanding of infant
health in developing countries?

10.7 Using the data in Table 10.2, predict the Symptom score for a stress level of 45.

10.8 The mean Stress score in Table 10.2 was 21.467. What would your prediction be for a Stress
score of 21.467? How does this compare to the mean Symptom score?

10.9 Suppose that we know that the correlation between two variables named X and Y is .56.
What would you expect would happen to the correlation if we subtracted 10 points from
every X score?

10.10 With regard to Exercise 10.9, suppose that the mean of X was 15.6 and the mean of Y was
23.8. What would happen to the slope and intercept if we subtracted 10 points from every Y?

10.11 Draw a diagram (or diagrams) to illustrate Exercise 10.10.

10.12 Make up a set of 5 data points (pairs of scores) that have an intercept of 0 and a slope of 1.
(There are several ways to solve this problem, so think about it a bit.)

10.13 Take the data that you just created in Exercise 10.12 and add 2.5 to each Y value. Plot the
original data and the new data. On the same graph, superimpose the regression lines. 
(a) What has happened to the slope and intercept? 
(b) What would happen to the correlation?

10.14 Generate and for the first five cases of the data in Table 10.2.

10.15 Using the data in Appendix D, compute the regression equation for predicting GPA from
ADDSC.

10.16 In the chapter we saw a study by Trzesniewski et al. (2008) on trends in narcissism scores
over time. They also reported data on self-enhancement, which is the tendency to hold
unrealistically positive views of oneself. The measure of self-enhancement (SelfEn) was
obtained by asking students to respond on a 1–10 scale rating their intelligence relative to
others. The researchers then calculated the difference between the rating predicted from
SAT scores and the rating the student gave. The data are presented below.  Positive scores
represent self-enhancement.

Year 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990

SelfEn .06 .03 .00 .01 .07 .06 .04 .03 .03 .03 .03 .07 .06 .03 .03

Year 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006

SelfEn .04 .01 .01 .02 .02 .05 .00 .01 .01 .02 .06 .08 .10 .11 .08 .082222222222
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(a) From these data can we say something about what changes have taken place in self-
enhancement scores of college students over the years?

(b) With several hundred thousand students in the combined sample, the authors of the
original study actually based their analyses on individual scores rather than yearly
means to make the same computation. They found a correlation of .03, which differs
considerably from your result. Why is this not surprising?

(c) Which is the correct correlation for this question (yours or the authors’), or are they
both correct?

10.17 Using the data on self-enhancement given in Exercise 10.16, add two scores to each year,
keeping the year mean unchanged. (For example, if the 1982 mean SelfEn score was 0.40,
you could make two other scores for that year by adding and subtracting .03 from 0.40.)
This will give you pairs of scores. Now compute the correlation and regres-
sion of SelfEn predicted from Year. Why does the correlation differ from the com-
puted in Exercise 10.16? What has happened to the slope, and why?

10.18 Why would we ever care if a slope is significantly different from 0?

10.19 The following data represent the actual heights and weights referred to in Chapter 9 for
male college students.

Height Weight Height Weight

70 150 73 170
67 140 74 180
72 180 66 135
75 190 71 170
68 145 70 157
69 150 70 130
71.5 164 75 185
71 140 74 190
72 142 71 155
69 136 69 170
67 123 70 155
68 155 72 215
66 140 67 150
72 145 69 145
73.5 160 73 155
73 190 73 155
69 155 71 150
73 165 68 155
72 150 69.5 150
74 190 73 180
72 195 75 160
71 138 66 135
74 160 69 160
72 155 66 130
70 153 73 155
67 145 68 150
71 170 74 148
72 175 73.5 155
69 175

r 5 .57
31 3 3 5 93

2
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(a) Make a scatterplot of the data.
(b) Calculate the regression equation of weight predicted from height for these data.

Interpret the slope and the intercept.
(c) What is the correlation coefficient for these data?
(d) Are the correlation coefficient and the slope significantly different from zero?

10.20 The following data are the actual heights and weights referred to in Chapter 9 of female
college students:

Height Weight Height Weight

61 140 65 135
66 120 66 125
68 130 65 118
68 138 65 122
63 121 65 115
70 125 64 102
68 116 67 115
69 145 69 150
69 150 68 110
67 150 63 116
68 125 62 108
66 130 63 95
65.5 120 64 125
66 130 68 133
62 131 62 110
62 120 61.75 108
63 118 62.75 112
67 125

(a) Make a scatterplot of the data.
(b) Calculate the regression coefficients for these data. Interpret the slope and the

intercept.
(c) What is the correlation coefficient for these data? 
(d) Are the correlation and the slope significantly different from zero?

10.21 Using your own height and the appropriate regression equation from Exercise 10.19 or
10.20, predict your own weight. (If you are uncomfortable reporting your own weight, pre-
dict mine—I am and weigh 156 pounds—well, at least I would like to think so.)
(a) How much is your actual weight greater than or less than your predicted weight? (You

have just calculated a residual.)
(b) What effect will biased reporting on the part of the students who produced the data

play in your prediction of your own weight?

10.22 Use your scatterplot of the data for students of your own gender and observe the size of the
residuals. (Hint: You can see the residuals in the vertical distance of points from the line.)
What is the largest residual for your scatterplot?

10.23 Given a male and a female student who are both , how much would they be expected
to differ in weight? (Hint: Calculate a predicted weight for each of them using the regres-
sion equation specific to gender.)

10.24 The slope (b) used to predict the weights of males from their heights is greater than the
slope for females. What does this tell us about male weights relative to female weights?

5¿6–
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10.25 In Chapter 3 I presented data on the speed of deciding whether a briefly presented image was
the same image as the one to its left or whether it was a reversed image. However, I worry that
the trials are not independent, because I was the only subject and gave all of the responses.
Use the data from the Web site (Ex10-25.dat) to see if response time was related to trial
number. Was performance improving significantly over trials? Can we assume that there is no
systematic linear trend over time? These data are available for you to download from

http://www.uvm.edu/~dhowell/fundamentals7/DataFiles/Tab3-1.dat

10.26 Write a paragraph summarizing the results in Table 10.6 that is comparable to the paragraph
in Chapter 9, Section 9.14 (Summary and Conclusions of Course Evaluation Study)
describing the results of the correlational analysis.

10.27 Wainer (1997) presented data on the relationship between hours of TV watching and mean
scores on the 1990 National Assessment of Educational Progress (NAEP) for eighth-grade
mathematics assessment. The data follow, separated for boys and girls.

Hours TV Watched 0 1 2 3 4 5 6

Girls NAEP 258 269 267 261 259 253 239

Boys NAEP 276 273 292 269 266 259 249

(a) Plot the relationship between Hours Watched and NAEP Mathematics scores
separately for boys and girls (but put them on the same graph).

(b) Find and interpret the slope and intercept for these data, again keeping boys and girls
separate.

(c) We know from other data that boys spend more time watching television than girls.
Could this be used as an explanation of performance differences between boys and girls?

10.28 You probably were startled to see the very neat relationships in Exercise 10.27. There was
almost no variability about the regression line. I would, as a first approximation, guess that
the relationship between television hours watched and standardized test performance
would contain roughly as much scatter as the relationship between stress and symptoms, yet
these data are far neater than the data in Figure 10.1. What might have caused this?  

10.29 Draw a scatter diagram (of 10 points) on a sheet of paper that represents a moderately positive
correlation between the variables. Now drop your pencil at random on this scatter diagram.
(a) If you think of your pencil as a regression line, what aspect of the regression line are you

changing as you move the pencil vertically on the paper? 
(b) What aspect of the regression line are you changing as you twist, or rotate, your pencil? 
(c) If you didn’t remember any of the equations for the slope and intercept, how could you

tell if your pencil was forming the optimal regression line?

10.30 There is some really excellent material on regression at the University of Newcastle in
Australia. The address is

http://surfstat.anu.edu.au/surfstat-home/surfstat-main.html 

Go to this site and check both the links for “Statistical Inference” and for “Hotlist for Java
Applets.” The Java applets are particularly nice because they allow you to manipulate data on
the screen and see what difference it makes. Write a short description of the material you
found there.
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10.31 The data file named Galton.dat on this book’s Web site contains Galton’s data on heights
of parents and children discussed in the section on regression to the mean. In these data,
Galton multiplied mothers’ and daughters’ heights by 1.08 to give them the same mean as
male heights, and then averaged the heights of both parents to produce the mid-parent
height. The data are taken from Stigler (1999).
(a) Regress child height against parent height.
(b) Calculate the predicted height for children on the basis of parental height.
(c) The data file contains a variable called Quartile ranging from 1 to 4, with 1 being the

lowest quartile. In SPSS use Analyze/Compare Means/One-way ANOVA to give
child means corresponding to each quartile. (Make Child the dependent variable and
Quartile the independent variable.)  Do the same for parent means.

(d) Do the children of parents in the highest quartile have a lower mean than their par-
ents, and vice versa for the children of parents in the lowest quartile?

(e) Draw a scatterplot with parent quartile means on the X axis and child quartile means
on the Y axis and also draw a 45 degree line that would represent parents having chil-
dren with the same mean height.



11

This chapter will consider the case in which we use more than one predictor
at a time and will look at what a second or third predictor can explain that was not
predicted by the first, or first and second, predictor. We will also focus more than
we have in the past on variability that we have not been able to explain. We will
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Multiple
Regression

Concepts that you will need to remember from
previous chapters
Correlation coefficient: A measure of the relationship between

variables

Slope (b): Change in the predicted value for a one-unit
change in a predictor

Intercept (a): Predicted value when the predictors are all
equal to zero

Regression line: The straight line that best fits the points in a
scatterplot, often written as 

Standard error: The standard deviation of the sampling
distribution of a statistic

Standardized regression The slope when the variables have been
coefficient: standardized—i.e., converted to z scores

Residual variance: The square of the average of squared
deviations about the regression line

Ŷ 5 bX 1 a



then look at tests of significance, which are largely an extension of what we saw in
Chapter 10. Several different examples are used because they reinforce the material
that we cover and offer additional insights into multiple regression.

In Chapters 9 and 10 we were looking at the relationship between one
variable and another. We wanted either to determine the degree to which the two
variables were correlated or to predict one criterion (dependent) variable from one
predictor (independent) variable. In that situation we have a correlation coefficient 
( ) and regression equation of the form

But there is no good reason why we must limit ourselves to having only one
predictor. It is perfectly appropriate to ask how well some linear combination of
two, three, four, or more predictors will predict the criterion. To take a greatly
oversimplified example, we could ask how well I could do if I just added together
the number of stressful events you report experiencing over the last month, the
number of close friends you have, and your score on a measure assessing how
much control you feel you have over events in your life and then used that total or
composite score to predict your level of psychological symptoms. Of course, you
could fairly argue that it makes no sense to add together three stressful events,
five friends, and a score of 50, get an answer of 58, and think that the 58 means
anything sensible. The variables are measured on completely different scales.

But I can work around the objection of measuring on different scales if I give
different weight to each variable. There is no reason why I should have to give
equal weight to a test score and the number of close friends you have. It might make
much more sense to pay more attention to some variables than to others. Perhaps
your sense of personal Control over events is twice as important in predicting
psychological distress as is the number of Stressful events, and perhaps both of
those are more important than the number of your Friends. Moreover, we will have
to add or subtract some constant to make the mean prediction come out to equal
the mean Symptom score.

If we let the letters and represent “Stress,” “Friends,” and “Control,” we
could have a regression equation that looks like

The general form of this equation would be written as

where and are the weights for predictors and In other words, they
are slopes, or regression coefficients. The coefficient is simply the intercept, with
the same meaning that it has had throughout our discussion of regression (although
in simple regression we denoted it as ).

Multiple regression solutions are usually quite cumbersome to compute by
hand, especially with more than two predictors, but they can be readily computed
with any of the widely available statistical programs. In this chapter we will focus
exclusively on solutions generated by computer software.

a

b0

C.S, F,b3b1, b2,

Ŷ 5 b1S 1 b2F 1 b3C 1 b0

Ŷ 5 2 3 S 1 1 3 F 1 4 3 C 1 12

CS, F,
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11.1 Overview

It will be helpful to begin with an example that represents an overview of various
aspects of multiple regression. Then we can go back and look specifically at each
of them with some actual data at hand. I will cover a lot of ground quite quickly,
but my major purpose is to give you a general understanding of where we are going,
rather than to impart a lot of technical information. You will see most of this again.

How do professors decide who will be offered admission to graduate school?
Many years ago I collected data on admission to one graduate program. All faculty
in that department rated several hundred graduate applications on a scale from 
1 to 7, where 1 represented “reject immediately” and 7 represented “accept imme-
diately.” For a random sample of 100 applications I attempted to predict the mean
rating (Rating) for each application (averaged over judgments based on all avail-
able information) on the basis of Graduate Record Exam Verbal (GREV) score, a
numerical rating of the combined letters of recommendation (Letters), and a
numerical rating of the statements of purpose (Purpose). (My intent was to look at
how people made decisions, not to predict who will be admitted.) The obtained
regression equation was

In addition, the correlation between Rating and the three predictors considered
simultaneously (the multiple correlation coefficient, R) was 

Definition Multiple correlation coefficient (R): The correlation between one variable ( ) and a
set of predictors.
Squared correlation coefficient ( ): The squared correlation coefficient between 

and a set of one or more predictor variables.

Squared Multiple Correlation
We can square the correlation coefficient, just as we do in the one-predictor case,
with a similar interpretation. The squared correlation coefficient ( ) is .60. The
interpretation of is the same as for the case of with one predictor. In other
words, 60% of the variability in ratings can be accounted for by variability in the
three predictors considered together. Put slightly differently, using GREV, Letters,
and Purpose simultaneously as predictors, we can account for 60% of the variability
in ratings of admissibility.

r2R2
R2

Y
R2

Y

.775.1

Ŷ 5 0.009 3 GREV 1 0.51 3 Letters 1 0.43 3 Purpose 2 1.87
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1 Note that I was predicting the rating that faculty would give, not the individual’s actual success in gradu-
ate school. It is not very surprising that ratings would be related to GRE scores and what reviewers said about
the candidate, though I would find if very surprising if the composite score correlated that highly with
subsequent performance once admitted.



Interpretation
The regression equation in multiple regression is interpreted in much the same way
it was interpreted in simple regression, wherein we had only one predictor. To
make a prediction, we multiply the student’s GREV score by 0.009. In addition, we
multiply the rating of that student’s letters of recommendation by 0.51 and the rat-
ing of the statement of purpose by 0.43. We then sum those results and subtract
1.87 (the intercept). For every one-unit change in GREV the predicted rating will
increase by 0.009 unit, assuming that Letters and Purpose remain unchanged.
Similarly, for every one-unit change in the rating of the letters of recommendation
there will be a 0.51-unit change in the ratings, again assuming that the other two
predictors are held constant. The most important words in that last sentence were
“assuming that the other two predictors are held constant.” We are back to that
word “conditional” that we have seen several times before. We are dealing with
one variable conditional on fixed values of the other variable(s). We will consider
this in more depth shortly, but for now keep in mind that we are looking at one
variable controlling for the effects of the other variables.

Standardized Regression Coefficients
In Chapter 10 I mentioned the standardized regression coefficient ( ) and said
that it represents the regression coefficient we would obtain if we standardized the
variables, that is, converted the variables (separately) to scores. Here is a good
place to say something meaningful about . In the equation given for predicting
ratings from GREV, Letters, and Purpose, you might at first be inclined to suggest
that GREV must not be very important as a predictor because it has such a small
(unstandardized) regression coefficient (0.009). On the other hand, the regression
coefficient for Letters is 0.51, which is over 5,000 times greater. As we just saw, this
regression equation tells us that a one-point difference in GREV would make
(only) a 0.009 difference in our prediction, whereas a one-point difference in the
rating of Letters would make a difference of about half a point in our prediction.
But keep in mind that the variability of GREV is considerably greater than the
variability of ratings of Letters. It is trivial to do one point better or worse on
GREV (does anyone really care if your Verbal score was 552 instead of a 553—
even ignoring the fact that the way the test is scored, values are rounded to the
nearest 10’s digit)? But Letters were rated on a seven-point scale, where a one-
point difference is a big deal. This difference between the variances of our two
measures is one major reason why we can’t meaningfully compare regular (unstan-
dardized) regression coefficients.

If I now told you that the standardized regression coefficient ( ) for GREV
was 0.72, while the for Letters was 0.61, you would see that, after we take the dif-
ference in the standard deviations of the variables into account, the weights for these
variables are approximately equal. (Another way of saying that is “after we put
both variables on an equal footing by standardizing them, their contributions are
approximately equal.”) A one standard deviation difference in GREV will make a
0.72 standard deviation difference in the prediction, while a one standard

b

b

b
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deviation difference in Letters will make a 0.61 standard deviation difference in
the prediction. In this sense the two variables contribute about evenly to the
prediction. But be careful of overinterpreting what I have said. Using standardized
weights ( ) does make it easier to keep the contributions of the variables in
perspective. However, this scheme is not foolproof. For reasons dealing with the
intercorrelations of the predictor variables, weights are not perfectly related to
the contribution that each variable makes to the prediction. They are a good rough
guide, but don’t conclude that just because the value of 0.72 is greater than 0.61,
GREV is more important than Letters. In the first place, it is not clear just what
“more important than” means here. Additionally, some other measure of the
contribution of each variable might favor Letters over GREV. The task of deciding
on the relative importance of predictors is a difficult one (for predictors that are
themselves highly correlated, maybe even a meaningless one). A much more
extensive discussion of this problem is found in Howell (2010).

Redundancy among Predictors
The issue of correlation among predictors in multiple regression is an important
one, and deserves discussion. Imagine an artificial situation wherein we have two
predictor variables that are each correlated with the criterion, or dependent,
variable, but are uncorrelated with each other. In this case the predictors have
nothing in common, and the squared multiple correlation coefficient ( ) will be
equal to the sum of the squared correlations of each predictor with the dependent
variable. Each predictor is bringing something new, and unique, to the prediction.
That is the ideal case, but we very rarely work in a world where the predictors are
not correlated with each other.

Consider the example of predicting ratings for admission to graduate school.
It seems perfectly reasonable that you would likely have a better rating if you had
a better GREV score. Similarly, it seems reasonable that you would have a better
rating if you had stronger letters of recommendation. But GREV scores and Letters
are themselves likely to be highly correlated. If you do well in your courses, you will
probably do well on the GRE. In fact, I may even refer to your performance on the
GRE when I write your letter of recommendation. If the reader on the other end
looks at your GRE scores and then reads my letter, my letter is telling her some of
what she already knew–this student knows a lot. Similarly, if the reader reads my
letter and finds that you are a terrific student, she is not going to be very surprised
when she turns to the GRE scores and sees that they are high. In other words, the
two variables are to some extent redundant. Put another way, the total information
in those two predictors is not the sum of the parts—it is something less than the
sum of the parts. For a more prosaic example, suppose that I ask your mother to tell
me all about you. (You would probably be surprised by how much she knew.) Then
I find your father and ask him the same question. Do you think that Dad is going
to add a lot to what I already know? I doubt it. What he has to say will largely over-
lap what your mother already told me. It is important to keep this redundancy in
mind when thinking about multiple regression.

R2

b

b
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When the predictors are highly correlated with each other (a condition
known as multicollinearity), the regression equation is very unstable from one
sample of data to another. In other words, two random samples from the same pop-
ulation might produce regression equations that appear to be totally different from
one another and yet would lead to equally good prediction on average. I would
strongly advise you to avoid using highly correlated predictors and even to avoid
moderate intercorrelations when possible, though it isn’t always possible.

Definition Multicollinearity: A condition in which predictor variables are highly correlated
among themselves.

11.2 Funding Our Schools

There has been an ongoing debate in this country about what we can do to
improve the quality of primary and secondary education. It is generally assumed
that spending more money on education will lead to better prepared students, but
that is just an assumption. Guber (1999) addressed that question by collecting data
for each of the 50 U.S. states. She recorded the amount spent on education
(Expend), the pupil/teacher ratio (PTratio), average teachers’ salary (Salary), the
percentage of students in that state taking the SAT exams (PctSAT), the SAT ver-
bal score (Verbal), the SAT math score (Math), and the combined SAT score
(Combined). The data are shown in Table 11.1 and are available on the Web site
for this book.2 We will use only three of the variables, but you might work with
some of the others on your own.

I have chosen to work with this particular data set because it illustrates sev-
eral things. In the first place, it is a real data set that pertains to a topic of current
interest. In addition, it illustrates what is, at first, a very puzzling result, and then
allows us to explore that result and make sense of it. The difference between what
we see with one predictor and what we see with two predictors is quite dramatic
and illustrates some of the utility of multiple regression. Finally, these data illus-
trate well the need to think carefully about your measures and to not simply assume
that they measure what you think they measure.

From the stem-and-leaf display in Table 11.2 you can see that the expendi-
ture variable is slightly positively skewed, whereas the combined SAT score is
roughly normal. The percentage of students taking the SAT is almost a bimodal
variable, and we will discuss this shortly.
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Table 11.1
Data on Performance versus Expenditures on Education

State Expend PTratio Salary PctSAT Verbal Math Combined

Alabama 4.405 17.2 31.144 8 491 538 1029
Alaska 8.963 17.6 47.951 47 445 489 934
Arizona 4.778 19.3 32.175 27 448 496 944
Arkansas 4.459 7.1 28.934 6 482 523 1005
California 4.992 24.0 41.078 45 417 485 902
Colorado 5.443 18.4 34.571 29 462 518 980
Connecticut 8.817 14.4 50.045 81 431 477 908
Delaware 7.030 16.6 39.076 68 429 468 897
Florida 5.718 19.1 32.588 48 420 469 889
Georgia 5.193 16.3 32.291 65 406 448 854
Hawaii 6.078 17.9 38.518 57 407 482 889
Idaho 4.210 19.1 29.783 15 468 511 979
Illinois 6.136 17.3 39.431 13 488 560 1048
Indiana 5.826 17.5 36.785 58 415 467 882
Iowa 5.483 15.8 31.511 5 516 583 1099
Kansas 5.817 15.1 34.652 9 503 557 1060
Kentucky 5.217 17.0 32.257 11 477 522 999
Louisiana 4.761 16.8 26.461 9 486 535 1021
Maine 6.428 13.8 31.972 68 427 469 896
Maryland 7.245 17.0 40.661 64 430 479 909
Massachusetts 7.287 14.8 40.795 80 430 477 907
Michigan 6.994 20.1 41.895 11 484 549 1033
Minnesota 6.000 17.5 35.948 9 506 579 1085
Mississippi 4.080 17.5 26.818 4 496 540 1036
Missouri 5.383 15.5 31.189 9 495 550 1045
Montana 5.692 16.3 28.785 21 473 536 1009
Nebraska 5.935 14.5 30.922 9 494 556 1050
Nevada 5.160 18.7 34.836 30 434 483 917
New Hampshire 5.859 15.6 34.720 70 444 491 935
New Jersey 9.774 13.8 46.087 70 420 478 898
New Mexico 4.586 17.2 28.493 11 485 530 1015
New York 9.623 15.2 47.612 74 419 473 892
North Carolina 5.077 16.2 30.793 60 411 454 865
North Dakota 4.775 15.3 26.327 5 515 592 1107
Ohio 6.162 16.6 36.802 23 460 515 975
Oklahoma 4.845 15.5 28.172 9 491 536 1027
Oregon 6.436 19.9 38.555 51 448 499 947
Pennsylvania 7.109 17.1 44.510 70 419 461 880
Rhode Island 7.469 14.7 40.729 70 425 463 888
South Carolina 4.797 16.4 30.279 58 401 443 844
South Dakota 4.775 14.4 25.994 5 505 563 1068
Tennessee 4.388 18.6 32.477 12 497 543 1040
Texas 5.222 15.7 31.223 47 419 474 893
Utah 3.656 24.3 29.082 4 513 563 1076

(continued)



Two Variable Relationships
The most obvious thing to do with these data is to ask about the relationship
between expenditure and outcome. We would presumably like to see that the more
money we spend on education, the better our students do. Table 11.3 shows the
Pearson correlations between some of our variables. The scatterplot in Figure 11.1
shows the relationship between Expend and PctSAT.

Figure 11.1 is somewhat surprising because it would suggest that the more
money we spend on educating our children the worse they do. The regression line
is clearly decreasing and the correlation is Although that correlation is not
terribly large, it is statistically significant and cannot just be ignored. Those
students who come from wealthier schools tend to do worse. Why should this be?

An answer to our puzzle comes from knowing a bit about the SAT exam
itself. Not all colleges and universities require that students take the SAT for

2.38.
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State Expend PTratio Salary PctSAT Verbal Math Combined

Vermont 6.750 13.8 35.406 68 429 472 901
Virginia 5.327 14.6 33.987 65 428 468 896
Washington 5.906 20.2 36.151 48 443 494 937
West Virginia 6.107 14.8 31.944 17 448 484 932
Wisconsin 6.930 15.9 37.746 9 501 572 1073
Wyoming 6.160 14.9 31.285 10 476 525 1001

Table 11.1 
(continued)

Table 11.2
Stem-and-Leaf Display for Important Variables for the Data in Table 11.1

Expenditures Combined SAT Percentage Taking SAT

The decimal point The decimal point The decimal point is
is at the | is 2 digit(s) 1 digit(s) to the 

to the right of the | right of the |

3 | 7 8 | 4 0 | 44555689999999
4 | 124456888888 8 | 578899999 1 | 01112357
5 | 01222234457788999 9 | 000000111233444 2 | 1379
6 | 0111224489 9 | 5888 3 | 0
7 | 001235 10 | 00112233344 4 | 57788
8 | 8 10 | 55567789 5 | 1788
9 | 068 11 | 01 6 | 0455888

7 | 00004
8 | 01
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Figure 11.1
Relationship between Expend and PctSAT
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Table 11.3
Correlations Between Selected Variables 

Correlations

Expend Salary PctSAT Combined

EXPEND Pearson Correlation 1 .870** .593** .381**
Sig. (2–tailed) . .000 .000 .006
N 50 50 50 50

SALARY Pearson Correlation .870** 1 .617** .440**
Sig. (2–tailed) .000 . .000 .001
N 50 50 50 50

PctSAT Pearson Correlation .593** .617** 1 .887**
Sig. (2–tailed) .000 .000 . .000
N 50 50 50 50

COMBINED Pearson Correlation .381** .440** .887** 1
Sig. (2–tailed) .006 .001 .000 .
N 50 50 50 50

222

2

2

2

**Correlation is significant at the 0.01 level (2–tailed).



admission, and there is a tendency for those that do require it to be the more pres-
tigious universities, which take only the top students. In addition, the percentage
of students taking the SAT varies drastically from state to state, with 81% of
the students in Connecticut and only 4% of the students in Utah. The states with
the lowest percentages tend to be in the Midwest, with the highest in the
Northeast. In states where a small percentage of the students are taking the exam,
those are most likely to be the best students who have their eyes on Princeton,
Harvard, U.C. Berkeley, and the like. These are students who are likely to do well.
In Massachusetts and Connecticut, where most of the students take the SAT—the
less able as well as the more able—the poorer students are going to pull the state
average toward the center. If this were true, we would expect to see a negative rela-
tionship between the percentage of students taking the exam and the state’s mean
score. This is exactly what we find, as can be seen in Figure 11.2.

Notice the dramatic effect in Figure 11.2. The correlation coefficient is 
with the points clustering very close to the regression line. Notice also that you
can see the effect of the bimodal distribution of PctSAT, with the bulk of the
points clustering at one end or the other of the axis.

Looking at One Predictor While Controlling for Another
The question that now arises is what would happen if we used both variables simul-
taneously as predictors of the combined score. What this really means, though it
may not be immediately obvious, is that we will look at the relationship between
Expend and Combined, controlling for PctSAT. When I say that we are controlling

X

2.89,

11.2 Funding Our Schools 277

Figure 11.2
SAT scores as a function of the percentage of students taking the exam
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for PctSAT, I mean that we are looking at the relationship between Expend and
Combined while holding PctSAT constant. Imagine that we had many thousands
of states instead only 50. Imagine also that we could pull out a collection of states
that had exactly the same percentage of students taking the SAT—e.g., 60%.
Then we could look at only the students from those states and compute the corre-
lation and regression coefficient for predicting Combined from Expend. Then we
could draw another sample of states, perhaps those with 40% of their students
taking the exam. Again we could correlate Expect and Combined for only those
states and compute a regression coefficient. Notice that I have calculated two
correlations and two regression coefficients here, each with PctSAT held constant
at a specific value (40% or 60%). Because we are only imagining that we had
thousands of states, we can go further and imagine that we repeated this process
many times, with PctSAT held at a specific value each time. For each of those
analyses we would obtain a regression coefficient for the relationship between
Expend and Combined, and an average of those many regression coefficients will
be very close to the overall regression coefficient for Expend from the multiple
regression that we will compute and which we will shortly examine. The same is
true if we averaged the correlations.

Because in our imaginary exercise each correlation is based on a sample with
a fixed value of PctSAT, each correlation is independent of PctSAT. In other
words, if every state included in our correlation had 35% of its students taking the
SAT, then PctSAT doesn’t vary and it can’t have an effect on the relationship
between Expend and Combined. This means that, for these states, our correlation
and regression coefficient between those two variables has controlled for PctSAT.

Obviously we don’t have thousands of states—we only have 50 and that
number is not likely to get much larger. However, that does not stop us from math-
ematically estimating what we would obtain if we could carry out the imaginary
exercise that I just explained. And that is exactly what multiple regression is all
about.

The Multiple Regression Equation
There are ways to think about multiple regression other than fixing the level of
one or more variables, but before I discuss those I will show you a multiple regres-
sion on these data that I ran using SPSS, and the results are shown in Table 11.4.
(Chapter 6 in the Short SPSS Manual found on the Web site for this book shows
how to set up this analysis.) I have left out some of the printout to save space.

The first table that I want to discuss is labeled “Model Summary.” In running
this multiple regression I chose to ask SPSS to enter both Expend and PctSAT as
predictors at the same time and to use Combined as the dependent variable. From
the summary you can see that the correlation for the model was .905, which is a
very long way from the correlation of that we obtained with Expend alone.

A couple of things need to be said here. In multiple regression, the correlation
is always going to be positive, whereas the Pearson correlation can be positive or
negative. There is a good reason for this, but I don’t want to elaborate on that now.
(If the correlations are always positive, how do we know when the relationship is

2.381
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negative? We look at the sign of the regression coefficient, and I’ll come to that in
a minute.) You might recall that in Figure 11.2 we saw that the simple correlation
between Combined and PctSAT was so perhaps we haven’t gained all that
much. We will also look at this in a minute.

In the subtable named “Model Summary” you will also see the squared cor-
relation. The squared correlation in multiple regression has the same meaning that
it had in simple regression. Using Expend alone we were able to explain

of the variation in Combined SAT scores (not shown
in table). Using both Expend and PctSAT we can explain .9052 5 .819 5 81.9%
12.381 2 2 5 .145 5 14.5%

2.89,
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Table 11.4
Multiple Regression Predicting Combined from Expend and PctSAT

Descriptive Statistics

Mean Std. Deviation N

COMBINED 965.920 74.8206 50
EXPEND 5.90526 1.362807 50
PctSAT 35.2400 26.76242 50

Model Summary

Model R R Square Adjusted R Square Std. Error of the Estimate

1 .905a .819 .812 32.45949

a. Predictors: (Constant), PctSAT, EXPEND

ANOVAb

Model Sum of Squares df Mean Square F Sig.

1 Regression 224787.621 2 112393.810 106.674 .000a

Residual 49520.059 47 1053.618
Total 274307.680 49

a. Predictors: (Constant), PctSAT, EXPEND
b. Dependent Variable: COMBINED

Coefficientsa

Unstandardized Standardized 
Coefficients Coefficients

Model B Std. Error Beta t Sig.

1 (Constant) 993.832 21.833 45.519 .000
EXPEND 12.287 4.224 .224 2.909 .006
PctSAT 2.851 .215 1.020 13.253 .000

a. Dependent Variable: COMBINED

222



of the variability in the Combined score. To the right of these values you will see
a column labeled Adj. R square. You can ignore that column. The adjusted 
R squared is actually a less biased estimate of the true squared correlation in the
population, but we never report it. Simply use R and not adjusted R.

The third subtable in Table 11.4 is labeled ANOVA, which stands for
Analysis of Variance. We will spend quite a bit of time on the analysis of variance
later in the book, and I am only going to point to two parts of this table here.
Notice that there is a column labeled and one labeled Sig. The is a test of
whether the multiple correlation coefficient in question is significantly different
from 0. We saw a test on the significance of a correlation coefficient in Chapters 9
and 10, although there we largely worked from a statistical table in the back of the
book. This is the same kind of test, though it uses a different statistic. When we
have only one predictor (Expend) the correlation is as we saw in Table 11.3,
and the probability of getting a correlation of that magnitude if the null hypothe-
sis is true was .006. This is well less than .05, and we can declare that correlation
to be significantly different from 0. When we move to multiple regression and
include the predictor PctSAT along with Expend, we have two questions to ask.
The first is whether the multiple correlation using both predictors together is sig-
nificantly different from 0.00, and the second is whether each of the predictor vari-
ables in the equation is contributing at greater than chance levels to that
relationship. From the ANOVA table we see an with an associated
probability of .000 (That does not mean that the probability is exactly zero, but it
is so small that it rounds to 0 to three decimal places.) This tells us that using both
predictors our correlation is significantly greater than 0. I will ask about the signif-
icance of the individual predictors in the next section.

Now we come to the most interesting part of the output. In the subtable
labeled “Coefficients” we see the full set of regression coefficients when using both
predictors at the same time. From the second column we can see that our regres-
sion equation is

The value of 993.832 is the intercept, often denoted and here denoted
simply as “constant.” This is the predicted value of Combined if both Expend and
PctSAT were 0.00, which they will never be. We need the intercept because it
forces the average of our predictions to equal the average of the obtained values,
but we rarely pay any real attention to it. Just as a simple regression was of the form

a multiple regression is written as

where and are the predictors and is the intercept. From the table we can see
that the coefficient for Expend (call it ) is 12.287, and for PctSAT the coefficientb1

b0ZX

Ŷ 5 b1X 1 b2Z 1 b0

Ŷ 5 bX 1 a,

b0

Ŷ 5 993.832 1 12.2871Expend 2 2 2.8511PctSAT 2

F 5 106.674,

2.38,

FF
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is From the sign of these coefficients we can tell whether the relationship
is positive or negative. The positive coefficient for Expend tell us that now that we
have controlled PctSAT the relationship between expenditures and performance is
positive—the more the state spends, the higher its (adjusted) SAT score. That
should make us feel much better. We can also see that when we control Expend,
the relationship between PctSAT and Combined is negative, which makes sense.
I explained earlier why increasing the percentage of a state’s students taking the
SAT would be expected to lower the overall mean for that state.

But you may have noticed that PctSAT itself had a correlation of 
with Combined, and perhaps Expend wasn’t adding anything important to the
relationship—after all, the correlation only increased to .905. If you look at
the table of coefficients, you will see two columns on the right labeled and sig.
These relate to significance tests on the regression coefficients. You saw similar 

tests in Chapter 10. From the sig. column we can tell that all three coefficients
are significant at The intercept has no meaning because it would refer to
a case in which a state spent absolutely nothing on education and had 0% of its
students taking the SAT. The coefficient for Expend is meaningful because it
shows that increased spending does correlate with higher scores after we control
for the percentage of students taking the exam. Similarly, after we control for
expenditures, SAT scores are higher for those states who have few (presumably their
best) students taking the test. So although adding Expend to PctSAT as predictors
didn’t raise the correlation very much, it was a statistically significant contributor.

I discussed above one of the ways of interpreting what a multiple regression
was—for any predictor variable the slope is the relationship between that variable
and the criterion variable if we could hold all other variables constant. And by
“hold constant” we mean having a collection of participants who had all the same
scores on each of the other variables. But there are two other ways of thinking
about regression that are useful.

Another Interpretation of Multiple Regression
When we just correlate Expend with Combined and completely ignore PctSAT,
there is a certain amount of variability in the Combined scores that is directly
related to variability in PctSAT, and that was what was giving us that peculiar neg-
ative result. What we would really like to do is to examine the correlation between
Expend and the Combined score when both are adjusted to be free from the influ-
ences of PctSAT. To put it another way, some of the differences in Combined are
due to differences in Expend and some are due to differences in PctSAT. We want
to eliminate those differences in both variables that can be attributed to PctSAT
and then correlate the adjusted variables. That is actually a lot simpler than it
sounds. I can’t imagine anyone intentionally running a multiple regression the way
that I am about to, but it does illustrate what is going on.

We know that if we ran the simple regression predicting Combined from
PctSAT, the resulting set of predicted scores would represent that part of
Combined that is predictable from PctSAT. If we subtract the predicted scores

p 6 .05.
t

t

2.89
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Notice that the regression coefficient predicting the adjusted combined score
from the adjusted expend score is 12.287, which is exactly what we had for Expend
doing things the normal way. Notice also that the following table shows us that the
correlation between these two corrected variables is .391, which is the correlation
between Expend and Combined after we have removed any effects attributable to
PctSAT.

from the actual scores, the resulting values, call them ResidCombined, will be
that part of Combined that is not predictable from (is independent of ) PctSAT.
(These new scores are called “residuals,” and we will have more to say about
them shortly.) We can now do the same thing predicting Expend from PctSAT.
We will get the predicted scores, subtract them from the obtained scores, and
have a new set of scores, call them ResidExpend), that is also independent of
PctSAT. So we now have two sets of residual scores—ResidCombined and
ResidExpend—that are both independent of PctSAT. Therefore, PctSAT can
play no role in their relationship.

If I now run the regression to predict the adjusted Combined score from the
adjusted Expend score, (i.e., ResidCombined with ResidExpend) I will have
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Coefficientsa

Unstandardized Standardized 
Coefficients Coefficients

Model B Std. Error Beta t Sig.

1 (Constant) 2.547E-14 4.542 .000 1.000
Unstandardized 12.287 4.180 .391 2.939 .005
Residual

a. Dependent Variable: Unstandardized Residual

Model Summaryb

Model R R Square Adjusted R Square Std. Error of the Estimate

1 .391a .153 .135 32.11958743

a. Predictors: (Constant), Unstandardized Residual
b. Dependent Variable: Unstandardized Residual

I hope that no one thinks that they should actually do their regression this
way. The reason I went through the exercise was to make the point that when we
have multiple predictor variables we are adjusting each predictor for all other
predictors in the equation. And the phrases “adjusted for,” “controlling,” and
“holding constant” all are ways of saying the same thing.
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A Final Way to Think of Multiple Regression
There is another way to think of multiple regression, and in some ways I find it the
most useful. We know that in multiple regression we solve for an equation of the
form

or, in terms of the variables we have been using

I obtained the predicted scores from

and stored the predicted scores as PredComb. (SPSS will do this for you if you
use the Save button on the first dialog box under Regression.) Now if I correlate
actual Combined with PredComb, the resulting correlation will be .905, which
is our multiple correlation. (A scatterplot of this relationship is shown in
Figure 11.3, which gives the squared multiple correlation as .8195, the square
root of which is .905.)

The point of this last approach is to show that you can think of a multiple
correlation coefficient as the simple Pearson correlation between the criterion

Combined 5 12.287 3 Expend 2 2.851 3 PctSAT 1 993.832

Combined 5 b1 Expend 1 b2 PctSAT 1 b0

Ŷ 5 b1X 1 b2Z 1 b0

Figure 11.3
Scatterplot showing the relationship between the best linear combination of the
predictors and Combined
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(Combined) and the best linear combination of the predictors. When I say “best
linear combination” I mean that there is no set of weights (regression coefficients)
that will do a better job of predicting the state’s combined score from those
predictors. This is actually a very important point. There are a number of advanced
techniques in statistics, which we are not going to cover in this book, that really
come down to creating a new variable that is some optimal weighted sum of other
variables, and then using that variable in the main part of the analysis. This
approach also explains why multiple correlations are always positive, even if the
relationship between two variables is negative. You would certainly expect the
predicted values to be positively correlated with the criterion.

Review
We have covered a great deal of information, so I am going to go back and try
to summarize the major points.

The basic form of a multiple regression equation is

and the multiple correlation coefficient is represented as Just as with simple
regression, the square of i.e., can be interpreted as the percentage of
variation in the dependent variable ( ) that is accounted for by the best linear
combination of our predictors ( and ). We also saw that standardized regres-
sion coefficients ( ) are useful for getting a sense of the importance of each
variable because they put the variables on comparable footing.

I discussed the fact that if two of the predictors are themselves correlated,
they explain overlapping proportions of the variability in and so the result-
ing multiple regression is not equal to the sum of its parts. This is a particular
problem when the predictors are highly correlated, because several quite differ-
ent-looking regression equations could lead to very similar results.

We next looked at Guber’s data on educational funding and saw expendi-
ture has a very large negative relationship to performance, but that the
relationship changes both magnitude and sign when we control for the percent-
age of students from each state that take the SAT.

Finally, I discussed three different ways of looking at multiple regression:

n We can treat a regression coefficient as the coefficient we would get
if we had a whole group of states that did not differ on any of the
predictors except the one under consideration. In other words, all
predictors but one are held constant, and we look at what varying
that one predictor does.

n We can think of a regression coefficient in multiple regression as
the same as we would have in simple regression if we adjusted our
two variables for any of the variables we want to control. In the
above example it meant adjusting both Combined and Expend for

Y,

b

ZX
Y

R2,R,
R.

Ŷ 5 b1X 1 b2Z 1 b0
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PctSAT by computing the difference between the true score for
that variable and the score predicted from the “nuisance variable”
(or the “to be controlled variable”). The coefficient (slope) that we
obtain is the same coefficient we find in the multiple regression
solution.

n We can think of the multiple correlation as the simple Pearson
correlation between the criterion (call it ) and another variable
(call it ) that is the best linear combination of the predictor
variables.

The Educational Testing Service, which produces the SAT, tries to have
everyone put a disclaimer on results broken down by states that says that the SAT
is not a fair way to compare the performance of different states. Having gone
through this example you can see that one reason that they say this is that differ-
ent states have different cohorts of students taking the exam, and this makes the
test inappropriate as a way of judging a state’s performance, even if it is a good way
of judging the performance of individuals.

11.3 Residuals

When we make a prediction from a set of data, we don’t expect to be right all the
time. Sometimes our prediction will be a bit high, sometimes a bit low. And
sometimes the actual data point will be far away from what we have predicted. It
is worth looking briefly at these predictions and the errors of prediction, called
residuals, because they tell us something more about multiple regression. 
Table 11.5 contains a sample of the data we saw earlier. I have added two
columns—one holding the predicted values and the other the residual values. In
that table you can see that some of the predictions are quite accurate (the residual
is small) and other predictions are poor (the residual is large). In Figure 11.3 we
saw a scatterplot of the relationship between the Combined score and our best
linear prediction of that score. Notice that there are two small numbers on that
figure (34 and 48). These numbers refer to the states that produced those observa-
tions. State 34 is North Dakota and State 48 is West Virginia. Notice that both
states had nearly the same predicted outcome (approximately 1,050), but North
Dakota well exceeded that prediction (1,107) while West Virginia fell short by a
similar amount (932). These residuals, the difference between predicted and
obtained, can either be random noise or they can be meaningful. With a difference
of nearly 200 points, I would be inclined to take them seriously. I would ask what
North Dakota knows about educating students that West Virginia does not. It isn’t
that they spend significantly more on education or have significantly fewer stu-
dents taking the SAT. We can rule out those possibilities because we are looking

Ŷ
Y



at the residuals after controlling for PctSAT and Expend. But a close examination
of these states might lead to important hypotheses about what other things are
important.3

11.4 Hypothesis Testing

You saw in Chapter 10 that we can ask if the regression coefficient is significantly
different from zero. In other words, we can ask if differences in one variable are
related to differences in another. If the slope is not significantly different from zero,
we have no reason to believe that the criterion is related to the predictor. That
works very cleanly when we have only one predictor variable; in fact, I told you

286 Chapter 11 Multiple Regression

3 See Howell (2010) for a discussion of how to evaluate the magnitude of the residuals.

Table 11.5
Predicted Values and Residuals for Selected States

State Expend PctSAT Combined Predict Residual

Alabama 4.405 8 1029 1025.146 3.854
Alaska 8.963 47 934 969.962 35.962
Arizona 4.778 27 944 975.562 31.562
Arkansas 4.459 6 1005 1031.512 26.512
California 4.992 45 902 926.874 24.874
Colorado 5.443 29 980 978.030 1.970
Iowa     5.483 5 1099 1046.944 52.056

. . . . . . . . . . . . . . . . . .
Mississippi 4.080 4 1036 032.557 3.443
Missouri 5.383 9 1045 034.311 10.688
Montana  5.692 21 1009 003.897 5.103

. . . . . . . . . . . . . . . . . .
New Hampshire 5.859 70 935 866.253 68.747
New Jersey 9.774 70 898 914.355 16.355
New Mexico 4.586 11 1015 1018.817 3.817
New York 9.623 74 892 901.096 9.096
North Carolina 5.077 60 865 885.156 20.155
North Dakota 4.775 5 1107 1038.245 68.755
Ohio     6.162 23 975 1003.970 28.970

. . . . . . . . . . . . . . . . . .
Washington 5.906 48 937 929.551 7.4489
West Virginia 6.107 17 932 1020.400 88.400
Wisconsin 6.930 9 1073 1053.319 19.681
Wyoming 6.160 10 1001 1041.007 40.0072
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that a test on the correlation coefficient and a test on the regression coefficient are
equivalent in the one-predictor case. But the situation is distinctly different when
we have more than one predictor.

With more than one predictor we can ask if each of those coefficients is sig-
nificantly different from 0. For states that are equal on PctSAT, does a difference
in Expend lead to significant differences on Combined? And are states that are
equivalent on Expend but different on PctSAT predicted to be significantly differ-
ent on Combined? Put more directly, we want to test the null hypotheses

against the alternative hypotheses

Tests on these hypotheses were given in the column labeled in Table 11.4,
along with the associated two-tailed probabilities in the next column. These
tests are of the same kind we saw in the previous chapter, except that we are test-
ing two individual slopes instead of one. Here you can see that the test for the
slope for Expend is significantly different from zero because the probability value
( ) is less than .05. Similarly the slope of PctSAT is also significant
( ), so even if you control for differences in the percentage
of students in a state that are taking the SAT, expenditure on education makes
a difference, and now it has a positive effect. In later chapters of this book we will
look closely at tests and tests, which are commonly used to test hypotheses.
For now all that you need to know is that there are standard significance tests
and that decisions regarding significance can be made with reference to the
probability value that follows the of 

One more major piece of information is given in Table 11.4 in the section
“Analysis of Variance.” This section is a test on the null hypothesis that there is
no correlation between the set of predictors (Expend and PCtSAT) taken
together and the criterion. A significant effect here would mean that we reject
the null hypothesis that the multiple correlation in the population is 0. In the
table we see that with an associated probability of .000. Since this
probability is less than we will reject and conclude that Combined
is predicted at better than chance levels by these two predictors taken together.
In other words, we will conclude that the true correlation in the population is
not zero.

These two kinds of significance tests (tests on slopes and the test on the mul-
tiple correlation) are presented in virtually all regression analyses. I have covered
them in the order they were presented in the printout, but in general if the
Analysis of Variance test on the relationship is not significant, it usually doesn’t
make much sense even to worry about the significance of individual predictors.
Fortunately, for most of the regression problems we see, the overall relationship is
significant and the real issue is the role of individual predictors.

H0a 5 .05,
F 5 106.674

F.t

Ft

t 5 213.253, p 6 .000
p 5 .006

t

H0: b2 ? 0
H0: b1 ? 0

H0: b2 5 0
H0: b1 5 0



11.5 Refining the Regression Equation

In Table 11.4 we saw that Expend and PctSAT were significant predictors of
Combined. We also know from correlations in Table 11.3 that teacher’s Salary is
significantly related to Combined. Perhaps we should add Salary to our multiple
regression. But before we do that, we need to think about the relationships we have
among our variables. We know that Expend, PctSAT, and Salary are each signifi-
cantly correlated with Combined. But they are also correlated among themselves,
and those correlations are not trivial. (see Table 11.4)

Because Salary is correlated with both of the other predictors, it may not
have any independent contribution to make to the prediction of Combined.
This is an empirical question, however, and is best answered by actually doing
the regression. The results are shown in Table 11.6, where I have only included
the table of coefficients. (The overall ANOVA on three predictors was
significant.)

From Table 11.6 we see that PctSAT remains a significant predictor, but the
coefficient for Expend rises slightly above .05 and we can’t reject the null hypoth-
esis ( slope in the population ) for that variable. We also see the Salary does
not even come close to significance You might legitimately wonder
why Salary does so poorly here when it was nicely correlated with Combined when
treated alone. Related to this is the question of why Expend is no longer signifi-
cant in the multiple regression. If you think about our variables you will realize that
a great deal of the differences between states in terms of expenditures is directly
related to teachers’ salaries. So telling me that teachers in one state make more
money than teachers in another state is nearly tantamount to telling me that the
first state has a higher score on Expend. You haven’t really added much new
information. Therefore, I am not particularly surprised that Salary did not add
anything—in fact it watered down the effect of Expend.

1p 5 .853 2 .5 0H0:
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Table 11.6
Multiple Regression Predicting Combined from Expend, PctSAT, and Salary

Coefficientsa

Unstandardized Standardized 
Coefficients Coefficients

Model B Std. Error Beta t Sig.

1 (Constant) 998.029 31.493 31.690 .000
Expend 13.333 7.042 .243 1.893 .065
PctSAT 2.840 .225 1.016 12.635 .000
Salary .309 1.653 .025 .187 .853222

222

a. Dependent Variable: COMBINED
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There is a substantial literature on the topic of choosing an optimum regres-
sion equation. Many of the techniques are known as stepwise procedures. An
introduction to this literature and additional references can be found in Howell
(2010). The only point to be made here is that automatic computational proce-
dures for identifying regression models can be seductive. They often produce a
nice-looking model, but they also capitalize on chance differences in the data. This
produces a model that fits the current data well but that might not fit a new set of
data nearly as well. In trying to construct an optimal model, it is important to real-
ize that what you know about the variables and the theoretical constructs in the
field is far more important than the statistical vagaries of a set of data. You should
treat stepwise regression with considerable caution; in fact, it is sometimes referred
to in the statistical literature as “unwise regression.”

Definition Stepwise procedures: A set of rules for deriving a regression equation by adding
or subtracting one variable at a time from the regression equation.

11.6 A Second Example: What Makes a Confident Mother?

Leerkes and Crockenberg (1999) were interested in studying the relationship
between how children were affected by their own mother’s level of care and
their later feelings of maternal self-confidence when they, in turn, became
mothers. Their sample consisted of 92 mothers of five-month-old infants.
Leerkes and Crockenberg expected to find that high levels of maternal care
when the mother was a child translated to high levels of self-confidence
when that child later became a mother. Furthermore, the researchers
postulated that self-esteem would also play a role. They argued that high

In this example, we have searched for a regression equation (a model of the data)
that best predicts the criterion variable. But keep in mind that we had a slightly
different purpose in mind—we wanted to know whether expenditures on educa-
tion made a difference. In other words, we weren’t just interested in any old equa-
tion that could predict Combined, but wanted to specifically address the role of
Expend. We did this by starting with Expend and noticing that it was actually
negatively related to outcome. We then added PctSAT because we knew that
much of the variance in the outcome measure was related to how many people
took the exam, which is a question that would be distinct from asking about
Expend except that it is a variable that looks like it needs to be controlled
because the PctSAT score varies between states. Finally, we thought about
adding in Salary, and found that when we did so it had nothing to contribute—
in fact it seemed to do harm. I explained this finding away by noting that Salary
and Expend are intimately related, and that Salary has very little extra to offer.



levels of maternal care lead to high levels of self-esteem in the child, and
that this high self-esteem later translates into high levels of self-efficacy as
a mother (how effective you think you are as a mom). Similarly, low levels
of maternal care were expected to lead to low levels of self-esteem, and thus
to low levels of self-efficacy. This relationship is diagrammed below.

Leerkes and Crockenberg were interested in discussing the mediating role
played by self-esteem, but we will ignore that issue and simply look at the
prediction of Self-confidence from both Self-esteem and Maternal Care. The
pattern of relationships is shown in Figure 11.4, and the Intercorrelation
matrix is given in Table 11.7.

Here we can see that Maternal Care is correlated with both Self-esteem
and Self-confidence, and Self-esteem is significantly correlated with Self-
confidence. The next step is to use both Self-esteem and Maternal Care as
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Figure 11.4
The relationships among Maternal Care, Self-esteem, and Self-confidence

c

ba

Self-esteem

Maternal
care

Self-
efficacy

Table 11.7
Correlations among Maternal Care, Self-esteem, and Self-confidence

Correlations

MatCare SelfEsteem Confidence

MatCare Pearson Correlation 1.000 .403** .272**
Sig. (2-tailed) .000 .009
N 92.000 92 92

SelfEsteem Pearson Correlation .403** 1.000 .380**
Sig. (2-tailed) .000 .000
N 92 92.000 92

Confidence Pearson Correlation .272** .380** 1.000
Sig. (2-tailed) .009 .000
N 92 92 92.000

** Correlation is significant at the 0.01 level (2-tailed).
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Table 11.8
Multiple Regression Output Given by SPSS

Model Summary

Model R R Square Adjusted R Square Std. Error of the Estimate

1 .272a .074 .063 .24023
2 .401b .161 .142 .22992

a. Predictors: (Constant), MatCare
b. Predictors: (Constant), MatCare, SelfEsteem

ANOVAC

Model Sum of Squares df Mean Square F Sig.

1 Regression .414 1 .414 7.168 .009a

Residual 5.194 90 .058
Total 5.607 91

2 Regression .903 2 .451 8.537 .000b

Residual 4.705 89 .053
Total 5.607 91

a. Predictors: (Constant), MatCare
b. Dependent (Constant), Matcare, SelfEsteem
c. Dependent Variable: Confidence

Coefficientsa

Unstandardized Standardized 
Coefficients Coefficients

Model B Std. Error Beta t Sig.

1 (Constant) 3.260 .141 23.199 .000
MatCare .112 .042 .272 2.677 .009

2 (Constant) 2.929 .173 16.918 .000
MatCare .058 .044 .142 1.334 .185
SelfEsteem .147 .048 .323 3.041 .003

a. Dependent Variable: Confidence

predictors of Self-confidence. For purposes of illustration, I asked SPSS to
first use Maternal care as the only predictor and to then use both Maternal
care and Self-esteem as predictors. This is shown in the top part of the
output in Table 11.8. In this table you will see both the results of correlating
self-confidence with maternal care (Model 1), and then the result of adding
self-esteem as a predictor (Model 2).

The first section of the printout shows that when maternal care is used
alone as a predictor, the correlation (given in the column headed “zero-
order”) is .272. That is not a terribly high correlation, but we are talking
about the effect of maternal behavior that might have occurred over 20 years
ago. When we add Self-esteem as a predictor, we see a somewhat different
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pattern. The multiple correlation coefficient increases from .272 with one
predictor to .401 with both predictors.

The ANOVA table in the center shows that both the simple correlation
and the multiple correlation with both predictors are significant. Finally, the
bottom part of Table 11.8 gives the coefficients for the two solutions. When
Maternal care is taken by itself, the standardized regression coefficient, is
.272, telling us that a one standard deviation difference in Maternal Care is
associated with about a quarter of a standard deviation increase in Self-
confidence. The interesting thing is that when you add Self-esteem as a
predictor along with Maternal Care, the standardized coefficient for
Maternal Care drops to only .142 and is not significant as shown by the last
two columns. However, Self-esteem is a significant predictor, with

The fact that Maternal Care is no longer a significant predictor
when you add Self-esteem suggests that any effect of Maternal Care is
through Self-esteem. In other words, good Maternal Care leads to higher
levels of Self-esteem, and that enhanced Self-esteem leads to Self-
confidence when the daughter becomes a mother many years later.

11.7 A Third Example: Psychological Symptoms 
in Cancer Patients

There can be no doubt that a diagnosis of cancer is a disturbing event, and
many, though not all, cancer patients show elevated levels of psychological
symptoms in response to such a diagnosis. If we could understand the
variables associated with psychological distress, perhaps we could implement
intervention programs to prevent, or at least limit, that distress. That is the
subject of this example.

Malcarne, Compas, Epping, and Howell (1995) examined 126 cancer
patients soon after they were diagnosed with cancer and at a four-month
follow-up. At the initial interviews (Time 1) they collected data on the
patients’ current levels of distress (Distress1), the degree to which they
attributed the blame for the cancer to the type of person they are (BlamPer),
and the degree to which they attributed the cancer to the kind of behaviors in
which they had engaged, such as smoking or high-fat diets (BlamBeh). At the
four-month follow-up (Time 2) the authors again collected data on the levels
of psychological distress that the patients reported. (They also collected data
on a number of other variables, which do not concern us here.)

A major purpose of this study was to test the hypothesis that
psychological distress at follow-up (Distress2) was related to the degree to
which the subjects blamed cancer on the type of person they are. It was
hypothesized that those who blame themselves (rather than their actions)
will show greater distress, in part because we do not easily change the kind of
person we are, and therefore we have little control over the course, or the
recurrence, of the disease. On the other hand, we do have control over our
actions, and blaming our past behavior at least gives us some sense of control.

b 5 .323.

b,



If we want to predict distress at follow-up, one of the most important
predictors is likely to be the level of distress at the initial interview. It makes
sense to include this Time 1 distress measure (Distress1) in the prediction
along with the initial level of personal blame (BlamPer), because we want to
know if personal blame contributes to distress after we control for the initial
level of distress. (Notice an important point here. I am not including
Distress1 because I want to maximize the accuracy of my prediction, though
it will probably do that. I am including Distress1 because I want to ask if
BlamPer can contribute to explaining Distress2 even after we hold constant
(or control for) Distress1. In other words, I am using multiple regression to
develop or test a theory, not to make specific predictions about an individual
outcome.) The dependent variable is distress at follow-up (Distress2).
Because only 74 participants completed measures at follow-up, the resulting
analysis is based on a sample size of 74. (You might ask yourself what might
be wrong with drawing conclusions on only the 74 participants, out of an
initial 126, who remained in the study after four months of treatment.) The
results of this analysis are shown in Table 11.9 and have been computed
using a commonly available statistical software package called Minitab.
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Table 11.9
Distress at Follow-up as a Function of Distress and Self-Blame at Diagnosis

Regression Analysis: Distres2 versus Distres1, BlamPer

The regression equation is
Distres2 14.2 .642 Distres1 2.60 BlamPer

Predictor Coef SE Coef T P
Constant 14.209 5.716 2.49 0.015
Distres1 0.6424 0.1024 6.27 0.000
BlamPer 2.5980 0.8959 2.90 0.005

S 7.610 R-Sq 43.4% R-Sq(adj) 41.8%

Analysis of Variance

Source DF SS MS F P
Regression 2 3157.0 1578.5 27.25 0.000
Residual Error 71 4112.0 57.9
Total 73 7269.0

Source DF Seq SS
Distres1 1 2669.9
BlamPer 1 487.1

Unusual Observations
Obs Distres1 Distres2 Fit SE Fit Residual St Resid
31 54.0 33.000 51.496 1.032 18.496 2.45R
51 57.0 64.000 63.816 3.158 0.184 0.03 X
52 57.0 71.000 53.424 1.055 17.576 2.33R
59 63.0 39.000 57.278 1.333 18.278 2.44R
73 80.0 69.000 68.199 2.784 0.801 0.11 X
74 80.0 80.000 73.395 2.775 6.605 0.93 X

R denotes an observation with a large standardized residual.
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The first two lines present the regression equation, with the intercept
and the two slope coefficients. Immediately below that are the coefficients
written out in a different form. Here the word “Constant” is used in place of
the word “Intercept,” and the three slopes are identified by the variable
names to which they apply. Notice that we have a test on all three
coefficients and that all three values are significantly different from 0.00.
This tells us that higher distress at Time 2 is associated with higher distress
at Time 1 and with a greater tendency for patients to blame the type of
person they are for the cancer. The intercept is also significantly different
from 0.00, but this is not of interest here.

In the next portion of the table we see that the squared multiple
correlation is .434 (accounting for 43.4% of the variation in Distress2). We
are going to ignore the adjusted value.

The analysis of variance table represents a test of the null hypothesis
that the true multiple correlation coefficient in the population is 0. Because
we have a large value of and a very small value of we can reject that
hypothesis in favor of the hypothesis that there is a true correlation between
Distress2 and the combination of Distress1 and BlamPer.

In the section entitled “Unusual Observations” are six cases that
Minitab has singled out as worthy of note. These are either cases wherein
the regression equation does a particularly bad job of predicting Distress2 or
they are cases that deviate sufficiently from the rest of the participants for us
to worry that they could have an undue influence on the outcome of the
regression. We might want to inspect these cases closely to see if there is
anything unusual about them that can, perhaps, be attributed to some other
variable or to erroneous data points.

You might be tempted to ask if perhaps additional predictors might
improve our regression solution. For example, we also have data on the
degree to which patients blame their cancer on their own behaviors
(BlamBeh), and we might want to add that predictor to the ones we have
already used. Although I strongly caution against throwing in additional
variables just because you have them—your set of predictors should make
some sort of logical sense on a priori grounds—I have added BlamBeh to the
regression to illustrate what happens. Those results are presented in Table
11.10, where we can see that BlamBeh did not significantly improve our
prediction.

I will not discuss this table in detail because it is essentially the same as
the previous table. I will point out the magnitude of (.435) and the
probability value associated with the test on BlamPer (.784). Notice that 
is virtually unchanged by the addition of BlamBeh, going from .434 to .435.
This is our first indication that BlamBeh is not contributing noticeably to
the prediction of Distress2 over and above the predictors that were already in the
equation. This does not mean that BlamBeh is not related to Distress2, but
only that it has nothing to add beyond what we can tell from the other two
predictors.

R2
R2

p,F

R2

t
t
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Notice also that the probability value associated with the BlamPer
predictor (and the associated regression coefficient) has changed somewhat.
This says nothing more than that the contribution of BlamPer is somewhat,
though not much, reduced when a similar variable (BlamBeh) is added to
the model. This is quite common and reflects the fact that BlamPer and
BlamBeh are correlated and, to some extent, account for
overlapping portions of the variability in Distress2.

Writing Up the Breast Cancer Study
The following is a brief description of the study and a summary of the results.
Notice the way in which the various statistics are reported.

- Malcarne, Compas, Epping, and Howell (1995) collected data on 126 
breast cancer patients shortly after they were diagnosed with cancer and
at a four-month follow-up. The data included, among other variables, the
level of distress at each interview and an estimate of the degree to which
the patients blamed their cancer on “the type of person they are.” At the

1r 5 .521 2
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Table 11.10
Prediction of Distress2 as a Function of Distress1, BlamPer, and BlamBeh

Regression Analysis: Distress2 predicted from Distress1, BlamPer, and BlamBeh

The regression equation is
Distress2 = 14.1 + 0.640 Distress1 + 2.45 BlamPer + 0.272 BlamBeh

Predictor Coef Stdev t-ratio p
Constant 14.052 5.782 2.43 0.018
Distress1 0.6399 0.1035 6.18 0.000
BlamPer 2.451 1.048 2.34 0.022
BlamBeh 0.2720 0.9900 0.27 0.784

s 7.660 R-sq 43.5% R-sq(adj) 41.1%

Analysis of Variance

SOURCE DF SS MS F p
Regression 3 3161.4 1053.8 17.96 0.000
Error 70 4107.6 58.7
Total 73 7269.0

SOURCE DF SEQ SS
Distress1 1 2669.9
BlamPer 1 487.1
BlamBeh 1 4.4

Unusual Observations
Obs. Distress1 Distress2 Fit Stdev.Fit Residual St.Resid
31 54.0 33.000 51.599 1.104 18.599 2.45R
51 57.0 64.000 63.051 4.226 0.949 0.15 X
52 57.0 71.000 53.518 1.117 17.482 2.31R
59 63.0 39.000 57.357 1.372 18.357 2.44R

R denotes an obs. with a large st. resid.
X denotes an obs. whose X value gives it large influence.
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time of the analysis, complete data were available on only 74
participants, and these 74 participants formed the basis for subsequent
analyses.

At the four-month follow-up, the level of distress was regressed on
both the level of distress shortly after diagnosis, and the personal blame
variable. The overall regression was significant and

Both the level of distress at Time 1 and the
degree of personal blame were significant predictors of distress at Time 2

and respectively).
When the degree to which subjects blamed their own behavior

(rather than the type of person they are) was added to the equation, it
did not contribute significantly to the prediction 
We conclude that the degree to which participants blame themselves,
rather than their behavior, for their cancer is an important predictor of
future distress, and suggest that interventions focused on changing this
self-perception might contribute toward lowering distress in breast cancer
patients.

11.8 Summary

I have already written a summary of the first half of the chapter in the section
labeled “Review” on page 284. I suggest that you go back to that review and read
it again carefully. Subsequent to the review, we looked at residuals, which are the
differences between the value of that we would predict and the that 
we actually obtained. Large residuals are cause for caution, and we should examine
them to see if those cases are in some special way unusual.

We then looked at hypothesis tests, and I made the point that these are “con-
ditional” tests, although I did not specifically label them that way. To take the
study of maternal behavior as an example, we say that when Maternal Care was
taken as the only predictor it was significant, but when we added Self-esteem as a
predictor, Maternal Care’s significance dropped out. The point here is that in the
first test Maternal Care was taken on its own, whereas in the second, Maternal
Care was tested in the presence of variability in Self-esteem. If we were to hold
Self-esteem constant, then Maternal Care would not be a significant predictor.
Therefore, when we control for Self-esteem, we are also controlling for the corre-
lation between Self-esteem and Maternal Care.

I presented material on refining a model, or a multiple regression solution.
There are two important points here. First, some variables have priority in your
analysis because they are the variables that you are most interested in studying. In
that case, you should not just drop them from the analysis even if their regression
coefficients are not significant. In addition, you do not want to throw in every vari-
able you have just to see what happens. If you do, spurious relationships can, and
do, appear. Stepwise regression, which is a programmed method of adding more
and more variables, is sometimes called “unwise regression” for a reason.

YY 1Ŷ 2

1t 5 0.27; p 5 .784 2 .

t 5 2.90; p 5 .005,1b 5 2.598 2 . 1t 5 6.27; p 5 .000

1b 5 0.642 2R2 5 .434.
1F12,71 2 5 27.25,
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Some important terms in this chapter are
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Multiple correlation
coefficient , 270

Squared correlation 
coefficient , 2701R2 2

1R 2 Multicollinearity, 273

Stepwise procedures, 289

11.9 Exercises

11.1 A psychologist studying perceived “quality of life” in a large number of cities 
came up with the following equation using mean temperature (Temp), median income in
$1,000 (Income), per capita expenditure on social services (SocSer), and population 
density (Popul) as predictors.

(a) Interpret the above regression equation in terms of the coefficients.
(b) Assume a city has a mean temperature of 55 degrees, a median income of $12,000,

spends $500 per capita on social services, and has a population density of 200 people
per block. What is its predicted Quality of Life score?

(c) What would we predict in a different city that is identical in every way except that it
spends $100 per capita on social services?

11.2 Sethi and Seligman (1993) examined the relationship between optimism and religious conser-
vatism by interviewing over 600 subjects from a variety of religious organizations. We can
regress Optimism on three variables dealing with religiosity. These are the influence of religion
on their daily lives (RelInf ), their involvement with religion (RelInvol), and their degree of
religious hope (belief in an after-life) (RelHope). The results are shown as SPSS printout.

Model Summary

Adjusted Std. Error of 
Model R R Square R Square the Estimate

1 .321a .103 .099 3.0432

a. Predictors: (Constant), relinvol, relinf, relhope

ANOVAb

Sum of Mean 
Model Squares df Square F Sig.

1 Regression 634.240 3 211.413 22.828 .000a

Residual 5519.754 596 9.261
Total 6153.993 599

a. Predictors: (Constant), relinvol, relinf, relhope
b. Dependent Variable: optimism

Ŷ 5 5.37 2 0.01Temp 1 0.05Income 1 0.003SocSer 2 0.01Popul

1N 5 150 2



Coefficientsa

Unstandardized Standardized
Coefficents Coefficients

Model B Std. Error Beta t Sig. Tolerance

1 (Constant) 1.895 .512 3.702 .000
relhope .428 .102 .199 4.183 .000 .666
relinf .490 .107 .204 4.571 .000 .755
relinvol .079 .116 .033 .682 .495 .645

a. Dependent Variable: optimism

Looking at the preceding printout,
(a) Are we looking at a reliable relationship? How can you tell?
(b) What is the degree of relationship between Optimism and the three predictors?
(c) What would most likely change in your answers to (a) and (b) if we had a much smaller

number of subjects?

11.3 In Exercise 11.2, which variables make a significant contribution to the prediction of
Optimism as judged by the test on their slopes?

11.4 In Exercise 11.2 the column headed “Tolerance” (which you have not seen before) gives
you 1 minus the squared multiple correlation of that predictor with all other predictors.
What can you now say about the relationships among the set of predictors?

11.5 On the basis of your answer to Exercise 11.4, speculate on one of the reasons why
Religious Influence might be an important predictor of Optimism, while Religious
Involvement is not.

11.6 Using the following (random) data, demonstrate what happens to the multiple correlation
when you drop out cases from the data set (e.g., use 15 cases, then 10, 6, 5, 4). 

Y 5 0 5 9 4 8 3 7 0 4 7 1 4 7 9
3 8 1 5 8 2 4 7 9 1 3 5 6 8 9
7 6 4 3 1 9 7 5 3 1 8 6 0 3 7
1 7 4 1 8 8 6 8 3 6 1 9 7 7 7
3 6 0 5 1 3 5 9 1 1 7 4 2 0 9

11.7 Calculate the adjusted for the 15 cases in Exercise 11.6. Twice in this chapter I said that
we were going to ignore the adjusted even though it is a perfectly legitimate statistic.
Can you tell what it is “adjusting” for?

11.8 The state of Vermont is divided into 10 health-planning districts, which correspond
roughly to counties. The following data represent the percentage of live births of babies
weighing under 2,500 grams the fertility rate for females 17 years of age or younger

total high-risk fertility rate for females younger than 17 or older than 35 years of age
percentage of mothers with fewer than 12 years of education percentage of births

to unmarried mothers and percentage of mothers not seeking medical care until the
third trimester (There are too few observations for a meaningful analysis, so do not
put faith in the results.)

1X5 2 .
1X4 2 ,

1X3 2 ,1X2 2 ,
1X1 2 ,

1Y 2 ,

R2,
R2

X4

X3

X2

X1
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Y X1 X2 X3 X4 X5

6.1 22.8 43.0 23.8 9.2 6
7.1 28.7 55.3 24.8 12.0 10
7.4 29.7 48.5 23.9 10.4 5
6.3 18.3 38.8 16.6 9.8 4
6.5 21.1 46.2 19.6 9.8 5
5.7 21.2 39.9 21.4 7.7 6
6.6 22.2 43.1 20.7 10.9 7
8.1 22.3 48.5 21.8 9.5 5
6.3 21.8 40.0 20.6 11.6 7
6.9 31.2 56.7 25.2 11.6 9

Use any regression program to compute the multiple regression predicting the percentage
of births under 2,500 grams.

11.9 Using the output from Exercise 11.8, interpret the results as if they were significant. (What
is one of the reasons that this current analysis is not likely to be significant, even if those
relationships are reliable in the populations?)

11.10 Mireault (1990) studied students whose parent had died during their childhood, students
who came from divorced families, and students who came from intact families. Among
other things, she collected data on their current perceived sense of vulnerability to future
loss (PVLoss), their level of social support (SuppTotl), and the age at which they lost a par-
ent during childhood (AgeAtLos). The can be found at

http://www.uvm.edu/~dhowell/fundamentals7/DataFiles/Mireault.dat

Use the Mireault.dat data set and any available regression program to evaluate a model that
says that depression (DepressT) is a function of these three variables. (Because only sub-
jects in Group 1 lost a parent, you will need to restrict your analysis to those cases.)

11.11 Interpret the results of the analysis in Exercise 11.10.

11.12 The data set Harass.dat, included on this book’s Web site, contains data on 343 cases created
to replicate the results of a study of sexual harassment by Brooks and Perot (1991). The vari-
ables are, in order, Age, Marital Status Feminist Ideology,
Frequency of the Behavior, Offensiveness of the behavior, and the dependent variable,
whether or not the subjects Reported incidents of sexual harassment For
each variable, higher numbers represent more of the property. Technically, this is a problem
that might be better approached with what is called logistic regression, because the depend-
ent variable is a dichotomy. However we can get a very close approximation to the optimal
solution by using plain old linear multiple regression instead. Use multiple regression to pre-
dict whether or not sexual harassment will be reported, based on the variables you have here.
Find a model that does not have many nonsignificant predictors.

11.13 In the previous question I was surprised that the frequency of behavior was not related to
the likelihood of its being reported. Suggest why this might be.

11.14 In the text I have recommended against the use of stepwise procedures for multiple regres-
sion, whereby we systematically hunt among the variables to predict some sort of optimal
equation.
(a) Explain why I would make such a recommendation.
(b) How, then, could I justify asking you to do just that in Exercise 11.12?

10 5 no, 1 5 yes 2 .
11 5 married, 2 5 not married 2 ,
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11.15 Use the table of random numbers (Table E.9 in the Appendix) to generate data for 10 cases
on 6 variables, and label the first variable and the following variables and

Now use any regression program to predict from all five predictors using the complete
data set with 10 cases. Are you surprised at the magnitude of R?

11.16 Now restrict the data set in Exercise 11.15 to 8, then 6, then 5 cases, and record the chang-
ing values of Remember that these are only random data.

11.17 The file at

http://www.uvm.edu/~dhowell/fundamentals7/DataFiles/Fig9-7.dat

contains Ryan’s height and weight data discussed in connection with Table 9.1. Gender is
coded 1 Compare the simple regression of Weight predicted from
Height with the multiple correlation of weight predicted from both height and gender.

11.18 In Exercise 11.17 we ran a multiple regression with Gender as a predictor. Now run sepa-
rate regressions for males and females.

11.19 Compute a weighted average of the slopes of Weight predicted from Height for each gen-
der in Exercise 11.18. Reasonable weights would be the two sample sizes. (A weighted aver-
age is simply How does that average compare to
the slope for Height that you found in Exercise 11.17?

11.20 A great source of data and an explanation to go with it is an Internet site called the Data
and Story Library (DASL) maintained by Carnegie Mellon University. Go to that site and
examine the example on the relationship between brain size and intelligence. Use multiple
regression to predict full-scale IQ from brain size (MRI-count) and Gender. The address is

http://lib.stat.cmu.edu/DASL/Datafiles/Brainsize.html

(You will have to convert Gender from Male and Female to 1 and 2. Your software proba-
bly has a recode or compute command that will do so.)

11.21 Why would you think that it would be wise to include Gender in that regression?

11.22 Since you have the DASL data on brain size, note that it also includes the variables of
height and weight. Predict weight from height and sex and compare with the answer for
Exercise 11.17.

11.23 In examples like the Guber study on the funding of education, we frequently speak of vari-
ables like PctSAT as “nuisance variables.” In what sense is that usage reasonable here, and
in what sense is it somewhat misleading?

11.24 In several places in the chapter I have shoved aside the intercept by saying that we really
don’t care about it. If we don’t care about it, why do we include it?

11.25 Using the data from Section 11.7 on the relationship between symptoms and distress in
cancer patients, compute the predicted values of Distress2 using Distress1 and BlamPer.
Correlate those values with the obtained values of Distress2 and show that this is equal to
the multiple correlation coefficient. 

11.26 In Exercise 9.1 we saw data on infant mortality and a number of other variables. There you
predicted infant mortality from income. There is reason to believe that infants of young
mothers are at increased risk, and there is considerable evidence that infant mortality can
be reduced by the use of contraception. Does the multiple regression using all three of those
predictor variables bear out these hypotheses?

3 1NM 3 bM 1 NF 3 bF 2 > 1NM 1 NF 2 4. 2

5 male and 2 5 female.

R.

YX5.
X1, X2, X3, X4,Y
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12

In this chapter we will begin to discuss tests, in this case the test for one
sample. We will begin by looking at what we can expect sample means to look like
if we draw many samples from one population. We will then go on to briefly con-
sider the case where we want to know how to test a null hypothesis about a mean

tt
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Hypothesis Tests
Applied to Means:
One Sample

Concepts that you will need to remember from
previous chapters
Sampling distribution: The distribution of a statistic over repeated

sampling

Standard error: The standard deviation of the sampling
distribution of a statistic

Degrees of freedom: An adjusted value of the sample size, often
or

Null hypothesis: The hypothesis to be tested by a statistical
test, denoted 

Research hypothesis: The hypothesis that the study is designed to
test, denoted 

: Mean and standard deviation of a
population or a sample, respectively

m, s, X, s

H1

H0

N 2 2N 2 1



if we know the variance of the population from which it presumably came. Because
we rarely know the population variance, we use this example mostly because it leads
neatly to tests, which apply to the case where the population variance is unknown.
We will see what to do in that case and cover what governs our resulting values 
of . Finally, we will look at confidence intervals, which give us an idea of reason-
able possible values of the true population mean.

In Chapter 8 we considered the general logic of hypothesis testing and ignored
the specific calculations involved. In Chapters 9, 10, and 11 we looked at meas-
ures of the relationship between variables and considered hypothesis testing as a
way of asking whether there is a reliable nonzero correlation between variables in
the population (not just in our sample) and whether the regression coefficients (slope
and intercept) are reliably different from zero. In this chapter we will begin concen-
trating on hypothesis tests about means. In particular, we will focus on testing a null
hypothesis about the value of a population mean.

We will start with an example based on an honors thesis by Williamson
(2008), who was examining coping behavior in children of depressed parents. His
study went much further than we will go, but it provides an illustration of a situation
in which it makes sense to test a null hypothesis using the mean of a single sample.

Because there is evidence in the psychological literature that stress in a child’s
life may lead to subsequent behavior problems, Williamson expected that a sample
of children of depressed parents would show an unusually high level of behavior
problems. This suggests that if we use a behavioral checklist, such as the
anxious/depressed subscale of Achenbach’s Youth Self-Report Inventory (YSR), we
would expect elevated scores from a sample of children whose parents suffer from
depression. It does not seem likely that they would show reduced levels of depres-
sion, but to guard against that possibility we will test a two-tailed experimental
hypothesis that the anxious/depressive scores among these children are different
from similar scores from a normal sample. We can’t test the experimental hypothesis
directly, however. Instead we will test the null hypothesis that the scores of
stressed children came from a population of scores with the same mean as the pop-
ulation of scores of normal children, rejection of which would support the experimen-
tal hypothesis. More specifically, we want to decide between

and

I have chosen the two-tailed alternative form of because I want to reject if
or if

Definition Experimental hypothesis: Another name for the research hypothesis.

Leaving the actual data from Williamson’s study aside just for the moment, suppose
that I drew a sample of five children, each of whom comes from a family in which

m 6 50.m 7 50
H0H1

H1: m ? 50

H0: m 5 50

1H0 2

t

t
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one parent is depressed. I asked the children to complete the Youth Self Report form
and obtained the following scores:

48 62 53 66 51

This sample of five observations has a mean of 56.0 and a standard deviation of
7.65. Thus the five children have an average score six points above the mean
of the population of normal children. But because this result is based on a sample
of only five children, it is quite conceivable that the deviation from 50 could be
due to chance (or, phrased differently, that the deviation is due to sampling error).
Even if were true, we certainly would not expect our sample mean to
be exactly 50.000. We probably wouldn’t be particularly surprised to find a
mean of 49 or 51. But what about 56? Is that surprisingly large? If so, perhaps
we should not be willing to continue to entertain the idea that Before we
can draw any conclusions, however, we will have to know what values we rea-
sonably could expect sample means to have if we really sampled from a popula-
tion of normal children.

12.1 Sampling Distribution of the Mean

As you should recall from Chapter 8, the sampling distribution of any statistic is
the distribution of values we would expect to obtain for that statistic if we drew an
infinite number of samples from the population in question and calculated the sta-
tistic on each sample. Because we are concerned here with sample means, we need
to know something about the sampling distribution of the mean. Fortunately all
the important information about the sampling distribution of the mean can be
summed up in one very important theorem: the Central Limit Theorem. The
Central Limit Theorem is a factual statement about the distribution of means.
It contains several concepts:

m 5 50.

H0: m 5 50
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Given a population with mean and variance the sampling distribution 
of the mean (the distribution of sample means) will have a mean equal to 
(i.e., ) and a variance equal to (and standard deviation,

). The distribution will approach the normal distribution as the
sample size, increases.

N,sX 5 s>1N
s2>N1sX

2 2mX 5 m

m

s2,m

The Central Limit Theorem is one of the most important theorems in statis-
tics because it not only tells us what the mean and the variance of the sampling
distribution of the sample mean must be for any given sample size but also states
that as increases, the shape of this sampling distribution approaches normal,
whatever the shape of the parent population. The importance of these facts will
become clear shortly.

N



Definition Central Limit Theorem: The theorem that specifies the nature of the sampling
distribution of the mean.

The rate at which the sampling distribution of the mean approaches normal is a
function of the shape of the parent population. If the population itself is normal,
the sampling distribution of the mean will be exactly normal regardless of If the
population is symmetric but nonnormal, the sampling distribution of the mean will
be nearly normal even for quite small sample sizes, especially if the population is
unimodal. If the population is markedly skewed, we may require sample sizes of
30 or more before the means closely approximate a normal distribution.

To illustrate the Central Limit Theorem we will leave the behavior problem
example temporarily and consider a more general example. Suppose we take an infi-
nitely large population of random numbers evenly distributed between 0 and 100.
This population will have what is called a rectangular, or uniform, distribution—
every value between 0 and 100 being equally likely. The distribution of this
population is shown in Figure 12.1, where it is evident why we describe this
distribution as “rectangular” or “uniform.” In this population the mean is 50,
the standard deviation is 28.87, and the variance is 833.33.

Definition Rectangular (uniform) distribution: A distribution in which all outcomes are
equally likely.

Now suppose we draw with replacement 5,000 samples of size 5 (i.e., )
from the population shown in Figure 12.1 and plot the resulting sample means.
[Note that N refers to the size of each sample, not to the number of samples, which
is very large (here, 5,000).] Such sampling can be easily accomplished with the aid
of a computer—the results of just such a procedure are presented in Figure 12.2(a).
From Figure 12.2(a) it is apparent that the distribution of means, although not
exactly normally distributed, at least peaks in the center and trails off toward the
extremes. If you were to go to the effort of calculating the mean and the standard

N 5 5

1s2 21s 2 1m 2

N.
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deviation of this distribution, you would find that they are extremely close to
and (Remember that and refer

to the mean and the standard deviation of the distribution of means.)
Suppose we repeat the entire procedure, only this time we draw 5,000

samples, each with observations. The results are plotted in Fig-
ure 12.2(b). There you can see that, just as the Central Limit Theorem pre-
dicted, the distribution is approximately normal, the mean ( ) is again 50, and
the standard deviation has been reduced to (The first time
I ran this example many years ago it took approximately 5 minutes to draw
such samples. Today it took me 1.5 seconds. Computer simulation is no longer
a big deal.)

28.87>130 5 5.27.
m

N 5 30

sXmsX 5 s>1N 5 28.87>25 5 12.91.m 5 50
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Figure 12.2
Computer-generated sampling distribution of the mean
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12.2 Testing Hypotheses about Means When Is Known

From the Central Limit Theorem we know all the important characteristics of the
sampling distribution of the mean (its shape, its mean, and its standard deviation)
even without drawing a single one of those samples. On the basis of this informa-
tion we are in a position to begin testing hypotheses about means. For the sake of
continuity it might be well to go back to something we considered with respect to
the normal distribution. In Chapter 8 we saw that we could test a hypothesis about
the population from which a single score (in that case a finger-tapping score) was
drawn by calculating

and then obtaining the probability of a value of as low as or lower than the one
obtained by using the tables of the standard normal distribution. Thus we ran a
one-tailed test on the hypothesis that the tapping rate (45) of a single individual
was drawn at random from a normally distributed population of healthy tapping
rates with a mean of 59 and a standard deviation of 7. We did this by calculating

and then using Table E.10 in the Appendices to find the area below 
This value is .0228. Thus, approximately 2% of the time we would expect a score
this low or lower if we were sampling from a healthy population. Because this
probability was less than our selected significance level of we would reject
the null hypothesis. We would conclude that we have sufficient evidence to
diagnose the person’s response rate as abnormal. The tapping rate for the person we
examined was an unusual rate for healthy subjects. (But what would we have
concluded had the probability been calculated as .064?) Although in this example
we were testing a hypothesis about a single observation, exactly the same logic
applies to testing hypotheses about sample means.

In most situations in which we test a hypothesis about a population mean we
don’t have any knowledge about the variance of that population. (This is the pri-
mary reason that we have t tests, which are the main focus of this chapter.) In a
limited number of situations, however, we do know for some reason, and a dis-
cussion of testing a hypothesis when is known provides a good transition from
what we already know about the normal distribution to what we want to know
about tests. The example of the anxious/depression subscale of the YSR
(Achenbach’s Youth Self-Report Inventory) is useful for this purpose because we
know both the mean and the standard deviation for the population of that scale
on Achenbach’s YSR ( and ). We also know that our random sam-
ple of five children who were under stress had a mean score of 56.0, and we want
to test the null hypothesis that these five children are a random sample from a pop-
ulation of normal children (i.e., normal with respect to their general level of

s 5  10m 5 50

t

s

s

a 5 .05,

z 5 22.00.

z 5
X 2 m

s
5

45 2 59
7

5
214

7
5 22.00

z

z 5
X 2 m

s

s
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behavior problems). In other words, we want to test against the alter-
native where represents the mean of the population from which
these children were actually drawn.

Because we know the mean and standard deviation of the population of
general behavior problem scores, we can use the Central Limit Theorem to obtain
the sampling distribution of the mean when the null hypothesis is true without
having to do all sorts of computer sampling. The Central Limit Theorem states
that if we obtain the sampling distribution of the mean from this population, it will
have a mean of 50, a variance of and a standard
deviation (usually referred to as the standard error) of This distri-
bution is diagrammed in Figure 12.3. The arrow in the figure points to the location
of the sample mean.

A short digression about the standard error is in order here, because this is a con-
cept that runs throughout statistics. The standard deviation of any sampling distribution
is normally referred to as the standard error of that distribution. Thus the standard
deviation of means is called the standard error of the mean (symbolized by ),
whereas the standard deviation of differences between means, which will be discussed
in Chapter 14, is called the standard error of differences between means and is sym-
bolized . Standard errors are critically important because they tell us how much
statistics, such as the mean, vary from one sample to another. If the standard error is
large, that tells you that whatever sample mean you happened to find, someone else
doing the same study may find quite a different one. On the other hand, if the stan-
dard error is small, another person is likely to find a value fairly similar to yours.

Because we know that the sampling distribution of the mean for 5 scores on
the YSR is normally distributed with a mean of 50 and a standard error 
of 4.47, we can find areas under the distribution by referring to tables of the

1s>1N 2

sX12X2

sX

s>1N 5 4.47.
s2>N 5 102>5 5 100>5 5 20,

mH1: m ? 50,
H0: m 5 50
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Figure 12.3
Sampling distribution of the mean for samples of drawn from a population with
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standard normal distribution. For example, because two standard errors is
the area to the right of is simply the area under the

normal distribution greater than two standard deviations above the mean.
For our particular situation, we first need to know the probability of a sample

mean greater than or equal to 56; thus we need to find the area above We
can calculate this the same way we did with individual observations, with only a
minor change in the formula for 

becomes

which can also be written as

For our data this becomes

Note that the equation for used here has the same form as our earlier formula for 
The only differences are that has been replaced by the sample mean and has
been replaced by the standard error of the mean . These differences occur
because we now are dealing with a distribution of means rather than with single
observations; thus the data points are now means, and the standard deviation in
question is now the standard error of the mean (the standard deviation of means).
The formula for continues to represent (1) a point on a distribution, minus (2) the
mean of that distribution, all divided by (3) the standard deviation of the distribu-
tion. Rather than being concerned specifically with the distribution of we now
have reexpressed the sample mean in terms of a score and can now answer the
question with regard to the standard normal distribution.

From Table E.10 in the Appendices we find that the probability of a as large
as 1.34 is .0901. Because we want a two-tailed test of we need to double the
probability to obtain the probability of a deviation as large as 1.34 standard errors
in either direction from the mean. This is Thus with a two-tailed
test (that stressed children have a mean behavior problem score that is different in

21.0901 2 5 .1802.
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either direction from that of normal children) at the .05 level of significance we
would not reject because the obtained probability of such a value occurring
when the null hypothesis is true is greater than .05. We would conclude that we
have insufficient evidence in our small sample of five children to conclude that
stressed children show more or fewer behavior problems than other children. Keep
in mind that it is very possible that stressed children do indeed show behavior
problems, but our data are not sufficiently convincing on that score, primarily
because we have too little data. (Remember the time your mother was sure that you
had broken an ornament while using the living room as a gym, and you had, but
she didn’t have enough evidence to prove it? Your mother was forced to make a
Type II error—she failed to reject the null hypothesis (your innocence) when it
was actually false. In our example, even if the true population mean for stressed
children is above 50, we don’t have enough evidence to build a convincing case.)

To go back to the study referred to earlier, Williamson (2008) included 166
children from homes in which as least one parent had a history of depression.
These children all completed the Youth Self Report, and the sample mean was
55.71 with a standard deviation of 7.35. We want to test the null hypothesis that
these children come from a normal population with a mean of 50 and a standard
deviation of 10. Then

We cannot use the table of the normal distribution, simply because it does
not go that high. (The largest value of in the table is 4.00. However, even if our
result had only been 4.00, it would have been significant with a probability less
than .000 to three decimal places, so we can reject the null hypothesis in any
event. (The exact probability for a two-tailed test would be .00000000000018,
which is obviously a significant result.) Therefore, Williamson has every reason to
believe that the children in his study do not represent a random sample of scores
from the anxious/depressed subscale of the YSR. They come from a population
with a mean higher (more problematic) than normal.

The test of one sample mean against a known population mean, which we
have just performed, is based on the assumption that the sample means are normally
distributed, or at least that the distribution is sufficiently normal that we will be
only negligibly in error when we refer to the tables of the standard normal distribu-
tion. Many textbooks state that we assume we are sampling from a normal popula-
tion (i.e., behavior problem scores themselves are normally distributed), but this is
not strictly necessary in practical terms. What is most important is to be able to
assume that the sampling distribution of the mean (Figure 12.3) is nearly normal.
This assumption can be satisfied in two ways: if either (1) the population from
which we sample is normal or (2) the sample size is sufficiently large to produce at
least approximate normality by way of the Central Limit Theorem. This is one of
the great benefits of the Central Limit Theorem: It allows us to test hypotheses even
if the parent population is not normal, provided only that is sufficiently large.N

z

z 5
X 2 m

s1N

5
55.71 2 50

101166
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5 7.36
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12.3 Testing a Sample Mean When Is Unknown

(The One-Sample t Test)
The previous example was chosen deliberately from among a fairly limited number
of situations in which the population standard deviation is known. In the
general case, we rarely know the value of and usually will have to estimate it by
way of the sample standard deviation When we replace with in the formula,
however, the nature of the test changes. We can no longer declare the answer to
be a score and evaluate it with reference to tables of Instead we denote the
answer as and evaluate it with respect to tables of which are somewhat differ-
ent. The reasoning behind the switch from to is not particularly complicated.
The basic problem that requires this change to is related to the sampling distri-
bution of the sample variance. It’s time to grit your teeth and look at a tiny amount
of theory because (1) it will help you understand what you are doing and (2) it’s
good for your soul.

The Sampling Distribution of 
Because the test uses as an estimate of it is important that we first look at
the sampling distribution of We want to get some idea of what kinds of sample
variances we can expect when we draw a sample, especially with a small sample
size. This sampling distribution gives us some insight into the problems we are
going to encounter. You saw in Chapter 5 that is an unbiased estimate of 
meaning that with repeated sampling the average value of will equal 
Although an unbiased estimator is nice, it is not everything. The problem is that
the shape of the sampling distribution of is quite positively skewed, especially
for small sample sizes. An example of a computer-generated sampling distribution
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But Williamson also had the standard deviation of his sample. Why didn’t we
use that?

The simple answer to this question is that we have something better. We
have the population standard deviation. The YSR and its scoring system have
been meticulously developed over the years, and we can have complete confi-
dence that the standard deviation of scores of a whole population of normal
children will be 10. And we want to test that our sample came from a population
of normal children. We will see in a moment that we often do not have the
population standard deviation and have to estimate it from the sample standard
deviation, but when we do have it we should use it. For one thing, if these
children really do score higher, I would expect that their sample standard devia-
tion would underestimate That is because the standard deviation of people who
are biased toward one end of the distribution is very likely to be smaller than the
standard deviation of scores that are more centrally placed.

s.
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of (where is shown in Figure 12.4. Because of the skewness of this
distribution, an individual value of is more likely to underestimate than to
overestimate it, especially for small samples. ( remains unbiased because when it
overestimates it does so to such an extent as to balance off the more numerous
but less drastic underestimates.) Can you see what the problem is going to be if
we just take our sample estimate ( ) and substitute it for the unknown and
pretend that nothing has changed? As a result of the skewness of the sampling
distribution of the variance, the resulting value of is likely to be larger than 
the value of we would have obtained had been known, because any one
sample variance ( ) has a better than 50:50 chance of underestimating the
population variance ( ).

The t Statistic
The statistic is what will save us in this situation, because it is designed to account
for the fact that we are using a sample estimate of rather than the population
value of We will take the formula that we just developed for 
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and substitute s to give

Because we know that for any particular sample is more likely than not to
be smaller than the appropriate value of then the denominator is more likely
than not to be too small, and the formula is more likely than not to produce a
larger answer than we would have obtained if we had solved for using itself. As
a result it would not really be fair to treat the answer as a score and use the table
of To do so would give us too many “significant” results, that is, we would make
more than 5% Type I errors when testing the null hypothesis at significance level

(For example, when we were calculating we rejected at the .05 level
of significance whenever fell outside the limits of If we create a situation
in which is true, repeatedly draw samples of use in place of and
calculate we will obtain a value of or greater more than about 10% of the
time. The cutoff point should really be 2.776, which is quite a bit larger than 1.96.)

William Gossett supplied the solution to this problem. Gossett showed that
using in place of would lead to a particular sampling distribution, now
generally known as Student’s t distribution.1 As a result of Gossett’s work, all we
have to do is substitute which we know, for which we don’t know, denote
the answer as and evaluate with respect to its own distribution, much as
we evaluated with respect to the normal distribution. The distribution is shown
in Table E.6, and examples of the actual distribution of for various sample sizes
are shown graphically in Figure 12.5.

Definition Student’s t distribution: The sampling distribution of the t statistic.

As you can see from Figure 12.5, the distribution of varies as a function of
the degrees of freedom (df), which for the moment we will define as one less than
the number of observations in the sample. Because the skewness of the sampling
distribution of disappears as the number of degrees of freedom increases, the ten-
dency for to underestimate will also disappear. Thus for an infinitely large num-
ber of degrees of freedom will become normally distributed and equivalent to 

Definition Degrees of freedom (df ): The number of independent pieces of information
remaining after estimating one or more parameters.
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1 It is called “Student’s ” because Gossett worked for the Guinness Brewing Company, which would not let
him publish his results under his own name. He published under the pseudonym of “Student,” hence our
present-day reference to Student’s t.
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Degrees of Freedom
I have mentioned that the distribution is dependent on its degrees of freedom.
For the one-sample case, the one degree of freedom is lost because we
use the sample mean in calculating To be more precise, we obtain the sample
variance ( ) by calculating the deviations of the observations from their own
mean rather than from the population mean Because the sum
of the deviations about the mean, always equals 0, only of the
deviations are free to vary (the is determined if the sum of the deviations is to
be zero). For an illustration of this point consider the case of five scores whose
mean is 10. Four of these scores can be anything you want (e.g., 18, 18, 16, 2), but
the fifth score cannot be chosen freely. Here it must be if the mean is going to
be 10. In other words, there are only four free numbers in that set of five scores
once the mean has been determined; therefore, we have four degrees of freedom.
This is the reason the formula for (defined in Chapter 5) used in the
denominator. Because is based on we have degrees of freedom
for t.

N21N21 df,s2
N21s2
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Figure 12.5
distribution for 1, 30, and degrees of freedom`t

From now until the end of the book you will continually see references to the
degrees of freedom. In many cases they will be or but sometimes
they will be the number of groups minus 1, the number of categories minus 1,
or something like that. In each case we lose one or more degrees of freedom
because we have estimated one or more parameters using sample statistics.

N 2 2,N 2 1



On several occasions throughout this book I have referred to studies of
children and adults under stressful situations. Often we find that stress
produces negative reactions in the form of depression, anxiety, behavior
problems, and so on. But in a study of the families of cancer patients,
Compas and others (1994) observed that young children do not report an
unusual number of symptoms of depression or anxiety. If fact they even
look slightly better than average. Is it really true that young children
somehow escape the negative consequences of this kind of family stressor?
Can you think of an alternative hypothesis that might explain these
results?

One of the commonly used measures of anxiety in children is called
the Children’s Manifest Anxiety Scale (CMAS) (Reynolds & Richmond,
1978). Nine items on this scale form what is often called the “Lie Scale.”
These items are intended to identify children who seem to be giving socially
desirable responses rather than answering honestly. (Calling it a “lie” scale is
not really being fair to the children; they are just trying to tell you what
they think you want to hear.) Could it be that young children under stress
score low on anxiety scores not because they have very little anxiety, but
because the anxiety is masked by an attempt to give socially appropriate
answers? One way of addressing this question is to ask if these children have
unusually high scores on the Lie Scale. If so, it would be easier to defend the
argument that children are just not telling us about their anxiety, not that
they don’t have any.

Compas et al. (1994) collected data on 36 children from families in
which one parent had recently been diagnosed with cancer. Each child
completed the CMAS, and their Lie Scale scores, among others, were
computed. For this group of children the mean Lie Scale score was 4.39,
with a standard deviation of 2.61. Reynolds and Richmond report a
population mean for elementary school children of 3.87, but from their data
it is not possible to determine the population standard deviation for only
this age range of children. Therefore we are required to estimate the
standard deviation (or variance) from the sample standard deviation (or
variance) and use the test.

We want to test the null hypothesis that the Lie Scale scores are a
random sample from a population with a mean of 3.87, the population
mean reported by Reynolds and Richmond. Therefore,

We will use a two-tailed test and work at the 5% level of significance.
From the previous discussion we have

t 5
X 2 m

sX

5
X 2 m

s1N

H1: m ? 3.87
H0: m 5 3.87
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t
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The numerator of the formula for represents the distance between
the sample mean and the population mean given by The denominator
represents an estimate of the standard deviation of the distribution of
sample means—the standard error. This is the same thing that we had
with except that the sample variance (or standard deviation) has been
substituted for the population variance (or standard deviation). For our
data we have

A value of 1.20 in and of itself is not particularly meaningful unless we
can evaluate it against the sampling distribution of to determine whether
it is a commonly expected value of when is true. For this purpose, the
critical values of are presented in Table E.6, a portion of which is shown in
Table 12.1. This table differs in form from the table of the normal
distribution ( ) because, instead of giving the area above and below each
specific value of which would require too much space, the table gives
those values of that cut off particular critical areas, for example, the .05
and .01 levels of significance. Also, in contrast to a different distribution
is defined for each possible number of degrees of freedom. We want to work
at the two-tailed .05 level. The critical value generally is denoted or, in
this case, 

To use the tables, we must enter the table with the appropriate
degrees of freedom. We have 36 observations in our data, so we have

for this example. Table E.6 (or Table 12.1) tells
us that the critical value for is (I obtained that value by
taking the average of the critical values for 30 and 40 because the
table does not contain an entry for exactly 35 )

The number in parentheses after as in is the degrees of
freedom. Our result tells us that only if is true 5% of the time would a 

computed on a sample of 36 cases lie outside Because the value
we computed (1.20) was less than 2.03, we will not reject We do not
have sufficient evidence to conclude that young children under stress
perform any differently on the Lie Scale from a random sample of normal
children. We will have to look elsewhere for an explanation of the low
anxiety scores of these children. (To see if these children’s anxiety scores
really are below the population average, see Exercise 12.22.)
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2 This is a point that can be confusing. Some texts, such as this one, will use to refer to critical value for
a two-tailed test, assuming that you know that half of is located in each tail. Other texts use the notation

to make it very clear that we know that half of is in each tail. In our example, the critical value is
So, the notational scheme used here will be whereas other books could equally

validly write Just be aware that throughout this book I always run tests at the two-tailed
.05 level. (My use of (plus and minus) reveals that I am using a two-tailed test.);

t
a>2 5 t.025 5 2.03.
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12.4 Factors That Affect the Magnitude 
of t and the Decision about 

Several factors affect the magnitude of the statistic and/or the likelihood of
rejecting 

1. the actual obtained difference 

2. the magnitude of the sample variance 

3. the sample size ( )N

1s2 2
1X 2 m 2

H0:
t

H0
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4. the significance level ( )

5. whether the test is a one- or a two-tailed test

It should be obvious that the obtained difference between and the mean ( )
given by is important. This follows directly from the fact that the larger the numer-
ator, the larger the value. But it is also important to keep in mind that the value of

is in large part a function of the mean of the population from which the sample
was actually drawn. If this mean is denoted and the mean given by the null hypoth-
esis is denoted then the likelihood of obtaining a significant result will increase
as increases.

When you look at the formula for it should be apparent that as 
decreases or increases, the denominator itself will decrease and the
resulting value of will increase. Because variability introduced by the experi-
mental setting itself (caused by ambiguous instructions, poorly recorded data,
distracting testing conditions, and so on) is superimposed on whatever variabil-
ity there is among participants, we try to reduce by controlling as many sources
of variability as possible. By obtaining as many participants as possible, we also
make use of the fact that increasing decreases .

Finally, it should be evident that the likelihood of rejecting will depend
on the size of the rejection region, which in turn depends on and the location of
that region (whether a one-tailed or two-tailed test is used).

12.5 A Second Example: The Moon Illusion

It will be useful to consider a second example, this one taken from a classic
paper by Kaufman and Rock (1962) on the moon illusion. (We have already
discussed a part of this paper earlier, in Chapter 5.) As you know, the moon
when seen coming just over the horizon looks huge compared to the moon
seen alone high in the sky near its zenith, or highest point. But why should
that be, when the moon obviously doesn’t expand and contract? Kaufman
and Rock concluded that the moon illusion could be explained on the basis
of the greater apparent distance of the moon when it is at the horizon. As
part of a very complete series of experiments the authors initially sought to
estimate the moon illusion by asking subjects to adjust a variable “moon”
appearing to be on the horizon to match the size of a standard “moon”
appearing at its zenith, or vice versa. (In these measurements they did not
use the actual moon, but an artificial one created with a special apparatus.)
One of the first questions we might ask is whether there really is a moon
illusion using their apparatus, that is, whether a larger setting is required to
match a horizon moon than to match a zenith moon. (If they can’t produce
an illusion, they need a different apparatus for carrying out their study.)
The following data for ten subjects are taken from Kaufman and Rock’s
paper and represent the ratio of the diameter of the variable moon and the
standard moon. A ratio of 1.00 would indicate no illusion; a ratio other
than 1.00 would represent an illusion. For example, a ratio of 1.5 would
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mean that the horizon moon appeared to have a diameter 1.5 times the
diameter of the zenith moon. Evidence in support of an illusion would
require that we reject in favor of 

Obtained Ratio: 1.73  1.06  2.03  1.40  0.95  1.13  1.41  1.73  1.63  1.56

For these data and A test on 
is given by

From Table E.6 in the Appendices we see that with for a
two-tailed test at the critical value of The obtained
value of (often denoted ) is 4.29. Because we can reject 
at and conclude that the true mean ratio under these conditions is
not equal to 1.00. In fact, it is greater than 1.00, which is what we would
expect on the basis of our experience. (It is always comforting to see science
confirm what we have all known since childhood, but the results also mean
that Kaufman and Rock’s experimental apparatus performs as it should.) What
would we have concluded if t had been equal to ?

12.6 How Large Is Our Effect?

For years, psychologists and others who use statistical techniques to analyze their
data have been content to declare that they found a significant difference, and
then consider their work done. People have suggested that this was not adequate,
but their complaints largely went unheeded until not very many years ago. Those
who did complain were arguing for some kind of statement by the experimenter
that gave an indication not only that the difference was significant, but whether it
was meaningful. If we use enough subjects, we can almost always find even a mean-
ingless difference to be significant.

One of those who have been most involved in this debate was Jacob Cohen,
whose name will appear frequently in this book, who insisted that we should report
what he termed a measure of effect size. By this he meant that he wanted to see a
statistic that gave a meaningful indication of how large a mean was, or how differ-
ent two means were.

Definition Effect size: The difference between two populations divided by the standard
deviation of either population—sometimes presented in raw score units.

There are several different ways in which we could present information on
the size of a difference. I will develop the concept of confidence intervals in the
next section. I will also develop the concept of an effect size at greater length in

24.29
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the next several chapters, but at this point I want to focus only on the general
idea—and the moon illusion data are ideal for this purpose. We know that we have
a significant difference, but when we report this difference, we want to be able to
convince the reader that he or she cares about the effect. If the moon looks just a
tiny bit larger at the horizon, that may not be worth much comment.

Recall the nature of our dependent variable. Participants looked at the moon
high in the sky and adjusted a “moon” off to one side to appear to be the same size
as the real moon. Then they looked at the moon just above the horizon, and made
a similar adjustment. If there were no moon illusion, the two settings would be
about the same, and their ratio would be about 1.00. But in actual fact, the settings
for the horizon moon were much larger than the settings for the zenith moon, and
the average ratio of these two settings was 1.463. This means that, on average, the
moon on the horizon appeared to be 1.463 times larger (or 46.3% larger) than the
moon at its zenith. This is a huge difference—at least it appears so to me. (Notice
that I am not referring to the measurement of the setting the participant made, but
to the ratio of the sizes under the two conditions. This is important, because in
psychology the actual measurement we make often depends on the particular way
we measure it and is not necessarily meaningful in its own right. But here the ratio
of measurements is, in fact, meaningful.)

This experiment illustrates a case wherein we can convey to the reader some-
thing meaningful about the size of our effect just by reporting the mean. We don’t
have to get fancy. When you tell your readers that the moon at the horizon appears
nearly half again as large as the moon at its zenith, you are telling them something
more than simply that the horizon moon appears significantly larger. You are
certainly telling them much more than saying that the average setting for the hori-
zon moon was 5.23 centimeters.

In this example we have a situation where the ratios that we collect are such
that we can express important information simply by telling the reader what the mean
ratio was. In the next few chapters you will see examples in which the magnitude of
the mean is not particularly helpful, and we will we need to develop better measures.

12.7 Confidence Limits on the Mean

The moon illusion is also an excellent example of a case in which we are particularly
interested in estimating the true value of the population mean, in this case the true
ratio of the perceived size of the horizon moon to the perceived size of the zenith moon.
As we have just seen, it makes sense here to say that “people perceive a moon on the
horizon to be nearly 1.5 times as large as the apparent size of the moon at its zenith.”
The sample mean as you already know, is an unbiased estimate of When we
have one specific estimate of a parameter, we call it a point estimate. There are also
interval estimates, which set limits by a procedure that has a high probability of includ-
ing the true (population) value of the mean (the mean, of a whole population of
observations). What we want, then, are confidence limits on These limits enclose
what is called a confidence interval. In Chapter 6 we saw how to set what were called
“probable limits” on an observation. A similar line of reasoning will apply here.

m.
m,

m.1X 2 ,

m,
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Definition Point estimate: The specific value taken as the estimate of a parameter.
Interval estimate: A range of values estimated to include the parameter.
Confidence limits: The limits at either end of an interval with a specified probability
of including the parameter being estimated.
Confidence interval: An interval, with limits at either end, having a specified
probability of including the parameter being estimated.

If we want to set limits on given the data at hand, what we really want to
do is to ask how large or small could be without causing us to reject if we ran
a test on the obtained sample mean. In other words, if (the true size of the
illusion) is actually quite small, we would have been unlikely to obtain the sample
data. The same would be true if is quite large. At the other extreme, our ratio of
1.46 is probably a reasonable number to expect if the true mean ratio were 1.45 or
1.50. Actually, there is a whole range of values for for which data such as those
we obtained would not be particularly unusual. We want to calculate those values
of In other words, we want to find those values of that would give us values
of that are just barely significant in each tail of the distribution.

Before we go further, let me clarify what we are trying to do—and more
importantly what we are not trying to do. The logic of confidence limits looks a
bit quirky to most people. You would probably like me to do a bit of calculation
and tell you that must be between 1.22 and 1.71, for example. But I can’t do
that. But what I can do is to say that if were any smaller than 1.22, Kaufman
and Rock would not have been likely to get the result that they obtained. I can
also say that if were any larger than 1.71 they would not be very likely to obtain
this result. So this result is consistent with the idea that is somewhere between
1.22 and 1.71.

An easy way to see what we are doing is to start with the formula for and
apply some simple algebra that you learned early in high school.

Because we have collected the data, we already know and We also
know that the critical two-tailed value for at is We will
substitute these values into the formula for and solve for 
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Rearranging to solve for we have

Using the and separately to obtain the upper and lower limits for
we have

Thus we can write the 95% confidence limits as 1.219 and 1.707 and the confi-
dence interval as

or, to write a general expression,

But where did that 95% figure come from? We have a 95% confidence interval
because we used the two-tailed critical value of at cutting off 2.5% in
each tail. We are saying that the obtained value would fall within those limits 95%
of the time. For the 99% limits we would take Then the 99%
confidence interval would be

We now can say that the probability is .95 that an interval such as 
includes the true mean ratio for the moon illusion, while the probability is .99 that
an interval such as includes Note that neither interval includes
the value 1.00, which represents no illusion. We already knew this for the 95%
confidence interval because we had rejected that null hypothesis at when
we ran the test.

What we have here is something like what you see in the newspaper when
you read that the public support for the president is 29% with a margin of error of
3%. A “margin of error” is basically just a confidence limit, and unless you were
told otherwise it is most likely a 95% confidence interval. Essentially the pollster
is telling you that, given the size of the sample and the level of support, whatever
number they find is most likely to be within three percentage points of the correct
value.

Confidence intervals are demonstrated in Figure 12.6. To generate this
figure, I drew 25 samples of from a population with a mean of 5. For
every sample a 95% confidence interval on was calculated and plotted. For
example, the limits produced from the first sample were approximately 4.46 and
5.72, whereas for the second sample the limits were 4.83 and 5.80. Because in this
case we know that the value of equals 5, I have drawn a vertical line at thatm
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point. Notice that the limits for samples 12 and 14 do not include We
would expect that the 95% confidence limits would encompass 95 times out of
100. Therefore, two misses out of 25 seems reasonable. Notice also that the confi-
dence intervals vary in width. This variability can be explained by the fact that the
width of an interval is a function of the standard deviation of the sample, and some
samples have larger standard deviations than others.3

A comment is in order here about the interpretation of confidence limits.
Statements of the form are not to be interpreted in
the usual way. The parameter is not a variable. It does not jump around fromm

p11.219 # m # 1.707 2 5 .95

m

m 5 5.
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Figure 12.6 
Confidence limits computed on 25 samples from a population with m 5 50

3 Many statisticians would correctly object to what I might appear to be saying in my statement of the mean-
ing of confidence limits as I have written it. They would argue that before the experiment is run and the
calculations are made, an interval of the form

has a probability of .95 of encompassing However, once the data are in, an interval such as 
either includes the value of or it doesn’t ( Put slightly differently,
the quantity

is a random variable, but the specific interval is not a random variable and therefore does not
have a probability associated with it. In subjective probability terms it is perfectly reasonable to say that my
subjective probability is .95 that if you were to tell me the true value of it would be found to lie between
1.219 and 1.707.
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experiment to experiment. Rather, is a constant, and the interval is what varies
from experiment to experiment. Think of the parameter as a stake and the experi-
menter, in computing confidence limits, as tossing rings at that stake (parameter).
Ninety-five percent of the time a ring of specified width will encircle the stake, and
5% of the time it will miss. A confidence statement is a statement of the probabil-
ity that the ring has landed on the stake (i.e., the interval includes the parameter)
and not a statement of the probability that the stake (parameter) landed inside the
ring (interval). As I said in the footnote at the end of the preceding paragraph,
there is a lot of confusion over exactly how a confidence limit should be interpreted.
I do not mean to disagree with those who hold with a precise definition of confi-
dence intervals, but there are many worse errors you can make in statistics than
erroneously thinking “I am 95% confident that the true mean is between 1.219 and
1.707.” Don’t be surprised if you read that they have taken away my statisticians
badge because of what I said in the preceding sentence.

12.8 Using SPSS to Run One-Sample t Tests

When you have large amounts of data, it is often much more convenient to use a
program such as SPSS to compute values. Figure 12.7 is an illustration of the use
of SPSS to obtain a one-sample test and confidence limits for the moon illusion
data. You can see how to set up this analysis in SPSS by going to Chapter 7 of the
Shorter SPSS Manual on this book’s Web site. Notice that the results agree, within
rounding error, with those we obtained by hand. Notice also that SPSS computes
the exact probability of a Type I error (the value) rather than comparing to a
tabled value. Although we concluded that the probability of a Type I error was less
than .05, SPSS reveals that the actual two-tailed probability is .002. Most com-
puter programs operate in this way.

From the output in Figure 12.7 we could conclude that the mean ratio
settings for the moon illusion, based on 10 subjects, was significantly greater than
1.00, which would be the expected setting if there were, in fact, no moon illusion.
This could be written as 

12.9 A Good Guess Is Better Than Leaving It Blank

We now will return to the test on means and work through an example of a test
on a null hypothesis about a single population mean ( ). In several places
throughout this book we have worked with the study by Katz and his colleagues
(1990) on the performance on an SAT-like exam when some of the students had
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not seen the passage on which the questions were based. The data from the 28
students in the group that had not seen the passage follow.

ID 1 2 3 4 5 6 7 8 9 10 11 12 13 14
Score 58 48 48 41 34 43 38 53 41 60 55 44 43 49

ID 15 16 17 18 19 20 21 22 23 24 25 26 27 28
Score 47 33 47 40 46 53 40 45 39 47 50 53 46 53
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� T-Test

One-Sample Statistics

Std. Std. Error 
N Mean Deviation Mean

RATIO 10 1.4630 .34069 .10773

One-Sample Test

Test Value � 1

95% Confidence Interval of
the Difference

Sig. Mean
t df (2–tailed) Difference Lower Upper

RATIO 4.298 9 .002 .4630 .2193 .7067
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Figure 12.7 
SPSS analysis for one-sample tests and confidence limitst



If the students had really guessed blindly, without even looking at the
possible answers, we would expect that they would get 20 items correct by
chance, because there were 100 items with five choices per item. On the other
hand, if they can guess intelligently just by looking at the choices they are
given, then they should do better than chance. So we want to test 
against 

To solve for we need to know the mean, the standard deviation, and the size
of our sample.

Since we know and and we know that we want to test the null hypothe-
sis that then we can set up a simple test.

With a as large as 20.61, we don’t even need to look in the Appendix. If we did,
we would find a two-tailed critical value of on 27 for of 2.052.
Obviously we can reject the null hypothesis and conclude that the students were
performing at better than chance levels.

We can calculate a 95% confidence interval based on our sample data.

Thus our confidence limits for the number correct in the population are 43.60
and 48.82.
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Here is a situation in which I really have to ask what those confidence limits
have told me. It is useful to know that students can guess at better than chance
rates, although that has never been a closely held secret, but to know the con-
fidence limits on such behavior probably has not advanced the cause of science
very much. Sometimes confidence limits are very helpful—they may clarify
the meaning of a result. Other times confidence limits look more like window
dressing.

To carry this discussion further, let us look at effect sizes for a minute. I will
write more about effect size calculations with one sample in the next chapter, but



I want to anticipate that here because it offers a nice contrast to what we said with
the moon illusion example. When we were looking at the moon illusion, our
dependent variable was the ratio of the horizon moon to the zenith moon, and that
ratio has a clear interpretation. We saw that the horizon moon appeared to be
nearly half again as large as the same moon seen overhead at its zenith. In the cur-
rent example of the study by Katz et al., we don’t have such a meaningful depend-
ent variable. It probably will not satisfy you to know that participants correctly
answered 46.21 questions correctly, or even to learn that they correctly answered
26.21 more questions than would be expected by chance. Is 26.21 a large number?
Well, it depends on your point of reference.

To anticipate what I will say in Chapter 13, I am going to represent the mean
performance in terms of the number of standard deviations it is above or below
some point. In this particular case the size of a standard deviation was 6.73. It
makes sense to me to ask how many standard deviations our mean was above the
mean that would be expected by chance. So in this case I will divide 26.21 (the
degree to which the participants’ mean exceeded chance) by 6.73 and call this sta-
tistic Then

On the basis of this result we can conclude that our participants scored nearly four
standard deviations higher than we would have expected by chance. Four standard
deviations is a lot, and I would conclude that they are doing very much better than
chance responding would have predicted.

I need to stress one complicating factor in calculating As the formula
shows, is a ratio of the size of some effect (a mean or a difference in means)
and a standard deviation. But before you jump in and use just any old standard
deviation, you need to think about whether that standard deviation gives us a
meaningful metric. In other words, does it make sense to convey the difference
in standard deviation terms? I think that most people would agree that if we
are talking about the moon illusion the mean setting itself is often sufficient—
“the horizon moon appears to be nearly half again as large as the zenith moon.”
There we have just used the mean and not involved the standard deviation at
all. In the most recent example it would not be very useful to simply report
how many items were correct, but it does seem meaningful to say that we are
nearly four standard deviations above where we would be by chance. Just imag-
ine a normal distribution plotted with a mean at 20 (the chance level) and
imagine being four standard deviations above there. That’s a big difference!
However, there are other situations, one of which will appear in the next
chapter, where there doesn’t seem to be anything particularly meaningful in
scaling a difference in standard deviation units. The task is to report some sta-
tistic that will give the reader a sense of what you have found, even if that is
not statistically elegant.
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Writing Up the Results of a One-Sample t Test
The following is an abbreviated version of what I would write if I were wanted to
write up this study.

- Katz et al. (1990) presented students with exam questions similar to 
those on the SAT, that required them to answer 100 five-choice
multiple-choice questions about a passage that they had presumably read.
One of the groups was given the questions without being
presented with the passage, but they were asked to answer them anyway.
A second group was allowed to read the passage, but they are not of
interest to us here.

If participants perform purely at random, those in the NoPassage
condition would be expected to get 20 items correct just by chance. On
the other hand, if participants read the test items carefully, they might be
able to reject certain answers as unlikely regardless of what the passage
said. A test on produced which has an
associated probability under the null hypothesis less than .05, leading us
to reject and conclude that even without having seen the passage,
students can perform at better than chance levels. Furthermore, the
measure of effect size shows that these students were
performing at nearly 4 standard deviations better than we would have
expected by chance, and that therefore their test-taking skills made an
important contribution to their performance on this task.

12.10 Seeing Statistics

In this chapter we have used Student’s test to test the hypothesis that a sam-
ple came from a population with a specific mean, and we did this within the
context of a situation in which we do not know the population standard devia-
tion. We were required to use specifically because we did not know that popu-
lation standard deviation. McClelland’s applets on this book’s Web site are
excellent for illustrating exactly what is happening here, and why the distribu-
tion is more appropriate than the normal ( ) distribution for answering our
question.

Sampling Distribution of t
The first applet for Chapter 12 is named Sampling Distribution of This applet
is designed to allow you to draw samples from a particular population with a
known mean calculate the mean, standard deviation, and for each
sample, and plot the result. For each sample we are testing the null hypothesis
that the population mean is 0, and, since we know that is true, we will have the
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sampling distribution of when the null is true. (This distribution is often called
the central distribution.)

Definition Central t distribution: The sampling distribution of the t statistic when the null
hypothesis is true.

The opening screen, before you have done any sampling, looks like the following:

Notice that you can draw 1, 10, or 100 samples at a time, and each time you
click one of the buttons you add those samples to the ones you have drawn
already.

Start by drawing a number of individual samples, and note how the result-
ing values vary from one sample to another. After you have drawn a number
of individual samples, click on the button labeled “100 sets.” Notice that some
of the resulting values are probably surprisingly large and/or small. (My first try
gave me a of about 4.5, and another of These extreme values would
likely represent cases that would lead to rejection of the null hypothesis. Next,
click on the “100 sets” button repeatedly until you have drawn 1,000 samples.
Notice that the distribution is beginning to smooth out. Keep going until you
have drawn 10,000 samples, and notice how smooth the distribution has
become.

24.0 2t
t

t

t
t
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Comparing z and t
You might be inclined to view the distribution of that you have just drawn as
a normal distribution. It looks a lot like the normal distributions we have seen.
But actually, it is a bit too wide. Under a normal distribution we would expect
5% of the values to exceed but in our case, with only 4 12.15% of the
results would exceed Thus if you were to use as your cutoff, you
would reject the null hypothesis far too often. The actual 5% cutoff (two-tailed)
would be 

Let’s explore this last idea a bit further. If you go back to your browser and
open the applet named “t versus z,” you will see something that looks approxi-
mately like the following.

The red line (which is gray here, but red on your screen) represents the
distribution of (the normal distribution). The black line represents the dis-
tribution. Notice how the tails of the distribution are higher than those of the
normal distribution. That means that we have to go farther out into each tail to
find the 2.5% cutoff.

On the right side of this figure you will see a slider. Moving the slider
up and down varies the degrees of freedom for and allows you to see how the

distribution approaches the normal distribution as increase. At what
point would you be willing to conclude that the two distributions are “close
enough?”

Confidence Intervals
While we are looking at McClelland’s applets, we will take a look at an applet
that he wrote illustrating confidence limits. In Figure 12.6 I showed you the
results when I drew 25 samples, with their confidence limits, computed when

dft
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the null hypothesis was true. In that case there were two confidence
intervals that did not enclose but the rest did. What might we expect
to see if the null hypothesis is actually false?

The applet entitled “Confidence Limits” illustrates this situation. It
hypothesizes a population mean of 100, but actually draws samples from a
population wherein For each sample the applet calculates, and
draws, a 95% confidence limit. As you might hope and expect, many of these
intervals do not include though a number of them do. (Remember
that is actually 110.) I have shown one result below, where I have drawn
one sample.

The vertical dashed line represents the null hypothesis The
solid line represents the true mean of 110. Notice that for the first sample the
limits are which do not include 100, the hypothesized mean.
Your one sample example will probably be different.

First start the applet and draw one sample. Do this repeatedly, and notice
how the intervals vary. Then click on the button to draw 10 samples. Here it
will be clear that some intervals include 110, the true mean, while others do
not. Finally, draw 100 samples. My results follow.

101.0 2 120.0,

m 5 100.

m

m 5 100,

m 5 110.

m 5 5.0,
1m 5 5.0 2
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Now the second line of the heading above the graph will tell you what
percentage of the intervals include the null hypothesis. (In this case it is 54%.)
Repeat this several times and note how the answer varies.

12.11 Summary

We began this chapter by considering the sampling distribution of the mean and
how the information it gives is useful in testing hypotheses. The sampling distri-
bution of the mean is simply the distribution of means over repeated sampling. The
Central Limit Theorem, which is one of the most important theorems in statistics,
tells us that the sampling distribution will have a mean equal to the population
mean, a standard deviation equal to the population standard deviation divided by
the square root of and will approach normal as the sample size increases. This
theorem allows us to know what the results of repeated sampling would be without
having to do that sampling.

N,
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We then covered testing the null hypothesis about a single mean when we
know the population standard deviation, and this simply involved computing a 

score by subtracting the hypothesized population mean from the sample mean
and dividing by the standard error of the mean as given by the Central Limit
Theorem. When we do not know the population standard deviation (and we
generally don’t), we simply substitute the sample standard deviation for the pop-
ulation standard deviation and call the result Student’s But with we need to
take into account the degrees of freedom, which in the one-sample case will be
one less than the sample size. When we calculate we need to compare that
against the distribution because the answers are likely to be larger than they
would be if we had known .

Several factors affect the size of and these include the actual difference
between the sample mean and the mean under the null hypothesis, the size of the
sample variance, the sample size The choice of a one- or two-tailed test will
not affect the magnitude of but it will determine the critical value and thus can
affect the probability of rejecting the null hypothesis.

We looked briefly at estimating effect size, and will look more closely at that
in subsequent chapters. By “effect size” I mean some measure of how large our dif-
ference is. In the case of the moon illusion I argued that the mean adjustment is
all that we need to understand how large an effect we have. In other situations we
will want to scale our answer in terms of the size of a standard deviation, so as to
be able to say something like “This mean was 1.5 standard deviations larger than
the hypothesized population mean.”

Finally, I discussed confidence limits, which represent our best guess about
limits on the true population mean. We want to be able to say that 95% of the time
when we carry out these computations we will have limits that bracket the true
population mean. We will have more to say about confidence limits in subsequent
chapters.

Some important terms in this chapter are

t,
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12.12 Exercises

12.1 The following numbers represent 100 random numbers drawn from a rectangular population
with a mean of 4.5 and a standard deviation of 2.6. Plot the distribution of these digits.

6 4 1 5 8 7 0 8 2 1 5 7 4 0 2 6 9 0 9 6

4 9 0 4 9 3 4 9 8 2 0 4 1 4 9 4 1 7 5 2

3 1 5 2 1 7 9 7 3 5 4 7 3 1 5 1 1 0 5 2

7 6 2 1 0 6 2 3 3 6 5 4 1 5 9 1 0 2 6 0

8 3 9 3 3 8 5 5 7 0 8 4 2 0 6 3 7 3 5 1

12.2 I drew 50 samples of 5 scores each from the same population that the data in Exercise 12.1
came from, and calculated the mean of each sample. The means are shown below. Plot the
distribution of these means.

2.8 6.2 4.4 5.0 1.0 4.6 3.8 2.6 4.0 4.8

6.6 4.6 6.2 4.6 5.6 6.4 3.4 5.4 5.2 7.2

5.4 2.6 4.4 4.2 4.4 5.2 4.0 2.6 5.2 4.0

3.6 4.6 4.4 5.0 5.6 3.4 3.2 4.4 4.8 3.8

4.4 2.8 3.8 4.6 5.4 4.6 2.4 5.8 4.6 4.8

12.3 Compare the means and the standard deviations for the distribution of digits in Exercise
12.1 and the sampling distribution of the mean in Exercise 12.2.
(a) What would the Central Limit Theorem lead you to expect in this situation?
(b) Do the data correspond to what you would predict?

12.4 In what way would the result in Exercise 12.2 differ if you had drawn more samples of size 5?

12.5 In what way would the result in Exercise 12.2 differ if you had drawn 50 samples of size 15?

12.6 In Table 11.1 we saw data on the state means of students who took the SAT exam. The
mean Verbal SAT for North Dakota was 515. The standard deviation was not reported.
Assume that 238 students took that exam.
(a) Is this result consistent with the idea that North Dakota’s students are a random sample

from a population of students having a mean of 500 and a standard deviation of 100?
(b) From what we learned in Chapter 11 about SAT scores and how, and why, they vary by

state, would you feel comfortable concluding that people in North Dakota are smarter
than people elsewhere?

12.7 Why do the data in Exercise 12.6 not really speak to the issue of whether education in
North Dakota is generally in good shape?

12.8 Using the data from Table 11.1, compute the 95% confidence limits on the Pupil/Teacher
ratio across the 50 states.

12.9 You would probably be nervous about inferring a population estimate and a confidence
interval for the mean U.S. SAT Combined score from the data in Table 11.1, but you are
probably much less worried about your confidence limits on Pupil/Teacher ratio in Exercise
12.8. Why would this be?
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12.10 In Exercise 5.21 we saw, among other things, the weight gain of each of 29 anorexic girls
who received cognitive behavioral therapy. What null hypothesis would we likely be test-
ing in this situation?

12.11 The data referred to in Exercise 12.10 (in pounds gained) follow. Run the appropriate test
and draw the appropriate conclusions.

ID 1 2 3 4 5 6 7 8 9 10

Gain 1.7 0.7 20.1 20.7 23.5 14.9 3.5 17.1 27.6 1.6

ID 11 12 13 14 15 16 17 18 19 20

Gain 11.7 6.1 1.1 24.0 20.9 29.1 2.1 21.4 1.4 2.3

ID 21 22 23 24 25 26 27 28 29

Gain 23.7 20.8 2.4 12.6 1.9 3.9 0.1 15.4 20.7

12.12 Compute 95% confidence limits on for the data in Exercise 12.11.

12.13 Compute a measure of effect size for the data in Exercise 12.11.

12.14 For the IQ data on females in Appendix D (data set Add.dat on the website), test the null
hypothesis that 

12.15 In Exercise 12.14 you probably solved for instead of Why was that necessary?

12.16 Describe the procedures that you would go through to reproduce the results in Figure 12.4.

12.17 In Section 12.3 we ran a test to test the hypothesis that young children under stress give
what they perceive to be more socially desirable answers on an anxiety measure than
normal children do. We never really tested the hypothesis that they report lower levels of
anxiety. For the data on these 36 children the mean anxiety score was 11.00, with a
standard deviation of 6.085. The population mean anxiety score for elementary school-aged
children on this measure is reported as 14.55. Do our children show significantly lower
levels of anxiety than children in the general population?

12.18 Compute the 95% confidence limits on mean anxiety for the data in Exercise 12.17.

12.19 Are the confidence limits that you calculated in Exercise 12.18 consistent with the results
of the test in Exercise 12.17?

12.20 Write a brief paragraph describing the research project in Exercise 12.17 and its results.
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Hypothesis Tests
Applied to
Means: Two
Related Samples

Concepts that you will need to remember 
from previous chapters
t distribution: Sampling distribution of the statistic when

the null hypothesis is true. Often called the
“central distribution“

Standard error: The standard deviation of the sampling
distribution of a statistic

Degrees of freedom: An adjusted value of the sample size, often
or

Null hypothesis: The hypothesis to be tested by a statistical
test:

Research hypothesis: The hypothesis that the study is designed to
test:

Mean and standard deviation of a
population or a sample, respectively

m, s, X , s:
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This chapter will move from the one-sample case to the two-sample case, but
here we will assume that the two samples of data were provided by the same
participants. At first glance it looks as if this situation creates problems, but it turns out
that it is very easy to get around the issues that arise. We will also consider the ques-
tion of when we would, and would not, want to use related samples.

In Chapter 12 we considered the situation in which we had one sample mean
We wanted to test to see if it was reasonable to believe that we would obtain

such a mean if we had been sampling from a population with some specified pop-
ulation mean (which we denote ). Another way of phrasing this is to say that we
were testing to determine if the mean of the population from which we sampled (call
it ) could be equal to some particular value given by the null hypothesis .

In this chapter we will move away from the case in which we perform a test on
the mean of a single sample of data. Instead we will consider the case in which we
have two related samples and we wish to perform a test on the difference between
their two means. (The same analyses apply to what are variously called repeated
measures, matched samples, paired samples, correlated samples, dependent sam-
ples, randomized blocks, or split plots, depending in part on the speaker’s back-
ground.) As you will see, this test is similar to the test discussed in the previous
chapter.

Definition Related samples: An experimental design in which the same participant is
observed under more than one treatment.
Repeated measures: An experimental design in which the same participant is
observed under more than one treatment.
Matched samples: An experimental design in which the participants are paired
and one is assigned to each treatment.

13.1 Related Samples

In many (but certainly not all) situations in which we will use the form of the test
discussed in this chapter, we will have two sets of data from the same participants.
For example, we might ask 20 people to rate their level of anxiety before and after
donating blood. Or we might record ratings of level of disability made using two
different rating systems for each of 20 disabled individuals in an attempt to see
whether one rating system leads to generally lower assessments than the other. In
both examples we would have 20 sets of numbers, two numbers for each person,
and we would expect these two sets of numbers (variables) to be correlated. We
need to take this correlation into account in planning our test. In the example of
anxiety about donating blood, people differ widely in level of anxiety. Some seem
to be anxious all the time no matter what happens, and others just take things as
they come and don’t worry about anything. Thus, there should be a relationship
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between an individual’s anxiety level before donating blood and the anxiety level
after donating blood. In other words, if we know that a person was one of the more
anxious people before donation, we can make a reasonable guess that the same per-
son was one of the more anxious people after donation. Similarly, some people are
severely disabled, whereas others are only mildly so. If we know that a particular
person received a high assessment using one system, it is likely that person also
received a relatively high assessment using another system. The relationship
between data sets doesn’t have to be perfect—in fact, it probably never will be. The
fact that we can make better than chance predictions is sufficient to classify two
sets of data as related or matched. (To put this another way, we have related or
matched samples whenever the two variables, such as the two sets of anxiety
scores, are significantly correlated, and for all practical purposes that correlation
will be positive.)

In the two preceding examples I have chosen situations in which each per-
son in the study contributed two scores. Although this is the most common way of
obtaining related samples, it is not the only way. For example, a study of marital
relationships might involve asking husbands and wives to rate their satisfaction
with their marriage, with the goal of testing to see whether wives are, on average,
more or less satisfied than husbands. Here each individual would contribute only
one score, but the couple as a unit would contribute a pair of scores. It is very prob-
able that if the wife is very dissatisfied with the marriage, her husband isn’t likely
to be too happy either, and vice versa. This is a classic example of matching or
matched pairs.

Many examples of experimental designs involving related samples all have one
thing in common, and that is the fact that knowing one member of a pair of scores
tells you something—maybe not much, but something—about the other member.
Whenever this is the case, we say that the samples are related. This chapter deals
with tests on the difference between the means of two related samples.

13.2 Student’s t Applied to Difference Scores

Everitt, in Hand, et al., 1994, reported on family therapy as a treatment for
anorexia. There were 17 girls in this experiment, and they were weighed before and
after treatment. The weights of the girls, in pounds,1 is given in Table 13.1. The row
of difference scores was obtained by subtracting the Before score from the After
score, so that a negative difference represents weight loss, and a positive difference
represents a gain.

One of the first things we should probably do, although it takes us away from
tests for a moment, is to plot the relationship between Before Treatment andt

t
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whose mean weight is about 185 pounds, and that just doesn’t sound reasonable. However, the example is
completely unaffected by the units in which we record weight.



After Treatment weights, looking to see if there is, in fact, a relationship, and how
linear that relationship is. Such a plot is given in Figure 13.1. Notice that the rela-
tionship is basically linear, with a slope quite near 1.0. A slope of 1.00 would tell
us that how much the girl gained or lost by the end of therapy was not a function
of how much she weighed at the beginning of therapy. In other words, heavy and
light girls each gain approximately the same amount.

The primary question we wish is ask is whether subjects gained weight as a
function of the therapy sessions, or, put differently, whether family therapy is an
effective treatment for anorexia. We have an experimental problem here, because it
is possible that weight gain resulted merely from the passage of time, and that ther-
apy had nothing to do with it. However, Everitt also had a control group that did
not receive therapy, and they did not gain weight over the same period of time,
which strongly suggests that the simple passage of time was not an important vari-
able. (We will consider this group in Chapter 14.) If you were to calculate the weight
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Table 13.1
Data from Everitt on Weight Gain

ID 1 2 3 4 5 6 7 8 9 10

Before 83.8 83.3 86.0 82.5 86.7 79.6 76.9 94.2 73.4 80.5
After 95.2 94.3 91.5 91.9 100.3 76.7 76.8 101.6 94.9 75.2

Diff 11.4 11.0 5.5 9.4 13.6 �2.9 �.1 7.4 21.5 �5.3

ID 11 12 13 14 15 16 17 Mean Std. Dev.

Before 81.6 82.1 77.6 83.5 89.9 86.0 87.3 83.23 5.02
After 77.8 95.5 90.7 92.5 93.8 91.7 98.0 90.49 8.48

Diff �3.8 13.4 13.1 9.0 3.9 5.7 10.7 7.26 7.16

Figure 13.1
Relationship of weight before and after family therapy, for a group of 17 anorexic girls
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of these girls before and after therapy, the means would be 83.23 and 90.49 lbs,
respectively, which translates to a gain of a little over seven pounds. However, we
still need to test to see whether this difference is likely to represent a true difference
in population means, or a chance difference. By this I mean that we need to test the
null hypothesis that the mean in a population of Before scores is equal to the mean in
a population of After scores. In other words, we are testing 

As I suggested earlier, a problem arises when our Before and After scores
are not independent, and we have such a relationship here, as you can see from
Figure 13.1, which reports the correlation between the two measurements as .54.
How much a girl weighs after therapy is clearly related to how much she weighed
before therapy, which certainly sounds reasonable. This lack of independence
would distort our test if we couldn’t find a way around it, but fortunately we do
have a way around it, and so can proceed.

Difference Scores
Although it would seem obvious to view the data as representing two samples of
scores, one set obtained before the therapy program and one after, it is also possible,
and very profitable, to transform the data into one set of scores—the set of differences
between and for each girl. These differences are called difference scores, or gain
scores, and are shown in the third row of Table 13.1. They represent the degree of
weight gain between one measurement session and the next—presumably as a result
of our intervention. If the therapy program actually had no effect (i.e., if is true),
the average weight would not change from session to session. By chance some girls
would happen to have a higher weight After than Before, and some would have a
lower weight, but on the average there would be no difference.

Definition Difference scores (gain scores): The set of scores representing the difference
between the participant’s performance on two occasions.

If we now think of our data as being the set of difference scores, the null
hypothesis becomes the hypothesis that the mean of a population of difference
scores (denoted ) equals 0. Because it can be shown that we can
write But now we can see that we are testing a hypothe-
sis using one sample of data (the sample of difference scores), and we already know
how to do that from Chapter 12. Those of you who worked Exercise 12.11 in that
chapter will probably suspect that you have done all this before, though with a dif-
ferent treatment condition. Yes, you have. In Chapter 12 we looked at data as if
they consisted solely of gain scores, whereas in this chapter we start with before-
and-after data and then move to gain scores. These are just two approaches with
the same end. The only difference is that in Chapter 12 we were speaking of a test
that applies to one set of data regardless of whether those data are differences
between two scores for each person or, as in the case of the moon illusion exam-
ple, simply one set of data.

H0: mD 5 mA 2 mB 5 0.
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The t Statistic
We are now at precisely the same place we were in the previous chapter when we
had a sample of data and a null hypothesis The only difference is that in
this case the data are difference scores, and the mean and the standard deviation
are based on the differences. Recall that was defined as the difference between a
sample mean and a population mean, divided by the standard error of the mean.
Then we have

where and and are the mean and the standard deviation of the difference
scores and N is the number of difference scores (i.e., the number of pairs, not the
number of raw scores). From Table 13.1 we see that the mean difference score was
7.26, and the standard deviation of the differences was 7.16. For our data

Degrees of Freedom
The degrees of freedom for the matched-sample case are exactly the same as they
were for the one-sample case. Because we are working with the difference scores,

will be equal to the number of differences (or the number of pairs of observa-
tions, or the number of independent observations—all of which amount to the same
thing). Because the variance of these difference scores is used as an estimate
of the variance of a population of difference scores and because this sample
variance is obtained using the sample mean , we will lose one to the mean
and have In other words, number of pairs minus 1.

We have 17 difference scores in this example, so we will have 16 degrees of
freedom. From Table E.6 in the Appendices, we find that for a two-tailed test at
the .05 level of significance, Our obtained value of 
exceeds 2.12, so we will reject and conclude that the difference scores were not
sampled from a population of difference scores where In practical terms
this means that the subjects weighed significantly more after the intervention
program than before it. Although we would like to think that this means that the
program was successful, keep in mind the possibility that this could just be nor-
mal growth. The fact remains, however, that for whatever reason, the weights
were sufficiently higher on the second occasion to allow us to reject
H0: mD 5 mA 2 mB 5 0.
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13.3 The Crowd Within Is Like the Crowd Without

The unusual title of this section comes from a study by Vul and Pashler (2008).
The authors noted that judgments from groups are often better than judgments
from individuals. For example, they asked participants to answer the question
“What percentage of the world’s airports are located in the United States?” The
correct answer is about 30%. I doubt that you knew that exactly, but you could
probably make a reasonable guess—at least the answer would be more than 10%
and less that 50%. Suppose that you guessed 25% and I guessed 37%. You are off
by 5% and I am off by 7%, so on average you and I are off by 6%. (Remember,
the size of an error is an absolute number—we drop the sign.) But if you take
your guess and mine, our average is so our average guess is
only off by 1. This won’t work on in favor of our average guess all the time, but
frequently it will.2

Vul and Pashler asked an interesting question. If it is true that multiple
guesses from a group are usually a better estimate than guesses by individuals, what
about multiple guesses from the same individual? In other words, if I record your
guess of 25% and then come back sometime later and ask again, perhaps the aver-
age of your two guesses will be better than either guess alone. In fact, that should
be true whenever there is a positive correlation between guesses that is not perfect.

Suppose that we ran an experiment like the one by Vul and Pashler, and for
our convenience let the correct answer always be 100, or else rescale the data so
that is true. We use 15 participants, each of whom answers our questions on two
occasions three weeks apart. Assume that we have the data shown in Table 13.2.
The fifth column shows how far off the participants were when we averaged their
two guesses and compared those to the true value of 100. The next two columns
show each individual’s errors on their first guess and on their second guess, while
the eighth column averages those two errors. According to Vul and Pashler the
entries in column 5 should generally be smaller than the entries in the 8th column,
and thus the means of those two columns should differ.

There are several null hypotheses that we could test, but we will focus on
comparing the means of columns 5 and 8. This comes down to a test on the null
hypothesis that the difference scores come from a population with mean 
We are using a paired test because the scores from the same person would not be
independent. In this case the two guesses have a correlation of .76.
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2 This question can be traced back at least as far as Galton in 1907. He observed a crowd of nearly 800 vil-
lagers guessing the weight of a bull. No one guessed correctly, but the mean of their guesses was 1,197 lbs.
The bull actually weighed 1,198 lbs.



We have 15 pairs of guesses, so we have degrees of freedom.
From the appendix we find that for a two-tailed test at the critical value
of Because our obtained exceeds the critical value, and we can
reject the null hypothesis. We can conclude that the mean of a person’s two
guesses, is, on average, better than the typical error in his or her two guesses taken
separately.

Vul and Pashler (2008) pursued this question further, and their paper is
worth reading. In fact, soon after it was published, several commentaries showed
up on a Google search. The researchers also showed that, on average, a person’s
first guess is less in error than their second guess, though the average of the two is
even better.

13.4 Advantages and Disadvantages of Using 
Related Samples

In the next chapter we will consider experimental designs in which we use two
independent groups of subjects rather than testing the same subjects twice (or
some other method of having related samples of data). In many cases independent

t14df 5 2.145.
a 5 .05,

15 2 1 5 14
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Table 13.2
The Guessing Behavior of 15 Participants Each Given Two Guesses

Error
Correct First Second Average Average Error Error Average
Answer Guess Guess Guess Guess First Second Error Difference

100 95 110 102.5 2.5 5 10 7.5 5
100 105 112 108.5 8.5 5 12 8.5 0
100 101 90 95.5 4.5 1 10 5.5 1
100 92 99 95.5 4.5 8 1 4.5 0
100 115 108 111.5 11.5 15 8 11.5 0
100 103 112 107.5 7.5 3 12 7.5 0
100 97 95 96 4 3 5 6 2
100 90 98 94 6 10 2 6 0
100 96 90 93 7 4 10 7 0
100 110 95 102.5 2.5 10 5 7.5 5
100 106 109 107.5 7.5 6 9 7.5 0
100 93 87 90 10 7 13 10 0
100 102 97 99.5 0.5 2 3 2.5 2
100 108 110 109 9 8 10 9 0
100 95 107 101 1 5 7 6 5

Means 5.767 6.4 7.8 7.167
Mean Diff 1.40
sd 2.165

2

2

2

2

2

2

2



samples are useful, but before considering that topic, it is important that we con-
sider the strengths and weaknesses of related samples.

Probably the most important advantage of designing an experiment around
related samples is that such a procedure allows us to avoid problems associated with
variability from participant to participant. Return for a moment to the data on
weights of anorexic girls in Table 13.1. Notice that some participants (e.g., partic-
ipant 9) began the study weighing considerable less than others. On the other
hand, participant 8 began the study weighing well more than others. The advan-
tage of related-samples designs is that these variations between participants do not
enter into the data we analyze—the difference scores. A change from 73 pounds to
75 pounds is treated exactly the same as a change from 93 to 95. In not allowing
variability from participant to participant in initial weight to influence the data by
producing a large sample variance, related-samples designs have a considerable
advantage over independent samples in terms of the ability to reject a false null
hypothesis (power).

A second advantage of related samples over two independent samples is the
fact that related samples allow us to control for extraneous variables. Had we meas-
ured one group of participants before they received therapy and a different group
after, there may have been any number of differences between the groups that had
nothing to do with our intervention but that would influence the results. That was
not a problem in our study because we used the same participants for both meas-
urement sessions.

A third advantage of related-measures designs is that they require fewer par-
ticipants than do independent-sample designs for the same degree of power. This
is a substantial advantage, as anyone who has ever tried to recruit participants can
attest. It is usually a much easier task to get 20 people to do something twice than
to get 40 people to do it once.

The primary disadvantage of related-measures designs is that there may be
either an order effect or a carry-over effect from one session to the next, or the
first measurement may influence the treatment itself though processes such as sen-
sitization. For example, if we plan to give a test of knowledge of current events, fol-
lowed by a crash course in current events, and then follow that with a retest using
the same test, it is reasonable to conclude that subjects will be more familiar with
the items the second time around and may even have looked up answers during the
interval between the two test administrations. Similarly, in drug studies the effects
of the first drug may not have worn off by the next test session. A common prob-
lem with related-measures designs arises when a pretest “tips off ” subjects as to the
purpose of the intervention. For example, a pretest on attitudes toward breast feed-
ing might make you a wee bit suspicious when a stranger sits down beside you the
next day and just happens to launch into a speech on the virtues of breast feeding.
Whenever you have concerns that carry-over effects could contaminate your study
or that treatment effects might be influenced by pretreatment measures, a related-
measures design is not recommended. There are techniques for controlling, though
not eliminating, order and carry-over effects, but we will not discuss them here.
Would you anticipate that either of these effects might influence the data on the
moon illusion or the anorexia data? If so, how might we control for such effects?

13.4 Advantages and Disadvantages of Using Related Samples 343



Definition Order effect: The effect on performance attributable to the order in which treatments
were administered.
Carry-over effect: The effect of previous trials (conditions) on a participant’s
performance on subsequent trials.

13.5 How Large an Effect Have We Found?

In Chapter 12, I discussed the fact that there has been a trend within psychology
and other disciplines to ask for some kind of statement by the experimenter indi-
cating not only that the difference was significant, but also whether it is meaning-
ful. As I indicated, if we use enough subjects, we can almost always find even a
meaningless difference to be significant. I introduced Jacob Cohen’s concept of
effect size, by which he meant a statistic that gave a meaningful indication of how
large a mean was, or how different two means were. If you looked at the answer that
I gave on this book’s Web site to Exercise 12.13 you will have seen that I stated
that using the standard deviation of gain scores did not result in a very meaning-
ful measure, although it is a good way to scale other kinds of outcome variables.
The example we have in front of us is very similar to the study in Exercise 12.13
except that we have the pre- and post-scores as well as the gains. The presence of
the pretreatment scores offers us a chance to come up with more than one useful
measure.

The data on treatment of anorexia offer a good example of a situation in
which there are multiple ways to report on the difference in terms that people will
understand. All of us step onto a scale occasionally, and we have some general idea
what it means to gain or lose five or ten pounds. So for Everitt’s data, we might
simply report that the difference was significant and that girls
gained an average of 7.26 pounds. For girls who started out weighing, on average,
83 pounds, that is a substantial gain. In fact, it might make sense to convert pounds
gained to a percentage, and say that the girls increased their weight by

An alternative measure would be to report the gain in standard deviation
units. This idea goes back to Cohen, who originally formulated the problem in
terms of a parameter where

In this equation, for the general case, the numerator is the difference between two
population means, and the denominator is the standard deviation of either popu-
lation. We can modify that slightly to let the numerator be the mean gain

, and the denominator is the population standard deviation of the
pretreatment weights. To put this in terms of statistics, rather than parameters, we
1mAfter 2 mBefore 2

d 5
m1 2 m2

s

1d 2 ,

7.26>83.23 5 9%.

1t 5 4.18, p 6 .05 2
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can substitute sample means and standard deviations instead of population values.
This leaves us with

I have put a “hat” over the to indicate that we are calculating an estimate
of and I have put the standard deviation of the pretreatment scores in the
denominator. Our estimate tells us that, on average, the girls involved in family
therapy gained nearly one and a half standard deviations of pretreatment weights
over the course of therapy. Often the standard deviation of the difference scores is
not very useful because it doesn’t carry much meaning. But the standard deviation
of the pretest scores is meaningful because it is in the units of our original meas-
urements. We can imagine the distribution of pretest scores (which had a mean at
83.23) and then mentally mark off 1.45 standard deviations above the mean. That
is where the mean ended up for the posttest scores, and that is quite a difference.
This situation is shown in the Figure 13.2.

In this particular example it might be easier to deal with the mean weight
gain, rather than simply because people know something meaningful about
weight. However, if this experiment had measured the girls’ self-esteem, rather
than weight, I would not know what to think if you said that they gained 7.26 self-
esteem points. That scale means nothing to me. I would be impressed, however, if
you said that they gained over a standard deviation in self-esteem.

d,

d,
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Figure 13.2
Schematic diagram illustrating the amount of change from pretreatment to posttreatment
weights and our estimate of d



The preceding paragraph will probably leave you somewhat unsatisfied, because
it is far more comfortable to be taught a simple rule that says “use this statistic is this
situation.” On the other hand, the argument put forth here is to “use whatever statis-
tic your readers will find more meaningful.” That degree of flexibility has its own kind
of comfort. As a general rule of thumb, if you have one set of scores that are not a set
of differences, the standard deviation of those scores is an appropriate denominator.
If, however, your set of scores are gain or difference scores, the standard deviation of
the pretreatment data is likely to be a more meaningful denominator.

13.6 Confidence Limits on Changes

Now I am probably going to confuse the situation even more by discussing the use
of confidence limits when we have two related samples. As you should recall, a
confidence interval for a mean is generically written as

The questions that arise concern the mean and the standard deviation that
we insert in that equation to handle related samples. The general answer is that
the mean is the difference between the two related means (often the difference
between a pretest mean and a posttest mean). The standard deviation is the stan-
dard deviation of the difference scores. You are probably going to complain that this
isn’t what I used in estimating but I am not estimating here, I am deriving a
confidence interval, and that is quite a different thing. In the former case I was try-
ing to give you an indication of how far the girls in this study had come in putting
on weight. With confidence limits I am trying to establish an interval with a
known probability of bracketing the true average weight gain.

For our anorexia example the mean weight gain was 7.26 pounds. The stan-
dard deviation of that set of gain scores was 7.16. Thus the confidence limits on
mean gain in the population would be

The probability is .95 that an interval computed in this way includes the
population mean gain. That result is in line with the statistically significant test
we computed earlier.

13.7 Using SPSS for t Tests on Related Samples

Figure 13.2 is the printout of an SPSS computation of a test on two related samples.
The data in this example are those we have already seen on weight gain under fam-
ily therapy. The data collected in the Before and After conditions are entered as two

t

t

3.6 # m # 10.92
CI.95 5 X ;  t.051s>1N 2 5 7.26 ;  2.1117.16>117 2 5 7.26 ;  3.66

dd,

CI.95 5 X ;  t.051sX 2 5 X ;  t.051s>1N 2
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separate variables, and a paired test is requested. The first part of the printout gives
basic descriptive statistics. This is followed by the correlation between the two
variables, and a test on the significance of the correlation. Following this is a
related-samples test on the differences between the means. Notice that the value
( 4.185) agrees with the result computed by hand, except that SPSS subtracted
After from Before and came up with a negative difference, and thus a negative The
sign here is irrelevant, and depends merely on how you choose to calculate the
difference scores.

13.8 Writing Up the Results

To write up the results of the results of Everitt’s study of family therapy for
anorexia, we need to briefly describe the procedure to give a context. We should
then mention the means before and after therapy and the resulting test. We also
need to include some measure of effect size (perhaps more than one) and draw
some conclusions.

t

t.
2
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t

t
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Paired Samples Statistics

Std. Std. Error 
Mean N Deviation Mean

Pair BEFORE 83.2294 17 5.01669 1.21673
1 AFTER 90.4941 17 8.47507 2.05551

Paired Samples Correlations

N Correlation Sig.

Pair 1 BEFORE & AFTER 17 .538 .026

Paired Samples Test

Paired Differences

95% Confidence 
Interval of the 

Std. Std. Error Difference Sig. 
Mean Deviation Mean Lower Upper t df (2-tailed) 

Pair 1 �7.2647 7.15742 1.73593 �10.9447 �3.5847 �4.185 16 .001
BEFORE
-AFTER

Figure 13.3
SPSS analysis of test on related samplest



- Everitt (in Hand et al., 1994) reported on a study of the effects of family 
therapy as a treatment for 17 anorexic girls. Girls were weighed before
and after several weeks’ involvement in family therapy. The mean
pretreatment weight was 83.23 pounds and the mean posttreatment
weight was 90.49 pounds, for a mean gain of 7.26 pounds. This difference
was statistically significant Other data in this
study suggest that the gain can not simply be attributed to normal growth
over time. The effect size estimate ( ) based on the pretreatment
standard deviation was 1.45, indicating a gain of nearly one and a half
standard deviations from pretreatment weight. In addition, the 95%
confidence interval for weight gain was indicating 
that family therapy has the potential of leading to a noticeable change
in weight.

13.9 Summary

This chapter was very much like the previous chapter in that we end up comparing
the mean of a single column of data against a population mean (usually ).
Although we do start our with two sets of data, such as Guess1 and Guess2 in the
Vul and Pashler example, the fact that the data are correlated because they come
from the same set of individuals means that we need to take that correlation into
account. The simplest way to do that is to create a column of difference scores and
test if those scores are likely to have come from a population whose mean is zero.

We looked at two different examples using paired scores, both of which lead
to significant results. Then we turned to the advantages of repeated measures.
These include the fact that variability between one participant and another plays
no role in the analysis. This means that we can have wide individual differences in
performance and yet those differences do not influence our results. Another
advantage is that using paired scores largely controls extraneous variables. The fact
that the same person serves under both conditions means that the person brings
largely the same thing to both measurements. Lastly, I noted that, all other things
being equal, a repeated measures design is more powerful than a design with inde-
pendent groups. The major problem with repeated measurements is that there may
be carry-over effects from one trial to another or the presence of a first trial may
influence how the person responds on a second trial.

We looked at several different measures of the size of an effect. In some cases
simply reporting the difference in means is sufficient for your purposes. Often, how-
ever, especially when the variables do not have a lot of intuitive meaning, we need
to fall back on a measure proposed by Cohen and modified slightly by others. In
this case, we simply take the difference we are looking at and divide by the size of
the standard deviation so as to give an answer in standard deviation units. 
I pointed out that most of the time when we do this we want to use the standard
deviation of the first measure, and not the standard deviation of the differences.

m 5 0

3.6 # m # 10.92,
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Finally, we looked at confidence limits. These are simply an extension of
what we have seen earlier. To calculate them we take the obtained mean and add
and subtract from that the standard error of the mean times the critical value of 
for the associated degrees of freedom. The purpose of confidence limits is to give
us some idea of the possible range of values for the parameter in question.

Some important terms in this chapter are

t
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Related samples, 336

Repeated measures, 336

Matched samples, 336

Difference scores (gain scores), 339

Order effect, 344

Carry-over effect, 344

13.10 Exercises

13.1 Hout, Duncan, and Sobel (1987) reported on the relative sexual satisfaction of married
couples. They asked each member of 91 married couples to rate the degree to which they
agreed with “Sex is fun for me and my partner” on a four-point scale ranging from “never
or occasionally” to “almost always.” The data appear below (I know it’s a lot of data, but it’s
an interesting question, and the data can always be downloaded from the book’s Web site):

Husband 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Wife 1 1 1 1 1 1 1 2 2 2 2 2 2 2 3

Husband 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2
Wife 3 4 4 4 1 1 2 2 2 2 2 2 2 2 3

Husband 2 2 2 2 2 2 2 2 2 3 3 3 3 3 3
Wife 3 3 4 4 4 4 4 4 4 1 2 2 2 2 2

Husband 3 3 3 3 3 3 3 3 3 3 3 3 3 4 4
Wife 3 3 3 3 4 4 4 4 4 4 4 4 4 1 1

Husband 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4
Wife 2 2 2 2 2 2 2 2 3 3 3 3 3 3 3

Husband 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4
Wife 3 3 4 4 4 4 4 4 4 4 4 4 4 4 4 4

Start out by running a matched-sample test on these data. Why is a matched-sample test
appropriate?

13.2 In the study referred to in Exercise 13.1, what, if anything, does your answer to that ques-
tion tell us about whether couples are sexually compatible? What do we know from this
analysis, and what don’t we know?

13.3 For the data in Exercise 13.1, create a scatterplot and calculate the correlation between
husband’s and wife’s sexual satisfaction. How does this amplify what we have learned from
the analysis in Exercise 13.1?

t



13.4 Use techniques developed in Chapter 12 and this chapter to construct 95% confidence lim-
its on the true mean difference between the Sexual Satisfaction scores in Exercise 13.1.

13.5 Some would object that the data in Exercise 13.1 are clearly discrete, if not ordinal, as
defined in Chapter 2, and that it is inappropriate to run a test on them. Can you think
what might be a counter argument? (This is not an easy question, and I really asked it
mostly to make the point that there could be controversy here.)

13.6 Hoaglin, Mosteller, and Tukey (1983) present data on blood levels of beta-endorphin as a
function of stress. They took beta-endorphin levels for 19 patients 12 hours before surgery
and again 10 minutes before surgery. The data are presented below, in fmol/ml:

12 Hours 10 Minutes 
Subject Before Before

1 10.0 6.5
2 6.5 14.0
3 8.0 13.5
4 12.0 18.0
5 5.0 14.5
6 11.5 9.0
7 5.0 18.0
8 3.5 42.0
9 7.5 7.5

10 5.8 6.0
11 4.7 25.0
12 8.0 12.0
13 7.0 52.0
14 17.0 20.0
15 8.8 16.0
16 17.0 15.0
17 15.0 11.5
18 4.4 2.5
19 2.0 2.0

Based on these data, what effect does increased stress have on beta-endorphin levels?

13.7 Why would you use a paired test in Exercise 13.6?

13.8 Create a scatterplot of the data in Exercise 13.6, and compute the correlation between the
two sets of scores. What does this say that is relevant to the answer to Exercise 13.7?

13.9 We always need to look closely at our data. Sometimes we find things that are hard to
explain. Look closely at the data in Exercise 13.6; what attracts your attention?

13.10 Compute a measure of effect size for the data in Exercise 13.6, and tell what this measure
indicates.

13.11 Give an example of an experiment in which using related samples would be ill-advised
because of carry-over effects.

13.12 Using the data in Table 13.2, ask whether people’s first guess is usually better than their 
second guess. (This parallels advice that you often receive about test taking to the effect that you
should not go back and change a guessed answer unless you are sure that your new answer is
correct. Vul and Pashler found a significant difference, but they had many more participants.)

t

t
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13.13 Assume that the mean and the standard deviation of the difference scores in Exercise 13.6
would remain the same if we added more subjects. How many subjects would we need to
obtain a that is significant at (two-tailed)? (The difference was significant at

but not at ) (We will return to this general problem in Chapter 15.)

13.14 Modify the data in Exercise 13.6 by shifting the entries in the “12 hour” column so as to
increase the relationship between the two variables. Run a test on the modified data and
notice the effect on (You could never do this with real data, because paired scores must
be kept together, but doing so here reveals the important role played by the relationship
between variables.)

13.15 Using your answer to Exercise 13.14 and your knowledge about correlation, how would you
expect the degree of correlation between two variables (sets of data) to affect the magni-
tude of the test between them?

13.16 In Section 13.4 I explained that by removing subject-to-subject variability from the data,
related-samples designs prevent this variability from influencing the data on which the 
test is run. This increases our ability to reject a false null hypothesis. Explain in your own
words why this is so.

13.17 Whether or not you found a significant difference in Exercise 13.13, Vul and Pashler did.
But are first guesses better than the average of the two?

13.18 If there was reason to believe that carry-over effects could influence the data on guessing
behavior, how might we control such effects?

13.19 In the anorexia example in Section 13.2 I subtracted the After scores from the Before
scores. What would have happened if I had done that the other way around?

13.20 What would happen if we took the data from the anorexia example in Table 13.1 and re-
expressed the dependent variable in kilograms instead of pounds?

13.21 Many mothers experience a sense of depression shortly after the birth of a child, known as
postpartum depression (PPD). Design a study to examine PPD and tell how you would esti-
mate the mean increase in depression.

t

t

t.
t

a 5 .01.a 5 .05,
a 5 .01t
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14
Hypothesis Tests
Applied to
Means: Two
Independent
Samples

Concepts that you will need to remember 
from previous chapters
Sampling distribution: The distribution of a statistic over repeated

sampling

Standard error: The standard deviation of the sampling
distribution of a statistic

t distribution: Sampling distribution of the t statistic when
the null hypothesis is true. Often called the
“central t distribution”

Degrees of freedom: An adjusted value of the sample size, often
or

Effect size ( ): A measure intended to express the size of a
treatment effect in terms that are meaningful
to the reader

d̂

N 2 2N 2 1
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In moving to the case where samples are independent, we will first look at
why having independent samples makes a difference. We will see that we are
going to need to be making some assumptions that we did not make before, and
that these assumptions are important to the t test. The difference between the t test
that we used in the last two chapters and the one that we will use here will be
discussed next, and we will then look at how we create confidence limits now that
we have independent samples. Finally, we will see how to use SPSS to perform our
calculations.

In Chapter 13 we considered a study in which we obtained a set of weights
from anorexic girls before and after a family therapy intervention. In that example the
same participants were observed both before and after the intervention. While that
may have been a good way to evaluate the effects of the intervention program, in a
great many experiments it is either impossible or undesirable to obtain data using
repeated measurements of the same participants. For example, if we want to deter-
mine if males are more socially inept than females, it clearly would be impossible to
test the same people as males and then as females. Instead we would need a sam-
ple of males and a second, independent sample of females.

One of the most common uses of the t test involves testing the difference
between the means of two independent groups. We might want to compare the
mean number of trials needed to reach criterion in a simple visual discrimination task
for two groups of rats—one raised under normal conditions and one raised under
conditions of sensory deprivation. Or in a memory study we might want to compare
levels of retention for a group of college students asked to recall active declarative
sentences and a group asked to recall passive negative sentences. As a final exam-
ple, we might place participants in a situation in which another person needed help.
We could compare the mean latency of helping behavior when participants were
tested alone and when they were tested in groups.

In conducting any experiment with two independent groups, we will almost
always find that the two sample means differ by at least a small amount. The impor-
tant question, however, is whether that difference is sufficiently large to justify the con-
clusion that the two samples were drawn from different populations—for example,
using the case of helping behavior, is the mean of the population of latencies from
singly-tested participants different from the mean of the population of latencies from
group-tested participants? Before we consider a specific example, we will need to
examine the sampling distribution of differences between means and the t test that
results from that sampling distribution. What we are doing here is analogous to what
we did in Chapter 12 when speaking of the mean of one sample.

14.1 Distribution of Differences Between Means

When we are interested in testing for a difference between the mean of one popu-
lation and the mean of a second population we will be testing a null
hypothesis of the form or, equivalently, Because them1 5 m2.H0: m1 2 m2 5 0

1m2 2 ,1m1 2
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test of this null hypothesis involves the difference between independent sample
means, it is important to digress for a moment and examine the sampling distribu-
tion of differences between means.

Suppose we have two populations labeled and with means and 
and variances and We now draw pairs of samples of size from population

and of size from population and record the means and the differences
between the means for each pair of samples. (I have gone from denoting sample
sizes with capital to lowercase because, when I have multiple samples, I will
use to refer to the total number of scores in all samples and n with a subscript to
refer to the number of observations in a particular group or sample.) Because we are
sampling independently from each population, the sample means will be inde-
pendent. (Means are paired only in the trivial and irrelevant sense of being drawn
at the same time.) Because we are only supposing, we might as well go all the way
and suppose that we repeated this procedure an infinite number of times. The
results are presented schematically in Figure 14.1. In the lower portion of this
figure the first two columns represent the sampling distributions of and and
the third column represents the sampling distribution of differences in means

It is this third column in which we are most interested, because we are
concerned with testing differences between means. The mean of this distribution
can be shown to equal The variance of this distribution is given by what
is commonly called the Variance Sum Law, a limited form of which states.

m1 2 m2.
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The variance of the sum or difference of two independent variables is equal to the
sum of their variances.1

We know from the Central Limit Theorem that the variance of the distribution of
is and the variance of the distribution of is Because the vari-

ables (sample means) are independent, the variance of the difference of these two
variables is the sum of their variances. Thus
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1The complete form of the law omits the restriction that the variables must be independent and states that
the variance of their sum or difference is

where is the correlation coefficient in the population between and The minus signs apply when
considering differences.
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Having found the mean and the variance of a set of differences between means, we
know most of what we need to know to test a hypothesis about such differences.
The general form of the sampling distribution of mean differences is presented in
Figure 14.2.

Definition Sampling distribution of differences between means: The distribution of the
differences between means over repeated sampling from the same population(s).
Variance Sum Law: The rule giving the variance of the sum (or difference) of two
or more variables.

The final point to be made about this distribution concerns its shape. An impor-
tant theorem in statistics states that the sum or difference of two independent
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Figure 14.1
Hypothetical set of means and differences between means when sampling 
from two populations
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normally distributed variables is itself normally distributed. Because Figure 14.2
represents the difference between two sampling distributions of means, and
because we know the sampling distribution of means is at least approximately
normal for reasonable sample sizes, then the distribution in Figure 14.2 must itself
be at least approximately normal.

The t Statistic
Given the information we now have about the sampling distribution of differences
between means, we can proceed to develop the appropriate test procedure. Assume
for the moment that knowledge of the population variances and is not a prob-
lem. We have earlier defined z as a statistic (a point on the distribution) minus the
mean of the distribution, divided by the standard error of the distribution. Our statis-
tic in the present case is the observed difference between the sample
means. The mean of the sampling distribution is and, as we saw, the
standard error of differences between means, given the population variance is
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Figure 14.2
Sampling distribution of differences between means
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Remember, the standard error of any statistic (in this case the difference
between two sample means) is the standard deviation of the sampling distribu-
tion of that statistic. As such it is a measure of how stable we expect that
statistic to be.



Given what we know, we can write

The critical value for is as it was for the one-sample tests
discussed in Chapter 12.

Definition Standard error of differences between means: The standard deviation of the
sampling distribution of the differences between means.

The preceding formula is not particularly useful except for the purpose of
showing the origin of the appropriate test, because we rarely know the necessary
population variances. (Such knowledge is so rare that it isn’t even worth imagin-
ing cases in which we would have it, although a few do exist.) However, just as we
did in the one-sample case, we can circumvent this problem by using the sample
variances as estimates of the population variances. For the same reasons discussed
earlier for the one-sample this means that the result will be distributed as rather
than 

Because the null hypothesis is generally the hypothesis that we usually
drop that term from the equation and write
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Pooling Variances
We are almost there, but just a little more elaboration is needed. Although the
equation for that we just developed is quite appropriate when the sample sizes are
equal, it can be improved with some modification for unequal sample sizes. This
modification is designed to provide a better estimate of the population variance.
One of the assumptions required for the use of for two independent samples is
that (i.e., the samples come from populations with equal variances),
regardless of the truth or falsity of Such an assumption is often a reasonable
one and is called the assumption of homogeneity of variance. We often begin an
experiment with two groups of participants who are equivalent and then do some-
thing to one (or both) group(s) that will raise or lower the participants’ scores. In
such a case it often makes sense to assume that the variances will remain
unaffected. (You should recall that adding or subtracting a constant to a set of
scores has no effect on its variance.) Because the population variances are assumed
to be equal, this common variance can be represented by the symbol without
a subscript.

Definition Homogeneity of variance: The situation in which two or more populations have
equal variances.
Weighted average: The mean of the form where and

are weighting factors and and are the values to be averaged.
Pooled variance: A weighted average of separate sample variances.

In our data we have two estimates of namely and It seems appropri-
ate to obtain some sort of an average of and on the grounds that this average
should be a better estimate of than either of the two separate estimates. We do
not want to take the simple arithmetic mean, however, because doing so would
give equal weight to the two estimates, even if one was based on considerably
more observations. What we want is a weighted average, in which the sample
variances are weighted by their degrees of freedom If we call this new
estimate then

The numerator represents the sum of the variances, each weighted by its degrees
of freedom, and the denominator represents the sum of the weights or, equiva-
lently, the degrees of freedom for sp
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The weighted average of the two sample variances is usually referred to as a
pooled variance estimate (a rather inelegant name, but reasonably descriptive).
Having defined our pooled estimate we can now replace in the formula for
t with to get

Notice that both this formula for and the one we used in the previous section involve
dividing the difference between the sample means by an estimate of the standard error
of the difference between means. The only difference concerns the way in which this
standard error is estimated. When sample sizes are equal, it makes absolutely no
difference whether you pool variances; the resulting will be the same. When the
sample sizes are unequal, however, pooling can make an important difference.

Degrees of Freedom for t
You know that two sample variances and have gone into calculating Each
of these variances is based on squared deviations about their corresponding sample
means; therefore, each sample variance has Across the two samples,
therefore, we will have Thus the for two
independent samples will be based on degrees of freedom.n1 1 n2 2 2

t1n1 2 1 2 1 1n2 2 1 2 5 n1 1 n2 2 2 df.
ni 2 1 df.
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Let’s Stop to Review

We have just covered more formulae, with somewhat more emphasis on deriva-
tion, than you have seen previously in this book. It might be smart to stop and
say something about what all of that is for. It isn’t as cumbersome as it looks.

I started out by saying that if I want to know whether the means of two
independent samples are significantly different, I need to know something about
what differences between two means would look like. In other words, I need to
know the sampling distribution of differences between means. Such a distribu-
tion would have a mean equal to the difference between the population means
and would have a standard error equal to the square root of the sum of the
population variances each divided by its corresponding sample size. Such a
distribution would be at least approximately normal.

At this point I know the mean, the standard error, and the shape of the
sampling distribution of differences between means. If I knew the population
variances, I could now compute a score as the difference in sample means,
minus the difference in population means, divided by the standard error. This is
the same kind of score we have been seeing all along.z

z



To illustrate the use of as a test of the difference between two
independent means, let’s undertake a different analysis of some of
Everitt’s data (Everitt in Hand et al., 1994) on the treatment of anorexia.
In Chapter 13 I pointed out that the change in means doesn’t necessarily
imply that the difference is due to the family therapy intervention.
Perhaps the girls just gained weight because they got older and taller.
One way to control for this is to look at the amount of weight gained by
the Family Therapy group in contrast with the amount gained by girls in
a Control group, who received no therapy. If the only reason girls are
gaining weight is because they are getting older and taller, that should
affect both groups equally. If weight gain is due to therapy, only the
therapy group would be expected to gain. Fortunately, Everitt provided us
with data on the control group as well. The data are shown in Table 14.1,
although I am presenting only the amount gained, not the amounts
before and after treatment.

Before we consider any statistical test—and ideally even before the data
are collected—we must specify several features of the test. First, we must
specify the null and alternative hypotheses. Using the subscripts “FT” and
“C” for “Family Therapy” and “Control” we have

The alternative hypothesis is bidirectional (we will reject if or
if thus we are using a two-tailed test. For the sake of consistency
with other examples in this book, we will let the probability of a Type I
error equal .05. (It is important to keep in mind that there is nothing

a,
mFT 7 mC;

mFT 6 mCH0

H0: mFT ? mC

H0: mFT 5 mC

t
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But we don’t know the population variances. So we do the same thing
we did for earlier tests—we substitute the sample variances for the popula-
tion variances and call the result Just as we have done each time we
substitute the sample variance for a population variance, we need to address
the degrees of freedom. Because each sample variance is obtained by using
the sample mean as an estimate of the corresponding population mean, we
lose a degree of freedom, so our denominator will change from to for
each variance estimate.

Finally, when you have two sample variances, you usually want to average
them to get a better estimate of the population variance. We call this averaging
“pooling.” We use the pooled version whenever the sample variances are in gen-
eral agreement with one another, especially when sample sizes are about equal.

You should stop at this point and go back through the last few pages to see
how the review I just gave you fits with the formulae we’ve covered so far in this
chapter.

n 2 1n

t.
t

EXAMPLE:
We Haven’t

Finished with
Anorexia



particularly sacred about these two decisions.2) Given the null hypothesis as
stated, we can now calculate 

Because we are testing H0: the term has been
dropped from the equation. When we pool the variances, we obtain

Note that the pooled variance is somewhat closer in value to than 
because of the greater weight given in the formula due to the largers1
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Table 14.1
Weight Gain in the Family Therapy and Control Groups

Family Family 
Control Control Therapy Therapy

�0.5 3.3 11.4 9.0
�9.3 11.3 11.0 3.9
�5.4 0.0 5.5 5.7
12.3 �1.0 9.4 10.7

�2.0 �10.6 13.6
�10.2 �4.6 �2.9
�12.2 �6.7 �0.1

11.6 2.8 7.4
�7.1 0.3 21.5

6.2 1.8 �5.3
�0.2 3.7 �3.8
�9.2 15.9 13.4

8.3 �10.2 13.1

Mean �0.45 7.26
Std. Dev. 7.99 7.16
Variance 63.82 51.23

26 17n

2If we had a good reason for testing the hypothesis that was five points higher than for example, we
could set although this type of situation is extremely rare. Similarly, we could set at
.01, .001, or even .10, although this last value is higher than most people would accept.

aH0: mFT 2 mC 5 5,
mC,mFT



sample size. Then, substituting this common variance for the separate
variances, we have

For this example we have for Group C and
for Group FT, making a total of 

From the sampling distribution of in Table E.6 in the Appendices,
(approximately). Because the obtained value of 

(i.e., far exceeds we will reject (at two-tailed) and
conclude that there is a difference between the means of the populations
from which our observations were drawn. In other words, we will con-
clude (statistically) that and (practically) that 
In terms of the experimental variables, anorexic girls provided with
family therapy gain significantly more than a control group provided
with no therapy.3 ■

Definition Confounded: Two variables are said to be confounded when they are varied
simultaneously and their effects cannot be separated.

14.2 Heterogeneity of Variance

As we have seen, one of the assumptions behind the test for two independent
samples is the assumption of homogeneity of variance When this
assumption does not hold (i.e., when we have what is called hetero-
geneity of variance. Considerable work has been done examining the practical
effect of heterogeneity of variance on the test. As a result of this work we can
come to some general conclusions about the kind of analysis that is appropriate
with heterogeneous variances.

Definition Heterogeneity of variance: A situation in which samples are drawn from
populations having different variances.

t
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3Because the Family Therapy group presumably differed from the Control group only by the presence or
absence of therapy, our conclusions can be made with respect to the effects of therapy. If the groups had also
differed on some other dimension, e.g., the prior weight of the participants, then the results would be
unclear, and therapy would be confounded with prior weight.



The first point to keep in mind is that our homogeneity assumption refers
to population variances and not to sample variances—only rarely would we
expect the sample variances to be exactly equal even if the population vari-
ances were equal. On the basis of sampling studies that have been conducted,
the general rule of thumb is that if one sample variance is no more than four4

times the other and if the sample sizes are equal or approximately equal, you
may go ahead and compute as you would normally. Heterogeneity of variance
is not likely to have a serious effect on your results under these conditions.
On the other hand, if one sample variance is more than four times the other,
or if the variances are quite unequal and the sample sizes are also quite
unequal, then an alternative procedure may be necessary. This procedure, how-
ever, is easy to apply. Simply compute using the separate variance estimates
(i.e., do not pool). Then go to the tables using the smaller of and

as the degrees of freedom (rather than This is a
conservative test, meaning that if is true, you are less likely to commit a
Type I error than the nominal value of would suggest. As an example of this
procedure, suppose we have the following data:

Because the variances were very unequal (one was more than six times the other),
we did not pool them. The values of and are 9 and 17, respec-
tively, and we will evaluate by going to Table E.6 with 9 (the smaller of 9 and
17). Here we find that which is larger than the obtained value.
Thus we will not reject 5

There are more accurate (less conservative) solutions to the problem of het-
erogeneity of variance, which rely on calculating an adjusted degrees of freedom
lying between the smaller of and on the one hand, and 
on the other. Many computer programs, including SPSS and Minitab, supply such
an adjustment. For most purposes, the conservative approach suggested here is
sufficient. (A more complete discussion of the problem of heterogeneity of vari-
ance can be found in Howell, 2010.)
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4The use of the number four here is probably conservative. Some people would argue for using the standard
approach when variances are considerably more different than this as long as the sample sizes are roughly
equal.
5Note that if we had not had a problem with heterogeneity of variance, we would have used

and the difference would have been significant.n1 1 n2 2 2 5 26 df,



14.3 Nonnormality of Distributions

We saw earlier that another assumption required for the correct use of the test
is the assumption that the population(s) from which the data are sampled is
(are) normally distributed—or at least that the sampling distribution of differ-
ences between means is normal. In general, as long as the distributions of
sample data are roughly mound-shaped (high in the center and tapering off on
either side), the test is likely to be valid. This is especially true for large sam-
ples ( and greater than 30), because then the Central Limit Theorem
almost guarantees near normality of the sampling distribution of differences
between means.

14.4 A Second Example with Two Independent Samples

Adams, Wright, and Lohr (1996) were interested in some basic psychoanalytic
theories that homophobia (an irrational fear of, or aversion to, homosexuality or
homosexuals) may be unconsciously related to the anxiety of being or becoming
homosexual. They administered the Index of Homophobia to 64 heterosexual
males and classed them as homophobic or nonhomophobic on the basis of their
score. They then exposed homophobic and nonhomophobic heterosexual men to
videotapes of sexually explicit erotic stimuli portraying heterosexual and homosex-
ual behavior, and recorded their level of sexual arousal. Adams et al. reasoned that
if homophobia was unconsciously related to anxiety about one’s own sexuality,

n2n1

t
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What causes the variances to be heterogeneous?

What would we do if the variance in the Family Therapy group was very much
larger than the variance in the Control group? We could use an adjustment to
the degrees of freedom and go our merry way. But we really should stop and ask
“why?” What would cause the variance in that group to be so large? One very
distinct possibility is that family therapy is particularly effective for some girls,
but totally ineffective for others, whereas there would be no such effect in the
control group. That would cause a substantial difference in the variances. Such
a finding would be an important one and might lead us to shift our research
interests. We might look more closely at family therapy and ask what about it is
causing the differential effectiveness. In fact, that might be a much more impor-
tant question than the one we started out asking. Heterogeneity of variance is
not always just a nuisance. Sometimes it is telling us something important.
Research is not just a study of means.



homophobic individuals would show greater arousal to the homosexual videos
than would nonhomophobic individuals.

In this example we will examine only the data from the homosexual video.
The data in Table 14.2 were created to have the same means and pooled variance
as the data that Adams collected, so our conclusions will be the same as theirs.6
The dependent variable is degree of arousal at the end of the 4-minute video, with
larger values indicating greater arousal.

Before we consider any statistical test, and ideally even before the data are
collected, we must specify several features of the test. First we must specify the null
and alternative hypotheses:

The alternative hypothesis is bidirectional (we will reject if or if
and thus we will use a two-tailed test, and we will choose to work at

Given the null hypothesis as stated, we can now calculate 

Because we are testing the term has been dropped
from the equation. We should pool our sample variances because they are so
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6I actually added 12 points to each mean, largely to avoid many negative scores, but it doesn’t change the
results or the calculations in the slightest.

Table 14.2 
Data from Adams et al. on Level of Sexual Arousal in Homophobic 
and Nonhomophobic Heterosexual Males

Homophobic Nonhomophobic

39.1 38.0 14.9 20.7 19.5 32.2 24.0 17.0 35.8 18.0 1.7 11.1
11.0 20.7 26.4 35.7 26.4 28.8 10.1 16.1 0.7 14.1 25.9 23.0
33.4 13.7 46.1 13.7 23.0 20.7 20.0 14.1 1.7 19.0 20.0 30.9
19.5 11.4 24.1 17.2 38.0 10.3 30.9 22.0 6.2 27.9 14.1 33.8
35.7 41.5 18.4 36.8 54.1 11.4 26.9 5.2 13.1 19.0 15.5

8.7 23.0 14.3 5.3 6.3

Mean 24.00 Mean 16.50
Variance 148.87 Variance 139.16
n 35 n 29

2

2

2

2



similar that we do not have to worry about homogeneity of variance. Doing so
we obtain

Notice that the pooled variance is slightly closer in value to than to because
of the greater weight given in the formula. Then

For this example we have for the homophobic group and
for the nonhomophobic group, making a total of 
From the sampling distribution of in Appendix E.6,

(with linear interpolation). Since the obtained value of far
exceeds we will reject and conclude that there is a difference
between the means of the populations from which our observations were drawn. In
other words, we will conclude (statistically) that and (practically) that

In terms of the experimental variables, homophobic participants show
greater arousal to a homosexual video than do nonhomophobic participants.7

14.5 Effect Size Again

Again we come to the issue of presenting information to our readers that conveys
the magnitude of the difference between our groups in addition to the statement,
which we can already make, that the difference is statistically significant. The
example from Adams et al. is a good one for this purpose, because it is a situation
in which the actual value of the difference between means is not useful. None of
us has any idea whether a difference of 7.5 points in sexual arousal is a large differ-
ence or a small one. We need a better measure.

In Chapters 12 and 13 we have used a statistic ( ) that represents the size of
the difference between means (in raw score units) scaled by the size of the standard
deviation. In this case, however, our standard deviation will be the estimated stan-
dard deviation of either population. When we had one set of observations we used
the standard deviation of those observations. When we had difference scores, we
generally used the standard deviation of the pretest scores. Here we have two
standard deviations to choose from (one for each group) and we have two choices.
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7This is not an isolated result. Other experimenters have obtained similar results. A very interesting exam-
ple on a closely related subject is a study by Willer (2005).



If there is a situation where one standard deviation seems to be the obvious one to
use, use it. For example, if we have a true control group, its standard deviation
seems like a logical choice. If we don’t have an obvious control group, we will pool
the variances of the two groups we have and take the square root of that (i.e., 
(If we had noticeably different variances, we would most likely use the standard
deviation of one sample and note to the reader that this is what we have done.)

For our data on homophobia, the pooled variance was 144.48, so we simply
need to take its square root. Now we have

This result expresses the difference between the two groups in standard deviation
units and tells us that the mean arousal for homophobic participants was nearly 
of a standard deviation higher than the arousal of nonhomophobic participants.
That strikes me as a big difference.

A word of caution. In the example of homophobia, the units of measurement
were largely arbitrary, and a 7.5 difference had no intrinsic meaning to us. Thus it
made more sense to express it in terms of standard deviations because we have at
least some understanding of what that means. However, there are many cases
wherein the original units are meaningful, for example, weight gain, and in that
case it may not make much sense to standardize the measure (i.e., report it in stan-
dard deviation units). We might prefer to specify the difference between means, or
the ratio of means, or some similar statistic. The earlier example of the moon illu-
sion is a case in point. There it is very meaningful to speak of the horizon moon
appearing approximately half-again as large as the zenith moon, and I see no advan-
tage, and some obfuscation, in converting to standardized units. The important goal
is to give the reader an appreciation of the size of a difference, and you should
choose that measure that best expresses this difference. In one case a standardized
measure such as is best, and in other cases other measures, such as the distance
between the means, is better. There is nothing to prevent you from using both.

14.6 Confidence Limits on 

In addition to testing a null hypothesis about population means (i.e., testing
and stating an effect size, it is sometimes useful to set confidence

limits on the difference between and The logic for setting these confidence lim-
its is exactly the same as it was for the one-sample case in Chapter 12. The calcula-
tions are also exactly the same except that we use the difference between the means
and the standard error of differences between means in place of the mean and the
standard error of the mean. Thus for the 95% confidence limits on we have
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For the homophobia study we have

The probability is .95 that an interval computed as we computed this interval
(1.46, 13.54) encloses the difference in arousal to homosexual videos between
homophobic and nonhomophobic participants. Although the interval is wide, it
does not include 0. This is consistent with our rejection of the null hypothesis, and
it allows us to state that homophobic individuals are, in fact, more sexually aroused
by homosexual videos than are nonhomophobic individuals.

14.7 Plotting the Results

There are a number of ways to plot the results of the study of homophobia to make
them easier to understand. Perhaps the most common is a standard bar graph. In a
bar graph the height of the bar above the axis represents the sample mean, and
there is one bar for each group. In many published research articles you will also
see what are called “error bars.” The problem with error bars is that it is not always
easy to tell what the bar represents. In Figure 14.3 the error bars, which look some-
thing like I beams, represent one standard error above and below the mean. In
other words, they are However, some authors would draw them to two
standard errors either side of the means, and others would use them to represent

X ;  s>1n.

X

 1.46 # 1m1 2 m2 2 # 13.54

 5 7.50 ;  2.0013.018 2 5 7.5 ;  6.04

 CI.95 5 1X1 2 X2 2   ;   t.05sX12X2
5 124.00 2 16.5 2  ;  2.00 B144.48

35
1
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Figure 14.3
Magnitude of arousal for the Homophobic and Nonhomophobic participants
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either confidence limits or standard deviations. You have to look carefully to see
what the author has done.

From the data given above, the pooled variance was 144.48, for a pooled
standard deviation of With 35 participants in the Homophobic
group and 29 in the Nonhomophobic group, the standard errors would be

and

respectively. Then the ends of error bars will be and 24.03
for the Homophobic group and and 18.73 for the
Nonhomophobic group. Notice that for this study the error bars are quite short.
This tells us that if we were to repeat this study many times, the means for the
Homophobic group would be likely to fall between approximately 22 and 24 about
two-thirds of the time. Only very rarely would we expect to see a mean of the
Homophobic group down in the area of the Nonhomophobic mean. This certainly
looks like a robust effect.

14.8 Writing Up the Results

As we did in the previous chapter, we first need to outline what the reader needs
to know. That means we have to describe the study in very brief terms, both its pur-
pose and its procedures, report the means and standard deviations either in the
text or as a table, report with its and probability level, and our conclusion, and
give some statement of the size of an effect. We then need a concluding sentence.
A very brief version would look like:

✍ Adams, Wright, and Lohr (1996) investigated the relationship between
homophobia and sexual arousal in homophobic and nonhomophobic
participants. They theorized that homophobia might be related directly
to anxiety about one’s sexuality and that homophobic males would be
more aroused by a homosexual video than nonhomophobic males.

The authors tested 64 participants, 35 of whom tested high on a
scale of homophobia and 29 of whom were not classed as homophobic.
Each participant watched a sexually explicit video of homosexual
behavior, and their level of sexual arousal was assessed. Results showed
that mean sexual arousal for the homophobic participants was

while for the nonhomophobic group the mean level
of arousal was A test on the difference betweent16.50 1SD 5 11.80 2 .24.00 1SD 5 12.20 2

dft,

16.50 ;  2.23 5 14.27
24.00 ;  2.03 5 21.97

seH 5
sH2nH

5
12.02129

5 2.23

seH 5
sH2nH
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12.02135
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1144.48 5 12.02.
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means was statistically significant The 7.50 unit
difference between conditions translates to indicating that the
group means differed by nearly two-thirds of a standard deviation. The
authors concluded that there was significant support for their theory that
homophobia may result from a fear of one’s own sexuality.

14.9 Use of Computer Programs for Analysis of Two
Independent Sample Means

To illustrate how different computer programs analyze the same data set, I have
chosen two programs that approach tests on two independent groups in different
ways. The differences in their output, and even in their answers, are of interest.
There is an important difference between the way you would visualize the data if
you were calculating by hand and the way we usually calculate it using computer
software. By hand, we usually think of two columns of data and run a test between
the means of the two columns. The standard way to run analyses via software is to
have one column of data that represents the dependent variable (Arousal) and
another column that represents group membership (usually coded 1 and 2). You
then instruct the program to look at the data in the dependent variable, broken
down by group.

Figure 14.4 illustrates the use of Minitab to analyze the results of the sunk-cost
study by Strough et al. (2008) mentioned in Chapter 8. That was the study in which
they asked if younger participants would continue longer than older participants to
watch a bad movie for which they had already paid $10. In the upper portion of the
table you will see the stem-and-leaf and boxplot displays for the data for each group
separately. Minitab adds a column to the left, which sums the frequencies from each
end. The entry in parentheses is the row that contains the median. From these dis-
plays we can see that the data are symmetrically distributed with no outliers. The 

test is shown in the lower portion of the table along with the 95% confidence lim-
its on This test did not pool the variances, although you can only tell that
because the degrees of freedom are not equal to 8

Figure 14.5 contains output from the Explore procedure in SPSS. Notice that
SPSS produces a much coarser stem-and-leaf display, using the tens digit as the
stem. This display is not particularly helpful. The test for both with and without
pooling of variances is shown in the bottom half of the table. Notice that the
degrees of freedom and the resulting values are slightly different from those in
Minitab.

p

t

n1 1 n2 2 2.
m1 2 m2.

t

t
t

t

d̂ 5 0.62,
1t162 2 5 2.48, p 6 .05 2 .
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8If you were to run this analysis using a different statistical package, the adjusted most likely would not be
a whole integer. Minitab calculates the adjusted and then rounds down to the nearest whole integer. 
(It really makes no difference except to the purists among us.)
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Figure 14.4
Minitab analysis of sunk-cost fallacy data
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SPSS analysis of sunk-cost data
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14.10 Does Level of Processing Vary with Age?

The following data are based on a study by Eysenck (1974) that, among other
things, compared the levels of recall of older and younger participants. (We will
have more to say about this study in Chapters 16 and 17.) Eysenck wanted to test
the hypothesis that when participants were required to do in-depth processing of
verbal information (lists of words), older participants did less processing than
younger participants and therefore recalled fewer words. (In this study he also
showed that there were no differences in recall between the two age groups when
in-depth processing was not required.) The data in Table 14.3 have been con-
structed to have the same means and standard deviations as two of the conditions
in Eysenck’s study and refer to groups who were told to memorize the words so that
they could be recalled later. The dependent variable is the number of items
correctly recalled.

This time we will lay out the problem as a series of steps, because this will
help to keep things organized.

1. What are we testing?: First we need to specify the null hypothesis, the
significance level, and whether we will use a one- or a two-tailed test. We
want to test the null hypothesis that the two age groups recall the same
amount of information, so we have We will set alpha at

in line with what we have been using. Finally, we will choose to
use a two-tailed test because it is reasonably possible for either group to
show superior recall.

2. Calculate sample statistics: The means and the variances are

5 14.00 5 7.122

s2
2 5

1566 2
1202

10
9

 s1
2 5

3789 2
1932

10
9

X2 5
120
10

5 12.0 X1 5
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a 5 .05,
H0: m1 5 m2.
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Table 14.3
Data from Eysenck (1974)

Younger Participants Older Participants

21 19 17 15 22 10 19 14 5 10
16 22 22 18 21 11 14 15 11 11

N 5 10N 5 10
©X2

2 5 1566©X2
1 5 3789

©X2 5 120©X1 5 193



3. Pool the variances: With equal sample sizes we do not need to bother
pooling the variances because the resulting t would be the same in either
event. However, for the sake of an example I will do so here:

4. Calculate Finally, we can calculate using the pooled variance
estimate:

5. Draw conclusions: For this example we have degrees
of freedom. From Table E.6 in the Appendices we find 
Because we will reject and conclude that the two
population means are not equal.

6. Calculate an effect size measure: Effect size for this example is best
calculated using Cohen’s In doing so, we will use the square root of
the pooled variance estimate as our standard deviation because there is
no obvious reason to use the standard deviation of only one of the
groups. With a mean difference of 7.3 and a pooled standard deviation
of 3.25 we have

indicating that the groups differ by two and a quarter standard
deviations, which is a very large difference.

7. Calculate confidence limits: If you calculate the confidence limits on the
difference in means you will have

The problem with this confidence interval is simply that, in this case, it
doesn’t tell us very much. The units are the number of items recalled by the
participants, and it is not particularly helpful to say that the means differ by
at least approximately 4.25 units and perhaps as much as approximately
10.35. Those numbers have no real intuitive meaning to us. (If, on the
other hand, the dependent variable had been something like the ratio of

 Cl.95 5 4.25 # m1 2 m2 # 10.35
 Cl.95 5 1X1 2 X2 2   ;  t.051sX12X2
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horizon and zenith moons, then we would have useful information. The
usefulness of a confidence interval depends on the nature of the dependent
variable.) Our estimate of which was 2.25, is a number that has at least
some meaning, and that is what should be reported.

8. Write it up: If you were writing up the results of this experiment, you
might write something like the following:

✍ In an attempt to test the hypothesis that older participants process and 
store information less completely than younger participants, Eysenck
asked two groups of 10 participants each (differing only in age) to
study and then recall a list of words that required a moderate level of
verbal processing. The results showed that younger participants
recalled a mean of 19.3 words, while older participants recalled a mean
of 12.0 words. (The two standard deviations were 2.67 and 3.74,
respectively.) A test comparing the two groups was significant

The estimate of Cohen’s using the pooled
estimate of the standard error was 2.24, indicating a substantial
difference of approximately two and a quarter standard deviations. The
results demonstrated that younger participants recalled significantly
more words than did older participants. This is not to say that older
participants are not as smart as younger ones (as someone who would
fall in the older group, I can assure you that we are even smarter than
the other guys), but only that for some reason they did not perform as
well on this task—well, it’s kind of a unexciting task!. Because other
data revealed no differences on tasks that did not require in-depth
processing, it would appear that processing of information is a relevant
variable. It may be that older participants are not willing to process
information to the same extent that younger participants are, possibly
because they are less interested in the experimental task and have
better things to do with their time. (If you were really writing this up, 
I would suggest leaving out the snide comments.)

14.11 Seeing Statistics

We began this chapter by looking at the sampling distribution of the differences
between means. A particularly good illustration of what that distribution looks
like, and how it relates to the true difference between means, the sample size,
and the population standard deviations, can be seen in an applet named
Sampling Distribution of Mean Differences, contained on this book’s Web site.
An example of the opening screen follows.

d1t118 2 5 5.02, p 6 .05 2 .t

d,

14.11 Seeing Statistics 375



You see three sets of distributions. The pair at the top represents the populations
from which we sample, while the one in the middle shows the distribution of
means drawn from each population. The bottom distribution is the sampling
distribution of mean differences. At the very top of the screen you see a slider
that alters the difference between the population means. On the upper right is
a slider that changes the standard deviations of the populations, and below that
is a slider to change the sample sizes.

Move the top slider to see that as you increase the difference between pop-
ulation means, you also change the location of the sample distributions of
means, and, more importantly for us, you change the mean of the sampling dis-
tribution of differences between means.

One additional applet (labeled t-test on differences between means) allows
you to specify means, standard deviations, or sample sizes, and see what effect
that has on both and its associated probability. This applet calculates the 
t value and probability for a comparison of two means. The opening screen
follows. Its use should be self-explanatory, but be sure to press the Enter or
Return key after you enter each value.

t
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Take the data from the study of homophobia in Table 14.2, and enter the appro-
priate statistics. Does the answer agree with the one we obtained?

Using the same example, assume that we had only 10 participants in each
group. Would the result still be significant? What does that tell you about the
importance of sample size? (That will be important in the next chapter.)

14.12 Summary

Because this chapter focused on a comparison of the means of two samples, we
began by looking at the standard error of mean differences, which is the standard
deviation of a theoretical set of differences between means of two samples. With
independent samples, this simply becomes the square root of the sum of each
variance divided by its sample size.

We then invoked the Central Limit Theorem to show that the distribution
of differences would be normally distributed under a broad range of conditions.

To calculate we simply take the difference between our sample means and
divide by our estimate of the standard error of the difference. In calculating this
estimate we often pool the two separate variances, which means that we take a
weighted average of the two variances and substitute that for each variance sepa-
rately. The degrees of freedom for this is the sum of the degrees of freedom for
each sample, which comes down to 

We discussed heterogeneity of variance, which is the case where the two sam-
ple variances differ considerably. We saw that we can solve for by using the individ-
ual variances in place of a pooled variance, and we saw that a conservative test would
use on the degrees of freedom in the smaller group. Computer software computes
a more accurate number of degrees of freedom to adjust for heterogeneous variances.

t.05

t

n1 1 n2 2 2.
t

t
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14.13 Exercises

14.1 In Exercise 13.1 we had paired data because we had a response from both the husband and
the wife within a married couple. Suppose that instead of using married couples we just took
a large group of people and asked them to what extent they endorsed the statement “Sex is
fun for me and my partner” on a four-point scales ranging from “never or occasionally” to
“almost always.” We then sorted the data on the basis of the gender of the respondent. We
could conceivably get the data we had in Exercise 13.1, though without the pairing.

Analyze the data in Exercise 13.1 as if they had been collected from independent
groups. What would you conclude?

14.2 The value that you obtain in Exercise 14.1 will be somewhat smaller than the value from
Exercise 13.1. Why should we have anticipated this?

14.3 Why isn’t the difference between the results of Exercises 13.1 and 14.1 greater than it is?

14.4 In the example in this chapter about the treatment of anorexia, what basic assumption
would we have to make if we compared the final weights of the two groups (rather than
comparing the amount of weight gain)?

tt

We looked at effect size by using Cohen’s This is simply the difference in
means divided by a standard deviation. The standard deviation you use could be
the standard deviation of a control group, or the standard deviation of some logi-
cally selected group, or it could be the square root of the pooled variance. We also
saw how to calculate confidence limits for our example, and these are simply the
difference between sample means plus or minus the standard error of the mean
times the critical value of Ninety-five percent of the time when we calculate
confidence limits in that way, they will encompass the difference in population
means.

Finally, we looked at plotting the data with bar graphs. I included error bars
on the graph that I produced, but pointed out that there is no universal agreement
about the units of the error bars. Most often they are plus and minus a standard
error, but they could also be plus or minus two standard errors or could be confi-
dence limits.

Some important terms in this chapter are

t.

d̂.

378 Chapter 14 Hypothesis Tests Applied to Means: Two Independent Samples

Sampling distribution of
differences between means, 355

Variance Sum Law, 355

Standard error of differences
between means, 357

Homogeneity of variance, 358

Weighted average, 358

Pooled variance, 358

Confounded, 362

Heterogeneity of 
variance, 362



14.13 Exercises 379

14.5 What is the role of random assignment in the anorexia study?

14.6 What is the role of random sampling in the anorexia study?

14.7 Why can’t we use random assignment in the study of homophobia, and what effect will that
have on the conclusions we are allowed to draw?

14.8 The Thematic Apperception Test presents participants with ambiguous pictures and asks
them to tell a story about them. These stories can be scored in any number of ways. Werner,
Stabenau, and Pollin (1970) asked mothers of 20 Normal and 20 Schizophrenic children to
complete the TAT and then scored for the number of stories (out of 10) that exhibited a
positive parent-child relationship. The data follow:

Normal 8 4 6 3 1 4 4 6 4 2
Schizophrenic 2 1 1 3 2 7 2 1 3 1

Normal 2 1 1 4 3 3 2 6 3 4
Schizophrenic 0 2 4 2 3 3 0 1 2 2

(a) What would you assume to be the experimental hypothesis behind this study?
(b) What would you conclude with respect to that hypothesis.

14.9 In Exercise 14.8 why might it be smart to look at the variances of the two groups?

14.10 In Exercise 14.8 a significant difference might lead someone to suggest that poor parent-
child relationships are the cause of schizophrenia. Why might this be a troublesome
conclusion?

14.11 Much has been made of the concept of experimenter bias, which refers to the fact that for
even the most conscientious experimenters there seems to be a tendency for the data to
come out in the desired direction. Suppose we use students as experimenters. All the exper-
imenters are told that participants will be given caffeine before the experiment, but half the
experimenters are told that we expect caffeine to lead to good performance, and half are
told that we expect it to lead to poor performance. The dependent variable is the number
of simple arithmetic problems the participant can solve in two minutes. The obtained data
are as follows:

Expect Good Performance 19 15 22 13 18 15 20 25 22

Expect Poor Performance 14 18 17 12 21 21 24 14

What would you conclude from these results?

14.12 Calculate the 95% confidence limits on for the data in Exercise 14.1.

14.13 Calculate the 95% confidence limits on for the data in Exercise 14.8.

14.14 Using the data in Appendix D, use a test to compare ADDSC scores of males and females.

14.15 Using the data in Appendix D, compare grade point averages for those having ADDSC
scores of 65 or less with those having ADDSC scores of 66 or more.

14.16 Calculate Cohen’s for the data in Exercise 14.15.

14.17 What do the answers to Exercises 14.15 and 14.16 tell you about the predictive utility of
the ADDSC score?

14.18 Brescoll and Uhlmann (2008) investigated the hypothesis that when an observer views a
videotape of a male expressing anger as opposed to sadness, the male in the anger condi-
tion is accorded higher status than the male in the sadness condition. For 19 males the

d̂

t

m1 2 m2

m1 2 m2



mean and standard deviation (in parentheses) of the anger condition were 6.47 (2.25). For
the 29 men in the sad condition the mean and standard deviation were 4.05 (1.61). Is this
difference significant?

14.19 Brescoll and Uhlmann (2008), in the study described in Exercise 14.18, found the reverse
effect for females. They thought that perhaps this latter result was related to the way anger
is judged in females compared to males. When they compared judgments of a video of a
group of 41 females who expressed anger without an attribution for the source of anger,
women’s perceived status had a mean and standard deviation of 3.40 (1.44). When the
women on the video gave an external attribution for her anger (an employee stole
something), their perceived status had a mean and standard deviation of 5.02 (1.66) with
a standard deviation of 1.66.
(a) Is this difference significant?
(b) What is the effect size?
(c) The corresponding means and standard deviations (in parentheses) for males were 5.42

(1.63) in the no-attribution condition and 4.14 (2.46) in the external attribution con-
dition. Do we have evidence of a double standard for males and females?

14.20 Given the definition of a weighted average (see page 359), show what the pooled variance
estimate would be if the two sample sizes were equal. (Hint: Replace and with )

14.21 With respect to the previous exercise, what would happen if regardless of 

14.22 Demonstrate that, because we have equal sample sizes, I would have arrived at the same
answer in Section 14.8 if I had not pooled the variances, although the degrees of freedom
would probably differ.

ni?s1
2 5 s2

2,

n.n2n11sp
2 2
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15

This chapter deals with power, which is the probability of finding a significant
difference if the population means really are different. We will see the importance of
setting appropriate levels of power and why even a well-designed study will not
always produce a significant result. To calculate power we will need to find a way to
measure differences in population means and how to take that difference and turn it
into an estimate of power.

I have intentionally avoided taking my examples from the sports pages
because this is a text for the behavioral sciences, but this is a great place for one.
As of the time of writing, the New York Yankees have won 68 (59%) of the 115
games that they have played, while the Boston Red Sox have won 58 (49%) of their
119 games. If you had to bet on today’s game between the two of them, and if
you lived in Canterbury, England, or Melbourne, Australia, without any loyalty to
either team, you would be well advised to bet on the Yankees because they look to
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be the better team. But you certainly wouldn’t expect that they are a sure thing. The
probabilities are in their favor, but you wouldn’t stand there in astonishment if you
heard they lost. It’s the same thing with an experiment. Your treatment for dyslexia
may be appreciably better than mine, but that doesn’t mean that your clients are
always going to come out doing better than my clients. Nor does it mean that you
will find that, when compared to a control group, your treatment will always show
a statistically significant difference. We have to keep in mind that the fact that one
team or one treatment is better than another doesn’t always mean that it will win. It
just means that they will win more often than they lose.

While I am not an avid reader of the sports pages, I think that the above exam-
ple has a great deal to say about how we think of experiments. We all seem to oper-
ate under a general belief that if we conduct an experiment to test a theory, that
experiment will always come out in line with the theory: If the theory is true, the results
will be statistically significant, and if the theory is wrong, they won’t. But the world
doesn’t work that way, just as the Yankees don’t always win. No one gives up on
the Yankees if they lose a game, but we tend to give up on theories if the experiment
doesn’t come out the way the theory would predict. Maybe you just didn’t look hard
enough—that is, use enough observations. (Or maybe you did, and it was just not
your day.)

High on the list of frequently asked questions for statisticians is the question
“How many subjects do I need?” Aaarrgh!! Statisticians hate that question, because
it implies that there is an answer, such as “38,” that will satisfy any situation. I deeply
regret that there isn’t such an answer, because it would make my life very much eas-
ier, and this chapter very much shorter. The problem is that the real answer is “it
depends,” which is an answer people hate to hear in response to such a simple ques-
tion. Their typical response is “Well, of course it depends on a lot of things, but just
give me a ball park figure.” Sorry, but I can’t do that, either, without knowing more
than you’ve told me.

Most applied statistical work is concerned primarily with minimizing (or at
least controlling) the probability of a Type I error ( ). We don’t want to falsely reject
a true null hypothesis any more often than necessary. When it comes to designing
experiments, people generally tend to ignore that there is a probability ( ) of
another kind of error, the Type II error. Whereas Type I errors deal with the prob-
lem of finding a difference that is not there, Type II errors concern the serious prob-
lem of not finding a difference that is there. (In our baseball example, it is analogous
to the probability of the Yankees not beating the Red Sox when they really are the
better team.) When we consider the substantial cost in time and money that goes
into a typical experiment, it is remarkably shortsighted of experimenters not to rec-
ognize that they may, from the start, have a very small chance of finding the effect
for which they are looking, even if such an effect actually exists in the population
and even if it is a nontrivial effect worth finding.

Investigators historically have tended to avoid concerning themselves with
Type II errors. (Interestingly, people who play the horses wouldn’t think of ignor-
ing the fact that even the greatest horse sometimes loses, but we frequently ignore
the fact that even the best experiments sometimes produce no significant differ-
ence.) Until recently, many textbooks ignored the problem altogether. Those

b
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books that did discuss the material discussed it in ways not easily understood by
the book‘s intended audience. In the past 25 years, however, Jacob Cohen, a
psychologist, has discussed the problem clearly and lucidly in several publica-
tions. He almost single-handedly forced psychologists to recognize that there is
such a thing as statistical power and that it really is important. Cohen (1988)
presents a thorough and rigorous treatment of the material. In Welkowitz, Cohen,
and Ewen (2006), the material is treated in a slightly simpler way, through the
use of an approximation technique, which is the approach adopted in this chap-
ter. This approximation is based on the use of the normal distribution, and differ-
ences between the level of power computed with this method and with the more
exact approach are generally negligible. Cohen (1992) has written an excellent
five-page paper that is quite accessible, and I hand it out to anyone who asks me
about statistical power. If you become interested in this topic or need to consider
power in greater depth than we do in this chapter, you should have no difficulty
with the sources just mentioned or with any of the many excellent papers Cohen
published on a wide variety of topics.
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Jacob Cohen

We have not had a biographical sketch for several chapters, but this chapter
gives me the opportunity to write about a man that I consider the most respon-
sible for bringing an appreciation of statistical issues to the psychological com-
munity. I have admired the man nearly all of my professional life, though I never
had the opportunity to meet him.

Jacob Cohen was born in 1923 and entered City College of New York at
the age of 15. Apparently he wasn’t quite ready for college, because, as his wife
and co-author Patricia Cohen wrote, “After two years of dismal performance
(except in ping pong), he worked in war-related occupations ” and then
entered the military (Cohen, 2005). After the Second World War he gradu-
ated from CCNY and earned his PhD at NYU. He then worked for the
Veterans Administration, and during that time he developed Cohen’s Kappa,
a still widely used chance-corrected measure of agreement. In 1959 he moved
to NYU, and stayed there until his retirement in 1993. He died in 1998, after
having received during his lifetime about as many awards as the psychological
community has to offer.

One of Cohen’s most important publications was a paper in 1968 that
combined linear regression and the analysis of variance (the subject of the
next few chapters) in ways that psychologists had never really understood
before then. He claimed that this paper was so successful because he was
totally incapable of writing it at the level of statistical and mathematical
sophistication that was generally expected; that is, he wrote a paper that peo-
ple could actually understand! The material that he presented in that paper
was highly influential and started an enormous series of papers by others.

p
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In 1969 Cohen published his highly influential Statistical Power Analysis
for the Behavioral Sciences. That book showed psychologists what power is, how
to calculate it, how to design more powerful experiments, and how little power
most of the experiments we run actually have. This caused many people to ques-
tion the power of studies in psychology and eventually led, in various ways, to
a questioning of the whole concept of statistical hypothesis testing. By the
1990s, Cohen was himself questioning our ideas of hypothesis testing, and an
excellent summary of these ideas can be found in his 1990 paper entitled
“Things I have learned (so far).” Notice that last two words—Cohen never
stopped learning.

Speaking in terms of Type II errors is a negative way of approaching the prob-
lem, since it focuses on our mistakes. The more positive approach is to speak in terms
of power, which is defined as the probability of correctly rejecting a false H0. Put
another way, power equals 1 . When we say that the power of a particular
experimental design is .65, we mean that if the null hypothesis is false to the degree
we expect, the probability is .65 that the results of the experiment will lead us to
reject H0. A more powerful experiment is one that has a greater probability of reject-
ing a false H0 than does a less powerful experiment.

Definition Power: The probability of correctly rejecting a false H0.

This chapter will take an approach similar to that used in Welkowitz et al.
(2006) and work with an approximation to the true power of a test. This approxima-
tion is an excellent one, especially because we do not really care whether the power
equals .85 or .83, but rather if it is in the .80s or in the .30s. For purposes of explor-
ing the basic material, let‘s assume for the moment that we are interested in using a
test for testing one sample mean against a specified population mean. I chose this

because it is simple, but the approach immediately generalizes to the testing of other
hypotheses.

15.1 The Basic Concept

To review briefly what we have already covered in Chapter 8, consider the two dis-
tributions in Figure 15.1. The distribution to the left (labeled ) represents the
sampling distribution of the mean when the null hypothesis is true and the popu-
lation mean equals 1 The right-hand tail of this distribution (the darker-shadedm0.

H0

t

2 b

1If you are not sure that you remember what a sampling distribution is, look back at Chapter 8 (p. 161).
Briefly, a sampling distribution is the distribution that a statistic (such as the mean) will have over repeated
sampling.



area) represents , the probability of a Type I error, assuming that we are using a
one-tailed test (otherwise it represents ) This area contains the values of a
sample mean that would erroneously result in significant values of if the null
hypothesis were true.

The second distribution ( ) represents the sampling distribution of the
mean when is false and when the true mean is It is readily apparent that
even when is false, many of the sample means (and therefore the corresponding
values of ) will nonetheless fall to the left of the critical value, causing us to fail
to reject a false thereby committing a Type II error. The probability of this
error is indicated by the lighter-shaded area in Figure 15.1 and is labeled .

Finally, when is false and the test statistic falls to the right of the critical
value, we will correctly reject a false . The probability of doing this is what we
mean by power and is shown in the unshaded area of the distribution.

Although nothing is really new in the preceding paragraphs, putting it all
together can be conceptually difficult, so we need an example. Suppose we go back
to Everitt’s study of anorexic girls involved in cognitive behavior therapy (Exercises
5.21 and 12.10 –12.13). There are two possible situations that we care about.2
The first would be the case where the girls really didn’t gain any weight as a result
of therapy. This is essentially the case of a true null hypothesis ( ). If that
null is true, we know that the sample mean of the 29 anorexic girls will be some-
where near, but rarely exactly, 0. It has a distribution, and that is the distribution
shown on the left in Figure 15.1. Once in a while the sample mean will happen to
be so large that we will reject the null hypothesis, even when we shouldn’t. This is
a Type I error, and is shown by the dark portion of that distribution on the right,
and is labeled . All of this represents the kind of thinking that we have been doing
until now, focusing on Type I errors.
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Figure 15.1
Sampling distributions of under H0 and H1X
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2We will stick to a one-tailed test just to avoid that additional level of complexity.



But I come from a psychology department with a strong focus on cognitive
behavior therapy, and I have been led to believe that cognitive behavior therapy is
really effective. (I am an experimental psychologist, so I don’t have a strong
stake in the issue.) If cognitive behavior therapy is effective, then if we could apply
it to a whole population of anorexic girls, the mean gain would be some positive
number—say 5 lbs, to have a number to play with. That would be in Fig-
ure 15.1. Not having access to the whole population, we would draw a sample of
anorexic girls, offer them cognitive behavior therapy, and record the amount of
weight they gained. The sample mean would probably be somewhere in the neigh-
borhood of 5 lbs, but not exactly. Over repeated sampling, the sample means would
have a distribution, centered on 5 lbs. This is the distribution shown on the right
in Figure 15.1. Sometimes the mean gain might be 7 or 8 lbs, sometimes it would
only be 2 or 3 lbs, and sometimes it would even be negative. You can see each of
these possibilities in the figure.

In Figure 15.1 the left edge of the darkly shaded area is that value of gain that
would lead us to reject the null hypothesis. This value has been labeled as the “crit-
ical value.” Anything greater than that will cause us to reject the null, and anything
less than that will cause us to retain the null. We know that if the null is true, the
probability that we would exceed that critical value is You can also see that if 
is true (cognitive behavior therapy is helpful), there will be many outcomes that
exceed this value—that is a good thing. However, even when the null is false and

is true, a large number of outcomes don’t make it above the critical value, and
those outcomes are going to lead us to (erroneously) retain the null—that is a bad
thing. The probability of retaining the null when is true is labeled in the fig-
ure, and is shown in the lightly shaded region. Finally, when the null is false and 
is true, those outcomes that exceed the critical value represent correct rejections.
This area is what we mean by power, and it has been labeled as such.

One final point. If the null is true, we know what the distribution looks like
and where its center is located—it is located at 0.00. But if the null is false,
we don’t know how false it is, and therefore we don’t know where the center of its
distribution is. I picked 5 lbs because I needed a number to play with, but perhaps
it is only 3 lbs, or perhaps it is 10. You should be able to see that as we slide that
distribution left and right in response to different values of the size of the lightly
shaded area ( ) will change, as will the size of the area labeled “power.” All that
we can do is pick a value of based on our best guess, and proceed from there.

15.2 Factors That Affect the Power of a Test

As you might expect, power is a function of several variables:

1. The probability of a Type I error ( ), the a priori level of significance and
the criterion for rejecting 

2. The true difference between the null hypothesis and an alternative
hypothesis ( )m0 2 m1

H0

a

m1

b

m1,

H1

bH1

H1

H1a.

m1
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3. The sample size ( ) and variance ( )

4. The particular test to be employed and whether we are using a one- or a
two-tailed test

We will ignore the last point, other than to say that, in general, when the assump-
tions behind a particular test are met, the procedures presented in this book (with
the possible exception of those discussed in Chapter 20) can be shown to have more
power to answer the question at hand than other available tests. Also, as we move
from a one-tailed to a two-tailed test, the size of the area labeled in Figure 15.1
would be halved, with corresponding changes in power.

Power as a Function of 
With the aid of Figure 15.1 it is easy to see why we say that power is a function of

. If we are willing to increase , the cutoff point moves to the left, simultaneously
decreasing and increasing power. Unfortunately, this is accompanied by a corre-
sponding rise in the probability of a Type I error.

Power as a Function of 
The fact that power is a function of the nature of the true alternative hypothesis—
more precisely, ( )—is illustrated by a comparison of Figures 15.1 and 15.2.
In Figure 15.2 the distance between and has been increased, by increasing
the value of , resulting in a substantial increase in power. This is not particularly
surprising, since all we are saying is that the chances of finding a difference depend
on how large the difference is. (It is easier to distinguish between oranges and
apples than between oranges and tangerines.)

Power as a Function of the Sample Size ( ) and 
The relationship between power and sample size (and between power and ) is
only a little subtler. Because we are interested in means or differences between
means, we are interested, directly or indirectly, in the sampling distribution of the
mean. We know that its variance ( ) is From this equation we can see that
the variance of the sampling distribution of the mean decreases either as 
increases or as decreases. Figure 15.3, in comparison with Figure 15.2, illustrates
what happens to the two sampling distributions ( and ) as we increase or
decrease . In Figure 15.3 we see that as decreases, the overlap between the
two distributions is reduced, with a resulting increase in power.
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If you have any trouble visualizing what I am writing about, it might be smart
to skip ahead to Section 15.9, “Seeing Statistics,” and look at the first applet in
that section.



An experimenter concerned with the power of a test most likely will be
interested in those variables governing power that she can manipulate easily.
Because is more easily manipulated than either or ( ), and because
tampering with produces undesirable side effects (increasing the probability of a
Type I error), discussions of power are generally concerned with the effects of vary-
ing sample size.
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Figure 15.2
Effect on power of increasing distance between �0 and �1
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15.3 Effect Size

In several previous chapters we have discussed a measure called “the effect size.”
We saw several different ways of presenting it, and I suggested that in some cases
simply presenting a mean or a difference in means is sufficient. However, when
most people use the phrase “effect size” they have something like Cohen’s in
mind. When it comes to discussing power we also discuss effect size, and it turns
out to be the same statistic as Cohen’s . The only difference is that we are using
it to assess how large a difference we hope to have, and then to compute power,
rather than as a measure to tell the reader how large an effect we have found. So
the measure stays the same, it is only the purpose that differs.

As we have seen in Figures 15.1 through 15.3, power depends on the degree
of overlap between the sampling distributions under and Furthermore, this
overlap is a function of both the distance between and (the population mean
if is true and the population mean if is true) and the standard error of the
mean (the standard deviation of either of these sampling distributions). One
measure, then, of the degree to which is false would be the difference in
population means under and which is ( ), expressed in terms of
the number of standard errors (i.e., ). The problem with this meas-
ure is that the denominator ( ) already includes the sample size. In
practice we usually will want to keep separate from ( ) and so we can
solve for the power associated with a given value of or else for that value of 
required for a given level of power. For that reason we will take as our distance
measure, or effect size,

Notice that the divisor is the standard deviation, not the standard error. We will
ignore the sign of attending only to its absolute value3. It is a measure of the
degree to which and differ in terms of the standard deviation of the parent
population. For example, if we expect a group of children who have suffered from
malnutrition to have a mean IQ 8 points below normal (where ), we are
talking about an effect size of one-half a standard deviation (i.e., the malnourished
group will be below average by a standard deviation). Then

From our equation we see that is estimated independently of 
simply by estimating and We will incorporate at a later date.ns.m1
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3In previous versions of this book I have used the symbol to represent what I call here. While that is the
traditional notation in discussions of power, you already know what is and I don’t see any point in confusing
the issue by giving it a different name.
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Estimating the Effect Size
The first task becomes that of estimating because it will form the basis for future
calculations. We can do this in one of three ways.

1. Prior research. We often can obtain at least a rough approximation of by
looking at past data. Thus we could look at sample means and variances
from other studies and make an informed guess at the values we might
expect for and for In practice this task is not as difficult as it
might seem, especially when you realize that even a rough approximation
is far better than no approximation at all.

2. Personal assessment of what difference is important. In many cases an
investigator is able to say, “I am interested in detecting a difference of at
least ten points between and ” The investigator is saying essentially
that smaller differences have no important or useful meaning, whereas
differences greater than ten points do. Here we are given the value of

directly, without any necessary knowledge of the particular
values of and . All that remains is to estimate from other data. For
example, the standard deviation of many standardized tests is often
approximately 10. An investigator might say that she is interested in
finding a study guide that will raise scores on a standardized test by
4 points above average. We already know that the standard deviation for
this test is approximately 10. Thus If, instead of saying
that she wanted to raise scores by 4 points, the experimenter said she
wanted to raise them by of a standard deviation, she would have been
giving us directly.

3. The use of special conventions. When we encounter a situation in which
there is no way that we can estimate the required parameters, we can fall
back on a set of conventions given by Cohen (1988). Cohen defined three
values of for use when testing means. For a justification of these levels
the reader is referred to Cohen’s work. Cohen’s rule of thumb is
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Effect Size d

Small .20
Medium .50
Large .80

Thus when all else fails, experimenters simply can decide whether they are
after a small, medium, or large effect and set d accordingly. Although it is
common to see reference to these estimates, I must emphasize that this
solution should be chosen only when the other alternatives are not
feasible—but even Cohen gave up and accepted the fact that, whether he
wanted them to or not, people are going to take these as firm rules, rather
than rules of thumb.



You might think it is peculiar to be asked to define the difference you are look-
ing for before the experiment is conducted. Many people would respond by claiming
that if they knew how the experiment would come out, they wouldn’t have needed
to run it in the first place. Although many experimenters behave as if this were true,
if you consider the excuse carefully you should start to question its validity. Do we
really not know, at least vaguely, what will happen in our experiments, and if not,
why are we running them And even if we have no idea what to expect, we should at
least consider the minimum effect we would be interested in detecting. While there
is an occasional legitimate “I wonder what would happen if ” experiment, “I don’t
know” usually translates to “I haven’t thought that far ahead.” Remember that most
experiments are run to demonstrate to the rest of the world that a particular theory
is correct, and that theory often tells us what kind of results to expect.

Combining the Effect Size and n
In our discussion of the effect size ( ), we split off the sample size from the effect
size to make it easier to deal with separately. The final thing we will need is a
method for combining the effect size with the sample size to determine the power
of an experiment for a given and effect size ( ). For this we will use the symbol

(delta):

where the particular function of will be defined differently for each indi-
vidual test.4 In this equation the notation —read “f of n”—is used as a general
way of stating that depends not only on but also in some unspecified way on 
For example, you will see that in the one-sample test we will compute by replac-
ing with whereas in the two-sample test we will replace with

. The nice thing about this system is that it allows us to use the same table
of for power calculations for all the statistical procedures to be considered. How
we will actually use is illustrated in the next section.

Definition (delta): A value used in referring to power tables that combines d and the sample size.d
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It is probably worth restating why we have gone to all this work to define with-
out regard to and have then put back in when it comes to defining When
you are planning an experiment, ( ) and and therefore are more ord,s,m1 2 m0

d.nn
d

4I’m sure a lot of students out there just groaned that they had finished with their math requirement and
thought they were safely away from things like —or else they skipped math entirely because they didn’t
want to worry about such stuff. Just think of as a shorthand way of writing “some value based on that
I don’t want to specify more precisely here.”
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15.4 Power Calculations for the One-Sample t Test

For our first example we will examine the calculation of power for the one-sample
test. In the previous section you saw that is based on and some function of 

For the one-sample test, that function will be , and will then be defined as

In Chapter 5 (Exercise 5.21) we saw data from a study of Everitt using cognitive
behavior therapy as a treatment for anorexia. Now assume a clinical psychologist
wants to replicate that study. Needing somewhere to start, she assumes that
Everitt’s data are a good representation of the population parameters in question.
In other words, she is willing to assume that the population mean weight gain, with
cognitive behavior therapy, is lbs and the standard deviation ( ) is 7.31.
The null hypothesis would be that cognitive behavior therapy does not lead to
weight gain, and therefore 

If she is going to run the same number of participants that Everitt did, then
and

Although the experimenter expects the sample mean to be above the mean of the
general population, she plans to use a two-tailed test at to protect against
unexpected events. Given , we can determine the power of the test immediately
from Table E.5 in the Appendices. A portion of this table is reproduced in
Table 15.1. To use either table, simply go down the left-hand margin until you come
to the value of and then read across to the column headed .05; that entry
will be the power of the test. Neither table has an entry for but they do
have entries for and For this means that power is
between 0.60 and 0.63. By linear interpolation we will say that for power
rounds to 0.60. This means that if is really false and lbs, only 60% of the
time will the clinician obtain data that will produce a significant value of whent
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less fixed. But the choice of is up to you. We want to be able to compute power,
by way of for a given d when is 20, for example, and then when is 50.
We don’t want to have to repeat a set of calculations every time we change 
By defining d independently of and then having a simple formula to put the
two together, we save ourselves a lot of work.

n
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testing the difference between her sample mean and that specified by . This is a
rather discouraging result because it means that if the true mean gain with cogni-
tive behavior therapy is really 3.00 lbs, of the time the study
as designed will not obtain a significant result.

Because the experimenter was intelligent enough to examine the question of
power before she began her experiment, she still has the chance to make changes
that will lead to an increase in power. She could, for example, set at .10, thus
increasing power to approximately 0.71, but this is probably unsatisfactory.
( Journal reviewers, for example, generally hate to see set at any value greater
than .05.) Alternatively, the experimenter could make use of the fact that power
increases as increases.

Estimating Required Sample Sizes
It is fine to say that a thoughtful experimenter can increase power by increas-
ing but how large an is needed? The answer to that question depends sim-
ply on the level of power that is acceptable. Suppose you wanted to modify the
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Table 15.1
Abbreviated Version of Table E.5, Power as a Function of � and
Significance Level

Alpha for Two-Tailed Test

� .10 .05 .02 .01

1.00 .26 .17 .09 .06
1.10 .29 .20 .11 .07
1.20 .33 .22 .13 .08
1.30 .37 .26 .15 .10
1.40 .40 .29 .18 .12
1.50 .44 .32 .20 .14
1.60 .48 .36 .23 .17
1.70 .52 .40 .27 .19
1.80 .56 .44 .30 .22
1.90 .60 .48 .34 .25
2.00 .64 .52 .37 .28
2.10 .68 .56 .41 .32
2.20 .71 .60 .45 .35
2.30 .74 .63 .49 .39
2.40 .78 .67 .53 .43
2.50 .80 .71 .57 .47
2.60 .83 .74 .61 .51
2.70 .85 .77 .65 .55
2.80 .88 .80 .68 .59
2.90 .90 .83 .72 .65
3.00 .91 .85 .75 .66



previous example to have power equal to 0.80. The first thing you need to do
is read Table E.5 backward to find what value for is associated with the spec-
ified degree of power. From the table we see that for power equal to 0.80, 

must equal 2.80. Thus we have and can solve for n simply by a minor
algebraic manipulation:

Because clients come in whole units, we will round off to 47. Thus if the
experimenter wants to have an 80% chance of rejecting when (i.e.,
when ), she will have to provide therapy to 47 clients.
Although she may feel that this is a large number of clients, there is no alternative
other than to settle for a lower level of power and increase the chance of not find-
ing anything.

You might wonder why we selected power equal to 0.80 in the previous
example. With this degree of power we still run a 20% chance of making a
Type II error. The answer lies in the issue of practicality. Suppose, for example,
that our experimenter had wanted power to equal 0.95. A few simple calcula-
tions will show that this would require a sample of for power equal to
0.99 she would need approximately 105 participants. These may well be unrea-
sonable sample sizes for a particular experimental situation or for the resources
of the experimenter. While increases in power are generally bought by
increases in at very high levels of power the cost can be very high. In addi-
tion, it is a case of diminishing returns because increases as a function of the
square root of If you are taking data from files supplied by the U.S. Census
Bureau, that is one thing. It is quite a different matter when you are studying
identical twins reared apart.

15.5 Power Calculations for Differences Between Two
Independent Means

The treatment of power in a situation in which we want to test the difference
between two independent means is similar to our treatment of the case in
which we had only one mean. In the previous section we obtained by taking
the difference between under (i.e., ) and under (i.e., ) and
dividing by the population standard deviation ( ). In this section we will do
something similar, although this time we are going to be working with differ-
ences between means. In this case we want the difference between the two
population means ( ) under minus the difference ( ) under

again divided by (You should recall that we assume )s2
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But ( ) under is zero in all usual applications, so we can drop that
term from the formula. Thus

The numerator is the difference we expect between population means under ,
and the denominator is the common standard deviation of both populations.

Equal Sample Sizes
When we calculate power for the comparison of two groups, it makes a difference
whether we have equal or unequal sample sizes. The theory isn’t any different, but
our choice of numbers is. We will begin with the equal sample size case, and then
move quickly to the treatment of unequal sample sizes. For the sake of an example,
assume that we want to test the hypothesis that rats who were food-deprived in
infancy hoard more food than normal rats. A somewhat similar experiment, con-
ducted by Hunt (1941), would suggest that the mean number of food pellets hoarded
by the deprived group would be approximately 35 and for the nondeprived group
approximately 15. In addition, Hunt’s data would suggest a value of 17 for . Thus,
at least as a rough approximation, we expect and Then

We are saying that we expect a difference of 1.18 standard deviations between the
two means. (That is a fairly substantial difference, as you can see by comparing this
value to Cohen’s rule of thumb for effect sizes.)

First we will investigate the power of an experiment with 10 observations in
each of two groups. We will define in the two-sample case as

where equals the number of cases in any one sample (there are cases in all). Thus

From Table E.5 in the Appendices we see by interpolation that for with
a two-tailed test at power equals 0.75. Thus if we actually run this exper-
iment with 10 subjects in each group and if the estimate of is correct, then we
have a 75% chance of actually rejecting . This is a high degree of power for so
few subjects, but we are dealing with a fairly large effect.

We next want to turn the question around and ask how many subjects would
be needed for power equal to 0.90. (It is reasonable here to try to boost power to
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0.90 [reduce to 0.10] because we already know that as few as 10 subjects per
group would give us power equal to 0.75 with the effect size that we have.) From
Table E.5 we see that this would require equal to 3.25.

Squaring for easier rearrangements of terms, we have

Then

Because refers to the number of subjects per sample, we would need 15 or 16 sub-
jects per group, for a total of 30 or 32 subjects, if power is to be 0.90. That is slightly
on the large side for a typical study using laboratory rats, which must be bought,
housed, and fed at considerable expense. Whether it is worth the expense depends
on the importance of the research.

Unequal Sample Sizes
The case of unequal sample sizes differs from the previous example because we
don’t have a single number to substitute for in the formula for Other than that,
the procedures are the same.

The simplest solution would be to use the mean of the two sample sizes. For
technical reasons, instead of using the standard arithmetic mean that we are used
to, we will let be the harmonic mean of the two sample sizes. In general the
harmonic mean of numbers is defined as

For example, for the numbers 8, 12, and 13 the harmonic mean is

For the case of two sample sizes ( and ) the formula reduces to

We then can use the harmonic mean of in place of itself in calculating .dnn
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Definition Harmonic mean: The number of elements to be averaged divided by the sum of the
reciprocals of the elements.

An Example
Earlier we looked at an example from Everitt that used cognitive behavior
therapy to treat anorexia. We were interested in the power we would have if we
replicated Everitt’s experiment showing that those receiving cognitive behav-
ior therapy gained a significant amount of weight (in other words, the mean
weight gain was greater than 0.00 lbs.) I have mentioned elsewhere that sim-
ply showing that the group gained weight does not show that any kind of ther-
apy caused that gain—it may just be that they have gotten older and taller.
What we would need for showing a causal effect is the comparison with
another group of anorexic girls who did not receive therapy—a control group.
Fortunately, Everitt had such a group. Unfortunately, when we run a test com-
paring Control and Cognitive Behavior Therapy, the resulting t has a two-
tailed probability of .10, which we are not willing to call significant. This
leaves us with a question. Is it true that cognitive behavior therapy really isn’t
any better than doing nothing? Or is cognitive behavior therapy really an
effective treatment, but we just didn’t have enough power to detect the differ-
ence that was there?

We are not going to find a definitive answer to that question, but we will
move toward an answer if we ask about the power of Everitt’s study given that
the population means and standard deviations are exactly reflected in the sample
means and standard deviations. If we find that the experiment had very little
power, we might want to rerun the experiment with larger sample sizes. It might
be tempting to suggest the obverse (“if the study had a great deal of power and
we did not reject the null, it must really be true”). But that is based on a false prem-
ise. It is not possible to find that the study had a great deal of power if the null was
not rejected. See Howell (2010) for a discussion of this issue. What you should
definitely not do is to discover that the power was very low and then declare
that the difference was really there, but we just ran a poorly designed experiment.
If the study was weak, rerun the study; don’t just declare success in spite of a
nonsignificant difference.

The relevant statistics from Everitt’s study are shown in Table 15.2.

t
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Table 15.2
Statistics from Everitt’s Study of Anorexia

Treatment Mean Std. Dev. n

Control �.45 7.9887 26
Cognitive Behavior Therapy 3.007 7.3085 29



For these data the value of is defined as

But we don’t know and will have to estimate it as the pooled variance estimate,
as we often do in a test on two independent samples.5 For our example,

Therefore,

We don’t care about the sign of , so we will drop the negative sign and declare

Now we need to calculate but first we have to estimate the sample size 

Finally,

From Appendix E.5, with using a two-tailed test at we find that
(approximately). So even if Everitt did an exact job of estimating the

population means and variances, which would mean that the null is false because
the two estimated population means are different, he would still have only about
4 chances out of 10 of actually getting a significant difference. If you are a staunch
advocate of cognitive behavior therapy, and want to show that it is an effective
therapy, you will need considerably more subjects.

If you want power equal to .80, you are going to need Solving the
previous equation backwards for with we have
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5It is important to note that we average variances and then take the square root. We do not average stan-
dard deviations. To see the difference, assume that you had variances of 16 and 25. Their average is 20.5,
and the square root is 4.53. But the average of the two standard deviations would be 
It makes a difference.

14 1 5 2 >2 5 3.50.



This means that we are going to need about 77 participants in each group, which
is well more than twice as many as Everitt had. That is a lot of participants.
Perhaps we would be better off with the smaller samples, but continuing therapy
for longer in hopes of getting a greater mean weight gain in the cognitive behav-
ior therapy group.

15.6 Power Calculations for the t Test for Related Samples

When we move to the situation in which we want to test the difference between two
matched samples, the problem becomes somewhat more difficult, and we must take
into account the correlation between the two sets of observations. In earlier editions
of this book I went into detail on how to calculate power in this situation, but on
reflection I believe that there is little to be gained by putting you through that.

The basic idea is the same as for the two previous tests. We would define as

and substitute sample statistics for the parameters. If you had data from a previous
study that gave you the necessary statistics, you could immediately solve for And
because this really represents a test on one sample mean (the mean of the differ-
ence scores), we can calculate as

We then can refer to Table E.5 for the value of 
If you don’t have good estimates of the necessary parameters, you could calcu-

late power as if these were two separate groups of scores. That would give you an
estimate of the lower bound of power. The true power would be somewhat higher,
and perhaps considerably higher.

To use an actual example, we will go back to the data in Section 13.2 on the
use of family therapy as a treatment for anorexia. There we had a set of weights at
the beginning and end of therapy, and calculated a on matched samples. Suppose
that we would like to replicate this study to verify its conclusions, but we want to
have a reasonable chance of finding a significant result. Because we know about
the original study, we can make some reasonable guesses about what to expect.
We know that Everitt’s data found a difference of 7.26 pounds between the pre-
and post-therapy weights. We also know that the standard deviation of the differ-
ence scores was 7.16, so we don’t have to estimate it. With this information, and
with Everitt’s sample size of we can calculate the power assuming that the
statistics that he reported are equal to the actual population parameters.
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From Appendix E we find that for a two-tailed test at power is approxi-
mately equal to .99. This strikes me as an unusually high degree of power, but keep
in mind that Everitt reported an effect size of slightly over 1.00. That is certainly
a very large effect, and I am frankly quite surprised that even the greatest therapy
on earth would produce such an effect. (That isn’t to say that I don’t believe the
data, but only that I am very surprised by them.) If the therapy works as well as
Everitt’s data would suggest, then we are almost certain to find a significant differ-
ence when we have 17 subjects in the replication study that we want to run.6

15.7 Power Considerations in Terms of Sample Size

Our discussion of power here illustrates that reasonably large sample sizes are gen-
erally a necessity if you are to run experiments that have a good chance of rejecting

when it is, in fact, false, especially if the effect is small. A few minutes with a cal-
culator will show you that if we want to have power equal to 0.80 and if we accept
Cohen’s definitions for small, medium, and large effects, our samples must be quite
large. Table 15.3 presents the total sample sizes required (at 
two-tailed) for small, medium, and large effects for the tests we have been dis-
cussing. These figures indicate that power (at least a substantial amount of it) is a
very expensive commodity, especially for small effects. While it could be argued that
this is actually a good thing, since otherwise the literature would contain many
more trivial results than it already does, that will come as little comfort to most
experimenters. The general rule is to look for big effects, to use large samples, or to
employ sensitive experimental designs such as those that involve the use of repeated
measurements on the same subjects, reducing experimental error and thus making
small differences translate into large effect sizes.

power 5 .80, a 5 .05,

H0

a 5 .05,
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6I have come close to painting myself in a box here, and think I’m better off discussing it than hoping you
won’t notice. I have said that there are two kinds of effect sizes. There are measures that are designed to tell
the reader how large an effect you found, and there are effect sizes measures, as used in this chapter, for cal-
culating power. I have said that they are the same thing. They are, but you may notice that in the present
example I obtained using the standard error of the difference ( ), while in Chapter 13 I said that
you should use the standard deviation of the pretreatment scores as your denominator. I am right in both
cases, and only good explanation is that we are using these statistics for different things. To calculate power
you do need to estimate the standard error of the differences.

sXpost2Xpre
d

Table 15.3
Total Sample Sizes Required for Power � .80, � � .05, Two-Tailed

Effect Size d One-Sample t Two-Sample t

Small .20 196 784
Medium .50 32 126
Large .80 13 49
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15.8 You Don’t Have to Do It by Hand

There are a great many sources of material on the Web for studying power. A sim-
ple Java program that accepts keyboard input about sample sizes, effect sizes, and
estimated standard deviations, is available at

http://www.stat.uiowa.edu/~rlenth/Power/index.html

This Web page calculates power for one and two sample tests, as well as for cor-
relational studies. A page at

http://www.math.yorku.ca/SCS/Online/power/

does a good job with power for the analysis of variance, to be described in the next
few chapters.

My favorite piece of software among available programs is called G*Power,
which is available for PCs and Macs, and which is free. The address for that is

http://www.psycho.uni-duesseldorf.de/aap/projects/gpower/

I strongly encourage you to go to these sites, and others that they point to, because
it is a great way to get a handle on power. They can also lead you to all sorts of
other neat, cool stuff.

15.9 Seeing Statistics

The applet on this book’s Web site entitled “Power Applet” illustrates the effect
of all three major variables that control power (the true difference between
means, the standard deviation, and the sample size. An example of the screen
is shown.

t

http://www.stat.uiowa.edu/~rlenth/Power/index.html
http://www.math.yorku.ca/SCS/Online/power/
http://www.psycho.uni-duesseldorf.de/aap/projects/gpower/


15.10 Summary

This chapter began by defining power as the probability of rejecting the null hypoth-
esis when it is false. The discussion involved a review of Type I and Type II errors,
which are the probability of falsely rejecting a true null hypothesis and the probabil-
ity of failing to reject a false null hypothesis, respectively. The concept is most easily
seen by overlaying graphs of the distribution of scores under and under some spec-
ified H1. When you do this you can see the areas that are assigned to and power.

We discussed factors that affect the power of an experiment. The larger we
set the more power we will have, but at a cost in Type I errors. The true differ-
ence between population means (for example, and ), is perhaps
that most important factor controlling power, which really means that big differ-
ences are easier to find than small ones. But the size of the population standard
deviation and the size of the sample also play important roles. We combined these
effects by defining Cohen’s as the difference in means divided by the sample stan-
dard deviation. We then went on to take the sample size into account, but only
after defining When we include the sample size our result is called (delta) and
is what we use when we go to power tables.

We examined one-sample tests, tests for two independent samples, and tests
for related samples. The logic is basically the same for all three, and depends on
the function that relates the sample size to to produce d.d

dd.

d

m2 2 m2m1 2 m0

a,

a, b,
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In the top center of the display is the level of power resulting from the var-
ious settings. By dragging the slider on the bottom left and right, you can
increase or decrease the distance between means. You should try dragging the
slider so that the two distributions overlap exactly. This is the null case. What
is the resulting power?

On the left and right are sliders that correspond to the standard deviation
and sample size, respectively. We saw in this chapter that power increases as the
variance decreases (it is easier to find a difference if you have less noise in your
data) and as the sample size increases (large samples make it easier to pick out
a difference). Move the sliders and verify these two predictions.

In Section 15.5 we looked at a study of hoarding behavior in rats. We can’t
apply those data exactly to this applet because we can’t reproduce a difference
of 20 points and a standard deviation of 17. However, it would not change the
problem in any important way if I presented those data as having means of
4.0 and 6.0, and standard deviations of 1.7. There were 10 rats in each group.
Set these values on the display and record the resulting power. In this chapter
we found the power to be approximately .75. You won’t get exactly that here,
but don’t worry about it. (My calculations used an approximation.) How close
do you come? How many rats would you need in each group to have
power 5 .95?



With the two independent sample case we used two somewhat different
approaches depending on whether or not we had equal sample sizes.

Perhaps the most important lesson to take away from this chapter is the fact
that unless you are looking at quite large differences, a high level of power is going
to require fairly large samples.

Some important terms in this chapter are
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Power, 384

Delta , 3911d 2
Harmonic mean, 397

15.11 Exercises

15.1 I am very confident that I am a better technical skier than my brother, but I don’t expect
that if a judge watched us descend through the trees, I would always get a better rating.
What does that statement have to do with statistical power?

15.2 What is your subjective probability that the New York Yankees will win next year’s World
Series? What does that have to do with power?

15.3 In Section 12.3 we looked at a set of data on whether children who are stressed from their
parents’ divorce tend to tell us what they think we want to hear, rather than what they
really feel. For those data the test on was not significant, even though the sample size
was 36. Suppose that the experimenters had, in fact, actually estimated the mean and stan-
dard deviation of the population of stressed children exactly.
(a) What is the effect size in question?
(b) What is the value of for a sample size of 36?
(c) What is the power of the test?

15.4 Diagram the situation described in Exercise 15.3 along the lines of Figure 15.1.

15.5 In Exercise 15.3 what sample sizes would be needed to raise power to 0.70, 0.80, and 0.90?

15.6 Following on from Exercise 15.3, suppose that my colleagues were tired of having children
tell them what they think we want to hear and gave them a heart-to-heart talk on the
necessity of accurate reporting. Suppose that this reduced their population mean Lie score
from 4.39 to 2.75, again with a standard deviation of 2.61. If we have 36 children for this
analysis, what is the power of finding significantly fewer distortions in these children’s
reports than in the general population? The population of normal children still has a pop-
ulation mean of 3.87.

15.7 Diagram the situation described in Exercise 15.6 along the lines of Figure 15.1.

15.8 How many subjects would we need in Exercise 15.6 to have 

15.9 A neuroscience laboratory run by a friend of mine studied avoidance behavior in rabbits for
many years and published numerous papers on the topic. It is clear from this research that
the mean response latency for a particular task is 5.8 seconds with a standard deviation of
2 seconds (based on a very large number of rabbits). Now another investigator wants to cre-
ate lesions in certain areas of the amygdala and demonstrate poorer avoidance conditioning

power 5 .80?

d

H0



in those animals. (The amygdala is associated with emotion, and if you reduce an emotional
response you would be expected to reduce avoidance behavior.) She expects latencies to
decrease by about 1 second (i.e., rabbits will repeat the punished response sooner), and she
plans to run a one-sample test (with ).
(a) How many subjects does she need in order to have at least a 50:50 chance of success?
(b) How many subjects does she need in order to have at least an 80:20 chance of success?

15.10 Suppose the investigator referred to in Exercise 15.9 decided that instead of running one
group and comparing it against she would run two groups (one with and one
without lesions). She would still expect the same degree of difference, however.
(a) How many subjects does she now need (overall) if she is to have power equal 0.60?
(b) How many subjects does she now need (overall) if she is to have power equal 0.90?

15.11 As it turns out, a research assistant has just finished running the experiment described
in Exercise 15.10 without having carried out any power calculations. He tried to run
20 subjects in each group, but he accidentally tipped over a rack of cages and had to
void 5 subjects in the experimental group. What is the power of this experiment?

15.12 We have just conducted a study comparing cognitive development of low-birthweight
(premature) and normal-birthweight babies at one year of age. Using a score of my own
devising, I found the sample means of the two groups to be 25 and 30, respectively, with a
pooled standard deviation (s) of 8. There were 20 subjects in each group. If we assume that
the true means and standard deviations have been estimated exactly, what was the a priori
probability (the probability before the experiment was conducted) that this study would
find a significant difference?

15.13 Let’s modify Exercise 15.12 to have sample means of 25 and 28, with a pooled standard
deviation of 8 and sample sizes of 20 and 20.
(a) What is the a priori power of this experiment?
(b) Run the test on the data.
(c) What, if anything, does the answer to (a) have to say about the answer to (b)?

15.14 Diagram the answer to Exercise 15.13.

15.15 Two graduate students have recently completed their dissertations. Each used a test for two
independent groups. One found a barely significant using 10 subjects per group. The other
found a barely significant using 45 subjects per group. Which result impresses you more?

15.16 Make up a simple two-group example to demonstrate that for a total of 30 subjects, power
increases as the sample sizes become more nearly equal.

15.17 A beleaguered PhD candidate has the impression that he must find significant results if
he wants to defend his dissertation successfully. He wants to show a difference in social
awareness, as measured by his own scale, between a normal group of students and a group
of ex-delinquents. He has a problem, however. He has data to suggest that the normal group
has a true mean equal to 38, and he has 50 of those subjects. For the other group he has
access either to 100 college students who have been classed as delinquent in the past or to
25 high school dropouts with a history of delinquency. He suspects that the scores of the
college group come from a population with a mean of approximately 35, whereas the scores
of the dropout group come from a population with a mean of approximately 30. He can use
only one of these groups—which should it be?

15.18 Generate a table analogous to Table 15.3 for power equal to 0.80, with two-tailed.

15.19 Generate a table analogous to Table 15.2 for power equal to 0.60, with two-tailed.a 5 .05,

a 5 .01,

t
t

t

t

m0 5 5.8,

H0: m0 5 5.8t
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15.20 Assume we want to test a null hypothesis about a single mean at one-tailed.
Further assume that all necessary assumptions are met. Is there ever a case in which we are
more likely to reject a true than we are to reject if it is false? (In other words, can
power ever be less than ?)

15.21 If and we are testing what value of the
mean under would result in power being equal to the probability of a Type II error?
(Hint: This is most easily solved by sketching the two distributions. Which areas are you
trying to equate?)

15.22 Calculate the power of the anorexia experiment in Section 14.1, assuming that the param-
eters have been estimated correctly.

15.23 Calculate the power of the comparison of TATs from the parents of schizophrenic and nor-
mal subjects in Exercise 14.8.

15.24 Why would we ever want to calculate power after an experiment has been run, as we just
did in Exercises 15.22 and 15.23?

15.25 Joshua Aronson has spent considerable time studying “stereotype threat,” which refers to
the fact that “members of stereotyped groups often feel extra pressure in situations where
their behavior can confirm the negative reputation that their group lacks a valued ability.”
(Aronson, Lustina, Good, Keough, Steele, & Brown, 1998) This feeling of stereotype threat
is then hypothesized to affect performance, generally lowering it from what it would have
been had the participant not felt threatened. Aronson recruited two independent groups of
white male college students for whom doing well in mathematics was personally important.
Both groups were asked to complete a difficult math test. The Threat group was also told
that the researchers were studying why Asian students typically did better in math than
non-Asian students. This condition should arouse feelings of stereotype threat for these
white males. The mean for the Control group was 9.64 problems correct with For
the Threat group the values were 6.58 and 3.03 respectively. There were 11 participants in
the Control group and 12 in the Threat group. If these statistics correctly estimate popula-
tion parameters, what is the power of this experiment?

s 5 3.17.

H1

H0: m 5 100 versus H1: m 7 100,s 5 15, n 5 25,

a

H0H0

a 5 .05,
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16
One-Way
Analysis of
Variance

Concepts that you will need to remember 
from previous chapters
Degrees of freedom (df ): The number of independent pieces of

information remaining after estimating one
or more parameters

F statistic: A test statistic, like t, that can be used to
compare sample means

Effect size ( ): A measure intended to express the size of 
a treatment effect in terms that are meaningful
to the reader

Pooled variance estimate: The weighted average of two sample variances

Sampling distribution: The distribution of a statistic, such as the
mean over repeated sampling

Heterogeneity of The situation when sample variance estimates
variance: are substantially unequal

d̂

406

We are about to begin three chapters related to the analysis of variance.
We will begin by asking what it is and what it does, and then we will look at why
it would be called an analysis of variance when it actually compares means. 



The computations are quite simple, and after looking at the logic of the process we
will briefly cover the calculations. Because the process becomes slightly more com-
plicated, we will move to the case of groups with different sample sizes and see how
to incorporate unequal sized samples. Once we have covered the basic analysis, we
will move to procedures that will allow us to compare individual groups with one
another. But even if differences are significant, they are not always important, so we
will look at different measures of effect size. Finally, we will see how we can run the
analysis using SPSS.

The analysis of variance (ANOVA) currently enjoys the status of being proba-
bly the most used statistical technique in psychological research, with multiple regres-
sion running a close second. The popularity and usefulness of this technique can be
attributed to two facts. First, the analysis of variance, like t, deals with differences
between sample means, but unlike t, it has no restriction on the number of means.
Instead of asking merely whether two means differ, we can ask whether two, three,
four, five, or k means differ. Second, the analysis of variance allows us to deal with
two or more independent variables simultaneously, asking not only about the individ-
ual effects of each variable separately but also about the interacting effects of two or
more variables.

Definition Analysis of variance (ANOVA): A statistical technique for testing for differences in
the means of several groups.
One-way ANOVA: An analysis of variance wherein the groups are defined on
only one independent variable.

This chapter will be concerned with the underlying logic of the analysis of
variance (which is really quite simple) and the analysis of the results of experiments
that employ only one independent variable. In addition, we will deal with a few
related topics that are most easily understood in the context of a one-variable analy-
sis (one-way ANOVA). Subsequent chapters will deal with the analysis of experi-
ments that involve two or more independent variables and with designs in which
repeated measurements are made on each participant.

16.1 The General Approach

Many features of the analysis of variance can be best illustrated by a simple exam-
ple, so we will begin with a study by M. W. Eysenck (1974) on recall of verbal
material as a function of the level of processing. The data we will use have the
same group means and standard deviations as those reported by Eysenck, but the
individual observations are fictional. The importance of this study is that is
illustrates a clean test of an important theory of memory, while at the same time
giving clear results as an example.
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Craik and Lockhart (1972) proposed as a model of memory that the degree
to which verbal material is remembered by the participant is a function of the
degree to which it was processed when it was initially presented. You have proba-
bly noticed that I frequently insert questions to you in the text, asking about alter-
native interpretations of the data, about what it would mean if the test statistic
came out differently, and so on. The main purpose of these questions is to encour-
age you to “process” the information you have just read rather than to just let it
flow past. I’m talking here about the same thing that Craik and Lockhart were. To
put the example in their terms, imagine that you are asked to memorize a list of
words. Repeating a word to yourself (a low level of processing) would not be
expected to lead to as good recall as thinking about each word and trying to form
associations between that word and some other word. Eysenck (1974) was inter-
ested in testing this model and, more important, in looking to see whether it could
help to explain reported differences between young and old participants in their
ability to recall verbal material. An examination of Eysenck’s data on age differ-
ences will be postponed until Chapter 17; we will concentrate here on differences
due to the level of processing.

Eysenck randomly assigned 50 participants between the ages of 55 and 65 years
to one of five groups: four incidental-learning groups and one intentional-learning
group. (Incidental learning is learning in the absence of the expectation that the
material will need to be recalled later.) The Counting group was asked to read through
a list of words and simply count the number of letters in each word. This involved the
lowest level of processing, because participants did not need to deal with each word
as anything more than a collection of letters. The Rhyming group was asked to read
each word and to think of a word that rhymed with it. This task involved considering
the sound of each word but not its meaning. The Adjective group had to process the
words to the extent of giving an adjective that could reasonably be used to modify
each word on the list. The Imagery group was instructed to try to form vivid images
of each word, and this condition was assumed to require the deepest level of process-
ing. None of these four groups was told that they would later be asked to recall the
items. Finally, the Intentional group was told to read through the list and to memo-
rize the words for later recall. It is very likely that different people in this condition
used different strategies to retain the words, which reduces the utility of this condi-
tion. After the participants had gone through the list of 27 items three times, they
were given a sheet of paper and asked to write down all the words they could remem-
ber. If learning involves nothing more than being exposed to the material (the way
most of us read a newspaper or, heaven forbid, a class assignment), then the five
groups should have shown equal recall—after all, they all saw all the words. If
the level of processing of the material is important, then there should have been
noticeable differences among the group means. The data are presented in Table 16.1.

The Null Hypothesis
Eysenck was interested in testing the null hypothesis that the level of recall was
equal under the five conditions. In other words, if represents the population
mean for all participants who could potentially be tested under the Counting

m1
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condition, represents the population mean corresponding to the Rhyming
condition, and so on, up to (for the Intentional condition), then the null
hypothesis is

This is often referred to as the omnibus null hypothesis because it deals with the
equality of all of the means. The alternative hypothesis will be the hypothesis that
at least one mean is different from the others. The five hypothetical populations of
recall scores are illustrated in Figure 16.1. The placement of these populations
from left to right is not intended to suggest that one population mean is necessar-
ily larger than the population mean to its left. At this point I am saying nothing
about the relative magnitude of the population means.

Definition Omnibus null hypothesis: The hypothesis that all population means are equal.

H0: m1 5 m2 5 m3 5 m4 5 m5

m5

m2
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Table 16.1
Number of Words Recalled as a Function of the Level of Processing

Counting Rhyming Adjective Imagery Intentional Total

9 7 11 12 10
8 9 13 11 19
6 6 8 16 14
8 6 6 11 5

10 6 14 9 10
4 11 11 23 11
6 6 13 12 14
5 3 13 10 15
7 8 10 19 11
7 7 11 11 11

Mean 7.00 6.90 11.00 13.40 12.00 10.06
Std. Dev. 1.83 2.13 2.49 4.50 3.74 4.01
Variance 3.33 4.54 6.22 20.27 14.00 16.06

Figure 16.1
Graphical representation of populations of recall scores
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The analysis of variance is a technique for using differences between sample
means to draw inferences about the presence or absence of differences between
population means. The null hypothesis could be false in a number of ways (e.g., all
means could be different from each other, or the first two could be equal to each
other but different from the last three), but for now we are going to be concerned
only with the problem of whether the (omnibus) null hypothesis is completely true
or it is false. Later in this chapter we will deal with the problem of whether only
some of the means are equal. At this point I suspect that many of you would be
convinced that the complete, or omnibus, null hypothesis can not reasonably be
true. (Do you really expect that people who counted letters will do as well as peo-
ple who were told that they had to memorize the words?) But we start with the null
hypothesis and then move on.

The Population
One of the difficulties people frequently encounter in the study of statistics con-
cerns the meaning of the word population. As mentioned in Chapter 1, a population
is a collection of numbers, not a collection of rats or people or anything else. Strictly
speaking, we are not trying to say that a population of people who learned a list
under one condition is the same population as the population of people who learned
under a different condition—obviously they are not. Rather, we want to be able to
say that a population of scores obtained under one condition has a mean greater
than or less than the mean of a population of scores obtained under another condi-
tion. This may appear to be a rather trivial point, but it isn’t. If you were to compare
people of different ages, for example, as we will in the next chapter, the populations
of people certainly would differ in a variety of ways. However, it is not obvious
beforehand that the recall scores will be different between the populations.

The Assumption of Normality
For reasons dealing with our final test of significance, we will make the assumption
that recall scores in each population are normally distributed around the popula-
tion mean This is no more than the assumption that the observations in
Figure 16.1 are normally distributed. We made this same assumption for the inde-
pendent groups test, but in that case there were only two populations. As with 
the assumption of normality deals primarily with the normality of the sampling dis-
tribution of the mean rather than the distribution of individual observations.
Moreover, even substantial departures from normality may, under certain condi-
tions, have remarkably little influence on the final result.

The Assumption of Homogeneity of Variance
A second major assumption that we will make is that each population of scores has
the same variance, specifically
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Here the notation indicates the common value held by the five variances. The
subscript is an abbreviation for error, since this variance is error variance, that is,
variance unrelated to any group differences.1 Homogeneity of variance would be
expected to occur if the effect of a treatment is to add a constant to everyone’s
score—if, for example, everyone who thought of adjectives in Eysenck’s study
recalled five more words than they otherwise would have recalled, while people
who dreamed up images recalled ten more words than otherwise. As you will see
later, under certain conditions this assumption also can be relaxed without doing
too much damage to the final result. In other words, the analysis of variance is
robust with respect to violations of the assumptions of normality and homogene-
ity of variance.

The Assumption of Independence of Observations
Our third important assumption is that the observations are all independent of one
another. For any two observations in an experimental treatment, we assume that
knowing how one observation stands relative to the treatment (or population)
mean tells us nothing about the other observation. (This assumption would be
violated if, for example, participants cheated and copied off their neighbors or
overheard each other’s answers.) This assumption is one of the important reasons
why participants are usually randomly assigned to groups. Violation of the inde-
pendence assumption can have serious consequences for an analysis.

e
se

˛2
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1In terms of the discussion in Chapter 10, this is error variance in the sense that it is variability that cannot
be predicted from group membership, since people in the same group (population) obviously don’t differ on
the grouping variable.

A review of assumptions

For the analysis of variance we have three assumptions. We assume that each of
the populations from which we sample are normally distributed, no matter how
else they may differ. We assume that those populations all have the same
variance, even if their means are different, and we assume that the observations
are independent. For example, the fact that you scored above the mean has
nothing to say about whether I will score above or below the mean.

16.2 The Logic of the Analysis of Variance

The logic underlying the analysis of variance is really very simple—once you
understand it, the rest of the discussion will make considerably more sense. (I don’t
expect that every student will have the logic down pat after reading this section



once, but you should get the general idea. I recommend coming back to this sec-
tion once again after you have read the whole chapter, and then probably coming
back to it again the next day.) In this section I will simplify the presentation
slightly by assuming that all groups have the same number of observations, though
that is not a requirement of the analysis of variance. Consider for a moment the
effect of our three major assumptions: normality, homogeneity of variance, and the
independence of observations. By making the first two of these assumptions, we
have said that the five populations represented in Figure 16.1 have the same shape
and the same dispersion. As a result the only way left for them to differ is in terms
of their means.

We will begin by making no assumption about —it may be true or false.
For any one treatment, the variance of the 10 scores in that group would be an esti-
mate of the variance of the population from which the scores were drawn. Because
we have assumed that all populations have the same variance, it is also one esti-
mate of the common population variance If you prefer, you can think of

where is read “is estimated by.” Because of our homogeneity assumption, all of these
are estimates of For the sake of increased reliability, if 
we can pool the five estimates by taking their mean. Therefore

This is our best estimate of Pooling of variances is exactly equivalent to what
we did when we pooled variances in the test (although here we have more than
two variances). This average value of the five sample variances is one estimate
of the population variance ( ) and is what we will later refer to as or

(read “mean square within” or “mean square error”). It is important to note
that this estimate does not depend on the truth or falsity of because is calcu-
lated on each sample separately. For the data from Eysenck’s study, our pooled
estimate of will be

Now let us assume that is true. If that is the case, then the five samples of 10 cases
can be thought of as five independent samples from the same population. We can
examine the variance of their means to obtain another estimate of Remember
from earlier discussions that means are not as variable as observations. (Why should
this be?) In fact, the Central Limit Theorem states that the variance of means drawn
from the same population equals the variance of the population divided by the sam-
ple size. If is true, the sample means have been drawn from the same population
(or identical populations, which amounts to the same thing), and therefore
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where is the size of each sample. Here all samples will have the same size. We can
reverse the usual order of things and, instead of estimating the variance of means
from the variance of the population, we can estimate the variance of the popula-
tion(s) from the variance of the sample means . If we simply clear fractions in
the previous formula, we have

This term is commonly known as or more simply or
In the previous section we had the case of the common population

variance being estimated by the individual sample variances. Now we have a case
where the common population variance is estimated by the variance of means. So
we have two different ways of estimating the same thing, but only if the null
hypothesis is true.

Definition Variability among subjects in the same treatment group.
Variability among group means.

These few steps can be illustrated easily for five equal-sized groups in Fig-
ure 16.2. This figure emphasizes that the average of the sample variances is 
and the variance of the sample means multiplied by the sample size is 

We now have two estimates of the population variance One of these
estimates, , is independent of the truth or falsity of It is always an esti-
mate of the population variance. The other, is an estimate of only as
long as is true (only as long as the conditions assumed by the Central Limit
Theorem are met, namely that the samples are drawn from one population).
Otherwise, would estimate the variability of different population means in
addition to and are roughly in agreement,MSgroup 2se

˛2. If the two estimates 1MSerror
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Figure 16.2
Illustration of the meaning of MSerror and MSgroup when sample sizes are equal
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we will have support for the truth of and if they disagree substantially, we will
have support for the falsity of I can illustrate the logic just described by way of
two very simple examples that have been deliberately constructed to represent
more or less ideal results under the conditions true and false. Never in prac-
tice will data be as neat and tidy as in these examples.

Assume that we have an experiment involving three groups. As we saw
earlier, when is true, and any samples drawn from these
three populations can be thought of as coming from just one population. In
the first example three samples of have been chosen to resemble data
that might be drawn from the same normally distributed population with a
mean of 5 and a variance of 10. For example, these data might represent the
number of information-seeking comments uttered by nine participants in
each of three groups prior to the onset of a socialization-training
experiment. Because the experiment has not yet begun, we hope not to find
group differences. The data are presented in Table 16.2 for the groups.
From this table we can see that the average variance in each group is 9.250,

k 5 3

n 5 9

m1 5 m2 5 m3,H0

H0H0

H0.
H0;
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EXAMPLE:
The Case of a

True H0.

Table 16.2
Representative Data for the Case in Which H0 Is True

Group 1 Group 2 Group 3

3 1 5
6 4 2
9 7 8
6 4 8
3 1 2

12 10 8
6 4 5
3 1 2
9 7 8
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a respectable estimate of The variance of the group means is
1.000, and because we know to be true,

This is our value for This value is also reasonably in agreement with
and with our other estimate based on the variability within treatments.

Because these two estimates agree, we would conclude that we have no
reason to doubt the truth of Put another way, the three sample means 
do not vary more than we would expect if were true. ■

Next, consider an example in which I know to be false because I made it
false. The data in Table 16.3 have been obtained by adding or subtracting
constants to or from the data in Table 16.2. These data might represent the
number of information-seeking comments uttered by people in three
different groups at the end of our socialization-training sessions. We now
have data that might have been produced by sampling from three different
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EXAMPLE:
The Case of a

False H0.

Table 16.3
Representative Data for the Case in Which H0 Is False

Group 1 Group 2 Group 3

5 0 5
8 3 2

11 6 8
8 3 8
5 0 2

14 9 8
8 3 5
5 0 2

11 6 8

� 8.3333 3.3333 5.3333
sj

2 � 10.0000 10.0000 7.7500

 MSgroup 5 nsX
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normally distributed populations, all with variance equal to 10. However,
Group 1 scores might have come from a population with whereas
scores for Groups 2 and 3 might have come from a population, or
populations, with This represents a substantial departure from 
which stated that all population means were equal to each other.

In Table 16.3 you will note that the variance within each treatment
remains unchanged, since adding or subtracting a constant has no effect on
the variance within groups. This illustrates the earlier statement that the
variance within groups is independent of the truth or falsity of the
null hypothesis. The variance among the group means, however, has
increased substantially, reflecting the differences among the population
means. In this case the estimate of based on sample means is

a value that is way out of line with the estimate of
9.25 given by the variance within groups The most logical
conclusion would be that is not estimating merely population variance

but is estimating plus the variance of the population means
themselves. In other words, the scores differ not only because of random
error but also because we have been successful in teaching some of our
participants to ask information-seeking questions. ■

Summary of the Logic of the Analysis of Variance
From the preceding discussion we can state the logic of the analysis of variance con-
cisely. To test we calculate two estimates of the population variance; one 
is independent of the truth or falsity of while the other is dependent
on If the two are in approximate agreement, we have no reason to reject The
means differ only to the extent that the sampling distribution of the mean leads us
to expect when is true. If is much larger than we conclude that
underlying differences in treatment means must have contributed to the second esti-
mate, inflating it and causing it to differ from the first. We therefore reject This
illustrates how an analysis of variance allows us to draw inferences about means.
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If we are testing means, why is it called the analysis of variance?

That is a very good question, and it often arises. But think about it for a
moment. We are actually calculating two different variances, or, more precisely,
variance estimates. The estimate based on variances within groups 
doesn’t have anything to do with means. But the estimate based on the variance
of means obviously does have something to do with sample means. If our two
estimates are roughly equal, we conclude that the means don’t differ. If our two
estimates are quite unequal, we conclude that the means do differ. So although
we are calculating estimates of variances, one of those estimates directly reflects
differences among means, which is what we want to study.

1MSwithin 2



16.3 Calculations for the Analysis of Variance

Calculations in the analysis of variance are not difficult, but most people will solve
problems using computer software. (Standard spreadsheet programs can usually be
used for this purpose if you don’t have something like SPSS.) So why should you
use a set of formulae that you may never be called upon to use? I think that the
answer lies in the fact that the calculations actually show you quite explicitly what
you are doing. Each formula is expressed in terms of definitional, not computa-
tional, formulae, and each brings out the logic of what I have expressed above. 
I am omitting the more traditional computational formulae because I don’t think
that they would teach you much of anything.

Sums of Squares
In the analysis of variance most of our computations deal with the sum of squares,
which, in this context, is merely the sum of squared deviations about the mean

or some multiple of that. The advantage of sums of squares and the
reason that we begin by calculating them is that they can be added and subtracted,
whereas mean squares usually cannot. We will take the total sum of squares 
and partition or decompose it into that part that is due to variation between groups

and that part that is due to variation within groups The additive
nature of sums of squares makes this possible.

Definition Sum of squares (SS): The sum of the squared deviations around some point
(usually around a mean or predicted value).

The Calculations
The data for Eysenck’s study of recall of word lists have been reproduced in Table
16.4, with the resulting computations, which we will discuss in detail.

In part (a) of Table 16.4 you can see the data, the individual observations
the individual group means and the grand mean We will use the

notation to represent the mean of the th group throughout our discussion of the
analysis of variance. In analyses in which there is more than one independent vari-
able (factor), can be extended to and without any loss of clarity.

The means and the variances are exactly those found by Eysenck, but since
the data points are fictitious, there is little to be gained by examining the distri-
bution of observations within individual groups—the data were actually drawn
from normally distributed populations and then rounded to whole numbers.
With real data it is important to examine these distributions first to make sure
they are not seriously skewed, bimodal, or, even more important, skewed in dif-
ferent directions. Even for this example it is useful to examine the individual

Xcol jXrow iXj

jXj

1Xgm 2 .1Xj 2 ,1Xij 2 ,
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1SStotal 2
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Table 16.4
Calculations of Analysis of Variance for Data in Table 16.1

(a) Data

Counting Rhyming Adjective Imagery Intentional Total

9 7 11 12 10
8 9 13 11 19
6 6 8 16 14
8 6 6 11 5

10 6 14 9 10
4 11 11 23 11
6 6 13 12 14
5 3 13 10 15
7 8 10 19 11
7 7 11 11 11

Mean 7.00 6.90 11.00 13.40 12.00 10.06
Std. Dev. 1.83 2.13 2.49 4.50 3.74 4.01
Variance 3.33 4.54 6.22 20.27 14.00 16.058

(b) Calculations

(c) Summary Table

Source df SS MS F

Group 4 351.52 87.88 9.08
Error 45 435.30 9.67

Total 49 786.82

 SSerror � SStotal � SSgroup � 786.82 � 351.52 � 435.30

 � 351.52

 � 10�(7.00 � 10.06)2 � (6.90 �  10.06)2 � p � (12.00 � 10.06)2�

 SSgroup � n© (Xj � Xgm)2

 � 786.82

 SStotal � © (Xij � Xgm)2 � (9 � 10.06)2 � (8 � 10.06)2 � p � (11 � 10.06)2

group variances as a check on the assumption of homogeneity of variance.
Although the variances are not as similar as we might like (the variance for
Imagery is noticeably larger than others), they do not appear to be so drastically
different as to cause concern. As you will see later, the analysis of variance is
robust against violations of assumptions, especially when we have the same num-
ber of observations in each group.



Definition The sum of squared deviations of all of the scores from the grand mean,
regardless of group membership.

The sum of squared deviations of the group means from the grand 
mean, multiplied by the number of observations.

The sum of the squared residuals or the sum of the squared deviations within
each group.

The (read “total sum of squares”) represents the sum of the squared
deviations of all the observations from the grand mean, regardless of which treat-
ment produced them. It is also equal to the sum of all the squared observations
minus the grand mean squared divided by should you want to simplify your
arithmetic.2

The term is a measure of differences due to groups (in effect, dif-
ferences between group means) and is directly related to the variance of the group
means. To calculate we simply square and then sum the deviations of the
group means from the grand mean. This is then multiplied by the sample size to
produce our second estimate of the population variance if is true:

(Remember, in the analysis of variance we use lowercase to stand for the num-
ber of observations in a group and uppercase to stand for the total number of
observations.)

In practice is usually obtained by subtraction. Because it can be
shown easily that

then it must also be true that

This calculation of is the procedure presented in Table 16.4.SSerror

SSerror 5 SStotal 2 SSgroup

SStotal 5 SSgroup 1 SSerror

SSerrorSSERROR
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2Here we come back to using a capital N, which refers to the number of all observations, regardless of group
membership. When we speak of the number of observations in a single group, we will use often with a
subscript.
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The Summary Table
Part (c) of Table 16.4 is the summary table for the analysis of variance. It is called
a summary table for the rather obvious reason that it summarizes a series of calcu-
lations, making it possible to tell at a glance what the data have to offer.

SOURCES OF VARIATION The first column of the summary table, labeled
“Source,” contains the sources of variation—I use the word “variation” as being
synonymous with the phrase “sum of squares.” As you can see from the table,
there are three sources of variation: the total variation, the variation due to
groups (variation between group means), and the variation due to error (varia-
tion within groups). These sources reflect the fact that we have partitioned the
total sum of squares into two portions, one portion representing variability
between the several groups and the other representing variability within the
individual groups.

Definition Degrees of freedom associated with equal to 
Degrees of freedom associated with equal to 

Degrees of freedom associated with equal to 
F statistic: The ratio of to 

DEGREES OF FREEDOM The degrees of freedom column shows the allocation of the
degrees of freedom between the two sources of variation. The calculation of is
probably the easiest part of our task. The total degrees of freedom are always

where is the total number of observations. The degrees of freedom
between groups always equal where is the number of groups. The
degrees of freedom for error are most easily thought of as what is left over,
although they can be calculated more directly as the sum of the degrees of freedom
within each treatment. In our example Of these 49 4 are
associated with differences among the five groups, and the remaining 45 are asso-
ciated with variability within groups.

A useful way to think of degrees of freedom is in terms of the number of devi-
ations we have squared. is the sum of squared deviations around one
point—the grand mean. The fact that we have taken deviations around this one
(estimated) point has cost us 1 leaving is the sum of deviations
of the group means around one point (again the grand mean), and again we have
lost 1 in estimating this point, leaving us with represents sets
of deviations about one point (the relevant group mean), losing us 1 for each
group and leaving 

SUMS OF SQUARES There is little to be said about the column labeled SS. It sim-
ply contains the sums of squares obtained in part (b) of the table.
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MEAN SQUARES The column of mean squares contains the two estimates of 
These values are obtained by dividing the sums of squares by their corresponding

. Thus and We typically do not calculate
a because we have no use for it. If we did, it would represent the variance
of all observations.

Although it is true that mean squares are variances, it is important to keep
in mind what these terms are variances of. Thus is the (average) variance
of the observations within each treatment. However, is not the variance of
group means, but rather the variance of those means corrected by to produce an
estimate of the population variance in other words it is an estimate of 
based on the variance of group means.

THE F STATISTIC The last column, headed is the most important one in terms of
testing the null hypothesis. The statistic is obtained by dividing by

As noted earlier, is an estimate of the population variance
is also an estimate of population variance if is true, but not

if is false. If is true, then both and are estimating the same
thing, and as such they should be approximately equal. If that is the case, the ratio
of one to the other will be approximately 1, give or take a fair amount for sampling
error. All we have to do is compute the ratio and determine whether it is close
enough to 1 to indicate support for the null hypothesis.

When we spoke about a test, it was pretty clear what a one-tailed test meant.
It meant that we would reject if the difference between the means was in the pre-
dicted direction. It also meant that we would reject if the value of was of the
correct sign, in both cases assuming that the difference (or ) was large enough.
When we have multiple groups, however, the use of the label “one-tailed” is less
clear. In one sense, we are running a one-tailed test because we will reject only if
the computed value of is significantly greater than 1.0. On the other hand, we could
obtain a large value of for a variety of reasons. In the analysis of variance we reject

when the means are sufficiently far apart, without regard to which one(s) is (are)
larger than others. Thus we have a one-tailed test of a nondirectional 

The question remains as to how much larger than 1.0 our value of needs to
be before we decide that there are differences among the population means and
thus reject 3 The answer to this lies in the fact that if is true, the ratio

is distributed as the distribution in Table E.3 in the Appendices. It will have 
and degrees of freedom. A portion of Table E.3 is reproduced as Table 16.5.
Because the shape of the distribution, and thus areas under it, depend on theF
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3If is true, the expected value of is not exactly 1.00, but it is so close that it doesn’t make any difference
to the point being made here. Also, there is usually no meaning to be assigned to an very much less than
1.0, though we might be puzzled if our group means were much closer to each other than we would expect.

F
FH0



degrees of freedom for the two mean squares, this table looks somewhat different
from other tables you have seen. In this case we select the column that corresponds
to the degrees of freedom for the mean square in the numerator of (i.e., )
and the row that corresponds to the degrees of freedom for the mean square in the
denominator (i.e., The intersection of the row and the column gives us
the critical value of at the level of shown at the top of the table.aF

k1n 2 1 2 2 .
k 2 1F
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Table 16.5
Abbreviated Version of Table E.3, Critical Values of the F Distribution
Where a 5 .05

Degrees of Freedom for Numerator

df
denom. 1 2 3 4 5 6 7 8 9 10

1 161.4 199.5 215.8 224.8 230.0 233.8 236.5 238.6 240.1 242.1
2 18.51 19.00 19.16 19.25 19.30 19.33 19.35 19.37 19.38 19.40
3 10.13 9.55 9.28 9.12 9.01 8.94 8.89 8.85 8.81 8.79
4 7.71 6.94 6.59 6.39 6.26 6.16 6.09 6.04 6.00 5.96
5 6.61 5.79 5.41 5.19 5.05 4.95 4.88 4.82 4.77 4.74
6 5.99 5.14 4.76 4.53 4.39 4.28 4.21 4.15 4.10 4.06
7 5.59 4.74 4.35 4.12 3.97 3.87 3.79 3.73 3.68 3.64
8 5.32 4.46 4.07 3.84 3.69 3.58 3.50 3.44 3.39 3.35
9 5.12 4.26 3.86 3.63 3.48 3.37 3.29 3.23 3.18 3.14

10 4.96 4.10 3.71 3.48 3.33 3.22 3.14 3.07 3.02 2.98
11 4.84 3.98 3.59 3.36 3.20 3.09 3.01 2.95 2.90 2.85
12 4.75 3.89 3.49 3.26 3.11 3.00 2.91 2.85 2.80 2.75
13 4.67 3.81 3.41 3.18 3.03 2.92 2.83 2.77 2.71 2.67
14 4.60 3.74 3.34 3.11 2.96 2.85 2.76 2.70 2.65 2.60
15 4.54 3.68 3.29 3.06 2.90 2.79 2.71 2.64 2.59 2.54
16 4.49 3.63 3.24 3.01 2.85 2.74 2.66 2.59 2.54 2.49
17 4.45 3.59 3.20 2.96 2.81 2.70 2.61 2.55 2.49 2.45
18 4.41 3.55 3.16 2.93 2.77 2.66 2.58 2.51 2.46 2.41
19 4.38 3.52 3.13 2.90 2.74 2.63 2.54 2.48 2.42 2.38
20 4.35 3.49 3.10 2.87 2.71 2.60 2.51 2.45 2.39 2.35
22 4.30 3.44 3.05 2.82 2.66 2.55 2.46 2.40 2.34 2.30
24 4.26 3.40 3.01 2.78 2.62 2.51 2.42 2.36 2.30 2.25
26 4.23 3.37 2.98 2.74 2.59 2.47 2.39 2.32 2.27 2.22
28 4.20 3.34 2.95 2.71 2.56 2.45 2.36 2.29 2.24 2.19
30 4.17 3.32 2.92 2.69 2.53 2.42 2.33 2.27 2.21 2.16
40 4.08 3.23 2.84 2.61 2.45 2.34 2.25 2.18 2.12 2.08
50 4.03 3.18 2.79 2.56 2.40 2.29 2.20 2.13 2.07 2.03
60 4.00 3.15 2.76 2.53 2.37 2.25 2.17 2.10 2.04 1.99

120 3.92 3.07 2.68 2.45 2.29 2.18 2.09 2.02 1.96 1.91
200 3.89 3.04 2.65 2.42 2.26 2.14 2.06 1.98 1.93 1.88
500 3.86 3.01 2.62 2.39 2.23 2.12 2.03 1.96 1.90 1.85

1,000 3.85 3.01 2.61 2.38 2.22 2.11 2.02 1.95 1.89 1.84



To use the table of the critical values of the distribution, we first have to
select the particular table corresponding to our level of (in Table E.3 
and in Table E.4 Then, because we have 4 for the numerator 
and 45 for the denominator we move down the fourth column to the
row labeled 45. But there is no row that corresponds to exactly 45 so we will
average the entries for the rows corresponding to 40 and 50 The intersections
of those rows and column 4 contain the entries 2.61 and 2.56, the average of which
rounds to 2.58. This is the critical value of We would expect to exceed an of
2.58 only 5% of the time if were true. Because our obtained exceeds

we will reject and conclude that the groups were sampled from
populations with different means. Had we chosen to work at Table E.4 in
the Appendices shows that and we would still reject 
(Notice the format for reporting the significance level and the degrees of freedom
for in the preceding sentence. That is the standard way of writing them.)

Conclusions
On the basis of a significant value of we have rejected the null hypothesis that
the treatment means in the population are equal. Strictly speaking, this conclusion
indicates that at least one of the population means is different from at least one
other mean, but we don’t know exactly which means are different from which
other means. We will pursue this question shortly with a different example. For the
moment I’m going to take some liberties and speak about individual group differ-
ences as if I had already shown that they are significantly different.

It is evident from an examination of the data in Table 16.4 that increased
processing of the material is associated with increased levels of recall. For example, a
strategy that involves associating images with items to be recalled leads to nearly twice
as good recall as does merely counting the letters in the items. Results such as these
give us important hints about how to go about learning any material and point out
the poor recall to be expected from passive studying. Good recall, whether it be of lists
of words or complex statistical concepts, requires active and “deep” processing of the
material, which in turn is facilitated by noting associations between to-be-learned
material and other material that you already know. You have probably noticed that
sitting in class and dutifully recording everything that the instructor says doesn’t usu-
ally lead to the grades that you think such effort deserves. Now you know a bit about
why. (You’ll do much better if you tell yourself silly little stories about the material.)
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The minimalist approach to calculations

Every time I revise this book I move further and further away from calculations.
I don’t do that because I hate calculations (I actually like them), but because
they often get in the way of understanding. So let’s see just how far I can go with
a minimum of formulae.

Early in the chapter I said that we take two variance estimates. One is the
variance within each of the groups or conditions, and the other is the variance
of the means, multiplied by the sample size.



1. From Table 16.4 I see that the variances of the five groups are 3.33, 4.54,
6.22, 20.27, and 14.00. The average is 9.67 and this is the Each of
those five variances had 9 so we have a total of for
MSerror.

2. We know that is the variance of the sample means multiplied by
the size of each group. The means are 7.00, 6.9, 11.00, 13.40, and 12.00,
and the variance of those five means is 8.788. If we multiply that by 10 we
have 87.88, which is We computed the variance of five means, so
we have for 

3. Now to get the we divide by 
which is on 4 and 45 

Three or four calculations, depending on how you count.

Writing Up the Results
There is more to an analysis of variance than we have yet covered. Before we can
thoroughly report on our results we need to examine differences between specific
sets of means and measures of effect size. However, based on just what you know at
this point, if you were writing up the results of this study, you might say something
like the following:

✍ In an attempt to investigate the role of the processing of verbal material 
on recall, five groups of participants were asked to study lists of words.
The instructions to the participants differed in the amount of processing
of the material that they were required to do. The dependent variable
was the number of words recalled.

An analysis of variance was run to compare group means. As the level
of processing increased from counting of letters to creating mental images,
the mean level of recall increased from 7.00 to 13.40, with a common
standard deviation of 3.11. The analysis of variance revealed a significant
difference in the means of the groups— —with
groups instructed to do higher levels of processing showing better recall.

16.4 Unequal Sample Sizes

Most experiments are designed originally with the idea of having the same num-
ber of observations in each treatment. Frequently, however, things do not work out
that way. Participants in an experiment are often remarkably unreliable, and many
fail to arrive for testing or are eliminated for failure to follow instructions. My
favorite example is a report in the literature that I found as a graduate student. Sgro
and Weinstock (1963) reported that an experimental animal was eliminated from
the study for repeatedly biting the experimenter. Moreover, in studies conducted

F14,45 2 5 9.08, p 6 .05
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MSerror 5 87.88>9.67 5 9.08.,MSgroupF
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on intact groups, such as school classes, groups are nearly always unequal in size for
reasons that, again, have nothing to do with the experiment.

If the sample sizes are not equal, the analysis discussed earlier is not appro-
priate without modification. For the case of one independent variable, however,
this modification is relatively minor.

For the case of equal sample sizes we have defined

where is the number of observations in each group. We were able to multiply the
sum of the squared deviations by because was common to all treatments. If the
sample sizes differ, however, and we define as the number of participants in the
jth treatment we can rewrite the equation as

which, when all are equal, reduces to the original form. All we are doing here is
multiplying each squared deviation by its own sample size as we go along.

An additional example of a one-way analysis of variance will illustrate the
treatment of unequal sample sizes. In a study of the development of low-
birthweight (LBW) infants (Nurcombe, Howell, Rauh, Teti, Ruoff, and
Brennan, 1984), three groups of newborn infants differed in terms of
birthweight and whether their mothers had participated in a training program
about the special needs of low-birthweight infants. The mothers were then
interviewed when the infants were 6 months old. There were three groups in
the experiment—an LBW-Experimental group, an LBW-Control group, and a
Full-Term-Control group. The two control groups received no special
training, and so serve as reference points against which to compare the
performance of the trained (experimental) group. The LBW-Experimental
group was part of the intervention program, and we hoped to show that those
mothers would adapt to their new role as well as mothers of full-term infants.
On the other hand, we expected that mothers of low-birthweight infants who
did not receive the intervention program would have some trouble adapting.
(Being a parent of a low-birthweight baby is not an easy task, especially for
the first few months. For rather dramatic results from tracking these children
for nine years, see Achenbach, Howell, Aoki, and Rauh, 1993.)

The actual data from this study are presented in part (a) of Table 16.6.
Part (b) of the table shows the calculations for the analysis of variance, and
part (c) contains the summary table. The dependent variable is the score on
a maternal adaptation scale. Notice that the calculations are carried out just
as they would be for the case of equal sample sizes except that for 
each value of is multiplied by the corresponding sample size as
we progress.

From the summary table we can see that the obtained value is 5.53
and that it is based on 2 and 90 degrees of freedom. From Table E.3 in the
Appendices we have, through interpolation, (Here 90
degrees of freedom is halfway between 60 and 120 so we won’t be far off ifdf,
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Table 16.6
Adaptation to Maternal Role in Three Groups of Mothers (Low Scores 
Are Associated with Better Adaptation)

(a) Data

Group 1 
LBW- Group 2 Group 3 

Experimental LBW-Control Full-Term

24 10 16 21 17 13 12 12 12
13 11 15 19 18 25 25 17 20
29 13 12 10 18 16 14 18 14
12 19 16 24 13 18 16 18 14
14 11 12 17 21 11 13 18 12
11 11 12 25 27 16 10 15 20
12 27 22 16 29 11 13 13 12
13 13 16 26 14 21 11 15 17
13 13 17 19 17 13 20 13 15
13 14 23 13 11

16 10 13
20 12 11
11

nj 29 27 37
Meanj 14.97 18.33 14.84

(b) Calculations

(c) Summary Table

Source df SS MS F

Group 2 226.932 113.466 5.53
Error 90 1845.993 20.511

Total 92 2072.925

 SSerror 5 SStotal 2 SSgroup 5 2072.925 2 226.932 5 1845.993

 5 226.932

 5 29114.97 2 15.89 2 2 1 27118.33 2 15.89 2 2 1 37114.84 2 15.89 2 2
 SSgroup 5 ©nj1Xj 2 Xgm 2 2

 5 2072.925

 5 124 2 15.89 2 2 1 113 2 15.89 2 2 1 p 1 111 2 15.89 2 2
 SStotal 5 © 1Xij 2 Xgm 2 2

Xgm 5 15.89
N 5 93



we take as our critical value the value halfway between 3.15 and 3.07,
which is 3.11.) Because we will reject and conclude that
not all the scores were drawn from populations with equal means. In fact, it
looks as if the first and third groups are about equal, whereas the second
(the LBW-Control group) has a higher mean (poorer adaptation). However,
the tells us only that we can reject It does not tell us
which groups are different from which other groups. To draw those kinds of
conclusions, we will need to use special techniques known as multiple
comparison procedures.

16.5 Multiple Comparison Procedures

When we run an analysis of variance and obtain a significant value, we have
shown simply that the overall null hypothesis is false. We do not know which of a
number of possible alternative hypotheses e.g., 

is true. Multiple comparison techniques allow us
to investigate hypotheses that involve means of individual groups or sets of groups.
For example, we might be interested in whether Group 1 is different from Group 2
or whether the combination of Groups 1 and 2 is different from Group 3.

Definition Multiple comparison techniques: Techniques for making comparisons between
two or more group means subsequent to an analysis of variance.

One of the major problems with making comparisons among groups is that
unrestricted use of these comparisons can lead to an excessively high probability of
a Type I error. For example, if we have 10 groups in which the complete null
hypothesis is true tests between all pairs of
means will lead to making at least one Type I error 57.8% of the time. In other
words, the experimenter who thinks she is working at the level of signifi-
cance is actually working at Figure 16.3 shows how the probability of
making at least one Type I error increases as we increase the number of independ-
ent t tests we make between pairs of means. While it is nice to find significant dif-
ferences, it is not nice to find ones that are not really there. Psychologists have
enough trouble explaining all the real differences that we find without having to
worry about spurious differences as well. We need to find some way to make the
comparisons we need but keep the probability of incorrect rejections of under
control.

In an attempt to control the likelihood of Type I errors, statisticians have
developed a large number of procedures for comparing individual means. (For a
discussion of many of these techniques see Howell, 2010.) Fortunately, two rela-
tively simple techniques provide reasonable control of the probability of Type I
errors and are applicable to most multiple comparison problems you are likely to
encounter.

H0
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Fisher’s Least Significant Difference Test
The first procedure is often referred to as the protected or Fisher’s least signifi-
cant difference (LSD) test. (If your instructor looks a little pale at the suggestion
to use Fisher’s least significant difference test, just wait a bit and I’ll defend that
suggestion. It is not as outrageous as people may think.) Fisher’s procedure is one
of the most liberal multiple comparison tests we have.

Definition Protected t: Another name for Fisher’s LSD test.
Fisher’s least significant difference (LSD) test: A technique in which we run t tests
between pairs of means only if the analysis of variance was significant.

The procedures for using a protected or LSD test, are really very simple. The
first requirement for a protected is that the for the overall analysis of variance must be
significant. If the was not significant, no comparisons between pairs of means are
allowed. You simply declare that there are no group differences and stop right there.
On the other hand, if the overall is significant, you can proceed to make any (or
all) pairwise comparisons between individual means by the use of a modified test.
The modification is simply to replace the pooled variance estimate in the
standard formula with from the overall analysis of variance. (We generally
do not make this replacement if the variances of the groups are very different from
one another.) This replacement is a perfectly reasonable thing to do. Because

is defined as the average of the variances within each group, if there wereMSerror
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only two groups in the experiment, the from the analysis of variance would
be the same as the from the two-sample test on those group means. In compar-
ing among several groups we use instead of because it is based on variabil-
ity within all the groups rather than within just the two groups we are comparing at
the moment. As such it is presumably a better estimate of Along with the use
of this error term comes the advantage that the resulting will have degrees of
freedom rather than just the degrees of freedom it would have had
otherwise.

When we replace with the formula for becomes

To illustrate the use of the protected let’s take the data on maternal adaptation
from the previous example. In that case we did find a significant overall which
will allow us to look further in our analysis. Given the nature of that study, we
would be interested in asking two questions:

1. Are there differences between the mean of mothers in the LBW-Control
group and the mean of mothers in the Full-Term group?

2. Are there differences between the mean of mothers in the LBW-Control
group and the mean of mothers in the Experimental group?

The first question asks whether mothers of low-birthweight infants have
more difficulty adapting than do mothers of full-term infants. Neither group
received intervention, so intervention is not a confounding variable. The second
question asks whether the intervention program makes a difference in adaptation
for mothers of low-birthweight infants. Here both groups are composed of mothers
of low-birthweight infants, so birthweight is not a confounding variable. Note that
it makes little sense to compare the LBW-Experimental group with the Full-Term
group because if we did find a difference we could not tell whether it was due to
intervention effects or to birthweight effects. In such a comparison, intervention
and birthweight are confounded.

The results on maternal adaptation are presented in Table 16.7, in which the
obtained values of are and 3.04 for the two comparisons. We will use a two-
tailed test at and we have 90 degrees of freedom for our error term. From
Table E.3 we find that by interpolation. Thus for both comparisons
we can reject the null hypothesis, because both values of the obtained are more
extreme (further from 0) than We will therefore conclude that there is a differ-
ence in adaptation between mothers of low-birthweight babies and those of full-term
infants, with the full-term mothers showing better adaptation. We will also conclude
that the intervention program is effective for mothers of low-birthweight infants.
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You might ask why we call this particular multiple comparison procedure a
“protected ” Or you may have heard somewhere that it is a bad idea to run all
sorts of tests between pairs of means, and it often is. This is a good place to address
both these concerns at the same time.

One of the primary considerations in running a set of multiple comparisons is
to hold down the probability of making at least one Type I error. In other words, if
we ran an analysis of variance and then three comparisons, we would want to ensure
that the probability that we have made a Type I error anywhere, either in the origi-
nal or in any of the three comparisons, is low. The probability of making such an
error is called the familywise error rate because it deals with the probability that the

F

t
t.
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Table 16.7
Fisher’s Least Significant Difference Test Applied
to Low-Birthweight and Full-Term Groups

Group 1 Group 2 Group 3 
LBW-Experimental LBW-Control Full-Term

14.97 18.33 14.84
29 27 37
20.511
90

(a) versus 

(b) versus 
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family of comparisons contains at least one Type I error. When we are talking about
the familywise error rate, making ten Type I errors is treated as no worse than mak-
ing one. (Or perhaps I should phrase that in reverse—making one Type I error is as
bad as making ten.) If we just ran tests between all pairs of means, the familywise
error rate would become unacceptably high if there were many means to compare.
We need to impose some conditions to prevent that from happening, which is what
a protected test does, in part, by the simple expedient of requiring that no tests may
be run unless the overall from the analysis of variance is significant. To see why
this simple step works, consider the following examples.

Definition Familywise error rate: The probability that a family of comparisons contains at
least one Type I error.

Suppose we have only two means and the null hypothesis is true. The probabil-
ity of making a Type I error would be the probability that the original was signif-
icant by chance, which is .05. If that was significant, we have already made our
Type I error, and even if we went on and ran a test, we couldn’t make the situa-
tion worse. If the was not significant, we cannot run the protected and so do
not increase the error rate.4 Thus with two means the familywise error rate is .05.

Now suppose we have three means. First, assume that the complete null
hypothesis is true—that is, suppose that We obtain the overall 
The probability of finding a significant difference (which would be a Type I error
because is true) is .05, and if we reported a significant difference, that represents
our first Type I error out of the “at least one” that the familywise error rate protects
against. If the is not significant, we stop right there and have no further chances
of making a Type I error. In other words, when the complete null hypothesis is true,
the probability of making at least one Type I error is limited by our rule to .05,
which is what we want. Next, suppose that the complete null hypothesis is false
and that one mean is different from the other two (e.g., Then,
because the complete null hypothesis is not true, it is impossible to make a Type I
error with our overall test. If we have a significant which we would hope to be
the case, we can go on and test, for example, each pair of means—Group 1 versus
Group 2, Group 1 versus Group 3, and Group 2 versus Group 3. But there is only
one of those tests for which the null hypothesis is true and therefore
there is only one chance of making a Type I error. Here again the probability of at
least one Type I error is only .05. Finally, suppose that all means are different from
each other. Here we have no possibility of making a Type I error, because there is
no true null hypothesis to erroneously declare false. From examination of these
possibilities we can conclude that with three means the familywise error rate is also
at most .05.
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4With only two means, the and the analysis of variance are equivalent tests, but that is not important here.
The point is that if there is a Type I error on the we already have at least one error, and if is not signif-
icant, we cannot test further.
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So we have seen that with either two or three groups, Fisher’s LSD test guar-
antees that the probability of making at least one Type I error will not exceed .05.
That’s great—it is just what we want. But suppose we had four groups. In that case
it is possible that there is more than one true null hypothesis. For example, Groups
1 and 2 could be equal and Groups 3 and 4 could be equal. If and 
you have two chances of making a Type I error, and the true familywise error rate
is nearly .10. But I would submit that this is not an outrageous error rate, given four
means, and I would not cringe at using such a test, although it is not my favorite.
Now if you want to talk about ten means, that’s a different story, and anyone who
would use Fisher’s test with ten groups is asking for trouble. This is the complaint
that is often raised against Fisher, but it’s not really fair. If you look through the
psychological literature (and I suspect it’s true for all the behavioral sciences),
you’ll have a hard time finding experiments with even four groups. Ten-group
experiments are almost unheard of, so why reject a test on the grounds that it does-
n’t work well for experiments that we have no intention of running anyway?
Simply demanding a significant overall before running multiple comparisons
(which is where the protection comes from) is surprisingly effective in controlling
familywise error rates when we have only a few groups. That is the reason I have
stressed the protected in this chapter. It does a good job of controlling the
familywise error rate if you have a relatively small number of groups while at
the same time being a test that you can easily apply and that has a reasonable
degree of power.

t

F

m3 5 m4,m1 5 m2
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The requirement of a significant overall 

Don’t allow yourself to be carried away by the idea that the overall should be
significant before you proceed with individual tests. Fisher’s LSD test is the only
major test that carries that restriction. In the next test we will discuss, and in
many others, there is absolutely no requirement that the overall be significant
before you proceed. In fact, imposing such a requirement would actually make
those procedures less powerful.

F

F

F

The Bonferroni Procedure
A second procedure that is simple to apply and that has been growing in popular-
ity is known as the Bonferroni procedure, after a mathematician of that name who
discovered the inequality on which the procedure is based. The basic idea behind
this procedure is that if you run several tests (say tests) at a significance level rep-
resented by the probability of at least one Type I error can never exceed 
Thus, for example, if you ran five tests, each at the familywise error rate
would be at most But that is too high an error rate to make anyone
happy. But suppose that you ran each of those five tests at the Then the
maximum familywise error rate would be which is certainly accept-
able. To put this in a way that is slightly more useful to us, if you want the overall
familywise error rate to be no more than .05, and you want to run three tests, then

51.01 2 5 .05,
a¿ 5 .01.

51.05 2 5 .25.
a¿ 5 .05,

ca¿.a¿,
c



run each of them at To run these tests, you do exactly what
you did in Fisher’s LSD test, though you omit any requirement about the overall 
The only difference is that you change the significance level for each individual
test from to where is the number of comparisons.

Definition Bonferroni procedure: A multiple comparisons procedure in which the familywise
error rate is divided by the number of comparisons.

The original difficulty with this approach was that we didn’t have tables of
significance at, for example, the .0167 level. However, most people today use stan-
dard computer software to run statistical analyses, and every package I have seen
presents both the or value, and its associated probability level. For example, if
I used SPSS on the low-birthweight data, using the same comparisons I used with
Fisher’s test, I have two choices. The sloppy way would be to just run a test
between Group 1 and Group 2, and between Group 2 and Group 3. This is sloppy
because such a test will not pool the variances across all three groups. If I did it
anyway, I would get the results shown in the following table.

Notice that SPSS gives you the result of running a test with pooled vari-
ances (“Equal Variances Assumed”) and without pooling (“Equal variances not
assumed”). The section of the table labeled “Levene’s test” represents a test on the
assumption that the population variances are equal; in both cases, we retain that
hypothesis. We are justified in pooling variances.

We want to run these tests with an overall familywise error rate of .05, which,
with 2 tests, means that each must have a probability lower than

to be declared significant. Notice that both of these tests met
that criterion, with and .002, respectively.

The problem with this last procedure is that SPSS didn’t pool the variances
over all three groups. We can get around this by running the two tests by hand with
a pooled error term, just as we did with Fisher’s test. This will lead to values of

and 3.04, both on 90 From Appendix Table E.6 you can see that for
two-tailed, both of these are significant. If you want to know their exact

probabilities, go to

http://statpages.org/pdfs.html

and enter and The probabilities are .0068 and .0031, which are both well
below .025.

All Bonferroni tests can be carried out this way. We simply decide how many
tests we intend to run, divide the desired familywise error rate (usually 
by that number, and reject whenever the probability of our test statistic is less than
our computed critical value. However, be careful if you are using software to ana-
lyze your results. Most software programs will have an option for the Bonferroni
test, but that will assume that you want to test all possible pairs of means. Because
there are sometimes many means, that approach can be very conservative. Instead,
simply ask for only those comparisons that you really care about.

a 5 .05 2

df.t

a 5 .025,
df.22.77

t

p 5 .015
ta 5 .05>2 5 .025

t

t

Ft

ca>c,a

F.
a¿ 5 .05>3 5 .0167.
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Groups 1 vs 2
T-Test

Group Statistics

Std. Error
group N Mean Std. Deviation Mean

adapt LBW-exp 29 14.966 4.8439 .8995
LBW-Control 27 18.333 5.1665 .9943

Independent Samples Test

Levene’s Test 
for Equality of

Variances t-test for Equality of Means

Sig. Mean Std. Error
F Sig. t df (2-tailed) Difference Difference

adapt Equal variances .440 .510 54 .015 1.3376
assumed
Equal variances 53.005 .015 1.3408
not assumed 

Groups 2 vs 3

Group Statistics

Std. Error
group N Mean Std. Deviation Mean

adapt LBW-Control 27 18.333 5.1665 .9943
Full-Term 37 14.838 3.7082 .6096

Independent Samples Test

Levene’s Test for
Equality of
Variances t-test for Equality of Means

Sig. Mean Std. Error
F Sig. t df (2-tailed) Difference Difference

adapt Equal variances 2.885 .094 3.154 62 .002 3.4955 1.1084
assumed
Equal variances 2.997 44.664 .004 3.4955 1.1663
not assumed 

23.367822.512

23.367822.518

Exact probability
values



Other Multiple Comparison Procedures
Many other procedures have been developed for sorting out differences among
groups. The interesting thing is that they are all based roughly on the same kinds
of considerations that we have seen in Fisher’s LSD and the Bonferroni tests. They
attempt to hold the familywise error rate to some maximum (usually .05), and they
do this by taking into account the number of groups (or, more often, the number
of pairwise comparisons among groups). The best known of these is the Tukey
procedure.5 I won’t go into it here, because it relies on a slightly different test
statistic than we are used to. However, I should note that it compares every mean
with every other mean, and does so in a way that keeps the maximum familywise
error rate at .05 (or some other percentage if you prefer). Every piece of statistical
software that I know will produce a Tukey test on demand.

Definition Tukey procedure: A multiple comparison procedure designed to hold the
familywise error rate at a for a set of comparisons.

16.6 Violations of Assumptions

As we have seen, the analysis of variance is based on the assumptions of normal-
ity and homogeneity of variance. In practice, however, the analysis of variance is
a robust statistical procedure, and the assumptions can frequently be violated with
relatively minor effects.

In general, if the populations can be assumed to be either symmetric or at
least similar in shape (e.g., all negatively skewed) and if the largest variance is no
more than four or five times the smallest, the analysis of variance is most likely to
be valid. (Some argue that it would be valid for even greater differences between
the variances.) It is important to note, however, that serious heterogeneity of vari-
ance and unequal sample sizes do not mix. If you have reason to anticipate notice-
ably unequal variances, make every effort to keep your sample sizes as nearly equal
as possible. This is particularly true when you plan to run a series of multiple
comparisons.

For those situations in which the assumptions underlying the analysis of vari-
ance are seriously violated, there are alternative procedures for handling the analy-
sis. Some of these procedures involve transforming the data (e.g., converting to
log and then performing standard statistical tests on the transformed data.
Other procedures involve using quite different tests, which are discussed in
Chapter 20. (Also see the discussion of the Behrens-Fisher problem and the use of
trimmed means and Winsorized variances in Howell, 2010.)

3X 4 2 X
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5This is the same John Tukey that we have seen several times in this book. He contributed to just about
everything in statistics.



16.7 The Size of the Effects

Simply because we obtain a significant difference among our treatment means does
not mean that the differences are large or important. There are many real differ-
ences that are trivial. No statistic can tell us whether a difference, no matter how
large, is of any practical importance to the rest of the world. However, there are
procedures that give us some help in this direction.

Rosenthal (1994) made a distinction between -family measures and 
-family measures. The former are based on differences between means, while the

later are based on some sort of correlation between the dependent variable and the
levels of the independent variable. I have avoided speaking about -family
measures until now, because when we have only two groups I don’t think they add
to our understanding. On the other hand, -family measures (such as Cohen’s 
are hard to interpret when you have multiple groups unless you restrict the
measure to differences between two groups or sets of groups. I will start with the 
-family measures.

Definition d-family measures: Measures of the size of an effect that depend directly on
differences between means.
r-family measures: Measures of the size of an effect that resemble the correlation
between the dependent and the independent variable.
Magnitude of effect: A measure of the degree to which variability among
observations can be attributed to treatments.
Eta squared ( ): A measure of the magnitude of effect.

r-family (Correlational) Measures
One of the simplest measures of the magnitude of effect is (eta squared). While

is a biased measure (in the sense that it tends to overestimate the value we
would obtain if we were able to measure whole populations of scores), its calcula-
tion is so simple and it is so useful as a first approximation that it is worth dis-
cussing. In this book I will restrict the discussion of and which follows, to
measuring the effect among several groups. In any analysis of variance, tells
us how much overall variability there is in the data. Some of that variability is due
to the fact that different groups of participants are treated differently and have dif-
ferent scores as a result, and some of it is just due to random error—differences
among people who are treated alike. The differences we care about are the differ-
ences among scores that can be attributed to our treatment, or group, effects, and
they are measured by If we form the ratio

h2 5
SSgroup

SStotal

SSgroup.

SStotal

v 2h2,

h2
h2

h2

r

d 2d

r

r
d
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we can say what percentage of the variability among observations can be attributed
to group effects.6 For our maternal adaptation data

Thus we can conclude that 11% of the variability in adaptation scores can be
attributed to group membership. Although that might appear at first to be a
small percentage, if you stop and think about the high level of variability
among mothers you have known, explaining even 11% of it is a noteworthy
accomplishment.

Definition Omega squared ( ): A less biased measure of the magnitude of effect than eta
squared.

Although is a quick and easy measure to calculate, one you can estimate
in your head when reading research reports, it is a biased statistic. It will tend to
overestimate the true value in the population. A much less biased estimate is
afforded by another statistic, (omega squared). For the analysis of variance
discussed in this chapter we can define

where stands for the number of groups. For our example

This value is somewhat lower than the value we obtained for However, it still
suggests that we are accounting for approximately 9% of the variability.

d-family Measures (Effect Size)
An alternative measure of the size of our effect that is becoming much more
common is the measure of effect size based on Cohen’s We saw such effect size
measures in earlier chapters, and the one that will be most useful to us here is the

d.

h2.

v 2 5
SSgroup 2 1k 2 1 2MSerror

SStotal 1 MSerror

5
226.932 2 13 2 1 220.511

2072.925 1 20.511
5 0.089

k

v 2 5
SSgroup 2 1k 2 1 2MSerror

SStotal 1 MSerror

v2

h2

v2

h2 5
SSgroup

SStotal

5
226.932

2072.925
5 .11
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6If you had two groups and created a variable by entering 1 for all participants in Group 1 and 2 for all
participants in Group 2, and if you let be the dependent variable (e.g., maternal adaptation), then the
squared correlation between and would be equivalent to This relationship does not work in the
same way for more than two groups.
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measure that we used when we had two independent groups. With two groups, we
defined an estimate of as

where is the square root of the pooled variance estimate (or sometimes the stan-
dard deviation of a control group).

Although it would be possible to algebraically extend this idea to more than
two groups, to obtain a measure of the multiple differences between groups, it is dif-
ficult to know how to interpret such a result. For most situations, I think it makes
much more sense to restrict ourselves to two-group comparisons and to speak about
the difference between specific groups or sets of groups, rather than to make a
global statement about differences among all groups simultaneously.

The data on maternal adaptation for mothers with low-birthweight infants
provides an excellent example of what I mean. The group means are reproduced in
the following table.

LBW-Exp LBW-Control Full Term Overall

Means 14.966 18.333 14.838 15.892
20.511

In an earlier analysis we showed that this difference among groups is statisti-
cally significant However, we should also tell our read-
ers something about the magnitude of the differences under discussion, and that
statement should be phrased in terms that have meaning to the reader. Here it
makes sense to fall back on specific comparisons, just as we did earlier when we
compared the LBW-Control and Full-Term groups, and again when we compared
the two low-birthweight groups (LBW-Control versus LBW-Exp). You should
recall that both of those differences are significant when we compare them using
the Bonferroni test.

If the raw score units had particular meaning, which they might have if our
dependent variable was something such as weight, IQ, age, or some other com-
monly understood variable, then it would make sense to simply report the differ-
ence in original units of measurement, perhaps providing an estimate of the
standard deviation as a frame of reference. However, our dependent variable is the
score on a measure of maternal adaptation, and it would not be very informative
to simply report that the two low-birthweight groups differed by 3.367 points.
Neither you nor I have any real sense of whether that is a large or a small differ-
ence. However, we could express the effect size measure as which is a standard-
ized measure of the difference.

Neither the LBW-Control nor the Full Term groups received any special
training, so a difference between them would reflect a difference due to birth-
weight. In this case

d̂ 5
XLBW2C 2 XFT

s
5

18.333 2 14.838
4.523

5
3.495
4.523

5 0.77

d̂,

1F12,90 2 5 5.53, p 6 .05 2 .
MSerror
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d
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Here we see that the two groups differ by 0.77 standard deviation, which is a sizeable
difference. There clearly is a noticeable effect due to birthweight. (The stan-
dard deviation shown here is simply the square root of and is the average
standard deviation within groups.)

If we compare the two low-birthweight groups, we find

This is another large effect. So we can conclude that the LBW-Control condition
scores about three-quarters of a standard deviation higher (worse adaptation) than
either the full-term group or the LBW group that receives the intervention. These
measures tell us that there are important effects in the results of this experiment.

16.8 Writing Up the Results

When I described how we would write up the results of Eysenck’s (1974) study of
recall as a function of level of processing, I had not yet covered multiple compar-
isons and effect size measures, and so was not able to include that in the write-up.
But with the study by Nurcome et al. (1984) on maternal adaptation with low-
birthweight infants we do have those results. An abbreviated version of how these
data might be written up follows.

✍ Nurcombe et al. (1984) studied the effects of an intervention program for 
the mothers of low-birthweight infants. A group of 37 mothers of
full-term infants served as a control. A second group of 27 mothers of low-
birthweight infants was also assessed, and differences between these two
groups address the question of the effects of low birthweight on maternal
adaptation. Finally, a third group of 29 mothers of low-birthweight infants
received an intervention program designed to make them more aware of
the weak behavioral signals their infants produced.

The overall analysis of variance showed that the groups exhibited
significant differences in maternal adaptation 
Using as a correlation-based measure of effect showed that differences
among the groups accounted for 8.9 percent of the overall variability in
the dependent variable. Individual group comparisons showed that the
two low-birthweight groups differed significantly with
the group receiving the intervention scoring better than the
low-birthweight control group on the measure of maternal
adaptation. Cohen’s applied to this difference was 0.74, indicating that
the intervention group’s mean was nearly three-quarters of a standard
deviation below (better) than the nonintervention mean. A comparison
of the low-birthweight control condition with the full-term control
condition produced a significant difference In
this case showing that giving birth to a low-birthweight infantd̂ 5 0.77,

1t190 2 5 3.04, p 6 .05 2 .

d̂
1X 5 18.33 21X 5 14.97 21t190 2 5 22.77,

v 2
1F12,90 2 5 5.53, p 6 .05 2 .
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s
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5
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5 0.74

MSerror,
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can result in maternal adaptation scores that are three-quarters of a
standard deviation above (worse than) for mothers of full-term infants.

16.9 The Use of SPSS for a One-Way Analysis 
of Variance

An illustration of an SPSS printout for a one-way analysis of variance is presented
in Figure 16.4 for the maternal adaptation data. This was run using the Compare
Means/One-way ANOVA procedure instead of the General Linear Model proce-
dure. (For help in running an analysis of variance using SPSS, you can go to this

440 Chapter 16 One-Way Analysis of Variance

�Oneway

ANOVA

adapt

Sum of
Squares df Mean Square F Sig.

Between Groups 226.932 2 113.466 5.532 .005

Within Groups 1845.993 90 20.511

Total 2072.925 92

Contrast Coefficients

group

Contrast LBW-exp LBW-Control Full-Term

1 1 1 0

2 0 1 1

Contrast Tests

Value of Std. Sig.
Contrast Contrast Error t df (2-tailed)

adapt Assume equal variances 1 3.368 1.2112 2.781 90 .007

2 3.495 1.1463 3.049 90 .003

Does not assume equal 1 3.368 1.3408 2.512 53.005 .015
variances 2 3.495 1.1663 2.997 44.664 .004

22

22

2

2

Figure 16.4 
SPSS analysis of maternal adaptation data



book’s Web site and look at Chapter 7 in the Longer Manual.) In this figure it is
clear that the analysis reflects the answers we obtained in Section 16.4. I have used
a set of contrasts, which I have not discussed in this chapter, to run the tests
between the relevant groups. The first compares the two low-birthweight groups,
and the second compares the low-birthweight control group with the full-term
group. The values that result agree with ours within rounding error.

16.10 A Final Worked Example

The following example illustrates a one-way analysis of variance with unequal
sample sizes. It also illustrates the use of the Bonferroni procedure.

What does marijuana do, and how does it do it? Aside from its better known
effects, marijuana increases, or in some cases decreases, locomotor (walking
around) behavior. The nucleus accumbens is a forebrain structure that has been
shown to be involved in locomotor activity in rats. (It is also thought to control
feelings of pleasure.) Administration of low doses of tetrahydrocannabinol (THC,
the major active ingredient in marijuana) is known to increase locomotor activity,
whereas high doses are known to lead to a decrease in activity. In an attempt to
examine whether THC is acting within the nucleus accumbens to produce its
effects on activity, Conti and Musty (1984) bilaterally injected either a placebo or
0.1, 0.5, 1, or 2 micrograms of THC directly into the nucleus accumbens of
rats. The investigators recorded the change in the activity level of the animals after
injection. It was expected that activity would increase more with smaller
injections than with larger ones. The data in Table 16.8 represent the amount of
change (decrease) in each animal.7

First we will set up the null hypothesis, which states that all of the samples
were drawn from populations with the same mean. In other words,

For consistency we will test this null hypothesis
with a significance level of 

Next we will run the overall analysis of variance, starting with the calcula-
tion of the sums of squares:

 SSerror 5 SStotal 2 SSgroup 5 14,287.91 2 4193.41 5 10,094.50

 5 4,193.41
 SSgroup 5 ©nj1Xj 2 Xgm 2 2 5 10134 2 45.96 2 2 1 p 1 10138.10 2 45.96 2 2

 5 14,287.91
 SStotal 5 © 1Xij 2 Xgm 2 2 5 130 2 45.96 2 2 1 127 2 45.96 2 2 1 p 1 153 2 45.96 2 2

a 5 .05.
H0: m1 5 m2 5 m3 5 m4 5 m5.

1mg 2

t

t
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7Although THC is expected to increase activity, the dependent variable is measured as a decrease in overall
activity because the animals were becoming acclimated to a new situation and were thus exploring less.
Thus, rather than an increase in activity, we actually are looking for less of a decrease. It’s confusing!



We can now put these terms into a summary table.

Source df SS MS F

Groups 4 4,193.41 1,048.35 4.36
Error 42 10,094.50 240.35

Total 46 14,287.91

Finally, we compare to the critical value from Table E.3 in the
Appendices. We have for Groups and 42 for Error. The critical value from
Table E.3 is 2.61 if we round off to 40 degrees of freedom for the denominator.
Because our obtained value exceeds 2.61, we will reject the null hypothesis and
conclude that there are differences in activity levels among the five drug groups,
presumably reflecting differences due to the dosage of THC administered.

Comparisons of Individual Groups
The experimental hypothesis had predicted that the Placebo group would show
smaller increases (or greater decreases) in activity than the medium dose group.
Therefore, we might want to compare the Placebo group with the 0.5- group.
It would also be interesting to compare the group with the group to
show that a medium dose had a greater effect than a large dose. We will make both
these comparisons using the Bonferroni test. As already discussed, we will perform
this test by first running tests between the groups, just as we did with the
protected t.

t

0.5 mg2 mg
mg

df4 df
F 5 4.36
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Table 16.8
Data from the Study by Conti and Musty (1984)

Placebo 0.1 g 0.5 g 1 g 2 g

30 60 71 33 36
27 42 50 78 27
52 48 38 71 60
38 52 59 58 51
20 28 65 35 29
26 93 58 35 34
8 32 74 46 24

41 46 67 32 17
49 63 61 50
49 44 53

340 508 543 388
Mean 34.00 50.80 60.33 48.50 38.1

n 10 10 9 8 10 N 5 47

381©X 5 2160©

mmmm



Comparison of Groups 3 and 1 versus Placebo):

Comparison of Groups 3 and 5 versus 

Because we ran only two tests, we can evaluate those values against at
We could use a program such as Minitab or SPSS to calculate the

actual probabilities. Alternatively, we could tell from Appendix E that even at
which is more conservative than the critical value on 17 df is

2.567, while the critical value on 18 is 2.552. Both of these differences are clearly
significant. The experimental hypothesis had predicted that a moderate dose of THC
would produce greater increases (or smaller decreases) in activity than either no THC
or a large dose of THC. Both of these hypotheses are supported by this experiment.

Magnitude of Effect and Effect Size Measures
As we did previously, we can assess the magnitude of effect of the treatment vari-
able with either or or we can calculate for specific group comparisons.

These two measures show that group effects account for about a quarter of the vari-
ation in this study.
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Effect size measures of differences between specific groups are another way
of examining the magnitude of the effect of THC. Conti and Musty (1984) had
expected that medium doses of THC would lead to the highest level of activity,
so it makes sense to report on the difference between the means of the Control
group (which received no THC) and the 0.5- group (which received a mod-
erate dose).

This is a very substantial difference (nearly one and three-quarters standard devi-
ations), reflecting the very important influence that THC has on activity in rats.8

16.11 Seeing Statistics

In Section 16.3 we discussed the distribution, and saw that it depended on 1)
the number of groups for groups), 2) the number of observations within groups

for the error term), and 3) the magnitude of (the larger the the smaller
the associated probability. An applet to illustrate these characteristics is available
on the Web site labeled probabilities. An example of that applet is shown.F

F,F1df
1df
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8Some people would suggest that, because the is a true control group, its standard deviation might be
better used to scale In this case it would not make a very great difference, and I have used the square root
of the pooled variance.
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At the bottom of this applet you will see an value and its associated
probability. You can change either of those values and the other will change
accordingly. For example, if you have 3 and 12 and enter .01 into the
probability box, the will change to 5.94, which is the critical value at

On the left and right of the display you will see sliders. If you move the
one on the left, you will see the degrees of freedom for groups change. Similarly,
moving the one on the right alters the degrees of freedom for error.

■ What happens as you increase the for error in terms of the size
of the critical value of F? (You have to be careful to look at the
critical value, and not just at the distribution itself, because part of
the reason that the distribution appears to get wider is because the
scale on the axis has to change to accommodate the graphed
values.)

■ What happens if you increase the number of groups—and therefore
the degrees of freedom for groups? (Again, notice that the scale on the

axis changes.)

■ What is the critical value for at for the Maternal
Adaptation example in Table 16.6?

16.12 Summary

The analysis of variance is one of our most powerful statistical tools. In this chap-
ter we restricted our discussion to what is called a one-way design, meaning that
groups differ along only one dimension. We considered the null hypothesis that
every population mean is equal to every other population mean, and the alterna-
tive hypothesis that at least one of the means is different from at least one other
mean. We also considered the assumptions that are required for the analysis of vari-
ance, which are that the data are normally distributed, the populations have equal
variances, and that the observations are independent.

The logic of the analysis of variance boils down to the idea that if the null
hypothesis is true, an estimate of the common population variance based on vari-
ability within groups, and an estimate based on the variability of the group means,
should agree within reasonable limits. If there are true group differences, this
would increase the variance estimate made on group means, leading to large dif-
ferences between the two variance estimates. We judge the magnitude of these

a 5 .05F

X

X

df

a 5 .01.
F

df,

F

16.12 Summary 445



differences in variance by reference to the tables of the distribution. The calcu-
lations inherent in running the analysis parallel the logic of creating two variance
estimates.

After doing our calculations we enter the results in a standard summary table,
consisting of the source of variability; the degrees of freedom; sums of squares and
mean squares, which are our variance estimates; and the statistic.

With a one-way analysis of variance we can easily handle unequal sample
sizes just by taking the different values of as we go along, rather than simply using
a common value of at the end of our calculations. This will not be true when we
come to more complex designs.

We looked at multiple comparison procedures, which let us ask questions
about differences between specific means. I recommended Fisher’s Least
Significant Difference (LSD) test when you have only a few means and the
Bonferroni test when you want to make several comparisons. The Bonferroni test
simply reduces the level of for each comparison by dividing the desired family-
wise error rate by the number of comparisons.

Finally, we looked at two different kinds of measures of effect size. The meas-
ures based on the correlation coefficient (eta squared and omega squared) are use-
ful because they allow us to work with multiple groups at once, but the measures
based on Cohen’s though restricted to pairwise comparisons of means, are gen-
erally more interpretable.

Some important terms in the chapter are

d,

a

n
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F
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16.13 Exercises

16.1 We began the chapter with a study by Eysenck (1974) in which he compared the recall
of older participants under one of 5 levels of processing. Another aspect of Eysenck’s
study compared Younger and Older participants on their ability to recall material in the
face of instructions telling that they should memorize the material for later recall.
(Presumably this task required a high level of processing, which older participants may
not do well.) The data on 10 participants in each group follow, where the dependent
variable is the number of items recalled.

Younger 21 19 17 15 22 16 22 22 18 21

Older 10 19 14 5 10 11 14 15 11 11

Conduct the analysis of variance comparing the means of these two groups.
(a) Conduct an independent groups test on the data and compare the results to those you

obtained in part (a). Your should simply be the square root of 

16.2 Another way to look at the Eysenck study mentioned in Exercise 16.1 is to compare four
groups of participants. One group consisted of Younger participants who were presented the
words to be recalled in a condition that elicited a Low level of processing. A second group
consisted of Younger participants who were given a task requiring the Highest level of pro-
cessing (as in Exercise 16.1). The two other groups were Older participants who were given
tasks requiring either Low or High levels of processing. The data follow:

Younger/Low 8 6 4 6 7 6 5 7 9 7

Younger/Hi 21 19 17 15 22 16 22 22 18 21

Older/Low 9 8 6 8 10 4 6 5 7 7

Older/Hi 10 19 14 5 10 11 14 15 11 11

Conduct a one-way analysis of variance on these data.

16.3 Now we will expand on the analysis of Exercise 16.2.
(a) Run a one-way analysis of variance on treatments 1 and 3 combined versus

treatments 2 and 4 combined. What question are you answering?
(b) Why might your answer to part (a) be difficult to interpret?

16.4 Refer to Exercise 16.1. Assume that we collected additional data and had two more partic-
ipants in the Younger group with scores of 13 and 15.
(a) Rerun the analysis of variance.
(b) Run an independent groups test without pooling the variances.
(c) Run an independent groups test after pooling the variances.
(d) For (b) and (c), which of these values of corresponds (after squaring) to the in (a)?

16.5 Calculate and for the data in Exercise 16.1.

16.6 Calculate and for the data in Exercise 16.2.

16.7 Foa, Rothbaum, Riggs, and Murdock (1991) conducted a study evaluating four different
types of therapy for rape victims. The Stress Inoculation Therapy (SIT) group received
instructions on coping with stress. The Prolonged Exposure (PE) group went over the
events in their minds repeatedly. The Supportive Counseling (SC) group were taught a

v2h2

v2h2

Ft
t
t

1n 5 20 2

F.t
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general problem-solving technique. Finally, the Waiting List (WL) control group received
no therapy. Data with the same characteristics as theirs follow, where the dependent vari-
able was the severity rating of a series of symptoms.

Group n Mean S.D.

SIT 14 11.07 3.95
PE 10 15.40 11.12
SC 11 18.09 7.13
WL 10 19.50 7.11

(a) Run the analysis of variance, ignoring any problems with heterogeneity of variance,
and draw whatever conclusions are warranted. (Note that you have to be a little cre-
ative here, but it is not a difficult exercise.)

(b) Draw a graph showing the means of the four groups.
(c) What does rejection of the null hypothesis mean?

16.8 Calculate and for the data in Exercise 16.7, and interpret their meaning.

16.9 What would happen if the sample sizes in Exercise 16.7 were twice as large as they were?

16.10 Use protected tests for the data in Exercise 16.7 to clarify the meaning of the significant 

16.11 Calculate for the comparisons you made in Exercise 16.10 and interpret the meaning of
each.

16.12 The data in Exercises 16.7 and 16.9 both produced a significant Do you have more or less
faith in one of these effects? Why?

16.13 For the data in Appendix D, form three groups. Group 1 has ADDSC scores of 40 or below,
Group 2 has ADDSC scores between 41 and 59, and Group 3 has ADDSC scores of 60 or
above. Run an analysis of variance on the GPA scores for these three groups.

16.14 Compute and from the results in Exercise 16.13.

16.15 Darley and Latané (1968) recorded the speed with which participants summoned help for
a person in trouble. Some participants thought that they were alone with the person
(Group 1, some thought that one other person was there (Group 2, and
others thought that four other people were there (Group 3, The dependent vari-
able was speed to call someone for help. The mean speed scores for the
three groups were 0.87, 0.72, and 0.51, respectively. The was 0.053. Reconstruct the
analysis of variance. What would you conclude?

16.16 Using the data in Exercise 16.2, calculate directly rather than by subtraction and
show that this is the same answer you found in that exercise.

16.17 Use the Bonferroni test for the data in Exercise 16.2 to compare the Younger/Low with the
Older/Low group, and the Younger/High with the Older/High group.

16.18 Use the Bonferroni test for the data in Exercise 16.7 to compare the WL group with each
of the other three groups. What would you conclude? How does this compare to the answer
for Exercise 16.10?

16.19 Calculate for the comparison of WL with SIT in Exercise 16.18 using the standard devi-
ation of the Control group to standardize the difference.

16.20 What effect does smoking have on performance? Spilich, June, and Renner (1992) asked
nonsmokers (NS), smokers who had delayed smoking for three hours (DS), and smokers

d̂

SSerror

MSerror
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who were actively smoking (AS) to perform a pattern recognition task in which they had
to locate a target on a screen. The dependent variable was latency (in seconds). The data
are presented below. Plot the resulting means and run the analysis of variance. On the basis
of these data is there support for the hypothesis that smoking has an effect on performance?

Non- Delayed Active
Smokers Smokers Smokers

9 12 8
8 7 8

12 14 9
10 4 1
7 8 9

10 11 7
9 16 16

11 17 19
8 5 1

10 6 1
8 9 22

10 6 12
8 6 18

11 7 8
10 16 10

16.21 In the study referred to in Exercise 16.20, Spilich et al. (1992) also investigated perform-
ance on a cognitive task that required the participant to read a passage and then to recall
it later. This task has much greater information processing demands than the pattern recog-
nition task. The independent variable was the three smoking groups referred in Exercise
16.20. The dependent variable was the number of propositions recalled from the passage.
The data follow.

Non- Delayed Active
Smokers Smokers Smokers

27 48 34
34 29 65
19 34 55
20 6 33
56 18 42
35 63 54
23 9 21
37 54 44
4 28 61

30 71 38
4 60 75

42 54 61
34 51 51
19 25 32
49 49 47

Run the analysis of variance on these data and draw the appropriate conclusions.



16.22 Use the Fisher LSD test to compare active smokers with nonsmokers and to compare the
two groups of smokers on the data in Exercise 16.21. What do these data suggest about the
advisability of smoking while you are studying for an exam and the advisability of smoking
just before you take an exam?

16.23 Spilich et al. (1992) ran a third experiment in which the three groups of smokers participated
in a driving simulation video game. The AS group smoked immediately before the game but
not during it. The data follow, where the dependent variable is an adjusted score related to
the number of collisions. Run the analysis of variance and draw the appropriate conclusions.

Non- Delayed Active
Smokers Smokers Smokers

15 7 3
2 0 2
2 6 0

14 0 0
5 12 6
0 17 2

16 1 0
14 11 6
9 4 4

17 4 1
15 3 0
9 5 0
3 16 6

15 5 2
13 11 3

16.24 The three experiments by Spilich et al. (1992) on the effects of smoking on performance
find conflicting results. Can you suggest why the results are different?

16.25 Langlois and Roggman (1990) took facial photographs of males and females. They then cre-
ated five groups of composite photographs by computer-averaging the individual faces. For
one group the computer averaged 32 randomly selected same-gender faces, producing a
quite recognizable face with average width, height, eyes, nose length, and so on. For the
other groups the composite faces were averaged over either 2, 4, 8, or 16 individual faces.
Each group saw six separate photographs, all of which were computer-averaged over the
appropriate number of individual photographs. Langlois and Roggman asked participants to
rate the attractiveness of the faces on a 1–5 scale, where 5 represents “very attractive.” The
data have been constructed to have the same means and variances as those reported by
Langlois and Roggman.

Data on Rated Attractiveness

Group 1 Group 2 Group 3 Group 4 Group 5 

2.201 1.893 2.906 3.233 3.200
2.411 3.102 2.118 3.505 3.253
2.407 2.355 3.226 3.192 3.357
2.403 3.644 2.811 3.209 3.169
2.826 2.767 2.857 2.860 3.291
3.380 2.109 3.422 3.111 3.290

Mean 2.6047 2.6450 2.8900 3.1850 3.2600
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(a) Specify a research hypothesis that could lie behind this study.
(b) Run the appropriate analysis of variance.
(c) What do these data tell us about how people judge attractiveness?

16.26 Using the data from Exercise 16.25,
(a) Calculate and
(b) Why do the two estimates of the magnitude of effect in part (a) differ?
(c) Calculate a measure of using the most appropriate groups.d̂,

v2.h2
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Factorial
Analysis of
Variance

Concepts that you will need to remember 
from previous chapters

: Sums of squares of all scores, of group
means, and within groups

: Mean squares for group means, and within
groups

F statistic: Ratio of over 

Degrees of freedom: The number of independent pieces of
information remaining after estimating one or
more parameters

Effect size ( ): A measure intended to express the size of a
treatment

( ), ( ): Correlation-based measures of effect size

Multiple comparisons: Tests on differences between specific group
means in terms that are meaningful to the
reader
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This chapter will look at a slightly more complex analysis of variance and
address the question of what we do when we have more than one independent vari-
able at the same time. The analysis is not particularly difficult, but we will have to ask
about the difference between a main effect and a simple effect and look closely at
interactions. We will then look at the case of unequal sample sizes, where we will
find that the solution is not simple. Finally, we will examine the different kinds of effect
sizes and how and when we would use each.

In Chapter 16 we dealt with a one-way analysis of variance, which is an
experimental design having only one independent variable. In this chapter we will
extend the analysis of variance to cover experimental designs involving two or more
independent variables. For purposes of simplicity we will consider experiments involv-
ing only two independent variables, although the extension to more complex designs
is not difficult (see Howell, 2010).

Why do older people often seem not to remember things as well as younger
people? Do they not pay attention? Do they just not process the material as
thoroughly? Do they know less? Or do they really do just as well, but are we more
likely to notice when they forget than when younger people do? In Chapter 16 we
considered a study by Eysenck (1974) in which he asked participants to recall lists
of words to which they had been exposed under one of several different conditions.
In that example we were interested in determining whether recall was related to the
level at which material was processed initially. Eysenck’s study was actually more
complex. He was interested in whether level-of-processing notions could explain dif-
ferences in recall between older and younger participants. If older participants do
not process information as deeply, they might be expected to recall fewer items than
would younger participants, especially in conditions that entail greater processing.
This study now has two independent variables (Age and recall Condition), which we
will refer to as factors. The experiment is an instance of what is called a two-way
factorial design.

Definition Factors: Another word for independent variables in the analysis of variance.
Two-way factorial design: An experimental design involving two independent
variables in a way in which every level of one variable is paired with each level of
the other variable.
Factorial design: An experimental design in which every level of each variable is
paired with every level of each other variable.

To expand this experiment even further, we could classify participants addition-
ally as male and female. We then would have what is called a three-way factorial
design, with Age, Condition, and Gender as factors.
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17.1 Factorial Designs

An experimental design in which every level of every factor is paired with every
level of every other factor is called a factorial design. In other words, a factorial
design is one in which we include all combinations of the levels of the independ-
ent variables. Table 17.1 illustrates the two-way design of Eysenck’s study. In the
factorial designs discussed in this chapter, we will consider only the case in which
different participants serve under each of the treatment combinations. For
instance, in our example one group of younger participants will serve in the
Counting condition, a different group of younger participants in the Rhyming
condition, and so on. Because we have 10 combinations of our two factors

we will have 10 different groups of participants.
When a research plan calls for the same participant to be included under more
than one treatment combination, we speak of repeated-measures designs.
Repeated-measures designs will be discussed in Chapter 18.

Factorial designs have several important advantages over one-way designs.
First, they allow greater generalizability of the results. Consider Eysenck’s study for
a moment. If we were to run a one-way analysis of variance using the five
Conditions with only older participants, as in Chapter 16, our results would apply
only to older participants, which, I suspect, would be a serious limitation of our
findings. When we use a factorial design with both older and younger participants,
we are able to determine whether differences between Conditions apply to younger
participants as well as older ones. We are also able to determine whether age dif-
ferences in recall apply to all tasks, or whether younger (or older) participants
excel on only certain kinds of tasks. Thus factorial designs allow for a much
broader interpretation of the results and at the same time give us the ability to say
something meaningful about the results for each of the independent variables.

The second important feature of factorial designs is that they allow us to look
at the interaction of variables. We can ask whether the effect of Condition is inde-
pendent of Age or whether there is some interaction between Condition and Age.
I suspect that Eysenck really was not particularly interested in knowing whether
recall was better following more in-depth processing. He probably already knew that
from other work. And he probably was not terribly surprised to see that younger par-
ticipants did better than older ones. I’m sure you weren’t surprised. But what Eysenck
really cared about was whether the difference in recall between younger and older

15 recall Conditions 3  2 Ages 2 ,
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Table 17.1 
Diagrammatic Representation of Eysenck’s Two-way Factorial Study

Counting Rhyming Adjective Imagery Intentional

Younger

Older



participants varied as a function of processing. If it did, he would have evidence that
memory decline that we see in some older people relates to the degree of processing
individuals do, and that is an important and interesting finding. Interaction effects
such as these are often among the most interesting results we obtain.

Definition Interaction: A situation in a factorial design in which the effects of one
independent variable depend on the level of another independent variable.

A third advantage of a factorial design is its economy. Since we are going to
average the effects of one variable across the levels of the other variable, a two-
variable factorial will require fewer participants than would two one-way designs
for the same degree of power. Essentially, we are getting something for nothing.
Suppose we had no reason to expect an interaction of Age and Condition. Then,
with ten older participants and ten younger participants in each Condition, we
would have 20 scores for each of the five conditions. If we instead ran a one-way
with younger participants and then another one-way with older participants, we
would need twice as many participants overall for each of our experiments to have
20 participants per condition, and we would have two experiments.

As mentioned earlier, factorial designs are labeled by the number of factors
involved. A factorial design with two independent variables, or factors, is called a
two-way factorial, and one with three factors is called a three-way factorial. An
alternative method of labeling designs is in terms of the number of levels of each
factor. Eysenck’s study had two levels of Age and five levels of Condition. As such,
it is a factorial. A study with three factors, two of them having three levels
and one having four levels, would be called a factorial. The use of such
terms as “two-way” and “ ” are common ways of designating designs, and
both will be used in this book.

Definition factorial design: A factorial design with one variable having two levels and
the other having five levels.
Cell: The combination of a particular row and column; the set of observations
obtained under identical treatment conditions.

In much of what follows, we will concern ourselves primarily with the two-
way analysis. Higher-order analyses follow relatively easily once you understand
the two-way, and many of the related problems we will discuss are most simply
explained in terms of two factors.

Notation
I will keep the notation as simple as possible to avoid unnecessary confusion. In
the previous chapter on one-way designs it was easier to keep the notation clear.
Here we will need to be a bit more specific. Names of factors generally are

2 3 5

2 3 5
3 3 3 3 4

2 : 5
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designated by the first letter (capitalized) of the factor name, and the individ-
ual levels of each factor are indicated by that capital letter with the appropriate
subscript (in Condition, for instance, Counting would be designated as 
Rhyming as and Intentional as ). The number of levels of the factor will
be denoted by a lowercase letter corresponding to that factor. Thus Condition
I has levels, whereas Age (A) has levels. Any specific combination
of one level of one factor and one level of another factor (e.g., Older partici-
pants in the Rhyming condition) is called a cell, and the number of observa-
tions per cell will be denoted by The total number of observations is 
and in our example, because there are

cells, each with 10 participants. Table 17.2 shows the factorial
design of Eysenck’s study.

The subscripts and are used as general (nonspecific) notations for the
level of rows and columns. Thus, is the cell in the row and the 
column. For example, in Table 17.2 would be the Older participants (row 2)
in the Rhyming Condition (column 2). The means for the individual levels of
Age will be denoted as and the means for the individual levels of Condition
will be denoted as The subscripts and refer to the variable names.
Cell means are denoted as and the grand mean (the mean of all N scores) is
shown as 

Definition Grand mean ( ): The mean of all of the observations.

The notation described here will be used throughout our discussion of the
analysis of variance, and it is important that you thoroughly understand it before
proceeding. The advantage of this system is that it easily generalizes to other exam-
ples. For example, if we had a factorial, it should be clear that 
and refer to the means of the first level of the Drug variable and the second
level of the Gender variable, respectively.

XG2

XD1Drug 3 Gender

Xgm

Xgm.
Xij,

CAXCj.
XAi,

cell22

jthithcellij

ji

a 3 c 5 10
N 5 acn 5 2 3 5 3 10 5 100

N,n.

a 5 2c 5 5

C5C2,
C1,

456 Chapter 17 Factorial Analysis of Variance

Table 17.2 
Factorial Design of Eysenck’s Study

Conditions

Age Counting Rhyming Adjective Imagery Intentional Totals

Younger
Older
Totals XgmXC5XC4XC3XC2XC1

XA2X25X24X23X22X21

XA1X15X14X13X12X11



17.2 The Extension of the Eysenck Study

As we have been discussing, Eysenck conducted a study varying Age as well as
recall Condition. The study included 50 participants 18 –30 years of age and 50
participants 55 – 65 years of age. The data in Table 17.3 have been created to have
the same means and standard deviations as those reported by Eysenck. The table
contains all the calculations for the standard analysis of variance, and we will dis-
cuss each of those in turn. Before we begin the analysis, it is important to note that
the data themselves are approximately normally distributed with acceptably homo-
geneous variances. The boxplots are not given in the table because the individual
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Table 17.3
Data and Calculations for Example from Eysenck (1974)

(a) Data

Recall Conditions

Counting Rhyming Adjective Imagery Intentional Meani

Old 9 7 11 12 10
8 9 13 11 19
6 6 8 16 14
8 6 6 11 5

10 6 14 9 10
4 11 11 23 11
6 6 13 12 14
5 3 13 10 15
7 8 10 19 11
7 7 11 11 11

Mean1j 7.0 6.9 11.0 13.4 12.0 10.06

Young 8 10 14 20 21
6 7 11 16 19
4 8 18 16 17
6 10 14 15 15
7 4 13 18 22
6 7 22 16 16
5 10 17 20 22
7 6 16 22 22
9 7 12 14 18
7 7 11 19 21

Mean2j 6.5 7.6 14.8 17.6 19.3 13.16

Mean.j 6.75 7.25 12.9 15.5 15.65 11.61

(continued)



data points are artificial, though not the means and variances. For real data it
would be well worth your effort to compute them. You can tell from the cell and
marginal means that recall appears to increase with greater processing, and
younger participants seem to recall more items than do older participants. Notice
also that the difference between younger and older participants seems to depend
on the task, with greater differences for those tasks that involve deeper processing.
We will consider these results further after we consider the analysis itself.

Definition Main effect: The effect of one independent variable averaged across the levels of
the other independent variable.
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Table 17.3
(continued)

(b) Calculations

(c) Summary table

Source df SS MS F

A (Age) 1 240.25 240.250 29.94*
C (Condition) 4 1,514.94 378.735 47.19*
AC 4 190.30 47.575 5.93*
Error 90 722.30 8.026

Total 99 2,667.79

 SSerror 5 SStotal 2 SScells 5 2,667.79 2 1,945.49 5 722.30

 SSAC 5 SScells 2 SSA 2 SSC 5 1,945.49 2 240.25 2 1,514.94 5 190.30

 5 1,945.49

 5 10 3 17.0 2 11.61 2 2 1 16.9 2 11.61 2 2 1 p 1 119.3 2 11.61 2 2 4
 SScells 5 n© 1XAC 2 Xgm 2 2

 5 1,514.94

 5 10 3 2 3 16.75 2 11.61 2 2 1 17.25 2 11.61 2 2 1 p 1 115.65 2 11.61 2 2 4
 SSC 5 na© 1XC 2 Xgm 2 2

 5 240.25

 5 10 3 5 3 110.06 2 11.61 2 2 1 113.16 2 11.61 2 2 4
 SSA 5 nc© 1XA 2 Xgm 2 2

 5 2,667.79

 5 16,147 2
1,1612

100
5 16,147 2 13,479.21

 SStotal 5 © 1X 2 Xgm 2 2 5 ©X2 2
1aX 2 2

N

*p 6 .05



It will avoid confusion later if I take the time here to define two important
terms. We have two factors in this experiment—Age and Condition. If we look at
the differences between older and younger participants, ignoring the particular
Conditions, we are dealing with what is called the main effect of Age. Similarly, if
we look at differences among the five Conditions, ignoring the Age of participants,
we are dealing with the main effect of Conditions.

An alternative method of looking at the data would be to compare the
means of the five conditions for only the older participants. (This is what we
did in Chapter 16.) Or we might compare older and younger participants for
only the data from the Counting task, or we might compare older and younger
participants on the Intentional task. In these three examples we are looking at
the effect of one factor for the data at only one level of the other factor. When
we do this, we are dealing with a simple effect—the effect of one factor at one
level of the other factor. A main effect, on the other hand, is that of a factor
ignoring (or averaging across) the other factor. If we say that tasks that involve
more processing lead to better recall, we are speaking of a main effect. If we
conclude that for younger participants tasks that involve more processing lead to
better recall, we are speaking about a simple effect. We will have more to say
about simple effects and their calculations shortly. For now it is important only
that you understand the terminology.

Definition Simple effect: The effect of one independent variable at one level of another
independent variable.

Calculations
The calculations for the sums of squares appear in part (b) of Table 17.3. Many of
these calculations should be familiar, since they resemble the procedures used with
a one-way design. For example, can be computed the same way it was in
Chapter 16, although here I used a computationally simpler approach. We sum all
the squared observations and subtract 

The sum of squares for the Age factor is nothing but the that
we would obtain if this were a one-way analysis of variance without the Condition
factor. In other words, we simply sum the squared deviations of the two Age means
from the grand mean and multiply by the number of observations for each mean.
We use as the multiplier here because each age has participants at each of 

levels. The same procedures are followed in the calculation of except that
here we ignore the presence of the Age variable.

You will notice that is multiplied by and is
multiplied by where and represent the number of levels of Age and Condition,
respectively. Please don’t try to remember these multipliers as formulae; you will be
wasting your time. They represent the number of scores per means and nothing more.
They are exactly analogous to the multiplier we used in the one-way analysis
when we wanted to turn a variance of means into an estimate of the population
variance The only difference is that in a one-way analysis, n represented the1se

2 2 .
1n 2

cana,
© 1XC 2 Xgm 2 2nc© 1XA 2 Xgm 2 2
SSc,c

nnc

SSgroup1SSA 2
1©X 2 2>N.

SStotal
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number of observations per treatment, and here it represents the number of observa-
tions per cell—because c cells are involved with each Age level, there must by 
observations for each Age mean 

Definition The sum of squares assessing differences among the cell means.

Having obtained and we come to an unfamiliar term,
This term represents the variability of the individual cell means and is, in

fact, only a dummy term; it will not appear in the summary table. It is calculated
just like any other sum of squares. We take the deviations of the cell means from
the grand mean, square and sum them, and multiply by the number of observa-
tions per mean. The usefulness of this term will become clear when we calculate a
sum of squares for the interaction of Age and Condition. (It may be easier to
understand the calculation of if you think of it as what you would have 
if you viewed this as a study with 10 “groups” and calculated )

is a measure of how much the cell means differ. Two cell means may
differ for any of three reasons, other than sampling error: (1) because they come
from different levels of (Age); (2) because they come from different levels of 
(Condition); or (3) because of an interaction between and We already have
a measure of how much the cells differ, since we know tells us how
much of this difference can be attributed to differences in Age, and tells us
how much can be attributed to differences in Condition. Whatever cannot be
attributed to Age or Condition must be attributable to the interaction between
Age and Condition Thus has been partitioned into its three con-
stituent parts— and To obtain we simply subtract and

from Whatever is left over is In our example

All that we have left to calculate is the sum of squares due to error. Just as in
the one-way analysis, we will obtain this by subtraction. The total variation is rep-
resented by . Of this total, we know how much can be attributed to and

What is left over represents unaccountable variation or error. Thus

This provides us with our sum of squares for error, and we now have all of the nec-
essary sums of squares for our analysis.

SSerror 5 SStotal 2 1SSA 1 SSC 1 SSAC 2
AC.

A, C,SStotal

 5 1945.49 2 240.25 2 1514.94 5 190.30
 SSAC 5 SScells 2 SSA 2 SSC

SSAC.SScells.SSC

SSASSAC,SSAC.SSA, SSC,
SScells1SSAC 2 .

SSC

SScells. SSA

C.A
CA

SScells

SSgroup.
SScells

n,

SScells.
SSC,SStotal, SSA,

SScells:

1XA 2 .
nc
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Notice that with the exception of the interaction term, a two-way factorial is
treated just like two one-way designs. We calculate Age effects as if there were no
separate Conditions, and we calculate Condition effects as if there we no separate
Ages. And the error term is just the variability of bunches of people in each cell.



Part (c) of Table 17.3 is the summary table for the analysis of variance. The
source column and the sum of squares column are fairly obvious from what has already
been said. The degrees of freedom column should also be familiar from what you know
about the one-way. The total degrees of freedom ( ) are always equal to 
The degrees of freedom for Age and Condition are the number of levels of the variable
minus 1. Thus, and The number of degrees of
freedom for any interaction is simply the product of the degrees of freedom for the
components of that interaction. Thus, 

Finally, the degrees of freedom for error can be obtained by subtraction.
Thus  Alternatively, because is the
average of the cell variances, and because each cell variance has 
has degrees of freedom. These rules for degrees of freedom apply to any
factorial analysis of variance, no matter how complex.

Just as with the one-way analysis of variance, the mean squares are obtained
by dividing the sums of squares by the corresponding degrees of freedom. This is
the same procedure we will use in any analysis.

Finally, to calculate we divide each MS by . Thus, for Age,
for Condition, and for 

Each is based on the number of degrees of freedom for the term in ques-
tion and the . Thus the for Age is on and 90 and the for
Condition and the for the interaction are based on 4 and 90

for Condition and for the interaction.) From Table
E.3 in the Appendices, we find that the critical values of are 
(by interpolation) and (again by interpolation).

Interpretation
From part (c) of Table 17.3, the summary table, you can see that there were signif-
icant effects for Age, Condition, and their interaction. In conjunction with the cell
means, it is clear that younger participants recall more items overall than do older
participants. It is also clear that those tasks that involve greater depth of processing
lead to better recall overall than do tasks that involve less processing, which is in
line with the differences we found in Chapter 16. The significant interaction tells
us that the effect of one variable depends on the level of the other variable. For
example, differences between older and younger participants on the easier tasks,
such as Counting and Rhyming, are less than the differences between younger and
older participants on those tasks that involve greater depths of processing, such as
Imagery and Intentional. Another view is that differences among the five condi-
tions are less extreme for the older participants than they are for the younger ones.

The results support Eysenck’s hypothesis that older participants do not
perform as well as younger participants on tasks that involve a greater depth of
processing of information but do perform about equally with younger participants
when the tasks do not involve much processing. These results do not mean that
older participants are not capable of processing information as deeply. Older partic-
ipants simply may not make the effort that younger participants do. Whatever the
reason, they do not perform as well on those tasks.

F.0514,90 2 5 2.49
F.0511,90 2 5 3.96F

15 2 1 2 12 2 1 2df 15 2 1 5 4
Age 3 ConditionF

Fdf,2 2 1 5 1Fdferror

FMSerror.
AC, FAC 5 MSAC>FC 5 MSC>MSerror;FA 5 MSA>MSerror;

MSerrorF,

ac1n 2 1 2 n 2 1 df, MSerrorAC
MSerrordferror 5 dftotal 2 dfA 2 dfC 2 dfAC.

1 3 4 5 4.
dfAC 5 dfA 3 dfC 5 1a 2 1 2 1c 2 1 2 5

dfC 5 c 2 1 5 4.dfA 5 a 2 1 5 1

N 2 1.dftotal
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17.3 Interactions

A major benefit of factorial designs is that they allow us to examine the interac-
tion of variables. Indeed in many cases the interaction term may be of greater
interest than are the main effects (the effects of factors taken individually).
Consider, for example, the study by Eysenck. The means are plotted in Figure 17.1
for each age group separately. Here you can see clearly what I referred to in the
interpretation of the results when I said that the differences due to Conditions
were greater for younger participants than for older ones. The fact that the two
lines are not parallel is what we mean when we speak of an interaction. If
Condition differences were the same for the two Age groups, the lines would be
parallel—whatever differences between Conditions existed for younger partici-
pants would be equally present for older participants. This would be true regardless
of whether younger participants were generally superior to older participants or
whether the two groups were comparable. Raising or lowering the entire line for
younger participants would change the main effect of Age, but it would have no
effect on the interaction.

The situation may become clearer if you consider several plots of cell means
that represent the presence or absence of an interaction. In Figure 17.2 the 
first three plots represent the case in which there is no interaction. In all three
cases the lines are parallel, even when they are not straight. Another way of look-
ing at this is to say that the difference between and (the effect of factor B) at

is the same as it is at and at In the second set of three plots the lines
clearly are not parallel. In the first plot one line is flat and the other rises. In the

A3.A2A1

B2B1
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Cell means for data in Table 17.3



second plot the lines actually cross. In the third plot the lines do not cross, but they
move in opposite directions. In every case the effect of is not the same at the
different levels of A. Whenever the lines are (significantly) nonparallel, we say
that we have an interaction.

Many people will argue that if you find a significant interaction, the main
effects should be ignored. I used to be in the opposing camp, but even I have come
to realize that there is usually not much point in getting excited over a main effect
if there is a significant interaction. It is not wrong to look at main effects in that
case, but it probably isn’t very productive.

17.4 Simple Effects

I earlier defined a simple effect as the effect of one factor (independent variable)
at one level of the other factor, for example, differences among Conditions for the
younger participants. The analysis of simple effects can be an important technique
for analyzing data that contain significant interactions. In a very real sense such
analysis allows us to “tease apart” interactions. I have come around to the point of

B
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saying that if you have an interaction you should probably ignore the main effect
and jump right into simple effects. This is illustrated nicely in a second example
that we will look at in a few pages.

I will use the Eysenck data to illustrate how to calculate and interpret simple
effects. Table 17.4 reproduces the cell means and the summary table from Table
17.3 and contains the calculations involved in obtaining all the simple effects. As
a general rule, I do not recommend running all simple effects. Testing all possible
effects drastically increases the probability of a Type I error. Run only those that
are particularly relevant to your purposes. I have run them all here simply to
illustrate the procedure.

The first summary table in part I of Table 17.4 reveals significant effects due
to Age, Condition, and their interaction. We discussed these results earlier in
conjunction with the original analysis. As I said there, the presence of an interac-
tion means that there are different Condition effects for the two Ages and differ-
ent Age effects for the five Conditions. It thus becomes important to ask whether
our general Condition effect really applies for older as well as younger participants
and whether there really are Age differences under all Conditions. The analysis of
these simple effects is found in part (b) of Table 17.4 and in the second summary
in part (c). Remember, I have shown all possible simple effects for the sake of
completeness. In practice you should examine only those effects in which you are
interested.

Calculation
In part (b) of Table 17.4 you can see that is calculated in the same way as
any sum of squares. We simply calculate using only the data for the older par-
ticipants. If we consider only those data, the five Condition means are 7.0, 6.9,
11.0, 13.4, and 12.0. Thus the sum of squares will be

The other simple effects are calculated in the same way, by ignoring all data in
which you are not interested at the moment. Notice that the sum of squares for the
simple effect of Condition for older participants (351.52) is the same value as that
we obtained in Chapter 16 when we ran a one-way analysis of variance on only the
data from older participants.

The degrees of freedom for the numerator of simple effects are calculated in
the same way as for the corresponding main effects. This makes sense because the
number of means we are comparing remains the same—there are five Condition
means. Whether we use all the participants or only part of them, we still are com-
paring five conditions and have for Conditions.

To test the simple effects, we generally use the error term from the overall
analysis of variance ( ). This produces the Fs shown in Table 17.4. Note that
the denominator had 90 because we used from the overall analysis.MSerrordf

MSerror

df5 2 1 5 4

 5 351.52
 5 10 3 3 17 2 10.06 2 2 1 16.9 2 10.06 2 2 1 p 1 112 2 10.06 2 2 4

 SSC at Old 5 n© 1XCj at Old
2 XOld 2 2

SSC

SSC at Old
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Table 17.4
Calculation of Simple Effects for Data from Table 17.3

(a) Cell means (n 10)

Counting Rhyming Adjective Imagery Intentional Mean

Older 7.0 6.9 11.0 13.4 12.0 10.06
Younger 6.5 7.6 14.8 17.6 19.3 13.16
Mean 6.75 7.25 12.90 15.50 15.65 11.61

(b) Calculations

Conditions at Each Age

Age at Each Condition

(c) Summary Tables

Overall Analysis

Source df SS MS F

A (Age) 1 240.25 240.250 29.94*
C (Condition) 4 1,514.94 378.735 47.19*
AC 4 190.30 47.575 5.93*
Error 90 722.30 8.026

Total 99 2,667.79

*

Simple Effects

Source df SS MS F

Conditions
C at Old 4 351.52 87.88 10.95*
C at Young 4 1,353.72 338.43 42.17*
Age
A at Counting 1 1.25 1.25 1
A at Rhyming 1 2.45 2.45 1
A at Adjective 1 72.20 72.20 9.00*
A at Imagery 1 88.20 88.20 10.99*
A at Intentional 1 266.45 266.45 33.20*

Error 90 722.30 8.026

6

6

p � .05

 SSA at International 5 10 3 3 112.0 2 15.65 2 2 1 119.3 2 15.65 2 2 4 5 266.45
 SSA at Imagery 5 10 3 3 113.4 2 15.5 2 2 1 117.6 2 15.5 2 2 4 5 88.20

 SSA at Adjective 5 10 3 3 111.0 2 12.9 2 2 1 114.8 2 12.9 2 2 4 5 72.20
 SSA at Rhyming 5 10 3 3 16.9 2 7.25 2 2 1 17.6 2 7.25 2 2 4 5 2.45
 SSA at Counting 5 10 3 3 17.0 2 6.75 2 2 1 16.5 2 6.75 2 2 4 5 1.25

SSC at Young 5 10 3 3 16.5 2 13.16 2 2 1 17.6 2 13.16 2 2 1 p 1 119.3 2 13.16 2 2 4 5 1,353.72
SSC at Old 5 10 3 3 17.0 2 10.06 2 2 1 16.9 2 10.06 2 2 1 p 1 112 2 10.06 2 2 4 5 351.52

5

*p � .05



Interpretation
From the column labeled in the simple effects summary table in Table 17.4, it is
evident that differences due to Conditions occur for both ages, although the sum
of squares for the older participants is only about one-quarter of what it is for the
younger ones. With regard to the Age effects, however, no differences occur on the
lower-level tasks of counting and rhyming, but differences do occur on the higher-
level tasks. In other words, differences between age groups show up only for those
tasks involving higher levels of processing. This result is basically what Eysenck set
out to demonstrate.

17.5 Measures of Association and Effect Size

We can look at the magnitude of an effect in two different ways, just as we did with
the one-way analysis. We can either calculate an r-family measure, such as or

or we can calculate Cohen’s a very useful measure of effect size. Normally,
when we are examining an omnibus we use an r-family measure. However, when
we are looking at a difference between individual pairs of means, it is usually more
meaningful to calculate an effect size estimate ( ).

r-Family Measures
As with the one-way design, it is both possible and often desirable to calculate the
magnitude of effect associated with each independent variable. The most easily
computed measure is again (eta squared), although it is still a biased estimate of
the value that we would get if we obtained observations on whole populations. For
each effect (main effects and interactions) in the factorial design we compute 
by dividing the sum of squares for that effect by . For our example

Thus within this experiment differences due to Age account for 9% of the overall vari-
ability, differences due to Condition account for 57% of the variability, and differences
due to the interaction account for 7% of the variability. The
remaining 27% of the variability in this experiment is assigned to error variance.

As with the one-way analysis, is handy for making rough estimates of
the contribution of variables, but a considerably less biased estimate is given by 

(omega squared). The calculations, though somewhat more cumbersome, are
straightforward.
v̂ 2

ĥ2

Age 3 Condition

 ĥ2
AC 5

SSAC

SStotal

5
190.30

2,667.79
5 0.07

 ĥ2
C 5

SSC

SStotal

5
1,514.94
2,667.79

5 0.57

 ĥ2
A 5

SSA

SStotal

5
240.25

2,667.79
5 0.09

SStotal

ĥ2

ĥ2

d̂

F,
d̂,v̂ 2,

ĥ2
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Notice that these values are slightly smaller than the values for although their
interpretation is basically the same.

When it comes to calculating the procedure that we will use is essentially
the same as it was for the one-way. Because we are the most interested in an effect
size for the comparison of two groups, or subsets of groups, we simply take the dif-
ference between the groups and divide that by our estimate of the standard devia-
tion within groups. We can do this for either of the two main effects (Age and
Condition) or for any of the simple effects, although this is more difficult when we
have more than two groups. To use Age as an example,

The difference in recall between older and younger participants is a bit over one
standard deviation, which is quite a big difference.

To look at Condition, we need to select a pair (or pairs) of means. For this
example we will take the older participants, whom we expect to profit less from
cognitive processing of information. (I chose this because I anticipate that an
effect for younger participants would be even greater.) The Counting condition
clearly represents the bare minimum of cognitive processing, while the Image con-
dition is probably at the high end. For the older participants we have

Here the two groups differ by about two and a quarter standard deviations—again,
a very large effect. Clearly, the level of processing plays an important role in the
amount of material people are able to recall. The methods for estimating the mag-
nitude of effect for variables in a factorial design are simple extensions of the
methods used with a one-way design. Again, we have the measures that are anal-
ogous to squared correlations ( and ) and the effect size measure d̂.v̂ 2ĥ2

d̂ 5
XImagery 2 XCount

s
5

13.40 2 7.0028.026
5

6.40
2.833

5 2.26

d̂ 5
XYounger 2 XOlder

s
5

13.16 2 10.0628.026
5

3.10
2.833

5 1.09

d̂,

ĥ2,

 v̂ 2
AC 5

SSAC 2 1a 2 1 2 1c 2 1 2MSerror

SStotal 1 MSerror

5
190.30 2 14 28.026

2,667.79 1 8.026
5 0.059

 v̂ 2
C 5

SSC 2 1c 2 1 2MSerror

SStotal 1 MSerror

5
1,514.94 2 14 28.026

2,667.79 1 8.026
5 0.554

 v̂ 2
A 5

SSA 2 1a 2 1 2MSerror

SStotal 1 MSerror

5
240.25 2 11 28.026

2,667.79 1 8.026
5 0.087
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Several times I have referred to “means or sets of means,” and perhaps it would
be smart to look at a case where we would want to have an effect measure
directed at sets of means. This example will be a bit strained because I do not
have a nice clean reason for using the sets that I do, but you will have to give
me a bit of leeway.



Two of Eysenck’s conditions (Counting and Rhyming) really don’t require
much in the way of mental effort, whereas two of them (Adjective and Imagery)
require the participant to think seriously about the words. Suppose that we
wanted to compare those two sets, and we want to do so for the younger
participants. The means for Counting and Rhyming are 6.5 and 7.6, for a
combined mean of For Adjective and Imagery, the mean
is Therefore

We can therefore conclude that the difference in the means of the two sets 
of conditions is about three and a quarter standard deviations, which is a huge
difference.

A Complication
Throughout this book I have avoided the common practice of putting asterisks
next to section headings that are more difficult and that might be skipped.
However, this section is just such a section, and I am inserting it so that you have
a flavor of what the issues are. I am not expecting everyone to clap their forehead
and say “Oh, of course!” Look to Howell (2010) or Kline (2004) for a more thor-
ough discussion of these issues.

As was the case with tests and the one-way analysis of variance, we will
define our effect size as

where the “hats” indicate that we are using estimates based on sample data. There
is no real difficulty in estimating the numerator, because it is just the difference
between two means (or the means of sets of means). On the other hand, our esti-
mate of the appropriate standard deviation will depend on our variables. Some
variables normally vary in the population (e.g., amount of caffeine a person drinks
in a day, gender, intelligence) and are, at least potentially, what Glass, McGaw,
and Smith (1981) call a “variable of theoretical interest.” Age, extraversion, meta-
bolic rate, and hours of sleep are other examples. On the other hand, many exper-
imental variables, such as the number of presentations of a stimulus, area of cranial
stimulation, size of a test stimulus, and presence or absence of a cue during recall
do not normally vary in the population, and are of less theoretical interest (though
they may be very important to that particular experiment). This distinction is a
slippery one, and if a manipulated variable is not of theoretical interest, why are
we manipulating it?

d̂ 5
X1 2 X2

ŝ

t

d̂ 5
XC&R 2 XA&I

s
5

7.05 2 16.228.026
5 23.23

114.8 1 17.6 2 >2 5 16.2.
16.5 1 7.6 2 >2 5 7.05.
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It might make more sense if we look at the problem slightly differently.
Suppose that I ran a study to investigate differences among three kinds of
psychotherapy. If I just ran that as a one-way design, my error term would include
variability due to all sorts of things, one of which would be variability between men
and women in how they respond to different kinds of therapy. Now suppose that 
I ran the same study but included gender as an independent variable. In effect, 
I am controlling for gender, and the regular term would not include gender
differences because I have “pulled them out” in my analysis. So would be
smaller here than in the one-way. That’s a good thing in terms of power, but it may
not be a good thing if I use the square root of in calculating the effect size.
If I did, I would have a different-sized effect due to psychotherapy in the one-way
experiment than I have in the factorial experiment. That doesn’t seem right. The
effect of therapy ought to be pretty much the same in the two cases. (Sex happens!
So it should be involved in our measure.) So what I will do instead is to put that
gender variability, and the interaction of gender with therapy, back into error when
it comes to computing an effect size.

But suppose that I ran a slightly different (and slightly weird) study where 
I examined the same three different therapies, but also included, as a second inde-
pendent variable, whether or not the patient sat in a cold tub of water during
therapy. Now, patients don’t normally sit in a cold tub of water, but it would cer-
tainly be likely to add variability to the results. That variability would not be
there in the one-way design because we can’t imagine some patients bringing in a
tub of water and sitting in it. And it is variability that I wouldn’t want to add back
into the error term because it is in many ways artificial. The point is that I would
like the effect size for types of therapy to be the same whether I used a one-way or
a factorial design. To accomplish that, I would add effects due to Gender and the

interaction back into the error term in the first study, and
withhold the effects of Water and its interaction with Therapy in the second
example.

As I said at the start, this is a slippery area and there is plenty of room for
argument about when you should, and should not, adjust that error term.
Different people might reasonably choose different approaches. Those are some
of the fun issues in statistics, though I don’t expect students to appreciate all
the fun.

I am not going to show you exactly how we can manipulate our error
term, because it is not something that I think that you are likely to want to do
in the near future. But I can hint at the solution, and you can find an extended
discussion in Howell (2010), and perhaps a better one in Kline (2004). If we
want to add the effect of Gender and its interaction with Therapy back into
the error term, all we need to do is to combine and 
into a new term, combine their degrees of freedom, and then divide one
by the other. The square root of this adjusted standard deviation will serve as
the denominator for In the case of the cold bathtub, we don’t want that vari-
ability added back in, so we just use the from our overall analysis as our
denominator.

MSerror

d̂.

SSerror

SSInteraction,SSGender,SSerror,

Gender 3 Therapy

MSerror

MSerror

MSerror
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17.6 Reporting the Results

We have carried out a number of calculations to make various points, and I would
certainly not report all them when writing up the results. What follows is the basic
information that I think needs to be presented:

- In an investigation of the effects of different levels of information 
processing on the retention of verbal material, Participants were
instructed to process verbal material in one of four ways, ranging from
the simple counting of letters in words to forming a visual image of each
word. Participants in a fifth condition were not given any instructions
about what to do with the items except to memorize them for later recall.
A second dimension of the experiment compared Younger and Older
participants on recall, thus forming a factorial design.

The dependent variable was the number of items recalled
after three presentations. There was a significant Age effect

with younger participants
recalling more items than did older participants. There was also a
significant effect due to Condition 

and visual inspection of the means shows that there was
greater recall for conditions in which there was a greater degree of
processing. Finally, the Age by Condition interaction was significant

with a stronger effect of
Condition for the younger participants. When we look at differences in
recall between younger and older participants, is equal to 1.09,
indicating a difference of over a standard deviation. (However, this
difference is considerably greater for conditions involving greater
processing, and is negligible for conditions involving minor processing.)
For older participants the difference between a condition with minimal
processing and one with maximal processing had The effect
size would be even greater if computed on younger participants.

This study has clearly shown that the common observation that older
people do not recall information as well is tied to the level of processing. In
tasks requiring little possessing, there are no Age effects, whereas there are
substantial Age effects for tasks involving greater processing.

17.7 Unequal Sample Sizes

When we were dealing with a one-way analysis of variance, unequal sample sizes
did not present a serious problem—we simply adjusted our formula accordingly.
That is definitely not the case with factorial designs. Whenever we have a facto-
rial design with unequal cell sizes, the calculations become considerably more dif-
ficult, and the interpretation can be very unclear. The best solution is not to have

d̂ 5 2.26.

d̂

1 1F4,90 2 5 5.93, p 6 .05, v̂ 2 5 .059 2 ,

v 2ˆ 5 .554 2 , 1 1F4,94 2 5 47.19, p 6 .05,

1 1F1,90 2 5 29.94, p 6 .05, v̂ 2 5 0.87 2 ,

2 3 5
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unequal in the first place. Unfortunately, the world is not always cooperative,
and unequal are often the result. Standard statistical software usually provides
the results that are most likely to be meaningful as the default. However, there are
situations in which the standard solution is less than optimal. An extensive discus-
sion of this problem is contained in Howell (2010).

17.8 Masculine Overcompensation Thesis: 
It’s a Male Thing

Willer (2005) carried out a fascinating series of experiments looking at what is
known as “masculine overcompensation” to explain behavioral choices. “The mas-
culine overcompensation thesis asserts that men who feel insecure about their mas-
culinity enact extreme masculine behaviors in an effort to achieve masculine status
in their eyes and others” (Willer, 2005, p. 1). The basic idea is that if you were a male
and I could somehow make you feel less masculine, you would then be more likely to
respond in more stereotypic masculine behavior. You might, for example, be more
likely to buy a gun, go to a prize fight, denounce gay males, order a Hummer, or
watch a violent movie. You may see parallels between this theory and the work by
Adams et al. (1996) on homophobia that we covered earlier in the book.

Willer asked male and female participants to fill out a “gender identity sur-
vey” and then told them (randomly) that they scored in the male or female range
on the scale. This was a design with male and female participants crossed
with male and female feedback. (The feedback was independent of anything the
participant had marked on the survey. Willer just made it up.) Following the feed-
back, participants filled out two survey packets. One dealt with support for an
amendment banning same-sex marriage and with support for George W. Bush and
the Iraq war. The other described four different cars (an SUV, a minivan, a coupe,
and a sedan) and asked the participant to rate the quality of each car and how
much he or she would be willing to pay for each car. The results were basically the
same whether the participant was rating the war, gay marriage, or cars, but we will
look at what the participant would be willing to pay (in thousands of dollars) for
the SUV. According to Willer, the SUV was considered to represent “aspects of
masculinity in American culture.” Willer’s hypothesis was that when a male was
told that he scored nearer the female end of the sexuality scale, he would feel
threatened and compensate by engaging in more masculine kinds of behavior, in
this case raising his evaluation of an SUV, often thought of as a “male thing.”
Willer did not expect there would be similar differences in female participants in
the two conditions.

The data in Table 17.5 were generated to have nearly the same means and
standard deviations that Willer found, though some minor changes were made to
compensate for forcing the sample sizes to all equal 25. (I also suspect that Willer’s
data was positively skewed, but equally in each condition.) The labels
“Confirmed” and “Threatened” relate to whether the feedback would be perceived
as in line with an individual’s own gender or the opposite gender.

2 3 2

ns
ns
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Table 17.5a
Data for Masculine Overcompensation Study

Condition Price (in thousands) Mean (sd)

29.92 17.79 18.33 31.90 47.18 56.10 33.02 15.36
Male 26.72 13.14 0.14 49.73 16.87 48.73 21.66 36.52 28.00 (13.84)
Threat 28.02 30.58 29.01 22.59 22.78 1.71 34.60 29.60

37.94

28.27 35.25 18.69 30.50 9.93 10.98 19.26 21.69
Male 25.77 24.42 19.61 22.36 24.16 9.16 2.12 22.40 20.70 (9.25)
Confirm 35.41 17.37 22.78 10.64 22.03 4.48 37.19 15.93

27.07

30.57 36.39 35.83 30.93 38.12 0.25 25.09 23.74
Female 19.24 24.93 35.05 25.68 11.94 18.69 9.59 5.91 22.48 (11.53)
Threat 15.62 4.49 42.40 5.89 18.52 27.92 29.99 27.13

18.18

10.03 30.07 19.92 14.86 24.89 30.11 47.63 21.27
Female 3.82 26.32 44.13 46.76 23.43 39.96 31.14 9.68 26.44 (17.08)
Confirm 64.66 17.96 5.09 26.54 16.06 8.67 5.01 28.65

64.45

Table 17.5b
Row, Column, and Cell Means

Threat Confirm Row Mean

Male 28.00 (13.84) 20.70 (9.25) 24.35
Female 22.48 (11.53) 26.44 (17.08) 24.46
Col. Mean 25.24 23.57 24.41

From the means in Table 17.5b it would appear that there is at least some
support for Willet’s theory. When males were told that they scored toward the
feminine end of the scale they were willing to pay more for an SUV than males
who were told that they scored in the male end of the scale. (There was a similar
result for ratings of desirability of an SUV.)

The calculations are shown in Table 17.5.
From the summary table we can see that both the for Gender and the for

Condition are less than 1.00 and are not significant. However, Willer did not expect
those effects to be of interest. What is of interest is the interaction of Gender with
Condition. That is 4.515 and, on 1 and 96, is significant at When we
examine the means we see that there looks like a Condition difference for females, that
confirmation of their gender led to them to be willing to pay a higher price for the
SUV, stereotypically “masculine” behavior. There also appears to be a Condition effect
for males, but it is the opposite direction and in line with Willer’s theory. When their
sexual identity was threatened, males engaged in stereotypic masculine behavior.

p 6 .05.dfF

FF



Because the purpose of this study was primarily to look at how males respond
when there is some threat to their masculinity, it makes the most sense to look at the
simple effect of Condition on each Gender. (In fact, I think that a case could be
made for starting with simple effects and not even looking for main effects, because
they have little to do with the theory. That is pretty much what Willer did.) The sim-
ple effects summary tables will appear in the next section, so the calculations won’t
be repeated here. But it is important to note that the for the comparison of the two
conditions for males was 4.807 on 1 and 48 This is significant at For
females the was 0.923, which is not significant. Therefore, we can conclude that
when males are told that they fall on the female side of a scale of sexuality (and pre-
sumably feel threatened), they are more likely to pay a higher price for an SUV,
which is a “man thing.” The same is not true for females, whose simple effect test did
not lead to rejection of the null hypothesis and moved in the opposite direction.
(Willer found very similar results when he looked at attitudes about homosexuality,
support for violent military action, support for George W. Bush, and ratings of the
desirability of SUVs. In other words, this appears to be a robust finding.)

F
p 6 .05.df.

F
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Table 17.6
Analysis of Variance Summary Table for the Study of Masculine Overcompensation

Overall Analysis

Source df SS MS F

G(Gender) 1 0.366 0.366 0.002
C(Condition 1 69.722 69.722 0.397
GC 1 792.207 792.207 4.52*
Error 96 16,844.257 175.461

Total 99 17,706.552

 SSerror 5 SStotal 2 SScells 5 17,706.552 2 862.295 5 16,844.257

 SSCG 5 SScells 2 SSG 2 SSC 5 862.295 2 0.366 2 69.722 5 792.207

 5 862.295

 SScells 5 n© 1Xcg 2 Xgm 2 2 5 25 c 127.998 2 24.406 2 2 1 120.699 2 24.406 2 2
1122.484 2 24.406 2 2 1 126.444 2 24.406 2 2 d

 SSC 5 ng© 1XC 2 Xgm 2 2 5 125 2 12 2 3 125.241 2 24.406 2 2 1 123.572 2 24.406 2 2 4 5 69.722

 SSG 5 nc© 1XG 2 Xgm 2 2 5 125 2 12 2 3 124.348 2 24.406 2 2 1 124.464 2 24.406 2 2 4 5 0.336

 SStotal 5 © 1X 2 Xgm 2 2 5 ©X2 2
1©X 2 2

N
5 77,272.23 2

12,440.61 2 2
100

5 17,706.552

*p � .05

Other ways of looking at these simple effects

In the next section using SPSS you will see the simple effects tested as two one-
way analyses of variance, one for each Gender. There are two other ways that
we could look at the simple effects. First, we could repeat the tests but thisF



time use the pooled error term from the overall analysis of variance. The other
way to approach the simple effects is to note that with two conditions, we can
use a test for two independent samples our analysis. If you use the resulting
values are for males and for females. We would reject the null
hypothesis for males. If you square those values you get 4.807 and 0.923, which
are identical to the values we originally calculated. That is true because an 

test on two conditions is exactly equivalent to the square of the testing those
same means.

17.9 Using SPSS for Factorial Analysis of Variance

The printout from an SPSS analysis of the data in the previous example is shown
in Figure 17.3. The first variable in the data set is coded 1 or 2, and indicates
whether the participant was male (1) or female (2). The second variable indicates
whether the participant was in the Threat (1) or the Confirm (2) group. The third
column contains the dependent variable. I have annotated the printout of the sum-
mary table because SPSS reports a number of terms that you have not seen before—
you do not really need to see them. They add very little to our understanding.

tF
F

t
20.961t 5 2.193

t,t
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Figure 17.3 
SPSS analysis of Willer’s data

Tests of Between-Subjects Effects

Dependent Variable: Price willing to pay

Type III Sum
Source of Squares df Mean Square F Sig.

Corrected Model 862.340a 3 287.447 1.638 .186
Intercept 59565.772 1 59565.772 339.482 .000
gender .335 1 .335 .002 .965
threat 69.639 1 69.639 .397 .530
gender*threat 792.366 1 792.366 4.516 .036
Error 16844.212 96 175.461
Total 77272.324 100
Corrected Total 17706.552 99

a. R Squared .049 (Adjusted R Squared .019)55

SSTotal
Test on grand 
mean � 0

Sum main effects and 
interaction

Tests on main effects and
interactions

f



After the overall analysis of variance are the tests on simple effects. You can pro-
duce these in SPSS by going to the drop-down menu labeled Data and asking it to
split the file on the basis of gender. Then when you run the analysis you will obtain
an analysis for males and separate analysis for females.

17.10 Seeing Statistics

On this book’s Web site you will find an interesting applet that allows you to
look at, and manipulate, main effects and interactions. An example of this dis-
play follows.
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Univariate Analysis of Variance
Gender Male

Tests of Between-Subjects Effectsb

Dependent Variable: Price willing to pay

Type III Sum
Source of Squares df Mean Square F Sig.

Corrected Model 665.906a 1 665.906 4.807 .033
Intercept 29,641.742 1 29,641.742 213.985 .000
Threat 665.906 1 665.906 4.807 .033
Error 6,649.068 48 138.522
Total 36,956.716 50
Corrected Total 7,314.974 49

a. R Squared .091 (Adjusted R Squared .072)
b. Gender Male

Gender Female

Tests of Between-Subjects Effectsb

Dependent Variable: Price willing to pay

Type III Sum
Source of Squares df Mean Square F Sig.

Corrected Model 196.099a 1 196.099 .923 .341
Intercept 29,924.365 1 29,924.365 140.888 .000
threat 196.099 1 196.099 .923 .341
Error 10,195.144 48 212.399
Total 40,315.608 50
Corrected Total 10,391.243 49

a. R Squared .091 (Adjusted R Squared )
b. Gender Female5

5 2.0025

5

5

55

5



The best way to understand what this applet does is to play with it. At the
bottom of the display you will see a slider for the row effect. If you move that
left and right, you will alter the row effect that shows in your graph. Basically,
you will move the two lines apart vertically. If you then use the slider labeled
“Col,” you will manipulate the column effect, which will have the result of
rotating the lines by raising or lowering the right-hand ends of the lines. Finally,
by manipulating the bottom slider you can increase or decrease the interaction,
which has the effect of changing the degree to which the lines run nonparallel
to each other.

n Use the data from Table 17.3 on recall as a function of Age and
Condition, ignore the three middle conditions and focus on the
Counting and Intentional conditions. By using all three sliders, you
should be able to build the appropriate main and interaction effects.
You can’t exactly replicate what the data show, but you can come
reasonably close.

n Now increase or decrease either the row effect of the column effect.
You should see what we mean when we say that those effects are
independent. In other words, the column (and the interaction)
effect do not change just because we have increased the size of the
row effect.

n Now create a display that has a substantial Row effect, but
absolutely no column or interaction effect.
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17.11 Summary

In this chapter we extended the discussion of the analysis of variance to include
designs involving two independent variables. In this analysis we assumed that
there are still different participants in the different cells. We defined a factorial
design as one in which we have two or more independent variables and in which
every level of every independent variable is paired with every level of every other
independent variable. We considered some of the advantages of factorial designs,
especially that they allow us to look at the interaction effects of two variables. An
interaction effect is the finding that whatever happens at one level of the
independent variable, something else happens at another level. For example, in
the study of masculinity, the difference between the Threatened and Confirmed
conditions were quite different for males and females. Males who were told that
they scored at the female end of the scale (Threatened) responded with more mas-
culine behavior, whereas just the opposite happened for females (who responded
with slightly more masculine behavior when their gender was Confirmed), though
for females the effect was not significant.

We considered the difference between main effects, which is the effect of one
variable collapsed across the levels of the other variable, and simple effects, which
is the effect of one variable at one level of the other variable. Simple effects, like
interactions, are often the most interesting part of an analysis of data.

We looked at the calculation of an analysis of variance for a factorial design
and found that in many ways it is just an extension of what we covered in the
previous chapter on one-way designs. For the main effects we simply ignore the
presence of the other variable when we do our calculations. The calculation is
different for the interaction, but essentially we just treat all of the cells as if they
were a one-way to calculate and then we subtract the two main effects from

to get the interaction term. We then get mean squares by dividing the sums
of squares by their degrees of freedom, and then calculate our by dividing each
mean square by the error mean square.

Finally, we looked at ways of calculating measures of effect size. The r-family
measures ( and ) are simple extensions of what we saw in Chapter 16. The
calculation of is similar to calculations in a one-way design, but the choice of the
denominator (our estimate of error) is not always a clear one.

Some important terms in this chapter are

d̂
v 2h2

F
SScells

SScells
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Factors, 453

Two-way factorial design, 453

Factorial design, 453

Interaction, 455

factorial, 4552 3 5

Cell, 455

Grand mean, 456

Main effect, 458

Simple effect, 459
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17.12 Exercises

17.1 Thomas and Wang (1996) looked at the effects of memory on the learning of foreign
vocabulary. Most of you have probably read that a good strategy for memorizing words in
a foreign language is to think of mnemonic keywords. For example, in Tagalog (the offi-
cial language of the Philippines), the word for eyeglasses is salamin. That word sounds
much like our “salmon,” so a possible strategy would be to imagine a picture of a salmon
wearing glasses. This type of encoding strategy has been recommended for years, and peo-
ple who try it generally report good immediate recall of foreign vocabulary. This fits
nicely with dual-coding theories, in which the word is viewed as being stored both lexi-
cally and visually.

However, the studies that have looked at this phenomenon have generally asked the
same participants to recall items at several different times. Since each recall session
means an additional practice session, practice and time effects are confounded. To get
around this problem, Thomas and Wang used different participants at the two recall
intervals. Data with very nearly the same means and variances as theirs are presented
below.

Thomas and Wang ran a study in which they divided participants into one of three
“Strategy” groups, and then tested them at one of two times (5 minutes or 2 days). The
strategies were

Keyword-Generated Participants generated their own keywords to help them
to remember 24 Tagalog words.

Keyword-Provided The experimenters provided the keywords to help them
to remember 24 Tagalog words.

Rote Learning Participants were simply instructed to memorize the
meaning of the Tagalog words.

The dependent variable was the number of English words recalled at either 5 minutes
or 2 days.

Generated/5m 18 9 22 21 11 10 16 13 4 15 21 17 17

Provided/5m 24 19 19 23 21 23 19 22 20 21 18 18 20

Rote/5m 7 21 14 18 12 24 15 11 16 11 18 24 9

Generated/2d 7 8 7 2 6 4 4 4 5 2 2 1 0

Provided/2d 2 1 2 4 0 2 2 4 0 3 0 2 4

Rote/2d 15 23 9 18 13 7 7 3 5 12 26 15 13

(a) How would you characterize this design?
(b) What would be a reasonable a priori research hypothesis?
(c) Calculate the cell means and standard deviations.
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17.2 Plot the means for the data in Exercise 17.1 to show what the data have to say.

17.3 Run the analysis of variance for the data in Exercise 17.1 and draw the appropriate
conclusions.

17.4 The interaction in the analysis for Exercise 17.3 suggests that it would be profitable to
examine simple effects. Compute the simple effects for the differences due to Strategy
within each time interval and interpret the results.

17.5 Use the Bonferroni test to elaborate on the results of Exercise 17.4

17.6 The results in Exercises 17.1–17.4 are certainly extreme, and the statistics look unusual.
What might trouble you about these data?

17.7 With respect to the previous five exercises, what have you learned about how you might
study for your next Spanish exam?

17.8 In a study of mother-infant interaction, mothers are rated by trained observers on the qual-
ity of their interactions with their infants. Mothers were classified on the basis of whether
this was their first child (primiparous versus multiparous) and whether the infant was low-
birthweight (LBW) or full-term (FT). (Full term generally means normal birth weight.)
The data represent a score on a 12-point scale, on which a higher score represents better
mother-infant interaction.

Primip/LBW 6 5 5 4 9 6 2 6 5 5

Primip/FT 8 7 7 6 7 2 5 8 7 7

Multip/LBW 7 8 8 9 8 2 1 9 9 8

Multip/FT 9 8 9 9 3 10 9 8 7 10

Run and interpret the appropriate analysis of variance.

17.9 Referring to Exercise 17.8, it seems obvious that the sample sizes do not reflect the relative
frequency of these characteristics in the population. Would you expect the mean for all
these primiparous mothers to be a good estimate of the population of primiparous mothers?
Why or why not?

17.10 Use simple effect procedures to compare low-birthweight and normal-birthweight condi-
tions for multiparous mothers. (Do this by recalculating the error term rather than using

from the complete experiment.)

17.11 In Exercise 17.10 you used traditional simple and effect procedures.
(a) What would happen if you simply ran a test between LBW and FT means for multi-

parous mothers using as the pooled error term?
(b) What would be different if you used the pooled variances of the two groups being

compared?

17.12 In Chapter 16 we had three different examples in which we compared three groups on the
basis of smoking behavior. We can set this design up as a factorial by using Task as
one variable and Smoking group as the other. The dependent variable was the number of
errors the participant made on that task. These data are repeated below.

3 3 3

MSerror

t

MSerror
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Pattern Recognition Recall Task Driving Simulation

Non- Delay Active Non- Delay Active Non- Delay Active 
Smoke Smoke Smoke Smoke Smoke Smoke Smoke Smoke Smoke

9 12 8 27 48 34 15 7 3
8 7 8 34 29 65 2 0 2

12 14 9 19 34 55 2 6 0
10 4 1 20 6 33 14 0 0
7 8 9 56 18 42 5 12 6

10 11 7 35 63 54 0 17 2
9 16 16 23 9 21 16 1 0

11 17 19 37 54 44 14 11 6
8 5 1 4 28 61 9 4 4

10 6 1 30 71 38 17 4 1
8 9 22 4 60 75 15 3 0

10 6 12 42 54 61 9 5 0
8 6 18 34 51 51 3 16 6

11 7 8 19 25 32 15 5 2
10 16 10 49 49 47 13 11 3

Plot the cell means for this design.

17.13 Run the analysis of variance on the data in Exercise 17.12 and draw the relevant conclu-
sions.

17.14 Even without picking up your pencil you can probably determine at least one conclusion
about the data in Exercise 17.13. What is that conclusion, and why is it of no interest?

17.15 Compute the necessary simple effects to explain the results of Exercise 17.13. What do
these results tell you about the effects of smoking?

17.16 For Exercise 17.15 use the protected test to compare the Nonsmoking group to the other
two groups in the Driving Simulation task.

17.17 If you go back to Exercise 16.2, you will see that it really forms a factorial. Run the
factorial analysis and interpret the results. (The data are reproduced here.) 

Younger/Low 8 6 4 6 7 6 5 7 9 7

Younger/Hi 21 19 17 15 22 16 22 22 18 21

Older/Low 9 8 6 8 10 4 6 5 7 7

Older/Hi 10 19 14 5 10 11 14 15 11 11

17.18 In Exercise 16.3 you ran a test between Groups 1 and 3 combined versus Groups 2 and 4
combined. How does that test compare to testing the main effect of Location in Exercise
17.16? Is there any difference?

17.19 Nurcombe, Howell, Rauh, Teti, Ruoff, and Brennan (1984) conducted an intervention pro-
gram with mothers of low-birthweight infants (LBW). (It is often difficult to recognize sig-
nals from low-birthweight infants, and the program offered training in this domain.) One
group of mothers received instruction on responding to subtle signals of LBW infants, while
another group did not receive such instruction. A third group of mothers of normal-
birthweight infants served as a control group. In addition, mothers were divided by
education level. Partial data from that study follow.

2 3 2

t
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(a) Data

Group

Group 1 Group 2 Group 3
LBW LBW Full Age

Education Experimental Control Term Means

High School 14 25 18
Education or 20 19 14
Less 22 21 18

13 20 20
13 20 12
18 14 14
13 25 17
14 18 17

Mean 15.875 20.250 16.250 17.485

More Than 11 18 16
High School 11 16 20
Education 16 13 12

12 21 14
12 17 18
13 10 20
17 16 12
13 21 13

Mean 13.125 16.500 15.625 15.083
Group Mean 14.500 18.375 15.938 16.271

(a) Run the appropriate analysis of variance on these results.
(b) What would you conclude about the efficacy of the intervention program?

17.20 Calculate and for the Maternal Adaptation data in Exercise 7.19.

17.21 Calculate for the main effect of Level of processing in the data in Exercise 17.17.

17.22 Calculate for the difference due to education in Exercise 17.19. Next ignore the normal
birthweight condition in Exercise 17.19 and calculate for comparing the two low-
birthweight groups.

17.23 Make up a set of data for a design that has no main effects but does have an
interaction.

17.24 Describe a reasonable experiment in which the primary interest would be in the interaction
effect.

17.25 Calculate and for the data in Exercise 17.1.

17.26 Calculate for the two main effects for the data in Exercise 17.1. (Choose two groups to com-
pare that seem reasonable from what you understand about the design of the experiment.)

17.27 Calculate and for the data in Exercise 17.13.

17.28 Calculate for the two main effects for the data in Exercise 17.13, choosing suitable groups
for comparison.

d̂

v2h2

v2h2

2 3 2

d̂
d̂

d̂

v2h2
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17.29 By comparing the formulae for and , tell when these two different statistics would be
in close agreement and when they would disagree noticeably.

17.30 In the Eysenck (1974) study analyzed in Section 17.1, the real test of Eysenck’s hypothesis
about changes with age is found in the interaction. Why?

17.31 In the discussion of the results in Table 17.4, I stated that you should not routinely calcu-
late every possible simple effect, but should look at only those in which you are interested.
Explain why you think I said this, with reference to the discussion of familywise error rate
in Chapter 16.

17.32 Becky Liddle at Auburn University published a study in 1997 on disclosing sexual orienta-
tion in class. She taught four sections of the same class, and at the week of the final lecture
she disclosed her lesbian identity to two of the sections, and withheld it from the two oth-
ers. She was concerned with the issue of whether disclosure would influence student eval-
uations of the course. The means and average variance for the two conditions, further
broken down by gender of the students, are presented below. There were 15 students in
each cell. Perform a two-way analysis of variance and draw the appropriate conclusions.
(The means are the same that Liddle found, but because I could not control for difference
in midterm evaluations, as she did, the effect of gender is different from the effect she found.
The other effects lead to similar conclusions.)

Sexual Identification:

Disclose Not Disclose Mean

Female 37.15 36.56 36.86
Male 33.00 33.00 33.00

Means 35.08 34.78 34.93

Average within-cell variance 20.745

v2h2
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Repeated-
Measures
Analysis
of Variance

18

Concepts that you will need to remember 
from previous chapters

: Sums of squares of all scores, of group means,
and within groups

: Mean squares for group means, and within
groups

Interaction: The situation where the effect of one variable
depends, or is conditional on, another variable

Degrees of freedom: The number of independent pieces of
information remaining after estimating one 
or more parameters

Effect size ( ): A measure intended to express the size of 
a treatment effect in terms that are meaningful
to the reader

( ), ( ): Correlation-based measures of effect size

Multiple comparisons: Tests on differences between specific group
means

v2omega2h2Eta2

d̂

MSgroup, MSerror

SStotal, SSgroup, SSerror
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In this chapter we will move to the case where we have multiple scores from
the same person. We will examine why it is important to take into account that
repeated measures are not independent, and we will see how to carry out the analy-
sis. We will also look at making multiple comparisons among treatment means and
consider the advantages and disadvantages of such designs.

In the previous two chapters we have been concerned with experimental
designs in which there are different subjects in each group or cell. These designs are
called between-subjects designs because they involve comparisons between differ-
ent groups of subjects. However, many experimental designs involve having the same
subject serve under more than one treatment condition. For example, we might take
a baseline measurement of some behavior (i.e., a measurement before any treatment
program begins), take another measurement at the end of a treatment program, and
yet a third measurement at the end of a six-month follow-up period. Designs such as
this one, in which subjects are measured repeatedly, are called repeated-measures
designs and are the subject of this chapter. You may recognize that what will be a
repeated-measures analysis of variance is very much like what I earlier called a test
for related samples, although we are not restricted to only two measurements. In fact
this is just the general case of that test. In the same vein everything I said about the

test for related samples applies here. If two or more samples are related in any
way—not just multiple measures on the same subjects—then this design applies.
By far the most common use of this design is in cases in which the same set of sub-
jects are measured repeatedly on the same dependent variable, and that is the model
followed in this chapter.

Definition Between-subjects designs: Designs in which different subjects serve under the
different treatment levels.
Repeated-measures designs: Experimental designs in which each subject receives
all levels of at least one independent variable.

There is a wide variety of repeated-measures designs, depending on whether
each subject1 serves under all levels of all variables or whether some independent
variables involve different groups of subjects while others involve the same subjects.
In this chapter we will be concerned only with the simplest case, in which there is
one independent variable and each subject serves under all levels of that variable.
For analysis of more complex designs you can refer to Howell (2010) or Winer,
Brown, and Michels (1991).

t
t

t
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1 Standard APA format calls for identifying human subjects as “participants”, or a similar term. However, the
word “subject” is still used with statistical analyses, and it is used throughout this chapter because that is the
standard way to refer to these experimental designs.



18.1 An Example: Depression as a Response to an Earthquake

Nolen-Hoeksema and Morrow (1991) had the good fortune to have administered a
measure of depression to college students three weeks before the Loma Prieta earth-
quake in California in 1989. This was a major earthquake that would be expected
to have measurable effects on students. Having collected these data, they went out
and collected repeated data to track adjustment. The data that follow are modeled
loosely on their findings. Our measurements are taken every three weeks, starting
two weeks before the earthquake, and the data are shown in Table 18.1.
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Table 18.1
Depression Scores Before and After an Earthquake (Based on Nolan-Hoeksema
and Morrow (1991))

(a) Data

Subject Week 0 Week 3 Week 6 Week 9 Week 12 Subj Mean

1 6 10 8 4 5 6.6
2 2 4 8 5 6 5.0
3 2 4 8 5 5 4.8
4 4 5 8 10 7 6.8
5 4 7 9 7 11 7.6
6 5 7 9 7 7 7.0
7 2 9 11 8 7 7.4
8 6 9 11 8 8 8.4
9 13 10 11 8 8 10.0

10 7 3 11 8 11 8.0
11 7 12 8 8 10 9.0
12 7 10 11 9 11 9.6
13 9 10 13 10 10 10.4
14 9 11 12 6 12 10.0
15 11 11 12 19 6 11.8
16 11 12 12 12 19 13.2
17 12 12 12 13 15 12.8
18 12 12 13 13 15 13.0
19 7 12 13 13 14 11.8
20 13 10 13 14 15 13.0
21 13 14 11 15 15 13.6
22 13 14 14 17 16 14.8
23 13 14 15 11 16 13.8
24 14 14 15 20 14 15.4
25 15 17 16 21 18 17.4

Weekly 8.68 10.12 11.36 10.84 11.24 10.448
Mean

Grand mean � 10.448
N � 125 w � # weeks � 5 n � # of subjects � 25

©X2 5 15,596.00©X 5 1,306.00

(continued)
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Look first at part (a) in Table 18.1. You will notice that there is a great deal
of variability in the data, but much of that variability comes from the fact that
some people exhibit more depression than others, which really has very little to
do with the effects of the earthquake. The fact that you are more depressed in gen-
eral than I am does not speak at all to the issue of whether the earthquake had the
effect of increasing depression in those who experienced it. These are just indi-
vidual differences in severity of depression. They lead to a correlation between
the observations at one time and the observations at another time. Factoring this
correlation out of the overall earthquake effect is what makes this design so pow-
erful. What we are able to do with a repeated-measures design that we were not
able to do with between-subjects designs is to remove this variability in people’s
general level of depression from This has the effect of removing subject dif-
ferences from the error term and producing a smaller than we would have
otherwise. We do this by calculating a term called which measures dif-
ferences among people in terms of their reported depression. The term is
then subtracted from along with when we calculate (In the
previous design, in which every score represented a different subject, if we had
calculated it would have been the same thing as )

From part (b) in Table 18.1 you can see that is calculated in the usual
manner. Similarly and are calculated just as main effects always areSSweeksSSsubjects

SStotal

SStotal.SSsubjects

SSerror.SSweeks,SStotal,
SSsubjects

SSsubjects,
MSerror

SStotal.

Table 18.1
(continued)

(b) Calculations

(c) Summary Table

Source df SS MS F

Subjects 24 1,375.712
Weeks 4 121.152 30.288 6.40*
Error 96 454.048 4.730

Total 124 1,950.912

 SSerror 5 SStotal 2 SSsubjects 2 SSweeks 5 1,950.912 2 1,375.712 2 121.152 5 454.048

 5 121.152

 SSweeks 5 n© 1Xweek 2 Xgm 2 2 5 25 3 18.68 2 10.448 2 2 1 p 1 111.24 2 10.448 2 2 4
 5 1,375.712

 SSsubjects 5 w© 1Xsubj 2 Xgm 2 2 5 5 3 16.80 2 10.448 2 2 1 p 1 117.40 2 10.448 2 2 4
 SStotal 5 © 1X 2 Xgm 2 2 5 ©X2 2

1©X 2 2
N

5 15,596.00 2
13062

125
5 1,950.912

* p � .05



(square the deviations of the subject or group means from the grand mean, sum,
and multiply by the number of observations per mean). Finally, the error term is
obtained by subtracting and from 

The summary table, part (c) of Table 18.1, shows that I have computed an
for Weeks but not for Subjects. The reason is that is not an appropri-

ate denominator for an on subjects, nor do we have a term that would be.
Therefore we cannot test the Subjects variable. This is not a great loss, how-
ever, because we rarely are concerned with determining whether subjects are
different from one another. We computed only to allow us to remove
those differences from the error term and thus compute an appropriate error
term to test Weeks.

You may have noticed that no interaction is shown in the
summary table. With only one score per cell, the interaction term is the error term;
in fact some people prefer to write instead of Error. No matter whether you
think of it as Error or as the interaction, this term is still the appropriate
denominator for the on Weeks.

The value for Weeks is 6.40, based on 4 and 96 degrees of freedom.
The critical value of on 4 and 96 is We can therefore
reject and conclude that the earthquake was associ-
ated with a statistically significant increase in depression scores. It will be
easier to see what has happened if we look at the means across weeks, plotted
in Figure 18.1.

H0: m1 5 m2 5
p 5 m5

F.0514,96 2 5 2.49.dfF
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Figure 18.1
Plot of mean depression scores across weeks
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From Figure 18.1 we can see that depression increased for the first two meas-
urements following the earthquake and then began to level off. It had not, how-
ever, begun to fall even after twelve weeks.

18.2 Multiple Comparisons

If we wanted to carry the analysis further and make comparisons among means, we
could use the protected procedure discussed in Chapter 16. (Alternatively, we
could use a Bonferroni test by dividing the selected significance level by the num-
ber of tests. The arithmetic for both tests would be exactly the same.) The 
in this analysis would be the appropriate term to use in the protected For our data
the results are clear-cut, and there is little or nothing to be gained by making mul-
tiple comparisons. However, I will illustrate the procedure by comparing the mean
depression score before the earthquake with the mean of all of the depression
scores after the earthquake. Because the overall was significant, we can use the
protected to make this comparison.

The mean depression score before the earthquake can be read from Table 18.1
as 8.68. We can then average the post-earthquake means as

To compare depression pre- and post-earthquake we have

This has degrees of freedom because was used in place of the pooled
variance. A of clearly is significant at Thus we can conclude thata 5 .05.24.54t

MSerrordferrort
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Notice that the calculations in Table 18.1 do not differ in any important way
from the calculations in the two preceding chapters. We simply take deviations
of a specific set of means (such as group or subject means) from the grand mean,
square those deviations, and sum the results. We then multiply by an appropri-
ate constant, which is just the number of observations on which each of those
means is based. The degrees of freedom are just the number of mean deviations
in question minus one.



depression scores are significantly higher, on average, after the earthquake. Note
that we were able to run the protected test as if the means were from two inde-
pendent samples because the error term has been adjusted accordingly.

You might wonder how we can apply what appears to be a standard independent-
groups test when we know that the data are not independent. You will recall that in
Chapter 13 we handled dependent observations by forming differences and then 
taking the standard deviation of the differences. In footnote 1 in Chapter 14 (p. 467)
you could infer that the reason why we work with difference scores is because we could
not calculate the variances of differences of nonindependent samples directly from
variables and unless we knew the correlations between and . In other
words, we do it to obtain a correct error term. However, for a repeated-measures
analysis of variance, is, in fact, a correct estimate of the standard error of the
differences, even though we don’t use difference scores to calculate it. You can easily
demonstrate this to yourself by running a repeated-measures analysis of variance and a
test for two related samples on the same set of data (e.g., use Week 0 and Week 3 from

this study) and noting the similarities among the terms you calculate. (With one in
the numerator, )

I chose the comparison that I just tested for specific reasons, even though no par-
ticular comparison was required for us to see what was going on in the data. The first
reason for choosing this comparison is that it represents a reasonable thing to test—are
scores after the earthquake higher than those collected before the earthquake? The sec-
ond reason for choosing this comparison is that it illustrates how we can compare one
mean with a combination of other means. All we have to do is to average the post-
earthquake means and compare that result with the pre-earthquake means. Notice that
I kept track of the number of scores going into each mean (25 and 100).

18.3 Effect Size

The example involving depression offers a meaningful example of the use of effect
size measures. First, we are dealing with a problem that affects many people, espe-
cially those living in earthquake zones. It is important not only to know that
depression scores rise following an earthquake but also to have a measure on just
how large a difference there is. Because depression scores do not have direct mean-
ing to people, saying that depression increased by 2.2 points is not particularly
informative. This is an ideal case wherein we might wish to scale and report the
difference in terms of standard deviation units.

For the pre-earthquake measurement the mean depression score was 8.68.
After the earthquake, depression rose to 10.89. We could either scale this increase
by the size of the standard deviation for the pre-earthquake scores or by the pooled
overall standard deviation, which is the square root of . I will do it both ways
to make a point.

We will again use as our measure of effect size, and we will calculate using
the pre-earthquake standard deviation (4.14). We subtract the pre-quake score

d̂d̂

MSerror
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MSerror
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t
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from the post-quake score so as to have a positive value of representing an
increase in depression.

This tells us that post-quake scores are about half a standard deviation higher than
they were before the quake. That is a substantial difference.

If we use the square root of we will have a measure
of effect size that is

and this result is nearly double the result we found using the pre-quake standard
deviation. The reason that we find such a difference is that when using 
we are factoring out the correlation among scores, and therefore we are factoring
out individual differences in depression. Since differences between people in terms
of depression is a normal part of life, it seems reasonable to leave it in when we cal-
culate an effect size measure. (See the discussion in Chapter 13, where I talk about
this issue.) This distinction is not an easy one to see, and it is not always easy to
choose the correct approach. The general suggestion would be to use the standard
deviation of a control condition (e.g., pre-test scores) if one is available.

18.4 Assumptions Involved in Repeated-
Measures Designs

Repeated-measures designs involve the same assumptions of normality and homo-
geneity of variance required for any analysis of variance. In addition, they require
(for most practical purposes) the assumption that the correlations among pairs of
levels of the repeated variable are constant.2 In the case of our example this would
mean that we assume that (in the population) the correlation between Week 0 and
Week 3 is the same as the correlation between Weeks 3 and 4, and so on. For exam-
ple, if the correlation between depression at Week 0 and depression at Week 3 is
0.50, then the correlation between depression scores for any other pairs of weeks
should also be about 0.50. This is a rather stringent assumption and one that prob-
ably is violated at least as often as it is met. The test is not seriously affected unless
this assumption is seriously violated. If it is seriously violated, there are two things
you can do to ease the situation. The first thing you can do is to limit the levels of
the independent variable to those that have a chance of meeting the assumption.
For example, if you are running a learning study in which everyone starts out

1MSerror
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2The assumption isn’t actually about the correlations, but about the pattern of covariances, but it is much
easier to comprehend, and not very far wrong, to think in terms of the correlations.



knowing nothing and ends up knowing everything, the correlation between early
and late trials will be near zero, whereas the correlations between pairs of interme-
diate trials probably will be high. In that case do not include the earliest and lat-
est trials in your analysis. (They wouldn’t tell you much anyway.)

The second thing you can do is to use a procedure proposed by Greenhouse
and Geisser (1959). For our example we had and 
for our It has been shown that if you took the same but evaluated it on 1 and

you would have a very conservative test no matter how serious the vio-
lation. For our example this would mean evaluating our obtained against

We would still reject our null hypothesis even using this conserva-
tive test. Greenhouse and Geisser (and later Huynh and Feldt, 1976) derived less
conservative corrections to the degrees of freedom. We will see a reference to this
shortly. For a further discussion of these corrections, see Howell (2010).

18.5 Advantages and Disadvantages 
of Repeated-Measures Designs

The major advantage of repeated-measures designs has already been discussed.
Where there are large individual differences among subjects, these differences lead
to large variability in the data. When subjects are measured only once, we cannot
separate subject differences from random error, and everything goes into the error
term. (That is what happened when we used the standard deviation of pre-quake
scores to calculate ) When we measure subjects repeatedly, however, we can
assess subject differences and separate them from error. This produces a more pow-
erful experimental design and thus makes it easier to reject .

The disadvantages of repeated-measures designs are similar to the disadvan-
tages we discussed with respect to related-sample tests (which are just special
cases of repeated-measures designs). When subjects are used repeatedly, there is
always the risk of carry-over effects from one trial to the next. For example, the
drug you administer on Trial 1 may not have worn off by Trial 2. Similarly, a sub-
ject may learn something in early trials that will help her in later trials. In some
situations this problem can be reduced by counterbalancing the order in which
treatments are administered. Thus half the subjects might have Treatment A fol-
lowed by Treatment B, and the other half might receive Treatment B followed by
Treatment A. This counterbalancing will not make carry-over effects disappear,
but it may make them affect both treatments equally. And obviously we cannot
counterbalance Weeks in our example, because we cannot measure Week 3 before
we measure Week 0. Although there are disadvantages associated with repeated-
measures designs, in most situations the advantages outweigh the disadvantages,
and such designs are popular and extremely useful in experimental work.

Definition Counterbalancing: An arrangement of treatment conditions designed to balance
practice effects.

t
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18.6 Using SPSS to Analyze Data in a 
Repeated-Measures Design

Repeated-measures analyses can be a problem with some statistical software. SPSS
will run the analysis fairly easily, although the printout is not what you might
expect. I will present an abbreviated version of that printout in Figure 18.2. I will
also show how the data need to be entered into a data file (one row per subject)
and what choices to make in the various dialog boxes. I only show the data for the
first ten subjects, to save space.

Notice that each line represents the data for a single participant. We then use
the SPSS Analyze/General Linear Model/Repeated Measures… command to
specify the design of our analysis. Because the way you set up the analysis is
unusual, I have shown the two important dialog boxes in Figure 18.3.

At this point you would click on the Add button to move the information to
the window, and then click on the Define button, which would bring you to the
next dialog box.

In the dialog box shown in Figure 18.3 (b) I have specified that the scores for
the five Weeks are the within-subject variables. I don’t have any between-subjects
variables (or covariates), so those boxes are left blank.

The most relevant part of the analysis of variance is shown below in Figure
18.4. You can see that the results in this figure are the same as the results we
obtained in Table 18.1.
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Figure 18.2
SPSS analysis of the earthquake data



Although many of the numerical values in Figure 18.4 can be found in Table 18.1,
there are many that are new. This requires some explanation.

When SPSS runs a repeated-measures analysis of variance, it breaks the sum-
mary table into that part that deals with repeated measures (Within-subject
effects) and that part that deals with measures that are not repeated across the
same subjects (Between-subject effects). In the output dealing with Within-subject
effects, you see the test on Weeks, which is the effect that we particularly care
about. This (6.404) is the same that we obtained before. However, in that same
table you see references to Greenhouse and Geisser, Huyhn and Feldt, and Lower
Bound. These are just corrections to the degrees of freedom that can be applied
when we violate the assumption that correlations between pairs of weeks are equal.
See Howell (2010) for a more extensive discussion of this.

In the Between-subjects part of the output you normally see tests related to dif-
ferences between subjects. Here we don’t have a between-subjects variable (as we
would if we broke the data down by males and females, who obviously must be based

FF
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Figure 18.3a
Dialog boxes showing how to specify the repeated measures analysis using SPSS
(a) Specify a name for the repeated measures, and the number of levels



on different subjects), and so the only test here is a test on the null hypothesis that
the grand mean is 0. Such a test is only rarely of interest, and we usually ignore it.

18.7 Writing Up the Results

If I were writing up the results of this study I would give a short introduction to
why the study was run, and I would most likely plot the means over time (here
I have just indicated that the figure should be included in standard APA form). 
I would give both the from the overall analysis and the results of any subsequent
tests that I ran, and an effect size for those subsequent tests. My write-up would
look as follows.

F

494 Chapter 18 Repeated-Measures Analysis of Variance

Figure 18.3b
(b) Specify the design



________✍ Nolan-Hoeksema and Morrow (1991) collected data on depression from
a large group of students as part of a different study. Because the Loma
Prieta earthquake occurred shortly after their data collection, they
tracked these same participants and collected depression scores every
three weeks through Week 12. The weekly means are shown in Figure 1
below and show that depression scores increased for several weeks after
the earthquake and then began to level off.

Insert Figure 1 about here

A repeated measures analysis of variance on these data produced a
significant result A subsequent comparison
of the pre-earthquake measure with the mean of the post-earthquake
measures was statistically significant indicating that1t 196 2 5 24.54 2 ,

1F14,96 2 5 6.404, p 6 .05 2 .
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Figure 18.4
Selected output from SPSS

Tests of Within-Subjects Effects

Measure: MEASURE_1

Type III Sum
Source of Squares df Mean Square F Sig.

WEEKS Sphericity Assumed 121.152 4 30.288 6.404 .000
Greenhouse-Geisser 121.152 3.371 35.941 6.404 .000
Huynh-Feldt 121.152 3.988 30.379 6.404 .000
Lower-bound 121.152 1.000 121.152 6.404 .018

Error(WEEKS) Sphericity Assumed 454.048 96 4.730
Greenhouse-Geisser 454.048 80.900 5.612
Huynh-Feldt 454.048 95.714 4.744
Lower-bound 454.048 24.000 18.919

Tests of Between-Subjects Effects

Measure: MEASURE_1

Transformed Variable: Average

Type III Sum
Source of Squares df Mean Square F Sig.

Intercept 13645.088 1 13645.088 238.046 .000
Error 1375.712 24 57.321

Corrections for
violation of
assumptions

Error term to test 
differences due to 
weeks

F on H0: grand mean � 0SSsubjects

F for differences over
time



depression scores increased significantly in the weeks after the earthquake.
A measure of effect size, using the pre-earthquake standard deviation as
the basis for standardization, yielded indicating an increase in
depression scores of just over half a standard deviation. As is apparent in
Figure 1, by Week 12 the depression scores appear to be leveling off, but
have not started to return to baseline levels.

18.8 A Final Worked Example

As a final example I will adapt an example from Chapter 16 to illustrate the differ-
ences and similarities between the repeated-measures design and the more traditional
between-subjects design. In Chapter 16 we used the data from Eysenck (1974) on
recall as a function of depth of processing and examined the effect of recall Condition
on older subjects. In Table 18.2 I use the same set of numbers for the sake of continu-
ity. However, I have rearranged the data points to look like what we would expect if
the data came from 10 subjects who served under each of the five recall conditions,
rather than from 50 subjects who each served under only one condition.3 I have
merely shifted scores up and down in a column so that an individual who was one of
the poor performers under one condition is also a poor performer under the other con-
ditions, and similarly for the subjects showing good recall. The numbers in each
Condition are still the same. (If you moved these new data back into Chapter 16, you
would obtain exactly the same results that we found there.) The data follow, with an
additional column on the right for the subject means.

d̂ 5 0.53,
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Table 18.2
Repeated-Measures Analysis Applied to the Eysenck Example

Condition

Subject
Subject Count Rhyming Adjective Imagery Intentional Mean

1 4 3 6 9 5 5.40
2 5 6 8 12 10 8.20
3 6 6 10 11 15 9.60
4 6 8 11 11 11 9.40
5 7 6 14 11 11 9.80
6 7 7 11 10 11 9.20
7 8 7 13 19 14 12.20
8 8 6 13 16 14 11.40
9 9 9 13 12 10 10.60

10 10 11 11 23 19 14.80

Means 7.00 6.90 11.00 13.40 12.00 10.06

3 We would never cavalierly rearrange real data like this. I did it here only to show the differences and simi-
larities between the two experimental situations.



First we will calculate the 

We now have two main effects to calculate, one based on the Condition totals and
one based on the Subject totals:

The error term can now be obtained by subtraction:

This error term is also equivalent to the Conditions Subjects interaction, as
described earlier.

We now set up the summary table:

Source df SS MS F

Subjects 9 278.82
Conditions 4 351.52 87.88 20.22
Error 36 156.48 4.35

Total 49 786.82

To test the for the Conditions effect, we go to the table with 4 and 36 degrees
of freedom. From Table E.3 in the Appendices we find through interpolation that
the critical value of is 2.65. Because we will reject the null
hypothesis and conclude that recall of verbal material varies with the conditions
under which that material is learned.

If you go back to Section 16.3, you will see that when I analyzed the same
basic data set as a between-subjects design I obtained an of 9.08 instead of 20.22.
The difference is that in this analysis I have treated the data as if they were
repeated measures and thus subtracted out differences due to subjects from the
error term. Notice two things. In the earlier analysis the was 351.52,
which is exactly what it is here. in the earlier analysis was 435.30. If you
were to subtract from that the (278.82) that we have here, you would get
156.48, which is the present . So you can see that we literally have sub-
tracted out the sum of squares due to individual differences from our error term to
make a more powerful test.

SSerror
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It is important to keep in mind that, for the sake of an example, I have
moved the data around slightly to produce subjects who were consistently poor or
consistently good. But this is nothing more than you would expect to find if you
used the same subjects under all conditions. From a comparison of the here and
the one in Chapter 16, you can see that you generally increase the power of an
experiment (on within-subject terms) and therefore the probability of finding a
significant difference by using a repeated-measures design, if it is practical and
appropriate.

18.9 Summary

In this chapter you saw how to handle data in which individual subjects served under
all levels of one or more independent variables. When we have different participants
in the different conditions we have what is called a between-subject design, whereas
when the same participants serve in each condition we have a repeated-measures, or
a within-subject, design.

We saw that the calculations for a repeated-measures design are very similar
to those in the earlier designs we have discussed. You always calculate sums of
squares in the same general way—sum the squares of deviations from the grand
mean and then multiply by the appropriate constant. The difference here is that
we are, in effect, subtracting the sum of squares for subjects from what would
otherwise be our error term, giving us a more powerful test.

We saw that the testing of multiple comparisons is done in essentially
the same way that we did it in the previous chapters. However, when the
repeated measure is something like time, which is an ordered dimension,
specific comparisons are often not necessary. If performance is increasing over
time, it may not matter if the test on vs. is significant—it is the
overall trend that we care about. But I did show you that you could compare
one time (pre-earthquake) with the average of several other times (post-
earthquake) simply by obtaining the mean of the post-quake times and
comparing that one mean with the pre-quake mean, taking the appropriate
sample sizes into account.

As a measure of effect size we can use Cohen’s but we need to think about
what standard deviation is appropriate for the denominator. Often a pre-test stan-
dard deviation makes more sense than a square root of .MSerror

d̂,

Time4Time3

F
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Some important terms in this chapter are

Between-subjects designs, 484

Repeated-measures designs, 484

Counterbalancing, 491



18.10 Exercises

18.1 Migraine headaches are a problem for many people, and one way of treating them
involves relaxation therapy. A study of the effectiveness of relaxation techniques in the
treatment of migraines was conducted by Blanchard, Theobald, Williamson, Silver, and
Brown (1978). The data that follow are in agreement with those found by Blanchard et
al. (Their study was more complex than the one examined here.) I have calculated 
to save you work.

Calculate and plot the appropriate column means.

18.2 Run a repeated measures analysis of variance on the data in Exercise 18.1 and explain your
results.

18.3 If you were designing the study referred to in Exercise 18.1, what else would you like to have
collected to clarify the meaning of your results?

18.4 Using the data from Week 2 and Week 3 of Exercise 18.1, run a matched-sample test to
test the hypothesis that migraines decreased from before to after relaxation therapy.

18.5 Run a repeated measures analysis of variance on the same data that you used in Exercise
18.4 and draw the appropriate conclusions.

18.6 For Exercise 18.5 compare the results you had in the two analyses.

18.7 Calculate as an effect size estimate to elaborate on the results in Exercise 18.4.

18.8 Use the protected tests with the data in Exercise 18.1 to help you interpret the results.
However this time compare the mean of the two baseline measures with the mean of the
three training measures. (Hint: As I pointed out, you can calculate the test as if these were
independent samples because has been adjusted accordingly by removing subject
differences.)

18.9 Calculate an estimate of for the comparison you made in Exercise 18.8.d

MSerror

t

t

d̂

t

Baseline Training

Subject
Subject Week 1 Week 2 Week 3 Week 4 Week 5 Mean

1 21 22 8 6 6 12.6
2 20 19 10 4 9 12.4
3 7 5 5 4 5 5.2
4 25 30 13 12 4 16.8
5 30 33 10 8 6 17.4
6 19 27 8 7 4 13.0
7 26 16 5 2 5 10.8
8 13 4 8 1 5 6.2
9 26 24 14 8 17 17.8

Weekly 20.78 20.00 9.00 5.78 6.78 12.47
Means

Grand Mean � 12.47 ©X � 561 ©X2 � 10.483

©X2
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18.10 St. Lawrence, Brasfield, Shirley, Jefferson, Alleyne, and O’Brannon (1995) investigated the
effects of an 8 week Behavioral Skills Training (BST) program aimed at reducing the risk
of HIV infection among African-American adolescents. The study followed males and
females from a pretest to a 12 month follow-up, recording the frequency of condom-
protected sex. (They also had a control condition, but I am going to look only at the males
in the BST condition for this exercise.) The actual dependent variable is one thousand
times the natural logarithm of the frequency of protected sex. (I multiplied the log by 1,000
to eliminate decimal values.) The data for males follow.

Follow-up Follow-up 
Pretest Posttest 6 Months 12 Months

07 22 13 14
25 10 17 24
50 36 49 23
16 38 34 24
33 25 24 25
10 07 23 26
13 33 27 24
22 20 21 11
04 00 12 00
17 16 20 10

(a) Calculate and plot the means.
(b) Use the analysis of variance to draw the appropriate conclusions.

18.11 What null hypothesis did you test in Exercise 18.10?

18.12 In the study discussed in Exercise 18.10, the authors also ran a control group under the same
conditions, but without the BST intervention. Those data (for males) follow.

Follow-up Follow-up 
Pretest Posttest 6 Months 12 Months

00 00 00 00
69 56 14 36
05 00 00 05
04 24 00 00
35 08 00 00
07 00 09 37
51 53 08 26
25 00 00 15
59 45 11 16
40 02 33 16

(a) Calculate the means for these data and plot them on the same graph used in Exercise 18.9.
(b) Run the analysis of variance on these data.

18.13 What would you conclude from the comparison of the answers to Exercises 18.10 and
18.12? (You do not know how to run the appropriate analysis of variance, though you
might be able to figure it out if you have the appropriate software, but the analysis itself
is not the issue.)

18.14 In Exercise 18.10 why did we treat Time as a repeated measure rather than as a between-
subjects measure?
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18.15 Use Bonferroni tests with the data in Table 18.1 to compare performance at the following
points:
(a) Week 0 and Week 6
(b) Week 0 and Week 12
(c) Week 3 and Week 12
(Hint: See the hint in Exercise 18.8. I would not recommend all of those comparisons for
an actual study unless you have a very good reason for doing so.)

18.16 Write a short paragraph describing the results of the analysis of the data in Exercise 18.1.

t
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Now we are about to move from measurement data, which has been the
topic of the previous chapters, to categorical data. We will see that the analysis of
categorical data is quite different from what we have been doing. We will begin
with data distributed across one dimension and then move to the more interesting
situation where data are distributed across two dimensions. In the latter case we will
see that we are interested in testing for the lack of independence of the two inde-
pendent variables. We will then look at proportions and how they can be set up as
contingency tables and analyzed that way. Effect size measures are calculated

Chi-Square

Concepts that you will need to remember 
from previous chapters
Categorical variable: A variable that represents counts of the

number of observations falling into each of
several categories

Interaction: The situation where the effect of one variable
depends, or is conditional on, another
variable

Degrees of freedom: The number of independent pieces of
information remaining after estimating one or
more parameters

Effect size [d̂ ]: A measure intended to express the size of a
treatment effect in terms that are meaningful
to the reader

Independent Observations in which the result for one 
observations: measurement does not have any effect on the

next measurement



differently with categorical data, and we will spend a fair amount of time on risks,
odds, and their ratios.

In Saint-Exupery‘s The Little Prince the narrator, remarking that he believes the
prince came from an asteroid known as B-612, explains his attention to such a triv-
ial detail as the precise number of the asteroid with the following comment:

Grown-ups love figures. When you tell them you have made a new friend, they
never ask you any questions about essential matters. They never say to you,
“What does his voice sound like? What games does he love best? Does he col-
lect butterflies?” Instead they demand: “How old is he? How many brothers has
he? How much does he weigh? How much does his father make?” Only from
these figures do they think they have learned anything about him.1

In some ways the first chapters of this book have concentrated on dealing with the
kinds of numbers Saint-Exupery‘s grown-ups like so much. This chapter will be
devoted to the analysis of largely nonnumerical data.

In Chapter 1, I drew a distinction between measurement data (sometimes
called quantitative data) and categorical data (sometimes called frequency data).
When we deal with measurement data, each observation represents a score along
some continuum, and the most common statistics are the mean and the standard devi-
ation. When we deal with categorical data, on the other hand, the data consist of
the frequencies of observations that fall into each of two or more categories (“Does
your friend have a gravelly voice or a high-pitched voice?” or “Is he a collector of
butterflies, coins, or baseball cards?”).

As an example, we could ask 100 participants to classify a vaguely worded
newspaper editorial as to whether it favored or opposed unrestricted dissemination
of birth control information (no neutral or undecided response is allowed). The results
might look as follows:
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1Antoine de Saint-Exupery, The Little Prince, trans. Katherine Woods (New York: Harcourt Brace
Jovanovich, Inc., 1943), pp. 15 –16.

Editorial View Seen as

In Favor Opposed Total

58 42 100

Here the data are the numbers of observations that fall into each of the two cate-
gories. Given such data, we might be interested in asking whether significantly more
people view the editorial as in favor of the issue than view it as opposed or whether
the editorial is really neutral and the frequencies just represent a chance deviation
from a 50:50 split. (Recall that participants were forced to choose between “in favor of“
and “opposed.“)

A differently designed study might collect the same data on the newspaper edi-
torial but try to relate those data to the individual‘s own views on the topic. Thus we



might also classify respondents with respect to their views about the dissemination of
birth control information. This study might arrive at the following data:

Editorial View Seen as

Respondent’s In 
View Favor Opposed Total

In Favor 46 24 70
Opposed 12 18 30

Total 58 42 100

Here we see that people‘s judgments of the editorial depend on their own point of
view. The majority (46/70) of those in favor of the unrestricted dissemination of birth
control information view the editorial as being on their side and the majority of those
opposed generally see the editorial as siding with them (18/30). In other words,
respondents‘ personal opinions and their judgments about the editorial are not inde-
pendent of one another. (In the words of Chapter 17, they interact.)

Although these two examples appear somewhat different in terms of the way
the data are arranged and in terms of the experimental questions being asked, the
same statistical technique—the chi-square test—is applicable to both. However,
because the research questions we are asking and the way that we apply the test
are different in the two situations, we will deal with them separately.

Definition Chi-square test: A statistical test often used for categorical data.

19.1 One Classification Variable: The Chi-Square
Goodness-of-Fit Test

We will start with a simple but interesting example with only two categories and then
move on to an example with more than two categories. Our first example comes from
a paper that was published in the Journal of the American Medical Association on ther-
apeutic touch (Rosa, Rosa, Sarner, & Barrett, 1998). One of the things that made this
an interesting paper is that the second author, Emily Rosa, was only 11 years old at
the time, and she was the principal experimenter.2 To quote from the abstract,
“Therapeutic Touch (TT) is a widely used nursing practice rooted in mysticism 
but alleged to have a scientific basis. Practitioners of TT claim to treat many medical
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2The interesting feature of this paper is that Emily Rosa was an invited speaker at the “Ig Noble Prize” cer-
emony sponsored by the Annals of Improbable Research, located at MIT. This is a group of “whacky” scien-
tists, to use a psychological term, who look for and recognize interesting research studies. Ig Nobel Prizes
honor “achievements that cannot or should not be reproduced.” Emily’s invitation was meant as an honor,
and true believers in therapeutic touch were less than kind to her. The society’s Web page is located at
http://www.improb.com/ and I recommend going to it when you need a break from this chapter.

http://www.improb.com/


conditions by using their hands to manipulate a ‘human energy field’ perceptible
above the patient’s skin.” Emily recruited 21 practitioners of therapeutic touch, blind-
folded them, and then placed her hand over one of their hands. If therapeutic touch
is a real phenomenon, the principles behind it suggest that the participants should be
able to identify which of their hands is below Emily’s hand. Out of 280 trials, the par-
ticipant was correct on 123 of them, which is an accuracy rate of 44%. By chance, we
would expect the participants to be correct 50% of the time, or 140 times.

Although we can tell by inspection that participants performed even worse than
chance would predict, I have chosen this example in part because it raises an interest-
ing question of the statistical significance of a test. We will return to that issue shortly.
The first question that we want to answer is whether the data’s departure from chance
expectation is significantly greater than chance. The data follow in Table 19.1.

Even if participants were operating at chance levels, one category of response
is likely to come out more frequently than the other. What we want is a goodness-
of-fit test to ask whether the deviations from what would be expected by chance
are large enough to lead us to conclude that responses weren’t random.

Definition Goodness-of-fit test: A test for comparing observed frequencies with theoretically
predicted frequencies.
Observed frequencies: The frequencies you observe in the data.
Expected frequencies: The expected value for the number of observations in a cell
if H0 is true.

The most common and important formula for the chi-square statistic ( )
involves a comparison of observed and expected frequencies. The observed fre-
quencies, as the name suggests, are the frequencies you actually observed in the
data—the numbers in row two of Table 19.1. The expected frequencies are the fre-
quencies you would expect if the null hypothesis were true. The expected frequencies
are shown in row 3 of Table 19.1. We will make the very important, and I think
reasonable, assumption that participants’ responses are independent of each other.
(In this use of “independence” I mean that what the participant reports on trial 
does not depend on what he or she reported on trial , though it does not
mean that the two different categories of choice are equally likely, which is what
we are about to test.)

k 2 1
k

x2
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Table 19.1 
Results of Experiment on Therapeutic Touch

Correct Incorrect Total

Observed 123 157 280

Expected 140 140 280



Because we have two possibilities over 280 trials, if the participant were
choosing at random we would expect that there would be 140 correct and 140
incorrect choices. We will denote the observed number of choices with the letter
“O” and the expected number of choices with the letter “E.” Then our formula for
chi-square is

where summation is taken over both categories of response.
This formula makes intuitive sense. Start with the numerator. If the null

hypothesis is true, the observed and expected frequencies (O and E) would be rea-
sonably close together and the numerator would be small, even after it is squared.
Moreover, how large the difference between O and E is will depend to some extent
on how large a number we expected. If we were talking about 140 correct, a differ-
ence of 5 choices would be a small difference. But if we had expected 10 correct
choices, a difference of 5 would be substantial. To keep the squared size of the differ-
ence in perspective relative to the number of observations we expect, we divide the
former by the latter Finally, we sum over all of the both possibilities
to combine these relative differences. This test, in the form to be seen shortly, was
initially proposed by Karl Pearson, and it is often referred to as the Pearson chi-square
test. This is the same Pearson who gave us the Pearson product-moment correlation.
In proposing the test, Pearson got the degrees of freedom wrong, and when Fisher
proved that Pearson was wrong, things took a nasty turn. To quote Agresti (2002),
Pearson did not like being corrected and wrote, “I hold that such a view [Fisher’s] is
erroneous and that the writer has done no service to the science of statistics by giv-
ing it broad-cast circulations . . . I trust my critic will pardon me for comparing him
with don Quixote tilting at the windmill; he must either destroy himself, or the
whole theory of probable errors . . . .” Fisher did not “pardon” him.

The statistic for these data using the observed and expected frequencies
given in Table 19.1 follows.

The Chi-Square Distribution
Throughout this book, whenever we have calculated a statistic, such as or we
have evaluated it against a value in the appropriate Appendix. The value in the
table tells us how large a value we might expect for the statistic if the null
hypothesis were true; and if we exceed that value, we reject the null hypothesis.
The same holds with the chi-square test. To test the null hypothesis that the
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probabilities of making correct and incorrect choices are equal, we need to eval-
uate the obtained against the sampling distribution of chi-square in Table E.1
in Appendix E. (A portion of that table is presented in Table 19.2.)

The chi-square distribution, like other distributions we have seen, depends
on the degrees of freedom. These are found running down the left side of Table
19.2. For the goodness-of-fit test the degrees of freedom are defined as where

is the number of categories (in our example, 2). Examples of the chi-square dis-
tribution for four different degrees of freedom are shown in Figure 19.1, along with
the critical values and shaded rejection regions for You can see that the
critical value for a specified level of (e.g., ) will be larger for larger
degrees of freedom. For our example we have From Table
E.1 (or Table 19.2) you will see that, at Thus when 
is true, only 5% of the time would we obtain a value of Because our
obtained value is 6.125, we will reject and conclude that the therapeutic touch
judge does not make correct and incorrect choices equally often. The practition-
ers that Emily Rosa tested would appear not to guessing at random. In fact, their
performance was statistically worse than random.

As I suggested earlier, this result could raise a question about how we inter-
pret a null hypothesis test. Whether we take the traditional view of hypothesis
testing or the view put forth by Jones and Tukey (2000) that the null is never
true and should not influence our procedures, we can conclude that the differ-
ence is greater than chance. If the pattern of responses had come out favoring
the effectiveness of therapeutic touch, we would come to the conclusion support-
ing therapeutic touch. But these results came out significant in the opposite
direction, and it is difficult to argue that the effectiveness of touch has been sup-
ported because respondents were wrong more often than expected. Personally,
I would conclude that we can reject the effectiveness of therapeutic touch. But
there is an inconsistency here, because if we had 157 correct responses I would
say, “See, the difference is significant!” But when there are 157 incorrect

H0

x2 $ 3.84.
H0a 5 .05, x2.0511 2  5  3.84.

k 2 1 5 2 2 1 5 1 df.
a 5 .05a

a 5 .05.

k
k21,

x2
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Table 19.2
Abbreviated Version of Table E.1, Upper Percentage Points of the �2 Distribution

df .995 .990 .975 .950 .900 .750 .500 .250 .100 .050 .025 .010 .005

1 0.00 0.00 0.00 0.00 0.02 0.10 0.45 1.32 2.71 3.84 5.02 6.63 7.88
2 0.01 0.02 0.05 0.10 0.21 0.58 1.39 2.77 4.61 5.99 7.38 9.21 10.60
3 0.07 0.11 0.22 0.35 0.58 1.21 2.37 4.11 6.25 7.82 9.35 11.35 12.84
4 0.21 0.30 0.48 0.71 1.06 1.92 3.36 5.39 7.78 9.49 11.14 13.28 14.86
5 0.41 0.55 0.83 1.15 1.61 2.67 4.35 6.63 9.24 11.07 12.83 15.09 16.75
6 0.68 0.87 1.24 1.64 2.20 3.45 5.35 7.84 10.64 12.59 14.45 16.81 18.55
7 0.99 1.24 1.69 2.17 2.83 4.25 6.35 9.04 12.02 14.07 16.01 18.48 20.28
8 1.34 1.65 2.18 2.73 3.49 5.07 7.34 10.22 13.36 15.51 17.54 20.09 21.96
9 1.73 2.09 2.70 3.33 4.17 5.90 8.34 11.39 14.68 16.92 19.02 21.66 23.59
o o o o o o o o o o o o o o
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Chi-square distribution for and 8 with critical values for a 5 .05df 5 1, 2, 4,

responses, I say, “Well, that’s just bad luck and the difference really isn’t signifi-
cant.” That makes me feel guilty because I am acting inconsistently. On the
other hand, there is no credible theory that would predict participants being sig-
nificantly wrong, so there is no real alternative explanation to support. People
simply did not do as well as they should have if therapeutic touch works.
(Sometimes life is like that!)

I should note that here, as in the analysis of variance, we are using a one-
tailed test of a nondirectional null hypothesis. By that I mean that we reject only
for large values of not for small ones. In that sense the test is one-tailed.
However, we will obtain large values of in the two-category case, regardless
of which category has the larger obtained frequency. In that sense the test is two-
tailed. Multiple categories have a wide variety of patterns of differences that
would lead to rejection, and the test could be thought of as multitailed or nondi-
rectional.

x2,
x2,



Extension to the Multicategory Case
Many psychologists are particularly interested in how people make decisions, and
they often present their subjects with simple games. A favorite example is called
the Prisoner’s Dilemma,3 and it consists of two prisoners (players) who are being
interrogated separately. The optimal strategy in this situation is for each player to
remain silent, but people often depart from optimal behavior. Psychologists use
such a game to see how human behavior compares with optimal behavior. We are
going to look at a different type of game, the universal children’s game of
“rock/paper/scissors,” often abbreviated as “RPS.” In case your childhood was a
deprived one, I will describe how it works. In this game, each of two players
“throws” a sign. A fist represents a rock, a flat hand represents paper, and two fin-
gers represent scissors. Rocks break scissors, scissors cut paper, and paper covers
rock. So if you throw scissors and I throw rock, I win because my rock will break
your scissors. But if I had thrown paper when you threw scissors, you’d win because
scissors cut paper. Children can keep this up for an awfully long time. (Some adults
take this game very seriously, and you can get a flavor of what is involved by going
to a fascinating article at http://www.danieldrezner.com/archives/002022.html.
The topic is not as simple as you might think. There is even a World RPS Society
with its own Web page.)

It seems obvious that in rock/paper/scissors the optimal strategy is to 
be completely unpredictable and to throw each symbol equally often. Moreover,
each throw should be independent of others so that your opponent can’t predict
your next throw. There are, however, other strategies, each with its own 
advocates. Aside from adults who go to championship RPS competitions, 
the most common players are children on the playground. Suppose that we ask
a group of children who is the most successful RPS player in their school and
we then follow that player through a game with 75 throws, recording the num-
ber of throws of each symbol. The results of this hypothetical study are given in
Table 19.3.

Although our player should throw each symbol equally often, our data suggest
that she is throwing rock more often than would be expected. However, this may
just be a random deviation due to chance. Even if you are deliberately randomizing
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Table 19.3
Number of Throws of Each Symbol in a Playground Game 
of Rock/Paper/Scissors

Symbol Rock Paper Scissors

Observed 30 21 24

Expected (25) (25) (25)

3See http://en.wikipedia.org/wiki/Prisoner’s_dilemma.

http://www.danieldrezner.com/archives/002022.html
http://en.wikipedia.org/wiki/Prisoner%E2%80%99s_dilemma


your throws, one is likely to come out more frequently than others. (Moreover,
people are notoriously poor at generating random sequences.) What we want is
a goodness-of-fit test to ask whether the deviations from what would be
expected by chance are large enough to lead us to conclude that this child’s
throws weren’t random, but that she was really throwing rock at greater than
chance levels.

The statistic for these data using the observed and expected frequencies
given in Table 19.3 follows. Notice that it is a simple extension of what we did
when we had two categories.

In this example we have three categories and thus 2 The critical value of
on and we have no reason to doubt that our player was equally

likely to throw each symbol.

19.2 Two Classification Variables: Analysis 
of Contingency Tables

In the two previous examples we considered the case in which data are catego-
rized along only one dimension (classification variable). Often, however, data
are categorized with respect to two (or more) independent variables, and we are
interested in asking whether those variables are independent of one another. To
put this in the reverse, we often are interested in asking whether the distribu-
tion of one variable is contingent or conditional on a second variable. In this sit-
uation we will construct a contingency table showing the distribution of one
variable at each level of the other. We saw one example of this kind of question
when we wondered if the choices people made about the orientation of a 
newspaper editorial on birth control information depended on (was contingent
on) the individual’s own personal beliefs. Another example is offered in a study
by Walsh et al. (2006) on the use of an antidepressant in the treatment of
anorexia.

Definition Contingency table: A two-dimensional table in which each observation is
classified on the basis of two variables simultaneously.

2 df 5 5.99,x2
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It has long been hypothesized that depression is one reason that girls who
have been successfully treated for anorexia nervosa tend to relapse after treatment.
(Even after returning to normal weight, 30% to 50% of patients are back in the
hospital within one year.) A very common approach is to prescribe Prozac, or a
related drug, to newly recovered patients with the idea that the drug will reduce
depression, which will in turn reduce relapse.

Definition Double-blind study: A study in which neither the patient nor the study coordinators
know if a drug or a placebo is being administered.

Walsh et al. sampled 93 patients who had been successfully restored to an
acceptable body mass. Forty-nine of these patients were then prescribed Prozac for
one year, while 44 of them were given a placebo. This was a double-blind study in
which neither the patient nor the study coordinators knew whether the drug or the
placebo was being administered. The dependent variable was the number of
patients in each group who successfully maintained their weight over one year.
The data follow in Table 19.4 in the form of a contingency table. (Expected fre-
quencies are shown in parentheses.)

This table is not encouraging. It shows that not only did the Drug group not
outperform the Placebo group, they actually underperformed that group (26.5%
versus 31.5%). We still want to know if the underperformance is statistically sig-
nificant or is simply a chance result. (It is conceivable that Prozac actually
decreases a girl’s ability to maintain weight, in which case it would actually be
harmful to prescribe it to this population.)

Expected Frequencies for Contingency Tables
For a contingency table the expected frequency for a given cell is obtained by
multiplying together the totals for the row and column in which the cell is
located and dividing by the total sample size (These totals are known as1N 2 .
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Table 19.4
The Relationship Between Prozac and Anorexia

Outcome

Treatment Success Relapse Total

Drug 13 (14.226) 36 (34.774) 49
Placebo 14 (12.774) 30 (31.226) 44

Total 27 66 93



marginal totals because they sit at the margins of the table.) If is the expected
frequency for the cell in row and column and are the corresponding row
and column totals, and is the total number of observations, we have the fol-
lowing formula4:

For our example

Definition Marginal total: Totals for the levels of one variable summed across the levels of the
other variable.

Calculation of Chi-Square
Now that we have the observed and expected frequencies in each cell, the
calculation of is straightforward. We simply use the same formula that we
have been using all along, although we sum our calculations over all cells in 
the table.
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4This formula for the expected values is derived directly from the formula for the probability of the joint
occurrence of two independent events given in Chapter 7 on probability. For this reason the expected values
that result are those that would be expected if were true and the variables were independent. A large dis-
crepancy in the fit between expected and observed would reflect a large departure from independence, which
is what we want to test.

H0



Degrees of Freedom
Before we can compare our value of to the value in Table E.1, we must know
the degrees of freedom. For the analysis of contingency tables, the degrees of free-
dom are given by

df � (R � 1)(C � 1)

where

R � the number of rows in the table

and

C � the number of columns in the table

For our example we have and therefore, we have 
It may seem strange to have only 1 when we have four cells, but

once you know the row and column totals, you need to know only one cell fre-
quency to be able to determine the rest.5

Evaluation of
With 1 the critical value of as found in Table E.1, is 3.84. Because our value
of 0.315 falls below the critical value, we will not reject the null hypothesis that
the variables are independent of each other. In this case we will conclude that we
have no evidence to suggest that whether a girl does or does not relapse is depend-
ent on whether she was provided with Prozac or a placebo. Notice that I have not
said that we have proven that the two variables are independent, but only that we
have not shown that they are related. However, given the fact that the difference
actually favored the placebo and that the probability under the null was so large
(the probability of chi-square ), we certainly would be justified in
acting as if we have shown that Prozac did not have the desired effect.

19.3 Possible Improvements on Standard Chi-Square

The result of a chi-square test when the data contain few observations can be very
discontinuous. For example, if we simply took the first row of Table 19.4 and
changed the entries from 13 and 36 to 12 and 37, the resulting chi-square would
change from .315 to .618, which is a huge change. When we try to evaluate our
obtained chi-square against tables that assume an underlying continuous distribu-
tion of chi-square, the fit is poor.

$ 0.315 5 .57

x2,df

x2

df12 2 1 2 5 1 df.
12 2 1 2C 5 2;R 5 2

x2
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5This is where Pearson had gone wrong. He thought that the degrees of freedom would be RC-1 instead of
(R 1)(C 1).22



Some books advocate that for tables you apply what is called a correc-
tion for continuity (also known as Yates’s correction), which simply amounts to
reducing each numerator by one-half unit before squaring. This correction was
once quite common, but it has lost favor as we have learned more about the analy-
sis of contingency tables. The ready availability of Fisher’s exact test, to be dis-
cussed next, makes the correction superfluous. For more extensive coverage see
Howell (2010), who generally doesn‘t recommend it either.

Fisher’s Exact Test
Fisher introduced what is called Fisher’s Exact Test in 1934 at a meeting of the
Royal Statistical Society. Without going into details, Fisher’s proposal was to take
all possible tables that could be formed from the fixed set of marginal totals
(i.e., without changing the totals on the right and bottom margins of the contin-
gency table.) For example, the following three tables all have the same marginal
totals but different cell frequencies.

Outcome Outcome Outcome

Success Relapse Total Success Relapse Total Success Relapse Total

Drug 13 36 49 12 37 49 11 36 49

Placebo 14 30 44 14 30 44 16 30 44

Total 27 66 93 27 66 93 27 66 93

Fisher could, for example, calculate a statistic such as chi-square for each
table. He could then determine the proportion of those tables whose results (chi-
square values) are as extreme, or more so, than the table we obtained from our
data. If this proportion is less than we reject the null hypothesis that the two
variables are independent and conclude that there is a statistically significant rela-
tionship between the two variables that make up our contingency table. I am
assuming that you will do the calculations using statistical software rather than by
hand, and so will not elaborate on the necessary steps. For our example, SPSS
automatically gives the exact two-sided probability as .650, which again leads us to
retain the null hypothesis.

a,

2 3 2

2 3 2
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Randomization tests

This suggestion by Fisher is the first time that we have seen this approach to
hypothesis testing. Throughout the book we have dealt with tests in which we
can go to statistical tables, based on mathematical calculations, and obtain a
theoretical probability under the null hypothesis. Fisher’s test does not rely on
such table. He enumerates all possible outcomes, given the marginal totals, and
asks what percentage of them are more extreme than the result we obtained. No
theoretical distribution is involved. You will see that we come back to this kind
of approach very briefly in the next chapter.



Fisher’s Exact Test versus Pearson’s 
Chi Square
We now have at least two statistical tests for contingency tables—which one
should we use? Probably the most common solution is to go with Pearson’s chi-
square; perhaps because “that is what we have always done.” In previous editions
of this book I recommended against Fisher’s Exact Test, primarily because of its
reliance on fixed marginal totals. However, in recent years there has been an
important growth of interest in permutation and randomization tests, of which
Fisher’s Exact Test is an example. I am extremely impressed with the logic and sim-
plicity of such tests and have come to side with Fisher’s Exact Test. In most cases,
the conclusion you will draw will be the same for the two approaches, though this
is not always the case. When we come to tables larger than , Fisher’s
approach does not apply, without modification, and there we almost always use the
Pearson chi-square. (But see Howell & Gordon, 1976.)

19.4 Chi-Square for Larger Contingency Tables

The previous example involved two variables (Drug and Outcome), each of which
had two levels. This particular design is referred to as a contingency analy-
sis and is a special case of more general designs (where and represent
the number of rows and columns). For an example of the treatment of a larger con-
tingency table we can analyze data collected by Darley and Latané (1968) on
bystander intervention. Why is it that bystanders who witness attacks and other
negative events seem reluctant to intervene even in life-threatening situations?
Are there any variables that can be shown to play a role in governing such
bystander behavior?

Darley and Latané asked participants in their study to engage in a discussion
carried on over an intercom system (supposedly to preserve confidentiality). One
group of participants was led to believe that they were speaking with only the dis-
cussion leader (later termed the victim); a second group of participants thought one
other person was involved in the discussion; and a third group thought that four
other people were involved. In fact, the participant was alone in all cases. Part way
through the discussion the victim on the other end of the line pretended to have a
seizure and began asking for help. He even stated that he was afraid that he might
die without help. One of the dependent variables was the number of participants in
each condition who tried to obtain help for the victim. The results are hardly
encouraging for those of us who like to believe in the kindness of our fellow crea-
tures. For the group of participants each of whom thought he or she was alone with
the victim, 85% tried to obtain help (the other 15% apparently decided to let
nature take its course). For those participants who thought one other person was lis-
tening, the response rate dropped to 62%. Worst of all when the participants
thought there were four other listeners, the response rate was a meager 31%.
Although it is conceivable that these differences were due to chance, that doesn’t
seem likely. We can use chi-square to test the null hypothesis that helping behavior
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is independent of the number of bystanders. The data are presented in Table 19.5.
The expected frequencies were obtained the same way they were obtained in the

case. In other words, the expected frequency in the upper left cell is

In this example we have , and the critical value of 
is 5.99. Because the obtained value of is greater than the critical value,
we will reject If you expect something unpleasant to happen to you, be sure
there are not too many people around—one person is about right.

19.5 The Problem of Small Expected Frequencies

Chi-square is an important and valid test for examining either goodness of fit or
the independence of variables (contingency tables). However, the test is not as
good as we would like when the expected frequencies are too small. The chi-square
test is based in part on the assumption that if an experiment were repeated an
infinite number of times with the same number of participants, the obtained

H0.
x2 17.90 2 x213 2 1 2 12 2 1 2 5 2 df

113 3 31 2 >52 5 7.75.
2 3 2
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Table 19.5
Observed and Expected Frequencies for Helping Behavior as a Function 
of the Number of Bystanders

Observed Expected

Sought Sought 

Number
Assistance Assistance

Bystanders Yes No Total Yes No Total

0 11 2 13 7.75 5.25 13
1 16 10 26 15.50 10.50 26
4 4 9 13 7.75 5.25 13

Total 31 21 52 31 21 52

 � 7.90

 � 1.36 � 2.01 � 0.02 � 0.02 � 1.81 � 2.68

  1
14 2 7.75 2 2

7.75
1
19 2 5.25 2 2

5.25

 5
111 2 7.75 2 2

7.75
1
12 2 5.25 2 2

5.25
1
116 2 15.50 2 2

15.50
1
110 2 10.50 2 2

10.50

 x2 5 ©
1O 2 E 2 2

E



frequencies in any given cell would be normally distributed around the expected
frequency. But if the expected frequency is small (e.g., 1.0), there is no way that
the observed frequencies could be normally distributed around it. (The frequencies
must be integers and you can’t have frequencies less than zero.) In cases in which
the expected frequencies are too small, chi-square may not be a valid statistical
test. The problem, however, is how we define “too small.” There are almost as
many definitions as there are statistics textbooks, and the issue still is being
debated in the journals. Here I take the admittedly conservative position that for
small contingency tables (nine or fewer cells) all expected frequencies should be at
least 5. For larger tables this restriction can be relaxed somewhat. There are peo-
ple who argue that the test is conservative and produces few Type I errors, even
with much smaller expected frequencies, but even they are forced to admit that
when the total sample size is very small—as is frequently the case when the
expected frequencies are small—the test has remarkably little power to detect false
null hypotheses.

Fisher’s Exact Test does not depend on an assumption about an underlying
distribution. This means that small expected frequencies do not pose the problem
for Fisher’s test that they do for the traditional chi-square test. When you have
small expected frequencies you are likely to be better off using Fisher’s test, but
even there, with small expected frequencies you have relatively little power to
reject a false null hypothesis.

19.6 The Use of Chi-Square as a Test on Proportions

The chi-square test can be used as a test on proportions or differences between two
independent proportions. This is the same test we have been using all along. We
simply change the way we conceive of our proportions (i.e., we change proportions
to frequencies).

The most common question to ask with respect to proportions concerns
whether one proportion is significantly higher or lower than another. A good
example of this is found in another study of helping behavior by Latané and Dabbs
(1975). In that study, experimenters were instructed to walk into elevators and,
just after the elevator started, drop a handful of pencils or coins on the floor. The
dependent variable was whether bystanders helped pick up the pencils. One of the
independent variables was the gender of the bystanders. The study was conducted
in three cities (Columbus, Seattle, and Atlanta), but we will concentrate on the
data from Columbus, where gender differences were least. We will also ignore any
effect of the gender of the experimenter. Basically Latané and Dabbs found that
23% of the female bystanders and 28% of the male bystanders helped pick up the
dropped items. (It is interesting that about three-quarters of the bystanders just stood
there staring at the ceiling as if nothing had happened. Latané’s work has had a
depressing effect on my belief in human goodness.) The question of interest is whether
the difference between 23% and 28% is statistically significant. To answer this
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question, we must know the total sample sizes. In this case there were 1,303 female
bystanders and 1,320 males. (Notice the large sample sizes that are easily obtained
in this type of experiment.) Because we know the sample sizes, we can convert the
cell proportions to cell frequencies easily.

Proportional Data
Sex of Bystander

Female Male

Help 23% 28%
No Help 77% 72%
Number 1,303 1,320

Frequency Data
Sex of Bystander

Female Male Total

Help 300 370 670
(332.83) (337.17)

No Help 1,003 950 1,953
(970.17) (982.83)

Total 1,303 1,320 2,623

The entry of 300 in the upper left corner of the table was obtained by taking 23%
of 1,303 females. The other entries were obtained in an analogous way. The values
in parentheses are the expected frequencies, computed in the normal way. We cal-
culate as follows:

The critical value on 1 at is 3.84, so I will reject and conclude that the
proportions are significantly different. We can conclude that under the conditions of
this study males are more willing to help than females. (This study was conducted
over 30 years ago. Do you think that we would obtain similar results today?)

A word of warning when using proportions. You will have noticed that we
converted proportions to frequencies and then ran the chi-square test on the fre-
quencies. This is the only correct way to do that. I sometimes see people form a
contingency table with the proportions themselves, rather than frequencies, as
cell entries and then go ahead and compute as if nothing were wrong. But
something is very wrong. They will not have a legitimate value of and theirx2,

x2

H0a 5 .05df

 1
1950 2 982.83 2 2

982.83
5 8.64

 5
1300 2 332.83 2 2

332.83
1
1370 2 337.17 2 2

337.17
1
11,003 2 970.17 2 2

970.17

 x2 5 ©
1O 2 E 2 2

E

x2
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test will be incorrect. Proportions, even if you throw away the decimal point and
pretend that they are whole numbers, are not legitimate data for a chi-square test.
You must use frequencies.

19.7 SPSS Analysis of Contingency Tables

SPSS has more than one way of computing chi-square. I will use Analyze/
Nonparametric Tests/Chi-square to obtain a goodness-of-fit (i.e., one dimensional)
test on the therapeutic touch example and Descriptive statistics/Crosstabs for the
contingency table analysis of the study of treatment for anorexia. I have com-
bined the data for both goodness-of-fit test (using Rosa’s data) and the contin-
gency table test (using Walsh’s data) into one spreadsheet to save space. This is
shown in Figure 19.2. The data from Therapeutic Touch study are shown in the
two columns on the left, and the data for Walsh’s study is shown in the three
columns to the right.

Notice that for the therapeutic touch study the first column indicates
whether the response was correct or incorrect. (These are coded 1 and 2.). The
column headed Freq1 is the frequency for each of those choices. For the Walsh
study of anorexia, the drug column indicates whether the participant received
Prozac (1) or the Placebo (2), and the outcome column indicates whether the
participant maintained her weight (1) or relapsed (2). Again, the column headed
Freq2 gives the frequencies of each possibility.
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Figure 19.2
Data for the goodness-of-fit and contingency table analysis
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Figure 19.3
Weighting of cases

To use a table like this we need to tell SPSS to weight the response categories
(or the drug/outcome combinations) by the values in Freq1 (or Freq2). This is
done by selecting Data/Weight Cases and then specifying which variable is the
weighting variable. This is shown in Figure 19.3 for the goodness-of-fit analysis.

� Output for goodness of fit test:

Frequencies

Response

Observed N Expected N Residual

Correct 123 140.0 �17.0
Incorrect 157 140.0 17.0
Total 280

Test Statistics
Response

Chi-Square 4.129a

df 1
Asymp. Sig. .042

a. 0 cells (.0%) have expected frequencies less than 5. 
The minimum expected cell frequency is 140.0.
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� Output for analysis of anorexia data:

DRUG * OUTCOME Crosstabulation

Drug

Prozac Placebo Total

Outcome Success 13 14 27

Relapse 36 30 66

Total 49 44 93

Chi-Square Tests

Asymp. Sig. Exact Sig. Exact Sig.
Value df (2-sided) (2-sided) (1-sided)

Pearson Chi-Square .315a 1 .575
Continuity Correctionb .110 1 .740
Likelihood Ratio .314 1 .575
Fisher’s Exact Test .650 .370
Linear-by-Linear
Association .311 1 .577
N of Valid Cases 93

a. 0 cells (.0%) have expected count less than 5. The minimum expected count is 12.77

b. Computed only for a 2 � 2 table

(Instructions on running chi-square tests using SPSS can be found in Chapter 5 of
the Short SPSS Manual on this book’s Web site.)

To run the goodness-of-fit test we choose Analyze/Nonparametric
tests/Chi-Square and specify that Response is the independent variable—having
already instructed SPSS to weight the cases by Freq1. For the contingency table
test we use Data/Weight cases to set Freq2 as the weighting variable, selected
Descriptive statistics/Crosstabs to specify the independent variables, and then
select drug and outcome. The second of these steps is shown in Figure 19.4 for the
case of the contingency table analysis. When you use the Crosstabs procedure you
need to click on the “Statistics” button and specify that you want the program to
print out the chi-square test. It will not do so by default.

Finally, the following display shows the output for the two analyses. You
should be able to see that the results agree with what we found earlier.

You will see several statistics here that you have not seen before, but the two
that we care about are the Pearson chi-square and the Fisher’s Exact Test. You can
ignore the others.



19.8 Measures of Effect Size

The fact that a relationship is “statistically significant” doesn’t tell us very much
about whether it is of practical significance. The fact that two independent vari-
ables are not statistically independent does not mean that the lack of independ-
ence is important or worthy of our attention. In fact, if you allow the sample size
to grow large enough, almost any two variables would likely show a statistically sig-
nificant lack of independence.

What we need, then, are ways to go beyond a simple test of significance to
present one or more statistics that reflect the size of the effect we are looking at.
As we have seen elsewhere in this book, there are two different types of measures
designed to represent the size of an effect. One type, the d-family by measures, is
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Figure 19.4
Selection of variables for analysis of contingency tables



based on one or more measures of the differences between groups or levels of the
independent variable. The other type of measure, the r-family measures, represents
some sort of correlation coefficient between the two independent variables. I will
not cover the r-family measures here because they rarely give us a good intuitively
appealing measure. (Essentially you could simply score a person as 1 or 2 depend-
ing on whether they received the drug or the placebo, again score them 1 or 2
depending on whether they relapsed, and then correlate those two variables.)

An Example
An important and classic study of the beneficial effects of small daily doses of
aspirin on reducing heart attacks in men was reported in 1988. More than 22,000
physicians were administered aspirin or a placebo on a daily basis, and the inci-
dence of later heart attacks was recorded. The data are shown in Table 19.6.
Notice that this design is a prospective study because the treatments (aspirin ver-
sus no aspirin) were applied and then future outcome was determined. (A retro-
spective study would select people who had, or had not, experienced a heart attack
and then look backward in time to see whether they had been in the habit of tak-
ing aspirin in the past.)

Definition Prospective study: A study in which a treatment is administered and we look for its
effects in the future.
Retrospective study: A study in which we selected participants on the basis of some
condition and then look retrospectively at their behavior in the past.

For these data, on one degree of freedom, which is statistically
significant at indicating that there is a relationship between whether or
not one takes aspirin daily and whether one later has a heart attack.6

a 5 .05,
x2 5 25.014
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Table 19.6
The Effect of Aspirin on the Incidence of Heart Attacks

Outcome

Heart Attack No Heart Attack

Aspirin 104 10,933 11,037

Placebo 189 10,845 11,034

293 21,778 22,071

6It is important to note that, although taking aspirin daily is associated with a lower rate of heart attack,
more recent data have shown that there are important negative side effects. Current literature suggests that
other alternatives may be at least as effective with fewer side effects.



d-family: Risks and Odds
Two important concepts with categorical data, especially for tables, are the
concepts of risks and odds. These concepts are closely related, and often confused,
but they are basically very simple. We looked at these measures in Chapter 7, but
that was long ago and they are worth reviewing.

For the aspirin data, 0.94% (104/11,037) of people in the aspirin group and
1.71% (189/11,034) of those in the control group suffered a heart attack during the
study. (Unless you are a middle-aged male worrying about your health, the num-
bers look rather small. But they are important.) These two statistics are commonly
referred to as risk estimates because they describe the risk that someone with, or
without, aspirin will suffer a heart attack. Risk measures offer a useful way of look-
ing at the size of an effect.

Definition Risk: The number of people or objects experiencing an event divided by the total
number of people or objects. For example, the frequency of success divided by the
total number of observations.
Risk difference: The difference in the risks for two groups.

The risk difference is simply the difference between the two proportions. In
our example, the difference is Thus, there is about three-
quarters of a percentage point difference between the two conditions. Put another
way, the difference in risk between a male taking aspirin and one not taking aspirin
is about three-quarters of 1%. This may not appear to be very large, but keep in
mind that we are talking about heart attacks, which are serious events.

One problem with a risk difference is that its magnitude depends on the over-
all level of risk. Heart attacks are quite low risk events, so we would not expect a
huge difference between the two conditions. (In contrast, Pugh [1983] studied con-
viction for rape depending on whether the victim was portrayed as being at fault.
The probability of being convicted in either event was quite high, so there was a
lot of room for the two conditions to differ. He found a 30 percentage point differ-
ence in favor of conviction when the victim was not portrayed as at fault. Does
that mean that Pugh’s study found a much larger effect size than the aspirin study?
Well, it depends—it certainly did with respect to risk difference.)

Another way to compare the risks is to form a risk ratio, also called relative
risk, which is just the ratio of the two risks. For the heart attack data the risk 
ratio is

Thus the risk of having a heart attack if you do not take aspirin is 1.8 times higher
than if you do take aspirin. That strikes me as quite a difference.

We must consider a third measure of effect size, and that is the odds ratio. At
first glance, odds and odds ratios look like risk and risk ratios, and they are often

RR 5 Riskno apsirin>Riskaspirin 5 1.71%>0.94% 5 1.819

1.71% 2 0.94% 5  .77%.

2 3 2
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confused, even by people who know better. (In a previous edition, although I knew
better, I referred to odds, but described them as risks, much to my chagrin.) Recall
that we defined the risk of a heart attack in the aspirin group as the number hav-
ing a heart attack divided by the total number of people in that group. (e.g.,

) The odds of having a heart attack for a member
of the aspirin group is the number having a heart attack divided by the number not
having a heart attack (e.g., ). The difference (though very slight
when we are looking at rare events) comes in what we use as the denominator—risk
uses the total sample size and is thus the proportion of people in that condition who
experience a heart attack. Odds uses as a denominator the number not having a
heart attack and is thus the ratio of the number having an attack versus the num-
ber not having an attack. Because the denominators are so much alike in this
example, the results are almost indistinguishable. That is certainly not always the
case. In Pugh’s example, the risk of being convicted of rape in the low-fault condi-
tion is (86% of the cases are convicted), whereas the odds of
being convicted in the low-fault condition are (the odds of being
convicted are 6.4 times the odds of being found innocent).

Definition Risk ratio (relative risk): The ratio of two estimates of risk.
Odds: The frequency of occurrence of one event divided by the frequency of
occurrence of the other event. For example, the frequency of success divided by the
frequency of failure.
Odds ratio: The ratio of two odds.

Just as we can form a risk ratio by dividing the two risks, we can form an odds
ratio by dividing the two odds. For the aspirin example the odds of heart attack
given that you did not take aspirin were The odds of a heart
attack given that you did take aspirin were The odds ratio is
simply the ratio of these two odds and is

Thus, the odds of a heart attack without aspirin are 1.83 times higher than the
odds of a heart attack with aspirin.7

OR 5
Odds Z NoAspirin

Odds Z Aspirin
5

0.0174
0.0095

5 1.83

104>10,933 5 0.010.
189>10,845 5 0.017.

153>24 5 6.375
153>177 5 0.864

104>10,933 5 0.0095

104>11,037 5 0.0094 5 0.94%.

19.8 Measures of Effect Size 525

7In computing an odds ratio, there is no rule about which odds go in the numerator and which in the denom-
inator. It depends on convenience. Where reasonable, I prefer to put the larger value in the numerator to
make the ratio come out greater than 1.0, simply because I find it easier to talk about that way. If we reversed
them in this example, we would find and conclude that your odds of having a heart attack in
the Aspirin condition are about half of what they are in the No Aspirin condition. That is simply the inverse
of the original OR ( ).0.546 5 1>1.83

OR 5 0.546,



19.9 A Final Worked Example

We will take as our final example a study by Geller, Witmer, and Orebaugh (1976).
These authors were studying littering behavior and were interested in, among
other things, whether a message about not littering would be effective if placed on
the fliers often given out in supermarkets advertising the daily specials. (This
experiment was used in Chapter 7 to illustrate probability concepts.) To simplify a
more complex study, two of Geller’s conditions involved passing out handbills in a
supermarket. Under one condition (Control) the handbills contained only a list-
ing of the daily specials. In the other condition (Message), the handbills also
included the notation, “Please don‘t litter. Please dispose of this properly.” At the
end of the day Geller and his students searched the store for handbills. They
recorded the number found in trashcans; the number left in shopping carts, on the
floor, and in various other places where they didn’t belong (denoted Litter); and
the number that could not be found and were apparently removed from the
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Why do we have both odds and risk?

Why do we have to complicate things by having both odds ratios and risk ratios?
That is a very good question, and it has some good answers. Risk is something
that I think most of us understand. When we say the risk of having a heart
attack in the No Aspirin condition is .0171, we are saying that 1.71% of the
participants in that condition had a heart attack, and that is pretty straightfor-
ward. When we say that the odds of a heart attack in that condition are .0174,
we are saying that the odds of having a heart attack are 1.74% of the odds of not
having a heart attack. That may be a popular way of setting bets on race horses,
but it leaves me dissatisfied. So why have an odds ratio in the first place?

The odds ratio can be calculated in situations in which a true risk ratio
cannot be. In a retrospective study, where we find a group of people who had
heart attacks and another group of people who did not have heart attacks and
we look back to see if they took aspirin, we can’t really calculate risk. Risk is
future oriented. If we give 1,000 people aspirin and withhold it from 1,000 oth-
ers, we can look at these people 10 years down the road and calculate the risk
(and risk ratio) of heart attacks. But if we take 1,000 people with (and without)
heart attacks and look backward, we can’t really calculate risk because we have
sampled heart attack patients at far greater than their normal rate in the popu-
lation (50% of our sample has had a heart attack, but certainly 50% of the pop-
ulation does not suffer from heart attacks). But we can always calculate odds
ratios. And, when we are talking about low probability events, such as having a
heart attack, the odds ratio is usually a very good estimate of what the risk ratio
would be if we could calculate it. The odds ratio is equally valid for prospective
and retrospective sampling designs. That is important.



premises. The data obtained under the two conditions are shown in Table 19.4 and
are taken from a larger table reported by Geller et al. Would you expect that such
a notice on a handbill would have much effect on what you did with that handbill
when you were finished with it?

We can analyze this contingency table appropriately by using the chi-square
test because we have 1,772 independent observations falling into six mutually
exclusive cells. We will test the null hypothesis that the location of the fliers at the
end of the day is independent of the instructions on the flier, and we will set

We calculate the expected frequencies by the same procedure we have used
before. Namely, for a contingency table the expected frequencies are given by

where RT, CT, and GT stand for row, column, and grand
totals, respectively. Therefore, if were true, the expected number of fliers from
the Control group (the fliers without the message) found in the trashcan, would be

Similarly, the number of people who received
the antilittering message and removed their fliers would be expected to be

The calculation of is based on the same formula we have been using all
along:

There are 2 for this analysis because 
The critical value of so we are led to reject and to conclude
that the location in which handbills were left depended on the instructions given.
In other words, Instruction and Location are not independent. From the data it is

H0x2
.05 12 2 5 5.99,
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 5 25.79

 5
141 2 61.66 2 2

61.66
1
1385 2 343.98 2 2

343.98
1 p 1

1499 2 478.64 2 2
478.64
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E23 5 1869 2 1976 2 >1,772 5 478.64.

E11 5 1903 2 1121 2 >1,772 5 61.66.

H0

E 5 RT 3 CT>GT,

a 5 .05.
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Table 19.7
Data from Study by Geller, Witmer, and Orebaugh (1976)

Trashcan Litter Removed Total

Control 41 385 477 903
(61.66) (343.98) (497.36)

Message 80 290 499 869
(59.34) (331.02) (478.64)

Total 121 675 976 1,772



evident that when subjects were asked not to litter, a higher percentage of hand-
bills were thrown into the trashcan or taken out of the store, and fewer were left
lying in the shopping carts or on the floors and shelves.

If you were writing up these results, you would probably want to say some-
thing like the following:
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✍ In an attempt to investigate whether people respond to antilittering
messages on handbills, 1772 shoppers at a local supermarket were given
handbills advertising daily specials. Approximately half of these fliers
contained a message asking people not to litter and to dispose of the
handbill in an appropriate place, while the other half did not contain
such a message. At the end of the day a count was made of the number
of messages found in the trash, the number that were found as litter, and
the number that were removed from the store. These were classified by
the presence or absence of the message on the flier, and a chi-square test
was applied to the results. For these data 
Examination of the results indicated that a smaller percentage of the
handbills containing the antilittering message were found as litter, and a
higher percentage were placed in the trash or removed from the store.

x2 12 2 5 25.79, p 6 .05.

✍ In examining the question of whether a defense lawyer’s attempt to
place blame on the victim of rape would influence a jury’s decision in a
rape case, jury participants were presented with a situation in which
the victim was characterized by the defense as either partly responsible
for the rape or not responsible. The jurors were then asked to make a
judgment about whether the defendant was guilty or not guilty of the
crime. When the victim was portrayed as low in fault, 86% of the time
the defendant was judged to be guilty. When the victim was portrayed
as high in fault, the defendant was judged guilty only 58% of the time.
A chi-square test of the relationship between Fault and Guilt produced

which is statistically significant at This is
associated with an odds ratio of 4.61, indicating that the odds of being
found guilty of rape are more than four and a half times higher in the

p 6 .05.x211 2 5 35.93,

19.10 A Second Example of Writing Up Results

We will take as a second example of how to write up results our example of Pugh’s
study of rape convictions (1983). It is a good example because the question is
timely and the statistics are straightforward. If you were writing up those results,
you would probably want to say something like the following:



19.11 Seeing Statistics

The applet entitled Mosaic Two-Way, which can be found on the Web site,
illustrates the meaning of chi-square in a 2 2 contingency table. The display
that follows was taken from data that McClelland originally produced, although
the variable names have been changed. In this display the darker the rectangle,
the greater the number of observations in that cell over what would be expected
if the null hypothesis were true. On the other hand, the lighter the rectangle
the more the observations fall below expectation.

3
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condition in which the victim is portrayed as not bearing fault for the
rape. The odds ratio would indicate that we are speaking of a
meaningful difference between the two conditions.

You can enter the data from the study by Walsh on depression and
anorexia. Which cells are over- and underrepresented?



You can also enter the data from Latané and Dabbs in Section 19.6. Now
which cells are overrepresented?

Finally, using the Latané and Dabbs example again, assume that you could
add 10 observations to any one cell. Where should you add those observations
to produce the greatest increase in chi-square?

19.12 Summary

This chapter discussed the use of the chi-square test for the analysis of frequency
data. We first considered the test for goodness-of-fit for the situation in which
there is only one variable of classification. In this situation the test is normally
used to ask if the observations are equally distributed across the levels of the clas-
sification, though if a theory specifies a different kind of distribution, the test will
also work for that.

We then looked at the chi-square test applied to contingency tables. A con-
tingency table is a two-dimensional table in which each observation is classified
on the basis of two variables simultaneously. Chi-square is used to test the null
hypothesis that the two variables are independent. If they are independent, then
the expected cell frequencies can be computed as the product of the row and col-
umn totals divided by the grand total. The test can then be applied just as it was
in the one-dimensional case by squaring the differences between obtained and
expected cell frequencies, dividing by the expected frequency, and then summing
across all cells.

The degrees of freedom for the contingency table are the product of one less
than the number of rows times one less than the number of columns.

We discussed Fisher’s Exact Test as an alternative to calculating the tradi-
tional chi-square statistic. That test is often a better test when one or more of the
expected frequencies is small, but it is a test that you would only compute using
computer software.

We covered a test on the difference between two proportions and suggested
that you need to convert the proportions to frequencies and then run the chi-
square test on those frequencies. You can not enter the proportions themselves into
the chi-square formula.

With respect to a measure of effect size we looked at odds, risks, and their
ratios. Risk is defined simply as the number of observations in that cell divided by
the total number of observations. In that sense it is really a percentage. Odds, on
the other hand, divide the number of observations in a cell by the number of obser-
vations not in that cell. Both odds and risks can be converted to ratios. The risk
ratio is simply the ratio of two risks, and the odds ratio is the ratio of two odds. Risk
ratios come closer to what people take them to be, the relative risk of two out-
comes, but odds ratios are harder to understand. One strength of odds ratios is that
if an event is of quite low probability, the odds ratio is a good approximation of
what the risk ratio would be if we could calculate one, since we cannot calculate
risk ratios directly in a retrospective study.
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Some important terms in this chapter are
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Chi-square test, 504

Goodness-of-fit test, 505

Observed frequencies, 505

Expected frequencies, 505

Contingency table, 510

Marginal totals, 512

Prospective study, 523

Retroactive study, 523

Risk, 524

Risk ratio (relative risk), 525

Odds, 525

Odds ratio, 525

19.13 Exercises

19.1 The chair of a psychology department suspects that some of his faculty are more popular
than others. There are three sections of Introductory Psychology (taught at 10:00 am, 11:00
am, and noon) by Professors Anderson, Klansky, and Kamm. The number of students who
enroll for each section are given.

Professor Professor Professor
Anderson Klansky Kamm

25 32 10

Run the appropriate chi-square test and interpret the results.

19.2 From the point of view of designing a valid experiment an important difference exists
between Exercise 19.1 and a similar example used in this chapter. The data in Exercise 19.1
will not really answer the question that the chair wants answered. What is the problem, and
how could the experiment be improved?

19.3 I have a theory that if you ask participants to sort one-sentence characteristics of people
(e.g., “I eat too fast”) into five piles ranging from not at all like me to very much like me, the
percentage of items placed in each pile will be approximately 10%, 20%, 40%, 20%, and
10% for the five piles. I have one of my children sort 50 statements and obtain the follow-
ing data:

8 10 20 8 4

Do these data support my hypothesis?

19.4 To what population does the answer to Exercise 19.3 generalize?

19.5 In a study from the 1930’s by Clark and Clark, published in 1947, black children were shown
black dolls and white dolls and were asked to select one to play with. Out of 252 children,
169 chose the white doll and 83 chose the black doll. What can we conclude about the
behavior of these children?



19.6 Following up the study referred to in Exercise 19.5, Hraba and Grant (1970) repeated the
Clark and Clark study. The studies were not exactly equivalent, but they were close enough
and the results are interesting. They found that out of 89 black children, 28 chose the white
doll and 61 chose the black doll. Run the appropriate chi-square test on their data and
interpret the results.

19.7 Combine the data from Exercises 19.5 and 19.6 into a two-way contingency table and run
the appropriate test. How does the question that the two-way classification addresses differ
from the questions addressed by Exercises 19.5 and 19.6?

19.8 We know that smoking has all sorts of ill effects on people, and among other things there
is evidence that it affects fertility. Weinberg and Gladen (1986) examined the effects of
smoking on the ease with which women become pregnant. They took 586 women who had
planned pregnancies, and asked them how many menstrual cycles it had taken for them to
become pregnant after discontinuing contraception. They also sorted the women into
whether they were smokers or nonsmokers. The data follow.

1 Cycle 2 Cycles 3� Cycles Total

Smokers 29 16 55 100
Nonsmokers 198 107 181 486

Total 227 123 236 586

Does smoking affect the ease with which women become pregnant? (I do not recommend
smoking as a birth-control device.)

19.9 How would you modify the analysis of the data in Exercise 19.8 if you also had the data on
smoking behavior of the partners of these women?

19.10 Use the data in Exercise 19.8 to demonstrate how chi-square varies as a function of sample
size.
(a) Double each cell entry and recompute chi-square.
(b) What does this have to say about the role of the sample size in hypothesis testing?

19.11 Howell and Huessy (1985) used a rating scale to classify children as to whether or not they
showed Attention Deficit Disorder (ADD)–like behavior in the second grade. They then
classified these same children again in the fourth and fifth grades. At the end of the ninth
grade they examined school records and noted which children were enrolled in remedial
English. In the following data all children who were ever classified as ADD have been com-
bined into one group (labeled ADD):

Remedial Nonremedial
Classification English English Total

Normal 22 187 209
ADD 19 74 93

Total 41 261 302

Does ADD classification in elementary school predict high school enrollment in remedial
and nonremedial English in high school?
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19.12 In Exercise 19.11 children were classified as those who never showed ADD-like behavior
and those who showed ADD behavior at least once in the second, fourth, or fifth grade. If
we do not collapse across categories, we obtain the following data:

Exhibition of Remedial Nonremedial
ADD-Like Behaviors English English

Never 22 187
Grade 2 2 17
Grade 4 1 11
Grades 2 & 4 3 16
Grade 5 2 9
Grades 2 & 5 4 7
Grades 4 & 5 3 8
Grade 2, 4, & 5 4 6

(a) Run the chi-square test.
(b) What would you conclude, ignoring the small expected frequencies?
(c) How comfortable do you feel with these small expected frequencies? How might you

handle the problem?

19.13 It would be possible to calculate a one-way chi-square test on the data in column 1 of
Exercise 19.12. What hypothesis would you be testing if you did that? How would that
hypothesis differ from the one you tested in Exercise 19.12?

19.14 In a study of eating disorders in female adolescents, Gross (1985) asked each of her par-
ticipants whether they would prefer to gain weight, lose weight, or maintain their current
weight. (Note: Only 12% of the girls in Gross’s sample were actually more than 15%
above what normative tables say they should weigh, a common cutoff for a label of “over-
weight.”) When she broke down the data for girls by race (African-American versus
white), she obtained the following results. (Other races have been omitted because of
small sample sizes.)

Reducers Maintainers Gainers Total

White 352 152 31 535
African-American 47 28 24 99

Total 399 180 55 634

(a) What conclusions can you draw from these data?
(b) Ignoring race, what conclusions can you draw about adolescent girls’ attitudes toward

their own weight?

19.15 Stress has long been known to influence physical health. Visintainer, Volpicelli, and
Seligman (1982) investigated the hypothesis that rats given 60 trials of inescapable
shock would be less likely to later reject an implanted tumor than would rats who 
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had received 60 trials of escapable shock or 60 no-shock trials. They obtained the 
following data:

Inescapable Escapable
Shock Shock No Shock Total

Reject 8 19 18 45
No Reject 22 11 15 48

Total 30 30 33 93

What would you conclude from these data?

19.16 Suppose that in the study by Latané and Dabbs (1975), referred to in Section 19.6, only
100 males and 100 females were involved. Compute 

19.17 What does the answer to Exercise 19.16 say about the effects of sample size on the power
of an experiment?

19.18 Dabbs and Morris (1990) examined archival data from military records to study the rela-
tionship between high testosterone levels and antisocial behavior in males. Out of the
4,016 men in the normal testosterone group, 10.0% had a record of adult delinquency. Out
of the 446 men in the high testosterone group, 22.6% had a record of adult delinquency.
(a) Create a contingency table of frequencies, classifying men by High and Normal testos-

terone levels and by Delinquency and Nondelinquency.
(b) Compute for this table.
(c) Draw the appropriate conclusions.

19.19 In the study described in Exercise 19.18, 11.5% of the Normal testosterone group and
17.9% of the High testosterone group had a history of childhood Delinquency.
(a) Is there a significant relationship between these two variables?
(b) Interpret this relationship.
(c) How does this result expand on what we already know from Exercise 19.18?

19.20 Let’s see how students and faculty compare on a basic statistical question. Zuckerman,
Hodgins, Zuckerman, and Rosenthal (1993) surveyed 550 people and asked a number of ques-
tions on statistical issues. In one question a reviewer warned a researcher that she had a high
probability of a Type I error because she had a small sample size. The researcher disagreed.
Participants were asked, “Was the researcher correct?” The proportions of respondents, parti-
tioned among students, assistant professors, associate professors, and full professors, who sided
with the researcher and the total number of respondents in each category were as follows:

Assistant Associate Full
Students Professors Professors Professors

Proportion .59 .34 .43 .51
Sample Size 17 175 134 182

(Note: These data mean that 59% of the 17 students who responded sided with the researcher.
When you calculate the actual obtained frequencies, round to the nearest whole person.)
(a) Who do you think was correct?
(b) What do these data tell you about differences among groups of respondents? (Note: The

researcher was correct. Our tests are specifically designed to hold the probability of a
Type I error at regardless of the sample size.)a,

x2

x2.
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19.21 The Zuckerman et al. paper referred to in the previous question hypothesized that faculty
were less accurate than students because they have a tendency to give negative responses
to such questions. (“There must be a trick.”) How would you test such a hypothesis?

19.22 Calculate the odds ratio for the table from Exercise 19.7 that combines the data of
Clark and Clark (1939) and Hraba and Grant (1970).

19.23 Combine the data in Exercise 19.14 by adding together the Maintainers and Gainers cate-
gories. Then compute an odds ratio to say something about racial differences in high school
girls’ perceptions of weight.

19.24 Use an odds ratio to clarify the results of the Dabbs and Morris study of testosterone in
Exercise 19.18.

19.25 Peterson (2001) reports data on a study by Unah and Boger (2001) examining the death
penalty in North Carolina from 1993–1997. The data in the table below show the outcome
of sentencing for white and nonwhite (mostly black and Hispanic) defendants when the
victim was white. The expected frequencies are shown in parentheses.

Death Sentence

Defendant’s Race Yes No Total

Nonwhite 33 251 284
(22.72) (261.28)

White 33 508 541
(43.28) (497.72)
66 759 825

What can we conclude about the fairness of sentencing?

19.26 Hout, Duncan, and Sobel (1987) reported data on the relative sexual satisfaction of mar-
ried couples. They asked each member of 91 married couples to rate the degree to which
they agreed with “Sex is fun for me and my partner” on a four-point scale ranging from
“never or occasionally” to “almost always.” The data appear below:

Wife’s Rating

Husband’s Fairly Very Almost
Rating Never Often Often Always Total

Never 7 7 2 3 19
Fairly Often 2 8 3 7 20
Very Often 1 5 4 9 19
Almost Always 2 8 9 14 33

Total 12 28 18 33 91

(a) What hypothesis would you like to test with these data?
(b) Use Pearson’s chi-square to test your hypothesis. What would you conclude?
(c) Finally, what if you combined the Never and Fairly Often categories and the Very

Often and Almost Always categories? Would the results be clearer, and under what
conditions might this make sense?

2 3 2
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20
Nonparametric
and Distribution-
Free Statistical
Tests

Concepts that you will need to remember 
from previous chapters

: Sums of squares of all scores, of group
means, and within groups

: Mean squares for group means, 
and within groups

F statistic: Ratio of over 

Degrees of freedom: The number of independent pieces 
of information remaining after estimating 
one or more parameters

Effect size ( ): A measure intended to express the size 
of a treatment

: Correlation based measures of effect size

Multiple comparisons: Tests on differences between specific group
means in terms that are meaningful to the
reader
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In this chapter we are going to change our general approach to hypothesis
testing and look at procedures that rely on substituting ranks for raw scores. These
are members of the class of nonparametric, or distribution-free, tests. We will first look
at the underlying principle that stands behind such tests and then discuss the reasons
why one might prefer to use this kind of test. We will see that these tests are a sup-
plement to what we have learned, not a replacement.

Most of the statistical procedures we have discussed in the preceding chapters
have involved the estimation of one or more parameters of the distribution of scores in
the population(s) from which the data were sampled and assumptions concerning the
shape of that distribution. For example, the t test makes use of the sample variance 
as an estimate of the population variance and also requires the assumption that
the population from which we sampled is normal (or at least that the sampling distri-
bution of the mean is normal). Tests, such as the t test, that involve assumptions either
about specific parameters or about the distribution of the population are referred to as
parametric tests.

Definition Parametric tests: Statistical tests that involve assumptions about, or estimation of,
population parameters.
Nonparametric tests: Statistical tests that do not rely on parameter estimation or
precise distributional assumptions.
Distribution-free tests: Another name for nonparametric tests.

One class of tests, however, places less reliance on parameter estimation
and/or distribution assumptions. Such tests usually are referred to as nonparamet-
ric tests or distribution-free tests. By and large if a test is nonparametric, it is also
distribution-free; in fact, it is the distribution-free nature of the test that is most valu-
able to us. Although the two names often are used interchangeably, these tests will
be referred to here as distribution-free tests.

The argument over the value of distribution-free tests has gone on for many
years, and it certainly cannot be resolved in this chapter. Many experimenters feel
that, for the vast majority of cases, parametric tests are sufficiently robust (unaffected
by violations of assumptions) to make distribution-free tests unnecessary. Others, how-
ever, believe just as strongly in the unsuitability of parametric tests and the overwhelm-
ing superiority of the distribution-free approach. (Bradley [1968] is a forceful and
articulate spokesman for the latter group, even though his book on the subject is over
40 years old.) Regardless of the position you take on this issue, it is important that
you are familiar with the most common distribution-free procedures and their underly-
ing rationale. These tests are too prevalent in the experimental literature simply to be
ignored.

The major advantage generally attributed to distribution-free tests is also the most
obvious—they do not rely on any seriously restrictive assumptions concerning the
shape of the sampled population(s). This is not to say that distribution-free tests do not
make any distribution assumptions, only that the assumptions they do require are far

1s2 2 1s2 2
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more general than those required for the parametric tests. The exact null hypothesis
being tested may depend, for example, on whether two populations are symmetric or
have a similar shape. None of these tests, however, makes an a priori assumption
about the specific shape of the distribution; that is, the validity of the test is not affected
by whether the distribution of the variable in the population is normal. A parametric
test, on the other hand, usually includes some type of normality assumption; if that
assumption is false, the conclusions drawn from the test may be inaccurate. Another
characteristic of distribution-free tests that often acts as an advantage is that many of
them, especially the ones discussed in this chapter, are more sensitive to medians than
to means. Thus if the nature of your data is such that you are interested primarily in
medians, the tests presented here may be particularly useful to you.

Those who favor using parametric tests in every case do not deny that the distri-
bution-free tests are more liberal in the assumptions they require. They do argue, how-
ever, that the assumptions normally cited as being required of parametric tests are
overly restrictive in practice and that the parametric tests are remarkably unaffected by
violations of distribution assumptions. In other words, they argue that the parametric
test is still a valid test even if all of its assumptions are not met.

The major disadvantage generally attributed to distribution-free tests is their
lower power relative to the corresponding parametric test. In general, when the
assumptions of the parametric test are met, the distribution-free test requires more
observations than the comparable parametric test for the same level of power. Thus
for a given set of data the parametric test is more likely to lead to rejection of a false
null hypothesis than is the corresponding distribution-free test. Moreover, even when
the distribution assumptions are violated to a moderate degree, the parametric tests
are thought to maintain their advantage.

It often is claimed that the distribution-free procedures are particularly useful
because of the simplicity of their calculations. However, for an experimenter who has
just invested six months collecting data, a difference of five minutes in computation time
hardly justifies the use of a less desirable test. Moreover, since most people run their
analyses using computer software, the difference in ease of use disappears completely.

There is one other advantage of distribution-free tests. Because many of them rank
the raw scores and operate on those ranks, they offer a test of differences in central ten-
dency that are not affected by one or a few very extreme scores (outliers). An extreme
score in a set of data actually can make the parametric test less powerful because it
inflates the variance and hence the error term, as well as biasing the mean by shifting
it toward the outlier (the latter may increase or decrease the difference between means).

In this chapter we will be concerned with four of the most important distribu-
tion-free methods. The first two are analogues of the t test, one for independent
samples and one for matched samples. The next two tests are distribution-free
analogues of the analysis of variance, the first for k independent groups and the
second for k repeated measures. All these tests are members of a class known as
rank-randomization tests because they deal with ranked data and take as the
distribution of their test statistic, when the null hypothesis is true, the theoretical dis-
tribution of randomly distributed ranks. I’ll come back to this idea shortly. Because
these tests convert raw data to ranks, the shape of the underlying distribution of
scores in the population becomes less important. Thus both the sets

538 Chapter 20 Nonparametric and Distribution-Free Statistical Tests



11 14 15 16 17 22
(data that might have come from a normal distribution)

and

11 12 13 30 31 32
(data that might have come from a bimodal distribution)

reduce to the ranks

1 2 3 4 5 6

Definition Rank-randomization tests: A class of nonparametric tests based on the theoretical
distribution of randomly assigned ranks.

The use of methods based on ranks is not the only approach when we are con-
cerned about nonnormality, though it is the most common. Wilcox (2003) has an
extensive discussion of newer alternative methods (often relying on the trimming of
samples), though there is not space to discuss those methods here.
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Why do we use ranks?

You might reasonably ask why we would use ranks to run any of the tests in this
chapter. There are three good reasons why these tests were designed around the
substitution of ranks for raw data. In the first place, ranks can eliminate or
reduce the effects of extreme values. The two highest ranks of 20 items will be
the values 19 and 20. But the highest raw score values could be 77 and 78 or
77 and 130. It makes a difference with raw scores, but not with ranks.

A second advantage of ranks is that we know certain of their properties,
such as that the sum of a set of ranks is This greatly simpli-
fies calculations. This was especially important in the days before high speed
computers.

The third advantage is that once you have worked out the critical value
of the test statistic when you have 8 observations in one group and 13 in
another, you never have to solve that problem again. The next time you have
8 scores in one group and 13 in another, converting to ranks will yield the same
critical value. However, with raw scores you would have to set a cutoff for every
conceivable collection of 8 scores in one group and 13 in another.

However, while ranks provided an easy solution when we had to do calcu-
lations by hand, that advantage is now largely gone. There is a whole set of statis-
tical tests called randomization tests (or sometimes permutation tests) that work
by randomizing raw scores. For the Mann-Whitney test we converted to ranks and
then asked about all of the possible ways those ranks could have been assigned to
groups if the null hypothesis were true. As I said, ranks made it easy to acquire all
possible arrangements and identify the 5% most extreme ones. But now we can
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20.1 The Mann–Whitney Test

One of the most common and best known of the distribution-free tests is the
Mann–Whitney test for two independent samples. This test often is thought of as
the distribution-free analogue of the test for two independent samples, although
it tests a slightly different, and broader, null hypothesis. Its null hypothesis is the
hypothesis that the two samples were drawn at random from identical populations
(not just populations with the same mean), but it is especially sensitive to popula-
tion differences in central tendency. Thus rejection of generally is interpreted
to mean that the two distributions had different central tendencies, but it is possi-
ble that rejection actually resulted from some other difference between the popu-
lations. Notice that when we gain one thing (freedom from assumptions), we pay
for it with something else (loss of specificity).

Definition Mann–Whitney test: A nonparametric test for comparing the central tendency of
two independent samples.

The Mann–Whitney test is a variation on a test originally devised by
Wilcoxon called the Rank-Sum test. Because Wilcoxon also devised another
test, to be discussed in the next section, we will refer to this version as the
Mann–Whitney test to avoid confusion. Although the test as devised by Mann
and Whitney used a slightly different test statistic, the statistic used in this chap-
ter (the sum of the ranks of the scores in one of the groups) is often advocated
because it is much easier to calculate. (In fact, this is the statistic that Wilcoxon
uses for his test. So, to be honest, I am calling this the Mann–Whitney test but
doing it the way Wilcoxon proposed.) The result is the same, because either way
of computing a test statistic would lead to exactly the same conclusion when
applied to the same set of data.

The logical basis of the Mann-Whitney test is particularly easy to understand.
Assume that we have two independent treatment groups, with observations inn1

H0

t
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do exactly the same thing with raw scores. We can write a very simple computer
program that randomly assigns scores to groups, calculates some statistic, and then
repeats that process 5,000 times or more in a very few seconds. Then we identify
the 5% most extreme outcomes and that gives us our critical value. And if there
are two many possible permutations of the raw scores to make the enumeration
practical, we can pick a random 5,000 or 10,000 rearrangements, and that will
gives us a result that is acceptably close to the result of the full solution.

If R. A. Fisher were still around, he would argue that when the random-
ization of raw scores gives a result that is more than trivially different from the
results of a parametric test such as or , then it is the or that is wrong.FtFt



Group 1 and observations in Group 2. To make it concrete, assume that there are
8 observations in each group. Further assume that we don’t know whether or not the
null hypothesis is true, but we happen to obtain the following data:

Raw Scores

Group 1 18 16 17 21 15 13 24 20

Group 2 35 38 31 27 37 26 28 25

Well, it looks as if Group 2 outscored Group 1 by a substantial margin. Now
suppose that we rank the data from lowest to highest, without regard to group
membership.

Ranked Scores

Group 1 5 3 4 7 2 1 8 6 � Ranks � 36

Group 2 14 16 13 11 15 10 12 9 � Ranks � 100

Look at that! The lowest 8 ranks ended up in Group 1 and the highest 8 ranks ended
up in Group 2. That doesn’t look like a very likely event if the two populations don’t
differ.

We could calculate how often such a result would happen if we really need
to, and if you are very patient. Although it could be done mathematically, we
could do it empirically by taking 16 balls and writing the numbers 1 through
16 on them, corresponding to the 16 ranks. (We don’t have to worry about
actual scores, because we are going to replace scores with ranks anyway.) Now
we will toss all of the balls into a bucket, shake the bucket thoroughly, pull out
8 balls, which will correspond with the ranks for Group 1, record the sum of the
numbers on those balls, toss them back into the bucket, shake and draw again,
record the sum of the numbers, and continue that process all night. By the next
morning we will have drawn an awful lot of samples, and we can look at the
values we recorded and make a frequency distribution of them. This will tell us
how often we had a sum of the ranks of only 36, how often the sum was 37, how
often it was 50, or 60, or 90, or whatever. Now we really are finished. We know
that if we just draw ranks out at random, only very rarely will we get a sum as
small as 36. (A simple calculation shows that an outcome as extreme as ours
would be expected to occur only one time out of 12,870, for a probability of
.00008.) If the null hypothesis is really true, then there should be no systematic
reason for the first group to have only the lowest ranks. It should have ranks
that are about like those of the second group. If the ranks in Group 1 are
improbably low, that is evidence against the null hypothesis.

I mentioned above that this is a “rank randomization” test, and what we have
just done illustrates where the name comes from. We run the test by looking at
what would happen if we randomly assigned scores (or actually ranks) to groups,
even if we don’t actually go through the process of doing the random assignment
ourselves.

n2
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Now consider the case in which the null hypothesis is true and the scores for
the two groups were sampled from identical populations. In this situation if we were
to rank all scores without regard to group membership, we would expect some
low ranks and some high ranks in each group, and the sum of the ranks assigned to
Group 1 would be roughly equal to the sum of the ranks assigned to Group 2.
Reasonable results for the situation with a true null hypothesis are illustrated.

Raw Scores

Group 1 31 16 17 28 15 38 24 20

Group 2 35 13 18 27 37 26 21 25

Now it looks as if Group 2 scores are not a lot different from Group 1 scores.
We can rank the data across both groups.

Ranked Scores

Group 1 13 3 4 12 2 16 8 6 � Ranks � 64

Group 2 14 1 5 11 15 10 7 9 � Ranks � 72

Here the sum of the ranks in Group 1 is not much different from the sum of the
ranks in Group 2, and a sum like that would occur quite often if we just drew ranks
at random.

Mann and Whitney (and Wilcoxon) based their tests on the logic just
described, using the sum of the ranks in one of the groups as the test statistic.
If that sum is too small relative to the other sum, we will reject the null hypoth-
esis. More specifically, we will take as our test statistic the sum of the ranks
assigned to the smaller group, or if the smaller of the two sums. Given this
value, we can use tables of the Mann–Whitney statistic to test the null
hypothesis. (They needed to concern themselves with only one of the sums,
because with a fixed set of numbers [ranks], the sum of the ranks in one group is
directly related to the sum of the ranks in the other group. If one sum is high, the
other must be low.)

To take a specific example, consider the data in Table 20.1 on the num-
ber of recent stressful life events reported by a group of cardiac patients in a
local hospital and a control group of orthopedic patients in the same hospital.
It is well known that stressful life events (marriage, new job, death of a spouse,
etc.) are associated with illness, and it is reasonable to expect that many
cardiac patients would have experienced more recent stressful events than
orthopedic patients (who just happened to break an ankle while tearing down
a building or a collarbone while skiing). It would appear from the data that this
expectation is borne out. Because we have some reason to suspect that life
stress scores probably are not symmetrically distributed in the population
(especially for cardiac patients if our research hypothesis is true), we will
choose to use a distribution-free test. In this case we will use the Mann–Whitney
test because we have two independent groups.

1WS 2
n1 5 n2

N
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To apply the Mann–Whitney test, we first rank all 11 scores from lowest to high-
est, assigning tied ranks to tied scores. The orthopedic group is the smaller of the two,
and if those patients generally have had fewer recent stressful life events, then the
sum of the ranks assigned to that group would be relatively low. Letting stand
for the sum of the ranks in the smaller group (the orthopedic group), we find

in smaller group

We can evaluate the obtained value of by using Table E.8 in the Appendix E,
which gives the smallest value of we would expect to obtain by chance if the null
hypothesis were true. From Table E.8 we find that for subjects in the smaller
group and subjects in the larger group ( is always used to represent the num-
ber of subjects in the smaller group) the entry for (one-tailed) is 18. This
means that for a difference between groups to be significant at the two-tailed .05 level
(or the one-tailed .025 level), must be less than or equal to 18. Because we found

to be 21, we cannot reject (By way of comparison, if we ran a test on these
data, ignoring the fact that one sample variance is almost 50 times the other and that
the data suggest that our prediction of the shape of the distribution of cardiac scores
may be correct, would be 1.52 on 9 which is also a nonsignificant result.)df,t

tH0.Ws
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a 5 .025
n1n2 5 6

n1 5 5
WS

WS

WS 5 2 1 3.5 1 3.5 1 5 1 7 5 21
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Table 20.1  
Stressful Life Events Reported by Cardiac and Orthopedic Patients

Cardiac Patients Orthopedic Patients

Data 32 8 7 29 5 0 1 2 2 3 6
Ranks 11 9 8 10 6 1 2 3.5 3.5 5 7

As an aside, I should point out that we would have rejected if our value of 
was smaller than the tabled value. Until now you have been rejecting when
the obtained test statistic was larger than the corresponding tabled value. When
we work with nonparametric tests the tables are usually set up to lead to rejec-
tion for small obtained values. If I were redesigning statistical procedures, I would
set the tables up differently, but nobody asked me. Just get used to the fact that
parametric tables are set up such that you reject for large obtained values, and
nonparametric tables are often set up so that you reject for small values. That’s
just the way it is.

H0

H0

WSH0

The entries in Table E.8 are for a one-tailed test and will lead to rejection of the
null hypothesis only if the sum of the ranks for the smaller group is sufficiently small.
It is possible, however, that the larger ranks could be congregated in the smaller
group, in which case if is false, the sum of the ranks would be larger than chanceH0



expectation rather than smaller. One rather awkward way around this problem
would be to rank the data all over again, this time ranking from high to low, rather
than from low to high. If we did that, the smaller ranks would appear in the smaller
group, and we could proceed as before. We do not have to go through the process
of reranking data, however. We can accomplish the same thing by making use of the
symmetric properties of the distribution of the rank sum by calculating a statistic
called . is the sum of the ranks for the smaller group that we would have found
if we had reversed our ranking and ranked from highest to lowest:

where and is tabled in Table E.8 in Appendix E. For a two-
tailed test of (which is what we normally want) we calculate both and 
enter the table with whichever is smaller, and double the listed value of .

For an illustration of and consider the following two sets of data:

Set 1

Group 1 Group 2

X 2 15 16 19 18 23 25 37 82

Ranks 1 2 3 5 4 6 7 8 9

Set 2

Group 1 Group 2

X 60 40 24 21 23 18 15 14 4

Ranks 9 8 7 5 6 4 3 2 1

Notice that the two data sets exhibit the same degree of extremeness, in the sense
that for the first set, four of the five lowest ranks are in Group 1, and in the sec-
ond set, four of the five highest ranks are in Group 1. Moreover, for Set 1 is
equal to for Set 2 and vice versa. Thus if we establish the rule that we will cal-
culate both and for the smaller group and refer the smaller of and to
the tables, we will have a two-tailed test and will come to the same conclusion
with respect to the two data sets.

The Normal Approximation
Table E.8 in Appendix E is suitable for all cases in which and are less than or
equal to 25. For larger values of and/or we can make use of the fact that then2n1

n2n1

W¿SWSW¿SWS

W¿S

WS

WS 5 29 WS¿ 5 11

WS 5 11 WS¿ 5 29

W¿S,WS

a

W¿S ,WSH0

2W 5 n11n1 1 n2 1 1 2
W¿S 5 2W 2 WS

W¿SW¿S
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distribution of approaches a normal distribution as sample sizes increase. This
distribution has

and

Because the distribution is normal and we know its mean and its standard deviation
(the standard error), we can calculate :

and obtain from the tables of the normal distribution an approximation of the true
probability of a value of at least as low as the one obtained.

To illustrate the computations for the case in which the larger ranks fall into
the smaller group and to illustrate the use of the normal approximation (although
we don’t really need to use an approximation for such small sample sizes), consider
the data in Table 20.2. These data are hypothetical (but reasonable) data on the
birthweights (in grams) of children born to mothers who did not seek prenatal care
until the third trimester and of children born to mothers who received prenatal
care starting in the first trimester.

For the data in Table 20.2 the sum of the ranks in the smaller group equals 100.
From Table E.8 in Appendix E we find thus 
Because 52 is smaller than 100, we go to Table E.8 with and

(Remember, is defined as the smaller sample size.) Because we want a
two-tailed test, we will double the column headings for The critical value of 
(or ) for a two-tailed test at is 53, meaning that only 5% of the time
would we expect a value of or less than or equal to 53 when is true. Our
obtained value of is 52, which falls into the rejection region, so we will reject

We will conclude that mothers who do not receive prenatal care until the third
trimester tend to give birth to smaller babies. This does not necessarily mean that
not having care until the third trimester causes smaller babies, but only that vari-
ables associated with delayed care (e.g., young mothers, poor nutrition, and
poverty) also are associated with lower birthweight.

The use of the normal approximation for evaluating is illustrated in
the lower section of Table 20.2. Here we find that From Table E.10
in Appendix E we find that the probability of or at least as small as 52W¿SWS

z 5 2.13.
WS

H0.
WS

H0W¿SWS

a 5 .05W¿S

WSa.
n1n2 5 10.

WS 5 52, n1 5 8,
W¿S 5 2W 2 WS 5 52.2W 5 152;

WS

z 5
Statistic 2 Mean

Standard error
5

WS 2
n11 n1 1  n2 1 1 2

2

Bn1n21 n1 1  n2 1 1 2
12

z

Standard error 5 Bn1 n21 n1 1  n2 1 1 2
12

Mean 5
n11n1 1 n2 1 1 2

2

WS
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(a at least as extreme as ) is Because this value is
smaller than our traditional cutoff of we will reject and again con-
clude that there is sufficient evidence to say that failing to seek early prenatal
care is related to lower birthweight. Note that both the exact solution and the
normal approximation lead to the same conclusion with respect to (With
the normal approximation it is not necessary to calculate and use because
use of will lead to the same value of except for the reversal of its sign. It
would be instructive for you to calculate Student’s test for two independent
groups from the same set of data.)

t
zWS

W¿S

H0.

H0a 5 .05,
210.0166 2 5 0.033.; 2.13z
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Table 20.2
Data on Birthweight of Infants Born to Mothers with Different Levels 
of Prenatal Care

Beginning of Care

Third Trimester First Trimester

Birthweight Rank Birthweight Rank

1,680 2 2,940 10
3,830 17 3,380 16
3,110 14 4,900 18
2,760 5 2,810 9
1,700 3 2,800 8
2,790 7 3,210 15
3,050 12 3,080 13
2,660 4 2,950 11
1,400 1
2,775 6

 5
100 2 762126.6667

5 2.13

 5
100 2

818 1 10 1 1 2
2

B8110 2 18 1 10 1 1 2
12

 z 5
WS 2

n11n1 1 n2 1 1 2
2

Bn1n21n1 1 n2 1 1 2
12

 WS¿ 5 2W 2 WS 5 152 2 100 5 52

 WS 5 o 1ranks  in  Group  2 2 5 100



The Treatment of Ties
When the data contain tied scores, any test that relies on ranks is likely to be some-
what distorted. There are several different ways of dealing with ties. You can assign
tied ranks to tied scores (as we have been doing), you can flip a coin and assign con-
secutive ranks to tied scores, or you can assign untied ranks in whatever way will
make it hardest to reject In actual practice most people simply assign tied ranks.
Although that may not be the statistically best way to proceed, it is the most com-
mon and the method we will use here.

The Null Hypothesis
The Mann–Whitney test evaluates the null hypothesis that the two sets of
scores were sampled from identical populations. This is broader than the null
hypothesis tested by the corresponding test, which dealt specifically with
means (primarily as a result of the underlying assumptions that ruled out other
sources of difference). If the two populations are assumed to have the same
shape and dispersion, then the null hypothesis tested by the Mann–Whitney
test would actually deal with the central tendency (in this case the medians) of
the two populations; if the populations are also symmetric, the test will be a test
of means. In any event the Mann–Whitney test is particularly sensitive to dif-
ferences in central tendency.

Using SPSS
I will illustrate the use of SPSS for this test, and it should be clear how it would be
used for those tests that follow. In Chapter 17 we considered data collected by
Willer (2005) on the Masculine Overcompensation Thesis. Those data can be
found on the Web site as Tab17.5.dat. The first column represents Gender

the second column represents Condition and the third
column contains the dependent variable (Price). In Chapter 17 I mentioned that
Willer’s data were probably positively skewed, although the data that I created to
match his data were more or less normal. This might be a place where the
Mann–Whitney test would be useful, especially if we had Willer’s actual data. I
also noted there that Willer was most interested in males and the hypothesis that
when males’ masculinity is questioned, they might engage in more masculine
behavior, and so we will limit our analysis to males.

To restrict the analysis to data from males, you need to go to the drop-
down menu labeled Data, choose Select Cases, and then specify that you want
to use only the data from Gender 1. Next, choose Analyze/
Nonparametric tests/ 2-independent samples. Next you need to specify that
Price is the test variable and that Threat is the Grouping variable. When you
do that you also have to indicate that the levels of Threat are 1 and 2. The
results of this analysis appear below.

5

11 5 Threat 2 ,11 5 Male 2 ,

t

H0.
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Mann–Whitney Test
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Condition N Mean Rank Sum of Rank

Price willing to pay Threatened 25 29.62 740.50
Confirmed 25 21.38 534.50
Total 50

Ranks

Price willing to pay

Mann–Whitney U 209.500
Wilcoxon W 534.500
Z 1.999
Asymp. Sig. (2-tailed) .046

2

Test Statisticsa

a. Grouping Variable: Condition

Here you see that the probability of this result under the null hypothesis is given
as .046, which is less that .05 and will lead us to conclude that threatened males
do engage in more masculine behavior. (SPSS uses a normal approximation, but if
you look at Appendix Table E.8 you will see that the critical sum of ranks is 536.
From the printout the smaller sum was 534.5, which also leads to rejection of the
null hypothesis.)

20.2 Wilcoxon‘s Matched-Pairs Signed-Ranks Test

Frank Wilcoxon is credited with developing the most popular distribution-free test
for independent groups, which I referred to as the Mann–Whitney test to avoid
confusion and because of their work on it. He also developed the most popular test
for matched groups (or paired scores). This test is the distribution-free analogue of
the test for related samples. It tests the null hypothesis that two related (matched)
samples were drawn either from identical populations or from symmetric popula-
tions with the same mean. More specifically it tests the null hypothesis that the
distribution of difference scores (in the population) is symmetric about zero. This
is the same hypothesis tested by the corresponding test when that test‘s normal-
ity assumption is met.

The logic behind Wilcoxon’s matched-pairs signed-ranks test is straight-
forward and can be illustrated with an example of a study of schizophrenia and
subcortical structures by Suddath, Christison, Torrey, Casanova, and Weinberger
(1990). Bleuler (1911) originally described schizophrenia as being characterized
by a lack of connections between associations in memory. The hippocampus has

t

t



been suggested as playing an important role in memory storage and retrieval, and
it is reasonable to ask if differences in hippocampal structures (particularly size)
could play a role in schizophrenia. Suddath obtained MRI scans on the brains of
15 schizophrenic individuals and their monozygotic (identical) twins. They
measured the volume of each brain’s left hippocampus. Because there are many
things that control the volume of cortical and subcortical structures, Suddath
used monozygotic twin pairs in an effort to control as many of these as possible
and to reduce the amount of variance to be explained. The results appear in
Table 20.3 as taken from Ramsey and Schafer (1996).

Definition Wilcoxon’s matched-pairs signed-ranks test: A nonparametric test for comparing
the central tendency of two matched (related) samples.

If you plot the difference scores for these 15 twin pairs, as shown in Figure 20.1,
you will note that the distribution is far from normal. With so few observations
it is not feasible to make a definitive statement about normality, but I would
not like to have to defend the idea that these are normally distributed obser-
vations. For that reason I would prefer to rely on a distribution-free test for
paired observations, and that test is the Wilcoxon matched-pairs signed-ranks
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Table 20.3
Data on Volume (in cm3) of Left Hippocampus in Schizophrenic 
and Nonschizophrenic Twin Pairs

Signed
Pair Normal Schizophrenic Difference Rank Rank

1 1.94 1.27 0.67 15 15
2 1.44 1.63 �.18 9 �9
3 1.56 1.47 0.09 5 5
4 1.58 1.39 0.19 10 10
5 2.06 1.93 0.13 8 8
6 1.66 1.26 0.40 12 12
7 1.75 1.71 0.04 3 3
8 1.77 1.67 0.10 6 6
9 1.78 1.28 0.50 13 13

10 1.92 1.85 0.07 4 4
11 1.25 1.02 0.23 11 11
12 1.93 1.34 0.59 14 14
13 2.04 2.02 0.02 1 1
14 1.62 1.59 0.03 2 2
15 2.08 1.97 0.11 7 7

T� � � (Positive ranks) � 111
T� � � (Negative ranks) � �9



test, which is based, as its name suggests, on the ranks of the differences rather
than the numerical values.

If schizophrenia is associated with lower (or higher) volume for the left
hippocampus, we would expect most of the twin pairs to show a lower (or higher)
volume for the schizophrenic twin than for the control twin. Thus we would expect
a predominantly positive (or negative) difference. We also would expect that twin
pairs who broke this pattern to differ only slightly in the opposite direction from the
trend. On the other hand, if schizophrenia has nothing to do with volume, we would
expect about one-half of the difference scores to be positive and one-half to be
negative, with the positive differences about as large as the negative ones. In other
words, if is really true, we would no longer expect most changes to be in the
predicted direction with only small changes in the unpredicted direction. Notice
that I have deliberately phrased this paragraph for a two-tailed (nondirectional) test.
For a directional test you would simply remove the phrases in parentheses.

In carrying out the Wilcoxon matched-pairs signed-ranks test we first
calculate the difference score for each pair of measurements. We then rank all
difference scores without regard to the sign of the difference, give the algebraic
sign of the differences to the ranks themselves, and finally sum the positive and
negative ranks separately. The data in Table 20.3 present the numerical scores

for the 15 schizophrenic participants and their twin in columns two and
three. The fourth column shows the differences between the twins, with these
differences ranked (without regard to sign) in the fifth column. Although the
difference for pair 2 is the smallest number in column four and would
normally be ranked 1, when we drop its sign and look only at the size of the dif-
ference and not its direction, it is the ninth-smallest difference. The last
column shows the ranks found in column five with the sign of the difference

1.19 2 ,
12.19 2 ,

1in cm3 2

H0
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Figure 20.1
Distribution of differences between schizophrenic and normal twins

–.25 0 .13 .25 .38 .63.50
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Histogram of Difference Scores

Std. Dev. = .24
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N = 15.00
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applied. The test statistic is taken as the smaller of the absolute values
(i.e., dropping the sign) of the two sums and is evaluated against Table E.7 in
Appendix E. (It is important to note that in calculating we attach algebraic
signs to the ranks only for convenience. We could just as easily, for example, cir-
cle those ranks that went with lower volume for the normal twin and underline
those that went with higher volume for the normal twin. We are merely trying
to differentiate between the two cases.)

For the data in Table 20.3 only one of the pairs had the normal twin with a
smaller volume that the schizophrenic twin. Although that was the largest
difference, it was still only one case. All other pairs showed a difference in the
other direction. The sum of the positive ranks and the sum of the
negative ranks Because is defined as the smaller absolute value of

and 
To evaluate we refer to Table E.7, a portion of which is shown in Table 20.4.

The format of this table is somewhat different from that of the other tables we
have seen. The easiest way to understand what the entries in the table represent
is by way of an analogy. Suppose that to test the fairness of a coin, you are going
to flip it eight times and reject the null hypothesis, at (one-tailed), if
there were too few heads. Out of eight flips of a coin there is no set of outcomes
that has a probability of exactly .05 under The probability of one or fewer
heads is .0352, and the probability of two or fewer heads is .1445. Thus if we
want to work at we can either reject for one or fewer heads, in which
case the probability of a Type I error is actually .0352 (less than .05), or we can
reject for two or fewer heads, in which case the probability of a Type I error is
actually .1445 (much greater than .05). Do you see where we are going? The
same kind of problem arises with because it is a discrete distribution. No value
has a probability of exactly the desired 

In Table E.7 we find that for a one-tailed test at (or a two-tailed test at
) with the entries are 25 [.0240] and 26 [.0277]. This tells us that if we

want to work at a (one-tailed) (and thus a two-tailed test at ),
we can reject either for (in which case actually equals .0240) or for

(in which case the true value of is .0277). Because we want a two-tailed test,
the probabilities should be doubled to 25 [.0480] and 26 [.0554]. We obtained a value
of 9, so we would reject whichever cutoff we choose. We will conclude, therefore,
that we reject the null hypothesis of equal volumes for the left hippocampus for both
schizophrenic and normal participants. We can see from the data that the left hip-
pocampus is generally smaller in those suffering from schizophrenia. This is a very
important finding if only in that it demonstrates that there is a physical basis underly-
ing schizophrenia, and not simply “mistaken ways of living.”

Ties
Ties can occur in the data in two different ways. One way would be for a twin pair
to have the same scores for both the normal and schizophrenic twin, leading to a
difference score of zero, which has no sign. In that case we normally eliminate that

H0,
T

aT # 26
aT # 25H0

a 5 .05a 5 .025
n 5 15a 5 .05

a 5 .025
a.

T

a 5 .05,

H0.

a 5 .05

T,
T2, T 5 9.T1

T1T2 2 5 29.
1T1 2 5 111

9th

T

1T 2
20.2 Wilcoxon‘s Matched-Pairs Signed-Ranks Test 551



pair from consideration and reduce the sample size accordingly, although this leads
to some bias in the test.

We could have tied difference scores that lead to tied rankings. If both tied
scores have the same sign, we can break the tie in any way we want (or assign
tied ranks) without affecting the final outcome. If the scores have opposite signs,
we normally assign tied ranks and proceed as usual.

The Normal Approximation
Just as with the Mann–Whitney test, when the sample size is too large (in this case,
larger than 50, which is the limit for Table E.7), a normal approximation is avail-
able to evaluate For larger sample sizes we know that the sampling distribution
is approximately normally distributed with

and

Standard error 5 Bn1n 1 1 2 12n 1 1 2
24

Mean 5
n1n 1 1 2

4

T.
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Table 20.4  
Critical Lower-Tail Values of T and Their Associated Probabilities 
(Abbreviated Version of Table E.7)

Nominal � (One-Tailed)

.05 .025 .01 .005

N T � T � T � T �

5 0 .0313
1 .0625

6 2 .0469 0 .0156
3 .0781 1 .0313

7 3 .0391 2 .0234 0 .0078
4 .0547 3 .0391 1 .0156

8 5 .0391 3 .0195 1 .0078 0 .0039
6 .0547 4 .0273 2 .0117 1 .0078

9 8 .0488 5 .0195 3 .0098 1 .0039
9 .0645 6 .0273 4 .0137 2 .0059

10 10 .0420 8 .0244 5 .0098 3 .0049
11 .0527 9 .0322 6 .0137 4 .0068

. . . . . . . . . . . . . . . . . . . . . . . . . . .

15 30 .0473 25 .0240 19 .0090 15 .0042
31 .0535 26 .0277 20 .0108 16 .0051



Thus we can calculate z as

and evaluate using Table E.10. The procedure is directly analogous to that used
with the Mann–Whitney test and will not be repeated here.

z

z 5
T 2

n1n 1 1 2
4

Bn1n 1 1 2 12n 1 1 2
24
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Frank Wilcoxon (1892–1965)

Frank Wilcoxon is an interesting person in statistics for the simple reason that
he was not really a statistician and didn’t publish any statistical work until he
was in his 50s. He was originally trained in inorganic chemistry and spent most
of his life doing chemical research dealing with insecticides and fungicides.

Wilcoxon had been in a statistical study group with W. J. Youden, an
important early figure in statistics, and they had worked their way through
Fisher’s very influential text. But when it came to analyzing data in later years,
Wilcoxon was not satisfied with Fisher’s method of randomization of observa-
tions. Wilcoxon hit upon the idea of substituting ranks for raw scores, which
allowed him to work out the distribution of various test statistics quite easily. His
use of ranks stimulated work on inference based ranks on and led to a number of
related statistical tests applied to ranks.

Wilcoxon officially retired in 1957, but then joined Florida State University
and worked on sequential ranking methods until his death. His name is still
largely synonymous with rank-based statistics.

20.3 Kruskal–Wallis One-Way Analysis of Variance

The Kruskal–Wallis one-way analysis of variance is a direct generalization of the
Mann–Whitney test to the case in which we have three or more independent
groups. As such it is the distribution-free analogue of the one-way analysis of vari-
ance discussed in Chapter 16. It tests the hypothesis that all samples were drawn
from identical populations and is particularly sensitive to differences in central
tendency.

Definition Kruskal–Wallis one-way analysis of variance: A nonparametric test analogous to
a standard one-way analysis of variance.



To perform the Kruskal–Wallis test, we simply rank all scores without regard
to group membership and then compute the sum of the ranks for each group. The
sums are denoted by If the null hypothesis were true, we would expect the s to 
be more or less equal (aside from differences due to the size of the samples). A meas-
ure of the degree to which the s differ from one another is provided by

where

and the summation is taken over all groups. is then evaluated against the 
distribution on k 2 1 df.

x2Hk

 N 5 ©nj 5 total sample size
 Rj 5 the sum of the ranks in the jth group
 nj 5 the number of observations in the jth group

H 5
12

N1N 1 1 2 a
R2

j

nj

2 31N 1 1 2

Rj

RjRj.
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Students frequently have problems with a statement such as “ is then evalu-
ated against the distribution on ” All that it really means is that we
treat as if it were a value of and look it up in the chi-square tables on
k 2 1 df.

x2H
k 2 1 df.x2

H

For an example, assume that the data in Table 20.5 represent the number of simple
arithmetic problems (out of 85) solved (correctly or incorrectly) in one hour by par-
ticipants given a depressant drug, a stimulant drug, or a placebo. Notice that in the
Depressant group three of the participants were too depressed to do much of any-
thing and in the Stimulant group three of the participants ran up against the limit
of 85 available problems. These data are decidedly nonnormal, and we will convert
the data to ranks and use the Kruskal–Wallis test. The calculations are shown in the
lower part of the table. The obtained value of is 10.36, which can be treated as a

on The critical value of is found in Table E.1 in the
Appendices to be 5.99. Because we can reject and conclude that
the three drugs lead to different rates of performance. (Like other chi-square tests,
this test rejects for large values of It is nonetheless a nondirectional test.)

20.4 Friedman‘s Rank Test for k Correlated Samples

The last test to be discussed in this chapter is the distribution-free analogue of the
one-way repeated-measures analysis of variance, Friedman’s rank test for k corre-
lated samples. It was developed by the well-known economist Milton Friedman—in

H.H0

H010.36 7 5.99,
x2.0512 23 2 1 5 2 df.x2

H



the days before he was a well-known economist. This test is closely related to a stan-
dard repeated-measures analysis of variance applied to ranks instead of raw scores.
It is a test on the null hypothesis that the scores for each treatment were drawn from
identical populations, and it is especially sensitive to population differences in cen-
tral tendency.

Definition Friedman’s rank test for k correlated samples: A nonparametric test analogous to
a standard one-way repeated-measures analysis of variance.

We will base our example on a study by Foertsch and Gernsbacher (1997), who
investigated the substitution of the genderless word “they” for “he” or “she.” With
the decrease in the acceptance of the word “he” as a gender-neutral pronoun, many
writers are using the grammatically incorrect “they” in its place. (You may have
noticed that in this text I have very deliberately used the less-expected pronoun,
such as “he” for nurse and “she” for professor, to make the point that profession and
gender are not linked. You may also have noticed that you sometimes stumbled
over some of those sentences, taking longer to read them. That is what Foertsch
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Table 20.5  
Kruskal–Wallis Test Applied to Data on Problem Solving

Depressant Stimulant Placebo

Score Rank Score Rank Score Rank

55 9 73 15 61 11
0 1.5 85 18 54 8
1 3 51 7 80 16
0 1.5 63 12 47 5

50 6 85 18
60 10 85 18
44 4 66 13

69 14

Ri 35 115 40

 x2
.0512 2 5 5.99
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If the null hypothesis were true, we would expect the rankings to be randomly dis-
tributed within each subject. Thus one participant might do best on sentences
with an expected “he,” another might do best with an expected “she,” and a third

and Gernsbacher’s study was all about.) Foertsch and Gernsbacher asked partici-
pants to read sentences like “A truck driver should never drive when sleepy, even
if (he/she/they) may be struggling to make a delivery on time, because many acci-
dents are caused by drivers who fall asleep at the wheel.” On some trials the words
in parentheses were replaced by the gender-stereotypic expected pronoun, some-
times by the gender-stereotypic unexpected pronoun, and sometimes by “they.” For
our purposes the dependent variable will be taken as the difference in reading time
between sentences with unexpected pronouns and sentences with “they.” There
were three kinds of sentences in this study, those in which the expected pronoun
was male, those in which it was female, and those in which it could equally be male
or female. There are several dependent variables I could use from this study, but
I have chosen the effect of seeing “she” when expecting “he,” the effect of seeing
“he” when expecting “she,” and effect of seeing “they” when the expectation is
neutral. (The original study is more complete than this.) The dependent variable
is the reading time/character (in milliseconds). The data in Table 20.6 have been
created to have roughly the same medians as the authors’ report.

Here we have repeated measures on each participant, because each partici-
pant was presented with each kind of sentence. Some people read anything more
slowly than others, which is reflected in the raw data. The data are far from nor-
mally distributed, which is why I am applying a distribution-free test.

For Friedman’s test the data are ranked within each subject from low to high.
If it is easier to read neutral sentences with “they” than sentences with an unex-
pected pronoun, then the lowest ranks for each participant should pile up in the
Neutral category. The ranked data follow.
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Table 20.6 
Data on Reading Times as a Function of Pronoun

Participant 1 2 3 4 5 6 7 8 9 10 11

Expect He/See She 50 54 56 55 48 50 72 68 55 57 68
Expect She/See He 53 53 55 58 52 53 75 70 67 58 67
Neutral/See They 52 50 52 51 46 49 68 60 60 59 60

Raw Data

Participant 1 2 3 4 5 6 7 8 9 10 11 Sum

Expect He/See She 1 3 3 2 2 2 2 2 1 1 3 22

Expect She/See He 3 2 2 3 3 3 3 3 3 2 2 29

Neutral/See They 2 1 1 1 1 1 1 1 2 3 1 15
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might do best with an expected “they.” If this were the case, the sum of the rank-
ings in each condition (row) would be approximately equal. On the other hand, if
neutral sentences with “they” are easiest, then most participants would have their
lowest ranking under that condition, and the sum of the rankings for the three
conditions would be decidedly unequal.

To apply Friedman’s test, we rank the raw scores for each participant sep-
arately and then sum the rankings for each condition. We then evaluate the
variability of the sums by computing

where

the sum of the ranks for the jth condition
the number of subjects
the number of conditions

and the summation is taken over all conditions. This value of can be evaluated
with respect to the standard distribution on 

For the data in Table 20.5 we have

The critical value of on is 5.99, so we can reject and conclude
that reading times are not independent of conditions. People can read a neutral
sentence with “they” much faster than they can read sentences wherein the gen-
der of the pronoun conflicts with the expected gender. From additional data that
Foertsch and Gernsbacher present, it is clear that “they” is easier to read than the
“wrong” gender, but harder than the expected gender.

20.5 Measures of Effect Size

Measures of effect size are difficult to find with distribution-free statistical tests.1
An important reason for this is because many of our effect size measures are based
on the size of the standard deviation, and if the data are very badly (nonnormally)

H03 2 1 5 2 dfx2

 5
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1113 2 14 2 11550 2 2 3111 2 14 2 5 140.9 2 132 5 8.9
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1113 2 14 2  1222 1 292 1 152 2 2 3111 2 14 2
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Nk1k 1 1 2aR2

j 2 3N1k 1 1 2

1Conover (1980) discusses the use of confidence intervals for nonparametric procedures.



distributed, a standard deviation loses much of its meaning for this purpose. If we
know that data are normally distributed, and we know that the mean for one group
is a standard deviation above the mean for another group, we can estimate that
about two-thirds of the participants in the second group outscore the mean of the
first group. But if our data are badly skewed we lose that kind of interpretation of
the effect size. Similarly, even if we don’t standardized the difference between
means on the basis of a standard deviation, with badly skewed data we still do not
have a good understanding of what it means to say that the median of group 1 is
15 points above the median of group 2.

One effect size measure that you could use is to directly count, in your sample,
the number, or better yet the percentage, of one group that outscored those in
another group. For example, for the data in Table 20.2 we see that the median birth-
weight for those who received prenatal care in the first trimester was 3,245 grams.
For those who did not receive it until the third trimester, the median weight was
2,765.5 grams. This difference was statistically significant, and all mothers in the first
trimester group had infants that weighed more than the median of the third trimester
mothers. (Or, to put it in the reverse, only one mother in the third trimester group
gave birth to an infant that was over the median weight of the first trimester group.)
Reporting an effect size in this way may not be as satisfying as reporting effect
sizes using or a related statistic, but it is certainly more informative that simply
reporting that the difference was significant.

20.6 Writing Up the Results

I will give an example of writing up the results for the study by Suddath et al.
(1990). In writing those results we want to mention briefly what the study was
about and how it was conducted. Then we want to explain why we would use a dis-
tribution-free test in this situation and then go on to report the results of that test.
Finally, we want to give the reader some sense of how large an effect we found.

✍ Suddath et al. (1990) examined the size of cortical structures in 
schizophrenic patients and their monozygotic twin. To control for
possibly confounding variables, they chose 15 pairs of monozygotic twins.
Because schizophrenic patients often cannot seem to form appropriate
connections between items stored in memory, the investigators were
particularly interested in the hippocampus due to its role in memory
storage and retrieval.

The measure used in this example was the volume of the left
hippocampus taken from MRI scans of the brains of the participants.
Because the data were far from normally distributed, particularly the set
of differences between the normal and schizophrenic siblings in each
pair, the Wilcoxon Matched-Pairs Signed-Ranks test was used.

The results showed that the median difference in left hippocampal
volume between normal and schizophrenic twins was 10.5 cm3, with the
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schizophrenic twins having the lower volume. This difference was
statistically significant and in all but one case out 
of 15 (93%) the normal twin had the larger volume, indicating a robust
finding. These results strongly support the belief that there is a clear
structural difference between schizophrenic and normal participants in
terms of the size of at least one subcortical structure.

20.7 Summary

This chapter summarized briefly a set of procedures that require far fewer restric-
tive assumptions concerning the populations from which our data have been sam-
pled. Each of these tests involves converting raw scores to ranks and working with
those ranks. What all of these tests have in common is that they ask how the ranks
would be distributed if the null hypothesis were true. To do so they look at all pos-
sible randomizations of the ranks across groups. (That is why they are often called
“rank randomization” tests.) They then reject the null if the obtained pattern of
ranks is too extreme. The tests differ in how they rank the observations. These tests
are called nonparametric or distribution-free tests because they make many fewer
assumptions about the shape of the distribution and do not rely on unknown param-
eters such as the population mean or variance We first examined the
Mann–Whitney test, which is the distribution-free analogue of the independent
sample test. (An almost identical test was also developed by Wilcoxon.) To perform
the test we simply ranked the data without regard to group membership and asked if
the distribution of ranks resembled the distribution we would expect if the null
hypothesis were true. We take as our test statistic the sum of the ranks in the smaller
group (or the smaller sum of ranks if the groups are of the same size.) If the test sta-
tistic is smaller than the critical value found in the Mann–Whitney tables, we
reject the null hypothesis. If the sample sizes are larger than those covered by the
table, we can convert the sum of ranks to a score and refer that to the normal
distribution.

The same general logic applies to the Wilcoxon matched-pairs signed-ranks test,
which is the distribution-free test corresponding to the matched-sample test. In this
test we first calculate the difference for each pair of scores, then rank those differences
and assign these ranks the sign of the difference. Our test statistic is the smaller of the
sum of the negative ranks and the sum of the positive ranks. We then either refer this
sum to tables of the Mann–Whitney test or use a normal approximation with 

We then discussed two distribution-free tests that are analogous to an analy-
sis of variance on independent measures (the Kruskal–Wallis one-way analysis of
variance) and repeated measures (Friedman’s rank test for correlated samples).
The Kruskal–Wallis ranks all observations regardless of group membership and
then asks if the sums of the ranks assigned to each group are about as equal as the
null hypothesis would predict. For the Friedman test we rank the scores for each
participant, and then ask if the smaller ranks predominated in one treatment and
the larger ranks predominated in another.
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I pointed out that we do not have a good measure of effect size to go with
these tests, but that one approach would be to report the number of observations
in one group that were smaller than the smallest observation in another group.

Some important terms in this chapter are
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Parametric tests, 537

Nonparametric tests
(distribution-free tests), 537

Rank-randomization tests, 539

Mann–Whitney test, 540

Wilcoxon’s matched-pairs
signed-ranks test, 549

Kruskal–Wallis one-way analysis
of variance, 553

Friedman’s rank test for k
correlated samples, 555

20.8 Exercises

20.1 McConaughy (1980) has argued that younger children organize stories in terms of simple
descriptive (“and then . . .”) models, whereas older children incorporate causal statements
and social inferences. Suppose we asked two groups of children differing in age to summa-
rize a story they just read. We then counted the number of statements in the summary that
can be classed as inferences. The data are shown.

Younger Older 
Children Children

0 4

1 7

0 6

3 4

2 8

5 7

2 5

(a) Analyze these data using the two-tailed rank-sum test.
(b) What would you conclude?

20.2 Kapp, Frysinger, Gallagher, and Hazelton (1979) have demonstrated that lesions in the
amygdala can reduce certain responses commonly associated with fear (e.g., decreases in
heart rate). If fear is really reduced by the lesion, it should be more difficult to train an
avoidance response in those animals because the aversiveness of the stimulus will conse-
quently be reduced. Assume two groups of rabbits: One group has lesions in the amygdala,
and the other is an untreated control group. The following data represent the number of
trials to learn an avoidance response for each animal.



Group with Control 
Lesions Group

15 9

14 4

8 10

7 6

22 6

36 4

19 5

14 9

18 9

17

15

(a) Analyze the data using the Mann–Whitney test (two-tailed).
(b) What would you conclude?

20.3 Repeat the analysis in Exercise 20.2 using the normal approximation.

20.4 Repeat the analysis in Exercise 20.2 using the appropriate one-tailed test.

20.5 Nurcombe and Fitzhenry-Coor (1979) have argued that training in diagnostic tech-
niques should lead a clinician to generate and test more hypotheses in coming to a deci-
sion about a case. Suppose we take 10 psychiatric residents who are just beginning their
residency and use them as participants. We ask them to watch a videotape of an inter-
view and to record their thoughts on the case every few minutes. We then count the
number of hypotheses each resident includes in his or her written remarks. The experi-
ment is repeated with the same residents at the end of the residency with a comparable
videotape. The data are given.

Participant

1 2 3 4 5 6 7 8 9 10

Before 8 4 2 2 4 8 3 1 3 9

After 7 9 3 6 3 10 6 7 8 7

(a) Analyze the data using Wilcoxon’s matched-pairs signed-ranks test.
(b) What would you conclude?

20.6 Referring to Exercise 20.5,
(a) Repeat the analysis using the normal approximation.
(b) How well do the two answers agree? Why don’t they agree exactly?

20.7 It has been argued that firstborn children tend to be more independent than later-born
children. Suppose we develop a 25-point scale of independence and rate each of 20 first-
born children and their secondborn siblings using our scale. We do this when both siblings
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are adults, thus eliminating obvious age effects. The data on independence are as follows
(a higher score means that the person is more independent):

Sibling First- Second- Sibling First- Second-
Pair Born Born Pair Born Born

1 12 10 11 13 8
2 18 12 12 5 9
3 13 15 13 14 8
4 17 13 14 20 10
5 8 9 15 19 14
6 15 12 16 17 11
7 16 13 17 2 7
8 5 8 18 5 7
9 8 10 19 15 13

10 12 8 20 18 12
(a) Analyze the data using Wilcoxon’s matched-pairs signed-ranks test.
(b) What would you conclude?

20.8 Rerun the analysis in Exercise 20.7 using the normal approximation.

20.9 The results in Exercise 20.7 are not quite as clear-cut as we might like. Plot the differences
as a function of the firstborn’s score. What does this figure suggest?

20.10 What is the difference between the null hypothesis tested by the Mann–Whitney test and
the corresponding t test?

20.11 What is the difference between the null hypothesis tested by Wilcoxon’s matched-pairs
signed-ranks test and the corresponding test?

20.12 One of the arguments in favor of distribution-free tests is that they are more appropriate for
ordinal scale data. (This issue was addressed earlier in the book in a different context.) Give
a reason why this argument is not a good one.

20.13 Why is rejection of the null hypothesis using a t test a more specific statement than rejection
of the null hypothesis using the appropriate distribution-free test?

20.14 Three rival professors teaching English 1 all claim the honor of having the best students.
To settle the issue, eight students are randomly drawn from each class and given the same
exam. The exams are graded by a neutral professor who does not know from which class the
students came. The data are shown.

Professor Professor Professor 
Li Kessler Bright

82 55 65
71 88 54
56 85 66
58 83 68
63 71 72
64 70 78
62 68 65
53 72 73

Run the appropriate test and draw the appropriate conclusions.

t
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20.15 A psychologist operating a group home for delinquent adolescents needs to show that the
home is successful at reducing delinquency. He samples 10 adolescents living in their own
homes who have been identified by the police as having problems, 10 similar adolescents
living in foster homes, and 10 adolescents living in the group home. As an indicator vari-
able he uses truancy (number of days truant in the past semester), which is readily obtained
from school records. On the basis of the following data, draw the appropriate conclusions:

Natural Foster Group 
Home Home Home

15 16 10
18 14 13
19 20 14
14 22 11
5 19 7
8 5 3

12 17 4
13 18 18
7 12 2

20.16 As an alternative method of evaluating a group home, suppose we take 12 adolescents who
have been declared delinquent. We take the number of days truant during each of three
time periods: (1) the month before they are placed in the home, (2) the month they live
in the home, and (3) the month after they leave the home. The data are as follows:

Adolescent Before During After

1 10 5 8

2 12 8 7

3 12 13 10

4 19 10 12

5 5 10 8

6 13 8 7

7 20 16 12

8 8 4 5

9 12 14 9

10 10 3 5

11 8 3 3

12 18 16 2

Apply Friedman’s test. What do you conclude?

20.17 What advantage does the study described in Exercise 20.16 have over the study described
in Exercise 20.15?

20.18 It would be possible to apply Friedman’s test to the data in Exercise 20.5. What would we
lose if we did?
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20.19 For the data in Exercise 20.5 we could say that 3 out of 10 residents used fewer hypotheses
the second time and 7 used more. We could test this with . How would this differ from
Friedman’s test applied to those data?

20.20 Compute a reasonable effect size measure for the data in Exercise 20.2. There are probably
several different measures that you could come up with, so you should chose one that will
give your reader a real sense of the role played by lesions to the amygdala.

20.21 The history of statistical hypothesis testing really began with a tea-tasting experiment
(Fisher, 1935), so it seems fitting for this book to end with one. The owner of a small tea-
room doesn’t think people really can tell the difference between the first cup made with
a given tea bag and the second and third cups made with the same bag (which is why it
is still a small tearoom). He chooses eight different brands of tea bags, makes three cups
of tea with each, and then has a group of customers rate each cup on a 20-point scale
(without knowing which cup is which). The data are shown here, with higher ratings
indicating better tea:

Cup

Tea 
Brands First Second Third

1 8 3 2

2 15 14 4

3 16 17 12

4 7 5 4

5 9 3 6

6 8 9 4

7 10 3 4

8 12 10 2

Using Friedman’s test, draw the appropriate conclusions.

x2
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565

Choosing the
Appropriate
Analysis

Most of this book has been concerned with presenting and explaining
procedures commonly used to describe and analyze experimental data. As impor-
tant as it is for you to know how to apply those procedures, it is equally important for
you to know when to apply them. One of the greatest difficulties students face when
presented with real data is to know which of the many procedures they have learned
is applicable to that set of data.

In Chapter 1 I presented a brief discussion of the tree diagram found on the inside
cover of this book. That diagram is designed to help you consider the relevant issues
involved in selecting a statistical test (the issues of the type of data, the question of rela-
tionships versus differences, the number of groups, and whether variables are independ-
ent or dependent). The tree diagram is largely self-explanatory, and it is worth your time
to go over it and make sure you understand the distinctions it makes. At the same time
it is difficult to use something like that diagram effectively unless you have had practice
in doing so. The exercises in this chapter are designed to give you that practice.

The exercises and examples in this chapter cite research studies drawn from the
published literature. Each study is an actual one that resulted in data that someone
had to analyze. Your task is to identify the appropriate statistical procedure to be
used in each case. In some cases, several procedures could be properly applied,
and in other cases there may be room for disagreement over just what procedure
would be best. In some cases the appropriate procedure may simply be the calcula-
tion of one or more descriptive statistics, whereas in others—the majority—some sort
of hypothesis testing is called for. You should assume that the assumptions required by
the standard parametric tests have been met unless you are told otherwise. For some
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of the examples I have noted what the experimenter found. This is simply for your
interest and is not intended to be part of the question.

In selecting these examples I have occasionally simplified the actual experiment
in minor ways, usually by omitting either independent or dependent variables. I have
tried not to change the nature of the experiment in any important way. Should you
be interested in following up any of these studies, they are all listed in the references.
If you would like even more practice, the summaries of studies found in PsycINFO are
excellent sources of examples.

I have supplied my answers to half of these examples in the answer section at
the end of the book. As I said, occasionally there is room for disagreement over the
appropriate analysis. My approach may differ from that of the original experimenter,
who would have had a better grasp of the data. If your answer differs from mine, be
sure you understand why I gave the answer I did and consider whether yours is just
a different way of answering the same question, whether it answers an entirely differ-
ent question, or whether you have failed to take something into account. The order
of the questions deliberately does not correspond to the order in which various pro-
cedures were discussed in the text.

Figure 21.1
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21.1 Exercises and Examples

21.1 Klahr and Nigam (2004) studied the question of whether learning by “discovery” is better
than direct instruction. Two groups of third- and fourth-grade children were asked to learn
how to create simple experiments in which there is no confounding between explanatory
variables. One group designed two experiments and then received direct instruction on
good and bad experiments and the differences between them. A second group was allowed
to explore on their own and come up with their own ways of designing unconfounded
experiments. In an assessment phase, children were graded as “masters” or “nonmasters” of
design skills. The results showed that 77% of the 52 children receiving direct instruction
became masters, whereas only 23% of the 52 discovery children did so. How would you ana-
lyze these data?

21.2 Hygge, Evans, and Bullinger (2002) recruited four groups of children. Two of the groups
lived near an airport that was just about to open, and the other two lived near an airport
that was about to close. Those groups were further divided into children who were tested
when there was aircraft noise present, and children who were tested when there was no air-
craft noise present. The children read lists of difficult words, and the number of reading
errors was recorded. (When the children lived near an existing airport, they performed
much more poorly when noise was present. The same was not true of children who did not
live near an existing airport.)

21.3 Sullivan and Bybee (1999) reported on an intervention program for women with abusive
partners. The study involved a 10-week intervention program and a three-year follow-up,
and used an experimental (intervention) and control group. At the end of the 10-week
intervention period the mean Quality of life score for the intervention group was 5.03 with
a standard deviation of 1.01 and a sample size of 135. For the control group the mean was
4.61 with a standard deviation of 1.13 and a sample size of 130. How would you analyze
these data to test if the intervention was successful in terms of the quality of life measure?

21.4 Do people pay any attention to the pictures included in introductory psychology textbooks?
Goldstein, Bailis, and Chance (1983) presented 47 participants with a large number of pic-
tures and asked them to pick out the ones they recognized. Many of the pictures were taken
from the introductory psychology textbook the students were using. The experimenters also
presented the same pictures to 56 students who were using a different text. For each partic-
ipant they recorded the percentage of pictures correctly identified. In addition, they asked
participants in the first group to indicate the degree to which they used textbook pictures
in general as study aids. How would you analyze the data on recognition and the data on
reported use of pictures?

21.5 Franklin, Janoff-Bulman, and Roberts (1990) looked at the long-term impact of divorce on
college students’ levels of optimism and trust. They compared students from divorced fam-
ilies and students from intact families. (Note: They found no differences on generalized
trust, but children of divorced families showed less optimism about the future of their own
marriages.)

21.6 Zaragoza and Mitchell (1996) showed participants a video tape of a burglary, and then
asked them many questions about what happened. Some of the questions were deliberately
misleading, such as saying “At the beginning of the scene, a young man dressed in jeans, a
t-shirt, and gloves entered the house. Did he enter through the door?” In fact, the young
man did not wear gloves. Every participant heard some misleading statements zero times,
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other misleading statements once, and still other misleading statements three times. The
experimenters examined how often participants later reported that the video actually
included those incorrect observations. (As you might expect, the more often the statements
were repeated, the more often they were reported as actually occurring.)

21.7 Davey, Startup, Zara, MacDonald, and Field (2003) were interested in the role of mood on
the degree of compulsive checking in which a person engaged. (Compulsive checking is
involved in a number of psychopathologies.) Three groups of 10 participants each listened
to music designed to induce a positive, negative, or neutral mood. They were then asked to
“list as many things around your home that you should check for safety or security reasons
before you go away for three weeks.” The dependent variable was the number of things
listed. How would you analyze these data?

21.8 Carli (1990) compared males and females on their use of language and their influence on
the listener. They compared male and female speakers who spoke either tentatively or
assertively. They also took into account the gender of the listener. Separate groups of speak-
ers were used for each sex of listener, and each listener heard only one speaker. The depend-
ent variable was the perceived influence of the speaker. (Note: Female speakers who spoke
tentatively were more influential than assertive female speakers when speaking to men, but
less influential when speaking to women. Male speakers were equally influential when
speaking to either group.)

21.9 Weiss et al. (2008) working in the area of terror management tested the hypothesis that
reminders of their mortality will lead insecure people to move toward conservative posi-
tions and secure people to move toward liberal positions. This would not be expected to
happen when presented with an aversive stimulus that is unrelated to mortality. They meas-
ured participants’ “attachment security,” and two weeks later presented them with surveys
involving aversive events that were related to either mortality or dental pain. The
researchers hypothesized that the mortality condition would lead insecure participants to
more strongly endorse George W. Bush and secure participants to more strongly endorse
John Kerry in the 2004 campaign for President. They predicted that the dental pain condi-
tion would not lead to differences between the groups. Assume that Security was coded as
a dichotomous variable. What analysis should they use?

21.10 Pihl, Lau, and Assaad (1997) classified participants as being generally aggressive or not
aggressive. These participants were randomly assigned to a drunk or sober condition, given
significant amounts of alcohol or juice, and were then run in a study in which they both
administered and received electrical shocks from a fictitious opponent. When sober, partic-
ipants in the high aggressive group administered higher shock levels than participants in
the low aggressive group. When intoxicated and highly provoked, both high and low
aggressive participants administered equal amounts of shock. It was the low aggressive par-
ticipants who increased the aggressiveness of their behavior when they had been drinking.

21.11 Blair, Judd, and Chapleau (2004) studied the influence of Afrocentric facial features in
criminal sentencing. After studying 216 randomly selected cases, they found that black and
white inmates received roughly equal sentences after controlling for the severity of the
crime. However, within each group those with more predominant Afrocentric features
received harsher sentences. (Interestingly, after controlling for severity of offence and degree
of Afrocentric features, white inmates received longer sentences.)

21.12 Pope and Yurgelun-Todd (1996) gave a battery of standard neuropsychological tests to light
and heavy users of marijuana after both had abstained from marijuana and other drugs for
at least 19 hours. What analysis could they use to compare the performance of the two
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groups? (The results showed that “heavy users displayed significantly greater impairment
than light users on attentional/executive functions.”)

21.13 Napier and Jost (2008) noted that conservatives are generally happier than liberals, and
that this is mediated by differences in rationalization of inequality. Using national data col-
lected between 1974 and 2004, they assessed increases in income inequality during that
time period. They then looked at the difference in happiness between liberals and conser-
vatives as a function of increasing inequality over time. How should they analyze these
data? (Liberals always reported less happiness than conservatives, and their decrease in hap-
piness as a function of changes in income equality was far steeper than similar decreases for
conservatives.)

21.14 Many foods and beverages, such as coffee and scotch, are frequently termed “acquired
tastes.” Pliner (1982) was interested in investigating whether familiarity with a flavor leads
to greater approval—the “acquired-taste” phenomenon. She had 24 undergraduates taste
each of four unfamiliar tropical fruit juices 0, 5, 10, or 20 times. (For each participant she
randomized which juice would be tasted how many times.) Participants were then asked to
rate the degree to which they liked the taste of the juice. What statistical procedures are
suitable for analyzing these data? What test would she use if she wanted a distribution-free
test? (Note: She found the effect that she had expected—greater familiarity led to greater
approval.)

21.15 Cohn, Mehl, and Pennebaker (2004) collected online diaries of over 1,000 people for the
period two months prior to 9/11/2001 and two months after. Entries for each person were
computer scored for Emotional Positivity, Cognitive Processing, Social Orientation,
Psychological Distancing, and Preoccupation with September 11.

21.16 Fagerström (1982) studied the effect of using nicotine gum as an adjunct to a standard pro-
gram for giving up smoking. One group received the standard psychological treatment pro-
gram normally employed by Fagerström’s clinic. A second group received the same program
but was also supplied with gum containing nicotine, which they were instructed to chew
when they felt the need to smoke. Each group contained 50 participants, and participants
were classified as abstinent or not at one month and at six months. How should he analyze
his data? What problem arises from the fact that there was not a group given plain-old-
candy-store gum? (Note: The experimental [gum] group had abstinence rates of 90% and
64% at one and six months, respectively, and the control group had rates of 60% and 45%.)

21.17 Payne (1982) asked male and female participants to rank ten common job characteristics
(e.g., salary, workload) for the characteristics’ personal importance to the participant and
their perceived importance to a member of the opposite sex. The data were collected from
92 participants in 1973 and from 145 participants in 1981. How should she analyze these
data?

21.18 Most people are basically happy. Diener and Diener (1996) reported data on subjective
well-being from residents of 43 countries around the world. The mean was 6.33 on a scale
from 0 (most unhappy) to 10 (most happy). What would you do with data such as these?

21.19 Vasta, Rosenburg, Knott, and Gaze (1997) compared the performance of four groups of
male and females participants to Piaget’s water-level task, in which a participant looks at a
partially full glass of water and then draws where the water level would be if the glass were
tilted to the side. The four groups were bartenders, servers, clerical workers, and salesper-
sons. (Contrary to previous research, bartenders and servers were best. Females were gener-
ally better than males.)
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21.20 Cochran and Urbanczyk (1982) were concerned with the effect of the height of a room on
the desired personal space of participants. They tested 48 participants in both a high-ceiling
(10 ft) and a low-ceiling (7 ft) room. Participants stood with their backs to a wall while a
stranger approached. Participants were told to say “stop” when the approaching stranger’s
nearness made them feel uncomfortable. The dependent variable was the distance at which
the participant said “stop.” What should the experimenters do with their data? What
should they do instead if they are unwilling to use a parametric test? (Note: The distance
was greater with a lower ceiling, which suggests that interpersonal space is not dependent
on just horizontal distance.)

21.21 Robinson, Barrett, and Skeen (1983) compared scores on a scale of locus of control for 20
unwed adolescent fathers and 20 unwed adolescent nonfathers. How could they analyze
these data if they were unwilling to make parametric assumptions? (Note: They found no
difference.)

21.22 Hosch and Cooper (1982) looked at the role that being a victim rather than just a
bystander had on eyewitness identification. In the control condition a confederate of the
experimenter entered the experimental room with a participant, completed a few forms,
and left. In another condition the confederate did the same thing, but as she was leaving
she stole the experimenter’s calculator. In the third condition the confederate stole the par-
ticipant’s watch, which the participant had been instructed to leave on the table. There were
two dependent variables. The first was whether the participant was able to correctly identify
the confederate from a set of six photographs, and the second was the participant’s subjective
rating on a nine-point scale of his or her confidence in the identification. The experi-
menter was most interested in seeing whether being a victim of a theft led to better and
more confident identification than just observing a theft. How can these data be analyzed?
(Note: The two theft conditions did not differ, and there was no relationship between accu-
racy and confidence.)

21.23 Bradley and Kjungja (1982) experimented with the perception of subjective triangles.
When you look at three points that form a triangle, there is a subjective impression of lines
connecting those points to form the contours of the triangle. Bradley and Kjungja asked
participants to view the subjective triangle while it was stationary and again while it was
rotating in a circle. The participant was instructed to say whether the subjective contours
were stronger while the triangle was stationary or while it was rotating. Out of 37 partici-
pants, 35 said that the contours were stronger when the triangle was rotating. How could
they test whether this difference was significant (although here a formal test isn’t really
needed)?

21.24 Lobel, Dunkel-Schetter, and Scrimshaw (1992) examined medical risk factors, gestational
age, and the mother’s emotional stress as predictors of low birthweight. How could they
assess the relationship between these factors and low birthweight? (Note: Gestational age
and stress predicted birthweight but not medical risks. Women who experienced daily anx-
iety were most likely to delivery low-birthweight babies.)

21.25 Brown, Lewis, Brown, Horn, and Bowes (1982) investigated drug-induced amnesia as a way
of shedding light on organically produced amnesia. They first presented participants with a
list of words to learn and then injected the participants with either lorazepam (which pro-
duces amnesia) or saline. After 1.5 hours they asked all participants to recall the words they
had learned. They also asked the same participants to learn a list after the drug had been
injected and to recall it after 1.5 hours. If lorazepam interferes with the storage of material
in memory, then recall only of the second list should be affected. If lorazepam interferes
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with retrieval rather than storage, then recall of both lists should be disrupted. What statis-
tical test would be appropriate for analyzing these data? This is a case in which you do not
know how to perform the analysis, but you should be able to describe the design. (Note:
Recall of the list learned before the injection was unaffected, but the list studied after the
administration of the drug was poorly recalled.)

21.26 Hicks and Guista (1982) asked seven participants who habitually had less than 6.5 hours
of sleep per night and nine participants who habitually had more than 8.5 hours of sleep
per night to complete the Stanford Sleepiness Scale (SSS) at two-hour intervals for 30
days. The SSS is a measure of alertness and simply requires the participant to rate his or her
level of alertness by responding with a number between 1 (very alert) and 7 (struggling to
stay awake). The authors actually broke the data into seven different times of day, but for
purposes of this example assume that the dependent variable is each participant’s mean SSS
score over the 30-day period. What is the appropriate analysis of these data?

21.27 Hunt, Streissguth, Kerr, and Olson (1995) asked 14-year-olds to perform a spatial-visual
reasoning task in which it was possible to evaluate the amount of time each person viewed
a figure before responding, and the accuracy of that response. They also obtained the
amount of alcohol the child’s mother reported consuming during pregnancy (14 years ear-
lier). (Both study time and number correct were negatively correlated with alcohol con-
sumption during pregnancy, though, as expected, the correlations were not very high.)

21.28 It has been known for some time that men with older brothers are more likely to be homo-
sexual than men without older brothers. One explanation for this effect has been that this
is a phenomenon of socialization related to the environment in which males are raised.
Bogaert (2006) investigated this possibility by studying 944 people and looking at the num-
ber of older brothers and sisters an individual had and whether those were biological sib-
lings or step-siblings. With older biological brothers the probability of homosexuality
increased from 3% to around 5%, but there was no similar increase with older stepbrothers
or with biological sisters or stepsisters. How should Bogaert analyze these data?
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Standard Symbols and Parentheses
Basic Information

Addition and Subtraction
Fractions

Multiplication and Division
Algebraic Operations

Appendix A
Arithmetic Review

The following is intended as a quick refresher of some of the simple arithmetic 
operations you learned in high school but probably have not used since. Although
some of what follows will seem so obvious that you wonder why it is included, 
people sometimes forget the most obvious things. A more complete review can be
found at http://www.uvm.edu/~dhowell/fundamentals7/ArithmeticReview/review_
of_arithmetic_revised.html and I recommend that anyone who is not sure of the
arithmetic skills should look at that.

One of the things that students never seem to learn is that it is easy to figure out
most of these principles for yourself. For example, if you can’t remember whether

(it cannot, but it is one of the foolish things that I can never keep in my head), try
it out with very simple numbers. Thus,

is obviously not the same as

It is often quicker to check on a procedure by using small numbers than by
looking it up.

2
1

�
2
4

� 2.5

2
1 � 4

�
2
5

� .4

18.1
28.6 � 32.7

can reduced to 18.1
28.6

�
18.1
32.7

http://www.uvm.edu/~dhowell/fundamentals7/ArithmeticReview/review_of_arithmetic_revised.html
http://www.uvm.edu/~dhowell/fundamentals7/ArithmeticReview/review_of_arithmetic_revised.html


Standard Symbols and Basic Information

Numerator The thing on the top

Denominator The thing on the bottom

a/b a � Numerator; b � Denominator

�, �, �, � (or /) Symbols for addition, subtraction, multiplication, and
division; called operators

X � Y X equals Y

X � Y or X � Y X approximately equal to Y

X � Y X unequal to Y

X � Y X less than Y (Hint: The smaller end points to the smaller
number.)

X � Y X less than or equal to Y

X � Y X greater than Y

X 	 Y X greater than or equal to Y

X � Y � Z X less than Y less than Z (i.e., Y is between X and Z)

X � Y X plus or minus Y

|X| Absolute value of X—ignore the sign of X

The reciprocal of X

X2 X squared

Xn X raised to the nth power

Square root of X

Addition and Subtraction

8 � 12 � �4 To subtract a larger number from a smaller one, 
subtract the smaller from the larger and make the result
negative.

�8 � 12
� 12 � 8 � 4 The order of operations is not important.

1X � X1�2

11
X

Addition and Subtraction 573
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Multiplication and Division

2(3)(6) If no operator appears before a set of parentheses, 
� 2 � 3 � 6 multiplication is implied.

2 � 3 � 6 Numbers can be multiplied in any order.
� 2 � 6 � 3

Division can take place in any order.

7 � 3 � 6 Multiply or divide before you add or subtract the result. 
� 21 � 6 � 27 But for the same operators, work from left to right 

[e.g., 8 ÷ 2 ÷ 4 � (8 ÷ 2) ÷ 4, not 8 ÷ (2 ÷ 4)].

(�2)(�3) � 6
Multiplication or division of numbers with the same sign 
produces a positive answer.

(�2)3 � �6
Multiplication or division of numbers with opposite signs
produces a negative answer.

(�2)(3)(�6)(�4) With several numbers having different signs, work in pairs 
� (�6)(24) to get the correct sign.
� �144

Parentheses

2(7 � 6 � 3) � When multiplying, either perform the operations inside 
2(4) � 8 parentheses before multiplying, or multiply each element

within the parentheses and then sum.

�6
3

� �2

�6
�3

� 2

6
3

� 2

2 � 3 � 6

�
16
4

� 4

� 2 � 
8
4

�
2
4

 � 8

2 � 8
4

}
}

}



or

2(7) � 2(�6) � 2(3)
� 14 � 12 � 6 � 8

2(7 � 6 � 3)2 When the parenthetical term is raised to a power, 
� 2(4)2� 2(16) perform the operations inside the parentheses, raise 
� 32 the result to the appropriate power, and then carry 

out the other operations.

Fractions

To convert to a decimal, divide the numerator by 
the denominator.

The reciprocal of . To take the reciprocal of a
fraction, stand it on its head.

To multiply a fraction by a whole number, 
multiply the numerator by that number.

To multiply a series of fractions, multiply numerators 
together and multiply denominators together.

To add fractions with the same denominator, add the
numerators and divide by the common denominator.

To add fractions with different denominators, multiply 
the numerator and the denominator by a constant to
equate the denominators and follow the previous rule.

This is a more elaborate example of the same rule.

� a13
13

 � 
12
25
b� a25

25
 � 

8
13
b

8
13

�
12
25

� 1.5

1
6

�
4
3

�
1
6

�
8
6

�
9
6

1
3

�
4
3

�
5
3

� 1.67

�
18
70

� .26

�
3 � 6 � 1
5 � 7 � 2

3
5

 � 
6
7

 � 
1
2

�
18
5

� 3.6

3 � 
6
5

�
3 � 6

5

3
4

4
3

1
5

� .20

Fractions 575
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To divide by a fraction, multiply by the reciprocal of 
that fraction.

Algebraic Operations

Most algebraic operations boil down to moving things from one side of the equa-
tion to the other. Mathematically, the rule is that whatever you do to one side of
the equation you must do to the other side.

Solve the following equation for X:

We want X on one side and the answer on the other. All we have to do is to 
subtract 3 from both sides to get

If the equation had been

we would have added 3 to both sides:

For equations involving multiplication or division, we follow the same 
principle:

2X � 21

 X � 11

 X � 3 � 3 � 8 � 3

X � 3 � 8

 X � 5

 3 � X � 3 � 8 � 3

3 � X � 8

8
1�3

� 8a3
1
b � 24

�
356
325

� 1.095

�
200
325

�
156
325



Dividing both sides by 2, we have

and

Personally, I prefer to think of things in a different, but perfectly equivalent, way.
When you want to get rid of something that has been added (or subtracted) to (or
from) one side of the equation, move it to the other side and reverse the sign:

When the thing you want to get rid of is in the numerator, move it to the other side
and put it in the denominator:

When the thing you want to get rid of is in the denominator, move it to the nu-
merator on the other side and multiply:

Notice that with more complex expressions, you must multiply (or divide) every-
thing on the other side of the equation. Thus,

 X �
12 � 8

7.6

 7.6X � 12 � 8

 X � 14.6(8.9)

 
X

8.9
� 14.6

 X �
12
7.6

 7.6X � 12

 X � 12 � 3     X � 19 � 7

 3 � X � 12 or X � 7 � 19

 X � 91

 
7X
7

� 7(13)

 
X
7

� 13

 X � 10.5

 
2X
2

�
21
2

Algebraic Operations 577
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For complex equations, just work one step at a time:

First, get rid of the 7.6:

Now get rid of the 8:

Now clean up the messy fraction:

X �
2 � 5

7.6
� 8 �

�3
7.6

� 8 � �.395 � 8 � �8.395

X �
14�7 � 5

7.6
� 8

X � 8 �
14�7 � 5

7.6

7.6(X � 8) �
14
7

� 5
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Appendix B
Symbols
and Notation

Greek Letter Symbols

A Level of significance—probability of a Type I error (alpha)

B Probability of a Type II error (beta); standardized regression coefficient

D Effect size combined with sample size to compute power (delta)

H2 Eta squared

M Population mean (mu)

M Mean of the sampling distribution of the mean

R Population correlation coefficient (rho)

S Population standard deviation (sigma)

S2 Population variance

π Summation notation (uppercase sigma)

F Phi coefficient

X2 Chi-square

XF
2 Friedman’s chi-square

V2 Omega squared

English Letter Symbols

a Intercept; number of levels of variable A in analysis of variance

b Slope (also called regression coefficient)

CI Confidence interval

covXY Covariance of X and Y

X
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Effect size estimate

df Degrees of freedom

E Expected frequency; expected value

F F statistic

H Kruskal–Wallis statistic

H0; H1 Null hypothesis; alternative hypothesis

MS Mean square

MSerror Mean square error

n, ni, Ni Number of cases in a sample

N(0, 1) Read “normally distributed with m� 0, s2 � 1”

O Observed frequency

p General symbol for probability

r, rXY Pearson’s correlation coefficient

rpb Point biserial correlation coefficient

rS Spearman’s rank-order correlation coefficient

R Multiple correlation coefficient

s2, sX
2 Sample variance

sp
2 Pooled variance

s, sX Sample standard deviation

sD Standard deviation of difference scores

Standard error of the mean of difference scores

Standard error of the mean; standard error of differences between
means

Standard error of estimate

SSA Sum of squares for variable A

SSAB Interaction sum of squares

SSerror Error sum of squares

SSY Sum of squares for variable Y

Sum of squares of predicted values of Y

Error sum of squares � SSerrorSSY� Ŷ

SSŶ

sY� Ŷ

sX, sX1�X2

sD

d̂



t Student’s t statistic

t.025 Critical value of t

T Wilcoxon’s matched-pairs signed-ranks statistic

Tj Total for group j

WS, Mann–Whitney statistic

X or Xij Individual observation

or Grand mean

, , Sample mean

Harmonic mean

, , Predicted value of Y

z Normal deviate (also called standard score)

ŶiŶ

Xh

XAi
XiX

XGMX

Wœ

S

English Letter Symbols 581
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Appendix C
Basic Statistical
Formulae

Descriptive Statistics

Variance (s2)

Standard deviation (s)

Median location

Hinge location

General formula for z score

z score for an observation

Tests on Sample Means

Standard error of the mean (sX
–)

z for given S

t for one sample t �
X � m

s X
�

X � m

s1N

z �
X � m

s X
X

sX1N

z �
X � X

s

Score � Mean
Std. deviation

  or 
Statistic � Parameter
Std. error of statistic

Median location � 1
2

1N � 1 2
2

s � 2s2

s2 �
© 1X � X 2 2

N � 1
�
©X2 � 1©X 2 2/N

N � 1



Confidence interval on M CI � 
 t.05(sX
–)

t for two related samples

t for two independent samples 
(unpooled)

Pooled variance ( )

t for two independent samples (pooled)

Confidence interval on M1� M2 CI � ( � ) 
 t.05

Power

Effect size (one sample) d � (m1� m0)/s

Effect size (two sample) d � (m1� m2)/s

Delta (one-sample t)

Delta (two-sample t)

Correlation and Regression

Sum of squares

Sum of products

Covariance covXY �
© 1X � X 2 1Y � Y 2

N � 1
�

©XY �
©X©Y

N
N � 1

© 1X � X 2 1Y � Y 2 � ©XY �
1©X©Y 2

N

SSX � © 1X � X 2 2 � ©X2 �
1©X 2 2

N

d � dBN
2

d � d1N

s1X1�X22X2X1

t �
X1 � X2

sX1�X2

�
X1 � X2

C s2
p

N1
�

s2
p

N2

�
X1 � X2

C s2
p a 1

N1
�

1
N2
b

s2
p �
1N1 � 1 2s2

1 � 1N2 � 1 2 s2
2

N1 � N2 � 2
s2

p

t �
X1 � X2

sX1�X2

�
X1 � X2

B s2
1

N1
�

s2
2

N2

t �
D
sD

�
D

sD/1N

X

Correlation and Regression 583
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Correlation (Pearson)

Slope

Intercept

Standard error of estimate

SSY

SSŶ

SSY�Ŷ SSY � SSŶ � SSerror

SSerror SSY(1 � r2)

SStotal

SSgroup (one-way) n©( � )2

SSerror (one-way) SStotal � SSgroup

SSrows (two-way) nc©( � )2

SScol (two-way) nr©( � )2

SScells (two-way) n©( � )2

SSR�C (two-way) SScells � SSrows � SScol

SSerror (two-way) SStotal � SSrows � SScol � SSR�C or SStotal � SScells

Protected t (Use only if F is 
significant.)

Eta squared h2 �
SSgroup

SStotal

t �
Xi � Xj

BMSerror

ni
�

MSerror

nj

XGMXij

XGMXcj

XGMXri

XGMXj

© 1X � X 2 2 � ©X2 �
1©X 2 2

N

©Ŷ2 �
1©Ŷ 2 2

N

©Y2 �
1©Y 2 2

N

 � sY B 11 � r2 2N � 1
N � 2

 sY� Ŷ �C© 1Y � Ŷ 2 2
N � 2

� B SSerror

N � 2

a �
©Y � b©X

N
� Y � bX

b �
covXY

s2
X

r �
covXY

sXsY



Omega squared (one-way)

Chi-Square

Chi-square

Distribution-Free Statistics

Mean and standard deviation 
(large sample) for 
Mann–Whitney statistic

Mean and standard deviation (large 
sample) for Wilcoxon statistic

Kruskal–Wallis H statistic

Friedman’s chi-square statistic x2
F �

12
Nk1k � 1 2�R2

j � 3N1k � 1 2

H �
12

N1N � 1 2�
R2

j

nj
� 31N � 1 2

Mean �
n1n � 1 2

4
;  s � B n1n � 1 2 12n � 1 2

24

Mean �
n11n1 � n2 � 1 2

2
;  s � B n1n21n1 � n2 � 1 2

12

x2 � �
1O � E 2 2

E

v2 �
SSgroup � 1k � 1 2MSerror

SStotal � MSerror

Distribution-Free Statistics 585
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Appendix D
Data Set

Howell and Huessy (1985) reported on a study of 386 children who had, and had
not, exhibited symptoms of attention deficit disorder (ADD)—previously known as
hyperkinesis or minimal brain dysfunction—during childhood. In 1965 teachers of
all second-grade school children in a number of schools in northwestern Vermont
were asked to complete a questionnaire for each of their students dealing with 
behaviors commonly associated with ADD. Questionnaires on these same children
were again completed when the children were in the fourth and fifth grades and, for
purposes of this data set only, those three scores were averaged to produce a score 
labeled ADDSC. The higher the score, the more ADD-like behaviors the child 
exhibited. At the end of ninth grade and again at the end of twelfth grade, informa-
tion on the performances of these children was obtained from school records. These
data offer the opportunity to examine questions about whether later behavior can be
predicted from earlier behavior and to examine academically related variables and
their interrelationships.  A description of each variable follows.

ADDSC Average of three ADD-like behavior scores
GENDER 1 male; 2 female
REPEAT 1 repeated at least one grade; 0 did not repeat
IQ IQ obtained from a group-administered IQ test
ENGL Level of English in 9th grade: 1 college prep; 2 general;

3 remedial
ENGG Grade in English in 9th grade: 4 A, etc.
GPA Grade point average in 9th grade
SOCPROB Social problems in 9th grad: 1 yes; 0 no
DROPOUT 1 dropped out before completing high school; 0 did not

drop out
��

��

�
�

��

��
��



The data are available at http://www.uvm.edu/~dhowell/fundamentals7/DataFiles/
Add.dat

A G R I E E G S D
D E E Q N N P O R
D N P G G A C O
S D E L G P P
C E A R O

R T O U
B T

45 1 0 111 2 3 2.60 0 0
50 1 0 102 2 3 2.75 0 0
49 1 0 108 2 4 4.00 0 0
55 1 0 109 2 2 2.25 0 0
39 1 0 118 2 3 3.00 0 0
68 1 1 79 2 2 1.67 0 1
69 1 1 88 2 2 2.25 1 1
56 1 0 102 2 4 3.40 0 0
58 1 0 105 3 1 1.33 0 0
48 1 0 92 2 4 3.50 0 0
34 1 0 131 2 4 3.75 0 0
50 2 0 104 1 3 2.67 0 0
85 1 0 83 2 3 2.75 1 0
49 1 0 84 2 2 2.00 0 0
51 1 0 85 2 3 2.75 0 0
53 1 0 110 2 2 2.50 0 0
36 2 0 121 1 4 3.55 0 0
62 2 0 120 2 3 2.75 0 0
46 2 0 100 2 4 3.50 0 0
50 2 0 94 2 2 2.75 1 1
47 2 0 89 1 2 3.00 0 0
50 2 0 93 2 4 3.25 0 0
44 2 0 128 2 4 3.30 0 0
50 2 0 84 2 3 2.75 0 0
29 2 0 127 1 4 3.75 0 0
49 2 0 106 2 3 2.75 0 0
26 1 0 137 2 3 3.00 0 0
85 1 1 82 3 2 1.75 1 1
53 1 0 106 2 3 2.75 1 0
53 1 0 109 2 2 1.33 0 0
72 1 0 91 2 2 0.67 0 0
35 1 0 111 2 2 2.25 0 0
42 1 0 105 2 2 1.75 0 0
37 1 0 118 2 4 3.25 0 0
46 1 0 103 3 2 1.75 0 0
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A G R I E E G S D
D E E Q N N P O R
D N P G G A C O
S D E L G P P
C E A R O

R T O U
B T

48 1 0 101 1 3 3.00 0 0
46 1 0 101 3 3 3.00 0 0
49 1 1 95 2 3 3.00 0 0
65 1 1 108 2 3 3.25 0 0
52 1 0 95 3 3 2.25 1 0
75 1 1 98 2 1 1.00 0 1
58 1 0 82 2 3 2.50 0 1
43 2 0 100 1 3 3.00 0 0
60 2 0 100 2 3 2.40 0 0
43 1 0 107 1 2 2.00 0 0
51 1 0 95 2 2 2.75 0 0
70 1 1 97 2 3 2.67 1 1
69 1 1 93 2 2 2.00 0 0
65 1 1 81 1 2 2.00 0 0
63 2 0 89 2 2 1.67 0 0
44 2 0 111 2 4 3.00 0 0
61 2 1 95 2 1 1.50 0 1
40 2 0 106 2 4 3.75 0 0
62 2 0 83 3 1 0.67 0 0
59 1 0 81 2 2 1.50 0 0
47 2 0 115 1 4 4.00 0 0
50 2 0 112 2 3 3.00 0 0
50 2 0 92 2 3 2.33 0 0
65 2 0 85 2 2 1.75 0 0
54 2 0 95 3 2 3.00 0 0
44 2 0 115 2 4 3.75 0 0
66 2 0 91 2 4 2.67 1 1
34 2 0 107 1 4 3.50 0 0
74 2 0 102 2 0 0.67 0 0
57 2 1 86 3 3 2.25 0 0
60 2 0 96 1 3 3.00 1 0
36 2 0 114 2 3 3.50 0 0
50 1 0 105 2 2 1.75 0 0
60 1 0 82 2 1 1.00 0 0
45 1 0 120 2 3 3.00 0 0
55 1 0 88 2 1 1.00 0 1
44 1 0 90 1 3 2.50 0 0
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A G R I E E G S D
D E E Q N N P O R
D N P G G A C O
S D E L G P P
C E A R O

R T O U
B T

57 2 0 85 2 3 2.50 0 0
33 2 0 106 1 4 3.75 0 0
30 2 0 109 1 4 3.50 0 0
64 1 0 75 3 2 1.00 1 0
49 1 1 91 2 3 2.25 0 0
76 1 0 96 2 2 1.00 0 0
40 1 0 108 2 3 2.50 0 0
48 1 0 86 2 3 2.75 0 0
65 1 0 98 2 2 0.75 0 0
50 1 0 99 2 2 1.30 0 0
70 1 0 95 2 1 1.25 0 0
78 1 0 88 3 3 1.50 0 0
44 1 0 111 2 2 3.00 0 0
48 1 0 103 2 1 2.00 0 0
52 1 0 107 2 2 2.00 0 0
40 1 0 118 2 2 2.50 0 0
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Table E.1 Upper Percentage Points of the �2 Distribution

Table E.2 Significant Values of the Correlation Coefficient

Table E.3 Critical Values of the F Distribution: Alpha � .05

Table E.4 Critical Values of the F Distribution: Alpha � .01

Table E.5 Power as a Function of � and Significance Level (�)

Table E.6 Percentage Points of the t Distribution

Table E.7 Critical Lower-Tail Values of T (and Their Associated
Probabilities) for Wilcoxon’s Matched-Pairs 
Signed-Ranks Test

Table E.8 Critical Lower-Tail Values of WS for the
Mann–Whitney Test for Two Independent 
Samples (N1 � N2)

Table E.9 Table of Uniform Random Numbers

Table E.10 The Normal Distribution (z)

Appendix E
Statistical Tables
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Table E.1
Upper Percentage Points of the x2 Distribution

   2χ

α

0

(Source: The entries in this table were computed by the author.)
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Table E.2
Significant Values of the Correlation Coefficient

(Source: The entries in this table were computed by the author.)
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0 F

Table E.3
Critical Values of the F Distribution: Alpha � .05

(Source: The entries in this table were computed by the author.)
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Table E.4
Critical Values of the F Distribution: Alpha � .01

(Source: The entries in this table were computed by the author.)
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Table E.5
Power as a Function of d and Significance Level (a)

(Source: The entries in this table were computed by the author.)
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0 t

One-Tailed Test

0 +t–t

Two-Tailed Test

α α /2α /2

Table E.6
Percentage Points of the t Distribution

(Source: The entries in this table were computed by the author.)
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Table E.7
Critical Lower-Tail Values of T (and Their Associated Probabilities) for Wilcoxon’s Matched-Pairs
Signed-Ranks Test

(Source: The entries in this table were computed by the author.)
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Text not available due to copyright restrictions
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Text not available due to copyright restrictions
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Text not available due to copyright restrictions
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Table E.9
Table of Uniform Random Numbers

(Source: The entries in this table were computed by the author.)



Appendix E Statistical Tables 603

A
pp

en
di

x 
E

S
ta

ti
st

ic
a
l 
Ta

b
le

s

Table E.9
Continued
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Table E.10
The Normal Distribution (z)

0

Smaller
Portion

Larger
Portion

z

(Source: The entries in this table were computed by the author.)
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Table E.10
Continued

continued
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Table E.10
Continued



Appendix E Statistical Tables 607

A
pp

en
di

x 
E

S
ta

ti
st

ic
a
l 
Ta

b
le

s

Table E.10
Continued



Glossary

2 5 factorial design A factorial design with one
variable having two levels and the other having five levels

Abscissa Horizontal axis
Additive law of probability The rule giving the proba-
bility of the occurrence of two or more mutually exclusive
events
Alpha ( ) The probability of a Type I error
Alternative hypothesis (H1) The hypothesis that is
adopted when H0 is rejected; usually the same as the
research hypothesis
Analysis of variance (ANOVA) A statistical technique
for testing for differences in the means of several groups
Analytic view Definition of probability in terms of
analysis of possible outcomes

Bar graph A graph in which the frequency of occur-
rence of different values of X is represented by the height
of the bar

(Beta) The probability of a Type II error
Between-subjects designs Designs in which different
subjects serve under the different treatment levels
Bias A property of a statistic whose long-range average
is not equal to the parameter it estimates
Bimodal A distribution having two distinct peaks 
Bonferroni procedure A multiple comparison proce-
dure in which the familywise error rate is divided by the
number of comparisons
Box-and-whisker plot A graphical representation of
the dispersion of a sample
Boxplot A graphical representation of the dispersion
of a sample

Carryover effect The effect of previous trials (condi-
tions) on a subject’s performance on subsequent trials
Categorical data Data representing counts or number
of observations in each category
Cell The combination of a particular row and column;
the set of observations obtained under identical treat-
ment conditions
Central Limit Theorem The theorem that specifies
the nature of the sampling distribution of the mean

b

a

: Central t distribution The sampling distribution of
the t statistic when the null hypothesis is true 
Chi-square distribution The distribution of the chi-
square ( ) statistic
Chi-square test A statistical test often used for analyz-
ing categorical data
Conditional probability The probability of one event
given the occurrence of some other event
Confidence interval An interval, with limits at either
end, with a specified probability of including the para-
meter being estimated
Confidence limits An interval, with limits at either
end, with a specified probability of including the para-
meter being estimated
Confounded Two variables are said to be confounded
when they are varied simultaneously and their effects
cannot be separated
Constant A number that does not change in value in a
given situation
Contingency table A two-dimensional table in which
each observation is classified on the basis of two vari-
ables simultaneously
Continuous variables Variables that take on any value
Correlation (r) Relationship between variables
Correlation coefficient A measure of the relationship
between variables
Counterbalancing An arrangement of treatment con-
ditions designed to balance out practice effects
Covariance (sxy or covxy) A statistic representing the
degree to which two variables vary together
Cramér’s phi (�c) The extension of the phi coeffi-
cient to larger contingency tables
Criterion variable The variable to be predicted
Critical value The value of a test statistic at or beyond
which we will reject H0
Curvilinear relationship A situation that is best repre-
sented by something other than a straight line

Cohen’s measure of effect size
Decision making A procedure for making logical deci-
sions on the basis of sample data

d̂

x2
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Decision tree Graphical representation of decisions
involved in the choice of statistical procedures
Degrees of freedom (df) The number of independent
pieces of information remaining after estimating one or
more parameters
Delta ( ) A value used in referring to power tables
that combines gamma and the sample size
Density Height of the curve for a given value of X—
closely related to the probability of an observation in an
interval around X
Dependent variables The variable being measured;
the data or score
Deviation scores Data in which the mean has been
subtracted from each observation
dferror Degrees of freedom associated with SSerror
k(n 1)
dfgroup Degrees of freedom associated with SSgroup
k 1
dftotal Degrees of freedom associated with SStotal
N 1
Descriptive statistics Statistics that describe the sam-
ple data without drawing inferences about the larger
population
Dichotomous variables Variables that can take on
only two different values
Difference scores The set of scores representing the
difference between subjects’ performance on two occa-
sions; also known as “gain scores”
Directional test A test that rejects extreme outcomes
in only one specified tail of the distribution
Discrete variables Variables that take on a small set of
possible values
Dispersion The degree to which individual data points
are distributed around the mean
Distance The vertical distance between a point and
the regression line; usually known as the “residual”
Distribution free tests Statistical tests that do not rely
on parameter estimation or precise distributional assump-
tions

Effect size ( ) The difference between two population
means divided by the standard deviation of either popu-
lation
Effect size ( ) The standardized difference between
sample means adjusted by a function of the sample size (n)
Error variance The square of the standard error of 
estimate
Errors of prediction The differences between Y and 
Eta squared ( 2) A measure of the magnitude of ef-
fect; also known as the correlation ratio

h

Ŷ

d̂

d

2

5

2

5

2

5

d

Event The outcome of a trial
Exhaustive A set of events that represents all possible
outcomes
Expected frequencies The expected value for the
number of observations in a cell if H0 is true
Expected value The average value calculated for a sta-
tistic over an infinite number of samples
Experimental hypothesis Another name for the re-
search hypothesis
Exploratory data analysis (EDA) A set of techniques
developed by Tukey for presenting data in visually mean-
ingful ways

F statistic The ratio of MSgroup to MSerror
Factorial design An experimental design in which
every level of each variable is paired with every level of
each other variable
Factors Another word for independent variables in the
analysis of variance
Familywise error rate The probability that a family of
comparisons contains at least one Type I error
Fisher’s Least Significant Difference Test (LSD) A
multiple comparison technique that requires a signifi-
cant overall F, and that involves standard t tests between
pairs of means; also known as the “protected t test”
Frequency distribution A distribution in which the
values of the dependent variable are tabled or plotted
against their frequency of occurrence
Frequency data Data representing counts or number of
observations in each category
Friedman’s rank test for k correlated samples A non-
parametric test analogous to a standard one-way repeated
measures analysis of variance

Goodness-of-fit test A test for comparing observed
frequencies with theoretically predicted frequencies
Grand mean ( GM) The mean of all of the observa-
tions

H-spread The range between the two hinges
Harmonic mean The number of elements to be aver-
aged divided by the sum of the reciprocals of the elements
Heterogeneity of variance A situation in which
samples are drawn from populations having different
variances
Heterogeneous subsamples Data in which the sample
of observations could be subdivided into two distinct sets
on the basis of some other variable
Hinge location The location of the hinge in an or-
dered series

X



Hinges (Quartiles) Those points that cut off the bot-
tom and top quarter of a distribution
Histogram Graph in which rectangles are used to rep-
resent frequencies of observations within each interval
Homogeneity of variance The situation in which two
or more populations have equal variances
Hypothesis testing A process by which decisions are
made concerning the values of parameters

Independent events Events are independent when the
occurrence of one has no effect on the probability of the
occurrence of the other
Independent variables Those variables controlled by
the experimenter
Inferential statistics That branch of statistics that in-
volves drawing inferences about parameters of the popu-
lation(s) from which you have sampled
Interaction A situation in a factorial design in which
the effects of one independent variable depend on the
level of another independent variable
Intercept The value of Y when X is 0
Intercorrelation matrix A matrix (table) showing the
pairwise correlations between all variables
Interquartile range The range of the middle 50% of
the observations
Interval estimate A range of values estimated to in-
clude the parameter with a specified probability
Interval scale Scale on which equal intervals be-
tween objects represent equal differences—differences
are meaningful

Joint probability The probability of the co-occurrence
of two or more events

Kruskal-Wallis one-way analysis of variance A non-
parametric test analogous to a standard one-way analysis
of variance

Leading digits (most significant digits) Leftmost digits
of a number
Least significant difference (LSD) test A technique
in which we run t tests between pairs of means only if the
analysis of variance was significant
Leaves Horizontal axis of display containing the trail-
ing digits
Line graph A graph in which the Y values correspond-
ing to different values of X are connected
Linear regression Regression in which the relation-
ship is linear

610 Glossary

Linear relationship A situation in which the best-
fitting regression line is a straight line
Linear transformation A transformation involving
addition, subtraction, multiplication, or division of or by
a constant

Magnitude of effect A measure of the degree to which
variability among observations can be attributed to
treatments
Main effect The effect of one independent variable aver-
aged across the levels of the other independent variable(s)
MannWhitney U test A nonparametric test for com-
paring the central tendency of two independent samples
Marginal probability The probability of falling into a
particular row or a particular column
Marginal totals Totals for the levels of one variable
summed across the levels of the other variable
Matched samples An experimental design in which
the same subject is observed under more than one treat-
ment
Matched-samples t test A t test comparing the means
of matched (or repeated) samples
Mean The sum of the scores divided by the number of
scores
Measurement The assignment of numbers to objects
Measurement data Data obtained by measuring ob-
jects or events
Measures of central tendency Numerical values refer-
ring to the center of the distribution
Median (Med) The score corresponding to the point
having 50% of the observations below it when observa-
tions are arranged in numerical order
Median location The location of the median in an or-
dered series
Midpoint Center of interval—average of upper and
lower limits
Modality The term used to refer to the number of
major peaks in a distribution
Mode (Mo) The most commonly occurring score
Monotonic relationship A relationship represented by
a line that is continually increasing (or decreasing), but
perhaps not in a straight line
MSbetween groups (MSgroup) Variability among group means
MSwithin (MSerror) Variability among subjects in the
same treatment group
Multicategory case A situation in which data can be
sorted into more than two categories
Multicollinearity A condition in which a set of pre-
dictor variables are highly correlated among themselves
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Multiple comparison techniques Techniques for mak-
ing comparisons between two or more group means sub-
sequent to an analysis of variance
Multiple correlation coefficient (R0.123..p) The corre-
lation between one variable (Y) and a set of p predictors
Multiple regression Regression with two or more inde-
pendent variables
Multiplicative law of probability The rule giving the
probability of the joint occurrence of independent events
Mutually exclusive Two events are mutually exclusive
when the occurrence of one precludes the occurrence of
the other

Negative relationship A relationship in which in-
creases in one variable are associated with decreases in
the other
Negatively skewed A distribution that trails off to the
left
Nominal scale Numbers used only to distinguish
among objects
Nondirectional test A test that rejects extreme out-
comes in either tail of the distribution
Nonparametric tests Statistical tests that do not rely on
parameter estimation or precise distributional assumptions
Normal distribution A specific distribution having a
characteristic bell-shaped form
Null hypothesis (H0) The statistical hypothesis tested
by the statistical procedure; usually a hypothesis of no
difference or no relationship

Observed frequencies The cell frequencies that were
actually observed—as distinguished from expected fre-
quencies
Odds The frequency of occurrence of one event di-
vided by the frequency of occurrence of another event
Odds ratio The ratio of two odds 
Omega squared ( ) A less-biased measure of the
magnitude of effect than 2

One-tailed test A test that rejects extreme outcomes
in only one specified tail of the distribution
One-way ANOVA An analysis of variance where the
groups are defined on only one independent variable
Order effect The effect on performance attributable to
the order in which treatments were administered
Ordinal interaction An interaction in which the
group differences do not reverse their sign
Ordinal scale Numbers used only to place objects in order
Ordinate Vertical axis
Outlier An extreme point that stands out from the rest
of the distribution

h

v2

p value The probability that a particular result would
occur by chance if H0 is true; the exact probability of a
Type I error
Parameters Numerical values summarizing population
data
Parametric tests Statistical tests that involve assump-
tions about, or estimation of, population parameters
Pearson product-moment correlation coefficient (r)
The most common correlation coefficient
Pearson’s chi-square ( ) The traditional chi-square
statistic—as opposed to the likelihood ratio chi-square
Percentile The point below which a specified percent-
age of observations fall
Phi (�) The correlation coefficient when both of the
variables are measured as dichotomies
Point biserial correlation (rpb) The correlation coeffi-
cient when one of the variables is measured as a di-
chotomy
Point estimate The specific value taken as the esti-
mate of a parameter
Pooled variance A weighted average of the separate
sample variances
Population Complete set of events in which you are
interested
Population correlation coefficient rho ( ) The corre-
lation coefficient in the population
Population variance ( 2) Variance of the popula-
tion—usually estimated, rarely computed
Positively skewed A distribution that trails off to the
right
Power The probability of correctly rejecting a false H0
Predicted value ( ) The value estimated from a re-
gression equation
Predictor variable The variable from which a predic-
tion is made
Protected t A technique in which we run t tests be-
tween pairs of means only if the analysis of variance was
significant; also known as Fisher’s LSD test

Quartile location The location of a quartile in an or-
dered series
Quartiles The points that break a distribution into fourths

Random assignment The allocation or assignment of
participants to groups by a random process
Random sample A sample in which each member of
the population has an equal chance of inclusion
Range The distance from the lowest to the highest score
Range restrictions Refers to cases in which the range
over which X or Y varies is artificially limited
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Ranked data Data for which the observations have
been replaced by their numerical ranks from lowest to
highest
Rank randomization tests A class of nonparametric
tests based on the theoretical distribution of randomly
assigned ranks
Ratio scale A scale with a true zero point—ratios are
meaningful
Real lower limit The points halfway between the top
of one interval and the bottom of the next
Real upper limit The points halfway between the top
of one interval and the bottom of the next
Rectangular distribution A distribution in which all
outcomes are equally likely; also known as a uniform
distribution
Regression The prediction of one variable from
knowledge of one or more other variables
Regression coefficients The general name given to the
slope and the intercept (most often refers just to the slope)
Regression equation The equation giving the regres-
sion line
Regression line The line of best fit drawn through a
scatterplot
Regression surface The generalization of the regression
line, or the regression plane to multidimensional space
Rejection level The probability with which we are
willing to reject H0 when it is in fact correct
Rejection region The set of outcomes of an experi-
ment that will lead to rejection of H0
Related samples An experimental design in which the
same subject is observed under more than one treatment
Relative frequency view Definition of probability in
terms of past performance
Repeated-measures designs An experimental design
in which each subject receives all levels of at least one
independent variable
Research hypothesis The hypothesis that the experi-
ment was designed to investigate
Residual The difference between the obtained and
predicted values of Y
Residual variance The square of the standard error of
estimate
Rho ( ) Correlation coefficient on the population; also
occasionally used for Spearman’s rank-order correlation

Sample Set of actual observations; subset of the popu-
lation
Sample statistics Statistics calculated from a sample
and used primarily to describe the sample

r
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Sample variance (s2) Sum of the squared deviations
about the mean divided by N 1
Sample with replacement Sampling in which the item
drawn on trial N is replaced before the drawing on trial
N 1
Sampling distribution The distribution of a statistic
over repeated sampling
Sampling distribution of differences between means
The distribution of the differences between means over
repeated sampling from the same population(s)
Sampling distribution of the mean The distribution
of sample means over repeated sampling from one
population
Sampling error Variability of a statistic from sample to
sample due to chance
Scales of measurement Characteristics of relations
among numbers assigned to objects
Scatter plot (Scatter diagram, Scattergram) A figure
in which the individual data points are plotted in two-
dimensional space
Sigma ( ) Symbol indicating summation
Sigma ( ) Symbol for population variance
Significance level The probability with which we are
willing to reject H0 when it is in fact correct
Simple effect The effect of one independent variable
at one level of another independent variable; also
known as simple main effects
Skewness A measure of the degree to which a distrib-
ution is asymmetrical
Slope The amount of change in Y for a one unit
change in X
Spearman’s correlation coefficient for ranked data (rs)
A correlation coefficient on ranked data
SScells The sum of squares assessing differences among
cell means
SSerror The sum of the squared residuals; the sum of the
sums of squares within each group
SSgroup The sum of squares of group totals divided by
the number of scores per group minus 
SStotal The sum of squares of all of the scores, regardless
of group membership
Standard deviation Square root of the variance
Standard error The standard deviation of a sampling
distribution
Standard error of differences between means The
standard deviation of the sampling distribution of the
differences between means
Standard error of estimate The average of the squared
deviations about the regression line
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Standard normal distribution A normal distribution
with a mean equal to 0 and variance equal to 1; denoted
N (0, 1)
Standard scores Scores with a predetermined mean
and standard deviation
Standardized regression coefficient ( ) The regres-
sion coefficient that results from data that have been
standardized
Statistics Numerical values summarizing sample data
Stem Vertical axis of display containing the leading
digits
Stem-and-leaf display Graphical display presenting
original data arranged into a histogram
Stepwise procedures A set of rules for deriving a re-
gression equation by adding or subtracting one variable
at a time from the regression equation
Student’s t distribution The sampling distribution of
the t statistic
Subjective probability Definition of probability in
terms of personal subjective belief in the likelihood of an
outcome
Sums of squares The sum of the squared deviations
around some point (usually a mean or predicted value)
Symmetric Having the same shape on both sides of the
center

t Student’s t statistic—never capitalized
T scores A set of scores with a mean of 50 and a stan-
dard deviation of 10
Test statistics The results of a statistical test
Trailing digits (least significant digits) Rightmost dig-
its of a number
Trimmed statistics Statistics calculated on trimmed
samples
Trimmed samples Samples with a percentage of ex-
treme scores removed
Tukey’s test A multiple comparison procedure for
making pairwise comparisons among means while hold-
ing the familywise error rate at �
Two-tailed test A test that rejects extreme outcomes
in either tail of the distribution

b

Two-way factorial design An experimental design in-
volving two independent variables in which every level
of one variable is paired with every level of the other
variable
Type I error The error of rejecting H0 when it is true
Type II error The error of not rejecting H0 when it is
false

Unconditional probability The probability of one
event, ignoring the occurrence or nonoccurrence of some
other event
Unimodal A distribution having one distinct peak
Uniform distribution A distribution in which all pos-
sible outcomes have an equal chance of occurring; also
known as a rectangular distribution

Variables Properties of objects that can take on differ-
ent values
Variance The sum of the squared deviations from the
mean, divided by the degrees of freedom (N 1)
Variance Sum Law The rule giving the variance of the
sum (or difference) of two or more variables

Weighted average The mean of the form (a1X1
a2X2)/(a1 a2) where a1 and a2 are weighting factors and
X1 and X2 are the values to be averaged
Whiskers Lines in a boxplot drawn from hinges to ad-
jacent values
Wilcoxon’s matched-pairs signed-ranks test A non-
parametric test for comparing the central tendency of
two matched (related) samples
Wilcoxon’s rank-sum test A nonparametric test for
comparing two independent groups; it is functionally
equivalent to the Mann-Whitney U test
Winsorized samples Samples in which extreme values
have been trimmed and replaced by the most extreme
value(s) remaining in the distribution

z score Number of standard deviations above or below
the mean
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Answers to Exercises

(I have not provided graphs where those are called for
because of the amount of space they require and the
cost of preparation. I have also left out a few answers
that would require an inordinate amount of space.
These items are included in both the Instructor’s
Manual and the Student’s Manual. The Student’s
Manual is available at 

www.uvm.edu/~dhowell/fundamentals7/

In early chapters there is often close correspondence
between these answers and the answers in the
Student’s Manual. This is much less true in later chap-
ters, where the problems are more computational.)

Chapter 1

1.1 A good example is the development of toler-
ance to caffeine. People who do not normally drink
caffeinated coffee are often startled by the effect of
one or two cups of regular coffee, whereas those who
normally drink regular coffee see no such effect. To
test for a context effect of caffeine, you would first
need to develop a dependent variable measuring the
alerting effect of caffeine, which could be a vigilance
task. You could test for a context effect by serving a
group of users of decaffeinated coffee two cups of reg-
ular coffee every morning in their office for a month,
but have them drink decaf the rest of the time. The
vigilance test would be given shortly after the coffee,
and tolerance would be seen by an increase in errors
over days. At the end of the month they would be
tested after drinking caffeinated coffee in the same
and in a different setting.

1.3 Context affects people’s response to alcohol, to
off-color jokes, or to observed aggressive behavior.

1.5 The sample would be the addicts that we observe.

1.7 Not all people in the city are listed in the phone
book. In particular, women and children are under-
represented. A phone book is particularly out of date

as a random selection device with the increase in the
use of cell phones.

1.9 In the tolerance study discussed in the text we
really do not care what the mean length of paw-lick
latency is. No one would be excited to know that a
mouse can stand on a surface at for 3.2 seconds
without licking its paws. But we do very much care
that the population mean of paw-lick latencies for
morphine-tolerant mice is longer in one context than
in another.

1.11 I would expect that my mother would con-
tinue to wander around in a daze, wondering what
happened.

1.13 Three examples of measurement data:
Performance on a vigilance task, typing speed, blood
alcohol level.

1.15 Relationship: the relationship between stress
and susceptibility to disease, the relationship between
driving speed and accident rate.

1.17 You could have one group of mice trained and
tested in the same condition, one group trained in
one condition and tested in the other, and a third
group given a placebo in the training context but
given morphine in the testing condition.

1.19 This is an Internet search exercise with no
fixed answer.

Chapter 2

2.1 Nominal: names of students in the class;
Ordinal: the order in which students hand in their
first exam; Interval: a student’s grade on that first
exam; Ratio: the amount of time that a student spent
taking the exam.

2.3 If the rat lies down to sleep in the maze after
performing successfully for several trials, this probably
says little about what the animal has learned in the
task, but more about motivation.
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2.5 We have assumed the following at the very least
(and I’m sure that I left some out):

1. Mice are adequate models for human
behavior.

2. Morphine tolerance effects in mice are like
heroin effects in humans.

3. Time on a warm surface is in some way
analogous to a human response to heroin.

4. A context shift for mice is analogous to a
context shift for humans.

5. A drug overdose is analogous to pain toler-
ance.

2.7 The independent variables are the gender of the
subject and the gender of the other person.

2.9 The experimenter expected to find that women
would eat less in the presence of a male partner than
in the presence of a female partner. Men, on the
other hand, were not expected to vary the amount
that they ate as a function of gender of their partner.

2.11 We would treat a discrete variable as if it were
continuous if it had many different levels and was at
least ordinal.

2.13 When I drew 50 numbers three times I
obtained 29, 26, and 19 even numbers, respectively.
The last time only of my numbers were even,
which is probably less than I might have expected—
especially if I didn’t have a fair amount of experience
with similar exercises.

2.15 Eyes level condition:
(a)
(b)

(c)

2.17 Eyes level condition:
(a)

(b)
(c) This is the mean, a type of average.

2.19 Putting the two sets of data together:
(a) XY 2.854 1.06 4.121 1.750 0.998

1.153 2.355 3.218 2.543 2.699
(b)
(c)
(d)
(e) 0.1187

22.7496 ? 216.82
©X©Y 5 114.82 2 114.63 2 5 216.82
©XY 5 22.7496

5

©X>N 5 14.82>10 5 1.482
©X2 5 1.652 1 p 1 1.732 5 23.22
1©X 2 2 5 114.82 2 2 5 219.63; 

a
10

i51

 Xi 5 14.82

©X 5 14.82
X3 5 2.03; X5 5 1.05; X8 5 1.86

38%

2.21 Show 

5 7 3 6 3 
9 11  7  10 7

2.23 In the text I spoke about room temperature as
an ordinal scale of comfort (at least up to some
point).

2.25 Beth Peres
(a) In the Beth Peres story the dependent
variable is the weekly allowance, and the inde-
pendent variable is the gender of the child.
(b) We are dealing with a selected sample—
the children in her class.
(c) The age of the students would influence
the overall mean. The fact that these children
are classmates could easily lead to socially
appropriate responses—or what the children
deem to be socially appropriate in their setting.
(d) At least within her school Beth could
randomly sample by taking a student roster,
assigning each student a number, and
matching those with the numbers drawn
from a random number table. Random
assignment to Gender would obviously be
impossible.
(e) I don’t see negative aspects of the lack of
random assignment here because that is the
nature of the variable under consideration. It
might be better if we could randomly assign a
child to a gender and see the result, but we
clearly can’t.
(f ) The outcome of the study could be influ-
enced by the desire of some children to exag-
gerate their allowance or to minimize it so as
not to appear too different from their peers.
I would suspect that boys would be likely to
exaggerate.
(g) The descriptive features of the study are
her statements that the boys in her class
received $3.18 per week in allowance, on
average, whereas the girls received an average
of $2.73. The inferential aspects are the infer-
ences to the population of all children, con-
cluding that boys get more than girls.

2.27 I would record the sequence number of each
song that is played and then plot them on a graph. 
I can’t tell if they are truly random, but if I see a
pattern to the points I can be quite sure that they are
not random.

© 1X 1 4 2 5 44 5 124 1 5 3 4 2X 1 4
©X 5 24X

© 1X 1 C 2 5 ©X 1 NC
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Chapter 3

3.1 (b) There is too little data to say much about
the shape of this distribution.

3.3 I would use stems of 3*, 3., 4*, 4., 5*, and 5. for
this display.

3.5 Compared to those who read the passages:
(a) Almost everyone who read the passages did
better than the best person who did not read them.
Certainly knowing what you are talking about is a
good thing (though not always practiced).
(c) It is obvious that the two groups are very
different in their performance. We would be
worried if they were not.
(d) This is an Internet question with no fixed
answer.

3.7 The following is a plot (as a histogram) of reac-
tion times collapsed across all variables.

3.9 Histogram of GPA:
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Std. Dev. = 637.41
Mean = 1625
N = 600

3.11 (1) Mexico has very many young people and
very few old people, whereas Spain has a more even
distribution. (2) The difference between males and
females is more pronounced at most ages in Spain
than it is in Mexico. (3) You can see the high infant
mortality rate in Mexico.

3.13 The distribution of those whose attendance
is poor is far more spread out than the distribution
of normal attendees. This is expected because a
few very good students can score well on tests even
when they don’t attend, but most of the poor
attendees are generally poor students who would
score badly no matter what. The difference
between the average grades of these two groups is
obvious.

3.15 As the degree of rotation increases, the distri-
bution of reaction time scores appears to move from
left to right—which is also an increase.

3.17 The data points are probably not independent
in that dataset. At first the subject might get better
with practice, but then fatigue would start to set in.
Data nearer in time should be more similar than data
further apart in time.

3.19 The amount of shock that a subject delivers to
a white participant does not vary as a function of
whether than subject has been insulted by the exper-
imenter. However, black participants do suffer when
the subject has been insulted.

4
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3.21 Wikipedia gives an excellent set of data on
HIV/AIDS prevalence at

http://en.wikipedia.org/wiki/List_of_countr
ies_by_HIV/AIDS_adult_prevalence_rate

3.23 There is a tremendous increase in Down’s syn-
drome in children born to older mothers. This
increase doesn’t really take off until mothers are in
their 40s, but with parents delaying having children,
this is a potential problem.

3.25 The relationship is unlikely to be a fluke
because it is so consistent year after year. You can see
that within each group there is very little variability.

3.27 White females have a longer life expectancy
than black females, but the difference has shrunk
considerably since 1920, though recent changes have
been modest.

Chapter 4

4.1 Mode 72, Median 72, Mean 70.18

4.3 Even without reading the passage, students are still
getting about twice as many items correct as they would
by chance. This suggests than the test, which tests read-
ing comprehension, is also testing something else.

4.5 The mean falls above the median.

4.7 Rats running a straight-alley maze:

4.9 Multiplying by a constant (5):

Original data 8 3 5 5 6 2 Mean 4.833
Revised data 40 15 25 25 30 10

4.11 Measures of central tendency for ADDSC and
GPA:

ADDSC

GPA

Mean 5 216.15>88 5 2.46
Median 5 2.635
Mode 5 3.00

Mean 5 4629>88 5 52.6
Median 5 50
Mode 5 50

5 5 3 4.833
Mean 5 24.17

5

©X 5 320; X 5
©X
N
5

320
15

5 21.33; Median 5 21

555

4.13 The means are nearly the same for both condi-
tions (mean for Mirror 1.6251 and mean for
Same 1.6269).

4.15 The only measure that is acceptable for nomi-
nal data is the mode, because the mode is the only
one that does not depend on the relationships among
the points on the scale.

4.17 Class attendance:

Regular attendees:
Poor attendees:  

The two groups were 20 points apart in terms of the
medians, and about 25 points apart in terms of
means. Clearly those students who come to class do
better. 

4.19 This is an Internet activity for which there is
no fixed answer.

4.21 Trimmed means:
(a) mean 46.57; 10% trimmed mean
46.67
(b) mean 28.40; 10% trimmed mean
25.00
(c) Trimming was more effective in the
second example because that distribution was
quite skewed.

4.23 The male optimists had a mean of 1.016 while
the male pessimists had a mean of 0.945. This
difference is reliable.

Chapter 5

5.1 Variability of NoPassage group:

5.3 The variability of the NoPassage group is much
smaller than the variability of the Passage group. If
this difference turns out to be reliable, it could pos-
sibly be explained by the fact that the questions for
the Passage group are asking for more than guessing
and test-taking skills, and there may be greater
variability due to variability in knowledge. On the
other hand, it is not uncommon to find one stan-
dard deviation being two or three times another in
small samples.

 Variance 5 46.62
 St. Dev. 5 6.83

 Range 5 57 2 34 5 23

55

55

Mean 5 248.333; Median 5 256
Mean 5 276.417; Median 5 276

5

5

http://en.wikipedia.org/wiki/List_of_countries_by_HIV/AIDS_adult_prevalence_rate
http://en.wikipedia.org/wiki/List_of_countries_by_HIV/AIDS_adult_prevalence_rate
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5.5 Percentages within two standard deviations in
Exercise 5.2:

16 scores (or 94%) lie within two standard devia-
tions of the mean.

5.7 Multiplying or dividing by a constant:

Original 2 3 4 4 5 5 9
4 6 8 8 10 10 18
1 1.5 2 2 2.5 2.5 4.5

5.9 Since adding or subtracting a constant will not
change the standard deviation but will change the
mean, I can subtract 3.27 from every score for in
Exercise 5.8, making the mean 0 and keeping

The new values are

5.11 Boxplot for Exercise 5.1:

Median location

Hinge location

H-spread
Inner fences Hinges 1.5 H-spread Hinges

1.5 9 Hinges 13.5 29.5 and 65.5

5.13 Boxplot for ADDSC:

Median location

Hinge location

H-
Inner fences Hinges 1.5 H-spread Hinges 

1.5 16 Hinges 24 20.5 and 85.5

80 90 1007030 35 40 45 50 55 60

Adjacent values 5 26 and 78
5;53

;53;5

spread 5 60.5 2 44.5 5 16 
Hinges 5 44.5 and 60.5

45>2 5 22.5
5 1Median location 1 1 2 >2 5Median 5 50
5 1N 1 1 2 >2 5 89>2 5 44.5

30 35 40 45 50 55 60

Adjacent values 5 34 and 57
5;53

;53;5

5 52 2 43 5 9
Hinges 5 43 and 52

15>2 5 7.5
5 1Median location 1 1 2 >2 5Median 5 46
5 1N 1 1 2 >2 5 29>2 5 14.5

1.016  1.016  X1 5 0  s1 5 1.0
20.889  0.539  21.842  0.539  20.413

s2 5 1.0.

X2

s3 5 1.11X3 5 2.29X>2
s2 5 4.45X2 5 9.14X 3 2
s1 5 2.23X1 5 4.57

X ;  2110.61 2 5 70.18 ;  21.22 5 48.96 2 91.40
s 5 10.61

5.15 The new variance is times the old
variance.

5.17 Angle of rotation:

5.19 The vertical bars lie at those points that cut off
the minimum, the lowest 10%, the lowest 25%, the
50% point, the lowest 75%, the lowest 90%, and the
maximum score. The diamond delineates the mean
and a region around that mean that we will later
identify as the 95% confidence interval. The mean is
at the tallest point of the diamond. That is a lot of
information for one simple graphic.

5.21 Treatment of anorexia:
I hypothesize that the two treatment groups will show
more of a weight gain than the control group, but I
have no reason to predict which treatment group
would do better.

Cognitive Family 
Behavioral Control Therapy

Mean 3.01 �.45 7.26
Median 1.40 �.35 9.00
Std. Dev. 7.31 7.99 7.16

If we look at the changes from Before to After it
appears that the Control group stayed about the
same, but the two experimental groups increased
their weight. This is true whether we look at means
or medians. Notice that the standard deviation in the
two experimental groups was noticeably higher after

1.00

0.00

2.00

3.00

4.00

5.00

0 20 40 60 80 100 120 140 160 180

Angle

R
T

se
c

92
99

6

13
15
68

57 12
258

101

9

24

Stimulus: Mirror

11 2 1>N 2



Answers to Exercises 625

treatment, whereas the standard deviation of the
Control actually decreased slightly. This suggests that
some participants were helped more than others by
the therapies.

5.23 For data on Cognitive Behavior Therapy:

Notice that the Winsorized variance is considerably
greater than the trimmed variance, as it should be.
However, it is lower than the variance of the origi-
nal data, reflecting the fact that the extreme values
have been replaced. Cognitive behavior scores were
positively skewed, with several quite high values and
one or two low values. Trimming and Winsorizing
reduced the influence of those values. This causes
the Winsorized variance to be considerably smaller
than the original variance. The trimmed mean is
considerably smaller than the original mean, but the
Winsorized mean is only slightly smaller. 

Chapter 6

6.1 Distribution of original values

For the first distribution the abscissa would take on
the values of 

1            2            3         4   5        6        7
For the second distribution the values would be

�3        �2         �1         0    1        2         3
For the third distribution the values would be

�1.90    �1.27    �0.63     0      .63    1.27     1.90

6.3 Distribution of grades:
(a) .6826
(b) .5000
(c) .8413

6.5 Katz’ study:
(a) 84.6
(b) 80.0625
(c) 25.65
(d) I would conclude that they were not guessing.

6.7 Reading scores:
(b) 15.87%
(c) 30.85%

6.9 A T score of 62.8 is the score that cuts off the
top 10% of the distribution and is therefore a diag-
nostically meaningful cutoff.

6.11 (b) The probability of This
is such a small probability that we will probably con-
clude that the student just made up the data rather
than collecting them honestly.

6.13 (b) The easiest way to find the cutoff for the
lowest 10% is to simply take the sample data and
count them, empirically finding the point with 10%
of the scores below it. Sometimes the simplest way is
the best.

6.15 Reaction time data:

For a normal distribution we would expect 75% of the
scores to be equal to or less than 2.06 seconds. In our
data the 75th percentile is 1.88 seconds.

6.17 Identifying the highest 2% of Behavior
Problem scores:
The upper 2% is cut off by

The critical cutoff is a score of 70.5.

6.19 The statisticians were upset because, by
defining “overweight” as weighing more than 95% of
peers (i.e., above the 95th percentile), the article
seemed to be suggesting that there were 22% of chil-
dren in the top 5%. Moreover, the article says that in
1986 only 8% of children were in the top 15%. That
is just silly—it is analogous to “all of the children are
above average.” I assume that they meant to say that
22% (etc.) were above what the 95th percentile was
some years ago, but that is a different thing. Even if
that is the case, the results still look too extreme to
be likely.

2.05 3 10 1 50 5 X 5 70.5

2.05 5
X 2 50

10

5 2.05

0.675 3 .6373 1 1.626 5 X 5 2.06

0.675 5
X 2 1.626

.6373

z $ 2.57 5 .0051.Descriptive Statistics

Min- Max- Std. Vari-
N imum imum Mean Deviation ance

COGBEHAV 29 9.10 20.90 3.0069 7.30850 53.414
TRIM 19 1.40 11.70 1.8000 3.04211 9.254
WINSOR 29 1.40 11.70 2.9552 4.88851 23.898
Valid N 19
(listwise)

2

2

2
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6.21 Histogram of combined data on emotional
stability 

7.7 An example of a conditional probability is the
probability that you will go to see tonight’s fireworks,
given that the forecast is for rain.

7.9 p(mom looking) p(baby look-
ing) p(both looking)

7.11 It would appear that having a message on a
flyer increases the probability of proper disposal.

7.13 A continuous variable that is routinely treated
as if it were discrete is children’s learning abilities,
where placement in classes often assumes that the
child falls within one category or another.

7.15 The probability of admission is .02.

7.17 The probability associated with is
.5832.

7.19 p

7.21 Conditional and unconditional probability of
dropping out:

p
p

Students are much more likely to drop out of school
if they score at or above in elementary
school

7.23 If there is no discrimination in housing, then a
person’s race and whether or not that person is offered
a particular unit of housing are independent events.
We could calculate the probability that a particular
unit (or a unit in a particular section of the city) will
be offered to anyone in a specific income group. We
can then calculate the probability of that person being
shown the unit, assuming independence, and compare
that answer against the actual proportion of times a
member of an ethnic minority was offered such a unit.

7.25 The data again would appear to show that the
U.S. Attorneys are more likely to request the death
penalty when the victim was White than when the
victim was Non-white. (This finding is statistically
significant, though we won’t address that question
until Chapter 19.) 

7.27 In this situation we begin with the hypothesis
that African-Americans are fairly represented in the
population. If so, we would expect 0.43% of the pool
of 2,124 people from which juries are drawn to be

ADDSC 5 60

1dropout ƒ  ADDSC $ 60 2 5 .28
1dropout 2 5 10>88 5 .11

1dropout ƒ  ADDSC $ 60 2 5 7>25 5  .28.

5 2.21

.154 3 .231 5 .036.3>13 5
5 2>13 35 3>13 5 .231;

5 2>13 5 .154;
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140.0
150.0

160.0
170.0

180.0
190.0

200.0

Combined Data

Std. Dev. = 13.44
Mean = 100.0
N = 10000.00

Notice that we have combined two normal distribu-
tions with the same mean, but the resulting distribu-
tion is not normal, as can be seen by comparing it to
the superimposed normal curve. If the means were
very different, the distribution would become
bimodal.

Chapter 7

7.1 Views of probability:
(a) Analytic: If two tennis players are exactly
equally skillful so that the outcome of their
match is random, the probability is .50 that
Player A will win the upcoming match.
(b) Relative Frequency: If in past matches
Player A has beaten Player B on 13 of the 17
occasions they have played, then Player A has a
probability of of winning their
upcoming match.
(c) Subjective: Player A’s coach feels that she
has a probability of .90 of winning the upcoming
match with Player B.

7.3 More raffle tickets:
(a) .001
(b) .000001
(c) .000001
(d) .000002

7.5 Part (a) of Exercise 7.3 dealt with conditional
probabilities.

13>17 5 .76
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African-American. That comes out to be an expecta-
tion of 9.13 people. But the pool actually only had
four African-Americans. We would not expect exactly
nine people—we might have seven or eight. But four
sounds awfully small. That is such an unlikely event if
the pool is fair that we would probably conclude that
the pool is not a fair representation of the population
of Vermont. An important point here is that this is a
conditional probability. If the pool is fair the probabil-
ity of this event is only .05—an unlikely result.

Chapter 8

8.1 Last night’s hockey game:
(a) Null hypothesis: The game was actually an
NHL hockey game.
(b) On the basis of that null hypothesis, I
expected that each team would score some-
where between 0 and 6 points. I then looked at
the actual points and concluded that they were
way out of line with what I would expect if this
were an NHL hockey game. I therefore rejected
the null hypothesis.

8.3 A Type I error would be concluding that I was
shortchanged when, in fact, I was not.

8.5 The rejection region is the set of outcomes for
which we would reject the null hypothesis. The crit-
ical value would be the minimum amount of change
below which I would reject the null. It is the border
of the rejection region.

8.7 For the Mode test I would draw a very large
number of samples and calculate the mode, range,
and their ratio (M). I would then plot the resulting
values of M.

8.9 Guessing the height of the chapel.
(a) The null hypothesis is that the average of
two guesses is as accurate as one guess. The
alternative hypothesis is that the average guess
is more accurate than the single guess.
(b) A Type I error would be to reject the null
hypothesis when the two kinds of guesses are
equally accurate. A Type II error would be
failing to reject the null hypothesis when the
average guess is better than the single guess.
(c) I would be tempted to use a one-tailed test
simply because it is hard to image that the aver-
age guess would be less accurate, on average,
than the single guess.

8.11 A sampling distribution is just a special case of
a general distribution in which the thing that we are
plotting is a statistic that is the result of repeated
sampling.

8.13 Magen et al. (2008) study:
(a) The null hypothesis is that the phrasing of
the question will not affect the outcome—the
means of the two groups are equal in the pop-
ulation. The alternative hypothesis is that the
mean will depend on which condition the per-
son is in.
(b) I would compare the two group means.
(c) If the difference is significant I would con-
clude that the phrasing of the choice makes a
real difference in the outcome.

8.15 Rerunning Exercise 8.14 for 
We first have to find the cutoff for under a
normal distribution. The critical value of 
(one-tailed), which corresponds to a raw score of
42.69 (from a population with and ).

We then find where 42.69 lies relative to the dis-
tribution under 

From the appendix we find that 85.08% of the scores
fall above this cutoff. Therefore 

8.17 To determine whether there is a true relation-
ship between grades and course evaluations, I would
find a statistic that reflected the degree of relationship
between two variables. (You will see such a statistic, r,
in the next chapter). I would then calculate the sam-
pling distribution of that statistic in a situation in
which there is no relationship between two variables.
Finally, I would calculate the statistic for a representa-
tive set of students and classes and compare my sample
value with the sampling distribution of that statistic.

8.19 Allowances for fourth-grade students:
(a) The null hypothesis in this case would be
the hypothesis that boys and girls receive the
same allowance on average.
(b) I would use a two-tailed test because I
want to reject the null hypothesis whenever
there is a difference in favor of one gender
over the other.
(c) I would reject the null hypothesis when-
ever the obtained difference between the
average allowances was greater than I would

b 5 .851.

z 5
X 2 m

s
5

42.69 2 50
7

5 21.04

H1:

s 5 7m 5 59

z 5 2.33
a 5 .01
a 5 .01:
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be led to expect if they were paid the same in
the population.
(d) I would increase the sample size and get
something other than a self-report of allowances.

8.21 Hypothesis testing and the judicial system:
The judicial system operates in ways similar to our
standard logic of hypothesis testing. However, in a
court, we are particularly concerned with the danger
of convicting an innocent person. In a trial, the null
hypothesis is equivalent to the assumption that the
accused person is innocent. We set a very small prob-
ability of a Type I error, which is far smaller than we
normally do in an experiment. Presumably the jury
tries to set that probability as close to 0 as it reason-
ably can. By setting the probability of a Type I error
so low it knowingly allows the probability of a Type II
error (releasing a guilty person) to rise because that is
thought to be the lesser evil.

Chapter 9

9.1 The two outliers would appear to have a distorting
effect on the correlation coefficient. However, if you
replot the data without those points the relationship is
still apparent and the correlation only drops to 

9.3 With 24 degrees of freedom, a two-tailed test at
would require 

9.5 We can conclude that infant mortality is closely
tied to both income and the availability of contracep-
tion. Infants born to people living in poverty are
much more likely to die before their first birthday, and
the availability of contraception significantly reduces
the number of infants put at risk in the first place.

9.7 Because both income and contraception are
related to mortality, we might expect that using them
together would lead to a substantial increase in pre-
dictability. But note that they are correlated with each
other, and therefore share some of the same variance. 

9.9 Psychologists have a professional interest in
infant mortality because some of the variables that
contribute to infant mortality are behavioral ones,
and we care about understanding, and often control-
ling, behavior. Psychologist have an important role to
play in world health that has little to do with pills and
irrigation systems.

9.11 Pearson’s correlation is designed for linear rela-
tionships, and this relationship is so far from linear
that it would be an inappropriate statistic.

r 7 ; .388.a 5 .05

2.54.

9.13 The relationship between test scores in the
Katz et al. study and SAT scores for application pur-
poses is a relevant question because we would not be
satisfied with a set of data that used SAT questions
and yet gave answers that were not in line with SAT
performance. We want to know that the tests are
measuring at least roughly the same thing. In addi-
tion, by knowing the correlation between SATs and
performance without seeing the questions we get a
better understanding of some of what the SAT is
measuring.

9.15 With 26 df we would need a correla-
tion of .374 to be significant. Because our value
exceeds that, we can conclude that the relationship
between test scores and the SAT is reliably different
from 0.

9.17 When we say that two correlations are not sig-
nificantly different we mean that they are sufficiently
close that they could both have come from samples
from populations with exactly the same population
correlation coefficient.

9.19 The answer to this question depends on the
student’s expectations.

9.21 It is sometimes appropriate to find the correla-
tion between two variables even if you know that the
relationship is slightly curvilinear. A straight line
often does a remarkably good job of fitting a curved
function provided that it is not too curved.

9.23 The amount of money that a country spends
on health care may have little to do with life
expectancy because to change a country’s life
expectancy you would have to change the health of a
great many people. Spending a great deal of money
on one person, even if it were to extend her life by
dozens of years, would not change the average life
expectancy in any noticeable way. Often the things
that make a major change in life expectancy, such as
inoculations, really cost very little money.

9.25 Extremely exaggerated data on male and
female weight and height to show a negative slope
within gender but a positive slope across gender:

Height 68 72 66 69 70
Weight 185 175 190 180 180
Gender Male Male Male Male Male

Height 66 60 64 65 63
Weight 135 155 145 140 150
Gender Female Female Female Female Female

r 5 .532.
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9.27 We have confounding effects here. If we want
to claim that red wine consumption lowers the inci-
dence of heart disease, we have a problem because the
consumption of red wine is highest in those areas with
the greatest solar radiation, which is another potential
cause of the effect. We would have to look at the rela-
tionship between red wine and heart disease while
controlling for the effects of solar radiation.

9.29 This is an Internet question with no fixed
answer.

Chapter 10

10.1

10.3 The predicted percentage of LBW infants
would be 8.36.

10.5 I would be more comfortable speaking about
the effects on Senegal because it is already at approx-
imately the mean income level and we are not
extrapolating for extreme values of X.

10.7

10.9 Subtracting 10 points from every X or Y score
would not change the correlation in the slightest.
The relationship between X and Y would remain the
same—only the intercept would change.

10.13 Adding a constant to each Y value:
(a) Adding 2.5 to Y simply raised the regres-
sion line by 2.5 units.
(b) The correlation would be unaffected.

10.15

10.17 The correlation dropped to when I
added and subtracted .04 from each Y value. This
drop was caused by the addition of error variance.

One way to solve for the point at which they
become equal is to plot a few predicted values and draw
regression lines. Where the lines cross is the point at
which they are equal. A more exact way of to set the
two equations equal to each other and solve for X.

Collecting terms we get:

To check this, substitute 21.67 in both equations:

0.9 3 21.67 1 31 5 50.503 5 1.5 3 21.67 1 18

X 5 13>0.6 5 21.67
13 5 0.6X
31 2 18 5 1.5X 2 0.9X

0.9X 1 31 5 1.5X 1 18

2.478

Ŷ 5 20.0426X 1 4.699

Ŷ 5 109.13

Ŷ 5 0.0689X 1 3.53

10.19 Weight as a function of height for males:
(b) The inter-
cept is which has no interpretable
meaning with these data. The slope of 4.356
tells us that a 1-unit increase in height is
associated with a 4.356 increase in weight.
(c) The correlation is .60, telling us that for
females 36% of the variability in weight is
associated with variability in height.
(d) Both the correlation and the slope are
significantly different from 0 as shown by an

and an (equivalent) t of 5.616.

10.21
(b) The residual is 

(c) If students who supplied the data gave
biased responses, then, to the degree that the
data are biased, the coefficients are biased and
the prediction will not apply accurately to me.

10.23 12.28 pounds

10.25

The slope is only and it is not remotely sig-
nificant. For this set of data we can conclude that
there is not a linear trend for reaction times to
change over time. From the scatterplot we can see no
hint of a nonlinear pattern either.

10.27 The evils of television:
(b) Boys: 

Girls: 

The slopes are roughly equal given the few data
points we have, with a slightly greater decrease
with increased time for boys. The difference 
in intercepts reflects the fact that the line for
girls is about 9 points below that for boys.
(c) Television can not be used as an expla-
nation for poorer scores in girls, because we
see that girls score below boys even when we
control for television viewing.

10.29 Dropping pencils:
(a) As you move the pencil vertically you
are changing the intercept.
(b) As you rotate the pencil you are
changing the slope.
(c) You can come up with a very good line
simply by rotating and raising or lowering
your pencil so as to make the deviations from
the line as small as possible. (We really want

Ŷ 5 23.460X 1 268.39
Ŷ 5 24.821X 1 283.61

20.014

Ŷ 5 20.014 3 Trial 1 67.805

9.72.
Y 2 Ŷ 5 156 2 146.28 5

Ŷ 5 4.356 3 68 2 149.93 5 146.28

F 5 31.54

2149.93,
Ŷ 5 4.356 Height 2 149.93
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to minimize squared deviations, but I don’t
expect that anyone’s eyes are good enough to
notice the difference.)

10.31 Galton’s data
(a) The correlation is .459 and the regression
equation is 
(Remember to weight cases by “freq.”)
(b) I reran the regression requesting that
SPSS save the unstandardized prediction
and residual.
(c) 

Ŷ 5 .646 3 midparent 1 23.942.

to and Because values of 0 cannot reason-
ably occur for all predictors, the intercept has no
meaningful interpretation.
(b)

(c)

11.3 Religious Influence and Religious Hope con-
tribute significantly to the prediction, but not
Religious Involvement.

0.0031100 2 2 0.011200 2 5 3.72
Ŷ 5 5.37 2 0.01155 2 1 0.05112 2 1

0.0031500 2 2 0.011200 2 5 4.92
Ŷ 5 5.37 2 0.01155 2 1 0.05112 2 1

b4.b3

95% Confidence interval
for Mean

N Mean Std. Deviation Std. Error Lower Bound Upper Bound Minimum Maximum

child 1.00 392 67.1247 2.24664 .11347 66.9017 67.3478 61.70 72.20
2.00 219 68.0196 2.24030 .15139 67.7213 68.3180 61.70 73.20
3.00 183 68.7055 2.46458 .18219 68.3460 69.0649 63.20 73.70
4.00 134 70.1776 2.26850 .19597 69.7900 70.5652 61.70 73.70
Total 928 68.0885 2.51794 .08266 67.9263 68.2507 61.70 73.70

midparent 1.00 392 66.6633 1.06808 .05395 66.5572 66.7693 64.00 67.50
2.00 219 68.5000 .00000 .00000 68.5000 68.5000 68.50 68.50
3.00 183 69.5000 .00000 .00000 69.5000 69.5000 69.50 69.50
4.00 134 71.1791 .78617 .06791 71.0448 71.3134 70.50 73.00
Total 928 68.3082 1.78733 .05867 68.1930 68.4233 64.00 73.00

Descriptives

(d) The children in the lowest quartile
slightly exceed their parents’ mean height
(67.12 vs. 66.66) and those in the highest
quartile are, on average, slightly shorter than
their parents (68.09 vs. 68.31).
(e) It is easiest if you force both axes to
have the same range and specify that the
regression line is (If you pre-
fer, you can use an intercept of 0.22 to equate
the means of the parents and children.)

Chapter 11

11.1 Predicting quality of life:
(a) All other variables held constant, a differ-
ence of degree in Temperature is associated
with a difference of in perceived Quality of
Life. A difference of $1,000 in median Income,
again with all other variables held constant, is
associated with a difference in perceived
Quality of Life. A similar interpretation applies

1.05

2.01
11

Ŷ 5 1 3 X 1 0.

11.5 I would have speculated that Religious
Involvement was not a significant predictor because
of its overlap with the other predictors, but the toler-
ances kick a hole in that theory to some extent.

11.7

Because a squared value cannot be negative, we will
declare it undefined. This is all the more reasonable
in light of the fact that we cannot reject 

11.9 The multiple correlation between the predic-
tors and the percentage of births under 2500 grams is
.855. The incidence of low birthweight increases
when there are more mothers under 17, when moth-
ers have fewer than 12 years of education, and when

H0: R* 5 0.

 5 1 2
11 2 .173 2 114 2
115 2 4 2 1 2 5 2.158

 R*2 5 1 2
11 2 R 2 1N 2 1 2
1N 2 p 2 1 2

R0.1234
˛2 5 .173
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mothers are unmarried. All of the predictors are asso-
ciated with young mothers. (As the question noted,
there are too few observations for a meaningful analy-
sis of the variables in question.)

11.11 The multiple correlation between Depression
and the three predictor variables was significant, 
with Thus
approximately 25% of the variability in Depression can
be accounted for by variability in these predictors. The
results show us that depression among students who
have lost a parent through death is positively associated
with an elevated level of perceived vulnerability to
future loss and negatively associated with the level of
social support. The age at which the student lost his or
her parent does not appear to play a role.

11.13 The fact that the frequency of the behavior
was not a factor in reporting is an interesting finding.
My first thought would be that it is highly correlated
with Offensiveness, and that Offensiveness is carrying
the burden. But a look at the simple correlation
shows that the two variables are correlated at less
than 

11.15 The multiple correlation for my data was
.739, which is astonishingly high. Fortunately the F
test on the regression is not significant. Notice that
we have only twice as many subjects as predictors.

11.17 Predicting weight:

r 5 .20.

R 5 0.49 3F13, 131 2 5 14.11, p 5 .0000 4 .

effective) brains. We probably don’t want that con-
tamination in our data. However, note that Gender
was not significant in the previous answer, though
the sample size (and hence power) is low.

11.23 A nuisance variable is usually a variable that
confuses the relationship between other variables. It
is not necessarily an unimportant variable, and the
choice of name is not a good one.

11.25 The correlation between our best estimates
of Distress2 and the actual values of Distress2 is .434,
which is the multiple correlation.

Chapter 12

12.3 These
are reasonably close to the parameters of the popula-
tion for which the sample was drawn. The mean of the
distribution of means is 4.28, which is somewhat
closer to the population mean, and the standard
deviation is 1.22

(a) The Central Limit Theorem predicts a sam-
pling distribution of the mean with a mean of
4.5 and a standard deviation of 
(b) These values are close to the values that we
would expect.

12.5 If you had drawn 50 samples of size 15 the
mean of the sampling distribution would still approx-
imate the mean of the population, but the standard
error of that distribution would now be only

12.7 First, these students scored better than we
might have predicted, not worse. Second, these stu-
dents are certainly not a random sample of high
school students. Finally, there is no definition of what
is meant by “a terrible state,” nor any idea of whether
the SAT measures such a concept.

12.9 Unlike the results in the two previous ques-
tions, this interval probably is a fair estimate of the
confidence interval for P/T ratio across the country.
It is not itself biased by the bias in the sampling of
SAT scores.

12.11 Reject the null hypothe-
sis and conclude that the girls gained weight at better
than chance levels in this experiment.

12.13 The best measure of effect size is simply to
report the result in pounds gained, which is 3.01.

t 5 2.22, p 6 .05.

2.6>115 5 0.689.

2.6>15 5 1.16.

Mean 5 4.1, standard deviation 5 2.82.

Unstandardized Standardized
Coefficients Coefficients

Model B Std. Error Beta t Sig.

1 (Constant) 29.160 .000

height 5.092 .424 .785 12.016 .000

2 (Constant) 43.777 .047

height 3.691 .572 .569 6.450 .000

sex 4.290 .00123.4262.302214.700

22.015288.199

27.0212204.741

Coefficientsa

11.19 The weighted average is 3.68, which is very
close to the regression coefficient for Height when we
control for Gender.

11.21 Gender is important to include in this rela-
tionship because women tend to be smaller than men,
and thus probably have smaller (though not less

a. Dependent Variable: weight
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However for those who want a more involved meas-
ure we can calculate

The problem with this measure is that it uses the
standard deviation of gain scores, which is not a very
satisfying metric.

12.15 I needed to solve for t instead of z because I
did not know the population variance.

12.17 With 35 df the critical value of
t at is We can reject and con-
clude that children under stress show significantly
lower levels of anxiety than children in the general
population.

12.19 The results in Exercise 12.18 are consistent
with the t test in Exercise 12.17. The t test showed
that these children showed lower levels of anxiety
than the normal population, and the confidence
interval did not include the general population
mean of 14.55.

Chapter 13

13.1 Do not reject the null hypothesis.
This is a matched-sample t because responses came
from married couples. We would hope that there is
some relationship between the sexual satisfaction of
one member of the couple and the other, but perhaps
that is asking too much.

13.3 This analysis finally addresses the degree of
compatibility between couples. The correlation is sig-
nificant, but it is not very large.

13.5 The most important thing about a t test is the
assumption that the mean (or difference between
means) is normally distributed. Even though the indi-
vidual values can range only over the integers 
the mean of 91 subjects can take on any number of
values between 1 and 4. It is a continuous variable for
all practical purposes and can exhibit substantial
variability.

13.7 We used a paired t test because the data were
paired in the sense of coming from the same subject.
Some subjects showed generally more beta-endorphins
at any time than others, and we wanted to eliminate
this subject-to-subject variability.

1 2 4,

t 5 20.48.

H0;2.03.a 5 .05
t 5 23.50.

d̂ 5
X
s
5

3.01
7.3

5 0.41

13.9 If we look at the actual numbers given in
Exercise 13.6 we would generally be led to expect
that whatever was used to measure beta-endorphins
was accurate only to the nearest half unit. But then
where did 5.8 and 4.7 come from?

13.11 You would not want to use a repeated meas-
ures design in any situation where the first measure
will “tip off ” or sensitize participants to what comes
next.

13.13 How many participants do we need?
First of all, in Exercise 13.6 we had 19 participants,

giving us 18 df. This means that for a one-tailed test
at we will need a t of at least 2.552 to be sig-
nificant. So we can substitute everything we know
about the data except for the N and then solve for

participants.

13.15 As the correlation between the two variables
increases, the standard error of the difference will
decrease and the resulting t will increase.

13.17 Student’s Notice that this is the
same t as we had in Exercise 13.12. This is because
there is a perfect linear relationship between first,
second, and average guesses. (If you know the first
guess and the average, you can compute what the sec-
ond guess must have been.)

13.19 If I subtracted the Before scores from the
After scores I would simply change the sign of the
mean difference and the sign of t. There would be no
other effect.

13.21 There is no answer I can give for this ques-
tion because it asks the students to design a study.

Chapter 14

14.1 We can conclude that we have no
reason to doubt the hypothesis that males and
females are equal with respect to sexual satisfaction.

14.3 The difference between the t in Exercises 13.1
and 14.1 is small because the relationship between
the two variables was so small.

14.5 Random assignment plays the role of ensuring
(as much as possible) that there is no systematic dif-
ference between the subjects assigned to the two
groups. Without random assignment it might be pos-
sible that those who signed up for the family therapy

t 5 20.40.

t 5 20.319.

N. N 5 4.4812 5 21

a 5 .01
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condition were more motivated or had more serious
problems than those in the control group.

14.7 You cannot use random assignment to homo-
phobic categories for a study such as this because the
group assignment is the property of the participants
themselves.

14.9 In Exercise 14.8 it could well have been that
there was much less variability in the schizophrenic
group than in the normal group because the number
of TATs showing positive parent-child relationships
could have had a floor effect at 0.0. This did not hap-
pen but it is important to check for it anyway.

14.11 Experimenter bias effect:

Do not reject the null hypothesis. We cannot con-
clude that our data show the experimenter bias effect.

14.13 Confidence limits:

14.15 Comparing GPA for those with low and high
ADDSC scores:

Reject and conclude that people with
high ADDSC scores in elementary school have a
lower grade point average in ninth grade than people
with lower scores.

14.17 The answer to 14.15 tells you that ADDSC
scores have significant predictability of grade point aver-
age several years later. Moreover, the answer to Exercise
14.16 tells you that this difference is substantial.

14.19 Anger with a reason is just fine.

The critical value is approximately 2.00, so we will
reject the null hypothesis and conclude that when
given a reason for a woman’s anger, she is given more
status than when no reason was given for the anger.

14.21 If the variances are equal they will also be
equal to the pooled variance.

sp
˛2 5 5.9466 t 5 3.01

H0t 5 3.77.

 0.35 # m # 2.55
 5 1.45 ;  2.0210.545 2 5 1.45 ;  1.10

 CI1.95 2 5 1X1 2 X2 2  ;  t.05138 2sX12X2

2

t.05138 2 5 2.02

Standard error 5 0.545
Mean difference 5 1.45

t 5 0.587 3 t.05115 2 5 ;2.131 4

Chapter 15

15.1 The statement on skiing is intended to point
out that just because two things are different doesn’t
mean that the larger (better, greater, etc.) one will
always come out ahead.

15.3 Power for socially desirable responses:
Assume the population and the popula-
tion standard 

(a)
(b)
(c)

15.5 Sample sizes (before rounding):
156.25, 196.00, and 264.06

15.9 Avoidance behavior in rabbits using a one-
sample t test:

(a) For 
(b)

15.11 With 

15.13 Modifying Exercise 15.12:
(a)
(b) Do not reject the null hypothesis.
(c) The t numerically equals although t is
calculated from statistics and is calculated from
parameters. In other words is equal to the t we
would get if the sample means and standard
deviations were equal to the corresponding
parameters.

15.15 The result with the smaller sample size
impresses me more because it generally takes a
larger effect to find significance with a smaller sam-
ple size.

15.17 Assuming equal standard deviations, the
high school dropout group of 25 would result in a
higher estimate of and therefore a higher level of
power.

15.19 Total Sample Sizes Required for Power
.60, .05, Two-Tailed 

Two- Two-
Effect One- Sample t Sample t
Size g Sample t (per group) (overall)

Small 0.20 121 242 484
Medium 0.50 20 39 78
Large 0.80 8 16 32

1d 5 2.20 2a 5

5

d

d

d

d,
t 5 21.19.
Power 5 .22

d 5 1.46, power 5 .31.

For power 5 .80, N 5 31.36 5 32
power 5 .50, N 5 15.21 5 16

Power 5 .22
Delta 5 1.20
Effect size 5 0.20

deviation 5 2.61.
mean 5 4.39
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15.21 The mean under should fall at the critical
value under The question implies a one-tailed
test. Thus the mean is 1.645 standard errors about 
which is 100. when 

15.23

15.25 Aronson’s study:

Chapter 16

16.1 Analysis of Eysenck’s data:
(a) The analysis of variance:

Source df SS MS F

Treatment 1 266.45 266.45 25.23*
Error 18 190.10 10.56

Total 19 456.55

* p � .05

(b) Reject the null hypothesis.

16.3 Expanding on Exercise 16.2:
(a) Combine the Low groups together and the
High groups together:

Source df SS MS F

Treatment 1 792.10 792.10 59.45*
Error 38 506.30 13.324

Total 39 1,298.40
* p � .05

We have compared recall under conditions of
Low versus High processing and can conclude
that higher levels of processing lead to signifi-
cantly better recall.
(b) The answer is still a bit difficult to interpret
because both groups contain both younger and
older participants, and it is possible that the effect
holds for one age group but not for the other.

16.5 and for the data in Exercise 16.1:

and

16.7 Foa et al. study:

Source df SS MS F

Treatment 3 507.84 169.28 3.04*
Error 41 2,279.07 55.59

Total 44 2,786.91
* p � .05

v2 5 .55h2 5 .58

v2h2

t 5 5.02.

d 5 2.37. power 5 .658

Power 5 .75.

m 5 104.935.Power 5 b

m0,
H0.

H1
(c) It would appear that the more intervention-
ist treatments lead to fewer symptoms than the
less interventionist ones, although we would
have to run multiple comparison tests to tell
exactly which groups are different from which
other groups.

16.9 If the sample sizes in Exercise 16.7 were twice
as large, that would double the and 
However, it would have no effect on which is
simply the average of the group variances. The result
would be that the F value would be doubled.

16.11 Effect size for tests in Exercise 16.10.
It only makes sense to calculate an effect size for

significant comparisons in this study, so we will deal
with SIT vs. SC.

The SIT group is nearly a full standard deviation
lower in symptoms when compared to the SC group,
which is a control group.

16.13 Anova for ADDSC data

Source df SS MS F

Treatment 2 22.50 11.25 22.74*
Error 85 42.06 .49

Total 87 64.56
* p � .05

16.15 Darley and Latané study:

Source df SS MS F

Treatment 2 0.854 0.427 8.06*
Error 49 2.597 0.053

Total 51 3.451
* p � .05

We can reject the null hypothesis and conclude that
subjects are less likely to summon help quickly if
there are other bystanders around.

16.17 Bonferroni test on data in Exercise 16.2:

For Young/Low versus Old/Low 
For Young/High versus Old/High 

There is clearly not a significant difference between
young and old subjects on tasks requiring little cogni-
tive processing, but there is a significant difference
for tasks requiring substantial cognitive processing.

t 5 6.34
t 5 20.434

d̂ 5
XSC 2 XSIT1MSerror

5
18.09 2 11.07155.579

5
7.02
7.455

5 0.94

MSerror,
MStreat.SStreat
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The probability that at least one of these statements
represents a Type I error is at most .05.

16.19 Comparison of WL and SIT:

The two groups differ by over a
standard deviation.

16.21 Spilich et al. study:

Source df SS MS F

Treatment 2 2,643.38 1,321.69 4.74*
Error 42 11,700.40 278.58

Total 44 14,343.78

* p � .05

Here we have a task that involves more cognitive
involvement, and it does show a difference due to
smoking condition.

16.23 Spilich et al. data on driving simulation:

Source df SS MS F

Treatment 2 437.64 218.82 9.26*
Error 42 992.67 23.64

Total 44 1,430.31

* p � .05

Here we have a case in which the active smokers
again performed worse than the nonsmokers, and the
differences are significant.

16.25 Analysis of Langlois and Roggman:
(a) The research hypothesis would be the
hypothesis that faces averaged over more
photographs would be judged more attractive
than faces averaged over fewer photographs.
(b) 
(c) The group means are significantly differ-
ent. From the descriptive statistics we can
see that the means consistently rise as we
increase the number of faces over which the
composite was created.

Chapter 17

17.1 Thomas and Wang study:
(a) This design can be characterized as a

factorial, with three levels of Strategy
and two levels of Delay.
(b) I expect that recall will be better when par-
ticipants generate their own key words, and
worse when participants are in the role learning

3 3 2

F 5 3.134

d̂ 5 1.18.

condition. I also expect better recall for a
shorter retention interval.
(c)  

Strategy Delay Mean Std. Dev. Cases

Gen. 5 min 14.92 5.33 13
Gen. 2 day 4.00 2.52 13
Prov. 5 min 20.54 1.98 13
Prov. 2 day 2.00 1.47 13
Rote 5 min 15.38 5.45 13
Rote 2 day 12.77 6.80 13

17.3 Analysis of variance:

Source df SS MS F

Strategy 2 281.26 140.63 7.22*
Delay 1 2,229.35 2,229.35 114.53*
S � D 2 824.54 412.27 21.18*
Error 72 1,401.54 19.47

Total 77 4,736.68

* p � .05

There are significant differences due to both Strategy
and Delay, but more importantly, there is a significant
interaction.

17.5 Bonferroni test of data in Exercise 17.4:

For Data at 5-minute delay:

Generated Generated Provided
versus Provided versus Rote versus Rote

t � �3.15 t � �.26 t � 2.89
For data at 2-day delay:

Generated Generated Provided
versus Provided versus Rote versus Rote

t � 1.19 t � �5.24 t � �6.43

For six comparisons with 36 df the critical value of t
is 2.80.

For the 5-minute delay the condition with the key
words provided by the experimenter is significantly
better than both the condition in which the partici-
pants generated their own key words and the rote
learning condition. The latter two are not different
from each other.

For the 2-day delay the rote learning condition is
better than either of the other two conditions, which
do not differ from each other.

We clearly see distinct patterns of differences in
the two delay conditions. The most surprising
result is the superiority of rote learning with a 
2-day delay.
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17.7 The results in the last few exercises suggest to
me that if I were studying for a Spanish exam I would
fall back on rote learning, painful as it sounds and as
much against common wisdom as it is.

17.9 In this experiment we have as many primi-
parous mothers and multiparous ones, which cer-
tainly does not reflect the population. Similarly, we
have as many LBW infants as full-term ones, which
is not a reflection of reality. The mean for primi-
parous mothers is based on an equal number of
LBW and full-term infants, which we know is not
representative of the population. Comparisons
between groups are still legitimate, but it makes no
sense to take the mean of all primiparous moms
combined as a reflection of any meaningful popula-
tion value.

17.11 Simple effects versus t tests for Exercise 17.10. 
a) If I had run a t test between those means
my result would simply be the square root of
the that I obtained.
b) If I used for my estimated error
term it would give me a t that is the square
root of the F that I would have had if I had
used the overall , instead of the 
obtained in computing the simple effect.

17.13 Analysis of variance for Exercise 17.12:

Source df SS MS F

Task 2 28,661.53 14,330.76 132.90*
Smokegrp 2 354.55 177.27 1.64
T � S 4 2,728.65 682.16 6.33*
Error 126 13,587.20 107.84

Total 134 45,331.93

* p � .05

The main effect of Task and the interaction are
significant. The main effect of Task is of no interest
because there is no reason why different tasks
should be equally difficult, We don’t care about
the main effect of Smoking either because it is
created by large effects for two levels of Task and no
effect for the third. What is important is the
interaction.

17.15 Simple effects to clarify the Spilich et al.
example.

We have already seen these simple effects in
Chapter 16, in Exercises 16.18, 16.19, and 16.21.

MSerrorMSerror

MSerror

F 5 1.328

17.17 Further analysis of Exercise 16.3:

Source df SS MS F

Age 1 115.60 115.60 17.44*
HiLo 1 792.10 792.10 119.51*
A � H 1 152.10 152.10 22.95*
Error 36 238.60 6.63

Total 39 1,298.40

* p � .05

We have a significant effect due to age, with younger
subjects outperforming older subjects, and a signifi-
cant effect due to the level of processing, with better
recall of material processed at a higher level. Most
importantly, we have a significant interaction, reflect-
ing the fact that there is no important difference
between younger and older subjects for the task with
low levels of processing, but there is a big difference
when the task calls for a high level of processing—
younger subjects seem to benefit more from that
processing (or do more of it).

17.19

Source df SS MS F

E (Education) 1 67.69 67.69 6.39*
G (Group) 2 122.79 61.40 5.80*
EG 2 20.38 10.19
Error 42 444.62 10.59

Total 47 655.48

* p � .05

(b) The program worked as intended and there
was no interaction between groups and educa-
tional level.

17.21 for level of processing study: 

(Using )

This is a very large effect size, but the data show an
extreme difference between the two levels of processing

17.23 No main effects, but interaction:

MSerrord̂ 5 3.46

d̂

6 1

Cell means

8 12

12 8

Row-1 Row-2
0
2
4
6
8

10
12

Col-1

Col-2
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17.25 and

Strategy
Delay  

17.27 Calculation of magnitude of effect for
Exercise 17.13:

Task     
Smoke  

17.29 The two magnitude of effect measures 
and will agree when the error term is small

relative to the effect in question and will disagree
when there is a substantial amount of error relative to
the effect. To some extent, all other things equal, the
two terms will be in closer agreement when there are
several degrees of freedom for the treatment effect.

17.31 You should restrict the number of simple effects
you examine to those in which you are particularly
interested (on a priori grounds), because the familywise
error rate will increase as the number of tests increases.

Chapter 18

18.1 Study of migraines (results taken from SPSS):

18.3 I would have liked to collect data from stu-
dents on the use of painkillers and other ways of deal-
ing with migraines. I might also like to have data on
stress levels over time so that I could possibly rule out
the effects of stress.

18.5 Analysis of data in Exercise 18.4:

Source df SS MS F

Subjects 8 612.00
Weeks 1 554.50 554.50 14.42*
Error 8 302.00 37.75

Total 17 1,159.70

* p � .05

v2 21h2

T 3 S     h2 5 .03 v2 5 .02
h2 5 .04 v2 5 .04
h2 5 .63 v2 5 .63

S 3 D     h2 5 .17 v2 5 .16
h2 5 .47 v2 5 .46
h2 5 .06 v2 5 .05

v2h2 There is a significant increase in decrease in sever-
ity over time. 

18.7 Effect size for Exercise 18.4:
We will use the square root of as our esti-

mate of the standard deviation, because this is a stan-
dard deviation corrected for any differences due to
subject effects.

The decrease in severity from baseline to training is a
reduction of approximately three and one-half stan-
dard deviations.

18.9 I would standardize the difference in means
using the square root of the average of the variances
of the two baseline measures. This gives us a denom-
inator of 8.83.

On average, the severity of headaches decreased by
nearly 1.50 standard deviations from baseline to training.

18.11 Exercise 18.10 tested the null hypothesis
that condom use did not change over time. We would
have hoped to see that the intervention worked and
that condom use increased, but that was not what we
found. The increase was not significant.

18.13 It would appear that without the interven-
tion, condom use would actually have declined. This
suggests that the intervention may have prevented
that decline, in which case that nonsignificant result
is actually a positive finding.

18.15 Bonferroni tests on data in Table 18.1:
We can use a standard t test because the error term

has been corrected by the repeated-measures analysis
of variance, which has already removed between sub-
ject variability.

The Bonferroni alpha level would be 

We will reject all of the null hypotheses because
each p value is less than .0167.

.01667.
.05>3 5

d̂ 5
Xbaseline 2 Xtraining

s
5 1.49

d̂ 5
X0 2 X32MSerror

5 3.44

MSerror

F 5 t2 5 3.7982 5 14.424.

Descriptives Statistics

Std.
N Minimum Maximum Mean Deviation

WEEK1 9 7.0 30.0 20.778 7.1725
WEEK2 9 4.0 33.0 20.000 10.2225
WEEK3 9 5.0 14.0 9.000 3.1225
WEEK4 9 1.0 12.0 5.778 3.4197
WEEK5 9 4.0 17.0 6.778 4.1164
Valid N 9
(listwise)
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Chapter 19

19.1 We will reject the null hypothesis
and conclude that students do not enroll at random.

19.3 Do not reject the null hypothesis
that my daughter’s sorting behavior is in line with my
theory.

19.5 We can reject and conclude
that the children did not choose dolls at random, but
chose white dolls more often than black.

19.7 Reject the null hypothesis and
conclude that the distribution of choices between
black and white dolls was different in the two studies.
Choice is not independent of the study and could eas-
ily be related to the time at which the studies were run.
We are no longer asking whether one color doll is pre-
ferred over the other color, but whether the pattern of
preference is constant across studies. In analysis of vari-
ance terms we are dealing with an interaction.

19.9 There are several ways that this study could be
modified. We could simply rerun the present analysis
by defining smokers and nonsmokers on the basis of
the partner’s smoking behavior. Alternatively, we
could redefine the Smoker variable as “neither,”
“mother,” “father,” or “both.”

19.11 We can reject the null hypothe-
sis and conclude that achievement level during high
school varies as a function of performance during ele-
mentary school.

19.13 A one-way chi-square test on the data in the
first column of Exercise 19.12 would be asking
whether the students are evenly distributed among
the eight categories. What we really tested in
Exercise 19.12 is whether that distribution, however it

X2 5 5.38.

X2 5 34.184.

H0X2 5 29.35.

X2 5 2.4.

X2 5 11.33.

appears, is the same for those who later took remedial
English as it is for those who later took nonremedial
English.

19.15 The ability to reject a tumor is
affected by the shock condition.

19.17 This is another place where we see the
important relationship between sample size and
power.

19.19 Dabbs and Morris study:
(a) These results show that there is a significant
relationship between the two variables.
(b) Testosterone levels in adults are related to
the behavior of those individuals when they
were children.
(c) This result shows that we can tie the two
variables (delinquency and testosterone)
together historically. I would assume that people
who have high testosterone levels now also had
high levels when they were children, but that is
just an assumption.

19.21 We could ask a series of similar questions,
evenly split between “right” and “wrong” answers. We
could then sort the replies into positive and negative
categories and ask whether faculty were more likely
than students to give negative responses.

19.23 Racial differences in desired weight gain.
For white females, the odds of wishing to lose weight

were meaning that white females
are nearly twice as likely to wish to lose weight as to
stay the same or gain weight. For African-American
females, the corresponding ratio is 
The odds ratio is This means
that the odds of wishing to lose weight were more than
twice as high among white females as compared to
African-American females.

1.9235>.9038 5 2.1281.
47>52 5 .9038.

352>183 5 1.9235,

X2 5 8.85.

Paired Differences

95% Confidence
Interval of the Sig.

Std. Std. Error Difference (2-
Mean Deviation Mean Lower Upper t df tailed)

Pair 1 WEEK0 –WEEK6 �2.680 2.6727 .5345 �3.783 �1.577 �5.014 24 .000
Pair 2 WEEK0 –WEEK12 �3.040 2.9928 .5986 �4.275 �1.805 �5.079 24 .000
Pair 3 WEEK3–WEEK12 �1.600 2.8868 .5774 �2.792 �.408 �2.771 24 .011

Paired Samples Test
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19.25 Unah and Boger study:
Chi- The chi-square statistic is clearly
significant. Nonwhite defendants are sentenced to
death at a significantly higher rate than white defen-
dants.

Chapter 20

20.1 McConaughy study:
(a)
(b) I would reject and conclude that older
children include more inferences in their sum-
maries.

20.3 Repeating 20.2 with normal approximation:
reject and come to the same

conclusion we came to earlier.

20.5 Nurcombe et al. study:
(a) Do not reject 
(b) We cannot conclude that we have evidence
supporting the hypothesis that there is a reliable
increase in hypothesis generation and testing
over time. (This is a case in which alternative
methods of breaking ties could lead to different
conclusions.)

20.7 First-born children’s independence:

(a)
(b) We can reject the null hypothesis and con-
clude that first-born children are more inde-
pendent that second-born children.

20.9 The scatterplot shows that the difference
between the pairs is heavily dependent on the score
of the firstborn.

20.11 Wilcoxon’s matched-pairs signed-ranks test
tests the null hypothesis that paired scores were
drawn from identical populations or from symmetric
populations with the same mean (and median).
The corresponding t test tests the null hypothesis that
the paired scores were drawn from populations with
the same mean and assumes normality.

20.13 Rejection of the null hypothesis by a t test is
a more specific statement than rejection using the
appropriate distribution-free test because, by making
assumptions about normality and homogeneity of
variance, the t test refers specifically to the popula-
tion means—although it is also dependent on those
assumptions.

T 5 46; T.025 120 2 5 52

H0.T 5 8.5; T.025 5 8.

H0z 5 23.15;

H0

Ws 5 23; W.025 5 27

square 5 7.71.
20.15 We can reject the null hypothe-
sis and conclude that placement of these adolescents
has an effect on truancy rates.

20.17 It eliminates the influence of individual dif-
ferences (differences in overall level of truancy from
one person to another).

20.19 (a) We cannot reject the null
hypothesis.
(b) These are exactly equivalent
tests.

20.21 We can reject the null hypothe-
sis and conclude that people don’t really like tea made
with used tea bags.

Chapter 21

Please review the disclaimer concerning these
answers at the beginning of Chapter 21. There are
many different ways to think about a study.

21.1 This test involves comparing two proportions,
and the easiest way to do that is to set up a 
contingency table with Group on one dimension and
Mastery on the other.

21.3 This is a repeated measures analysis of vari-
ance with assessment periods as the repeated measure
and condition as the between-subject variable. If
measurements were taken on several occasions I
would like to see the data plotted over time, but all
we currently have is the data at the end of the treat-
ment phase. 

21.5 This is a t test for two independent groups—
children of divorced families and children of intact
families.

21.7 This is a standard one-way analysis of vari-
ance. I would be most likely to conduct a planned
comparison of the positive and negative conditions.

21.9 This is a two-way analysis of variance, with
secure and insecure as one dimension and mortality
vs. dental as the other. No multiple contrasts are
called for because there are only two levels of each
variable.

21.11 This could be treated as a two-way analysis of
variance if we break the data down by race and by
Afrocentric facial features. A problem with this is

2 3 2

X2
F 5 9.00.

X2
F 5 1.60.

X2 5 1.60.

H 5 6.757.
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that we would presumably have more Afrocentric fea-
tures for black inmates, which would lead to unequal
sample sizes (i.e., an unbalanced design).

21.13 This is a regression problem where time is
one variable and the difference in happiness between
liberals and conservatives (by year) is the other vari-
able.

21.15 The most important thing to do would be to
plot the data over time looking for trends. A repeated
measures analysis of variance would tell you if differ-
ences are significant, but it is the direction of differ-
ences, and whether they return to baseline, that is
likely to be most informative. The authors further
broke down the participants in terms of their preoc-
cupation with 9/11 and looked at differences between
those groups. Interestingly, even the least preoccu-
pied group showed changes over time.

21.17 This is a difficult one, partly because it
depends on what Payne wants to know. I assume that
she wants to know how rankings of characteristics
agree across gender or across years. She could first
find the mean rank assigned to each characteristic
separately for each gender and year. Because the raw
data were originally ranks, I would probably be
inclined to then rank these mean values. She could
then calculate Spearman’s between males and
females for each year or between years within each
gender. The correlations would be obtained for the
ten pairs of scores (one per characteristic).

rs

21.19 This is a analysis of variance with two
levels of gender and four levels of occupation. The
major emphasis is on the occupations, so multiple
comparisons of those means would be appropriate.

21.21 There are two independent groups in this
experiment. The authors should use a Mann-
Whitney test to compare average locus of control
scores.

21.23 This is a situation for a chi-square goodness-
of-fit test. The conditions are Rotated versus
Stationary, and the count is the number of subjects
nominating that condition as giving stronger con-
tours. The expected values would be 

21.25 This is another complex repeated-measures
analysis of variance. The comparison of recall of the
two lists (one learned before administration of the
drug and the other learned after) is a repeated meas-
urement because the same subjects are involved. The
comparison of the Drug versus Saline groups is a
between-subjects effect because the groups involve
different subjects.

21.27 This is basically a correlational study where
we separately correlate the two dependent variables
with amount of alcohol consumed, Given the 14-year
gap and all of the other factors that affect develop-
ment, we should not expect very strong correlations
even under the best of conditions.

37>2 5 18.5.

2 3 4
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