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“Beyond essential truths is but a following.” 

This book provides a general introduction and overview of univariate and multivariate 
statistical modeling techniques typically used in the social and behavioral sciences. 
Students reading this book will come from a variety of fields, including psychology, 
sociology, education, political science, etc., and possibly biology and economics. 
Spanning several statistical methods, the focus of the book is naturally one of breadth 
than of depth into any one particular technique. These are topics usually encountered 
by upper-division undergraduate or beginning graduate students in the aforemen
tioned fields. 

A wide selection of applied statistics and methodology texts exist, from books that 
are relatively deep theoretically to texts that are essentially computer software 
manuals with a modest attempt to include at least some of the elements of statistical 
theory. All of these texts serve their intended purpose so long as the user has an 
appreciation of their strengths and limitations. Theoretical texts usually cover topics 
in sufficient depth, but often do not provide enough guidance on how to actually 
run these models using software. Software manuals, on the other hand, typically 
instruct one on how to obtain output, but too often assume the reader comes to these 
manuals already armed with a basic understanding of statistical theory and research 
methodology. 

The author of this book did not intend to write a software manual, yet at the same 
time was not inclined to write something wholly abstract, theoretical, and of little 
pragmatic utility. The book you hold in your hands attempts a more or less “middle of 
the road” approach between these two extremes. Good data analysis only happens 
when one has at least some grounding in both the technical and philosophical aspects 
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of quantitative science. For example, it is well known that the “machinery” of 
multivariate methodology is grounded primarily in relatively elementary linear and 
matrix algebra. However, the use of these procedures is not. The how to do something 
can always be dug up. The why to do something is where teaching and instruction are 
needed. Indeed, one can obtain a solution to an equation, but if one does not know 
how to use or interpret that solution, it is of little use in the applied sense. 

Hence, a balance of sorts was attempted between theory and application. Whether 
the optimum balance has been achieved, will be, of course, left to the reader (or 
instructor) to ultimately decide. Undoubtedly, the theoretician will find the coverage 
somewhat trivial, while the application-focused researcher will yearn for more 
illustrations and data examples. It is hoped, however, that the student new to these 
methods will find the mix to his or her liking, and will find the book relevant as a 
relatively gentle introduction to these techniques. 

As merely a survey and overview of statistical methodologies, the book is void of 
proofs or other technical justification as one would have in a more theoretical book. 
This does not imply, however, that the book is one of recipes. Attention was given to 
explaining how formulas work and what they mean, as I see this as the first step to 
facilitating an understanding of the more technical arguments required for proofs and 
the like. The emphasis is on communicating what the equations and formulas are 
actually telling you, instead of focusing on how they are rigorously and timelessly 
justified. Readers interested in a more advanced and theoretical treatment should 
consult any of the excellent books on mathematical and theoretical statistics such as 
that by Casella and Berger (2002). 

In my view, the current textbook trend to provide “readable” data analysis texts to 
students outside of the mathematically dense sciences has reached its limit. Books 
now exist on statistical topics that attempt to use virtually no formulae or symbols 
whatsoever. I  find this to be unfortunate, if not somewhat ridiculous, just as I equally 
find the abuse of mathematical complexity for its own sake rather distasteful. Indeed, 
being technical and complex for its own sake does little for the student attempting to 
grasp difficult concepts rather than simply memorizing equations. As Kline (1977) 
noted with regard to teaching calculus, rigor, while ultimately required, can too often 
obscure that thing we call understanding. Stewart (1995) said the same thing: “The 
psychological is more important than the logical . . . Intuition should take prece
dence; it can be backed up by formal proof later” (p. 5). 

What has always intrigued me, however, is how little social science students, aside 
from those perhaps in economics, are exposed to even elementary mathematics 
in their coursework. Even courses in statistics for social scientists generally 
de-emphasize the use of mathematics. I believe there are two reasons for this 
trend. First, mathematical representation in these disciplines has a reputation for 
being either “mysterious” or otherwise “beyond the grasp” of students. Students shy 
away from equations, and, for good reason, they can be difficult to understand and 
are difficult to manipulate. Except for the gifted few, we all struggle. But to think of 
them as mysterious or beyond anyone’s grasp is simply wrong. Second, the 
communication and writing of mathematics generally lacks clarity and that 
philosophical “touch” when the teaching of it is attempted. Nobody likes to see 



one equation followed by another without understanding what “happened” in 
between, and even more importantly, why it happened. The proverbial sigh of 
outward and seemingly innate and unforgiving disappointment displayed toward 
any student  who should  ask  why, is, of course, no service to the student either. 

I do not believe most students dislike mathematics. I do believe, however, that 
most students dislike mathematics that are unclear, poorly communicated, or other
wise purposely cryptic. In this book, I go to somewhat painstaking efforts to explain 
technical information in as clearly and in as expository fashion as possible. In this 
spirit, I was largely inspired by A.E. Labarre’s text Elementary Mathematical 
Analysis published in 1961. It is as exceptionally clear elementary-to-moderate level 
mathematics text that you will ever find and is a perfect demonstration of how 
technical information can be communicated in a clear, yet still technically efficient 
manner. Once more, the reader will be the final judge on whether or not this clarity of 
exposition has been achieved. 

IMPORTANCE OF HISTORY 

I have always found that learning new statistical techniques without consulting 
the earliest of historical sources on those techniques a rather shallow and hollow 
experience. Yes, one could read a book on the how and why of factor analysis, for 
instance, but it is only through consulting the earliest of papers and derivations that 
one begins to experience a deeper understanding. Nothing compares to studying the 
starting points, the original manuscripts. It has always also intrigued me that one can 
claim to understand regression, for instance, yet not have ever heard of Francis 
Galton. How can one understand regression without even a cursory study of its 
historical roots? Of course, one can, but I believe a study of its history contributes 
more of an impression of the technique than is possible otherwise. A study of early 
plots that featured the technique (see Figure 1) and the context in which the tool 
came about, I believe can only promote a deeper understanding of concepts in 
students. 

A priority of the book is to introduce students to these methods by often providing 
a glimpse into their historical beginnings, or at minimum, providing some discussion 
of its origination. Historically relevant data are also used in places, whereas other parts 
of the book feature hypothetical and very “easy” data. And though demonstrating 
techniques by referring to substantive applications is always a good idea, it is equally 
useful to demonstrate methods using “generic” variables (e.g., x1; x2; . . .) to encour
age an understanding of what the technique is actually doing as distinct from the 
substantive goals of the investigation. Researchers in applied fields can sometimes get 
overly “immersed” in their theories such that next to their significant other, their 
theory is their greatest love. Over-focus on applications can prevent the student from 
realizations of the kind that factor analysis, for instance, does not “discover” anything. 
It merely models correlation. It is often useful in this regard to retreat from substantive 
considerations and simply focus on the mechanics lest we conclude more from the 
software output than is warranted by the quantitative analysis. A course in statistical 



FIGURE 1 One of Galton’s early graphical illustrations of regression. Circles in the plot are 
average heights for subgroups of children as a function of mid-parent height. The lines AB and 
CD are regression lines. (Galton, 1886). 

methods should be just as much about what statistics cannot do as it should be about 
what they can do. Many students significantly overestimate the power of the tool. 

There is another reason for the focus somewhat on historical papers. Though the 
history of statistics by no means constitutes “easy reading,” I have found that papers 
written by the inventors of these techniques are often as clear and readable as 
anything written since. As a mentor of mine once told me, if you want to know what 
the inventor meant, read what they wrote, not what others wrote about what they 
wrote. For instance, papers by George Udny Yule on multiple regression or Fisher 
(Figure 2) on the analysis of variance or discriminant analysis, or more modernly 
Karl Jöreskog on covariance modeling are some of the most well-written (if not still 
quite difficult to read and understand) papers on these topics. Many of these authors 
had a clarity about their writing that surpasses much that has been written since. It is 
always a pleasure to dig into the historical papers and uncover exactly what the 
originators wrote about their methodologies rather than rely only on interpretations 
of their original works. 

For histories of mathematical statistics, Stigler (1986) and Hald (1998) provide 
exceptional coverage. For a history of probability before 1750, see Hald (1990). 
Desrosières (1998) provides an excellent social history. Indeed, statistics as a tool of 
socio-political persuasion is a field in its own right (MacKenzie, 1981). For a history of 
statistics in psychology, see Cowles (2005). Gigerenzer et al. (1990) give an excellent 
historical account of the influence of statistical science on modern culture. Salsburg (2002) 
provides a light, engaging, and enjoyable narrative on the general history of statistics. 



FIGURE 2 R.A. Fisher in 1912, usually heralded as undisputed father of modern statistics. 

HYPOTHESIS-TESTING AND DECISION-MAKING: TYPE I VERSUS 
TYPE II ERRORS 

Most textbooks on applied statistics essentially assume that a researcher’s top priority 
in his or her career, other than getting tenure, is to reject a null hypothesis at a 
significance level of 0.05. Results attaining p-values of 0.06, 0.07, and higher are 
usually deemed “insignificant” and hence not grounds for rejecting a null. This 
constitutes a huge problem with how the logic of statistics, or we shall say its 
philosophy, is taught to students of science. It completely ignores the big picture. 
Setting habitual significance levels such as 0.01 and 0.05 is fine statistically, but 
methodologically (read scientifically) makes no sense to adopt such rigid and fixed 
decision criteria across all experimental or non-experimental contexts. This is 
especially the case if one cares at all about costs of making a bad decision on the 
“other” end of the curve, the too often ignored type II error rate. 

As a reader of statistics texts, I have fettered a methodological annoyance at 
continually seeing null hypotheses either rejected or retained without seemingly any 
consideration of the costs of committing a type II error. Surely, if the world population 
is being eliminated day and night by a super bug, tests on potential vaccines would 
make their way into the public even at significance levels of 0.10. My point is that 
researchers and scientists should not be interpreting a significance level as would a 
strict mathematical or theoretical statistician. Setting a significance level is setting a 
decision rule, and in line with good statistical theory, is the way to proceed. However, 
when confronted with real data, with real decisions, with real life, adhering day and 
night to an arbitrary significance level while simultaneously pretending to make 
intelligent decisions about scientific phenomena or courses of action, is, well, foolish. 
A p-value is to be used as an input to the decision-making process, and the level of 
significance for a particular test should depend on a consideration, even if informal, 
of both error rates. Further, good decisions require more than the consideration of 



p-value magnitudes. Measures of effect size are just as, if not more, important. I try 
my best to emphasize these issues as they arise throughout the book. 

TOWARD MULTILEVEL MODELING 

Though this text is not even remotely one about multilevel or hierarchical modeling, a 
unique feature of this book is that it introduces more complex mixed modeling in a 
gentle manner and as an extension of already-learned principles. I have found it 
bewildering to see introductions to multilevel and hierarchical modeling that make 
“mention” of mixed models only in passing, as though a mixed model is simply 
another name to describe such methods. Of course, mixed modeling is not simply 
“another name” that can be given to multilevel or hierarchical models. Multilevel and 
hierarchical models are, in most contexts, ideally considered as special cases of the 
more general mixed model. 

READABILITY OF THE BOOK 

One strength of this book compared to competing books, I believe, and hope, is 
readability, though not at the expense of complexity. Technical complexity is a 
necessary evil of mathematical and statistical writing. It cannot be avoided, and must 
be embraced to some extent if one is to deepen one’s understanding of statistics and 
methodology. It is my opinion that attempts to avoid symbolism when writing on 
statistical topics do more harm than good. Students come away having learned, for 
instance, that correlation is a measure of linear relationship, and nothing more. But 
what is correlation? It is much more than a phrase. To really understand it, one must 
work with the symbolic representation of it. Analogously, statements such as 
“Alcoholism predicts suicide” are only as meaningful as one is aware of what 
prediction means, not in their sense of the word, but rather how it is defined and used 
mathematically upon which the research report is based. The students and researchers 
who make such claims have a responsibility to understand the claims they are making 
at a somewhat technical level, otherwise, the statement is hollow. Mathematics (and 
associated symbols) is the language of science, and the sooner the student of the social 
sciences accepts this and plunges into the battle with two feet, the sooner life gets 
easier, not harder. 

Most definitions are given at a level that is conceptually clear, with at least some 
respect to formality. For example, there is typically only one concept of a “random 
variable,” and yet it can be defined in many ways. That it is a real-valued function 
defined on a sample space (Degroot and Schervish, 2002), precise as this may be, can 
nonetheless be “translated” into that of a variable, the values of which occur 
according to some specified probability distribution (Everitt, 2002). Both are correct, 
although a reader with a background in measure theory would still likely find both 
definitions “incomplete.” The irk of mathematical and theoretical statisticians, of 



course, is that definitions get “translated” so much that they lose their formal and 
precise-to-the-nth-degree meaning. Every effort in this book has been made to 
communicate concepts and theory conceptually, however without “insulting” the 
more formal, deeper (and more correct) definitions. The discipline of theoretical and 
mathematical statistics is a treasured area of investigation, and definitions in this book, 
even if given at a relatively informal level, are hoped nonetheless to show due respect 
to the aforementioned field. Indeed, in many places, we cite such definitions and then 
proceed to “unpack” their meaning at a more conceptual level. 

COVERAGE 

The book does not pretend to cover every available methodology or survey every type 
of statistical technique. For example, there are no chapters on time series or survival 
analysis. The book was built by standing on the shoulders of other books that I 
consider to be the very best in the fields of statistics, social science, and applied data 
analysis more generally. Indeed, some of the more technical arguments follow rather 
closely in the footsteps of such “giants.” Proper credit and citation, of course, is noted 
where appropriate. What I hope makes this book unique however is in how the 
material is explained and communicated to the student, with an emphasis on 
conceptual development without a complete disregard for technical accuracy. As 
Kirk (1995) remarked, both can be achieved. 

Modern applied social statistics has virtually exploded in complexity with the 
advent of scientific computing. The so-called soft sciences are statistically quite hard, 
and the number of specialized techniques and their offshoots far eclipses my ability 
(or willingness, drive, or emotional desire) to cover them all in a single text. For 
instance, advances on techniques with ordinal data alone could easily take up an entire 
book, yet in this book, they are not discussed. Instead of trying to cover too much 
ground too fast, I focus instead on the fundamentals, the logic, the “gateways” to 
understanding the “harder” stuff that lay ahead for the student in future courses, 
seminars, and books. Understanding foundations I believe is the key. Kindergarten, 
after all, is the most important grade. 

For instance, it is my belief that if a student has a solid understanding of what 
analysis of variance (ANOVA) and regression actually are beyond memorization and 
formula manipulation, this puts the student in an ideal position to extend that 
knowledge to virtually any statistical model he or she chooses to master in the 
future. If I had attempted to include every statistical methodology under the sun, the 
book would read like a cookbook, and though it would be of use to the experienced 
researcher, it would be of minimal use to the newcomer wanting to grasp the essential 
logic of these methodologies. The unfortunate reality is that too often students who 
“do statistics” have too little of an idea of what they are doing. This is both the fault of 
the student for not committing themselves to a better understanding of the tools they 
use, but also the fault of instructors who too often teach “computer statistics” rather 
than statistical thinking. 



EMPHASIZING LOGIC RATHER THAN ARITHMETIC 

Since virtually all statistical analyses these days are performed by high-speed 
computers, I only occasionally demonstrate computations using formulas. That is 
not to say that working through formulas with real numbers is a bad thing, but only 
that understanding the formulas is much more important. Understanding what an F-
ratio means is more important than computing one with paper and pencil. In my view, 
too often introductory courses are taught in a “plug and chug” fashion, which I find 
truly unfortunate. The idea of “plug and chug” data analysis has never made any sense 
to me, and I personally have never taught quantitative methods in such an uncritical 
fashion. “Cookbook” approaches to data analysis are at times useful, but only if one 
first understands at least something about what makes up the recipes. 

Computer codes are scattered throughout the text. In most places the code is 
explained and is very easy to follow, along with most of the software functions used. 
The book does not pretend to be one on computational data analysis, and in places 
instructors who are computationally more savvy may recommend alternative code 
strategies and options to their students. The code used in the book is that which got the 
job done, and is not always guaranteed to be the most computationally “elegant” of 
options in all cases. Most of the code was adopted from online packages in R and 
SPSS syntax. Most of the syntax commands in SPSS can be duplicated through 
windows GUI (graphical user interface). Providing screenshots for every SPSS 
command would have made the book too clumsy. R sources used for this text 
include the aforementioned packages, as well as Dalgaard (2008), Crawley (2013), 
and Teetor (2011). 

MISSING DATA 

The research literature is replete with approaches to account for data that were either 
not collected or were lost after collection. Common strategies for replacing missing 
values, assuming they are missing at random, is to input with the arithmetic mean for 
the given vector or with the mean of given groups or cells. Another popular 
imputation strategy is to use a regression approach to estimate missing values. 
Some authors also advise that one’s prior knowledge of the research area should 
be used in the estimation of missing values. Software packages further provide 
methods for assessing patterns of missing data that can prove quite helpful especially 
in cases where data are not missing at random. Such patterns could help inform better 
data recruitment procedures and also prove potentially useful in generating new 
hypotheses if missing data follow distinct patterns. 

It is important to distinguish between missing data versus no data. A non-response 
is data. If you telephone someone and with their cell phone in hand they do not 
respond, this indeed must be counted as a response. It is the no response response. On 
the other hand, if a data point is missing because a research assistant forgot to ask a 
participant a question, then this is missing data of a different nature (although perhaps 
still informative since it may encourage you to find a more competent research 



assistant). Too often researchers ignore the potential causes of their missing data, and 
simply accept that 10–30% of their data is absent. Perhaps with such missingness, one 
should revise one’s method of data collection. Missing 30% of a data set is hardly a 
statistical issue. It is a substantive one. 

The philosophy held in this book is that other than the analysis of missingness 
patterns, missing data should generally not be replaced. The issue of missing data is a 
two-edged sword. Authors on the subject regularly encourage researchers to simply 
delete observations if a small percentage of data is missing, but then encourage them 
to replace missing data if a much greater proportion is missing. I argue that in both 
situations it is undesirable to replace data. No matter the imputation technique, 
whenever one is replacing missing data, one is making up data, and such an act only 
serves to detract from the goal of the statistical analysis, which is not statistical per se, 
but rather scientific. From an applied point of view, one must always remember that 
the goal is scientific analysis, that of learning something about the empirical objects 
under study. The goal in science, in contrast to statistics, is never to generate 
aesthetically pleasing models. The goal is to learn something about the phenomena 
that is being modeled. 

I hold a similar philosophy with regard to the identification of outliers. Though we 
survey some of the analytical tools useful for spotting outliers, observations, no matter 
how extreme, should never be discarded scientifically even if they are put aside 
statistically for the sake of the model. Data are collected to inform us about empirical 
relationships that might exist in nature, and unless it is confirmed that an outlying 
observation is a recording error or some other mistake, such data points should never 
be ignored from the science. One can fit one’s model with, then without the outlier to 
provide a comparison, but one should never dismiss the outlier from the research 
report simply because it does not “agree” with the model. A keen recognition of the 
distinction between scientific inquiry and that of statistical modeling is paramount and 
emphasized throughout the book. Too often, students get immersed in the statistics 
and forget about the science. 

REVIEW EXERCISES AND DATA ANALYSIS 

Review exercises and data analysis are included at the end of each chapter. “Further 
Discussion and Activities” are also provided in most of the chapters to deepen one’s 
knowledge and to foster intellectual exploration of some of the chapter topics. Due 
to the disparate content of each chapter, the number of exercises is not distributed 
evenly across chapters. I have found that students learn best by being questioned 
about what they learn, and being encouraged to provide answers based on their 
current knowledge. Then, to improve on those answers the next time they are asked. 
Learning by successive approximations I believe is a powerful way to learn: learn 
the concept once, then learn it again as if you have never learned it before by 
starting at the “beginning” again and rebuilding the concept. Keep doing this 
repeatedly until there is nothing left to learn (which quite naturally, leads one into a 
lifelong pursuit of knowledge). The goal of learning in this respect should be to 



explore the concepts while never quite assuming they are yet mastered. As soon as 
one declares a concept known, one blocks oneself from learning it at a potentially 
deeper level. An awareness of what is left to learn is just as important as 
understanding what is already learned. 

It does no good for the student to learn how to perform data analysis if the student 
has not given serious thought and consideration to what he or she is computing. 
Likewise, it makes little sense for the aspiring applied social scientist to ponder 
extensively on philosophical issues without having the opportunity to apply these 
techniques using software. The two goals go hand-in-hand, and problems and 
exercises I hope reflect this symbiotic partnership. Most of the conceptually-based 
problems can also be used as additional review points to the chapter. Many of them are 
not very hard, at least at the surface level, and merely provide the student with the 
opportunity to recap material of the chapter. Most of the computational data-analytic 
problems appear toward the end of the problem sets. 

Finally, some of the problems are purposely open-ended, as to encourage the 
student to think about the issues, to talk about them, and explain them. For example, a 
question such as Discuss the nature of a p-value is meant to force the student into 
thinking hard about the concept rather than providing a “canned” answer. What is a p-
value? What is it for? Why is it used in statistical inference? How is it applicable to 
scientific practice? Let’s get talking! Such problems are meant to stimulate students 
into speaking intelligently about the concepts they are learning. As an instructor of 
quantitative methodology, I regularly ask students more questions about the concepts 
they are learning than they do in return. Helping students know which questions to 
ask is just as important as answering their questions. Data sets and solutions to select 
exercises are available at www.datapsyc.com. Updated book errata and Companion to 
the book can also be found on the site. 

A WORD TO INSTRUCTORS 

The book can be used in either a one-semester or two-semester course, depending on 
the extent of coverage and the background of incoming students. If used in a one-
semester course, approximately 16 weeks, one could conceivably cover about one 
chapter per week, perhaps excluding a chapter or two to make the course fit the length 
of the book in the given timeframe. If used in a two-semester course, more time can be 
spent on certain chapters, especially if students entering the course are initially not 
well prepared. 

The book can be used at either the advanced undergraduate or beginning graduate 
level. The book is ideally suited for such courses. For these courses, students have 
been exposed to at least one prior introductory statistics course. Though essential 
mathematics and statistics are reviewed in early chapters and in Appendix A, these are 
not meant as true “introductions” of such concepts, and are rather intended as “recaps” 
of material assumed to be seen before, at least once. It is also conceivable that the book 
be used as a true “first course” in statistics so long as the instructor is willing to 
develop the content in the first two chapters (probability and statistics) in a deeper way 
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than is currently done in the book. For this purpose, supplementary information 
outside of the book might prove useful. Under this model, an instructor might take the 
first four weeks to develop topics in these first two chapters, perhaps in conjunction 
with a more introductory text, and then delve into ANOVA, regression, and 
multivariate methods for the remainder of the course. 

SOME CONVENTIONS ON NOTATION USED IN THIS BOOK 

In this book, when we refer to a statistical model of the form yi � α � βxi � εi, we are 
implying a model for the population. We use Greek letters to denote population 
parameters, such as α for the population intercept and β for the population slope. The 
sample counterparts are a for the intercept and b for the slope. The error associated 
with yi we denote by εi in general, and for a specific error in a sample, we use subscript 
i and lowercase ei. Where it makes no difference which is used, εi is often the 
“default” choice. 

Though it is sometimes convention to capitalize variables to denote that of a 
random variable, we prefer the approach adopted by Searle, Casella, and McCul
loch (1992) in which yi is generally used to denote both a random variable and an 
“ordinary” mathematical variable. The context usually indicates which we are 
referring to, as well as at times the use of the expectation operator, E, such as  in  
E�yi�. 

Linear combinations are generally given by the notation ℓi, contrasts are denoted 
by Ci for a population contrast with Ĉi as its estimator. When linear combinations are 
introduced in the context of MANOVA, we use the notation yi � a1x1 � a2x2 � ∙ ∙ ∙  � 
anxn where yi is more consistent with that of a dependent variable than is ℓi. 

Where it is important and relevant to the problem, N is used to denote total sample 
size, whereas n is used to represent a smaller subset of the total, such as one would 
have in an independent samples t-test or similar. Since we find the notation N to be 
somewhat unattractive, we resort to n in places where there is no confusion. 

The convention on rounding is entirely pragmatic in each circumstance and hence no 
“rounding policy” was adopted throughout the text. In some situations it was convenient 
to round to one or two decimal places, for instance, while in others carrying many 
decimals (even five or six) proved more pedagogical for the given situation and/or 
computation (e.g., matching up numbers with software output). “Formalism” on 
rounding was not attempted, nor was such an approach deemed most pedagogical. 

Regarding subscripting, in general, and where it seemed most useful, variables are 
subscripted and constants are not. Subscripting every variable in every place would 
have made the text overly complicated however, and hence judgment was exercised 
regarding when and where to subscript. For instance, in some cases the notation βxi 
in regression was deemed more useful than simply βx. If referring in general to the 
predictor x, a subscript was typically not used. If implying a particular value of the 
predictor, then xi was preferred over x � xi. Again, the context of the discussion is 
what dictated the subscripting rather than an attempt to be formal and wholly 
consistent in every circumstance. 



Other conventions the reader can figure out as they read the book. Overall, the most 
convenient notation is used for the given situation, and since it is not a highly technical 
text to begin with, the reader should have no trouble in deciphering symbols. I am 
aware that half the battle in reading a new book is too often one of mastering the 
book’s notation, so I have tried my best to communicate symbols in as simple and 
consistent a manner as possible. 

FINAL THOUGHTS 

In writing this book, among the things I have learned is how exceedingly 
challenging it is to write a book of this kind. Decisions regarding what to include, 
what to emphasize, and how to even organize and structure the book I have learned 
to be very difficult ones to make, at times “paralyzing” progress on the book. 
“Breadth versus depth” decisions were equally difficult. Many of the topics 
discussed in each chapter are topics of dissertations or books in their own right. 
Entire books have been written on topics of the analysis of variance, regression, 
multivariate techniques, etc., and hence it seemed a formidable task to say the least 
to provide any reasonable coverage of these topics in the span of a single chapter. 
How on earth can a topic such as factor analysis be covered in a single chapter? In 
reality, it cannot, but I attempted it anyway, and so long as the reader recognizes that 
this text is nothing more than an introductory “overview” foot-in-the-door, she  will  
be in a position to get into the book-length treatments of such topics. A failure to 
recognize this, or a failure of instructors to communicate this to students, gives the 
illusion that after reading this book (or similar books), one now knows these topics. 
Yes, one “knows” them, but still at an introductory and very elementary level. It is 
analogous to the situation of the student sitting in on a lecture on the multivariate 
analysis of variance and then claiming that they have “learned” MANOVA. Nothing 
could be further from the truth. What they did do is receive a 3-hour lecture on it. 
Likewise, what you hold in your hands is a relatively brief introduction to select 
statistical techniques used in the social and behavioral sciences. The rest of the 
journey to becoming proficient on these topics is up to you, but it is hoped that this 
book will be remembered as your starting point. 
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PRELIMINARY CONSIDERATIONS
 

Still, social science is possible, and needs a strong empirical component. Even statistical 
technique may prove useful – from time to time. 

(Freedman, 1987, p. 125) 

Before delving into the complexities and details of the field of applied social statistics, 
we first touch on some germane philosophical issues that lay at the heart of where 
statistics fit in the bigger picture of science. Though this book is primarily about 
applied statistical modeling, the end goal is to use statistical modeling in the context of 
scientific exploration and discovery. To have an appreciation for how statistics are 
used in science, one must first have a sense of some essential foundations so that 
one can situate where statistics finds itself within the larger frame of scientific 
investigation. 

1.1 THE PHILOSOPHICAL BASES OF KNOWLEDGE: 
RATIONALISTIC VERSUS EMPIRICIST PURSUITS 

All knowledge can be said to be based on fundamental philosophical assumptions, 
and hence empirical knowledge derived from the sciences is no different. There have, 
historically, been two means by which knowledge is thought to be attained. The 
rationalist derives knowledge primarily from mental, cognitive pursuits. In this sense, 
“real objects” are those originating from the mind rather than obtained empirically. 

www.wiley.com/go/denis/appliedmultivariatestatistics
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FIGURE 1.1 Observing the behavior of a pigeon in a Skinner box (Dtarazona, 1998). 

The empiricist, on the other hand, derives knowledge from experience, that is, 
“objective” reality. To the empiricist, knowledge is in the form of tangible objects 
in the “real world.” 

Ideally, science should possess a healthy blend of both perspectives. On the one 
hand, science should, of course, be grounded in objective objects. The objects one 
studies should be independent of the psychical realm. A cup of coffee is a cup of 
coffee regardless of our belief or theory about the existence of the cup. On the other 
hand, void of any rationalist activity, science becomes the study of objects for which 
we are not allowed to assign meaning. For example, the behavior of a pigeon in a 
Skinner box1 (see Figure 1.1) can be documented as to the number of times it presses 
on the lever for the reward of a food pellet. That the pigeon presses on the lever is an 
empirical reality. Why the pigeon presses on the level is theoretical speculation, of 
which there could be many competing possibilities. Observing data is fine, but without 
theory, we have very little “guidance” to either explain current observations or predict 
new ones. B.F. Skinner’s theory of operant conditioning—that the pigeon presses the 
lever because it is reinforced to do so—is a prime example of where a wedding of 
rationalism and empiricism takes place. The theory attempts to explain or account for 
the pigeon’s behavior. It is a narrative of why the pigeon does what it does. 

Of course, theorizing can go too far, much too far. One must be cautious to not 
“overtheorize” too extensively without acknowledging the absence of empirical 
backing. Is there anything wrong with hypothesizing that cloudy days are associated 
with depressive moods? No, so long as you are prepared to provide evidence that may 

1B.F. Skinner was a psychologist known for his theory of operant conditioning within the behaviorist 
tradition in psychology. One of Skinner’s primary investigatory tools was that of observing and recording 
the conditions that would lead a rat, pigeon, or other animal to press a lever for a food pellet in a small 
chamber. This chamber came to be known as the Skinner box. For a read of Skinner, see Rutherford (2009) 
and Fancher and Rutherford (2011). 
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support or contradict your theory. If no evidence exists, you may still theorize, but you 
should then admit to your audience the lack of current empirical support for your 
hypothesis. 

As an example of recent “heighted theorizing,” recall the missing Malaysia 
Airlines Flight 370 where the Boeing 777 aircraft vanished, apparently without a 
trace, during its flight from Kuala Lumpur to Beijing in March 2014. Media were 
sometimes criticized for proposing numerous theories as to its disappearance, ranging 
from the plane being flown into a hidden location to it being hijacked or a result of 
pilot suicide. One theory even speculated that the plane was swallowed by a black 
hole! Speculation is fine and theorizing is a necessary scientific as well as human 
activity, so long as one is up front about existent available evidence to support the 
theory one is advancing. Indeed, one could assign probabilities to competing theories 
and revise such probabilities as new data become available. This is precisely what 
Bayesian philosophers and statisticians aim to do. A theory should only be considered 
credible however when empirical reality and the theory coincide (see Figure 1.2). The 
fit may not be perfect, and seldom if ever is, but when the rational coincides well with 
the empirical, credibility of the idea is tentatively assured, at least until potentially 
new evidence debunks it. 

We must also ensure that our theories are not too convenient of narratives fit to  
data. If you have ever witnessed a sporting event where the deciding point occurred by 
the lucky bounce of a puck in hockey or the breezy push of a tennis ball in midair, only 
to hear post-match commentators laud the winning team or individual as suddenly so 
much better than the losing team, then you know what I mean. We must be careful not 
to exaggerate how well our given theory fits data simply because a few data points 
went “our way.” George Box once said that all models are wrong, but some are useful. 
It is equally true that all models are wrong, but some are just silly. In any scientific 
endeavor, guard against falling in love with your theory or otherwise exaggerating it 
far beyond what the data suggest. Otherwise, it is no longer a legitimate theory, but 
rather simply your brand and more a product of subjective bias and “career-building” 
than anything scientific. Indeed, one reason I believe why economic predictions, for 
instance, are often looked upon with suspicion, is because economists, like psychol
ogists (and theoretical physicists, for that matter), are far too quick to advance theories 

FIGURE 1.2 “Model fit” as an overlap of data with theory. 
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as though they were facts. “Sexy theories” sound great and may be marketable to 
uncritical consumers and media, but to good scientists, theories are always only as 
good as the data that exist to support them. Science is exciting, to be sure, but should 
not be overly speculative. 

1.2 WHAT IS A “MODEL”? 

The word “model” is perhaps the most popular word used in textbooks, tutorials, and 
lectures having anything to do with the application of quantitative methods. Attempt
ing to define just what is a model in statistics can be a bit challenging. We discuss the 
concept by referring to Everitt’s definition: 

A description of the assumed structure of a set of observations that can range from a fairly 
imprecise verbal account to, more usually, a formalized mathematical expression of the 
process assumed to have generated the observed data. The purpose of such a description 
is to aid in understanding the data. 

(Everitt, 2002, p. 247) 

Models are, essentially, and perhaps somewhat crudely, equations. They are 
equations fit to data that attempt to account for how the data came about or were 
generated in the first place. For example, if for every hour a student studied for an 
exam corresponded to exactly a 1-point increase in a student’s grade, the model that 
would best explain how these data were generated would be a linear model. Even if 
the relationship between hours studied and student grade was not perfect, a  perfect 
line might still be the “best” summary. Models are often used to account for messy or 
imperfect data. 

Another example of a model is the classic Hebbian version of the Yerkes–Dodson 
curve expressing the relationship between performance and arousal, depicted in 
Figure 1.3. 

FIGURE 1.3 Hebbian Yerkes–Dodson performance–arousal curve (Diamond et al. 2007). 
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FIGURE 1.4 Number of o-ring incidents on boosters as a function of temperature. 

The curve is an inverted “U” shape that provides a useful model relating these two 
attributes. If one exhibits a very low degree of arousal, performance will be minimal. 
If one exhibits a very high degree of arousal, performance will likely also suffer. 
However, if one exhibits a moderate range of arousal, performance will likely be 
optimal. The model in this case, as in most cases, does not account for all the data one 
might collect. The extent to which it accounts for most of the data is the extent to 
which the model may be, in general, deemed “useful.” 

As another example of a model, consider the number of o-ring incidents on 
NASA’s space shuttle (the fleet is officially retired now) as a function of temperature 
(Figure 1.4). At very low or high temperatures, the number of incidents appears to be 
elevated. A square function seems to adequately model the relationship. Does it 
account for all points? No. But nonetheless, it provides a fairly good summary of 
the available data. Some have argued that had NASA had such a model (i.e., the 
line joining the points) available before Challenger was launched on January 28, 
1986, the launch may have been delayed and the shuttle and crew saved from 
disaster.2 We analyze these data in our chapter on logistic regression. 

Why did George Box say that all models are wrong, some are useful? The reason is 
that even if we obtain a perfectly fitting model, there is nothing to say that this is the 
only model that will account for the observed data. Some, such as Fox (1997), even 
encourage divorcing statistical modeling as accounting for deterministic processes. In 
discussing the determinants of one’s income, for instance, Fox remarks: 

I believe that a statistical model cannot, and is not literally meant to, capture the social 
process by which incomes are “determined” . . . No regression model, not even one 

2See Friendly (2000, pp. 208–211) for an analysis of the o-ring data. See Vaughan (1996) for an account of 
the social, political, and managerial influences at NASA that were also purportedly responsible for the 
disaster. 
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including a residual, can reproduce this process . . . The unfortunate tendency to reify 
statistical models – to forget that they are descriptive summaries, not literal accounts of 
social processes – can only serve to discredit quantitative data analysis in the social 
sciences. 

(p. 5) 

Indeed, psychological theory, for instance, has advanced numerous models of 
behavior just as biological theory has advanced numerous theories of human 
functioning. Two or more competing models may each explain observed data quite 
well. Sometimes, and unfortunately, the model we adopt may have more to do with 
our sociological (and even political) preferences than anything to do with whether 
one is more “correct” than the other. Science is a human activity, and often theories 
that are deemed valid or true have much to do with the spirit of the times (the so-
called Zeitgeist) and what the scientific community will actually accept and tolerate 
as being true.3 

1.3 SOCIAL SCIENCES VERSUS HARD SCIENCES 

There is often a stated distinction between the so-called “soft” sciences and the “hard” 
sciences (Meehl, 1967). The distinction, as is true in many cases of so many things, is 
fuzzy and blurry. The difference between “soft” and “hard” science has usually only to 
do with the object of study, and not with the method of analytical inquiry. 

For example, consider what distinguishes the scientist who studies temperature of a 
human organism from the scientist who studies the self-esteem of adolescents. Their 
analytical approaches, at their core, will be remarkably similar. They will both 
measure, collect data, and subject that data to curve-fitting or probabilistic analysis 
(i.e., statistical modeling). Their objects, however, are quite different. Indeed, some 
may even doubt the measurability of something called “self-esteem” in the first place. 
Is self-esteem real? Does it actually exist? At the heart of the distinction, really, is that 
of measurement. Once measurement of an object is agreed upon, the debate between 
the hard and soft sciences usually vanishes. Both scientists, natural and social, 
generally aim to do the same thing, and that is to understand and document 
phenomena and to identify relations among phenomena. As Hays (1994) put it, 
the overreaching goal of science, at its core, is to determine what goes with what. 

Social science is a courageous attempt. Hard sciences are, in many respects, much 
easier than the softer social sciences, not necessarily in their subject matter (organic 
chemistry I have heard is difficult), but rather in what they attempt to accomplish. 
Studying beats per minute in an organism is relatively easy. It is not that difficult to 
measure. Studying something called intelligence is much, much harder. Why? 
Because even arriving at a suitable and agreeable operational definition of what 

3The reader is strongly encouraged to consult Kuhn’s excellent book The Structure of Scientific Revolutions 
in which an eminent philosopher of science argues for what makes some theories more long-standing than 
others and why some theories drop out of fashion. So-called paradigm shifts are present in virtually all 
sciences. An awareness of such shifts can help one better put “theories of the day” into their proper context. 
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constitutes intelligence is difficult. Everyone agrees on what “heart rate” means. 
Fewer people agree on what intelligence really means, even if everyone can agree that 
some people have more of the mysterious quality than do others. But the study of an 
object of science should imply that we can actually measure it. Intelligence, unlike 
heart rate, is not easily measured largely because it is a construct open to much 
scientific criticism and debate. Even if we acknowledge its existence, it is a difficult 
thing to “tap into.” 

Given the difficulty in measuring social constructs,  should this then mean  the  
social scientist give up and not study the objects of his or her craft? Of course not. 
But what it does mean is that she must be extremely cautious, conservative, and 
tentative regarding conclusions drawn from empirical observations. The social 
scientist must be up front about the weaknesses of her research, and must be 
very careful not to overstate conclusions. For instance, we can measure the extent to 
which melatonin, a popular sleep aid, reduces the time to sleep onset (i.e., the time it 
takes to fall asleep). We can perform experimental trials where we give some 
subjects melatonin and others none, and record who falls to sleep faster. If we keep 
getting the same results time and time again across a variety of experimental settings, 
we begin to draw the conclusion that melatonin has a role in decreasing sleep onset. 
We may not know why this is occurring (maybe we do, but I’m pretending for the 
moment we don’t), but we can be reasonably sure the phenomenon exists, that 
“something” is happening. 

Now, contrast the melatonin example with the following question: Do people of 
greater intelligence, on average, earn more money than those of lesser intelligence? 
We could correlate a measure of intelligence to income, and in this way, we are 
proceeding in a similar empirical (even if not experimental, in this case) fashion as 
would the natural scientist. However, there is a problem. There is a big problem. Since 
only a few consistently agree on what intelligence is or how to actually measure it, or 
even whether it “exists” in the first place, we are unsure of where to even begin. Once 
we agree on what IQ is, how it is measured, and how we will identify and name it, the 
correlation between IQ and income is as reputable and respectable as the correlation 
between such variables as height and weight. It is getting to the very measurement of 
IQ that is the initial hard, and skeptics would argue, impossible part. But we know this 
already from experience. Convincing a parent that her son has an elevated heart rate is 
much easier than convincing her that her son has a deficit in IQ points. One 
phenomenon is measurable, the other, perhaps so, but not nearly as easily, or at 
minimum, agreeably. 

Our point is that once we agree on the existence, meaning, and measurement of 
objects, soft science is just as “hard” as the hard sciences. If measurement is not on 
solid ground, no analytical method of its data will save it. All students of the social 
sciences should be exposed to in-depth coursework on the theory, philosophy, and 
importance of measurement to their field before advancing to statistical applications 
on these objects, since it is in the realm of measurement where the true controversies 
of scientific “reputability” usually lay. For general readable introductions to mea
surement in psychology and the social sciences, the reader is encouraged to consult 
Cohen, Swerdlik, and Sturman (2013), Furr and Bacharach (2013), and Raykov and 
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Marcoulides (2011). For a more deeper and philosophical treatment that includes 
measurement in the physical sciences as well, refer to Kyburg (2009). McDonald 
(1999) also provides a relatively technical treatment. 

1.4 IS COMPLEXITY A GOOD DEPICTION OF REALITY? 
ARE MULTIVARIATE METHODS USEFUL? 

One of the most prominent advances in social statistics is that of structural equation 
modeling (SEM). With SEM, as we will survey in Chapter 16, one can model complex 
networks of variables, both measurable and unmeasurable. Structural equation 
modeling is indeed one of the most complex statistical methods in the toolkit of 
the social scientist. However, it is a perfectly fair and reasonable question to ask 
whether structural equation modeling has helped advance the cause of social science. 
Has it increased our knowledge of social phenomena? Advanced as the tool may be 
statistically, has the tool helped social science build a bigger and better house for itself? 

Such questions are open to debate, one that we will not have here. What needs to be 
acknowledged from the outset however is that statistical complexity has little, if 
anything, to do with scientific complexity or the guarantee of scientific advance. 
Indeed, the two may even rarely correlate. A classic scenario is that of the graduate 
student running an independent samples t-test on operationally well-defined exper
imental variables, yet feeling somewhat “guilty” that he used such a “simple” 
statistical technique. In the laboratory next door, another graduate student is using 
a complex structural equation model, struggling to make the model identifiable 
through fixing and freeing parameters at will, yet feeling as though she is more 
“sophisticated” scientifically as a result of her use of a complex statistical methodol
ogy. Hogwash! True, the SEM user may be more sophisticated statistically (i.e., SEM 
is harder to understand and implement than t-tests), but whether her empirical project 
is advancing our state of knowledge more than the experimental design of the student 
using a t-test cannot even begin to be evaluated based on the statistical methodology 
used. It must instead be based on scientific merit and the overall strength of the 
scientific claim. Which scientific contribution is more noteworthy? That is the 
essential question, not the statistical technique used. The statistics used rarely 
have anything to do with whether good science versus bad science was performed. 
Good science is good science, which at times may require statistical analysis as a tool 
for communicating its findings. 

In fact, much of the most rigorous science often requires the most simple and 
elementary of statistical tools. Students of research can often become dismayed and 
temporarily disillusioned when they learn that complex statistical methodology, 
aesthetic and pleasurable on its own that it may be (i.e., SEM models are fun to 
work with), still does not solve their problems. Research-wise, their problems are 
usually those of design, controls, and coming up with good experiments, arguments, 
and ingenious studies. Their problems are usually not statistical at all, and in this 
sense, an overemphasis on statistical complexity could actually delay their progress to 
conjuring up innovative, groundbreaking scientific ideas. 
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The cold hard facts then are that if you have poor design, weak research ideas, and 
messy measurement of questionable phenomena, your statistical model will provide 
you with anticlimactic findings, and will be nothing more than an exercise in the old 
adage “garbage in, garbage out.” Quantitative modeling, sophisticated as it has 
become, has not replaced the need for strict, rigorous experimental controls and good 
experimental design. Quantitative modeling has not made correlational research 
somehow more “on par” with the gold standard of experimental studies. Even 
with the advent of latent variable modeling strategies and methodologies such as 
confirmatory factor analysis and structural equation modeling, statistics does not 
purport to “discover” for real, hidden variables. Modeling is simply concerned with 
the partitioning of variability and the estimation of parameters. Beyond that, the 
remainder of the job of the scientist is to know his or her craft and to design 
experiments and studies that enlighten and advance our knowledge of a given field. 
When applied to sound design and thoughtful investigatory practices, statistical 
modeling does partake in this enlightenment, but it does nothing to save the scientist 
from his or her poorly planned or executed research design. Statistical modeling, 
complex and enjoyable as it may be on its own, guarantees nothing. 

1.5 CAUSALITY 

One might say that the ultimate goal of any science is to establish causal relations. 
Nothing suggests a stronger understanding of a scientific field than to be able to speak 
of causation about the phenomena it studies. However, more difficult than establish
ing causation in a given research paradigm is that of understanding what causation 
means in the first place. There exist several definitions of causality. Most definitions 
have at their core that causation is a relation between two events in which the second 
event is assumed to be a consequence, in some sense, of the first event. 

For example, if I slip on a banana peel and fall, we might hypothesize that the banana 
peel caused my fall. However, was it the banana peel that caused my fall, or was it the 
worn-out soles of my shoes that I was wearing that day that caused the fall? Had I been 
wearing mountain climbers instead of worn-out running shoes, I might not have fallen. 
Who am I to say the innocent banana peel caused my fall? Causality is hard. Even if it  
seems that A caused B, there are usually many variables associated with the problem 
such that if adjusted or tweaked may threaten the causal claim. Some would say this is 
simply a trivial philosophical problem of specifying causality and it is “obvious” from 
the situation that the banana peel caused the fall. Nonetheless, it is clear from such a 
simple example that causation is in no way an easy conclusion to draw. Perhaps this is 
also why it is extremely difficult to pinpoint true causes of virtually any social behavior. 
Hindsight is 20/20, but attributing causal attributes with any kind of methodological 
certainty in violent crimes, for instance, usually turns out to be speculative at best. True, 
we may accumulate evidence for prediction, but equating that with causation is under 
most circumstances the wish, not the reality, of a social theory. 

In our brief discussion here, we will not attempt to define causality. Books, 
dissertations, and treatises have been written exclusively on the topic. At most, what 
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we can do in the limited space we have is to simply give the following advice to the 
reader: If you are going to speak of causation with regard to your research, be 
prepared to back up your theory of causation to your audience. It is simply not 
enough to say A causes B without subjecting yourself to at least some of the 
philosophical issues that accompany such a statement. Otherwise, it is strongly 
advised that you avoid words like cause in hypothesizing or explaining results and 
findings. Relations and predictions are much epistemologically “safer” words to use. 
For a brief but enlightening discussion of causality in the social sciences, see Fox 
(1997, pp. 3–14). For a more thorough treatment of the subject as it relates to 
structural equation models, see Mulaik (2009, pp. 63–117). 

1.6 THE NATURE OF MATHEMATICS: MATHEMATICS 
AS A REPRESENTATION OF CONCEPTS 

Stewart (1995) said it best when he wrote that the mathematician is not a juggler of 
numbers, he is a juggler of concepts. The greatest ambivalence to learning statistical 
modeling experienced by students outside (and even inside, I suppose) the mathe
matical sciences is that of the presumed mathematical complexity involved in such 
pursuits. Who wants to learn a mathematically-based subject such as statistics when 
one has never been good at math? 

The first step in this pursuit is to critically examine assumptions and prior learned 
beliefs that have become implicit. One way to help “demystify” mathematics and 
statistics is to challenge your perception of what mathematics and statistics are in the 
first place. It is of great curiosity that so many students claim to dislike mathematics 
and statistics, yet at the same time cannot verbalize just what mathematics and 
statistics actually are, and then even worse, proceed to engage in real-life activities 
that utilize very much the same analytical cognitive capacities as would be demanded 
from doing mathematics and statistics! More than likely, the “dislike” of these 
subjects has more to do with the perceptions one has learned to associate with these 
subjects than with an inherent ontological disdain for them. Human beings are 
creatures of psychological association. Any dislike of anything without knowing 
what that thing is in the first place is almost akin to disliking a restaurant dish you have 
never tried. You cannot dislike something until you at least know something about it 
and open your mind to new possibilities of what it might be that you are forming 
opinions about. Not to sound overly “Jamesian,” but perhaps you are afraid of 
mathematics because of your fear of it rather than the mathematics itself. If you accept 
that you are yet unsure of what mathematics is, and will not judge it until you are 
knowledgeable of it, it may delay derogatory opinion about it. It is only when we 
assume we know something that we usually feel free to judge and evaluate it. Keep 
your perceptions open to revision, and what you may find is that what was disliked 
yesterday curiously becomes likable today, simply because you have now learned 
more about what that something actually is. But to learn more about it, you need to 
first drop, or at minimum suspend, previously held beliefs about it. 
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The first point is that statistics is not mathematics. Statistics is a discipline in 
itself that uses mathematics, the way physics uses mathematics, and the way that 
virtually all of the natural and social sciences use mathematics. Mathematics is the 
tool statisticians use to express their statistical ideas, and statistics is the tool that 
social scientists use to help make sense of their research findings. The field of 
theoretical or mathematical statistics is heavily steeped in theorem-building and 
proofs. Applied statistics, of the kind featured in this book, is definitely not. Thus, 
any fear of real mathematics can be laid to rest, because you will find no such 
mathematics in this book. 

Mathematics and statistics are not “mysterious” things that can only be grasped by 
those with higher mental faculties. A useful working definition might be that it is a set 
of well-defined and ever-expanding rules based on fundamental assumptions called 
axioms. The axioms of mathematics are typically assumed to be true without needing 
to be proved. Theorems and other results built on such axioms usually require proof. 
What is a proof? It is an analytical argument for why a proposition should be 
considered true. Any given proof usually relies on other theorems that have already 
been proven to be true. Make no mistake, mathematics is a very deep field of 
intellectual endeavor and activity. However, expecting something to be deeper than it 
is can also lead you to just as well not understand it. Sometimes, if you are not 
understanding something, it may very well be that you are looking far beyond what 
there is to be understood. If you retreat in your expectations slightly of what there is to 
see, it sometimes begins to make more sense. Thinking “too deep” where such depth 
is not required is a peril. 

For a general overview of the nature of mathematics, the reader is encouraged to 
consult Courant, Robbins, and Stewart (1996), and for an excellent introduction to 
basic mathematical analysis, Labarre (1961). Hamming (1985) is another good 
introduction to the field of mathematics, as well as Aleksandrov, Kolmogorov, 
and Lavrent’ev (1999). For more philosophical treatments, the reader should consult 
Dunham (1994) and Stewart (1995). For an in-depth and very readable history of 
mathematics, consult Boyer and Merzbach (1991). 

1.7 AS A SOCIAL SCIENTIST, HOW MUCH MATHEMATICS 
DO YOU NEED TO KNOW? 

The answer to this question is, of course, as much as possible, for working through 
mathematical problems of any kind can only serve to hone your analytical and 
deductive abilities. However, that answer is, of course, a naïve if not idealistic one, 
since there is only so much time available for study and the study of mathematics and 
statistics must be balanced by your own study of your chosen field. 

For example, if the biology student became immersed in mathematics and statistics 
full-time, then that student would no longer be a student of biology. It can be 
exceedingly difficult to apply a statistical technique, and interpret the results of such a 
technique in a field for which you are not familiar. If you are unaware of the 
substantive objects you are working with, that is, the “stuff” on which the statistics are 
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being applied, then regardless of your quantitative expertise, you will have difficulty 
interpreting results. Likewise, if spending too much time computing higher-order 
derivatives, the student of animal learning, for instance, will have little time remaining 
to study the learning patterns of the rats he is conditioning, or to speculate on 
theoretical advancements in his field. Hence, a “happy medium” is required that will 
balance your study of your substantive area along with the technical quantitative 
demands of your field of study. Indeed, even for those who specialize exclusively in 
statistics, the American Statistical Association strongly advises aspiring statisticians 
to choose a field of application. As a researcher, you will be expected to apply 
modeling techniques that are quite advanced (entire courses are devoted to the 
statistical technique you may be applying), and so you will face the opposite problem, 
that of choosing to specialize in statistics (to some extent) so that you may better 
understand the phenomena of your own science. Hence, regardless of whether one is 
coming from a mathematics or science background, one should aspire for a healthy 
mix of scientific and statistical expertise. 

1.8 STATISTICS AND RELATIVITY 

Statistical thinking is all about relativity. Statistics are not about numbers, they are 
about distributions of numbers (Green, 2000, personal communication). Rarely in 
statistics, or science for that matter, do we evaluate things in a vacuum. 

Consider a very easy example. You board an airplane destined to your favorite 
vacation spot. How talented is the pilot who is flying your airplane? Is he a “good” 
pilot or a “bad” pilot? One would hope he is “good enough” to fulfill his duties and 
ensure your and other passengers’ safety. However, when you start thinking like a 
statistician, you may ponder how good a pilot he is relative to other pilots. Where on 
the curve does your pilot fall? In terms of his or her skill, the pilot of an airplane can be 
absolutely good, but still relatively poor. Perhaps that pilot falls on the lower end of 
the talent curve for pilots. The pilot is still very capable of flying the plane, for he or 
she has passed an absolute standard, but he or she is just not quite as good as most 
other pilots (see Figure 1.5). 

We can come up with a lot of other examples to illustrate the absolute versus 
relative distinction. If someone asked you whether you are intelligent, ego aside, and 
as statistician, you may respond “relative to who?” Indeed, with a construct like IQ, 
relativity is all we really have. What does absolute intelligence look like? Should our 
species discover aliens on another planet one day, we may need to revise our 
definition of intelligence if such are much more (or much less) advanced than we 
are. Though of course this would assume we have the intelligence to comprehend that 
their capacities are more than ours, a fact not guaranteed and hence another example 
of the trap of relativity. 

Relativity is a benchmark used to evaluate much phenomena, from intelligence to 
scholastic achievement, to prevalence of depression, and indeed much of human and 
nonhuman behavior. Understanding that events witnessed could be theorized to have 
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FIGURE 1.5 The “pilot criterion” must be met for any pilot to be permitted to fly your plane. 
However, of those skilled enough to fly, your pilot may still lay at the lower end of the curve. 
That is, your pilot may be absolutely good, but relatively poor in terms of skill. 

come from known distributions (like the talent distribution of pilots) is a first step to 
thinking statistically. Most phenomena have distributions, either known or unknown. 
Statistics, in large part, is a study of such distributions. 

1.9 EXPERIMENTAL VERSUS STATISTICAL CONTROL 

Perhaps most pervasive in the social science literature is the implicit belief held by 
many that methods such as regression and analysis of covariance allow one to 
“control” variables that would otherwise not be controllable in the nonexperimental 
design. As emphasized throughout this book, statistical methods, whatever the kind, 
do not provide methods of controlling variables, or “holding variables constant” as it 
were. Not in the real way. To get these kinds of effects, you need a strong and rigorous 
bullet-proof experimental design. 

It is true however that statistical methods do afford a method, in some sense, for 
presuming (or guessing) what might have been had controls been put into place. For 
instance, if we analyze the correlation between weight and height, it may make sense 
to hold a factor such as age “constant.” That is, we may wish to partial out age. 
However, partialling out the variability due to age in the bivariate correlation is not 
equivalent to actually controlling for age. The truth of the matter is that our statistical 
control tells us nothing about what would actually be had we been able to truly control 
age, or any other factor. As will be elaborated in Chapter 9 on multiple regression, 
statistical control is not a sufficient “proxy” whatsoever for experimental control. 
Students and researchers must keep this distinction in mind before they throw 
variables into a statistical model and employ words like “control” (or other power 
and action words) when interpreting effects. If you want to truly control variables, to 
actually hold them constant, you will have to do experiments. 
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1.10 STATISTICAL VERSUS PHYSICAL EFFECTS 

In the establishment of evidence, either experimental or nonexperimental, it is helpful 
to consider the distinction between statistical versus physical effects. To illustrate, 
consider a medical scientist who wishes to test the hypothesis that the more 
medication applied to a wound, the faster the wound heals. The statistical question 
of interest is “Does the amount of medication predict the rate at which a wound 
heals?” A useful statistical model would be a linear regression where amount of 
medication is the predictor and rate of healing is the response. Of course, one does not 
need a regression analysis to “know” whether something is occurring. The investi
gator can simply observe whether the wound heals or not, and whether applying more 
or less medication speeds up or slows down the healing process. The statistical tool in 
this case is simply used to model the relationship, not determine whether or not it 
exists. The variable in question is a physical, biological, “real” phenomenon. It exists 
independent of the statistical model, simply because we can see it. 

In some areas of social science, however, the very observance of an effect cannot 
be realized without recourse to the statistics used to model the relationship. For 
instance, if I correlate self-esteem to intelligence, am I modeling a relationship that I 
know exists separate from the statistical model, or, is the statistical model the only 
recourse I have to say that the relationship exists in the first place? Because of 
mediating and moderating relationships in social statistics, an additional variable or 
two could drastically modify existing coefficients in a model to the point where 
predictors that had an effect before such inclusion no longer do after. As we will 
emphasize in our chapters on regression: 

When you change the model, you change parameter estimates, you change effects. You are 
never, ever, testing individual effects in the model. You are always testing the model, and 
hence the interpretation of parameter estimates must be within the context of the model. 

This is one of the general problems of purely correlational research with nonphysical 
or “nonorganic” variables. It may be more an exercise in variance partitioning than it is 
in analyzing “true” effects, since the effects in question may be simply statistical 
artifacts. They may have little other bases. Granted, even working with physical or 
biological variables this can be a problem, but it does not rear its head nearly as much. 
To reiterate, when we model a physical relationship, we have recourse to that physical 
relationship independent of the statistical model, because we have evidence that the 
physical relationship exists independent of the model. If we lost our modeling software, 
we could still “see” the phenomenon. In many models of social phenomena, however, 
the addition of one or two covariates in the model can make the relationship of most 
interest “disappear” and because of the nature of measured variables, we may no longer 
have physical recourse to justify the original relationship at all, external to the statistical 
model. This is why social models can be very “neurotic,” frustrating, and context 
dependent. Self-esteem may predict achievement in one model, but in another, it does 
not. Many areas of psychological and political research, for instance, implicitly operate 
on such grounds. The existence of phenomena is literally “built” on the existence of the 
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statistical model and often do not exist separate from it, or at least not in an easily 
observed manner such as the healing of a wound. Social scientists working in such 
areas, if nothing else, must be aware of this. 

1.11 UNDERSTANDING WHAT “APPLIED STATISTICS” MEANS 

In the present age of extraordinary computing power, the likes of which will probably 
seem laughable even after a decade of publication of this book, with a few clicks of the 
mouse and a software manual, one can obtain a principal components analysis, factor 
analysis, discriminant analysis, multiple regression, and a host of other relatively 
theoretically advanced statistical techniques in a matter of seconds. The advance of 
computers and especially easy-to-use software programs has made performing 
statistical analyses seemingly quite easy because even a novice can obtain output 
from a statistical procedure relatively quickly. One consequence of this, however, is 
that there seems to have arisen a misunderstanding in some circles that “applied 
statistics” somehow equates with the idea of “statistics without mathematics” or even 
worse, “statistics via software.” 

The word “applied” in applied statistics should not be understood to necessarily 
imply the use of computers. What “applied” should mean is that the focus of the 
writing is on how to use statistics in the context of scientific investigation, often times 
with demonstrations with real or hypothetical data. Whether that data are analyzed 
“by hand” or through the use of software does not make one approach more applied 
than the other. What it does make it is more computational compared to the by-hand 
approach. Indeed, there is a whole field of study known as computational statistics 
that features a variety of software approaches to data analysis. For examples, see 
Dalgaard (2008), Venables and Ripley (2002), and Friendly (1991, 2000), the latter of 
these for an emphasis on data visualization. Fox (2002) also provides good coverage 
of functions in S-Plus and R. 

On the opposite end of the spectrum, if a course in statistics is advertised as not 
being applied, then most often it implies that the course is more theoretical or 
mathematical in nature with a focus on proof and the justification of results. In 
essence, what this really means is that the course is usually more abstract than what 
would be expected in an applied course. In such theoretical courses, very seldom will 
one see applications to real data, and instead the course will include proofs of essential 
statistical theorems and the justification of analytical propositions. Hence, this is the 
true distinction between applied versus theoretical courses. The computer has really 
nothing to do with the distinction other than facilitating computation in either field. 

REVIEW EXERCISES 

1.1.	 Distinguish between rationalism versus empiricism in accounting for different 
types of knowledge, and why being a rationalist or empiricist exclusively is 
usually quite unreasonable and unrealistic. 



16 PRELIMINARY CONSIDERATIONS 

1.2.	 Briefly discuss what is meant by a model in scientific research. 

1.3.	 Compare and contrast the social versus “hard” sciences. How are they similar? 
Different? In this context, discuss the statement “Social science is a courageous 
attempt.” 

1.4.	 Compare and contrast a physical quantity such as weight with a psychological 
one such as intelligence. How is one more “real” than the other? Can they be 
considered to be equally real? Why or why not? 

1.5.	 Why would some people say that an attribute such as intelligence is not 
measurable? 

1.6.	 Discuss George Box’s infamous statement “All models are wrong, some are 
useful.” 

1.7.	 Consider an example from your own area of research in which two competing 
explanations, one simple and one complex, may equally well account for 
observed data. Then, discuss why the simpler explanation may be preferable to 
the more complex. Are there instances where the more complex explanation 
may be preferable to the simpler? Discuss. 

1.8.	 Briefly discuss why using statistical methods to make causal statements about 
phenomena may be unrealistic and in most cases unattainable. Should the word 
“cause” be used at all in reference to nonexperimental social research? 

1.9.	 Discuss why it is important to suspend one’s beliefs about a subject such as 
applied statistics or mathematics in order to potentially learn more about it. 

1.10.	 Statistical thinking is about relativity. Discuss what this statement means with 
reference to the pilot example, then by making up an example of your own. 

1.11.	 Distinguish between experimental versus statistical control, and why under
standing the distinction between them is important when interpreting a 
statistical model. 

1.12.	 Distinguish between statistical versus physical effects and how the effect of a 
medication treating a wound might be considered different in nature from the 
correlation between intelligence and self-esteem. 

1.13.	 Distinguish between the domains of applied versus theoretical statistics. 

Further Discussion and Activities 

1.14	 William of Ockham (c. 1287–1347) is known for his infamous principle 
Ockham’s razor, which essentially states that all things equal, given competing 
theories accounting for the same data, the simpler theory is the better theory. In 
other words, complex explanations for phenomena that could be explained by 
simpler means are not encouraged. Read Kelly (2007) and evaluate the utility 
of Ockham’s razor as it applies to statistical modeling. Do you agree that the 
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simpler statistical model is usually preferred over the more complex when it 
comes to modeling social phenomena? Why or why not? 

1.15.	 Read Kuhn (2012) and discuss what he means by normal science and what 
constitutes paradigm shifts in science. 

1.16.	 As briefly discussed in this chapter, statistical control is not the same thing as 
experimental control or that of a control group. Read Dehue (2005) and 
provide a brief commentary on what constitutes a real control group versus the 
concept of statistical controls. 

1.17.	 In the chapter, potential problems have been briefly discussed regarding using 
the word cause or speaking of causality when describing findings in the social 
and (often) natural sciences. The topic of causality is a philosopher’s career and 
a scientist’s methodological nightmare. Like so many other disciplines, 
epidemiology, the study of diseases in human and other populations, has 
had to grapple with the issue of causation. For example, if one is to make the 
statement smoking causes cancer, one must be able to defend one’s philo
sophical position in advancing such a claim. Not everyone who smokes gets 
cancer. Furthermore, some who smoke the most never get the disease, whereas 
some who smoke the least do. Tobacco companies have historically relied on 
the fact that not everyone who smokes gets cancer as a means for challenging 
the smoking–cancer “link.” As an introduction to these issues, as well as a brief 
history of causal interpretations, read Morabia (2005). Summarize the histori
cal interpretations of causality, as well as how epidemiology has generally 
dealt with the problem of causation. 

1.18.	 Models are used across the sciences to help account for empirical observations. 
How to best relate mathematical models to reality is not at all straightforward. 
Read Hennig (2009) and discuss his account of the relation between reality and 
mathematical models. Do you agree with this account? What might be some 
problems with it? 
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MATHEMATICS AND PROBABILITY 
THEORY 

How can it be that mathematics, being after all a product of human thought which is 
independent of experience, is so admirably appropriate to the objects of reality? . . . As 
far as the laws of mathematics refer to reality, they are not certain, and as far as they are 
certain, they do not refer to reality. 

(Einstein, 1922) 

In this chapter, we review some of the essential elements of mathematics and 
probability theory that the reader may have learned in prior courses, or at minimum, 
has had some exposure through self-study. We reserve Chapter 3 for a review of the 
elements of essential statistics that is generally required for an understanding of the 
rest of the book. Our distinction between mathematics and probability versus 
statistics is not a sharp one. In this chapter, we use mathematics as a vehicle to 
understanding applied statistics rather than see it as a field in its own right, which, of 
course it is, with a variety of branches and subdisciplines. 

Our brief mathematics review draws material sparingly from introductory courses 
such as precalculus, calculus, linear and matrix algebra, and probability. Such topics 
constitute the very bedrock of mathematics used in applied statistics. Elements such as 
functions, continuity, limits, differential and integral calculus and others are (very) 
briefly reviewed. We also present some of these fundamentals using R where 
appropriate. For an excellent review of essential mathematics for the social sciences, 
refer to Gill (2006). Barnett, Ziegler, and Byleen (2011) also provide a very readable 

www.wiley.com/go/denis/appliedmultivariatestatistics


19 MATHEMATICS AND PROBABILITY THEORY 

overview of mathematics covering a wide range of topics. Fox (2008a) is also a useful 
monograph. Refer to Gemignani (1998) for how calculus is used in statistics. 

We do not pretend to cover any of these topics in any respectable depth 
whatsoever, having only the space to provide brief and relatively informal over
views of these essential concepts. If you lack familiarity with such fundamentals, a 
bit of time taken to study and appreciate these elements can be of great help in 
understanding material covered in this book and beyond. This is not to say that 
without this knowledge you cannot learn and apply principles presented in the book, 
but the deeper your knowledge of these concepts, the more confident you will likely 
be in applying your skills to data analysis because you will be better familiar with the 
“rules of the game.” 

For instance, informally, the definition of continuity is that of not lifting your pencil 
as you draw a line on a piece of paper. The line is said to be “continuous” since at no 
point did you impose a discontinuity by lifting your pencil. And if it were not for 
mathematicians’ quest to provide a rigorous logical justification for the calculus in the 
1800s, thereby formalizing such things as continuity and limits, “naïve” definitions 
such as that for continuity would still do us just fine. However, as a result of the 
advance in fields such as real analysis, complexity and rigor have been introduced in 
order to make these definitions extremely precise. Having even some appreciation and 
understanding of this level of precision and rigor can only benefit the student of 
applied statistics and social science if for no other reason than to sharpen one’s 
analytical skill and ability to differentiate and decipher among objects one deals 
with—a skill that is required of anyone who purports to do any kind of quantitative 
analysis or research, either elementary or advanced. 

Furthermore, having an understanding of essential mathematics also serves to 
“demystify” what can otherwise seem like a quite arcane field of study. Perhaps this 
sentiment was best expressed by Mulaik (1972) when advising the reader on the 
mathematical training required to study a topic such as factor analysis: 

Ideally, one begins a study of factor analysis with a mathematical background of up to a 
year of calculus. This is not to say that factor analysis requires an extensive knowledge of 
calculus, because calculus is used in only a few instances, such as in finding values of an 
independent variable which will maximize or minimize a dependent variable. But having 
calculus in one’s background provides sufficient exposure to working with mathematical 
concepts so that one will have overcome reacting to a mathematical subject such as factor 
analysis as though it were an esoteric subject comprehensible only to select initiates to its 
mysteries. (p. 16) 

With Mulaik’s thoughts in mind, I strongly encourage you to embrace as much 
technical information as possible, even for its own sake, and even if you may be 
currently unaware of the answer to the longstanding question students love to ask— 
When will I use this? If you learn to embrace rather than shy away from difficult, 
technically rich material replete with symbols, it puts you on course to being able to 
understand and comprehend virtually anything that is put in your path in terms of 
complexity. On the other hand, if you regularly shy away from complexity, you 
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forever weaken your neuronal ability to disentangle and otherwise figure out things. 
Our general advice is that if you want to make the difficult simple to understand, study 
the difficult until it is simple. 

2.1 SET THEORY 

A set in mathematics is simply a group of objects or elements. What is key to the 
definition of a set is that it is sufficiently descriptive and identifiable such that we can 
know which objects belong to the given set and which do not. For example, the set of 
persons of at least 5 ft, 10 in. in a room is a precisely defined group of persons. 
Consequently, given this precision of the elements in question, we are in a position to 
know who belongs to the set and who does not. Anyone whose height is 5 ft 10 in. or 
more is a member of the set. Anyone who is less than that height does not belong to 
this set. The concept of a set is fundamental to mathematics, for one, because it helps 
immensely to organize the subject, and second, it provides a language for relating 
mathematical fields. It has been said that sets are so fundamental to mathematics that 
the theory of sets forms the foundation of all of mathematics. 

To communicate that x is in the set A, we write that x is an element (or a member) of 
set A: 

x ∈ A 

where the notation “∈” means “is an element of.” To denote that y is not an element 
of the set A, we write (see Venn diagram in Figure 2.1): 

y ∉ A 

To denote that set A is a subset of set B, we write 

A ⊆ B or B � A 

What does it mean to say A is a subset of B? It means that the set A is, informally, 
smaller than or equal to the set B. That is, if A is a subset of B, it implies that elements 
in A are also contained in B but that elements in B are not necessarily contained in A. 
Note that there are two possibilities here, and “⊆” can logically be used to qualify 

FIGURE 2.1 X is an element of the set A. Y is not an element of set A. 
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FIGURE 2.2 Set A is a proper subset of set B. 

both, “smaller than” or “equal to”. However, if we know definitively that there is at 
least one element in set B that is not in set A, then we say that A is a proper subset of B, 
and write 

A � B 

An example of a proper subset, A � B, is given in Figure 2.2. 
When you hear the phrase “proper subset,” just think to yourself that this implies a 

“true” subset, meaning there is no possibility of the two sets being equal. If we say set 
A is a proper subset of set B, then A cannot equal B; set A must actually be less than B 
such that the elements in A are also in set B but that there is at least one element in B 
that is not contained in A. 

The equality of two sets is written as A � B. To show that two sets are equal, one 
must be able to show that A is a subset of B and B is a subset of A. 

Thinking up applied examples for sets is not difficult. For instance, consider the set 
A of numbers 1 through 6 on a die. The set E of even numbers plus the set O of odd 
numbers between 1 through 6 can be considered a subset of this set, that is, 
E � O ⊆ A, whereas the set of only odd numbers O would be considered a proper 
subset of the set A. That is, O � A. To demonstrate equality between these sets, it 
would be a simple matter to show that E � O ⊆ A and A ⊆ E � O. Other simple 
examples of sets in a research setting are as follows: 

•	 The set of those suffering from schizophrenia is a proper subset of the collection 
of human beings. 

•	 The set of those gainfully employed is a proper subset of those desiring a job. 

•	 The set of students passing a course is a subset of students enrolled in that 
course. 

Note that for the first two examples, the phrase proper subset was used to denote 
the fact that those suffering from schizophrenia and employed individuals are surely 
less than the sets of human beings and those seeking work. However, in the third 
example, since it is a sure possibility that everyone in a given course passes the course, 
we do not automatically assume this set to be smaller than the set of students enrolled 
in the course, which is why we used the word “subset” here instead of the identifier 
“proper subset.” If we knew, on the other hand, that at least one student in the class 
failed the course, then the set of students passing the course would be a proper subset. 

A countable set is one in which elements of the set can be put into one-to-one 
correspondence with the positive integers. A finite set is one that has a noninfinite 
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FIGURE 2.3 A union B is the set of elements in A or B or both, denoted by the totality of the 
shaded area. 

number of elements. See Gill (2006) for examples along with further characteristics of 
sets. 

2.1.1 Operations on Sets 

We can define various operations on sets. For instance, the union of two sets A and B is 
given by 

A∪B ≔ fx : x ∈ A or x ∈ Bg 

where in words, the above statement reads “x is an element of A or x is an element of 
B.” For example, if set A is the set of unemployed and set B is the set of students 
passing a course, the union of these sets, A∪B, is the set of unemployed or those 
passing a course, or those belonging to both sets. See Figure 2.3 for an example of a 
union of two sets. 

We can perform simple set operations using R. For example, consider sets A and B, 
and the computation of their union: 

> setA <- c("3", "4", "5", "6") 
> setB <- c("5", "6", "7", "8") 
> union(setA, setB) 

[1] "3" "4" "5" "6" "7" "8" 

The intersection of sets A and B is denoted as 

A∩B ≔ fx : x ∈ A and x ∈ Bg 

and is the set of elements in both sets A and B. That is, for an element to belong in the 
intersection, it cannot simply be in one of the sets. It must be in both to qualify for the 
intersection. An example of two intersecting sets is given in Figure 2.4. 

FIGURE 2.4 The shaded area represents the intersection of sets A and B. 
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In R, we can easily find the intersection of sets A and B: 

> intersect(setA, setB) 
[1] "5" "6" 

A practical example of intersecting sets might be the set of college students who are 
also enrolled in a statistics course. Another example is the set of men who are also 
married. 

2.1.2 Denoting Unions and Intersections of Many Sets 

We have thus far expressed the union and intersection of a very small number of sets 
(only two sets). We can, however, represent the union and intersection for any number 
of sets, even if infinite in number. For unions, we can represent this by 

An 

The above is the set of elements belonging to at least one of the sets A1; A2; . . . ; An. 
We use the qualifier “at least one” because we are dealing with the union of sets, 
meaning that the element in question can be in one set, or another set, or another set, 
etc. The expression reads to start with set n � 1 of  An and to sum to 1. An example of 

3 
a union of three sets is given in Figure 2.5, An, where A1 = A, A2 = B, A3 = C. 

Analogously, we can represent intersections by 

An 

Figure 2.6 is the set of elements belonging to the intersection of the sets A1; A2; . . .An 

(where A1 � A; A2 � B; A3 � C). Notice the difference between the qualifier “or” 
versus “and,” when discussing unions versus intersections. When we use the word 
“and,” as we will soon see, we are specifying a joint probability in probability theory. 

1 

n�1 

n�1 

1 

n�1 

FIGURE 2.5 Union of sets A, B, C, denoted by shaded area. 
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FIGURE 2.6 Shaded area is the intersection of sets A, B, C. 

2.1.3 Complement of a Set 

The complement of set B relative to set A can be denoted as 

A\B ≔ fx : x ∈ A and x ∉ Bg 

In words, this means all the elements in set A that are not in set B. For example, if we 
defined a set of employed and unemployed individuals, with no other possibilities, 
then the complement of the set of employed individuals is the set of unemployed 
persons. If we had defined the full set to include such circumstances as individuals 
looking for work but unable to find a job, then the complement of the employed 
individuals would still be “all others,” only that now, all others would be defined as 
the unemployed and those actively seeking work. 

Substantively, in research, complements are useful especially computationally 
when we want to specify an “else” category on such things as questionnaires and other 
measures. For instance, the complement of all those individuals earning up to $60,000 
per year are those individuals earning more than $60,000 per year. The complement to 
individuals suffering from a psychiatric diagnosis are those individuals not suffering 
from a psychiatric diagnosis. 

2.2 CARTESIAN PRODUCT A × B 

The Cartesian product A � B is defined as 

A � B ≔ f�a; b� : a ∈ A; b ∈ Bg 

and is the set comprising of ordered paired elements in A and B, such that each element 
in A has a pairing with another element in B. The Cartesian product, or more generally 
the Cartesian coordinate system, originated with René Descartes (1596–1650) and 
forever linked algebra to geometry, and gave birth to the field of analytic geometry. 
The Cartesian coordinate system was a major stepping stone in the history of 
mathematics and science in general. An example of a Cartesian coordinate system 
in two dimensions is given in Figure 2.7. 

When one takes a number from the first set and pairs it with a number from 
the second set, one obtains a new number. For example, if we take the number 3 from 
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FIGURE 2.7 Two-dimensional Cartesian plane. 

set A (along the abscissa) and number 4 from set B (along the ordinate), we obtain the 
new number (3,4). We can extend coordinate systems to many more dimensions than 
simply 2, and mathematically, there is no limit on how many dimensions we may 
have. Indeed, when considering some of the multivariate techniques in this book, we 
will regularly work in three and higher dimensions. 

A mathematical relation is a subset of the Cartesian product. By deleting a few 
points in the Cartesian product, we can appreciate the nature of a mathematical 
relation (Figure 2.8). 

FIGURE 2.8 Mathematical relation as a subset of the Cartesian product. 
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FIGURE 2.9 Galton visually spotted the ellipse that motivated the theory of correlation. 
That is, Galton detected a subset of the Cartesian product (Galton, 1886). 

For the purpose of demonstration, we deleted a few points to reveal a meaningful 
(in this case, somewhat linear) relation between the two sets. Any subset of the 
Cartesian product is considered a relation between sets. Some relations, of course, are 
of more interest to us than others, and will be more substantively meaningful to us as 
scientists. The whole basis of correlational theory rests on the idea of a mathematical 
relation. Indeed, it was Francis Galton who visually spotted the ellipse in such a subset 
of the Cartesian product depicted in Figure 2.9 (to be discussed further in Chapter 8 on 
regression). 

In Galton’s plot, we can see that not all pairings of mid-parent height and child 
height are represented. The ellipse represents the general area where most of the data 
lay. Galton’s contribution was in visually spotting a subset of the Cartesian product in 
the form of a linear relation between parent and offspring height. Tall parents tended 
to have taller children, whereas shorter parents tended to have shorter children. 

2.3 SETS OF NUMBERS 

As discussed, sets are useful for classifying objects. If those objects are numbers, then 
we can use the theory of sets to generate groupings of the various kinds of numbers 
encountered in mathematics. 
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The set of natural numbers, often called counting numbers, is given by 
N ≔ f1; 2; 3; . . .g. Natural numbers are defined by the set as 1, 2, 3, etc. The set 
of natural numbers are numbers beginning with the number 1 and extending to 
infinity. It can be shown that the number of counting numbers has no upper limit, 
meaning that there are an infinite number of natural numbers. Natural numbers are the 
ones first learned in school to count such things as the number of apples on the table or 
the number of hours in a day, or the number of beads on an abacus. 

The set of integers is given by Z ≔ f0; 1; �1; 2; �2; 3; . . .g. Notice that the set of 
natural numbers N is a proper subset of the set of integers. Integers are more difficult 
to grasp than natural numbers since the possibility of negative numbers exists, which 
historically, was actually quite a significant transition in mathematics. But anyone 
who has purchased a home mortgage, financed a vehicle, or played Vegas (in the long 
run at least) likely has an intuitive (if not painful) grasp of the concept of a negative 
number. 

The set of rational numbers is given by Q ≔ fm=n : m; n ∈ Z; n ≠ 0g, where m=n 
represents a ratio of two integers. The fact that they must be integers is denoted by 
m; n ∈ Z. The condition that the denominator cannot equal 0 is imposed (i.e., n ≠ 0) 
to avoid dividing by 0, which would make the ratio undefined. A rational number is a 
number that can be expressed by a ratio of two integers such that the quotient has 
a terminating (finite) or repeating decimal (recurring expansion). If you can write a 
number as this ratio m=n, then you have a rational number. For example, 4 is a rational 
number because we can write it as a ratio of 8/2. The number 10 is another example of 
a rational number because we can write it as a ratio of 20/2 or 100/10, for example. 

If m=n does not result in a number that has a terminating or recurring decimal, then 
such a number is an irrational number. The classic example of an irrational number is p
2, which, try as we may (and the Greeks tried aplenty!), cannot be expressed as a p

ratio of two integers. For a proof that 2 is irrational, see any of the many texts in 
introductory real analysis (e.g., Bartle and Sherbert, 2011). The union of rational 
numbers and irrational numbers is known as the set of real numbers, denoted R . We  
will deal exclusively with real numbers in this book. 

If you do have an interest in learning more about numbers in general and if 
questions such as the number of prime numbers that actually exist excite you, you may 
find the field of number theory to your liking.1 

2.4 SET THEORY INTO PRACTICE: SAMPLES, POPULATIONS, 
AND PROBABILITY 

As discussed, set theory is a field of mathematics unto itself. Set theorists are pure 
mathematicians who daily study and derive theorems and proofs related to sets, and 
have little concern in needing to define what the objects in those sets might actually 
be in a practical sense. That is, the sets need not be empirical for them to be 

1A classic introduction to number theory is Hardy et al. (2008). 
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mathematically “real.” As researchers and scientists however, our study of sets is not 
motivated by abstraction. Our study of sets is motivated by how we might use sets to 
group real, empirical objects. From a statistical point of view, there is no better 
example for making the leap from theoretical sets to real sets than through the 
concepts of samples and populations. 

A population is defined as the set of objects or elements (whether they be people, 
animals, coin flips, etc.) we are interested in studying. This is the group of objects we 
wish to know something about. In an ideal circumstance, being able to study all the 
elements of a population we are interested in would be best. That way, we could make 
conclusions about the actual population and we would not need to estimate or infer 
using inferential statistics. 

However, our populations are usually quite large, and collecting observations is 
usually a timely and expensive endeavor. For these reasons and others, we regularly 
collect samples, which in set language, are simply proper subsets of the wider 
population. The scientist studies the sample extensively, computing a number of 
useful numerical characteristics or functions on such samples, called statistics, and  
then uses such functions as estimators of population characteristics. The process is 
one of induction and inference of the sort—if this is true of my sample, then to what 
extent can I say it is true of the population from which these data were presumably 
drawn? The purpose of inferential statistics is to be able to generalize from the 
specific to the whole, and to be able to quantify how good, in some sense,  that  
generalization is. 

2.5 PROBABILITY 

Probability is the mathematical language of uncertainty. Before reviewing the 
essentials of probability, it is well worth asking why we even require probability 
in the first place. We require probability because even if we believe the world is 
fundamentally deterministic (a viewpoint which in itself can be quite controversial), 
our knowledge of events that occur in the world is definitely not. Our knowledge of 
most events is incomplete and uncertain. We can predict events, yes, but our 
predictions are far from perfect. If there were no uncertainty in the world, we would 
have little need for probability, and by consequence, much of statistical inference 
would not be required either. 

Probability is intrinsically difficult to define and is a very deep philosophical 
concern for which there is plenty of disagreement among philosophers and other 
thinkers. These issues are far beyond the scope of this book. For historical and 
philosophical accounts, the reader is strongly advised to consult Hacking (1990). 
Intuitively however, we all know what probability means. When we make statements 
such as “Looks like it will probably rain today,” we simply mean that we think it is 
more likely to rain than not. Hence, probability is a statement of likelihood of an event 
occurring. How that likelihood is actually operationalized and quantified is the more 
difficult part. 
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2.5.1 The Mathematical Theory of Probability 

We have defined probability as the mathematical language of uncertainty. However, 
we have not yet decided how we will think about probabilities, nor how we will assign 
probabilities to events. For instance, if I asked you what the probability of rain is 
today, you might give me a number between 0 and 1. Perhaps you believe the 
probability of rain today is 0.70. Was your quantification of it correct? How would we 
know? How did you obtain the number you got? What was your reasoning in 
estimating the probability of rain to be 0.70? 

The way to correctly quantify and conceptualize probability is a debate that has 
existed since the origins of counting and even primitive estimation. That you can give 
me a number that I can call a probability in no way immediately suggests that the 
quantification was correct, reasonable, or in the slightest way meaningful. After all, 
probability is, mathematically, just a proportion between 0 and 1 (as we will see when 
we discuss Kolmogorov’s axioms). The numbers do not care where they came from, 
but we, usually do. Analogously, statistical software cares little about where the 
numbers came from either, but as scientists, it is virtually all that matters. 

2.5.2 Events 

Defining an “event” in probability theory is not as easy as it first sounds. To know 
what an event is, and how it is used, it is first useful to define what it is not. An event is 
not something that happens. It is not a flip of a coin, it is not getting heads or tails on 
that coin. An event is a possible outcome (subset) in a sample space. For instance, 
heads and tails are events only if they are possible outcomes (see Figure 2.10) of the 
experiment or trial. 

After you flip the coin, and get tails, we usually call this the realized event or 
simply, realization. When we typically speak of events, we associate with each event 
a sample point, which is simply a point that represents the event (see Figure 2.10). 

Elementary events are those that cannot be decomposed into smaller events. It is a 
singleton of a sample space. For example, “head” on a coin is an elementary event 
because it cannot be decomposed into simpler, smaller events. However, suit of card 
is not an elementary event, because it can be decomposed into smaller events (e.g., 
nine of spades). The sample space for an experiment in probability is the set of all 
possible elementary events defined on that space. 

If the event can be decomposed into smaller events, then the event in question is 
called a compound event. Such an event consists of multiple, simpler events. 

FIGURE 2.10 Sample space for a coin, where H and T are events (possible outcomes in the 
sample space). Associated with each event is a sample point. 
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In probability theory, we often speak of experiments. They are also called trials, 
and are in no way equivalent to laboratory experiments in the way that we manipulate 
levels of an independent variable and observe a response on a dependent variable. 
Examples of experiments in probability theory include the flipping of a coin, a client 
entering your office, a rat pressing a lever for food, or a bolt of lightning striking a tree. 
All of these, in a general sense, can be regarded as experiments as they are related to 
the theory of probability. Fundamentally, they are all repeatable and hence, at least 
theoretically, we can assign probabilities to their outcomes. 

2.5.3 The Axioms of Probability: And Some of Their Offspring 

We now survey the mathematical theory of probability by first noting the axioms of 
probability as developed largely by Andrei Kolmogorov, a Russian mathematician 
who lived from 1903 to 1987 and who made several contributions to both mathe
matics and statistics. Kolmogorov suggested the following axioms: 

•	 The probability of an event in a given set is greater than or equal to 0, p�A� � 0 
for all elements in A. That is, a probability is a nonnegative real number. 

•	 The probability of the entire sample space must equal 1. That is, p�S� � 1, where 
S denotes the sample space. Pragmatically, what this axiom essentially guaran
tees is that on a given experiment, something must happen. For example, if I flip 
a coin, a head or tail must occur (assuming the coin cannot land on its edge). 

•	 If events A1; A2; . . . ; An are pairwise mutually exclusive (or pairwise mutually 
disjoint, which is another name for mutually exclusive, see Section 2.5.5), then 
the union of their probabilities is equal to the sum of their probabilities. More 
formally, 

1 

p�∪1 
1Ai� �  p�Ai�i�

i�1 

Any function that satisfies these three axioms is known as a probability function. 
From these axioms, we can deduce several rules of probability such as the following: 

• p�∅� � 0 (the probability of the null or empty set is equal to 0) 

•	 p�A� � 1 (the probability of any event in the sample space S must be less than or 
equal to 1) 

•	 p�A� � 1 � p�A� (the probability of the complement of event A is equal to 
1 minus the probability of A). Here, A denotes the complement to whatever 
larger set we are considering. 

Why should we believe in such rules of probability? All of these rules, and others, 
can be justified by tracing their paths back to the original axioms set out by 
Kolmogorov. For a proof of these rules, see DeGroot and Schervish (2002). The 
proofs, however, are not tremendously enlightening from an applied point of view, 
meaning that they will typically not generate any “ah ha!” moments for you. The key 
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thing to recognize from an applied perspective is that the rules used in probability 
theory are justifiable and not simply drawn out of thin air. They are not just “made 
up.” They are founded on the well-established and well-accepted axioms of mathe
matics. Of course, should the axioms one day prove to be faulty2 or otherwise not 
work and lose their utility, then there is no guarantee that the derived rules will still 
hold. However, until that day should come, we operate under the assumption that they 
are true, and proceed to build additional probability rules on them as a foundation. 

2.5.4 Conditional Probability 

Conditional probability is a very important topic to both the disciplines of mathe
matics and statistics proper as well as to applied scientific domains. Conditional 
probabilities are just as they sound, they are probabilities that are conditional or 
contingent upon some other event. 

For example, suppose the unconditional probability of getting cancer is equal to 
0.10. Now, if I selected an individual at random from the population, and learned that 
individual has been smoking two packages of cigarettes per day for the past 30 years, 
we would probably both agree that the probability of cancer for this individual is not 
equal to the unconditional probability of 0.10. That is, what we have just agreed on is 
that 

p�C� ≠ p�C=A� 
where p�C� is the probability of cancer and p�C=A� is the probability of cancer given 
addiction to cigarettes. If, on the other hand, the person we randomly selected had 
mini-wheats as his favorite cereal without any mention of smoking cigarettes, we 
would probably agree that 

p�C� � p�C=M� 
where again p�C� is the probability of cancer, but now p�C=M� is the probability of 
cancer given mini-wheat eating. In this case, we would expect the unconditional 
probability (p�C�) to equal that of the conditional probability (p�C=M�). 

Conditional probabilities allow us to narrow the sample space so that we may 
“zero in” on a more well-defined set of elements and assess their probability. More 
formally, we can state the conditional probability of an event B given that event A has 
occurred as 

p�A ∩ B� 
p�B=A� � ; p�A� ≠ 0 (2.1) 

p�A� 

2An example of what was thought to be an axiom (though different in flavor to the probability axioms we are 
discussing), but was later proved not to be an axiom is Euclid’s fifth postulate. See Boyer and Merzbach 
(1991, p. 106) for details. 



32	 MATHEMATICS AND PROBABILITY THEORY 

In words, (2.1) reads that the probability of event B given that event A has occurred is 
equal to the probability of A and B occurring together relative to the probability of A 
occurring, assuming that the probability of A cannot equal 0. If p�A� � 0, then p�B=A� 
is undefined, since any number divided by zero is, by definition, undefined. 

From the definition of conditional probability in (2.1), we can also calculate 

p�A ∩ B� 
p�A=B� � ; p�B� ≠ 0 

p�B� 
In general, the conditional probabilities p�B=A� and p�A=B�will not be equal, because 
they represent different sets of events. For example, it would be unreasonable to think 
that p�C=M� � p�M=C� should hold (i.e., the probability of cancer given mini-wheat 
eating is likely not equal to the probability of mini-wheat eating given cancer). 

All scientific investigation can be said to ultimately be about conditional proba
bilities. For instance, we are rarely interested in the probability of schizophrenia. We 
are much more interested in probabilities such as that of schizophrenia given factors as 
genetic history and environment. The meteorologist is not interested in the probability 
of rain. She is interested in the probability of rain given certain atmospheric 
conditions. Likewise, the student is not interested in the probability of passing a 
course, he is rather interested in the probability of passing given that he studies a 
certain amount of time, attends lectures, etc. Hence, the probabilities of true interest to 
us, regardless of field, are usually conditional ones. Theoretically, if we know enough 
about the conditions, we can “zero in” on more precision regarding the probability of 
interest. 

2.5.5 Mutually Exclusive versus Independent Events 

Two events A and B are considered mutually exclusive or disjoint if the probability of 
their intersection is equal to zero. That is, 

p�A∩B� � 0	 (2.2) 

For numerous events, say, A1; A2; . . . ; An, we say that these events are pairwise 
mutually exclusive if Ai ∩ Aj � 0 is true for all events A1; A2; . . . ; An such that i ≠ j 
(i.e., an event cannot be mutually exclusive from itself). “Pairwise mutually exclu
sive” simply means that any two events in the set are mutually exclusive. This saves us 
the trouble of having to list all pairings that are mutually exclusive. In a Venn 
diagram, two mutually exclusive events are depicted by their events having an 
intersection of zero, or the null set (Figure 2.11). 

Examples of mutually exclusive events are easy to come up with: 

•	 Events night and day are mutually exclusive. That is, it is either night or day and 
not both (i.e., In Figure 2.11, let set A = night and set B = day; since it cannot be 
“night and day” simultaneously, the set of elements containing these two events 
is empty). 
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FIGURE 2.11 Sets A and B have an intersection containing no elements; A and B are 
mutually exclusive events. 

•	 Events tall and short are mutually exclusive. One cannot be the event “tall” and 
also be the event “short.” 

•	 Events happy and sad are mutually exclusive, though existentially, I suppose it 
is possible to be in both states at once, which would violate their disjointness. 
For instance, you may be both happy and sad about your friend embarking on a 
new career overseas. 

Two events A and B are considered statistically independent if the probability of 
their intersection is equal to the product of their individual probabilities. That is, 

p�A ∩ B� � p�A� � p�B�	 (2.3) 

We can also express (2.3) as the probability of the joint occurrence of A and B equal to 
the product of the respective marginal probabilities of A and B, where the marginal 
probabilities of A and B are given by p�A� and p�B�. Loosely speaking, when we say 
two events are independent of one another, it means that the occurrence of one event 
in no way influences the occurrence of the other event. Examples of independent 
events that indeed should be independent, and if not, could face legal challenges, 
include the following: 

•	 Employment and gender should be independent; whether one is male, female, or 
other, should not have any effect on the probability of gaining employment. 

•	 Verdict should be independent of race of defendant in a court trial. 

Many court challenges in areas of employment law (e.g., see Zeisel and Kaye, 
1997) and racism are actually accusations on the part of the plaintiff that the events 
under consideration are not empirically independent, but under the law, they should 
be. Showing a violation of substantive independence of two events can be exceed
ingly difficult in practice. Can you really demonstrate to a jury or judge that a hiring 
committee purposely did not hire a man or woman of a particular race? While you may 
have a strong suspicion that such racism has occurred, it is quite another matter to 
actually demonstrate it. Even in cases where one can show lack of independence 
quantitatively (e.g., through a statistical test), it is still quite another matter to legally 
prove that such lack of independence had its origin in the cognition of the accused, 
that there was real discrimination going on. Statistical dependence is only an indicator 
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that an underlying directional action or process may be occurring. More generally, 
and in the language of hypothesis testing, rejecting a null hypothesis never proves a 
substantive alternative, a topic we will return to later. 

How does independence arise mathematically? If events A and B are independent, 
then p�B=A� � p�B�, so we can rewrite (2.1) as 

p�A∩B� 
p�B� �

p�A� 
The probability of the joint occurrence of A and B is thus equal to 

p�A∩B� � p�A� � p�B� 

which gives us the rule for independence of (2.3). 
Note that if two events A and B are mutually exclusive, it stands that they cannot 

simultaneously be independent, since if A and B are indeed mutually exclusive, then, 
by definition p�A∩B� � 0 is true. If A and B were independent however, then as we 
just saw, (2.3) should be true. Since p�A� � p�B� � 0 does not hold unless p�A� � 0 or  
p�B� � 0 (or both are equal to zero), then it cannot be the case that two mutually 
exclusive events are simultaneously independent. 

As an example, consider the events “head” and “tail” on a single flip of a coin. 
They are obviously mutually exclusive events. Are they independent? We usually 
would not ask the question given that we have only conducted a single trial, but if 
we did, we would conclude that getting a head on the coin tells us everything about 
the probability of getting a tail. Given that we obtain a head, the probability of 
obtaining a tail is equal to zero. Again, we ordinarily would not ask such a question, 
since it seems foolish to ask of the probability of an event after it has already 
occurred (logically, the probability does not exist). But when we do push the limits 
on contrasting the concepts of mutual exclusiveness versus independence, this is 
what we find. 

2.5.6 More on Mutual Exclusiveness 

A further distinction on mutual exclusiveness is required. Consider once more the 
event head and the event tail on a single flip of a coin. Since one cannot obtain a head 
and a tail on a single flip of a coin, the events are deemed mutually exclusive. But this 
is only so in this particular context. Why is the caveat in this particular context 
required? It is necessary because if we consider two successive flips of the coin, then 
the event head and the event tail are not mutually exclusive. What this means is that 
when you define the mutual exclusiveness of two events, you must also state the 
context or physical model you are assuming or imposing when applying the property. 
On a single flip of a coin, events head and tail are mutually exclusive” is the correct 
way to describe the context. Head and tail are not, by themselves, intrinsically 
mutually exclusive events. 
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Notice as well that one does not simply apply the “formula” A ∩ B to “discover” if 
two events are mutually exclusive. For instance, on a single flip, are the events 
H (head) and T (tail) mutually exclusive? The answer is, of course, yes, because one 
cannot obtain a head and a tail on a single flip of the coin. However, if one naively 
treated the concept of mutual exclusiveness as a formula and sought to find the answer 
numerically, one could theoretically compute 

p�H∩T� � �:5��:5� � 0:25 

and potentially, and erroneously, conclude that since p�H∩T� ≠ 0, events H and T 
are not mutually exclusive! Of course, this would be an error, since we know that 
p�H∩T� � 0 holds by how we defined our context for discussing the mutual 
exclusiveness. Multiplying probabilities in this case and obtaining p�H∩T� ≠ 0 
does nothing to counter the fact that heads and tails are mutually exclusive events on a 
single flip of the coin. The lesson to be learned from this example, one which will in 
one way or another be repeated throughout this book in a variety of contexts, is the 
following—Formulas and equations used blindly will provide blind answers. One 
must first decide on the correct use of a formula, statistical method, or other 
computation, including those offered by software, before one can have any confidence 
in the result. Formulas and equations never speak for themselves. You must oversee 
their correct interpretation. 

If you blindly “trust” statistical machinery rather than see it as a tool requiring 
human oversight, then you can easily fall into such traps of trying to solve a problem 
or conduct an analysis in a context that makes little, if any, sense. Before you apply 
any statistical model, and before you do any computations, it has to “feel right” that 
you’re proceeding correctly. Statistics and probability are quite slippery, so after all is 
said and done, if something still feels wrong or out of place with your model, then 
something likely is amiss. 

2.6 INTERPRETATIONS OF PROBABILITY: FREQUENTIST 
VERSUS SUBJECTIVE 

Though the computation of probabilities is generally agreed upon, the interpretation 
one gives to those probabilities is definitely not. Historically, the traditional interpre
tation of probability is to take a relative frequency as the “best guess” of the true 
probability of an event. This is the so-called frequentist version of probability. 
However, as we will soon discuss, relative frequency interpretations of probability 
carry with them some difficulties. 

An even more primitive interpretation of the probability of event A is to simply take 
the number of elementary events in set A relative to the total number of elementary 
events in the sample space S. This version of probability is often referred to as 
classical or analytical. 

For example, consider the probability of drawing any single ball out of a bag 
containing 10 balls (numbered 1 through 10). The number of elementary events 
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comprising A is equal to 1 (since we are drawing only one ball). The denominator of 
the ratio is equal to the number of ways the given event can occur, which in this case is 
equal to 10. The probability of A is thus 1/10. Now, consider the probability of 
drawing a 3 and a 5 from the bag containing 10 balls, irrespective of order. The 
denominator will still be equal to the number of ways the event can occur, but now, the 
question is—How many ways can you draw 2 objects out of a group of 10 objects, 
irrespective of order? For this, we compute the number of combinations of choosing 
2 out of 10: 

n!n � 
r r!�n � r�! 

where n is the number of objects we have, r is the number we are choosing, and n! is 
defined as n�n � 1��n � 2��1�. For the case of choosing 2 out of 10, we obtain 

10 10!� 
2!�8�!2 

3628800 � 
80640 

� 45 

Hence, the number of ways you can choose 2 objects out of 10, when the order of the 
sampled balls does not matter, is equal to 45. Therefore, the probability of any one of 
those ways is 1/45. Notice that the 45 here represents the total number of events in S, 
only that now, the elementary “unit” is defined as being 2 objects. When we selected 
only a single ball out of the 10, there were 10 ways in which the event could occur. If 
you always think about the denominator as representing the number of ways rather 
than simply the number of “things” there are to sample from, you will usually 
understand the probability problem. 

2.6.1 Law of Large Numbers 

Why should we believe that the relative frequency of an event is a good estimate of the 
true probability of that event? This is justified in probability theory by a theorem 
called the law of large numbers. The theorem states that if an experiment or trial is 
repeated many times under identical conditions, the relative frequency of occurrence 
of the event is likely to be close to the probability of that event. As the number of 
repetitions increase, we zero in on the true probability. 

We can represent the law of large numbers more formally as follows. If an 
experiment is repeated n times and r denotes the number of times that the event E 
occurs in these n repetitions, then the following is true: 

p��j�r=n� �  p�E�j � ε�� ! 0 (2.4) 
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What (2.4) means is that as n gets larger and larger, without bound, the absolute 
distance between r=n and the true probability of an event E, denoted by p�E�, being 
equal to or greater than some small positive number ε (think of this as being some 
small magnitude), goes to zero. That is, in the long run, there will be no difference 
between the relative frequency of an event r=n and its true probability, p�E�. We can 
also express (2.4) using a limit3 concept more generally for that of sampled random 
quantity x based on n samplings: 

lim p� jxn � x�j < ε� � 1 
n!1

which says that in the limit as n ! 1, the probability of any absolute distance or 
difference between our sampled sequence of random values xn and x being smaller 
than ε, an arbitrary positive number, is equal to 1 (we will name x a random variable in 
the following chapter). The law guarantees, in a theoretical sense, that as we draw 
more n, a  convergence toward x occurs. For further discussion on this particular 
interpretation, see Casella and Berger (2002, pp. 232–233). 

In practical terms, the law of large numbers implies that even if we have only a 
limited number of trials, we should generally expect the probability of any event to be 
reflected in the relative frequency we actually observe for the given event. In the long 
run, such an observed relative frequency should approach the true probability. 

2.6.2 Problem with the Law of Large Numbers 

Since we cannot ever obtain an infinite number of repetitions, no matter how many 
repetitions we do have, we might expect r=n in (2.4) to be close to p�E� but we can 
never be sure they are equal. The idea of letting sample size grow infinitely is quite 
unrealistic. However, as noted by Casella and Berger (2002), “Although the notion of 
an infinite sample size is a theoretical artifact, it can often provide us with some useful 
approximations for the finite sample case, since it usually happens that expressions 
become simplified in the limit” (p. 232). 

Thus, we can tentatively conclude that the law of large numbers, though a useful 
concept, is entirely unachievable and truly makes sense only theoretically. Would it 
not be a good idea then to adopt an interpretation of probability that does not require 
the law of large numbers? The subjective interpretation of probability accomplishes 
this goal, which we now briefly discuss. 

2.6.3 The Subjective Interpretation of Probability 

According to Winkler (2003, p. 14), “The probability concept acquired an interpre
tation in terms of relative frequency because it was originally developed to describe 
certain games of chance where plays [ . . . ] are indeed repeated for a large number 
of trials and where it is reasonable to assume that the elementary events of interest 

3The concept of a limit is briefly discussed later in the chapter. 
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are equally likely.” That is, in gambling games where probability theory began in the 
mid-1600s, it was usually a safe assumption to make that a game can be repeated 
over and over, hence having an infinite number of trials. And though even in this 
context this idea of an infinite number of trials is still unrealistic, it was nonetheless 
imaginable. 

There are many situations in research, however, and in daily life where being able 
to assume an infinite number of trials simply does not make sense, and hence basing a 
theory of probability on the law of large numbers does not work in such cases. The 
subjective interpretation is especially useful when we cannot use a relative frequency 
interpretation. The subjective interpretation holds that probability is a degree of belief, 
and not simply a relative frequency. The subjective probalist can still use frequency 
information in her estimate of the probability of an event, but the point is that she is not 
restricted solely to frequency information. She may draw from a variety of informa
tional sources in deriving her estimate. For instance, consider how you might go about 
evaluating the probability of the following events: 

•	 Probability of a nuclear world war in the next 5 years 

•	 Probability of an earthquake in California in the next 50 years 

•	 Probability of the earth exploding tomorrow 

In these scenarios and others, it is difficult if not impossible to assign a probability 
based on a relative frequency interpretation. We have never had a nuclear world war, 
and so we cannot “flip” the event to see how many times a nuclear war shows up as we 
could with a coin. The “Big One” has yet to occur in California, and thus any estimate 
of its probability must be based, at least in part, on information external to the event 
under consideration. The earth has never exploded before, and so estimating the 
probability that it will explode tomorrow is very difficult to put into relative frequency 
terms. However, we would still like to provide probability estimates for such events 
and others like them where relative frequency seems to fail us. 

Consider the information we may use in estimating the probability of a nuclear 
world war in the next 5 years: 

•	 Political climate and stability of nations possessing nuclear arms 

•	 Probability of nonpossessing nuclear countries obtaining nuclear arms in the 
next 5 years (and the probability that these arms could be or are used) 

•	 Political motivation for any nation or individuals seeking to use a nuclear bomb 

The list goes on and on regarding the information we may wish to use in arriving at 
an estimate of the probability of nuclear world war. If we end up generating an 
estimate of say, 0.001, it would have been generated based on our opinion or belief of 
the probability of war, presumably by incorporating all information available, 
including that of relative frequency information where appropriate. In this sense, 
relative frequency probability can be considered a subset or special case of the wider 
subjective probability framework, as depicted in Figure 2.12. 
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FIGURE 2.12 Relative frequency probability can be interpreted as a special case of a 
subjective probability. 

2.7 BAYES’ THEOREM: INVERTING CONDITIONAL 
PROBABILITIES 

Bayes’ theorem, sometimes called “Bayes’ rule,” provides a way to evaluate relation
ships among various conditional probabilities. More specifically, it allows us to 
“invert” probabilities such that we begin with p�B=A�, and are able to compute p�A=B� 
(notice that A and B have switched places, they have been inverted). The theorem is 
named after Reverend Thomas Bayes (1702–1761), a British clergyman and great 
thinker (see Figure 2.13). 

FIGURE 2.13 Thomas Bayes (1701–1761). 
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The theorem can be stated: 

p�B=A�p�A� 
p�A=B� �  (2.5) 

p�B=A�p�A� � p�B=A�p�A� 
where A denotes the complement of event A.4 Bayes’ theorem reveals that the 
conditional probability can be computed in a particular unique, and as we will see, 
extremely useful way. In addition to being aesthetically pleasing to the probalist or 
mathematician, Bayes’ theorem is also extremely practical, as we shall soon see by 
constructing some examples of its use. There are entire fields of statistics and 
philosophy devoted to the study of Bayesian analysis, including a variety of 
procedures developed for the estimation of posterior probabilities and distributions. 
What follows is only a peak into this vast world of analysis. For more on Bayesian 
analysis, refer to Gill (2014). Savage (1972) is also a classic resource. 

2.7.1 Decomposing Bayes’ Theorem 

We take a closer look now at the elements of Bayes’ theorem and discuss each 
component. The first probability estimate that enters into Bayes’ theorem is p�A=B�. 
This is what we seek to know from our calculation. It is the probability of some event 
A, given some other event B. It is thus a conditional probability. In the paradigm of 
hypothesis testing, we will denote p�A=B� as p�H=D�, where H stands for “hypothe
sis” and D stands for “data.” That is, the question we are asking is: What is the 
probability of our hypothesis given obtained data? 

The next estimate that enters into Bayes’ formula is p�B=A�, or  p�D=H�, the 
probability of some data given some hypothesis. This is the probability estimate that 
dominates classical statistics. When we conduct a statistical significance test (e.g., 
p < .05), we are computing in a general way the probability of the observed data given 
some null hypothesis. This conditional probability is often referred to as a likelihood; 
it is the likelihood of the obtained data given the hypothesis. Note carefully that it is 
not the probability of the hypothesis given some data. That is, 

p�D=H� ≠ p�H=D� 
To get p�H=D� from knowledge of p�D=H�, we need to invert probabilities. This is 
what Bayes’ theorem allows us to do. 

4A more general form of Bayes’ theorem is the following: 

P�B=Aj�P�Aj� P�Aj=B� �  
P�B=A1�P�A1� � P�B=A2�P�A2� � . . . � P�B=AJ �P�AJ � 

Note the parallel between the first formulation of Bayes’ theorem given in (2.5) and the extended form. Both 
formulations have in common the partitioning of event A, only that in the first case, the partitioning is only 
between two possibilities, A and A, whereas in the general formulation, it is between A1 and AJ possibilities. 
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Next in (2.5), we come to the term p�A�. In hypothesis testing language, this is the 
probability of our hypothesis, H, that is,  p�H�. It is the  prior probability estimate of 
the hypothesis. How this single estimate is obtained is the source of much 
controversy and debate (and misunderstanding) concerning Bayes’ theorem. The 
term itself is meant to represent our prior knowledge of the hypothesis under 
consideration before “revising” this estimate in line with new data and obtaining 
p�H=D�. Often,  p�H� can be obtained from base rate information or some similar 
information, but sometimes (perhaps often) p�H� is not so easily obtained. Bayesian 
statistics often employ subjective probability estimates or personal probabilities in 
their initial computations to get the relevant prior probability. Historically, this has 
been a contentious issue between the relative frequency and subjectivist camps. 

Finally in (2.5), we come to p�B=A� or p�D=H�, which is again a likelihood. It is the 
conditional probability of the data given the complement of the hypothesis or theory. 

An example will help elucidate how these probabilities can be used. 

2.7.2 A Medical Example—Probability of HIV: The Logic of Bayesian 
Revision 

Suppose as a medical doctor, before administering a diagnostic test you attempt to 
assess the probability that your patient has HIV, the virus that causes AIDS. What 
would be your best estimate? It would probably be the figure representing the percent 
of those having the disease in the city or region of interest, otherwise known as the 
population base rate. If it is known that the prevalence of HIV in your population is 
1%, then for a randomly chosen individual from this population, I think you would 
agree that your “best guess” (so far) at the probability of the individual being HIV 
positive is 0.01. 

Now, enter the diagnostic test. The purpose of the diagnostic test will be to sharpen 
your probability estimate based on newly acquired data. Diagnostic tests alone do not 
tell you whether a person has a disease or not. They are simply an input to the final 
decision. They are a sign. Suppose that you give the patient the diagnostic blood test 
for HIV. The result of this test constitutes data, and it is in using such data that you 
will revise your original probability estimate of 0.01. 

What are the probabilities that we need for Bayes’ theorem to work? For our 
example, we have the following: 

•	 p�H� is the probability of the hypothesis that the patient has HIV; it is the 
probability estimate we would essentially use in the absence of additional 
information, and as such, is our base rate of 0.01. 

•	 p�D=H� is the probability of the positive reading on the diagnostic test given that 
the patient has HIV; for our example, suppose this is equal to 0.98. 

•	 p�H� is the probability that the patient does not have HIV; it is the complement 
of p�H�, equal to 0.99 (i.e., 1–0.01). 

•	 p�D=H� is the probability of a positive reading (data) given no HIV (or “HIV 
negative”); for our example, suppose this is equal to 0.05 (i.e., relatively error-prone). 
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We now have all the information required to run Bayes’ theorem, and invert 
probabilities: 

p�D=H�p�H� 
p�H=D� �  

p�D=H�p�H� � p�D=H�p�H� 
0:98�0:01�� 

0:98�0:01� � 0:05�0:99� 
� 0:165 

After revising our initial probability estimate of 0.01, p�H=D� is now equal to 0.165. 
That is, the probability that the patient has HIV given a positive blood test is equal to 
0.165, an increase from the initial estimate of 0.01. The data, in the form of the 
positive blood test, have added to our knowledge of the probability of disease. 

2.7.3 Recap of Bayes’ Theorem: The Idea of Revising Probability 
Estimates and Incorporating New Data 

In the HIV example just featured, we have a powerful demonstration of how Bayes’ 
theorem can be used to revise a probability estimate. Notice how we proceeded 
through the example. We first considered the estimate of HIV in the population from 
which the subject was sampled. This was our prior probability, which was equal to 
0.01. How did we obtain this information? Although in this example we could simply 
rely on medical population estimates or real data about the prevalence of HIV (I made 
the figure up, but 1% is actually a suitable estimate for some populations), the nature 
of obtaining this probability estimate is not always straightforward, and again is one 
reason why the Bayesian approach to statistics is sometimes heavily criticized by 
some. This estimate, p�H� is often referred to as the “prior probability” because it is 
calculated “prior” to consideration of the obtained data, D. The purpose of Bayes’ 
theorem is to revise p�H� in light of new information, which in the medical example 
was the diagnostic blood test. That is, as a medical clinician, even before the patient 
entered your examination room, your best “bet” about him or her being HIV positive 
would be 0.01, the base rate in the population from which the subject is being 
sampled. 

After administration of the diagnostic blood test however, the probability of the 
patient having HIV given the result of the diagnostic test p�H=D� is now “updated” to 
0.165. This probability estimate is called the posterior probability because it is 
obtained after (i.e., “post”) consideration of the obtained data (in this case, the positive 
blood test). 

2.7.4 The Consideration of Base Rates and Other Information: 
Why Priors Are Important 

The consequences of not considering base rates, or any other prior information, 
should be evident from our medical example. For instance, if instead of the prior 
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probability being equal to 0.01, it were equal to 0.90, this would have a drastic 
influence on the posterior estimate. When we do Bayesian revision, what we start out 
with in terms of a prior probability is often just as important and in some cases more 
important than the actual data we obtain. And although prior probabilities are often 
considered to reflect personal opinion, there is nothing in Bayesian philosophy that 
says they should be “irrational” or otherwise poorly derived. At minimum, however, if 
you come up with a ridiculous prior, it is there for everyone to see, and hence will not 
be taken very seriously. For instance, had we started out with a prior probability of 
0.90 for HIV, a critic could easily, and rightfully, dismiss our analysis since 0.90 is 
obviously an irrational prior for even relatively high-risk populations. Prior proba
bilities, whether in the context of Bayesian revision or other research settings, even if 
constituting one’s “subjective” opinion, should nonetheless be “reasonable.” 

2.7.5 Conditional Probabilities and Temporal Ordering 

With regard to Bayes’ theorem and conditional probabilities in general, it should be 
noted that conditional probabilities do not care about temporal order. We, however, 
usually do. For instance, pondering over the probability of something that occurred in 
the past given something that occurred more recently makes no sense to us logically. 
However, the calculus of probabilities themselves care little about time. In other 
words, they are still computable. They may not be interpretable, but they can still be 
calculated numerically. 

For example, the probability of one’s suicide 10 years ago could never, in a rational 
way, be conditional or contingent upon an event that occurs today. The problem 
simply makes no sense to us.5 However, one could still obtain a conditional 
probability of such an event. That is, we could still compute a number for it. The 
computations themselves do not “know” what the events in the problem actually 
represent. We give them meaning, otherwise they have none. This is again a reminder 
of why you should never blindly trust calculations of any kind when computing 
probabilities or anything else in a research setting. The problem must make sense to 
you first for things to work out as they should, and be correct. Understanding, 
comprehension, and judgment are not things you can subject to a computing 
algorithm.6 

5Perhaps from a more existential or metaphysical perspective, all events from the beginning of what we call 
“time” to the end know no temporal order, making all events, regardless of time, inexorably “linked.” This 
would make one’s suicide 10 years ago perhaps contingent on an event in the present day. We rule out such 
possibilities, however. 
6Of course, those who specialize in artificial intelligence may challenge this statement. My purpose is not to 
initiate debate or controversy over systems that aid us in decision making. My point is simply that if we do 
not first have a solid grasp of what we are computing or subjecting to the given algorithm, we are on shaky 
ground when attempting to interpret the output. This holds true in one’s use of sophisticated scientific or  
statistical software just as much as it is true in the use of one’s pocket calculator. Statistical software is best 
conceived as nothing more than a sophisticated calculator. It is the interpretation of what the software 
produces that requires a diligent study of statistical theory and methodological (and philosophical) 
principles. 
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2.8 STATISTICAL INFERENCE 

Statistical inference is a process by which conclusions and decisions about population 
parameters are made based on information obtained in samples. It is most easily 
understood through the use of very simple examples. The classic example is, again, 
that of a fair coin. Suppose I hold a coin in my hand and for no reason other than my 
prior experience with coins, I assume the coin is fair. That is, I assume that on any 
given flip of the coin, the probability of getting a head or a tail is equal to the same 
value, p�H� � 0:5 and p�T� � 0:5. Note carefully that we are starting off the process 
with an assumption. We are having to first assume something about the coin. The 
assumption is the hypothesis that is presumed true pending further evidence. Such an 
assumption often goes by the name of a null hypothesis. It is the hypothesis that is 
assumed to be true in generating the sampling distribution (see Chapter 3) of the test 
statistic appropriate for the given problem, and is the hypothesis we will attempt to 
reject given evidence that contradicts it. More generally, in the case of the coin, you 
can think of this assumption or null as the “status quo” or your prior belief (to impose a 
Bayesian flavor) in the probability characteristics of the coin. Null hypotheses do not 
need, however, to be statements of equality. 

We now proceed to sample some data. Suppose our first flip (or our first “trial”) of  
the coin turns up a head. Would you doubt the assumption of a fair coin based on this 
piece of evidence? Likely not. After all, it’s just one flip, and getting a single head is 
not reason to reject our assumption. Suppose we keep taking trials, and obtain the 
following sequence of flips for the first 10 trials: 

H H H H T H H T H H  

We obtained eight heads and two tails. The question we want to ask is: What is the 
probability of obtaining 8 heads out of 10 flips under the assumption that the coin is 
fair? That is, what is the probability of obtaining 8 heads out of 10 flips under the 
assumption of the null hypothesis? If the probability of such a sequence is low, then  
it suggests that the obtained data may not have arisen under the model (i.e., 
assumption) we started out with. Obtaining 8 heads out of 10 flips seems more 
likely to have occurred under a different model, one for which the coin is not fair. 
This alternative model is typically housed in the alternative hypothesis, and may  
take many forms depending on the given context. It may simply be a statement that 
p�H� ≠ 0:5 or  even  a  more  specific, well-defined hypothesis such as p�H� � 0:8, in 
which case our obtained sample of 8 heads out of 10 flips would “fit” such an 
alternative very well. 

The key point in this example, as is true of virtually all examples of statistical 
inference, is that we are evaluating the probability of data given some hypothetical 
situation which we couch in terms of a null hypothesis. If the probability of data is low 
under our hypothetical situation, then it serves to cast doubt on that hypothetical 
situation, and probabilistically, we begin to think that perhaps a competing model 
(i.e., one other than the null hypothesis) is better able to account for the obtained data. 
Even intuitively, a result of 8 heads out of 10 flips would cause us to doubt our 
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TABLE 2.1 Decision Table for Classical Hypothesis Testing 

Quantifying consequences of a 
decision in terms of losses 

State of the world 

(H0 true) θ ∈ A (H1 true) θ ∈ B 

Decision 
Accept H0 0 Q2 [Loss II] (type II error) 

Accept H1 Q1 [Loss I] (type I error) 0 

assumption that p�H� � 0:5 and we would reject it in favor of the alternative 
hypothesis (e.g., p�H� ≠ 0:5.) 

2.8.1 Shouldn’t the Stakes Matter? 

If something does not sit right with you with regard to the previous example, it is a 
good thing. You may be wondering how we can decide to reject the null hypothesis or 
infer the alternative hypothesis without any sense of the consequences of making the 
wrong decision. Yes, in our example of the coin, the situation is trivial. That is, the 
costs associated with deciding whether the coin is fair or not fair are likely 
nonexistent. However, in other paradigms, life or death may be at stake, or at 
minimum, the consequences of making the wrong decision may be more severe or 
grave than losing a coin-flip betting game. 

In any decision of this sort, where two choices are available to the decision maker, 
two types of error might occur. The first is that of a type I error, which is a false 
rejection of the null hypothesis. The probability of a type I error is set at α, the 
significance level of the test. The second type of error is that of a type II error, which is 
failing to reject a false null hypothesis. A type II error is equal to β (Beta), and will 
depend on such things as the distance between the null and the hypothesized 
alternative. 

We can display both types of error in the classic decision table featured in 
Table 2.1. Note that in addition to specifying type I and type II error rates, 
Table 2.1 also depicts a loss function associated with the decision we are making. 

Note that the decision to “Accept H0 ” is associated with zero loss if in fact H0 is 
true (cell in row 1, column 1). Note also that the decision to “Accept H1 ” if in fact H1 

ends up being true is likewise associated with zero loss (cell in row 2, column 2). 
Losses begin to occur when our decision does not accord with the state of the 

world. If we “accept” H1 but H0 turns out to best reflect reality, then we have made a 
false rejection of the null hypothesis (or, in the case of decision theory, a false 
acceptance of H1). This is the classic type I error of both Fisherian and Neyman– 
Pearson hypothesis paradigms.7 Similarly, an incorrect acceptance of H0 when in fact 
H1 is true leads us to make the classic type II error. Which is the more daunting error to 

7For an historical and very readable account of the Fisherian versus Neyman–Pearson camps, see Denis 
(2004). 
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TABLE 2.2 Updated Decision Table for PTSD Example 

Quantifying consequences of a 
decision in terms of losses 

State of the world 

(H0 true) 
Population is 

normal 
θ ∈ A 

p�H0� � 0:70 

(H1 true) 
Population suffers 

from PTSD 
θ ∈ B 

p�H1� � 0:30 

Decision 

Accept H0 

[population is normal] 0 
Q2 [Loss II] 
(type II error) 

Accept H1 

[population PTSD] 
Q1 [Loss I] 
(type I error) 0 

make? Without associating costs with each error, we have no means by which to 
evaluate which is the more consequential error. 

This is where decision theory comes in. Decision theorists advise that one should 
assign a loss function with each type of error. These are represented by Q1 and Q2 

values in Table 2.1, referred to as Loss I and Loss II, respectively. If one can quantify 
these losses somehow (a point we will return to shortly), then one can incorporate 
such losses into the computation of expected values (see Chapter 3) in the decision-
making process. 

For example, consider the updated decision table in Table 2.2, based on hypotheti
cal data. In this case, the researcher was interested in learning whether the population 
she is studying suffers from posttraumatic stress disorder (PTSD), which is a mental 
health condition one may develop after exposure to one or more stressful life events. 

From the table: 

•	 The prior probability that the population is normal is p�H0� � 0:70. 

•	 The prior probability that the population suffers from PTSD is p�H1� � 0:30. 

•	 The loss incurred if the decision is made that the population is normal given the 
population actually is normal is 0 (row 1, column 1). 

•	 The loss incurred if the decision is made that the population suffers from PTSD, 
if the population actually has PTSD, is 0 (row 2, column 2). 

•	 The loss incurred if the decision is made that the population is normal but 
actually has PTSD is Q2, constituting a type II error (row 1, column 2). 

•	 The loss incurred if the decision is made that the population has PTSD but is 
actually normal is Q1, constituting a type I error (row 2, column 1). 

After incorporating losses, our final decision table is that given in Table 2.3. 
How these numbers were computed is not essential for understanding the point we 

wish to make (for computations of this sort, see Winkler (2003)). For our purposes 
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TABLE 2.3 Final Decision Table for PTSD Example 

State of the World 

(H0 true) 
Population is 

normal 
θ ∈ A 

p�H0� � 0:70 

(H1 true) 
Population suffers 

from PTSD 
θ ∈ B 

p�H1� � 0:30 

Decision 

Accept H0 [Population is normal] 0 
Q2 Loss II = 3 
(type II error) 

Accept H1 [Population PTSD] 
Q1 Loss I = 1 
(type I error) 0 

Posterior odds = prior odds × likelihood 
ratio × loss ratio 

p�H0=D� 
p�H1=D� �

0:70 
0:30 

� 1:20 
1 
3 

� 0:93 

Final decision 
Since 

p�H0� 
p�H1� �

Q1 

Q2 
< 1:0, reject H0, 

conclude PTSD in population 

Quantifying Consequences of a Decision in 
Terms of Losses 

here, it is enough to note that by combining the prior probabilities with a ratio of the 
losses (i.e., Q1 to Q2), a decision was made to reject the null hypothesis and conclude 
there to be PTSD in the population. The relevant equation is �Posterior odds = prior 
odds × likelihood ratio × loss ratio, which in Table 2.3 is given by 

p�H0=D� 0:70 1� � 1:20 � 0:93 
p�H1=D� 0:30 3 

The fact that the potential losses incurred in accepting H0 if H1 were actually true (3) 
are greater than the potential losses incurred in accepting H1 if H0 were actually true 
(1) helped decrease the prior odds of 0.70/0.30 down to 0.93, within the threshold 
required to reject the null hypothesis, as indicated in the “Final Decision” of Table 2.3. 
How the loss ratio of 1/3 was determined in this case was merely through an informal 
weighting of the consequences of the two types of errors. For this example, the 
clinician simply deemed concluding the population to be normal when in fact it is not 
to be more serious of an error than concluding the population suffers from PTSD 
when in fact they do not. One can easily imagine why this may be so. The failure to 
treat a population suffering with PTSD may have more threatening consequences than 
treating a population that does not truly require it.8 

8For example, the suffering of a war veteran not diagnosed may have more serious consequences than 
treating that war veteran even if in actuality he or she does not suffer from the disorder. Of course, the costs 
associated with treating someone who does not have a disorder may in itself constitute a financial cost, but 
perhaps not as serious as the error of failing to diagnose someone with a real mental health condition. 
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Such a simple example highlights the importance of considering statistical 
conclusions within a larger decision analysis framework, one in which costs 
associated with decisions are incorporated in the hypothesis testing methodology. 
Statistical analysis, in the end, is often about decisions. Excellent books on the topic 
include Clemen and Reilly (2004) and Winker (2003). For a more technical read, 
consult Berger (1993). 

2.9 ESSENTIAL MATHEMATICS: PRECALCULUS, 
CALCULUS, AND ALGEBRA 

We suspend our discussion of further probabilistic concepts and statistics until 
Chapter 3 where we survey and review essential statistics in more detail in preparation 
for the rest of the book. We instead turn now to surveying some of the elements of 
modern mathematics, focusing primarily on concepts from precalculus up to and 
including calculus. Much of what we cover only skims the surface, and the reader is 
strongly advised to refer to sources cited within the text, or simply refer to Labarre 
(1961) for a classic and very readable overview of fundamental mathematics (the 
book is somewhat dated, but extraordinary in its clarity). Central to our brief overview 
and discussion of modern mathematics is the development of the idea of a function. 
Functions are what mathematics, statistics, and research are all about. To set the stage 
for such a discussion, we first begin with a review of polynomials, of which functions 
are a special case. 

2.9.1 Polynomials 

A nomial is a single mathematical expression usually with a variable in it. For 
example, ax is a nomial having the variable x and where a is a constant. 

A polynomial of the form 

f �x� � anx
n � an�1xn�1 � ∙ ∙ ∙  � a1x � a0 

is an equation that contains many (i.e., poly) nomials. The degree of the polynomial is 
a nonnegative integer n, while the coefficients of the polynomial are a0; a1; . . . ; an. 
The domain is the set of all real numbers. Polynomials are everywhere in mathematics 
and science. One very special type of polynomial is that of a function, an extremely 
important topic we now develop. 

2.9.2 Functions 

The concept of a function literally pervades all of mathematics, statistics, and applied 
scientific research. It is so central to virtually all areas of investigation that one has 
little if any chance at understanding any kind of mathematics related to science, 
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including statistical modeling techniques, if one does not first understand the nature of 
a function. Indeed, as Labarre (1961) noted: 

The first man to introduce the word function in mathematics seems to have been Gottfried 
Leibniz, in about 1694. Since Leibniz’s time, the notion of a function has undergone 
many refinements, but it has survived these and, without undue exaggeration, we say 
that it can lay serious claim to being the most important single concept in mathematics. 
(p. 73) 

For some examples of functional statements, consider the following research 
questions: 

• Is Alzheimer’s disease a function of age? 

• Is mental illness a function of stress? 

• Is intelligence a function of genetics? 

• Are school shootings in America a function of current gun laws? 

Each of the above research questions imparts a function statement. However, as we 
will see when we review the precise definition of a function, the above statements are 
far from perfect functional forms. Why? Because they are messy English, and not 
precise mathematics. We all know what it means to ask the question of whether school 
shootings are a function of current gun laws. Intuitively, it implies that if indeed 
functional, if we changed the gun laws, it would have an influence or effect on school 
shootings.9 Likewise, if you argue that mental illness is a function of stress, then you 
are presumably suggesting that stress in some way “contributes” to the prevalence of 
mental illness. Again, these concepts are very vague and imprecise, yet the word 
“function” is used in all of them. Functions in mathematics proper have been defined 
in a much more precise and rigorous fashion. 

2.9.3 What is a Mathematical Function? 

Mathematically, a function can be defined as a correspondence between two sets of 
elements such that to each element in the first set, there corresponds one and only one 
element in the second set. The first set is called the domain of the function, and the 
second set (which corresponds to elements in the first set) is called the range or the 
codomain of the function. 

Perhaps the easiest function is that of y � x, given in Figure 2.14, which is a linear 
function that passes through the origin (0, 0) with slope equal to 1. In this function, y is 
known as the dependent variable and x is known as the independent variable. 

It is easy to recognize the line in Figure 2.14 as a function since for each value of x 
that we can choose, there is one and only one value of y. In a very big way, the job of 
statistical modeling is to fit functional forms to data that do not follow functional 
forms perfectly, but do so in a manner close enough that we can nevertheless 

9As we shall discuss however, functions do not necessarily imply a cause-and-effect relation. 
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FIGURE 2.14 Linear function between dependent variable Y and independent variable X 
(slope = 1). 

adequately account for the data using the function. Virtually all of statistical modeling 
constitutes the imposing of a functional form on imperfect, messy data. Regression, 
analysis of variance, structural equation modeling, as we will see, are ultimately all 
examples of this process. Quantifying how much the functional form does not fit is 
usually of interest to us just as much as we are interested in how much data it does 
account for. 

The linear function is but one of an infinite number of possible functional forms. 
Other functional forms include quadratic functions, f �x� � ax2 � bx � c �a ≠ 0�,p
cubic functions, f �x� � x3, square root functions, f �x� �  x, and absolute value 
functions, f �x� � j x j. The absolute value function is more precisely denoted by 

�x; x < 0j x j �  
x; x � 0 

where the above reads that x takes on a negative sign (i.e., �x) when x < 0 and a 
positive sign (i.e., x) when x � 0. However, because of the absolute value sign j x j it 
means that we will simply take the magnitude of the number without regard to sign. 
For example, �3, in absolute value, is simply equal to 3. A graph of the absolute value 
function appears in Figure 2.15. 

Previewing what is to come, the absolute value function is an example of a function 
that is continuous at all points, yet as we will see, the derivative cannot be defined at 
every point (i.e., the derivative does not exist at f �0� �  j 0 j ). We discuss these matters 
shortly. 

2.9.4 Spotting Functions Graphically: The Vertical-Line Test 

Having defined what is a function, it would be helpful to be able to identify functions 
rather easily. That is exactly what the vertical-line test is for. The vertical-line test for a 
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FIGURE 2.15 Absolute value function. 

function is a test one can use to verify or confirm that a line or curve constitutes a 
function. It works as follows: If you are able to draw a vertical line through the line or 
curve (i.e., the polynomial form) without it passing through more than a single point 
on the line or curve, then it is a function. In other words, the vertical-line test assures 
us that for a given value of x, there is associated one and only one value for y. If, 
however, you are able to draw a vertical line through the line or curve and it passes 
through more than a single point, then it is not a function. It is still considered to be a 
mathematical relation, but it is does not earn the title of function. As an example, 
consider the linear function once more in Figure 2.16. 

It is easy to see that if we drew a vertical line on the graph, the line will pass through 
a maximum of a single point, as shown in (b) graph. 

2An example of a relation that is not functional is that of a circle, r2 � x2 � y
(Figure 2.17). 

FIGURE 2.16 Vertical-line test confirming that for each value of X, there is only a single 
value of Y. 
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FIGURE 2.17 Vertical-line test for circle. Each arrow represents a point at which the vertical 
line is touching the curve. Since it touches at more than a single point, it fails the vertical-line 
test. The circle is hence not a function. 

Since we are able to draw a vertical line through the relation and it crosses at 
more than a single point, the subset of points defining a circle is not a relation that 
is functional. Again, it is still a mathematical relation since the set of points 
defining the circle is still a subset of the Cartesian product, but it is not a functional 
relation. 

The motivation for probabilistic statistical analysis is the fact that very few 
phenomena follow pure functional rules. More often, the best we can do is approxi
mate these data using functional forms. Francis Galton’s linear regression (Figure 2.9) 
is a classic example of this. Though the correspondence between heights of parents 
and their offspring is far from functional, a linear function nonetheless provided him a 
useful summary or “model” of the messy data. More generally, one can say the goal of 
statistical modeling is to impose rationally derived structures (e.g., lines, curves, etc.) 
on imperfect empirical observations. Much of the rest is in the details of the particular 
model used. 

2.9.5 Limits 

The idea of a limit in calculus and mathematical analysis has a very deep and rich 
history. The “discovery” of limits is usually associated with the invention of the 
calculus, however informal conceptions of limits date way back to the Greeks. Very 
few concepts in history arrive on the scientific scene without any “marinating” and 
development over time by noteworthy thinkers. The concept of a limit is probably one 
of the best examples of this. Limits are also a pillar and passage way to higher 
mathematics. For a discussion of limits from a historical perspective and how they 
relate to the development of the calculus, see Boyer (1949). 

When we compute the limit of a function, we are not so interested in how the 
function behaves at a particular point as much as we are on how the function behaves 
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FIGURE 2.18 Depiction of a limit in a simple linear function. 

near a particular point on the curve. A simple example is all we need to illustrate the 
concept of a limit. Consider the linear function: 

f �x� � x � 2 

What questions might we ask of this function? Well, we might ask how the function 
behaves at different values of x. For instance, we might ask what the value of the 
function is at x � 1. The answer is, of course, f �x� � 1 � 2 � 3. We now ask a similar 
question, but one that is yet different enough from the one we just asked as to call for a 
new historically ground-breaking concept. Consider the following question: 

What is the behavior of the function when x is close to 2? 

This question does not ask us for the value of the function at x � 2, but instead 
requests the value of the function near x � 2. To help us answer this question, 
consider the simple linear function in Figure 2.18. 

We can see that as x gets closer and closer to 2, the function f gets closer and closer 
to 4. Notice that this is true regardless of which side we approach x � 2, from the left-
or right-hand side (this will be important in a moment). The way we express this idea 
of the value of the function as x nears 2 is to say the limit of the function as 
x approaches 2 is 4. More formally, we write 

lim f �x� � 4 
x!2 

which reads, as x approaches 2, the limit of the function is equal to 4. 
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Notice as well that the value of the function at x � 2 is also equal to 4, since 

f �2� � 2 � 2 � 4 

The fact that the limit of the function as x ! 2 and the value of the function at x � 2 
are the same implies that there is no break in the graph. As we will see shortly, we have 
just described the idea of continuity at a point for the given function. 

It is very important to note that even if the function were not defined at x � 2, we 
may have still been interested in the limit of the function as x ! 2. Remember, when 
speaking of and evaluating limits, we are not concerned with what the function does at 
a particular point, but rather are interested in what the function does near a particular 
point. The value of the function at x � 2 is really of no interest to us when we are 
concerning ourselves with limits. 

2.9.6 Why Limits? How Are Limits Useful? 

As with many mathematical ideas, at first glance, their actual pragmatic use may 
appear arcane and perplexing. Limits are a prime example of this. For a full 
understanding of how limits are used and how they are employed in a wide variety 
of applications, one must study differential and integral calculus. We will very briefly 
review these techniques shortly, but a simple example for now will suffice to 
demonstrate the idea of how and why limits are useful. 

The Greeks used to love computing areas. They could calculate areas of squares 
and rectangles quite easily. However, computing areas within other shapes that were 
not so “ordinary” caused them great difficulty. For instance, one question they asked 
was how to compute the area in a shape that did not follow “ordinary” forms, such as 
that given in Figure 2.19 (we are using the bell-shaped curve for obvious reasons, but 
could have chosen from a wide variety of curves). 

Computing areas inside of shapes such as these baffled the Greeks. Their approach 
to the problem was essentially to “divide and conquer” and they would compute 
several areas of smaller shapes within the larger shapes as depicted in Figure 2.20. 

FIGURE 2.19 Area under a curve. 
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FIGURE 2.20 The Greeks, in trying to capture the area under curves, computed areas of 
simpler objects such as rectangles to approximate the given area. 

By making the rectangles smaller and smaller and computing the area of each, and 
then summing up these rectangles, an approximation to the area under the given curve 
was obtained. Their method, known as the method of exhaustion, was imperfect, 
because it still seemed impossible to capture the entire area under the curve by 
approximation. One would have to approximate “infinitely” many rectangles in order 
to get the true area. This is where the idea of the limit comes in. We say that as the 
number of rectangles grows successively larger and larger, in the limit, the sum of the 
areas of these rectangles will be equal to the area under the curve. This, in part, was the 
genius of the calculus “invented” by Newton (1642–1726) and Leibnitz (1646–1716), 
with much help, of course, from the “giants” on whose shoulders they stood in mid-
seventeenth century. They provided a coherent computational system for computing 
such sums. These sums were later defined as Riemann sums (named after the 
mathematician Bernhard Riemann (1826–1866)), and helped form the theory of 
Riemann integration. We will review integration shortly. The important point for now 
is to appreciate how the limit concept is employed in defining areas under curves. The 
application to statistics is obvious—if we are able to compute areas beneath curves, 
we are able to compute corresponding areas under probability distributions such as the 
normal curve (to be discussed in Chapter 3). 

2.9.7 Asymptotes 

Limits are helpful in appreciating a very important property exhibited by some curves, 
that of asymptotes. To understand what is an asymptote, consider the function 
(Figure 2.21) 

1 
f �x� �  

x � 1 

We can see that as x approaches 1 from the right-hand side, the values for the 
function f �x� become larger and larger and do not seem to “settle” on any particular 
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FIGURE 2.21 Graph of function 1/(x � 1). 

value. In fact, it seems as though the values of the function go to infinity, so we write 
the right-hand limit as 

1
lim � � 1  
x!1� x � 1 

Look at the left-hand limit now. As x approaches 1 from the left-hand side, the values 
of the function f �x� likewise do not seem to “settle” on any given value of the function, 
but rather seem to go on to negative infinity, �1. Hence, we write the limit as 

1
lim � � �1  
x!1� x � 1 

However, 1 is not a real number, and so in each case above, the left-hand and right-
hand limits do not exist. That we have computed the respective limits as 1 and �1 is 
only to communicate the way in which the limit does not exist. These are called 
infinite limits. The vertical line that extends to positive and negative infinity, in this 
case (i.e., x � 1), is called a vertical asymptote. Note that the area between the curve 
and x � 1 tends to 0, about which x � 1 is the center of this limiting effect. In 
statistics, when the asymptotic behavior of an estimator is discussed, it typically refers 
to the behavior of the estimator as sample size grows without bound, with the 
properties of the estimator evaluated in the limit as n approaches infinity (i.e., 
n ! 1). 

2.9.8 Continuity 

The idea of continuity is intuitive. If I draw a line on a piece of paper without lifting 
my pencil, the line is a continuous one, it contains no breaks, no discontinuities 
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FIGURE 2.22 A point on sin(x) function. 

(at least not at the macroscopic level). Mathematically, we must be more precise and 
exact in our definition. When we speak of continuity, we speak of the continuity of a 
function, whether that function be linear, quadratic, cubic, or other. As well, when 
speaking of continuity, we are usually interested in knowing whether a function is 
continuous at a particular point on that function. For example, consider the sin(x) 
function (Figure 2.22). 

The function surely looks continuous at all points on it, as there does not appear to 
be any “breaks” in the line. However, in speaking of continuity, visual inspection is 
not enough. Three conditions need to be satisfied for a function f to be deemed 
continuous at a point x � c, for instance, x � 2 on the curve: 

1. lim f �x� must exist (i.e., the limit of the function must exist) 
x!c 

2. f �c� must exist (i.e., the function must be defined at the given point) 

3. lim f �x� � f �c� (i.e., the limit of the function must equal the function defined 
x!c 
at the given point) 

If these three conditions are satisfied, we say the function is continuous at x � c. 
We can also speak of continuity on an open interval �a; b�. What justifies a function 
being continuous on an open interval is whether the function is deemed continuous at 
each point on the interval. 

Having defined continuity so precisely, we are now in a position to define 
discontinuity. The definition of discontinuity is quite easy, because it is essentially 
the complement of continuity. If any of conditions 1, 2, or 3 do not hold, then we say the 
function f is discontinuous at x � c. An example of a function that is discontinuous is 

x2 � 4 
g�x� �

x � 2 

The graph of the function is depicted in Figure 2.23. 
Though the graph at first glance may appear continuous for all values of x, upon 

closer inspection and zooming in, we notice that at x � 2 there is a break. There is a 
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FIGURE 2.23 A discontinuity in an otherwise continuous function. 

break at x � 2 because the function is not defined at that point, and therefore the limit 
does not exist at that point: 

x2 � 4 
g�x� �  

x � 2 

22 � 4 0 
g�2� �  � 

2 � 2 0 

When a function results in 0=0, it is said to be of indeterminate form. Hence, we 
would say that the function is continuous at all points in the set of real numbers R 
except for at x � 2. Or, more formally, we may write ��1; 2�∪�2; 1� to indicate that 
the function is continuous on the real line except for x � 2, which is why we use round 
brackets instead of square (which would indicate that 2 is included). 

2.9.9 Why Does Continuity Matter? Leaping from Rationalism 
to Empiricism 

For the applied social scientist, our discussion of continuity may at first appear quite 
useless. After all, the phenomena of the social scientist can rarely, if ever, be depicted 
so “neatly” by such perfect curves and functions. However, even if “real” objects of 
nature, as opposed to mathematical ones of our minds, are far from continuous, the 
abstractions we use to model them, in the name of mathematical functions and 
distributions, often are. For instance, when we fit a linear regression line to a plot of 
data, the line we are fitting is continuous at all points. It is a beautiful, idealized, 
perfect line with no breaks. Hence, for starters, having an understanding of what 
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continuity means from a purely mathematical point of view is important if for no other 
reason than to understand some of the properties of the functions we do fit to our 
empirical data in the process of statistical modeling. 

However, an even more important reason for having an understanding of conti
nuity is that in applied statistical analysis, the first question you will need to consider 
about your variables is whether or not they are measured, or at the minimum can be 
considered measurable, on a continuous scale. For instance, if a medical scientist 
measured heart rate down to say, two decimal places, where theoretically any heart 
rate value can exist on the scale, research-wise, we would deem this variable 
measurable on a continuous scale. This is true even if theoretically we are “chopping” 
the variable off at two decimal places for each measurement. The important point for 
the purpose of statistical analysis is whether or not the variable in question can 
essentially assume a theoretically infinite number of points along the real line. If it can, 
then it is usually deemed continuous. Now, if we instead measured heart rate more 
qualitatively using labels “low,” “medium,” or “high,” then the variable would not be 
considered measurable on a continuous scale. Such a way of measuring heart rate 
would call for an alternative statistical model, one that does not assume continuity of 
variables. Such variables would be considered discontinuous or discrete. 

To recap, the point of this discussion of continuity from the perspective of pure 
mathematics is simply to understand that in the world of rational abstraction (i.e., the 
mathematical/logical world), continuity really does exist. In the world of applied 
research, achieving the same degree of continuity in our variables is practically 
impossible, though often times, we will nonetheless use statistical models that assume 
continuity, such as a normal distribution or linear regression, on data that is less than 
continuous. 

2.9.10 Differential and Integral Calculus 

So far, we have reviewed ideas of sets, functions, limits, and continuity. These are the 
very pillars of modern mathematics. Why is this so? One can argue that they are 
interesting topics in and of themselves, but the more “practical” purpose of these 
fundamental building blocks is that they help lay the foundation for calculus, which 
according to most historians of science is the crowning intellectual achievement of 
modern times. Calculus evolved through centuries, as many mathematical and 
scientific ideas do, but calculus itself is usually associated with Newton and Leibnitz 
who essentially consolidated prior ideas and made it the reigning champion of 
science. 

There are two branches of calculus, though they are intimately related. The first 
branch is known as differential calculus, while the second branch is known as integral 
calculus. Differential calculus, generally considered, is concerned with such problems 
as finding tangents to curves at given points along the curve. For instance, consider the 
graph of the logarithmic function in Figure 2.24. 

Differential calculus is concerned with questions of the sort: What is the slope, or 
rate of change, of the curve at a given point along the x-axis? For example, assume 
this point is x � 2, as circled on the graph in Figure 2.25. 
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FIGURE 2.24 A logarithmic function. 

FIGURE 2.25 The line tangent to the point x = 2 on a logarithmic curve. 

How are we to know the slope at this particular point? To know what the slope is at 
this point, we draw a line tangent to the curve at that point. Though somewhat difficult 
to visualize on the graph, the tangent we drew is touching the curve at exactly one 
precise point, that of x � 2. So, our original question of the slope at the given point of 
x � 2 boils down to computing the slope of the tangent to the curve at x � 2. This 
slope of the tangent, once computed, we will call the derivative of the function at 
x � 2. Notationally, for a given function y � f �x�, the derivative of the function is 

´´ expressed as y � f �x�. Differential calculus, fascinating as it is, is very much nothing 
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FIGURE 2.26 Defining the derivative as the slope of the tangent (Salas, Hille, and Etgen, 
1999). Reproduced with permission from John Wiley & Sons, Inc. 

more than a set of computational techniques and methods for finding tangents to 
curves in a variety of contexts. In other words, it is a set of techniques for finding 
derivatives. 

2.9.11 The Derivative as a Limit 

We informally defined the derivative as the slope of the tangent for a given point along 
the x-axis. Defining what this actually means mathematically is what we must do next. 
We need a definition of the derivative. To arrive at a definition, we need the idea of 
limits. The discussion is best motivated by a graphical visualization as depicted in 
Figure 2.26. 

Note that h can be greater (a) or less (b) than 0. What happens as h gets closer and 
closer to 0? That is, what happens as h gets nearer and nearer to 0? Recall that this 
process of closeness is called limit. The limiting position is indicated by the dashed 
line in Figure 2.26. Hence, we are interested in knowing what happens to the 
difference or “change” f �x � h� � f �x� relative to the change in h as that change 
goes to zero. We call this rate of change, the derivative, and define it formally for 
function y � f �x� as 

f �x � h� � f �x�´ f �x� � lim 
h!0 h 

assuming the given limit actually exists. If by chance the limit does not exist, then the 
derivative cannot be computed. Note carefully what the derivative actually is. It is 
simply the rate of change of one difference (i.e., the difference along the ordinate) 
relative to the rate of change of another difference (i.e., the difference along the 
abscissa). A more physical interpretation is that it is the instantaneous rate of change 
of the function relative to x. 

As already mentioned, sometimes the derivative of a function for a particular range 
of values does not exist. Such functions are those for which it is impossible to draw 
tangents at those given points. For instance, one such function is the absolute value 
function, f �x� �  j x j , already discussed and depicted again in Figure 2.27. 
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FIGURE 2.27 Absolute value function. 

For this function, it becomes impossible to compute a derivative at x � 0 because 
of the sharp turn taken by the curve at that point. Even though the function is 
continuous at x � 0, the function is not differentiable at x � 0. Hence, given that not 
all functions are differentiable at all points, it becomes convenient to be able to specify 
ranges of intervals for which a function is differentiable. In general, we can say that if 

´ the derivative f �x� exists for each x in the open interval �a; b�, then the function f is 
considered to be differentiable over that interval, �a; b�. 

2.9.12 Derivative of a Linear Function 

To better understand just what is a derivative, it is helpful to consider the absolute 
easiest case. We have said that essentially, interpreted geometrically, the derivative is 
the slope of a tangent. If this is true, then what might be the derivative of a linear 
function? If you are understanding the nature of a derivative, then the answer should 
immediately come to mind. The derivative of a linear function is equal simply to the 
slope of the line. For instance, consider the linear function having slope equal to 5 (i.e., 
“b”) and intercept equal to 3 (i.e., “a”): 

f �x� � bx � a 
y � 5x � 3 

According to the power rule of differentiation,10 the derivative of this function is 
´ equal to f �x� � 5. To demonstrate this algebraically, we start with the original 

10The power rule is just one of several differentiation rules used for the computation of derivatives. For a 
´ function f �x� � xn, the derivative is equal to f �x� � n�xn�1�. For a thorough treatment of calculus, see Salas, 

Hille, and Etgen (1999). 
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definition of a derivative and simply substitute into that expression our linear function. 
More generally, we can write: 

f �x � h� � f �x� �b�x � h� � a� � �bx � a�
lim 
h!0 h 

� 
h 

� 
bx � bh � a � bx � a 

h 

� 
bh 
h � b 

which can be more simply expressed as 

f �x � h� � f �x� 
f ́ �x� � lim � lim b � b 

h!0 h h!0 

We see that the derivative of a linear function is simply the slope b. 
Oftentimes, we wish to take derivatives of functions while holding certain 

variables constant. For example, suppose we wish to compute the derivative f �x� 
while holding a second variable z constant. For this we compute what are called 
partial derivatives. As an example, consider the following function: 

f �x� � 2x2 � 5z 

If we wished to compute the derivative of y relative to x while simultaneously holding 
z constant, we would compute 

´ f �x� � 4x 

Quite simply, all we did was apply the power rule to 2x2. In our discussion of linear 
regression in Chapter 8, partial differentiation is used in obtaining the least-squares 
normal equations. 

2.9.13 Using Derivatives: Finding Minima and Maxima of Functions 

Among the most popular uses of differentiation in applied mathematics is that of 
learning of the behavior of curves. Just as a psychologist might be interested in learning 
about the behavior of an individual, the mathematician is interested in learning of the 
behavior of functions. Consider once more the sin function, sin �x� (Figure 2.28). 

We may ask many questions about this curve, but one question of high importance 
in optimization problems is to locate areas on the curve where the function (i.e., the set 
of y values) attains a maximum or a minimum value. For instance, between the values 
of x � 0 and x � 2, at what value of x does the function achieve a maximum? By 
“maximum” we mean the greatest value within that open interval. We can see by 
inspection that it is probably slightly greater than the value x � 1:5, but to know for 
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FIGURE 2.28 Graph of sin(x). 

certain, and here is where the utility of calculus comes in, we can use the fact that the 
highest point of the curve must be the location where the derivative (denoted by dy/dx 
in Figure 2.28) of the function in the interval �0; 2� is equal to 0. This fact is implied by 
a result known as Rolle’s theorem (see Bartle and Sherbert, 2011). That is, 
graphically, the maximum in the interval �0; 2� occurs where the slope of the function 
is equal to 0, as indicated by the horizontal line. 

Hence, when we set the derivative of the function equal to 0, we are able to solve 
for the local maximum (i.e., by “local” we mean in a particular neighborhood of 
points). Likewise, we can also learn where a function attains a local minimum through 
a similar strategy, that of setting the derivative of the function equal to zero. This is 
one very common use of derivatives in science, that of finding maxima and minima of 
a variety of functions. Optimization algorithms often feature the search for such 
extrema. In structural equation modeling, for instance, Lagrangian multipliers are 
regularly used in maximizing functions subject to specific constraints. For a brief 
discussion, see Mulaik (2009, pp. 60–61). For a general discussion of optimization 
methods, refer to Meerschaert (2007, Chapter 3). 

2.9.14 The Integral 

If we let f be a continuous function on a closed interval �a; b�, then the definite integral 
of f from a to b is defined as 

b 

f �x�dx 
a 

The integrand is f �x�, the lower limit of integration is a, and the upper limit of 
integration is b. The definite integral represents the cumulative sum (the limit of 
Riemann sums) of the signed areas between the graph of f and the x-axis from x � a to 
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FIGURE 2.29 Area from a to b under the curve in normal distribution. 

x � b, where the areas above the x-axis are counted positively and the areas below the 
x-axis are counted negatively (see Figure 2.29, where only positive areas are shown). 

There is sometimes a misunderstanding that area can only be computationally 
positive, but the definition of the definite integral tells us different. In most statistics 
texts, the areas under the standard normal distribution are given in appendices. These 
areas were computed by integrating under the normal curve. Analogously, areas under 
the curves of other distributions such as t or F can be computed by integration. These 
areas under curves are then used to make statements about probability. Hence, even if 
one does not use integration in applied statistical work and research, it is important 
nonetheless to recognize where integration plays a role in determining probabilities in 
normal and other densities. 

2.9.15 Calculus in R 

Computing derivatives and integrals manually can at best be impractical and time 
consuming, and at worst, utterly exhausting. In this day of computing power, mental 
energy spent on computing derivatives is almost akin to doing long division before 
calculators became widely available. This is not to say that working through 
differentiation problems by hand is not a great exercise to help master technical 
skill, but being a “human computer” is a skill less and less required now that we have 
computing machines that do it far better than us with far better accuracy! Fortunately, 
we can compute derivatives in R. For example, suppose we wanted to compute the 
derivative of the polynomial function f �x� � 5x4. Through using the power rule, we 

´ know the derivative is equal to f �x� � 20x3. To perform this computation in R, we 
compute 

> D(expression(5*x^4), "x") 
5 * (4 * x^3) 

´ That is, the derivative of f �x� � 5x4 is f �x� � 5�4�x3 � 20x3. Integrals can also be 
computed in R and other software. See Crawley (2013, p. 339–340) for an example of 
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computing area under the curve and also for an example of computing a differential 
equation, which is an equation that contains one or more derivatives in it. These 
equations are quite common in areas such as biology and physics. Refer to Kline 
(1977, pp. 848–865) for a readable introduction. 

2.9.16 Vectors and Matrices 

Ordinary algebra is done on scalars, which are essentially “ordinary” numbers.11 For 
instance, in the linear equation y � bx � a, both the “inputs” and “outputs” of the 
function are scalars. Using scalars works well in one-dimensional data analysis, that 
is, where R is understood to be raised to the first power, R1. We denote higher 
dimensions and additional axes by raising R to higher powers. For instance, for pairs 
of observations �x; y� we are in the realm of R2. The set of ordered triples is denoted by 
R3. Theoretically, there is no limit to the number of dimensions in which we can work. 
In complex multivariate analysis for instance, we could be working in R7. And 
theoretically, a mathematician can work in as many dimensions as he or she chooses. 
These dimensions or “spaces” are usually referred to as Euclidean spaces. The 
number of dimensions a scientist works in, of course, will typically be dictated by the 
empirical context in which he or she is working. 

Most textbooks on multivariate analysis include either individual chapters or 
appendices on essential matrix theory. There are also many books that feature the 
study of matrix theory with applications to statistics. In addition to the brief 
introduction and overview we provide in Appendix A, some of the better sources 
for matrix algebra include Searle (1982) and Harville (1997). For a complete and very 
well-written introductory text on linear algebra and matrix operations the reader 
should refer to Anton and Rorres (2000). Strang (1993) is also a good reference. 

2.9.17 Why Vectors and Matrices? 
2When we work in higher dimensions such as R and R3, scalar algebra will not 

suffice, and we require a new notation to deal with these higher dimensions. 
Geometrically, a vector is simply a directed line segment on a Cartesian coordinate 
system. The end or tip of the vector denotes the joint coordinates for the given 
observation. For instance, consider the following vector v on variables x; y, respec
tively: 

1 
v � 

3 

The vector v represents the point (1, 3), and can be visualized in Figure 2.30. The 
vector denotes the “position” on these variables in the R2 plane. We adopt the 
convention to use small bold type to denote vectors. Collections of vectors that 

11A more precise and useful definition of a scalar in mathematics, especially as it relates to multivariate 
analysis, is that it is a quantity that multiplies vectors in a vector space. 
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FIGURE 2.30 Vector representation of point (1, 3). 

are closed under addition and multiplication are generally known as vector spaces in 
linear algebra. A subset of vectors in that space is referred to as a vector subspace. 

Let us now add another dimension z and include the point 5: 

1 
v � 3 

5 

Figure 2.31 denotes a visualization of this three-dimensional space. 
As an applied example, suppose we wanted to represent data on IQ (intelligence) 

and GPA (i.e., grade point average). We could then extend the vector to be 

100 3:8 
V � 90 3:6 

85 3:4 

where 100, 90, 85 are IQ scores, and 3.8, 3.6, 3.4 are GPA scores. 
Notice that we have changed the name of the “object” from v to V to denote what 

we call a matrix. A matrix is simply many vectors in an array. In general, we may 
denote a matrix A as 

a11 a12 ∙ ∙ ∙  a1p 

a21 a22 ∙ ∙ ∙  a2p
A � ... 

am1 

having m rows and p columns. 
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FIGURE 2.31 Point (1, 3, 5) in three-dimensional space. 

As in scalar algebra, we are able to add, subtract, and multiply vectors and 
matrices. Understanding a bit of how these operations work on matrices is important 
because it helps demystify somewhat what occurs in multivariate techniques such as 
multiple regression and principal components analysis (Chapter 14). We revisit these 
multidimensional ideas when we tackle those topics later on in the book. Again, for an 
immediate overview of these topics, see Appendix A. 

A vector may be elongated or shortened by multiplying that vector by a constant. 
For instance, consider once more the vector v: 

1 
v � 

3 

Suppose we wanted to maintain the direction of the vector, but make the vector 
longer by a factor of 2. To do this, we multiply the elements of the vector by the 
scalar 2: 

�2�1 2
2v � � �2�3 6 

which graphically, is depicted in Figure 2.32. 
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FIGURE 2.32 Multiplication of a vector by a scalar of 2. 

In general then, to influence the length of a vector v by a scalar λ, we multiply that 
vector element by element by the scalar: 

λ�v1� 
λv � λ�v2� 

λ�v3� 

For two vectors or matrices to be added or subtracted, they must be of the same 
dimension. That is, they must have the same number of rows and columns. For 
example, consider the vectors u and v: 

u1 v1 

u � ; v �u2 v2 

u3 v3 

Notice that both u and v are of the same dimension (3 rows, 1 column). To add these 
two vectors, we add element by element: 

u1 � v1 

u � v � u2 � v2 

u3 � v3 
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Likewise, to add matrices A and B, we add element by element: 

A � 
a11 a12 a13 

a21 a22 a23 

a31 a32 a33 

B � 
b11 b12 b13 

b21 b22 b23 

b31 b32 b33 

A � B � 
a11 � b11 a12 � b12 a13 � b13 

a21 � b21 a22 � b22 a23 � b23 

a31 � b31 a32 � b32 a33 � b33 

When multiplying matrices, say, A and C, the product AC is defined only for matrices 
for which the number of columns in A is equal to the number of rows in C. When the 
number of columns in the first matrix is equal to the number of rows in the second 
matrix, we say the matrices are conformable for multiplication. 

For example, let matrices A and C be defined as 

a11 a12 a13 c11 c12 

A � C �a21 a22 a23 c21 c22 

a31 a32 a33 c31 c32 

Notice that the number of columns in A is equal to the number of rows in C. That is, 
there are three columns in A and three rows in C. They are conformable for 
multiplication so long as we wish to generate the product AC. Notice that in this 
case, the product CA is not defined, since the number of columns in C (equal to 2) is 
not equal to the number of rows in A (equal to 3). 

To get the product AC, we carry on with multiplying each element in respective 
rows of A against each element in respective columns of C: 

a11 a12 a13 c11 c12 

AC � a21 a22 a23 c21 c22
 

a31 a32 a33
 c31 c32 

a11c11 � a12c21 � a13c31 a11c12 � a12c22 � a13c32 � a21c11 � a22c21 � a23c31 a21c12 � a22c22 � a23c32 

a31c11 � a32c21 � a33c31 a31c12 � a32c22 � a33c32 

2.9.18 Solving Systems of Linear Equations 

At a technical level, the estimation of parameters in many statistical models can be 
conceptualized as the solving of sets or systems of linear equations. Recall that a linear 
equation is of the form 

bx � ay � c (2.6) 
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where a and b are constants (or “coefficients” for x and y) and c is another constant. 
This is generally known as the standard form of a linear equation. The difference 
between equation (2.6) and the equation ordinarily given for a line, that of bx � a � y 
is that bx � ay � c has two unknowns it in (x and y), whereas bx � a � y has an 
unknown in only a single variable x. 

A set of linear equations can be given by the following: 

a11x1 � a12x2 � ∙ ∙ ∙  � a1nxn � b1 

a21x1 � a22x2 � ∙ ∙ ∙  � a2nxn � b2 (2.7) 
am1x1 � am2x2 � ∙ ∙ ∙  � amnxn � bm 

Written more compactly, the matrix equivalent of (2.7) is Ax � b. Many statistical 
problems, such as linear regression, boil down to solving for x given that A and b are 
known. A system of equations that has no solutions is referred to as inconsistent. If  
there is at least one solution, the system is called consistent. It is a fact of linear algebra 
that every system of linear equations has either no solution, only a single solution, or 
an infinite number of solutions. 

If the system is not consistent, one may nevertheless seek values for x that are a good 
approximation to the actual solution. A good approximation is that of least-squares. 
For a least-squares problem, the vector x will be called the least-squares solution. It is  
typically solved by computing an inverse for A ́ A, such that we have 

x � �A ́ A��1 �A ́ b� 
Ordinary least-squares is often the estimation method of choice for analysis of 
variance and regression models (see Chapter 8 for details). 

Solving simple systems of linear equations in R is easy. Consider the following 
system of two equations with unknowns in x and y: 

5x � 2y � 20 
8x � 6y � 31 

We can represent the above system in terms of matrix A and vector v: 

> A <- matrix(c(5, 8, 2, 6), nrow = 2) 
> A 

[,1] [,2] 
[1,] 5 2 
[2,] 8 6 
> v <- matrix(c(20, 31), nrow = 2) 
> v 

[,1] 
[1,] 20 
[2,] 31 
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To find solutions for x and y that will simultaneously satisfy both equations, we use 
the solve function: 

> solve(A, v) 
[,1] 

[1,] 4.1428571 
[2,] -0.3571429 

We can easily verify that x � 4:14 and y � �0:36 are solutions to the system. For 
the first equation, that of 5x � 2y � 20, we have 

> eq.1 <- 5*4.14 - 2*0.36 
> eq.1 
[1] 19.98 

For the second equation, that of 8x � 6y � 31, we have 

> eq.2 <- 8*4.14 -6*0.36 
> eq.2 
[1] 30.96 

We can see that within rounding error, our obtained solutions for x and y satisfy 
both equations. 

2.10 CHAPTER SUMMARY AND HIGHLIGHTS 

•	 Gaining an understanding of essential mathematics and probability is important 
for any work using or applying statistics to empirical problems. 

•	 The theory of sets, though studied for its own sake, is useful to the applied 
researcher in understanding the distinction between a sample and a population. 
Basic set operations such as unions and intersections are also important to 
master as they are the same tools used in elementary probability theory. 

•	 A mathematical relation is a subset of the Cartesian product. A function is a 
mathematical relation in which each element of the domain is paired with only 
one element of the range. 

•	 Sets of numbers include natural numbers, integers, rational numbers, and 
irrational numbers, among others. In typical data analysis, numbers are assumed 
to be real numbers (i.e., rational or irrational). 

•	 Probability is the language of uncertainty and is a deep philosophical topic. 
Though the mathematical theory of probability is well-defined and has been 
axiomatized, how to conceptualize probability is a more difficult problem. 
Traditional camps include the frequentist and subjectivist perspectives. 

•	 Virtually all of scientific endeavors, in one way or another, is about estimating 
conditional probabilities of interest. Scientists are usually not very interested in 
unconditional probabilities, but are much more interested in the probability of 
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events given certain specific conditions. Ideas of conditional probabilities 
pervade virtually all statistical methods. 

•	 Two events in probability are considered mutually exclusive or disjoint if the 
probability of their intersection is equal to zero. 

•	 Two events are statistically independent if the probability of one event does not 
alter or change the probability of the second event. A lack of independence, by 
itself, is not enough to substantiate a physical directional process. 

•	 The law of large numbers says that if an experiment is repeated many times under 
identical conditions, the relative frequency of the event will approach the true 
probability of the event as the numberof trials increases. In the limit, as sample size 
grows without bound, the true probability of the event is theoretically attainable. 

•	 The subjective interpretation of probability overcomes some of the logical 
difficulties with the law of large numbers and instead designates the probability 
of an event as one’s belief or opinion. 

•	 Bayes’ theorem is an equation used to invert probabilities and is useful 
in situations such as when diagnostic information is obtained as a sign that 
can inform us of the probability of disease. The theorem requires the specifying 
of a prior probability, which is sometimes considered controversial, but in many 
cases can be regarded as simply the base rate of the event in question for the 
given population under study. 

•	 Statistical inference is a process of drawing conclusions about parameters based 
on information provided by samples on which statistics are computed. 

•	 Deciding to reject a null hypothesis should ideally incorporate, even if 
informally, an estimate of the costs associated with making a wrong decision. 

•	 The vertical-line test can be used as a quick visual test to ascertain the existence 
of a function by its graph. 

•	 The idea of a limit in calculus is one of great historical and scientific importance 
because it laid the groundwork for the fields of differential and integral calculus. 
Limits concern themselves with the behavior of functions near particular points 
on a curve rather than the behavior of functions at those points. 

•	 One use of limits is in conceptualizing the process of integration in calculus. 
When we take the limit of areas under a curve, we are determining the area under 
that curve. The process is called Riemann integration. 

•	 Differential calculus concerns itself with the determination of the slopes of 
tangents at a given point on a curve. Like integration, differential calculus is 
heavily based on the limit concept. 

•	 The idea of continuity is that of drawing a line without lifting one’s pencil off 
the page. A more formal definition of continuity has been developed by 
mathematicians that make it more precise and exact. 

•	 For the research scientist, an understanding of continuity is important if for no 
other reason than to be able to recognize when his or her variables can be 
considered continuous or discrete for the purpose of statistical analysis. 

•	 Vectors and matrices are used to display data in higher than one dimension. 
Geometrically, vectors are directed line segments with both magnitude and 
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direction. Matrices are arrays of numbers. Vectors and matrices are needed in 
the study of multivariate methods in which one regularly works in greater than a 
single dimension. 

REVIEW EXERCISES 

2.1.	 Discuss the quote of Einstein given at the opening of this chapter: 

How can it be that mathematics, being after all a product of human thought which 
is independent of experience, is so admirably appropriate to the objects of 
reality? . . . As far as the laws of mathematics refer to reality, they are not 
certain, and as far as they are certain, they do not refer to reality. 

Specifically, why are the laws of mathematics, as they refer to reality, not 
certain? 

2.2.	 Define what is meant by a set in mathematics, and give a couple practical 
examples of sets. 

2.3.	 What might be the difficulty in defining the set of all beautiful clouds in the 
sky? Under what condition(s) could such a set exist, and under what conditions 
could such a set not exist? 

2.4.	 Distinguish between a subset and a proper subset. Under what condition(s) are 
they equal? 

2.5.	 Distinguish between the union of sets and the intersection of sets. 

2.6.	 Discuss the following notation with regard to the union of sets. Describe 
exactly what is specified. 

An 

2.7.	 Define what is meant by a Cartesian product, and then define what is meant by a 
mathematical relation on that Cartesian product. 

2.8.	 Distinguish between the natural numbers and the integers. 

2.9.	 Distinguish between a rational number and an irrational number. p
2.10.	 What makes the number 2 irrational? Can you think of another irrational 

number? 

2.11.	 Define what is meant by a population versus a sample in terms of sets. 

2.12.	 Define what is meant by an event in probability theory. 

2.13.	 Define what is meant by an experiment in probability theory. 

2.14.	 First, discuss what is meant by an axiom in mathematics, then give the three 
axioms of the theory of mathematical probability. 

3 

n�1 
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2.15.	 Why is it that even if two people disagree on how to define probabilities, they 
will still likely (though not always) agree with the axioms of probability and the 
mathematical theory on which probability is based? 

2.16.	 Compare and contrast an unconditional probability with a conditional one. 

2.17.	 Give a research example where the unconditional probability of an event would 
most likely be equal to the conditional probability of that event, and specify the 
condition you are imposing. 

2.18.	 Discuss how the idea of statistical independence arises from a consideration of 
the following conditional probability: 

p�A∩B� 
p�A=B� �

p�B� 
2.19.	 Define what is meant by mutual exclusiveness or to say two events are disjoint. 

2.20.	 Compare and contrast mutual exclusiveness with statistical independence. 
Specifically, why is it usually true that two events that are mutually exclusive 
cannot simultaneously be independent? 

2.21.	 Why is it that in practice, demonstrating a violation of independence is very 
difficult? For example, why is it that demonstrating that hiring practices are 
independent or dependent of race is a very difficult position to substantiate? 

2.22.	 Give a physical scenario in which the events heads and tails are mutually 
exclusive, and then one where these same two events are not mutually exclusive. 
How does the context matter in which we speak of mutual exclusiveness? 

2.23.	 Distinguish between the frequentist and subjectivist interpretations of proba
bility, and why the mathematical theory of probability cannot resolve the debate. 

2.24.	 What is often cited as a philosophical problem with the law of large numbers? 

2.25.	 Give an example where it would be virtually impossible to quantify probability 
using a frequentist approach and how a subjective version of probability would 
allow for such a quantification. 

2.26.	 Discuss what is meant by the following picture. Do you agree? Disagree? Why 
or why not? 
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2.27.	 Describe the overall purpose of Bayes’ theorem. How is it relevant in the 
overall scheme of things, especially as relatable to scientific practice? 

2.28.	 Discuss why the following statement is true: 

p�D=H� ≠ p�H=D� 
2.29.	 Discuss why prior probabilities needed to effectively use Bayes’ theorem can 

be somewhat controversial. Why might prior probabilities be difficult to 
estimate? 

2.30.	 How are base rates important in the estimation of probabilities? 

2.31.	 Outline a simple example (other than one featuring a coin) of statistical 
inference, clearly detailing the steps involved in the process. 

2.32.	 Distinguish between a type I and a type II error. How might one error be 
potentially no more problematic to make than the other? 

2.33.	 Discuss how ignoring the stakes involved in decision making (i.e., type I and 
type II error rates) inhibits one to make a truly rational and coherent decision 
regarding a hypothesis. 

2.34.	 Define what is meant by a polynomial in mathematics. 

2.35.	 Discuss the precise definition of a function in mathematics and why it can be 
said that functional statements are what virtually every science is about. 

2.36.	 Give three substantive examples of function statements from an area of 
investigation of your interest. 

2.37.	 Consider the equation f �x� � x2 � 3. Is it that of a function? Why or why not? 

2.38.	 Consider the equation x � y2. Is it that of a function? Why or why not? 

2.39.	 Explain how the vertical-line test is used to determine whether a given equation 
is or is not a function. 

2.40.	 Define what is meant by a rational function, and give an example of one. 

2.41.	 Define and discuss what is meant by a limit in calculus, and give an example 
using a linear function. 

2.42.	 Define what is meant by continuity in mathematics. Give three conditions that 
must exist for a function to be deemed continuous. Then, discuss how the 
concept of continuity is used in applied social science research. 

2.43.	 Discuss the nature of differential calculus. In a sentence or two, describe the 
goal and purpose of differential calculus. 

2.44.	 What is a derivative in calculus, and state one popular use of derivatives in 
calculus and in science in general. 
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2.45.	 What is an integral in calculus, and state one popular use of integrals in calculus 
and in science in general. 

2.46.	 Define what is meant by a vector in mathematics. What is a matrix? Why and 
how are these useful in applied statistics and methodology? 

Further Discussion and Activities 

2.47.	 The base-rate fallacy generally refers to individuals’ failure to incorporate base 
rate information into probability estimates. Read Bar-Hillel, M. (1980) and 
discuss the nature of the problem and some of the causes of the phenomenon. 

2.48.	 Calculus originated largely in the context of physical applications and was 
marveled mostly for its utility in addressing problems in areas of physics, 
astronomy, etc. It was only after calculus was deemed a success did mathe
maticians begin to investigate the logical foundations on which it was based, 
and to their alarm, discovered such a basis to be lacking. It was mathematicians 
in the eighteenth century who undertook the job of putting calculus on a 
rigorous footing. The new field became known as analysis. Concepts in this 
field are essentially deeper looks at the logical basis on which calculus is built. 
A brief overview of the origins of so-called “rigorous calculus” is given by 
historian of science Grabiner (1983). Read this paper and briefly discuss and 
summarize many of the features that distinguish calculus from analysis. 

2.49.	 In the chapter we briefly discussed the difficulties in arriving at probability 
estimates. If a meteorologist reports that the probability of rain is equal to 0.70, 
the question you must ask is: How is such an estimate computed? Is it a 
rationally-derived probability? Is it enough to feel assured that it is being 
computed by an “expert” in the field and thus must be correct? A more 
interesting example is the probability of the so-called “Big One” earthquake in 
California. Apparently, experts predict that California has a 0.997 probability 
of a magnitude 6.7 earthquake or higher in the next 30 years or so. You can read 
the media report on the Web site of the Southern California Earthquake Center 
(http://www.scec.org/ucerf2/). The precise probability estimates are > 0.99 for 
a 6.7 magnitude quake, 0.94 for a 7.0, 0.46 for a 7.5, and 0.04 for a 8.0 
magnitude quake. You may not be an expert in geography or seismology, but 
you should be a critical consumer of scientific reports such as this. What kinds 
of questions might you ask about these probability estimates? How do you 
think they were derived? Could the manner in which they were derived make 
them more or less accurate and/or rigorous? 

http://www.scec.org/ucerf2/
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INTRODUCTORY STATISTICS
 

In spite of the immense amount of fruitful labour which has been expended in its 
practical applications, the basic principles of this organ of science are still in a state of 
obscurity, and it cannot be denied that, during the recent rapid development of practical 
methods, fundamental problems have been ignored and fundamental paradoxes left 
unresolved. 

(Fisher, 1922, p. 310) 

Our statistics review includes topics that would customarily be seen in a first course 
in statistics at the undergraduate level, but depending on the given course and what 
was emphasized by the instructor, our treatment here may be at a slightly deeper 
level. We review these principles with demonstrations in R where appropriate. As 
was true for the mathematics review of the previous chapter, should any of the 
following material come across as entirely “new,” then a review of any introductory 
statistics text is recommended. Kirk (2008), Moore, McCabe, and Craig (2014), and 
Box, Hunter, and Hunter (1978) are relatively nontechnical sources, whereas 
Degroot and Schervish (2002), Wackerly, Mendenhall, and Scheaffer (2002) 
and Evans and Rosenthal (2010) are much deeper and technically dense in 
coverage. Casella and Berger (2002), Hogg and Craig (1995), and Shao (2003) 
are much higher level theoretically oriented texts intended mainly for mathematical 
and theoretical statisticians. Other sources include Panik (2005), Berry and 
Lindgren (1996), and Rice (1995). For a lighter narrative on the role of statistics 
in social science, refer to Abelson (1995). 

www.wiley.com/go/denis/appliedmultivariatestatistics
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Because of its importance in the interpretation of evidence, we close the chapter 
with an easy but powerful demonstration of what makes a p-value small or large in the 
context of statistical significance testing and the testing of null hypotheses. It is 
imperative that as a research scientist, you are knowledgeable of this material before 
you attempt to evaluate any research findings that employ statistical inference. 

3.1 DENSITIES AND DISTRIBUTIONS 

When we speak of density as it relates to distributions in statistics, we are referring 
generally to theoretical distributions having area under their curves. There are 
numerous probability distributions or density functions. Empirical distributions, on 
the other hand, rarely go by the name of densities. They are in contrast “real” 
distributions of real empirical data. In some contexts, the identifier normal distribu
tion may be given without indicating whether one is referring to a density or to an 
empirical distribution. It is usually evident by the context of the situation which we are 
referring to. We survey only a few of the more popular densities and distributions in 
our discussion that follows. 

The univariate normal density is given by 

1 ��xi �μ�2 =2σ2f �xi; μ; σ2� � p e
2πσ2 

where 
• μ is the population mean for the given density, 

• σ2 is the population variance, 

• π is a constant of approximately 3.14, 

• e is a constant of approximately 2.71, 

• xi is a given value of the independent variable, assumed to be a real number. 

When μ is 0 and σ2 is 1, which implies that the standard deviation (SD) σ is also p
equal to 1 (i.e., σ2 � σ � 1), the normal distribution is given a special name. It is 
called the standard normal distribution, and can be written more compactly as 

1 1 1��xi �μ�2 =2σ2 ��xi�0�2 =2�1� � �xi =2f �xi; μ; σ2� � p e � p e p e
2 

2πσ2 2π�1� 2π 
(3.1)2 2 

e�xi =2 ��1=2�xie� p � p
2π 2π 

��xi �μ�2 =2σ2 ��xi�0�2Notice that in (3.1), e � e =2�1�, where μ is now 0 and σ2 is now 1. Note 
as well that the density depends only on the absolute value of xi, because both xi and 

2�xi give the same value xi ; the greater is xi in absolute value, the smaller the density at 
2that point, because the constant e is raised to the negative power �xi =2. 
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FIGURE 3.1 Standard normal distribution with shaded area from �1 to  +1 standard deviations 
from the mean. 

The standard normal distribution is the classic z-distribution whose areas under 
the curve are given in the appendices of most statistics texts, and are more 
conveniently computed by software. An example of the standard normal is featured 
in Figure 3.1. 

Scores in research often come in their own units, with distributions having means 
and variances different from 0 and 1. We can transform a score coming from a given 
distribution with mean μ and standard deviation σ by the familiar z-score: 

xi � μ 
z �

σ 

A z-score is expressed in units of the standard normal distribution. For example, a 
z-score of +1 denotes that the given raw score lay one standard deviation above the 
mean. A z-score of �1 means that the given raw score lay one standard deviation 
below the mean. In some settings (such as school psychology), t-scores are also 
useful, having a mean of 50 and standard deviation of 10. In most contexts, however, 
z-scores dominate. 

A classic example of the utility of z-scores typically goes like this. Suppose two 
sections of a statistics course are being taught. John is a student in section A and 
Mary is a student in section B. On the final exam for the course, John receives a raw 
score of 80 out of 100 (i.e., 80%). Mary, on the other hand, earns a score of 70 out of 
100 (i.e., 70%). At first glance, it may appear that John was more successful on his 
final exam. However, scores, considered absolutely, do not allow a comparison of 
each student’s score relative to their class distributions. For instance, if the mean in 
John’s class was equal to 85% with a standard deviation of 2, this means that John’s 
z-score is 

xi � μ 80 � 85 
z � � � �2:5 

σ 2 
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Suppose that in Mary’s class, the mean was equal to 65% also with a standard 
deviation of 2. Mary’s z-score is thus 

xi � μ 70 � 65 
z � � � 2:5 

σ 2 

As we can see, relative to their particular distributions, Mary greatly outperformed 
John. Assuming each distribution is approximately normal, the density under the 
curve for a normal distribution with mean 0 and standard deviation of 1 at a score of 
2.5 is 

> dnorm(0, 1, 2.5) 
[1] 0.1473081 

where dnorm is the density under the curve at 2.5. This is the value of f �x� at the score 
of 2.5. What then is the probability of scoring 2.5 or greater? To get the cumulative 
density up to 2.5, we compute 

> pnorm(2.5) 
[1] 0.9937903 

The given area is represented in Figure 3.2. The area we are interested in is that at 
or above 2.5 (the area where the arrow is pointing). Since we know the area under the 
normal density is equal to 1, we can subtract pnorm(2.5) from 1: 

> 1-pnorm(2.5) 
[1] 0.006209665 

We can see then the proportion of students scoring higher than Mary is in the margin 
of approximately 0.6% (multiply the proportion by 100). 

FIGURE 3.2 Shaded area under the standard normal distribution at a z-score of up to 2.5 
standard deviations. 
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What proportion of students scored better than John in his class? Recall that his 
z-score was equal to �2.5. Because we know the normal distribution is symmetric, 
we already know the area lying below �2.5 is the same as that lying above 2.5. 
This means that approximately 99.38% of students scored higher than John. 
Hence, we see that Mary drastically outperformed her colleague when we 
consider their scores relative to their classes. Be careful to note that in drawing 
these conclusions, we had to assume each score (that of John’s and  Mary’s) came 
from a normal distribution. The mere fact that we transformed their raw scores to 
z-scores in no way normalizes their raw distributions. Standardization standard
izes, but it does not normalize. 

One can also easily verify that approximately 68% of cases in a normal distribution 
lie between �1 and +1 standard deviations, while approximately 95% of cases lie 
between �2 and +2 standard deviations. 

3.1.1 Plotting Normal Distributions 

We can plot normal densities in R by simply requesting the lower and upper limits on 
the abscissa: 

> x  <- seq(from = -3, to = +3, length.out = 100) 
> plot(x, dnorm(x)) 

Distributions (and densities) of a single variable often go by the name of univariate 
distributions to distinguish them from distributions of two (bivariate) or more 
variables (multivariate). 

For example, we consider some of Galton’s data on parent and child heights (the 
height of the children were measured when they were adults, not actual toddlers). 
Some of Galton’s data appear below, retrieved from the HistData package 
(Friendly, 2014) in R: 
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> library(HistData) 
> attach(Galton) 

> Galton 
parent child 

1 70.5 61.7 
2 68.5 61.7 
3 65.5 61.7 
4 64.5 61.7 
5 64.0 61.7 
6 67.5 62.2 
7 67.5 62.2 
8 67.5 62.2 
9 66.5 62.2 
10 66.5 62.2 

The library statement in R loads the package HistData. From there, we 
attach the Galton data to include the object in R’s workspace. We generate a 
histogram of parent height: 

> hist(parent, main = "Histogram of Parent Height") 

One can overlay a normal density over an empirical plot to show how closely 
observed data match that of a theoretical normal distribution, as was done by Fisher in 
1925 displaying a distribution of heights of 1375 women (see Figure 3.3, taken from 
Classics in the History of Psychology1). R.A. Fisher is usually regarded as the father 
of modern statistics and among his greatest contributions was the publication of 

1Classics in the History of Psychology is an online educational resource hosted by Christopher D. Green of 
York University in Toronto, Canada. It contains a huge selection of milestone papers and articles in the 
history of psychology. It can be accessed at http://psychclassics.yorku.ca/ 

http://psychclassics.yorku.ca/
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FIGURE 3.3 Fisher’s overlay of normal density on empirical observations (Fisher, 1925). 

Statistical Methods for Research Workers in 1925 in which he discussed such topics 
as tests of significance, correlation coefficients, and the analysis of variance. 

We can see that the normal density serves as a close, and very convenient, 
approximation to empirical data. Indeed, the normal density has figured prominent in 
the history of statistics largely because it serves as a useful model for many 
phenomena, and also because it provides a very convenient starting point for 
much work in theoretical statistics. Oftentimes the assumption of normality will 
be invoked in a derivation because it makes the problem simpler and easier to solve. 

3.1.2 Binomial Distributions 

The binomial distribution is given by 

n 
p�r� �  pr �1 � p�n�r 

r 

n!� pr �1 � p�n�r 
r!�n � r�! 

where 
• p�r� is the probability of observing r occurrences out of n possible occurrences,2 

• p is the probability of a “success” on any given trial, and 

•	 1 � p is the probability of a failure on any given trial, often simply referred to by 
q (i.e., q � 1 � p). 

2We can also extend the binomial distribution to one in which instead of n trials giving rise to r occurrences, 
we have n trials giving rise to outcomes in k categories: 

n! x1	 x2 xkp�x� � p�x1; x2; . . . ; xk� �  p ∙ ∙ ∙ p1 p2 kx1!x2! ∙ ∙ ∙ xk !

´ where x is now a vector of random variables x � �x1; x2; . . . ; xk� . 
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The binomial setting provides an ideal context to demonstrate the essentials of 
hypothesis testing logic. In a binomial setting, the following conditions must hold: 

•	 The variable under study must be binary in nature. That is, the outcome of the 
experiment can result in only one category or another. For instance, the flipping 
of a coin has this characteristic, because the coin can either come up “head” or 
“tail” and nothing else (yes, we are ruling out the possibility that it lands on its 
side, and I think it is safe to do so). 

•	 The probability of a “success” on each trial remains constant (or stationary) 
from trial to trial. For example, if the probability of head is equal to 0.5 on our 
first flip, we assume it is also equal to 0.5 on the second, third, fourth flips, and 
so on. 

•	 Each trial is independent of each other trial. That is, the fact that we get a head on 
our first flip of the coin in no way changes the probability of getting a head or tail 
on the next flip, and so on for the other flips. 

We can easily demonstrate hypothesis testing in a binomial setting using R. For 
instance, let us return to the coin-flipping experiment. Suppose you would like to 
know the probability of obtaining two heads on five flips of a fair coin, where each flip 
is assumed to have a probability of heads equal to 0.5. In R, we can compute this as 
follows: 

> dbinom(2, size = 5, prob = 0.5) 
[1] 0.3125 

where dbinom calls the “density for the binomial,” “2” is the number of successes we 
are specifying, “size = 5” represents the number of trials we are taking, and “prob = 0.5” 
is the probability of success on any given trial, which recall is assumed constant 
from trial to trial. 

Suppose instead of two heads, we were interested in the probability of obtaining 
five heads: 

> dbinom(5, size = 5, prob = 0.5) 
[1] 0.03125 

Notice that the probability of obtaining five heads out of five flips on a fair coin is 
quite a bit less than that of obtaining two heads. We can continue to obtain the 
remaining probabilities and get the complete binomial distribution for this 
experiment: 

Heads 0 1 2 3 4 5 

Prob 0.03125 0.15625 0.3125 0.3125 0.15625 0.03125 1:0 

A plot of this binomial distribution is given in Figure 3.4. 
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FIGURE 3.4 Binomial distribution for the probability of the number of heads on a fair coin. 

1 

i�1 

Suppose that instead of wanting to know the probability of getting two heads out of 
five flips, we wanted to know the probability of getting two or more heads out of five 
flips. Because the events 2 heads, 3 heads, 4 heads, and 5 heads are mutually exclusive 
events, we can add their probabilities by the probability rule featured in Chapter 2 that 

said p�∪1 
1Ai� �  p�Ai�: 0.3125 + 0.3125 + 0.15625 + 0.03125 = 0.8125. Hence, i�

the probability of obtaining two or more heads on a fair coin on five flips is equal 
to 0.8125. 

Binomial distributions are useful in a great variety of contexts in modeling a wide 
number of phenomena. But again, remember that the outcome of the variable must be 
binary, meaning it must have only two possibilities. If it has more than two 
possibilities or is continuous in nature (see Section 2.9.8), then the binomial 
distribution is not suitable. Binomial data will be featured further in our discussion 
of logistic regression in Chapter 11. 

One can also appreciate the general logic of hypothesis testing through the 
binomial. If our null hypothesis is that the coin is fair, and we obtain five heads 
out of five flips, this result has only a 0.03125 probability of occurring. Hence, 
because the probability of these data is so low under the model that the coin is fair, we 
decide to reject the null hypothesis and infer the statistical alternative hypothesis that 
p�H� ≠ :5. Substantively, we might infer that the coin is not fair, though this 
substantive alternative also assumes it is the coin that is to “blame” for it coming 
up five times heads. If the flipper was responsible for biasing the coin, for instance, or 
a breeze suddenly came along that helped the result occur in this particular fashion, 
then inferring the substantive alternative hypothesis of “unfairness” may not be 
correct. Perhaps the nature of the coin is such that it is fair. Maybe the flipper or other 
factors (e.g., breeze) are what are ultimately responsible for the rejection of the null. 
This is one reason why rejecting null hypotheses is quite easy, but inferring the correct 
substantive alternative hypothesis (i.e., the hypothesis that explains why the null was 
rejected) is much more challenging (see Denis, 2001). As concluded by Denis, 
“Anyone can reject a null, to be sure. The real skill of the scientist is arriving at the true 
alternative.” 
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The binomial distribution is also well-suited for comparing proportions. For details 
on how to run this simple test in R, see Crawley (2013, p. 365). One can also use 
binom.test in R to test simple binomial hypotheses, or the prop.test for 
testing null hypotheses about proportions. A useful test that employs binomial 
distributions is the sign test (see Siegel and Castellan, 1988, pp. 80–87 for details). 

3.1.3 Normal Approximation 

Many distributions in statistics can be regarded as limiting forms of other distribu
tions. What this statement means can be best demonstrated through an example of 
how the binomial and normal distributions are related. When the number of discrete 
numbers along the x-axis grows larger and larger, the areas under the binomial 
distribution more and more resemble the probabilities computed under the normal 
curve. It is in this sense that for a large number of trials on the binomial, it begins to 
more closely approximate the normal distribution. 

As an example, consider once again the binomial distribution for n � 5, p � 0:5, 
but this time with a normal density overlaying the binomial (Figure 3.5). 

We can see that the normal curve “approximates” the binomial distribution, though 
perhaps not tremendously well for only five trials. If we increase the number of trials 
however, to say, 20, the approximation is much improved. And when we increase the 
number of trials to 100, the binomial distribution looks virtually like a normal density. 
That is, we say that the normal distribution is the limiting form of the binomial 
distribution. 

We can express this idea more formally. If the number of trials n in a binomial 
experiment is made large, the distribution of the number of successes x will tend to 
resemble a normal distribution. That is, the normal distribution is the limiting form of 
a binomial distribution as n ! 1 for a fixed p (and where q � 1 � p), where E�xi� is 
the expectation of the random variable xi (the meaning of which will be discussed 
shortly): 

xi � μ xi � E�xi� xi � np 
z � $ zm � $ zm � p

σ σ npq

FIGURE 3.5 Binomial distributions approximated by normal densities for 5 (far left), 
20 (middle), and 100 trials (far right). 
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Notice that in a z-score calculation using the population mean μ, in the numerator, we 
are actually calculating the difference between the obtained score and the expectation, 
E�xi�. We can change this to a binomial function by replacing the expectation μ with 
the expectation from a binomial distribution, that is, np, where np is the mean of a 
binomial distribution. Similarly, we replace the standard deviation from a normal p
distribution with the standard deviation from the binomial distribution, npq. As  
n grows infinitely large, the normal and the binomial probabilities become identical 
for any standardized interval.3 

3.1.4 Joint Probability Densities: Bivariate and Multivariate Distributions 

A univariate density expresses the probability of a single random variable within a 
specified interval of values along the abscissa. A joint probability density, analo
gous to a joint probability, expresses the probability of simultaneously observing 
two random variables over a given interval of values. The bivariate normal density 
is given by 

1 
f �x1; x2� �  p


2πσ1σ2 1 � ρ2
 

1 �x1 � μ1�2 �x1 � μ1��x2 � μ2� �x2 � μ2�2 

� exp � � 2ρ � 
σ2 σ22�1 � ρ2� 1 σ1σ2 2 

where ρ2 is the squared Pearson correlation coefficient between x1 and x2. 
When plotted, the bivariate density resembles a pile of raked leaves in the Autumn. 

A plot generated in R is given in Figure 3.6. 

FIGURE 3.6 Bivariate density.4 

3For a more technical demonstration of how and why this convergence occurs, see Proschan (2008). 
4Code for this plot was retrieved from https://stat.ethz.ch/pipermail/r-help/2003-September/038314.html 

https://stat.ethz.ch/pipermail/r-help/2003-September/038314.html
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Empirical bivariate distributions (as opposed to bivariate densities) are those 
showing the joint occurrence on two variables. For instance, again using Galton’s 
data, we plot parent height by child height, in which we also fit both regression lines 
(see Chapter 8) using lm: 

> plot(parent, child, main = "Bivariate Plot of Parent and Child
 
Height")
 
> abline(lm(parent∼child))
 
> abline(lm(child∼parent))
 

Note the relation between parent height and child height. Recall that a mathemati
cal relation is a subset of the Cartesian product. The Cartesian product in the plot 
consists of all theoretically possible parent–child pairings. The fact that shorter than 
average parents tend to have shorter than average children and taller than average 
parents tend to have taller than average children reveals the linear form of the 
mathematical relation. In the plot are regression lines for child height as a function of 
parent height and parent height as a function of child height. Computing both the 
mean of child and of parent, we get 

> mean(child) 
[1] 68.08847 
> mean(parent) 
[1] 68.30819 

Notice that both regression lines, as they are required to do whatever the empirical 
data, pass through the means of each variable. The reason for this will become clearer 
in Chapter 8. 
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FIGURE 3.7 A 3D scatterplot with density contour and points.5 

Turning now to multivariate distributions, the multivariate density is given by 

1 ��x�μ�´ Σ�1 �x�μ�=2g�xi� � p �p 1=2 
e� 2π jΣj

where p is the number of variables and jΣj is the determinant of the population 
covariance matrix, which can be taken as a measure of generalized variance since it 
incorporates both variances and covariances. Multivariate distributions represent the 
joint occurrence of three or more variables, and thus are quite difficult to visualize. 
One way, however, of representing a density in three-dimensions is attempted in 
Figure 3.7. 

Most multivariate procedures make some assumption regarding the multivariate 
normality of sampling distributions. Evaluating such an assumption is intrinsically 
difficult due to high dimensionality of the data. The best researchers can usually do is 
attempt to verify univariate and bivariate normality through such devices as histo
grams and scatterplots. Fortunately, as is the case for methods assuming univariate 
normality, multivariate procedures are relatively robust to violations. Though Mar
dia’s test (Mardia, 1970) is favored by some (Romeu and Ozturk, 1993), no single 
method for evaluating multivariate normality appears to be fully adequate. Visual 
inspections of Q–Q plots (to be discussed) are usually sufficient for applied purposes. 

5Image taken from http://www.jmp.com/support/help/Scatterplot_3D_Platform_Options.shtml 

http://www.jmp.com/support/help/Scatterplot_3D_Platform_Options.shtml
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In cases where rather severe departures of normality exist, one may also choose to 
perform data transformations on the “offending” variables to better approximate 
normal distributions. However, it should be kept in mind that sometimes a severely 
nonnormal distribution can be evidence more of a scientific problem than sympto
matic of a statistical issue. For example, if we asked individuals in a sample how many 
car accidents they got into this month, the vast majority of our responses would 
indicate a count of “0.” Is the distribution skewed? Yes, but this is not a statistical 
problem, it is a substantive one. We would likely not even have sufficient variability 
in our measurement responses to conduct any meaningful analyses since probably 
close to 100% of our sample will respond with “0.” If virtually everyone in your 
sample responds with a constant, then one might say the very process of measure
ment may have been a failure. The difficulties presented in subjecting that data to 
statistical analyses should be an afterthought, second in priority to the more 
pressing scientific issue. 

3.2 CHI-SQUARE DISTRIBUTIONS AND GOODNESS-OF-FIT TEST 

The chi-square distribution is given by 

1 ��v=2��1� �x=2f �x� �  x e
2v=2Γ�v=2� 

for x > 0, where v are degrees of freedom and Γ is the gamma function.6 The chi-
square distribution of a random variable is also equal to that of the sum of squares of n 
independent and normally distributed z-scores. That is, 

n n �xi � μ�2 
2χ2 � zi � n σ2 

i�1 i�1 

6For details on the gamma function, see Degroot and Schervish (2002, p. 295). A plot of the gamma function 
appears as follows (see Crawley, 2013, p. 264, for the R code): 
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TABLE 3.1 Contingency Table for 2 × 2 Design 

Condition Present (1) 

Exposure yes (1) 20 
Exposure no (2) 5 

Total 25 

Condition Absent (0) 

10 
15 

25 

Total 

30 
20 

50 

The chi-square distribution plays an important role in mathematical statistics and is 
associated with a number of tests on model coefficients in a variety of statistical 
methods. The multivariate analog to the chi-square distribution is that of the Wishart 
distribution, not discussed here (see Rencher, 1998, p. 53). 

The chi-square goodness-of-fit test is one such statistical method that uses the chi-
square test statistic to evaluate the tenability of a null hypothesis. Recall that such a 
test is suitable for categorical data in which counts (i.e., instead of means, medians, 
etc.) are computed within each cell of the design. The goodness-of-fit test is given by 

r c 

χ2 � �Oi � Ei�2 =Ei 
i�1 j�1 

where Oi and Ei represent observed and expected frequencies, respectively, summed 
across r rows and c columns. 

As a simple example, consider hypothetical data (Table 3.1), where the frequencies of 
those exposed to something adverse are related to whether a condition is absent or present. 
If you are a clinical psychologist, then you might define exposure as, perhaps, a variable 
such as combat exposure, and condition as posttraumatic stress disorder. 

The null hypothesis is that the 50 counts making up the entire table are randomly 
distributed across each of the cells. We can easily test this hypothesis in SPSS by 
weighting the relevant frequencies by cell total: 

WEIGHT BY Frequency. 
CROSSTABS 

/TABLES=Condition BY Exposure 
/FORMAT=AVALUE TABLES 
/STATISTICS=CHISQ 
/CELLS=COUNT 
/COUNT ROUND CELL. 
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The output follows in which it is first confirmed that we set up our data file correctly:
 

Exposure ∗ Condition Crosstabulation 

Count 

Condition Total 

Exposure 

Total 

1.00 
2.00 

1.00 
20 
5 
25 

0.00 
10 
15 
25 

30 
20 
50 

We focus on the Pearson chi-square test value of 8.3 on a single degree of freedom. 
It is statistically significant (p = 0.004), and hence we can reject the null hypothesis of 
no association between condition and exposure group. 

Chi-square Tests 

Value df 
Asymp. Sig. 
(two-sided) 

Exact Sig. 
(two-sided) 

Exact Sig. 
(one-sided) 

Pearson chi-square 
Continuity correctionb 

Likelihood ratio 

8.333a 

6.750 
8.630 

1 
1 
1 

0.004 
0.009 
0.003 

Fisher’s exact test 0.009 0.004 
Linear-by-linear association 
No. of valid cases 

8.167 
50 

1 0.004 

a0 cells (0.0%) have expected count less than 5. The minimum expected count is 10.00. 
bComputed only for a 2 × 2 table. 

In addition to concluding an association between group and condition, we can state 
a lot more about these data. For instance, the odds are defined as 

p
 
1 � p
 

where p is the probability of a “success” and 1 � p is the probability of “failure.” For 
our data, we can conclude the following: 

•	 Given that you have been exposed (1), the odds of the condition being present 
are 20/30 to 10/30 = 2.00. 

•	 Given that you have not been exposed (2), the odds of the condition being 
present are 5/20 to 15/20 = 0.33. 

•	 Being exposed makes it 2/0.33 = 6 times more likely for the condition to be present 
vs. absent than not being exposed. This is the odds ratio comparing odds for those 



94 INTRODUCTORY STATISTICS 

exposed to odds for those not exposed. We discuss odds ratios more extensively 
in Chapter 11. 

The relative risk is computed as the ratio of p for exposure yes to p for exposure no. 
It is a measure of association to aid in assessing exposure to a condition and risk 
associated with a particular outcome. A relative risk of 1.0 indicates independence. 
For our data, it is equal to 0.66/0.25 = 2.64. The number of 2.64 indicates that a person 
who has been exposed is 2.64 times as likely to have the condition present as someone 
who has not been exposed. The odds ratio can also be related to relative risk (see 
Agresti, 2002, p. 47). 

In R, we can easily perform the chi-square test on these data. We first build the 
matrix of cell counts, calling it diag.table: 

> diag.table <- matrix(c(20, 5, 10, 15), nrow = 2) 
> diag.table 

[,1] [,2] 
[1,] 20 10 
[2,] 5 15 

> chisq.test(diag.table, correct = F) 

Pearson’s Chi-squared test 

data: diag.table 
X-squared = 8.3333, df = 1, p-value = 0.003892 

We see that the result in R agrees with what we obtained in SPSS. Note that 
specifying correct = F (correction = false) negated what is known as Yates’ 
correction for continuity, which involves subtracting 0.5 from positive differences in 
O � E and adding 0.5 to negative differences in O � E in an attempt to better make the 
chi-square distribution approximate that of a multinomial distribution (i.e., in a loose 
sense, to help make discrete probabilities more continuous). To adjust for Yates, we 
can either specify correct = T or simply chisq.test(diag.table), which 
will incorporate the correction. With the correction implemented, our p-value 
increases from 0.003 to 0.009 (not shown). We notice that this adjustment parallels 
that made in SPSS by adjusting for continuity. When expected counts per cell are 
relatively small (a working rule is that they should be at least five in each cell), one can 
also request Fisher’s exact test (see Fisher, 1922a), which we note also mirrors the 
output generated by SPSS: 

> fisher.test(diag.table) 

Fisher’s Exact Test for Count Data 

data: diag.table 
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p-value = 0.008579 
alternative hypothesis: true odds ratio is not equal to 1 
95 percent confidence interval: 
1.466377 26.597383 

sample estimates: 
odds ratio 

To visualize findings, we can produce what is known as a mosaic plot (a) and an 
association plot (b) for our analyzed frequency data: 

> mosaicplot(diag.table, main = "Condition x Exposure") 
> assocplot(diag.table, main = "Condition x Exposure") 

The mosaic plot displays the relevant frequencies by associated areas in each 
rectangle proportional to their cell totals. For instance, the cell in row 1, column 1 is 
represented with much area since it comprises a substantial frequency of the column 
and row totals. The frequency of 15 is represented in the lower right of the mosaic (a), 
also denoting a substantial proportion. The association plot (b) communicates 
deviation from independence. In the case of complete independence, the plot would 
consist simply of two horizontal dotted lines. For the current data in which there is a 
lack of independence, cells with observed frequencies greater than expected are 
indicated by areas rising above the line (e.g., cells in row 1, column 1, and row 2, 
column 2), while cells with observed frequencies less than expected are indicated by 
areas falling below the line (e.g., cells in row 2, column 1 and row 1, column 2). For 
further details on these plots, see Friendly (1991, 2000). 

One can also generate what is known as a fourfold plot, available in the vcd package 
in R (Meyer, Zeileis, and Hornik, 2014). Frequencies (and confidence rings, see 
Friendly, 2000, p. 75) are given in each quadrant, also reflected by their respective 
areas, with odds ratio equal to 20(15)/10(5) = 6. 

> library(vcd) 
> fourfold(diag.table) 
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Other useful statistics for contingency tables include the phi coefficient and 
Cramer’s V. Phi, ϕ is a measure of association for 2 × 2 contingency tables, computed as 

χ2 
ϕ � 

n 

where χ2 is the chi-square statistic calculated on the 2 × 2 table and n is the total sample 
size. The maximum ϕ can attain is 1.0, indicating maximal association. ϕ can be 
computed inSPSS by/statistics = phi and is available in Rin the psych package 
(Revelle, 2015). Cramer’s ϕc extends on ϕ in that it allows for contingency tables of 
greater than 2 × 2. It is included in the /statistics = phi command and is also 
available in R’s psych package. It is given by 

χ2 
ϕc � 

n�k � 1� 
where k is the minimum of the number of rows or columns. The relationship between ϕc 
and ϕ is easily shown for k � 2: 

χ2 χ2 
ϕc � � � ϕ 

n�2 � 1� n 

3.2.1 Power for Chi-Square Test of Independence 

We can estimate power7 and required sample size for the chi-square test of 
independence using the package pwr (Champely, 2014) in R: 

> library(pwr)
 
> pwr.chisq.test (w =, N  =, df  =, sig.level =, power =)
 

7Power will be discussed later in this chapter. 
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where w is the anticipated or required effect size, estimated as 

m �p0i � p1i�2 

w � 
i�1 

p0i 

and p0i and p1i are the probabilities in a given cell i under the null and alternative 
hypotheses, respectively. We demonstrate by estimating power for w = 0.2: 

> pwr.chisq.test(w = 0.2, N =, df  = 5, sig.level = .05, power = 0.90) 

Chi squared power calculation 

w = 0.2 
N = 411.7366 

df = 5 
sig.level = 0.05 

power = 0.9 
NOTE: N is the number of observations 

R estimates that a total of approximately 411 subjects are required to achieve 
power set at 0.90. Such a large sample is required because w = 0.2 constitutes a 
relatively small effect size (see Cohen (1988) for details). 

The reader may ask at this point how one might go about analyzing data for higher 
dimensional frequency tables. The example for the chi-square test of the data in 
Table 3.1 is only for that of a 2 × 2 layout. Suppose we added a third factor to our 
analysis, such as gender, making our contingency table appear as in Table 3.2. 

For data such as that in Table 3.2 featuring higher-dimensional frequency data, log-
linear models are appropriate (Agresti, 2002). Log-linear models are an option in the 
wider class of generalized linear models, to be discussed further in Chapter 11, where 
we discuss in some detail a special case of the generalized linear model called the 
logistic regression model. 

TABLE 3.2 Contingency Table for 2 × 2 × 2 Design 

Exposure Condition Absent (0) Condition Present (1) Total 

Males 

Females 

Yes 
No 
Yes 
No 

10 
15 
13 
12 

20 
5 

17 
8 

30 
20 
30 
20 

Total 50 50 100 
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TABLE 3.3 Contingency Table for 2 × 2 Diagnostic Design 

Disease Yes 

Diagnosis Yes 

20 

Diagnosis No 

10 

Total 

30 

Disease No 5 15 20 

Total 25 25 50 

3.3 SENSITIVITY AND SPECIFICITY 

Sensitivity and specificity are measures historically used in diagnostic situations but 
can be applied in other contexts as well. We can easily adapt the data in Table 3.1 to 
suit a brief discussion of these measures. We keep the same cell frequencies, but 
modify variable names so that the data become a bit more applicable to a discussion of 
sensitivity and specificity (see Table 3.3). 

The sensitivity of the diagnostic instrument is the probability that the test is 
positive given that the individual has the disease. In the margins we see that 30 
people have the disease, of which 20 were diagnosed with it. Thus, the sensitivity of 
the test is 20/30 = 0.66. The specificity of the diagnostic instrument is the probability 
that the test is negative, given that the individual does not have the disease. In the 
margins we see that 20 people do not have the disease, of which 15 were diagnosed 
with not having the disease. Hence, the specificity of the test is 15/20 = 0.75. The 
overall prevalence of the disease is equal to 30/50 (i.e., 30 people have the disease 
out of 50). One can also compute what are known as positive and negative predictive 
values from such tables. For these and other measures useful for diagnostic 
situations, see Dawson and Trapp (2004). 

3.4 SCALES OF MEASUREMENT: NOMINAL, ORDINAL, AND 
INTERVAL, RATIO 

Recall that in our discussion of the so-called “soft” versus “hard” sciences in 
Chapter 1, we concluded that a key principal difference between the two does not 
necessarily lie in different statistical or analytical methods used in drawing conclu
sions, but rather in the actual material that is subjected to measurement. Though this 
book is not about measurement per se, we nonetheless wish to review the scales of 
measurement as first proposed by Stevens in 1946 (Stevens, 1946). 

Before we discuss these scales, it would do well to remind ourselves just what is 
measurement in the first place. We propose the following workable definition: 

Measurement is the systematic assignment of numbers to observations according to a 
well-defined set of rules. 
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The job of the “rules” is to make good sense of the measurement process. For 
instance, if we simply assigned numbers to observations without a set of rules to 
govern the assignment, then even if I weigh more than you, I could be assigned 
150 lb and you 180 lb. The requirement of having rules of measurement avoids such 
meaningless and contradictory assignments. If I weigh more than you, rules of 
measurement imply that my weight measurement will be larger than yours within the 
margin of measurement error. 

3.4.1 Nominal Scale 

Measurement at the nominal level is hardly considered real measurement, because it 
is simply the process of grouping objects or subjects into classes. Each class is usually 
represented by a number, letter, name, etc. Other than naming these categories, no 
other properties are assumed or inferred, such as distance between objects or 
magnitude. 

A classic example of measurement at the nominal level is that of hockey jersey 
numbers. That the number “99” is greater than the number “22” on the shirts of two 
hockey players does not imply anything about magnitude (though Wayne Gretzky did 
in this case wear “99” and was perhaps the best hockey player ever). The numbers 99 
and 22 are simply “classes,” they are symbols used to identify (or name) one class as 
different or distinct from the other. The fact that we use a rational system such as the 
real numbers to identify these different classes of “99” versus “22” does not imply 
anything about order or magnitude at the level of substantive measurement. Yes, to the 
mathematician, 99 is indeed numerically greater than 22. That is, an order property is 
implied in the numbers. However, to the scientist, nothing of order or magnitude 
needs to be implied when working with a nominal scale. 

To briefly elaborate on this point, the concept of using numbers to represent classes 
makes for an ideal example of the distinction between mathematical measurement 
versus scientific measurement. In the mathematical measurement of the distance on 
the real line (e.g., the “length” between two real numbers), order is a necessary 
implication and differentiates any two numbers on the line. In scientific measurement, 
though we may still use the “objects” (i.e., the numbers) of pure mathematics, whether 
there exist order or magnitude in our empirical objects of study is for us to decide as 
scientists with the aid of our measurement tools. It is not solely a mathematical or 
“abstract” consideration. 

As an example, consider the following objects: 

* $ # % 

Though we can say, at minimum, that nominal level measurement has been 
achieved (the objects have different symbols, that is, different names), we cannot say 
anything more about either the distance or magnitude between the objects, unless we 
decide to impose an order relation on the above objects. For instance, if we decide, 
based on our rules of measurement, that $ is greater than ∗, then not only have we 
measurement at the nominal level, we also have measurement at the ordinal level. 



100 INTRODUCTORY STATISTICS 

3.4.2 Ordinal Scale 

In addition to categorizing objects into classes,measurement at the ordinal level imposes 
∗ an order relation between objects. For instance, if $ is greater than for some 

characteristic that these symbols represent, then we have measurement at the ordinal 
level. The imposition of an order relation is fundamental to anysort of true measurement. 
Consider that if your measurement system does not even allow you to say that one thing 
has more of a characteristic than another, what could be the purpose of even measuring? 

Ordinal measurement, however, does not say anything about the precise amount of 
magnitude between objects. For example, first place, second place, and third place in a 
race constitute measurement at the ordinal level, but that you finished second does not 
immediately tell us the distance between first and second, or the distance between 
second and third. To speak of distances between objects, we require measurement at 
the interval level. 

3.4.3 Interval Scale 

Measurement at the interval level possesses all the features of measurement of both 
nominal and ordinal scales, but with the extra requirement that distances between 
measured objects are quantifiable, and that distances between successive measuring 
points on the scale are equal in magnitude. For instance, consider the measurement of 
temperature in degrees Fahrenheit. The change in temperature from 10 to 20 degrees 
contains the same “amount” of temperature change as that from 20 to 30 degrees. That 
is, the intervals between measurement points are meaningful and represent an equal 
distance in the “thing” (i.e., temperature, in this case) we are measuring. 

Is intelligence measurable on an interval scale? What would it mean for it to be 
measurable at the interval level? Well, supposing we base our measurements on a 
reputable standardized test, for IQ to be measurable at the interval scale would imply that 
the distance in the thing called “IQ” is equivalent from, say, 90 to 100 as it is from 100 to 
110. At first glance, this might appear an easy condition to satisfy, after all, the real 
number distance in each interval is equal to 10. However, recall that that is a distance of 
real numbers, not necessarily of IQ. As William James put it, we must not confuse the 
phenomena we study with the abstractions we use to study them. The real numbers are 
the abstraction. The IQ is the phenomenon. That we used a real line to measure these 
distances does not necessarily imply that the actual true distances in terms of “IQ 
substance” corresponds one-to-one (or even at all) to our measurement tool. It is entirely 
possible that 90 to 100 represents a greater increase in IQ than does 100 to 110, making 
the relation between our measurement of IQ versus “true IQ” nonlinear. Our measure
ment of IQ is simply not that precise to make such statements. Numerical length in this 
case may not translate to the substantive length of the difference under study. 

3.4.4 Ratio Scale 

The most sophisticated scale of measurement is that of the ratio scale. It is the most 
sophisticated because it is the only scale for which we can speak meaningfully about 
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ratios between competing measurement intervals. By “ratio,” we simply mean we have 
the power to make such statements as “object a is twice as large as object b.” Up to now, 
no other scale has allowed us to make such statements. For instance, in the interval scale, 
concluding that a is any factor greater than b made no sense. We did not have a starting 
point to base such conclusions. An IQ of zero did not necessarily mean the absence of 
intelligence. Rather, it was simply an arbitrary point on the IQ scale presumably 
denoting a particular quantity of IQ (even if, in all probability, very small). 

What gives us license to make statements of ratios? The element of the ratio scale that 
permits us to make such statements is the fact that the ratio scale has at its origin a true 
zero point. When something is deemed measurable at the ratio level, a measurement of 
zero actually means zero of the thing that is being measured. Was this fact true of the 
interval scale? No, because zero degrees Fahrenheit did not equate to there being zero 
temperature. “Zero” was simply an arbitrary value on the scale. However, the fact that I 
have zero coins in my pocket actually means that I have zero coins. “Zero” is said to be, 
in this case, “absolute,” meaning that there is truly nothing there. 

Physical quantities such as weight, distance, velocity, and motion, are all measur
able at the ratio level. Variables such as reaction time in sensation experiments are also 
measurable at the ratio level. Phenomena such as intelligence, anxiety, and attitude are 
generally not. More often we deem them measurable at the interval level or less, and 
when we really get critical, it is even a stretch at times to consider the ordinal level of 
measurement as being satisfied for such variables. Then again, if we decided to 
operationally define anxiety by beats per minute of one’s heart, then theoretically at 
least one could conclude that an individual has zero anxiety if that individual has zero 
beats per minute (though of course this could make for an awkward definition for the 
absence of anxiety!). 

3.5 MATHEMATICAL VARIABLES VERSUS RANDOM VARIABLES 

When we speak of a mathematical variable (or simply, variable), we mean a symbol 
that at any point could be replaced by values contained in a specified set. For instance, 
consider the mathematical variable yi. By the subscript i is indicated the fact that yi 
stands for a set of values, not all equal to the same number (otherwise y would be a 
constant) such that at any point in time any of these values in the set could serve as a 
temporary “replacement” for the symbol. 

Of course, social and natural sciences are all about variables. Here are some 
examples: 

•	 Height of persons in the world is a variable because persons of the world have 
different heights. However, height would be considered a constant if 10 people 
in a room were of the exact same height (and those were the only people we 
were considering). 

•	 Blood pressure is a variable because persons, animals, and other living creatures 
have different blood pressure measurements. 



102 INTRODUCTORY STATISTICS 

TABLE 3.4 Mathematical versus Discrete Random 
Variable 

Mathematical Variable yi Random Variable yi 

y1 � 1 y1 � 1 (p = 0.20) 
y2 � 3 y2 � 3 (p = 0.50) 
y3 � 5 y3 � 5 (p = 0.30) 

•	 Intelligence (IQ) of human beings (difficult to measure to be sure, although 
psychology has developed instruments in an attempt to assess such things) is a 
variable because people have differing intellectual capacities. 

•	 Earned run average (ERA) of baseball players is a variable because all players 
do not have the same ERA. 

A random variable is a mathematical variable that is associated with a probability 
distribution. That is, as soon as we assign probabilities to values of the variable, we 
have a random variable. More formally, we can say that a random variable is a 
function from a sample space into the real numbers (Casella and Berger, 2002), which 
essentially means that elements in the set (i.e., sample space) have probabilities 
associated with them (Dowdy, Wearden, and Chilko, 2004). 

Consider a simple comparison between a mathematical variable and a discrete 
random variable in Table 3.4. 

Notice that for the mathematical variable, probability does not enter the picture, it is not 
of any consideration. For the discrete random variable, each value of the variable has a 
probability associated with it. Note as well that the probabilities must sum to 1.0 for it to be 
a legitimate probability distribution (i.e., 0.20 + 0.50 + 0.30 = 1.0). How the given 
probabilities are assigned is a matter to be governed by the specific context of the 
problem. Recall as well from Chapter 2 that variables can be classified as discrete or 
continuous. This same distinction can be applied to random variables as to ordinary 
mathematical variables. Table 3.4 features a discrete random variable. For continuous 
random variables, since the probability of any particular value in a continuous distribution 
is theoretically zero, instead of associating probabilities with particular values, probabili
ties are associated with areas under the curve computed by way of integration in calculus. 

The distinction between mathematical and random variables is important when we 
discuss such things as means, variances, and covariances. A reader first learning about 
random variables, having already mastered the concept of sample or population 
variance (to be discussed shortly), can be somewhat taken aback when encountering 
the variance of a random variable, given as 

σ2 � E�yi � μ�2 

and then attempting to compare it with the more familiar variance of a population: 

n 
i�1 �yi � μ�2 

σ2 � 
n 



MOMENTS AND EXPECTATIONS 103 

Realize however that both expressions are essentially similar, they both account for 
squared deviations from the mean. However, the variance of a random variable is 
stated in terms of its expectation, E. Throughout this book, we will see the operator E 
at work. What is an expectation? The expectation E of a random variable is the mean 
of that random variable, which amounts to it being a probability-weighted average 
(Gill, 2006). The operator E occurs several times throughout this book because in 
theoretical statistics, long-run averages of a statistic are of especial interest. As noted 
by Feller (1968, p. 221), should an experiment be repeated n times under identical 
conditions, the average of such trials should be close to expectation. Perhaps less 
formally, the operator E then tells us what we might expect to see in the long run for 
large n. Theoretical statisticians love taking expectations, because the short run of a 
variable is seldom of interest at a theoretical level. It is the long (probability) run that is 
often of most theoretical interest. As a crude analogy, on a personal level, you may be 
“up” or “down” now, but if your expectation E pointed to a favorable long-run 
endpoint, then perhaps that is enough to convince you that though “on the way” is a 
rough tumbly road, in the end, as the spiritual would say, we “arrive” at our 
expectation (which perhaps some would denote as an afterlife of sorts). 

The key point is that when we are working with expectations, we are working with 
nprobabilities. Thus, instead of summing squared deviations of the kind i�1 �yi � μ�2 

as one does in the sample or population variance for which there is specified n, one 
must rather assign to these squared deviations probabilities, which is what is 
essentially being communicated by the notation “E�yi � μ�2.” We can “unpack” 
this expression to read 

p�yi��yi � μ�2 

where p�yi� is the probability of the given deviation, (yi � μ), for in this case, a discrete 
random variable. 

3.6 MOMENTS AND EXPECTATIONS 

When we speak of moments of a distribution or of a random variable, we are referring 
to such things as the mean, variance, skewness, and kurtosis. 

The first moment of a distribution is its mean. For a discrete random variable yi, the 
expectation is given by 

E�yi� �  yip�yi� 

where yi is the given value of the variable and p�yi� is its associated probability. When 
yi is a continuous random variable, the expectation is given by 

1 

E�yi� �  yip�yi�dy �1 

n 

i�1 
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FIGURE 3.8 Because the sum of deviations about the arithmetic mean is always zero, it can 
be conceptualized as a balance point on a scale. 

Notice again that in both cases, whether the variable is discrete or continuous, we are 
simply summing products of values of the variable with its probability, or density if the 
variable is continuous. In the case of the discrete variable, the products are “explicit” in 
that our notation tells us to take each value of y (i.e., yi) and multiply by the probability of 
that given value, p�yi�. In the case of a continuous variable, the products are a bit more 
implicit one might say, since the “probability” of any particular value in a continuous 
density is equal to 0. Hence, the product yip�yi� is equal to the given value of yi 
multiplied by its corresponding density. 

nThe arithmetic mean is a point such that 1�yi � y� � 0. That is, the sum of i�
deviations around the mean is always equal to 0 for any data set we may consider. In 
this sense, we say that the arithmetic mean is the center of gravity of a distribution, it is 
the point that “balances” the distribution (see Figure 3.8). 

3.6.1 Sample and Population Mean Vectors 

We often wish to analyze data simultaneously on several response variables. For this, 
we require vector and matrix notation to express our responses. The matrix operations 
presented here are a direct extension of those introduced in Chapter 2 and surveyed 
more comprehensively in Appendix A and in any book on elementary matrix algebra. 

Consider the following vector: 

y1 
y2 

y � 

... 

... 

... 
yn 

where y1 is observation 1 up to observation yn. 
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We can write the sample mean vector y for several variables y1 through y asp 

y1 
y2 
... 
... 
... 

n1 
y � yi � 

n 
i�1 

yp 

where yp is the mean of the pth variable. 
The expectation of individual observations within each vector is equal to the 

population mean μ, of which the expectation of the sample vector y is equal to the 
population vector μ. This is simply an extension of scalar algebra to that of matrices: 

E�y1� μ1 
y2 

y1 
E�y2� μ2 

... 
... 

... 
E�y� � E � � � μ... 

... 

... 

... 

... 

... 
y E�y � μn n n 

Likewise, the expectations of individual sample means y1, y2, . . .  ,  yp are equal to 
their population counterparts μ1, μ2, . . .  ,  μp. The expectation of the sample mean 
vector y is equal to the population mean vector μ: 

E�y1�y1 μ1 
y2 E�y2� μ2 

... 
... 

... 
y� � E � � � μE� ... 

... 

... 

... 

... 

... 
E�yp�yp μp 

We also note that y is an unbiased estimator of μ since E�y� � μ.8 

Recall that we said that the mean is the first moment of a distribution. We will 
discuss the second moment of a distribution, that of the variance, shortly. Before we 
do so, a brief discussion of estimation is required. 

8This is a result analogous to the simpler case where the expectation of the sample mean is equal to the 
population mean. That is, E�y� � μ. Only now, we are generalizing this to vectors. 
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3.7 ESTIMATION AND ESTIMATORS 

The goal of statistical inference is, in general, to estimate parameters of a population. 
We distinguish between point estimators and interval estimators. A point estimator is 
a function of a sample and is used to estimate a parameter in the population. Because 
estimates generated by estimators will vary from sample to sample, and will thus have 
a probability distribution associated with them, estimators are also often random 
variables. For example, the sample mean y is an estimator of the population mean μ. 
However, if we sample a bunch of y from a population for which μ is the actual 
population mean, we know, from both experience and statistical theory, that y will 
vary from sample to sample. This is why the estimator y is often a random variable, 
because each of its values will have associated with them a given probability (density) 
of occurrence. When we use the estimator to obtain a particular number, that number 
is known as an estimate. An  interval estimator provides a range of values within 
which the true parameter is hypothesized to exist within some probability. A popular 
interval estimator is that of the confidence interval, a topic we discuss later in this 
chapter. 

More generally, if T is some statistic, then we can use T as an estimator of a 
population parameter θ. Whether the estimator T is any good depends on several 
criteria, which we survey now. 

On average, in the long run, the statistic T is considered to be an unbiased 
estimator of θ if 

E�T� � θ 

That is, an estimator is considered unbiased if its expected value is equal to that of the 
parameter it is seeking to estimate. The bias of an estimator is measured by how much 
E�T� deviates from θ. When an estimator is biased, then E�T� ≠ θ, or, we can say 
E�T� � θ ≠ 0. Since the bias will be a positive number, we can express this last 
statement as E�T� � θ > 0. 

Good estimators are, in general, unbiased. The most popular example of an 
unbiased estimator is that of the arithmetic sample mean since it can be shown that 

E�y� � μ 

An example of an estimator that is biased is the uncorrected sample variance, as we 
will soon discuss, since it can be shown that 

E�S2� ≠ σ2 

However, S2 is not asymptotically biased. As sample size increases without bound, 
E�S2� converges to σ2. Once the sample variance is corrected, it leads to an unbiased 
estimator, even for smaller samples: 

E�s2� � σ2 
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where now 

n 2 
i�1 �yi � y�2 �
 
n � 1


s

An alternative, but perhaps slightly less immediately insightful definition of biased-
ness is that given by Anderson (2003) in which an estimator is considered unbiased if, 
in general, power achieves its minimum at the null hypothesis. In other words, an 
unbiased estimator is most powerful for detecting deviations from the null hypothesis 
(which is usually the purpose of our investigations) rather than detecting parameters 
under the null hypothesis. 

Consistency9 of an estimator means that as sample size increases indefinitely, the 
variance of the estimator approaches zero. That is, σ2 

T ! 0 as  n ! 1. We could also 
write this using a limit concept: 

lim σT 
2 � 0 

n!1 

which reads “the variance of the estimator T as sample size n goes to infinity (grows 
without bound) is equal to 0.” Fisher called this the criterion of consistency, 
informally defining it as “when applied to the whole population the derived statistic 
should be equal to the parameter” (Fisher, 1922, p. 316). The key to Fisher’s definition 
is whole population, which means, theoretically at least, an infinitely large sample, or 
analogously, n ! 1. More pragmatically, σT 

2 ! 0 when we have the entire 
population. 

An estimator is regarded as efficient the lower is its mean squared error. Estimators 
with lower variance are more efficient than estimators with higher variance. Fisher 
called this the criterion of efficiency, writing “when the distributions of the statistics tend 
to normality, that statistic is to be chosen which has the least probable error” (Fisher, 
1922, p. 316). Efficient estimators are generally preferred over less efficient ones. 

An estimator is regarded as sufficient for a given parameter if the statistic 
“captures” everything we need to know about the parameter and our knowledge 
of the parameter could not be improved if we considered additional information (such 
as a secondary statistic) over and above the sufficient estimator. As Fisher (1922, 
p. 316) described it, “the statistic chosen should summarize the whole of the relevant 
information supplied by the sample.” More specifically, Fisher went on to say: 

If θ be the parameter to be estimated, θ1 a statistic which contains the whole of the 
information as to the value of θ, which the sample supplies, and θ2 any other statistic, 
then the surface of distribution of pairs of values of θ1 and θ2, for a given value of θ, is  
such that for a given value of θ1, the distribution of θ2 does not involve θ. In other words, 
when θ1 is known, knowledge of the value of θ2 throws no further light upon the value 
of θ. (Fisher, 1922, pp. 316–317) 

9Though in this text we define consistency of an estimator quite simply, further distinctions exist between 
weak and strong consistency. See Shao (2003, pp. 132–133). 
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3.8 VARIANCE 

Returning to our discussion of moments, the variance is the second moment of a 
distribution. For the discrete case, variance is defined as 

n 

σ2 � ��yi � E�yi��2p�yi� 
i�1 

while for the continuous case, 

1 

σ2 � ��yi � E�yi��2p�yi�dy �1 

Since E�yi� � μ, it stands that we may also write E�yi� as μ. We can also express σ2 as 
2E�yi � � μ2 since, when we distribute expectations, we obtain 

σ2 � E�yi � μ�2 

� E�yi � μ��yi � μ� 
2� E�y � yiμ � yiμ � μ2�i 
2� E�yi � � E�yi�μ � E�yi�μ � μ2 

2� E�yi � � μμ � μμ � μ2 

2� E�yi � � μ2 � μ2 � μ2 

2� E�yi � � μ2 

Recall that the uncorrected and biased sample variance is given by 

n yi � y�2 
i�1 �S2 � 

n 

As earlier noted, taking the expectation of S2, we  find that E�S2� ≠ σ2. The actual 
expectation of S2 is equal to 

E�S2� � ��n � 1�=n�σ2 

which implies the degree to which S2 is biased is equal to 

�σ2 

n 

We have said that S2 is biased, but you may have noticed that as n increases, n � 1=n 
approaches 1, and so E�S2� will equal σ2 as n increases without bound. This was our 
basis for earlier writing lim E�S2� � σ2. That is, we say that the estimator S2, though 

n!1 

biased for small samples, is asymptotically unbiased because its expectation is equal 
to σ2 as n ! 1. 
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2When we lose a degree of freedom in the denominator and rename S2 to s , 
we get 

n 2 
i�1 �yi � y�2 � 
n � 1

s

2Recall that when we take the expectation of s , we  find that E�s2� � σ2 (see Wackerly, 
Mendenhall, and Scheaffer (2002, pp. 372–373) for a proof). 

The population standard deviation of σ2 is given by the positive square root of σ2,p p
that is, σ2 � σ. Analogously, the sample standard deviation is given by s2 � s. 

Recall the interpretation of a standard deviation. It tells us on average how much 
scores deviate from the mean. In computing a measure of dispersion, we initially 
squared deviations so as to avoid our measure of dispersion always equaling zero for 
any given set of observations, since the sum of deviations about the mean is always 
equal to 0. Taking the average of this sum of squares gave us the variance, but since 
this is in squared units, we wish to return them to “unsquared” units. This is how 
the standard deviation comes about. Studying the analysis of variance, the topic of the 
following chapter, will help in “cementing” some of these ideas of variance and 
the squaring of deviations, since ANOVA is all about generating different sums of 
squares and their averages, which go by the name of mean squares. 

The variance and standard deviation are easily obtained in R. We compute for 
parent in Galton’s data: 

> var(parent) 
[1] 3.194561 

> sd(parent) 
[1] 1.787333 

One may also wish to compute what is known as the coefficient of variation, which 
is a ratio of the standard deviation to the mean. We can estimate this coefficient for 
parent and child, respectively, in Galton’s data: 

> cv.parent <- sd(parent)/mean(parent) 
> cv.parent 

[1] 0.02616573 

> cv.child <- sd(child)/mean(child) 
> cv.child 

[1] 0.03698044 

Computing the coefficient of variation is a way of comparing the variability of 
competing distributions relative to each distribution’s mean. We can see that the 
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dispersion of child relative to its mean (0.037) is slightly larger than that of the 
dispersion of parent relative to its mean (0.026). 

3.9 DEGREES OF FREEDOM 

In our discussion of variance, we saw that if we wanted to use the sample variance as 
an estimator of the population variance, we needed to subtract 1 from the denomina
tor. That is, S2 was “corrected” into s2: 

n 
i�1 �yi � y�2 

2 �s
n � 1 

We say we lost a degree of freedom in the denominator of the statistic. But what are 
degrees of freedom? They are the number of independent units of information in a 
sample that are relevant to the estimation of some parameter (Everitt, 2002). In the 
case of the sample variance, s2, one degree of freedom is lost since we are interested in 

2using s as an estimator of σ2. We are losing the degree of freedom because the 
nnumerator, i�1 �yi � y�2, is not based on n independent pieces of information since 

μ had to be estimated by y. Hence, a degree of freedom is lost. Why? Because values 
of yi are not independent of what y is, since y is fixed in terms of the given sample data. 

A conceptual demonstration may prove useful in understanding the concept of 
degrees of freedom. Imagine you were asked to build a triangle such that there was to 
be no overlap of lines on either side of the triangle. In other words, the lengths of the 
sides had to join neatly at the vertices. We shall call this the “Beautiful Triangle” as 
depicted in Figure 3.9. You are now asked to draw the first side of the triangle. Why 
did you draw this first side the length that you did? You concede that the length of the 
first side is arbitrary, you were free to draw it whatever length you wished. In drawing 
the second length, you acknowledge you were also free to draw it whatever length you 
wished. Neither of the first two lengths in any way violated the construction of a 
beautiful triangle with perfectly adjoining vertices. 

However, in drawing the third length, what length did you choose? Notice that to 
complete the triangle, you were not free to determine this length arbitrarily. Rather, 

FIGURE 3.9 The “Beautiful Triangle” as a way to understanding degrees of freedom. 
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the length was fixed given the constraint that the triangle was to be a beautiful one. In 
summary then, in building the beautiful triangle, you lost 1 degree of freedom, in that 
two of the lengths were of your free choosing, but the third was fixed. Analogously, in 
using s2 as an estimator of σ2, a single degree of freedom is lost. If y is equal to 10, 
for instance, and the sample is based on five observations, then y1; y2; y3; y4 are freely 
chosen, but the fifth data point y5 is not freely chosen so long as the mean must equal 10. 
The fifth data point is fixed. We lost a single degree of freedom. 

Degrees of freedom occur throughout statistics in a variety of statistical tests. If you 
understand this basic example, then while working out degrees of freedom for more 
advanced designs and tests may still pose a challenge, you will nonetheless have a 
conceptual base from which to build your comprehension. 

3.10 SKEWNESS AND KURTOSIS 

The third moment of a distribution is its skewness. Skewness of a random variable 
generally refers to the extent to which a distribution lacks symmetry. Skewness is 
defined as 

3 E��yi � μ�3�yi � μ 
γ � E � 

σ �E��yi � μ�2��3=2 

•	 Skewness for a normal distribution is equal to 0, just as skewness for a 
rectangular distribution is also equal to 0 (one does not require a bell-shaped 
curve for skewness to equal 0). 

•	 Skewness for a positively skewed distribution is greater than 0; these distribu
tions have tails that stretch out into values on the abscissa of greatest value. 

•	 Skewness for a negatively skewed distribution is less than 0; these distributions 
have tails that stretch out to values on the abscissa of least value. 

An example of a positively skewed distribution is that of the typical F density, 
given in Figure 3.10. 

FIGURE 3.10 F distribution on 2 and 5 degrees of freedom. It is positively skewed since the 
tail stretches out to numbers of greater value. 
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The fourth moment of a distribution is its kurtosis, generally referring to the 
peakness of a distribution: 

E��yi � μ�4� 
k � �E��yi � μ�2��2 

With regard to kurtosis, distributions are defined: 

•	 mesokurtic if the distribution exhibits kurtosis typical of a bell-shaped curve 

•	 platykurtic if the distribution exhibits kurtosis more “plump” in the tails and 
flatter in the center than a normal distribution 

•	 leptokurtic if the distribution exhibits kurtosis less “plump” in the tails and more 
narrow in the center than a normal distribution 

We can easily compute moments of empirical distributions in R or SPSS. Several 
packages in R are available for this purpose. We could compute skewness for parent 
on Galton’s data by 

> library(psych) 
> skew(parent) 
[1] -0.03503614 

The psych package (Revelle, 2015) also provides a range of descriptive statistics: 

> library(psych) 

> describe(Galton) 

vars n mean sd median trimmed mad min max range skew kurtosis 

parent 1 928 68.31 1.79 68.5 68.32 1.48 64.0 73.0 9 -0.04 0.05 

child 2 928 68.09 2.52 68.2 68.12 2.97 61.7 73.7 12 -0.09 -0.35 

se 

parent 0.06 

child 0.08 

The skew for child has a value of �0.09, indicating a slight negative skew. This is 
confirmed by visualizing the distribution (and by a relatively close inspection in order 
to spot the skewness): 

> hist(child) 
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3.11 SAMPLING DISTRIBUTIONS 

Sampling distributions are at the cornerstone of statistical inference. The sampling 
distribution of a statistic is a theoretical probability distribution of that statistic. As  
defined by Degroot and Schervish (2002), “the sampling distribution of a statistic tells 
us what values a statistic is likely to assume and how likely it is to assume those values 
prior to observing our data” (p. 391). 

As an example, we will generate a theoretical sampling distribution of the mean for 
a given population with mean μ and variance σ2. The distribution we will create is 
entirely idealized in that it does not exist in nature anywhere. It is simply a statistical 
theory of how the distribution of means might look if we were able to take an infinite 
number of samples from a given population, and on each of these samples, calculate 
the sample mean statistic. 

When we derive sampling distributions for a statistic, we ask the following 
question: 

If we were to draw an infinite number of samples of size n from this population and 
calculate the sample mean on each sample, what would the distribution of sample means 
look like? 

If we can specify this distribution, then we can evaluate obtained sample means 
relative to it. That is, we will be able to compare our obtained means (i.e., the ones we 
obtain in real empirical research) to the theoretical sampling distribution of means, 
and answer the question: 

If my obtained sample mean really did come from this population, what is the probability 
of obtaining a mean such as this? 

If the probability is low, you might then decide to reject the assumption that the 
sample mean you obtained arose from the population in question. It could have, to be 
sure, but it probably did not. For continuous measures, our interpretation above is 
slightly informal, since the probability of any particular value of the sample mean in a 
continuous distribution is equal to 0. Hence, the question is usually posed such that we 
seek to know the probability of obtaining a mean such as the one we obtained or more 
extreme. 

3.11.1 Sampling Distribution of the Mean 

Since we regularly calculate and analyze sample means in our data, we are often 
interested in the sampling distribution of the mean. If we regularly computed medians, 
we would be equally as interested in the sampling distribution of the median. 

Recall that when we consider any distribution, whether theoretical or empirical, we 
are usually especially interested in knowing two things about that distribution: a 
measure of central tendency and a measure of dispersion or variability. Why do we 
want to know such things? We want to know these two things because they help 
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summarize our observations, so that instead of looking at each individual data point to 
get an adequate description of the objects under study, we can simply request the 
mean and standard deviation as telling the story (albeit an incomplete one) of the 
obtained observations. Similarly, when we derive a sampling distribution, we are 
interested in the mean and standard deviation of that theoretical distribution of a 
statistic. 

We already know how to calculate means and standard deviations for real 
empirical distributions. However, we do not know how to calculate means and 
standard deviations for sampling distributions. It seems reasonable that the mean 
and standard deviation of a sampling distribution should depend in some way on the 
given population from which we are sampling. For instance, if we are sampling 
from a population that has a mean μ � 20:0 and population standard deviation 
σ � 5, it seems plausible that the sampling distribution of the mean should look 
different than if we were sampling from a population with μ � 10:0 and  σ � 2. It 
makes sense that different populations should give rise to different theoretical 
sampling distributions. 

What we need then is a way to specify the sampling distribution of the mean for a 
given population. That is, if we draw sample means from this population, what does 
the sampling distribution of the mean look like for this population? To answer this 
question, we need both the expectation of the sampling distribution (i.e., its mean) as 
well as the standard deviation of the sampling distribution (i.e., its standard error 
(SE)). We know that the expectation of the sample mean y is equal to the population 
mean μ. That is, E�y� � μ. For example, for a sample mean y � 20:0, the expected 
value of the sample mean is equal to the population mean, μ of 20.0. 

To understand why E�y� � μ should be true, consider first how the sample mean is 
defined: 

�y1 � y2 � ∙ ∙ ∙  � y �ny �
n 

Incorporating this into the expectation for y, we have 

�y1 � y2 � ∙ ∙ ∙  � y �nE�y� � E 
n 

There is a rule of expectations that says the expectation of the sum of random 
variables is equal to the sum of individual expectations. This being the case, we can 
write the expectation of the sample mean y as 

E�y1 � y2 � ∙ ∙ ∙  � yn� E�y� �
n 

�E�y1� � E�y2� � ∙ ∙ ∙  � E�yn���
n 
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Since the expectation of each y1 through y is E�y1� � μ, E�y2� � μ, . . . ,  E�y � � μ,n n

we can write 

�μ � μ � ∙ ∙ ∙  � μ� 
E�y� �

n 
nμ 

E�y� �
n 

We note that the n values in numerator and denominator cancel, and so we end up with 

E�y� � μ 

Using the fact that E�yi� � μ, we can also say that the expected value of a sampling 
distribution of the mean is equal to the mean of the population from which we did the 
theoretical sampling. That is, μy � μ is true, since given E�y� � μ, it stands that if we 
have, say, five sample means y1; y2; y3; y4; y5, the expectation of each of these means 
should be equal to μ, from which we can easily deduce μy � μ. That is, the mean of all 
the samples we could draw is equal to the population mean. 

We now need a measure of the dispersion of a sampling distribution of the mean. 
At first glance, it may seem reasonable to assume that the variance of the sampling 
distribution of means should equal the variance of the population from which the 
sample means were drawn. However, this is not the case. What is true is that the 
variance of the sampling distribution of means will be equal to only a fraction of the 
population variance. It will be equal to 1=n of it, where n is equal to the size of samples 
we are collecting for each sample mean. Hence, the variance of means of the sampling 
distribution is equal to 

1 �σ2� 
n 

or simply 

σ2 

n 

The mathematical proof of this statistical fact is in most mathematical statistics texts. 
A version of the proof can also be found in Hays (1994). The idea, however, can be 
easily and perhaps even more intuitively understood by recourse to what happens as n 
changes. Suppose that we calculate the sample mean from a sample size of n � 1, 
sampled from a population with μ � 10:0 and σ2 � 2:0. Suppose the sample mean we 
obtain is equal to 4.0. Therefore, the sampling variance of the corresponding sampling 
distribution is equal to 

σ2 2� � 2 
n 1 
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That is, the variance in means that you can expect to see if you sampled an infinite 
number of means based on samples of size n � 1 repeatedly from this population is 
equal to 2. Notice that 2 is exactly equal to the original population variance. 

Consider now the case where n > 1. Suppose we now sampled a mean from the 
population based on sample size n � 2, yielding 

σ2 2� � 1 
n 2 

What has happened? What has happened is that the variance in sample means has 
decreased by 1/2 of the original population variance. Why is this decrease reasonable? 
It makes sense, because we already know from the law of large numbers that as the 
sample size grows larger, one gets closer and closer to the true probability of a 
parameter. That is, for a consistent estimator, our estimate of the true population mean 
should get better and better as sample size increases. This is exactly what happens as 
we increase n, our precision of that which is being estimated increases. In other words, 
the sampling variance of the estimator decreases. 

Analogous to how we defined the standard deviation as the square root of the 
variance, it is also useful to take the square root of the variance of means: 

σ2 σ� p
n n 

which we call the standard error of the mean σM. The standard error of the mean is the 
standard deviation of the sampling distribution of the mean. Finally, it is important to p
recognize that σ= n is not “the” standard error. It is merely the standard error of the 
mean. Other statistics will have different standard errors. 

3.12 CENTRAL LIMIT THEOREM 

It is not an exaggeration to say that the central limit theorem, in one form or another, is 
probably the most important and relevant theorem in theoretical statistics, which 
translates to it being quite relevant to applied statistics as well. 

We borrow our definition of the central limit theorem from Everitt (2002): 

If a random variable y has a population mean μ and population variance σ2, then the 
sample mean, y, based on n observations, has an approximate normal distribution with 
mean μ and variance σ

2
, for sufficiently large n. (p. 64) n 

More generally, the theorem pertains to the limiting form of the cumulative 
distribution function (cdf) of a normal random variable (Casella and Berger, 2002, 
p. 236). Asymptotically, the distribution of a normal random variable converges to 
that of a normal distribution as n ! 1. 
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A multivariate version of the theorem can also be given (Rencher, 1998, p. 53).10 

The relevance of the central limit theorem cannot be overstated: It allows one to know, 
at least on a theoretical level, what the distribution of a statistic (e.g., sample mean) 
will look like for increasing sample size. This is especially important if one is drawing 
samples from a population for which the shape is not known or is known a priori to be 
nonnormal. Normality of the sampling distribution is still assured even if samples are 
drawn from nonnormal populations. Why is this relevant? It is relevant because if we 
know what the distribution of means will look like for increasing sample size, then we 
know we can compare our obtained statistic to a normal distribution in order to 
estimate its probability of occurrence. Normality assumptions are also typically 
required for assuming independence between y and s2 in univariate contexts, and 
between y (mean vector) and S (covariance matrix) in multivariate ones. When such 
estimators can be assumed to arise from normal or multivariate normal distributions 
(i.e., in the case of y and S), we can generally be assured one is independent of the 
other. 

3.13 CONFIDENCE INTERVALS 

Recall that a goal of statistical inference is to estimate functions of parameters, 
whether a single parameter, a difference of parameters (e.g., in the case of population 
differences), or some other function of parameters. Though the sample mean y is an 
unbiased estimator of μ, the probability that y is equal to μ in any given sample is equal 
to zero. For this reason, and to build some flexibility in estimation overall, the idea of 
interval estimation in the form of confidence intervals was developed. Confidence 
intervals provide a range of values for which we can be relatively certain lay the true 
parameter we are seeking to estimate. In what follows, we provide a brief review of 
95% and 99% confidence intervals. 

We can say that over all samples of a given size n, the probability is 0.95 for the 
following event to occur: 

�1:96σM < y � μ < 1:96σM (3.2) 

How was (3.2) obtained? Recall the calculation of a z-score for a mean (see Section 
3.19.1): 

y � μ 
z � 

σM 

Suppose now that we want to have a 0.025 area on either side of the normal 
distribution. This value corresponds to a z-score of 1.96, since the probability of a 
z-score of ±1.96 is 2(1 � 0.9750021) = 0.0499958, which is approximately 5% of the 

10We can also distinguish between weaker versus stronger forms of the theorem. For details, see Casella and 
Berger (2002, pp. 236–238). 
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total curve. So, from the z-score, we have 

y � μ 
z �

σM 

y � μ�1:96 �
σM 

�σM� � 1:96 � y � μ 

We can modify the equality slightly to get the following: 

y � 1:96σM < μ < y � 1:96σM (3.3) 

We interpret (3.3) as follows: 

Over all possible samples, the probability is 0.95 that the range between y � 1:96σM and 
y � 1:96σM will include the true mean, μ. 

Very important to note regarding the above statement is that μ is not the random 
variable. The part that is random is the sample on which is computed the interval. That 
is, the probability statement is not about μ but rather about samples. The population 
mean μ is assumed to be fixed. 

The 99% confidence interval for the mean is likewise given by 

y � 2:58σM < μ < y � 2:58σM (3.4) 

Notice that the only difference between (3.3) and (3.4) is the choice of different 
critical values on either side of μ (i.e., 1.96 for the 95% interval and 2.58 for the 99% 
interval). 

Though not very useful, a 100% confidence interval, if constructed, would be 
defined as 

y �1σM < μ < y �1σM 

If you think about it carefully, the 100% confidence interval should make perfect 
sense. If you would like to be 100% “sure” that the interval will cover the true 
population mean, then you have to extend your limits to negative and positive infinity, 
otherwise, you could not be fully confident. Likewise, on the other extreme, a 0% 
interval would simply have y as the upper and lower limits: 

y < μ < y 

That is, if you want to have zero confidence in guessing the location of the population 
mean, μ, then guess the sample mean y. Though the sample mean is an unbiased 
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estimator of the population mean, the probability that the sample mean covers the 
population mean exactly, as mentioned, is equal to 0. 

3.14 BOOTSTRAP AND RESAMPLING TECHNIQUES 

There are times where estimating parameters through analytical methods proves futile 
or is otherwise very difficult. As a result of the advent of high-speed computing, 
techniques for what amounts to essentially simulating sampling distributions have 
come into vogue. Instead of deriving closed-form solutions (i.e., algebraically 
solvable equations or systems) for confidence intervals, for instance, one can run 
simulations on a given sample in order to approximate the behavior of the given 
sampling distribution and hence obtain an estimate of its sampling variability and 
stability. The so-called bootstrap technique (Efron and Tibshirani, 1993) is a special 
case of the wider resampling techniques available in estimating parameters. For a very 
user-friendly introduction to resampling procedures, see Howell (2002, pp. 691–707). 
Fox (1997) also provides an excellent discussion of bootstrapping in the context of 
regression analysis. The deeper technicalities of the bootstrap are beyond the scope of 
this book. 

As a simple example of the bootstrap technique, suppose we wished to bootstrap a 
mean and standard error of the mean. In what follows, we first obtain a random sample 
of size n � 100 from a population with mean μ � 10 (rnorm(100, mean = 10)). 
We then resample 300 times of size 50 (300, sample(random.sample, 50), 
upon which the mean of each of these resamples is plotted with a histogram: 

> random.sample <- rnorm(100, mean = 10)
 
> resample <- replicate(300, sample(random.sample, 50, TRUE),
 
simplify = FALSE)
 
> x  <- sapply(resample, mean, simplify = TRUE)
 
> hist(x, breaks = 100, prob = TRUE)
 

The mean (mean(x)) and standard deviation (i.e., standard error) of the distri
bution (sd(x)) are equal to 9.89 and 0.16, respectively. You may obtain slightly 
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different values for these, since by the very nature of the resampling technique, they 
are not expected to be constant for each simulation. 

Suppose we now increase the number of samplings from 300 to 1000: 

> resample <- replicate(1000, sample(random.sample, 50, TRUE),
 
simplify = FALSE)
 
> x  <- sapply(resample, mean, simplify = TRUE)
 
> hist(x, breaks = 100, prob = TRUE)
 

The mean and standard deviation of the sampling distribution based on 1000 
samplings remains approximately the same (i.e., mean = 9.892, SD = 0.156); how
ever, note that the shape of the distribution has converged closer to one of idealized 
normality. This is a direct consequence of the increase in samplings. To further 
demonstrate, let us sample 100,000 cases: 

We note that for 100,000 samples, the empirical distribution closely resembles that 
of a smooth normal distribution. Indeed, the bootstrap technique, in addition to being 
useful in estimating parameters, can be used in demonstrating the convergence of the 
central limit theorem for increasingly large samples. 



121 LIKELIHOOD RATIO TESTS AND PENALIZED LOG-LIKELIHOOD STATISTICS 

3.15 LIKELIHOOD RATIO TESTS AND PENALIZED 
LOG-LIKELIHOOD STATISTICS 

When we speak of likelihood, we mean the probability of some sample data or set of 
observations dependent on some hypothesized parameter or set of parameters 
(Everitt, 2002). Probability statements such as p�D=H0� are simple examples of 
likelihoods, where typically the set of parameters in this case may be simply μ 
and σ2. 

A likelihood ratio test is a comparison (in the form of a ratio) of two likelihoods. 
Oftentimes in statistical procedures, we evaluate the log of the likelihood ratio test of 
the form: 

Lcλ � �2ln � �2 log Lc � log Ls (3.5)e eLs 

where Lc (or H0) is the likelihood of the observed data under the current model under 
investigation, and Ls (or H1) is the likelihood of the observed data under what is often 
(but not always) a saturated model. Saturated models fit the data perfectly as a result 
of having as many parameters as there are values to be fit. Hence, we can see that (3.5) 
compares a model c based on some restrictions imposed by the researcher with that of 
one s that has no such restrictions. As we will discuss further in Chapter 16 when we 
survey structural equation models, saturated models also have zero degrees of 
freedom. Note that the reason we are able to write Lc =Ls as log Lc � log Ls ise e

due simply to the property of logarithms that says the quotient of logarithms 
log �a�=log �b� is equal to log�a� � log�b�. If the likelihood under each model is 
the same, then Lc =Ls will be equal to 1, and we obtain 

λ � �2ln �Lc =Ls� � �2�log Lc � log Ls� � 0:e e

The extent to which Lc ≠ Ls is the extent to which λ will be unequal to 0. 
When we speak of maximum-likelihood (ML) estimation, we mean the process 

of maximizing a likelihood subject to certain parameter conditions. As a simple 
example, suppose we obtain 8 heads on 10 flips of a presumably fair coin. Our null 
hypothesis was that the coin is fair, meaning that the probability of heads is 
p�H� � :5. However, our actual obtained result of 8 heads on 10 flips would 
suggest the true probability of heads to be closer to p�H� � :8. Thus, we ask the 
question: 

Which value of θ makes the observed result most likely? 

If we only had two choices of θ to select from, 0.5 and 0.8, our answer would have 
to be 0.8, since this value of the parameter θ makes the sample result of 8 heads out of 
10 flips most likely. This is the essence of how maximum-likelihood estimation 
works. ML is by far the most common method of estimating parameters in many 
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models, including factor analysis, path analysis, and structural equation models to be 
discussed later in the book. There are very good reasons why mathematical statisti
cians generally approve of maximum likelihood. We summarize some of their most 
favorable properties. 

First, ML estimators are asymptotically unbiased, which means that bias essen
tially vanishes as sample size increases without bound (Bollen, 1989). Second, ML 
estimators are consistent and asymptotically efficient, meaning that the estimator has 
a small asymptotic variance relative to many other estimators. Third, ML estimators 
are asymptotically normally distributed, meaning that as sample size grows, the 
estimator takes on a normal distribution. Finally, ML estimators possess the 
invariance property (Casella and Berger, 2002). This property essentially states 
that if for a maximum-likelihood estimator θ ́ of θ, θ ́ remains as the  ML  estimator for  
any function of θ. As noted in Bollen (1989), a concept related to the invariance 
property is that of scale freeness, which essentially means that even if we linearly 
transform observed variables, the estimates of the parameters of the model remain 
unchanged. 

3.16 AKAIKE’S INFORMATION CRITERIA 

A measure of model fit commonly used in comparing nested models that uses the log-
likelihood, �2 ln  �Lc =Ls�, is  Akaike’s information criteria (AIC) (Sakamoto, Ishiguro, 
and Kitagawa, 1986). This is one statistic of the kind generally referred to as penalized 
log-likelihood statistics (another is the Bayesian Information Criterion (BIC)). It is 
defined as 

�2Lm � 2m 

where Lm is the maximized log-likelihood and m is the number of parameters in the 
given model. Lower values of AIC generally indicate a better-fitting model than do 
larger values. Recall that the more parameters fit to a model, in general, the better the 
fit of that model. For example, a model that has a unique parameter for each data point 
would fit perfectly. This is the so-called saturated model mentioned earlier. AIC 
jointly considers both the goodness of fit and the number of parameters required to 
obtain the given fit, essentially “penalizing” for increasing the number of parameters 
unless they contribute to model fit. Adding one or more parameters to a model may 
cause �2Lm to decrease (which is a good thing substantively), but if the parameters are 
not worthwhile, this will be offset by an increase in 2m. 

The Bayesian information criterion, or BIC, (Schwarz, 1978) is defined as 
�2Lm� m log �N�, where m, as before, is the number of parameters in the model 
and N is the total number of observations used to fit the model. Lower values of BIC 
are also desirable when comparing models. BIC typically penalizes model complexity 
more heavily than AIC. For a comparison of AIC and BIC, see Burnham and 
Anderson (2011). 
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3.17 COVARIANCE AND CORRELATION 

The covariance of a random variable is given by 

cov �xi; yi� �  σxy � E��xi � μ ��yi � μ ��x y

where E��xi � μx��yi � μy�� is equal to E�xiyi� �  μyμx since 

σxy � E��xi � μx��yi � μy�� � E�xiyi � xiμy � yiμx � μxμy� � E�xiyi� �  E�xi�μ � E�yi�μ � μ μy x x y � E�xiyi� �  μ μ � μ μ � μ μx y y x x y � E�xiyi� �  μyμx 

The concept of covariance is at the heart of all statistical methods. Whether one is 
running analysis of variance, regression, principal components analysis, etc., 
covariance concepts are central to all of these methodologies and even more broadly 
to science in general. 

The sample covariance is a measure of relationship between two variables, and is 
defined as 

n 
i�1�xi � x��yi � y� 

cov � (3.6) 
n 

nThe numerator of the covariance, i�1�xi � x��yi � y�, is the sum of products of 
respective deviations of observations from their respective means. If there is no linear 
relationship between two variables in a sample, covariance will equal 0. If there is a 
negative linear relationship, covariance will be a negative number, and if there is a 
positive linear relationship, covariance will be positive. Notice that to measure 
covariance between two variables requires there to be variability on each variable. 
If there is no variability in xi, then (xi � x) will equal 0 for all observations. Likewise, 
if there is no variability in yi, then (yi � y) will equal 0 for all observations on yi. This is 
to emphasize the essential fact that when measuring the extent of relationship between 
two variables, one requires variability on each variable for the measure to even make 
sense to compute. 

The covariance of (3.6) is a perfectly reasonable one to calculate for a sample if 
there is no intention of using that covariance as an estimator of the population 
covariance. However, if one wishes to use it as an estimator, similar to how we needed 
to subtract 1 from the denominator of the variance, we lose 1 degree of freedom when 
computing the covariance: 

n 
i�1�xi � x��yi � y� 

cov � 
n � 1 



124 INTRODUCTORY STATISTICS 

It is oftentimes thought that the correct denominator should be n � 2 instead of n � 1 
to account for the fact that we are estimating two quantities in the numerator, x and y. 
However, the correct denominator is indeed n � 1 because the numerator is a cross-
product of deviations, which we treat as a single quantity, not two. 

It is easy to understand more of what the covariance actually measures if we 
consider the trivial case of computing the covariance of a variable with itself. In such a 
case, for variable xi, we would have 

n 
i�1�xi � x��xi � x� 

cov � 
n � 1 

But what is this covariance? If we rewrite the numerator as �xi � x�2 instead of 
�xi � x��xi � x�, it becomes clear that the covariance of a variable with itself is nothing 
more than the usual variance for that variable. Hence, to better understand the 
covariance, it is helpful to start with the variance, and then realize that instead of 
computing the cross-product of a variable with itself, the covariance computes the 
cross-product of a variable with a second variable. 

We compute the covariance between parent height and child height in Galton’s 
data: 

> attach(Galton) 
> cov(parent, child) 
[1] 2.064614 

We have mentioned that the covariance is a measure of linear relationship. 
However, sample covariances from data set to data set are not comparable unless 
one knows more of what went into each specific computation. There are actually three 
things that are the “ingredients” of the covariance. The first thing it contains is a 
measure of the cross-product, which represents the degree to which variables are 
linearly related. This is the part in our computation of the covariance that we are 
especially interested in. However, other than concluding a negative, zero, or positive 
relationship, the size of the covariance does not by itself tell us the degree to which 
two variables are related. 

The reason for this is that the size of covariance will also be impacted by the 
degree to which there is variability in xi and the degree to which there is variability 
in yi. If either or both variables contain sizable deviations of the sort (xi � x) or  
(yi � y), then the corresponding cross-products �xi � x��yi � y� will also be quite 

nsizable, along with their sum, i�1�xi � x��yi � y�. However, we do not want our 
measure of relationship to be small or large as a consequence of variability on xi or 
variability on yi. We want our  measure of relationship to be small  or  large as an  
exclusive result of covariability, that is, the extent to which there is actually a 
relationship between xi and yi. To  “remove” the influences of variability in xi and yi 
(one may think of it as “purifying”), we divide the average cross-product by the 
product of standard deviations of each variable. The standardized sample 
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covariance is thus 

n 
i�1��xi � x��yi � y��=n � 1 cov 

r � � 
s2 � s2 s2 � s2 
xi yi xi yi 

The standardized covariance is known as the Pearson product-moment correlation 
coefficient, or simply r, which is a biased estimator of its population counterpart ρxy. 
The bias of the estimator r can be minimized by computing an adjustment found in 
Rencher (1998), originally proposed by Olkin and Pratt (1958): 

1 � r2 

r* � r 1 � 
2�n � 3� 

Because the correlation coefficient is standardized, we can place lower and upper 
bounds on it. The minimum correlation possible for any set of data is �1.0, 
representing a perfect negative relationship. The maximum correlation possible is 
+1.0, representing a perfect positive relationship. A correlation of 0 represents the 
absence of a linear relationship. 

One can gain an appreciation for the upper and lower bounds of r by considering 
the fact that the numerator, which is an average cross-product, is being divided by 
another product, that of the standard deviations of each variable. The denominator 
thus can be conceptualized to represent the total amount of cross-product variation 
possible, that is, the “base,” whereas the numerator represents the total amount of 
cross-product variation actually existing between the variables because of a linear 
relationship. The extent to which covxy accounts for all of the possible “cross

variation” in s2 � s2 is the extent to which r will approximate a value of |1| (eitherxi yi 

positive or negative, depending on the direction of the relationship). It thus stands that 
covxy cannot be greater than the “base” with which it is being compared (i.e., 

). In the language of sets, covxy must be a subset of the larger set represented 

. 

s2 
xi 
� s2 

yi 

by s2 
xi 
� s2 

yi 

It is important to emphasize that a correlation of 0 does not necessarily represent the 
absence of a relationship. What it does represent is the absence of a linear one. Neither 
the covariance nor Pearson’s r capture nonlinear relationships, and so it is possible to 
have very strong relations in a sample or population yet obtain very low values (even 
zero) for the covariance or Pearson r. Always plot your data to see what is going on 
before drawing any conclusions. Correlation coefficients should never be presented 
without an accompanying plot to characterize the form of the relationship. 

We compute the Pearson correlation coefficient on Galton’s data between child 
and parent: 

> cor(child, parent) 
[1] 0.4587624 
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We can test it for statistical significance by using the cor.test function: 

> cor.test(child, parent) 

Pearson’s product-moment correlation 

data: child and parent 
t = 15.7111, df = 926, p-value < 2.2e-16 
alternative hypothesis: true correlation is not equal to 0 
95 percent confidence interval: 
0.4064067 0.5081153 

sample estimates: 
cor 

0.4587624 

We can see that observed t is statistically significant with a computed 95% 
confidence interval having limits 0.41–0.51, indicating that in 95% of samples drawn 
from this population, the true parameter will lay approximately between the limits of 
0.41 and 0.51. Using the package ggplot2 (Wickham, 2009), we plot the 
relationship between parent and child (with a smoother): 

> library(ggplot2)
 
> qplot(child, parent, data = Galton, geom = c("point", "smooth"))
 

One drawback of such a simple plot is that the frequency of data points in the 
bivariate space cannot be known by inspection of the plot alone. Jittering is a technique 
that allows one to visualize the density of points at each parent–child pairing. By 
jittering, we can see where most of the data fall in the parent–child scatterplot (i.e., points 
are concentrated toward the center of the plot): 

> qplot(child, parent, geom = "jitter") 
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3.17.1 Covariance and Correlation Matrices 

Having reviewed the concept of covariance, we need a way to account for the 
covariance of many variables. For this, we write the sample covariance in matrix 
form: 

s11 s12 . . .  s1p 

s21 s22 . . .  s2p 

S � �sjk� �  

... 

... 

... 

... 

... 

... 

... 

... 

... 

... 

... 

... 
sp1 sp2 . . .  spp 

where sjk are the covariances for variables j by k. The population covariance matrix Σ 
can be analogously defined: 

σ11 σ12 . . .  σ1p 

σ21 σ22 . . .  σ2p 

� σjk � 

... 
... 

... 
... 
...: 

... 

... 

... 

... 

... 

... 
σp1 σp2 . . .  σpp 

where along the main diagonal of the covariance matrix are variances σ11, σ22, etc., for 
variables 1, 2, etc., up to σpp, the variance of the pth variable. 

... 
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When we standardize the covariance matrix, dividing each of its elements by 
respective products of standard deviations, we obtain the correlation matrix: 

1 r12 . . .  r1p 

r21 . . .  . . .  r2p 

R � �rjk� �  

rp1 rp2 . . .  1 

where r12 is the correlation between variable 1 and 2, etc., and r1p is the correlation 
between variable 1 and the pth variable. 

An example of a correlation matrix (Heston, 1948) is that between different tests on 
the GRE (Graduate Record Examination): 

Intercorrelations Among The G.R.E. Tests Of General Education 

Math P.S. B.S. Soc. Lit. Arts Exp. Voc. 
Mathematics .55 .44 .51 .36 .35 .52 .38 
Physical Science .55 .49 .43 .20 .40 .32 .29 
Bioogical Science .44 .49 .57 .42 .42 .46 .50 
Social Studies .51 .43 .57 .54 .40 .61 .59 
Literature .36 .20 .42 .54 .39 .53 .54 
Arts .35 .40 .42 .40 .39 .42 .52 
Effecive Expression .52 .32 .46 .61 .53 .42 .66 
Vocabulary .38 .29 .50 .59 .54 .52 .66 

From the matrix we can see that most correlations are low to moderate, with the 
correlation between Effective Expression and Vocabulary relatively large at a value of 
0.66. The correlation between Physical Science and Vocabulary is relatively small, 
equaling 0.29. 

3.18 OTHER CORRELATION COEFFICIENTS 

It often happens that once we hear of Pearson r, this becomes the only correlation 
coefficient in one’s vocabulary, and too often the concept, rather than calculation, of a  
correlation is automatically linked to Pearson r. Pearson r is but one of many 
correlation coefficients available at one’s disposal in applied research. Recall that 
Pearson r captures linear relationships between (typically) continuous variables. If 
the relationship is not linear, or one or more variables are not continuous, or again if 
the data are in the form of ranks, then other correlation coefficients are generally more 

... 

... 

... 

... 

... 

... 

... 

... 

... 

... 

... 

... 
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TABLE 3.5 Favorability of Movies for Two Individuals in 
Terms of Ranks 

Movie Bill Mary 

Batman 5 (2.1) 5 (7.6) 
Star Wars 1 (10.0) 3 (9.0) 
Scarface 3 (8.4) 1 (9.7) 
Back to the Future 4 (7.6) 4 (8.5) 
Halloween 2 (9.5) 2 (9.6) 

Actual scores on the favorability measure are in parentheses. 

suitable. We briefly review Spearman’s rho, although a host of other correlation 
coefficients exist that are well-suited for a variety of particular types of data.11 

Spearman’s rs (“rho”), named after Charles Spearman who developed the 
coefficient in 1904,12 is a correlation coefficient suitable for data on two variables 
that are expressed in terms of ranks rather than actual measurements on a continuous 
scale. Mathematically, the Spearman correlation coefficient is equivalent to a Pearson 
r when the data are ranked. There are nonetheless important differences between these 
two coefficients. Spearman’s rs is defined as 

d26 �Rx � Ry�2 6 irs � 1 � � 
n�n2 � 1� n�n2 � 1� 

where Rx and Ry are the ranks on xi and yi, d
2 are squared rank deviations, and n is the i 

number of pairs. When we compute rs on the Galton data, we obtain 

> cor.test(parent, child, method = "spearman") 

Spearman’s rank correlation rho 

data: parent and child 
S = 76569964, p-value < 2.2e-16 
alternative hypothesis: true rho is not equal to 0 
sample estimates: 

rho 
0.4251345 

We see that rs of 0.425 is slightly less than was Pearson r of 0.459. 
To understand why the Spearman rank correlation and the Pearson coefficient 

differ, consider data (Table 3.5) on the rankings of favorite movies for two 

11For an overview of alternative correlation coefficients such as the biserial, point-biserial, and tetrachoric
 
coefficients, see Howell (2002) and Warner (2013).
 
12The coefficient appears in Spearman (1904b).
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individuals. In parentheses are subjective scores of “favorability” of these movies, 
scaled 1–10, where 1 = least favorable and 10 = most favorable. 

From the table, we can see that Bill very much favors Star Wars (rating of 10), 
while least likes Batman (rating of 2.1). Mary’s favorite movie is Scarface (rating of 
9.7), while her least favorite movie is Batman (rating of 7.6). We will refer to these 
subjective scores in a moment. For now, we focus only on the ranks. For instance, 
Bill’s ranking of Scarface is third, while Mary’s ranking of Star Wars is third. 

To compute Spearman’s rs in R the “long way,” we generate two vectors that 
contain the respective rankings: 

> bill <- c(5, 1, 3, 4, 2) 
> mary <- c(5, 3, 1, 4, 2) 

Because the data are already in the form of ranks, both Pearson r and Spearman rho 
will agree: 

> cor(bill, mary) 
[1] 0.6 

> cor(bill, mary, method = “spearman”) 
> 0.6 

Note that by default, R returns the Pearson correlation coefficient. One has to 
specify method = “spearman” to get rs. Consider now what happens when we 
correlate, instead of rankings, the actual subjective favorability scores corresponding 
to the respective ranks. When we plot the favorability data, we obtain 

> bill.sub <- c(2.1, 7.6, 8.4, 9.5, 10.0) 
> mary.sub <- c(7.6, 8.5, 9.0, 9.6, 9.7) 
> plot(mary.sub, bill.sub) 
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Note that although the relationship is not perfectly linear, each increase in Bill’s 
subjective score is nonetheless associated with an increase in Mary’s subjective score. 
When we compute Pearson r on these data, we obtain 

> cor(bill.sub, mary.sub) 
[1] 0.9551578 

However, when we compute rs, we get 

> cor(bill.sub, mary.sub, method = "spearman") 
[1] 1 

Spearman rs is equal to 1.0 because the rankings of movie preferences are perfectly 
monotonically increasing (i.e., for each increase in movie preference along the 
abscissa corresponds an increase in movie preference along the ordinate). In the 
case of Pearson’s r, the correlation is less than 1.0 because r captures the linear 
relationship among variables and not simply a monotonically increasing one. Hence, a 
high magnitude coefficient for Spearman’s rs essentially tells us that two variables are 
“moving together,” but it does not necessarily imply the relationship is a linear one. A 
similar test that measures rank correlation is that of Kendall’s rank–order correlation. 
See Siegel and Castellan (1988, p. 245) for details. 

3.19 STUDENT’S t DISTRIBUTION 

The density for student’s t is given by 

��v�1�=2
t2Γ��v � 1�=2� 

f �t� �  p 1 � 
vvπΓ�v=2� 

where Γ is the gamma function and v are degrees of freedom. For small degrees of 
freedom v, the t distribution is quite distinct from the standard normal. However, as 
degrees of freedom increase, the t distribution converges to that of a normal density 
(Figure 3.11). That is, in the limit, f �t� !  f �z�, or more formally, lim f �t� �  f �z�. 

v!1 

FIGURE 3.11 Student’s t versus normal densities for 3 (left), 10 (middle), and 50 (right) 
degrees of freedom. As degrees of freedom increase, the limiting form of the t distribution is the 
z distribution. 
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The fact that t converges to z for large degrees of freedom but is quite distinct from 
z for small degrees of freedom is one reason why t distributions are often used for 
small sample problems. When sample size is large, and so consequently are degrees of 
freedom, whether one treats a random variable as t or z will make little difference in 
terms of computed p-values and decisions on respective null hypotheses. This is a 
direct consequence of the convergence of the two distributions for large degrees of 
freedom. 

3.19.1 t-Tests for One Sample 

When we perform hypothesis testing using the z distribution, we assume we have 
knowledge of the population variance σ2. Having direct knowledge of σ2 is the most 
ideal of circumstances. When we know σ2, we can compute the standard error of the 
mean directly as 

σ 
σM � p

n

Recall that the form of the one-sample z test for the mean is given by 

y � μ0 zM � p
σ= n

where the numerator y � μ0 represents the distance between the sample mean and the p
population mean μ0 under the null hypothesis, and the denominator σ= n is the 
standard error of the mean. 

In most research contexts, from simple to complex, we usually do not have direct 
knowledge of σ2. When we do not have knowledge of it, we use the next best thing, an 

2estimate of it. We can obtain an unbiased estimate of σ2 by computing s on our 
sample. When we do so however, and use s2 in place of σ2, we can no longer pretend 
to “know” the standard error of the mean. Rather, we must concede that all we are able 
to do is estimate it. Our estimate of the standard error of the mean is thus given by 

s 
σ̂M � p

n

p
When we use s2 (where s2 � s) in place of σ2, our resulting statistic is no longer 
a z statistic. That is, we say the ensuing statistic is no longer distributed as a standard 
normal variable (i.e., z). If it is not distributed as z, then what is it distributed as? 
Thanks to William Sealy Gosset who in 1908 worked for Guinness Breweries under 
the pseudonym “Student,” the ratio 

y � E�y� y � E�y� 
t � � p

σ̂M s= n
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was found to be distributed as a t-statistic on n � 1 degrees of freedom. Again, the 
t distribution is most useful when sample sizes are rather small. For larger samples, as 
mentioned, the t distribution converges to that of the z distribution. If you are using 
rather large samples, say approximately 100 or more, whether you test your null 
hypothesis using a z or t distribution will not matter much, because the critical values 
for z and t for such degrees of freedom (99 for the one-sample case) will be so similar 
that practically, they can be considered more or less equal. For even larger samples, 
the convergence is that much more fine-tuned. 

The concept of convergence between z and t can be easily illustrated by inspecting 
the variance of the t distribution. Unlike the z distribution where the variance is set at 
1.0 as a constant, the variance of the t distribution is defined as 

σ2 v� t v � 2 

where v are the degrees of freedom. For small degrees of freedom, such as v � 5, the 
variance of the t distribution is equal to 

5 5 
σ2 
t � � � 1:67

5 � 2 3 

Note what happens as v increases, the ratio v=�v � 2� gets closer and closer to 1.0, 
which is the precise variance of the z distribution. For example, v � 20 yields 

20 20 
σ2 � � � 1:11t 20 � 2 18 

which is already quite close to the variance of a standardized normal variable z (i.e., 
1.0). 

Hence, we can say more formally 

v
lim � 1:0 
v!1 v � 2 

That is, as v increases without bound, the variance of the t distribution equals that of 
the z distribution, which is equal to 1.0. 

We demonstrate the use of the one-sample t-test using SPSS. Consider the 
following small, hypothetical data on IQ scores of five individuals: 

IQ 
105 
98 

110 
105 
95 
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Suppose that the hypothesized mean IQ in the population is equal to 100. The 
question we want to ask is: Is it reasonable to assume that our sampled data could 
have arisen from a population with mean IQ equal to 100? We assume we have no 
knowledge of the population standard deviation, and hence must estimate it from our 
sample data. To perform the one-sample t-test in SPSS, we compute: 

T-TEST 
/TESTVAL=100 
/MISSING=ANALYSIS 
/VARIABLES=IQ 
/CRITERIA=CI(.95). 

The line /TESTVAL=100 inputs the test value for our hypothesis test, which for 
our null hypothesis is equal to 100. We have also requested a 95% confidence interval 
for the mean. 

One-Sample Statistics 

N Mean SD	 SE Mean 

IQ 5 102.6000 6.02495 2.69444 

We confirm from the above that the size of our sample is equal to 5, and the mean 
IQ for our sample is equal to 102.60 with standard deviation 6.02. The standard error 
of the mean reported by SPSS of 2.69 is actually not the true standard error of the 
mean. It is the estimated standard error of the mean, since recall that we did not have 
knowledge of the population variance (otherwise we would have been performing a z-
test instead of a t-test). 

One-Sample Test 

Test Value = 100 

95% Confidence 
Interval of the 
Difference 

t Df Sig. (2-tailed) Mean Difference Lower Upper 

IQ 0.965 4 0.389 2.60000 �4.8810 10.0810 

We note the following from the above output: 

•	 Our obtained t-statistic is equal to 0.965 and is evaluated on four degrees of 
freedom (i.e., n � 1 � 5 � 1 � 4). We lose a degree of freedom because recall 
that in estimating the population variance σ2 with s2, we had to compute a 
sample mean y and hence this value is regarded as “fixed” as we carry on with 
our t-test. Hence, we lose a single degree of freedom. 
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•	 The two-tailed p-value is equal to 0.389, which, assuming we had set our criteria 
for rejection at α � 0:05, leads us to the decision to not reject the null 
hypothesis. The two-tailed (as opposed to one-tailed or directional) nature 
of the statistical test in this example means that we allow a rejection of the null 
hypothesis in either direction from the value stated under the null. Since our null 
hypothesis is μ0 � 100, it means we were prepared to reject the null hypothesis 
for observed values of the sample mean that deviate “significantly” either 
greater than or less than 100. Since our significance level was set at 0.05, this 
means that we have 0.05/2 = 0.025 area in each end of the t distribution to 
specify as our rejection region for the test. The question we are asking of our 
sample mean is: What is the probability of observing a sample mean that falls 
much greater OR much less than 100? Because the observed sample mean can 
only fall in one tail or the other on any single trial (i.e., we are conducting a 
single “trial” when we run this experiment a single time), this implies these two 
events are mutually exclusive, which by the addition rule for mutually exclusive 
events, we can add them. When we add their probabilities, we get 
0.025 + 0.025 = 0.05, which, of course, is our significance level for the test. 

•	 The actual mean difference observed is equal to 2.60, which was computed by 
taking the mean of our sample, that of 102.6 and subtracting the mean 
hypothesized under the null hypothesis, that of 100 (i.e., 102.6 � 100 = 2.60). 

•	 The 95% confidence interval of the difference is interpreted to mean that in 95% 
of samples drawn from this population, the interval with lower bound �4.8810 
and upper bound 10.0810 will capture the true parameter, which in this case is 
the population mean difference. We can see that our sampled mean difference of 
2.60 lies within the limits of the confidence interval, which again confirms why 
we were unable to reject the null hypothesis at the 0.05 level of significance. 
Had our observed mean difference lay outside of the confidence interval limits, 
this would have been grounds to reject the null at a significance level of 0.05 
(and consequently, we would have also obtained a p-value of less than 0.05 for 
our significance test). Recall that the true mean (i.e., parameter) is not the 
random component. Rather, the sample is the random component, on which the 
interval is then computed. It is important to emphasize this distinction when 
interpreting the confidence interval. 

We can easily generate the same t-test in R. We first generate the vector of data then 
carry on with the one-sample t-test, which we notice mirrors the findings obtained in 
SPSS: 

> iq  <- c(105, 98, 110, 105, 95) 
> t.test(iq, mu = 100) 

One Sample t-test 

data: iq 
t = 0.965, df = 4, p-value = 0.3892 
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alternative hypothesis: true mean is not equal to 100 
95 percent confidence interval: 

95.11904 110.08096 
sample estimates: 
mean of x 

102.6 

3.19.2 t-Tests for Two Samples 

Just as the t-test for one sample is a generalization of the z-test for one sample, for 
2which we use s in place of σ2, the t-test for two independent samples is a 

generalization of the z-test for two independent samples. Recall the z-test for two 
independent samples: 

E�y1� � E�y2� E�y1� � E�y2� μ1 � μ2 pzM � � p p � p�σ21 =n1� � �σ22=n2� �σ1= n1� � �σ2= n2� �σ1= n1� � �σ2= n2� 
where E�y1� and E�y2� denote the expectations of the sample means y1 and y2, 
respectively (which are equal to μ1 and μ2). 

When we do not know the population variances σ21 and σ22, we shall, as before, 
2 2obtain estimates of them in the form of s1 and s2. When we do so, because we are 

using these estimates instead of the actual variances, our new ratio is no longer 
distributed as z. Just as in the one-sample case, it is now distributed as t: 

E�y1� � E�y2� E�y1� � E�y2� μ1 � μ2t � � p p � p p (3.7)2 2 �s1 =n1� � �s2 =n2� �s1= n1� � �s2= n2� �s1= n1� � �s2= n2� 
on degrees of freedom v � n1 � 1 � n2 � 1 � n1 � n2 � 2. 

The t in (3.7) assumes that n1 � n2. If this assumption is false, then pooling 
variances is recommended. To pool, we weight the sample variances by their 
respective sample sizes and obtain the following estimated standard error of the 
difference: 

2 21 1 �n1 � 1�s1 � �n2 � 1�s n1 � n22σ2 � �σ̂diff � ^pooled n1 � n2 � 2n1 n2 n1n2 

which can also be written as 

σ̂diff � σ̂2 
pooled 

1 
n1 

� 
1 
n2 

� 
σ̂2 
pooled 

n1 
� 
σ̂2 
pooled 

n2 
: 

2 2Notice that the pooled estimate of the variance ��n1 � 1�s1 � �n2 � 1�s �=�n1 � n2 � 2�2
is nothing more than a weighted sum, each variance being weighted by its respective 
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sample size. This idea of weighting variances as to arrive at a pooled value is not 
unique to t-tests. Such a concept forms the very fabric of how MS error is computed in 
the analysis of variance as we will shall see further in Chapter 4 when we discuss the 
ANOVA procedure in some depth. 

3.19.3 Two-Sample t-Tests in R 

Consider the following hypothetical data on pass–fail grades (“0” is fail, “1” is pass) 
for a seminar course with 10 attendees: 

grade studytime 
0  30  
0  25  
0  59  
0  42  
0  31  
1 140 
1  90  
1  95  
1 170 
1 120 

To conduct the two-sample t-test, we generate the relevant vectors in R and then 
carry out the test: 

> grade.0 <- c(30, 25, 59, 42, 31) 
> grade.1 <- c(140, 90, 95, 170, 120) 
> t.test(grade.0, grade.1) 

Welch Two Sample t-test 

data: grade.0 and grade.1 
t = -5.3515, df = 5.309, p-value = 0.002549 
alternative hypothesis: true difference in means is not equal to 0 
95 percent confidence interval: 
-126.00773 -45.19227 

sample estimates: 
mean of x mean of y 

37.4 123.0 

Using a Welch adjustment for unequal variances (Welch, 1947) automatically 
generated by R, we conclude a statistically significant difference between means 
(p = 0.003). In 95% of samples drawn from this population, we can say the true mean 
difference lies between the lower limit of approximately �126.0 and the upper limit of 
approximately �45.2. As a quick test to verify the assumption of equal variances (and 
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whether the Welch adjustment was necessary), we can use var.test which will 
produce a ratio of variances and test the null hypothesis that this ratio should equal 1 
(i.e., if the variances are equal, the numerator of the ratio will be the same as the 
denominator): 

> var.test(grade.0, grade.1) 

F test to compare two variances 

data: grade.0 and grade.1 
F = 0.1683, num df = 4, denom df = 4, p-value = 0.1126 
alternative hypothesis: true ratio of variances is not equal to 1 
95 percent confidence interval: 
0.01752408 1.61654325 

sample estimates: 
ratio of variances 

0.1683105 

The var.test yields a p-value of 0.11, which under most circumstances would 
be considered insufficient reason to doubt the null hypothesis of equal variances. 
Hence, the Welch adjustment on the variances was not needed in this case. 

Carrying out the same test in SPSS is straightforward by requesting (output not 
shown): 

t-test groups = grade(0 1) 
/variables = studytime. 

A classic nonparametric equivalent to the independent samples t-test is the 
Wilcoxon rank–sum test. It is a useful test to run when either distributional assump
tions are known to be violated or when they are unknown and sample size is too small 
for the central limit theorem to come to the “rescue.” The test compares rankings 
across the two samples instead of actual scores. For a brief overview of how the test 
works, see Kirk (2008, Chapter 18) and Howell (2002, pp. 707–717). We can request 
the test quite easily in R: 

> wilcox.test(grade.0, grade.1) 

Wilcoxon rank sum test 

data: grade.0 and grade.1 
W = 0, p-value = 0.007937 
alternative hypothesis: true location shift is not equal to 0 

We see that the obtained p-value still suggests we reject the null hypothesis, though 
the p-value is slightly larger than that for the parametric test. 
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3.20 STATISTICAL POWER 

Power, first and foremost, is a probability. Power is the probability of rejecting a null 
hypothesis given that the null hypothesis is false. It is equal to 1 � β (i.e., 1 minus the 
type II error rate). If the null hypothesis were true, then regardless of how much power 
one has, one will still not be able to reject the null. We may think of it in terms of the 
sensitivity of a statistical test for detecting the falsity of the null hypothesis. If the test 
is not very sensitive to departures from the null (i.e., in terms of a particular alternative 
hypothesis), we will not detect such departures. If the test is very sensitive to such 
departures, then we will correctly detect these departures and be able to infer the 
statistical alternative hypothesis in question. 

A useful analogy for understanding power is to think of a sign on a billboard that 
reads “H0 is false.” Are you able to detect such a sign with your current glasses or 
contacts that you are wearing? If not, you lack sufficient power. That is, you lack the 
sensitivity in your instrument (your reading glasses) to correctly detect the falsity of 
the null hypothesis, and in doing, be in a position to reject it. Alternatively, if you have 
20/20 vision, you will be able to detect the false null with ease, and reject it with 
confidence. A key point to note here is that if H0 is false, it is false regardless of your 
ability to detect it, analogous to a virus strain being present but biomedical engineer
ing lacking a powerful enough microscope to see it. If the null is false, the only 
question that remains is whether or not you will have a powerful enough test to detect 
its falsity. If the null were not false on the other hand, then regardless of your degree of 
power, you will not be able to detect its falsity (because it is not false to begin with). 

Power is a function of four elements, all of which will be covered in our discussion 
of the p-value toward the conclusion of this chapter: 

1. The value hypothesized under the statistical alternative hypothesis H1. All else 
equal, a greater distance between H0 and H1 means greater power. Though 
“distance” in this regard is not a one-to-one concept with effect size, the spirit of 
the two concepts is the same. The greater the scientific effect, the more power 
you will have to detect that effect. This is true whether we are dealing with 
mean differences in ANOVA-type models or testing a null hypothesis of the 
sort H0 : R2 � 0 in regression. In all such cases, we are seeking to detect a 
deviation from the null hypothesis. 

2. The significance level or type I error rate (α) at which you set your test. All else 
equal, a more liberal setting such as 0.05 or 0.10 affords more statistical power 
than a more conservative setting such as 0.001 or 0.01. It is easier to detect a 
false null if you allow yourself more of a risk of committing a type I error. Since 
we usually want to minimize type I error, we typically want to regard α as fixed 
at a nominal level (e.g., 0.05 or 0.01) and consider it not amenable to 
adjustment for the purpose of increasing power. 

3. Population variability, σ2, often unknown but estimated by s2. All else equal, the 
greater the variance of objects studied in the population, the less sensitive the 
statistical test, and the less power you will have. Why is this so? As an analogy, 
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consider a rock thrown into the water. The rock will make a definitive 
particular “splash” in that it will displace a certain amount of water when it 
hits the surface. This is the “effect size” of the splash. If the water is noisy 
with wind and waves (i.e., high population variability), it will be difficult to 
detect the splash. If, on the other hand, the water is calm and serene (i.e., low 
population variability), you will more easily detect the splash. Either way, the 
rock made a splash. Whether we can detect the splash or not is in part a 
function of the variance in the population. 

Applying this concept to research settings, if you are sampling from “noisy” 
populations, it is harder to see the effect of your independent variable than if 
you are sampling from less noisy, and thus less variable populations. This is 
why research using laboratory rats or other equally controllable objects can 
usually detect effects with relatively few animals in a sample, whereas research 
studying humans on variables such as intelligence, anxiety, attitudes, etc., 
usually requires many more subjects in order to detect effects. A good way to 
boost power is to study populations that have relatively low variability before 
your treatment is administered. If your treatment works, you will be able to 
detect its efficacy with fewer subjects than if dealing with a highly variable 
population. Another approach is to covary out one or two factors that are 
thought to be related with the dependent variable through a technique such as 
the analysis of covariance (Keppel and Wickens, 2004). 

4. Sample size	 n. All else equal, the greater the sample size, the greater the 
statistical power. Boosting sample size is a common strategy for increasing 
power. Indeed, as will be discussed in the conclusion of this chapter, for any 
significance test in which there is at least some effect (i.e., some distance 
between the null and alternative), statistical significance is assured for a large-
enough sample size. Obtaining large samples is a good thing (since after all, the 
most ideal goal would be to have the actual population), but as sample size 
increases, the p-value becomes an increasingly poor indicator or measure of 
experimental effect. Effect sizes should always be reported alongside any 
significance test. 

3.20.1 Visualizing Power 

Figure 3.12, adapted from Bollen (1989), depicts statistical power under competing 
values for detecting the population parameter θ. Note carefully in the figure that the 
critical value for the test remains constant as a result of our desire to keep the type I 
error rate constant. It is the distance from θ � 0 to  θ � C1 or θ � C2 that determines 
power (the shaded region in distributions (b) and (c)). 

Statistical power matters so long as we have the inferential goal of rejecting null 
hypotheses. A study that is underpowered risks not being able to reject null hypotheses 
even if such null hypotheses are in reality false. A failure to reject a null hypothesis under 
the condition of minimal power could either mean a lack of inferential support for the 
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FIGURE 3.12 Power curves for detecting parameters C1 and C2 (Bollen, 1989). Reproduced 
with permission from John Wiley & Sons, Inc. 

obtained finding, or it could simply suggest an underpowered (and consequently poorly 
designed) experiment or study. Ensuring adequate statistical power before one engages 
in a research study or experiment is mandatory. 

3.20.2 Power Estimation Using R and G∗Power 

To demonstrate the estimation of power using software, we first use pwr.r.test 
(Champely, 2014) in R to estimate required sample size for a Pearson r correlation 
coefficient. As an example, we estimate required sample size for a population 
correlation coefficient of ρ � 0:10 at a significance level set to 0.05, with desired 
power equal to 0.90. Note that in the code that follows, we purposely leave n empty so 
that R can estimate this figure for us: 

> install.packages(“pwr”)
 

> library(pwr)
 

> pwr.r.test(n =, r  = .10, sig.level = .05, power = .90)
 

approximate correlation power calculation (arctangh transformation) 

n = 1046.423 
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FIGURE 3.13 G∗Power output for estimating required sample size for r = 0.10. 

r = 0.1
 
sig.level = 0.05
 

power = 0.9
 
alternative = two.sided
 

We see that to detect a correlation coefficient of 0.10 at a desired level of power 
equal to 0.9, a sample size of 1046 is required. We could round up to 1047 for a 
slightly more conservative estimate. Estimating in G∗Power,13 we obtain that given in 
Figure 3.13. 

Note that our power estimate using G∗Power is identical to that using R (i.e., power 
of 0.90 requires a sample size of 1046 for an effect size of ρ � 0:10). G∗power also 
allows us to draw the corresponding power curve. A power curve is a simple depiction 
of required sample size as a function of power and estimated effect size. What is nice 
about power curves is that they allow one to see how estimated sample size 
requirements and power increase or decrease as a function of effect size. For the 

13G∗Power is a user-friendly statistical power program that can be downloaded for free from http://www 
.gpower.hhu.de/en.html. 

http://www.gpower.hhu.de/en.html
http://www.gpower.hhu.de/en.html
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FIGURE 3.14 Power curves generated by G∗Power for detecting correlation coefficients of 
ρ � 0:10 to 0.50. 

estimation of sample size for detecting ρ � 0:10, G∗Power generates the curve in 
Figure 3.14 (top curve). 

Especially for small hypothesized values of ρ, the required sample size for even 
poor to modest levels of statistical power is quite large. For example, reading off the 
plot in Figure 3.14, to detect ρ � 0:10, at even a relatively low power level of 0.60, 
one requires upward of almost 500 participants. This might explain why many studies 
that yield relatively small effect sizes never get published. They often have insuffi
cient power to reject their null hypotheses. As effect size increases, required sample 
size drops substantially. For example, to attain a modest level of power such as 0.69 
for a correlation coefficient of 0.5, one requires only 22.5 participants, as can be more 
clearly observed from Table 3.6 which corresponds to the power curves in Figure 3.14 
for power ranging from 0.60 to 0.69. 

Hence, one general observation from this simple power analysis for detecting ρ is 
that the size of effect (in this case, ρ) plays a very important role in determining 
estimated sample size. As a general rule, across virtually all statistical tests, if the effect 
you are studying is large, a much smaller sample size is required than if the effect is 
weak. Drawing on our analogy of the billboard sign that reads “H0 is false,” all else 
equal, if the sign is in large print (i.e., strong effect), you require less “power” in your 
prescription glasses to detect such a large sign. If the sign is in small print (i.e., weak 
effect), you require much more “power” in your lenses to detect it. 
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TABLE 3.6 Power Estimates as a Function of Sample Size and Estimated Magnitude 
under Alternative Hypothesis 

3.20.3 Estimating Sample Size and Power for Independent Samples t-Test 

For an independent samples t-test, required sample size can be estimated through R 
using pwr.t.test: 

> pwr.t.test (n =, d  =, sig.level =, power =, type = c(“two.sample”, 
“one.sample”, “paired”)) 

where n = sample size per group, d = estimate of standardized statistical distance 
between means (Cohen’s d), sig.level = desired significance level of the test, 
power = desired power level, and type = designation of the kind of t-test you are 
performing (for our example, we are performing a two-sample test). 

It would be helpful at this point to translate Cohen’s d values into R2 values to learn 
how much variance is explained by differing d values. To convert the two, we apply 
the following transformation: 

4r2 
d � 

1 � r2 

Table 3.7 contains conversions for r increments of 0.10, 0.20, 0.30, etc. 
To get a better feel for the relationship between Cohen’s d  and  r2, we obtain a plot 

of their values (Figure 3.15). 
As can be gleamed from Figure 3.15, the relationship between the two effect size 

measures is not exactly linear, and increases rather sharply for comparatively large 
values (the curve is somewhat exponential). 
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TABLE 3.7 

r 

0.10 
0.20 
0.30 
0.40 
0.50 
0.60 
0.70 
0.80 
0.90 
0.99 

14Conversions for r ! r2 ! d 

r2 d 

0.01 0.20 
0.04 0.41 
0.09 0.63 
0.16 0.87 
0.25 1.15 
0.36 1.50 
0.49 1.96 
0.64 2.67 
0.81 4.13 
0.98 14.04 

FIGURE 3.15 Relationship between Cohen’s d and R-squared. 

14Entries in the table were computed by the author in R as follows: 

> r  <- c(0.10, 0.20, 0.30, 0.40, 0.50, 0.60, 0.70, 0.80, 0.90, 0.99) 
> r_squared <- r^2 
> r_squared 
[1] 0.0100 0.0400 0.0900 0.1600 0.2500 0.3600 0.4900 0.6400 0.8100 0.9801 

> d  <- sqrt((4*r^2)/(1-r^2)) 
> d  
[1] 0.2010076 0.4082483 0.6289709 0.8728716 1.1547005 1.5000000 
[7] 1.9603921 2.6666667 4.1294832 14.0358479 



146	 INTRODUCTORY STATISTICS 

Suppose a researcher would like to estimate required sample size for a two-sample 
t-test, for a relatively small effect size, d = 0.41 (equal to r of 0.20), at a significance 
level of 0.05, with a desired power level of 0.90. We compute: 

> pwr.t.test (n =, d  =0.41, sig.level =.05, power =.90, type = c 
(“two.sample”)) 

Two-sample t test power calculation 

n = 125.9821
 
d = 0.41
 

sig.level = 0.05
 
power = 0.9
 

alternative = two.sided
 

NOTE: n is number in *each* group 

Thus, the researcher would require a sample size of approximately 126. As R 
emphasizes, this sample size is per group, so the total sample size required is 
126(2) = 252. 

3.21 PAIRED SAMPLES t-TEST: STATISTICAL TEST FOR 
MATCHED PAIRS (ELEMENTARY BLOCKING) DESIGNS 

Oftentimes in research we are able to sample observations that are matched on one 
or more variables or characteristics. For instance, consider the hypothetical data in 
Table 3.8: 

•	 In each block (1–5), participants within blocks are assumed to be more 
homogeneous on one or more variables than participants between blocks. 

•	 Participants are randomly assigned to condition (i.e., treatment 1 versus 
treatment 2) within each block. 

•	 Whether the blocks are naturally occurring or our sampling scheme is designed 
purposely to create the blocks, we can exploit the homogeneity of participants 

TABLE 3.8 Matched Pairs Design 

Treatment 1 Treatment 2 

Block 1 
Block 2 
Block 3 
Block 4 
Block 5 

10 
15 
20 
22 
25 

8 
12 
14 
15 
24 
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within each block by including this source in our statistical analysis as to 
potentially reduce the error term of our statistical test. 

The matched pairs design is a simpler version of the full-blown completely 
randomized block design in which one can have more than just two levels of the 
independent variable (e.g., treatment 1 versus treatment 2 versus treatment 3). 
However, the principle behind the matched pairs design and that of randomized 
block designs is the same, that of exploiting the covariance between conditions and 
removing it from the error term of the test statistic (t in matched pairs; F in randomized 
block designs). 

In more advanced analyses such as repeated measures, longitudinal, and mixed 
effects modeling, we will say that subjects are nested within block. A nesting structure 
simply implies that subjects within a block share similarity compared to subjects 
between blocks. Good statistical analyses will attempt to account for this similarity, 
remove it from respective error terms for tests, and hence make the statistical test for 
effects more sensitive (i.e., more powerful). 

As an example of a matched pairs situation, suppose we are interested in evaluating 
the effects of melatonin15 dose on average hours of sleep. However, we know that due 
to age, some people will naturally sleep longer than others irrespective of how much 
melatonin they receive. We do not want this natural sleep tendency due to age to 
confound the effect we are actually interested in studying (i.e., that of melatonin dose), 
and so we will match participants on their age level, or perhaps even crudely on age 
group (e.g., young, middle-aged, old), and carry out our study within each age group. 
Then, when we perform statistical analyses, we will be able to extract this variation 
due to age out of the error term of the analysis, and hence boost statistical power for 
estimating the effect we are actually interested in (melatonin dosage). 

When we sample observations in pairs, as we did for the independent samples 
t-test, the expectation of the difference between sample means is given by 

E�y1 � y2� � μ1 � μ2 

However, because observations are sampled (or “matched”) in pairs, we naturally 
expect there to be a covariance different from zero between pairs. We can exploit this 
covariance and remove it from the error term of our statistical test. As given in Hays 
(1994) and Winer et al. (1991), the variance of the difference becomes 

σ2 
M1 

� σ2 � 2 cov �y1; y2�diff � σ2 
M2 

with standard error equal to 

σdiff � σ2 σ2 � σ2 � 2 cov �y1; y2�diff � M1 M2 

15Melatonin is sometimes used as a nonprescription sleep aid. 



148 INTRODUCTORY STATISTICS 

Notice that we have subtracted 2 cov�y1; y2� from the denominator of our statistic. 
Assuming the covariance between pairs is unequal to 0 and positive, this subtraction 
will serve to lower the standard error of our statistic, and hence boost statistical power. 
In practice, this is accomplished by conducting a t-test on the difference scores 
between samples. 

In the classic between-subjects design where participants are not matched, the 
expectation is that covariance between treatments is equal to 0, and hence we would have 

σ2 
M1 

� σ2 � 2 cov  �y1; y2�diff � σ2 
M2 � σ2 � σ2 � 2�0�M1 M2 � σ2 � σ2 

M1 M2 

The matched pairs design is a very important concept in statistics and design of 
experiments, because this simple design is the starting point to understanding more 
complicated designs and modeling such as mixed effects and hierarchical models. 

We analyze the hypothetical data in Table 3.8 using a paired samples t-test in R by 
requesting paired = TRUE: 

> treat <- c(10, 15, 20, 22, 25) 
> control <- c(8, 12, 14, 15, 24) 
> t.test(treat, control, paired = TRUE) 

Paired t-test 

data: treat and control 
t = 3.2827, df = 4, p-value = 0.03042 
alternative hypothesis: true difference in means is not equal to 0 
95 percent confidence interval: 
0.5860324 7.0139676 

sample estimates: 
mean of the differences 

3.8 

The obtained p-value of 0.03 is statistically significant at a 0.05 level of signifi
cance. We reject the null hypothesis and conclude the population means for the 
treatment conditions to be different. 

As a nonparametric test, the Wilcoxon rank–sum test discussed earlier can be 
adapted to incorporate paired observations. For our data, we have: 

> wilcox.test(treat, control, paired = TRUE) 

Wilcoxon signed rank test 

data: treat and control 
V = 15, p-value = 0.0625 
alternative hypothesis: true location shift is not equal to 0 



COMPOSITE VARIABLES: LINEAR COMBINATIONS 149 

TABLE 3.9 Randomized Block Design 

Treatment 1 Treatment 2 

Block 1 10 9 
Block 2 15 13 
Block 3 20 18 
Block 4 22 17 
Block 5 25 25 

Treatment 3 

8 
12 
14 
15 
24 

We notice that the obtained p-value is somewhat greater for the nonparametric 
test than for the parametric one. In terms of significance tests, this emphasizes the 
fact that there is usually a cost to not being able to make parametric assumptions. 

3.22 BLOCKING WITH SEVERAL CONDITIONS 

We have said that in a blocking design, between treatment conditions we expect the 
covariance to be unequal to 0. Now, consider a design in which, once again we block, 
but this time on more than two treatment levels. The layout for such a design is given 
in Table 3.9. 

Now, here is the trick to understanding advanced modeling, including a primary 
feature of mixed effects modeling. We know that we expect the covariance between 
treatments to be unequal to 0. This is analogous to what we expected in the simple 
matched pairs design. It seems then that a reasonable assumption to make for the data 
in Table 3.9 is that the covariances between treatments are equal, or at minimum 
follow some hypothesized correlational structure. In multilevel and hierarchical 
models, attempts are made to account for the correlation between treatment levels 
instead of assuming these correlations to equal 0 as is the case for classical between-
subjects designs. In Chapter 7, we elaborate on these ideas when we discuss 
randomized block and repeated measures models. 

3.23 COMPOSITE VARIABLES: LINEAR COMBINATIONS 

In many statistical techniques, especially multivariate ones, statistical analyses take 
place not on individual variables, but rather on linear combinations of variables. A 
linear combination in scalar algebra can be denoted simply as 

ℓi � a1y1 � a2y2 � ∙ ∙ ∙  � apyp´� a y 
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´ where a � �a1; a2; . . . ; ap�. These values are scalars, and serve to weight the 
respective values of y1 through yp. 

Just as we did for “ordinary” variables, we can compute a number of central tendency 
and dispersion statistics on linear combinations. For instance, we can compute the mean 
of a linear combination ℓi as 

n1 ´ ℓ � ℓi � a y 
n 

i�1 

We can also compute the sample variance of a linear combination: 

n 
i�1 �ℓi � ℓ�2 

2sℓ � � a ́ Sa 
n � 1 

for ℓi � a ́ yi; i � 1; 2; . . . ; n, and where S is the sample covariance matrix. Though the 
form a ́Sa for the variance may be difficult to decipher at this point, it will become 
clearer when we consider techniques such as principal components later in the book. 

For two linear combinations, 

´ ℓ1 � a1y1 � a2y2 � ∙ ∙ ∙  � apyp � a y 

and 

ℓ2 � b1y1 � b2y2 � ∙ ∙ ∙  � bpy � b ́ yp 

we can obtain the sample covariance between such linear combinations as follows: 

n 
i�1�ℓi1 � ℓ1��ℓi2 � ℓ2� covℓ1;ℓ2 � � a ́ Sb 

n � 1 

The correlation of these linear combinations is simply the standardized version of 
covℓ1;ℓ2 : 

covℓ1;ℓ2 a ́Sb 

If rℓ1;ℓ2 is the maximum correlation between linear combinations, it is called the 
canonical correlation, discussed in Chapter 13. The correlation between linear 
combinations plays a central role in multivariate analysis. Substantively, and geo
metrically, linear combinations can be interpreted as “projections” of one or more 
variables onto new dimensions. For instance, in simple linear regression, the fitting of 
a least-squares line is such a projection. It is the projection of points such that it 

rℓ1 ;ℓ2 � 
s2 
ℓ1 
s2 
ℓ2 

� �a ́Sa��b ́ Sb�p 
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guarantees that the sum of squared deviations from the given projected line or 
“surface” (in the case of higher dimensions) is kept to a minimum. 

If we can assume multivariate normality of a distribution, that is, Y∼N�μ; Σ�, then 
we know linear combinations of Y are also normally distributed, as well as a host of 
other useful statistical properties (Timm, 2002, pp. 86–88). In multivariate methods 
especially, we regularly need to make assumptions about such linear combinations, 
and it helps to know that so long as we can assume multivariate normality, we have 
some idea of how such linear combinations will be distributed. 

3.24 MODELS IN MATRIX FORM 

Throughout the book, our general approach is to first present models in their simplest 
possible form using only scalars. We then gently introduce the reader to the 
corresponding matrix counterparts and extensions. The requirement of matrices 
for such models is to accommodate numerous variables and dimensions. Matrix 
algebra is the vehicle by which multivariate analysis is communicated, though most of 
the concepts of statistics can be communicated using simpler scalar algebra. 

As an example of how matrices will be used to develop more complete and general 
models, consider the multivariate general linear model in matrix form: 

Y � XB � E (3.8) 

where Y is an n × m matrix of n observations on m response variables, X is the model 
matrix whose columns contain k regressors that include the intercept term, B is a 
matrix of regression coefficients, and E is a matrix of errors. Many statistical models 
can be incorporated into the framework of (3.8). As a relatively easy application of 
this general model, consider the multiple regression model (discussed in Chapter 9) in 
matrix form: 

α 

yi�1 1 xi�1 ϵ1 

yi�2 1 xi�2 ϵ2 

1 xi�3 ϵ3yi�3 
... 

... 
... 

...Y � X � B � ϵ � 
β... 

... 
... 

... 

... 
... 

... 
... 

yi�n 1 xi�n ϵn 

where yi�1 to yi�n are observed measurements on some dependent variable, X is the 
model matrix containing a constant of 1 in the first column to represent the common 
intercept term, xi�1 to xi�n are observed values on a predictor variable, α is the fixed 
intercept term, β is the slope parameter, which we also assume to be fixed, and ϵ is a 
vector of errors ϵ1 to ϵn. 
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Suppose now we want to add a second response variable. Because of the generality 
of (3.8), this can be easily accommodated: 

yi�1;1; yi�1;2 
yi�2;1; yi�2;2 
yi�3;1; yi�3;2 

Y � 
... 
... 
... 

yi�n;1; yi�n;2 

where now, a second response variable is represented in Y by a second column. That is, 
yi�1;2 corresponds to individual 1 on response variable 2, yi�2;2 is individual 2 on 
response variable 2, etc. Such matrix representations will be featured throughout 
the book. 

3.25 GRAPHICAL APPROACHES 

Performing inferential tests to help in drawing conclusions about population parame
ters is useful, but ultimately the findings of a statistical analysis should make their way 
into a graph or other visualization. Data visualization is a field in itself, and with the 
advent of modern computing power, possibilities exist today that could only be 
dreamt of in the past. Simple visualizations such as histograms, boxplots, scatterplots, 
etc., can be useful in depicting findings but also in helping to verify assumptions that 
underlay the statistical model one is using. For example, since many tests of normality 
and equality of variances (and covariances) are relatively sensitive to the type of data 
to which they are applied, oftentimes researchers will generate simple plots in order to 
detect potential gross violations of such assumptions. We feature such techniques 
throughout the book. 

For graphical displays meant to communicate findings (rather than test assump
tions), Friendly (2000) puts the field into context: 

Designing good graphics is surely an art, but as surely, it is one that ought to be informed 
by science . . . In  this view, an effective graphical display, like good writing, requires an 
understanding of its purpose – what aspects of the data are to be communicated to the 
viewer. In writing, we communicate most effectively when we know our audience and 
tailor the message appropriately. (p. 8) 

In high-dimensional space, the challenge of graphical approaches is to summarize 
data into lower dimensions, while still retaining most of the information in the original 
data. We feature some such plots in later chapters. For a thorough account of data 
visualization, see DataVis.ca (Friendly, 2014, www.datavis.ca). For sophisticated 
graphics using R, refer to Wickham (2009). 

www.datavis.ca
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For now, it is useful here to briefly review some basic plots for which the reader is 
likely already familiar. 

3.25.1 Box-and-Whisker Plots 

The boxplot was a contribution of Tukey (1977) in the spirit of what he called 
exploratory data analysis (EDA), which encouraged scientists to spend more of their 
energy on descriptive techniques instead of focusing exclusively on confirmatory 
statistical tests. Boxplots of parent heights from Galton’s data appear below: 

> attach(Galton) 
> boxplot(parent) 
> library(lattice) 
> bwplot(parent) 

The boxplot provides what is generally known as a five-number summary of a 
distribution, of which we can obtain most of the numbers we need by the summary 
function in R: 

> summary(parent) 
Min. 1st Qu. Median Mean 3rd Qu. Max. 

64.00 67.50 68.50 68.31 69.50 73.00 

Recall that the median is the point in the ordered data that divides the data set into 
two equal parts. The location of the median is computed by �n � 1�=2. In Galton’s 
data, there are 928 observations, and so the location of the median is at the 464.5th 
(i.e., �928 � 1�=2) point in the ordered data set. For parent, this value is equal to 68.50. 
The first and third quartiles represent the 25th and 75th percentiles and are 67.50 and 
69.50, respectively. We can also compute the range as 

> range(parent) 
[1] 64 73 
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We can also generate boxplots by category. Throughout the book we use Fisher’s 
Iris data (Fisher, 1936) in which flower characteristics such as sepal and petal length 
are categorized by species of flower. We plot sepal length by species: 

> library(lattice) 
> attach(iris) 
> bwplot(Sepal.Length ∼ Species) 

Data points falling beyond the whiskers of the plots may reveal the presence of 
outliers, and should be investigated (although not necessarily deleted, see Section 
8.23 for a discussion). 

Stem-and-leaf plots are also easily produced. These visual displays are kind of 
“naked histograms,” because they reveal the actual observations in the data while also 
providing information about their frequency of occurrence. In 1710, John Arbuthnot 
analyzed data on the ratios of males to female births in London from 1629 to 1710 and 
in so doing made an argument for these births being a function of a “divine being” 
(Arbuthnot, 1710). One of his variables was the number of male christenings (i.e., 
baptisms) over the period 1629–1710. We generate a stem-and-leaf plot in R using 
package aplpack (Wolf and Bielefeld, 2014) of these male christenings, for which the 
“leaves” are corresponding hundreds. For example, in the following plot, the first value 
of 2|8 seemingly corresponds to a value of 2800, which appears rounded down from the 
actual value in the data (which is also the minimum) of 2890. The maximum in the data 
is actually equal to 8426, but is seemingly represented by 8400 (i.e., 8|0012334): 

> library(aplpack) 
> attach(Arbuthnot) 
> stem.leaf(Males) 

1 | 2: represents 1200 
leaf unit: 100 
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n: 82 
1  2.  | 8 

10 3* | 011222334 
15 3. | 66777 
18 4* | 014 
25 4. | 6777899 
36 5* | 01112233444 
38 5. | 56 
(11) 6* | 00001122444 
33 6. | 5555899 
26 7* | 244 
23 7. | 5555666666778999 
7  8*  | 0012334 

3.26 WHAT MAKES A p-VALUE SMALL? A CRITICAL OVERVIEW 
AND SIMPLE DEMONSTRATION OF NULL HYPOTHESIS 
SIGNIFICANCE TESTING 

The workhorse for establishing statistical evidence in the social and natural sciences is 
the method of null hypothesis significance testing (NHST). However, since its 
inception with R.A. Fisher in the early 1900s, the significance test has been the 
topic of much debate, both statistical and philosophical. Throughout much of this 
book, NHST is regularly used to evaluate null hypotheses in methods such as the 
analysis of variance, regression, and various multivariate procedures. Indeed, the 
procedure is universally used in most statistical methods. 

It behooves us then, before embarking on all of these methodologies, to discuss the 
nature of the null hypothesis significance test, and clearly demonstrate what it actually 
means, not only in a statistical context but also how it should be interpreted in a 
research or substantive context. 

The purpose of this final section of this chapter is to provide a clear and 
concise demonstration and summary of the factors that influence the size of a 
computed p-value in virtually every statistical significance test. Understanding 
why statements such as “p < 0.05” can be reflective of even the smallest and 
trivial of effects is critical for the practitioner or researcher to appreciate if he or 
she is to assess and appraise statistical evidence in an intelligent and thoughtful 
manner. It is not an exaggeration to say that if one does not understand the 
makeup of a p-value and the factors that directly influence its size, one cannot 
properly evaluate statistical evidence, nor should one even make the attempt to 
do so. Though these arguments are not new and have been put forth by even the 
very best of methodologists (Cohen, 1990; Meehl, 1978), there is evidence to 
suggest that many practitioners and researchers do not understand the factors that 
determine the size of a p-value. 
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3.26.1 Null Hypothesis Significance Testing: A History of Criticism 

Criticism targeted against null hypothesis significance testing has inundated the 
literature since the time Berkson in 1938 brought to light how statistical significance 
can be easily achieved by simple manipulations of sample size: 

I believe that an observant statistician who has had any considerable experience with 
applying the chi-square test repeatedly will agree with my statement that, as a matter of 
observation, when the numbers in the data are quite large, the P’s tend to come out small. 
(Berkson, 1938, p. 526) 

Since Berkson, the very best and renowned of methodologists have remarked that 
the significance test is subject to gross misunderstanding and misinterpretation 
(Bakan 1966; Carver, 1993; Cohen, 1990; Estes, 1997; Harlow, Mulaik, and Steiger 
1997; Loftus, 1991; Meehl, 1978; Oakes, 1986; Shrout, 1997; Wilson, Miller, and 
Lower, 1967). And although it can be difficult to assess or evaluate whether the 
situation has improved, there is evidence to suggest that it has not. Few describe the 
problem better than Gigerenzer in his article “Mindless Statistics” (Gigerenzer, 2004), 
in which he discusses both the roots and truths of hypothesis testing, as well as how its 
“statistical rituals” and practices have become far more of a sociological phenomenon 
rather than anything related to good science and statistics. 

Other researchers have found that misinterpretations and misunderstandings 
about the significance test are widespread not only among students but also among 
their instructors (Haller and Krauss, 2002). What determines statistical significance 
and what is it a function of? This is an extremely important question. An unaware
ness of the determinants of statistical significance leaves the door open to misunder
standing and misinterpretation of the test, and the danger to potentially draw false 
conclusions based on its results. Too often and for too many, the finding “p < 0.05” 
simply denotes a “good thing” of sorts, without ever being able to pinpoint what is so 
“good” about it. 

Recall the familiar one-sample z-test for a mean discussed earlier: 

y � μ0zM � p
σ= n

where the purpose of the test was to compare an obtained sample mean y to a 
population mean μ0 under the null hypothesis that μ � μ0. Recall that σ is the standard 
deviation of the population from which the sample was presumably drawn. Recall that 
in practice, this value is rarely if ever known for certain, which is why in most cases an 
estimate of it is obtained in the form of a sample standard deviation s. What 
determines the size of zM, and therefore, the smallness of p? There are three inputs 
that determine the size of p, which we have already featured in our earlier discussion 
of statistical power. These three factors are y � μ0, σ, and n. We consider each of these 
once more, then provide simple arithmetic demonstrations to emphasize how 
changing any one of these necessarily results in an arithmetical change in zM, and 
consequently, a change in the observed p-value. 
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As a first case, consider the distance y � μ0. Given constant values of σ and n, 
the greater the distance between y and μ0, the  larger  zM will be. That is, as the 
numerator y � μ0 grows larger, the resulting zM also gets larger in size, which as a 
consequence, decreases p in size. As a simple example, assume for a given 
research problem that σ is equal to 20 and  n is equal to 100. This means that the p
standard error is equal to 20/ 100, which is equal to 20=10 � 2. Suppose the 
obtained sample mean y were equal to 20, and the mean under the null hypothesis 
μ0 were equal to 18. The numerator of zM would thus be 20 � 18 � 2. When 2 is  
divided by the standard error of 2, we obtain a value for zM of 1.0, which is not 
statistically significant at p < 0.05. 

Now, consider the scenario where the standard error of the mean remains the same 
at 2, but that instead of the sample mean y being equal to 20, it is equal to 30. The 
difference between the sample mean and the population mean is thus 30 � 18 � 12. 
This difference represents a greater distance between means, and presumably, would 
be indicative of a more “successful” experiment or study. Dividing 12 by the standard 
error of 2 yields a zM value of 6.0, which is highly statistically significant at p < 0.05 
(whether for a one- or two-tailed test). 

Having the value of zM increase as a result of the distance between y and μ0 
increasing is of course what we would expect from a test statistic if that test statistic 
is to be used in any sense to evaluate the strength of the scientific evidence against 
the null. That is, if our obtained sample mean y turns out to be very different than 
the population mean under the null hypothesis, μ0, we would hope that our test 
statistic would measure this effect, and allow us to reject the null hypothesis at some 
preset significance level (in our example, 0.05). If interpreting test statistics were 
always as easy as this, there would be no misunderstandings about the meaning of 
statistical significance and the misguided decisions to automatically attribute 
“worth” to the statement “p < 0.05.” However, as we discuss in the following 
cases, there are other ways to make zM big or small that do not depend so intimately 
on the distance between y and μ0, and this is where interpretations of the 
significance test usually run awry. 

Consider the case now for which the distance between means, y � μ0 is, as 
before, equal to 2 (i.e., 20 � 18 = 2.0). As noted, with a standard error also equal to 
2.0, our computed value of zM came out to be 1.0, which was not statistically 
significant. However, is it possible to increase the size of zM without changing the 
observed distance between means? Absolutely. Consider what happens to the size 
of zM as we change the magnitude of either σ or n, or both. First, we consider how 
zM is defined in part as a function of σ. For convenience, we assume a sample size 
still of n � 100. Consider now three hypothetical values for σ: 2, 10, and 20. 
Performing the relevant computations, observe what happens to the size of zM in 
the case where σ � 2: 

y � μ0 20 � 18 2 
zM � p � p � � 10 

σ= n 2= 100 0:2 
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The resulting value for zM is quite large at 10. Consider now what happens if we 
increase σ from 2 to 10: 

y � μ0 20 � 18 2
 
zM � p � p � � 2
 

σ= n 10= 100 1
 

Notice that the value of zM has decreased from 10 to 2. Consider now what happens 
if we increase σ even more to a value of 20 as we had originally: 

y � μ0 20 � 18 2
 
zM � p � p � � 1
 

σ= n 20= 100 2
 

When σ � 20, the value of zM is now equal to 1, which is no longer statistically 
significant at p < 0.05. Be sure to note that the distance between means y � μ0 has 
remained constant. In other words, and this is important, zM did not decrease in 
magnitude by altering the actual distance between the sample mean and the 
population mean, but rather decreased in magnitude only by a change in σ. 

What this means is that given a constant distance between means y � μ0, whether 
or not zM will or will not be statistically significant can be manipulated by changing 
the value of σ. Of course, a researcher would never arbitrarily manipulate σ directly. 
The way to decrease σ would be to sample from a population with less variability. The 
point is that decisions regarding whether a “positive” result occurred in an experiment 
or study should not be solely a function of whether one is sampling from a population 
with small or large variance! 

Suppose now we again assume the distance between means y � μ0 to be equal to 2. 
We again set the value of σ at 2. With these values set and assumed constant, consider 
what happens to zM as we increase the sample size n from 16 to 49 to 100. We first 
compute zM assuming a sample size of 16: 

y � μ0 20 � 18 2 
zM � p � p � � 4 

σ= n 2= 16 0:5 

With a sample size of 16, the computed value for zM is equal to 4. When we increase 
the sample size to 49, again, keeping the distance between means constant, as well as 
the population standard deviation constant, we obtain 

y � μ0 20 � 18 2 
zM � p � p � � 6:9 

σ= n 2= 49 0:29 

We see that the value of zM has increased from 4 to 6.9 as a result of the larger sample 
size. If we increase the sample size further, to 100, we get 

y � μ0 20 � 18 2 
zM � p � p � � 10 

σ= n 2= 100 0:2 
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and see that as a result of the even larger sample size, the value of zM has increased 
once again, this time to 10. Again, we need to emphasize that the observed increase in 
zM is occurring not as a result of changing values for y � μ0 or σ, as these values 
remained constant in our above computations. Rather, the magnitude of zM increased 
as a direct result of an increase in sample size, n, alone. In many research studies, the 
achievement of a statistically significant result may simply be indicative that the 
researcher gathered a minimally sufficient sample size that resulted in zM falling in 
the tail of the z distribution. In other cases, the failure to reject the null may in reality 
simply indicate that the investigator had insufficient sample size. The point is that 
unless one knows how n can directly increase or decrease the size of a p-value, one 
cannot be in a position to understand, in a scientific sense, what the p-value actually 
means, or intelligently evaluate the statistical evidence before them. 

3.26.2 The Makeup of a p-Value: A Brief Recap and Summary 

The simplicity of these demonstrations is surpassed only by their profoundness. In our 
simple example of the one-sample z-test for a mean, we have demonstrated that the 
size of zM is a direct function of three elements: (1) distance y � μ0, (2) population 
standard deviation σ, and (3) sample size n. A change in any of these while holding the 
others constant will necessarily, through nothing more than the consequences of how 
the significance test is constructed and functionally defined, result in a change in the 
size of zM. The implication of this is that one can make zM as small or as large as one 
would like by choosing to do a study or experiment such that the combination of 
y � μ0, σ, and n results in a zM value that meets or exceeds a preselected criteria of 
statistical significance. 

The important point here is that a large value of zM does not necessarily mean 
something of any practical or scientific significance occurred in the given study or 
experiment. This fact has been reiterated countless times by the best of methodolo
gists, yet too often researchers fail to emphasize this extremely important truth when 
discussing findings: 

A p-value, no matter how small or large, does not necessarily equate to the success or 
failure of a given experiment or study. 

Too often a statement of “p < 0.05” is recited to an audience with the implication 
that somehow this necessarily constitutes a “scientific finding” of sorts. 

3.26.3 The Issue of Standardized Testing: Are Students in Your School 
Achieving More Than the National Average? 

To demonstrate how adjusting the inputs to zM can have a direct impact on the 
obtained p-value, consider the situation in which a school psychologist practitioner 
hypothesizes that as a result of an intensified program implementation in her school, 
she believes that her school’s students, on average, will have a higher achievement 
mean compared to the national average of students in the same grade. Suppose that the 
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national average on a given standardized performance test is equal to 100. If the 
school psychologist is correct that her students are, on average, more advanced 
performance-wise than the national average, then her students should, on average, 
score higher than the national mark of 100. She decides to sample 100 students from 
her school, and obtains a sample achievement mean of y � 101. Thus, the distance 
between means is equal to 101 � 100 � 1. She computes the estimated population 
standard deviation s equal to 10. Because she is estimating σ2 with s2, she computes a 
one-sample t-test rather than a z-test. Her computation of the ensuing t is 

y � μ0 101 � 100 1 
t � p � p � � 1 

s= n 10= 100 1 

On degrees of freedom equal to n � 1 � 100 � 1 � 99, for a two-tailed test, we 
require a t-statistic of ±1.984 for the result to be statistically significant at a level of 
significance of 0.05. Hence, the obtained value of t = 1 is not statistically significant. 
That the result is not statistically significant is hardly surprising, since the sample 
mean of the psychologist’s school is only 101, a single point higher than the national 
average of 100. It would seem then that the computation of t is telling us a story that is 
consistent with our intuition, that there is no reason to believe that the school’s 
performance is higher than that of the national average in the population from which 
these sample data were drawn. 

Now, consider what would have happened had the psychologist collected a larger 
sample, suppose n � 500. Using our new sample size, and still assuming an estimated 
population standard deviation s equal to 10 and a distance between means equal to 1, 
we repeat the computation for t: 

y � μ0 101 � 100 1 
t � p � p � � 2:22 

s= n 10= 500 0:45 

What happened? The obtained value of t increased from 1 to 2.22 simply as a result of 
collecting a larger sample, nothing more. The actual distance between means 
remained the same (101 � 100 � 1). The degrees of freedom for the test have 
changed, and are now equal to 499 (i.e., n � 1 � 500 � 1 � 499). Since our obtained 
t of 2.22 exceeds critical t, our statistic is deemed statistically significant at p < 0.05. 
What is important to realize is that we did not change the difference between the 
sample mean y and the population mean μ0, it remained extremely small at only a 
single achievement point (i.e., 101 � 100 � 1). Even with the same distance between 
means, the obtained t of 2.22 and it being statistically significant at p < 0.05 now 
means we will reject the null hypothesis, and infer the alternative hypothesis that 
μ ≠ μ0. And because scientists have historically considered the infamous statement 
“p < 0.05” to be automatically and necessarily equivalent to something meaningful or 
important, the obvious danger is that the rejection of the null hypothesis at p < 0.05 is 
considered by some (or even most) a  “positive” result. When in reality, the difference 
in this case is nothing short of trivial. 
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The problem is not that the significance test is not useful and therefore should be 
banned. The problem is that too few are aware that the statement “p < 0.05,” in itself, 
scientifically (as opposed to statistically) may have little meaning in a given research 
context, and at worst, may be entirely misleading if automatically assigned any degree 
of scientific importance by the interpreter. 

3.26.4 Other Test Statistics 

The factors that influence the size of a p-value are, of course, not only relevant to 
z- and t-tests, but are also at work in essentially every test of statistical significance we 
might conduct. For instance, as we will see in the following chapter, the size of the 
F-ratio in traditional one-way ANOVA is subject to the same influences. Taken as 
the ratio of MS between to MS error, the three determining influences for the size of 
p are (1) size of MS between, which is a reflection of the extent to which means are 
different from group to group, (2) size of MS error, which is in part a reflection of the 
within-group variability (i.e., analogous to s in the t-test situation) and (3) sample size 
(when computing MS error, we divide the sum of squares for error by degrees of 
freedom, in which the degrees of freedom are determined in large part by sample size). 
Hence, a large F-stat does not necessarily imply that MS between is absolutely large, 
no more than a large t necessarily implies the size of y � μ0. A small p-value 
associated with a computed F could be a result of small within-group variation and/or 
a large sample size. It does not necessarily mean that group-to-group mean differences 
are substantial. 

These ideas for significance tests apply in even the most advanced of modeling 
techniques, such as structural equation modeling (see Chapter 16). The typical 
measure of model fit here is the chi-square statistic χ2, which as reported by many 
(Bollen, 1989; Hoelter, 1983) suffers the same interpretational problems as t and F 
regarding how its magnitude can be largely a function of sample size. That is, one 
can achieve a small or large χ2 simply because one has used a small or large sample. 
If a researcher is not aware of this fact, he or she may decide that a model is well-
fitting or poor-fitting based on a small or large chi-square value, without awareness 
of its connection with n. This is in part why other measures, as we will see, 
have been proposed for interpreting the fit of SEM models (e.g., see Browne and 
Cudeck, 1993). 

3.26.5 The Solution 

The solution to episodes of misunderstanding the significance test is not to drop or ban 
it, contrary to what some have recommended (Hunter, 1997). Rather, the solution is to 
supplement it with a measure that accounts for the actual distance between means and 
serves to convey the magnitude of the actual scientific finding, as opposed to 
statistical finding, should there be one. Measures of effect size, interpreted in 
conjunction with significance tests, help to communicate whether something has 
“happened” or “not happened” in the given study or experiment. The reader interested 
in effect sizes can turn to a multitude of sources (Cortina and Nouri, 1999; Rosenthal, 
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Rosnow, and Rubin, 2000). For our purposes, it suffices to review the principle of an 
effect size measure rather than catalog the wealth of possibilities for effect sizes 
available. Perhaps the easiest and most straightforward way of conceptualizing an 
effect size is to consider a measure of standardized statistical distance, or Cohen’s d,  
already featured in our computations of power. 

3.26.6 Statistical Distance: Cohen’s d  

For a one-sample z-test, Cohen’s d (Cohen, 1988) is defined as the absolute distance 
between the observed sample mean and the population mean under the null 
hypothesis, divided by the population standard deviation: 

y � μ0d � 
σ 

As an example, where y � 20, μ0 � 18, and σ � 2, Cohen’s d is computed as 

20 � 18
d � 

2 

� 1:0 

Cohen offered the guidelines of 0.20, 0.50, and 0.80 as representing small, medium, 
and large effects, respectively (Cohen, 1988). However, relying on effect size 
guidelines to indicate the absolute size of an experimental or nonexperimental effect 
should only be done in the complete and absolute absence of all other information for 
the research area. In the end, it is the researcher, armed with knowledge of the history 
of the phenomenon under study, who must evaluate whether an effect is small or 
large. For instance, referring to the achievement example discussed earlier, Cohen’s d  
would be equal to 

101 � 100
d � 

10 

� 0:1 

The effect size of 0.1 is small according to Cohen’s guidelines, but more importantly, 
also small substantively, since a difference in means of 1 point is, by all accounts, 
trivial. In this case, both Cohen’s guidelines and the actual substantive evaluation of 
the size of effect coincide. However, this is not always the case. In physical or 
biological experiments, for instance, one can easily imagine examples for which an 
effect size of even 0.8 might be considered “small” relative to the research area under 
investigation, since the degree of control the investigator can impose over his or her 
subjects is much greater. In such cases, it may very well be that Cohen’s d values in 
the neighborhood of 3 or 4 would be required for an effect to be considered “large.” 
The point is that only in the complete absence of information regarding an area of 
investigation is it appropriate to use “rules of thumb” to evaluate the size of effect. 
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Cohen’s d, or effect size measures in general, should always be used in conjunction 
with statements of statistical significance, since they tell the researcher what she is 
actually wanting to know, that of the estimated separation between sample data (often 
in the form of a sample mean) and the null hypothesis under investigation. Oftentimes 
meta-analysis, which is a study of the overall measure of effect for a given 
phenomenon, can be helpful in comparing new research findings with the status 
quo in a given field. As an example of a meta-analysis, see Crawley (2013, p. 740). 

3.26.7 What Does Cohen’s d Actually Tell Us? 

Writing out a formula and plugging in numbers unfortunately does not necessarily 
give us a feeling for what the formula actually means. This is especially true with 
regard to Cohen’s d. We now discuss the statistic in a bit more detail, pointing out why 
it is usually interpreted as the standardized difference between means. 

Imagine you have two independent samples of laboratory rats. To one sample, you 
provide normal feeding and observe their weight over the next 30 days. To the other 
sample, you also feed normally, but also give them regular doses of a weight-loss 
drug. You are interested in learning whether your weight-loss drug works or not. 
Suppose that after 30 days, on average, a mean difference of 0.2 pounds is observed 
between groups. How big is a difference of 0.2 pounds for these groups? If the average 
difference in weight among rats in the population were very large, say, 0.8 pounds, 
then a mean difference of 0.2 pounds is not that impressive. After all, if rats weigh 
very differently from one rat to the next, then really, finding a mean difference of 0.2 
between groups cannot be that exciting. However, if the average weight difference 
between rats were equal to 0.1 pounds, then all of a sudden, a mean difference of 0.2 
pounds seems more impressive, because that size of difference is atypical relative to 
the population. What is “typical”? This is exactly what the standard deviation reveals. 
Hence, when we compute Cohen’s d, we are in actuality producing a ratio of one 
deviation relative to another, similar to how when we compute a z-score, we are 
comparing the deviation of y � μ with the standard deviation σ. The extent to which 
observed differences are large relative to “average” differences will be the extent to 
which d will be large in magnitude. 

3.26.8 Why and Where the Significance Test Still Makes Sense 

At this point, the conscientious reader may very well be asking the following 
question: If the significance test is so misleading and subject to misunderstanding 
and misinterpretation, how does it even make sense as a test of anything? It would 
appear to be a nonsensical test and should forever be forgotten. The fact is that the 
significance test does make sense, only that the sense that it makes is not necessarily 
always scientific. Rather, it is statistical. To a pure theoretical statistician or 
mathematician, a decreasing p-value as a function of an increasing sample size 
makes perfect sense: As we snoop a larger part of the population, the random error we 
expect from sample to sample necessarily decreases, because with each sample we are 
obtaining a better estimate of the true population parameter. Hence, that we achieve 
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statistical significance with a sample size of 500 and not 100, for instance, is well 
within that of statistical “good sense.” 

However, statistical truth does not equate to scientific truth (Bolles, 1962). 
Statistical conclusions should never be automatically equated with scientific ones. 
They are different and distinct things. When we arrive at a statistical conclusion (e.g., 
when deciding to reject the null hypothesis), one can never assume that this represents 
anything that is necessarily or absolutely scientifically meaningful. Rather, the 
statistical conclusion should be used as a potential indicator that something scientifi
cally interesting may have occurred, the evidence for which must be determined by 
other means, which includes effect sizes, researcher judgment, and putting the 
obtained result into its proper interpretive context. 

3.27 CHAPTER SUMMARY AND HIGHLIGHTS 

•	 To understand advanced statistical procedures, it is necessary to have a firm 
grasp in the foundations of introductory statistics. Advanced procedures are 
typically extensions of first principles. 

•	 Densities are theoretical probability distributions. The normal univariate density 
is an example. 

•	 The standard normal distribution has a mean μ of 0 and a variance σ2 of 1. 

•	 z-scores are useful for comparing raw scores emanating from different distri
butions. Standardization transforms raw scores to a common scale, allowing for 
comparison between scores. 

•	 Binomial distributions are useful in modeling experiments in which the 
outcome can be conceptualized as a “success” or “failure.” The outcome of 
the experiment must be binary in nature for the binomial distribution to apply. 

•	 The normal distribution can be used to approximate the binomial distribution. In 
this regard, we say that the limiting form of the binomial distribution is the 
normal distribution. 

•	 The bivariate normal density expresses the probability of the joint occurrence of 
two variables. 

•	 The multivariate normal density expresses the probability of the joint occur
rence of three or more variables. 

•	 The mean, variance, skewness, and kurtosis are all moments of a distribution. 

•	 The mean, the first moment of a distribution, either of a mathematical variable or 
of a random variable, can be regarded as the center of gravity of the distribution 
such that the sum of deviations from the mean for any distribution is equal to zero. 

•	 The variance, the second moment of a distribution, can be computed for either a 
mathematical variable or a random variable. It expresses the degree to which 
scores, on average, deviate from the mean in squared units. 

•	 The sample variance with n in the denominator is biased. To correct for the bias, 
a single degree of freedom is subtracted so that the new denominator is n � 1. 
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•	 The expectation of the uncorrected version of the sample variance is not equal to 
σ2. That is, E�S2� ≠ σ2. However, the corrected version of the sample variance 
(with n � 1 in the denominator) is equal to σ2. That is, E�s2� � σ2. 

•	 Skewness, the third moment of a distribution, reflects the extent to which a 
distribution lacks symmetry. 

•	 Kurtosis, the fourth moment of a distribution, reflects the extent to which a 
distribution is peaked or flat. 

•	 Covariance and correlation are defined for both empirical variables and random 
variables. Both measure the extent to which two variables are linearly related. 
Pearson r is the standardized version of the covariance, and is dimensionless, 
meaning that its value is not dependent on the variance in each variable. Pearson 
r ranges from �1 to  +1 in value. 

•	 In multivariable contexts, covariance and correlation matrices are used in place 
of single coefficients. 

•	 There are numerous other correlation coefficients available other than Pearson r. 
One such coefficient is Spearman’s rs, which captures monotonically increasing 
relationships. Monotonically increasing relationships do not necessarily have to 
be linear. 

•	 The issue of measurement should be carefully considered before data are 
collected. S.S. Stevens proposed four scales of measurement: nominal, ordinal, 
interval, and ratio. The most sophisticated level of measurement is that of the 
ratio scale where a value of zero on the scale truly means an absence of the 
attribute under study. 

•	 A random variable is a mathematical variable that is associated with a probability 
distribution. More formally, it is a function from a sample space into the real 
numbers. 

•	 An estimator is a function of a sample used to estimate a parameter in the 
population. 

•	 An interval estimator provides a range of values within which the true parameter 
is hypothesized to exist. 

•	 An unbiased estimator is one in which its expectation is equal to the corre
sponding population parameter. That is, E�T� � θ. 

•	 An estimator is consistent if as sample size increases without bound, the 
variance of the estimator approaches zero. 

•	 An estimator is efficient if it has a relatively low mean squared error. 

•	 An estimator is sufficient for a given parameter if the statistic tells us every
thing we need to know about the parameter and our knowledge of it could not 
be improved if we considered additional information (e.g., such as a secondary 
statistic). 

•	 The concept of a sampling distribution is at the heart of statistical inference. 
A sampling distribution of a statistic is a theoretical probability distribution of 
that statistic. It is idealized, and hence not ordinarily empirically derived. 
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•	 The sampling distribution of the mean is of great importance because so many 
of our inferences have to do with means. 

•	 As a result of E�y� � μ, we can say that μy � μ, that is, the mean of all possible 
sample means we could draw from some specified population is equal to the 
mean of that population. 

•	 The variance of the sampling distribution of the mean is equal to 1=n of the 
original population variance. That is, it is equal to σ2=n. 

•	 The square root of the sampling variance for the mean is equal to the standard p p
error, σ2=n � σ= n. 

•	 The central limit theorem is perhaps the most important theorem in all of 
statistics. Though there are different forms of the theorem, in general, it states 
that the sum of random variables approximates a normal distribution as the size 
upon which each sample is based increases without bound. 

•	 Confidence intervals provide a range of values for which we can be relatively 
certain to lay the true parameter we are seeking to estimate. Key to under
standing confidence intervals is to recognize that it is the sample upon which the 
interval is computed that is the random component, and not the parameter we are 
seeking to estimate. The parameter is assumed to be fixed. 

•	 Likelihood ratio tests compare the likelihood of observed data under one 
hypothesis to the likelihood of observed data under a competing hypothesis. 

•	 Student’s t distribution, derived by William Gosset (or “Student”) in 1908, is 
useful when σ2 is unknown and must be estimated from the sample. Because in 
the limit f �t� � f �z� (i.e., lim f �t� � f �z�), for large samples, whether one uses z 

v!1 
or t will make little difference. 

•	 The t-test for one sample compares an obtained sample mean with a population 
mean and tests the null hypothesis that the sample mean could have reasonably 
been drawn from the given population. 

•	 As degrees of freedom increase, the variance of the t distribution approaches 1, 
which is the same as that for a standardized normal variable. That is, 
lim �v=�v � 2�� � 1:0. 
v!1 

•	 The t-test for two samples tests the null hypothesis that both samples were 
selected from the same population. A rejection of the null hypothesis suggests 
the samples arose from populations with different means. 

•	 Power is the probability of rejecting a null hypothesis given that it is false. 
It is equal to 1 � β (i.e., 1 – type II error rate). Power is a function of four 
elements: (1) hypothesized value under H1, (2) significance level, or type I error 
rate, α, (3) variance, σ2, in the population, and (4) sample size. 

•	 Experiments or studies suffering from insufficient power make it difficult to 
ascertain why the null hypothesis failed to be rejected. 

•	 Power can be estimated quite easily using R or G∗Power. 

•	 The paired samples t-test is useful for matched pairs (elementary blocking) 
designs. 



167 REVIEW EXERCISES 

•	 The paired samples t-test usually results in an increase in statistical power 
because the covariance between measurements is subtracted from the error term. 
In general, anything that makes the error term smaller helps to boost statistical 
power. 

•	 The paired samples t-test and the matched design which it serves provide a good 
entry point into the discussion of the randomized block design, the topic of 
Chapter 7. 

•	 In multivariable contexts, linear combinations of variables are generated of the 
form ℓi � a1y1 � a2y2 � ∙ ∙ ∙  � apy . Means and variances of linear combinap

tions can be obtained, as well as the covariance and correlation between linear 
combinations. 

•	 Representing statistical models in matrix form is required in statistical analyses 
of higher dimensions than 1 (e.g., multiple regression, multivariate analysis of 
variance, principal components analysis, etc.). The fundamental general linear 
model can be given by Y � XB � E. 

•	 Understanding what makes a p-value small or large is essential if a researcher is 
to intelligently interpret statistical evidence is his or her field. The history of null 
hypothesis significance testing is plagued with controversy, and a solid under
standing of the difference between statistical significance and effect size (e.g., 
Cohen’s d) is necessary before one attempts to interpret any research findings. 

REVIEW EXERCISES 

3.1.	 Distinguish between a density and an empirical distribution. How are they 
different? How are they similar? 

3.2.	 Consider the univariate normal density: 

1 ��xi�μ�2 =2σ2f �xi; μ; σ2� � p e
2πσ2 

Show that for a standard normal distribution, the above becomes f �xi; μ; σ2� �p��1=2�xie
2 
= 2π. 

3.3.	 Explain the nature of a z-score:
 
xi � μ
 

z � 
σ 

Why is it also called a standardized score? 

3.4.	 Using R, compute the probability of observing a standardized score of 1.0 or 
greater from a normal distribution. What is then the probability of observing a 
score less than 1.0 from such a distribution? 

3.5.	 Think up a research example in which the binomial distribution would be 
useful in testing a null hypothesis. 
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3.6.	 Rafael Nadal, a professional tennis player, as of 2014 had won the French Open 
tennis championship a total of 9 times out of 10 attempts. If we set the 
probability of his winning each time at 0.5, determine the probability of 
winning 9 times out of 10. Make a statistical argument that Nadal is an 
exceptional tennis player at the French Open. What if we set the probability of a 
win at 0.1? Does this make Nadal’s achievements less or more impressive? 
Why? 

3.7.	 Give an example using the binomial distribution in which the null hypothesis 
would not be rejected even if observing 9 out of 10 heads on flips of a coin. 

3.8.	 On a fair coin, what is the probability of observing 0 heads or 5 heads? How did 
you arrive at this probability, and which rules of probability did you use in your 
computation? 

3.9.	 Discuss what a limiting form of a distribution means, and how the limiting 
form of the binomial distribution is that of the normal distribution. 

3.10. Consider the multivariate density: 

1 ��x�μ�´ Σ�1 �x�μ�=2g�xi� �  p e�p 1=2 � 2π jΣj
All else constant, what effect does an increasing value of the determinant (jΣj) 
have on the density, and how does this translate when using real variables? 

3.11. What is meant by the expectation of a random variable? 

3.12.	 Compare these two products, and explain how and why they are different from 
one another: 

yip�yi� versus yip�yi�dy 

3.13. Why is it reasonable that the mean is the center of gravity of a distribution? 

3.14. What is an unbiased estimator of a sample mean vector? 

3.15.	 Discuss what it means to say that E�S2� ≠ σ2, and the implications of this. 
What is E�S2� equal to? 

3.16.	 Even though E�S2� ≠ σ2, how can it be true nonetheless that lim E�S2� �  σ2? 
Explain. 

n!1 

3.17.	 Explain why the following form of the sample variance is considered to be an 
unbiased estimator of the population variance: 

n 
i�1 �yi � y�2 

2 �s
n � 1 
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3.18.	 Draw a distribution that is positively skewed. Now draw one that is negatively 
skewed. 

3.19. Compare and contrast the covariance of a random variable: 

cov �xi; yi� �  σxy � E��xi � μ ��yi � μ �x y

with that of the sample covariance: 

n 
i�1�xi � μx��yi � μy� cov � 

n � 1 

How are they similar? How are they different? What in their definitions makes 
them different from one another? 

3.20.	 What effect (if any) does increasing sample size n have on the magnitude of the 
covariance? If it does not have any effect, explain why it does not. 

3.21.	 Explain or show how the variance of a variable can be conceptualized as the 
covariance of a variable with itself. 

3.22.	 Cite three reasons why the covariance is not a pure or dimensionless measure of 
relationship between two variables. 

3.23.	 Why is Pearson r not suitable for measuring relationships that are nonlinear? 
What is an alternative coefficient (one of many) that may be computed that is 
more appropriate for relationships that are nonlinear? 

3.24.	 What does it mean to say the relationship between two variables is monotoni
cally increasing? 

3.25.	 What does a correlation matrix have along its main diagonal that a covariance 
matrix does not? What is along the main diagonal of a covariance matrix? 

3.26. Define, in general, what it means to measure something. 

3.27.	 Explain why it is that something measurable at the ratio level of measurement 
is also measurable at the interval, ordinal, and nominal levels. 

3.28. Is something such as intelligence measurable at the ratio scale? Why or why not? 

3.29. Distinguish between a mathematical variable and a random variable. 

3.30. Distinguish between an estimator and an estimate. 

3.31. Define what is meant by an interval estimator. 

3.32. Define what is meant by the consistency of an estimator and what 

lim σT 
2 � 0 

n!1 

means in this context. 
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3.33.	 Compare the concepts of efficiency versus sufficiency with regard to estima
tors. How are they different?
 

3.34.	 The sampling distribution of the mean is an idealized distribution. However,
 
discuss how one would generate the sampling distribution of the mean
 
empirically.
 

3.35.	 Discuss why for a higher level of confidence, a confidence interval widens
 
rather than narrows.
 

3.36.	 Define what is meant by a maximum-likelihood estimator.
 

3.37.	 Define the general idea of a likelihood ratio test.
 

3.38.	 Discuss the behavior of the t distribution for increasing degrees of freedom.
 
What is the limiting form of the t distribution?
 

3.39.	 In a research setting, under what condition(s) is a t-test usually preferred over a
 
z-test?
 

3.40.	 Verbally interpret the nature of pooling in the independent samples t-test.
 
Under what condition(s) do we pool variances? Under what condition(s)
 
should we not pool?
 

3.41.	 Discuss why an estimate of effect size is required for estimating power.
 

3.42.	 Using R, estimate required sample size for detecting a population correlation
 
coefficient of 0.30 at a significance level of 0.01, with power equal to 0.80.
 

3.43.	 Repeat exercise 3.42, this time using G∗Power.
 

3.44.	 Using R, estimate power for an independent samples t-test for a sample size of
 
100 per group and Cohen’s d equal to 0.20.
 

3.45.	 For a value of r2 � 0:70, compute the corresponding value for d.
 

3.46.	 Discuss how the paired samples t-test can be considered a special case of the
 
wider and more general blocking design.
 

3.47.	 Define what is meant by a linear combination.
 

3.48.	 Define and describe each term in the multivariate general linear model
 
Y � XB � E.
 

3.49.	 Discuss the key determinants of the p-value in a significance test.
 

3.50.	 A researcher collects a sample of n � 10; 000 observations, and tells you that
 
with such a large sample size, he is guaranteed to reject the null hypothesis.
 
Explain why the researcher’s claim is false.
 

3.51.	 A researcher collects a sample size of n � 5, computes zM, and rejects the null
 
hypothesis. Argue on the one hand why this might be impressive scientifically,
 
then argue why it may not be.
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3.52. Consider once more a subset of Galton’s data on heights: 

> Galton 
parent child 

1 70.5 61.7 
2 68.5 61.7 
3 65.5 61.7 
4 64.5 61.7 
5 64.0 61.7 
6 67.5 62.2 
7 67.5 62.2 
8 67.5 62.2 
9 66.5 62.2 
10 66.5 62.2 

(a)	 Compute a histogram of parent height, as well as an index of skewness and 
kurtosis. What do your measures of skewness and kurtosis suggest about 
the distribution? 

(b)	 Transform the distribution of child heights to a standard normal distribu
tion. What effect did such a transformation have on the mean and variance 
of the original distribution? Second, did it change its shape at all? Why or 
why not? 

(c)	 Compute the covariance between parent height and child height. Does the 
sign of the covariance suggest a positive or negative relationship? 

(d)	 Standardize the covariance by computing Pearson r. Interpret the obtained 
correlation coefficient, and test it for statistical significance using either 
SPSS or R. 

3.53.	 Consider the following data on whether a student passed or failed a mathe
matics course (grade = 0 is  “failed” and grade = 1 is  “passed”), along with that 
student’s study time for the course, in average minutes per day for the duration 
of the course: 

grade studytime 
0  30  
0  25  
0  59  
0  42  
0  31  
1 140 
1  90  
1  95  
1 170 
1 120 
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Conduct an independent samples t-test on these data using SPSS and R. Verify 
that the assumption of homogeneity is met in SPSS. 

3.54.	 A researcher is interested in conducting a two-sample t-test between a 
treatment group and a control group. The researcher anticipates an effect 
size of approximately d = 1.5 and wishes to test the null hypothesis μ1 � μ2 at a 
significance level of 0.05. Estimate required sample size assuming the 
researcher wishes to attain power of at least 0.90 for her test of the null 
hypothesis. 

Further Discussion and Activities 

3.55.	 As discussed in this chapter, NHST has been critically evaluated and dissected 
as a means for drawing scientific inferences in the social and natural sciences. 
Rozeboom (1960) quite nicely summarized the main criticisms in “The Fallacy 
of the Null-Hypothesis Significance Test.” Read the article and discuss 
Rozeboom’s distinction between decisions versus degrees of belief. Why is 
such a distinction important for a scientist to understand the difference between 
statistical versus scientific inference? Rozeboom’s article can be downloaded 
from Christopher D. Green’s Classics in the History of Psychology Web site: 
http://psychclassics.yorku.ca/Rozeboom/ 

3.56.	 R.A. Fisher, the modern “father of statistics” wrote in 1956: 

“. . . no scientific worker has a fixed level of significance at which from year to 
year, and in all circumstances, he rejects hypotheses; he rather gives his mind to 
each particular case in the light of his evidence and his ideas.” 

Many writers and researchers however have found that since the inception of 
the significance test in the early 1900s, scientists, both social and otherwise, 
routinely employ the 0.05 level of significance in rejecting null hypotheses. 
Read “Mindless Statistics” by Gigerenzer (2004) and discuss the dangers and 
risks, both practical and theoretical, of allowing the “null ritual” to dominate in 
science. 

http://psychclassics.yorku.ca/Rozeboom/
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ANALYSIS OF VARIANCE: FIXED 
EFFECTS MODELS 

The prime objective of this book is to put into the hands of research workers, and 
especially of biologists, the means of applying statistical tests accurately to numerical 
data accumulated in their own laboratories or available in the literature. Such tests are the 
result of solutions of problems of distribution, most of which are but recent additions to 
our knowledge and have so far only appeared in specialised [sic] mathematical papers. 

(Fisher, 1925, p. 4) 

Suppose a researcher is interested in knowing whether melatonin, a popular sleep aid, 
is effective in helping individuals fall asleep at night. The researcher samples 75 
individuals at random, and assigns 25 to a control group receiving no melatonin, 25 to 
a treatment group receiving 1mg of melatonin, and 25 to another treatment group 
receiving 3mg of melatonin nightly. These specific doses of 1mg and 3mg are of 
interest to the researcher, since it is hypothesized that the greater dose of 3mg will be 
more effective at promoting sleep compared to the lesser dose of 1mg, which will in 
turn be more effective than receiving no melatonin at all. 

Monitoring EEG levels of all participants in a sleep lab, the researcher measures 
the time it takes from ingestion of the melatonin to the time the participant reaches 
NREM (nonrapid eye movement) sleep. The “time until NREM,” measured in 
minutes, is generally known as sleep onset latency. To assess whether the melatonin 
has an effect on sleep onset, the researcher wishes to compare mean sleep latencies 
across groups to discern any treatment effect that may be present (see Figure 4.1). 
Such a research design calls for a one-way fixed effects analysis of variance. 

www.wiley.com/go/denis/appliedmultivariatestatistics
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FIGURE 4.1 Sleep onset as a function of melatonin dose (hypothetical). Circles represent 
means for each dose. Dotted line suggests a negative relationship between sleep onset and dose. 

4.1 WHAT IS ANALYSIS OF VARIANCE? FIXED VERSUS 
RANDOM EFFECTS 

The analysis of variance (ANOVA) is the workhorse of experimental research across 
the social and natural sciences. The methodology is generally attributed to R.A. Fisher 
who wrote in 1925 Statistical Methods for Research Workers, which provided 
scientists with a novel quantitative method for partitioning sources of variance in 
a set of data and making inferences about effects in the population from which sample 
data were drawn. Estimation of parameters in the analysis of variance usually boils 
down to obtaining least-squares solutions (see Chapter 8), but as remarked by 
Eisenhart (1947), Fisher’s primary contribution was in how he packaged the analysis 
of variance procedure: 

With respect to the problems of estimation belonging to this class [class of estimating 
fixed effects], analysis of variance is simply a form of the method of least squares: the 
analysis-of-variance solutions are the least-squares solutions. The cardinal contribution 
of analysis of variance to the actual procedure is the analysis-of-variance table devised 
by R.A. Fisher, which serves to simplify the arithmetical steps and to bring out more 
clearly the significance of the results obtained. (p. 3) 

Fisher also published in 1935 Design of Experiments in which he elucidated 
principles of research methodology that continue to this day to be the bedrock of 
modern experimental design. The type of analysis of variance model one specifies 
depends in large part on the assumptions that go into the model and what conclusions 
one wishes to make regarding observed effects. In a fixed effects analysis of variance, 
the investigator is interested in testing null hypotheses of the sort: 

H0 : μ1 � μ2 � μ3 � μJ 

where the particular, exact levels of the independent variable chosen by the experi
menter are of specific interest. That is, the investigator would like to draw conclusions 
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about those particular levels chosen for the study, and is not interested in generalizing 
conclusions to a wider population of levels. The levels of the independent variable are 
fixed in advance of performing the analysis, and conclusions drawn are about those 
levels and those levels only in the fixed effects model. 

In a random effects model, the investigator is interested in generalizing his findings 
not only to the levels chosen for the experiment but also to the population of levels 
from which the experimental levels were drawn. In this model, the researcher is not 
specifically interested in the particular levels of the independent variable chosen for 
the given study. He is most interested in what these randomly chosen levels might 
suggest about the population of levels from which he randomly sampled the ones 
appearing in the given experiment. In the random effects model, the investigator is 
interested not in mean population differences, but rather in the extent to which 
variance in the dependent variable can be explained or accounted for by changing 
levels of the independent variable. When both fixed and random effects are present in 
the same model, we have the mixed model analysis of variance. We discuss random 
effects and mixed models in Chapter 6. 

Note carefully that in all of these models under discussion, we seek to infer 
conclusions drawn from samples to respective population parameters. This is not what 
distinguishes one model from the other. What does distinguish models is the extent to 
which conclusions about sampled factor levels are generalizable to the population of 
factor levels. Many times, students, attempting to distinguish fixed and random 
effects, mistakenly conclude that fixed effects are somehow not as “inferential” as 
random effects, in the sense that if we are dealing with a fixed effect that somehow we 
are no longer interested in inferential statistics. But this is entirely false. In fixed 
effects models, we do make inferences, only the inferences of treatment effects are 
specific to the levels actually chosen by the researcher, and not to the population of 
levels of which the chosen ones are but a random sample, as one would have in a 
random effects models. 

Hays (1994), Kirk (1995), Winer, Brown, and Michels (1991) are all classic 
resources on ANOVA for the social sciences. Maxwell and Delaney (2004) also 
provide a very readable overview of ANOVA models. A more technical and 
advanced treatment that assumes a grounding in matrix algebra is Scheffé (1999). 
Federer (1955), Snedecor and Cochran (1967), and Edwards (1985) are also 
excellent sources. 

4.1.1 Small Sample Example: Achievement as a Function of Teacher 

A motivating example will help set the stage for discussing the one-way fixed effects 
ANOVA, and will be extended to two-way models in the following chapter. We also 
refer to this example when we discuss random effects and mixed models in Chapter 6. 

Consider Table 4.1, featuring hypothetical data for students’ standardized mathe
matics achievement scores as a function of teacher. In this design, students were 
assigned, at random, one of four mathematics teachers for the course of a full school 
year. At the end of the year, students were evaluated on their mathematics achieve
ment (scores range from 0 to 100) through standardized testing. Students were 
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TABLE 4.1 Achievement as a Function of Teacher 

Teacher 

1 2 3 4 

70 
67 
65 
75 
76 
73 

M = 71.00 

69 
68 
70 
76 
77 
75 

M = 72.5 

85 
86 
85 
76 
75 
73 

M = 80.0 

95 
94 
89 
94 
93 
91 

M = 92.67 

screened beforehand to ensure they possessed an approximately equal degree of 
mathematical skill before being randomly assigned. 

Some features of the data include the following: 

•	 There are a total of six observations per group for a total of 24 data points. It is a 
balanced design, meaning that in each group there are an equal number of data 
points. 

•	 The dependent or response variable is student achievement score on a stan
dardized test (range from 0 to 100). 

•	 The last row of the table contains the means for each group (71.00, 72.50, 80.00, 
92.67). 

4.1.2 Is Achievement a Function of Teacher? 

We would like to know whether a student’s mathematics achievement score is 
dependent on the teacher they were randomly assigned to for the school year. Recall 
what we mean in general by a function statement. When we ask the question Is 
achievement a function of teacher?, what we are essentially asking is that if I tell you 
about one’s teacher, are you able to predict, with some degree of certainty, his or her 
achievement score? Even if the assignment of teacher is related to achievement, we 
should not expect it to be a function of the kind f �x� � x. This would imply that given 
one’s teacher, we can predict his or her mathematics achievement perfectly. That is, it 
would imply we are working with a deterministic rather than a probabilistic or 
stochastic model. Most models in the social, medical, and other sciences are not 
deterministic. Rarely can we ever expect a perfect functional relation between two or 
more variables. This very idea, historically, is what set into motion the evolution of 
probability and of statistical modeling in the sciences. 

The following is a subset of our data: 

> achiev <- read.table("achievement.txt", header = T)
 
> library(car)
 
> some(achiev)
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ac teach 
1 70  1  
2 67  1  
7 69  2  

We visualize the data to get a better sense of whether mean differences may 
exist: 

> achiev$teach 
[1]  1 1 1 1 1  1 2 2 2 2 2  2 3 3 3 3 3  3 4 4 4 4 4  4  
> with (achiev, boxplot(ac ∼ teach)) 

Though boxplots feature the median as a measure of central tendency, they still 
help us get a first-glance visualization of both potential mean differences and whether 
the assumption of homogeneity of variance is satisfied. As we can see from the 
boxplots, it would appear that achievement, in general, increases across teachers. We 
will address the assumption of homogeneity of variance later, but for now, it would 
appear that the dispersion of scores within each “teacher group” is approximately 
similar, though there appears to be noticeably less variability of scores for the fourth 
teacher compared to the others. 

If achievement is (at least imperfectly) a function of teacher, then we would expect 
achievement means to differ by teacher. Our sample averages definitely do differ. 
There is no doubt that sample means 71.00 versus 72.50 versus 80.0 versus 92.67 are 
numerically different from one another. However, these are only sample means. They 
are not population means. Why are they not population means? Because presumably, 
we are not specifically interested in only these sample data points when discerning 
whether teacher is related to student achievement. More likely, we are interested in 
using this sample data to draw inferences to the population from which these data 
were drawn. If we were interested only in drawing descriptive conclusions about the 
data in Table 4.1, and making no inferences to a wider population, then these data 
could indeed constitute population data. Remember, one researcher’s sample is 
another researcher’s population. We must always ask ourselves whether the data 
in front of us are considered the complete set of observations or whether they are 
considered a subset of a larger set. 
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Hence, we wish to test a null hypothesis that the population means are equal across 
teacher. We can state this null hypothesis as 

H0 : μ1 � μ2 � μ3 

Our statistical alternative hypothesis is that somewhere in the set of population means, 
there is at least one difference of the kind 

H1 : μ1 ≠ μ2 ≠ μ3 

Of course, even if we end up rejecting the null hypothesis, we do not immediately 
know where the difference(s) lies. A couple of possibilities for statistical alternatives 
include 

H1 : μ1 ≠ μ2 � μ3
 
H1 : μ1 � μ2 ≠ μ3
 

We will use procedures such as contrasts and post-hoc tests to help in discerning 
where mean differences may lie, given a rejected null hypothesis. We discuss 
contrasts and post-hocs later in the chapter. 

4.2 HOW ANALYSIS OF VARIANCE WORKS: A BIG PICTURE 
OVERVIEW 

How do we test a null hypothesis of the kind H0 : μ1 � μ2 � μ3? We could  
compare the sample means directly, 71.00 versus 72.50 versus 80.00 versus 
92.67, and since they are not identical, conclude that mean differences in the 
population exist. But as mentioned, this would be a grossly incorrect way of 
proceeding. Since these are only sample means, any relatively small differences 
between means can most likely be explained by sampling error or chance. That is,  
we must ask the question: 

Do sample mean differences of the kind 71.00 versus 72.50 versus 80.00 versus 92.67 
actually reflect a mean difference in the population? Or, are these sample differences 
small enough to be simply attributable to differences generated by the simple process of 
sampling (i.e., “sampling error” or “chance”)? 

To begin to address the above question, we must ask ourselves a related question: 

If we sampled repeatedly an infinite number of times from this population, what is the 
probability of observing differences of the kind 71.00 versus 72.50 versus 80.00 versus 
92.67 if the null hypothesis H0 were actually true? That is, if H0 : μ1 � μ2 � μ3 really 
does represent reality, what is the probability of obtaining mean differences of the 
magnitude that we have in our current sample? 
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TABLE 4.2 Hypothetical Achievement Data 

Teacher 

1 2 3 4 

71.00 72.50 80.00 92.67 
71.00 72.50 80.00 92.67 
71.00 72.50 80.00 92.67 
71.00 72.50 80.00 92.67 
71.00 72.50 80.00 92.67 

M = 71.00 M = 72.50 M = 80.00 M = 92.67 

Between-group variation but no within-group variation. 

If mean differences of the magnitude that we are observing happen frequently in 
repeated sampling under the null model of equal population means (i.e., 
H0 : μ1 � μ2 � μ3), then it is probably safe to at least tentatively conclude that the 
observed mean difference is most easily explained by sampling error or chance. In 
other words, since these kinds of differences happen so often in repeated sampling 
even when the null is true, we would have no reason to start believing the null is false 
and to start inferring the alternative hypothesis. 

However, if mean differences of the kind we are observing in our sample turn out 
to be unlikely under the null hypothesis, then it may be that the null hypothesis does 
not represent reality after all. At that point, if the probability of the observed data 
under the null hypothesis is low enough, then we have reason to reject the null 
hypothesis and make an inference toward the statistical alternative hypothesis—that at 
least somewhere among means, there are mean differences in the population. 

4.2.1 Is the Observed Difference Likely? ANOVA as a Comparison 
(Ratio) of Variances 

The next question becomes one of asking how to determine whether the observed 
mean difference is likely or unlikely under the null hypothesis. To help better 
appreciate this question, imagine that the data turned out to be that given in 
Table 4.2 instead of what they are in Table 4.1. 

Notice that under this idealized (and quite unrealistic) situation, every observation 
within its respective group is equal to the sample mean for that group. Notice that 
between groups, we still have the same mean differences. However, within groups, 
there is no variation. We ask the question we posed earlier: What is the probability of 
obtaining mean differences of the kind 71.00 versus 72.50 versus 80.00 versus 92.67 if 
the null hypothesis were true? 

It seems intuitive that the probability of obtaining the mean differences we 
observed is much lower for the data in Table 4.2 (condition of no within-group 
variability) than it is for the data in Table 4.1 (condition of within-group variability) if 
the null hypothesis were actually true. In other words, in Table 4.2, all of the variation 
occurring is attributable to between-group differences. In Table 4.1, all of the 



180 ANALYSIS OF VARIANCE: FIXED EFFECTS MODELS 

variation occurring is attributable to not only between-group differences but also 
within-group differences. What we need now is a way to compare these sources of 
variation in some systematic and statistically correct fashion. 

Suppose we could obtain a measure of just how much variance in a data set is 
attributable to between-group differences and how much is attributable to within-
group differences. If most of the variance were attributable to within-group differ
ences, then it would suggest that any between-group differences we are observing 
could probably be best explained by random variation in the data, that is, of the same 
kind that is happening within groups. However, if most of the variance is attributable 
to between-group differences, then it would suggest that any between-group differ
ences we are observing is not easily explained by within-group variation. That is, the 
between-group differences we are observing might actually represent a real difference 
of population means in the population that generated the sample data, and not simply 
sampling error or chance, the very type of variation we are witnessing within groups. 

Our goal then is to make the following comparison in the form of a ratio: 

σ2 
between 

σ2 
within 

where σ2 
within represents “variancebetween represents “variance between groups” and σ2 

within groups.” If σ2 
within to such an extent that we can exclude sampling between > σ2 

error as being “responsible” for this inequality, then we will reject the null hypothesis 
H0 : μ1 � μ2 � μ3 in favor of the statistical alternative hypothesis, H1. If, on the other 
hand σ2 

within, then it suggests that any observed mean between is more or less equal to σ2 

differences in our sample are most easily explained by chance or sampling error. In 
other words, we have no evidence to conclude or argue that H0 is actually false. This 
ratio that compares σ2 

within is called the F-ratio (or F-statistic), named in between with σ2 

honor of R.A. Fisher, and constitutes the overall omnibus test of significance in the 
analysis of variance model. 

4.3 LOGIC AND THEORY OF ANOVA: A DEEPER LOOK 

Having presented a brief overview of how ANOVA works, we now develop the 
theory at a slightly deeper level, essentially “unpacking” and elaborating on the brief 
discussion aforementioned. We begin first by drawing on previous exposure to the 
independent-samples t-test. In this respect, we present ANOVA as an extension of the 
independent samples t-test where we are interested now in testing null hypotheses on 
more than two independent samples (i.e., H0 : μ1 � μ2). We generalize the null 
hypothesis to reflect a test of J population means, H0 : μ1 � μ2 � μ3 � μJ . After 
presenting the parallels between independent samples t-tests and ANOVA, we go into 
a more thorough discussion of how the ANOVA model itself is built and concep
tualized, starting with the idea of modeling a randomly chosen observation in 
observed data, right up to the derivation of the sums of squares. We then take 
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expectations of mean squares (i.e., expected values of sums of squares divided by their 
respective degrees of freedom), which lead us to generating the F-ratio. 

4.3.1 Independent Samples t-tests versus Analysis of Variance 

Most statistical methods are usually based on the same fundamental principles learned 
in a first course on statistics. The advanced methods simply constitute different, and 
many times more complex, ways of arranging these fundamental tools. If you truly 
understand the logic of how an independent samples t-test works (see Chapter 3), then 
understanding the nuts and bolts of ANOVA will not be that difficult. 

Recall that we have said we would like to test a null hypothesis of the kind 

H0 : μ1 � μ2 � μ3 � μJ 

To help us appreciate just how we will go about testing the null hypothesis for 
ANOVA, let us briefly review the form of the independent samples t-test, searching 
for some insight or ideas on how we might tackle our ANOVA problem. Recall the 
independent samples t of (3.7): 

E�y1� � E�y2� E�y1� � E�y2� μ1 � μ2t � � p p � p p
2 2 �s1 =n1� � �s2 =n2� �s1= n1� � �s2= n2� �s1= n1� � �s2= n2� 

2where E�y1� and E�y2�, the expected values of y1 and y2, are equal to μ1 and μ2, s1 and 
2s2 are unbiased estimators of their population counterparts σ21 and σ2

2, and n1 and n2 are 
the sample sizes in each group. Recall that (3.7) essentially has two parts to it. In the 
numerator is expressed a difference in means of the kind μ1 � μ2. In the denominator 
is a sum of sample variances, each weighted by the sample size n on which it was 
computed: 

s1 s2p �p (4.1) 
n1 n2 

Collectively, (4.1) formed an estimate of the standard error of the difference in 
means. That is, the denominator of the t-test gave us an idea of how much variance in 
sample mean differences y1 � y2 we could expect to see if we sampled infinitely from 
the given population under consideration. The job of (3.7) was to compare an 
observed mean difference with the variability we might expect to see if we were 
able to sample mean differences infinitely from the population. When n1 ≠ n2, we  
used a pooled estimator of the population variance, 

2 2 �n1 � 1�s1 � �n2 � 1�s2 2s
n1 � n2 � 2pooled �
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making the independent samples t-test equal to 

E�y1� � E�y2� t � 
2 2 �n1 � 1�s1 � �n2 � 1�s n1 � n2 

n1 � n2 � 2 
2 

n1n2 

In the analysis of variance, we will arrive at a ratio quite similar to that of the 
independent samples t-test, one that effectively compares a numerator term express
ing mean difference to a denominator term that effectively represents an estimate of 
population variability. If mean differences in the numerator are large relative to 
expected overall variability in the denominator, then it will suggest that the mean 
difference in the sample may not be due simply to chance or sampling error alone. In 
other words, it will be grounds for establishing statistical significance and rejecting the 
null hypothesis. 

The question for us right now is how to conceptualize ANOVA so that we can 
actually run a similar test as we did for the independent samples t-test, but with 
more than two means. How do we conceive of our numerator and denominator for 
our test? For this, we need to focus our attention on how the analysis of variance 
model is conceptualized through a model equation. That is, we need to consider 
how the ANOVA model arises. We start at the beginning with fundamental ideas 
concerning what constitutes a statistical model. These ideas will not only be 
useful for understanding the current model we are dealing with, but will also be 
helpful in understanding other statistical models presented in this book and 
elsewhere. 

4.3.2 The ANOVA Model: Explaining Variation 

Recall the concept of a model introduced in Chapter 1. The idea of a model is to think 
up an equation that best accounts for how observed data are generated.1 For our 
achievement example, we ask questions of the kind: Why was the score for a 
randomly drawn observation in our data equal to yi? Why was another observation 
equal to yi? To  “explain” these observations, we need to come up with a theory as to 
why they are what they are. This is the essence of model-building, to come up with a 
mathematical equation that best accounts for observed data, and to use that equation 
for making inferences toward the population. 

For instance, Sigmund Freud (1856–1939) came up with the model for the id, 
ego, and  superego to help explain human behavior, to explain the data he observed. 
His predictions based on his theory were not always correct. Even with what 
Freudians would argue was a solid theory to draw upon, he could still not explain 
all behavior (some would even argue, very little of it), and had to admit that 

1Kirk (1995) calls the model equation an experimental design model equation (p. 32). Though the current 
text is not about experimental design per se, the fields of applied statistics and experimental design are 
intimately (and historically) linked. One cannot make intelligent selections of statistical analyses without a 
keen awareness of experimental design issues. 
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sometimes (or often), his theory failed, it was in error. As another example, recall 
that B.F. Skinner was able to predict behavior in the pigeon; he had a theory as to 
why the pigeon responded as it did. The theory predicted a lot of observations 
successfully but others it did not predict so well. Sometimes, Skinner’s theory also  
failed in its predictions of behavior. 

In ANOVA, just as in virtually all statistical modeling, we will put forth a theory 
that attempts to explain observed data, and likewise, sometimes the theory will 
predict accurately, but other times, it will not. The times it does not predict 
accurately we will denote as errors of prediction. How the technique of analysis 
of variance partitions variability into predictable versus unpredictable components 
is the topic of this chapter. 

Referring again to our data in Table 4.1, we notice that there exists variability in the 
sample achievement data, that is, s2 > 0. We will define the grand mean of all the data 
as equal to 

yiy � 
N

i�1 

or, since these data are balanced (i.e., equal numbers per group), we can 
calculate the grand mean as the “mean of means,” where J designates the 
number of groups: 

J yjy: � 
J

j�1 

The grand mean for these data is equal to 

J yj 71:00 � 72:50 � 80:00 � 92:67� � 79:04 
J 4

j�1 

Given that we have at least some variability in the data, we can express each 
observation yij as being somewhat “off” from the grand mean, and calculate a 
deviation score for each observation. If we let any given observation i in a given 
group j be represented by yij, and the mean of all observations to equal y:, then we  
can express the deviation for any given score as yij � y:. For instance, we observe 
the following deviations for the first few data points in each teacher group (70, 69, 
85, 95): 

yij � y: � y11 � y: � 70:00 � 79:04 � �9:04 
yij � y: � y12 � y: � 69:00 � 79:04 � �10:04 
yij � y: � y13 � y: � 85:00 � 79:04 � 5:96 
yij � y: � y14 � y: � 95:00 � 79:04 � 15:96 
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To give more examples of what we are doing, consider the deviations for the last 
observations in each age group (73, 75, 73, 91): 

yij � y: � y61 � y: � 73:00 � 79:04 � �6:04 
yij � y: � y62 � y: � 75:00 � 79:04 � �4:04 
yij � y: � y63 � y: � 73:00 � 79:04 � �6:04 
yij � y: � y64 � y: � 91:00 � 79:04 � 11:96 

We could continue to do this for the entire data set. The important point to note (so 
far) is that each observed score in the data set can be expressed as a deviation from the 
grand mean. 

4.3.3 Breaking Down a Deviation 

Now that we have reasoned that we can represent any single score as a deviation from 
the mean (even if the score is equal to the mean, the deviation is then equal to 0), our 
next point of interest is to break down the deviation further. That is, we are interested 
in the following important question: 

Why does any given score in our data deviate from the overall mean? 

We need to think about the possible reasons why a given deviation, of the kind 
yij � y:, might exist in a set of data. This is equivalent to asking why a given score in 
our data is what it actually is, only now, we are asking this question in terms of the 
given score’s deviation from the overall mean. 

Consider again the first observation, that of yij � y11 � 70:00. What “explana
tions” or “reasons” can you come up with for why this observation is not equal to the 
overall mean of 79.04? One reason you might come up with is that quite simply, even 
if the grand mean is equal to 79.04, it does not imply that all scores are going to be 
equal to the mean, and for no particular good reason. That is, you might theorize that 
70.00 is different from the overall mean of 79.04 as a simple artifact of the data, out of 
pure and simple variability, nothing more. However, is this explanation enough to 
account for the given observation? Maybe not. For one, we have a grouping factor in 
our data, which is the teacher assigned to that particular individual. We must reason 
that it is possible that a given data point differs from the overall mean not only because 
of an artifact of the data (or chance, random variability) but also because it is in a 
particular group (i.e., teacher) and not another group. When we hypothesize that 
scores are the way they are because they are in one group and not another, we reflect 
this by the deviation: 

yj � y: 

which represents “between group” variability. That is, if the data point 70.00 differs 
from the overall mean because it received the first teacher rather than the other three 
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teachers, then it would seem of interest to calculate the sample mean for this group and 
subtract the overall mean to reflect this deviation. If there is an “effect” of being 
assigned the first, second, third, or fourth teacher, then this should be reflected in the 
deviation yj � y:. We can express this deviation as being “made” or “composed” of 
two parts. In fact, we can say further that the deviation yij � y: is equal to the sum of 
two parts, a part representing variability within a given group, �yij � yj�, and a part 
representing variability between groups, �yj � y:�. The entire sum is thus 

�yij � y:� � �yij � yj� � �yj � y:� (4.2) 

Equation (4.2) is a fundamental identity in the analysis of variance. It expresses the 
makeup or composition of any randomly chosen observation in a one-way layout as a 
sum of two parts. The overriding goal of the analysis of variance is to learn whether the 
deviations in a set of data are better explained or accounted for by within group 
deviations of the kind �yij � yj�, or  between group deviations of the kind �yj � y:�. You  
may be able to foresee where this discussion is headed. If it turns out that deviations of 
the kind �yij � y:� are better explained by between-group deviations than they are by 
within-group deviations, it would suggest that our samples may have been drawn from 
distinct and unique populations. Experimentally, this would make good sense, because 
this is presumably why we did the study in the first place, to seek out mean differences 
between such treatment groups. In other words, if we found, overall, that deviations of 
the kind yj � y: were large relative to deviations of the kind yij � yj, then it might suggest 
that our treatment was effective. We will return to this point later after we have more 
fully developed the logic behind ANOVA. Before we do anything more, we need to give 
names to each of the deviations in our fundamental identity of (4.2). 

4.3.4 Naming the Deviations 

Let us consider the first deviation on the right-hand side of (4.2), that of yij � yj to the 
immediate right of the equal sign. Why might such a deviation arise? That is, why 
would your data exhibit a deviation of the form �yij � yj�? They are all in the same 
group, are they not? Therefore, it cannot be due to a “grouping” effect of any kind. 
After all, they were all collected and treated the same way. The best we can do to 
explain this deviation is to call it “error,” or to say that the score yij deviates from yj 
due simply to “chance,” or to “random factors” that we cannot immediately account 
for or explain. In brief, we do not know why one score deviates from another within a 
given group. Hence, we will call the term �yij � yj� by the name of error and denote it 
as eij, which represents the error for any given individual i in a given group j. 
Substituting eij for �yij � yj� we have 

�yij � y:� � eij � �yj � y:� 
Now, we ask the following question: Why would the second deviation, that of the form 
�yj � y:�, exist? That is, why would one group’s mean differ from the overall mean of 
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all the observations? A sensible explanation is that there is some kind of “effect” of 
being in that particular group versus being in another group, and that is why a given 
group mean is different from the overall mean. We will name this deviation by “aj” 
and let it represent the sample effect or treatment effect of being in a particular group. 
Hence, when we further substitute aj for �yj � y:�, we can write our equation for the 
deviation �yij � y:� in (4.2) as 

�yij � y:� � eij � aj 

or, more commonly, we will reorder aj before the error effect: 

�yij � y:� � aj � eij (4.3) 

In summary then, what we have done thus far is to reason that a given deviation of the 
kind yij � y: can be composed of two “things.” Either it is due to an effect of being in 
one sample versus another, which we call by the name of sample effect, aj, or, it is 
simply due to “error” that we designate as eij. 

The analysis of variance partitions variability in this way such that we can 
eventually test (through an F-ratio) the assumption that deviations are due to “error” 
alone, or equivalently, that the sample effects we have observed in our sample are not 
large enough to begin to doubt that the population effects (which we will denote by αj, 
the population counterparts to aj) are actually equal to zero. 

4.3.5 The Sums of Squares of ANOVA 

We have concluded that any deviation from the grand mean can be said to be 
represented by, or “composed of” �yij � y:� � aj � eij. However, when summing any 
deviations about a mean, we know that the sum of the deviations will equal zero. That 
is, if we did take the sum of deviations �yij � y:�, we know that �yij � y:� � 0 would 
be true for any data set we deal with, real or hypothetical. Though calculating the sum 
of absolute deviations of the form jyij � y:j is a possibility for avoiding the sum of 
zero, the solution historically adopted for this problem has been to square the 
deviations, then sum them up. We will apply the same principle of squaring deviations 
to our model equation �yij � y:� � aj � eij. 

We need to square the left-hand and right-hand sides in (4.2) and (4.3). For (4.2), 
on squaring we obtain 

2 �yij � y:�2 � ��yij � yj� � �yj � y:��
which, when we designate �yij � yj� by eij and �yj � y:� by aj as in (4.3), is equal to 

2 �yij � y:�2 � �aj � eij�
Now that we have properly squared deviations, we are getting much closer to being 
able to define the relevant sums of squares for the analysis of variance. 
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To get us to the precise partition of the sums of squares, let us first reconsider the 
sample variance once more. Recall again the uncorrected sample variance: 

2 �yi � y�
S2 � i 

N 

If we wanted to produce a sum of squares from the above, what would we do? We 
would multiply each side of the equation by N and obtain 

n 
2 �yi � y�

S2 � i 

N 
n 

2N�S2� �  �yi � y�

That is, a sum of squares is equal to N times the uncorrected sample variance. 
However, since in the ANOVA we have a grouping factor, we need to make this clear 
in our sum of squares. Hence, as we did earlier, we will modify the above slightly to 
show that we are computing SS across groups J: 

2N�S2� �  �yij � y:�

But, what is the term yij � y: actually equal to? Based on our previous work that 
theorized the makeup of any single observation in our data, we arrived at the 
conclusion that �yij � y:� was equal to aj � eij. Squaring this term, as we need to 
do to obtain the sum of squares, we get 

J n 

N�S2� �  �yij � y:�2 

j�1 i 
J n 

�aj � eij�2 

j�1 i 

J n J n 
2Notice that going from �yij � y:� to �aj � eij�2 in the above is just a 

j�1 i j�1 i 

matter of substituting symbols. 
Now, let us work to expand the above term. Using the rule of summation that says 

J j J 
that a � �nj�a, and by distributing the summation, we can rewrite 

j�1 i�1 j�1 

n 

i 

J 

j�1 

n 

i 

� 

J n 

N�S2� �  �aj � eij�2 

j�1 i 
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as 
J J n J n 

2 2N�S2� �  �njaj � �  e ajeij 
j�1 j i j i 

ij � 2 

J n 
However, we know that 2 ajeij in the above must equal 0, since the sum of 

errors (remember, these are not “squared” errors yet) equals 0. Therefore, we end up 
with 

J J n 
2 2N�S2� �  �njaj � �  eij � 0 

j�1 j i 
J J n 

2 2N�S2� �  �njaj � �  eij 
j�1 j i 

If we now recall what N�S2� is equal to, that of �yij � y:�2, we can express the 
j�1 i 

above as 

J n J J n 
2 2 � �njaj � �  eyij � y:�2 � ij 

j�1 i j�1 j i 
J J n 

� �nj�yj � y:�2 � yij � yj�2 

j j�1 i 

We have now arrived at the identity 

J n J J n 

� �yij � yj�2 (4.4)nj�yj � y:�2 � 
j�1 i j j�1 i 

yij � y:�2 � 

Equation (4.4) is referred to as the partition of the sums of squares for a one-way fixed 
effects between-subjects analysis of variance. Notice that it is made up of the 
following three parts: 

SS total: �yij � y:�2 
—This is the total sum of squares for the entire data set. 

j�1 i 

It is the sum of squared deviations of every individual value in a sample of data 
from the grand mean of all observations. This term is also equal to calculating 
NS2, as noted earlier. 

SS between: nj�yj � y:�2 
—This is the sum of squares representing variation due 

to a potential treatment effect. Notice that in our derivation, we picked up the 
“multiplier” nj. This is simply equal to the number of observations per group, 
which for balanced designs, we assume to be equal. 

j i 

J n 

J n 

J 

j 



189 FROM SUMS OF SQUARES TO UNBIASED VARIANCE ESTIMATORS 

SS within: 
J 

j�1 

n 

i 
�yij � yj�2 

—This is the sum of squares representing error or 

within-group variation. It is the sum of squared deviations for all observations 
in each group from its respective group mean. It is a measure of error because if 
all observations are in the same group (i.e., they were all treated the same way), 
we would expect scores to be more or less the same, and would attribute any 
differences to chance or unexplainable variability (which we call error). 

4.4 FROM SUMS OF SQUARES TO UNBIASED VARIANCE 
ESTIMATORS: DIVIDING BY DEGREES OF FREEDOM 

Recall how we calculated a variance—we produced a sum of squares, and then 
divided this sum of squares by an appropriate denominator: 

(4.5)
N N � 1

S2 � 

n 

i 
�yi � y�2 

or s2 � 

n 

i 
�yi � y�2 

The denominator for the uncorrected variance was simply N, and for the corrected 
variance, N � 1. The reason for dividing by N � 1 was to obtain an unbiased estimator 
of the population variance σ2. When we divide by either denominator, we are in essence 
producing a “mean” of the squares, only that in one case, we are basing the mean on N 
pieces of information, and in the other case basing it on N � 1 pieces of information. 
However, the concept of generating an “average” is the same in both contexts. 

The important element then is the selection of appropriate denominators for our 
various sums of squares. We do exactly the same thing in ANOVA, only that now, 
instead of having only one sum of squares to be concerned about, we have three: SS 
total, SS between, and SS within. The question boils down to deciding what degrees 
of freedom are appropriate for each sum of squares in generating suitable variances. 

We saw that SS between is calculated as nj�yj � y:�2. Notice that we are 
j 

subtracting the grand mean from group means. The degrees of freedom for SS 
between are equal to one less than the number of groups we have. This is because in 
our calculation of the sums of squares, y: is implicitly serving as an estimate of μ. 
What this means is that this value is fixed, and it implies that one of the group means is 
not free to vary (recall the “Beautiful Triangle” of Chapter 3). Hence, we lose one 
degree of freedom. For instance, for three treatment groups, the degrees of freedom 
are equal to J � 1, which in this case is 3 � 1 = 2. 

Recall that SS within is calculated as �yij � yj�2. Notice that we are subtracting 
j�1 i 

the group mean from individual scores within the given group. In this case, we are fixing 

J 

J n 

the given group mean, since the group mean yj is implicitly being used as an estimate of 
μj, so we lose one degree of freedom per group. For example, for three treatment groups 
of n = 10 observations per group, the degrees of freedom for SS within are (10 � 1) + 
(10 � 1) + (10 � 1) = 9 + 9 + 9 = 27. Alternatively, we could also have computed these 
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degrees of freedom as N � J, that is, the total number of observations minus the number of 
groups. Losing one degree of freedom per group or computing N � J on the entire sample 
amounts to the same thing for a balanced design. 

Finally, although we will not be deriving any mean square estimates using SS total, 
it is nonetheless useful to know that the degrees of freedom for SS total are equal to 
one less than the total number of observations in the entire data. For instance, if there 
are N = 30 observations, then since each deviation for SS total consists of subtracting 
the grand mean (and hence, we are constrained by it), we will lose 1 degree of 
freedom, giving us 30 – 1 or more generally, N � 1 degrees of freedom for SS total. 
Notice that this is simply the “ordinary” corrected variance we started out with. 

In dividing by appropriate degrees of freedom, we transform our sums of squares 
into mean squares, one for between-group variance, 

nj�yj � y:�2 

j
MS between � 

J � 1 

and one for within-group variance, 

�yij � yj�2 

j�1 i
MS within � 

N � J 

J 

J n 

Note that while the sums of squares are additive (in a balanced design) in that SS 
total = SS between + SS within, the means squares are generally not. Because we are 
dividing by degrees of freedom, mean squares vary depending on the given experi
ment and on such things as the operationalization of levels of the independent 
variable. Consequently, there is no guarantee that MS total = MS between + MS 
within for any given layout. 

Having developed the necessary mean squares for computing variances, our next 
task is to learn what these mean squares actually estimate in the population. That is, 
we need to take expectations of these mean squares. 

4.5 EXPECTED MEAN SQUARES FOR ONE-WAY FIXED EFFECTS 
MODEL: DERIVING THE F-RATIO 

As a recap, we have already shown how a given deviation from the grand mean of 
the form yij � y: can be said to be made up of two parts. The first part reflects 
deviations between sample means and the grand mean, yj � y:. The second part 
reflects deviations between single observations in each group from their respective 
group means, yij � yj. We have also seen how to produce sums of squares to account 
for the various sources of variation, and how to divide by appropriate degrees of 
freedom to obtain unbiased estimators of variance, the so-called “mean squares.” 



191 EXPECTED MEAN SQUARES FOR ONE-WAY FIXED EFFECTS MODEL 

We obtained a mean squares between (MS between) and a mean squares within 
(MS within). 

What are the expectations of these mean squares? Recall that when we derived the 
sample variance, we were interested in its expectation. We found that the expectation 
of the corrected version of the sample variance was equal to the population variance 
σ2. That is, E�s2� � σ2. We were interested in the expected value because we wanted 
to know that over an infinite number of potential samples, and by the algebra and rules 
of expectations, the value of the sample variance would equal that of the population 
variance. That is, we wanted some comfort and assurance in knowing that s2 was 
actually estimating the correct quantity, that of σ2. If a statistic we have computed is 
not estimating the population parameter we are actually interested in knowing about, 
it usually does us little good. We are just as curious about the values of MS between 
and MS within. We would like to know their expectations. The reason why we need to 
know what quantities they are estimating is so we know how to generate appropriate 
and relevant F-ratios.2 

From the outset of this chapter we have already spoiled the surprise in that we 
revealed that the F-ratio will take the form of a ratio of σ2 to σ2 

within. But to between 
understand this ratio we need to know why this was indeed the correct ratio to take. In 
this section then, we consider both the expectations of MS between and MS within to 
learn more about what these sample variances actually estimate in the population. The 
work we are about to cover is important because in more complex models such as 
random effects and mixed models, we will again need to take expectations to learn 
how to construct relevant F-ratios. It is important that you grasp, in general, why 
taking expectations is a relevant and purposeful exercise. 

To begin our derivation, which we adapt primarily from Hays (1994) and Searle, 
Casella, and McCulloch (1992), we first note that we can rewrite the group mean for 
any particular group as 

yj � y: � aj � ej 

where yj is the mean of group J � j, y: is the grand mean of the sample, aj is a sample 
effect for the jth group, and ej is the average error in that given group. We also know 
that the expectation of the sample mean for any given group is equal to the population 
mean, that is, E�yj� � μ. It follows that the expected value of a group mean can be 
written as 

E�yj� � y: � aj � E�ej� 

2Though we are computing the F-statistic as a ratio of σ2 
Within, the actual F density distribution (i.e., Between =σ
2 

the actual F statistic that we compare the F-ratio to) is given by 

χ2=v1F � 1 

χ2=v22 

where χ21 and χ22 are independently distributed chi-square variables on v1 and v2 degrees of freedom. 
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Here is the trick however. Since we know that E�yj� � μ, it implies that the expected 
error for any group is equal to 0. That is, E�ej� � 0. This suggests that the deviation of 
any sample group mean from the grand mean can be written as 

�yj � y:� � aj � �ej � e:� 

and hence we can rewrite SS between as 

J 

nj�aj � �ej � e:��2 (4.6) 

Why is this form of SS between useful to us? It is useful to us because it will allow 
us to more easily derive the expected mean squares for MS between, which we will 

do shortly. So far we have simply algebraically rearranged nj�yj � y:�2 as 
j 

J 
nj�aj � �ej � e:��2 for the purposes of making our ensuing derivation of the 

expected mean squares for between a bit easier. We now can proceed with deriving 
the expected mean squares for between. 

4.5.1 Expected Mean Squares Between 

We now want to take the expectation of nj�aj � �ej � e:��2 to learn what this 

quantity is actually estimating in terms of the relevant population parameter. We take: 

E�SS between� � E nj�aj � �ej � e:��2 

First, we can distribute the summation sign within the expectation, 

2E�SS between� � E njaj � nj�ej � e:�2 

j j 

Then, we can distribute the expectation itself across terms, 

2E�SS between� � E � Enja nj�ej � e:�2 
j 

j j 

We can then expand the above to be 

2 2E�SS between� � E � E � E�Ne: 2� (4.7)nja njej j 
j j 

j 

J 

j 

J 

j 

J 

j 
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Now, before continuing the derivation, we must note two things. First, we need to 
recall that ej is a sample mean based on n values. That is, it is the average error per 
group. The sampling variance of this mean is thus equal to 

σ2 
eσ2 �ej nj 

Similarly, the sampling variance of e: is based on N pieces of information and thus is 
equal to 

σ2 
eσ2 �e: N 

With these two details in place, we can continue to derive the expectation of SS 
between. We can now write (4.7) as 

2 2 2E�SS between� �  �njaj � �  njE�ej � � NE�e �: 
j j 

and then substitute in the relevant terms with σ2 � �σ2=nj� and σ2 � �σ2=N� giving us ej e e: e 

σ2 σ2 
2 e eE�SS between� �  �njaj � �  � N (4.8)nj Nnjj j 

Assuming that we have equal numbers per group, that is, nj is equal for each group 
(i.e., a balanced design), we can substitute the second term in (4.8), nj�σ2 =nj�, with e 

j 

simply, Jσ2, and the third term, N�σ2=N�, with simply, σ2, since N�σ2=N� � σ2.e e e e e 
Hence, we have 

2 � σ2E�SS between� �  �njaj � � Jσ2 
e e 

Finally, we note that Jσ2 � σ2, by factoring out “J � 1,” can be rewritten as �J � 1�σ2,e e e 
giving us 

2E�SS between� �  �njaj � � �J � 1�σ2 (4.9)e 

The summation in (4.9) is the expectation for SS between, and will form the numerator 
of the relevant mean squares between. Generating the mean squares by dividing by 
degrees of freedom, we have 

�nja2� � �J � 1�σ2 
j e 

j
MS �between� �  

J � 1 

j 

j 
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We can now complete the expectation of MS between and get 

E�MS between� � E 

� E 

� 

j 

�nja2 
j � � �J � 1�σ2 

e 

J � 1 

j 

�nja2 
j � 

J � 1 
�J � 1�σ2 

e�
J � 1 

j 

�njaj �2 

J � 1 
� σ2 

e 

j 

We can see that the expectation for MS between is made up of a fraction that contains 
potential sample effects 

2 �njaj � 
J � 1 

2and also error variance, σ2 
e . When there are no sample effects present, then aj will 

2equal 0, and the numerator of �njaj �=�J � 1� will equal 0, leaving only σ2.e 
j 

So, when there are sample effects present, we expect MS between to be greater 
than simply σ2. Shortly, we will develop a suitable test statistic, called the F-ratio, to e 
evaluate whether or not it is reasonable to believe sample effects in our data are large 
enough to conclude population effects may be unequal to zero in the population from 
which these data were drawn. First, however, we need to derive the expected mean 
squares for within to establish the denominator for F. 

4.5.2 Expected Mean Squares Within 

The expected mean squares for within are much easier to derive than the expected 
mean squares for between. As we did for SS between, we take the expectation of SS 
within before considering MS within more closely. 

Recall that SS within is equal to �yij � yj�2. When we take the expectation, 
j iwe have 

E�SS within� � E �yij � yj�2 

j i 
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For any given group j, we know that the expected value of the corrected sample 
variance will be equal to the population variance. That is, 

i 

2 �yij � yj� � σ2E enj � 1
i 

Multiplying both sides by nj � 1, we get 

E �yij � yj�2 � �nj � 1�σ2 
e 

If we generalize this across all J samples, we then obtain 

E�SS within� �  �nj � 1�σ2 � �N � J�σ2 
e e 

j 

Now that we have the expectation for SS within, we now define MS within . Recall 
that to get a mean square, we need to divide by the appropriate degrees of freedom, in 
this case, N � J: 

�N � J�σ2 
eMS within �

N � J 

which, after we cancel out N � J from both numerator and denominator, are left with 
σ2. Remember, we are able to cancel out N � J from both numerator and denominator e 
because �N � J�σ2 is a product term in the numerator, and not a sum. Had it been e �N � J� � σ2, we would not have been able to cancel N � J out from numerator and e 
denominator. What we have found is that the expectation of MS within is simply σ2.e 

In our work on expectations then, we have shown how the expected mean squares 
are derived, both for MS between and MS within. The key feature is not to memorize 
the derivations of the expectations. Memorization rarely leads to real understanding. 
And furthermore, should you require the details of the expectations in the future, you 
can always refer back to them. The important feature to understand right now is the 
why behind the expected mean squares derivations, and how this information is going 
to be useful in constructing F-ratios. 

When we take a ratio of MS between to MS within, we find that under the 
circumstance where there is a complete absence of sample effects, the ratio should 
equal approximately 

σ2 
e � 1:0 

σ2 
e 

When sample effects are present, we expect the ratio to be greater than 1.0. 



196 ANALYSIS OF VARIANCE: FIXED EFFECTS MODELS 

We summarize this partition of the sums of squares in what is known as the 
Analysis of Variance Summary Table, given in Table 4.3. 

4.6 THE NULL HYPOTHESIS IN ANOVA 

Having conceptualized the ANOVA model and computed expected mean squares, the 
next task is to get on with testing null hypotheses. There are two ways we can state the 
null hypothesis in the one-way fixed effects ANOVA. The test of both hypotheses will 
suggest the same decision on H0. If MS between is equal to MS within, then this 
suggests they are each estimating the same variance. That is, each term is measuring 
error variance, σ2. Recall that the expected mean square for MS between is equal to e 

njα
2 
j 

j
E�MS between� � σ2 �e J � 1 

If there are no sample effects present in a given analysis, then it suggests that all 
corresponding population effects αj of the form αj � μj � μ: are equal. If they are all 
equal, then the sum of njα2 

j must be 0, giving us the following for the expected mean 
square for between: 

2 nj�0�j 
j

E�MS between� � σ2 �e J � 1 

� σ2 � 0e 

� σ2 
e 

Notice that under the condition that all effects αj are equal to 0, the mean squares 
between is estimating the same as the mean squares within, that of simply 
unexplainable or unaccounted for deviation of scores within their respective groups, 
that is, σ2. When both MS between and MS within are estimating the same thing, the e 
expectation for F is approximately 1.0.3 Recall that while it is true that the expectation 
for F is equal to approximately 1.0, we will rarely if ever obtain this in practice in our 
sample even if the null hypothesis were true. Sampling error always makes its way 
into things, so we will usually deviate from expectation even under a true null 
hypothesis. The question is always whether our deviation from expectation is enough 
to cause us to reject the null hypothesis of equal population means. 

Hence, one way of positing the null hypothesis for the one-way ANOVA is that all 
population effects are equal to 0. More formally, we could state the null as 

H0 : αj � 0; for all populations j 

3The expectation of F turns out to not equal 1.0 exactly. Under the null hypothesis of equal population 
means, as noted in Howell (2002, p. 331), E�F� � df error=df error � 2. 
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If at least one of the group means does differ from the grand mean, then we 
have a sample effect for the given group. We are interested in knowing whether 
the sample effect is large enough to suggest an effect unequal to zero in the 
population. The alternative hypothesis, H1, can be stated as 

H1 : αj ≠ 0; for at least some populations j 

If there are no population effects in a one-way ANOVA, then this implies that all 
population means are equal. Because of this, we can also state the null 
hypothesis as 

H0 : μj � μ: for all populations j (4.10) 

The null hypothesis in (4.10) reads that all population means are equal to the grand 
mean of all the populations. If this is true, then it implies that there cannot be any 
differences in means between populations. The alternative hypothesis would be that 
for at least one population, its mean does not equal the grand mean of all the 
populations. That is, 

H1 : μj ≠ μ: for at least some j populations 

We see then that whether we state the null in terms of population effects or 
population means, it amounts to the same null hypothesis under test. Usually, 
however, the null hypothesis is expressed as simply the equality of population means. 

Remember always that the null and alternative hypotheses are about parameters, 
and not sample statistics, which is why we are using the notation αj and μ: or μj to 
represent respective population effects and population means. Recall also that in 
our sample, we fully expect inequality to some degree, for instance, y1 ≠ y2 ≠ y3. 
That our sample means are not exactly equal to one another is hardly a shocking 
result or momentous finding. What we are really interested in, is in knowing 
whether such deviations are large enough relative to what we would expect simply 
due to sampling error. Generally, in research, we are usually not all that interested in 
statistics. We are most interested in parameters. Statistics usually only serve as a 
means of estimating these parameters. 

4.7 FIXED EFFECTS ANOVA: MODEL ASSUMPTIONS 

Any mathematical model, whether statistical or otherwise, comes with it a set of 
assumptions on which the model is based. If these assumptions are not satisfied, 
especially to a substantial degree, it could cast into doubt the very correctness and 
utility of the model you are fitting to your data. It should be noted as well at the outset 
that when one does not engage in the process of estimating parameters, that is, of 
statistical inference, the analysis of variance itself is, as Fisher put it, simply a way of 
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“arranging the arithmetic.” One does not require assumptions for arranging this 
arithmetic. Eisenhart described this very idea quite eloquently as well: 

. . . when the formulas and procedures of analysis of variance are used merely to 
summarize properties of the data in hand, no assumptions are needed to validate them. 
On the other hand, when analysis of variance is used as a method of statistical inference, 
for inferring properties of the “population” from which the data in hand were drawn, then 
certain assumptions, about the “population” and the sampling procedure by means of 
which the data were obtained, must be fulfilled if the inferences are to be valid. 

(Eisenhart, 1947, p. 8) 

Hence, when we use the arithmetic of ANOVA to make inferences, we require 
assumptions. The assumptions for the one-way fixed effects ANOVA are as follows: 

•	 E�εij� � 0, the expectation of the error term is equal to 0. We use εij here in place 
of eij to denote the population parameter. 

•	 εij are NI�0; σ2�, the errors are normally distributed (N) and independent (I) of  e 
one another. Normality can be tested using graphical methods such as histo
grams, residual plots, and Q–Q plots, whereas independence can be investigated 
by plotting residuals against predicted values. We demonstrate some of these 
techniques later in this chapter when we perform data analysis using software. 

•	 σ2 
eij 
< 1, the variance of the errors is some finite number (which simply implies 

that it is less than infinity). 

•	 Cov�εij; εi ́ j ́� � 0, the covariance between errors is equal to 0. 

•	 σ2 
j�1 � σ2 

j�2 � σ2 
j�J , the variances across populations as operationalized by the 

independent variable are equal (often called the homogeneity assumption). This 
can be tested using a variance ratio test in R where the largest variance is 
compared with the smallest. Levene’s test and Bartlett’s test are also useful in 
verifying this assumption. 

•	 Measurements on the dependent variable are observed values of a random 
variable that are distributed about true mean values that are fixed constants. This 
assumption (adapted from Eisenhart, 1947, p. 9) is equivalent to the assumption 
that the levels of the independent variable used for the given experiment 
constitute the only levels the researcher wishes to generalize to in the popula
tion. This is precisely what defines the fixed effects model as fixed. Recall that if 
this is not the case, and the experimenter wishes to generalize these levels to a 
population of levels of which the levels appearing in the experiment are but a 
random sample, then the correct model is not that of a fixed effects model, but 
rather that of a random effects model. 

When we perform an analysis of variance in R and SPSS toward the end of this 
chapter, we will briefly demonstrate how one can go about verifying some of these 
assumptions using inferential tests and graphical displays such as boxplots. Light to 
moderate departures from these assumptions is usually not a major concern (other 
than that for independence of observations, which is a serious concern if violated) 
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since ANOVA is quite robust against violations (meaning the type I error rate and 
power will remain relatively stable even in the face of violations). However, there are 
remedies for violations if they get to be severe. For instance, one can perform power 
transformations to help establish a sense of normality in the dependent variable. These 
often take the form of square root or logarithmic transformations. We do not cover 
transformations in any detail here, because usually, they are not required except for 
rather extreme violations. In the event that you do wish to transform to near normality, 
you are encouraged to consult any of the excellent resources on this topic. Fox (1997) 
is especially good. The function boxcox (named for Box-Cox transformations) in 
the MASS package (Venables and Ripley, 2002) in R offers some options in helping 
one decide on the most optimal transformation for a set of data. 

If you suspect a violation of the assumption of equal variances, so-called 
heterogeneity of variance, options such as Box F adjustment or the Welch procedure 
can be used for adjusting the obtained F from ANOVA so that it better incorporates a 
possible violation. These tests will usually be more conservative than the omnibus 
ANOVA test. Since ANOVA is quite robust to violations of this assumption, we do 
not cover these tests to any extent in this book (though we do demonstrate the Welch 
test in SPSS in our ANOVA example). The interested reader is encouraged to consult 
Box (1954) and Welch (1951) for further details. Howell (2002) does an excellent job 
of summarizing their contributions as well, and is highly recommended. In cases 
where either sample sizes are very small or even the prospect of satisfying assump
tions in ANOVA seems impossible, a nonparametric test may be a better choice. 
Nonparametric tests make fewer assumptions about the population from which the 
sample data were drawn. The counterpart to the one-way fixed effects analysis of 
variance is the Kruskal–Wallis one-way analysis of variance test and is available in 
most statistical software packages. For details, see Rice (1995, p. 453). 

Another assumption that is more or less implicit in the ANOVA model is that the 
model equation 

yij � μ � αj � εij 

of which the sample equivalent is given by 

yij � y: � aj � eij 

contains all the relevant sources of variation for the given experiment. That is, we 
assume that the model is correctly specified. Of course, no model is ever completely 
perfectly specified, but the point of this assumption is to say that there are no obvious 
sources of variation that were omitted from the model. For example, since it is well 
known that there are gender differences in depression rates, if one did not include 
gender in a model of predicting mean differences on depression, one could easily 
argue that the model is misspecified. We will have more to say about specification 
errors when we discuss path analysis and structural equation models in Chapter 16. 
Detecting specification errors is a skill more honed by experience in a given research 
area than anything having to do with statistics. 
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4.8 A WORD ON EXPERIMENTAL DESIGN AND RANDOMIZATION 

Up to now, we have not commented much on the actual process of experimentation or 
the randomization of subjects to treatment groups. The process of randomization is 
that of administering subjects randomly to levels of the treatment factor, with the goal 
of eliminating as much as possible any source of bias that could potentially confound 
findings. For instance, in our melatonin example discussed at the beginning of the 
chapter, randomly assigning subjects to dosage levels (control, 1mg, 3mg) is our best 
assurance (though by no means guarantee) that the infinite number of “nuisance 
factors” are evenly dispersed among our treatment groups. 

Nuisance factors are all those things that could theoretically be acting on the 
dependent variable but that we have not accounted for or measured in our experiment 
or study. For example, again referring to the melatonin study, surely some people are 
more predisposed to falling asleep with ease compared to other people. If we do not 
account for this in our design (e.g., through blocking or analysis of covariance, for 
instance), then we are relegated to hoping that randomization “balances things out” and 
that there will not be any systematic bias built up in any group on the said nuisance factor. 

Randomization is the ideal “gold standard” for experimental design. In many studies 
however, it is either impossible or unethical to randomly assign participants to treatment 
conditions. For instance, if we wanted to learn whether mammography screening 
reduces the risk of death from breast cancer, it would be somewhat unethical to 
randomly assign some participants to mammography screening while others to a control 
group, especially if we have prior knowledge that screening is effective. Likewise, it 
would be unethical to randomly assign some participants to a “smoking group” and 
others to a “nonsmoking” group to observe the effects of cigarette consumption over 
time. The experimenter simply cannot have such a level of control over his or her 
subjects. In many cases, we have to take subjects as they come. The best we can do often 
is record whether a subject has or has not received mammography screening and 
associate that with their later cancer risk or survival. Likewise, we have to often take 
smokers as they come, and compare them to nonsmokers. But this means that we are no 
longer randomly assigning participants to treatments. Designs such as this where we are 
unable, for whatever reason, ethical or otherwise, to randomly assign participants to 
treatment conditions are generally known as quasi-experimental designs. 

As a guideline, whenever you conduct an experiment or study, it is usually best to 
try for randomization at least at some level. If this is not attainable, then resorting to a 
quasi-experimental design might be considered as a second option. A randomized 
design should always be your first attempt or choice, however. 

4.9 A PREVIEW OF THE CONCEPT OF NESTING 

The curious reader may have noticed an important element in our discussion of 
mammography screening (and that of smoking behavior) just mentioned. Women 
who undergo mammography screening may be more likely to be alike than women 
who do not. That is, they may share characteristics (other than mammography 
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screening) that women who do not undergo the screening do not share. Perhaps, those 
who undergo the screening are more concerned with their health than those who do 
not. Perhaps they are more educated, have better health insurance, or share numerous 
other similarities. This idea, which we briefly introduced in the previous chapter in the 
context of the matched samples design, is called nesting. 

In many designs, observations are naturally nested within a given group. A classic 
example is that of school children being nested within classrooms, and classrooms 
being nested within schools. That is, children sharing the same classroom (and thus, 
the same teacher) may be similar in ways compared with children in another 
classroom (and thus, with another teacher). Likewise, classrooms in the same school 
may be more similar than classrooms in different schools. We only briefly mention the 
topic here as a preview to our further discussion of it when we consider random effects 
and randomized block designs in chapters to follow. The concept of nesting in this 
manner forms the basis for such modeling as hierarchical modeling and multilevel 
modeling, topics that are well beyond the scope of the current text, but have gained 
popularity in the social and behavioral sciences in the last 30 years or so. We will 
recap and extend this discussion in Chapters 6 and 7. 

4.10 BALANCED VERSUS UNBALANCED DATA IN ANOVA 
MODELS 

In all of our discussion of ANOVA thus far, we have assumed that group sizes have an 
equal number of subjects. These data layouts are referred to as balanced. Layouts in 
which groups do not have the same number of measured objects per group are referred to 
as unbalanced. Balanced data are generally preferred to unbalanced data for the reason 
that effects in a balanced design are orthogonal, which typically implies that they are 
independent of one another. When data is unbalanced, the possibility arises that main 
effects and interactions will no longer be independent of one another, which also 
translates to the fact that sums of squares will usually not be additive. As Tabachnick and 
Fidell (2007) note, the problem of unequal sample sizes is more relevant if the groups 
with small sample size also exhibit relatively high variance. This could potentially lead 
to an inflated type I error rate. Orthogonality of factors also helps to ensure that 
comparisons of one factor at levels of the other factor will not be unduly influenced by 
groups on one factor having more “information” (i.e., in terms of objects studied) than 
another. For a brief discussion of unbalanced designs, see Steinhorst (1982). 

4.11 MEASURES OF ASSOCIATION AND EFFECT SIZE IN ANOVA: 
MEASURES OF VARIANCE EXPLAINED 

Obtaining a statistically significant F-statistic literally means that the statistic we have 
obtained is rare assuming that it arose from an F sampling distribution specified by J � 1 
and N � J degrees of freedom. However, as we have already discussed in relation to z-
and t-tests, statistically significant statistics do not necessarily suggest a large difference 
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between means. That is, statistical significance does not necessarily imply a large or 
meaningful effect size. This is because, as summarized in Chapter 3, there are other 
things in a statistic’s DNA that influence its magnitude, such as sample size, variance, 
and, considered jointly, its standard error. Note that when we produce the 
F-statistic by dividing MS between by MS within, we risk getting a large F simply 
as a result of MS within being small. The smaller MS within is, the larger will be our 
resulting F-statistic, all else equal. Similarly, one can see that by simply increasing 
sample size, N � J, the degrees of freedom for SS within will get larger and larger. As we 
increase the degrees of freedom, MS within necessarily gets smaller, since we are 
dividing SS within by a larger and larger number. 

Do not misunderstand. Having a small MS within is always a good thing 
statistically. The inferential statistic is doing its job. A small error term suggests 
that we have a good degree of precision in our estimation. But scientifically, the small 
error term does not in itself guarantee that anything important or practical has 
happened in the experiment or study. The distinction between statistical significance 
and effect size is one you must understand in order to evaluate scientific evidence in 
an intelligent manner. A misunderstanding of this distinction can lead to serious 
misunderstandings in the global interpretation of evidence. 

The F-test then, or any inferential test statistic for that matter, will not reflect a pure 
measure of the obtained sample effects. How do we solve this problem? One option is 
to take a ratio of SS between to SS total before these sums get converted into mean 
squares. That way, we are not having our F-statistic unduly influenced by sample size 
since we are not yet dividing by N � J in the denominator. This ratio of SS between to 
SS total is called eta-squared, symbolized as η2. 

4.11.1 Eta-Squared 

As discussed, it seems intuitive that if we wanted a more pure measure of the 
difference in means, we should consider further the magnitude of the sample effects, 
without necessarily requiring an inferential statement about them. Recall that any 
potential sample effects are included in SS between, 

J 

nj�yj � y:�2 

j 

where when deviations of the kind yj � y: grow larger and larger, this is indicative of 
an increasingly larger difference between sample means. And since SS total is a 
measure of total variation in a set of data, it seems sensible to take the ratio of SS 
between to SS total as our measure of effect size: 

nj�yj � y:�2 

j
η2 � 

J n �yij � y:�2 

j�1 i�1 

J 
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where η2 can range from 0 to 1. A value of 0 suggests that the sample effects are 
accounting for no variance in the dependent variable and the only source of variation 
that is “at work” in our data is random error. A proportion of 1 suggests that the total 
variation in our data is accounted for entirely by our obtained sample effects. 
Otherwise said, a measure of 1 suggests that all variation in our data is attributable 
to between-group differences (i.e., which are in effect, the obtained sample effects). 

To reiterate then, η2represents the proportion of variance in the dependent variable 
that is accounted for by the independent variable. In the case of a one-way fixed 
effects ANOVA, that independent variable is the grouping factor. 

4.11.2 Omega-Squared 

It is well known that values of η2 tend to report an overly “optimistic” picture of the 
magnitude of effect. This is in part because η2 is a descriptive measure of effect size in 
the particular sample on which it is computed and assumes that the population 
regression line (if we were to know it) passes through the group means on the 
independent variable (Howell, 2002). It does not accurately estimate what the actual 
true effect might be in the population from which data were drawn. 

Omega-squared, ω2, is a less-biased estimate of effect size and serves as an 
estimate of the actual population effect size. An estimate of ω2 for the one-way fixed 
effects analysis of variance can be obtained by 

SS between � �J � 1� MS within 
ω̂2 � 

SS total � MS within 

where the values of SS between and MS within are obtained from the analysis of 
variance table. As noted by Kirk (1995), ω̂2 can also be computed as 

�J � 1��F � 1� 
ω̂2 � �J � 1��F � 1� �  nJ 

where F is that obtained from the overall ANOVA, n is the sample size per group (we 
assume equal n per group), and J is the number of levels on the independent variable. 
This formulation is especially useful for situations in which you wish to compute 
omega, but do not have access to a researcher’s ANOVA summary table (and are only 
provided with F). 

η2 and ω2 are by far the most popular effect size measures used to contextualize 
findings in the analysis of variance. However, in recent years, attention has 
been drawn to the fact that these measures do not incorporate the potential influence 
that design features might have on the effect size estimate, especially for the 
factorial designs of the following chapter. One recommendation given to overcome 
these deficiencies is to compute generalized η2 and ω2 statistics. These statistics, in 
part, incorporate the influence of design features into their estimates. Though we do 
not discuss these effect size measures here, the interested reader is encouraged 
to refer to Olejnik and Algina (2003) for a discussion of such measures. 
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TABLE 4.4 Hypothetical Data on Two Independent 
Samples 

Sample 1 Sample 2 

2 7
 
1 6
 
3 8
 
2 9
 

Mean = 2.0 Mean = 7.5
 

4.12 THE F-TEST AND THE INDEPENDENT SAMPLES t-TEST 

Recall that ANOVA can be conceptualized as an extension of the independent 
samples t-test. Given this, it stands that we should be able to conduct an ANOVA on a 
two-sample problem, and translate obtained F into a t-statistic. 

Consider the small hypothetical data set in Table 4.4. Suppose we wish to test the 
null hypothesis that μ1 � μ2. Both ANOVA and the independent samples t-test can be 
used to evaluate the tenability of this null. 

An independent sample t-test on these data yields a t-statistic of j7:20j. Evaluated 
on �n1 � 1� � �n2 � 1� degrees of freedom, we find t to be statistically significant at the 
0.05 level of significance. 

Suppose now that instead of the t-test, we wish to perform a one-way fixed effects 
ANOVA on these same data. If we square our obtained t-statistic, it will equal the 
obtained F that we get in the ANOVA. That is, �7:20�2 � 51:84 � F. Similarly, we 
can go the other way. The square root of F will equal t, that is,p
F � 51:84 � 7:2 � t. 
Hence, if an F-statistic is statistically significant at a given significance level α on 

p 

p
J � 1 and N – J degrees of freedom, then the corresponding value of t = Fwill be 
statistically significant at the same α level on degrees of freedom �n1 � 1� � �n2 � 1� 
in a two-tailed test. If the statistical alternative to the null hypothesis is one-sided (or 
“directional”), then the sign of the t-statistic must be taken into consideration. Under 
this circumstance, if obtained F is statistically significant at a chosen significance level 
α, then the one-tailed t-test will be statistically significant at the α=2 level. 

4.13 CONTRASTS AND POST-HOCS 

The overall F-statistic computed in the analysis of variance tests the general null 
hypothesis of equality among population means. It is the so-called omnibus test of 
equality among population means. Oftentimes in research, however, we have 
planned hypotheses that we would like to test that reduce the omnibus null 
hypothesis to a series of two-group comparisons. Each comparison uses up a 
single degree of freedom, and so they are sometimes called single-degree-of
freedom contrasts. 
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For example, referring once again to the achievement data of Table 4.1, suppose 
the researcher was interested in specifically comparing achievement means on 
teachers 1 and 2 taken together with the achievement means on teachers 3 and 4, 
also considered simultaneously. Notice that in this case, we are not so much interested 
in a general mean difference as much as we are interested in a specific mean difference 
between the first and second and the third and fourth teachers. 

Such a hypothesis calls for a population comparison among means. We can define 
a population comparison as the following linear combination: 

cjμj (4.11)Ci � c1μ1 � c2μ2 � ∙ ∙ ∙  � cJ μJ � 

where cj is a set of real numbers, not all zero, and μj are the relevant population means. 
For an example in which we have three means, the population comparison would be 
defined as 

Ci � c1μ1 � c2μ2 � c3μ3 

For our example, since we are interested in comparing μ1 and μ2 taken as a set with μ3 
and μ4, we will weight the first two population means with an identical weight 
compared to the last two population means. The following assignment of weights 
would work: 

Ci � c1μ1 � c2μ2 � c3μ3 � c4μ4 

� �1�μ1 � �1�μ2 � ��1�μ3 � ��1�μ4 

Note carefully how we assigned the weights. The first two means received weights of 
“1” while the last two means received weights of “�1.” Weighting the means this way 
has the effect of comparing μ1 � μ2 with μ3 � μ4. Because our linear combination has 
weights that sum to zero, that is, 

J 

cj � 0 

the linear combination Ci is given a special name. It is called a contrast. A contrast is 
J 

simply a linear combination of the form (4.11) for which cj � 0. 

Of course, as usual, we rarely if ever have population means at our disposal. When 
we reject the null hypothesis in the ANOVA F-test, we are implying that there is at 
least one statistically significant comparison of the type 

Ĉi � c1y1 � c2y2 � ∙ ∙ ∙  � cJ yJ 
J 

� cjyj 
j�1 

J 

j�1 

j�1 

j�1 
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where Ci 

expectation of

^ is the estimate for the population comparison Ci. When we take the 
Ci, we  find that ^

Ci� � E cjyj 
j 

� cjE�yj� 

� Ci 

^E� 

j 

That is, Ci is an unbiased estimator of Ci. 
Recall that we do not immediately know the nature of the comparison when we 

reject an omnibus null hypothesis in ANOVA. For instance, the population compari
son could be μ1 versus μ2, μ3, or it could be μ1, μ2 versus μ3, and so on. There are a 
variety of possible comparisons one could make. As noted by Hsu (1996), “to 
consider multiple comparisons as to be performed only if the F-test for homogeneity 
[i.e., equality of population means] rejects is a mistake” (Hsu, 1996, p. 178). Hence, it 
behooves us to consider contrasts quite carefully, because we may wish to make them 
even without a rejection of omnibus F. 

^

Ĉi, when computing a 
comparison, we are computing a weighted sum of means. That is, when we speak 

It is very important to also note that whether Ci or 

of a value for Ci Ĉi, we are speaking of one and only one value, which is 
equal to the weighted sum of means. Oftentimes, comparisons  can  seem  
confusing until it is realized that they are, in the end, reduced to a single 
number, Ci. They are linear combinations (see Chapters 2 and 3), and even for 
the most complex of linear combinations, in the end, they still boil down to a 
single number. 

An appropriate null hypothesis for a population comparison is the following: 

H0 : Ci � 0 

or 

because as mentioned, E� 
There 

Ĉi� � 0. A two-sided alternative would be H1 : Ci ≠ 0. 
are many types of “precanned” contrasts available in software. These 

include simple contrasts and Helmert contrasts, among others. Each contrast-type 
differs in the comparisons of means it tests. For example, Helmert contrasts feature the 
comparison of each level of a factor against the average of subsequent levels. That is, 
in a three-population ANOVA, Helmert contrasts would compare the first mean with a 
combination of the second and third means, then the second mean with the 
combination of the third and successive means (of which in this case there are none). 

We demonstrate a very simple comparison using the achievement data of 
Table 4.1. Again, suppose we wished to contrast teachers 1 and 2 with 3 and 4. 
That is, we wish to estimate values for the following population contrast: 

Ci � c1μ1 � c2μ2 � c3μ3 � c4μ4 
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Recall that to make it a legitimate contrast, we must select c1, c2, c3, and c4 such that 
their sum is equal to 0. To set up the contrast, we can use weights 1, 1 and �1, �1, 
giving us the estimated contrast value of �29.17: 

Ci � c1y1 � c2y2 � c3y3 � c4y4 
^

� 1�71:00� � 1�72:50� � ��1��80:0� � ��1��92:67� 
� 71:00 � 72:50 � 80:00 � 92:67 

� �29:17 

^

^

Ci is  not equal to  
0, which is what we would have expected under the null hypothesis H0 : Ci � 0. 
How might we interpret this contrast, even before testing it for statistical signifi
cance? Since we chose to compare teachers 1 and 2 with 3 and 4 and obtained a 
negative value for our estimated contrast, we can say, without even making an 
inferential statement yet, that the linear sum of achievement for the first two 
teachers is 29.17 units less than the achievement of students assigned to teachers 3 
and 4. Note, however, that we have concluded nothing yet about population 
parameters. We are merely observing our descriptive linear combination. The 
task of gambling whether these sample results suggest a rejection of the null that 
H0 : Ci � 0 is the task of statistical inference. But to test such a null, we will need, 
as is true for any inferential test statistic, an estimated standard error. To generate a 
standard error, we will need to use the following fact: 

σ2 2 2 2 
y � c1σ1

2 � c2σ
2
2 � ∙ ∙ ∙  � cJ σJ 

2 

which reads that the variance of a linear combination of independent variances is a 
2weighted sum of their separate variances, each weight being the square, c1;2; ∙ ∙ ∙ ;J , of  

the original weight for the given variance, σ21;2; ∙ ∙ ∙ ;J . Given this, we can write the 

Ci by 

We notice immediately that the value of our estimated comparison

estimated variance for a sample comparison

^σ
2 
Ci njj 

Of course, we do not know the population variance, σ2, but we can obtain an unbiased e 

2cj� σ2 
e 

estimate of it, σ̂2, in the form of MS error. That is, upon making the relevant e 

^^

substitution, we get 

2cjσ2 
Ci 

� MS error 
njj 
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We know that to get a standard deviation from a variance, it is a simple matter to take 
the square root. Likewise, to get the standard error for σ̂2 

Ci ^ , we take the square root of 

the variance of σ̂2 
Ci ^ : 

σ σ2 
Ci Ci 

Now that we have obtained a standard error for our statistic, we are in a position to 

^^^^ �

test Ci for statistical significance. Recall that we are testing H0 : Ci � 0 against the 
alternative hypothesis H1 : Ci ≠ 0. For this we can use a t-test, 

^

Ci � Ci 

σ̂

^

evaluated on N � J degrees of freedom. 
In SPSS, we compute the contrast for the achievement data, comparing teachers 1 

and 2 with 3 and 4: 

ONEWAY ac BY teach 
/CONTRAST=1 1 -1 -1  

t � 
Ĉi 

Contrast Coefficients 
Contrast Teach 

1.00 2.00 3.00 4.00 
1 1 1 �1 �1 

Contrast Tests 
Contrast Value of Contrast Std. Error t df Sig. (2-tailed) 

ac Assume equal variances 1 �29.1667 3.54417 �8.229 20 .000 
Does not assume equal variances 1 �29.1667 3.54417 �8.229 15.034 .000 

The contrast, both for equal variances and unequal variances assumed, suggests we 
reject the null hypothesis. 

4.13.1 Independence of Contrasts 

When we speak of the pairwise independence of contrasts, we are speaking, 
substantively, of whether each comparison provides independent and unique infor
mation. To determine the independence of two contrasts, we need simply to verify the 
product of respective weights for the two contrasts to be equal to zero, that is, 

c1jc2j � 0. This requirement holds if sample sizes are equal, and also assumes 
j 

samples come from normal populations with equal variances. C1 and C2 under these 
conditions are considered to be orthogonal contrasts. The number of orthogonal 
contrasts for a set of groups is always equal to J � 1. 
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TABLE 4.5 Hypothetical Data on Dependent 
Variable Y and Independent Variable X 

Y X 

1 0 
6 0 
4 0 
2 0 
3 0 
8 1 
9 1 
10 1 
15 1 
20 1 

Note carefully that when considering comparisons, “orthogonal” and “indepen
dent” mean the same thing only when distributions are normal with homogeneous 
variances. Be sure to note as well that when speaking of independence or orthogo
nality of comparisons, we are never referring to one comparison. We are always 
referring to a set of comparisons, and to ensure orthogonality among the set, we 
require that all pairwise comparisons be orthogonal to one another. It needs to be 
noted as well that simply because two or more comparisons are independent does not 
guarantee that the t- or F-tests on these comparisons are likewise independent. It 
simply means that each contrast is providing us with unique information with regards 
to tested hypotheses. 

4.13.2 Independent Samples t-Test as a Linear Contrast 

The observant reader may have noticed at this point that an independent samples t-test 
is actually a special case of a more general linear contrast. This intuition is correct. To 
demonstrate this, we perform a t-test and a linear contrast on the hypothetical data 
featured in Table 4.5. 

The contrast of interest to us in an independent samples t-test is to compare group 1 
(coded as 0) on X with group 2 (coded as 1). Our contrast is thus of the kind, 
Ĉi � �y1 � y2�, where the corresponding weights we will assign to these means are 1 and 
�1, respectively. Any other positive and negative balance of weight coefficients would 
have worked as well such as 2, �2, 3, �3, etc. We compute the mean for group 1 to be 3.2 
and the mean for group 2 to be 12.4. Weighing the two means, we obtain 

J 

Ĉi � c1y1 � ∙ ∙ ∙  � cJyJ � cjyj 
j�1 

� �1��3:2� � ��1��12:4� 
� �9:2: 
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Our obtained value of the contrast is �9.2. We next evaluate as t: 

Ci � Ci 

σCi 

Ci 

σ2 
Ci 

^^

^

^^

^

t � 

for which σ̂2 
Ci ^ and σ̂ are equal to 

2cj� σ2 
e njj 

14:5��1�2 � ��1�2��
5 

� 29=5 � 5:8 
p
� 5:8
^σ̂Ci 

� 2:408 

and where 

SS error � �yij � y:�2 

j i 

� 116:0 

and so 

SS error 116
MS error � � σ2 � � 14:5eN � J 8 

To compare the above contrast to a t distribution we compute a t-statistic, for which our 
estimated standard error of the difference, σ̂diff , once computed, is equal to 2.408. Our t-
statistic is therefore equal to 

�y1 � y2� t �
σ̂diff 

�3:2 � 12:4� 
t �

2:408 

t � �3:82 

We evaluate t on N � J degrees of freedom, which for this problem are equal to 
10–2 = 8 df. The critical value for t at a significance level of 0.05 is 2.306 
(two-tailed test). Since we do not care about the sign of the mean difference for 
the purpose of the contrast (our ordering of coefficients was arbitrary, we could 
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have just as easily reordered our coefficients as �1 and 1), we consider the absolute 
value of our obtained t, which is equal to 3.82. Since obtained t exceeds the critical 
value, we reject the null hypothesis and conclude a statistically significant differ
ence between the sample means. In other words, we have evidence to suggest that in 
the population from which this contrast was drawn, we indeed have a mean 
difference. 

4.14 POST-HOC TESTS 

The contrasts that we have briefly studied are typically useful in situations in which 
you have strong a priori  suspicion of where mean differences may lie in your data 
or a theory guiding you on which contrasts to perform. However, oftentimes, we do 
not have theory guiding us regarding which contrasts to perform, and would like to 
run as many as we can  in  order to  “snoop” the data to see where pairwise differences 
may lie. 

Recall, however, that with each comparison or contrast we undertake, there is a 
risk of committing a type I error. This error rate is generally known as the per 
comparison type I error rate, generally denoted as, αPC. Obviously, when we 
perform many comparisons on the same data, the per comparison error rate will add 
up. The total error rate for a family of comparisons then is known as the family-wise 
error rate, generally denoted as αFW. The relationship between αPC and αFW is the 
following: 

αFW � 1 � �1 � αPC�k 

where k is the number of comparisons we are carrying out. The relationship is not 
quite additive, but nearly so. For instance, for the situation in which we are carrying 
out k = 10 comparisons, each at αPC � 0:05, αFW is estimated to be 

αFW � 1 � �1 � αPC�k 
� 1 � �1 � 0:05�10 

� 0:40 

What the number 0.40 is telling us is that across 10 comparisons, each performed at 
αPC � 0:05, the probability of committing at least one type I error is equal to 0.40. 
Clearly, this error rate across a family of comparisons is unacceptably high. 

What we would like to be able to do is run our 10 comparisons, but keep αFW at a 
nominal level such as 0.05. How can this be done? One easy way to ensure this is to 
simply perform each pairwise test at a lower level of significance by simply dividing 
αFW by the number of comparisons c we wish to perform. That is, 

αFW 

c 
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Notice that what we have done is sliced up αFW into c component parts. For instance, 
for the case in which we are performing 10 comparisons, our computation would be 

αFW 0:05� � 0:005 
c 10 

This would mean that we would be testing each comparison at 0.005. This adjustment 
to αPC in which we divide a nominal αFW by the number of comparisons is known as 
the Bonferroni correction, so named after the Bonferroni inequality,4 which states 
more generally 

p�A∩B� � p�A� � p�B� � 1 

Note that for our example at least, our corrected αPC yields an extremely small α level, 
and hence for each comparison, we have very little power to reject a null hypothesis 
under this modification. If the number of comparisons were much smaller, say 3, then 
applying a Bonferroni correction would still keep αFW at a nominal level yet not at the 
expense of that significant of a decrease in power to reject null hypotheses for each 
comparison, since, 

αFW 0:05� � 0:0167 
c 3 

Hence, it is clear that this intuitive way of keeping αFW at a nominal level by dividing 
by c is probably best applied in situations where the number of comparisons is 
relatively small or one desires setting αPC at a very low and conservative level in the 
case of many comparisons. For this reason, the Bonferroni correction should be used 
judiciously and with some judgment. 

4.14.1 Newman–Keuls and Tukey HSD 

There exist a significant number of post-hoc tests one may use as data snooping 
procedures following the analysis of variance. We certainly cannot discuss all of 
them, nor is doing so a productive use of our time unless we aspire ourselves to be 
post-hoc experts. What is useful however is to survey a few post-hocs for the purpose 
of learning how these procedures generally work. 

The next post-hoc test we survey is known as the Newman–Keuls method. 
Though the test is recommended by few and there are generally better post-hocs 
available, we survey it nevertheless because in it is some of the general logic of 
how many post-hoc tests function. Also, as we will see, a test that is recommended 
by many is the Tukey HSD (Honestly Significant Difference), which is related to 
the Newman–Keuls procedure. 

4For details, see Rice (1995, p. 25). For a comparison between Bonferroni’s inequality and Boole’s 
inequality, which is closely related to Bonferroni’s, see Casella and Berger (2002, p. 13). 



214 ANALYSIS OF VARIANCE: FIXED EFFECTS MODELS 

TABLE 4.6 Pairwise Differences between Achievement Means for Respective Teacher 
Assignments 

Teacher 1 Teacher 2 Teacher 3 Teacher 4 

71.00 72.50 80.00 92.67 Layer 

Teacher 1 (71.00) 
Teacher 2 (72.50) 
Teacher 3 (80.00) 
Teacher 4 (92.67) 

0 1.5 
0 

9.0 
7.5 
0 

21.67 
20.17 
12.67 
0 

Layer 3; k = 4 
Layer 2; k = 3 
Layer 1; k = 2 

To illustrate the Newman–Keuls, consider the analysis of variance summary table 
for the achievement data, obtained by fit <- aov(ac ∼ f.teach, data = 
achiev), where summary(fit)gives us: 

Analysis of Variance Table 

Response: ac 
Df Sum Sq Mean Sq F value Pr(>F) 

f.teach 3 1764.13 588.04 31.21 9.677e-08 *** 
Residuals 20 376.83 18.84 

Suppose now we produce a table of ordered pairwise differences between means 
on the teacher factor. These are listed in Table 4.6. 

Table 4.6 is read as follows: 

•	 Contained in each cell are the pairwise mean differences between groups. For 
instance, in the cell representing the joint occurrence of teacher 1 and teacher 2, 
the number 1.5 is the mean absolute difference between teacher 1 and teacher 2 
(i.e., 72.50 – 71.00). 

•	 We note that the largest pairwise difference occurs between teacher 1 and 
teacher 4 (i.e., a mean difference of 21.67) 

•	 “Layer 1” represents a mean difference of two steps (i.e., k = 2), from teacher 3 
to teacher 4 (each level is counted as a step). 

•	 “Layer 2” represents a mean difference of three steps (i.e., k = 3) from teacher 2 
to teacher 4 (again, each level is counted as a step, which is why there are three 
steps here, teacher 2 (step 1) to teacher 3 (step 2) to teacher 4 (step 3). 

The logic of the Newman–Keuls test is that pairwise mean differences that are 
greater steps apart should be tested against a more stringent significance level than 
mean differences that are lesser steps apart. In the opinion of the Newman–Keuls test, if 
means are more steps apart than less, their comparison needs to “pay the price” in terms 
of being harder to claim as statistically significant. That is, they need to be tested against 
a more stringent significance level than means that are less distant. For each layer of the 
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test, a different critical value is computed. These critical values are computed from the 
studentized range distribution (a statistic called “q”) and also incorporates α and degrees 
of freedom. The critical value for a given layer of the test is computed as 

MS error 
layer k � 1 � q�α;k;v� n 

where q α;k;v� is the critical value for q at significance level α, number of steps k, and �
degrees of freedom for the ANOVA MS error, v. All means that are a given number of 
steps apart are tested at the critical value for the given layer. One moves diagonally 
across the table to locate these pairwise differences that are k steps apart. For example, 
pairwise differences for teacher 3 versus teacher 4, teacher 2 versus teacher 3, and 
teacher 1 versus teacher 2 would all be tested against the same critical value at layer 1. 
Likewise, pairwise differences for teacher 2 versus teacher 4 and teacher 1 versus 
teacher 3 would also be tested against the same critical value, this time at layer 2. 

To demonstrate the computation of the critical value for layer 1, we have 

MS error 18:84
layer 2 � 1 � q � q � 2:950�1:772� � 5:23 �α;k;v� �:05;2;20�n 6 

The critical value for q for the above is 2.950 (which was found in a sampling 
distribution of q, available in many statistics texts). The value for the layer is equal to 5.23. 
If our obtained pairwise difference meets or exceeds a value of 5.23, we may deem it 
statistically significant at the 0.05 level. From our table, we see that 12.67 does exceed 
5.23, and hence, the pairwise difference between teacher 3 and teacher 4 is considered 
statistically significant. Moving up the table diagonally, we note as well that the pairwise 
difference between teacher 2 and teacher 3 (7.5) is also statistically significant, but that the 
pairwise difference between teacher 1 and teacher 2 is not (i.e., 1.5 does not exceed 5.23). 

4.14.2 Tukey HSD 

We have seen that the Newman–Keuls test specifies a different critical value 
dependent on the number of steps means are apart. Tukey HSD tests each mean 
comparison as though they were the maximum steps apart. This produces a much more 
conservative test than the Newman–Keuls, but as many would argue, including the 
author of this book, it is a better test. For the data in Table 4.6, the Tukey HSD tests 
each difference at layer = 3 (k = 4). 

We demonstrate the Tukey test in R for the achievement data: 

> TukeyHSD(fit) 
Tukey multiple comparisons of means 

95% family-wise confidence level 

Fit: aov(formula = ac ∼ f.teach) 
$f.teach 
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diff lwr upr p adj 
2-1 1.50000 -5.5144241 8.514424 0.9313130 
3-1 9.00000 1.9855759 16.014424 0.0090868 
4-1 21.66667 14.6522425 28.681091 0.0000002 
3-2 7.50000 0.4855759 14.514424 0.0334428 
4-2 20.16667 13.1522425 27.181091 0.0000006 
4-3 12.66667 5.6522425 19.681091 0.0003278 

We can see that the mean difference between teacher 2 and teacher 1 is 1.5, which 
is not statistically significant (p = 0.93) at a conventional level. All other mean 
differences between teachers are statistically significant at p < 0.05. 

4.14.3 Scheffé Test 

The Scheffé test is one of the more stringent, conservative tests of the post-hoc family. 
Recall what it means for a test to be conservative. Pragmatically, it means that if you 
are able to find statistical significance using the Scheffé, there is a good bet a 
difference in means truly exists in the population. It is definitely the test for hardliners. 
However, along with its stringent quality comes lower statistical power. As noted by 
Kirk (1995), Scheffé controls the type I error rate at or less than αFW across an infinite 
number of contrasts that can be performed, not only pairwise. 

We demonstrate the Scheffé test in SPSS on the teacher factor: 

ONEWAY ac BY teach 
/MISSING ANALYSIS 
/POSTHOC=SCHEFFE ALPHA(0.05). 

Multiple Comparisons 
Dependent Variable: ac 
Scheffe 
(I) f.teach (J) f. Mean Difference Std. Sig. 95% Confidence Interval 

teach (I–J) Error Lower Upper 
Bound Bound 

1.00 2.00 �1.50000 2.50610 0.948 �9.1406 6.1406 
3.00 �9.00000a 2.50610 0.017 �16.6406 �1.3594 
4.00 �21.66667a 2.50610 0.000 �29.3073 �14.0261 

2.00 1.00 1.50000 2.50610 0.948 �6.1406 9.1406 
3.00 �7.50000 2.50610 0.056 �15.1406 0.1406 
4.00 �20.16667a 2.50610 0.000 �27.8073 �12.5261 

3.00 1.00 9.00000a 2.50610 0.017 1.3594 16.6406 
2.00 7.50000 2.50610 0.056 �.1406 15.1406 
4.00 �12.66667a 2.50610 0.001 �20.3073 �5.0261 

4.00 1.00 21.66667a 2.50610 0.000 14.0261 29.3073 
2.00 20.16667a 2.50610 0.000 12.5261 27.8073 
3.00 12.66667a 2.50610 0.001 5.0261 20.3073 

aThe mean difference is significant at the 0.05 level. 
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We see that by the Scheffé, the mean difference between teacher 2 and teacher 3, 
which was found to be statistically significant using the Tukey, is no longer 
statistically significant at 0.05 (p = 0.056). This is a consequence of Scheffé being 
a more conservative test. 

4.14.4 Other Post-Hoc Tests 

In addition to the Newman–Keuls, Tukey, and Scheffé tests already discussed, there are 
a host of other post-hocs available to researchers. A distinguishing feature of these tests 
is their power for pairwise and linear contrasts and their ability to minimize type I error 
rates across numerous comparisons. Other relatively popular tests include the Holm test, 
the Ryan test (REGWQ), and Dunnett’s test. We do not review these tests here, though 
the interested reader is encouraged to refer to Howell (2002) for a succinct discussion 
of the benefits and drawbacks to using these tests. If you understand the logic of post-hoc 
procedures such as the Newman–Keuls and Tukey HSD, what is meant by a more 
conservative versus more liberal test, and what it means to protect an error rate against a 
multitude of comparison possibilities, then you are in a good position to confront any 
post-hoc test you may come across and know which types of questions to ask of it. 
An understanding of post-hoc tests is more important than memorizing a catalog of 
them. For the reader interested in a much more thorough and deeper discussion of post-
hoc tests, refer to Hsu (1996) or Miller (1981). 

4.14.5 Contrast versus Post-Hoc? Which Should I Be Doing? 

Even after learning about contrasts and post-hocs, students are often unsure why contrasts 
are generally recommended if one has a theoretical planned prediction about a mean 
difference, but that post-hocs should be resorted to if one does not have such strong 
predictions. To help clarify, consider the following three hypothetical sample means: 

y1 � 10; y2 � 40; y3 � 41 

Now, after seeing these sample means, if I gave you the opportunity to test one pairwise 
mean difference such that you wished to maximize your chance of finding statistical 
significance, which one would you choose? You would probably choose the comparison 
y1 � 10 versus y3 � 41 because these are the most distant means. However, did you really 
make just this comparison?No. Cognitively,when viewingthemeans,youmadealotmore 
thanjust onecomparison. Implicitly,you compared y1 with y2,y1 with y3,etc. Sowhenyou 
decide to test y1 � 10 versus y3 � 41, it would be incorrect to assume that this is the only 
comparison you would be making. You undoubtedly mentally made a lot more compari
sons. The job of post-hoc tests is to help guard against these many comparisons you have 
made, even “below the radar” that could unduly increase the family-wise type I error rate. 

Now, pretend for a moment that you had not yet collected the above data, yet based 
on your theoretical prediction and experience in the research area, decided that once 
the data became available, you would like to compare y1 to y2. Note that this is an 
informed comparison, it is based on your expertise in predicting which means will be 
different. In such a comparison, the type I error rate is equal to whatever significance 
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level you set for the comparison. This is because you are making the prediction 
without first looking at the means and so you are not “punished” for snooping the data 
and potentially inflating the type I error rate. 

To summarize, the critical distinction between a priori contrasts and post-hocs is that 
if you are able to make strong theoretical predictions before looking at the data, then  
contrasts are a suitable option so long as you are not exhausting the number of contrasts 
you do on the same data (otherwise, you are more of a “snooper” than a prediction-
focused scientist). If you look at the data first, then it must be assumed that you are 
making a whole lot more comparisons than any specific comparison that you do choose 
to make. In such a case, post-hoc tests are needed to hold you “accountable” for making 
so many comparisons and help keep the type I error rate under control. Note that the key 
distinction is not when the data are collected. The key feature is whether the data were 
observed before comparisons were made or predicted. If one collected data 10 years ago 
but did not look at them, then performing a contrast on such data is still acceptable if it is 
governed by theoretical prediction. As soon as one looks at the means however, one has 
to assume that virtually all (or at least, many) comparisons have been made (mentally), 
and thus enter post-hoc tests to help control the type I error rate. 

The issue of a priori versus post-hoc comparisons is a general theme of scientific 
credibility. If one is able to predict an outcome before seeing it, the finding is quite 
impressive. This is the idea of a priori comparisons and contrasts. On the other hand, if 
oneobservesanoutcomeandthensimplyremarks that itoccurred, theskillof thescientist 
is not as apparent. If I hold an apple in my hand andhave a theory that if I let it gomid-air it 
will drop to the ground, this is one thing. If I let go the apple in midair and simply record 
that it fell, without having any a priori prediction that it would fall, that is quite another. 

4.15 SAMPLE SIZE AND POWER FOR ANOVA: ESTIMATION WITH 
R AND G∗POWER 

The concept of power was briefly reviewed in Chapter 3. Recall that power is the 
probability of rejecting a null hypothesis given that it is false. In general, increasing 
sample size per cell (i.e., replicating units) serves to increase statistical power since it 
increases degrees of freedom for error. We now consider how to estimate statistical 
power using software for the one-way fixed effects analysis of variance model. We 
demonstrate using R and G∗ power. 

4.15.1 Power for ANOVA in R and G∗Power 

Suppose a researcher is interested in testing a balanced one-way fixed effects analysis 
of variance. The dependent variable is a continuous variable. The independent 
variable has five levels. The researcher sets the type I error rate at 0.05, and desires 
a minimal level of power equal to 0.90. In R, we can use pwr.anova.test to 
estimate power for this situation: 

> library(pwr)
 
> pwr.anova.test(k= , n= , f= , sig.level= , power= )
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TABLE 4.7 R2 ! f 2 ! f Conversions5 

R2 f 2 f 

0.10 0.11 0.33 
0.20 0.25 0.50 
0.30 0.43 0.65 
0.40 0.67 0.82 
0.50 1.00 1.00 
0.60 1.50 1.22 
0.70 2.33 1.53 
0.80 4.00 2.00 
0.90 9.00 3.00 
0.99 99.00 9.95 

where k = number of levels on the independent variable (in the current case, equal 
to 5), n = sample size per group; recall for a balanced design, there are an equal 
number of observations per cell, f = expected or minimally desired effect size, sig. 
level = significance level for the omnibus F-test, and power = desired or com
puted power level for the test. 

4.15.2 Computing f 

Interpreting f values is awkward and not intuitive. Much more intuitive is to convert 
these to R2 values. The following is the conversion we need (see Table 4.7): 

R2 

f 2 � 
1 � R2 

Suppose for our example that the researcher specifies a minimal effect of interest of 
R2 � 0:10, which enters pwr.anova.test as an f of 0.33. The computation for 
sample size is the following: 

> pwr.anova.test(k = 5, n = , f  = .33, sig.level = .05, power = .90) 

Balanced one-way analysis of variance power calculation 

k = 5
 
n = 29.25818
 
f = 0.33
 

5These conversion values were computed in R by the author as follows: 

> > r_squared <- c(.10, .20, .30, .40, .50, .60, .70, .80, .90, .99)
 
> > f_squared <- (r_squared)/(1 - r_squared)
 
> > f_squared
 
[1] 0.1111111 0.2500000 0.4285714 0.6666667 1.0000000 1.5000000 
[7] 2.3333333 4.0000000 9.0000000 99.0000000 

> > f <- sqrt(f_squared) 
> > f 
[1] 0.3333333 0.5000000 0.6546537 0.8164966 1.0000000 1.2247449 1.5275252 
[8] 2.0000000 3.0000000 9.9498744 
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FIGURE 4.2 Power analysis for fixed effects analysis of variance. 

sig.level = 0.05 
power = 0.9 

NOTE: n is number in each group 

The required sample size per group is equal to 29.26. Of course, obtaining 
“fractions” of participants or subjects can be somewhat difficult, so we will round up 
(not down) for an estimated sample size of 30 participants per group. Even though 
customarily the rounding of 0.25 would suggest we settle on 29 participants per 
group, it is good practice to always round up when estimating sample size. It is the 
more conservative estimate for the desired level of power (i.e., it will give you slightly 
more power than you have requested). 

We perform the same computations in G∗Power (Figure 4.2). Notice the identical 
entries of f, α, desired power, and number of groups on the left-hand side. On the right-
hand side, G∗Power computes the representative noncentrality parameter, along with 
the critical F-statistic required for rejection of the null hypothesis. A total sample size of 
150 is the output, which is, within rounding error, equal to our computation using R for 
30 participants per group (150 = 5(30)). G∗Power also computes for us the representa
tive degrees of freedom, 4 for numerator (J � 1 = 5–1 = 4) and N � J = 150 � 5 = 145. 

For demonstration, we generate power curves for effect size, f, values of 0.33, 0.63, 
0.93, 1.23, and 1.53 (see Figure 4.3). 

Notice also that we requested power estimates from 0.6 to 0.95 in increments of 
0.01, and effect size f values beginning at 0.33 in increments of 0.30. For relatively 
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FIGURE 4.3 Power curves for fixed effects analysis of variance. 

large effect sizes of f = 1.23 and 1.53 and higher, sample size requirements for a given 
level of power are relatively constant, though still increasing. For a more moderate 
effect size of f = 0.63, sample size requirements increase more steeply for higher 
levels of desired power than for lower levels. 

For a relatively small effect size of f = 0.33, a much larger sample size is required 
for even low levels of power (e.g., 0.6), and the curve increases rather dramatically as 
increased power is desired. Linearity of the curve is sometimes implicitly assumed 
when researchers are considering increasing sample size, say from 30 participants to 
60. It is often mistakenly believed that such a doubling of sample size equates to a 
doubling of power for a given effect size. But as power curves demonstrate, this is 
generally not the case. 

Recall that anything that significantly lowers MS error ordinarily results in an 
increase in statistical power. Hence, in addition to increasing sample size or 
decreasing the variance of the population under study, one might also adopt the 
strategy of including additional factors in the design in an effort to reduce MS error. 
Variables that are added into the model for the sole purpose of boosting power and 
reducing MS error are generally known as covariates. The analysis of covariance 
(ANCOVA) is an extension of the ANOVA model in which covariates are included in 
an effort to boost statistical power rather than in specifically studying their effect on 
the dependent variable. We shall discuss ANCOVA in Chapter 10, where it will be 
seen that both ANOVA and ANCOVA are best conceptualized as special cases of the 
more general linear regression model. 
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4.16 FIXED EFFECTS ONE-WAY ANALYSIS OF VARIANCE IN R: 
MATHEMATICS ACHIEVEMENT AS A FUNCTION OF TEACHER 

We now conduct a full fixed effects ANOVA on the achievement data of Table 4.1. 
We designate teacher as a factor having levels 1 through 4: 

> achiev <- read.table("achievement.txt", header = T)
 
> f.teach <- factor(teacher)
 
> f.teach
 
[1]  1 1 1 1  1 2 2 2 2 2  3 3 3 3 3 4  4 4 4 4  
Levels: 1 2 3 4 

We obtain the mean achievement scores for each of the four teachers: 

> tapply(ac, f.teach, mean) 
1 2 3 4 

71.00000 72.50000 80.00000 92.66667 

The grand mean of the data, or, equivalently, because this is a balanced design, the 
mean of all means, is 

> mean(ac) 
[1] 79.04167 

We next obtain the summary table for our ANOVA using aov: 

> fit <- aov(ac ∼ f.teach, data = achiev) 
> summary(fit) 

Df Sum Sq Mean Sq F value Pr(>F) 
f.teach 3 1764.1 588.0 31.21 9.68e-08 *** 
Residuals 20 376.8 18.8 

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

The above summary table was built under the assumption that population variances 
are equal. With a reported F-stat of 31.21 evaluated on 3 and 20 degrees of freedom 
yielding a p-value of 9.68e-08, we reject the null hypothesis of equal population means. 

We can obtain sample (or treatment) effects from model.tables in R: 

> model.tables(fit) 
Tables of effects 
f.teach 

f.teach 
1 2 3 4 

-8.042 -6.542 0.958 13.625 
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We can also use the plot.design function (see Crawley (2013), p. 238) to 
visualize the means relative to the overall grand mean: 

> plot.design(ac ∼ f.teach) 

We can see from the plot that the means for teachers 1 and 2 are relatively close, 
whereas the means for teachers 3 and 4 are quite distant. The horizontal bar just below 
the third mean is the grand mean of all observations, which recall is equal to 79.04. 

4.16.1 Evaluating Assumptions 

Since we have very small numbers per group, it would be very difficult to even 
attempt to test the assumption of normality within each level of teacher in any formal 
way. We will instead generate a Q–Q plot for the entire sample to get a rough idea as 
to whether achievement appears to be at least approximately normally distributed: 

> qqnorm (ac) 
> qqline(ac) 

Next to the Q–Q plot is also a histogram (b), obtained using hist(ac). As we can 
see from both plots, a perfect normal distribution is not evidenced by any means, 
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though the deviation from normality in this case is likely not a matter of concern as it 
relates to pushing forward with the ANOVA. Though graphical displays are often 
sufficient for detecting gross violations, we could have also performed the Shapiro– 
Wilk test to evaluate the tenability of the null hypothesis that these sample data arose 
from a normal population: 

> shapiro.test(ac) 
Shapiro-Wilk normality test 

data: ac 
W = 0.9057, p-value = 0.02842 

The test yields a p-value of 0.028, which is statistically significant tested at 0.05, 
but not statistically significant when tested at a more stringent significance level, such 
as 0.01. Since ANOVA is relatively robust to violations of normality, we carry on 
with the analysis. 

R provides several options for verifying the homogeneity of variances assump
tion. One can use the Fligner–Killeen test, Bartlett’s test,  or Levene’s test. The  
Fligner–Killeen, which is a nonparametric test, is recommended by some (e.g., 
Crawley, 2013) over Bartlett’s and Levene’s because it is quite robust against 
departures of normality: 

> fligner.test(ac ∼ f.teach, data = achiev) 

Fligner-Killeen test of homogeneity of variances 

data: ac by f.teach 
Fligner-Killeen:med chi-squared = 10.8128, df = 3, p-value = 0.01278 

The test rejects the null hypothesis that population variances are equal, which 
would suggest an inequality of population variances. 

In comparison, we now proceed with Bartlett’s test: 

> bartlett.test(ac ∼ f.teach, data = achiev) 

Bartlett test of homogeneity of variances 

data: ac by f.teach 
Bartlett’s K-squared = 3.8962, df = 3, p-value = 0.2729 

A p-value of 0.2729 indicates insufficient evidence against the null hypothesis 
of equal population variances. Consequently, we would not reject the null and 
could tentatively assume equality of variance, or at minimum, proceed with our 
ANOVA. 
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Next is Levene’s test where we specify center = mean to denote the fact that we 
want the test based on means rather than another measure of central tendency (such as 
medians): 

> leveneTest(ac, f.teach, center = mean) 

Levene’s Test for Homogeneity of Variance (center = mean) 
Df F value Pr(>F) 

group 3 7.671 0.001327 ** 
20 

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

A p-value of 0.0013 leads us to reject the null hypothesis of equal variances. 
Hence, two of the three tests performed suggest we may have a problem with 
variances. As mentioned, since ANOVA is quite robust to such a violation, we will 
proceed with performing the ANOVA with the assumption that the condition of 
variances is satisfied, and then we will compare results with a model in which we 
assume variances are unequal. Even under cases where homogeneity of variance is 
questionable, R gives us the option of carrying on with the ANOVA by requesting 
var.equal = FALSE in the oneway.test function. To demonstrate, we first 
run the test under the assumption that variances are equal by specifying var. 
equal = TRUE: 

> oneway.test(ac ∼ f.teach, var.equal = TRUE) 

One-way analysis of means 

data: ac and f.teach 
F = 31.2096, num df = 3, denom df = 20, p-value = 9.677e-08 

The observed p-value for the analysis is extremely small (i.e., 9.677e-08). We now 
run the same ANOVA, but this time, under the assumption that the equality of 
variance assumption is not satisfied: 

> oneway.test(ac ∼ f.teach, var.equal = FALSE) 

One-way analysis of means (not assuming equal variances) 

data: ac and f.teach 
F = 57.3175, num df = 3.000, denom df = 10.419, p-value = 8.982e-07 

Notice that for these data, the p-value increased slightly as a result of the 
assumption not being recognized (i.e., it rose from 9.677e-08 to 8.982e-07). Hence, 
even when incorporating a violation in variances, because we have such a large effect, 
our ANOVA is still reporting an extremely low p-value. 
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4.16.2 Post-Hoc Tests on Teacher 

We have already performed the Tukey earlier on these data in our discussion of post-
hoc tests (see Section 4.14.2). For convenience, we reproduce the results of the Tukey 
HSD test on the teacher factor: 

> fit <- aov(ac ∼ f.teach) 
> TukeyHSD(fit) 

Tukey multiple comparisons of means
 
95% family-wise confidence level
 

Fit: aov(formula = ac ∼ f.teach) 

$f.teach 
diff lwr upr p adj 

2-1 1.50000 -5.5144241 8.514424 0.9313130 
3-1 9.00000 1.9855759 16.014424 0.0090868 
4-1 21.66667 14.6522425 28.681091 0.0000002 
3-2 7.50000 0.4855759 14.514424 0.0334428 
4-2 20.16667 13.1522425 27.181091 0.0000006 
4-3 12.66667 5.6522425 19.681091 0.0003278 

The above results reveal that virtually all pairwise differences may be of interest 
(i.e., they are associated with relatively low p-values) except for teacher 2 versus 
teacher 1, which yields a value of p = 0.93. 

We can easily observe mean differences by plotting our Tukey HSD post-hoc 
findings through 95% confidence intervals: 

> plot(TukeyHSD(fit)) 

4.17 ANALYSIS OF VARIANCE VIA R’s lm 

We could have also analyzed the achievement data using R’s lm (“linear model”) 
function: 



227 KRUSKAL–WALLIS TEST IN R 

> fit.lm <- lm(ac ∼ f.teach) 
> summary(fit.lm) 

Coefficients: 
Estimate Std. Error t value Pr(>|t|) 

(Intercept) 71.000 1.772 40.066 < 2e-16 *** 
f.teach2 1.500 2.506 0.599 0.55620 
f.teach3 9.000 2.506 3.591 0.00183 ** 
f.teach4 21.667 2.506 8.646 3.44e-08 *** 
---

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

Residual standard error: 4.341 on 20 degrees of freedom 
Multiple R-squared: 0.824, Adjusted R-squared: 0.7976 
F-statistic: 31.21 on 3 and 20 DF, p-value: 9.677e-08 

The output provides us with all the information provided by aov but also much 
more, including mean contrasts of interest: 

•	 The intercept value of 71.00 is the mean achievement for students assigned to 
the first teacher. R takes this to be the “baseline” group since it is the first 
category of teacher. 

•	 f.teach2 represents a mean difference (it is a contrast) between the first teacher 
and the second teacher, of 72.5 � 71.00 = 1.50. 

•	 f.teach.3 represents a mean difference between the first teacher and the third 
teacher, of 80.00 � 71.00 = 9.00. 

•	 f.teach.4 represents a mean difference between the first teacher and the fourth 
teacher, of 92.67 � 71.00 = 21.67. 

•	 The obtained p-value for the model is identical to that obtained using aov (both 
are equal to 9.677e-08) 

•	 R-squared for the model, which for ANOVA in this case amounts to η2, is equal 
to 0.824, indicating that a whopping 82.4% of the variance in achievement can 
be explained by mean differences between these particular teachers chosen for 
the experiment. We postpone a discussion of Adjusted R-squared until Chapter 8. 

4.18 KRUSKAL–WALLIS TEST IN R 

As a quick example of how the nonparametric alternative test can be applied to the 
achiev data, we test whether ac is a function of f.teach. We use the PMCMR package 
(Pohlert, 2014) in R: 

> library(PMCMR) 
> kruskal.test(ac ∼ f.teach) 

Kruskal-Wallis rank sum test 
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data: ac by f.teach 
Kruskal-Wallis chi-squared = 16.2665, df = 3, p-value = 0.0009999 

Though reporting a larger p-value than the parametric ANOVA run earlier, clearly, 
we still have evidence to reject the null hypothesis that the samples arose from the 
same population (p = 0.00099). 

We can perform a nonparametric post-hoc using the Tukey and Kramer (Nemenyi) 
test to follow up on the Kruskal–Wallis test: 

> posthoc.kruskal.nemenyi.test(ac, f.teach, method = "Tukey") 
Pairwise comparisons using Tukey and Kramer (Nemenyi) test 

with Tukey-Dist approximation for independent samples 

data: ac and f. teach 

1 2 3 
2 0.9658 - -

3 0.3054 0.5849 -

4 0.0014 0.0074 0.2117 

P value adjustment method: none
 
Warning message:
 
In posthoc.kruskal.nemenyi.test(ac, f.teach, method = "Tukey"):
 

Ties are present, p-values are not corrected. 

Comparisons between teachers 1 versus 4 and 2 versus 4 yield small p-values 
(0.0014 and 0.0074, respectively). These represent more conservative findings 
compared to the parametric counterpart post-hoc (Tukey) performed earlier. 

4.19 ANOVA IN SPSS: ACHIEVEMENT AS A FUNCTION OF 
TEACHER 

We now present select output for the analysis performed in SPSS. We only briefly 
discuss the results, as they for the most part, parallel those generated by R. Entered 
into SPSS, our data file appears as: 

ac Teach 

1 70.00 1.00 
2 67.00 1.00 
3 65.00 1.00 
4 75.00 1.00 
5 76.00 1.00 
6 73.00 1.00 
7 69.00 2.00 
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(Continued ) 

ac Teach 

8 68.00 2.00 
9 70.00 2.00 
10 76.00 2.00 
11 77.00 2.00 
12 75.00 2.00 
13 85.00 3.00 
14 86.00 3.00 
15 85.00 3.00 
16 76.00 3.00 
17 75.00 3.00 
18 73.00 3.00 
19 95.00 4.00 
20 94.00 4.00 
21 89.00 4.00 
22 94.00 4.00 
23 93.00 4.00 
24 91.00 4.00 

We perform the analysis using the following syntax: 

UNIANOVA ac BY teach 
/METHOD=SSTYPE(2) * requests Type II sums of squares 
/POSTHOC=teach(TUKEY SCHEFFE) 
/EMMEANS=TABLES(teach) * requests estimated marginal means (i.e., the means of 

each group, in this case) 
/PRINT=ETASQ HOMOGENEITY * requests Eta-squared and a test of homogeneity of 

variance (Levene’s test) 
/CRITERIA=ALPHA(.05) * sets the significance level for the F-test at .05 

Levene’s test suggests the same finding as that found in R, that there is a difference 
in variances in the population: 

Levene’s Test of Equality of Error Variancesa 

Dependent variable: ac
 
F df1 df2 Sig.
 
7.671 3 20 0.001 
Tests the null hypothesis that the error variance of the dependent variable is equal across groups. 
aDesign: Intercept + teach 

The resulting ANOVA table parallels that generated by R (we do not reproduce the 
Tukey and Scheffé tests here: 
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Tests of Between-Subjects Effects 
Dependent variable: ac 

Type II Sum of Partial 
Source Squares Df Mean Square F Sig. Eta-

Squared 

Corrected Model 1764.125a 3 588.042 31.210 0.000 0.824 
Intercept 149942.042 1 149942.042 7958.003 0.000 0.997 
teach 1764.125 3 588.042 31.210 0.000 0.824 
Error 376.833 20 18.842 
Total 152083.000 24 
Corrected total 2140.958 23 
a. R-Squared = 0.824 (Adjusted R-Squared = 0.798) 

To run a more robust test of means, one less sensitive to model assumptions, we 
could have run the Welch test (1951): 

ONEWAY ac BY teach 
/STATISTICS WELCH 
/MISSING ANALYSIS. 

Robust Tests of Equality of Means 
ac 

Statistica df1 df2 Sig. 
Welch 57.318 3 10.419 .000 

aAsymptotically F distributed. 

Just as we found in R, the null hypothesis is rejected even under the more robust test. 

4.20 CHAPTER SUMMARY AND HIGHLIGHTS 

•	 The analysis of variance, or ANOVA for short, is a statistical method useful for 
partitioning variability in a sample for the purpose of testing null hypotheses 
about the equality of population means (fixed effects) or null hypotheses about 
the extent to which one or more variables account for variance in another 
variable (random effects). 

•	 The one-way analysis of variance is defined to have a single categorical 
independent variable and a single continuous dependent (or “response”) variable. 

•	 ANOVA models are usually distinguished between fixed effects, random 
effects, and mixed models. 

•	 In fixed effects models, the researcher is specifically interested in the levels of 
the independent variable chosen for the particular experiment. The specific 
levels were deliberately chosen. 

•	 In random effects models, the researcher is not specifically interested in the 
levels of the independent variable chosen for the particular experiment, but is 
rather most interested in generalizing these levels to the population of levels 
from which the sample levels were drawn. 
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•	 Mixed models contain a blend of both fixed factors and random effects. 

•	 The fact that sample means may differ in a data set is not itself evidence against 
the null hypothesis. What we ask of the data is the likelihood of such differences 
in the sample under the null hypothesis. If such differences are unlikely under 
the null, then we have reason to reject the null hypothesis and conclude there to 
be population mean differences. 

•	 The inferential test for ANOVA essentially boils down to a comparison of variances 
in terms of a ratio. If between-group variance is large relative to within-group 
variance, then this may be taken as evidence against the null hypothesis. The 
expectation for F under the null hypothesis is approximately equal to 1.0. 

•	 Fixed effects analysis of variance can be understood as an extension of the 
independent samples t-test, or, the independent samples t-test can be understood 
as a special case of the wider ANOVA model. Both techniques essentially 
employ a pooled error term in testing effects of interest. 

•	 When we break down a deviation into its constituent parts, the essential goal of 
ANOVA is obtaining an answer to the question: Why does any given score in 
our data deviate from the overall mean? The extent to which these deviations are 
due to between-group effects rather than within-group variability is the extent to 
which we gather evidence against the null hypothesis. 

•	 When we square respective deviations, we find that SS total can be partitioned 
into SS between + SS within. 

•	 The expected mean squares for both between and within suggest that when 
squared population effects equal 0 (i.e., α2 

j � 0), the appropriate denominator 
for the F-test is that of MS within. 

•	 The ANOVA summary table is a convenient way of representing the results of 
the analysis of variance. 

•	 The assumptions of fixed effects ANOVA, in addition to the fixed nature of the 
levels chosen for the experiment, include E�εij� � 0, εij are NI�0; σ2�, σ2 < 1,e eij 
Cov�εij; εi ́ j ́� � 0, and σ2 

j�1 � σ2 
j�2 � σ2 

j�J . An additional assumption is that the 
model is correctly specified, which means that the model at least reasonably 
accounts for the major sources of variation in the response variable. 

•	 In an experimental design featuring random assignment of subjects to groups, 
individuals within each group are not expected to be similar a priori  the 
randomization. However, in nonexperimental studies, individuals in existant 
groups usually share characteristics that are similar. That is, individuals 
within groups are usually more alike compared to individuals across groups. 
This concept generally goes by the name of nesting, and is the motivation 
behind such relatively advanced techniques as hierarchical and multilevel 
modeling. 

•	 Obtaining a statistically significant F in ANOVA in no way guarantees a 
meaningful scientific finding. Effect size measures are required to assess the 
degree to which the independent variable explains variance in the response 
variable. 
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•	 Eta-squared is a traditional effect size computed by taking the ratio of SS 
between to SS total. A value of 0 indicates zero variance explained. A value of 
1.0 indicates 100% of variance explained. 

•	 Omega-squared is an effect size measure used to help correct the overly optimistic 
estimates typically provided by Eta-squared. Omega-squared attempts to better 
estimate the corresponding effect size in the population, and thus is typically less 
than Eta-squared. 

•	 Computing a t-test via ANOVA is a useful exercise to appreciate the similarities p

between the two procedures by noting the relation t � F.
 

•	 Contrasts are useful in providing custom hypothesis tests between pairs of 
population means. 

•	 The independent samples t-test can be interpreted as an example of a linear contrast. 

•	 Post-hoc tests are used to snoop the data following a statistically significant F in 
ANOVA. The objective of a post-hoc test is to help control the family-wise error 
rate, that is, the error rate generated by successive tests across the “family” of 
comparisons. Good post-hoc tests are generally those that keep the error rate at a 
nominal level but not at the expense of a significant loss of power. 

•	 The Bonferroni correction divides the family-wise error rate across the number 
of pairwise comparisons one wishes to make. The test quickly loses power as the 
number of means (and thus comparisons) increases. 

•	 The Newman–Keuls method, though somewhat unpopular because of its failure 
to protect family-wise error, is nonetheless useful for describing the general logic 
of a layered test. The Tukey HSD test is a more common test than the Newman– 
Keuls, and is also more conservative. It is highly recommended for most cases. 

•	 The Scheffé test is a very conservative post-hoc test that protects not only 
against pairwise comparisons but also against all linear contrasts. If one finds a 
sample difference with the Scheffé, one can be relatively confident that the 
difference exists in the population. 

•	 Sample size and power can be estimated with relative ease using R or G∗ power. 

•	 One-way ANOVA models can be tested with relative ease in both R and SPSS. 
Assumptions can also be tentatively evaluated using either software. 

REVIEW EXERCISES 

4.1.	 Give a definition for the fixed effects analysis of variance. 

4.2.	 Compare and contrast a fixed effect versus a random effect. 

4.3.	 Explain how models in virtually all sciences are not deterministic, but rather 
probabilistic. In the achievement example discussed in the chapter, what would 
it mean to say that mathematics achievement is a true function of teacher? 

4.4.	 Explain why observing differences in sample means does not alone constitute 
evidence against a null hypothesis tested in ANOVA. What more information 
do we require? 
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4.5.	 Compare the equation for an independent samples t-test with that of an F-test in 
ANOVA, and comment on their similarities and differences. How do they both 
essentially answer a similar question? 

4.6.	 Discuss the importance and significance of the identity 

�yij � y:� � �yij � yj� � �yj � y:� 
as it pertains to the logic of ANOVA. Identify each component. 

4.7.	 Discuss the effect of squaring deviations in the identity 
�yij � y:� � �yij � yj� � �yj � y:�. 

4.8.	 Verbally interpret and discuss the following identity: 

J	 n J n J 
22 ��yij � y:�2 � � nj�yj � y:�yij � yj�

j�1	 i j�1 i j 

4.9.	 Briefly discuss what role dividing by degrees of freedom has on the sums of 
squares of ANOVA. What is the purpose of dividing by degrees of freedom? 

4.10.	 Explain why sums of squares are generally additive for balanced designs, but 
mean squares are not. 

4.11.	 What is the approximate expectation of F under a true null hypothesis? Why is 
this so? 

4.12.	 State two ways in which the null hypothesis for ANOVA can be 
operationalized. 

4.13.	 List the assumptions of the ANOVA model. 

4.14.	 Define a nuisance factor and comment on why randomization does not guarantee 
that nuisance factors will be evenly dispersed among treatment groups. 

4.15.	 Distinguish between an experimental design and a quasi-experimental design. 

4.16.	 For an experiment in which virtually all variance is accounted for by the 
treatment effect, what value of η2 would you expect to obtain? Why? 

4.17.	 For an experiment in which virtually none of the variance is accounted for by 
the treatment effect, what value of η2 would you expect to obtain? Why? 

4.18.	 Discuss the difference between η2 and ω2. 

4.19.	 Discuss the purpose of contrasts in ANOVA. 

4.20.	 Distinguish between a linear combination and a contrast. 

4.21.	 Derive a data set for which the dependent variable is continuous and the 
independent variable consists of a three-level grouping variable. Generate the 
data for which there is much within-group variability, but very little between-
group variability. In such a case, what decision on the null hypothesis 
H0 : μ1 � μ2 � μ3 would likely result? Why? Explain. 
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TABLE 4.8 

Group 

A 
A 
A 
A 
A 
A 
A 
A 
A 
A 
A 
A 
A 
A 
A 
B 
B 
C 
C 
C 
C 
C 
C 
D 
D 
D 
D 
D 
D 
D 
D 

Thouless’ Certainty Data (1935) 

Test Statement Certainty 

1 2.25 
2 2.27 
3 2.40 
4 2.19 
5 2.19 
7 2.32 
8 2.38 
9 1.67 
10 2.01 
14 2.07 
18 1.82 
20 1.80 
21 2.44 
22 2.62 
23 2.35 
6 2.25 
16 2.34 
11 2.23 
12 1.89 
13 2.32 
19 1.30 
24 1.66 
26 2.17 
28 1.22 
30 1.23 
31 1.21 
33 2.01 
35 2.33 
40 1.82 
17 0.95 
34 1.83 

4.22.	 Consider the data published by Thouless (1935). In this study, subjects were 
asked to rate their degree of certainty in particular religious statements such as 
The world was created by God or There are spiritual realities of some kind. A  
subset of Thouless’ data appear in Table 4.8. More on Thouless’ data: 

•	 Groups A, B, and C designate religious beliefs, whereas group D consists of 
individuals espousing indifferent nonreligious beliefs. 

•	 Test statement refers to the given statement on which a certainty measure was 
obtained. For example, test statement 1 refers to the statement There is a personal 
God. Test statement 2 refers to the statement Jesus Christ was God the Son, and so 
on for other statements. An example of a statement from group D is #28, Mary, 
Queen of Scots, was beheaded between 1580 and 1590. 
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Answer the following questions with regard to Thouless’ data: 

(a)	 Is there statistical evidence to suggest that certainty is a function of group? 
Conduct a one-way fixed effects analysis of variance with dependent 
variable certainty and independent variable group. 

(b)	 Given a rejection of the null hypothesis in part (a), perform a post-hoc test to 
learn of where group differences may lay between groups A, B, C, and D. 

(c)	 Perform a contrast to compare the religious groups A, B, and C with the 
nonreligious group D. Interpret the result. 

4.23.	 The analysis of variance was developed primarily to address problems in 
agriculture, genetics, and biology. Consider data from Fisher (1925), the book 
credited with the first comprehensive introduction to the analysis of variance. 
In Table 41, p. 217 (1934 edition), Fisher presents data on soil bacteria in 
which soil data were separated into four samples. On each sample, seven plates 
were inoculated, and the number of colonies recorded on each plate. The data 
are reproduced in Table 4.9. 

TABLE 4.9 Number of Bacteria Colonies by Plate and 
Sample (Fisher, 1934) 

Number of 
Plate Sample Colonies 

1  1  72  
1  2  74  
1  3  78  
1  4  69  
2  1  69  
2  2  72  
2  3  74  
2  4  67  
3  1  63  
3  2  70  
3  3  70  
3  4  66  
4  1  59  
4  2  69  
4  3  58  
4  4  64  
5  1  59  
5  2  66  
5  3  58  
5  4  62  
6  1  53  
6  2  58  
6  3  56  

(continued ) 
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TABLE 4.9 

Plate 

6 
7 
7 
7 
7 

(Continued ) 

Sample 

4 
1 
2 
3 
4 

Number of 
Colonies 

58  
51  
52  
56  
54  

Answer the following questions with regards to Fisher’s data: 

(a)	 Is there evidence to suggest that the mean number of colonies differs by 
plate? Conduct a one-way fixed effects analysis of variance. 

(b)	 Is there evidence to suggest that the mean number of colonies differs by 
sample? Conduct a one-way fixed effects analysis of variance. 

Further Discussion and Activities 

4.24.	 The majority of statistical procedures can be represented through concepts of 
covariance and correlation. The analysis of variance, though focusing on mean 
differences, can nonetheless be expressed through simple correlational analy
sis. An excellent and relatively easy read that describes these ideas is given in 
Levin, Serlin, and Webne-Behrman (1989). Read the paper and summarize the 
essential ideas of how ANOVA can be conceptualized in terms of correlational 
theory. 
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FACTORIAL ANALYSIS OF 
VARIANCE: MODELING 
INTERACTIONS 

The assignable sources of variation in a manufacturing process may be divided into two 
categories. First, there are those factors which introduce variation in a random way. Lack 
of control at some stage of production very often acts in this manner, and the material 
itself usually exhibits an inherent random variability. The other type of factor gives rise 
to systematic variation. 

(Daniels, 1939, p. 187) 

The researcher of Chapter 4 who studied the effect of melatonin dosage on sleep 
onset is now interested in learning whether these effects are consistent across ambient 
noise levels present during sleep. For this experiment, the researcher again randomly 
assigns 25 individuals to a control group, 25 more to a group receiving 1mg of 
melatonin, and 25 more to a group receiving 3mg of melatonin. In addition, within 
each of these conditions, half of the participants receive either no ambient noise or a 
low amount of ambient noise at the moment of melatonin ingestion and lasting 
throughout the night (for instance, a slight buzzing sound). The researcher would like 
to test whether sleep onset is a function of dosage, ambient noise, or a potential 
combination of the two factors. That is, the researcher is interested in detecting a 
potential interaction between dose and noise level. He is only interested in general
izing his findings to these particular doses of melatonin and to these particular noise 
levels. Such a research design calls for a two-way fixed effects factorial analysis 
of variance. 

www.wiley.com/go/denis/appliedmultivariatestatistics
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5.1 WHAT IS FACTORIAL ANALYSIS OF VARIANCE? 

In the one-way ANOVA of the previous chapter, we tested null hypotheses about 
equality of population means of the kind: 

H0 : μ1 � μ2 � μ3 � μJ 

In the two-way and higher-order analysis of variance, we have more than a single factor 
in our design. As we did for the one-way analysis, we will test similar main effect 
hypotheses for each individual factor, but we will also test a new null hypothesis, one 
that is due to an interaction between factors. 

In the two-factor design on melatonin and ambient noise level, we are interested in 
the following effects: 

•	 Main effect due to drug dose in the form of mean sleep differences across dosage 
levels. 

•	 Main effect due to ambient noise level in the form of mean sleep differences 
across noise levels. 

•	 Interaction between drug dose and noise level in the form of mean sleep 
differences on drug not being consistent across noise levels (or vice versa). 

It does not take long to realize that science is about the discovery not of main 
effects, but of interactions. Yes, we are interested in knowing whether melatonin has 
an effect, but we are even more interested in knowing whether melatonin has an effect 
differentially across noise levels. And beyond this, we may be interested in even 
higher-order effects, such as three-way interactions. Perhaps melatonin has an effect, 
but mostly at lower noise levels, and mostly for those persons aged 40 and older. This 
motivates the idea for a three-way interaction, drug dose by noise level by age. One 
will undoubtedly remark the tone of conditional probability themes in the concept of 
an interaction. 

As another example of an interaction, consider Table 5.1 and corresponding 
Figure 5.1. The plot features the achievement data of the previous chapter, only that 

TABLE 5.1 Achievement as a Function of Teacher and Textbook 

Teacher 

Textbook 1 2 3 4 

1  70  69  85  95  
1  67  68  86  94  
1  65  70  85  89  
2  75  76  76  94  
2  76  77  75  93  
2  73  75  73  91  
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FIGURE 5.1 (a) Cell means for teacher∗textbook on achievement. (b) Distances between cell 
means as depicted by two-headed arrows. (where f.text is the factor name for textbook and 
f.teach is the factor name for teacher). 

now, in addition to students being randomly assigned to one of four teachers (f.teach), 
they were also randomly assigned to study of one of two mathematics textbooks 
(f.text). 

What we wish to know from Figure 5.1 is whether textbook differences (1 versus 
2) are consistent across levels of teacher. For instance, at teacher = 1, we ask whether 
the same textbook “story” is being told as at teachers 2, 3, and 4. What this “story” is, 
are the distances between cell means, as emphasized in the right-most plot. Is this 
distance from textbook 1 to textbook 2 consistent across teachers, or do such 
differences depend in part on which teacher one has? These are the types of questions 
we need to ask in order to ascertain the presence or absence of an interaction effect. 
And though it would appear that mean differences are not equal across teacher, the 
question we really need to ask is whether these sample differences are large enough 
to infer population mean differences. These questions will be addressed by the test 
for an interaction effect in the two-way fixed effects analysis of variance model. 

5.2 THEORY OF FACTORIAL ANOVA: A DEEPER LOOK 

As we did for the one-way analysis of variance, we develop the theory of factorial 
ANOVA from fundamental principles, which then lead us to the derivation of the 
sums of squares. The main difference between the simple one-way model and the two-
way model is the consideration of cell effects as opposed to simply sample effects. 
Consider, in Table 5.2, what the two-way layout might look like for our melatonin 
example in the factorial design. 

We are interested in both row mean differences, summing across melatonin dose, 
as well as column mean differences, summing across noise level. We ask ourselves the 
same question we asked in the previous chapter for the one-way model: 

Why does any given score in our data deviate from the mean of all the data? 
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TABLE 5.2 Cell Means of Sleep Onset as a Function of Melatonin Dose and Noise 
Level (Hypothetical Data) 

Melatonin Dose 

Noise Level 0 mg 1 mg 3 mg Row Means 

High 15 11 8 11.3 
Low 12 10 4 8.7 
Column means 13.5 10.5 6.0 10.0 

Our answer must now include the following four possibilities: 

•	 An effect of being in one melatonin-dose group versus others. 

•	 An effect of being in one noise level versus others. 

•	 An effect due to the combination (interaction) of dose and noise. 

•	 Chance variation that occurs within each cell of the design. Notice that this 
fourth possibility is now the within-group variation of the previous one-way 
model of Chapter 4, only that now the “within group” is in actuality within cell. 
The error variation occurs within the cells of a factorial design. 

In the spirit of history, we show an earlier and more generic layout of the two-way 
model diagramed by Eisenhart (1947) and reproduced in Figure 5.2, where entries 
in the cells depict data points for each row and column combination. Note the 

FIGURE 5.2 Generic two-way analysis of variance layout (Eisenhart, 1947, p. 5). The two-
way factorial analysis of variance has row effects, column effects, and interaction effects. Each 
value within each cell represents a data point. Row and column means are represented by 
summing across values of the other factor. 
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representation of row means and column means. These will aid in the computation of 
main effects for each factor. 

5.2.1 Deriving the Model for Two-Way Factorial ANOVA 

We now develop some of the theory behind the two-way factorial model. As always, it 
is first helpful to recall the essentials of the one-way model, then extend these 
principles to the higher-order model. Recall the one-way fixed effects model of the 
previous chapter: 

yij � y: � aj � eij 

where the sample effect aj was defined as aj � �yj � y:�. The sample effect aj denoted the 
effect of being in one particular group in the layout. Recall that in the one-way layout, 

njaj � 0, which, in words meant that the sum of weighted sample effects, where nj, 

was the sample size per group, summed to zero. For this reason, we squared these 
treatment effects, which provided us with a measure of the sums of squares between 
groups: 

2SS between � njaj 
j 

It turned out as well that the sample effect aj was an unbiased estimator of the 
corresponding population effect, αj. That is, the expectation of aj is equal to αj, or, 
more concisely, E�aj� � αj. Recall that the sample effect represents the effect or 
influence of group membership in our design. For instance, for an independent variable 
having three levels, we had three groups (J = 3) on which to calculate respective sample 
effects. In the factorial two-way analysis of variance, we will have more than J groups 
because wearenowcrossing twovariables withone another.For example, the layout for 
a 2  × 3 (i.e., two rows by three columns) design is given in Table 5.3. 

Notice that now, we essentially have six “groups” in the 2 × 3 factorial model, 
where each combination of factor levels generates a mean yjk, where j designates the 
row and k designates the column. The “groups” that represent this combination of 
factor 1 and factor 2 we will refer to as cells. This is why we have been putting 
“groups” in quotation marks, because these things in the factorial design are actually 
cells. The heart of partitioning variability in a factorial design happens between cells. 
In addition to defining the sample effects associated with each factor (i.e., aj and ak), 
we will now also need to define what is known as a cell effect. 

TABLE 5.3 Cell Means Layout for 2 × 3 Factorial Analysis of Variance 

Factor 2 

Factor 1 Level 1 Level 2 Level 3 

Level 1 yjk yjk yjk 
Level 2 yjk yjk yjk 
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5.2.2 Cell Effects 

A sample cell effect is defined as 

�ab�jk � �yjk � y::� 
and represents a measure of variation for being in one cell and not others. Notice that to 
compute the cell effect, we are taking each cell mean yjk and subtracting the grand mean, 
y:: (we carry two periods as subscripts for the grand mean now to denote the summing 
across j rows and k columns). But why do this? We are doing this with the similar 
objective of why we took the group mean and subtracted the grand mean in a simple one-
way analysis of variance. In that case, in which we computed aj � �yj � y:�, we were  
interested in the “effect” of being in one group versus other groups (which was 
represented by subtracting the overall mean). 

Likewise, in computing cell effects, we are interested in the effect of being in one 
cell versus other cells, because now, in the two-way factorial model, in addition to 
both main effects for row and column, it is the cell effect that will represent our 
interests in there possibly existing an interaction between the two factors. We will 
need to compute an interaction effect to do this, but getting the cell effect is the first 
step toward doing so. 

As it was true that the sum of sample effects in the one-way model was equal to 0, 
njaj � 0, it will also be true that the sum of cell effects is equal to 0 for any given 

j 

sample. That is, 

�yjk � y::� � 0 
j k j k 

�ab�jk � 

where the double summation represents first the summing across k columns and then 
across j rows. We can easily demonstrate this by computing the cell effects for 
Table 5.2 across each row of noise level. For the first cell, mean of 15 in row 1, column 
1, the cell effect is computed as 15 � 10 = 5. For row 1, column 2, the cell effect is 
11 � 10 = 1. The remaining cell effects are computed analogously (�2, 2, 0, �6). The 
sum of these cell effects is easily demonstrated to be equal to zero ((5 + 1 + (�2) 
+ 2 + 0 + (�6) = 0). But why would this be true? It is true for the same reason why 
summing sample effect equals zero. We are taking deviations from the grand mean, 
and by definition, the grand mean is the “center of gravity” of all means (in a balanced 
design). So, it is reasonable then that the sum of deviations around that value should 
be equal to zero. To avoid this, just as we did for the ordinary variance and for the 
variances derived in the one-way analysis of variance, we square deviations. 

To better conceptualize deviations from means across the one-way and two-way 
factorial designs, it is helpful to compare and contrast the three scenarios provided in 
Table 5.4. 

We can see from Table 5.4 that the solution in each case is to square respective 
deviations. This is precisely why in the case of cell effects, as we did for single 
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TABLE 5.4 Deviations Featured in One-way and Two-way Analysis of Variance. In 
Each Case, the Sum of Deviations Equals 0. 

Solution is Squaring 
Deviation In Words Deviations 

n The sum of score deviations around a mean �yi � y:� � 0 
equals 0 i�1 

n The sum of row sample mean deviations around �yj � y::� � 0 
a grand mean equals 0 i�1 

n The sum of column sample mean deviations �yk � y::� � 0 
around a grand mean equals 0 i�1 

n The sum of cell mean deviations around a grand �yjk � y::� � 0 
mean equals 0 i�1 

n 
2 �yi � y:� > 0 

i�1 
n 

2 �yj � y::� > 0 
i�1 
n 

2 �yk � y::� > 0 
i�1 
n 

2 �yjk � y::� > 0 
i�1 

In each case, the sum of deviations equals zero. 

deviations and mean deviations, we will likewise square them. We will call this sum 
of squared cell effects by the name of SS AB cells: 

2SS AB cells � n��ab�jk�
j k 

where n is the number of observations per cell, which we assume to be equal for our 
purposes. 

5.2.3 Interaction Effects 

Having defined the meaning of a cell effect, we are now ready to define what is meant 
by an interaction effect. These interaction effects are the reason why we computed the 
cell effects in the first place. The sample interaction effect for each cell jk is given by 

�ab�jk	 � interaction effect of cell jk 
� cell effect for cell jk � effect for row j � effect for column k 
� �ab�jk � aj � bk � yjk � y:: � �yj: � y::� � �y:k � y::� 
� yjk � yj: � y:k � y:: 

A few things to remark about sample interaction effects: 

• A sample interaction effect �ab�jk exists for each cell in the design. 

•	 The sample interaction effect is defined as the cell effect minus the row and 
column effects (i.e., �ab�jk � aj � bk ); this makes sense, because it is reasonable 
that we are interested in the effect of being in a particular cell over and above the 
corresponding row and column effects. 

•	 The sample interaction effect can also be defined as taking the mean of each cell, 
yjk, and subtracting out row means and column means (i.e., yj: and y:k , 
respectively), and then adding on the grand mean y::. 
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As we did for sample effects, we will square the interaction effects so that they do 
not always sum to zero: 

SS A � B interaction � n�ab�2 
jk 

j k 

5.2.4 Cell Effects versus Interaction Effects 

It is useful at this point to emphasize an important distinction and to clarify something 
that may at first be somewhat confusing. We have introduced the ideas of cell effects 
and interaction effects. It is important to recognize that these are not the same things, 
as evidenced by their different computations. To help clarify, let us compare the two 
concepts: 

Cell effect �ab�jk � �yjk � y::� versus Interaction effect �ab�jk : �ab�jk � aj � bk 

Notice that the interaction effect �ab�jk uses the cell effect in its computation. In our 
operationalization of the two-way ANOVA, the cell effect is just the starting point to 
computing the interaction effect. The cell effect simply measures the deviation of a 
cell mean from the grand mean. It is the interaction effect that takes this deviation 
value and then subtracts further the row and column effects. Be sure not to confuse cell 
effects and interaction effects as they are not one and the same. 

5.2.5 A Model for the Two-Way Fixed Effects ANOVA 

Having now defined the sample interaction effect, which again, is the distinguishing 
feature between a one-way fixed effect model and a two-way fixed effects model, we 
can now state a general linear model for the two-way, one that includes an interaction 
term: 

yijk � y:: � aj � bk � �ab�jk � eijk 

where aj is the sample effect of membership in row j, bk is the sample effect of 
membership in column k, �ab�jk is the interaction effect associated with the cell jk, 
and eijk is the error associated with observation i in cell jk. In words, what the model 
says is that any given randomly selected observation from the two-way layout, 
represented by yijk, individual i in cell jk, can be theorized to be a function of the 
grand mean of all observations, y::, an effect of being in a particular row j, aj, an  
effect of being in a particular column k, bk , the effect of being in a particular cell 
combination, jk, which is expressed via the interaction effect �ab�jk, and an effect 
unique to individuals within each cell jk, eijk , for which we either did not account for 
in our design, or, we concede is due to random variation which we will call by the 
name of “chance.” Either way, eijk represents our inability to model yijk perfectly in 
a truly functional manner. Just as was true for the one-way model, eijk is the effect 
that makes our model truly probabilistic. 
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5.3 COMPARING ONE-WAY ANOVA TO TWO-WAY ANOVA: CELL 
EFFECTS IN FACTORIAL ANOVA VERSUS SAMPLE EFFECTS IN 
ONE-WAY ANOVA 

It is pedagogical at this point to compare, side by side, the one-way model of the 
previous chapter to the two-way model of the current chapter. Recall the overall 
purpose of writing out a model equation. It is an attempt to “explain”, in as functional 
a way as possible, the makeup of a given observation. In the one-way model, we 
attempted to explain observations by theorizing a single grouping factor along with 
within-group variability. Our sample model was 

yij � y: � aj � eij 

Notice that for such a model, it was not appropriate to append the additional subscript 
k to yij such as in, yijk, because we did not have “cells” in the one-way ANOVA. 
Defining the idea of a “cell” did not make a whole lot of sense, since we were simply 
dealing with a single grouping variable. Subscripting yij to represent individual i in 
group j was enough. Indeed, if we were to “pretend” for a moment that we were 
dealing with cells, we could write the one-way model as 

yij � y: � �yj � y:� � eij 
(5.1) 

yij � y: � �ab�j � eij 

Nothing has changed in (5.1) except for equating “groups” with “cells.” Why do 
this? Simply to note how the factorial model compares with that of the one-way 
model. Notice that the difference between the one-way model and the two-way 
model in terms of cell effects is that instead of hypothesizing yijk to be a function 
of aj � yj � y:, we are now hypothesizing yijk to be a function of yjk � y::. In  both  
cases, whether aj � yj � y: for the one-way model or �ab�jk � yjk � y:: for the 
two-way model, the total systematic variation in the data is represented by 
either of these, depending on whether there is one factor or two. Sample effects 
represent the systematic variation in a one-way model, and cell effects represent 
the systematic variation in a two-way model. If you understand this concept, 
then generalizing these ANOVA models to higher-order models (e.g., three-
way, four-way, and potentially higher) will not be intimidating, because you 
will realize at the outset that the systematic variation in the entire model is 
housed in the cell effects, regardless of the complexity of the model. To 
reiterate, we can say as a general principle of fixed effects analysis of variance 
models that 

In the fixed effects analysis of variance model, the systematic variation is housed in the 
cell effects. In the special case where we have only a single independent variable, the cell 
effects are equivalent to the sample effects. 



246 FACTORIAL ANALYSIS OF VARIANCE: MODELING INTERACTIONS 

5.4 PARTITIONING THE SUMS OF SQUARES FOR FACTORIAL 
ANOVA: THE CASE OF TWO FACTORS 

Just as we did for the one-way model, we will now work out the partition of the sums 
of squares for the two-way factorial model. Remember, the reason why we are 
partitioning “sums of squares” and not simply unsquared effects is because if we 
attempted to partition unsquared effects (e.g., aj � yj � y:: or �ab�jk � yjk � y::), these 
effects would always sum to 0 (unless, of course, there is no variation in the data, in 
that case whether squared or not, they will sum to 0). 

When we partitioned the sums of squares for the one-way model, we started out by 
hypothesizing what any single observation in our data, yi, could be a function of. After 
a process of deliberate reasoning, we concluded that yi was a function of within 
variation and between variation. Upon squaring deviations, we arrived at the 
following identity: 

J n J n J 
22 ��yij � y:�2 � � nj�yj � y:�yij � yj�

j�1 i j�1 i j 

which we called the partition of sums of squares for the one-way fixed effects analysis 
of variance model. We called it an “identity” simply because it holds true for any given 
data set having a continuously measured dependent variable and a categorically-
defined independent variable. 

Likewise, in the two-way factorial model, we again want to consider how the 
partition of the sums of squares works out and can be derived. As we did for the one-
way model, we follow a very logical process in determining this partition. 

5.4.1 SS Total: A Measure of Total Variation 

Just as we did in deriving the total sums of squares for the one-way model, instead 
of simply considering the makeup of yijk, we will consider the makeup of deviations 
in the form yijk � y::, which when we incorporate into the model, we obtain, quite 
simply, 

yijk � y:: � �ab�jk � eijk 

yijk � y:: � �ab�jk � eijk 

Notice that similar to how we did for the one-way model, in which �yij � y:� � aj � eij 
was true, for the two-way model, we likewise claim that the makeup of any given 
observation is of two “things,” systematic variation as represented by �ab�jk (in the 
one-way model the systematic variation was represented by aj) and random variation 
as represented by eijk (in the one-way model the random variation was represented by 
eij—note the subscripts, we did not have cells in the one-way, so we did not need to 
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append the subscript k). Instead of squaring aj � eij as we did in the one-way model, 
we will square �ab�jk � eijk . When we take these squares and sum them, as given in 
Hays (1994, p. 481), we get: 

SS total � 

� 

�
 

�
 

i 

�ab�jk � eijk 
2 

j k i 

�ab�2 
jk � 2�ab�jkeijk � e2 

ijk 

�ab�2 � 2 �ab�jk eijk � e
j k i 

jk 
j k i j k i 

2 
ijk 

n�ab�2 
jk � eijk 

2 

j k j k i 

Notice that the term 2 �ab�jk eijk dropped out of the above summation (third 
j k i 

line of the equation). What happened to this term? Since the cell effects �ab�jk sum to 
zero and the errors within any given cell eijk sum to 0, the term 2 �ab�jk eijk 

i j k i 

drops out of the derivation, since 2 
j k 

�ab�jk 
i 
eijk � 0. Hence, we are left simply 

with 

2SS total � n�ab�2 
jk � eijk 

j k j k i 

We have just found that the total variation in the two-factorial model is a function of 
the sum of squared cell effects and random variation. Once we have accounted for 
the systematic variation in �ab�jk, whatever is leftover must be random error, or 
otherwise denoted, the variation within the cells. Also, because the cell effects, 
�ab�jk, contain all systematic variation, it makes sense that within these cell effects 
will be “hidden” a main effect for A, a main effect for B, and an interaction effect, 
A × B. That is, if you take the sum of squares for a cell effect, which by itself 
contains all the systematic variation, it seems reasonable that we could break this 
down further into the SS for factor A, SS for factor B, and the SS for the A × B 
interaction, such that 

SS AB cells � SS factor A � SS factor B � SS A � B interaction 

If we put these two partitions together, we end up with the following identities: 

SS total � SS AB cells � SS within cells 

SS total � SS factor A � SS factor B � SS A � B interaction � SS within 
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In considering now the main effects for the two-way factorial model, as in the one-
way ANOVA, the sample main effect of any level j of the row factor A is given by 
aj � yj: � y::, where aj as before represents the effect for a particular row, and yj: � y:: 
represents the given row mean minus the grand mean of all observations. As in the 
one-way, the sum of the fixed sample main effects for factor A will be 0, aj � 0. 

Notice again here we are specifying the word “fixed.” This is because for a fixed 
effects model, the sum of main effects add to 0. However, in the following chapter, 
when we consider random and mixed models, we will see that this is not necessarily 
the case for certain factors. This will have important implications in how we construct 
F-ratios. 

The sums of squares for factor A is thus Kn�aj�2, where K is the number of 

columns, and n is the number of observations per cell. For the column main effect (i.e., 
factor B), the sample main effect is bk � y:k � y::, where y:k is the sample mean 
corresponding to a particular column k. As with the sample effects for aj, the sum of 
the column sample effects, bk, will also be 0, bk � 0. The sums of squares for factor 

k 

B is thus Jn�bk�2, where J is the number of rows. 
k 

5.4.2 Model Assumptions: Two-Way Factorial Model 

The assumptions for a two-way fixed effects analysis of variance are similar to those 
of the one-way analysis of variance model, only now, because we have cells in our 
design, these are the “groups” about which we have to make assumptions when 
involving the interaction term: 

•	 E�εijk � � 0, that is, the expectation of the error term is equal to 0. Note 
the extra subscript on eijk to reflect not only the jth population, but also the 
jkth cell. 

• εijk are NI�0; σ2�, that is, the errors are normally distributed and independent of e 
one another. Just as we did for the one-way, we are using εijk to denote the 
corresponding population parameter of the sample quantity eijk . 

•	 σ2 
eijk 

< 1, that is, the variance of the errors is some finite number (which, as was 
true in the one-way model, implies that it is less than infinity). 

• Cov�εijk; εi ́ j ́ k ́� � 0, that is, the covariance between errors is equal to 0. 

•	 σ2 
jk�1 � σ2 

jk�2 � σ2 
jk�JK , that is, the variances across cell populations are equal 

(recall that this is called the homoscedasticity assumption). 

•	 Measurements on the dependent variable are observed values of a random 
variable that are distributed about true mean values that are fixed constants. This 
is the same assumption made for the one-way model in which we were 
interested in the fixed effects. This assumption will be relaxed when we 
contemplate random effects models in chapters to come. 

j 

j 
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We could also add the assumption, as we did for the one-way model, that the model 
is correctly specified, in that there are reasonably no other sources acting on the 
dependent variable to an appreciable extent. If there were, and we did not include 
them in our model, we would be guilty of a specification error or of more generally 
misspecifying our model. 

5.4.3 Expected Mean Squares for Factorial Design 

In deriving F-ratio tests for the various effects in the two-way ANOVA, just as we did 
for the one-way ANOVA, we need to derive the expectations for the various sums of 
squares, and then divide these by the appropriate degrees of freedom to produce a 
mean square for the given factor or interaction. Hence the phrase, “expected mean 
squares.” We adapt the following derivations from Hays (1994) Kempthorne (1975), 
and Searle, Casella, and McCulloch (1992). We begin with the expected mean squares 
for within cells: 

E�SS within cells� �  E 

� (5.2) 

� 

k j i 

�yijk � yjk�2 

k j 

E 
i 

�yijk � yjk�2 

k j 

�n � 1�σ2 
e 

� JK�n � 1�σ2 
e 

2Why does E � equal �n � 1�σ2? To understand this, recall yijk � yjk� e 
k j i k j 

in the one-way layout: 

2E�SS within� � E �yij � yj�
j i 

However, for any given sample group j, we know that we have to divide SS by n � 1 in  
order to get an unbiased estimate of the error variance. That is, we know that 

2 2E � does not converge to σ2, but that E �yij � yj� =�nj � 1� does.yij � yj� e 
j i i 

So, we can rearrange this slightly to get 

E �yij � yj�2 � �nj � 1�σ2 
e 

i 

Finally, how did we go from �n � 1�σ2 � JK�n � 1�σ2 in the final term of (5.2)? e e 
k j 
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J K J 
By the rules of summation, y � Jy, and so y � JKy, in which in our case 

j k j 

�n � 1�σ2 acts as “y.” e 
Now that we have the expectation for SS error, that of JK�n � 1�σ2 of (5.2), let us e 

consider what we have to divide this sum of squares by to get MS error. That is, we 
need to determine the degrees of freedom for error. Since there are J � K cells, we will 
lose one degree of freedom per cell, which gives us degrees of freedom = JK�n � 1�. 
So, MS error is equal to 

SS error 
MS error � 

JK�n � 1� 
JK�n � 1�σ2 

e� 
JK�n � 1� 

� σ2 
e 

That is, as was the case in the one-way ANOVA, MS error is simply equal to the error 
variance alone in a two-way fixed effects ANOVA. 

What about the mean square for factor A? When determining an appropriate mean 
square for any term, recall that it is essential to consider what goes into the numerator. 
For the error term, as we just saw, all that goes into the calculation of error is simply 
σ2. When considering the effect for factor A, we need to recall that in any given row J,e 
both the column effects bk and the interaction effects sum to 0. That is, bk � 0 and 

k �ab�jk � 0. Notice that we are summing over k columns to get the row effect. Why 

is this important? It is important because it tells us what we can leave out of the mean 
square for factor A. Because we know bk � 0 and �ab�jk � 0, we become aware 

k k 

that these terms will not be part of the mean square for factor A. If you prefer, we 
might say they will still be part of the term, but since they sum to 0, why include them 
in the mean square for factor A at all? Both ways of thinking about it gets us to the 
same place in that we do not have to incorporate them when computing our mean 
squares. 

Recall that the sums of squares for factor A are given by 

2 2Kn aj � Kn �yj: � y::�
j j 

k 

Given this, and the fact that bk � 0 and  �ab�jk � 0, the expectation for MS factor 
k k 

A in which factor A is fixed is 

α2Kn j 

E�MS A� � σ2 � 
j 

e J � 1 
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In words, the expectation is equal to error variance, σ2, plus a term containing e

variability due to factor A, Kn α2 
j =�J � 1�. Given the expected mean square, we 

j 

would like to produce an F-ratio to test the main effect for factor A of H0 : αj � 0 
versus H1 : αj ≠ 0 for at least some populations as specified by the levels of factor A. 
If there is absolutely no effect, we will have 

Kn 0 

E�MS A� � σ2 � 
j 

e J � 1 

and hence 

E�MS A� � σ2 
e 

And so it is easy to see that the following F-ratio will be a suitable one for testing the 
effect due to factor A: 

MS A 
F � 

MS error 

on J� 1 and JK(n� 1) = N� JK degrees of freedom. That is, in the two-way fixed 
effects analysis of variance, MS error is the correct error term for testing the effect of 
factor A. 

A similar argument applies to the factor B mean square. Since aj � 0 and 
j 

�ab�jk � 0, we will only expect variability due to that in columns when considering 

factor B, since the effects for A and interaction effects will both sum to 0 in the fixed 
effects model that we are currently considering (they will not necessarily be so in 
random and mixed models in the following chapter). Therefore, the relevant expect
ation is 

β2Jn k 

E�MS B� � σ2 � k 
e K � 1 

where similar to the case for factor A, the term Jn β2 
k simply comes from the 

k 

derivation of the sums of squares for factor B, that of 

2SS B � Jn b2 
k � Jn �y:k � y::�

k j 

Under the null hypothesis, it will be the case that β2 
k � 0, and so we are left with σ2.e

Hence, the appropriate F-ratio is 

MS B 
F � 

MS error 

j 
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on K � 1 and JK(n � 1) = N � JK degrees of freedom. That is, in the two-way fixed 
effects analysis of variance, MS error is the correct error term for testing the effect of 
factor B. 

Finally, what of the expected mean squares for interaction? In generating the mean 
square, we follow a similar argument as when producing the terms for factors A and B. 
That is, we ask ourselves, what went into the interaction term? Well, we know that for 
the sample cell effect, �ab�jk, we saw that it was composed of variability due to factor 
A, factor B, and the A × B interaction. What goes into the interaction term �ab�jk is 
simply variability due to an interaction between factors A and B. Thus, for the 
interaction, we have 

n �αβ�2 
jk 

E�MS interaction� �  σ2 � 
j k 

e �J � 1��K � 1� 

If the interaction effects end up being 0, that is, if n �αβ�2 
jk � 0, then we will wind 

j k 

up with simply σ2. Hence, the appropriate F-ratio is MS interaction/MS error on e 
(J � 1)(K � 1) and JK(n � 1) = N � JK degrees of freedom. 

5.4.4 Recap of Expected Mean Squares 

Recall that the practical purpose behind deriving expected mean squares, whether in 
the one-way or higher-order ANOVA models, is to be able to generate meaningful 
F-ratios and test null hypotheses of interest to us. In our discussion of mean squares, 
we have justified the use of F-ratios for testing the main effects of A and B and the 
interaction of A × B. Notice that in each case, MS error is the appropriate denominator 
in the fixed effects model of analysis of variance. When we consider random and 
mixed effects models in chapters to follow, we will see that, and more importantly 
understand why, MS error is not always the appropriate denominator for testing 
effects. 

The summary table for the two-way factorial design is given in Table 5.5. 

TABLE 5.5 ANOVA Summary Table for Two-Way Factorial Design 

Source Sums of Squares df Mean Squares F 

A (rows) 

B (columns) 

A × B 

Error 

SS A 

SS B 

SS AB cells � SSA � SSB 

SS total � (SSA + SSB + SS A × B) 

J � 1 

K � 1 

(J � 1)(K � 1) 

N � JK 

SS  A/J � 1 

SS  B/K � 1 

SS A × B/(J � 1)(K � 1) 

SS error/(N � JK) 

MS A/MS error 

MS B/MS error 

MS A × B/MS error 

Total SS total N � 1 
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5.5 INTERPRETING MAIN EFFECTS IN THE PRESENCE 
OF INTERACTIONS 

Typically, if one has found evidence for an interaction in an ANOVA, one can still 
interpret main effects, so long as one realizes that the main effects no longer “tell 
the whole story.” As noted by Kempthorne (1975, p. 483), “the testing of main 
effects in the presence of interaction, without additional input, is an exercise in 
fatuity.” 

As an illustration, suppose the researcher investigating the effect of melatonin did 
find an effect, but the drug was truly effective only under very low noise. If ambient 
noise is elevated, melatonin no longer reduces sleep onset time. In other words, an 
interaction is present. In light of this interaction, if we interpreted by itself the effect of 
dosage without also including noise level in our “story,” then we would be potentially 
misleading the reader, who may mistakenly conclude that taking melatonin could help 
him get to sleep faster even if in a college dormitory (which is relatively noisy, even at 
night). The take-home message is simple—if you have evidence for an interaction in 
your data, it is the interaction that should be interpreted first. Interpreting main effects 
second is fine, so long as you caution your reader that they do not tell the whole story. 
The more complete story is housed in the interaction term. 

5.6 EFFECT SIZE MEASURES 

Recall that for the one-way fixed effects analysis of variance model, we computed 

nj�yj � y:�2 

η2 � 
j 

J n �yij � y:�2 

j�1 i�1 

as a measure of effect size in the sample. It revealed the proportion of variance in the 
dependent variable that was accounted for by knowledge of the independent variable. 

In the factorial design, we can likewise compute η2, but this time for each factor 
and interaction. That is, we will have, for respective main effects and interaction 

SS A SS B SS A � B 
η2 η2 η2 
A � B � A ? B � 

SS total SS total SS total 

Each of these, as was true for the one-way model, will give us an estimate of the 
variance explained in the dependent variable given the particular source of variation. 
As was true for the fixed effects model, these measures of η2 are all descriptive 
measures of what is going on in the particular sample. Measures of η2 are biased 
upward, and hence the true strength of association in the corresponding population 
parameters is usually less than what values of η2 suggest. 

J 
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In factorial designs, since we are modeling more than a single effect, one can also 
compute η2 

Partial, defined as 

SS effect 
η2 
Partial � 

SS effect � SS error 

A look at η2 ,Partial reveals that the denominator contains not the total variation as in η2 

but rather SS for the effect we are considering in addition to what is “left over” from 
the ANOVA in terms of error. For the one-way ANOVA, η2 � η2 

Partial. Some authors 
(e.g., see Tabachnick and Fidell (2007)) recommend the reporting of η2 

Partial for the 
reason that the size of η2 will depend on the complexity of the model. That is, for a 
given effect, η2 will usually be smaller in a model containing many effects than in a 
simpler model as a result of the total variation being larger in the former case. In the 
case of η2 

Partial, we are not allowing all of these effects to be a part of our denominator, 
and so η2 .Partial will usually be greater than η2 

Analogous to the one-way model, ω2 can also be computed in factorial models 
such that it provides a better approximation of the strength of association in the 
population and yields a more accurate estimate compared to η2. Estimates of ω2 can be 
obtained for both main effects and interactions. For details, see Vaughan and Corballis 
(1969). 

5.7 THREE-WAY, FOUR-WAY, AND HIGHER-ORDER MODELS 

The cases of three or more independent variables is a natural extension of the case for 
two. The only difference in terms of the partition is that in higher-order models, in 
addition to subtracting out SS A, SS B, etc., (depending on how many factors we 
have) from the cells term, we also need to subtract out all two-way interaction terms as 
well, since they are also naturally “part” of the cells term. Hence, for a three-way 
model, we would have 

SS A � B � C � �SS ABC cells� � �SS A� � �SS B� � �SS C� � �SS A � B� � �SS A � C� � �SS B � C� 

This is nothing new. The principle is the same as for the two-way model. Because cell 
terms contain all systematic effects in an experiment, we need to subtract all effects 
that may have “gone into” this term. This includes main effects and two-way 
interactions, which is why we include them in the subtraction. 

5.8 SIMPLE MAIN EFFECTS 

Given the presence of an interaction, the examination of simple main effects allows us 
to study the effect associated with some level of a given factor when the level of 
another factor is prespecified. We will usually want to perform simple effects analysis 
for any statistically significant interaction, and the precise number of simple effects 
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we perform should align at least somewhat with our theoretical predictions as to not 
unduly inflate type I error rates (or at minimum, we could use a Bonferroni-type 
correction on αPC to attempt to keep the family-wise error rate at a nominal level). 

To understand simple main effects, we begin first by reconsidering factor A with J 
levels. Recall that the main effect associated with this factor in a two-way factorial 
model is aj � yj: � y::. That is, the effect aj is defined as the difference between the 
mean for that particular row, yj: and the grand mean of y:: (recall that the periods 
following the letters are simply used as “placeholders” for columns k when consid
ering yj: and for rows j and columns k when considering the grand mean, y::). In the 
presence of a two-way interaction, if we chose only one level k of factor B, and 
examine only the effects of factor A within a given level of factor B, then each of these 
effects would be called simple main effects. They are analogously derived for column 
effects. They are effects (usually main effects, but as we will see, they can also be 
interaction effects in the case of a three-way or higher ANOVA) of a factor at one 
level of another factor. They allow us to “tease apart” an interaction to learn more 
about what generated the interaction in the first place. 

As a visualization to better understand the concept of a simple main effect, consider 
once more Figure 5.1 given at the outset of this chapter, only now, with a simple main 
effect indicated at the level of the first teacher (see Figure 5.3). It is the simple main 
effect of mean achievement differences on textbook at the first teacher. 

We can define the simple main effect in Figure 5.3 as 

yjk � y:k 

where yjk is the mean for a given textbook cell and y:k is the mean for teacher 1, 
collapsing across textbooks. We can define a number of other simple main effects: 

• textbook 1 versus textbook 2 @ teacher 2 

• textbook 1 versus textbook 2 @ teacher 3 

• textbook 1 versus textbook 2 @ teacher 4 

FIGURE 5.3 A simple main effect: Mean difference of textbook at level 1 of teacher. 
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We could also define simple main effects the other way (though not as easily 
visualized in Figure 5.3): 

• teacher 1 versus teacher 2 versus teacher 3 versus teacher 4 @ textbook 1 

• teacher 1 versus teacher 2 versus teacher 3 versus teacher 4 @ textbook 2 

We carry out analyses of simple main effects in software toward the conclusion of 
the chapter, where much of this will likely make more sense in the context of a full 
analysis. 

Finally, since simple main effects essentially “break down” an interaction effect, 
we can write the interaction effect as component parts of the simple main effects 
making up that interaction. Given an interaction effect, we would expect at least some 
of the corresponding simple main effects to be unequal, and thus can define the 
presence of an interaction effect by reference to its simple main effects. 

5.9 NESTED DESIGNS 

Up to this point in the chapter, our idea of an interaction for the achievement data 
has implied that all teachers were crossed with all textbooks. The layout of 2 × 4 (i.e., 
two textbooks by four teachers) of both Table 5.1 and Figure 5.1 denotes the fact that 
all combinations of textbook and teacher are represented and analyzed in the 
ANOVA. 

Nesting in experimental design occurs when particular levels of one or more 
factors appear only at particular levels of a second factor. For example, using the 
example of teachers and textbooks, if only teachers 1 and 2 used the first textbook but 
teachers 3 and 4 used the second textbook, then we would say that the factor teacher is 
nested within the factor textbook (Table 5.6). These types of designs are sometimes 
referred to as hierarchical designs (e.g., see Kirk, 1995). Though we do not consider 
nested designs in any detail in this book, it is important to understand how such 
designs differ from the classic factorial design in which all levels are crossed. For 
further details on nested designs, see Casella (2008), Kirk (1995), and Mead (1988). 

TABLE 5.6 Nested Design: Teacher Is Nested Within Textbook 

Textbook 1 Textbook 2 

Teacher 1 Teacher 2 Teacher 3 Teacher 4 

70 69 85 95 
67 68 86 94 
65 70 85 89 
75 76 76 94 
76 77 75 93 
73 75 73 91 

Mean = 71.0 Mean = 72.5 Mean = 80.0 Mean = 92.7 
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5.9.1 Varieties of Nesting: Nesting of Levels versus Subjects 

We need to make another point about nesting. Recall that in our brief discussion of 
Chapter 4, nesting was defined as a similarity of objects or individuals within a given 
group, whether it were those women undergoing mammography or those exhibiting 
smoking behavior, or those children within the same classroom, classrooms within 
the same school, etc. It should be noted at this point that the nesting featured in 
Table 5.6 in relation to factor levels, other than for a trivial similarity, is not of the 
same kind of nesting as that of subjects within groups. The word “nesting” is used 
interchangeably in both circumstances, and much confusion can result from 
equating both designs. 

To illustrate the important distinction, let us conceptualize a design in which the 
same subject is measured successively over time. These are so-called repeated 
measures designs, to be discussed at some length in Chapter 7. Consider the data 
in Table 5.7 in which rats 1 through 6 were each measured three times, once for each 
trial of a learning task. For this hypothetical data, rats were tested to measure the 
elapsed time it took to press a lever in an operant conditioning chamber. The response 
variable is the time (measured in minutes) it took for them to learn the lever-press 
response. We would expect that if learning is taking place, the time it takes to press the 
level should decrease across trials. 

In such a layout, it is often said that trials are nested within the subjects (in this 
case, the rats). That is, measurements from trial 1 to 3 are more likely to be similar 
for a given rat than between rats. If a rat performs poorly at trial 1, even if it 
improves by trials 2 and 3, we could probably expect a relatively lowered 
performance overall. On the other hand, if a rat performs very well at trial 1, 
this information probably will tell us something about its performance at trials 2 
and 3. That is, because observations occur within rat, we expect trials to be 
correlated. If we went ahead and regarded trial as being nested within rat, our 
model would be the following: 

(time ∼ f.rat/f.trial) 

TABLE 5.7 Learning as a Function of Trial (Hypothetical Data) 

Trial 

Rat 1 2 3 Rat Means 

1 10.0 8.2 5.3 7.83 
2 12.1 11.2 9.1 10.80 
3 9.2 8.1 4.6 7.30 
4 11.6 10.5 8.1 10.07 
5 8.3 7.6 5.5 7.13 
6 10.5 9.5 8.1 9.37 

Trial means M = 10.28 M = 9.18 M = 6.78 



258 FACTORIAL ANALYSIS OF VARIANCE: MODELING INTERACTIONS 

The above model would not work because though it is said that “trials are nested within 
rat,” it is not the level of trial that is nested, it is the measurements on the given levels of trial, 
which are the same for each rat, that are nested. When we code (time ∼ f.rat/f. 
trial) we are saying that trials are nested within rats. But this is not true. If trials were 
nested within rat, then each rat would be potentially receiving different trials. We will need 
to designate “Error(f.rat/f.trial)” to designate that measurements are nested within rat. 

This is one crucial difference when we speak of nesting. On the one hand, we have 
nested designs in which factor levels of one factor are nested within factor levels of a 
second factor. This is the nesting provided in Table 5.6. On the other hand, we have 
nested measurements, in which factor levels usually remain the same from subject to 
subject (or “block to block” as we will see in Chapter 7), but that several measure
ments are made on each subject. These two types of nesting are not quite the same. 
The only way the two types of nesting do converge is if we consider subject to be 
simply another factor. In hierarchical and multilevel models, for instance, we say that 
students are nested within classroom. But what are students? In the sense of nesting, 
students are but another factor of which we sample many different levels (i.e., many 
different subjects). Likewise, different classrooms have different students, and if there is 
more similarity among students within the same classroom than between, then we would 
like this similarity to be taken into account in the statistical analysis. Nesting of this sort 
is a characteristic of randomized block designs and multilevel sampling. We discuss this 
topic further when we survey random and mixed effects models in the next two chapters. 
For now, it is enough to understand that when the word “nesting” is used, it is important 
to garner more details about the design to learn exactly how it applies. 

5.10 ACHIEVEMENT AS A FUNCTION OF TEACHER AND 
TEXTBOOK: EXAMPLE OF FACTORIAL ANOVA IN R 

Having surveyed the landscape of factorial analysis of variance, we now provide an 
example to help motivate the principles aforementioned. We once more use the 
hypothetical achievement data for our illustration. As discussed, instead of only 
randomly assigning students to one of four teachers, we also randomly assign students 
to one of two textbooks. We are only interested in generalizing our findings to these 
four teachers and these two textbooks, making the fixed effects model appropriate. 

Our data of Table 5.1 appears as follows in R: 

> achiev.2 <- read.table("achievement2.txt", header = T)
 
> attach(achiev.2)
 
> achiev.2
 

> some(achiev.2) 
ac teach text 

1 70  1 1  
2 67  1 1  
3 65  1 1  
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First, as usual, we identify teacher and text as factors: 

> attach(achiev.2) 
>f.teach <- factor(teach) 
> f.text <- factor(text) 

We proceed with the 2 × 4 factorial ANOVA: 

> fit.factorial <- aov(ac ∼ f.teach + f.text + 
f.teach:f.text, data = achiev.2) 
> summary(fit.factorial) 

f.teach 
f.text 
f.teach:f.text 
Residuals 

Df 
3 
1 
3 

16 

Sum Sq 
1764.1 

5.0 
319.8 
52.0 

Mean Sq 
588.0 

5.0 
106.6 

3.3 

F value 
180.936 

1.551 
32.799 

Pr(>F) 
1.49e-12 

0.231 
4.57e-07 

*** 

*** 

---

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

We note that the main effect for teacher is statistically significant, while the main 
effect for text is not. The interaction between teacher and text is statistically significant 
(p = 4.57e-07). The identical model can be tested in SPSS (output not shown) using: 

UNIANOVA ac BY teach text 
/METHOD=SSTYPE(3) 
/INTERCEPT=INCLUDE 
/CRITERIA=ALPHA(0.05) 
/DESIGN= teach text teach*text. 

To look at means more closely, we may use the package “phia” (Rosario-
Martinez, 2013), and request cell means for the model: 

> library(phia)
 
> (fit.means <- interactionMeans(fit.factorial))
 

f.teach f.text adjusted mean 
1 1 1 67.33333 
2 2 1 69.00000 
3 3 1 85.33333 
4 4 1 92.66667 
5 1 2 74.66667 
6 2 2 76.00000 
7 3 2 74.66667 
8 4 2 92.66667 
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TABLE 5.8 Achievement Cell Means Teacher∗Textbook 

Teacher 

Textbook 1  2  3  4  Row  Means 

1 yjk � y11 � 67:33 yjk � y12 � 69:00 yjk � y13 � 85:33 yjk � y14 � 92:67 yj: � y1: � 78:58 
2 yjk � y21 � 74:67 yjk � y22 � 76:00 yjk � y23 � 74:67 yjk � y24 � 92:67 yj: � y2: � 79:50 
Column y:k � y:1 � 71:00 y:k � y:2 � 72:5 y:k � y:3 � 80:0 y:k � y:4 � 92:67 y:: � 79:04 

means 

We reproduce the cell means in Table 5.8. 
Remember, when trying to discern whether an interaction exists, we ask ourselves 

the following question: At each level of one independent variable, is the same “story” 
being told at each level of the other independent variable? What such a question begs 
us to do is look at means at the level of one factor conditioned on levels of the other 
factor. 

For example, examine the mean teacher differences at textbook 1 in Table 5.8. We 
note the means to be 67.33, 69.00, 85.33, and 92.67 for the first, second, third, and 
fourth teachers, respectively. Notice how these means represent a continuous increase 
from teachers one through four. This is what we mean by the “story” being told at the 
level of textbook = 1. The actual “story” is not the actual values of the means, but 
rather the differences between means. That is, the story is the magnitude and direction 
on which these cell means differ. We can see that the story for textbook = 2 is similar, 
yet not the same as for textbook = 1 (for example, from teacher 2 to 3 denotes a mean 
decrease, not an increase). 

Trying to discern all this in a table of cell means is quite difficult, and we are better 
off graphing these cell means, which we can do via an interaction plot in R as we did 
in Figure 5.1 to open this chapter. We reproduce the plot here: 

> interaction.plot(f.teach, f.text, ac) 
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Be sure you are able to match up the interaction plot with the cell means in 
Table 5.8. The plot provides a much better picture of what is really going on in the 
achievement data than a table of numbers only could ever reveal. Is the same mean 
difference story of textbook differences on achievement being told at each level of 
teacher? The plot helps to answer such questions. It would appear from the plot that 
for the first and second teachers, textbook 2 is more effective than textbook 1. But for 
teacher 3, textbook 1 is more effective than textbook 2. That is, there is a reversal of 
means from teacher 2 to teacher 3. For teacher 4, it appears that achievement is equal 
regardless of which textbook is used. 

Of course, visualizing mean differences in a plot is one thing and it provides strong 
evidence for an interaction in the sample data. However, simply because we are 
seeing that mean differences of teacher across textbook are not equal is not reason in 
itself to reject the null hypothesis of no interaction and infer the alternative hypothesis 
that there is one in the population from which these data were drawn. We need to 
conduct the formal test of significance to know if rejecting the null of no interaction is 
warranted. 

Always remember that differences and effects in sample data may not generalize to 
actual differences and effects in the populations from which the sample data were drawn. 
This is the precise point of the inferential significance test and associated p-value, to 
make a decision as to whether observed differences or effects potentially seen in the 
sample can be inferred to the population. 

Recall also that as sample size n ! 1, that is, as it grows without bound, even for 
miniscule sample effects or sample interaction effects, statistical significance is 
assured. This may make it sound like it is sample size that is dictating whether 
we “find something or not.” And this is precisely true if we are foolish enough to 
consider the p-value as the “be all and end all” of things. As we pointed out in 
Chapter 3, when interpreting statistical and scientific evidence, the p-value should be 
used as only one indicator of the potential presence of a scientific finding. The other 
indicator is effect size. 

To reiterate, distinguishing between statistical significance and effect size is 
not only a good idea, it is essential if you are to evaluate scientific evidence in an 
intelligent manner. If you are of the mind that p-values, and p-values alone, 
should be used  in the  evaluation of scientific evidence, then you should not be 
interpreting scientific evidence in the first place. Being able to distinguish 
between what a p-value tells you and what an effect size tells you is that 
mandatory. 

Another way to visualize the interaction is through R’s plot.design, where we 
notice that means across teacher are quite disperse and means across textbook are 
quite close to one another: 

> plot.design(ac ∼ f.teach + f.text + f.teach:f.text, data = achiev.2) 
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The plot allows us to see the main effects for teacher and textbook. Recall, 
however, that in the presence of an interaction effect, it is the interaction effect that 
should be emphasized in interpretation, not the main effects, as these latter effects do 
not tell us the “whole story.” 

5.10.1 Comparing Models through AIC 

A model is considered nested within another model if it estimates a subset of the 
parameters estimated in the larger model. Akaike’s information criterion, intro
duced in Chapter 3, is a useful measure when comparing the fit of nested models.  
Because the main-effects-only model can be considered a model nested within the 
higher-order interaction model, computing AIC for each model can also give us a 
measure of improvement in terms of how much “better” the interaction model is 
relative to the main-effects-only model. We first compute AIC for the main-effects 
model: 

> fit.main <- aov(ac ∼ f.teach + f.text, data = achiev.2) 
> AIC (fit.main) 
[1] 145.8758 

We next compute AIC for the model containing the interaction term: 

> fit.int <- aov(ac ∼ f.teach + f.text + f.teach:f.text, data = achiev.2) 

> AIC (fit.int) 

[1] 104.6656 

Recall that a decrease in AIC values denotes an improvement in model fit. The 
AIC value for the main-effects-only model is 145.88, while AIC for the model 
containing the interaction term is 104.67, which helps substantiate our obtained 
evidence for an interaction effect. 
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Collapsing across cells, the sample means for teacher are computed: 

> library(phia)
 
> interactionMeans(fit.factorial, factors = "f.teach")
 

f.teach adjusted mean 
1 1 71.00000 
2 2 72.50000 
3 3 80.00000 
4 4 92.66667 

As before, thesemeansfor teacherare found by summing across themeans for textbook. 
Arethere meandifferencesfor teacher?Our sample definitelyshowsdifferences,andbased 
on our obtained p-value for teacher, we also have statistical evidence to infer this 
conclusion to the population from which these data were drawn. Suppose we decided 
to not control for per-comparison error rate and simply run independent samples 
t-tests. In R, we can use the pairwise.t.test function and for p.adj, specify  
“none” to indicate that we are not interested in adjusting our per comparison error rate: 

> pairwise.t.test(ac, f.teach, p.adj = "none") 

Pairwise comparisons using t tests with pooled SD 

data: ac and f.teach 

1 2 3 
2 0.5562 - 

3 0.0018 0.0072 

4 3.4e-08 1.1e-07 6.1e-05 

P value adjustment method: none 

What is reported in the output are the p-values associated with the pairwise 
differences. We note the p-value for comparing teacher 1 to teacher 2 is equal to 
0.5562, which is not statistically significant at the 0.05 level. The p-value for 
comparing teacher 1 to teacher 4 is equal to 3.4e-08, and hence, is statistically 
significant. The p-value for comparing teacher 2 to teacher 3 is equal to 0.0072, and is 
also statistically significant. The remaining p-values for comparing teacher 2 to 4 and 
3 to 4 are likewise very small and hence the differences are statistically significant. 

We now perform the same comparisons, but this time using a Bonferroni 
correction to adjust the per-comparison error rate. We do this by requesting 
p.adj = "bonf": 

> pairwise.t.test(ac, f.teach, p.adj = "bonf") 

Pairwise comparisons using t tests with pooled SD 

data: ac and f.teach 

1 2 3 
2 1.00000 - 

3 0.01095 0.04316 
4 2.1e-07 6.4e-07 0.00036 

P value adjustment method: bonferroni 
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Though we notice that all pairwise differences that were statistically significant (at 
0.05) without using a correction are still significant after using a Bonferonni 
correction, we note the increase in p-values for each comparison. Comparison 2 
versus 3 now yields a p-value of 0.04316, which for instance, would no longer be 
statistically significant if evaluated at the 0.01 level of significance. This is because the 
Bonferonni, through its adjustment of the significance level for each comparison, is 
making it a bit “harder” to reject null hypotheses in an effort to keep the overall Type I 
error rate across comparisons at a nominal level. 

We can also obtain means for the textbook factor: 

> library(phia)
 
> interactionMeans(fit.factorial, factors = "f.text")
 

f.text adjusted mean 
1 1 78.58333 
2 2 79.50000 

Since there are only two levels to the textbook factor, conducting a post-hoc test on it 
makes no sense. There is no Type I error to adjust since there is only a single comparison. 

5.10.2 Visualizing Main Effects and Interaction Effects Simultaneously 

A very nice utility in the phia package is its ability to generate a graph for which one 
can visualize both main effects and potential interaction effects simultaneously. We 
obtain this with plot(fit.means): 

> library(phia) 
> plot(fit.means) 
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In the quadrants running from top left to lower right are shown the main effects for 
teacher and textbook, respectively. In the quadrants running from top right to lower 
left are shown the sample interaction effects for teacher∗textbook. Both of the 
interaction graphs are yielding the same essential information but in one case (lower 
left), teacher is plotted on the x-axis while in the other (upper right), textbook is 
plotted on the x-axis. In both graphs, an interaction effect is evident. 

5.10.3 Simple Main Effects for Achievement Data: Breaking Down 
Interaction Effects 

Recall that the purpose of conducting simple main effects is to break an interaction 
effect down into components to better understand it, to learn what is causing there to 
be an interaction in the first place. They are essentially reductions of the sample space 
in order to zero in on analyses that tease apart the interaction effect. 

As previously discussed, ideally, a researcher should usually only test the simple 
main effects of theoretical or substantive interest. Otherwise, the exercise becomes 
not one of scientific hypothesis testing, but rather one of data mining and 
exploration (and potentially, “fishing”). Data mining and exploration are not 
“bad” things by any means, only be aware that if you do “exploit” your data, 
you increase the risk of committing inferences that may turn out to be wrong if 
replication (or cross-validation) is not performed. If you do decide to test numerous 
simple main effects, then using a correction on the type I error rate (e.g., 
Bonferonni) is advised. 

We evaluate mean differences of textbook across teacher: 

> library(phia)
 
> testInteractions(fit.factorial, fixed = "f.teach", across = "f.text")
 

F Test:
 
P-value adjustment method: holm
 

Value Df Sum of Sq F Pr(>F) 
1 -7.3333 1 80.667 24.820 0.0004071 *** 
2 -7.0000 1 73.500 22.615 0.0004299 *** 
3 10.6667 1 170.667 52.513 7.809e-06 *** 
4 0.0000 1 0.000 0.000 1.0000000 
Residuals 16 52.000 
---

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

R generates the Holm test, which is a multistage test, similar in spirit to the 
Bonferroni, but in splitting up α per comparisons c, adjusts c depending on the number 
of null hypotheses remaining to be tested (see Howell, 2002, pp. 386–387 for details). 
The Holm test is thus generally more powerful than the Bonferonni. The value of the 
first contrast is the mean difference between textbook 1 and textbook 2 at teacher 1 
(i.e., 67.33 � 74.67 = �7.33), and is statistically significant. The value of the second 
contrast is the mean difference between textbook 1 and textbook 2 at teacher 2 (i.e., 
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69.00 � 76.00 = �7.00), also statistically significant. The third contrast is the mean 
difference between textbook 1 and textbook 2 at teacher 3 (i.e., 85.33 � 74.67 = 
10.67) and the fourth contrast is the mean difference between textbook 1 and textbook 
2 at teacher 4 (i.e., 92.67 � 92.67 = 0.00). The last of these, of course, is not 
statistically significant. 

Simple main effects of text differences within each teacher can also be tested in 
SPSS using: 

UNIANOVA
 
ac BY teach text
 
/METHOD = SSTYPE(3)
 
/INTERCEPT = INCLUDE
 
/EMMEANS = TABLES(teach*text) COMPARE (text) ADJ(BONFERRONI)
 
/CRITERIA = ALPHA(.05)
 
/DESIGN = teach text teach*text.
 

One could also test for corresponding teacher differences within each textbook by 
adjusting the above code appropriately (i.e., COMPARE (teach)). 

5.11 INTERACTION CONTRASTS 

Whereas simple main effects analyze mean differences on one factor at a single level 
of another factor, interaction contrasts constitute a comparison of mean differences. 
That is, they compare a mean difference on one factor to a mean difference on a 
second factor. We can obtain values for all interaction contrasts in one large set: 

> testInteractions(fit.factorial)
 

F Test:
 
P-value adjustment method: holm
 

Value Df Sum of Sq F Pr(>F) 
1-2 : 1-2 -0.3333 1 0.083 0.0256 0.8747843 
1-3 : 1-2 -18.0000 1 243.000 74.7692 1.196e-06 *** 
1-4 : 1-2 -7.3333 1 40.333 12.4103 0.0084723 ** 
2-3 : 1-2 -17.6667 1 234.083 72.0256 1.278e-06 *** 
2-4 : 1-2 -7.0000 1 36.750 11.3077 0.0084723 ** 
3-4 : 1-2 10.6667 1 85.333 26.2564 0.0004079 *** 
Residuals 16 52.000 
---

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

The value of the first contrast is the difference between mean differences teacher 1 
and teacher 2 for textbook 1 (67.33 � 69.00 = �1.67) and teacher 1 and teacher 2 for 
textbook 2 (74.67 � 76.00 = �1.33). That is, it is the difference �1.67 � (�1.33) = 
�0.33. This comparison is not statistically significant (p = 0.87). The value of the 
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second contrast is the difference between mean differences teacher 1 and teacher 3 for 
textbook 1 (67.33 � 85.33 = �18.00) and teacher 1 and teacher 3 for textbook 
2 (74.67 � 74.67 = 0). That is, it is the difference �18.00 � 0 = �18.00. This com
parison is statistically significant (p = 1.196e-06). Remaining contrasts are interpreted 
in an analogous fashion. 

5.12 CHAPTER SUMMARY AND HIGHLIGHTS 

•	 Factorial analysis of variance is a suitable design to test both main effects and 
interactions in a model where the dependent variable is continuous and the 
independent variables are categorical. 

•	 The benefit of using factorial ANOVA over separate one-way ANOVAs is the 
ability to test for interactions between factors. 

•	 Whereas sample effects constituted the basis of the one-way ANOVA model, 
sample cell effects constitute the systematic variation in the factorial ANOVA 
model. 

•	 Interaction effects are computed by subtracting row and column effects from the 
cell effect. 

•	 It is important to understand that cell effects are not equal to interaction effects. 
Rather, cell effects are used in the computation of interaction effects. 

•	 Just as was true in the one-way model, the error term εijk accounts for variability 
not explained by effects in the model. In the case of a two-way factorial, the 
error term corresponds to within-cell unexplained variation. 

•	 A comparison of the one-way model with the two-way model is useful so that 
one can appreciate the conceptual similarities between sample effects and cell 
effects. 

•	 In a two-way model, the sums of squares for cells partition into row, column, 
and interaction effects. 

•	 The assumptions of the two-way factorial model parallel those of the one-way 
model, except that now, errors εijk are distributed within cells, hence the 
requirement of the additional subscript k. 

•	 Expected mean squares for factors A, B, and A × B reveal that MS error is a 
suitable denominator for all F-ratios. 

•	 Interpreting main effects in the presence of interaction effects is permissible so long 
as one is clear to the fact that an interaction was also detected. Ideally, interaction 
terms should be interpreted before any main effect findings are discussed. 

•	 A suitable effect size measure for terms in a factorial model is η2, though it 
suffers from similar problems in the factorial model as it does in the one-way 
model. For a less biased estimate, ω2 is usually recommended. 

•	 A simple main effect is the effect of one factor at a particular level of another 
factor. Simple main effects are useful in following up a statistically significant 
interaction effect. 
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•	 Interaction contrasts can also be tested in factorial designs. These are compari
sons of mean differences on one factor to mean differences on a second factor. 

•	 Factorial analysis of variance can be very easily performed using R or SPSS. 
Using the phia package in R, one can generate useful interaction graphs to aid 
in the interpretation of findings. 

REVIEW EXERCISES 

5.1.	 Define what is meant by a factorial analysis of variance, and discuss the 
purpose(s) of conducting a factorial ANOVA. 

5.2.	 Explain, in general, what are meant by main effects and interaction effects in 
factorial ANOVA. 

5.3.	 Invent a research scenario where a two-way factorial ANOVA would be a 
useful and appropriate model. 

5.4.	 In a two-way factorial ANOVA, explain the three reasons why a given 
randomly sampled data point might differ from the grand mean of all the data. 

5.5.	 Define what is meant by a cell effect, and why summing cell effects will always 
result in a sum of zero. What do we do to cell effects so that they do not sum to 
zero for every data set? 

5.6.	 Define an interaction effect. 

5.7.	 What is the difference between a cell effect and an interaction effect? 

5.8.	 To help make the conceptual link between the one-way model and the two-
way, why is it permissible (and perhaps helpful) to think of aj as cell effects in 
yij � y: � aj � eij? Explain. 

5.9.	 What is the expected mean squares for MS within in the two-factor model? 
Does this expectation differ from the one-way model? Why or why not? 

5.10.	 What are the expected mean squares for factor A and factor B in the two-way 
factorial model? How do these compare to the expectations for the one-way 
model? 

5.11.	 What is the expected mean squares for the interaction term in the two-way 
model? Under the null hypothesis of no interaction effect, what do you expect 
MS interaction to be? 

5.12.	 In constructing F-ratios, what are the correct error terms for factor A, B, and 
A × B in the two-way model? What argument do you have to say this is 
correct? 

5.13.	 Given the presence of an interaction effect in a two-way model, argue for and 
against the interpretation of main effects. 
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5.14.	 Define what is meant by a simple main effect. 

5.15.	 Discuss how an interaction graph can display a sample interaction, but that 
evidence might not exist to infer a population interaction effect. 

5.16.	 Suppose a researcher wants to test all simple main effects in his or her data. 
Discuss potential problems with such an approach, and how that researcher 
might go about protecting against such difficulties. 

5.17.	 In our computation of interaction contrasts, we interpreted two of them. 
Interpret the remaining interaction contrasts for the achievement analysis: 

1-4 : 1-2 -7.3333 1 40.333 12.4103 0.0084723 ** 
2-3 : 1-2 -17.6667 1 234.083 72.0256 1.278e-06 *** 
2-4 : 1-2 -7.0000 1 36.750 11.3077 0.0084723 ** 
3-4 : 1-2 10.6667 1 85.333 26.2564 0.0004079 *** 

5.18.	 In our analysis of the achiev.2 data, we computed the simple main effects of 
textbook across teacher. Compute and interpret the simple main effects of 
teacher across textbook. 

5.19.	 One way to conceptualize the testing of an interaction effect in ANOVA is to 
compare nested models. A model is considered nested within another if it 
estimates a subset of parameters of the first model. For the achiev.2 data, 
though the significance test for interaction indicated the presence of an 
interaction, compare the main-effects-only models to that of the model 
containing an interaction term through the following: 

(a)	 Test the main-effects-only model for teacher. Name the object 
main.effects.teacher in R. 

(b)	 Test the main-effects-only model for teacher and textbook. Name the 
object main.effects.textbook in R. 

(c)	 Test the interaction model. Name the object interaction.effect 
in R. 

(d)	 Compare the models in R using: anova(main.effects.teacher, 
main.effects.textbook, interaction.effect). Was add
ing the textbook and interaction effect worth it to the model? 



6
 
INTRODUCTION TO RANDOM
 
EFFECTS AND MIXED MODELS
 

This class includes all problems of estimating, and testing to determine whether to infer 
the existence of, components of variance ascribable to random deviation of the 
characteristics of individuals of a particular generic type from the mean values of these 
characteristics in the “population” of all individuals of that generic type, etc. In a sense, 
this is the true analysis of variance, and the estimation of the respective components of 
the over-all [sic] variance of a single observation requires further steps beyond the 
evaluations of the entries of the analysis-of-variance table itself. 

(Eisenhart, 1947, p. 4) 

The researcher of the previous two chapters, having discovered an effect of melatonin 
dosage on sleep onset, now ponders the following question: 

Is sleep onset a function not only of specific doses, but of melatonin dosage in general? 
That is, if we randomly sampled 3 dosages from a population of potential doses, would 
these differing doses account for variation in sleep onset? 

In this situation, the researcher is not interested specifically in any particular set of 
doses. Rather, the researcher would like to draw the conclusion that differing dose 
level is associated with differing sleep onset. The effect of dose in this case would be 
considered a random effect, since levels of dose are randomly drawn from a wider 
population of possible doses. The subset of dosages randomly sampled for the given 
experiment is used to make a generalization to the population of dosage levels. This 
type of design calls for the random effects analysis of variance model. 

www.wiley.com/go/denis/appliedmultivariatestatistics
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Furthermore, not only is the researcher interested in randomly sampling three 
dosage levels for use in his experiment, but, just as he did for the two-way model of 
the previous chapter, he also wants to include ambient noise as a factor in his design. 
For this factor, he is only interested in comparing levels no noise with some noise and 
hence keeps the factor fixed. He is not interested in generalizing to the population of 
noise levels. Hence, the researcher will now have one random factor (dose) and one 
fixed factor (noise) in his experiment. This type of design calls for a mixed effects 
factorial analysis of variance model. 

In this chapter, we survey the random effects and mixed effects analysis of variance 
models. As we did for one-way and factorial fixed effects, we develop the conceptual 
basis and then move on to a consideration and development of suitable 
F-ratios to test effects. As we saw in previous chapters, in a fixed effects model, 
whether one-way, two-way, or higher-order, expected mean squares revealed that MS 
error was the correct error term for testing main effects and interactions. As we will 
see in the random effects and mixed models, MS error is not always the most suitable 
error term for testing effects. We will survey some of the theory as to why other error 
terms are more suitable in these situations. We also provide software examples of 
random effects and mixed effects models in R. For fitting mixed models in R, readers 
should consult Gelman and Hill (2007). Pinheiro and Bates (2000) provide an 
excellent treatment of the wider mixed effects model in S-Plus. Demidenko 
(2004) provides a very technical treatment along with some applications. 

6.1 WHAT IS RANDOM EFFECTS ANALYSIS OF VARIANCE? 

Recall that in the fixed effects models studied in previous chapters, what made the 
effects in these models “fixed” was the fact that over theoretical repetitions of the 
experiment, levels of the independent variable were to remain constant. For example, 
in the melatonin experiment, the fixed factor of dosage was so named because the 
researcher had a specific interest in the dosages tested. The idea of a random effects 
model is that over theoretical repetitions of the experiment, treatment effects are no 
longer assumed to remain fixed. Rather, treatment effects are considered to be 
random, and hence over numerous theoretical replications of the experiment (i.e., 
if we were to perform them), it is reasonable to assume that we will obtain different 
treatment levels when sampling each time. In a random effects model then, the levels 
of a random factor are randomly sampled from a population of possible levels that 
could have been included in the given experiment. When a factor is a random factor, it 
implies that there is a probability distribution of levels associated with that factor, and 
what you are using in your experiment is but a sample of levels from a wider set of 
potential levels that could have been used. In the language of sets, the levels randomly 
sampled are but a proper subset of the wider set of population levels. As Casella 
(2008) noted: 

. . . by the very nature of a random factor, we are not really interested in estimating the 
levels of the factor that are in the experiment. Why? Because if the factor is truly random, 
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the levels in the experiment are nuisance parameters, and only the variance of the factor is 
meaningful for inference. (p. 101) 

Historically, nobody better described the concept of a random effects model than 
Eisenhart (1947): 

. . . when an experimenter selects two or more treatments, or two or more varieties, for 
testing, he rarely, if ever, draws them at random from a population of possible treatments 
or varieties; he selects those that he believes are most promising. Accordingly Model I 
[fixed effects] is generally appropriate where treatment, or variety comparisons are 
involved. On the other hand, when an experimenter selects a sample of animals from a 
herd or a species, for a study of the effects of various treatments, he can insure that they 
are a random sample from the herd, by introducing randomization into the sampling 
procedure, for example, by using a table of random numbers. But he may consider such a 
sample to be a random sample from the species, only by making the assumption that the 
herd itself is a random sample from the species. In such a case, if several herds (from the 
same species) are involved, Model II [random effects] would clearly be appropriate with 
respect to the variation among the animals from each of the respective herds, and might 
be appropriate with respect to the variation of the herds from one another. (p. 19) 

The random effects model has sometimes historically been called a components of 
variance model (Searle, Casella, and McCulloch, 1992) because unlike the fixed 
effects model in which the primary interest is in testing null hypotheses about specific 
differences between population means, the primary interest in a random effects model 
is in estimating variance in the dependent variable that can be attributed to main 
effects or interactions. This estimate of variance accounted for will apply not only to 
the levels actually sampled but also to the larger set of possible levels (i.e., population) 
from which our sample was drawn. Hence, in random effects models, our primary 
goal is to estimate components of variance rather than test null hypotheses about 
equalities among population means as was the case in the fixed effects model. 

6.2 THEORY OF RANDOM EFFECTS MODELS 

Insight into the random effects model can be gleamed from a brief discussion of its 
assumptions, and then by comparing these assumptions with those made in the previously 
studied fixed effects model. Recall the one-way analysis of variance model of Chapter 4: 

yij � μ � αj � εij 

where μ is the grand mean, αj is a population effect estimated by the sample effect yj � y:, 
and εij is the error associated with observation i in group j.We  first list the assumptions for 
the one-way random effects model that parallel those of the fixed effects model: 

•	 For any treatment j, the errors εij are normally distributed, with a mean of 0 (i.e., 
E�εijk � � 0) and variance σ2, which is the same for each possible treatment j.e 
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That is, NI�0; σ2�. Notice that this assumption parallels the assumption of e 
normality in the fixed effects model. 

•	 The values of the random variable εijk are all independent (as was also assumed 
in the fixed effects model). 

•	 σ2 
eijk 

< 1, that is, the variance of the errors is some finite number (which, as was 
true in the one-way and two-way models, implies that it is less than infinity). 

•	 Cov�εijk; εi ́ j ́ k ́� � 0, that is, the covariance between errors is equal to 0. This 
again parallels the assumption made in the fixed effects models. 

•	 σ2 1 � σ2 2 � σ2 
JK , that is, the variances across cell populations are equal jk� jk� jk�

(recall this is called the homoscedasticity assumption, and is the same as in the 
fixed effects models studied previously). 

Where the random effects model differs from the fixed effects model is in the 
following assumptions: 

•	 αj (i.e., the population effect) is a random variable having a distribution with 
mean 0 and variance σ2 

A. That is, unlike the fixed effects model, the sample 
treatment effects aj are no longer considered to be constant across replications. 
Analogous to how we can reach into a bag and take a sample of 10 objects and 
calculate a sample mean on them, the sample mean can be considered to be a 
random variable that can vary from experiment to experiment. We now need to 
treat aj as possibly fluctuating from sample to sample or from experiment to 
experiment. They are no longer fixed as they are in the fixed effects model. 

•	 The values of the random variable αj occurring in the experiment are all 
independent of each other. 

•	 Each pair of random variables αj and εij are independent. That is, the sample 
effects are independent of error (or if you wish, the error effects). 

Note that the assumptions for a random effects model are for two different 
distributions: one for the distribution of the random variable αj and the other for 
εij. In the fixed effects model, we only made a distributional assumption about εij, 
since we assumed αj to be fixed across theoretical replications. Since the sample 
effects were assumed to be fixed, it made no sense to associate them with a probability 
distribution. 

6.3 ESTIMATION IN RANDOM EFFECTS MODELS 

There have been, historically, several different methods of estimating parameters in 
random effects and mixed models. The classic method in which one computes 
expected values of mean squares is historically known as ANOVA estimation. This 
methodology has some flaws and drawbacks, and in part because of the advances in 
computing power, other methods of estimation have come into vogue, which 
include maximum-likelihood (ML), restricted maximum-likelihood (REML), and 
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minimum-norm estimation. Of these, ML and REML are dominant today in the 
estimation of variance components in both random effects and mixed models. These 
methods of estimation, however, are quite complex and require iteration for their 
solution. 

As we did in previous chapters, we focus on the method of taking expectations 
(ANOVA estimation), largely because under certain conditions, results of ANOVA 
estimation match those of the iterative methods. Also, a brief study of expectations in 
ANOVA models, I believe, goes a long way to demystifying the theory behind 
estimation, and opens the door for the reader to understand more complex methods for 
estimating parameters. 

In what follows then, we begin with the principles developed in previously studied 
fixed effects models and derive expected mean squares for random effects models. 
Our discussion and derivation is based largely on the work of Hays (1994), 
Kempthorne (1975), Searle, Casella, and McCulloch (1992), and Scheffé (1999), 
who all present thorough accounts of random effects ANOVA. 

6.3.1 Transitioning from Fixed Effects to Random Effects 

Recall the quantities of MS between and MS within as first derived in the fixed effects 
model of Chapter 4: 

n�yj � y:�2 

SS between j
MS between � � 

J � 1 J � 1 

�yij � yj�2 

SS within j i
MS within � � 

N � J N � J 

Should we expect derived EMS on these values to be the same in a random effects 
model? Not necessarily. The reason is that now we are randomly selecting the J different 
factor levels. They are no longer fixed. Because of this, as we will see, our expected 
mean squares will change. They will change because we are no longer interested in 
population mean differences. We are interested, rather, in estimating variances. 

Because we are randomly sampling the levels of our factor in a random effects 
model, we can write the mean of the sample random effects as 

aj 

a � i 

J 

where aj is, as before, the sample effect �yj � y:� for a given group J � j. This is the 
mean of the sample effects for the given experiment we are conducting. If we were to 
conduct the experiment again, we would obtain another a for that particular experi
ment, and so on for additional repetitions of the experiment. What is key to understand 
here is that this mean will surely vary from sample to sample due to sampling error 
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(i.e., the error generated simply by the process of sampling). We can have some 
certainty, however, that the mean effect over all infinite samples that could be drawn 
from the population will equal zero. More formally, we say that the expected value of 
a will be 0, E�a� � 0. However, the value of a in any given sample need not be equal 
to the long-run expectation. Theoretically then, in any particular experiment, the value 
of a is not constrained to equal 0 as it was in the fixed effects model. The major point is 
that in any given data with a random effects term (other than the obvious eij effect, 
which is indeed also a random effect), we must somehow deal with the fact that these 
treatment effects aj are now random. Being random, their values will undoubtedly 
change from experiment to experiment. This change in assumption figures promi
nently in the derivation of the expected mean squares. We will see that because of this 
random quality of the sample effects, the expected mean squares in the random effects 
model are quite different than in the fixed model. 

6.3.2 Expected Mean Squares for MS Between and MS Within 

Recall once more the reason for taking expectations of mean squares. It is to learn 
what parameter our given mean squares is estimating. By calculating EMS, we can 
then use these to generate suitable F-ratios to test various effects of interest, whether 
they be main effects or interactions. 

As Hays (1994) does, we begin our derivation by conceptualizing the mean of the 
errors for any group j in a one-way random effects ANOVA as 

eij 
i ej � 
n 

where ej is the mean error for a given group, eij is the sum of errors across all 
i 

groups j, and  n is the sample size per group (as before, we are assuming a balanced 
design). If we take this for the entire sample across J groups, we will have 

which means that the average overall error is equal to the mean error, ej, per group. 
Given this, and just as we did in previous chapters where we wrote out model equations, 
we can write the deviation of any group mean yj from the grand sample mean y: as 

�yj � y:� � �aj � a� � �ej � e� (6.1) 

Why does it make sense to write the deviation of a group mean from the grand mean as 
in (6.1)? This makes sense, because we just mentioned that we can calculate a “mean of 
errors” term over all groups. If this is the case, then it stands to reason that for a given 
group j, the mean error for that particular group minus the overall mean error for the 

e � 
j i 

eij 

N 
� 

ej 

J 
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entire data will give us the “effect” of error for that particular group, just as �yj � y:� 
gives us the sample “effect” of being in a particular group j. Notice that the sum of 
effects for �aj � a� will sum to 0, and the sum of effects for �ej � e� will also sum to 0; 
so, as usual, we take the squared deviations, otherwise the entire right-hand side of 
(6.1) will always sum to zero (this idea of the sum of unsquared effects always equaling 
zero should be becoming familiar territory by now). Squaring (6.1), summing, and 
taking expectations, we get: 

E 
j 

�yj � y:�2 � E 
j 

�aj � a�2 � E 
j 

�ej � e�2 (6.2) 

From (6.2), we have the expected mean squares for SS between: 

2 2 2E �yj � y:� � E �aj � a� � E �ej � e�
(6.3)j j j 

A � σ2E�MS between� � nσ2 
e 

where n is the number of subjects (or objects) per group, σ2A is the variance attributable 
to varying levels of factor A, and σ2 is the variance of the error. That is, the sum of e 
squares for between is equal to a source of variability for factor A, nσ2 

A, and a source of 
variability represented by the error term, σ2.e 

The expectation for error, as was true for the fixed effects model, is the average 
error per group: 

σ2 
e � σ2E�MS within� �  eJ 

That is, MS within, just as was the case for the fixed effects ANOVA, is an unbiased 
estimate of error variance alone. 

6.4 DEFINING NULL HYPOTHESES IN RANDOM 
EFFECTS MODELS 

In the random effects model, null hypotheses are stated differently than in a fixed 
effects model. A null hypothesis in a random effects model is not about means. It is 
about variances. Or to be even more precise, variance components. The null 
hypothesis for the one-way random effects model is given by 

H0 : σ
2 
A � 0 

where σ2 
A is the variance attributable to differing levels of factor A. If changing levels 

of the factor is not associated with any change in the dependent variable in our sample, 
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then it stands that the variance explained, sampling error aside, should equal 0. And 
since the purpose of conducting the investigation is usually to show that varying levels 
of the factor is associated with variance explained in the dependent variable, our 
alternative hypothesis is given by: 

H1 : σ
2 
A > 0 

Notice that the alternative hypothesis is specified in terms of a positive value. The 
greater than sign denotes that σ2 

A cannot be zero or negative given a rejection of 
the null hypothesis. This is reasonable, since we know variance, by definition, is a 
positive quantity. If there are treatment effects, either for those treatments sampled 
or across all treatment levels in the population, we would expect the variance 
attributable to our factor to be greater than 0. For the one-way random effects 
model then, there are two “components of variance” that need to be obtained. One 
is σ2A, the other is σ2. Both of these components add up to the total variance σ2 ine y 
the dependent variable. That is, σ2 � σA

2 � σ2. We will discuss shortly why this is y e 
the case. 

6.4.1 F-Ratio for Testing H0 

How do we come up with a suitable ratio for testing H0 : σ2 
A � 0? We do so by 

considering the derived expected mean squares. As was the case for the fixed effects 
model, we want to isolate that part of the expected mean squares that represents the 
“effect” we are interested in. In nσ2 , that part is nσ2A. That is, if our experimental A � σ2 

e 
treatment “worked,” we would expect nσ2 . Notice that once A to be large relative to σ2 

e 
we have isolated the part we are interested in, as was true for the fixed effects models 
of the previous chapters, the correct error term quite naturally reveals itself. Since we 
do not want our effects to be “polluted” by σ2, we will divide nσA

2 � σ2 by σ2. But e e e
what is σ2? This is the expectation of MS within. Hence, the F-ratio we want to e 
produce is one that takes nσ2A � σ2 in the numerator and divides it by σ2. That is, our e e 
F-ratio for the one-way random effects model is: 

nσ2 
A � σ2 

eF � 
σ2 
e 

At first glance it may appear that we can simply cross out σ2 in the numerator and σ2 ine e 
the denominator. However, recall from the rules of algebra that we cannot do this 
since the numerator is a sum and not a product. Had the numerator been �nσ2A��σ2�,e 
where the parentheses denote multiplication, then crossing out σ2 would have worked. e 
But since we are dealing with addition, we cannot eliminate σ2 in this way. e 

Returning to our F-ratio, we can appreciate why it makes good sense to construct it 
as we did. If there are no treatment effects for our factor, then nσ2A will be 0, since σ

2 
A 

would equal 0, and any n (i.e., sample size per group in a balanced design) multiplied 
by 0 will equal 0. Under this condition, we are simply left with σ2 in the numerator, e 
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and our F-ratio would be equal to approximately 

nσ2 σ2 
A � σ2 n�0� � σ2 

e e eF � � � � 1 
σ2 σ2 σ2 
e e e 

That is, we can state more formally that under H0, 

nσ2 
A � σ2 

eE � 1 
σ2 
e 

If, on the other hand, H0 is false, then this implies the alternative hypothesis σ2A > 0, 
and so nσ2 

A will be some quantity larger than 0. Our expectation then for our ensuing 
F-ratio would be 

nσ2 
A � σ2 

eE > 1 
σ2 
e 

under a false null hypothesis. As was the case for the fixed effects model, we evaluate 
F on J � 1 and N � J degrees of freedom. A statistically significant F-statistic suggests 
that the variance attributable (or “accounted for”) by our factor (i.e., either the levels 
represented in the sample or by the population of levels) is not equal to 0 in the 
population from which these data were drawn. That is, a rejection of the null 
hypothesis implies that the variance in our dependent variable that is accounted 
for by our factor is greater than 0. 

6.5 COMPARING NULL HYPOTHESES IN FIXED 
VERSUS RANDOM EFFECTS MODELS: THE IMPORTANCE 
OF ASSUMPTIONS 

It would do well at this point to emphasize and reiterate the fact that a rejection of the 
null hypothesis in a random effects analysis of variance tells us something different 
than a rejection of a null hypothesis in the fixed effects models of the previous 
chapters. In the fixed effects model, we tested hypotheses about means. In the random 
effects model, we are testing hypotheses about variances. A rejection of the null 
hypothesis in a fixed effects model hints to us that somewhere among the population 
means, it looks like there is a mean difference. A rejection of the null hypothesis in the 
random effects model tells us that changing levels of the independent variable has the 
effect of explaining or accounting for variance in the dependent variable. These two 
null hypotheses are not the same. 

What we have noticed, however, is that the error terms used for testing both 
hypotheses in the one-way fixed effects and one-way random effects models are the 
same. In both cases, MS error is the correct error term. Why are they the same? They 
are the same (so far) because in both cases, MS error “gets the job done” in terms of 
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isolating the term in the numerator that we are interested in. Recall that in the one-way 
fixed effects model, the expectation for MS between was equal to 

njα
2 
j 

j
E�MS between� � σ2 �e J � 1 

The expectation for MS within was equal to σ2, and so because we were interested in e 
isolating 

njα
2 
j 

j 

J � 1 

since it contained any treatment effects present, it made sense to use σ2 as the error e 
term. I want to emphasize that this is why we used MS within as the error term, 
because it made sense to do so in terms of what we wished to isolate in the numerator. 
This is the general logic of choosing error terms in ANOVA, whether in simple 
designs or more complex. Deciding on a correct error term is not a “mysterious” 
process once you have the expected mean squares at your disposal (on the other hand, 
deriving EMS can be somewhat difficult). 

The expectation for MS within is again equal to σ2 in our current random effects e 
model, and so because we are interested in isolating nσ2 

A, it again makes sense to use 
MS error as the error term. Also, be sure to note that the phrase error term and MS 
error are not synonymous with one another. Under our current discussion, MS error is 
the appropriate error term. As we will see for the two-factor random effects model, 
the correct error term will be other than MS error. It is extremely important to not 
get into the habit of automatically associating “error term” with “MS error.” MS 
error is, under many circumstances and models, the appropriate error term, but 
under other models, it no longer is. In those cases, we will seek an error term other 
than MS error. 

6.6 ESTIMATING VARIANCE COMPONENTS IN RANDOM 
EFFECTS MODELS: ANOVA, ML, REML ESTIMATORS 

Once we have computed the analysis of variance, whether in the one-way or two-
way (to be discussed shortly) or higher-order analyses, our next job is to estimate 
variance components for such models. Note that in our computations of analysis of 
variance so far, we have not yet addressed just how quantities such as σ2 

A and σ2 
e 

are estimated. All we have considered thus far is how to use these quantities to 
help us derive suitable F-ratios. We first consider ANOVA estimators, and then 
move on to a brief consideration of maximum likelihood and restricted maximum 
likelihood. 
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6.6.1 ANOVA Estimators of Variance Components 

ANOVA estimators are easily computed, and in some cases can be used as starting 
values to other forms of estimation. They are also the most historically relevant in the 
evolution of variance component estimation. Recall once more the expectation for MS 
between found in (6.3). We can solve for σ2A and get an unbiased estimate of σ2A: 

E�MS between� �  nσ2A � σ2 
e 

A � σ2nσ2 � E�MS between�e 

nσ2 � E�MS between� � σ2 
A e 

We can then obtain our estimate of the variance component σ2 
A quite simply: 

MS between �MS within 
σ̂A
2 �

n 

where MS between and MS within are obtained from the ANOVA, and n is the sample 
size per group in a balanced design. The next question is how to use this component. 
By itself, it simply represents a quantity of variance. What we would like to obtain is a 
proportion of variance attributable to our factor relative to the total variance in our 
dependent variable. To obtain this estimate, we recall that the variance of our 
dependent variable y can be written as a function of two components in the one-
way random effects model. The first component is σ2 

A, while the second component is 
σ2. That is, e 

σ2 � σ2 
A � σ2 

y e 

This tells us that the total variance in a population for a one-factor experiment is 
composed of variability due to our factor, and variability not due to our factor, which 
is relegated to the error component σ2.e 

The question now becomes how to estimate the total variance σ2 in the random y 
effects model. We do so by 

σ̂2 � σ̂A
2 � σ̂2 

y e 

MS between � �n � 1�MS within � 
n 

where σ̂2, σ̂A
2 , and σ̂2 are respective estimates of variances σ2, σA

2 , and σ2. Having y e y e 
estimated the respective components of variance, we can now assess the proportion of 
variance due to, or accounted for by our factor. We take the following ratio, called the 
intraclass correlation coefficient: 

σ2 σ2 

ρ̂ � A � A (6.4) 
^ ^

σ2 σ2 σ2^A � ^ ^e y 
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The intraclass correlation coefficient measures the proportion of variance due to 
the grouping factor, and like all proportions, ranges from 0 to 1. As noted by Kirk 
(1995), it is generally considered to be the most popular measure of effect size for 
random effects. 

A second related interpretation of the intraclass correlation is that it is the bivariate 
correlation coefficient between any two randomly selected observations within a 
given level of the independent variable. That is, we can define ρ as 

ρ � cor�yij; yij ́� 
where yij and yij ́ are two distinct observations in a given group j. Intraclass 
correlations are useful in measuring proportions of variance explained in applications 
of random effects and mixed models of this chapter as well as blocking and repeated 
measures models of the following chapter. 

6.6.2 Maximum Likelihood and Restricted Maximum Likelihood 

As discussed by Searle, Casella, and McCulloch (1992), ANOVA estimation has 
some weaknesses, including the fact that negative variance estimates are possible. 
According to Casella (2008, p. 143), negative variance estimates are often the fault of 
the estimation procedure rather than the model. Further, Casella notes that a negative 
variance component should not in itself imply a conclusion that σ2A � 0, and that when 
negative estimates occur, one should try a better estimation procedure, such as 
restricted maximum likelihood, which is a variation of maximum likelihood. 

Maximum-likelihood estimation has its recent history beginning with a paper by 
Hartley and Rao (1967) in which ML equations were derived, but required iterative 
calculations to estimate variance components. At first, these computations were quite 
laborious, but with the advent of high-speed computing, iterations are now performed 
with relative ease and speed. Closed-form solutions for ML estimation are usually 
heavily dependent on normality assumptions. Restricted maximum-likelihood esti
mation focuses on maximizing the likelihood which is invariant (i.e., does not change) 
to the fixed effects of the model (in this context called the location parameters of 
the model). REML estimates variance components as a function of residuals that are 
left over after estimating the fixed effects by least-squares (Searle, Casella, and 
McCulloch, 1992). For balanced data, REML solutions are identical to ANOVA 
estimators. For unbalanced data, ML and REML are generally preferable over 
ANOVA estimators (Searle, Casella, and McCulloch, 1992). Choosing between 
ML and REML is not straightforward, and our best advice is to follow the 
recommendation of Searle et al. (1992): 

As to the question “ML or REML?” there is probably no hard and fast answer. Both have 
the same merits of being based on the maximum likelihood principle – and they have the 
same demerit of computability requirements. ML provides estimators of fixed effects, 
whereas REML, of itself, does not. But with balanced data REML solutions are identical to 
ANOVA estimators which have optimal minimum variance properties – and to many users 
this is a sufficiently comforting feature of REML that they prefer it over ML. (p. 255) 
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6.7 IS ACHIEVEMENT A FUNCTION OF TEACHER? ONE-WAY 
RANDOM EFFECTS MODEL IN R 

Recall once more the achiev data of Chapters 4 and 5 (reproduced in Table 6.1). In 
those chapters, we designated teacher as a fixed effect. In the current analysis, we will 
consider it to be a random effect. 

Imagine the following scenario—You are the parent of Taylor, an 11-year old child 
in sixth grade elementary education. Taylor is not performing as well as you would 
like in school, and based on a few verbal reports from your daughter and parents of 
other children, you suspect it may have something to do with Taylor’s teacher. The 
principal of the school, however, comes to the teacher’s defense, and makes the 
following claim to you: “Student achievement is not associated with teacher. Whether 
a student has one teacher or another makes no difference in how the child performs.” 

In advancing your argument, you would like to accumulate some evidence to help 
substantiate that teacher does play a “role” in academic achievement. You randomly 
sample four teachers from your city and obtain mathematics achievement scores from 
the children in those classes, scored from 0 to 100, where higher scores are indicative 
of greater achievement. 

Notice that your hypothesis calls for a one-way random effects model, since levels 
of teacher were randomly sampled. Surely, you are not interested in showing 
differences (i.e., mean differences) between these particular teachers you have 
sampled. Rather, you would like to draw the conclusion that variance in achievement 
is a function of different teachers, of which these four in your design constitute a 
random sample of teachers for the given study. We thus have the perfect setup for a 
one-way random effects model. Should your study be “successful” in that you obtain 
evidence that variance in achievement accounted for by teacher is greater than 0, you 
would be in a position to respond to the principal of the school arguing that varying 
teachers is associated with variance explained in achievement, which would stand 
contrary to the principal’s initial claim that regardless of teacher, students achieve to 
the same degree. 

We run the model using the function lmer (linear mixed effects models) in the 
package lme4 (Bates et al., 2014) specifying teacher as a random effect. To request 

TABLE 6.1 Achievement as a Function of Teacher 

Teacher 

1 2 3 4 

70 
67 
65 
75 
76 
73 

M = 71.00 

69 
68 
70 
76 
77 
75 

M = 72.5 

85 
86 
85 
76 
75 
73 

M = 80.0 

95 
94 
89 
94 
93 
91 

M = 92.67 
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maximum-likelihood estimation, we include the statement REML = FALSE (i.e., by 
default, lmer will run REML): 

> library(lme4)
 
> fit.random <- lmer(ac ∼ 1 + (1|f.teach), achiev, REML = FALSE)
 

About the above model specification: 

•	 ∼ 1 fits an intercept to the model. 

•	 (1|f.teach) specifies f.teach as a random factor. 

•	 achiev is the name of the data frame in which the data are contained (i.e., the 
.txt file we loaded into R). 

•	 REML = FALSE tells R to bypass the default estimation method (REML) and to 
fit the model by maximum likelihood. 

> fit.random
 
Linear mixed model fit by maximum likelihood [’lmerMod’]
 
Formula: ac ∼ 1 + (1 | f.teach)
 

Data: achiev 
AIC BIC logLik deviance df.resid 

157.1869 160. 7211 -75.5935 151.1869 21 
Random effects: 
Groups Name Std.Dev.
 
f.teach (Intercept) 8.388
 
Residual 4.341
 
Number of obs: 24, groups: f.teach, 4
 
Fixed Effects:
 
(Intercept)
 

79.04 

Features of the output include the following: 

•	 AIC is equal to 157.19, and recall is useful for comparing models. Lower 
values of AIC generally indicate a better-fitting model than do larger values. 
Recall that AIC jointly considers both the goodness-of-fit as well as the  
number of parameters required to obtain the given fit, essentially “penalizing” 
for increasing the number of parameters unless they contribute to model fit. If 
we were to build on the current model by potentially adding terms, then we  
could observe the extent to which AIC changes and use this in our global 
assessment of model fit. 

•	 BIC yields a value of 160.72, which is also useful for comparing models. Lower 
values of BIC are also generally indicative of a better-fitting model than are 
larger values. As was true for AIC, if we were to fit additional parameters to the 
model, we would want to see a drop in BIC values to justify, on a statistical 
basis, the addition of the new parameters. 



284	 INTRODUCTION TO RANDOM EFFECTS AND MIXED MODELS 

•	 Deviance of 151.19, defined as �2�log LModel � log LSaturated�, where LModel ise e

the likelihood of the current model and LSaturated is the likelihood of the saturated 
model. Smaller values than not are indicative of better fit (see Chapter 11 for a 
further discussion of deviance). 

•	 The variance component for f.teach is equal to the square of the standard 
deviation. That is, (8.388)2 = 70.36. 

•	 The variance component for residual is equal to the square of the standard 
deviation. That is, (4.341)2 = 18.84. 

•	 The only fixed effect for this model is the intercept term, and is equal to 79.04. 
This is the grand mean of achievement for all observations, and is not of 
immediate interest to us. 

We could also request a summary of the fitted model (summary(fit.random)), 
which will provide us with similar output as above, with the exception that variance 
components are included (so we do not have to square the standard deviations 
ourselves). 

6.7.1 Proportion of Variance Accounted for by Teacher 

Having fit the model, we can now compute the proportion of variance accounted for 
by f.teach. Recall that the variance component for f.teach was equal to 70.36, 
while the variance component for residual was equal to 18.84. It is important to 
emphasize that these are variance components, they are not proportions of variance 
(that they are not proportions should be evident in itself since proportions range from 
0 to 1). 

Since σ2 � σA
2 � σ2, we can compute the estimated proportion of variance y e 

accounted for by our independent variable, the intraclass correlation, as  

σ̂2 σ̂2 70:36 70:36A � A � � � 0:79 
σ̂2 
y σ̂2 σ2 

e 70:36 � 18:84 89:20A � ^

That is, approximately 79% (we rounded up) of the variance in achievement is 
accounted for by teacher. 

Of course, this is an extremely large measure of association for data of this 
kind. If you actually did find such an effect for teacher, what would it suggest? 
Consistent with our interpretation of the random effects model, it would imply that 
79% of students’ achievement variance in school is associated with varying 
teachers, either those teachers selected in the sample or those in the population 
from which the sampled levels were drawn. Does this mean that one’s teacher is 
somehow responsible for one’s achievement? Surely not, at least not so based on 
our statistical analysis. 

Still, the finding of 79%, if it were actually true, could serve as a strong counter
argument against that of the principal’s who claimed that teacher had no “impact” 
on students’ achievement. Again, we must be cautious with our interpretation, 
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because we certainly have no evidence for anything remotely close to causal or 
directional. However, such data are still rather strong evidence that changing 
teachers might be a good idea for Taylor given that she is struggling in school. And 
the benefit of conducting a random effects model instead of a fixed effects one is 
that our inferences are not restricted to generalizing to only the levels sampled for 
the given analysis. We can generalize to the population of levels of which the ones 
featured in the given analysis were merely a random sample. Because you 
conducted a random effects model, the principal cannot rebuke your evidence 
by accusing you of “handpicking” certain teachers over others. Your finding of 79% 
is generalizable to the population of teachers of which the ones you tested were but 
a random sample. 

6.8 R ANALYSIS USING REML 

We now fit the one-way random effects model using REML estimation, and briefly 
compare the output with the previous analysis using ML. To fit by REML, simply 
exclude the statement REML = FALSE from our previous model statement (fit. 
random <- lmer(ac ∼ 1 + (1|f.teach), achiev, REML = FALSE)): 

> fit.random.reml <- lmer(ac ~ 1 + (1|f.teach), achiev) 
> summary(fit.random.reml) 

REML criterion at convergence: 146.3 

Scaled residuals: 
Min 1Q Median 3Q Max 

-1.6056 -0.8696 0.2894 0.7841 1.3893 

Random effects: 
Groups Name Variance Std.Dev. 
f.teach (Intercept) 94.87 9.740 
Residual 18.84 4.341 

Number of obs: 24, groups: f.teach, 4 

Fixed effects: 
Estimate Std. Error t value 

(Intercept) 79.04 4.95 15.97 

We see that the output using REML is very similar to that using ML. The 
variance components for teacher and residual are 94.87 and 18.84, respectively, 
for a proportion of variance due to teacher equal to 0.83 (i.e., 94.87/ 
(94.87 + 18.84) = 94.87/113.71 = 0.83), a figure slightly higher than that using 
maximum likelihood. We could have also obtained the standard deviations by 
VarCorr (fit.random.reml). 
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6.9 ANALYSIS IN SPSS: OBTAINING VARIANCE COMPONENTS 

We now conduct the identical analysis using SPSS’s VARCOMP function. We will 
demonstrate using both maximum likelihood and restricted maximum likelihood, and 
briefly compare our results with those obtained using R. 

To run the one-way random effects model using ML, we request in SPSS: 

VARCOMP ac BY teach 
/RANDOM=teach 
/METHOD=ML 

The remainder of the syntax should include a limit on the number of times you 
wish the algorithm to iterate (for our example, we have chosen 50), the criteria for 
convergence (choosing a relatively small number is recommended, or just use the 
default in SPSS as we have done), and the history of the iteration: 

/CRITERIA = ITERATE(50) 
/CRITERIA = CONVERGE(1.0E-8) 
/PRINT = HISTORY(1) 

Select output from the VARCOMP procedure follows. As we can see, much of it is 
essentially analogous to that obtained using R (ML). 

Iteration History 

Iteration Log-Likelihood Var(teach) Var(Error) 

0 
1 
2 
3 

�83.415 
�76.353 
�75.593 
�75.593a 

98.007 
31.190 
70.365 
70.365 

89.207 
18.842 
18.842 
18.842 

Dependent variable: ac.
 
Method: maximum-likelihood estimation.
 
aConvergence achieved.
 

First, we see the iteration history, showing the number of times the algorithm took 
to converge on a log-likelihood statistic having requested convergence criteria (recall 
our criteria was 1.0E-8). Though the numbers are rounded, we can see that from 
iteration 2 to iteration 3, the difference between log-likelihood statistics is extremely 
small (too small to be noticeable in SPSS’s report due to rounding, both values are 
equal to �75.593 in the output). We can also see that SPSS settled on variance 
components of 70.365 for teach and 18.842 for error. These are the same as those 
estimated in R. 

Next, SPSS reports the variance component estimates that appeared at the last stage 
of the iteration (i.e., under iteration 3 above): 
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Variance Estimates 

Component 

Var(teach) 
Var(Error) 

Estimate 

70.365 
18.842 

Dependent variable: ac.
 
Method: maximum-likelihood estimation.
 

As we did in the analysis via R, we can compute the proportion of variance 
explained by teacher by 70.365/(70.365 + 18.842) = 70.365/89.207 = 0.79, which is 
the same figure we obtained in our analysis using R. 

We next briefly demonstrate the syntax and output for the same model fit in SPSS, 
this time fit by REML. To conserve space, only the final variance component 
estimates are given: 

VARCOMP ac BY teach 
/RANDOM=teach 
/METHOD=REML [note the change from ML to REML] 
/CRITERIA = ITERATE(50) 
/CRITERIA = CONVERGE(1.0E-8) 
/PRINT = HISTORY(1) 

Variance Estimates 

Component Estimate 

Var(teach) 94.867
 
Var(Error) 18.842
 

Dependent variable: ac.
 
Method: restricted maximum-likelihood estimation.
 

Using REML as our method of estimation, we see that teacher accounts for approxi
mately 83% of the variance in achievement (i.e., 94.867/(94.867 + 18.842) = 94.867/ 
113.709). These results parallel those found in R using REML. 

6.10 FACTORIAL RANDOM EFFECTS: A TWO-WAY MODEL 

Having discussed the one-way random effects model and having come to the 
conclusion through expected mean squares that the correct error term was indeed 
MS error, we now turn to consideration of the two-way random effects model. In this 
case, both factors are random, which again implies that the levels for a given 
experiment are sampled levels from a wider population of levels. As was true for 
the one-way model, we are not interested specifically in mean differences. Rather, we 
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are interested in variance in the dependent variable attributable to each factor, and 
potentially also to their interaction. 

For example, suppose that instead of merely hypothesizing an association between 
teacher and achievement, we hypothesize that hours of homework was also related to 
achievement.However,aswasthecaseforteacher,wearenotinterestedinonlyparticular 
hoursofhomework(levels),butratherwouldliketorandomlysampleafewhours(levels) 
in an effort to generalize our findings to a population of homework hours. Such would 
designate hours of homework to be a random effect. In this model then, both teacher and 
homework would be random effects, giving us the two-way random effects model: 

yijk � μ � αj � βk � �αβ�jk � εijk 

whereμ is thepopulationgrandmean,αj is the randomvariable for rowsampleeffects,βk 
is the random variable for column sample effects, �αβ�jk is the random interaction effect 
foragivencell jk,andεijk,asbefore,istheerrorcomponent,thistimeforagivenindividual 
i inagiven cell jk.Notice that the only part of the model that isnot random in the two-way 
randomeffectsmodelisthegrandmean.Thegrandmeanisafixedquantity.Therestofthe 
model consists of random variables, including the error component εijk (which is 
common to all statistical models). 

The assumptions for the two-way random effects model parallel those of the one-
way random model, though we now have to generally assume interaction effects, 
�αβ�jk , to be normally distributed with mean 0 and variance σ2 

AB, as well as assuming 
αj, βk , �αβ�jk, and εijk are all pairwise independent. 

In terms of partitioning variability, the arithmetical computations for the two-way 
analysis of variance under the random effects model are exactly the same as those for 
the two-way analysis of variance under the fixed effects model. However, as was true 
for the one-way model, the mean squares will be different. Consequently, this will 
imply that we construct our F-ratios differently than in the fixed effects model. As we 
will see, and for very good theoretical reasons, the error term for each factor in the 
two-way random effects model will be MS interaction, and no longer MS error. This 
may seem counterintuitive at first thought, but our derivation of the EMS will prove 
our intuition wrong. 

We begin by considering the expected mean squares. As was true for the one-way 
random effects model mean squares, our starting point for considering these for the 
two-way model begins with recalling features of the fixed effects model. Recall that in 
the two-way fixed effects model, the row and column effects each summed to 0, that 
is, aj � 0 and bk � 0. The interaction effects, �ab�jk, also summed to zero across 

j k 

rows, columns, and cells. What this means is that in the fixed effects models, when 
considering relevant row and column effects, we did not need to concern ourselves 
with interaction effects being “picked up” along the way in our computation of row or 
column effects, since they summed to 0 in each case. The only thing that was being 
accumulated in our summation was the usual error term ej. For instance, a given row 
effect aj could be written as follows: 

�yj � y:�2 � �aj � ej � e�2 (6.5) 
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The major point of (6.5) is to emphasize that when taking squared deviations from the 
grand mean in the fixed effects model, the deviation reflects only the fixed effect aj and 
mean error (i.e., ej � e). Notice that the interaction effect does not contribute to the sums 
of squares for rows, because the sum of the interaction effects equals 0 in the fixed effects 
model as we sum across columns. Or, again, if you prefer, one could say that the 
interaction effect is included in the sum of squares for the fixed effect aj, but that since it 
equals 0, it drops out of the fixed effect term. A similar situation applies to columns. 
There is simply no interaction effect (i.e., the interaction effect will equal 0) included in 
the column effect. This is an extremely important point to grasp in order to understand 
the random effects model under discussion, and the mixed model to be surveyed later. 

6.11 FIXED EFFECTS VERSUS RANDOM EFFECTS: A WAY 
OF CONCEPTUALIZING THEIR DIFFERENCES 

Aside and prior to our development of the two-way model, there is a way to under
standing the difference between a fixed effect and a random one, and that is in drawing 
on our knowledge of an “effect” we are already very much familiar, that of eijk. 

Recall that the effects aj in any given sample will not necessarily equal their long-
run expectation in a random effects model. Although it is true that E�aj� � 0, when we 
simply take a random sample from the set of all possible levels, there is no guarantee, 
theoretically, that a given sample will match that long-run expectation. A similar 
situation applies for the bk column effects. Likewise, the sample values for interaction 
effects �ab�jk, because they are now too random, do not have to match their expected 
values in the sample of levels selected for the given experiment. 

If you compare this with the behavior of the error term eijk, you will notice that the 
error term behaves in a similar fashion. Yes, the long-run expectation of the error is 
equal to 0, that is, the mean of the error over an infinite number of repeated samples is 
expected to be 0. However, in any given experiment, in any given sampling of eijk, 
there is no reason to suspect that eijk will equal that long-run expectation. This is why 
eijk is quite naturally regarded as a random effect (even before we knew what random 
effects were!). Its “levels” (i.e., the values of eijk occurring in a given experiment) are 
randomly sampled from a larger population of potential “levels” (i.e., from a larger 
population of potential errors). 

As we will see, it is this element of randomness of both aj and bk that will have 
influential consequences on ensuing expected mean squares and generation of 
suitable F-ratios to test effects of interest. 

6.12 CONCEPTUALIZING THE TWO-WAY RANDOM EFFECTS 
MODEL: THE MAKEUP OF A RANDOMLY CHOSEN OBSERVATION 

To explain how things work in a two-way random effects model, we begin with the 
idea that we have been tracing since our first look at the one-way fixed effects 
ANOVA in Chapter 4, that of the “makeup” of a given observation for the model 
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under consideration. We again borrow quite heavily from the work of Hays (1994), 
Kempthorne (1975), Kirk (1995), Searle, Casella, and McCulloch (1992), and Scheffé 
(1999) in what follows. 

For the two-way model, we begin by conceiving that the grand sample mean y:: 
will consist of average row effects, column effects, interaction effects, and mean error: 

y:: � a:: � b:: � �ab� � e:: 

The mean yj: of any row will consist of the effect of that row, the mean of the column 
effects (because we are summing across columns), the mean of the interaction effects 
within that row, and the mean error in that row: 

yj: � aj � b:: � �ab�j: � ej: 

Notice that to calculate the mean of any row, yj:, aside from a row effect, aj (which is 
what we actually want to obtain), we are also “picking up” mean column effects, mean 
interaction effects, and mean error. As Hays (1994, p. 542) notes, the difference between 
the row mean and the grand mean (which we want to calculate as usual to get a row effect 
yj: � y::) will not include any column effects (we will see that it drops out of the 
equation), but it does include average interaction effects as well as row effects and error: 

yj: � y:: � aj � b:: � �ab�j: � ej: � a:: � b:: � �ab�:: � e:: 
(6.6) � �aj � a::� � ��ab�j: � �ab�::� � �ej: � e::� 

Notice that when we take deviations from the grand mean, of the form yj: � y::, which 

by the above is the quantity aj � b:: � �ab�j: � ej: minus a:: � b:: � �ab� � e::, this 

difference does not include any column effects, because in (6.6), b:: dropped out of the 
final solution. It cancelled out since b:: � b:: � 0. The final solution does however 
contain row effects and interaction effects. That is, to get a row effect yj: � y::, we also 
get the “unwanted” interaction effects. We will need a way of dealing with these 
unwanted effects when we build our F-ratio. In the fixed effects models, we did not 
have to worry about picking up “nuisance effects” (other than error) when computing 
row or column effects. Why not? Because these nuisance factors did not exist in fixed 
effects models (or equivalently, they did exist, but were equal to 0). 

Similarly, for the deviation of any column mean from the grand mean, we can 
define a column effect as containing an effect for that particular column, b:k, the mean 
of the row effects, a:: (because we are summing this time across rows), a mean 
interaction effect, �ab�:k , and the mean error in that column, e:k: 

y:k � b:k � a:: � �ab�:k � e:k 

Therefore, when we take y:k deviations about the grand mean, y:k � y::, we end up with 

y:k � y:: � b:k � a:: � �ab�:k � e:k � a:: � b:: � �ab�:: � e:: 
(6.7)� �b:k � b::� � ��ab�:k � �ab�::� � �e:k � e::� 
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That is, a column deviation from the grand mean contains a column effect, average 
interaction effects, and average errors, but no row effect, because similar to (6.6) when 
the column effect dropped out of the equation for the row effect, here, the row effect 
a:: drops out of the equation. Notice that a:: � a:: � 0 in (6.7). 

In summary then, we need to find a way to produce our F-ratios such that the 
interaction in the row and column effects is accounted for. As we will see, for the two-
way random effects model, this will call for a test of main effects MS against the 
interaction term instead of the MS error term as in the fixed effects ANOVA. To  
understand why this is so, however, we need to once more consider the expected mean 
squares. 

6.13 SUMS OF SQUARES AND EXPECTED MEAN SQUARES
 
FOR RANDOM EFFECTS: THE CONTAMINATING INFLUENCE
 
OF INTERACTION EFFECTS
 

Let us see how the interaction involvement of (6.6) and (6.7) will influence the sums 
of squares for rows in the two-way random effects factorial model. Recall we 
derived, for the two-way fixed effects model, the effect for row to be 

Kn�yj: � y::�2SS A � SS between rows � 

Now, when we substitute �yj: � y::� with 

�aj � a::� � ��ab�j: � �ab�::� � �ej: � e::� 
of (6.6), we obtain 

SS A � SS between rows � Knf�aj � a::� � ��ab�j: � �ab�::� � �ej: � e::�g2 
(6.8) 

j 

which we can now reduce to 

E�MS A� � E�MS between rows� � KnσA
2 � nσ2 (6.9)AB � σ2 

e 

We notice that (6.9) contains the interaction term nσ2 
AB. What this means is that 

when we consider the construction of a suitable F-ratio to isolate σ2 
A, we are going to 

need a denominator that includes nσ2 
AB so that we can account for it being a part of the 

numerator of our F-test. Likewise, for factor B (columns), we have 

E�MS between columns� � Jnσ2B � nσ2 (6.10)AB � σ2 
e 

Again, the term nσ2 
AB appears in (6.10), whereas in the fixed effects model, this 

term did not appear (or, again, if you like, it did appear, but was equal to 0). 
Analogous to our test of the row effect, this will call for a different F-ratio for 
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testing the column effect than what we had in the fixed effects model. In the fixed 
effects model of the previous chapter, we simply did not have to deal with the 
“contamination” of nσ2 

AB. 
Finally, the expectation for the interaction term ends up being nσ2 , and as AB � σ2 

e 
usual, the expectation for MS error is σ2. See Searle, Casella, and McCulloch (1992) e 
for how this expectation is obtained. 

6.13.1 Testing Null Hypotheses 

As was true for the one-way random effects model, the null for factor A is given by 
H0 : σ2 A � 0 and so all A � 0. This null hypothesis, if “true,” would imply that Knσ2 

that is left from the expected mean squares is 

A � nσ2Knσ2 
AB � σ2 

e 

0 � nσ2 
AB � σ2 

e 

What if we naively decided to use good ’ol MS error as our error term for testing this 
effect? Under the null hypothesis that σ2A � 0, we would have 

nσ2 
AB � σ2 

e 

σ2 
e 

Notice that had we used MS error, we would still have an interaction term 
unaccounted for in the numerator, which would mean that even if there are no 
effects for factor A, we might still obtain an F appreciably greater than 1. This would 
be because interaction variance nσ2 

AB is making its way into the numerator and we are 
not effectively isolating Knσ2A. Therefore, this calls for us to use a new error term to 
test the main effect for such a random effect. Which error term shall we choose to “get 
rid of” nσAB

2 � σ2 
e ? We notice that this term is actually the mean square for 

interaction, since recall that this is what we found the expectation for interaction 
to be. 

Now, everything should be beginning to fall into place. The test for factor A must 
be against MS interaction as it allows us to isolate the effect of interest in the 
numerator: 

A � nσ2MS A Knσ2 
AB � σ2 

eF � � 
MS A � B interaction nσ2 

AB � σ2 
e 

We lose a degree of freedom for row and one for column, so the degrees of freedom on 
which the above F will be tested are equal to �J � 1� and �J � 1��K � 1�. 

Likewise, for factor B, to evaluate the null hypothesis H0 : σ2B � 0, since there is 
interaction variance again “contaminating” the effect, E(MS between columns) = 
Jnσ2B � nσ2 , the appropriate denominator for testing this effect (on �K � 1�AB � σ2 

e 
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and �J � 1� �K � 1� degrees of freedom) is once more nσ2 :AB � σ2 
e 

MS B Jnσ2B � nσAB
2 � σ2 

eF � �
MS A � B interaction nσ2 

AB � σ2 
e 

If H1 : σ2B > 0, then the term Jnσ2B will reflect this effect, and the F-statistic will be 
appreciably greater than 1.0. Otherwise, we will be left with simply 

Jnσ2B � nσ2 

F � AB � σ2 
e 

nσ2 
AB � σ2 

e 

0 � nσ2 
AB � σ2 

e� 
nσ2 

AB � σ2 
e 

nσ2 
AB � σ2 

e� 
nσ2 

AB � σ2 
e 

and our expectation for F would be approximately 1.0 under the null hypothesis 
σ2B � 0. 

What is the appropriate denominator for testing H0 : σ2 
AB � 0? This one is easy. 

Since we found the expected mean squares to be nσ2 , it is quite evident that the AB � σ2 
e 

correct denominator in this case actually is MS error, evaluated on �J � 1� �K � 1� and 
JK�n � 1� degrees of freedom. That is, 

MS interaction nσ2 

F � � AB � σ2 
e 

MS error σ2 
e 

In summary then, we have found that in the two-way random effects model, both 
random effects are to be tested against MS interaction, while the interaction term is to 
be tested against MS error. 

6.14 YOU GET WHAT YOU GO IN WITH: THE IMPORTANCE 
OF MODEL ASSUMPTIONS AND MODEL SELECTION 

Even if you should never venture into models with random effects (other than, of 
course, the error term in a fixed effects model, which is always present), a survey of 
random effects is pedagogically instructive because it illustrates that the conclusions 
one draws from an analysis of data are very much contingent on the assumptions and 
sampling one enters with into the model-building process. The actual arithmetic of the 
ANOVA may very well be the same in many cases, but the construction of F-ratios 
will differ based on the assumptions you make at the very beginning of your 
experiment. We summarize this idea with the following: 

If you use a fixed effects model, when really, you are interested in interpreting a random 
effects model, you will be restricted to making inferences only about the levels of the 
independent variable that are present in your experiment. Your substantive conclusions 
are intimately tied to the model you have tested. 
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There are many research papers across the sciences where researchers, after 
conducting a fixed effects analysis of variance, regularly, and perhaps inadvertently, 
generalize their findings to levels of the independent variable(s) not tested in the 
model. As emphasized by Searle, Casella, and McCulloch (1992, p. 22), “Users of 
computer packages that have F-values among their output must be totally certain that 
they know precisely what the hypothesis is that can be tested by each such F-value.” 

Let us shed a bit more perspective on Searle et al.’s warning. Consider the 
following scenario: As a researcher in sensation and perception, you are interested in 
the variability explained in pupil size (i.e., dependent variable) when looking at 
various playing cards. If you select two playing cards, say a king of spades and a jack 
of hearts, measure pupil size and find there is a statistically significant difference 
between pupil size for king of spades versus pupil size for jack of hearts, under the 
fixed effects ANOVA, you will only be able to conclude mean differences for these 
two card types only, since you are assuming that in replications of the experiment, 
only these two cards would be used again and again. Now, had you used a random 
effects model, and randomly sampled these two cards from the deck, you could have 
concluded that differences in cards, either those selected randomly for the given 
experiment or those in the population of potential cards that could have been selected, 
accounts for a given amount of variance in pupil size. That is, you would be able to 
make a more general statement in the random effects model. You would be able to say 
something about playing cards in general, rather than just the two kinds you selected. 

As a general guideline, when you interpret an ANOVA, always ask yourself 
whether the investigator is assuming a fixed or random effects model, and then 
critically evaluate whether the data were analyzed and interpreted in correspondence 
with these assumptions. Be sure to verify whether conclusions outlined in results and 
discussion sections agree with the model actually analyzed. If they line up, then great. 
If they do not, then at least you will have a sense of the limitations imposed by the 
analysis in relation to the potentially much more broad conclusions drawn in the 
discussion of the paper. Researchers often like to overstate conclusions in discussion 
sections despite the fact that their statistical analyses do not support such conclusions. 

6.15 MIXED MODEL ANALYSIS OF VARIANCE: INCORPORATING 
FIXED AND RANDOM EFFECTS 

Suppose that instead of merely wanting to demonstrate that teacher is associated with 
variance in achievement, you also wanted to show that the lesson plan used by the 
teacher is also associated with achievement. Suppose you were interested in specifi
cally comparing five different lesson plans. Hence, teacher remains random, but  
lesson is now fixed. When we have a mix of fixed and random factors, we have the 
mixed model analysis of variance. Pinheiro and Bates (2000) do a nice job of 
summarizing the applied rationale of a mixed model: 

Mixed-effects models are primarily used to describe relationships between a response 
variable and some covariates in data that are grouped according to one or more 



295 MIXED MODEL ANALYSIS OF VARIANCE 

classification factors. Examples of such grouped data include longitudinal data, repeated 
measures data, multilevel data, and  block designs. By associating common random effects 
to observations sharing the same level of a classification factor, mixed-effects models 
flexibly represent the covariance structure induced by the grouping of the data. (p. 3) 

Purely random effects models are relatively rare. Fixed effects models are much 
more common across the social, economic, and medical sciences. However, a study of 
random effects such as we have undergone is quite useful, not only because it provides 
an understanding of the random effects model itself, but also because it serves as a 
“bridge” to the mixed model, which is quite popular. 

As we did for both the fixed effects and random effects models, we consider the 
expected mean squares for the mixed model. When we obtain effects for the fixed factor, 
we will need to sum across a random factor. Just as we summed across random factors in 
the two-way random effects model, we will once again conclude that this factor (i.e., the 
fixed one, not the random one) be tested against MS interaction and not MS error. 

To help better understand the denominators we will use for testing fixed and 
random effects, consider the layout in Table 6.2. In this layout, the fixed factor, 
represented by rows, has six levels and the random factor, represented by columns, 
has three levels. 

In the layout of Table 6.2, we will have the following effects for the fixed factor and 
random factor: 

•	 Row effects, denoted by yj: � y::, represent the effect of being in one row versus 
being in other rows on levels of the fixed factor. 

•	 Column effects, denoted by y:k � y::, represent the effect of being in one column 
versus being in other columns on levels of the random factor. 

The questions we need to ask ourselves about Table 6.2 are the following: 

•	 What kind of information went into producing the row effects yj: � y::? Notice 
that to get these row effects, we need to sum across a random factor. How will 
this summing across a random factor impact the makeup of the given row effect? 

TABLE 6.2 Cell Layout for 6 × 3 Mixed Model Analysis of Variance 

Random Factor (B) 

I II III Row Means 

Fixed factor (A) I 
II 
III 
IV 
V 
VI 

Column means 

yijk 
yijk 
yijk 
yijk 
yijk 
yijk 
y:k 

yijk 
yijk 
yijk 
yijk 
yijk 
yijk 
y:k 

yijk 
yijk 
yijk 
yijk 
yijk 
yijk 
y:k 

yj: 
yj: 
yj: 
yj: 
yj: 
yj: 
y:: 
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•	 What kind of information went into producing the column effects y:k � y::? 
Notice that to get these column effects, we need to sum across a fixed factor. 
How will this summing across a fixed factor impact the makeup of the given 
column effect? 

To get a given row effect yj: � y::, because we need to sum across a random effect, 
we have every reason to believe that the sum of interaction effects, �ab�jk, will  not 
equal 0. Hence, we will need to account for this source of variation when constructing 
our F-ratio. That is, within any row of the fixed effect, we can expect there to be an 
average interaction effect, unequal to zero, that we are “picking up” as we sum across 
the given row. These row totals then, and their corresponding effects, will reflect not 
only row effects but also average interaction effects. Likewise, to get a given column 
effect, y:k � y::, because we are summing across a fixed effect, we have good reason to 
believe that the sum of interaction effects, �ab�jk, will equal 0. Hence, we do not need 
to account for this source of variation when constructing our F-ratio. 

How are the expected mean squares impacted by all this? For the fixed effect, 
factor A, EMS is equal to 

α2Kn j: 
j

E�MS A� � σ2 � nσ2 
e AB � 

J � 1 

Notice that included in this EMS is interaction variance, nσ2 
AB, which is unwanted. For 

the random effect, EMS is equal to 

E�MS B� � σ2 � JnσB 
2 

e 

Notice that the only unwanted variation in this EMS is that of σ2. The EMS for the e 
interaction term ends up being, quite simply, 

E�MS AB� � σ2 � nσ2 
e AB 

We now have all the information necessary to build our F-ratios. For the fixed effect, 
under the null hypothesis of no effect, we get 

Kn α2 
j: 

j
E�MS A� �  σ2 � nσ2 

e AB � 
J � 1 

Kn �0�2 
j: 

j� σ2 � nσ2 
e AB � 

J � 1 

� σ2 � nσ2 
e AB 
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which suggests that the correct denominator for testing the fixed effect must be MS 
interaction: 

σ2 � nσ2 �0�2 =�J � 1�AB � Kne j: 
MS A j

F � � 
MS AB σ2 � nσ2 

e AB 

Notice that it is the fixed factor (not the random factor) that is tested against the 
interaction term in the mixed model. 

Under the hypothesis of no column effect (random factor), σB
2 � 0, since 

E�MS B� � JnσB
2 � σ2, we end up with simply σ2. Thus, the F-ratio for the random e e 

factor is given by 

Jnσ2B � σ2 
eF �

σ2 
e 

Notice that it is the random factor (not the fixed factor) that is tested against MS error 
in the mixed model. 

As a recap of what we have done, we have seen that in a two-way mixed model, to 
produce the F-test for the random effect, we divide by MS error. The reason for this is 
that to produce the column means, we have to sum across the fixed factor. Those 
respective sums are not expected to contain anything but variability due to levels of 
the random factor along with error. 

For the fixed effect however, what went into the sums for rows? That is, when we 
produce the sum (or the mean) for each row (fixed effect, in our layout), what kind of 
variability went into each of these row sums? There is surely (hopefully) variability 
due to the effect of being in that particular row and not in other rows, and there is 
variability due to error, as usual. But, there is another source of variability, and that is 
interaction variance. Why? Because when we tally up the cell totals for a level of the 
fixed factor, we are summing across only a sample of possible levels of the random 
factor. Hence, if we were to do the experiment over, and presumably sampled 
different levels of the random factor, the effect we would obtain for the given level of 
the fixed effect might change by the very nature of summing across the random factor 
in question. Hence, we have “unwanted” interaction variance in the rows, and have 
to account for this when generating the corresponding F-ratio. If we produced our F-
ratio by dividing by MS error, we would still have an interaction effect left over in the 
numerator, and thus we would have failed to isolate the effect of interest (i.e., row 
effect). We would have failed to test our null hypothesis of interest. 

6.15.1 Mixed Model in R 

Having laid out some of the theory for mixed models, we now estimate a mixed model 
on the achievement data, this time specifying textbook as a fixed factor and teacher as 
a random effect (Table 5.1). Of course, there is much more to the fitting of a mixed 



298 INTRODUCTION TO RANDOM EFFECTS AND MIXED MODELS 

model than shown here (e.g., plots and diagnostics to verify assumptions). Our 
purpose here is only to briefly demonstrate how such a model can be fit in R.  

We use the package nlme (Pinheiro et al., 2014), and fit our model using REML 
(partial output shown below): 

> library(nlme)
 
> mixed <- lme(ac ∼ f.text, data = achiev, random = ∼1 | f.teach)
 
> summary(mixed)
 

Random effects: 
Formula: ∼1 | f.teach 

(Intercept) Residual 
StdDev: 9.733736 4.423571 

Fixed effects: ac ∼ f.text 
Value Std.Error DF t-value p-value 

(Intercept) 78.58333 5.031607 19 15.617940 0.0000 
f.text2 0.91667 1.805915 19 0.507591 0.6176 

In the code, random = ∼1 | f.teach) designates the random effect. The 
coefficient for f.text2 is a mean contrast between the first and second textbooks 
(i.e., 79.50 – 78.58 = 0.92). The effect for textbook is not statistically significant 
(p = 0.6176). The variance component for f.teach is equal to the square of 9.73, 
which is 94.67. Since the square of the residual is equal to 19.57, the proportion of 
variance accounted for by f.teach is 94.67/(94.67 + 19.57) = 94.67/114.24 = 0.83. 
Confidence intervals for effects can also be obtained via intervals(mixed). 

6.16 MIXED MODELS IN MATRICES 

Having briefly introduced the mixed model for the simplest case, we now briefly 
consider the mixed model in its most general matrix form: 

Y � XB � ZU � E (6.11) 

where Y is a response matrix, X is a model matrix associated with the fixed effects in 
B, B is a vector of parameters corresponding to the fixed effects, Z is the model matrix 
associated with the random effects in U, and E is a vector of errors, what is left over 
from the model after prediction of Y. We assume that U∼N�0; Σz� and E∼N�0; Σε�, 
where Σz is the covariance matrix of the random effects and Σε is the covariance 
matrix of the errors contained in E. This formulation of the model often goes by the 
name of the Laird–Ware form, after the seminal paper by Nan M. Laird and James H. 
Ware in 1982, “Random-Effects Models for Longitudinal Data,” in which they 
provided the very general form of the mixed model. Because of Y, the model in (6.11) 
can also accommodate more than a single response variable, giving us the multi
variate mixed model (Timm, 2002), of which all other mixed models can be 
considered special cases. 
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6.17 MULTILEVEL MODELING AS A SPECIAL CASE OF THE 
MIXED MODEL: INCORPORATING NESTING AND CLUSTERING 

Our study of the mixed model lends itself well to introducing a class of modeling 
methodologies that is increasing in popularity in the social sciences, that of multilevel 
or hierarchical modeling. As we discuss in the chapter to follow, mixed models are 
also useful for addressing problems of repeated measurements, which usually can also 
be conceptualized as having a “multilevel” or “hierarchical” structure. 

The topic of multilevel modeling is beyond the scope of this book. Our goal here is 
to simply conclude this chapter with a foot-in-the-door commentary as to how these 
models can be conceptualized as a special case of the more general mixed model. 
Indeed, as Pinheiro and Bates (2000) note: 

This model with two sources of variation, bi and εij, is sometimes called a hierarchical 
model. . . . or a multilevel model. The bi are called random effects because they are 
associated with the particular experimental units [ . . . ] that are selected at random from the 
population of interest. They are effects because they represent a deviation from an overall 
mean. . . . Because observations made on the same [level of the independent variable] 
share the same random effect bi, they are correlated. The covariance between observations 
on the same [level] is σ2 

b corresponding to the correlation of σ2 
b =�σb 

2 � σ2�. (p.  8)  

To properly discuss the multilevel model, it helps first to recall where we have 
been. Recall the one-way fixed effects analysis of variance model of Chapter 4: 

yij � y � aj � eij 

In this model, we assumed the treatment effects aj to be fixed and eij to be random and 
normally distributed. In specifying aj as fixed, it implied that we were only interested 
in mean differences as represented by the factor levels actually included in the given 
experiment. If we were interested in the population of levels of which the ones 
showing up in our experiment constituted a random sample, then we specified aj as 
random, and had the one-way random effects model, which is the same as the fixed 
effects model, only that now, sample effects are considered randomly sampled from a 
larger population. 

This type of model in which we allow aj to be random instead of fixed can, in many 
cases, actually be conceived as a very simple version of what is known as the 
multilevel or hierarchical model. What are the levels of the “hierarchy?” The 
observations yij constitute level 1, and the “grouping” random treatment effect aj 
constitutes level 2. We say that observations yij are nested within level 2. 

For instance, suppose that in our achievement example, instead of randomly 
assigning students to teacher, we simply sampled students as they were, and as 
already associated with a given teacher. In such a case, school children yij would be 
considered nested within teacher. If we then randomly sampled a number of teachers 
(say, four, as in our previous example), but wished to generalize to a wider population 
of teachers, then teacher becomes a random effect. But how is this also a multilevel or 
hierarchical model? Such models emphasize the fact that observations often occur in a 
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natural hierarchy or as a result of one being imposed through a sampling or design 
plan (such as blocking). For our student observations, there is expected to be a likeness 
about students who share the same teacher. Observations “within teacher” are more 
likely to be similar than observations between teachers, not necessarily because of 
any external treatment condition imposed, but simply because these students share 
the same teacher. And having the same teacher means they share the same teaching 
style, etc., and all of the other infinite innumerable (and potentially even 
immeasurable) elements that may be related to sharing the same teacher. And though 
there is nothing technically inherent in the definition of “multilevel modeling” that 
prevents us from designating all effects as fixed effects (e.g., studying and generalizing 
to mean differences between teachers), when we speak of multilevel or hierarchical 
models, we are usually implicitly invoking the idea that we have one or more random 
effects. For our example, we are usually interested in generalizing to more teachers 
than we have sampled for our study, making it, as we have seen, a random effect. 

Our point is that multilevel structures are often analyzed via mixed models. There 
is nothing inherent in such a hierarchical structure that demands such data be analyzed 
as such, but for reasons of both wanting to account for likeness of observations within 
levels of the hierarchy and generalizing to levels of the treatment effect, these 
typically necessitate the use of such models. For a classic introduction to multilevel 
and hierarchical data, see Raudenbush and Bryk (2002). Snijders and Bosker (1999) 
also provide a very readable treatment. 

6.18 CHAPTER SUMMARY AND HIGHLIGHTS 

•	 In the traditional fixed effects model, the specific levels of the independent 
variable(s) chosen by the experimenter are of interest, and population inferences 
are made about those, and only those, levels used in the experiment. Null 
hypotheses are tested of the sort H0 : μ1 � μ2 � μ3 ∙ ∙ ∙  � μJ . 

•	 In the random effects model, the experimenter is not interested specifically in 
the levels chosen for the particular experiment. Instead, the levels chosen are 
merely regarded as a random sample of potential levels that could have been 
chosen. The experimenter is interested in testing a null hypothesis that the 
variance in the dependent variable accounted for by the given factor is equal to 
0, that is, H0 : σ2 

A � 0. 

•	 The conceiving of sample effects as random rather than fixed has important 
implications for the construction of F-ratios. 

•	 In the one-way random effects model, MS error is a suitable error term for 
constructing the F-ratio for a test of the random effect. Variance components 
may be estimated using ANOVA estimation, ML, or REML. REML is often the 
estimator of choice in random effects and mixed models. 

•	 In the two-way random effects model, because each effect is computed by 
summing across a random effect, the expected mean squares dictate MS interac
tion to be the correct error term for each effect in the generation of F-ratios. 
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•	 When a model has a mixture of fixed and random effects (in addition, naturally, 
to the error term), the model is a mixed model. EMS for a two-way mixed model 
reveals that it is the fixed effect that is tested against MS interaction. The random 
effect is tested against MS error. 

•	 Understanding that εijk is always a random effect, whether in fixed effects, 
random effects, or mixed models, helps one to better appreciate the nature of 
random effects in general, realizing that their behavior will be governed by 
similar random processes as is true of εijk. 

•	 An understanding of basic mixed model theory coupled with the idea of 
nesting structures lends itself to conceiving the multilevel or hierarchical 
linear model. 

•	 Random effects and mixed models can be fit in R using lmer or lme. SPSS’s 
VARCOMP can also be used to estimate variance components. 

REVIEW EXERCISES 

6.1.	 Discuss why a researcher may wish to conduct a random effects analysis of 
variance instead of a fixed effects ANOVA. 

6.2.	 Elaborate on the statement “Random effects ANOVA is not about means, it is 
about variances.” 

6.3.	 Distinguish between a random effects model and a mixed effects model. 

6.4.	 Give an example of three research scenarios that would necessitate the fitting of 
a random effects model. 

6.5.	 Give an example of three research scenarios that would necessitate the fitting of 
a mixed effects model. 

6.6.	 Distinguish the assumptions for a one-way fixed effects model from those of a 
one-way random effects model. How are they similar? Different? 

6.7.	 How are aj and eij similar in a random effects model but different in a fixed 
effects model? 

6.8.	 How can it be said that, technically, all ANOVA models are either random 
effects or mixed models, and that purely fixed effects models rarely exist? 

6.9.	 What are three common ways of estimating parameters in a random effects 
model? 

6.10.	 What is the expected mean squares for the random factor in a one-way random 
effects model? What implication does this EMS have on the construction of the 
corresponding F-ratio? 

6.11.	 How does the null hypothesis for a one-way random effects model differ from 
that of a one-way fixed effects model? 
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TABLE 6.3 Cell Layout of Data on Factors A and B 

Factor A (F) 

Factor B (R) 1 2 3 Means 

1 11 27 57 31.67 
2 12 29 45 28.67 
3 14 31 65 36.67 
4 16 26 95 45.67 
5 51 36 54 47.00 
6 24 35 46 35.00 
Means 21.33 30.67 60.33 37.44 

6.12.	 Given the F-ratio for a one-way random effects model, what is the expectation 
for F under the null hypothesis, and why? 

6.13.	 Define the intraclass correlation coefficient, its meaning, and its purpose. 

6.14.	 In the chapter example of achievement as a function of teacher, explain how 
the interpretation of findings would have changed had teacher been regarded as 
a fixed effect rather than a random one. Would this have helped or hindered the 
cause of the parent in responding to the principal’s claim? How so? 

6.15.	 Consider the hypothetical data in Table 6.3 on factor A (three levels) and factor 
B (six levels). Factor A is a fixed factor, while factor B is a random factor. 
Within each cell is a single observation. Estimate a two-way mixed model in R 
using REML. How much variance is accounted for by the random effect? 
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RANDOMIZED BLOCKS 
AND REPEATED MEASURES 

The analysis of variance is not a mathematical theorem, but rather a convenient method 
of arranging the arithmetic. 

(Fisher, in Wishart (1934)) 

In the typical between-subjects experimental design, the purpose of randomly 
assigning subjects to treatment conditions is so that all of the “nuisance” factors 
associated with subjects that we are not interested in studying hopefully “balance out” 
across treatment groups. For instance, again referring to our melatonin example, if we 
were to test the effectiveness of differing doses of melatonin on sleep, we might 
generate treatment groups of control, 1mg and 3mg. When a subject is randomly 
selected from the population and then randomly assigned to, say, the 1mg group, he or 
she carries with him or her all characteristics unique to that individual that could, 
theoretically, be related to, or have an influence on, the dependent variable we are 
studying (in this case, sleep onset latency). Perhaps it is true that someone with a very 
healthy immune system will naturally respond better to low melatonin doses than 
someone who is not quite as healthy. What if, just by chance, the healthy individual 
winds up in the 1mg group while the weaker individual winds up in the 3mg group? 
Of course, ideally, one would hope none of these nuisance effects would “pile up” in 
one group or the other. But if they did, it could have serious consequences on the 
interpretation of findings. One way to overcome this potential confound is to 
implement what is known as a randomized block design. 

www.wiley.com/go/denis/appliedmultivariatestatistics
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In this chapter, we survey the randomized block design and repeated measures 
model. When we generate blocks, we produce homogeneous subsets of subjects 
before administering levels of the independent variable within each block. The goal of 
both the randomized block design and that of repeated measures is to account for the 
source of variability that is housed within blocks. We study these two statistical 
techniques in the same chapter because they are very much intimately related. As we 
will see, the subject factor in a repeated measures is, in actuality, the blocking factor in 
a randomized block design. We also briefly survey how the repeated measures model 
can be interpreted as the multilevel or hierarchical model discussed in the conclusion 
of the previous chapter. These models take into consideration the nesting structure 
implicit in the data, which, in the case of repeated measures, are the repeated 
measurements nested within individual. 

There are a number of excellent sources on block designs, repeated measures, 
and longitudinal models. See Kirk (1995, Chapter 7) for a good introduction to 
randomized block designs. Casella (2008) and Dean and Voss (1999) give good 
overviews of a variety of designs, which includes advanced features such as 
confounding in blocks and fractional factorial designs. Winer, Brown, and Michels 
(1991) is perhaps still, the “bible” of experimental design and should also be 
consulted. Singer and Willett (2003) provide extensive coverage of longitudinal 
models, including time-varying covariates, and applications to nonlinear and 
multilevel structures. Mead (1988) provides extensive coverage of blocking and 
repeated measures designs. 

7.1 WHAT IS A RANDOMIZED BLOCK DESIGN? 

The purpose of a randomized block design is to reduce the error term estimated in 
an analysis of variance through an attempt to account for one or more nuisance 
factors. The logic of a blocking design is to produce groups of participants who are 
alike (or homogeneous) on one or more nuisance variables, and then carry out the 
random assignment of subjects to conditions within each of these blocks. If 
blocking is successful, the resulting MS error term from the analysis of variance 
will typically be smaller than it otherwise would have been without blocking. 
Such is the logic of blocking, to account for additional sources of variation by 
including a source of variation called “blocks” into the ANOVA that would 
otherwise be relegated to the error term. When the error term is reduced in this 
fashion, we allow for a more sensitive (i.e., powerful) test of the null hypothesis 
we are interested in. 

7.2 RANDOMIZED BLOCK DESIGNS: SUBJECTS NESTED 
WITHIN BLOCKS 

Recall our brief discussion in the previous chapter of the concept of “nesting” as 
naturally occurring in multilevel structures and often analyzed through mixed 
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models. In randomized block designs (and repeated measures designs, as we will 
see), a nesting effect is also present. However, in the typical block or repeated 
measures design, we impose the nesting structure by generating blocks. If we  
planned our blocks successfully, it stands that individuals within blocks will be 
more alike compared to individuals between blocks. It is in this sense then that 
subjects are nested within blocks. As we  will see,  we  may treat  block as either a  
fixed effect or a random effect. Blocks are usually decided upon and generated 
beforehand to increase the homogeneity within blocks in a deliberate fashion. For 
example, if we thought that IQ level was related to our dependent variable of 
interest, but we had no interest in studying IQ specifically through a factorial 
design, we could block on low, medium, and  high IQ. In this case, we, as 
investigators, are generating the blocks by pretesting individuals and classifying 
them into one of three blocking groups. In other instances, blocks will be more 
naturally occurring, such as classrooms nested within school. The distinction 
between whether we “choose” the blocking factor or whether it is inherent in 
the data is nicely summarized by Casella (2008): 

Thus, if we are in a situation where blocks can be chosen, it makes sense to choose them 
as disparate as possible. This also makes good common sense, in that we want to verify 
our treatment comparisons on as wide a variety of situations as possible . . . If the 
variation in blocks is not controllable . . . where we block on subjects, but their use is 
dictated by the inherent design, then we just hope that the variation removed due to 
blocking is a large piece (and it typically is). (p. 108) 

In this chapter, we present only minimal theory regarding the randomized block 
design. The reason for not elaborating too much on the model is that our primary 
reason for discussing it at all is to use it as a precursor and introduction to the repeated 
measures ANOVA model, which can be conceptualized as blocking taken to the 
extreme. In a repeated measures model, we again have a blocking effect, though as 
mentioned, the blocks will actually be subjects. In such models, where subjects are 
tested more than a single time, we will say that measurements are nested within 
subject. Repeated measures models and longitudinal models are omnipresent in social 
research, so our primary focus of this chapter is to provide a reasonable, if not still 
quite brief, introduction to such models, and how they deal, on a statistical level, with 
these nested structures. 

We summarize our main points so far: 

•	 In the one-way randomized block design, subjects are nested within blocks, 
meaning that subjects within one level of the blocking factor will be more alike 
or similar than subjects between blocks. Statistically, the blocking factor could 
be regarded as fixed or random, for the same reasons why experimental factors 
were considered fixed or random in fixed, random, or mixed models of the 
previous chapters. 

•	 In the one-way repeated measures design, measurements are nested within 
subject, meaning that measurements within each subject are more likely to be 
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TABLE 7.1 

Block 1 
Block 2 
Block 3 
Block 4 
Block 5 

Matched Pairs Design 

Treatment 1 

10 
15 
20 
22 
25 

Treatment 2 

8 
12 
14 
15 
24 

alike than measurements across subjects. Though subject can be regarded as a 
fixed effect, it makes much more sense to designate it as a random effect, since 
we are usually not specifically interested in the given subjects sampled. 

The idea of blocking, though formally introduced in this chapter, is not new to us. 
In the paired samples t-test, in which subjects served under a pretest then posttest 
condition, we essentially had a one-way repeated measures design where measure
ments were nested within subjects. The matched pairs design is, in fact, a basic block 
design. If one truly understands the differences between independent and paired 
samples t-tests, one can quite easily grasp the idea of blocking and nesting, which 
opens the door to even more advanced modeling. 

Recall Table 3.8 (reproduced here as Table 7.1). The “matching” is meant to 
generate subjects within each block sharing more similarity with one another than 
subjects between blocks. 

The problem with these types of designs is that they violate the assumption of 
independence that is required for “ordinary” between-subjects analysis of variance. 
As a result of the nesting structure, either naturally occurring or imposed by the 
design, participants within groups usually cannot be considered independent of one 
another. Special considerations have to be taken into account when analyzing data that 
have such a nesting or correlational structure. 

7.3 THEORY OF RANDOMIZED BLOCK DESIGNS 

We now briefly discuss the theory behind randomized block designs. As we will see, 
having already studied the random effects and mixed models in the previous chapter, 
proposing a statistical model for the randomized block design is somewhat of a review 
of concepts already learned, since these models are ideally suited to handle the 
analysis of block designs. 

It is first, as always, helpful to start with earlier, simpler models, then build our way 
up to the model under consideration. Recall once more the one-way fixed effects 
model: 

yij � μ � αj � ϵij 
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where yij is the score of individual i in group j, μ is the grand mean of all observations 
(or of all group means, in the case of a balanced design), αj is the population treatment 
effect associated with group j representing the mean difference between that particular 
group and the grand mean (i.e., the sample effect is yj � y:), and ϵij is the error 
associated with individual i in group j and represents within-group variation. Also 
recall that in the fixed effects model, since the investigator is only interested in making 
conclusions about the specific populations operationalized by the independent 
variable (rather than the population of potential levels that could have been included 
in the given experiment), we assumed that the sum of treatment effects equaled 0 (i.e., 

αj � 0). 
As we learned in the previous chapter, the one-way random effects model is 

similar to the fixed, only that in the random model αj is regarded as a random 
effect, and thus a rejection of the null hypothesis implies that varying levels of our 
independent variable is associated with variance in the dependent variable. This 
idea of explaining variance was reflected in our null and alternative hypotheses for 
the random effects model, which we recall were H0 : σ2 A > 0,A � 0 and  H1 : σ2 

respectively. 
We then studied the mixed model, in which for the two-way case, we designated 

one factor as fixed and one factor as random. That model was given by 

yijk � μ � αj � βk � �αβ�jk � ϵijk (7.1) 

where we had to expand our subscript on yijk to reflect observation i in cell jk. As  
before, μ was still the grand mean of all observations and αj was still the treatment 
effect associated with the fixed factor. Our additional term, βk was a random effect, 
which also implied that the interaction �αβ�jk was also a random effect. As usual, the 
model also contained an error component, ϵijk, representing within-cell variation that 
is unexplained by the systematic portion of the model. 

What, of the above models, is suitable for a blocking design? The blocking factor 
will usually (but not always) be regarded as a random effect, because when we block 
on a nuisance variable, we are usually not interested only in the particular blocks we 
have included in the experiment. We are usually interested in generalizing to the 
population of blocks of which our chosen blocks are but a mere sample. Hence, 
assuming our treatment factor is fixed, this implies that our randomized block model 
will be a mixed model. Thus, in general, we can say: 

In models for randomized block designs, the blocking factor is usually regarded as 
random. Assuming the other factor is fixed, this combination of a random factor and a 
fixed factor gives rise to the mixed model analysis of variance as a suitable model for 
analyzing randomized block designs. 

In what follows, we consider two specific models. The first is the nonadditive 
randomized block design, which is another way of saying that the model contains the 
factor × block interaction term. The second is the additive model, which means that 
the model does not contain the factor × block interaction. 
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7.3.1 Nonadditive Randomized Block Design 

The nonadditive randomized block design is usually best suited for the two-way 
mixed model in which there is a main effect for both factor A and factor B, as well as 
an interaction. The model for the nonadditive randomized block design can be given 
by (7.1): 

yijk � μ � αj � βk � �αβ�jk � ϵijk 

where now βk is the effect associated with the blocking factor, usually considered 
to be random, �αβ�jk is the interaction effect for treatment by block, and ϵijk is, as 
before, the error i associated with cell jk. Again, the inclusion of the interaction 
term is what makes the model nonadditive. One point worth noting is that through 
our use of subscripts, we are implying that within each treatment–block combi
nation, we are able to derive an MS error term, which implies that we have a 
design of n > 1 per cell, the so-called replicated design. In situations in which we 
have only a single observation per treatment–block combination, our model can be 
written as: 

yjk � μ � αj � βk � �αβ�jk � ϵjk (7.2) 

Notice that in (7.2), we have dropped the subscript i in yjk, and  ejk to indicate that 
within each cell, there is only a single observation (i.e., n = 1 per cell). As we will 
see, models such as this in which there is but a single observation per cell, referred 
to as nonreplicated designs, present some interesting challenges in terms of 
analysis. Because there is only a single observation per cell, it becomes impossible 
to derive ϵjk, the error term, because there is no within-cell variation to speak of. 
Hence, in these n = 1 per cell designs, the error term and the interaction term are 
confounded, which, as we will see, has implications for how F-ratios are 
constructed. 

7.3.2 Additive Randomized Block Design 

If we either assume or otherwise conclude (e.g., through Tukey test for nonadditivity, 
as we will discuss later) that there is no factor × block interaction, then we can 
simplify and rewrite the model of (7.1) as: 

yijk � μ � αj � βk � ϵijk 

Notice that now we are no longer modeling an �αβ�jk interaction. What are the 
consequences of either including or not including a factor × block interaction in 
the model? This depends primarily on two things: whether treatment and block are 
considered fixed or random, and the extent of replication within cells. Consider the 
data in Table 7.2 and the accompanying cell layout in Table 7.3. 
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TABLE 7.2 Fictional Data on Y, A, and Block 

Y A Block 

11 1 1 
12 1 2 
14 1 3 
16 1 4 
51 1 5 
24 1 6 
27 2 1 
29 2 2 
31 2 3 
26 2 4 
36 2 5 
35 2 6 
57 3 1 
45 3 2 
65 3 3 
95 3 4 
54 3 5 
46 3 6 

At first glance, we note differences among sample means for factor A (21.33 versus 
30.67 versus 60.33). We also note the differences among sample means between 
blocks in the right-hand margin of the layout. Even if we regard block as fixed, we are 
usually not interested in mean differences. We are most interested in simply removing 
block from the error term of the overall ANOVA. And certainly, when block is 
random, as we have already argued that it should be designated as such in most 
contexts, mean differences are definitely not of interest. Likewise, we are usually 
more interested in simply extracting it from the error term of the model so as to 
provide a more sensitive test for factor A. 

TABLE 7.3 Cell Layout of Data on Y, A, and Block 

Factor A 

Block 1 2 3 Means 

1 
2 
3 
4 
5 
6 

Means 

11 
12 
14 
16 
51 
24 
21.33 

27 
29 
31 
26 
36 
35 
30.67 

57 
45 
65 
95 
54 
46 
60.33 

31.67 
28.67 
36.67 
45.67 
47.00 
35.00 
37.44 
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For pedagogical purposes, we run the ANOVA model specifying both factor and 
block as fixed effects (where f.block in what follows designates block as a factor 
in R): 

> block.data <- read.table("blocking.txt", header = T)
 
> attach(block.data)
 
> f.a <- factor(a)
 
> f.block <- factor(block)
 
> fit.block <- aov (y ∼ f.a*f.block)
 
> anova(fit.block)
 

Analysis of Variance Table
 

Response: y 
Df Sum Sq Mean Sq F value Pr(>F) 

f.a 2 4976. 4 2488.22 
f.block 5 827.8 165.56 
f.a:f.block 10 2136.2 213.62 
Residuals 0 0.0 

Notice that R was unable to generate F-ratios for any of the effects (i.e., blank 
spaces under F value). Also note that it was unable to compute a sum of squares for 
error. Why did this occur? It occurred because our design is one without replication 
per cell. Recall that within each factor × block cell combination, there exists only a 
single observation. Because of the fact that each cell has n = 1, we are unable to 
generate an error term separate from the interaction term, and according to fixed 
effects theory of previous chapters, both fixed effects in the model should be tested 
against MS error. Since we cannot generate an MS error term, we cannot test either 
effect, the effect due to factor A or that due to block. 

Suppose now we decided not to test the factor A by block interaction, but still kept 
factor and block fixed: 

> fit.additive <- aov (y ∼ f.a + f.block) 
> anova(fit.additive) 

Analysis of Variance Table 

Response: y 
Df Sum Sq Mean Sq F value Pr(>F) 

f.a 2 4976.4 2488.22 11.648 0.002444 ** 
f.block 5 827.8 165.56 0.775 0.589224 
Residuals 10 2136.2 213.62 

We note that when we do not test the interaction, R is able to generate F-tests for 
both factor and block. Why is this so? Because without a specified interaction term, 
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this source of variance is relegated to MS residual. Notice that the mean squares of 
213.62 in the previous interaction term in the full factorial model is now the mean 
squares for “error” in the model without interaction. And in line with expected mean 
squares for the fixed effects model, both fixed effects factor and block are tested 
against MS residual (it can no longer be called MS error since variability within cell is 
impossible in this case). 

What was the point of these two analyses? On a purely statistical level, it was a 
simple demonstration that single cell designs do best without the testing of an 
interaction term. On a more substantive and scientific level however, it served as a 
demonstration that the decisions you make in how you set about testing your model 
will have a serious impact on the outcome of the model, even to the point of whether 
terms in the model are even testable. We summarize with the following: 

In an unreplicated randomized block design which includes an interaction term, if both 
Factor and Block are specified as fixed effects, it is impossible to test either effect since 
we are unable to generate an error term distinct from the interaction term. If the design 
did contain more than a single observation per cell, we would be able to test each fixed 
effect against MS error because we would be able to distinguish an error term over and 
above the interaction term. Hence, from a scientific perspective, if you are wanting to test 
effects of interest, you must ensure your data meet specifications required of the model. 

The above principle generalizes to virtually any model you choose to test, and is 
not a sole property of the randomized block design. A model can only test effects if 
you have supplied it with enough information to do so. 

7.4 TUKEY TEST FOR NONADDITIVITY 

We note that in the unreplicated situation, it was impossible to test for the presence of an 
interaction effect, and if block were designated as fixed, we used MS residual to test our 
effects. It may seem impossible then to be able to tell if an interaction exists in data for 
which there is only a single observation per cell. However, there does exist a method for 
testing the presence of nonadditivity (i.e., the presence of a factor by block interaction, in 
this case). This test is known as the Tukey test for nonadditivity, proposed by John Tukey 
in 1949. We do not demonstrate the test here, although the interested reader is advised to 
refer to the R package additivityTests (Simeckova, Rusch, and Simecek, 2014) 
for details on how to run the Tukey test and other similar tests. If such a test does not 
indicate the presence of an interaction effect, then one may assume it safe to pool 
interaction variance into MS residual. If we cannot reject the null hypothesis on such an 
additivity test, then pooling, in general, would be ill-advised. 

7.5 ASSUMPTIONS FOR THE VARIANCE–COVARIANCE MATRIX 

Recall that in a between-subjects design, it was assumed that the covariance between 
treatment conditions was equal to zero, which amounts to the errors ϵi having a 
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covariance equal to zero: 

cov�ϵij; ϵi ́ j ́� � 0 

In between-subjects designs, we had no good reason to suspect that treatment 
conditions would be correlated. For instance, in our melatonin example, we had no 
cause to suspect that subjects in the 1mg group would be correlated to subjects in the 
3mg group. They were independently sampled subjects, and hence assuming a 
covariance of zero between independent groups seemed reasonable. 

In the randomized block design (and as we will see later, repeated measures design 
as well), as a result of subjects being matched across treatments, there is now a 
reasonable expectation that measurement occasions will have a covariance between 
them unequal to zero. The fact that we expect this covariance to be unequal to zero 
requires us to consider the randomized block model in a different light than the classic 
between-subjects analysis of variance model. Instead of simply specifying an 
assumption about variances, we now need to also incorporate an assumption about 
covariances between treatment levels (or measurement occasions, in the case of 
repeated measures). That is, we need to also model the covariance structure that may 
be inherent in our data instead of simply assuming it to be zero between treatments. 

That the covariance between treatments is unequal to zero will pose some challenges 
for how we construe our analysis. But we can minimize or simplify this challenge by at 
least assuming that the pairwise covariance across treatment populations is a constant 
value. Intuitively, such an assumption would seem to make things “easier” than if we 
had to hypothesize a different covariance value for each treatment-to-treatment pair. If 
we define the covariance as ρσ2T, where ρ is the population correlation coefficient that is 
presumed constant between treatment populations (Kirk, 1995) and σ2 is the total T 
treatment variance, then we can define the common covariance between observations 
sampled from any two population pairings yi1 and yi2 to be 

cov�yi1; yi2� � ρσ2 
T 

We can see that ρσ2T is, in effect, drawing on a proportion of the total variance. The 
extent to which ρ ! 1:0 is the extent to which ρσ2T � σT

2 , since �1�σ2T � σT
2 . 

The assumption of constant values for σ2T and constant values for ρσ2T for each 
treatment is known as the compound symmetry assumption. In a randomized block or 
repeated measures analysis, the assumption of compound symmetry is a sufficient 
condition for carrying on with the analysis, although it is not a necessary condition. 
What this means is that even if compound symmetry is not achieved, so long as a 
different assumption, known as sphericity, is satisfied, then the analysis can proceed 
without adjustment. 

A related assumption, known as homogeneity of treatment difference variances, 
states that for any two treatment levels, difference scores yi1 � yi2 will have identical 
variances. The assumption of homogeneity of treatment difference variances asserts 
that these variances will be equal across pairs of within-subject treatment levels. 
Satisfying this assumption has been shown to be equal to satisfying the assumption of 
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sphericity (see Huynh and Feldt (1970) and Rouanet and Lépine (1970) for details), so 
historically it has been the assumption of sphericity that is under evaluation in 
randomized block or repeated measures models. Further details on the sphericity 
assumption can be found in Kirk (1995, pp. 274–279), who provides a thorough 
treatment. 

When sphericity is violated, the ensuing F-statistic from the ANOVA may not be 
distributed as F from the theoretical density of F. The classic test, though not necessarily 
the most powerful (e.g., see Cornell et al., 1992), used to test the null hypothesis of a 
spherical matrix is that given by Mauchly (1940). Mauchly’s test has been shown to be 
somewhat problematic, and the Greenhouse–Geisser adjustment to degrees of freedom 
is usually recommended regardless of the outcome of Mauchly’s test. 

Many researchers have evaluated the effect of violations of sphericity (e.g., see 
Box, 1954; Geisser and Greenhouse, 1958; Huynh and Feldt, 1970). If sphericity is 
violated, one can compute an epsilon value, ϵ, to assess the degree to which the 
covariance matrix departs from the ideal form under the null hypothesis. See Howell 
(2002, p. 487) for the computation of ϵ. 

Some features of ϵ include the following: 

•	 When the assumption of a spherical matrix is perfectly met, ϵ will equal 1.0. 

•	 The extent to which the assumption of sphericity is not met, ϵ will decrease 
from 1.0. 

•	 The minimum value of ϵ is 1/(J � 1), the lower bound on ϵ, where J is the 
number of levels of the within-subjects factor. 

When the assumption of sphericity is not tenable, the Greenhouse–Geisser conserv
ative F-test (Geisser and Greenhouse, 1958) is recommended by most authors (although 
other adjustments such as the Huynh–Feldt exist, which will be discussed in our 
software examples later). The Greenhouse–Geisser adjusts degrees of freedom down
ward, making it more difficult to reject the null hypothesis than it would be if sphericity 
were not violated. We will discuss and interpret the Greenhouse–Geisser adjustment 
when we perform a repeated measures analysis using software later in this chapter. 

7.6 INTRACLASS CORRELATION 

Recall the population intraclass correlation of the previous chapter in (6.4) in our 
discussion of random effects and mixed models, of which an estimate of ρ was given by 

σ2 σ2^ ^
^ �ρ � A A 

σ2 σ2 σ2^A � ^ ^e y 

In our discussion of random effects models, the intraclass correlation was based on the 
fact that within any treatment population there existed two sources of error, σ2 ,A and σ2 

e 
such that the total variation σ2 could be regarded as a sum of these two components, y 
σ2 � σ2A � σ2. We will now use the intraclass correlation to demonstrate the influencey e 



314 RANDOMIZED BLOCKS AND REPEATED MEASURES 

of pairwise treatment covariance in the randomized block or repeated measures 
analysis of variance, where now σ2T replaces σ

2.y 
From our definition of ρ, simple algebra reveals that 

σ2 

ρ � A 

σ2 
T 

ρσ2T � σ2 
A 

which also implies that 

σ2 � σ2T�1 � ρ� (7.3)e 

which in words means that error variance is equal to a proportion of the total treatment 
variance σ2T. What proportion is it equal to? It is equal to �1 � ρ� of it. This form of σ2 

e 
will be useful in our consideration of the expected mean squares for repeated measures 
models. By (7.3), we can now assess the effect that ρ has on our estimate of σ2. For e 
instance, for ρ � 0, it follows that 

σ2 � σ2T�1 � ρ�e 

� σ2T�1 � 0� 
� σ2T 

That is, under the condition that the intraclass correlation is equal to 0, the treatment 
factor is accounting for no variance, and the total variance σ2T is made up of σ2. When e 
ρ is equal to 1, on the other hand, then 

σ2 � σ2T�1 � ρ�e 

� σ2T�1 � 1� 
� 0 

Under this scenario, the treatment factor is accounting for 100% of the variance, and 
hence σ2 is equal to 0. Of course, neither of these two extremes will usually dominate e 
in practice, and ρ will often be a value somewhere between 0 and 1. The purpose of 
considering the upper and lower limits of σ2 under maximum and minimum values for e 
ρ is simply to reveal how influential ρ is in either increasing or decreasing σ2. That is, e 
the intraclass correlation has an impact on the size of σ2. For a classic (and excellent) e 
discussion of intraclass correlation, see Fisher (1925). 

7.7 REPEATED MEASURES MODELS: A SPECIAL CASE 
OF RANDOMIZED BLOCK DESIGNS 

A generalization of the randomized block design is the repeated measures model, 
often called within-subjects or longitudinal models. Recall that in a randomized block 
design, each block consisted of subjects as homogeneous as possible on one or more 
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nuisance factors. This was done to make subjects “alike” as much as possible within 
each block. What if we wanted to take “likeness” to its absolute extreme? Instead of 
blocking on subjects similar to one another, what if we blocked on the same subject? 
Repeated measures models take the idea of blocking to the limit, where now each 
block consists of the same subject. As was true for the block design, the hope is that 
the similarity of a subject’s responses under testing conditions can be exploited and 
the covariance between testing conditions can be removed to boost sensitivity and 
power of the ensuing F-test. 

Before we discuss repeated measures models further, it should be emphasized 
that since you have already been exposed to randomized block designs, you are 
already “familiar” with repeated measures models. The only difference is the 
criteria used to form the blocks. The skill required to understand statistical 
modeling is in part disentangling the jargon used in different fields. Some writers, 
for example, Kirk (1995), discuss the randomized block design at length, and make 
only minor mention of repeated measures. Other writers, however, present repeated 
measures models without hardly any mention of the underlying randomized block 
theory. This is fine too since longitudinal data dominates many fields, and data 
analyzed on the same subjects over time have their own peculiarities that may not 
be present in pure blocking designs. The approach followed in this book is that if 
one understands the randomized block design, one has his or her foot in the door of 
even the most complex of analysis of variance models, which include the repeated 
measures model as a special case. Indeed, a course or book of the sort Randomized 
Block Designs and Their Special Cases would not be an unreasonable title for an 
all-inclusive analysis of variance text. What unites them all is covariance and 
correlation. For instance, time series analysis is another type of modeling technique 
that assumes a covariance between measurements, usually called serial correlation. 
These models are useful for analyzing such things as seasonal variation and other 
components that help explain variance in the given sequence of measurements. 
These models are beyond the scope of the current book, though we make a brief 
note about them in Chapter 8. The interested reader is advised to refer to Crawley 
(2013, Chapter 24) for details. 

7.8 INDEPENDENT VERSUS PAIRED SAMPLES t-TEST 

We develop the idea of repeated measures by building on familiar tests previously 
learned, those of the independent samples and paired samples t-tests. Recall the 
independent samples t-test: 

y1 � y2t � p 
2 2 �s1 =n1� � �s2 =n2� 

p 
2 2Recall that the denominator �s1 =n1� � �s2 =n2� is called the estimated standard 

error of the difference between means. All else equal, the lower the standard error 
of the difference, the greater the resulting t, because any observed difference in means 
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y1 � y2 in the numerator compared to a number in the denominator that gets increasingly 
smaller has the effect of making the numerator look quite large and impressive. 

For example, imagine for a given experiment that the difference in means were 
equal to y1 � y2 � 5. Imagine the standard error of the difference were equal to 10. 
Then the value of the resulting t would be 5/10 = 0.5. Now, contrast this to the 
situation where the value of the standard error of the difference was instead equal to 1. 
The value of the resulting t would be 5/1 = 5. Notice that in the second scenario, where 
we have a much smaller standard error of the difference, this is equated with a much 
larger t-statistic (and hence, yielding more strength against the null hypothesis). 
Anything that makes the standard error smaller in any statistical test serves to boost 
power, because all else equal, it gives us a bigger t (or more generally, a larger test 
statistic). As Casella (2008) remarks in his discussion of a wide variety of models, 
“It’s all about the denominator!” (p. 5). 

Now, recall the paired samples t-test: 

y1 � y2t � p 
2 2 �s1 =n1� � �s2 =n2� � 2cov�y1; y2� 

where the variance of the difference was equal to, in the denominator, 

2 2s s1 2� � 2 cov�y1; y2� n1 n2 

The subtraction of 2 cov�y1; y2� in the denominator served to lower the variance of the 
difference. The extent to which pairs of observations had a covariance unequal to 0 
was the extent to which the paired samples t-test provided a more sensitive test (i.e., a 
more powerful test) relative to the independent samples t-test. 

When we consider the wider, more elaborate repeated measures model, the concept is 
analogous to the paired samples t-test used in matched pairs designs. The essential idea 
is to exploit the correlational structure between measurement conditions so that we may 
use this information to extract variation from the error term in our ensuing F-ratios. 

7.9 THE SUBJECT FACTOR: FIXED OR RANDOM EFFECT? 

In the randomized block design, we usually regarded block as a random factor, since 
in most circumstances we were interested not only in the particular blocks sampled, 
but also in the generalization of the population of blocks of which our selected sample 
was simply a randomly chosen subset. Our argument was that in most contexts, block 
should be regarded as a random factor. 

In repeated measures models, it stands to reason that our new blocking factor (i.e., 
subjects) again be designated as a random effect. It is easy to understand why this 
should be so. If you’ve sampled, say, 10 subjects in a repeated measures design, are 
you actually interested in these particular subjects? Usually not. What you are most 
often interested in is in generalizing to the population of subjects of which your 
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chosen subjects is merely a sample. This fits the precise definition of a random effect, 
and hence in a repeated measures design, the blocking factor subject will under most 
circumstances be designated as random. 

Indeed, in virtually all statistical models, whether by the name of fixed, random, or 
mixed, “subject” or “unit” is implicitly regarded as a random effect. How is this so? 
Recall our previous discussion about ϵi. But what is ϵi? It is the error associated with a 
given observation. By its very nature, ϵi is a random effect. In the hypothetical sample of 
10 subjects, if we were truly interested in only these particular 10 subjects, then ϵi would 
no longer be considered a random effect. It would be considered a fixed effect, since in 
hypothetical replications of the experiment, the same 10 subjects would be used again. 
When you begin to see the error, ϵi, as just another effect, it helps immensely in 
clarifying the distinctions between fixed and random effects. 

7.10 MODEL FOR ONE-WAY REPEATED MEASURES DESIGN 

In the randomized block design, we distinguished between nonadditive and additive 
models. The nonadditive model contained a factor × block interaction. The additive 
model did not. For the repeated measures model, we are usually not interested in 
modeling a factor × subject interaction, and so our repeated measures model will 
usually be an additive one of the kind we are already familiar with: 

yjk � μ � αj � βk � ϵjk 

where αj is a fixed effect and βk is the random effect associated with each subject. 
Aside from not having much interest in modeling the interaction, there is an additional 
reason for not including the interaction effect. Recall the issues that presented 
themselves in the randomized block design when each cell contained a single 
observation. In such situations, we could not distinguish an error term distinct 
from the interaction term due to the fact that each cell contained only a single 
observation. In the repeated measures model, since we will also have a single 
observation per cell, the same issue that was present in the randomized block design 
exists in the repeated measures model. That is, MS error in an unreplicated (i.e., n = 1 
per cell) repeated measures design cannot be distinguished from the factor × subject 
interaction term. Hence, by not specifically modeling �αβ�jk, we  “free up” this term to 
serve as the residual term for the factor in our model that we are interested in testing. 

7.10.1 Expected Mean Squares for Repeated Measures Models 

Just as we did for ANOVA models of previous chapters, the designation of fixed 
versus random effects helps inform us on how to generate suitable F-ratios to test 
effects of interest. To learn of the appropriate denominators, we need to consider the 
expected mean squares for the various sources of variation. In a one-way repeated 
measures model, we will have three sources of variation: (1) subjects, (2) treatments, 
and (3) residual. 
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We do not detail the derivation of the expected mean squares here. The interested 
reader can find details in Hays (1994) and Kirk (1995). It suffices for now to know 
why we want to compute expected mean squares and how to interpret them in 
generating F-ratios. The expected mean squares for the additive repeated measures 
model turn out to be 

E�MS subjects� � σ2 � Knσ2 
e subjects 

α2J j 
j

E�MS treatment� � σ2 �e K � 1 

E�MS residual� � σ2 � σ2 1 � ρ�e T�
where J is the number of rows for subjects and K is the number of columns for 
treatment (i.e., the repeated measurement). It is easy to see from the expected mean 
squares that for a test of treatments, the correct denominator is MS residual, since 
when α2 

j � 0, we have 

02J j 
j

E�MS treatment� � σ2 �e K � 1 � σ2 
e 

for which σ2 is the expectation for MS residual, which recall, is conflated with the e 
subject × treatment interaction. 

7.11 ANALYSIS USING R: ONE-WAY REPEATED MEASURES: 
LEARNING AS A FUNCTION OF TRIAL 

To demonstrate a simple, one-way repeated measures analysis of variance, consider 
the data in Table 7.4 (also briefly featured in Chapter 5) where rats were tested three 
times to measure the elapsed time it took to press a lever in an operant conditioning 

TABLE 7.4 Learning as a Function of Trial (Hypothetical Data) 

Trial 

Rat 1 2 3 Rat Means 

1 10.0 8.2 5.3 7.83 
2 12.1 11.2 9.1 10.80 
3 9.2 8.1 4.6 7.30 
4 11.6 10.5 8.1 10.07 
5 8.3 7.6 5.5 7.13 
6 10.5 9.5 8.1 9.37 
Trial means M = 10.28 M = 9.18 M = 6.78 
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chamber. The response variable is the time (measured in minutes) it took for the rats to 
learn the lever press response. We would expect that if learning is taking place, the 
time it takes to press the level should generally decrease across trials. 

We identify our object in R as learn and request R to read headers from the data: 

> learn <- read.table("rat.txt", header = T)
 
> library(car)
 
> some(learn)
 

rat trial time 
1 1 1 10.0 
2  1  2  8.2  
3 1 3 5.3 

Note that the data are in so-called long format, with each record for rat having a 
single row (i.e., there are three rows for each rat representing the three different 
measurement occasions). When the same data are analyzed in SPSS, we will require 
the data to be in wide format, where each header will represent a given trial. 

Before running any inferential tests, we generate a qplot to get a first glimpse of 
the data: 

> library(ggplot2) 
> qplot(trial, time) 

It is evident from the plot that response time decreases over trials. 
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To prepare the data for analysis, we first generate factor variables from trial and rat: 

> f.trial = factor(trial) 
> f.rat = factor(rat) 

We first conceptualize the model as one of a randomized block design: 

> rat.block <- aov(time ∼ f.trial + Error(block/f.trial), data = 
learn) 

Note that in the above model formula,(block/f.trial) communicates the 
fact that trials are nested within block. Of course, our block factor is actually rat. 
Hence, in the spirit of repeated measures, we write out the model as 

> rat.block <- aov(time ∼ f.trial + Error(f.rat/f.trial), data = 
learn) 

What we have just specified is a repeated measures analysis where trial measure
ments are nested within rat. The point of the competing model formulations is simply 
to reveal the analogy of a block design versus a repeated measures design. In the latter, 
our blocks are subjects (rats in this case). When we run the analysis, we obtain: 

> summary(rat.block) 

Error: f.rat 
Df Sum Sq Mean Sq F value Pr(>F) 

Residuals 5 35. 62 7.124 

Error: f.rat:f.trial 
Df Sum Sq Mean Sq F value Pr(>F) 

f.trial 2 38.44 19.220 72. 62 1.11e-06 *** 
Residuals 10 2.65 0.265 

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

We note a statistically significant effect for trial (p = 1.11e-06). 
We contrast this with a slightly different situation. Consider the data in Table 7.5, 

in which we have added a second factor to the design (i.e., treatment). Perhaps some 
rats were treated with a drug before the trials began, and in addition to response time, 
we were interested in estimating the effect of such a treatment. 

We run this analysis as follows in R: 

> f.treat = factor(treat)
 
> rat.two.way <- aov(time ∼ f.trial*f.treat + Error(f.rat/f.trial),
 
data = learn)
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TABLE 7.5 Learning as a Function of Trial and Treatment (Hypothetical Data) 

Trial 

Treatment Rat 1 2 3 Rat Means 

Yes 1 10.0 8.2 5.3 7.83 
No 2 12.1 11.2 9.1 10.80 
Yes 3 9.2 8.1 4.6 7.30 
No 4 11.6 10.5 8.1 10.07 
Yes 5 8.3 7.6 5.5 7.13 
No 6 10.5 9.5 8.1 9.37 

Trial means M = 10.28 M = 9.18 M = 6.78 

Note carefully again how we specified the error term. The statement Error(f.rat/f. 
trial) means that measurements on trial are nested within rat. Recall that this does not 
literally mean that trials are nested within rat, since it is clear from the data layout that 
each rat is receiving the same trials. To say that trials (or any other factor) are nested 
within rat would imply that some rats got, say, trials 1, 2, and 3, while others received 
say, trials 4, 5, and 6. Of course, this would not make sense in a repeated measures 
such as this, but it is still worth mentioning so that the distinction between 
measurements being nested within rats versus trials being nested within rats is 
conceptually clear. In the current situation, they amount to the same thing, yet this still 
serves as a good example to help understand the nature of nesting. 

We obtain a summary of the fitted model: 

> summary(rat.two.way) 

Error: f.rat 
Df Sum Sq Mean Sq F value Pr(>F) 

f.treat 1 31.73 31.73 32.68 0.00463 ** 
Residuals 4 3.88 0.97 

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

Error: f.rat:f.trial 
Df Sum Sq Mean Sq F value Pr(>F) 

f.trial 2 38.44 19.220 91.403 3.09e-06 *** 
f.trial:f.treat 2 0.96 0.482 2.293 0.163 
Residuals 8 1.68 0.210 
--

The effect for interaction is not statistically significant, though regardless, the 
purpose of this example was simply to emphasize how the error term is specified in a 
repeated measures, where it is “found” in the layout. Had we a second within factor, 
say, season (suppose rats were tested in the Fall and then Winter), then we would have 
specified the error term as Error (f.rat/(f.trial*f.season)) to indicate 
the nesting structure of the data. 
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A nonparametric alternative to the one-way randomized block design is the 
Friedman rank test, easily computed in R: 

> friedman <- friedman.test(time ∼ f.trial | f.rat) 
> friedman 

Friedman rank sum test 

data: time and trial and rat 
Friedman chi-squared = 12, df = 2, p-value = 0.002479 

We note that though the observed p-value of 0.002 is sufficient to reject the null 
hypothesis, it is a larger p-value than in the equivalent parametric test. For an 
explanation and demonstration of the test, see Howell (2002, pp. 720–722). 

7.12 ANALYSIS USING SPSS: ONE-WAY REPEATED MEASURES: 
LEARNING AS A FUNCTION OF TRIAL 

Entered into SPSS, the learn data appear as follows: 

trial_1 trial_2 trial_3 

1 10.00 8.20 5.30 
2 12.10 11.20 9.10 
3 9.20 8.10 4.60 
4 11.60 10.50 8.10 
5 8.30 7.60 5.50 
6 10.50 9.50 8.10 

We request the analysis via the following syntax: 

GLM trial_1 trial_2 trial_3 [requests a general linear model with 
levels 1 through 3 of trial] 
/WSFACTOR=trial 3 Polynomial [requests a polynomial contrast for 
the within factor] 
/METHOD=SSTYPE(3) 
/CRITERIA=ALPHA(.05) 
/WSDESIGN=trial. [requests a model that includes the factor 
“trial” (which is all the current model can produce anyway since 
it is the only factor)] 
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Multivariate Testsa 

Effect Value F 
Hypothesis 

df 
Error 
df Sig. 

Partial Eta-
Squared 

trial Pillai’s trace 
Wilks’ lambda 
Hotelling’s trace 
Roy’s largest root 

0.942 
0.058 
16.126 
16.126 

32.251b 

32.251b 

32.251b 

32.251b 

2.000 
2.000 
2.000 
2.000 

4.000 
4.000 
4.000 
4.000 

0.003 
0.003 
0.003 
0.003 

0.942 
0.942 
0.942 
0.942 

aDesign: Intercept within-subjects design: trial. 
bExact statistic. 

The above are multivariate tests of significance, which can be interpreted either in 
conjunction with or in replacement of, the univariate tests. A multivariate model, 
discussed much more extensively in Chapter 12, features more than a single response 
variable. In our current model, instead of conceiving trial (1 versus 2 versus 3) as a 
predictor of a single response, we can instead visualize it as three different (but related 
through their difference scores across trials 1, 2, 3) response variables. The fact that 
we now have three response variables instead of just one makes the model multi
variate, which is why SPSS also presents us with such multivariate tests of 
significance. In the language of MANOVA, we are analyzing a linear combination 
of responses (i.e., trials 1, 2, 3). Many authors have contributed to the analysis of 
longitudinal data through a MANOVA approach (e.g., see Potthoff and Roy (1964)). 

For our purposes, it is enough to be familiar with the conventional rule that one 
interprets the multivariate tests or the Greenhouse–Geisser correction if one has evidence 
thatsphericityhasbeenviolated.However,sincetestsofsphericitysuchasMauchly’scanbe 
problematic in their own right, MANOVA or the Greenhouse–Geisser correction is often 
recommended regardless of the results of Mauchly’s test of sphericity (Howell, 2002). 

All four multivariate tests suggest to reject the null hypothesis (p < 0.001). For a 
description of these multivariate tests, refer to Chapter 12 or to Johnson and Wichern 
(2007, p. 336). 

Mauchly’s Test of Sphericitya 

Measure: MEASURE_1 

Within 
Subjects Effect 

Mauchly’s 
W 

Approx. 
Chi-Square df Sig. Epsilonb 

trial 0.276 5.146 2 0.076 

Greenhouse– 
Geisser 
0.580 

Huynh– 
Feldt 

0.646 

Lower bound 

0.500 

Tests the null hypothesis that the error covariance matrix of the orthonormalized transformed dependent
 
variables is proportional to an identity matrix.
 
aDesign: Intercept within-subjects design: trial.
 
bMay be used to adjust the degrees of freedom for the averaged tests of significance. Corrected tests are
 
displayed in the tests of within-subjects effects table.
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Mauchly’s test of sphericity evaluates the null hypothesis that, as noted by 
SPSS, the error covariance matrix of the orthonormalized transformed dependent 
variable is proportional to an identity matrix (see Appendix A). A statistically 
significant result for Mauchly’s (p < 0.05 or similar) suggests the assumption of 
sphericity to be violated. For the test on our data, we do not reject the null hypothesis 
(p = 0.076). 

The output for Mauchly’s also reports epsilon values. Recall that these are values 
indicating the extent to which one should correct the degrees of freedom associated 
with the univariate test results in order to account for a violation of sphericity. We 
discuss these adjustments now in the context of the univariate effects. 

Tests of Within-Subjects Effects 

Measure: MEASURE_1 

Source 
Type III Sum of 

Squares df 
Mean 
Square F Sig. 

Partial Eta-
Squared 

trial 

Error(trial) 

Sphericity 
assumed 

Greenhouse– 
Geisser 

Huynh–Feldt 
Lower bound 
Sphericity 

Assumed 
Greenhouse– 

Geisser 
Huynh–Feldt 
Lower bound 

38.440 

38.440 

38.440 
38.440 
2.647 

2.647 

2.647 
2.647 

2 

1.160 

1.292 
1.000 
10 

5.801 

6.461 
5.000 

19.220 

33.131 

29.750 
38.440 
0.265 

0.456 

0.410 
0.529 

72.620 

72.620 

72.620 
72.620 

0.000 

0.000 

0.000 
0.000 

0.936 

0.936 

0.936 
0.936 

The first correction on degrees of freedom in the SPSS output is the Greenhouse– 
Geisser. Notice that the degrees of freedom for it are 1.160 and 5.801 (for error). 
These numbers were obtained by using the correction factor epsilon listed under 
Greenhouse–Geisser in the report of Mauchly’s test of sphericity. That value is equal 
to 0.580. This means to take 0.580 of the original degrees of freedom (for both 
numerator and denominator), and use this as our new “corrected” degrees of freedom. 
When we take 0.580 of 2, we get 1.16, which are the degrees of freedom given for the 
numerator of the Greenhouse–Geisser. When we take 0.580 of 10, we get 5.801, 
which are the degrees of freedom for the denominator of the Greenhouse–Geisser. 
The F-test for the Greenhouse–Geisser correction is evaluated on 1.16 and 5.801 
degrees of freedom instead of the original 2 and 10. Note that the F-statistic produced 
for Greenhouse–Geisser is the same as that produced when sphericity is assumed. The 
difference is only on the degrees of freedom on which the obtained F is evaluated. 
When we evaluate on 1.160 and 5.801, we note the p-value is greater than what it is 
when sphericity is assumed (if you double-click on the p-values in the SPSS output, 
you will get the representative decimal places). It makes sense that the p-value should 
rise, since we are evaluating on less (and hence, more conservative) degrees of 
freedom. 
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The second correction provided by SPSS is the Huynh–Feldt. This time, we take 
0.646 (i.e., epsilon value under Huynh–Feldt in Mauchly’s test of sphericity) of the 
original degrees of freedom. This amounts to 0.646(2) = 1.29 and 0.646(10) = 6.46. 

Finally, the third option for using a correction factor is the lower bound provided 
by SPSS. It is computed as 1/(J – 1), equal to 1/(3–1) = 0.50 for our data (i.e., degrees 
of freedom 1 and 5 for our data). This correction represents the most strict and 
conservative adjustment on the degrees of freedom. 

7.12.1 Which Results Should Be Interpreted? 

We have explored five different options for interpreting the F-test in a repeated measures 
analysis: univariate results with sphericity assumed, MANOVA, Greenhouse–Geisser, 
Huynh–Feldt, and the lower bound correction. Which to use, and when? The literature 
in this area is not conclusive, although a general “workable” recommendation, primarily 
due to Girden (1992), is that when epsilon values are greater than 0.75, the Huynh–Feldt 
correction should be used. When epsilon values are less than 0.75, the Greenhouse– 
Geisser correction should be interpreted. And if nothing is known about sphericity, or 
one suspects that Mauchly’s test cannot be interpreted accurately due to small or large 
sample sizes or questionable distributional assumptions, Greenhouse–Geisser is still the 
correction of choice. MANOVA has been found to be relatively powerful under 
conditions of severe violations of sphericity and for relatively large sample sizes. 
For smaller sample sizes however, univariate tests are usually still more powerful. 

A practical recommendation, for most cases, is to report Greenhouse–Geisser and 
multivariate results. If one desired a less conservative correction, Huynh–Feldt can be 
reported, keeping in mind that relatively small differences in p-values should not lead to 
disparate scientific conclusions regardless of the correction used (see Chapter 3, Section 
3.26). For instance, if Greenhouse–Geisser yielded a p-value of 0.07 while Huynh–Feldt 
yielded 0.04, since neither of these should be used exclusively as a scientific indicator of 
the existence of a phenomenon from your experiment or study (i.e., you should 
simultaneously also interpret the effect size), such small differences in p-values for 
correction factors turns out to be much more a statistical issue than a scientific one. 

SPSS next provides us with the between-subjects effects: 

Tests of Between-Subjects Effects 

Measure: MEASURE_1 

Transformed Variable: Average 

Source Type III Sum of Squares df Mean Square F Sig. 

Intercept 
Error 

1378.125 
35.618 

1 
5 

1378.125 
7.124 

193.457 0.000 

What is “Error” in the output above? What SPSS is calling error is actually the 
effect of “subjects” (or rats, for our data). Indeed, in the R analysis featured earlier, R 
specifically designated the error as that due to rat: 
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Error: f.rat 
Df Sum Sq Mean Sq F value Pr(>F) 

Residuals 5 35.62 7.124 

Notice that the degrees of freedom for error are equal to 5, which is equal to the 
number of subjects (6) minus 1. There is no test for the subjects effect because we are 
not able to produce an error term distinct from the subjects by trial interaction term 
used to test the within-subjects effect. We are usually not interested in testing the 
effect of subject anyway, since it is usually considered nothing more than a nuisance 
factor. One would expect subjects to differ from one another, which is a good thing, 
since we are able to partial this variance out of the error term. That SPSS is not 
providing us a test for subject is not a problem. 

Within-subjects contrasts can also be generated, though not shown here. For 
example, a simple contrast would generate comparisons of trial 1 versus trial 3 and 
trial 2 versus trial 3, obtained through 

GLM trial_1 trial_2 trial_3 
/WSFACTOR=trial 3 Simple 

Other contrasts can also be performed. See Section 4.13 for details. Post-hocs can 
also be obtained in SPSS for the trial factor by 

GLM trial_1 trial_2 trial_3 
/WSFACTOR=trial 3 Polynomial 
/METHOD=SSTYPE(3) 
/EMMEANS=TABLES(trial) COMPARE ADJ(BONFERRONI) 

7.13 SPSS: TWO-WAY REPEATED MEASURES ANALYSIS 
OF VARIANCE: MIXED DESIGN: ONE BETWEEN FACTOR, 
ONE WITHIN FACTOR 

Having demonstrated the analysis of repeated measures data for the one-way model, 
we now demonstrate an analysis of a two-way model in SPSS. We refer to the two-
factor layout cited in Table 7.5, where, recall, in addition to being assessed over trials, 
some of the rats were given a medical treatment hypothesized to promote efficiency at 
learning the task (treatment = “yes” in Table 7.5). 

Recall this is now a 2 × 3 repeated measures ANOVA that contains both a 
between factor and a within factor. Such a design is often referred to as a mixed 
design. The  term  “mixed design” here is used to indicate the presence of a mix of 
between-subjects and within-subjects factors. It is not equivalent in meaning to the 
term mixed model that we have been discussing. However, since subject is usually 
considered to be a random factor, the mixed design is more often than not analyzed 
as a mixed model. 



SPSS: TWO-WAY REPEATED MEASURES ANALYSIS OF VARIANCE 327 

When entered into SPSS, the data file appears as follows: 

trial_1 trial_2 trial_3 Treat 

10.00 8.20 5.30 1.00 
12.10 11.20 9.10 0.00 
9.20 8.10 4.60 1.00 

11.60 10.50 8.10 0.00 
8.30 7.60 5.50 1.00 

10.50 9.50 8.10 0.00 

Notice that in entering the data into SPSS, as before, each level of the repeated 
measure has a unique column (trial_1, trial_2, trial_3). The levels of the between-
subjects factor are represented by a single column (1 = yes treatment, 0 = no 
treatment) to denote the grouping effect. 

We request the repeated measures ANOVA: 

GLM trial_1 trial_2 trial_3 BY treat [requests a general linear 
model with three dependent variables trial_1 through trial_3 and a 
single independent variable “treat”] 
/WSFACTOR=trial 3 Polynomial
 
/METHOD=SSTYPE(3)
 
/CRITERIA=ALPHA(.05)
 
/WSDESIGN=trial [specifies the within-subjects factor]
 
/DESIGN=treat.[specifies the between-subjects factor]
 

SPSS first provides us with multivariate tests of significance: 

Multivariate Testsa 

Hypothesis Error Partial Eta-
Effect Value F df df Sig. Squared 

trial Pillai’s Trace 0.963 38.569b 2.000 3.000 0.007 0.963 
Wilks’ Lambda 0.037 38.569b 2.000 3.000 0.007 0.963 
Hotelling’s Trace 25.713 38.569b 2.000 3.000 0.007 0.963 
Roy’s Largest 25.713 38.569b 2.000 3.000 0.007 0.963 

Root 
trial ∗ treat Pillai’s Trace 0.427 1.117b 2.000 3.000 0.434 0.427 

Wilks’ Lambda 0.573 1.117b 2.000 3.000 0.434 0.427 
Hotelling’s Trace 0.745 1.117b 2.000 3.000 0.434 0.427 
Roy’s Largest 0.745 1.117b 2.000 3.000 0.434 0.427 

Root 

aDesign: Intercept + treat within-subjects design: trial. 
bExact statistic. 

The multivariate tests all suggest the presence of a main effect for trial. 
Evidence for an interaction effect is not supported across all multivariate tests 
(p = 0.434). 
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Next, we are given the findings of Mauchly’s test: 

Mauchly’s Test of Sphericitya 

Measure: MEASURE_1 

Within 
Subjects Effect 

Mauchly’s 
W 

Approx. Chi-
Square df Sig. Epsilonb 

trial 0.392 2.811 2 0.245 

Greenhouse– 
Geisser 
0.622 

Huynh– 
Feldt 
0.991 

Lower bound 

0.500 

Tests the null hypothesis that the error covariance matrix of the orthonormalized transformed dependent 
variables is proportional to an identity matrix. 
aDesign: Intercept + treat within-subjects design: trial 
bMay be used to adjust the degrees of freedom for the averaged tests of significance. Corrected tests are 
displayed in the tests of within-subjects effects table. 

Mauchly’s test of sphericity is not statistically significant (p = 0.245), and hence if 
we were to trust this test, it would suggest that we do not have a violation of the 
sphericity assumption. However, based on our previous recommendation, we will 
nonetheless interpret both the multivariate tests and Greenhouse–Geisser F-test when 
drawing conclusions regarding the within-subject effect, along with the interaction 
involving the within-subjects factor. 

Next are provided the tests for the within-subjects effects: 

Tests of Within-Subjects Effects 

Measure: MEASURE_1 

Source 
Type III Sum of 

Squares df 
Mean 
Square F Sig. 

Partial Eta-
Squared 

trial 

trial ∗ treat 

Error(trial) 

Sphericity 
assumed 

Greenhouse– 
Geisser 

Huynh–Feldt 
Lower bound 
Sphericity 

assumed 
Greenhouse– 

Geisser 
Huynh–Feldt 
Lower bound 
Sphericity 

assumed 
Greenhouse– 

Geisser 
Huynh–Feldt 
Lower bound 

38.440 

38.440 

38.440 
38.440 
0.964 

0.964 

0.964 
0.964 
1.682 

1.682 

1.682 
1.682 

2 

1.244 

1.982 
1.000 
2 

1.244 

1.982 
1.000 
8 

4.975 

7.926 
4.000 

19.220 

30.909 

19.399 
38.440 
0.482 

0.775 

0.487 
0.964 
0.210 

0.338 

0.212 
0.421 

91.403 

91.403 

91.403 
91.403 
2.293 

2.293 

2.293 
2.293 

0.000 

0.000 

0.000 
0.001 
0.163 

0.194 

0.164 
0.205 

0.958 

0.958 

0.958 
0.958 
0.364 

0.364 

0.364 
0.364 
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All univariate tests suggest the presence of a main effect (p = 0.000) while the trial 
by treat interaction term still has a relatively large p-value (i.e., p = 0.194 for the 
Greenhouse–Geisser). A plot of means reveals (/PLOT=PROFILE 
(trial∗treat)): 

We can see that essentially a similar “story” of mean differences between 
treatments is being told across trials, although at the third trial, it would appear 
that the decrease in time for the treated group is somewhat greater than that for the 
nontreated group. But with such a small sample size, we likely did not have the power 
to detect such an effect. In this small sample, as evidenced by partial eta-squared, 
approximately 36% of the variance in the dependent variable is accounted for by the 
interaction term. 

Next are the between-subjects effects: 

Tests of Between-Subjects Effects 

Measure: MEASURE_1 

Transformed Variable: Average 

Source 
Type III Sum of 

Squares df 
Mean 
Square F Sig. 

Partial 
Eta-Squared 

Intercept 
treat 
Error 

1378.125 
31.734 
3.884 

1 
1 
4 

1378.125 
31.734 
0.971 

1419.122 
32.678 

0.000 
0.005 

0.997 
0.891 

Notice that we have a statistically significant effect for treatment (p = 0.005). This 
is the difference in treatment means resulting from collapsing across levels of the 
repeated measure. 
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7.13.1 Another Look at the Between-Subjects Factor 

For pedagogical purposes, we now run an ordinary between-subjects ANOVA, 
testing the null hypothesis that population means on treatment are equal. Our only 
factor in the model is treat: 

UNIANOVA time BY treat 
/METHOD=SSTYPE(3) 
/INTERCEPT=INCLUDE 
/CRITERIA=ALPHA(0.05) 
/DESIGN=treat. 

Tests of Between-Subjects Effects 

Dependent Variable: time 

Source Type III Sum of Squares df Mean Square F Sig. 

Corrected Model 
Intercept 
treat 
Error 
Total 
Corrected Total 

31.734a 

1378.125 
31.734 
44.971 

1454.830 
76.705 

1 
1 
1 
16 
18 
17 

31.734 
1378.125 
31.734 
2.811 

11.290 
490.315 
11.290 

0.004 
0.000 
0.004 

aR-squared = 0.414 (adjusted R-squared = 0.377). 

The above computation of the sums of squares for treatment is the same as seen in 
the between-subjects effects in the repeated measures ANOVA (i.e., SS = 31.734). 
However, notice the error term, it is not equal to 0.971 as it is in the repeated measures 
output. Why not? Because the above analysis investigates the effect of treatment, and 
what remains is relegated to the error term. As discussed in this chapter, dissecting this 
error is one advantage of performing repeated measures—It allows you to remove 
variability due to subject that would otherwise make its way into the error term. This 
is analogous to the simpler case of the paired samples t-test in which the covariance 
between treatments or testing conditions is removed from the error term. In paired t-
tests, randomized blocks, or repeated measures, all three methods remove variability 
due to block or subject that would otherwise make its way into the error term, and 
consequently, often provide a more powerful test of effects of interest. 

Contrasts, post-hocs, and simple effects can also be calculated on the repeated 
measures data. For simple effects, one can compare trials at each level of treatment by 
(output not shown): 

/emmeans = tables(trial*treat) compare (trial) adj (Bonferroni) 

7.14 CHAPTER SUMMARY AND HIGHLIGHTS 

•	 In classic between-subjects designs, subjects or objects are randomly assigned 
to a condition on the independent variable with the hope that nuisance factors 
more or less balance out across groups. 
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•	 The goal of a randomized block design is to attempt to reduce the error term in 
the analysis of variance by administering levels of the independent variable 
across homogeneous subsets of individuals that are more alike. In this way, 
randomized block designs attempt to capture within-group homogeneity and 
model it out of the error term so that the factor(s) of interest in the design can be 
tested with greater sensitivity and power. 

•	 The randomized block design can be conceptualized as an extension of the 
simpler matched samples design. 

•	 Randomized block designs can be analyzed as fixed effects, random effects, or 
mixed models. Most often, because it makes most sense to consider block as a 
random effect, the mixed model is appropriate (assuming at least one other 
factor is fixed). 

•	 A nonadditive model is one that includes an interaction term. An additive model 
is one that does not. 

•	 In designs where there is a single observation per cell (the so-called non-
replicated design), it becomes impossible to generate an error term separate 
from the interaction term. This is an important consideration in both planning a 
scientific investigation as it is in building and interpreting a statistical model. 

•	 The Tukey test for nonadditivity, as well as the other so-called additivity tests, may 
be used for testing the presence of an interaction effect in n = 1 per cell designs. 

•	 In both randomized block designs and repeated measures, because measure
ments are nested within block/subject, the expectation of zero covariance 
between treatments is no longer reasonable. We must instead make assumptions 
about the correlational structure between treatments. Compound symmetry and 
sphericity are common assumptions made for these models. 

•	 There are many adjustments to degrees of freedom available if the assumption 
of sphericity is violated or is suspect. Of these, the Greenhouse–Geisser 
conservative F-test is often recommended. 

•	 The intraclass correlation ρ is useful in demonstrating the influence of pairwise 
treatment covariance in randomized block or repeated measures analysis of 
variance. When ρ � 0, σ2 is equal to treatment variance alone. When ρ � 1, σ2 � 0.e	 e 

•	 A repeated measures model can be conceptualized as a special case of a 
randomized block design in which subjects are the blocks. 

•	 Repeated measures can be conceptualized as an extension of the paired samples 
t-test. 

•	 Randomized block designs and repeated measures models can be analyzed in 
both R and SPSS. 

REVIEW EXERCISES 

7.1	 What distinguishes a between-subjects design from a repeated measures design 
(or “within-subjects” design)? Explain how these two designs are different 
from one another. 
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7.2	 Define a randomized block design. What is the general purpose of such a 
design? 

7.3	 Explain how subjects are nested within blocks in a randomized block design. 

7.4	 Discuss how a randomized block design can be conceptualized as an extension 
of the matched pairs design. 

7.5	 Under what situations is a block best considered a fixed or random factor? 
Explain. 

7.6	 Distinguish between the additive and nonadditive randomized block designs. 

7.7	 In a randomized block design where n = 1 per cell, discuss the problems with 
designating both effects as fixed effects and why a test of these effects is not 
possible under the nonadditive model. 

7.8	 Briefly explain the purpose of Tukey’s test for nonadditivity. 

7.9	 Discuss how the intraclass correlation can be used to demonstrate the influence 
of pairwise treatment covariance in a randomized block or repeated measures 
ANOVA. 

7.10	 Explain why repeated measures ANOVA is best considered a special case of 
the randomized block design. 

7.11	 Consider the data in Table 7.6. Nitrogen in blood plasma was recorded in six 
rats across 360 days. 

(a)	 Perform a one-way repeated measures ANOVA in R. 

(b)	 Perform the same one-way repeated measures ANOVA in SPSS. 

(c)	 Do you have evidence to doubt the assumption of sphericity? Why or why 
not? 

(d)	 Does interpretation of the Greenhouse–Geisser correction provide a 
different conclusion than when sphericity is assumed? 

(e)	 Estimate the trend of blood plasma from day 25 to day 360. What 
polynomial best accounts for the trend? 

TABLE 7.6 Nitrogen in Blood Plasma 

Age 25 37 50 60 80 100 130 180 360 

Rat 1 0.83 0.98 1.07 1.09 0.97 1.14 1.22 1.20 1.16 
2 0.77 0.84 1.01 1.03 1.08 1.04 1.07 1.19 1.29 
3 0.88 0.99 1.06 1.06 1.16 1.00 1.09 1.33 1.25 
4 0.94 0.87 0.96 1.08 1.11 1.08 1.15 1.21 1.43 
5 0.89 0.90 0.88 0.94 1.03 0.89 1.14 1.20 1.20 
6 0.83 0.82 1.01 1.01 1.17 1.03 1.19 1.07 1.06 
Means 0.86 0.90 1.00 1.04 1.09 1.03 1.14 1.20 1.23 
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LINEAR REGRESSION
 

By this method, a kind of equilibrium is established among the errors which, since it 
prevents the extremes from dominating, is appropriate for revealing the state of the 
system which most nearly approaches the truth. 

(Legendre, 1805, pp. 72–73) 

I found it hard at first to catch the full significance of the entries in the table, which had 
curious relations that were very interesting to investigate. They came out distinctly when 
I “smoothed” the entries by writing at each intersection of a horizontal column with a 
vertical one, the sum of the entries in the four adjacent squares, and using these to work 
upon. I then noticed that lines drawn through entries of the same value formed a series of 
concentric and similar ellipses. 

(Galton, 1886, pp. 254–255) 

Suppose a biologist would like to be able to predict the heights of offspring once they 
are grown adults. For a randomly chosen adult offspring, what is a good guess at its 
height? A reasonable guess might be the population mean of all adult offspring, 
especially if it was desired to minimize the signed error in prediction. However, 
guessing the mean would likely still result in imprecise predictions, and on the whole, 
result in much error in prediction. Knowing that parental height is correlated to 
offspring height, the biologist seeks a statistical method to exploit this correlation to 
reduce his error in predicting offspring height. The statistical method that will be of 
use to the biologist is simple linear regression. 

www.wiley.com/go/denis/appliedmultivariatestatistics
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Simple linear regression is a statistical method useful for making predictions about 
a continuous response variable based on knowledge of a second variable, usually also 
continuous, though categorical variables can also be modeled via dummy-coded 
regressors. The designation simple linear regression denotes the fact that the regres
sion model features only a single explanatory variable. Models with two or more 
explanatory variables will be discussed in Chapters 9 and 10. 

More than simply making predictions, regression seeks to predict values on the 
response variable such that the average error in prediction is less than what would be 
the case had the explanatory variable not been used as a predictor. What this means 
statistically is that there must be a correlation between the response and explanatory 
variable for linear regression to be effective. Otherwise, in the absence of such a 
correlation, predictions would be generally no more accurate than if the explanatory 
variable were not used at all. 

Draper and Smith (1998) is a classic resource on regression analysis that also 
features topics on weighted least-squares, ridge regression, nonlinear estimation, and 
robust regression. Fox (1997) is a definitive thorough treatment of regression and 
related models, which includes generalized linear models. Fox also provides a rather 
in-depth study of diagnostics for linear models, and also includes chapters on the 
geometry of such models. Cohen et al. (2002) is also a classic resource on applied 
regression with a focus toward the behavioral sciences. Pedhazur (1997) provides a 
thorough treatment targeted toward behavioral scientists. Neter et al. (1996) feature 
wide coverage of linear models in general. Wright and London (2009) is a useful 
resource for fitting regression models in R. 

8.1 BRIEF HISTORY OF REGRESSION 

Regression analysis has a very deep history. The techniques of correlation and 
regression, as applied to empirical observations, are generally attributed to Francis 
Galton (1822–1911), an English Victorian who made countless contributions to science 
in fields such as anthropology, geography, psychology, and statistics (Figure 8.1). For a 
discussion of Galton, see Fancher and Rutherford (2011). For a read of some of 
Galton’s original works in the area of statistics, see Galton (1886, 1888). 

Several historians, however (e.g., Hald, 1998), have noted that the mathematics of 
correlation and regression predated Galton by many years. Adrien Marie Legendre 
(1752–1883) is generally credited with the development of primitive least-squares 
theory, the exact method later employed by Galton in analyzing empirical observations 
(Stigler, 1986). Legendre published his method in 1805 in Nouvelles méthodes pour la 
détermination des orbites des comètes, which included a section on “Sur la méthode des 
moindres quarrés” (which in English translates to “On the method of least-squares.”). 

In addition to Legendre, correlational theory was likely developed in one form or 
another by other pioneers as well (see Denis (2001) and Walker (1929) for details). 
Among the most significant of these is perhaps Auguste Bravais (1811–1863), a 
professor of astronomy and physics, who wrote a paper in 1846 titled “Analyse 
mathématique sur les probabilités des erreurs de situation d’un point,” which 
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FIGURE 8.1 Francis Galton. Innovator of correlation and regression. 

translated means “Mathematical analysis on the probability of errors of a point.” Karl 
Pearson (1920) credits Bravais with having discussed the theorems of correlation in 
this paper. He essentially discovered what Galton would later call the regression line 
by an investigation of elliptical areas, but is thought to have not fully realized it. As 
Walker (1929) notes, Bravais could not make the “leap” required for a full-fledged 
discovery of correlation and regression. Depicted in Bravais’ work was the geometrical 
ellipse, which is, for all purposes, the regression surface later discovered by Galton: 

As Pearson (1920) noted regarding Bravais’ geometrical analysis: 

He gets the line [i.e., “OM”] which corresponds to Galton’s regression-line [sic]. But this 
is not a result of observing x and y and determining their association, but of the fact that x 
and y are functions of certain independent and directly observed quantities (p. 32) 

If we compare Bravais’ work with that of Galton’s 50 years later, the similarity is 
apparent (see Figure 8.2). Indeed, as noted by Friendly, Monette, and Fox (2013): 

It is not stretching the point too far to say that a large part of modern statistical methods 
descend from these visual insights: correlation and regression [Pearson (1896)], the 



336 LINEAR REGRESSION 

FIGURE 8.2 Galton’s 1886 correlational surface. 

bivariate normal distribution, and principal components [Pearson (1901), Hotelling 
(1933)] all trace their ancestry to Galton’s geometrical diagram.” (p. 2) 

Galton’s correlational diagram related the heights of mid-parents (the average height 
of the mother and father) with their adult children. Thenumbers in the tablecorrespond to 
the numbers of mid-parent to adult children height combinations. And though Galton’s 
correlational diagram is somewhat more complex than we shall detail in this chapter, 
one can appreciate the general similarity between his work and that of Bravais. 
Most significantly, both men obtained the correlational ellipse. In the case of Galton’s 
work, the ellipse represented an empirical reality first, whereas in the case of Bravais, it 
appeared to be mostly a theoretical deduction. The distinction between the two discov
eries is why Pearson referred to Galton’s correlation as that of “organical association.” 

8.2 REGRESSION ANALYSIS AND SCIENCE: EXPERIMENTAL 
VERSUS CORRELATIONAL DISTINCTIONS 

Oftentimes researchers associate the use of analysis of variance models with 
experimental data and the use of correlational and regression techniques with 
nonexperimental data. The reason for this is largely historical rather than technical. 
There is nothing “experimental” or “nonexperimental” about a statistical technique, 
any more than there is anything experimental or nonexperimental about your pocket 
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calculator. Either analysis of variance or regression can be used with either type of 
data, and often are. Whether a scientific study is experimental or not has everything to 
do with the research design, not the statistical model used to analyze findings. 

The reason for the popular distinction is likely because analysis of variance designs 
arose in the context of experimental studies, whereas regression analysis, predating 
ANOVA by about 30–40 years (depending on when you consider the “origin” of 
regression to be), had its origins in the context of nonexperimental, correlational 
investigations. As we will see, one might view ANOVA as a subcategory of 
regression analysis, one for which the partitioning of variability is made much 
simpler for models with categorical predictors than with continuous ones. Indeed, 
some have argued that had high-speed computing machines been available during the 
advent of regression analysis, Fisher’s analysis of variance (beginning in the 1920s), 
as a distinct technique, may not have come into existence at all, but rather may have 
forever been naturally subsumed under the wider regression model. Fisher’s genius 
was in providing researchers with a useful and convenient statistical methodology for 
partitioning variability, originally in agricultural and biological settings. Mathemati
cally, however, the two statistical methods, that of ANOVA and regression, overlap a 
great deal. This is why often in rather in-depth studies of regression analysis, analysis 
of variance models are presented as special cases rather than as distinct models in their 
own right (Fox, 1997). 

8.3 A MOTIVATING EXAMPLE: CAN OFFSPRING 
HEIGHT BE PREDICTED? 

To help motivate our discussion of regression analysis, we consider the original data 
analyzed by Galton in 1888 on the heights of parent and their grown offspring (we 
surveyed these data somewhat in Chapter 3). Some of Galton’s data appear below 
(there are 928 cases in total): 

> library(HistData) 
> library(car) 
> some(Galton) 

parent child 
32 65.5 63.2 
56 69.5 64.2 
84 67.5 64.2 

The question we (as did Galton) would like to ask about these data is the following:
 

Is child height able to be predicted by knowledge of parent height?
 

If the answer to the above question is yes, then we would expect there to be a
 
relationship between these two variables. A plot and imposed regression line suggests 
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there to be a somewhat linear relationship. That is, the data points, which are a subset 
of the Cartesian product, hint at a polynomial of degree 1 as perhaps the best 
functional rule for accounting for the scatter: 

> attach(Galton)
 

> plot(parent, child, main = "Scatterplot of Child and Parent Heights")
 

We conduct the linear regression using R’s lm hypothesizing child as a function of 
parent: 

> reg.model <- lm(child ∼ parent)
 
> reg.model
 

Call:
 
lm(formula = child ∼ parent)
 

Coefficients: 
(Intercept) parent 

23.9415 0.6463 

We can fit a least-squares regression line using abline (a red one): 

> abline(reg.model) 
> abline(reg.model, col = "red") 

Referring to the coefficient estimates obtained in the lm output of 23.94 for 
intercept and 0.64 for slope, the raw-score regression equation representing the line of 
best fit in Figure 8.3 is given by 

´ yi	 � a � bxi � ei 

� 23:9415 � 0:6463�xi� � ei 
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FIGURE 8.3 Regression line of child on parent. 

´ Using the estimated regression equation, we could obtain a predicted value yi for a 
given value xi. For instance, what is the predicted height of offspring for a parent 
height of xi � 68? The predicted height is computed: 

´ yi � a � bxi � ei 

� 23:9415 � 0:6463�xi� � ei 

� 23:9415 � 0:6463�68� 
� 67:89 

That is, for a parent height of 68, the predicted child height is 67.89. 
Informally, note how the least-squares regression was fit. It was fit in such a way 

that it provided the best fit to the data swarm. How this “best fit” idea is operation
alized and defined is an idea we will unpack shortly. For now, it is enough to intuit that 
the regression line is fit in the sense of minimizing or maximizing some function of the 
data. As we will see soon, the OLS (ordinary least-squares) line is that which 
minimizes the sum of squared errors around the line. 

8.4 THEORY OF REGRESSION ANALYSIS: A DEEPER LOOK 

As an introduction to the theory of regression, as is true when learning any new 
statistical method, it is first helpful to recall where we have already been. Recall the 
one-way fixed effects analysis of variance model of previous chapters: 

yij � μ � αj � εij 
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Recall that the purpose in coming up with a model equation was to be able to theorize, 
on a quantitative level, how the data were generated. We theorized that any randomly 
sampled observation from the population in a random group, that is, yij (individual i in 
group j) was a function of three components: 

•	 μ, which was an overall grand mean of the population 

•	 αj, which was the effect of being in one population versus another (i.e., the 
corresponding sample effect was aj � yj � y:) 

•	 εij, which was random error that we assumed had a mean of 0 and finite variance 
σ2 
e 

The first part of the model, that of μ � αj, was the systematic portion of the model, 
while the last component of the model εij represented, in a sense, our failure to account 
for individual differences entirely. In other words, we may have been able to make 
reasonable predictions of yij via μ � αj, but in the end we had to concede that our 
predictions might still deviate from expectation. Recall that the expectation for each 
group j was the mean for that group, E�yj� � μj, which, if the null hypothesis held, 
then E�yj� � μ across all groups. To account for our errors in prediction, we 
introduced the error term into the model εij, and assumed it to behave in a random 
unsystematic fashion. 

In regression, we put forth another model that serves as a “theory” for how data 
were generated. Though at first glance the model may appear different than that 
studied in ANOVA, as we learn more about the model and its variations, we will 
learn that it is not that different from the analysis of variance setup. Though at first 
their similarities can be difficult to grasp, our study of regression, especially the 
multiple regression models of the following chapter, will help in revealing their 
likeness. 

The simple linear regression model is given by 

yi � α � βxi � εi	 (8.1) 

where 

•	 yi is an observed value of the dependent or “response” variable 

•	 α is the population intercept and is fixed for the given population, meaning that 
for a given population we are modeling, we are assuming it to have only a single 
intercept term 

•	 β is the population slope parameter, and like α, is also fixed for the given 
population, which as was true for α, implies that we are assuming the given 
population to have only a single β term. We do not cover the case of random 
regressors in this book. For a discussion of random regressors, see Fox (1997, 
p. 235). 

•	 εi is the error associated with predictions of yi, and unlike α or β, it is not fixed 
but random (just as in ANOVA models). 
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Let us compare side-by-side for a moment the ANOVA model to the regression 
model: 

versusyij � μ � αj � εij yi � α � βxi � εi 

We note the following similarities: 

•	 In both models, we are wanting to predict a randomly sampled observation. In the 
ANOVA model, these observations are subscripted by ij to denote individual i in 
group j. In the regression model, observations are subscripted only by i. This is 
because in a simple regression model such as this, there are no “groupings” on the 
predictor variable. Or, if you wish, the actual groupings are infinitely small 
“categories” of the continuously-natured predictor variable, which have a limiting 
probability equal to 0 as the “slices” become smaller and smaller. 

•	 The first term in the ANOVA model is μ, representing the overall grand mean. In 
the regression model, the first term is α, which represents the intercept for the 
regression line. Recall that the intercept for a line is where the line meets the 
ordinate axis. Though μ and α are different “things,” as we will see, by centering 
our predictor xi in the regression model, we can transform α to represent the 
predicted value of yi at the mean of xi. The point to emphasize right now is that 
both μ and α can be said to represent “starting points” to the model before the 
actual “exciting” part of the model takes place (which is included in αj in the 
ANOVA and β in the regression). Both μ and α can be conceptually interpreted 
as all that is “common” to observations in the given data for ANOVA in terms of 
an overall mean, and the starting point of the line of best fit in regression. 

•	 The second term in the ANOVA model is the population effect αj, while the 
second term in the regression model is the slope parameter β. In each model, this 
is where the “action” is. Why is this so? Consider the case where population 
effects αj are all equal to zero in the ANOVA model and the slope effect β is 
equal to zero in the regression model. What would this imply? Under this 
circumstance, the expectation for each model would be E�yij� � μ � εij for the 
ANOVA model and E�yi� � α � εi in the regression model. Notice the similar
ity between these two expectations. In each case, where the treatment effect or 
slope “effect” is equal to 0, our best prediction is that of the population mean in 
ANOVA and the population intercept in regression. Incidentally, do not confuse 
αj in the ANOVA model (i.e., population effects) with α in the regression 
model, as they are not the same thing. 

•	 The last term in each model is εi and represents deviation from expectation. That 
is, in both models, εi represents that which is unaccounted for or unexplained by 
the systematic portion of the model. When we work with sample data, we 
typically refer to ei instead of εi. 

Once the intercept and slope have been estimated by respective estimators a and b, 
one enters a value for xi to obtain the predicted value for yi. We will designate the 
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´ predicted value of yi by the notation yi (i.e., yi “prime”). As mentioned, in the typical 
regression model, the values for xi are usually assumed to be fixed rather than random 
quantities. That is, their individual values are assumed to be selected in advance by the 
researcher, rather than being sampled at random as one would have in a random 
effects model. 

The constants α and β are traditionally estimated by ordinary least-squares, though 
other estimation procedures are also available (e.g., maximum-likelihood and 
weighted least-squares). As we will discuss when we lay out the assumptions of 
the regression model later, the expectation of yi, E�yi�, is equal to α � βxi and the 
expectation of εi, E�εi�, is equal to 0. We also assume that the expectation of yi given 
any chosen value of xi, that is the conditional expectation, is equal to α � βxi. That is, 
E�yi =xi� � α � βxi. 

We see then that both the analysis of variance model and the regression model 
share very similar characteristics in terms of their model equations. Which is the more 
general model? As we will continue to learn, the regression model is “king” of the 
two, since ANOVA can be subsumed under the wider regression model by a relatively 
simple reparameterization. 

8.5 MULTILEVEL YEARNINGS 

Readers with at least some familiarity with hierarchical or multilevel regression 
modeling may have experienced the temptation to “free” α and β in (8.1), thereby 
allowing them to be random rather than fixed effects. Indeed, one advantage of 
extending the fixed linear regression model to one with random effects is this ability to 
estimate variance components associated with these parameters (as one ordinarily 
does in virtually all models with εi, since recall εi is a random effect) to learn how 
much variance in the response variable can be accounted for by such parameters. This 
idea of freeing parameters and thereby conceiving obtained sample statistics to be a 
random sample of a wider set of possible parameter values is analogous to how we 
conceptualized random effects and multilevel models in the previous chapters on 
ANOVA. The only essential difference is the nature of the parameters. For details on 
fitting multilevel regression models in R, see Gelman and Hill (2007). 

8.6 THE LEAST-SQUARES LINE 

Consider the depiction of the least-squares line in Figure 8.4. About Figure 8.4: 

•	 sy is the sample standard deviation of values of the response variable 

•	 sx is the sample standard deviation of values of the predictor variable 

•	 b � r�sy =sx� is the regression slope for yi predicted from xi, computed in this 
case as the correlation coefficient r multiplied by the ratio of standard deviations 
sy to sx. Under the condition that sy � sx, as such would occur if both variables 
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FIGURE 8.4 Linear regression of Y on X, where sy and sx are the standard deviations of Y and 
X, respectively; b = r(sy /sx) is the slope of Y on X. 

were standardized to have variances each equal to 1, b becomes simply a 
function of r for the single predictor case, since 

b � r�sy =sx� � r�1� � r 

Such coefficients computed on standardized xi and yi are referred to as standard
ized regression coefficients β, or  “Betas.” 

The regression line featured in Figure 8.4 can be conceptualized as a sort of floating 
mean, in that it traces the conditional distribution of yi given a particular value of xi. 
The extent to which the linear model accounts well for the data is the extent to which 
points fall perfectly along the regression line. Though beyond the scope of this 
chapter, much insight into how regression (and other statistical methods) works can be 
gleamed via a deeper understanding of ellipses (of the kind depicted in Figure 8.4). 
See Friendly, Monette, and Fox (2013) for an excellent treatment and discussion. 

8.7 MAKING PREDICTIONS WITHOUT REGRESSION 

It is often taught that the purpose of regression analysis is to make predictions. 
However, are we not able to make predictions without regression? Of course we are. 
For instance, if a meteorologist wanted to predict tomorrow’s temperature, could she 
not do it without using predictive weather models? Of course she could. Assuming she 
was not concerned with minimizing some function of the errors in making her 
predictions, she could predict any temperature she chooses, perhaps even “ball
parking” it based on her memory of last year’s daily temperatures over the course of 
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FIGURE 8.5 Galton data adjusted to show no correlation. 

the year. However, her accuracy in prediction might not be very good. Yes, drawing 
informally on her memory of last year’s temperatures might be better than if she 
simply drew temperatures “out of a hat” and completely at random, but her accuracy 
in prediction would likely still be quite poor. 

This is where regression analysis comes in. Regression analysis helps us improve 
our overall accuracy in making predictions. Oftentimes, we implicitly guess average 
values when predicting, but regression tells us we can usually do better than that, 
especially if we have other variables correlated to the variable we are seeking to make 
predictions about. 

To illustrate, consider again Figure 8.3, the plot of Galton’s data, but now altered to 
denote zero correlation between parents and their grown-up children (Figure 8.5). 
Suppose now, under this circumstance, Galton wished to make as accurate predictions 
of child height as possible. Which value should he guess? To keep the sum of squared 

n errors i�1 ε
2 to a minimum, it stands that he should guess the mean child height. i 

Why? Because under the condition of zero correlation, the mean guarantees that the 
sum of squared errors of prediction will be smallest when it is used as the predicted 
value (Hays, 1994). The mean child height is equal to 68.1, and thus his prediction for 
any given child would be 68.1. 

The Galton example here emphasizes the fact that if there is no correlation between 
xi and yi, then our best “line” of prediction, so to speak, assuming our goal is to 
minimize squared errors in predicting, would be the horizontal line representing the 
mean. In such a case, our error in prediction would be equal to the standard deviation 
of yi. This horizontal line is, in actuality, the regression line of yi on xi either under the 
situation of no predictor or, equivalently, under the condition of zero linear 
correlation between yi and xi. Understanding this idea is a powerful “first step” to 
understanding what regression analysis is all about. 

Now, consider the situation where there is a linear relationship between xi and yi, as  
depicted in Galton’s original data (Figure 8.6). We will tilt the regression line upward 
so that it becomes our new floating mean from which we will make predictions. With 
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FIGURE 8.6 Linear regression of child height on parent height. 

this tilted line in place, we will never predict a single value yi for all values of xi as we 
did for the horizontal “regression line.” Rather, with the tilted line in place (the one 
computed based on knowledge of the correlation between xi and yi), our predictions 
will be values that fall on the line conditional upon our selection of values for xi 
(where xi is subscripted here to emphasize that we are selecting a given value of the 
variable for input into the regression equation). 

We can summarize the primary features of regression in the following statement: 

In the absence of correlation, the regression line that minimizes the sum of squared error 
is the horizontal line corresponding to the arithmetic mean. In the presence of correlation, 
the regression line that minimizes the sum of squared error is the “tilted” line (titled up or 
down depending on the sign of the correlation) corresponding to the “new” regression 
line about which we can make predictions while keeping the average sum of squared 
errors of prediction to a minimum value compared to any other place where we could fit 
the line. 

8.8 MORE ABOUT εi 

We said that the expectation or mean of the random variable εi is equal to 0. But what 
does this imply, exactly? It implies that on average, our predictions will be correct and 

´ ´ without error. That is, on average, it will be true that yi � yi (i.e., E�yi� � yi). Recall 
that though the arithmetic mean is a good summary statistic for a sample or population 
of data, it is generally not a good summary statistic for any single observation from 
that set of data, especially if the set of data exhibits much variability. For example, that 
the mean home price in your city is $250,000 does little to describe your home value 
of $200,000. Simply because the expectation of εi is equal to 0 does not definitively 
tell us what happens for any subset of values “on the road” to E�εi� � 0. Likewise in 
regression, for any given value of xi, it is certainly reasonable that our model may 
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generate an error in prediction, which we denote, for our sample data by 

ei � yi � �a � bxi� 
It seems natural that in fitting a function to a bivariate plot of data that we should want 
to minimize, on average, errors in prediction. But like with any arithmetic mean, we 
cannot guarantee that for any given value of xi we will not still make a relatively 
substantial error. What we can guarantee is that in estimating parameters using 
ordinary least-squares, on average, and given that our regression assumptions are 
more or less satisfied (to be discussed shortly), our errors of prediction will be smaller 
than anywhere else we may have fit the line. This is the essence of ordinary least-
squares regression. It does not guarantee we will make few errors in prediction or even 
precise predictions each time, no better than the mean house price of your city 
guarantees a precise prediction of your home value. What it does guarantee, however, 
is that on average, squared errors will be minimized. 

8.9 MODEL ASSUMPTIONS FOR LINEAR REGRESSION 

As was the case in analysis of variance models, we likewise need to impose a set of 
assumptions on our regression model before we can use the model to make inferences. 
We list and briefly discuss these assumptions below that are typically held in ordinary 
least-squares regression. Some of these are properties of the regression model per se, 
while others are specifically required for OLS estimation. We do not distinguish 
between the two, and for convenience, discuss them collectively in a single discus
sion. Other types of estimation do not necessarily require all of these assumptions. As 
an example, generalized least squares (GLS) does not require assumptions of 
normality or homogeneity of variance, and is useful when errors are correlated. 
See Fox (1997, pp. 370–372) for a brief discussion of GLS estimation. We state the 
assumptions for linear regression: 

•	 Linearity in Parameters. We assume that the relationship between yi and xi or 
x1; x2; . . . ; xk (in the case of multiple predictors, see Chapter 9) is linear in the 
unknown parameters of α and β (or again β1; β2; . . . ; βk in the case of multiple 
predictors). It is important to emphasize that linearity in the parameters does not 
mean we cannot have higher order powers of xi. For instance, 

2yi � α � β1xi � β2x � εii 

still exhibits linearity in parameters since α and β are still to the first power. In 
contrast, 

yi � α � β1xi � β22xi � εi 

is not linear, since β2 is squared. Nonlinear models such as these are briefly 
discussed in Chapter 11. 
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We also assume that the expected value of yi, or  E�yi�, is equal to α � βxi, where 
α � βxi is sometimes called the model function. We also assume that the 
expectation of yi given any chosen value of xi, is equal to α � βxi (i.e., 
E�yi =xi� � α � βxi). 

•	 Normal and Identically Distributed Errors. That is, εi∼NID�0; σ2�, which says 
that errors are distributed with a mean of zero and a finite variance σ2 > 0. Also, 
for each conditional distribution of yi (i.e., yi =xi), normality also holds. We will 
see how we can visually and informally test this and other assumptions through 
an examination of residuals toward the end of the chapter. 

•	 Homoscedasticity. For each population denoted by values of the variable xi, the 
variances of these populations on yi are equal. If distributions are not homo
scedastic, then a problem of heteroscedasticity is said to exist. Heteroscedas
ticity (sometimes written as “heteroskedasticity”) essentially means unequal 
variances. Equivalently, we may state this assumption as one of the variance of 
errors being constant across xi and not dependent upon it. 

•	 Independence of Errors. The errors εi both within conditional distributions of 
yi =xi and between conditional distributions of yi =xi are independent. Practically, 
what this means is that no single observation in the set of data is dependent (in a 
probabilistic way) on any other observation. In the matrix formulation of the 
regression model, as we will soon discuss, we can express this idea for εi as σ2Iε 
where I is the identity matrix and σ2 is the variance of errors. What σ2I isε	 ε 
actually communicating is that the covariance of errors is equal to zero. For 
example, in a three-variable problem, we would have 

σ2 0ε	 0 
σ2 
ε I � 0 σε 

2 0 
0 0 σε 

2 

Notice that all covariances in the upper (and hence, lower) triangular of the 
matrix are equal to 0. We also assume the errors εi have a constant variance 
(equal to σ2 down the main diagonal). ε 

•	 Absence of Influential or Outlying Data. We assume that our data does not contain 
observations that will influence the regression solution to such an extent that it is 
no longer feasible to believe that the fitted regression line is a suitable model for 
the obtained data. Though outliers should generally never be removed from a 
sample unless there is good substantive (in addition to statistical) reason for doing 
so, the linear regression model assumes that there are no extreme observations that 
would otherwise contribute to gross misspecification of the fitted model. 

8.9.1 Model Specification 

There are two additional general assumptions we should make, or at minimum, 
consider, when fitting a simple linear regression model to empirical data. The first is 
that we have specified the correct model. More relevant in multiple regression models, 
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the assumption essentially implies that we have chosen predictors that are thought to 
account for variance in the measured response variable (or “variables” in the case of 
the wider multivariate multiple regression model), and that we have not left any 
“important” variables out of the regression model. At its extreme, we would like to 
assume that all sources of variation accountable for explaining yi have been 
incorporated in the model. Of course, this is fanciful and unrealistic thinking, since 
whatever predictors we choose are likely to be only some of the many that may 
account for variance in yi. This is one reason for preferring experimental designs over 
nonexperimental ones, since the process of randomization helps to ensure (but in no 
way guarantees) that the innumerable nuisance factors, either observable or latent, 
are distributed somewhat evenly across treatment levels. Regardless of whether you 
are working in the context of an experimental or a nonexperimental design, if you are 
aware of additional variables that account for significant sources of variance in your 
dependent variable and you do not include such variables in your model, then the 
model can be said to be incorrectly specified. When a model is incorrectly specified, 
not only is it substantively less meaningful, but also parameter estimates are likely to 
be biased (see Draper and Smith (1998, pp. 235–242)). 

As an example, suppose we are studying the predictive ability of depression scores 
based on a measure of anxiety. We know a priori, however, that socioeconomic status 
(SES) is also an important predictor of depression rates. Then simply regressing 
depression on anxiety would constitute a misspecified model. As we will discuss in 
the following chapter on multiple regression, other predictors included in the model 
can have a significant impact on the interpretation of statistical outcomes and the 
estimation of parameters. In brief then, we may say the following: 

A properly specified model is one in which you are identifying and accounting for, at 
minimum, the correct “already-known” sources of variation in yi, to the extent that you 
are knowledgeable or able to. If you are testing a model for which you are aware that 
important predictors are being left out, and could have a significant impact on the model 
under consideration, then your model is misspecified. 

Itdoes not take long to realize that,onan idealistic level, allmodelsaremisspecified to 
some degree, especially if we stretch our definition to include all possible sources of 
variation,both knownand unknown. Evenmodels emanating fromexperimental designs 
can be a struggle to specify well. We gain solace and comfort in George Box’s wise 
words, all models are wrong, some are useful. Beyond that, we must do the best we can. 

8.9.2 Measurement Error 

In speaking of unrealistic or otherwise unattainable assumptions, a final assumption 
implicitly made in linear regression is that there is no measurement error in predictors. 
As Fox (1997) notes: 

The regression model accommodates measurement error in the dependent variable, 
because measurement error can be conceptualized as a component of the general error 
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term ε, but the independent variables in regression analysis are assumed to be measured 
without error. (p. 130) 

What this assumption implies is that predictors have perfect reliability. The 
consequences of measurement error in a given predictor are generally to attenuate 
(i.e., lower) the regression coefficient, and in the context of multiple predictors (see 
Chapter 9), to diminish the utility of the predictor as a statistical control (see Fox, 
1997, pp. 130–132). The assumption of no measurement error is an unrealistic one for 
the most part, and the degree to which it is violated will depend to some extent on the 
sophistication and accuracy of measurement instruments used. For example, if one is 
measuring reaction time, one can likely do so with a relatively small amount of 
measurement error. If one is measuring IQ, on the other hand, the risk of measurement 
error will be of greater concern (unless of course your operational definition of IQ 
implies it can be measured simply and quite precisely). 

8.10 ESTIMATION OF MODEL PARAMETERS IN REGRESSION 

From a purely technical standpoint, the problem of linear regression boils down to 
estimating model parameters subject to particular constraints. In the model equation 
yi � α � βxi � εi, we wish to estimate parameters α and β such that they are estimated 
in such a way that conforms to the overall purpose of building the model. What 
constraint or condition is appropriate? As mentioned, on both technical and com
monsense substantive grounds, it seems appropriate to choose a and b, which are 
estimators for α and β, such that the sum of squared errors 

n n 
2ei � �yi � �a � bxi��2 

i�1 i�1 

iskept toaminimumvalue,whichmeansthelinewearefittingtothedata, theleast-squares 
regressionline,guaranteesthatwearefittingthelinethat,overalland“onaverage,”hasthe 
least amount of prediction error compared to any other line we could fit to the data. 

Methods of estimation in linear regression include the aforementioned ordinary 
least-squares, but also maximum-likelihood, weighted least-squares, among others. 
By far the two most popular methods are ordinary least-squares and maximum-
likelihood. Under the condition that εi are independent and normally distributed (i.e., 
εi ∼ N�0; σ2�), maximum-likelihood estimation will provide identical estimates to 
those of least-squares. Weighted least-squares is suitable for situations when the 
variance of the response variable varies over the range of predictor values. Instead of 

n n 
minimizing ε2 as is true of least-squares, WLS seeks to minimize �wi�ε2 

i , where i 
i�1 i�1 

wi is some weight applied to errors ε2 
i . Reciprocals of the variance are often used as 

weights, although other weights can also be applied. For details on fitting weighted 
least-squares models, see Venables and Ripley (2002). 
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We now briefly discuss some of the principles behind ordinary least-squares 
estimation and briefly survey how to obtain the least-squares estimators. 

8.10.1 Ordinary Least-Squares 

Recall the regression model of (8.1) for a single predictor: 

yi � α � βxi � εi 

where α, β are parameters to be estimated from sample data. To be able to fit the least-
squares line, we require good estimators (i.e., statistics) for these parameters, 
analogous to how we required a good estimator for other parameters such as the 
population mean μ (which recall turned out to be the sample mean y). 

The least-squares estimators are obtained by first taking partial derivatives of 

ε2 with respect to both α and β. Recall what it means to take a partial derivative. It i 

means to differentiate the function with respect to one variable while holding the other 
variable(s) in the equation constant. In the case of least-squares, we wish to 

• differentiate ε2 with respect to α while holding β constanti 
i�1 

• differentiate ε2 
i with respect to β while holding α constant 

First, with respect to α, in terms of sample quantities, we have 

n 
2@ ei n 

i�1 � �2 �yi � a � bxi� (8.2)
@a 

i�1 

Then, with respect to β, 

n 
2@ ei n 

i�1 � �2 xi�yi � a � bxi� (8.3)
@b

i�1 

Solutions to (8.2) and (8.3) generate the ensuing normal equations: 

n n 

yi � na � b xi � 0 
i�1 i�1 

n n n 

xiyi � a x2 
i � 0 

i�1 i�1 i�1 

xi � b 

n 

i�1 

n 

n 

i�1 

From these equations, we obtain the least-squares coefficients: 

a � y � bx 
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as an estimator of α, and 

�xi � x��yi � y� 
b � �xi � x�2 

as an estimator of β. 
In words, the formula for b requires us to sum the cross-products of xi and yi, and 

then divide by the sum of squares for xi. The estimate for b can also be computed by 

covxyb � 
s2 
x 

since when expanded, 

b � 
covxy 
s2 
x 

� 

n 

i�1 
�xi � x��yi � y�=�n � 1� 

n 

i�1 
�xi � x��xi � x�=�n � 1� 

� 

n 

i�1 
�xi � x��yi � y� 

n � 1 
� n � 1 

n 

i�1 
�xi � x��xi � x� 

� 

n 

i�1 
�xi � x��yi � y� 

n 

i�1 
�xi � x��xi � x� 

Least-squares estimators are unbiased. That is, E�a� �  α and E�b� �  β. Furthermore, 
of all linear unbiased estimators, the least-squares estimators have the smallest 
sampling variance and thus have the smallest mean-squared error of prediction. 
This theorem is generally known as the Gauss-Markov theorem and has further 
implications if the assumption of normality is satisfied, such as being most efficient 
among all unbiased estimators (see Fox (1997, pp. 217–218), for a discussion). 

Ordinary least-squares is often mistaken by many to be the only method by which 
parameters in regression can be estimated. Indeed, OLS has become “synonymous” 
with regression. This is probably due to the fact that it is, by far, the most common 
approach, and has its history with the discovery of regression. However, as mentioned 
earlier, there are several other methods of estimation available, which include 
maximum-likelihood, weighted least-squares, etc. 

8.11 NULL HYPOTHESES FOR REGRESSION 

Obtaining estimates of α and β is one thing, but testing null hypotheses about their 
population values is quite another. We are most interested in testing the null 
hypothesis H0 : β � 0 against the alternative hypothesis H1 : β ≠ 0, where β is 
the population regression coefficient. As with all significance tests, we require the 
requisite estimate of the standard error. Why? Because even if our sample data yield a 
sample slope of say, b � 0:7, this in no way, on its own, suggests that the null 
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hypothesis is false and that β ≠ 0 in the population from which the sample data were 
drawn, analogous to how in the analysis of variance a mean difference in our sample 
did not by itself imply a mean difference in the population. 

What is needed is an estimate of how much sampling variability exists from sample 
to sample if we were to draw repeatedly from a population for which the null 
hypothesis were “true.” That is, if we sampled repeatedly from a population such that 
β � 0, how much variation around expectation (i.e., 0) would we experience in our 
sampling? If the estimate of b � 0:7, for instance, was sampled from a population (and 
its corresponding sampling distribution) in which there is expected much variation in 
slopes, then a value of 0.7 may not be regarded as that unlikely under the null 
hypothesis. However, if b � 0:7 were sampled from a population for which there is 
exceedingly little variation in slopes, then 0.7 may very well suggest to us that β � 0 is  
not true and that β ≠ 0 is a more accurate reality. We need an estimate of variability of 
our sample statistic b. In other words, we need to know the standard error of the slope. 

The variance of b is given by 

´ �yi � y �2 =�n � 2�i
2 i�1 sb � n �xi � x�2 

where 

2
•	 sb is the variance of the slope estimator. 

´�2 �yi�yi
•	 i�1 

n�2 is the variance of residuals, or variance of the estimate, or again, MS 
residual. Its square root is the standard error of the estimate (which is the 
standard deviation of residuals). 

�xi � x�2 is the sum of squares for the predictor. • 

2We can appreciate why sb is the way it is. We are taking a ratio of error variance 
(i.e., numerator) relative to a measure of variability in our predictor (i.e., denomina
tor). The extent to which average prediction error is large relative to variability in the 
predictor is the extent to which b will be estimated imprecisely, meaning that there 
will be much fluctuation from sample to sample. On the other hand, if average 
prediction error is small relative to variability in the predictor, b will be estimated 
more precisely, which implies less fluctuation in b from sample to sample. 

Computing the standard error from the variance of b is straightforward. As usual, 
we simply take the square root: 

n 

i�1 

n 

n 

i�1 

n ´ �yi � yi�2 =�n � 2� 
sb � i�1 

n �xi � x�2 

i�1 
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Though in most non-multilevel regression contexts we are not especially con
cerned with estimating the intercept parameter, in some cases we like to center 
predictors so that the intercept value corresponds to the mean on the predictor variable 
(see Chapter 9). Either way, an inferential test on α may be of interest. Also, since the 
intercept plays a much more significant role in advanced modeling techniques such as 
mixed models and the aforementioned multilevel model, obtaining a significance test 
is worthwhile. 

The variance of a turns out to be 

n n ´ 2x�yi � yi�2 
i 

i�1 i�1 s2 � a nn � 2 �xi � x�2 

i�1 
n 

where 

• s2 is the variance of the intercept estimator. a 
n 

´�2 �yi�yi
• i�1 

n�2 is, as before, MS residual. 

To get the standard error of s2, we again take the square root: a

sa � 

n 

i�1 
�yi � y ́ i�2 

n � 2 

n 

i�1 
x2 
i 

n 
n 

i�1 
�xi � x�2 

Having now obtained sampling variances (and their corresponding standard errors) 
for the slope and intercept parameters, we are now in a position to test null hypotheses 
on these parameters. We consider these tests next. 

8.12 SIGNIFICANCE TESTS AND CONFIDENCE INTERVALS 
FOR MODEL PARAMETERS 

Recall that we said that if predictor xi does not afford additional predictive power over 
and above simply predicting the mean of yi, then it implies a horizontal slope (i.e., a 
horizontal “regression line”), which also implies that we have no basis for rejecting 
β � 0. When we obtain a sample estimate of β, say, b � 0:7, we ask the question: 

Does b � 0:7 deviate enough from expectation that we can reject the null hypothesis 
β � 0 and infer β ≠ 0? 

Now that we have measures of sampling variability for b (i.e., the variance and 
standard error we just cited), we can now test the observed deviation b � β relative to 
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expectation under H0. That is, we can test the statistical significance of b against a 
value of the parameter β under the null hypothesis using a t-statistic: 

�b � βnull� t � 
sb 

where t is distributed on n � 2 degrees of freedom and βnull represents some value 
under the null hypothesis, usually equal to 0. The logic of the t-test is clear. We are 
comparing an observed deviation b � βnull with a deviation we would expect, sb, under 
the null hypothesis or, equivalently, under repeated sampling of b statistics from a 
population for which βnull is true. 

Likewise, the statistical significance of a can be assessed by a t-statistic: 

�a � αnull� t � 
sa 

where t is again distributed on n � 2 degrees of freedom. The logic of the test is 
analogous to that for b. We are comparing an observed deviation of the kind a � αnull 
with an average deviation sa we would expect under the null. As was true for βnull, we  
are free to specify αnull as a value different from zero if we really so desired, and 
incorporate this into our test, but in the absence of any particular reason to do so, the 
default test value will be zero (remember, null hypotheses can always be rejected if 
they are unreasonable or unrealistic to begin with). 

A 100�1 � α� confidence interval for b can be constructed as follows: 

b � t�α=2�sb 

where b is the sample estimate of β, t is the two-tailed critical value for the 100�1 � α� 
confidence level on n � 2 degrees of freedom, α is the significance level for the level 
of confidence for which the confidence interval divides it by 2 (i.e., α=2) to make it 
“two-sided,” and sb is the estimated standard error of the slope. 

Likewise, a 100�1 � α� confidence interval for a can be constructed: 

a � t�α=2�sa 

where a is the sample estimate of α. 
We will see significance tests and confidence intervals “in action” when we 

consider software applications shortly. Tests for comparing slopes from two different 
samples are also available as are tests that two correlation coefficients are equal to 
some number, usually zero (see Howell, 2002, p. 276). An alternative to estimating 
confidence intervals analytically is to employ a bootstrap procedure. For an example 
of how the bootstrap can be used in this regard, see Crawley (2013, pp. 478–481). The 
jackknife procedure, which has been shown to be an approximation to the bootstrap, is 
also an alternative strategy for estimating confidence intervals, though as noted by 
Fox (1997), may not perform as well when compared to the bootstrap. 
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8.13 OTHER FORMULATIONS OF THE REGRESSION MODEL 

In addition to specifying the regression model as we did in (8.1), we can express the 
model via other configurations. Not only does doing so constitute an interesting 
algebraic exercise, but also formulating the regression model in different formats 
helps us better understand just what regression is doing in terms of its mechanics. That 
is, greater insight into regression can be “experienced” by representing the model in a 
variety of algebraically equivalent formats. 

For instance, we have already seen that the normal equation for computing the 
intercept term is given by a � y � bx. When we substitute this into the model equation 
of (8.1), for any sample of observations, we obtain 

yi � a � bxi � ei 

� �y � bx� � bxi � ei 

Removing the parentheses, we have 

yi � y � bx � bxi � ei 

Notice that b is common to the terms bx and bxi, which means we can factor b out 
and get 

yi � y � bx � bxi � ei 
(8.4)� y � b�xi � x� � ei 

What is the advantage of the formulation in (8.4)? It emphasizes the fact that yi is a 
function first of its mean y, which is the expected value of yi under the circumstance of 
zero correlation between yi and xi, adjusted by the extent to which the term “xi ” 
changes the prediction, over and above εi (though recall E�εi� � 0, so this is not a 
concern, it is not a systematic component). This idea of y being “adjusted” is a 
powerful way to understand regression. If our best prediction of yi given no 
information is the mean of y, then when we do have more information in the 
form of xi, we adjust our prediction line accordingly to reflect this influence. The 
sample estimator b tells us the degree and direction for which we should be making 
such an adjustment to our line. 

We can use the formulation (8.4) to show that when xi is equal to x, the 
best prediction for yi is indeed y, in the sense of minimizing sum of squared errors, 

ei 
2: 

yi � y � b�xi � x� � ei 

� y � b�x � x� � ei 

� y � b�0� � ei 

� y � ei 



356 LINEAR REGRESSION 

8.14 THE REGRESSION MODEL IN MATRICES: ALLOWING 
FOR MORE COMPLEX MULTIVARIABLE MODELS 

The simple algebraic model formulations thus far employed, though sufficient for 
simple linear regression, will not be for discussing the multiple regression model of 
the following chapter. The “vehicle” for multiple regression and multivariable 
methods in general is that of vectors and matrices. 

In this section, we briefly introduce and detail the simple linear regression model 
in matrix form so that when we arrive at multiple regression, we will be in a position 
to extend on this simple formulation for multiple predictors, and in some cases, 
multiple response variables as well (as in the case of multivariate analysis of 
variance). 

In a simple regression model, we can write each component of the model as its own 
vector. The expectation for the response variable yi, that is, E�yi�, is now written as an 
expectation of a vector of responses, E�y�, which is a matrix containing n rows and a 
single column. We write E�y� as 

E�y� �  

E�y1� 
E�y2� 
E�y3� 
. .
. 

. .

. 

. .

. 

E�yn� 

(8.5) 

In (8.5) we are now simply denoting each value of the response vector as a single 
column, of which we take the expectation on each yi. 

Since in the simple linear regression model the expectation of a randomly chosen 
value for the response is E�yi� � α � βxi, we can express the vector E�y� as 

E�y1� α � βxi�1 

E�y2� α � βxi�2 

E�y3� α � βxi�3 

E�y� �  
... � 

... 

... 

... 

... 

... 

E�y � α � βxi�nn
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where α � βxi�1, α � βxi�2, .  . . ,  α � βxi�n represents the systematic portion of the 
model applied to each observation y1 through yn in the data. It stands that the error 
term will also have its own n × 1 vector: 

εi�1 

εi�2 

εi�3 

ε � 
... 
... 
... 

εi�n 

When we put all the pieces together, the full expression of the simple linear regression 
model is given by 

E�yi�1� α � βxi�1 εi�1 

E�yi�2� α � βxi�2 εi�2 

E�yi�3� α � βxi�3 εi�3 

... 
... 

...� � 

... 

... 

... 

... 

... 

... 

E�yi� � α � βxi�n εi�nn

More compactly, we may write the model as 

y � �E�y�� � ε 
(8.6)� �α � β ́ X� � ε 

where all we did to get from �E�y�� � ε to �α � β ́ X� � ε was to recognize that 
E�y� � α � β ́ X. Note that in this formulation, we are also grouping the intercepts α 
(which once estimated, are a constant for all observations) in their own vector α. 

The formulation (8.6) of the regression model is fine, but it becomes awkward 
when one considers such things as multilevel models in which the intercept term (and 
potentially the slope) is a random variable and hence not fixed. Consequently, it 
would be useful to format the regression model such that the inclusion of the intercept 
term α for each yi is designated as a potentially unique quantity. We can accomplish 
this in our notation by re-expressing α � β ́ X into two components, one component 
representing the values for xi and the other component the parameters of our model. 
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We need two vectors to accomplish this, being sure to appropriately index the 
intercept parameter with a column of 1’s: 

1 xi�1 

1 xi�2 

1 xi�3 

β � 
β 

α... 
... 
... 

... 

... 

... 

X � 

1 xi�n 

When we multiply the corresponding matrix and vector, we get 

�1�α� � xi�1�β�� � �1�α� � xi�2�β�� � �1�α� � xi�3�β�� � ∙ ∙ ∙  � �1�α� � xi�n�β�� 
The full simple linear regression model components can thus now be written as 

ε11 xi�1yi�1 

ε21 xi�2yi�2 

ε31 xi�3yi�3 

β � ε � 
β 

α... X � 
... 

... 
...y � 
... 
... 

... 

... 

... 

... 

... 

... 

εn1 xi�nyi�n 

or more compactly as 

y � Xβ � ε	 (8.7) 

To summarize, 

•	 y is a vector of responses on a single response variable in the case of simple or 
multiple regression. In the case of multivariate regression, this vector could 
include several response variables (see our discussion of MANOVA in 
Chapter 12 for an introduction to the multivariate landscape, though in the 
context of ANOVA models). In this book, we typically designate such a vector 
with potentially several responses as Y. 
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•	 X is generally known as the model or design matrix; in regression analysis, it 
typically contains values on one or more predictors; in ANOVA models, it can 
be adapted to represent group membership in the form of indicator variables 
such as “0” or “1” to denote classification on a categorical predictor. 

•	 β is a matrix of regression coefficients. 

•	 ε is a vector of errors; this vector is always a single column because no matter 
how complex our regression model, only a single error exists for any predicted 
value of the response. In multilevel models, one could parameterize error terms 
for each level of the hierarchy, though we do not consider such possibilities 
here. 

8.15 ORDINARY LEAST-SQUARES IN MATRICES 

Having surveyed the use of matrices in the representation of a regression model, it 
follows that we should be able to express the least-squares solutions and estimators in 
matrices as well. That is, all that was done on scalars in simple regression should have 
their corresponding matrix counterparts. Our formulation to follow mirrors that of the 
formulation of least-squares using scalar quantities. The only difference is that now, 
instead of formulating the model in terms of scalars with a single predictor, we 
generalize the least-squares solutions in matrices to better prepare for more complex 
modeling, including multivariate modeling and structural equation models. Formally, 
the method of least-squares and of minimizing ε´ε (squared error) is analogous to 
finding an orthogonal projection of observed data in y onto a new space that is said to 
be spanned by the predictor variable(s), where the span is the set of matrices (or 
vectors) that is expressible as linear combinations. One may think of a projection in 
this case as merely the estimated regression line, of which the information contained 
in predictor(s) is used in “projecting” points onto this line (or surface, in the case of 
multiple regression). 

In both (8.1) and (8.7), the systematic portion of the model is contained in α � βxi ´ and Xβ, respectively. The error εi in (8.1), recall, was equal to εi � yi � yi. The 
equivalent for expressing a difference between an observed and predicted value (i.e., 

´ yi � yi) using matrices is thus 

ε � �y � Xβ� 
The matrix equivalent of minimizing the sum of squared errors ε2 

i in scalar 
quantities becomes in matrix terms 

´ ε´ε � �y � Xβ� �y � Xβ� 
´ ´� y y � β ́ X ́ y � y Xβ � β ́ X ́ Xβ 
´� y y � 2β ́ X ́ y � β ́ X ́ Xβ 

n 

i�1 

´where �β ́ X ́ y�´ � y Xβ yield the same result. 
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We can clearly see that the expression ε´ε is nothing more than the equivalent of ε2 
i´ in scalar algebra, since �y � Xβ� �y � Xβ� translates to (y � Xβ) “squared.” 

After taking the relevant partial derivatives as we did in the simpler regression 
situation where we were not using matrices, the normal equations using matrices end 
up being 

X ́ X b  � X ́ y 

We can now solve for b. The analog in scalar algebra would be to divide the left- and 
right-hand sides by X ́ X as to isolate b. That is, if we were to express the above 
formulation naively in matrix terms, pretending for a moment that we were still doing 
scalar algebra, solving for b would look like this: 

X ́ X b  � X ́ y 

X ́ y
b � 

X ́ X 

In matrix algebra however, as we first discussed in Chapter 2 (also reviewed in 
Appendix A), division such as just performed is not permitted. Rather, to divide in this 
case, we multiply by the inverse: 

�1X ́ b � �X ́ X� y 

�1X ́ Hence, the solution for obtaining the least-squares estimators is b � �X ́ X� y. We  
note that should X ́ X not be invertible, solutions for b cannot be obtained using this set 
of equations since if �X ́ X��1 cannot be computed, we end up with 

�1X ́ b � �X ́ X� y 

� �∅�X ́ y 

� ∅ 

where ∅ in this case simply represents a quantity that cannot be calculated. If we 
cannot solve �X ́ X��1, we cannot solve for b in the given model, it is undefined. 

8.16 ANALYSIS OF VARIANCE FOR REGRESSION 

When we run a simple linear regression, in addition to parameter estimates, we obtain 
an analysis of variance table. At first sight, students familiar with ANOVA, but 
newcomers to regression, are somewhat surprised to see an ANOVA table in 
regression output. However, remember that ANOVA and regression are both versions 
of the general linear model, and at their base seek to accomplish very much the same 
thing, that of partitioning the variance of a response variable into explained and 
unexplained components. Though model specifications and parameterizations are 



ANALYSIS OF VARIANCE FOR REGRESSION 361 

TABLE 8.1 Analysis of Variance for Linear Regression 

Source Sum of Squares df Mean Square F 

Regression 

Residual 

n 

i�1 

�y ́ i � y�2 

n 

i�1 

�yi � y ́ i�2 

k 

n � k � 1 

n 

i�1 

�y ́ i � y�2 

k 

n 

i�1 

�yi � y ́ i�2 

n � k � 1 

n 

i�1 

�y ́ i � y�2 =k 

n 

i�1 

�yi � y ́ i�2 =�n � k � 1� 

Total n 

i�1 

�yi � y�2 n � 1 n 

i�1 

�yi � y�2 

n � 1 

different, at their respective cores, both of these statistical approaches accomplish a 
similar analytical goal. 

Table 8.1 shows the partition of the sums of squares in a simple linear regression, 
where: 

´ �y � y�2 is the sum of squares due to regression. • i
 
i�1
 
n
 ´ �yi � y �2 is the sum of squares due to error (often called SS residual). • i

i�1
 
n
 �yi � y�2 is the sum of squares total for the entire data. • 

• Degrees of freedom for regression are k where k is the number of predictors. 

• Degrees of freedom for error are n � k � 1, where n is the number of data points. 

• Degrees of freedom for total are n � 1, where again n is the number of data points. 

•	 Mean squares are computed by taking the relevant sums of squares and dividing 
by respective degrees of freedom, analogous to what is done in ANOVA models. 

•	 F-ratio is computed by MS regression/MS residual, and is evaluated on k and 
n � k � 1 degrees of freedom. 

The identity SS total = SS regression + SS residual in regression is conceptually 
(though not formally) analogous to the identity SS total = SS between + SS within in 
the analysis of variance. Hence, in regression, the partition is 

n n n ´ ´ �yi � y�2 � �yi � y�2 � �yi � yi�2 

i�1 i�1 i�1 

n 

i�1 

Having laid out some of theory of regression in matrices, we can also represent the 
ANOVA summary table in matrix form (see Table 8.2). Because we are using 
matrices, such a summary table is applicable to either simple or multiple regression. 
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TABLE 8.2 Analysis of Variance Summary Table in Matrices 

Source 

Regression 

Error 

Total 

Sum of Squares 

b ́ X ́ y � 1=n� �y ́Jy 

y ́ y � b ́ X ́ y 

y ́ y � 1=n� �y ́Jy 

df 

p � 1 

n � p 

n � 1 

Mean Square 

b ́ X ́ y � 1=n� �y ́Jy 
p � 1 

y ́ y � b ́ X ́ y 
n � p 

y ́ y � 1=n� �y ́Jy 
n � 1 

F 

b ́ X ́ y � 1=n� �y ́Jy=�p � 1� 
y ́ y � b ́ X ́ y=�n � p� 

n 

Source: Adapted from Neter et al. (1996, p. 229). 

We do not discuss or describe Table 8.2 at any length. Given the matrix 
formulation of the regression model discussed earlier, you should be able to recognize 
familiar elements in Table 8.2. The purpose of showing it is mostly to reveal how 
ANOVA for regression can be generalized to matrices for more complex cases than 
that of a single predictor. For instance, the sums of squares for regression in the simple 

´ �yi � y�2, whereas the equivalent matrix formulation is bivariate case are equal to 
i�1 

that of b ́ X ́ y � �1=n�y ́ Jy, where b is a vector of regression coefficients, X is a matrix 
of predictors, y is a vector of response variables, n is the sample size, and p are the 
number of estimated parameters (e.g., intercept and slope in the case of simple 
regression). The matrix J is defined as a square matrix of 1’s. 

The H matrix is the so-called “hat matrix” defined as H � X�X ́ X��1X ́ , where H is 
´ used in estimating the fitted values of y by y � Hy. It can also be shown that the sums 

of squares for regression, b ́ X ́ y � �1=n�y ́Jy in Table 8.2 can be expressed as 
´ y H � �1=n�J y, which, as can be seen, explicitly uses H. As we will discuss 

shortly, the hat matrix is often used in defining various regression diagnostics. The 
sums of squares for error y ́ y � b ́ X ́ y can likewise be expressed in terms of the hat 

´ matrix by y �I � H�y. 
To reiterate, in a simple linear regression problem, one would not use nor need to 

refer to such matrix formulations. The advantage of presenting these results now 
however is that it readily prepares the reader to handle larger more complex models as 
one would see in a multiple regression or more general multivariable context, as 
well as initiates him to the use of matrices in the specification of linear models in 
general. When multivariate techniques such as the multivariate analysis of variance 
(MANOVA) and factor analysis are considered later, the requisite employment of 
matrix formulations should not catch the reader by surprise. All simpler model 
formulations that do not explicitly require matrix operations can be considered special 
cases of the wider matrix framework. Hence, the initial “complexity” of matrix 
operations actually, in the end, makes things a whole lot simpler because it widens the 
landscape. It may be said that perspective in and understanding of whatever craft one 
studies is facilitated by aspiring to a comprehension of the most global and universal 
principles, of which all others are special cases. 
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To demonstrate the use of matrix operations in computing least-squares solutions, 
we will consider a simple example using R shortly in which all computations are done 
“manually” (i.e., by matrix computations). Familiarity with this example will help 
greatly “demystify” matrix calculations in regression and open the door for the reader 
to much more complex modeling employing matrices. 

8.17 MEASURES OF MODEL FIT FOR REGRESSION: 
HOW WELL DOES THE LINEAR EQUATION FIT? 

Fitting a model to data is relatively easy. It is essentially and simply the imposition of 
a functional polynomial form on what is usually, relatively speaking, a messy surface. 
Determining how well the model actually fits is where our interests really lie. Any data 
can accommodate a regression line. Good models, however, accommodate it well. 

The most popular measure of model fit in a simple regression setting is the 
coefficient of determination, r2. In a multiple regression context, the statistic is usually 
referred to as R2 and denotes the coefficient of multiple determination. Regardless of 
whether the model is simple or multiple, we compute these by the ratio of sums of 
squares of regression to sums of squares total. The resulting coefficient will range 
from 0 to 1, with low values indicating poor fit and increasingly larger values 
indicative of a model that fits increasingly well. We can define R2 as 

R2 � 

n 

i�1 
�y ́ i � y�2 

n �yi � y�2 

i�1 

We interpret R2 to be the proportion of variance in the response variable accounted 
for by knowledge of the predictor variable(s). Hence, if R2 � 0:70, the interpretation 
is that 70% of the variance in the response variable is accounted for or “explained” by 
knowledge of the set of predictors (even if that set consists of only a single variable). 

´ R2 is also the squared correlation between y and y0 (i.e., r�yi; yi�2. 
But what does R2 tell us exactly? In the case of zero correlation between xi and yi, 

R2 is equal to 0. Why is this so? This is the case because under the condition of zero 
´ correlation, yi must equal y, which means the numerator of R2 will equal 0. That is, 

n n ´ �y � y�2 

i�1 i�1 
�yi � y�2 

0 
R2 � � � � 0n n n �yi � y�2 �yi � y�2 �yi � y�2 

i�1 i�1 i�1 

n 
Notice that since the numerator of the second term is �y � y�2, R2 can be nothing 

i�1 
n 

else other than 0 regardless of how much �yi � y�2 is greater than zero. 
i�1 
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8.18 ADJUSTED R2 

A related statistic to R2 is adjusted R2 given by 

n � 1 
R2 
adj � 1 � �1 � R2� 

n � p 

where n, as before, is the number of observations in the sample and p is the number of 
parameters being estimated, including the intercept term α. The logic behind R2 

adj is to 
make an adjustment for the number of parameters being fit in the model relative to 
their additive “value” in the regression. 

8.19 WHAT “EXPLAINED VARIANCE” MEANS: AND MORE 
IMPORTANTLY, WHAT IT DOES NOT MEAN 

We have said that R2 and R2 
adj both measure the extent to which one or more predictor 

variables “explain” variance in a response variable. But what does this mean exactly? 
To understand what it means, let us first consider what it does not necessarily mean, 
arbitrated by the context in which it is used. It does not necessarily mean that if you 
change values of the predictor(s), this will lead to a change in values of the response. 
R2 presumes nothing whatsoever about your research design. It can be computed on 
nonexperimental data just as it can on experimental data, but beyond that, the exact 
interpretation of “variance explained” is completely up to the researcher to dis
entangle given the particular research context, the degree of experimental controls, 
and other research-related (not statistically related) matters. For instance, consider the 
following statement: 

Melatonin ingestion explains 30% of the variance in sleep duration. 

The above statement does not alone tell us the true strength of the evidence we might 
have for the given study. Were subjects randomly assigned to dose conditions? If so, 
then we can interpret the 30% figure in the context of a true experimental design. If 
subjects were not randomly assigned and we simply correlated the amount of drugs 
subjects took with their sleeping behavior, our strength of evidence, even if still at 30% 
variance explained, is not nearly as strong. The point of this discussion is to emphasize 
that both experimental and nonexperimental evidence can generate impressive R2. 
These values, though equal in number, should not be considered equal in scientific 
credibility or worth. Experimental evidence, due to the process of random assignment 
and the attempt to balance out nuisance factors, is virtually always more credible. 

Furthermore, just as is true for evaluating the size of such measures as Cohen’s d,  
R2 values should never be evaluated in a “vacuum” without some reference 
knowledge of the given research area. Is 30% variance explained for melatonin 
on sleep latency a strong effect? Perhaps in an absolute sense, explaining 30% is 
impressive in its own right. However, if a competing medication explains 70% of 
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variance in sleep (with no side effects and at reasonable cost), then suddenly the 30% 
figure is not quite as impressive. When it comes to interpreting effect sizes, one should 
only rarely rely on the absolute size of the effect. One should rather have enough prior 
knowledge of the research area to know whether the effect before them is impressive 
or not. Seasoned researchers do not need any arbitrary guidelines or “rules of thumb” 
to tell them whether an effect is impressive or not. 

8.20 VALUES FIT BY REGRESSION 

Recall that a purpose in performing a regression is to obtain a vector of fitted values 
that are conditioned on the observed value of the predictor xi entered into the model. 
For the case of simple linear regression, we can express the fitted or predicted values 
as a function of our model equation: 

´ yi � a � bxi 

For larger models cast in matrices, predicted values for y are computed as 

´ y � Xb 

´ It stands that if a given observation is perfectly predicted, that is, yi � yi, then the 
observed residual is equal to 

´ ei � yi � yi � 0 

or 

´ ε � y � y � 0 

in matrices. 
It should be emphasized that in the formulation of the regression model (8.1), 

yi � α � βxi � εi, εi is considered to be the actual true error in terms of what would 
exist had we had actual model parameters (instead of merely sample estimators of 
those parameters as we have in the case of sample data), whereas ei is an observed 
error in an empirical application of the regression model. If the assumptions that are 
made about εi are correct, then the observations for ei should be at least somewhat 
reflective of these assumptions. 

8.21 LEAST-SQUARES REGRESSION IN R: USING MATRIX 
OPERATIONS 

One of the joys of learning and performing matrix algebra in R is that one can 
reproduce virtually any relatively elementary statistical analysis by the simple, and 
perhaps at times complex, manipulation and construction of basic matrices. 
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TABLE 8.3 Quantitative and Verbal Scores on Nine 
Subjects (Hypothetical Data) 

Subject Quantitative Verbal 

1 5 2 
2 2 1 
3 6 3 
4 9 7 
5 8 9 
6 7 8 
7 9 8 
8  10  10  
9  10  9  

As an example, we once again consider the problem of least-squares, but 
this time instead of invoking a canned “routine” in software, we demonstrate 
how the solution can be obtained by simple matrix construction and operations. 
Such a demonstration provides some insight into what the actual regression 
procedure is doing when working behind the scenes in software, and also helps 
the user better understand possible computer error messages if and when they 
arise. 

As before, readers unfamiliar with general matrix operations are encouraged 
to refer to Appendix A where these concepts are reviewed. For the following 
demonstration, we assume some familiarity with such operations, and move 
rather quickly to computing least-squares estimates using a hypothetical easy 
example. The purpose of doing it the “long way” is simply to demonstrate the 
matrix computations and the principles involved. Rarely, if ever, will you 
need to calculate regression the long way with the matrices we are about to 
compute. 

To generate some hypothetical data, suppose we took a measurement of one’s 
quantitative and verbal abilities on some standardized test and wished to predict one’s 
quantitative score based on knowledge of that person’s verbal score. Hence, quanti
tative (or “Q”) is the response variable. Verbal (or “V”) is the predictor. For each 
scale, a score of 0 represents minimal ability (it cannot represent no ability, it is not 
measurable on a ratio scale), while a score of 10 represents maximal ability. The data 
are given in Table 8.3. 

Our first step is to create the respective vectors for Q and V: 

> Q <- c(5, 2, 6, 9, 8, 7, 9, 10, 10) 
> V <- c(2, 1, 3, 7, 9, 8, 8, 10, 9) 

We next obtain a plot of the data: 

> plot(V, Q) 
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Though the sample size is very small and the number of data points are sparse, we can 
see, in general, that a somewhat linear relationship appears to exist between Q and V. 

To get the matrix X needed to compute X ́ X b  � X ́ y, we generate the first vector 
by the name of I (for “intercept”) and then bind both I and V into X: 

> I <- c(1, 1, 1, 1, 1, 1, 1, 1, 1)
 
> V <- c(2, 1, 3, 7, 9, 8, 8, 10, 9)
 
> Q <- c(5, 2, 6, 9, 8, 7, 9, 10, 10)
 
> X <- cbind (I, V)
 
> X
 

I V  
[1,] 1 2 
[2,] 1 1 
[3,] 1 3 
[4,] 1 7 
[5,] 1 9 
[6,] 1 8 
[7,] 1 8 
[8,] 1 10 
[9,] 1 9 

We could have also used I <- rep(1,9) to generate I. We can now solve for X ́ X 
quite easily by premultiplying X by the transpose of X (t(X)): 

> XTX <- t(X)%*%X 
> XTX 

I V 
I 9 57  
V 57 453 

Likewise, we solve for X ́ y, only this time using Q: 

> XTY <- t(X)%*%Q 
> XTY 
[,1] 

I  66  
V 483 
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Making the appropriate substitutions, our equation thus far reads 

X ́ X b  � X ́ y 

9  57  66 
b � 

57 453 483 

Our next step is to solve for b: 

�1X ́ b � �X ́ X� y 
�1

9  57  66 
b � 

57 453 483 

The inverse of X ́ X is computed by solve in R: 

> XTX.I <- solve(XTX) 
> XTX.I 

I V 
I 0.54710145 -0.06884058 
V -0.06884058 0.01086957 

Now that we have the inverse, �X ́ X��1, the solution for b is thus 

> XTX.I %*% XTY 
[,1] 

I 2.8586957 
V 0.7065217 

Hence, the estimate of the intercept term is 2.859, while the estimate of the slope 
parameter is 0.707. For these data, we conclude that for a one-unit increase in verbal 
ability, one can expect, on average, an approximately 0.71 unit increase in quanti
tative ability. 

8.22 LINEAR REGRESSION USING R 

We now perform the equivalent regression using R’s lm function that will also allow 
us to obtain a measure of model fit, which we did not bother with in our manual 
computations: 

> reg.fit <- lm(Q∼V) 
> reg.fit 
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Call:
 
lm(formula = Q ∼ V)
 

Coefficients:
 
(Intercept) V
 

2.8587 0.7065 

We request a more complete picture of the regression output via the summary 
function: 

> summary(reg.fit)
 

Call:
 
lm(formula = Q ∼ V)
 

Residuals:
 
Min 1Q Median 3Q Max 

-1.5652 -1.2174 0.4891 0.7826 1.1957 

Coefficients: 
Estimate Std. Error t value Pr(>|t|) 

(Intercept) 2.8587 0.8874 3.221 0.014626 * 
V 0.7065 0.1251 5.648 0.000776 *** 

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

Residual standard error: 1.2 on 7 degrees of freedom 
Multiple R-squared: 0.8201, Adjusted R-squared: 0.7944 
F-statistic: 31.9 on 1 and 7 DF, p-value: 0.0007758 

Notice that R’s output for the linear model requested by summary(reg.fit), 
though containing much of the same information as SPSS (as we will soon see), is 
organized much more succinctly than in SPSS. R also includes quartile information 
about residuals before presenting the main results of the regression. Some general 
features of the output include: 

•	 Multiple R-squared for the model is equal to 0.82, with an adjusted R-squared of 
0.79. Though as discussed, magnitude of effect sizes should never be appraised 
or otherwise evaluated in a vacuum (i.e., they are usually only considered large 
or small in comparison to other effect sizes in the area of investigation), it might 
be safe to assume in this case that an R2 of 0.82 likely indicates a rather large 
effect. Indeed, if we could predict 82% of the variance in quantitative scores 
based on knowledge of verbal scores, we are definitely “on to something.” 

•	 The regression model, evaluated on 1 and 7 degrees of freedom, yields an 
F-statistic of 31.9 with an associated p-value of 0.00078, which is statistically 
significant at even a very conservative significance level. There is a single degree 
of freedom for numerator (k � 1) and 7 degrees of freedom for denominator 
because there is a total of nine cases (i.e., n � k � 1 � 9 � 1 � 1 � 7). 
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•	 The regression coefficient for V, equal to 0.7065, yields a p-value of 0.00078, 
which is statistically significant when evaluated against conventional signifi
cance levels (e.g., 0.01, 0.05). 

•	 Since there is only a single predictor, the inferential question regarding both the 
model and that of the predictor yield identical p-values (i.e., of 0.000776). In the 
presence of multiple predictors (i.e., as one would have in multiple regression), 
the p-values for predictors will usually not be identical to the model p-value. In 
these models, statistical significance of individual predictors is not equivalent to 
the statistical significance of the model taken as a whole. 

To view the ANOVA table from the regression, we request 

> anova(reg.fit) 

Analysis of Variance Table 

Response: Q 
Df Sum Sq Mean Sq F value Pr(>F) 

V 1 45.924 45.924 31.904 0.0007758 *** 
Residuals 7 10.076 1.439 

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

We can surmise directly from the output how multiple R2 was computed, that of the 
ratio 45.924 to (45.924 + 10.076) = 45.924/56 = 0.82. We can also request confidence 
intervals for model parameters with confint: 

> confint(reg.fit) 
2.5 % 97.5 % 

(Intercept) 0.7602728 4.957118 
V 0.4107442 1.002299 

The above is a 95% confidence interval for V. It is interpreted to mean that in 95% 
of samples drawn from this population, the true regression slope likely lay between 
the lower limit of 0.41 and the upper limit of 1.00. Note that this interval is 
symmetrical about the actual sample value of 0.7065 that was estimated. Recall 
as well that when interpreting confidence intervals, it is the sample on which the 
interval is computed that is the random component. The parameter we are seeking to 
estimate is assumed to be a fixed value. 

8.23 REGRESSION DIAGNOSTICS: A CHECK ON MODEL 
ASSUMPTIONS 

Recall that whenever one fits a model to data, and more importantly, interprets that 
model, one is doing so under the assumption that the model assumptions originally 
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postulated are more or less satisfied. Even though your regression analysis may 
boast statistical significance, this result is only as good as the “goodness” of the 
model assumptions that underlie the analysis. If your assumptions are not at least 
tentatively reasonable, then the ensuing inferential statistics and p-values may not 
be accurate. For instance, you may underestimate or overestimate the probability of 
a type I error. 

There is a whole field of expertise in the area of so-called regression diagnostics, 
which comprise a host of statistical indicators and tools used for the specific purpose 
of revealing, through both numerical summaries and graphics, potential problems 
with a fitted regression model. These include ways in which the model might be 
improved by either altering the functional polynomial form or implementing data 
transformations of empirical variables (e.g., taking square roots or logarithms). 
Following Fox (1997), who has written on this topic with great precision, diagnostics 
can be divided into three broad categories: 

•	 Unusual and influential data: This includes the attempt to detect data that does 
not conform to our model. 

•	 Nonlinearity, nonconstant error variance, and nonnormality: These are meth
ods used to detect deviations from the model assumptions on which our 
regression model is based. 

•	 Collinearity, where one or more predictors in the model are highly correlated: 
These are meaningful only in regression models with multiple predictors (i.e., 
multiple regression models) and can be evaluated using such measures as the 
variance inflation factor or tolerance, to be discussed in the following 
chapter. 

We must warn the reader that our treatment of regression diagnostics is very brief 
and incomplete. We literally only scratch the surface so that the reader may gain at 
least some rudimentary understanding of how model assumptions can be evaluated 
using residuals and other techniques. This is not to suggest that diagnostics are not 
important, especially those relating to verifying model assumptions. On the contrary, 
evaluating the tenability of model assumptions is very important. And though the 
detection of unusual and influential observations is also important, we regard it as less 
so largely because of the view generally advanced in this book concerning outliers. 
Though comparing models with and without designated outliers or otherwise 
influential points is good practice, we do not generally recommend the deletion of 
such data points unless there is a very good scientific rationale for doing so. Detecting 
an observation that is influential to the model is one thing. Excluding that observation 
from the science you have undertaken is quite another. 

Never casually delete an observation simply because it is distant from the others. 
That constitutes dishonest data analysis, unethical science, and if you are to be that 
careless about your empirical observations, it is questionable whether you should be 
analyzing data at all. If the data point was sampled correctly, and you have no 
substantive reason to delete it, it should remain in your data and be a part of your 
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conclusions. If you delete it for the sake of making your model “fit better,” you are no 
longer practicing science, but rather are demonstrating that you know how to make a 
sample of data points conform neatly to a model, which is usually of little use or 
interest to anyone on a scientific level. 

If in doubt, a practical solution would be to run the analysis with the outlier, then 
run it without, and present both results to your audience (whether your audience be 
readers of your publication, and/or conference attendees). Of course, if you do find 
a serious substantive anomaly with the given case (e.g., the participant was sleeping 
during the memory task, or someone in your sample had a learning disability that 
may have influenced your measurement), then by all means, consider deleting the 
case, but record your deletion in your manuscript write-up, and inform the reader 
exactly why the case was deleted. Another possibility is to run a model in which 
outliers have a lesser influence such as robust regression or plotting a “resistant” 
regression line (see Venables and Ripley, 2002, pp. 156–163). Never simply 
ignore data however, even data that you “dislike.” Science is about uncovering 
empirical truths, not getting caught up in the aesthetics of model-fitting. Too often 
researchers “massage” their data so much through both deletion of points and 
replacement of missing values that the true empirical nature of their investigation 
becomes suspect. 

8.23.1 Understanding How Outliers Influence a Regression Model 

To help appreciate the effect of extreme observations on a regression model, one need 
only draw a simple analogy to an empirical distribution of a sample on which a mean 
is computed. Consider the following distribution of numbers: 

2 5 7 8 9  

The mean of these numbers is 6.2. If we add another data point, 30, our new 
distribution becomes 

2  5 7 8 9  30  

The mean of this new distribution is 10.2. By simply adding one extreme data point 
relative to the others, our arithmetic mean has shifted in magnitude from 6.2 to 10.2. 

Extreme data points have a similar effect on a regression model. Recall that least-
squares regression guarantees to fit the line such that the sum of squared errors is kept 
to a minimum value. In both cases, that of the simple arithmetic mean and regression 
line, extreme data points demand a shift toward the center of gravity of the 
distribution. This was easily demonstrated for the mean with a shift from 6.2 to 
10.2. In regression, we can demonstrate the effect as follows. Consider the regression 
line of yi on xi in Figure 8.7. 

We see the effect that the bivariate outlier has on the least-squares regression line. 
Since the regression line can be conceived as a “floating mean,” it is being pulled 
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FIGURE 8.7 Least-squares regression line of Y on X (a). Dotted line is the new least-squares 
regression line (b) after adding outlier. Arrow shows the “pulling down” of the regression line to 
accommodate the gravitational center of the “floating mean.” 

down in effort to “accommodate” all data points (the effect is slightly exaggerated in 
the right-hand figure to motivate our discussion). And though the regression line 
(Figure 8.7b) is still keeping the sum of squared errors to a minimum, this minimum 
value is larger because of the outlier. The regression line, just as is true of the 
arithmetic mean, must find a way to “appease” all data points, even those that are quite 
extreme. In this way, means and regression lines can be said to be quite “democratic,” 
in that analogous to political affiliation, even those holding extreme positions, 
whether on the far right or far left, are incorporated into the gravitational center 
of the political climate. 

8.23.2 Examining Outliers and Residuals 

In an attempt to evaluate outliers and other assumptions in a regression model, we can 
investigate residuals. Recall that the residual ei is the difference between an observed 

´ ´ score yi and a predicted score yi, that is, yi � yi. 
A standardized residual is simply a raw score residual ei divided by the standard 

deviation of residuals: 

ei est � 
se 

where ei is the given raw-score residual and se is the standard deviation of residuals for 
the model under consideration. However, as noted by Fox (1997, p. 272), s2 (i.e., the e 
square of se) is not a satisfactory estimate of the variance of εi (the error term). A better 
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2estimate of the variance of errors εi is s �1 � hjj�, where hij represents a value along the 
principal diagonal of the “hat matrix,” mentioned earlier. Incorporating this estimate 
of the variance of errors into our formula for the standardized residual gives us 

ei est � p
se �1 � hij� 

We will later generate a Q–Q plot that features what is known as the studentized 
residual. The studentized residual is the same as est only that se is based on all 
observations except that for the given residual. The logic is to estimate deviations of 

´ the kind yi � y but where the given observation (on which we are computing the i 
residual) is not involved in the computation of fitted values. 

Recall the distinction between an error and a residual. The error εi can be said to be 
the difference between the observed and true value, whereas the residual can be 
conceptualized as the difference between the observed value and that predicted by the 
model. Since we can never actually obtain “true” values, we cannot compute errors 
directly. We are relegated to working with residuals that essentially represent that 
source of variance that is left over from the fitted model. We will revisit this 
distinction between an error and a residual in Chapter 16 when we discuss structural 
equation modeling. 

Residual plots are useful because they allow us to evaluate whether at least some of 
the model assumptions we stated before the fitting of our model are actually valid in 
some sense. For example, one assumption of the regression model of (8.1) is that the 
errors εi are uncorrelated with yi. A scatterplot suggesting a relationship between the 
two would indicate a violation of this assumption. Why is this so? As an example, 
consider regressing income on years of education. If our errors in prediction of income 
depend on how many years of education one has, then it is obvious that prediction is 
not independent of error such that depending on the particular number of years of 
education we consider, our error in predicting income will be different. This is 
problematic for the regression model because our estimation of model parameters 
requires these two components to be typically independent. 

Consider the plot of residuals against predicted values in Figure 8.8a. The absence 
of a relationship (whether linear or otherwise) between residuals and predicted values 
is ideal. A violation of this assumption could take the form of the plot in Figure 8.8b in 
which a positive linear relationship is evident. 

Residual plots can also be used to identify potential problems with the variance of 
errors. Distributions of residuals (or their standardized counterparts) should be 
relatively evenly distributed across values of the predictor(s), as is the case in 
Figure 8.8a. A violation of this assumption might look something like that shown 
in Figure 8.9, where it is clear that the distribution of residuals is not constant across 
predicted values. 

Though not demonstrated here, problems of heteroscedasticity can be potentially 
remedied through power transformations or through a weighted least-squares solution 
instead of traditional OLS. 



375 REGRESSION DIAGNOSTICS: A CHECK ON MODEL ASSUMPTIONS 

FIGURE 8.8 Absence of correlation between residuals and predicted values (a). Linear 
relationship between residuals and predicted values (b), evidence of the assumption of 
independence being violated. 

FIGURE 8.9 Evidence of heteroscedasticity of errors. 

Serial correlation, also known as autocorrelation, can sometimes exists in 
residuals, especially in time series models that feature the behavior of a response 
variable over time. The Durbin–Watson test is useful in detecting such patterns (see 
Neter et al., 1996, p. 504 for details). As an example of a time series, consider data 
from Arbuthnot’s analysis of the ratio of males to female births in London during 
1629–1710. Recall that Arbuthnot used this analysis to argue that more males were 
being christened than females over the course of this 81-year period. As an example of 
some of his data, consider the time series for males (p. 376): 
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> library(car)
 
> attach(Arbuthnot)
 
> scatterplot(Year, Males)
 
> library(ggplot2)
 
> qplot(Year, Males, data = Arbuthnot, geom = "line")
 

We can see that after a gradual dip from 1629 to about 1660, christenings for males 
increased quite rapidly. A goal of time series analysis is to study the frequency of an 
event over a specified period of time as to make inferences about trend. Of interest as 
well is to estimate the extent to which events in previous time periods are related to 
events in later time periods. The so-called time lag allows one to forecast future data 
based on data from previous periods. Often in time series, residuals are autocorrelated, 
which can mean, for example, that residuals from recent periods are more related to current 
observations than residuals from more distant past periods. Such indicators are used in 
models as predicting stock market share prices over time, though because all models are 
based on data we actually have and not data we are going to have, even for seasoned time 
series specialists making money from the stock market can still be quite challenging! A 
time series cannot tell you if a competitor will release a new (and better) product in the near 
future, thereby causing your stock price to potentially drop. Only substantive knowledge 
of the research domain (in this case, economics and business) can do that. 

Times series models are a huge topic and other than our brief commentary are 
beyond the scope of this book. Our purpose in mentioning them at all was simply to 
highlight circumstances that may feature correlated residuals. Such models have often 
proved useful in modeling econometric, geographical, and astronomical data, among 
other uses. For details on both fitting and decomposing time series, refer to Crawley 
(2013, pp. 785–808) and Venables and Ripley (2002, pp. 387–418). 

8.23.3 Detecting Outliers 

Outliers that fall relatively near the mean of the predictor(s) are usually not considered 
to be that influential on the final regression solution. Outliers that are relatively far 
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from the mean of predictor(s) and somewhat distant from the regression line or plane 
(i.e., high leverage data points) have greater influence on the final regression solution. 
Hence, influence can be defined as the product of leverage and discrepancy, where 
discrepancy is a measure of how “outlying” an observation is. Influential observations 
are those that are both outliers and have a rather strong impact on the regression 
solution because they are also relatively distant from the regression line (or plane, in 
the case of multiple regression). 

To compute a measure of leverage, recall once more that predicted values in 
regression can be defined as a function of hat values in 

�1X ́ y ́ � X�X ́ X� y 

� Hy 

where X�X ́ X��1X ́ is the so-called “hat matrix.” Hat values provide a measure of 
leverage. Values that exceed twice their average, where their average is computed as 
h � �k � 1�=n (where k is the number of predictors and n is the sample size), are 
usually considered to be noteworthy. For our Q–V linear regression, we can compute 
hat values in R by 

> hatvalues(reg.fit) 

1 2 3 4 5 6 7 8 

0.3152174 0.4202899 0.2318841 0.1159420 0.1884058 0.1413043 0.1413043 0.2572464 

9 

0.1884058 

The mean hat value for our data is 0.22 (i.e., h � �k � 1�=n � �1 � 1�=9). Hence, 
values exceeding 2h, or 2(0.22) = 0.44, might be of concern. For our small data set, we 
have no such extreme values, though the hat value for the second observation (i.e., 
0.42) is pretty close to meeting these criteria. 

As a measure of influence, dfbeta “difference in beta values” and their standardized 
counterparts, dfbetas (note that the standardized versions are simply designated as 
plural) can be computed. A dfbeta is defined as the difference between a regression 
coefficient computed with the given observation included and without. That is, the 
dfbeta is defined as 

dij � bj � bj��i� 
where dij is the dfbeta for the given observation, bj is the regression coefficient computed 
with the observation i included in the model, and bj��i� is the regression coefficient 
computed with the observation i not included in the model. Dfbeta values capture 
influence by deleting the given data point from the estimated regression coefficient and 
recomputing it to assess how different it would be with that observation removed. 

Cook’s D-statistic provides a useful index combining information about leverage 
and influence: 

´2e hii �Di � 
k � 1 1 � hi 
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where e ́2 is the squared residual for the ith observation and hi is the given hat value for the i 
ith observation. Cook values are a general measure of multivariate distance. Relatively 
large values (e.g., >1) indicate the given data point may exert a rather strong influence on 
the estimated regression coefficients. To get Cook d values in R, we compute 

> cooks.distance(reg.fit) 

1 2 3 4 5 6 

0.1238382524 1.0642718447 0.1425192487 0.0736656900 0.1472491909 0.1519522308 

7 8 9 

0.0159258458 0.0009376835 0.0608529820 

A relatively large value occurs for the second case (value of 1.06), and hence may 
be one worth looking into as a potentially statistically (yet recall, perhaps not 
scientifically) problematic observation. We could also obtain Cook values along with 
a host of other indicators (e.g., dfbeta) using influence.measures(reg.fit). 
One can also compute partial regression plots to visualize the joint influence of 
observations on a given model. For details, see Fox (1997). 

8.23.4 Normality of Residuals 

Recall that another of the assumptions of the regression model is that errors follow a 
normal distribution with constant variance. That is, εi ∼ NID�0; σ2�. A failure to meet 
this assumption can weaken the efficiency with which parameters are estimated. 

We can generate Q–Q plots that allow us to informally test the normality of 
residuals assumption. The Q–Q plot should reveal an approximate linear relationship 
between quantiles and residuals: 

> library(car) 
> qqPlot(reg.fit) 

This particular plot features that of studentized residuals against t quantiles. The 
dashed lines are confidence bands that R includes automatically when generating the 
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plot. For such a small data set, the assumption of normality is quite challenging to 
assess. In general, normality of residuals is said to be more or less satisfied if points 
fall on (or at least near) the line. 

8.24 REGRESSION IN SPSS: PREDICTING QUANTITATIVE FROM 
VERBAL 

We now demonstrate linear regression on the Q–V data in SPSS. Our results will, not 
surprisingly, parallel those obtained earlier in R. We nonetheless provide a rather 
thorough explanation of findings to ensure that the reader has the opportunity to 
master the interpretation of essential statistics learned in this chapter, as well as how 
they are reported in SPSS, since “regression in SPSS” will likely be a common 
strategy for him or her in a multitude of research contexts. 

First, we generate a plot of Q on V: 

GRAPH 
/SCATTERPLOT(BIVAR)=V WITH Q 
/MISSING=LISTWISE. 

As can be seen from the plot (and as we noted in our previous analysis using R), the 
relationship between Q and V appears to be more or less linear. We proceed with the 
regression analysis, requesting only the most essential output: 

REGRESSION 
/MISSING LISTWISE 
/STATISTICS COEFF OUTS R ANOVA 
/NOORIGIN 
/DEPENDENT Q 
/METHOD=ENTER V. 
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Variables Entered/Removeda 

Model Variables Entered Variables Removed Method 

1 Vb . Enter 

aDependent variable: Q 
bAll requested variables entered. 

The first piece of output above simply states which variables have been entered 
into the equation and which have been left out. Since we are performing a simple 
linear regression, there will always only be a single variable entered, and no variables 
removed. In a multiple regression, the topic of the following chapter, this report will 
prove useful as a quick verification that the predictors we intended to include in the 
model are indeed included, while the ones we wished to not include have been left out. 
Under “Method,” we see the word “Enter.” This simply means that we are conducting 
a full entry regression (also known as simultaneous regression) in which all predictors 
are entered into the model at the same time, and hence all parameters (in our case, α 
and β) are estimated simultaneously. Such output will again prove more useful to us 
when we analyze multiple regression models, where we are able to choose one of 
several techniques for performing the multiple regression (e.g., forward regression 
and stepwise regression). 

Model Summary 
Model R R-Square Adjusted R-Square Std. Error of the Estimate 

1 0.906 0.820 0.794 1.19977 

The model summary contains the essential information regarding how well our 
regression model fit the observed data. We see that R is equal to 0.906. Since this is a 
model with a single predictor, recall that R is equal to the Pearson product–moment 
correlation coefficient for Q and V. 

R-square is equal to (0.906)2, which yields 0.820. Recall that this expresses the 
proportion of variance in Q that is “explained” or “accounted for” by knowledge of V. 
For our data, this means that approximately 82.0% of the variance in Q can be 
accounted for by knowledge of V. 

Next, we come to the ANOVA summary table: 

ANOVA 

Model Sum of Squares df Mean Squares F Sig. 

Regression 
Residual 
Total 

45.924 
10.076 
56.000 

1 
7 
8 

45.924 
1.439 

31.904 0.001 

The regression sum of squares tells us how much variability is accounted for by the 
regression model based on the fitting of the least-squares line. The residual sum of 
squares tells us how much variability is unaccounted for by the regression model. The 
total variability is the sum of both regression and residual variability. Recall that the 
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extent to which the regression sum of squares is large relative to the residual sum of 
squares is the extent to which more variability than not is accounted for by our model. 
Note that we also get R2 from the summary table by taking the ratio 45.93/ 
56.00 = 0.82, which agrees with R2 reported earlier (and as we computed in R). 
The value of adjusted R2, as expected, is less than R2. 

Recall that the mean squares are computed just as they are in ANOVA-type 
models, that is, by taking the relevant sum of squares and dividing by the corre
sponding degrees of freedom. Mean squares regression is computed by dividing SS 
regression by df for regression, which for our data is 45.92/1 = 45.92. Mean squares 
residual is computed by dividing SS residual by df for residual, which for our data is 
10.08/7 = 1.44. 

The F-ratio for the regression model is computed by taking the ratio of MS 
regression to MS residual, that is, 45.924/1.439 = 31.91. The test of significance 
reveals that the probability of obtaining an F-statistic as the one we have obtained or 
more extreme from an F distribution on 1 and 7 degrees of freedom is very small with 
an associated p-value equal to 0.001. Hence, we can reject the null hypothesis that R2 

in the population is equal to zero, and conclude the statistical alternative hypothesis 
that it is not equal to zero. That is, we conclude H1 : R2 ≠ 0. 

Next in our output are provided the regression model coefficients. Included are 
significance tests for the intercept (which SPSS calls constant), as well as for predictor 
variable V: 

Coefficients 

Unstandardized 
Coefficients 

B Std. Error 
Standardized Coefficients 

Beta t Sig. 

Constant 
V 

2.859 
0.707 

0.887 
0.125 0.906 

3.221 
5.648 

0.015 
0.001 

Our estimated regression equation is thus: 

´ yi � 2:859 � 0:707�xi� 
Recall the correct way to interpret the coefficient for b: For a 1 unit increase in V, on 
average, we expect Q to increase by 0.707 units. 

Recall why we need to include the statement “on average” or at minimum, 
“expect.” Though our regression line is a functional relation (it is a perfect polynomial 
of degree 1), the data on which we are fitting the perfect functional form is less than 
perfect. It is rather messy and contains much variation. So in interpreting the 
coefficient 0.707, it would be incorrect to say that a 1 unit increase in V is associated 
with a 0.707 unit increase in Q. We need “on average” or “expected” (or both) to 
denote the fact that we are dealing with a statistical model rather than a functional or 
otherwise purely deterministic one that assumes no error in prediction. 
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The constant is equal to 2.859, which means that the least-squares regression line 
touches the ordinate axis at that particular value. It can be interpreted as the predicted 
value for Q when V = 0, as easily demonstrated: 

´ yi � 2:859 � 0:707�xi� 
� 2:859 � 7:07�0� 
� 2:859 

Though in this circumstance the interpretation of the intercept as a predicted value is 
somewhat meaningful since it is presumably theoretically possible to get a value of 0 
on our scale of verbal ability (perhaps not on actual verbal ability itself, as a construct, 
however), recall that in many situations the substantive (as opposed to strictly 
mathematical) interpretation of the intercept term is ambiguous at best. For example, 
if the predictor was that of weight and the response was that of height, then it would 
indeed be nonsensical to conclude that when one weighs 0 pounds, one’s predicted 

´ height is yi. In such cases, the intercept should not be interpreted without further 
adjustment to the model. The principle here is that though the intercept is usually 
estimated for all linear models, it is only as substantively interpretable as it makes 
good research, scientific, or even common sense to interpret. Having said this, there 
are ways of making the intercept more interpretable. One common method is to mean

´ center predictors such that one obtains a predicted value for yi when xi is equal to its 
mean, instead of 0. We survey this possibility in Chapter 10 when we consider the 
case of interaction regressors. 

Next are the estimated standard errors associated with both the intercept and the 
slope parameters. Recall that the standard errors in this case provide us with a 
measure of how much we should expect the given estimated coefficient to vary 
under the assumption of the null hypothesis. The standard error is the standard 
deviation of the corresponding sampling distribution of the statistic. Consider the 
standard error for the intercept, equal to 0.887. What this means is that even if the 
null hypothesis is true (i.e., α � 0), we would expect repeated samplings of the 
sample intercept to vary on average by 0.887 units. Recall that this variation from 
expectation usually goes by the name of sampling error or chance. The question we 
want to ask is: 

How large is our obtained value of the intercept relative to how much we should expect it 
to vary across theoretical repeated samplings? 

If the value of the intercept is large relative to its standard error, it gives us reason 
to believe the true intercept in the population (from which these data were 
presumably drawn) is not equal to zero. This forms the logic of the t-test that 
follows (on the right-hand side of the output), in which the obtained intercept term 
is compared with its standard error by means of a ratio. For the intercept, the t-ratio 
is equal to 2.859/0.887 = 3.22. Evaluated for statistical significance on n � k � 1 
degrees of freedom (which in our case is equal to 7), we have evidence to reject 
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the null hypothesis that the population intercept is equal to 0, since the obtained 
p-value is relatively small (p = 0.015). In other words, we have evidence to infer 
H1 : α ≠ 0. 

We interpret the standard error for the slope analogously. The null hypothesis is 
that the population regression slope is equal to zero, H0 : b* � 0, where b* is the 
population slope parameter (we use b* in this case to represent the population 
parameter instead of β, which we reserve for the standardized coefficient, Beta, in 
our current example). The statistical alternative hypothesis is H1 : b* ≠ 0. If we were 
to repeatedly sample slope statistics from this given population, how much should we 
expect them to vary from sample to sample? The answer lies in the standard error, 
equal to 0.125. Since the obtained slope is relatively large compared to its standard 
error, as confirmed by the t-ratio, we reject the null hypothesis and infer H1 : b* ≠ 0. 
The probability of obtaining such sample slopes under H0 is relatively small 
(p = 0.001). In other words, the deviation from 0 that we are witnessing in our 
sample is likely not simply a by-product of sampling error. Does the slope of 0.707 
represent a substantively meaningful slope? We cannot answer this question based on 
the significance test alone, and any measure of importance ascribed to the size of 
effect, represented by R2, recall, must be tempered by the size of effects in the given 
literature for the phenomenon under investigation. 

Next in the output is the value for β (Beta), which recall is the standardized 
regression coefficient. This is the slope coefficient that is generated when Q and V are 
both standardized to have a mean of 0 and standard deviation equal to 1 (i.e., 
transformed into z-scores). The value for β for our data is 0.906. The interpretation for 
β is as follows: 

For a one-standard deviation increase in V, on average, we expect Q to increase by 0.906 
of a standard deviation. 

Notice as well that 0.906 for this model is actually equal to coefficient r, the 
bivariate correlation between V and Q. This is as a result of the model having only a 
single predictor. In multiple regression, where we have several predictors and are 
required to interpret partial regression coefficients, this relationship will, of course, no 
longer hold. 

8.25 POWER ANALYSIS FOR LINEAR REGRESSION IN R 

The function pwr.f2.test in the pwr package (Champely, 2014) can be used to 
estimate power for linear regression models. We once again require the transforma
tion of f 2 into R2, originally featured in our discussion of power estimation in the 
context of ANOVA models (see Chapter 4): 

R2 

f 2 � 
1 � R2 
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To demonstrate the estimation of power, suppose a researcher hypothesized or 
expected an R2 of 0.40 for a simple linear regression model. Suppose also the 
degrees of freedom for the model were 1 (for numerator) and 7 (for denominator), 
which implies there to be a total of nine observations (i.e., n � k � 1 � 9 � 1 � 1 � 7). 
The value for f 2 is therefore equal to 0.66 (i.e., 0.40/(1 � .40)). We enter these 
parameters, specifying power = NULL, so that power is estimated: 

> library(pwr)
 
> pwr.f2.test(u = 1, v = 7, f2 = .66, sig.level = .05, power = NULL)
 

Multiple regression power calculation 

u = 1
 
v = 7
 

f2 = 0.66
 
sig.level = 0.05
 

power = 0.5552861
 

The estimated power for this regression is approximately 0.55. That is, the 
probability of rejecting the null hypothesis in such a model given that the null is 
actually false is a bit higher than that of getting a head or tail on the flip of a fair coin. 
Even with a relatively large effect size (0.40), we would require a greater sample than 
nine to achieve respectable power levels (e.g., 0.90). 

Power and sample size for regression can also be quite easily estimated using 
G∗Power, though we do not demonstrate such estimation here. 

8.26 CHAPTER SUMMARY AND HIGHLIGHTS 

•	 Linear regression is a statistical method that capitalizes on the correlation 
between two variables to aid in the prediction of a response variable based on 
knowledge of a predictor variable. The goal of regression analysis is not simply 
to make predictions, as we can make predictions without using regression. 
Rather, the goal is to minimize the error in prediction. 

•	 Simple linear regression features the use of a single variable in predicting a 
continuous response. Multiple regression models feature multiple predictor 
variables predicting a continuous response. 

•	 The history of regression analysis has its roots with Legendre, Bravais, and 
Galton, among others. The distinguishing feature of Galton’s discovery is that 
he “saw” regression in real, empirical data. 

•	 Regression models can be used to model both experimental and nonexper
imental data. The statistical tool of regression is no more experimental or 
nonexperimental than is the arithmetic of ANOVA models. 

•	 By comparing the regression model with the analysis of variance models of 
previous chapters, one can more easily assimilate and understand the technique 
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of regression. Whereas ANOVA models contain population effects, regression 
models contain slope parameters. Both models include εi, error terms. 

•	 The reader familiar with multilevel models can easily note how the regression 
model of the current chapter can be extended to allow the intercept and slope 
terms to vary, thereby designating them as random effects. 

•	 The assumptions of regression analysis include linearity in parameters, normal
ity of errors, homoscedasticity, independence of errors, absence of influential or 
outlying data, and that the correct model has been specified. The classic 
regression model also assumes that predictors are free from measurement error. 

•	 The estimation of parameters in linear regression usually takes the form of 
ordinary least-squares, though maximum-likelihood estimators (as well as 
others) are also available. 

•	 The null hypothesis for a regression model usually takes the form H0 : β � 0 
and is tested against an alternative hypothesis of the form H1 : β ≠ 0. 

•	 Alternative formulations of the regression model exist, such as 
yi � y � bx � bxi � ei. One advantage of conceptualizing the regression model 
in different forms is that it allows one to appreciate the role played by various 
inputs to the model. 

•	 The regression model can be constructed using matrices, which is especially 
useful for multiple (and multivariate) regression models. For simple linear 
regression, scalar algebra is usually sufficient for describing and working with 
the model. 

•	 R2 is the typical measure of model fit for the regression model, having a lower 
limit of 0 and an upper limit of 1. R2 provides us with the proportion of variance 
explained in the response variable by knowledge of the predictor variable. 

•	 Adjusted R2 is a useful alternative (or supplementary statistic) to R2, and is 
adjusted to incorporate the number of parameters being fit in the model. 

•	 Regression analysis can be performed in R through matrix operations. Under
standing such matrix operations is useful, but pragmatically regressions are 
typically run through “canned” routinessuchaslm inRorREGRESSION inSPSS. 

•	 The area of regression diagnostics is a field in itself. Its purpose is to help 
identify outlying or influential data, as well as to aid in verifying assumptions of 
the regression model. Diagnostics can generally be divided into categories: 
unusual and influential data, nonlinearity, nonconstant error variance and 
nonnormality, and collinearity. 

REVIEW EXERCISES 

8.1.	 Describe the overall goal and purpose of regression analysis. 

8.2.	 Why can it be said that the phrase “The purpose of regression is to make 
predictions” is not a complete description of what regression is about? 
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8.3.	 Discuss how analysis of variance is no more “experimental” of a statistical 
method than is regression analysis. 

8.4.	 Compare the classic one-way ANOVA model with the simple linear regression 
model of this chapter. How are they similar? Different? 

8.5.	 Discuss the nature of the least-squares regression line. What is its objective, 
and how does it go about accomplishing this goal? 

8.6.	 A colleague says to you, “By fitting the least-squares regression line to data, 
one is guaranteed to achieve a small sum of squared errors term.” Comment on 
your colleague’s statement, and correct it if appropriate. 

8.7.	 Discuss how averages can be misleading, and how this lesson can be extended 
to cautions regarding regression analysis. 

8.8.	 Distinguish between the standard error of a statistic and the standard error of 
the estimate as employed in regression. 

8.9.	 Distinguish between the standard error of the estimate and its square. 

8.10.	 List and briefly discuss the assumptions of a regression analysis estimated by 
ordinary least-squares. 

8.11.	 Discuss what linearity in the parameters means by comparing and con
2trasting the model yi � α � β1xi � β2x � εi with the modeli
 

yi � α � β1xi � β22xi � εi.
 

8.12.	 Discuss what is meant by a model function. 

8.13.	 Discuss what σ2 
ε I means in the context of the independence of errors assump

tion in regression. 

8.14.	 Why is the assumption of a correct model specification virtually never met in 
practice, but is nonetheless an assumption that should be carefully considered 
when formulating regression models? 

8.15.	 Discuss why the assumption of no measurement error in variables is usually 
unrealistic with virtually any data, especially those arising from the social and 
behavioral sciences. 

8.16.	 What does it mean to estimate a parameter in regression analysis? 

8.17.	 Explain the role of differentiation as it relates to obtaining the least-squares 
solutions in linear regression. Why are derivatives necessary? 

8.18.	 Under what condition(s) are the least-squares estimators of α and β also 
maximum-likelihood estimators? 

8.19.	 Give a research example where H0 : β � 0 may not be regarded as a suitable 
null hypothesis for the particular problem at hand. 

8.20.	 For sb > 0, under what condition(s) would t � 0 in  t � �b � βnull�=sb? 
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8.21.	 Referring to the following form of the regression equation, 

yi � y � b�xi � x� � ei 

what is the predicted value for yi under the condition that xi � x? 

8.22.	 Why is expressing the regression model in matrices typically not essential for 
simple linear regression, but necessary for multiple linear regression and more 
complex models? 

8.23.	 Describe each component of the classic linear regression model y � Xβ � ε. 

8.24.	 Define what is meant by a residual in regression analysis. 

8.25.	 Discuss why solving for b in X ́ X b  � X ́ y is problematic if X ́ X is not 
invertible. 

8.26.	 Describe and explain each of the equations in Table 8.1. 

8.27.	 Distinguish between R2 and R2 
adj. How are they similar? Different? 

8.28.	 Describe the overall purpose of regression diagnostics, what they are for, and 
how they should be used. 

8.29.	 Consider data by Snedecor (1934). These data consist of 14 freshman 
mathematics classes (Table 8.4) with mean ability scores and final grades 
recorded for each class. 

(a)	 Run a regression analysis in R using lm denoting mean final grade as the 
response variable and mean ability score as the predictor. 

(b)	 Assess the model fit in the analysis run in part (a). 

TABLE 8.4 Mean Ability Scores and Final Grades for 14
 
Mathematics Classes
 

Class Number in Class Mean Ability Score Mean Final Grade 

1 17 5.00 4.12 
2 20 2.55 2.55 
3 20 1.95 2.45 
4 19 2.84 3.11 
5 17 2.18 2.47 
6 21 2.33 2.24 
7 18 2.94 2.94 
8 18 4.17 4.22 
9 20 3.05 2.90 
10 20 3.20 3.25 
11 21 3.33 3.14 
12 21 2.33 2.05 
13 19 0.95 1.47 
14 20 3.00 2.50 
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(c)	 Using graphical displays and plots, evaluate whether the assumptions of 
normality of residuals and independence of errors are at least tentatively 
satisfied. 

(d)	 Obtain the plot of residuals discussed in part (c) using R “manually.” 

8.30.	 Consider data published by Fisher in 1947 on the bodyweight, heartweight, and 
sex of domestic cats used for digitalis experiments (Fisher, 1947). 

> fisher <- read.table("fisher_1947.txt", header = T) 
> some(fisher) 

bodyweight heartweight sex 
3 2.9 9.9 1 
17 2.1 7.6 1 
21 2.6 10.1 1 
54 3.0 13.3 2 
57 3.0 10.0 2 
58 2.6 10.5 2 
72 2.5 12.7 2 
82 2.2 10.7 2 
96 3.5 15.7 2
 
127 3.6 13.3 2
 

(a)	 Obtain a plot of heartweight against bodyweight. Does the relationship 
between the two variables appear to be linear? 

(b)	 Run a regression designating heartweight as the response variable and 
bodyweight as the predictor. Use SPSS or R to run the analysis. Assess the 
overall fit of the model and summarize findings. 

Further Discussion and Activities 

8.31.	 As briefly discussed in the introduction to this chapter, there are many who 
contributed to the invention of regression analysis as we know it today. Most 
associate the Victorian genius Francis Galton with the history of regression, 
though as mentioned, a character by the name of Auguste Bravais was also 
influential in discovering the normal surface. Read Denis (2001) and comment 
on the historical evidence that exists for and against claims that Bravais is more 
relevant to the origins of correlation and regression than is Galton. 
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MULTIPLE LINEAR REGRESSION 

If there is any good reason to fear disturbances of results by other variables than the one 
with which we are immediately concerned, the proper method to be employed is, it seems 
to me, that of ‘multiple correlation.’ This method enables us to deal with facility with 
three variables, and if need be with more, and to form coefficients of correlation between 
any two of the variables while eliminating the effects of variations in the third. Such “net 
coefficients’ will probably play an important part in future statistical researches. 

(Yule, 1896, p. 615) 

Whereas the simple linear regression model of Chapter 8 featured a single explanatory 
variable, the more general multiple regression model is able to accommodate several 
predictors, given by 

yi � α � β1x1 � β2x2 � ∙ ∙ ∙  � βkxk � εi (9.1) 

where, as was the case for simple regression, yi is an observed value of the response 
variable and α is the population intercept. Note that instead of only a single population 
coefficient β, (9.1) now contains terms β1, β2, βk , where β1 is the partial regression 
slope parameter for predictor x1, β2 is the partial regression slope parameter for predictor 
x2, and βk is the partial regression slope parameter for predictor xk. As before, εi is the 
error associated with predictions of yi. Parameters α, β1, β2, .  . . ,  βk are also typically 
estimated by ordinary least-squares (OLS). The expectation for yi is now 
α � β1x1 � β2x2 � ∙ ∙ ∙  � βkxk, which also implies E�εi� � 0. Finally, we also assume 

E�yi =x1; x2; . . . ; xk� � α � β1x1 � β2x2 � ∙ ∙ ∙  � βkxk (9.2) 

www.wiley.com/go/denis/appliedmultivariatestatistics
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Analogous to simple regression, the systematic portion of the model featured in 
(9.2) is sometimes called the model function. 

The origins of multiple regression lay with George Udny Yule (1871–1951) and 
Karl Pearson (1857–1936) in late nineteenth century Britain. One of the earliest 
complete multiple regressions was published by Yule in 1899 in an article titled “An 
investigation into the causes of changes in pauperism in England, chiefly during the 
last two intercensal decades” published in Journal of the Royal Statistical Society. 
The paper featured a thorough analysis of the then debated predictors of pauperism in 
England, which followed Yule’s “tour de force” (Stigler, 1986) work of 1897 in which 
he laid out much of the theory of correlation. The social and political factors that 
motivated the use of multiple regression are discussed elsewhere (e.g., see Denis and 
Docherty (2007)). A largely unknown figure in the history of regression, Charles 
Stewart Loch (then secretary of the Charity Organization Society in London), in 
responding to Charles Booth’s study The Aged Poor in England and Wales, also 
figured somewhat prominently in the social (as opposed to technical) uprise of 
multiple regression.1 

Before surveying the theory of multiple regression, a review of partial and semi-
partial correlation is required. 

9.1 THEORY OF PARTIAL CORRELATION 
AND MULTIPLE REGRESSION 

Multiple regression has its roots in the theory of partial correlation. Recall that the 
Pearson coefficient of correlation is a measure of the linear relationship between two 
variables. The coefficient of partial correlation is a measure of the linear relationship 
that still exists when the linear influences of one or more variables are removed. In a 
sense, partial correlation attempts to provide an after the fact estimate of what the 
bivariate correlation might have been had we been able to control the aforementioned 
linear influences. The partial correlation coefficient, however, is not an antidote for the 
absence of experimental controls. 

A partial correlation between variables x1 and x2 controlling for zi is obtained, the 
“long way,” as follows: 

• Regress x1 on zi and obtain a column of residuals. 

• Regress x2 on zi and obtain a column of residuals. 

• Correlate the residuals from x1 on zi to those from x2 on zi. 

1The interested reader is encouraged to refer to Stigler (1986), Desrosières (1998), and Denis and Docherty 
(2007) for details on the social and political forces that helped motivate the use of multiple regression in the 
poverty debate. See also Section “Further Discussion and Activities” of this chapter. This is not to say that 
multiple regression would not have arose without such a rich social history. It is only to emphasize the fact 
that statistical techniques rarely, if ever, come into mainstream use without some purpose, often social or 
political in nature. 
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The logic of the partial correlation is to first account for the predictive power of zi in 
both cases, then correlate what is “left over.” This remainder is contained in the 
residuals. Hence, we see that partial correlation is actually a correlation of residuals. 

An easier way for computing partial correlations, though perhaps less pedagogical, 
is through the following: 

r12 � �r13��r23� (9.3)r12:3 � p 
2 2 �1 � r13��1 � r23� 

where r12:3 is the correlation between variables 1 and 2 after removing the variability 
due to variable 3. So long as its limitations are appreciated, we can interpret the partial 
correlation as the correlation between variables 1 and 2 after controlling for variable 3. 
As already mentioned however, nothing is actually being “controlled” when comput
ing partial correlation. We are simply partialling out variability, nothing more. We 
will have much more to say on this matter later in this chapter when we survey 
multiple regression in its entirety. 

Some features of (9.3) are worth noting. For one, notice that the numerator starts with 
r12, which is the actual correlation coefficient we want to obtain. We then subtract out 
the product �r13��r23�, which has the effect of removing the linear influence of variable 3 
on both variables 1 and 2. If variable 3 has no linear influence, then it stands that 
�r13��r23� will equal 0, and thus the numerator will become r12 � 0 � r12. 

We can demonstrate the computation of partial correlations using the package 
corpcor (Schäfer et al., 2014) in R. Our demonstration uses data from Hotelling 
(1936), which we will discuss more extensively in our upcoming discussion of 
canonical correlation in Chapter 13. For our purposes here, we simply wish to 
demonstrate the computation of partial correlations. Hotelling’s matrix on four 
variables, which we name cancor.matrix, is the following: 

> library(corpcor) 
> cancor.matrix 

[,1] [,2] [,3] [,4] 
[1,] 1.0000 0.6328 0.2412 0.0586 
[2,] 0.6328 1.0000 -0.0553 0.0655 
[3,] 0.2412 -0.0553 1.0000 0.4248 
[4,] 0.0586 0.0655 0.4248 1.0000 

We now generate all partial correlations in the matrix: 

> library(corpcor) 
> cor2pcor(cancor.matrix) 

[,1] [,2] [,3] [,4] 
[1,] 1.0000000 0.6758534 0.3852133 -0.1558443 
[2,] 0.6758534 1.0000000 -0.3229349 0.1770043 
[3,] 0.3852133 -0.3229349 1.0000000 0.4520026 
[4,] -0.1558443 0.1770043 0.4520026 1.0000000 
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Be sure to note the correct interpretation of the coefficients in the matrix. For 
example, the partial correlation between variables 1 and 2 is 0.67 (row 1, column 2). 
Consistent with our definition, this is the correlation between 1 and 2 after removing 
linear influences of both variables 3 and 4. In this case, two variables were partialled 
out of the relationship of interest. There is no limitation to partialling out several more 
variables had we also wished to remove their influence from the relationship. For 
instance, theoretically, in a five-variable problem, one could compute the partial 
correlation between variables 1 and 2 removing the linear influences of variables 3, 4, 
and 5. 

9.2 SEMIPARTIAL CORRELATIONS 

When we computed a partial correlation, both variables x1 and x2 were adjusted 
to remove the linear regression on variable zi. As  we have seen,  the partial  
correlation r12:3 is actually the correlation between the two adjusted variables x�1:3� 
and x�2:3�. 

Considering now the part or semipartial correlation, we will still want to remove 
the part of x2 due to zi to form the new variable x�2:3�, but we do not want to adjust 
variable x1 at all. That is, in computing the semipartial correlation, we want the 
correlation between the unadjusted variable x1 and the adjusted variable x�2:3�. This 
correlation can be symbolized as r1�2:3�. 

Computing the semipartial correlation between x1 and x2, where only x2 is adjusted 
for zi, we follow these steps: 

• Regress x2 on zi and obtain a column of residuals. 

• Correlate the residuals from x2 on zi to the unadjusted values of x1. 

Notice carefully that in the computation of the semipartial correlation, only x2 is 
adjusted, while x1 is left unadjusted. 

We can compute the semipartial correlation between x1 and x2 in which only 
variable x2 has been adjusted for zi: 

r12 � r13r23 r1�2:3� � p (9.4)
21 � r23 

Again, as was true for partial correlation, it is evident from (9.4) that if the linear 
influence of variable 3 is nonexistent, then the numerator reduces to simply 
r12, since  r12 � 0 � r12. The point of noting this fact is to emphasize that r1�2:3� 
starts off with r12, and then  “adjusts” it accordingly through the subtraction of 
r13r23. 

One can use the ppcor package (Kim, 2012) in R to compute semipartial (and 
partial, for that matter) correlations in R, though we do not demonstrate their 
computation here. Both partial and semipartial correlations are also easily obtainable 
via SPSS. 
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n 

i�1 

9.3 MULTIPLE REGRESSION 

Having surveyed partial and semipartial correlation, we can now build up the multiple 
regression model from these first principles. Recall that in simple linear regression, the 
least-squares normal equations were given by 

a � y � bx 

and 

�xi � x��yi � y� 
b � �xi � x�2 

Recall we could also compute b by 

covxyb � 
s2 
x 

These solutions guaranteed that the line fit to the sample data would be the best fit line 

in the sense of minimizing the sum of squared errors, ε2 
i , the so-called least-squares 

regression line. 
In multiple regression, we again seek estimators for our model equation that 

guarantee a “best fit” in the least-squares sense and from which we can draw 
inferences regarding parameters α, β1, β2,  . . .  ,  βk. Parameters β1, β2, . . .  ,  βk 
we will call by the name of partial regression coefficients. The raw partial regression 
coefficient of yi on x1 holding zi constant is interpreted as follows: 

For a one-unit increase in x1, we expect, on average, yi to increase (or decrease, 
depending on the sign) by b1 units, controlling for zi. 

Going from the raw, or unstandardized partial regression coefficients to the 
standardized ones is straightforward, since they are simply linear transformations 
of one another. A bit of algebra shows that given b1, β1, the standardized coefficient, 
is easily obtained: 

syβ1 � b1 sx1 

b1 sx1β1 � � b1 ? sy =sx1 sy 

where sy, as before, denotes the standard deviation for yi and sx1 denotes the standard 
deviation for variable x1. That is, the standardized partial regression coefficient is 
computed by multiplying the raw partial regression coefficient by the ratio of standard 
deviations of x1 to yi. The interpretation of the coefficient is as follows: 

For a one-standard deviation increase in x1, we expect, on average, yi to increase (or 
decrease, depending on the sign) by β1 standard deviations, controlling for zi. 



394 MULTIPLE LINEAR REGRESSION 

A key point to remember is that in multiple regression, whether for raw or 
standardized coefficients, they are always only interpretable relative to the model in 
which they are estimated, and never independent of the model. This is the very nature 
of multivariable relationships, to incorporate dependencies of variables in the context 
of other variables and not independent of them. Be sure you are aware of the 
distinction between interpreting a simple linear regression and a multiple linear 
regression as it pertains to interpreting regression coefficients. Partial coefficients 
should never be interpreted as though they were computed in a simple linear 
regression context. Only in the case where predictors in a multiple regression model 
are all pairwise uncorrelated will the partial regression coefficient match that of the 
zero-order coefficient. 

9.4 SOME PERSPECTIVE ON REGRESSION COEFFICIENTS: 
“EXPERIMENTAL COEFFICIENTS”? 

Partial regression coefficients, regardless of the complexity of the model in which they 
are interpreted, estimate how much a response variable will change, on average, given 
a 1-unit increase in the predictor while holding all other variables in the model 
“constant.” It is important to realize that slight changes in regression coefficients, 
given the addition or subtraction of additional predictors, do not necessarily carry 
with it any importance, nor should such small deviations be overanalyzed by the 
researcher. 

For example, should a partial regression coefficient change from 0.72 to 0.70 given 
the inclusion of an additional predictor in a regression model, this change, though 
numerically noteworthy, does not necessarily equate to being scientifically meaning
ful, nor should investigators in most cases busy themselves with trying to explain such 
small changes. Regression weights are not “experimental” coefficients. Adding a new 
variable to a regression model and observing the change in coefficients currently in 
the model is not an experimental exercise of manipulation and control. Rather, it is 
simply an exercise in variance partitioning. Unless one is working in the context of a 
controlled experiment or is otherwise dealing with extremely sensitive material as 
objects of measurement, such slight changes usually cannot be attributed to an 
underlying substantive mechanism or process, nor should researchers in most cases 
look for one. This is true especially in cases where there is significant measurement 
error in variables employed in the regression. 

The author has noted that in some circles, researchers exercise a ritual in which 
correlational variables are added and then subtracted from a model and even slight 
changes in partial regression coefficients are then subjected to critical analysis in 
hopes of giving them substantive meaning, almost akin to believing they are 
manipulating an independent variable and observing the effect on a measured 
response. True, for those who wish to test mediational hypotheses, and can muster 
a philosophical basis for doing so (see Section 9.15), huge drops in coefficients 
may be meaningful. However, small coefficient changes on what is in many cases 
error-prone and very sample-specific data, usually have little if any meaning. On the 
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other hand, if measurements are precise and virtually error-free, then even small 
changes in coefficients may be noteworthy. 

9.5 MULTIPLE REGRESSION MODEL IN MATRICES 

The essential statistical theory for the regression model was surveyed in Chapter 8 for 
the case of a single predictor variable. It is a simple matter to extend on that model to 
obtain the multiple regression model of the current chapter. Recall the expectation for 
the simple linear regression model: 

E�y� �  

E�y1� 
E�y2� 
E�y3� 
..
.

..

.

..

.

E�yn� 

� 

α � βxi�1 

α � βxi�2 

α � βxi�3 

..

.

..

.

..

.

α � βxi�n 

where E�y� was the expectation of the vector of responses on y1; y2; . . . ; yn, 
E�y1� ∙ ∙ ∙E�y � was the expectation of each response y1; y2; . . . ; yn, and α �n

βxi�1 ∙ ∙ ∙ α � βxi�n constituted the so-called model function that was the systematic 
portion of the model. It was the expectation of each response. 

The expectation for the multiple linear regression model can be easily extended to 
incorporate additional predictors: 

E�y1� α � β1x1�i�1� � β2x2�i�1� � ∙ ∙ ∙  � βkxk�i�1� 
E�y2� α � β1x1�i�2� � β2x2�i�2� � ∙ ∙ ∙  � βkxk�i�2� 
E�y3� α � β1x1�i�3� � β2x2�i�3� � ∙ ∙ ∙  � βkxk�i�3� 

E�y� �  
... � 

... 

... 

... 

... 

... 

E�y � α � β1x1�i�n� � β2x2�i�n� � ∙ ∙ ∙  � βkxk�i�n� 

where, instead of the expectation E�y1� ∙ ∙ ∙E�y � being equal to α � βxi�1 ∙ ∙ ∙ α � βxi�n 

n

n

as in the case of the simple linear regression model, the expectation is now equal to 

α � β1x1�i�1� � β2x2�i�1� � ∙ ∙ ∙  � βkxk�i�1� 
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for observations y1 ∙ ∙ ∙ y . Associated with each y1 ∙ ∙ ∙ y is still ε1 ∙ ∙ ∙ εn, which once n n 
more is given by a single column vector: 

ε � 

εi�1 

εi�2 

εi�3 

. . 

. 

. . 

. 

. . 

. 

εi�n 

9.6 ESTIMATION OF PARAMETERS 

Recall that in the simple linear regression model constants α and β were chosen so 

that ε2 is minimized. In a multiple regression model, because there is more than a i
 
i�1
 

single predictor variable, we choose scalars α, β1; β2; β3; . . . ; βk so that ε2 is again i 

kept at a minimum. Analogous to the simple regression case, estimators for α, 
n 

β1; β2; β3; . . . ; βk are obtained by again taking partial derivatives of ε2 
i with respect 

to each of α, β1; β2; β3; . . . ; βk instead of simply α and β as in the case of simple linear 
regression. We do not detail the derivation here, as on an applied level, it is not 
enlightening. For details on the estimation of model parameters in a multiple 
regression, see Fox (1997). 

9.7 CONCEPTUALIZING MULTIPLE R 

There are various algebraically equivalent ways of both conceptualizing and comput
ing multiple R, and its square, the coefficient of multiple determination. R2 can be 
defined as the ratio of SS regression to SS total, 

´ �yi � y�2 

i�1 
n �yi � y�2 

i�1 

or as the squared Pearson product–moment correlation between observed values yi ´ and predicted values yi on the response variable yi: 

´ r�yi; y �2 or r�y; y ́�2 (9.5)i

n 

n 

i�1 

i�1 

n 
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We also noted in Chapter 8 how R2 could be computed via matrices. All of these 
ways of conceptualizing and computing R2 are applicable to the multiple regression 

´ case, the only difference is that now yi is composed of more “information” (i.e., 
predictor variables) than in the case of simple regression. Regardless of the number of 
predictors however, there is still only one way to compute the bivariate correlation 
between observed and predicted values and hence (9.5) will still apply even for the 
case of multiple predictors. 

9.8 INTERPRETING REGRESSION COEFFICIENTS: THE CASE 
OF UNCORRELATED PREDICTORS 

Earlier, we emphasized that partial regression coefficients should not be interpreted 
as if they were zero-order coefficients in a simple regression model. The reason for 
this is that correlation between predictors makes the zero-order interpretation 
incorrect. Only in the case where predictors are uncorrelated are such coefficients 
equivalent. Under the situation of zero correlation among predictors, R becomes 
simply an additive sum of r values, one for each independent predictor in the model 
for which yi is regressed on each separately. When predictors are correlated, 
however, which is virtually the case in all samples, Ry ? x1;x2 ;...;xk is a function of 
such correlations, and can be written as a weighted sum of the relevant β1, β2, βk 
weights: 

p
Ry ? x1;x2;...;xk � β1ry ? 1 � β2ry ? 2 � ∙ ∙ ∙  � βkry ? k (9.6) 

Equation (9.6) tells us what Ry ? x1;x2 ;...;xk actually is. It is a linear combination of zero-
order correlation coefficients, each weighted by variables’ respective standardized 
regression coefficients. 

9.9 ANDERSON’S IRIS DATA: PREDICTING SEPAL LENGTH FROM 
PETAL LENGTH AND PETAL WIDTH 

We demonstrate a simple example of multiple regression on Fisher’s Iris data where a 
single response variable is hypothesized as a function of two predictors. These data 
were first made available by Edgar Anderson in 1935 in a paper titled “The Irises of 
the Gaspé Peninsula” published in the Bulletin of the American Iris Society (and 
hence, the Iris data has also come be known as Anderson’s Iris data). The data consist 
of a total of 150 observations on three species of Iris: 50 on  Iris setosa, 50 on  Iris 
virginica, and 50 on Iris versicolor. The length and width of both sepals and petals 
were recorded. The data are of historical significance, and have been used in countless 
papers as a model demonstration of numerous statistical methods. We request some of 
the Iris data in R: 
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> attach(iris) 
> library(car) 
> some(iris) 

Sepal.Length Sepal.Width Petal.Length Petal.Width Species 
3 4.7 3.2 1.3 0.2 setosa 
12 4.8 3.4 1.6 0.2 setosa 
14 4.3 3.0 1.1 0.1 setosa 
33 5.2 4.1 1.5 0.1 setosa 
37 5.5 3.5 1.3 0.2 setosa 
86 6.0 3.4 4.5 1.6 versicolor 
116 6.4 3.2 5.3 2.3 virginica 
122 5.6 2.8 4.9 2.0 virginica 
129 6.4 2.8 5.6 2.1 virginica 
148 6.5 3.0 5.2 2.0 virginica 

For this analysis, we concern ourselves only with predicting sepal length from 
knowledge of petal length and petal width. 

We would first like to get a picture of the data. We can generate a 3D scatterplot in 
R using the scatterplot3d package (Ligges and Mächler, 2003): 

> library(scatterplot3d)
 
> scatterplot3d(Sepal.Length, Petal.Length, Petal.Width)
 

The above plot is useful if for nothing more than to gain an appreciation of the 
complexities associated with analyzing and visualizing multivariate data even in only 
three dimensions. An at least approximate linear relationship among the three variables 
appears to be present. The actual screening of multivariate data usually takes the form of 
univariate histograms or stem-and-leaf plots, as well as bivariate scatterplots. These 
plots are useful in the early detection of potential outliers and as a quick check on 
whether the “hope” for multivariate linearity is at least tenable. However, even if 
linearity holds for yi on x1 and yi on x2, this does not necessarily imply multivariate 
linearity. As noted by Fox (1997), marginal and bivariate relationships (e.g., yi on x1) are  
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not equivalent to partial relationships (e.g., yi on x1 controlling for x2), and 
hence bivariate plots can only help rule out problematic nonlinear data in two 
dimensions. They also cannot in any way guarantee that our empirical observations 
are multivariate normal. Generally, satisfying assumptions in lower dimensions does 
not guarantee these same assumptions will hold in higher dimensions. 

We carry on now with the regression analysis, designating the response variable to 
be Sepal.Length and predictor variables Petal.Length and Petal.Width: 

> reg.fit.iris <- lm(Sepal.Length ∼ Petal.Length + Petal.Width) 
> summary(reg.fit.iris) 

Coefficients: 
Estimate Std. Error t value Pr (>| t |) 

(Intercept) 4.19058 0.09705 43.181 < 2e-16 *** 
Petal.Length 0.54178 0.06928 7.820 9.41e-13 *** 
Petal.Width -0.31955 0.16045 -1.992 0.0483 * 

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

Residual standard error: 0.4031 on 147 degrees of freedom 
Multiple R-squared: 0.7663, Adjusted R-squared: 0.7631 
F-statistic: 241 on 2 and 147 DF, p-value: < 2.2e-16 

Some general features of the output are as follows: 

´ 
•	 The estimated model equation is yi � 4:19 � 0:54�x1� � 0:32�x2�. 
•	 The overall model yields an F-statistic of 241 on 2 and 147 degrees of freedom and 

is statistically significant yielding a p-value of 2.2e-16. Degrees of freedom for 
numerator are equal to 2 since there are two predictors, whereas degrees of freedom 
for denominator are equal to 147 (computed as n � k � 1 � 150 � 2 � 1 � 147). 

•	 Both petal length and petal width are statistically significant predictors of sepal 
length, with p-values of 9.41e-13 and 0.0483, respectively. 

•	 For a 1 unit increase in petal length, we can expect, on average, sepal length to 
increase by 0.54 units, when petal width is held constant (or equivalently, given 
the model currently under test). 

•	 For a 1 unit increase in petal width, we can expect, on average, sepal length to 
decrease by 0.32 (or rounded up to 0.33) units, when petal length is held 
constant (or equivalently, given the model currently under test). 

•	 The value of multiple R2 is equal to 0.7663, indicating that the model as a whole 
accounts for nearly 77% of the variance in sepal length. 

•	 The value for adjusted R2 is equal to 0.7631, slightly smaller than R2, but still 
indicative of the overall effect. 

•	 The standard error of the estimate is equal to 0.4031. This is the standard 
deviation of residuals around the fitted regression function. The variance of the 
estimate is the square of 0.4031, equal to (0.4031)2 = 0.1625. Notice that the 
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variance of residuals is quite small, indicating a very good fit of the model to the 
empirical data (which is also confirmed by a high R2). 

We can obtain the predicted (or fitted) values for our model, where we print only 
the first five: 

> fitted(reg.fit.iris) 

4.885160 4.885160 4.830983 4.939338 4.885160 

What are these fitted values? The first fitted value, that of 4.885, is the predicted value 
for the first observation in our sample data. The first observation has values 

Sepal.Length Sepal.Width Petal.Length Petal.Width Species 
5.1 3.5 1.4 0.2 setosa 

For demonstration, we can compute the predicted value using our model equation 
for the first observation to match that generated by R: 

´ y � 4:19 � 0:54�x1� � 0:32�x2�i � 4:19 � 0:54�1:4� � 0:32�0:2� 
� 4:19 � 0:756 � 0:064 
� 4:88 

We could likewise generate the remainder of the fitted values using the regression 
equation. How well did the model predict this first observation? To evaluate how well 
it did, we compute the residual (after rounding 4.88 up to 4.9): 

´ ri � yi � yi � 5:1 � 4:9 
� 0:2 

We can see that for this observation, we are in slight error. The model did not predict 
this observation perfectly. We can obtain residuals for all observations by computing 
(we print only the first five): 

> residuals(reg.fit.iris) 

0.214839668 0.014839668 -0.130982616 -0.339338047 0.114839668 

We note that the residual for the first observation, 0.21, matches that which we 
computed manually. 

How much variability is there in these residuals? A model with large residuals, 
overall, would suggest the model does not fit very well. A model with small residuals 
would, on the other hand, imply a well-fitting model. Recall that simply summing the 
residuals will not answer our question, since the sum of residuals will always equal 0. 
Of course, the solution, as always, is to sum the squared residuals. We compute a 
standard deviation of residuals: 
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> sd(residuals(reg.fit.iris)) 
[1] 0.4003412 

The standard deviation of residuals is equal to 0.4003. Recall that by definition, the 
standard deviation of residuals is called the standard error of the estimate. 

Recall that one way of conceptualizing multiple R is that it is the bivariate correlation 
´ between observed values of yi and predicted values yi. We can easily compute this: 

> pred <- fitted(reg.fit.iris) 
> cor(Sepal.Length, pred) 

[1] 0.8753635 

Notice that, within slight rounding error, the value of 0.875 is the value of the 
square root of multiple R2 reported by R (0.766), as it should be. 

We can also obtain confidence intervals for the estimated regression coefficients by 
confint in R: 

> confint(reg.fit.iris, level = 0.95) 
2.5 % 97.5 % 

(Intercept) 3.9987971 4.382367716 
Petal.Length 0.4048602 0.678694143 
Petal.Width -0.6366424 -0.002458754 

In 95% of samples drawn from this population, the interval from 0.40 to 0.68 likely 
covers the true population partial regression coefficient for petal length. Similarly, in 
95% of samples drawn from this population, the interval from �0.64 to �0.002 likely 
covers the true population partial regression coefficient for petal width. We could 
request R to compute 99% intervals as follows: 

> confint(reg.fit.iris, level = 0.99) 
0.5 % 99.5 % 

(Intercept) 3.9373230 4.44384187 
Petal.Length 0.3609733 0.72258101 
Petal.Width -0.7382818 0.09918069 

Our interpretation of these is analogous to the 95% intervals. That is, in 99% of 
samples drawn from this population, the interval 0.36 to 0.72 likely covers the true 
population partial regression coefficient for petal length. In 99% of samples drawn, 
the interval �0.74 to 0.099 likely covers the true population partial regression 
coefficient for petal width. 

Be sure to note that the limits for the 99% confidence intervals are wider than those 
for the 95% confidence intervals. Recall from our review of confidence intervals in 
Chapter 3 that more certainty entails a widening of the interval, not a narrowing. An 
easy way to remember this principle is to recall what, in theory, a 100% interval would 
look like. An interval with range �1 to �1 would have to theoretically exist for 
100% of samples drawn to capture the true parameter. Conversely, a 0% interval is 
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essentially equivalent to a point estimate, for which the probability of it equaling the 
parameter is 0. For a regression coefficient or any other parameter, a 0% interval 
literally implies (at least from a frequentist perspective) that in 0% of samples drawn 
from the given population will the “interval” (i.e., a single, numerical measure, in our 
case, the sample partial regression coefficient) capture the true population parameter. 
For example, for petal length, in 0% of samples drawn will the point estimate of 0.54 
(and decimal expansion) cover the true parameter. This is precisely why we often 
prefer interval estimates over point estimates. 

9.10 FITTING OTHER FUNCTIONAL FORMS: A BRIEF LOOK 
AT POLYNOMIAL REGRESSION 

We have up to now assumed a linear model, but there is nothing preventing us from 
trying out other polynomials to see which best fits the Iris data. The general name for 
this is polynomial regression, of which linear regression can be considered a special 
case. Recall from our discussion in Chapter 2 that linear forms are but one type of 
function. Others include quadratic, cubic, quartic, quintic, and so on, each represent
ing terms raised to a different exponent. Polynomial regression is not the same as 
nonlinear regression, which will be discussed briefly in Chapter 11. A polynomial 
regression model is still linear in the parameters. For instance, consider the following 
model in which a quadratic term is included: 

2yi � α � β1x1 � β2x2 � εi 

2The model is still a linear model, even though x2 (a quadratic term) is included. What 
makes it still linear is that the parameters β1 and β2 are still raised to the first exponent. 

As an example of polynomial regression, we could have tried the following 
quadratic model for the Iris data, where the term I(Petal.Width^2) is the new 
squared term added to the model: 

> quad.fit.iris <- lm(Sepal.Length ∼ Petal.Length + Petal.Width + I
 
(Petal.Width^2))
 
> summary(quad.fit.iris)
 

Coefficients: 
Estimate Std. Error t value Pr(> |t|) 

(Intercept) 4.26600 0.09283 45.955 < 2e-16 *** 
Petal.Length 0.71892 0.07621 9.433 < 2e-16 *** 
Petal.Width -1.52224 0.30775 -4.946 2.05e-06 *** 
I(Petal.Width^2) 0.34795 0.07759 4.484 1.47e-05 *** 
---

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

Residual standard error: 0.3792 on 146 degrees of freedom 
Multiple R-squared: 0.7946, Adjusted R-squared: 0.7903 
F-statistic: 188.2 on 3 and 146 DF, p-value: < 2.2e-16 
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We note that fitting a quadratic term for petal width appears to be worthwhile, as it 
is statistically significant and the overall model fit has improved somewhat. The AIC 
for this model is 140.69 (AIC(quad.fit.iris)), while the AIC for the model 
without the quadratic term was 158.05. Incidentally, a convenient way to test different 
competing models in R is to use the update function (request >?update in R to 
learn more). 

9.11 MEASURES OF COLLINEARITY IN REGRESSION: VARIANCE 
INFLATION FACTOR AND TOLERANCE 

In addition to the typical model assumptions one must make for simple least-squares 
regression, we must also make the assumption for multiple regression that the rank of 
the data matrix is equal to the number of columns in the data matrix. Rank of a matrix 
is the number of linearly independent rows or columns of that matrix (see Appendix 
A). Such independence translates more substantively to the assumption of a lack of 
multicollinearity among predictors. If one predictor is an exact linear combination of 
another predictor, then the data matrix is not of full rank since one or more columns 
are linearly dependent. As multicollinearity increases, the determinant X ́ X in solving �1X ́ b � �X ́ X� y decreases, which even if not exactly zero, nonetheless still generates 
instability when attempting to invert X ́ X, as recall is required to obtain b. Perfect 
collinearity results in least-squares coefficients that are not unique (Fox, 1997). 

To help diagnose problems of collinearity, both the variance inflation factor 
(VIF) and its reciprocal, tolerance, have been proposed. To understand VIF, consider 
first how we may write the variance for a given ith partial regression coefficient: 

2 1 � R2s 1y:12...k s2 � y (9.7)bi s2 1 � R2n � k � 1xi i:12...�i�...k 

where R2 
y:12...k is the variance explained by the hypothesized model (i.e., the regression 

that is being run based on all predictors) and R2 
...k is the variance explained by the i:12...�i�

model in which the given predictor (xi) is being regressed on the remaining predictors 
in the model. For instance, if we are calculating the variance for x1, R2 isi:12...�i�...k 
computed by taking predictors x2 and x3 and using them simultaneously to predict x1. 

The variance inflation factor is the last term in (9.7): 

1
VIF � 

1 � R2 
i:12...�i�...k 

Since the denominator of VIF is 1 � R2 
...k , where recall R

2 
...k represents the i:12...�i� i:12...�i�

regression of the predictor of interest (i.e., for which VIF is being computed) on the 
remaining predictors, what this means is that the extent to which the given predictor is 
highly correlated with the remaining predictors is the extent to which VIF will be 
large. That is, as R2 approaches 1.0, VIF will be increasingly large. For i:12...�i�...k 
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instance, suppose R2 was equal to 0.90, which is, in most contexts, ani:12...�i�...k 
impressive coefficient of determination. This means that the predictor on which 
we are computing VIF is highly correlated to the remaining predictors in the model. 
The computation of VIF would be 

1 1� � 10VIF � 
1 � R2 1 � 0:90i:12...�i�...k 

The VIF of 10 in this case suggests that the variance of the regression coefficient will 
be quite “inflated.” This implies that the standard error, which recall is simply the 

2square root of sbi , will likewise be large. A large standard error suggests that the given 
parameter (in our case, βi) is not being estimated precisely. That is, in theoretical 
samplings of the given partial regression statistic from a population in which the null 
hypothesis is true (i.e., population β � 0), a large standard error indicates that we can 
expect quite a bit of sampling fluctuation in the infinite number of samples we 
theoretically collect. The variance inflation factor then is just what the name suggests: 
It is a factor by which the variance of the given partial regression coefficient 
increases due to the given variable’s extent of correlation with the other predictors in 
the model. 

The minimum VIF can be is 1.0. A VIF of 1.0 can only occur when R2 
i:12...�i�...k is 

equal to 0, which implies that the given predictor has zero linear relationship with 
other predictors in the model. With R2 equal to 0, we find VIF to have no i:12...�i�...k 

2influence on the estimation of s :bi 

s2 1 � R2 
y y:12...k 1 

s2 � bi s2 n � k � 1 1 � R2 
xi i:12...�i�...k 
2 1 � R2sy y:12...k 1� 
s2 
xi 

n � k � 1 1 � 0 

s2 1 � R2 
y y:12...k� 
s2 
xi 

n � k � 1 

Such also reveals that VIF values cannot be less than 1.0, since 1.0 represents the ideal 
situation of no correlation with other predictors. Also implied is that VIF cannot be 
negative. 

Tolerance is simply the reciprocal of VIF, and is thus computed as 

Tol � 1=VIF 

Whereas large values of VIF are undesirable, large tolerances are preferable to 
smaller ones. It stands as well that the maximum value of tolerance must be 1.0. 
Cohen et al. (2002) suggest VIF values of 10 or more to be of potential concern. Using 
a strict cutoff here, however, is probably not the best strategy. Increasingly larger 
values for VIF, in addition to inflating variance, are also of potential concern for they 
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may indicate a substantive issue with your model in the sense that scientific parsimony 
is likely not being achieved. Given a relatively large VIF statistic, it may be worth 
rehypothesizing your model by possibly dropping the given predictor that is largely a 
function of other predictors in the model. One can easily compute VIF in R (vif 
(model)). 

Another measure that may be used to detect the presence of multicollinearity is 
the condition index, though not discussed here. See Lattin, Carroll, and Green (2003) 
for details. 

9.12 R-SQUARED AS A FUNCTION OF PARTIAL AND 
SEMIPARTIAL CORRELATIONS: THE STEPPING STONES 
TO FORWARD AND STEPWISE REGRESSION 

To set the stage for the consideration of model-building procedures such as forward 
and stepwise regression to be discussed shortly, it is imperative to get a sense of how 
R2 can be decomposed into partial and semipartial correlations. It can be shown 
(Hays, 1994, p. 713) that R2 can be written as a function of the following product of 
partial correlations: 

1 � R2 2 2 
y ? 12 � �1 � ry1��1 � ry2 ? 1� (9.8) 

2where, as before, R2 
y ? 12 is the variance explained in yi by x1 and x2, ry1 is the variance 

2explained in yi by x1, and ry2 ? 1 is the variance explained in yi by x2, after partialling 
out x1. By rearranging (9.8) slightly, we get 

2 21 � R2 � �1 � ry1��1 � ry2 ? 1�y ? 12 

2 2R2 � 1 � �1 � ry1��1 � ry2 ? 1�y ? 12 

That is, R2 
y ? 12 can be expressed as a function of 1 minus the product of partial correlation 

2 2“variance unexplained” terms (i.e., �1 � ry1��1 � ry2 ? 1�). The essential point is that the 
coefficient of multiple correlation can be decomposed into partial correlations. 

Similarly, for the three-variable case, we write R2 
y ? 123 as 

2 2 2R2 
y ? 123 � 1 � �1 � ry1��1 � ry2 ? 1��1 � ry3 ? 12� 

and for the four-variable case, 

2 2 2 2R2 
y ? 1234 � 1 � �1 � ry1��1 � ry2 ? 1��1 � ry3 ? 12��1 � ry4 ? 123� 

We can also decompose R2 as a function of semipartial correlations. Again, for the 
case of two predictors, we can define R2 

y ? 12 as 

R2 2 2 
y ? 12 � ry1 � ry�2 ? 1� (9.9) 
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2where ry1 is, as before, simply the proportion of variance explained from regressing yi 
2on x1. The quantity ry�2 ? 1� is the proportion of variance explained from regressing yi on 

2x2, of which the influence of x1 is removed from x2. That is, ry�2 ? 1� is the squared 
semipartial correlation between yi and x2. Be sure to note the difference in notation 

2 2between r and ry�2 ? 1�. The first is the partial correlation, the second is the y2 ? 1 
semipartial correlation. As discussed earlier, each tells us something different. 

Equation (9.9) is especially relevant because understanding it is the “gateway” to 
understanding stepwise regression. The equation tells us that the proportion of 
explained variance in yi based on a regression of yi on x1 and x2 is a function of 
yi on x1, plus the additional contribution of x2 after “controlling” (which, recall, really 
means “partialling out”) for x1. The quantity r2 is the additional variance y�2 ? 1� 
explained over and above that already contributed by x1. Hence, we see that the 
increment in variance explained is described by the squared semipartial correlation. 
This is the basis on which forward and stepwise regression procedures operate, which 
we now consider as we turn to model-building strategies. 

9.13 MODEL-BUILDING STRATEGIES: SIMULTANEOUS, 
HIERARCHICHAL, FORWARD, AND STEPWISE 

Several approaches to predictor selection have been proposed for building regression 
models. We survey some of these, beginning with the most common in which all 
predictors are entered into the regression model simultaneously. 

9.13.1 Simultaneous, Hierarchical, and Forward 

The most straightforward way to build a regression model is to estimate all parameters 
in the model at the same time without proposing any kind of hierarchical structure or 
order of entry. Given a set of linear equations, 

y1 � α � β1x11 � β2x12 � ∙ ∙ ∙  � βkx1k � ε1 

y2 � α � β1x21 � β2x22 � ∙ ∙ ∙  � βkx2k � ε2 
... 
... 
y � α � β1xn1 � β2xn2 � ∙ ∙ ∙  � βkxnk � εnn 

so-called simultaneous regression seeks to solve for parameters α, β1, β2, .  . . ,  βk for 
k predictors on n observations. For instance, for a model having three predictors 
x1; x2; x3, the system of linear equations is given by 

y1 � α � β1x11 � β2x12 � β3x13 � ε1 

y2 � α � β1x21 � β2x22 � β3x23 � ε2 
... 
... 
y � α � β1xn1 � β2xn2 � β3xn3 � εnn 
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Simultaneous regression is the “default” way to estimate parameters in a regression 
model, and in most cases, at least for reasonably theory-driven models, it is the 
preferable strategy. 

A hierarchical (or sequential) regression features entering predictors in a pre
conceived order of entry, presumably based on theory, as opposed to entering all 
predictors simultaneously. “Hierarchical” implies the building of an order, or the 
execution of a systematic plan for model-building. 

It is very important to recognize that hierarchical regression is not equivalent to 
stepwise regression, or other selection methods such as forward regression or 
backward elimination. These latter methods use selection order based on the 
sequential statistical significance of predictors (usually the squared semipartial 
correlation) rather than theory to determine entry of predictors into the regression 
model. They are entirely different methods than the theory-driven hierarchical 
regression approach. 

To use a previous example, suppose a researcher would like to predict depression 
based on one’s anxiety, but knows from prior research that socioeconomic status, or 
SES, is a predictor relevant to the model. Given this, the researcher might enter SES 
on the first “step” of the model, and then add anxiety at the second step. The result 
would reveal how much anxiety predicts depression over and above SES. 

We next consider the selection procedure known as forward regression. In this 
procedure, once a predictor is selected into the model, it cannot be removed. 
Other predictors may be added at future steps, but predictors already in the model 
remain in the model. As we will see, this is different from stepwise regression in which 
we can specify entrance criteria for both adding and removing predictors at each step. 

The following is the “logic” of how forward selection generally proceeds. It is 
imperative that we detail these steps rather thoroughly so that you have a solid grasp of 
how selection procedures work before you use (and interpret) them: 

•	 Step 1: The predictor with the largest squared correlation with the response is 
entered into the model. Since this is the first step of the selection procedure, 
entering the predictor with the largest squared correlation is equivalent to 
entering the predictor with the largest squared semipartial correlation as well. It 
may seem trivial at this point to bring up the idea of semipartial correlation at 
step 1 of the procedure, but we do so because at subsequent steps, the criterion 
for entrance into the regression equation will be the squared semipartial 
correlation (or, equivalently, the amount of variance contributed by the new 
predictor over and above variables already entered into the equation). 

•	 Step 2: The predictor with the largest squared semipartial correlation with the 
response is selected. That is, the predictor with the largest correlation with yi 
after being adjusted for the first predictor is entered if it meets entrance criteria 
in terms of preset statistical significance for entry, what SPSS refers to as “PIN” 
(probability of entry, or “in”) criteria. Be sure to note that even when this new 
predictor is entered at step 2, the predictor entered at step 1 remains in the 
equation, even if its new semipartial correlation with yi is now less than what it 
was at step 1. This is the nature of the forward selection procedure; it does not 
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re-evaluate already-entered predictors into the model after adding new var
iables. It only adds predictors to the model (assuming these predictors meet 
entrance criteria). In the stepwise procedure, to be discussed shortly, in addition 
to entrance criteria being specified for new variables, removal criteria are also 
specified at each stage of the variable-selection procedure. 

•	 Step 3: The predictor with the largest squared semipartial correlation with the 
response is selected. That is, the predictor with the largest correlation with the 
response after being adjusted for both of the first predictors is entered. Be sure to 
note that the entrance of this variable is conditional upon its relationship with the 
previously entered variables at steps 1 and 2. Hence, for a variable to be entered 
at step 3, the algorithm asks the question: Which among available variables 
currently not entered into the regression equation contribute most to variance 
explained in yi given that variables entered at steps 1 and 2 remain in the 
model? Translated into statistical language, what this question boils down to is 
selecting the variable among those still available in the pool that has the largest 
statistically significant squared semipartial correlation with yi. 

•	 Steps 4, 5, 6, . . . proceed in analogous fashion to previous steps, the number of 
steps ultimately determined by how many variables in the pool we have 
available for entrance into the model and that meet entrance criteria. 

We can summarize the general rule for how forward regression operates: 

Forward regression, at each step of the selection procedure from step 1 through 
subsequent steps, chooses the predictor variable with the greatest squared semipartial 
correlation with the response variable for entry into the regression equation. The given 
predictor will be entered if it also satisfies entrance criteria (significance level, PIN) 
specified in advance by the researcher. Once a variable is included in the model, it cannot 
be removed regardless of whether its “contribution” to the model decreases given the 
inclusion of new predictors. 

In a similar spirit as forward selection, backward elimination begins with all 
predictors entered into the model and then at each subsequent step removes the 
predictor with the smallest semipartial correlation that meets removal criteria. The 
process is repeated until no more predictors are removed. We discuss backward 
elimination no further here. 

9.13.2 Stepwise Regression 

Stepwise regression operates in a similar fashion as forward selection in that it selects 
predictors into the model that have the highest semipartial correlation with the 
response. However, at each step of the procedure, predictors already entered into 
the model are re-evaluated for their contribution in the presence of the newly entered 
predictor. Hence, in addition to having to specify a PIN value, the user also needs to 
specify a POUT (probability out) value, which is the p-value criterion that designates 
removal of the given predictor. 
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For example, we might set PIN at 0.05 and POUT at 0.10 for each step of the 
procedure. What this would mean is that a variable that meets PIN criteria is entered 
into the model and variables already in the model are simultaneously evaluated for 
POUT criteria, the least significant of which is removed from the model. It should be 
noted that POUT must be set at a value greater than PIN, otherwise the stepwise 
routine might engage in a cyclical simultaneous acceptance and rejection of the same 
predictor. 

You might think of forward selection as very “loyal” to predictors. Once you are in, 
you stay in. Stepwise regression is not very loyal. Once you are in, you are in until 
another predictor entered at a future step diminishes your stock value, then you’re out 
(stepwise regression is not a good model for romantic relationships). A further caution 
about stepwise regression is that significance levels typically do not represent true 
error rates by the very manner in which predictors are entered into the model. As noted 
by Draper and Smith (1998, pp. 342–343), though worthy of concern, this issue alone 
should not prevent you from using the procedure. 

9.13.3 Selection Procedures in R 

There are a variety of packages in R that perform similar tasks as the stepwise 
procedure just reviewed. For instance, the bestglm package (McLeod and Xu, 
2014) uses selection criteria such as AIC and BIC to inform the user on the best model. 
The leaps package in R (Lumley, 2009) can also be used for stepwise procedures. 

9.13.4 Which Regression Procedure Should Be Used? Concluding 
Comments and Recommendations Regarding Model-Building 

It is important to realize that there is no golden rule regarding which model-building 
procedure one should use in any given context. When idealized statistical methods 
meet the harsh realities of the real world of applied empirical research, it becomes 
clear that the statistical criteria by which a regression model is chosen is only a small 
part of the input required to make intelligent decisions regarding selection criteria. The 
final decision regarding any model, regardless of model selection procedure chosen, 
will be whether it is useful or theoretically meaningful to the researcher in the 
accomplishment of a wider endeavor. 

As an example to emphasize this concept of utility, imagine you were to enter five 
predictors into a model and run a stepwise regression on these candidate predictors. 
Suppose predictors x1, x3, and x5 were selected into the final model. Is this then the 
“best” model? Yes, in the “stepwise sense” of how predictors were chosen to 
maximize model R2, it is. However, the model may only be “best” in the statistical 
but not substantive sense. In the real empirical world of research, predictors are not 
abstract variables. They are real, often touchable, and correspond to actual things we 
are modeling. In this sense, the decision-making process regarding which model is 
best can hardly be fully relegated to a statistical algorithm of selection and removal 
criteria. Instead, you, the researcher, must have the final input into the model, 
presumably because you are the one most familiar with the variables you are 
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modeling. You know them, or at least should know them, very well. You must guide 
your own work. Do not rely on software or mathematical optimization to completely 
guide your decision-making process. Researchers run the machines. The machines 
should not run the researchers. 

Suppose the model choosing predictors x1, x3, and x5 accounted for 35% of the 
variance in the response. Suppose that a competing model with predictors x1, x3, and 
x4 accounted for 30%. Which model is better? This is a very difficult question to 
answer unless we first know something more about what these variables actually are, 
what they are supposed to represent, how they were measured, etc. More importantly, 
what the model we are building is actually for. On a practical level, if x5 were a very 
difficult and expensive piece of information to collect from subjects, but x4 were a 
much easier item to collect, then in this sense, x4 may very well be the “better” 
predictor pragmatically compared to x5, especially if the reduction in variance 
explained is worth the cost of not having to collect x5. Maximizing utility is not 
the same as maximizing expected value. The major point is this: 

Good models have to be evaluated in a wider context than statistical criteria alone, and 
results of statistical modeling should always be interpreted in the wider framework of 
decision-making for which there may be numerous inputs to the decision that lay outside 
of the results of statistical modeling. Statistics are meant to inform our decisions, not 
make them for us. Judgment must always trump protocol when it is most needed. 

9.14 POWER ANALYSIS FOR MULTIPLE REGRESSION 

We can use R to estimate power for multiple regression models just as easily as for 
simple regression models. Once again, we use pwr.f2.test in the pwr package 
(Champely, 2014). For instance, for a model with two predictors with a combined R2 

of 0.50 (f2 = 1, that is, R2=�1 � R2�), assuming a significance level of 0.05, on 20 
subjects, we estimate power to be: 

> library(pwr)
 
> pwr.f2.test(u = 2, v = 17, f2 = 1, sig.level = .05, power = NULL)
 

Multiple regression power calculation 

u = 2
 
v = 17
 

f2 = 1
 
sig.level = 0.05
 

power = 0.9630578
 

Hence, given these parameters, the probability of rejecting the null hypothesis 
given that it is false is equal to 0.96. Power for multiple regression can also quite 
easily be estimated using G∗Power, although we do not demonstrate such estima
tion here. 
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9.15 INTRODUCTION TO STATISTICAL MEDIATION: CONCEPTS 
AND CONTROVERSY 

We close this chapter with a brief demonstration of statistical mediation along with 
a somewhat critical commentary regarding potential issues that may arise whenever 
mediation models are fit to data. Since path analysis and structural equation 
models (discussed in Chapter 16) often feature mediation models, the warnings 
and caveats discussed here are also equally applicable in the context of those 
models as well. 

We discuss only the single “classic” mediation model in this chapter, usually 
attributed to Baron and Kenny (1986). Mediation is an extensive topic for which models 
can feature more than a single mediator. Our survey is only meant to provide a glimpse 
into what mediation models are about and comment on the nature of mediational 
hypotheses. For a thorough introduction to mediation, see MacKinnon (2008). 

In the classic mediation model, an independent variable is hypothesized to predict 
a dependent variable through a mediator. A diagram for the single-mediator model is 
given in Figure 9.1. We define the following: 

•	 IV: The independent variable (or predictor) hypothesized to predict the depen
dent variable DV. 

•	 MEDIATOR: The hypothesized mediator in which it is typically believed that 
the independent variable acts on the dependent variable through the hypothe
sized mediator. 

•	 a is the estimated regression coefficient for the IV on the mediator. 

•	 b is the estimated regression coefficient for the mediator on the DV. 

•	 c is the estimated regression coefficient for the IV on the DV. 
´ 

•	 c is the estimated regression coefficient for IV predicting DV when the 
mediator is included in the model. According to the mediational hypothesis, 

´ when the mediator is introduced over and above the IV, the change from c to c 
´ ´ is evidence of complete mediation if c � 0. If c ≠ 0, but still decreases 

´ substantially from c (i.e., c < c), then partial mediation is said to exist. 

FIGURE 9.1 Classic single-variable mediation model. 
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In the single mediation model, we can distinguish different types of effects 
(MacKinnon, 2008): 

•	 The path from IV to DV, that is, c, without the mediator, is known as the total 
effect. 

•	 The indirect effect is estimated by the product of the coefficients a and b. The 
´ indirect effect can also be computed as c � c . According to mediation theory, 

´ the product ab (or the difference c � c ) is also known as the mediated effect. 

Suppose for some data we computed paths a, b, and  c to be 0.80, 0.70, and 0.40, 
respectively. The estimate of the indirect effect is thus computed as ab � 0:56. Since it 
can be shown that path c can be decomposed into c � c ́ � ab, we can immediately know 
the extent to which c has changed as a result of including the mediator: 

c � c ́ � ab 
c ́ � c � ab 

� 0:40 � 0:56 
� �0:16 

That is, our original path c has dropped to c ́ � �0:16 as a result of including the mediator. 
To construct confidence intervals and significance tests, we must, of course, first 

obtain an estimate of the standard error for the statistic we are computing. Since we are 
interested in a confidence interval for either c � c ́ (or, equivalently, ab), we need to 
construct the requisite standard errors. The estimated standard errors based on ab are 
known as product of coefficient standard errors, while the standard errors based on 
c � c ́ are known as difference in coefficients standard errors (see MacKinnon (2008)). 

Sobel (1982) proposed standard errors for the mediational effect, but according to 
Preacher (2014, personal communication), “The Sobel test is among the worst-
performing methods for testing mediation hypotheses. Bootstrap confidence intervals, 
Bayesian credible intervals, and Monte Carlo intervals are much better.” However, as 
noted by MacKinnon (2015, personal communication), 

In most cases, the conclusion from the multivariate delta method (i.e., Sobel’s test) and 
resampling methods is the same. And if the ratio of either a or b to its standard error is 
greater than 6, then the multivariate delta standard error method and resampling methods 
will be very similar. The reason why forming confidence intervals or testing significance 
with the multivariate delta standard error is not as accurate as resampling methods like 
the bootstrap is that the confidence intervals with the multivariate delta method assume 
the mediated effect, ab, is normally distributed. 

For further details on comparing a variety of methods for testing mediation, see 
MacKinnon et al. (2002). As noted by Preacher, a preferred method for estimating 
mediational effects is through what specialists in the area call the Monte Carlo Method 
for Assessing Mediation (MCMAM) and the bias-corrected bootstrap procedure. 
The MCMAM approach can be computed through a convenient simulation calculator 
(RMediation) provided by Tofighi and MacKinnon (2011, http://www.amp.gatech 
.edu/) or through one provided by Selig and Preacher (2008, http://quantpsy.org/). 

http://www.amp.gatech.edu/
http://www.amp.gatech.edu/
http://quantpsy.org/
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9.15.1 Statistical versus True Mediation: Some Philosophical Pitfalls 
in the Interpretation of Mediation Analysis 

Having demonstrated a simple example of mediation, some strong cautionary caveats 
are warranted. Applied researchers are sometimes wary of getting too “philosophical” 
about their research and claim to simply want to “look at the data.” However, as a user 
of mediational analyses, or virtually any other statistical technique in social research, 
you must be able to defend some rather obvious philosophical issues that present 
themselves when conducting and interpreting such analyses. Otherwise, your research 
will have no legs to stand on regardless of its quantitative sophistication. In general, if 
you cannot convince the critical philosopher of your evidentiary claims, it usually 
suggests a methodological problem. 

First and foremost, there is nothing “wrong” with performing statistical mediation. 
It is a rather elegant applied statistical procedure, and one that is quite popular in the 
social and behavioral sciences. There is something seriously wrong, however, with 
drawing conclusions from a mediation analysis that are not warranted from the 
context in which you are applying the technique. What does it mean to say one 
variable “mediates” the relationship between two others? Such language seems to 
imply some sort of physical process. However, based on a test of statistical mediation 
alone, no such processes can be inferred. Whether there is a physical, or even 
directional, process of any kind must be concluded separate from the statistical test.2 

As noted by MacKinnon (2008), the origins of mediation analysis in psychology 
were with Woodworth in 1928 in which a stimulus–organism–response (S–O–R) 
model was hypothesized: 

Woodworth (1928) outlined a stimulus-organism-response (S-O-R) model for explain
ing how the organism mediates the relationship between the stimulus and response by 
postulating different mediating mechanisms operating in the organism. Mediating 
mechanisms are what determines how an organism responds to a stimulus. For example, 
a stimulus may trigger a memory mechanism that identifies the stimulus as a threat that 
leads to an avoidance response, or a stimulus may trigger an attraction process that leads 
to a physiological response such as pupil dilation and an approach response. (p. 2) 

MacKinnon’s characterization of an early mediation model is useful here, because 
it provides the scientific context in which mediation analysis arose. Note the key word 
“trigger” in the above quote. This denotes a physical, or at minimum, directional event 
of one variable onto another. In the S–O–R model, such an assumption of physical or 
directional causation was reasonable due to the nature of the scientific material under 
investigation. That is, mediation occurred in the S–O–R model because there was 
somewhat of a convincing argument that true mediation actually happens. The 
process was not simply one of statistical mediation. 

However, when a social researcher takes variables xi, yi, and zi, throws them into a 
regression program, and draws the conclusion that zi mediates the relationship between 

2A similar discussion can be had about so-called suppressor variables. For details, see Howell (2002, 
pp. 557–558) and MacKinnon, Krull, and Lockwood (2000). 
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xi and yi, what does this mean exactly? In truth, we have no idea what it means until we 
know more about what xi, yi, and zi actually are and whether a mediational hypothesis is 
actually plausible for these variables. Does a student’s self-esteem mediate the 
relationship between grade-point average and probability of being accepted into 
graduate school? You can obtain all the statistical mediation evidence you like, but 
until you can actually convince someone that a real mediational process is occurring, 
you simply have no evidence for true mediation. What you have is evidence for 
statistical mediation, which usually is not that meaningful if you cannot use the 
statistical model to describe a real process. Too often in the research literature, 
mediational hypotheses are advanced simply because of evidence for even slight 
statistical mediation. Caution needs to be exercised in properly evaluating the research 
context in which the model is fit, so that one can then make an intelligent appraisal as to 
whether it is realistic or not to conclude a true mediational process. A statistical test 
alone usually tells you little, in a direct sense, about any kind of physical or substantive 
process that may be present. Physical, concrete, or directional inferences have little to 
do with statistics and everything to do with principles of sound research design. 

Our brief discussion only begins to survey this relatively deep issue. The interpreta
tive issue is much more salient in structural equation models where causality hypotheses 
are too often advanced without contextual evidence for any causal processes whatso
ever. As will be discussed in Chapter 16, this difficulty, in part, can be traced back to the 
historical origins of path analysis. 

9.16 CHAPTER SUMMARY AND HIGHLIGHTS 

•	 Whereas linear regression dealt with regressing a single response variable on a 
single predictor variable, multiple linear regression models are useful for 
regressing a single response variable on two or more predictor variables. 

•	 The multiple linear regression model is given by yi � α � β1x1 � β2x2 � ∙ ∙ ∙� 
βkxk � εi, where  k is the number of predictors and β1 through βk are the population 
partial regression parameters, usually estimated by ordinary least-squares. 

•	 In developing the multiple regression model, it is necessary to consider the 
coefficients of partial and semipartial correlation. 

•	 The partial correlation between variables x1 and x2 controlling for zi is found by 
first regressing x1 on zi to obtain a column of residuals, then regressing x2 on zi to 
obtain a second column of residuals, and then obtaining the Pearson correlation 
coefficient between these two columns of residuals. 

•	 The semipartial correlation between x1 and x2, where only x2 is adjusted for zi, is  
computed by regressing x2 on zi to obtain a column of residuals, then computing 
the Pearson correlation coefficient between these residuals and unadjusted 
values of x1. 

•	 The multiple regression model can also be given in matrices, allowing one to see 
the components of the model more clearly and also aiding in generalizing the 
model to more complex cases (e.g., multivariate multiple regression). 
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•	 Unstandardized or standardized partial regression coefficients cannot be inter
preted as are coefficients in a simple linear regression. That is, partial regression 
coefficients are not the same as the slope in a simple linear regression model. 

•	 The idea of statistical control has nothing to do with experimental control. When 
variables are “controlled” in a multiple regression, it simply implies a partialling 
of variability. 

•	 The variance inflation factor and tolerance are common measures used to 
evaluate multicollinearity among predictors in a multiple regression model. 
Tolerance is the reciprocal of VIF. Elevated levels of VIF (or, equally, low 
values of tolerance) may indicate a problem. 

•	 R2 can be written as a function of partial correlations. It can also be written as a 
function of semipartial correlations. This fact forms the analytical basis for 
model-building strategies such as forward and stepwise regression. 

•	 Hierarchical regression, in which predictors are entered in a preconceived order 
by the researcher, is not the same as stepwise regression. 

•	 Sample size for multiple regression can be estimated relatively easily in R, and 
is equally as easy to compute using G∗Power. 

•	 The distinction between statistical mediation versus true mediation is an 
important one. Regardless of whether one finds statistical support for mediation, 
true mediation can only be justified through resort to the research context or 
paradigm. 

REVIEW EXERCISES 

9.1.	 Explain why multicollinearity in regression can be considered both a statistical 
and a substantive concern. 

9.2.	 Discuss how the variance inflation factor can be instrumental in influencing the 
size of the standard error for a partial regression coefficient βi. 

9.3.	 What is tolerance, and how is it defined? All else equal, would you prefer to see 
a high tolerance value or a low tolerance value for a given predictor? Why? 

9.4.	 Justify why tolerance for any given predictor must range between 0.0 and 1.0. 

9.5.	 Discuss what it means, in a very general sense, to solve a system of linear 
equations such as the following: 

y1 � α � β1x11 � β2x12 � ∙ ∙ ∙  � βkx1k � ε1 

y2 � α � β1x21 � β2x22 � ∙ ∙ ∙  � βkx2k � ε2 

yn � α � β1xn1 � β2xn2 � ∙ ∙ ∙  � βkxnk � εn 

... 

... 
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9.6.	 Discuss the procedure of hierarchical regression, and come up with one 
example in which a researcher may be especially interested in performing 
this type of regression. 

9.7. Verify that R2 
y ? 12 can be expressed as a function of partial correlations. 

9.8. Verify that R2 
y ? 12 can be expressed as a function of semipartial correlations. 

9.9. Discuss the difference between r2 and r2 
y�2 ? 1� and why this distinction is y2 ? 1 

important. What role does each play in defining R2 
y ? 12? 

9.10. Explain, in detail, the following equation, and comment on why it is important: 

2 2 2 2R2 
y ? 1234 � 1 � �1 � ry1��1 � ry2 ? 1��1 � ry3 ? 12��1 � ry4 ? 123� 

9.11.	 Describe, in detail, the “logic” of forward regression. Imagine you were 
explaining the procedure to a colleague. 

9.12.	 For a forward regression, what significance level would you suggest setting 
PIN at? What kinds of things should this decision depend on? 

9.13.	 Why does the semipartial correlation figure so prominently in the discussion of 
forward, stepwise, and backward elimination regressions? 

9.14.	 How would you recommend a researcher set PIN and POUT in the typical 
stepwise regression? Why would you recommend this? 

9.15.	 Conceive of a research example in which stepwise regression would be the 
preferred method of regression over simultaneous, forward, or backward 
elimination. 

9.16.	 Consider once more the following data published by Fisher in 1947 on the 
bodyweight, heartweight, and sex (discussed in the previous chapter) of 
domestic cats: 

> fisher <- read.table("fisher_1947.txt", header = T) 
> some(fisher) 

bodyweight heartweight sex 
3 2.9 9.9 1 
17 2.1 7.6 1
 
21 6 10.1 1
 
54 3.0 13.3 2 
57 3.0 10.0 2 
58 2.6 10.5 2 
72 2.5 12.7 2 
82 2.2 10.7 2 
96 3.5 15.7 2
 
127 3.6 13.3 2
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(a)	 Perform a multiple regression analysis in which bodyweight is used to 
predict heartweight, but “controlling” for sex. How did you treat the sex 
variable in your regression? 

(b)	 Interpret the partial regression coefficients obtained for both bodyweight 
and sex. 

(c)	 Evaluate the overall fit of the model. 

(d)	 Conduct a stepwise regression on this data and comment on the similarity 
or difference of the findings compared to computing a simultaneous 
regression. 

Further Discussion and Activities 

9.17.	 Applied statistical methods are often taught with little regard to any of the 
historical or political and social influences that may have been instrumental in 
promoting the techniques. One prime example is the history of regression. 
Gaining an appreciation of how and why a statistical method came into 
prominence is very useful since it helps one contextualize statistical methods 
in a wider social framework, instead of seeing the method as a mere 
computational algorithm. Read Denis and Docherty (2007). Briefly summarize 
how the advent and rise of multiple regression, though traditionally associated 
with the likes of Karl Pearson and George Udny Yule, can also be said to be a 
product of the sociopolitical debate between Charles Booth and Charles 
Stewart Loch. 
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INTERACTIONS IN MULTIPLE 
LINEAR REGRESSION: 
DICHOTOMOUS, POLYTOMOUS, 
AND CONTINUOUS MODERATORS 

In this chapter, we survey the analysis of interactions in the context of multiple 
regression. Analogous, but not identical to the ANOVA context, situations arise 
in regression where a researcher hypothesizes that a given predictor is useful in 
predicting a response, but that its predictive power is not constant across the range 
of a second predictor. The concept of an interaction in multiple regression 
parallels that of an interaction in ANOVA, and although different in computation, 
both analyses essentially accomplish something similar. In ANOVA, to break 
apart an interaction, we study its simple effects. In regression, we break apart 
interactions by simple slopes. Recall that a simple main effect in ANOVA is the 
mean difference of one factor at a particular level of a second factor. A simple 
slope in regression is defined as the slope of yi on xi at a particular value of a 
second predictor zi. 

As an example of where an interaction in a regression model may be relevant and 
of interest, suppose a research psychologist wants to predict treatment success (yi) 
(measured on some continuously scaled questionnaire purported to evaluate the 
overall outcome of a treatment) based on length of therapy (xi), and also hypothesizes 
that this regression will be contingent on a client’s age. Perhaps the researcher 
believes that treatment success will be better predicted (in terms of a steeper slope) by 
length of treatment for clients who are young compared to older clients. Consider 
the hypothetical plots in Figure 10.1. 

www.wiley.com/go/denis/appliedmultivariatestatistics
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FIGURE 10.1 Hypothesized slope of treatment success on length of treatment for young (a). 
Hypothesized slope of treatment success on length of treatment for old (b). 

We note in Figure 10.1 that the slope for age = young is somewhat steeper than 
the slope for age = old. It should also be noted that for our demonstration, only two 
age “groups” have been selected. We of course could have conceived age as having 
an infinite number of potential values and therefore plotted the regression lines at 
each value. Perhaps the actual relationship would be that as shown in Figure 10.2, 
where the slope of treatment success on length of treatment decreases as age 
increases. 

FIGURE 10.2 Length of treatment and age interact in predicting treatment success. As age 
increases from 20 to 70, the slope of treatment success on length of treatment decreases. 
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10.1 THE ADDITIVE REGRESSION MODEL WITH TWO 
PREDICTORS 

A regression model with two predictors xi and zi can be given as 

yi � α � β1xi � β2zi � εi (10.1) 

Recall from our discussion of ANOVA that the model in (10.1) is considered an 
additive model, because no terms (i.e., xi; zi) are crossed (multiplied). When we 
specify an interaction model, we cross terms xi and zi to produce a product term xizi. 
We can specify an interaction term for xizi (i.e., zi multiplied by xi) by adding this term 
to the model: 

yi � α � β1xi � β2zi � β3xizi � εi (10.2) 

The term xizi is the product term in (10.2), representing the crossing of xi with zi. This 
is the interaction term. 

10.2 WHY THE INTERACTION IS THE PRODUCT TERM xizi: 
DRAWING AN ANALOGY TO FACTORIAL ANOVA 

You may ask why we are multiplying two variables to get the interaction term. That is, 
why is the interaction term in (10.2) defined as a product? To understand why this is 
so, I ask you to draw on your knowledge of factorial analysis of variance. Recall that 
in ANOVA, we defined a cell effect as the mean for the given cell minus the grand 
mean of all the data (or the mean of all the means for a balanced design). Recall the 
typical factorial ANOVA table of Chapter 5, reproduced in Table 10.1. 

Recall that the cell means were generated by “crossing” factor 1 with factor 2. That 
is, yjk for each cell can be defined as the intersection of the given factor level for each 
variable (e.g., level 1 of factor 1 with level 1 of factor 2). In Table 10.1 is featured only 
a 2  × 3 design. Imagine now we increase factor levels on each variable to a much 
larger number, say 30 on factor 1 and 20 on factor 2. When generating cell effects, we 
would thus have 30 × 20 = 600 “cells” in our design. Imagine now we increase the 
number of levels on factor 1 to 300 and on factor 2 to 100. We would now have 30,000 

TABLE 10.1 Cell Means Layout for 2 × 3 Factorial Analysis of Variance 

Factor 2 

Factor 1 Level 1 Level 2 Level 3 

Level 1 yjk yjk yjk 
Level 2 yjk yjk yjk 
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“cells” in our design. However, each cell would still contain unique information 
(e.g., a mean and a variance) in the given crossing. If you continue expanding the 
number of levels for each factor, you will eventually arrive at a state of approximate 
continuity for each factor. That is, each factor will have an infinite number of 
“levels.” And  even with this infinite number, we are still theoretically interested in 
what is contained within each combination. We keep putting “levels” in quotations, 
because when we are working with continuous variables, we seldom think of values 
of the variable as “levels” at all. But in terms of drawing the analogy between 
factorial ANOVA and a product term in regression, it is helpful to temporarily 
equate the two concepts. 

The point of this discussion is to emphasize that crossing (or “multiplying”) 
predictors in multiple regression accomplishes a result conceptually similar to crossing 
factors in ANOVA. We are interested in the joint relationship or intersection of where 
the values of the variable (i.e., factor or predictor) meet up. This “cell,” which is obvious 
in ANOVA, is much less so in regression because the “cell” contains but only one score 
if both predictors are continuous. Hence, this is a conceptual analogy as to why it makes 
good sense to obtain a product term to represent the interaction xizi in regression. We 
have been doing it all along in our ANOVA models. 

10.3 A MOTIVATING EXAMPLE OF INTERACTION 
IN REGRESSION: CROSSING A CONTINUOUS PREDICTOR 
WITH A DICHOTOMOUS PREDICTOR 

Consider some hypothetical data where the response variable is final grade in a short 
statistics seminar for a given student. The predictor variables of interest are study time 
devoted to that course, measured in hours, and whether or not a student was seated at 
the front (class = 1) or rear (class = 0) of the class. We are interested in learning 
whether study time and class seating over the duration of the short course is predictive 
of final grade. 

Our data are as follows: 

> grades 
final study class 

1 85 1.0 0 
2 74 1.2 0 
3 62 1.8 0 
4 78 1.3 0 
5 61 1.5 0 
6 96 2.1 1 
7 74 1.5 1 
8 64 1.8 1 
9 42 1.1 1 
10 69 1.3 1 
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Before conducting any inferential tests, we can attempt to estimate via 
graphical methods whether study and class interact in predicting final. 
We plot the data and reveal group membership by class, where circles and squares 
represent the different class seating (squares represent class = 0 and circles  
represent class = 1): 

> plot(study, final, pch = as.integer(class)) 

We fit the regression line to the entire data: 

> model <- lm(final ∼ study*class) 
> abline(model) 

We can see that the common regression line suggests a negative slope. However, 
what if we draw regression lines separately for each group? Would they each conform 
to the common regression line? Should they not, this might suggest an interaction 
between study and class in the sample. When we run the regression including this 
product term study × class, we get: 
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> model.int <- lm(final ∼ study*class) 
> summary(model.int) 

Coefficients: 
Estimate Std. Error t value Pr(>|t|) 

(Intercept) 113.31 22.09 5.131 0.00216 ** 
study -30.38 15.92 -1.908 0.10503 
class -107.25 29.49 -3.637 0.01088 * 
study:class 70.72 20.07 3.524 0.01246 * 
---

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

Residual standard error: 9.711 on 6 degrees of freedom 
Multiple R-squared: 0.7114, Adjusted R-squared: 0.567 
F-statistic: 4.929 on 3 and 6 DF, p-value: 0.04653 

Notice that the interaction term study:class is statistically significant. It 
suggests that study is predictive of final, but this prediction depends on whether 
you are seated at the front or rear of the class. 

We generate an interaction plot using R’s scatterplot function to better visualize the 
interaction: 

> library(car)
 
> scatterplot(final ∼ study | class, data = grades)
 

Clearly, the plot reveals evidence of a study × class interaction, where class = 0 is  
now indicated by circles and class = 1 is indicated by triangles. The simple slopes 
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suggest that an increase in study time is related to an increase in final grade for those 
seated at the front of the class. If you are seated at the rear of the class, however, the 
plot reveals a negative relationship between study time and grade (i.e., the circles in 
the plot). Perhaps those students seated at the rear of the class misunderstand or do not 
correctly record the information off the board, and hence as they increase their study 
of “wrong” information, they perform progressively worse in their evaluations. 

10.4 THEORY OF INTERACTIONS IN REGRESSION 

Having gained some appreciation for why interactions in regression are relevant and 
useful, we now briefly survey some of the theories for modeling interactions with 
dichotomous predictors (e.g., male vs. female), polytomous predictors—those having 
more than two categories (e.g., male vs. female vs. other), and predictors that are 
continuous, which theoretically have an infinite number of “levels” (e.g., speed in 
miles per hour). Having already covered the general details of regression and multiple 
regression in previous chapters, our theoretical treatment here is very brief. We 
provide only sufficient information as to gain an appreciation for how interactions 
work in regression, before demonstrating these techniques further in R. 

In each of the cases we survey, we assume that each of our moderators, whether 
dichotomous, polytomous, or continuous, interacts with a continuous predictor. The 
cases in which dichotomous and polytomous predictors interact with other dichoto
mous and polytomous predictors is, of course, better handled by the ANOVA models 
discussed previously in this book. 

10.4.1 Dichotomous Moderators 

For the linear model featuring the two-predictor case, that of yi � α � β1xi � β2zi � εi, 
the dichotomous moderator zi will be a binary-valued predictor, ordinarily coded 
as 0 and 1, also referred to as an indicator variable. The indicator variable zi is 
operationalized by means of the piecewise function: 

0 
zi � 

1 

where “1” stands for the first category (e.g., female) and “0” stands for the second 
category (e.g., male). The important feature is that the indicator variable accomplishes 
its task of “indicating” whether someone belongs to one group or another. 

To clarify, we can write the models for each value of the indicator function. When 
zi � 0, the model becomes 

yi � α � β1xi � β2zi � εi 

� α � β1xi � β2�0� � εi 

� α � β1xi � εi 
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When zi � 1, the model becomes 

yi � α � β1xi � β2zi � εi 

� α � β1xi � β2�1� � εi (10.3) 

� α � β1xi � β2 � εi 

To better conceptualize what the model for which zi � 1 is  “doing,” we can write 
(10.3) as 

yi � �α � β2� � β1xi � εi 

We wrote it this way to emphasize that the regression model for which zi � 1 is that of 
adding a constant effect to the constant α already present in the model, that is, an 
“adjustment” to α in the form of α � β2. Note that we have not yet specified any 
interaction or crossing of the terms xi and zi, so any effect that zi has on the model can 
only be to raise or lower the line. 

What happens now when we generate the product term xi and zi? We represent this 
by the interactive model of (10.2): 

yi � α � β1xi � β2zi � β3xizi � εi 

where now β3 is the partial regression parameter associated with the product term 
xizi. If there is an interaction between xi and zi, then we would expect the above 
slopes not to be parallel. Nonparallel lines would suggest that one regression 
equation is applicable for zi � 0, but a different regression equation is applicable for 
zi � 1. This is precisely the analogous concept of an interaction studied in ANOVA, 
with the only difference that now our “moderating” variable moderates the 
relationship between two continuously measured variables rather than a categorical 
and a continuous one as in the typical ANOVA. In the regression model then, if zi 
actually does turn out to be a moderator of the relationship of yi with xi, then  
nonparallel lines should be evident just as they were in factorial analysis of 
variance. 

An important caveat on the corresponding partial regression coefficients is in 
order. As noted by Fox (1997, p. 153), though the unstandardized coefficient for a 
dummy regression is interpretable as the expected change in the response for a one 
“unit” increase in the predictor (i.e., from say 0 to 1 on the binary variable), 
standardized regression coefficients (i.e., betas) are not interpretable in this fashion. 
Hence, for our example featured earlier regarding the study × class interaction, 
interpreting standardized coefficients is typically not appropriate. 

10.4.2 Polytomous Moderators 

Often the moderator variable has more than two categories. Whether a moderator has 
two or more categories depends mainly on how we choose to operationalize it. For 
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instance, defining zi as representing gender is fine so long as you seek to capture only 
two categories (male vs. female). However, if you choose to capture more than two 
categories and include “other” as an option (i.e., male, female, and other), then a 
dichotomous moderator will not suffice and we must use a polytomous moderator 
instead. 

We can represent the case of three categories quite easily by the function for zi: 

0 

1zi � 

2 

Understanding polytomous moderators is easy if you understand dichotomous 
moderators the only difference being that now zi is indicated by more than two 
possibilities. If the moderator zi was coded into five categories, then an interaction of 
the type xizi would potentially suggest different slopes of yi on xi for some or all values 
indicated by zi. Just as we did for means in ANOVA, if we have evidence for an 
interaction in regression, we need to conduct follow-up analyses of yi on xi at each 
level of zi to determine what is “contributing” to the interaction. These “conditional 
slopes” of yi on xi at each level of zi are called simple slopes. We will discuss these 
slopes in some detail shortly. 

10.4.3 Analysis of Covariance 

The models we have just surveyed in which a dichotomous or polytomous predictor 
is crossed with a continuous predictor can also be referred to as analysis of 
covariance models. Though the ANCOVA model is parameterized differently 
from the dummy regression models we have just surveyed, the model will none
theless provide us with the same fit. However, in the ANCOVA model, apart from 
evaluating what is generally known as the homogeneity of regression slopes 
assumption that assumes an absence of an interaction effect between the continuous 
predictor and the dichotomous or polytomous predictor, the interaction effect is 
typically not modeled. Just as ANOVA can be conceptualized as a subcategory of 
the wider regression model, so too can ANCOVA be considered a special case of 
regression analysis in which one or more continuous predictors are partialled out of 
mean differences of a dichotomous or polytomous independent variable on some 
continuous response variable. One can also compute adjusted means that take into 
consideration the removal of the covariate from the relationship of interest (see 
Hays (1994, p. 823)). 

The language often used in describing ANCOVA models is that of “controlling 
for” the continuous covariate so that it does not unduly influence the relationship 
between the predictor and response we are interested in. However, as noted in our 
discussion of multiple regression models in Chapter 9, the phrase “controlling for” 
means nothing more than a partialling out of variance unless one is actually 
implementing controls through experimental design. One may go as far as to say 
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ANCOVA tells us what the group (or cells, in the case of factorial designs) means 
might have been (i.e., through the computation of adjusted means) had we been able 
to control for the covariate, but unless we did control for the covariate for real (such as 
in an experimental design), such statements should still be interpreted in the realm of 
statistical variation rather than having anything to do with true experimental control. 
ANCOVA, or any other statistical method, will never tell you what would have been 
had you conducted a real experiment with your correlational data. At most, they will 
suggest what might have been. Some authors also maintain that ANCOVA should not 
be associated with even pseudo-control at all, and should only be employed for 
increasing power for detecting the effects in the model of interest. For more 
information on ANCOVA and its relation to regression, see Fox (1997, 
pp. 192–195). Hays (1994) also gives a good account of ANCOVA as an extension 
of ANOVA rather than as a side note to regression models. Howell (2002, 
pp. 603–654) provides a good overview of how the analysis of covariance can be 
conceptualized under the wider general linear model. 

10.4.4 Continuous Moderators 

When a moderator can at least theoretically take on an infinite number of values, or at 
least practically can take on enough values that we may deem it to have enough 
categories to be able to consider it continuous, it is called a continuous moderator. 
The concept of a continuous moderator parallels that of both dichotomous and 
polytomous moderators. 

An interaction between a continuous xi and a continuous zi would mean that the 
slope of yi on xi differs depending on the “level” chosen for variable zi. Analo
gously, we could also say that the slope of yi on zi differs depending on the “level” 
chosen for variable xi. Of course, for a truly continuous variable, it has no real 
“levels” analogous to a dichotomous or polytomous moderator. Recall from 
Chapter 2 that true continuity implies that any values are possible on the infinitely 
dense real line. When we step down from the ideal of theory into the world of 
research, however, we quickly come to realize the limitation that for us to actually 
work with a variable, we must somehow reduce it down to being a categorical one 
of sorts, even if we consider it to have infinitely many of these categories. Recall 
that continuity does not truly exist for real variables that we model, even if we do 
proceed as though it does in many of our approaches. 

10.5 SIMPLE SLOPES FOR CONTINUOUS MODERATORS 

For a dichotomous or polytomous moderator, the number of simple slopes we can 
produce is regulated by the number of categories of the moderator. For instance, for a 
two-category moderator such as gender (male vs. female), only two regression lines of 
yi on xi are possible, one for males and one for females. For a five-category moderator 
(say, ethnicity), only five regression lines of yi on xi are possible, one for each ethnic 
classification. 
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How many simple slopes exist for a continuous moderator? Because the 
moderator can theoretically assume an infinite number of categories, the number 
of simple slopes is therefore also theoretically infinite. We could theoretically plot a 
simple slope for each “slice” of the moderating variable. Because it is continuous, 
we will necessarily have to purposely select a very small “interval” of the variable, 
which pragmatically means we will have to round the number to a particular decimal 
point. 

It is easiest to visualize simple slopes for a continuous moderator by visualizing an 
infinite number of slopes on a bivariate plot. If zi is the continuous moderator having 
an infinite number of levels, then what we are interested in is the slope of yi on xi 
across the entire spectrum or range of zi. If this slope, be it positive, negative, or zero, 
remains constant across this entire range, it suggests that there is no interaction of the 
kind xizi. If, however, the slope of yi on xi is not constant across the range of zi, it  
suggests there is evidence of an interaction. 

10.6 A SIMPLE NUMERICAL EXAMPLE: HOW SLOPES CAN 
CHANGE AS A FUNCTION OF THE MODERATOR 

Though as usual we will leave the heavy lifting of computation to software such as R 
or SPSS, it is helpful at this point to nonetheless provide a very simple, easy example 
to demonstrate how moderation works and how simple slopes are computed. For this 
example, we consider the hypothetical data in Table 10.2 on a response variable yi, a  
predictor xi, and a moderator variable zi. 

Some features of the data include: 

•	 The predictor variable xi has three levels (1, 2, and 3). 

•	 The moderating variable zi has three levels (1, 2, and 3). 

•	 There are a total number of nine data points on the response variable yi, with  
minimum value 2 and maximum value 23). 

•	 An informal visual inspection of the table reveals that as the levels of xi 
increase from  1 to  3, so do the  values  of  yi, but at a greater rate for increasing 
levels of zi. Hence, the slope of yi on xi does not appear to be constant across 
levels of zi. 

TABLE 10.2 Y as a Function of X and Z (Moderator) 

Z 

X 1 2 3 

1 
2 
3 

2 
3 
4 

5 
8 

13 

6 
18  
23 
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We first estimate the model, being sure to include the term x:z to designate the 
interaction: 

> y <- c(2, 3, 4, 5, 8, 13, 6, 18, 23)
 
> x <- c(1, 2, 3, 1, 2, 3, 1, 2, 3)
 
> z <- c(1, 1, 1, 2, 2, 2, 3, 3, 3)
 
> fit.reg <- lm(y ∼ x + z + x:z)
 
> fit.reg
 

Call:
 
lm(formula = y ∼ x + z + x:z)
 

Coefficients:
 
(Intercept) x z x:z
 

2.444 -3.000 -1.167 3.750 

The estimated regression equation is thus: 

´ yi	 � a � b1xi � b2zi � b3xizi � ei 

� 2:444 � ��3:000�xi � ��1:167�zi � �3:750�xizi � ei 

� 2:444 � 3:000xi � 1:167zi � 3:750xizi � ei 

For our small data set, we would like to estimate the effect of yi on xi for various values 
of the moderator zi. To demonstrate how this works, we begin by specifying a value 
for zi that is of theoretical interest. Suppose we select the value of zi � 1. For a value of 
zi � 1, we ask the question: What is the slope of yi on xi at such a value? We can easily 

´ compute the predicted value yi for when zi � 1 by simply substituting into the 
regression equation: 

´ y � a � b1xi � b2zi � b3xizi � eii 

� 2:444 � ��3:000�xi � ��1:167��1� � �3:750�xi�1� � ei 

� 1:277 � 0:75xi � ei 

´ The equation yi � 1:277 � 0:75xi � ei is a linear equation describing the relationship 
between yi and xi when zi � 1. That is, this equation is literally a “new” regression 
equation that is appropriate only for when zi � 1. The simple slope is graphed in 
Figure 10.3 (solid line). 

Since there are three conditional distributions for zi in this example, it follows that 
there will be three unique regression equations for yi on xi. Recall that if zi were truly 
continuous, we would theoretically have an infinite number of conditional regression 
equations of yi on xi, because we would have an infinite number of “levels” for zi. 

Let us select another value for zi and once again obtain the regression equation of 
yi on xi at that particular value. Suppose zi � 3. The corresponding regression 
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FIGURE 10.3 Three simple slopes for small sample example. 

equation is 

´ yi	 � a � b1xi � b2zi � b3xizi � ei 
� 2:444 � ��3:000�xi � ��1:167��3� � �3:750�xi�3� � ei 
� �1:057 � 8:25xi � ei 

´ The equation yi � �1:057 � 8:25xi � ei is the unique regression equation of yi on xi 
when zi � 3. The graph of this slope also appears in Figure 10.3 (boldface dashed 
line). For zi � 2, we have (lightface dashed line in Figure 10.3): 

´ y � a � b1xi � b2zi � b3xizi � eii 

� 2:444 � ��3:000�xi � ��1:167��2� � �3:750�xi�2� � ei 
� 0:11 � 4:5xi � ei 

If zi were truly a continuous variable, then we could compute separate regression 
equations for zi values comprising the entire range of the variable with lower and 
upper limits depending upon how zi is measured or scaled. For instance, if the range 
of zi had a lower limit of 0 and an upper limit of 100, and again, it was a truly 
continuous variable, then we could theoretically derive regression equations of yi on 
xi for the infinite number of values of zi within the range f0; 100g. 

10.7 CALCULATING SIMPLE SLOPES: A USEFUL 
ALGEBRAIC DERIVATION 

Up to now, we have calculated the simple slope of yi on xi at various values of zi by 
taking our original regression equation containing the interaction term and calculating 
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the regression equation letting zi equal the level for the desired conditional equation. 
We then substituted values to obtain the simple slope regression equation for that 
particular value of zi. However, there is an easier way to arrive at the simple slopes. 
The equation 

yi � α � β1xi � β2zi � β3xizi � εi 

can be arranged to provide an equation that is algebraically equivalent. First, we group 
terms as follows: 

yi � �β2zi � α� � �β1xi � β3xizi� � εi 

Next, we factor out xi from β1xi � β3xizi to yield 

yi � �β2zi � α� � xi�β1 � β3zi� � εi 

and then slightly rearrange xi�β1 � β3zi� to �β1 � β3zi�xi to give us 

yi � �β2zi � α� � �β1 � β3zi�xi � εi 

Again, all we have done is algebraically rearranged the equation. The difference in the 
equation however is that now xi has the coefficient of β1 � β3zi. But what is β1 � β3zi? 
It is the generic slope coefficient for xi. The generic intercept of the equation is 
β2zi � α. 

With our new formulation, we can state an equation for calculating the population 
slope of yi on xi at various values of the moderator zi (i.e., the simple slopes): 

β1@zi � β1 � β3zi (10.4) 

That is, to know the slope of yi on xi at a given value of zi, (10.4) is computed, where zi 
is the desired value for the moderator. Armed with this equation, we can now use it for 
determining the conditional regression slopes for any value of zi. For instance, let us 
obtain the slope β1@zi � 1 for our data: 

b1@zi�1� �  b1 � b3�1� 
� �3:000 � 3:750�1� 
� 0:75 

The result is the same as the estimated slope computed earlier for zi � 1. It is easy to 
find all the slopes of yi on xi for each value of zi that mirrors our previous calculations: 

b1@zi�1� �  b1 � b3�1� � 0:75 

b1@zi�2� �  b1 � b3�2� � 4:50 

b1@zi�3� �  b1 � b3�3� � 8:25 

It is very clear looking at the slopes in this way that as the “levels” of zi increase from 
1 to 3, the slope of yi on xi increases from 0.75 to 8.25. 
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10.8 SUMMING UP THE IDEA OF INTERACTIONS IN REGRESSION 

Interactions in regression may at first glance appear rather daunting. However, if you 
use your knowledge of factorial analysis of variance as a springboard to under
standing them, you will quickly see the similarities between the two interaction 
models. Let us again review the situation of yi on xi. In an ANOVA-type model, xi is 
categorical. In a regression-type model, xi is (typically) continuous. In the ANOVA 
model, we are interested in mean differences on yi across categories of xi. In the 
regression model, we are interested not in mean differences on yi, but rather in the 
slope of yi on xi. Now, suppose we introduce the variable zi as a moderator in each 
case. Here is a summary of how the interpretation differs based on the model: 

Analysis of Variance – If zi is a moderator of yi on xi, it implies that mean 
differences of yi for categories of xi differ depending on the level chosen for zi. 

Regression – If zi is a moderator of yi on xi, it implies that the slope of yi on xi 
differs depending on the “level” chosen for zi. 

Depending on whether zi is dichotomous, polytomous, or continuous, interpreta
tion of the variable is slightly different, but the essential role of zi as a moderator in 
each case is the same. 

10.9 DO MODERATORS REALLY “MODERATE” ANYTHING? 
SOME PHILOSOPHICAL CONSIDERATIONS 

Having reviewed some of the theory of interactions in regression, we have called these 
“3rd variables” by the name of “moderators” only because that is how they are 
commonly referred to in the literature. However, I personally have never liked the 
name moderator for the reason that I believe it unduly implies a physical action of some 
sort that has nothing to do whatsoever with variance partitioning, which, after all, is all 
we are accomplishing in any statistical model. Just as a caveat had to be issued when 
discussing mediation, one likewise needs to be advanced in a discussion of moderation. 

To say that zi moderates the relationship between yi and xi seems to imply a 
physical model such that zi is somehow “regulating” the yi on xi relation, analogous to 
how a moderator might oversee a negotiation in a business deal. And if you have 
substantive variables such that this is actually the case, then yes, zi can and should be 
called a moderator. However, simply because one is calling interactions in regression 
by the name of moderated regression does not give one philosophical license to 
ascribe any powers to zi that it did not have before you conducted the regression. To 
do so would imply more of a physical role, as opposed to a statistical role. For 
instance, consider the following conclusion, the kind of which is often proclaimed as 
evidence in the social science literature: 

Our research and statistical analyses suggest that self-esteem moderates the relationship 
between stress and propensity to engage in violence. 

What does such a conclusion mean, really? Statistically, we know what it suggests, 
and so long as we associate the idea of moderation with the discovery of statistical 
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interactions, all is well and good. However, if we get a bit too “in love with our 
theory,” we may begin to actually believe that self-esteem impacts the relationship 
between stress and violence. Does it? What evidence do we have to say that self-
esteem impacts anything? We usually have scant evidence of this on an experimental 
level. But in speaking of it as a moderator, it seems to imply a directional causal force 
of some kind. Statistically, however, all we have discovered is an interaction. 

The key point to remember is to never ascribe powers to empirical variables unless 
you have generated their outcomes in such a way that such powers can then be 
substantiated by the statistical analysis. Statistical analysis can hardly ever be 
considered justification alone for the existence of a phenomenon, regardless of the 
field to which it is applied. 

10.10 INTERPRETING MODEL COEFFICIENTS IN THE 
CONTEXT OF MODERATORS 

There is a big difference between interpreting regression coefficients in a model that 
contains an interaction term versus a model that contains only “main effect” terms, the 
so-called additive model. Coefficients in a main-effects-only model estimate some
thing different than coefficients in a model that includes a product term. 

When we test the main-effects-only, we interpret β1 as reflecting the expected 
change in yi given a one unit change in xi across zi or, equally, over all values of zi. 
That is, the interpretation of β1 assumes we are generalizing or averaging over values 
of zi. Likewise, we interpret β2 as the expected change in yi given a one unit change in 
zi across xi or, again, generalizing or averaging over all values of xi. This interpretation 
of “averaging over” only holds true when we do not have an interaction term in the 
model. 

When we include the product term xizi, β1 now reflects the expected change in yi 
given a one-unit change in xi when zi � 0, and β2 reflects the expected change in yi 
given a one unit change in zi when xi � 0. In essence, when we interpret the main 
effects in a nonadditive multiple regression model (i.e., one with a product term), we 
are actually interpreting simple slopes for values of 0 on the moderating variable. As 
an example, if β1 were equal to 2.0 in the nonadditive model, we would say that the 
expected (or average) change in yi for a one unit change in xi is 2.0, when zi � 0. 

To summarize: 

•	 When estimating a model that contains only main effect terms, regression 
coefficients estimate “general” relationships averaging across the levels of the 
other predictor. 

•	 When estimating a model that contains a product term, regression coefficients 
for main effects estimate conditional relationships focused on a specific value 
of the other predictor. That value of the other predictor (moderator) is equal to 0. 

•	 It is very important to not interpret main effects in an interactive model as you 
would in a purely additive one. 
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10.11 MEAN-CENTERING PREDICTORS: IMPROVING 
THE INTERPRETABILITY OF SIMPLE SLOPES 

We have said that when we have a product term in a multiple regression, the partial 
regression coefficients are interpreted differently than they would be if we did not 
have the product term included in the model. Referring once again to the product term 
model, 

yi � α � β1xi � β2zi � β3xizi � εi 

the partial regression coefficient β1 is interpreted as the expected change in yi for a one 
unit change in xi, when zi � 0. For β2 we interpret as the expected change in yi for a 
one unit change in zi when xi � 0. 

Theoretically, the above is sound enough and is algebraically correct. However, one 
practical difficulty arises when one considers the plausibility of letting zi � 0 in  real  
empirical data. For instance, does it make sense to calculate a simple slope for when one 
weighs 0 pounds? This remains a difficulty whether we have an additive model or a 
nonadditive one. Technically, the numbers are correct, since when zi � 0, we surely can 
interpret the model mathematically. We may not however be able to do so substantively. 
For instance, in the product term regression model, if both xi � 0 and  zi � 0, then we have 

´ y � a � b1�0� � b2�0� � b3�0��0�i 

� a 

That is, the predicted value for yi is the intercept term. What would we like this intercept 
to represent? If zero on both scales is not interpretable, then perhaps we can linearly 
transform xi and zi so that when we interpret the predicted value for yi at xi � 0 and 
zi � 0, these zero values actually represent a quantity that is both more realistic, and 
more importantly, of more interest than an actual true zero value (i.e., with regard to the 
scale, not necessarily the thing that is being measured; see Chapter 3 for a discussion of 
measurement scales). 

The way to mean center a predictor is to subtract the mean of that predictor from 
each value. We can use the QuantPsyc package (Fletcher, 2012) in R to easily 
perform mean-centering. For instance, consider the grades data featured earlier in 
Section 10.3. Suppose we wish to mean center study: 

> library(QuantPsyc) 
> mc.study <- meanCenter(study) 
> mc.study 
[1] -0.46 -0.26 0.34 -0.16 0.04 0.64 0.04 0.34 -0.36 -0.16 

We can now incorporate the mean-centered predictor into our regression: 

> model.cent <- lm(final ∼ mc.study*class) 
> summary(model.cent) 
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Coefficients: 
Estimate Std. Error t value Pr(>|t|) 

(Intercept) 68.962 4.626 14.908 5.73e-06 *** 
mc.study -30.376 15.923 -1.908 0.1050 
class -3.997 6.462 -0.619 0.5589 
mc.study:class 70.724 20.069 3.524 0.0125 * 

The estimated intercept value of 68.96 still represents the predicted mean grade 
when study time is equal to 0, but now, unlike in the regression where study was not 
centered, “0” does not really mean “0.” Because we have centered study, “0” is 
equivalent to the mean study time. Hence, the correct interpretation of the intercept of 
68.96 is now: 

The predicted final grade when one studies an average amount of time in class = 0 is  
equal to 68.96. 

We can again visualize the interaction by generating scatterplots for each class, this 
time noting that mc.study is a centered variable along the abscissa: 

> scatterplot(final ∼ mc.study | class, data = grades) 

10.12 THE ISSUE OF MULTICOLLINEARITY: A SECOND REASON 
TO LIKE MEAN-CENTERING 

We know from our discussion of multiple regression that multicollinearity among 
predictors in a regression model can pose a serious problem, both substantively and 
technically. On a technical level, if one predictor is a linear combination of another 
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predictor, the data matrix is of less than full rank, which implies that the determinant 
of the matrix will equal 0 (i.e., it will be singular), which further implies that the matrix 
will not be invertible. This will cause serious problems for whatever regression 
program you are using, and you will not be able to obtain a solution, or at minimum, 
for less severe cases, estimated regression coefficients will not be very stable. 

On the substantive side, we know that multicollinearity is a problem because it 
suggests that two or more predictors account for the same variance in the response 
variable, and if for no other reason than parsimony (e.g., Ockam’s razor), having two 
highly correlated predictors in a multiple regression is not in any way ideal. The usual 
course of action is to simply delete one of them, being sure to retain the one that is 
most substantively meaningful. 

Product terms in a multiple regression can also in some cases (not all) cause 
problems of multicollinearity. Regardless of whether the collinearity is problematic or 
not (see Jaccard and Turrisi, 2003), we can easily demonstrate the effect. For instance, 
for the grades data, we find the correlation between uncentered study and study 
× class to be the following: 

> cor(study, study*class) 
[1] 0.518555 

The correlation is not exceedingly high, but still, let us see what happens when we 
correlate mean-centered study (having both mean-centered it both individually and as 
part of the product term), and mean-centered class (again, having mean-centered it 
both individually and as part of the product term): 

> cor(mc.study, mc.study*mc.class) 
[1] 0.2469573 

We note that the correlation between mean-centered terms is quite smaller than that 
between uncentered variables (though one would not ordinarily mean-center binary 
variables). Hence, in addition to the benefits gained in interpretation by mean-
centering, it also affords a way of regulating potential problems of multicollinearity 
in a product term regression model. For further details on this issue, see Aiken and 
West (1991). The excellent monograph by Jaccard and Turrisi (2003) should also be 
consulted. 

10.13 INTERACTION OF CONTINUOUS AND POLYTOMOUS 
PREDICTORS IN R 

We now feature a software example of crossing a continuous predictor with a 
polytomous predictor having five levels. These data are hypothetical, and hence 
our purpose in this example is not to focus on any substantive interpretation. We 
instead focus rawly on what the coefficients are telling us. We perform the moderation 
on the data featured in Table 10.3, where the response variable yi and predictor xi 
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TABLE 10.3 Hypothetical Data for Moderation Analysis 

y x  z  y x z  y x  z  y x z  y x  z  
1 5  6  1  11  8 5 2  21 5 8 3 31  7 9 4  41 6 6 5 
2 9  9  1  12  6 4 2  22 8 10 3 32  8 7 4  42 9 3 5 
3 7  4  1  13  9 7 2  23 6 7 3 33  9 9 4  43 8 2 5 
4 1  3  1  14  7 6 2  24 5 8 3 34  4 8 4  44 7 5 5 
5 6  2  1  15  1 2 2  25 4 5 3 35  5 5 4  45 5 4 5 
6 4  8  1  16  8 9 2  26 8 9 3 36  6 6 4  46 4 7 5 
7 2  6  1  17  4 5 2  27 2 2 3 37  7 4 4  47 2 8 5 
8 8 10 1 18  5 6 2  28 3 5 3 38  8 9 4  48 1 5 5 
9 4  5  1  19  4 6 2  29 2 4 3 39  4 4 4  49 4 9 5 

10 6 1 1 20  7 2 2  30 1 5 3 40  5 5 4  50 5 10 5 

are continuous measures, and the moderator variable zi is a polytomous categorical 
moderator variable: 

> mod <- read.table("moderation.txt", header = T) 

A nice thing about R is that it does the dummy coding for us so long as we specify 
the variable z as a factor. Hence, we first designate z to be a factor: 

> attach(mod) 
> f.z <- factor(z) 
> f.z 
[1]  1  1 1 1 1 1 1  1 1 1 2 2 2  2 2 2 2 2 2  2 3 3 3 3 3  3 3 3 3 3 4  4 4 4 4 4 4  4  

[39] 4 4 5 5 5 5 5 5  5 5 5 5  
Levels: 1 2 3 4  5  

Remember, if we did not specify z as a factor, R would treat it as a continuous 
variable with lower limit on the real line equal to 1 and upper limit equal to 5, and 
everything in between considered a possible value on the variable. That is, had we not 
specified it as a factor, we would obtain for our model: 

> model.y.xz <- lm(y ∼ x*z) 
> summary(model.y.xz) 

Coefficients: 
Estimate Std. Error t value Pr(>|t|) 

(Intercept) 1.48670 1.73930 0.855 0.397 
x 0.71009 0.28676 2.476 0.017 * 
z 0.80271 0.55871 1.437 0.158 
x:z -0.14846 0.08895 -1.669 0.102 
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The above is the wrong model. The correct model is provided when we correctly 
designate z as a factor: 

> model.y.xz <- lm(y ∼ x*f.z) 
> summary(model.y.xz) 

Coefficients: 
Estimate Std. Error t value Pr(>|t|) 

(Intercept) 3.6418 1.3661 2.666 0.0110 * 
x 0.2886 0.2240 1.288 0.2050 
fz2 -0.7668 2.2117 -0.347 0.7306 
fz3 -4.7220 2.2635 -2.086 0.0434 * 
fz4 -0.4699 2.6163 -0.180 0.8584 
fz5 4.5487 2.1390 2.127 0.0397 * 
x:fz2 0.2932 0.3836 0.764 0.4492 
x:fz3 0.5813 0.3494 1.664 0.1040 
x:fz4 0.1854 0.3940 0.471 0.6405 
x:fz5 -0.8124 0.3412 -2.381 0.0221 * 

Note that we could have also used as.factor to generate the factor levels “on the 
spot” in our regression through lm(y ∼ x + as.factor(z) + x:as.factor(z)). 

Note also that R takes as the reference category the lowest category of our 
polytomous variable, which in this case is z = 1. Had we begun our categorization of z 
with 0, it would have made z = 0 the reference category. Suppose we would like to 
change the reference category to the last group. To do this, we recode the factor z: 

> fz.ref <- factor(z, levels = c(5, 1, 2, 3, 4)) 

The reference category is now z = 5, which also happens to be the default coding 
used by SPSS when performing moderation. Notice that we kept the other levels in the 
sequence of 1, 2, 3, 4. What this new specification will do is use z = 5 as the reference, 
and make the following contrasts, in the following order: 

• z1 vs.  z5 

• z2 vs.  z5 

• z3 vs.  z5 

• z4 vs.  z5 

Because we are crossing with the continuous xi variable, it will also generate the 
following contrasts: 

∗ ∗ 
• x z1 versus x 

∗ ∗ 
• x z2 versus x 

∗ ∗ 
• x z3 versus x 

∗ ∗ 
• x z4 versus x 

z5 

z5 

z5 

z5 



x 
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Let us retry our regression using the newly recoded factor fz.ref: 

> model.fz.ref <- lm(y ∼ x*fz.ref) 
> summary(model.fz.ref) 

Coefficients: 
Estimate Std. Error t value Pr(>|t|) **  

(Intercept) 8.1905 1.6459 4.976 1.28e-05 *** 
-0.5238 0.2574 -2.035 0.04848 * 

fz.ref1 -4.5487 2.1390 -2.127 0.03967 * 
fz.ref2 -5.3155 2.3946 -2.220 0.03217 * 
fz.ref3 -9.2707 2.4425 -3.796 0.00049 *** 
fz.ref4 -5.0186 2.7727 -1.810 0.07781 . 
x:fz.ref1 0.8124 0.3412 2.381 0.02211 * 
x:fz.ref2 1.1055 0.4040 2.737 0.00921 ** 
x:fz.ref3 1.3937 0.3717 3.750 0.00056 *** 
x:fz.ref4 0.9978 0.4139 2.411 0.02060 * 

We interpret a few of the above coefficients: 

•	 fz.ref1 is the expected mean difference (i.e., contrast) between z = 1 versus 
z = 5 when x � 0. 

•	 fz.ref2 is the expected mean difference (i.e., contrast) between z = 2 versus 
z = 5 when x � 0. 

•	 x:fz.ref1 is the expected difference in slopes between that of y on x when 
z = 1 versus y on x when z = 5. 

•	 x:fz.ref2 is the expected difference in slopes between that of y on x when 
z = 2 versus y on x when z = 5. 

We now generate the simple slope graphs for these data. To get the simple slopes, 
we use the package pequod (Mirisola and Seta, 2013). We first graph the simple 
slope of yi on xi at zi � 1 versus zi � 5: 

> model <- lmres(y ∼ x*z, data = mod)
 
> s.slopes <- simpleSlope(model, pred = "x", mod1 = "z", coded = "z",
 
data = mod)
 
> plot <- s.slopes
 
> plot
 

Simple Slope:
 
simple slope standard error t-value p.value 

Low z ( 1) 0.56162388 0.2121233 2.6476296 0.01106492 
High z ( 5) -0.03222894 0.2329996 -0.1383218 0.89058982 

> PlotSlope(s.slopes) 
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We note that the above visual interpretation of the slopes agrees (through eye
balling it) with the numerical results reported in the simple slopes analysis in R. That 
is, the slopes corresponding to coefficients 0.56 and �0.03 for z = 1 and z = 5 appear 
in the plot. We see that when z = 1, the slope is positive and relatively sleep. When 
z = 5, the slope is slightly negative. 

10.14 MULTILEVEL REGRESSION: ANOTHER SPECIAL CASE 
OF THE MIXED MODEL 

Recall our discussion from Chapter 6 in which we introduced the multilevel model as 
a special case of the mixed model. There we discussed these models in the context of 
ANOVA-type models. In a regression style model, we could likewise test a model in 
which α is random but β is fixed. What this implies is that α terms now vary and have a 
probability distribution associated with them. We could also test a model in which 
slope β is random, while intercepts α are fixed. Or, we could test a model in which 
both intercepts and slopes are random. Allowing these parameters to be random is 
especially relevant in a multilevel context where a clustering effect is apparent. For 
instance, consider Figure 10.4 reproduced from Demidenko (2004) where the 
relationship between sales and price is considered. 

In the classical least-squares regression fit to these data (Figure 10.4a), the 
relationship between sales and price is negative. However, when type of com
modity is taken into account, where each commodity represents a “cluster,” we 
get a very different conclusion (Figure 10.4b). Of course, the clustering 
effect alone does not necessitate using a mixed modeling approach. One could 
simply fit a different least-squares line to each commodity and keep effects fixed. 
However, for clustered data, especially in situations where designating terms as 
random makes good sense, the mixed modeling approach is usually the preferred 
choice. 
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FIGURE 10.4 Relationship between sales and price using OLS (a) versus mixed modeling 
via cluster commodity (b) (Demidenko, 2004). Reproduced with permission from John Wiley 
& Sons, Inc. 

10.15 CHAPTER SUMMARY AND HIGHLIGHTS 

•	 Interaction effects can be tested in multiple regression by generating product 
terms between predictors. 

•	 Simple slopes in multiple regression are analogous to simple effects in the analysis 
of variance. Both are effects dependent upon the value of another predictor. 

•	 The additive model is one in which there is no interaction term specified. The 
nonadditive model is one in which a product term is specified. 

•	 Analogous to cell effects in ANOVA, a cell effect for a product term, 
theoretically, is the joint occurrence of a score on each variable. For continuous 
data, there are theoretically an infinite number of “cells” that are contained in the 
product term. 

•	 Moderators may be dichotomous, polytomous, or continuous. 

•	 The interpretation of “main effect” coefficients in a model containing a product 
term is not analogous to the interpretation of coefficients in a model not containing 
product terms. When a product term is present, the effect of one variable is 
implicitly evaluated at a value of 0 on the other variable. That is, main effects are 
interpreted as simple slopes where the value of the moderator is equal to 0. 

•	 Mean-centering predictors can aid in their interpretability and also help in some 
cases to reduce collinearity between the predictor and the product term. 

REVIEW EXERCISES 

10.1.	 Discuss the similarities and differences between hypothesizing an interaction 
in ANOVA versus hypothesizing one in a regression context. 
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10.2.	 Conceive a substantive example where a moderation analysis in regression 
would be useful. 

10.3.	 Referring to the following model, discuss how you would parameterize zi 
differently for a continuous moderator than for a dichotomous or polytomous 
one: 

yi � α � β1xi � β2zi � β3xizi � εi 

10.4.	 Discuss how you would test for a simple slope effect for a model containing 
first a polytomous moderator and then for a model featuring a continuous 
moderator. 

10.5.	 Explain how the model equation yi � α � β1xi � β2zi � β3xizi � εi can be 
adjusted algebraically to reflect yi � �β2zi � α� � �β1 � β3zi�xi � εi. 

10.6.	 Consider an example where the slope of yi on xi is not linear across levels of 
the moderator zi. 

10.7.	 Discuss and explore the issue of whether or not moderators actually 
“moderate” anything. What are some of the philosophical pitfalls to using 
words such as “moderation” in the context of what are otherwise interactions? 

10.8.	 Explain how coefficients in a nonadditive model should be interpreted 
differently than coefficients in an additive one. 

10.9.	 Discuss the purpose of mean-centering predictors in a nonadditive regression 
model. 

10.10.	 Consider the following data where we wish to hypothesize that raise is a 
function of learning and privileges. Test the model lm(raises ∼ lear
ning∗privileges) and provide a full summary of its findings, espe
cially that of interpreting the product term generated by crossing two 
continuous variables. Plot and interpret the simple slopes. 

> attitude 

rating complaints privileges learning raises critical advance 

1  43  51  30  39  61  92  45  

2  63  64  51  54  63  73  47  

3  71  70  68  69  76  86  48  

4  61  63  45  47  54  84  35  

5  81  78  56  66  71  83  47  

6  43  55  49  44  54  49  34  

7  58  67  42  56  66  68  35  

8  71  75  50  55  70  66  41  

9  72  82  72  67  71  83  31  

10 67 61 45 47 62 80 41 

10.11. Perform the regression featured in Section 10.6 using SPSS and match your 
results with those generated by R in the current chapter. 
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LOGISTIC REGRESSION AND THE 
GENERALIZED LINEAR MODEL 

Linear models customarily embody both systematic and random (error) components, 
with the errors usually assumed to have normal distributions. The associated analytic 
technique is least-squares theory . . . Techniques developed for non-normal data 
include probit analysis, where a binomial variate has a parameter related to an assumed 
underlying tolerance distribution, and contingency tables, where the distribution is 
multinomial and the systematic part of the model usually multiplicative. In both these 
examples there is a linear aspect to the model. (Nelder and Wedderburn, 1972, p. 370) 

The class of models surveyed up to this point in the book have generally been of two 
types, analysis of variance models (e.g., fixed effects, random effects, and mixed 
models) and linear regression models (e.g., simple linear regression and multiple 
linear regression). In all cases, we have made many model assumptions (such as 
normality and independence of errors), but none more important than assuming that 
the relationship between the response variable and the explanatory variables is linear 
in form. That is, up to now, we have assumed linearity in the parameters. For 
instance, recall the multiple regression model of Chapter 9: 

yi � α � β1x1 � β2x2 � ∙ ∙ ∙  � βkxk � ϵi 

in which there were k predictors. Recall that the constants α and β1 through βk 
represented the intercept and partial regression parameters, to be estimated from 
sample data, and ϵi was the random error associated with each prediction of yi. When 
we say we are making the assumption of linearity in the parameters, what we mean is 

www.wiley.com/go/denis/appliedmultivariatestatistics
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that the exponent on each estimated parameter α, β1, etc., is understood or implied to 
be equal to 1. This is what defines the model as linear. The model 

2yi � α � β1x1 � β2x2 � ϵi 

is also linear in the parameters since parameters in the model are still raised to the 
exponent 1. Simply because β2x2

2 contains the term x2
2 does not in itself make the 

model nonlinear. What would make the model nonlinear is if β2 were squared, for 
instance, as in 

yi � α � β1x1 � β22x2 � ϵi	 (11.1) 

The model in (11.1) is properly considered nonlinear because it is nonlinear in the 
parameter β2. 

Up to now in the book, we have yet to consider models of the type in (11.1), where 
parameters are raised to any other exponent than 1. Indeed, there is a good reason for 
our emphasis on linear models in this book. The general linear model is the most 
popular and relevant of models in statistical analysis, and many scientific phenomena 
can be modeled relatively precisely under the assumption of linearity. 

There are times, however, when linear models are definitely not appropriate. 
Such situations include, but are not exclusive to, circumstances where a nonlinear 
relationship between the response variable and predictor variable is hypothesized 
or expected. Nonlinear relationships might be hypothesized for at least a couple 
reasons: 

•	 The actual empirical relationship between the response and predictor variable 
is thought to be nonlinear in form. For example, the classic Yerkes-Dodson 
(1908)1 inverted U curve (i.e., inverted parabola) is one famous example of a 
nonlinear relationship, specifically the relationship between performance and 
arousal. 

•	 The empirical relationship between the response and predictor variable is 
nonlinear as a result of how the response variable is operationalized or defined. 
Recall that one assumption for linear models is that the response variable is 
normally distributed with independent errors. To have any chance of satisfying 
this assumption, an essential requirement is that the response variable be, at least 
in a practical sense, continuous. If the response variable is not measured on a 
continuous scale, then assuming normality can become quite difficult or even 
impossible. For instance, if the response variable is a Bernoulli variable (i.e., a 
binary-coded variable), then it is impossible to assume it to be normally 
distributed. In situations such as this, where the response is binary or even 
multinomial, the relationship between the response and predictor variable is 

1An online version can be accessed via Classics in the History of Psychology Web site: http://psychclassics. 
yorku.ca/Yerkes/Law/ 

http://psychclassics.yorku.ca/Yerkes/Law/
http://psychclassics.yorku.ca/Yerkes/Law/
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nonlinear by consequence of how the response variable is defined and meas
ured. “Pass versus fail” is, by nature, a binary response, as is “survive versus 
perish.” In data where nonlinearity is clearly present because of the way the 
response variable is operationalized, we require a model other than the linear 
model to fit to such data. 

A useful distinction to make when referring to nonlinear models in general is that 
between models that are intrinsically linear and those that are not (see Neter et al. 
(1996, pp. 534–535)). Nonlinear models that can be linearized through a transforma
tion are usually considered to be intrinsically linear. For instance, the exponential 
function is considered to be an intrinsically linear model, because if we take the log of 
the function, we get an approximately linear function. However, as Neter et al. (1996) 
note, that a nonlinear response function is intrinsically linear does not mean that linear 
regression is still suitable, since even after the transformation, the linearization may 
generate an error term that is not normally distributed with constant variance, which 
recall, is an assumption required of least-squares estimation. 

In this chapter, we treat models such as the logistic and Poisson models as 
special cases of generalized linear models, where generalized linear models may 
in turn be considered special cases of the wider nonlinear framework. However, 
we do not treat nonlinear estimation in any detail such as that provided by 
functions as nls (nonlinear least squares) in R. Such a topic is beyond the scope 
of this book. For details on how to estimate nonlinear models, see Crawley (2013, 
Chapter 20). 

We begin the chapter with a brief general discussion of nonlinear and generalized 
linear models, then spend the rest of the chapter discussing one very specific and 
popular case of a nonlinear model, that of logistic regression. To understand logistic 
regression, one first requires a familiarity with exponential and logarithmic functions. 
These concepts are also reviewed. 

The classic resource for generalized linear models is that of McCullagh and 
Nelder (1989). Fox (2008b, Chapter 15) is also an excellent and readable overview. 

11.1 NONLINEAR MODELS 

A general form for nonlinear regression models can be given by 

y � Xγ � ϵi (11.2) 

where y denotes a vector of observations, X is the model matrix, γ is the parameter 
vector, and ϵi is the error associated with each observation in y, assumed to be 
independent and normally distributed. Note that the model in (11.2) is identical to the 
classic regression model of (8.7) in Chapter 8, y � Xβ � ϵ, only that now we are 
replacing β with γ to denote the nonlinearity. In (11.2), we are simply using a different 
symbol to represent a different model (i.e., one that is nonlinear). Otherwise, the two 
model statements are quite similar. 
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FIGURE 11.1 Exponential function E�y� � 5 � 2�2x . 

One common nonlinear model is the exponential regression model given by 

�y � γ0 
γ1 xi � � ϵi 

where γ0 and γ1 are parameters, xi are fixed values for the explanatory variable, and ϵi 
are independent normally distributed errors. As an example of a nonlinear model, 
consider the exponential function E�y� � 5 � 2�2x (Figure 11.1). 

Analogous to linear regression in which the least-squares criterion assured us of 
the minimization of the sum of squared errors, 

n n 

ϵ2 � �yi � �α � βxi��2 
i 

i�1 i�1 

likewise, in nonlinear regression, we seek to minimize the sum of squared errors 

n n 

ϵ2 � �yi � γ0 exp �γ1xi��2 
i 

i�1 i�1 

Recall from Chapter 8 that the least-squares criterion is equivalent to the method of 
maximum likelihood when the errors ϵi are independent, normally distributed, and 
with constant variance. In the case of maximum likelihood for nonlinear models, we 
wish to maximize the function 

n1 
L�γ; σ2� �  

1 
exp � �yi � γ0exp �γ1xi��2 

2σ2 �2πσ2�n=2 
i�1 
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FIGURE 11.2 Hypothetical nonlinear relationship between suicide attempts and hours of 
therapy. 

with respect to the parameters γ0 and γ1, analogous to maximizing the likelihood with 
respect to α and β in simple linear regression. 

As another example of a nonlinear model, consider a hypothetical relationship 
between hours of therapy and number of suicide attempts in Figure 11.2. We can see 
that the relationship between suicide attempts and hours of therapy is nonlinear. As 
hours of therapy increase, the number of suicide attempts decrease. 

11.2 GENERALIZED LINEAR MODELS 

An important class of models was proposed by Nelder and Wedderburn (1972) to 
incorporate not only the classic linear model, but also situations where nonlinearity is 
present. As we have already noted and will see further, the general linear model can be 
considered a special case of the wider class of generalized linear models, which 
includes models that allow for noncontinuous, binary, and multinomial responses, as 
well as responses that are in the form of counts. Generalized linear models utilize what 
is known as a link function to essentially transform a nonlinear model into one that is 
approximately linear. 

For example, the logistic regression model, the topic of most of this chapter, is a 
nonlinear model. However, through the appropriate link function that transforms 
the nonlinear response into one that is virtually linear, we are able to interpret the 
model almost analogous to how we would interpret a “naturally-occurring” linear 
model. Of course, there will be exceptions and specific details about the transfor
mation that we will need to tend to, but the essence of the generalized linear model 
is basically to make a nonlinear model approximately linear through the relevant 
link function. This is done for the purpose of aiding the statistical analysis and 



448 LOGISTIC REGRESSION AND THE GENERALIZED LINEAR MODEL 

facilitating the interpretation of estimated coefficients. For instance, in the case of a 
binary response coded 0 and 1, not only will the relevant link function linearly 
transform the response variable, but it will also free up the range on the response 
variable so that it can assume values beyond 0 and 1. In fact, as we will see, the 
appropriate link function for the binary response will transform the variable into 
one that is continuous with a range �1 to �1, that is, the entire range of the real 
line. Depending on how the response variable is defined (e.g., binary, multinomial, 
and count), there is a specific link function appropriate to the given form. This 
specific link function is generally known as the natural link function for the given 
family of distributions (e.g., Gaussian, binomial, Poisson), and is often referred to 
as the canonical link function for the given family. 

We now survey the logic and conceptualization of the generalized linear model 
more closely, and develop the concepts of linear predictors and link functions more in-
depth. This will pave our way to a consideration of a popular generalized linear model 
featured in this chapter, the logistic model. 

11.2.1 The Logic of the Generalized Linear Model: How the Link 
Function Transforms Nonlinear Response Variables 

The regression model yi � α � βxi � ϵi surveyed up to now can be said to have two 
“parts” or “components” to it. These components are as follows: 

•	 A systematic component, equal to α � βxi. It is called a systematic component 
because this is the predictive part of the model. It is the part for which so long as 
we estimate α and β intelligently (i.e., via a good estimation procedure such as 
ordinary least-squares), we can make a good prediction of yi, while on average, 
keeping the sum of squared error of prediction to a minimum. In developing the 
generalized linear model, it is helpful if we identify α � βxi as a linear predictor, 
denoted simply by ηi. That is, ηi � α � βxi. 

•	 A random or stochastic component, equal to ϵi. This is the part of the model that 
is unpredictable. It represents random variation around our predicted values. 
When this variation is operating, it will contribute to our prediction of yi in a 
random fashion, unlike the linear predictor ηi, which contributes to the 
prediction of yi in a very systematic way. 

Now, here is how generalized linear models are similar to yet different from the 
simple linear regression model. In a generalized linear model, the response variable yi 
is not a natural linear function. That is, its expected value E�yi� is usually equal to 
something that has nothing to do with linearity at all. A classic case again is that of the 
binary response variable. So the question becomes: How can we adjust the left-hand 
side of the regression equation, yi, so that it corresponds, in some sense, to the right-
hand side? 

We accomplish this through a link function, which is nothing more than a 
transformation of the nonlinear response variable into a variable that is approximately 
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linear. Thus, in the generalized linear model, in addition to the above two components 
(systematic and random parts), we add a third component: 

•	 A link function between the random component yi and systematic component 
α � βxi. The linear predictor, α � βxi, is a function of the expectation of the 
parameter μ we are modeling (e.g., expectation of a binary variable) via a link 
function. This new link function we will denote as g�x�. What is g a function of? 
It is a function of μi, so the link function proper is given by g�μi�. 

We return to the binomial setting in clarifying the above. What is the expectation of 
a binomially distributed variable? Recall that a Bernoulli variable has values 0 and 1 
and has an expectation equal to p, the probability of success for any given trial. For 
example, on the flip of a fair coin, p is equal to 0.5, and μ in this case is equal to p. But, 
of course, we cannot model p using a linear model, since p is not linear. Any variable 
that can assume only two values cannot be considered linear. What we need to do is 
alter p so that it resembles something linear. We can do this by transforming p through 
a well-chosen link function. The link function of choice for a binomial setting is the 
log of the odds. The log of the odds is defined as 

p
log (11.3)e 1 � p 

What (11.3) means is that if we take what is a nonlinear expectation of p, compute 
the odds on p, then transform the odds into the natural log of the odds (i.e., to base e), 
we will have effectively linearized an otherwise nonlinear variable. Now, as a result of 
this transformation, we can treat the model as a linear model. When we compute the 
log of the odds, we get a value that can range not from 0 to 1, as was the case for the 
Bernoulli variable, but rather from �1 to �1. This is what generalized linear models 
do, they transform the expectation of a nonlinear-occurring variable into one that is 
approximately linear. 

A quick review of what we have discussed thus far, as it pertains to the binary 
response: 

•	 Our response variable is a binary variable with values 0 and 1. It is completely 
unreasonable to consider this variable linearly, since the only two options one 
could obtain on the variable are 0 or 1. 

•	 The expectation of the random variable is p, which is the probability of a success 
(we are denoting a success by “1”). What we would like to do is transform this 
expectation into something that is linear in form. 

• By using the link function log �p=�1 � p��, this will effectively transform the e 
original expectation of our binary variable into a variable that is linear. Notice 
that to do this we had to first take the odds, p=�1 � p�, but the essential point is 
that through the link function, we have linearized an otherwise nonlinear 
variable. 
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Having thus far spoken about the generalized linear model only with respect to a 
binary response, you might think at this point that the generalized linear model is 
specific to binary-occurring variables. This is not the case. The true contribution of 
Nelder and Wedderburn (1972) was in setting up a framework that could handle not 
only binary variables, but a whole host of other response variables as well, all through 
their respective link functions. The binary case, which we will use in our development 
of the logistic model, is but one possibility. Had our response variable not represented 
a binary situation, but rather a distribution of counts, then a Poisson distribution with 
link function equal to the log of the counts, rather than the odds, would have been 
more appropriate. 

11.3 CANONICAL LINKS 

Recall that the canonical link is the link function that is natural to the family of 
distributions. For instance, drawing again on our discussion of the binary response 
variable, we said that the link function for a binomial variable is the log of the odds, 
which we will come to name the logit. We also said that for a Poisson variable, the 
appropriate link function is the log. In addition to the binomial and Poisson families, 
there are many other families of distributions, all with respective link functions. 

It should be no surprise then that the general form relating the link function g��� to 
the linear predictor, ηi, can be written as 

g�μi� �  ηi � α � β1x1 � β2x2 � ∙ ∙ ∙  � βkxk (11.4) 

where 
•	 g�μi� is the new function g��� of the original expectation μi of the response 

variable. To emphasize that μi is an expectation, we can write it instead as E�yi�. 
That is, g�E�yi��. 

•	 ηi is the symbol for the linear predictor. 

•	 α � β1x1 � β2x2 � ∙ ∙ ∙  � βkxk is simply the systematic portion of (11.4), analo
gous to what we would have in an ordinary regression with k predictors. 

Notice in (11.4) how g��� serves as the “bridge” or “link” between the right-hand 
side and the left-hand side of the equation. This is how you can think of it as being the 
link function, in that it provides a kind of way for both sides of the equation to 
“communicate” with each other through a “translator,” which is the link function 
appropriate to the modeling context. 

11.3.1 Canonical Link for Gaussian Variable 

If the generalized linear model framework is as “generalized” as it sounds, then we 
should be able to fit our previously studied regression models into this framework. 
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What is the canonical link for the family of distributions having a normal (Gaussian) 
distribution? That is, what link did we impose on an ordinary regression model? The 
answer is, of course, that we did not directly impose any link at all. The expectation for 
the response variable, E�yi�, was already linear. It did not require any transformation 
to make it linear. However, to say that it did not require any transformation would 
not be as general as we would like. For the sake of the generalized linear model 
framework, we still want to specify what being “untransformed” looks like. For 
the Gaussian family, the correct canonical link is the identity function. This is simply 
the function f �x� � x. What the function means is what you put in, you get 
out. No transformation takes place. That is, g�μi� � μ, which is known as the identity 
link. 

11.4 DISTRIBUTIONS AND GENERALIZED LINEAR MODELS 

We will spend the vast majority of this chapter discussing the logistic regression 
model at some length, but before we do so, it is useful to briefly survey a few of the 
more common distributions featured in generalized linear models. We also briefly 
survey the concept of a dispersion parameter along with that of deviance. 

11.4.1 Logistic Models 

The logistic regression model, useful for modeling binomial data, is given by 

α�βxi �e�
p � � (11.5)

1 
1 � e��α�βxi� α�βxi�1 � e�

where we can also write the numerator e�α�βxi � in (11.5) as 

p�α�βxi� �e
1 � p 

To “deexponentiate” α � βxi, we take the log, which gives us 

p
α � βxi � log (11.6)e 1 � p 

where the right-hand side of (11.6) is the log of the odds. When we plot such a 
function, we obtain the curve in Figure 11.3 (curve(pnorm(x), -5, 5). 

The shape of the resulting curve is the well-known sigmoid function. Since its shape 
is nonlinear, it makes fitting a least-squares regression line to such data inappropriate. 
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FIGURE 11.3 Logistic “sigmoid” function. 

11.4.2 Poisson Models 

The Poisson distribution (Poisson, 1837) is given by 

�μμyie
p�yi; μ� � y! 

where μ is the mean, often referred to in the Poisson distribution as the rate parameter 
and y! � y�y � 1� ∙ ∙ ∙  3 � 2 � 1. The Poisson distribution is useful for modeling count 
data that occur over a given period of time or space. Whereas the appropriate link for 
the logistic model is that of the logged odds, the appropriate link for the Poisson model 
is the log. 

One feature that is worth noting regarding the Poisson distribution is that the 
expectations of both its mean and variance are equal to the mean, μ. That is, E�yi� � μ 
and σ2 � μ. As  μ gets larger, the Poisson distribution approximates that of a normal y 
distribution. Just as the normal density is the limiting form of the binomial, so it is also 
the case that the normal is the limiting form of a Poisson variable (Figure 11.4). 
Further, when n is relatively large and p relatively small, the Poisson distribution is 
approximated by the binomial. 

Densities for Poisson distributions can be easily obtained using dpois in R. See 
Teetor (2011, p. 187) for details. 

11.4.3 Negative Binomial 

The negative binomial distribution is given by 

k yiΓ�yi � k� k k 
f �yi; k; μ� �  1 �

Γ�k�Γ�yi � 1� μ � k μ � k 
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FIGURE 11.4 Poisson distributions for rate parameters 0.5, 1, 2, and 10. As can be seen, by a 
rate parameter of 10, the Poisson model strongly resembles the Gaussian distribution. 

where Γ is the gamma function, and μ and k are parameters. The expectation of the 
negative binomial is 

E�yi� � μ 

with variance equal to 

σ2 
y � μ � μ2 

k 

A notable feature of the negative binomial is that as k�1 (i.e., 1=k in μ2=k), which is 
known as a dispersion parameter, goes to zero, k�1 ! 0, the variance of y is equal to 
μ, that is, σ2 ! μ, converging to a Poisson distribution (Agresti, 2002). An important y 
way in which the negative binomial differs from that of the Poisson distribution is that 
the variance of the negative binomial increases at a faster rate than the variance in a 
Poisson model. For this reason, the negative binomial is sometimes a more suitable 
model for data that are overdispersed (see Agresti (2002, pp. 559–562)), a topic we 
turn to now. 

11.5 DISPERSION PARAMETERS AND DEVIANCE 

A dispersion parameter is an index indicating a measure of spread in a distribution. 
For instance, in the normal distribution, N�μ; σ2�, the dispersion parameter is that of 
the variance σ2 (Fox, 2002). Denoting the dispersion parameter more generally as 
ϕ, we can express the dispersion parameter of the normal distribution as ϕ � σ2. For  
the Poisson distribution, since E�yi� � μ and σ2 � μ, the dispersion parameter is y 
ϕ � 1. 

Overdispersion is exactly as the name suggests—the variance of a distribution is 
larger than some value we would expect or prefer under some idealized circumstance. 
To explain how dispersion parameters come about, we refer once more to the binomial 
distribution. Recall that the mean of a binomial distribution is given by E�yi� � np 
with variance equal to npq, which we can also write as np�1 � p� since q � �1 � p�. 
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Overdispersion in this case is said to exist if the computed variance on a sample of data 
exceeds np�1 � p�. To measure overdispersion, we can write the variance of yi as 

σ2 � ϕnp�1 � p�y 

where ϕ is an unknown dispersion, or scale parameter. Dispersion parameters may be 
known, but most often are estimated. 

If the dispersion assumption is satisfactory, residual deviance should be approxi
mately equal to residual degrees of freedom for the model, although as noted by 
Venables and Ripley (2002), this indicator is based on asymptotic theory, hence only 
being truly accurate for relatively large n. Still, one general (and convenient) guideline 
for detecting overdispersion is a deviance that is at least twice as large as the number 
of degrees of freedom (Lindsey, 1999). We demonstrate later in an example using 
software how to compare the deviance statistic with degrees of freedom as a means for 
tentatively assessing overdispersion in a model. 

The deviance of a model, first featured in Chapter 6 (and more generally via 
likelihood ratio tests in Chapter 3), is a measure used to estimate how different a given 
model is from the saturated model for some data (Everitt, 2002). It is defined as 

D � �2�LModel � LSaturated�	 (11.7) 

where LModel is the likelihood of the hypothesized model and LSaturated is the likelihood 
under the saturated model. A saturated model is one in which degrees of freedom are 
equal to 0. Hence, the extent to which LModel � LSaturated in (11.7) is large is indicative 
of a poor-fitting model. Conversely, the extent to which LModel � LSaturated is small is 
suggestive of a well-fitting model. Thus, smaller values of D are preferable to larger 
ones. This is somewhat intuitive, in that if I told you a model had a high deviance, it 
would suggest it differs to a great extent from the “ideal” in this case, which is the 
saturated model. 

11.6 LOGISTIC REGRESSION: A GENERALIZED LINEAR MODEL 
FOR BINARY RESPONSES 

Thus far, we have introduced the idea of nonlinear models and then the general class 
of models known as generalized linear models. We have said that these models can 
accommodate a variety of responses arising from a variety of families, including 
Gaussian, binomial, Poisson, etc. We now focus on and develop some of the theory 
behind a very popular model arising from the binomial family, that of the logistic 
regression model. We focus on this model for good reason. The model is quite popular 
in the social, biomedical, and natural sciences, because many times we wish to predict 
responses that naturally have a binary structure. Examples where a response is 
naturally binary include the following: 

•	 Predicting survival versus death in a long-term medical trial for treating a 
disease. 
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• Predicting passing versus failure in an educational environment. 

• Predicting marriage versus divorce in romantic relationships. 

In logistic regression, just as we did for linear least-squares regression, we seek to 
find predictors, continuous, categorical, or both, that will successfully account for 
variance in a response variable. That is, we would like to model important predictors 
that help explain variance in survival versus death, passing versus failure, and 
marriage versus divorce. Does method of medical treatment explain variance in 
the binary variable of survival versus death? Does amount of study time predict 
whether a student will pass or fail a course? Does quality of communication predict 
whether couples remain married or divorced? The fundamental questions posed in a 
logistic regression parallel those asked of “ordinary” linear models. The only real 
distinction is in how these models are parameterized. 

Logistic regression is a relatively popular technique for predicting group mem
bership and is probably used more than its competitor, discriminant analysis (see 
Chapter 13). One reason for this is that discriminant analysis requires the assumption 
of normality. Logistic regression does not require this assumption, though it does 
make the assumption of linearity in the logit, which can be tested using the Box– 
Tidwell test (Hosmer and Lemeshow, 2000). One can also simply plot the sample 
logits against the predictor (in the one-predictor case) to obtain informal evidence that 
the assumption is satisfied (Agresti, 2002). Under some circumstances, discriminant 
analysis has been found to be more effective than logistic regression (Efron, 1975). 
For a general comparison of logistic regression to discriminant analysis, see Press and 
Wilson (1978). For a comparison of the classification errors made in each procedure, 
see Lei and Koehly (2003). 

11.6.1 Model for Single Predictor 

The logistic regression model for the one-predictor case is that given earlier in 
(11.5): 

e�α�βxi �1 
p � � 

1 � e��α�βxi� 1 � e�α�βxi� 

where p is a probability with a possible range of 0 to 1, α � βxi is, in the language of 
the generalized linear model, the linear predictor, e is a constant equal to approxi
mately 2.718 and e�α�βxi� is the exponentiated logit, known also as the odds. We spend 
much of this chapter discussing the components of (11.5), so by the time this chapter 
is complete, they will be quite familiar. 

When we take the natural log of the odds, that is, the log to base e, or ln  
(pronounced “lawn”), we obtain the logit: 

p
ln � α � βxi1 � p 
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To better understand the relationship between odds, logarithms, and logits, a review of 
exponential and logarithmic functions is in order. 

11.7 EXPONENTIAL AND LOGARITHMIC FUNCTIONS 

You undoubtedly noticed that in the equations for the logistic distribution, and others 
for that matter, “e” appears repeatedly. But what is e? It is the exponential function. 
For a reasonable understanding of how logistic regression works, one must be at least 
somewhat familiar with two common functions in mathematics, the exponential 
function e and its inverse, the logarithmic function. An understanding of these 
functions is necessary for an understanding of what odds, odds ratios, and logits 
are all about, and how probabilities are generated in the logistic distribution. 

To begin, recall from our mathematics review in Chapter 2 what constitutes a 
simple linear function: 

f �x� � a � bx 

where a is the intercept and b is the slope parameter. We define an exponential 
function to base b as 

f �x� � bx 

where b appears in the base and x appears in the exponent of the function. Consider a 
graph of the exponential function f �x� � 2x in Figure 11.5. 

FIGURE 11.5 Example of a simple exponential function. 
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Notice that the curve increases at a faster rate for increasing values of x. This is 
what the expression exponential growth means in the context of an investment that 
promises to grow your money exponentially, or likewise some bacteria that are known 
to grow exponentially in biology. The more bacteria present, the more new bacteria 
are generated, analogous to how rolling over earnings from an investment can 
likewise help grow one’s money at a faster rate. The opposite of exponential growth 
is that of exponential decay. 

A few of the more common properties of exponents include the following: 

•	 b�x � 1=bx (the base raised to a negative exponent is equal to 1 divided by the 
base raised to that exponent). 

•	 xn � xm � xn�m (the product of two bases raised to different exponents is equal to 
the base raised to the sum of those exponents). 

•	 When the base b is greater than 1, b > 1, the function will rise, called 
exponential growth. When the base is smaller than 1, but still greater than 
0, 0 < b < 1, the function will decrease, the so-called exponential decay 
(Figure 11.6). Notice that for b > 1, the function gets steeper as the base 
gets larger. For 0 < b < 1, the function gets flatter as the base gets larger. 

Aside from the linear function, the exponential and its inverse (the log) are two of 
the most popular functions for modeling change. For instance, world population 
growth since 1800 (perhaps even earlier) follows an approximate exponential growth 
curve (Barnett, Ziegler, and Byleen, 2011). Investment growth at compound interest, 
radioactive decay, and animal learning trials in psychology are other examples. 
Exponential functions are quite popular in physical applications as well (see Labarre 
(1961, p. 425) for an example). 

Some further characteristics regarding the exponential are worth noting. When the 
exponent x in f �x� � bx is negative, that is, f �x� � b�x, then f �x� � 1=bx, and the curve 

xreverses direction. For instance, compare the graphs of f �x� � 2x and f �x� � 2�
(Figure 11.7). 

11.7.1 Logarithms 

The logarithm of a number to a given base is the exponent to which the base must be 
raised in order to produce the number. For instance, consider a logarithm of base 10: 

log10100 � 2 

The above reads that the base 10 raised to 2 equals 100, that is, 102 � 100. We can 
choose a variety of bases for logarithms. As another example, consider the following 
log: 

log28 � 3; that is; 23 � 8 
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xFIGURE 11.7 Graph of f �x� � 2x (solid line) and f �x� � 2� (dotted line). 

The above reads that 2 to the exponent 3 equals 8. Graphically, logarithmic curves 
take on a quickly rising then plateau shape (Figure 11.8) of diminishing returns. 

We see then that the log of a number is actually an exponent. We can generalize this 
to say that y � logbx if and only if x � by. We can say more generally that logbx is the 
index to which b must be raised in order to get x. Logarithms to base 10 are called 
common logarithms and logarithms to base e are called natural logarithms, designated 
by the symbol “ln.” 

As shown in Figure 11.7, the curve for bx increases or decreases rather dramatically. 
The opposite of the exponential function (the log) is one in which growth is substantial 
at the beginning, but then levels off at higher levels, as evidenced in Figure 11.8. For 

FIGURE 11.8 Graph of y � log2�x�. Note the steep rise then plateau. 
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example, it is quite common for sedentary and overweight individuals to achieve great 
muscle gain and simultaneous weight loss during the first few months of an exercise 
program, only for progress to level off after many months. When this happens, the 
individual is nearing the height of the log function, since they are achieving much less 
weight loss for the same amount of unit-increase on x, where x may be quantified in 
terms of effort, amount of daily exercise, measured calorie deficit, and so on. That is, the 
rate of return is not what it was earlier in the diet or fitness program, and a new program 
must be implemented to achieve the same degree of progress. In psychology, the 
logarithm function is useful in describing such processes as habituation to stimuli. The 
new car you purchased today with all those fancy features is guaranteed to give you a 
happy feeling the first little while that you own the car, until, even in a relatively short 
period after the purchase, the car no longer arouses the same emotion (and a new 
competing emotion is aroused when regardless of your decreased excitement over the 
car, you are still having to make car payments). Stimuli often excite initially, but wear off 
over time, which is one of the most fundamental processes of learning in psychology. 
Marketing psychology exploits this principle through “hooking” us into purchases. 
Habituation is a fundamental psychological law. A logarithm function captures such 
processes very well. 

The exponential and the logarithmic functions are what are called inverses of one 
another. The inverse of the function f �x� is denoted by f �1 �x�. For example, going 
from f �x� � ex to log y � x simply requires us to take the value of the first function, e

f �x� � ex, and substitute it into the second. 

11.7.2 The Natural Logarithm 

Recall that the natural logarithm, denoted ln �x� and pronounced “lawn of x,” is the 
logarithm for which the base b is equal to e, and equal to approximately 2.718 281 828 
459 045. This is only an approximate number, since e is an irrational number (it is also 
transcendental), meaning that it cannot be written as the quotient of two integers a and 
b, where b ≠ 0. Recall that if a number can be written as the quotient of two integers, 
then it is a rational number, and has a finite or recurring (i.e., periodic) decimal 
expansion. 

The number e can be approximated in several ways. For example, it can be defined 
as the limit of the sequence �1 � �1=n��n. That is, 

n1 
e � lim 1 �

n!1 n 

which means that as n gets larger and larger and grows without bound, we get a better 
and better approximation for e. For example, consider the following approximations 
that get us closer and closer to the actual limiting value of e: 

2 10011 1 1 
e � lim 1 � e � lim 1 �e � lim 1 � e � lim 1 � 

n!2n!1 n!100 n!10002 10001 100 

� 2 � 2:25 � 2:70 � 2:7169 

1 1000 
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Notice that as n increases in cases from left to right, the limiting value of e gets 
closer and closer to 2.718 . . . 

11.8 ODDS, ODDS RATIO, AND THE LOGIT 

Recall that in our discussion of the logistic function we had defined the ratio p to 1 � p 
as e�α�βxi�. The ratio p to 1 � p is the odds in favor of an event with probability p. Odds 
were discussed briefly in Chapter 3 for the case of a 2 × 2 contingency table. 
For example, suppose the probability of event A were equal to 0.70 and the 
probability of event B were equal to 0.30. The odds in favor of event A to event 
B are computed as 

p 0:70 0:70� � � 2:33
1 � p 1 � 0:70 0:30 

That is, the odds in favor of A to B are 2.33 to 1. If the “1” is not mentioned 
explicitly, then it is implied. So, if we say the odds of horse Charlie winning the race 
compared to horse Homestretch are 2.33 to 1, this implies that the probability that 
horse Charlie wins is 0.70 compared to a probability of only 0.30 that horse 
Homestretch will win. Suppose the odds of Charlie losing to Homestrech are 10 
to 1. Then this implies there to be a 10/11 = 0.91 probability that horse Charlie loses, 
and a 1 � 0.91 = 0.09 probability that horse Charlie wins. 

Odds can be used in many ways, including that of establishing a fair bet. For a bet 
to be fair, the number of dollars (or whatever you may be betting) risked by each party 
should be equal to that of the odds for the event on which the wager is made. For 
example, if the odds in favor of A against B are 4 to 1, then we can say for the bet to be 
fair, the gambler choosing B should win $4 compared to the $1 won by the gambler 
choosing A. That is, if the gambler choosing A wins $1 if A wins, then the gambler 
choosing B should win $4 if B wins. This also implies that the probability of B 
winning is only 1/5, and that the probability of A winning is 4/5. 

A useful way to understand odds is as the ratio of the number of favorable 
possibilities to the number of unfavorable ones. For instance, the odds of drawing an 
ace (where ace is the “favorable” event) from a deck of playing cards is 4 to 48, or 1 to 
12. The odds are zero or undefined when either p � 0 or  p � 1, since p=�1 � p� �  
0=�1 � 0� � 0 and  p=�1 � p� � 1=�1 � 1� � 1=0, respectively. Recall that 1=0 is not 
equal to 0. Rather, it is undefined. The reason why 1=0 is undefined is because there 
is no number x such that 0 � x � 1. Contrast this situation to, say, the fraction 2=4. 
Since there exists a number 2 such that 2 � 2 � 4, 2=4 is not undefined. 

As mentioned previously, the natural logarithm of the odds, that of loge�p=�1 � p��, 
or ln �p=�1 � p��, is called the logit. If we are given only the probability p of an event, 
it is a simple matter to obtain the logit. We can simply transform p into the odds 
p=�1 � p�, then take the natural log. For example, suppose we find the probability 
of an event to be equal to p � 0:98. This means that the odds are equal to 
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0:98=�1 � 0:98� � 0:98=�0:02� � 49. The logit is thus, ln �49� � 3:89. Conversely, 
given the logit, we can easily get the odds by simply exponentiating the logit: 

p ln �p=�1�p��� e
1 � p 

ln �For our example in which ln �49� � 3:89, the odds are therefore equal to e 49�. Of  
course, given the odds, we can easily also transform back to probabilities through 
generating a ratio of the odds (i.e., the exponentiated logit): 

ln �p=�1�p��e
p � 

1 � eln �p=�1�p�� 

11.9 PUTTING IT ALL TOGETHER: THE LOGISTIC 
REGRESSION MODEL 

Having reviewed concepts of exponential functions, logarithms, natural logs, odds, 
and probabilities, we are now ready to put all of these ingredients together to better 
understand the logistic regression model introduced earlier in (11.5): 

α�βxi�e�1 
p � � 

1 � e��α�βxi� α�βxi �1 � e�

The formulation of the logistic model should now make good sense to you. Having 
reviewed how probabilities can be converted to odds, we see that e�α�βxi� in (11.5) is 
nothing more than the odds, where α � βxi is, in the language of the generalized 
linear model, the linear predictor. Let us now put all of these concepts together. 

Where in a least-squares regression we obtained raw regression coefficients that 
we could interpret as the expected change in the response variable for a one-unit 
change in the explanatory variable, we will analogously be able to interpret the 
logit, only now, the linear predictor is not in any kind of “natural” units as it was in  
least-squares regression where no transformation was required. In the logistic 
model, the unit for the linear predictor is that of the log of the odds (i.e., logit). 
Hence, the interpretation for a given predictor variable will be the expected change 
in the logit of the response variable for a one-unit change in the explanatory 
variable. Notice that all that has changed, in this sense, going from OLS to the 
logistic model, is the scale of the units on which the response variable is interpreted. 
In least-squares, we did not have to transform the response variable, since the 
canonical link was that of the identity function, which amounted to no transforma
tion at all. In logistic regression, we must perform a transformation in order to 
linearize the odds. However, once the transformation is complete, the interpretation 
of the coefficient associated with each predictor in the model will be analogous in 
logistic regression as it was in a least-squares problem. The units on the response 
variable have simply changed. 
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TABLE 11.1 Hypothetical Data on Quantitative and Verbal Ability for Those 
Receiving Training (Group = 1) versus Those Not Receiving Training (Group = 0) 

Subject Quantitative Verbal Training Group 

1 5 2 0 
2 2 1 0 
3 6 3 0 
4 9 7 0 
5 8 9 0 
6 7 8 1 
7 9 8 1 
8  10  10  1  
9  10  9  1  
10 9 8 1 

11.9.1 Interpreting the Logit: A Survey of Logistic Regression Output 

We survey some hypothetical small-scale data to demonstrate the interpretation of a 
logit in typical logistic regression output. Recall the Q–V data from Chapter 8 in 
which quantitative and verbal scores were obtained on nine subjects (Table 11.1). We 
adapt the data to include a training group variable (coded 0, 1) corresponding to 
whether subjects received or did not receive a prior training program designed to 
improve their quantitative and verbal abilities (we also add an observation to make the 
data balanced). For this analysis, we use only the quantitative scores in predicting 
group membership. 

Our research question of interest is: Can quantitative ability be used to predict 
group membership? We run the analysis in R: 

> Q <- c(5, 2, 6, 9, 8, 7, 9, 10, 10, 9) 
> group <- c(0, 0, 0, 0, 0, 1, 1, 1, 1, 1) 
> logistic <- glm(group ~ Q, family = binomial()) 

R will generate much more output than given below, and we will survey the full 
logistic output in our analysis of the Challenger data shortly. For now, we focus only 
on the estimated coefficient for q to demonstrate its interpretation, and compare it to 
that of OLS regression: 

> summary(logistic) 

Coefficients: 
Estimate Std. Error z value Pr(>|z|) 

(Intercept) -7.6466 5.2058 -1.469 0.142 
q 0.9666 0.6220 1.554 0.120 
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Note that the coefficient for q is equal to 0.97 (we rounded up). It is not statistically 
significant, though that need not concern us here. We are interested now only in 
understanding the interpretation of the coefficient. If the output were from a linear 
least-squares regression, how would we interpret the coefficient for q? Our interpre
tation would be: 

For a one unit increase in quantitative ability, we can expect, on average, Group to 
increase by 0.97 units. 

Of course, the above interpretation is wrong and does not make sense in the current 
situation, since group is binary. The coefficient 0.97 is not in the “natural” units of the 
response variable. Rather, it is a transformed variable, the transformation being that of 
the natural log of the odds, or logit. Hence, the correct interpretation for the coefficient 
is the following: 

For a one unit increase in quantitative ability, we can expect, on average, the logit of 
Group to increase by 0.97 units. 

But what are the “units?” The coefficient 0.97 is in units of the logit and not the 
natural units of the variable as would be the case in OLS regression. Notice that both 
interpretations, that from OLS regression and from logistic regression, are quite 
similar. The difference is simply in the units of the actual estimated coefficient. To 
convince yourself of the necessity of the logistic model in this case, consider what the 
least-squares interpretation would imply about our response variable. Expecting 
group to increase from an amount of 0.97 from group 0 to 1 makes no sense in 
this case since the response variable is not linear. We have to transform it to near 
linearity for things to make sense. Of course, interpreting something called the “logit” 
is quite awkward. However, since we know that logits can be transformed back into 
probabilities and odds, we therefore have a solution to making the problem more 
interpretable. We first convert 0.97 to odds: 

ln �p=�1�p�e � � 2:710:97 � 2:63 

Our interpretation is that for a one-unit increase in quantitative ability, the odds of 
being in group 1 versus 0 are, expectantly, 2.63 to 1. We could have also obtained this 
in R via 

> exp(coef(logistic)) 
(Intercept) q 
0.0004776506 2.6289294420 

Note that the value for q matches up to our computed value (we rounded up). Since 
often more intuitive than odds (unless you spend a lot of time at the horse track), we 
know from previous work that we can convert the odds into a probability. First, let us 
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get the predicted logit for the one-unit increase in q. From the output we see that the 
intercept term is equal to �7.6466. Therefore, the regression equation is 

yi 
0 � �7:6466 � 0:9666�qi� 

Recall that we can use the regression equation just as we would in OLS regression, 
only that now, yi will be in units of the logit. For example, for a subject who scores 5 
on quantitative ability, that subject’s predicted score (i.e., logit) is 

yi 
0 � �7:6466 � 0:9666�qi� 

‘ � �7:6466 � 0:9666�5� 
� �2:8136 

The predicted logit for such a subject is equal to �2.81. But these are logits, which are 
unintuitive and strange to interpret. We would much prefer interpret probabilities. 
What is the probability then of that subject being in group 1? To get the probability, 
we can demonstrate the full logistic function: 

e�α�βxi� 
p � 

1 � e�α�βxi � 

e��7:6466�0:9666�qi�� � 
1 � e��7:6466�0:9666�qi�� 

��7:6466�0:9666�5��e� 
1 � e��7:6466�0:9666�5�� 

� 0:057 

Hence, we can see that for qi � 5, the predicted probability of being in group 1 is equal 
to 0.057. That is, a subject scoring 5 on quantitative ability is probably not one coming 
from a population that received a training program. Predicted probabilities can be 
easily obtained in R: 

> predict(logistic, type = "response") 

1 2 3 4 5 6 

0.05658579 0.00329031 0.13620541 0.74126605 0.52148241 0.29305467 0.74126605 

8  9 10  

0.88279164 0.88279164 0.74126605 

Note that the first probability given, of 0.057, matches up with our computed 
probability. This is not coincidental, since the quantitative score for subject 1 was equal 
to 5. 

7 
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11.10 LOGISTIC REGRESSION IN R: CHALLENGER O-RING DATA 

On January 28, 1986, space shuttle Challenger lifted off from Cape Canaveral, 
Florida at 11:38 EST, and exploded in mid-air shortly into its flight. The cause of 
the accident (aside from possibly a poor management decision to launch the shuttle 
in the first place, recall that determining real causation is difficult) was the failure of 
a seal on one of the shuttle’s o-rings that serves to keep fuel inside the booster 
instead of leaking out. The post-incident investigation revealed that the o-ring likely 
failed because the temperature at which Challenger was launched, 31°F, was a 
temperature much colder than in any previous launch. It is believed that the cold 
temperature caused the o-ring to become dysfunctional, thereby leading to fuel 
leaking out of the booster and onto the main fuel tank of the shuttle, consequently 
causing the explosion. 

The following are data on the occurrence of failures in o-rings on space shuttle data 
collected from launches prior to that of Challenger, where “1” is a failure, and “0” is a 
success. For each o-ring event is an associated temperature. It has been argued by 
many since the catastrophe that had NASA paid more attention to the relationship 
between temperature and o-ring failure, the disaster might have been averted. As 
Friendly remarked: 

The story behind the Challenger disaster is, perhaps, the most poignant missed 
opportunity in the history of statistical graphics. It may be heartbreaking to find out 
that some important information was there, but the graph maker missed it. (p. 208) 

Hence, we ask the following question about this data: Is temperature predictive of 
o-ring failure? The challenger data follow, where "1" represents o-ring failure: 

> oring <- c(1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 1, 0, 0, 0,
 
0, 0)
 
> temp <- c(53, 57, 58, 63, 66, 67, 67, 67, 68, 69, 70, 70, 70, 70, 72,
 
73, 75, 75, 76, 76, 78, 79, 81)
 
> challenger <- data.frame(oring, temp)
 
> some(challenger)
 

oring temp 
[1,] 1 53 
[2,] 1 63 
[3,] 0 66 
[4,] 0 67 
[5,] 0 67 
[6,] 0 67 
[7,] 0 70 
[8,] 0 75 
[9,] 0 76 

[10,] 0 79 
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The logistic regression of temp predicting oring is specified as follows: 

> challenger.fit <- glm(oring ~ temp, data = challenger, family =
 
binomial())
 
> summary(challenger.fit)
 

Coefficients:
 
Estimate Std. Error z value Pr(>|z|) 

(Intercept) 15.0429 7.3786 2.039 0.0415 * 
temp -0.2322 0.1082 -2.145 0.0320 * 
---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 

(Dispersion parameter for binomial family taken to be 1) 

Null deviance: 28.267 on 22 degrees of freedom 
Residual deviance: 20.315 on 21 degrees of freedom 
AIC: 24.315 

Number of Fisher Scoring iterations: 5 

About the output: 

•	 The effect for temp is statistically significant (p = 0.03), suggesting that temp 
is predictive of o-ring failure in the population from which these data were 
drawn. 

•	 The effect for temp of �0.23 is interpreted as for a one-unit increase in 
temperature, on average, the expected change in logit is a decrease of 0.23. 
When we exponentiate the logit, we find e�:23 � 0:795 to be the odds. That is, 
for a one-unit increase in temperature, on average, the expected odds of failure 
is 0.795. Since odds are “centered” at 1.0, the value of 0.795 indicates a drop in 
the odds of failure. 

•	 The null deviance of 28.267 is computed with only the intercept in the model. 
The residual deviance of 20.315 includes the temp effect over and above the 
intercept. We could have also obtained the deviance through deviance 
(challenger.fit). The drop in deviance from 28.267 to 20.315 is sugges
tive that temp may be useful, analogous to how residual sums of squares would 
drop if we included such a predictor in an OLS regression. The intercept itself, 
of 15.04, is usually of little interest, although analogous to linear regression, one 
could center the predictor if one wished to interpret the expected logit at mean 
temp. As the model is currently parameterized, 15.04 is the expected logit for a 
temperature of zero (which of course, extrapolates significantly from the current 
database). 

•	 The residual deviance of 20.315 is quite close to the degrees of freedom of 21, 
suggesting that we have an adequate model, and that overdispersion is likely not 
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FIGURE 11.9 Effect plot for predicting o-ring failure as a function of temperature. 

a problem. If overdispersion was a problem, the residual deviance would likely 
be quite larger than degrees of freedom. Recall that this is a convenient guide for 
assessing dispersion, but is not fool proof (see Venables and Ripley (2002)). 

•	 The AIC statistic is also provided and recall is useful for situations in which we 
wish to compare nested or non-nested models. As always, lower AIC values are 
preferable to larger ones. 

In Figure 11.9 is what is referred to as an effect plot generated from the package 
effects in R (Fox, 2003). For our data, the effect plot relates the probability of a 
failure on the ordinate to temperature on the abscissa: 

> library(effects) 
> allEffects(challenger.fit) 
> plot(allEffects(challenger.fit)) 

Hence, we can see that as temperature increases, the probability of an o-ring failure 
generally decreases. 

We can also obtain confidence intervals for the model: 

> confint(challenger.fit) 
2.5 % 97.5 % 

(Intercept) 3.3305848 34.34215133 
temp -0.5154718 -0.06082076 

We interpret the above to mean that in 95% of samples, the true temp parameter 
likely lies between the lower limit of �0.52 and the upper limit of �0.06. Since the 
interval does not include 0, as also evidenced by the p-value for the predictor (recall, 



CHALLENGER ANALYSIS IN SPSS 469 

p = 0.03), we can reject the null hypothesis that the true population parameter is equal 
to 0. 

We can obtain influence statistics for the fitted logistic model (we print first five 
values only): 

> influence.measures(challenger.fit) 

Influence measures of 

glm(formula = oring ∼ temp, family = binomial(), data = challenger) : 

dfb.1_ dfb.temp dffit cov.r cook.d hat inf 

1 0.1678 -0.1640 0.1733 1.305 0.007815 0.1675 * 

2 0.2969 -0.2877 0.3174 1.340 0.027099 0.2078 * 

3 0.3277 -0.3164 0.3555 1.329 0.034485 0.2090 * 

4 0.3401 -0.3166 0.4539 1.141 0.064145 0.1429 

5 -0.1502 0.1261 -0.3495 1.065 0.039120 0.0864 

As recommended by Fox (1997), residuals that are more than two or three times the 
mean of the hat values may be worth looking at further in terms of their “out
lyingness.” Observations 2 and 3 above have hat values of 0.2078 and 0.2090, 
respectively, which are relatively large. We would not delete these observations, 
though it may be worth rerunning the regression to see whether our findings would 
change without them included. Q–Q plots and plotting logit residuals against values 
of predictors can also be used as diagnostic aids following a logistic regression, 
although with some interpretative caveats as a result of the binary nature of the 
response variable. For details, see Fox (1997, p. 457). 

11.11 CHALLENGER ANALYSIS IN SPSS 

We now perform the analysis of the challenger data in SPSS. We generate only output 
that is most essential in illustrating the analysis. We also obtain classification results 
and a plot to depict findings: 

LOGISTIC REGRESSION VARIABLES oring * specifies oring as the 
response variable 

/METHOD=ENTER temp * requests all variables be entered 
simultaneously (the only variable is temp) 

/SAVE=PRED PGROUP RESID * requests to save predicted 
probabilities, predicted group membership, and residuals 

/CLASSPLOT * requests a classification plot of results 
/PRINT=ITER(1) * requests an iteration history 
/ITERATE(20) CUT(0.5). * requests a maximum of 20 iterations, 

with a classification cut-off point of 0.5 
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SPSS provides us with the classification rates in an intercept-only model, that is, a 
model excluding the predictor. A total of 69.6% of cases are correctly classified. 

Classification Tablea,b 

Predicted 

Step 0 

Observed 

o-ring 0.00 
1.00 

Overall percentage 

o-ring 

0.00 1.00 

16 0 
7 0 

Percentage correct 

100.0 
0.0 
69.6 

aConstant is included in the model. 
bThe cut value is 0.500. 

A summary of the model is given next, where in addition to the log-likelihood, so-
called pseudo-R2 measures of model fit are also provided, which include the Cox & 
Snell R2 along with the Nagelkerke R2. These are known as pseudo-R2 measures for 
the reason that though they attempt to “mimic” R2 reported in OLS regression, they do 
not have “variance accounted for” interpretations. The Cox & Snell, for instance, does 
not have a maximum value of 1.0 such as is of course true for R2 in OLS regression. 
The Nagelkerke R2 attempts to improve on the Cox & Snell through scaling it relative 
to the maximum value it can attain for a given problem, and hence, may be preferable 
to Cox & Snell. A drawback of both of these indices, however, is that they may not 
coincide with odds and odds ratios for a given problem in communicating the strength 
of evidence for a model (Cohen et al., 2002). Hence, we recommend, if these 
measures are to be interpreted at all, that they be used as only a “ballpark” indicator of 
overall effect rather than as a precise measure analogous to R2 in OLS regression. 

Model Summary 

Step �2 Log Likelihood Cox & Snell R Square Nagelkerke R Square 
1 20.315a 0.292 0.413 

aEstimation terminated at iteration number 5 because parameter estimates changed by less than 0.001. 

The updated classification table is given next. As we can see, with the aid of temp, 
the model now correctly classifies 87% of cases. 

Classification Tablea 

Predicted 

o-ring 

Observed 0.00 1.00 Percentage correct 

Step 1 o-ring 0.00 16 0 100.0 
1.00 3 4 57.1 

Overall percentage 87.0 

aThe cut value is 0.500. 
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The significance tests for the predictor reveals the same as that which we noted in 
R. Temp is statistically significant at p = 0.032. The odds are equal to 0.793 (i.e., Exp 
(B)), which, within rounding error, agree with that reported in R. 

Variables in the Equation 

B S.E. Wald df Sig. Exp(B) 

Step 1a temp �.232 0.108 4.601 1 0.032 0.793 
Constant 15.043 7.379 4.156 1 0.041 3412315.418 

aVariable(s) entered on step 1: temp. 

SPSS next provides us with a classification plot, which corresponds to the numbers 
in the final classification table just discussed. On the abscissa is indicated the cut value 
of 0.5, where to the left of this value are all 0’s and to the right are all values of 1. 
Within the plot, one does not count the actual number of 0’s and 1’s to obtain the 
classification results. Rather, one counts the height of the bars to get a single 
frequency. For instance, at the far left of the plot, we can see one observation having 
a very low predicted probability. This one observation is represented by a bar height 
of four zeros. As another example, consider the number of 1’s on the half greater than 
the cut value of 0.5. This number of 1’s is equal to 4 (and not 16, by the actual number 
of 1’s in the plot). 

11.11.1 Predictions of New Cases 

Recall that there are two general purposes for building a model from sample data. The 
first is to estimate whether one can obtain a well-fitting model that accounts for the 
empirical observations. If the model fits relatively well, a second purpose then might 
be to use the model to predict outcomes on new cases. 

As an example of how this can be done in SPSS, suppose engineers at NASA 
obtained new temperature data and wanted to get predicted values on o-ring failures. 
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We simulate such an example. We set up our data file as below, where the first five 
observations are the first from the original data, and the second five observations are 
the first from our new data, where we do not yet know predicted group membership 
(we are going to use temp to predict these values): 

oring temp dataset 

1.00 53.00 0.00 
1.00 57.00 0.00 
1.00 58.00 0.00 
1.00 63.00 0.00 
0.00 66.00 0.00 

55.00 1.00 
58.00 1.00 
51.00 1.00 
64.00 1.00 
65.00 1.00 

Note once more that we only have o-ring data for the first data set, data set = 0. Our 
goal is to use the oring ∼ temp model to predict new cases on the last five rows. 
Notice that our new data on temp consists of 55, 58, 51, 64, 65. The column data set 
is the designation of whether the data is the original modeled data (data set = 0) or the 
new data (data set = 1). The columns prob and class represent the probabilities 
and group classification associated with each case (see below). The probabilities we 
obtain for the second half of the above file constitute probabilities that were computed 
on the first half. 

Here is how we set up the syntax: 

LOGISTIC REGRESSION VARIABLES oring 
/SELECT DATASET EQ 0 * tells SPSS to generate the model on the 
original data; it will nonetheless also generate predictions on the 
second data set (i.e., dataset = 1). 
/METHOD = ENTER temp 
/SAVE PRED(dvprob) PGROUP (dvpred) 
/CRITERIA = PIN(0.05) POUT(.10) ITERATE(20) CUT(0.5). 

The model output will be the same as that given earlier, so we do not reproduce 
it here. What we are interested in is the estimation of the new probabilities for the 
new data: 

oring temp dataset prob class 

1.00 
1.00 
1.00 
1.00 

53.00 
57.00 
58.00 
63.00 

0.00 
0.00 
0.00 
0.00 

0.94 
0.86 
0.83 
0.60 

1.00 
1.00 
1.00 
1.00 
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(Continued ) 

oring temp 

0.00 66.00 
55.00 
58.00 
51.00 
64.00 
65.00 

dataset 

0.00 
1.00 
1.00 
1.00 
1.00 
1.00 

prob 

0.43 
0.91 
0.83 
0.96 
0.55 
0.49 

class 

0.00 
1.00 
1.00 
1.00 
1.00 
0.00 

We see that SPSS has produced the two new columns, prob and class. We can now 
interpret the predicted values. For instance, on this new data, for a temperature of 55, 
the probability of failure (i.e., “1”) is 0.91. This is the value under prob for temp of 55 
(i.e., located in the sixth row). Because the probability is greater than 0.5, it is 
classified into class = 1. This prediction was generated by using the original 
coefficient weight of �0.232 from the regression: 

logit � 15:043 � 0:232�temp� 
� 15:043 � 0:232�55� 
� 15:043 � 12:76 
� 2:283 

Recall that the logit is transformed into the corresponding probability by 

logit 2:283e e
p � � � 0:91

1 � elogit 1 � e2:283 

We note that the probability of 0.91 matches up with that generated by SPSS for the 
first “test case.” We compute the remaining predicted cases in analogous fashion. Not 
surprisingly, failure is predicted for the lower temperatures, whereas for temp = 65, 
no failure for the o-ring is expected. 

11.12 SAMPLE SIZE, EFFECT SIZE, AND POWER 

One can estimate statistical power for logistic regression using powerLogistic-
Con within the powerMediation package (Qiu, 2013). To use it, we require the 
following inputs: 

> library(powerMediation) 
> powerLogisticCon(n, p1, OR, alpha =) 

where n is estimated or desired sample size, p1 is the proportion of “successes” 
(called the “event rate”) on the binary dependent variable, OR is the expected or 
minimally desired odds ratio, and alpha is the desired type I error rate. 
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For example, suppose we wished to estimate power for a simple logistic regression 
with a continuous predictor with sample size equal to 100, event rate equal to 0.5, 
expected odds ratio (i.e., effect size) equal to 1.5, and we were willing to tolerate a 
0.05 type I error rate. In R, we would compute: 

> powerLogisticCon(100, 0.50, 1.5, alpha = 0.05) 
[1] 0.5268531 

Notice that estimated power is not very high. Suppose instead, we decided to 
sample 200 subjects: 

> powerLogisticCon(200, 0.50, 1.5, alpha = 0.05) 
[1] 0.817825 

Note that estimated power has increased dramatically. To demonstrate the influ
ence of the odds ratio on power, suppose that instead of hypothesizing one of 1.5, we 
hypothesized an odds ratio of 1.2: 

> powerLogisticCon(200, 0.50, 1.2, alpha = 0.05) 
[1] 0.251188 

Notice how dramatically power has decreased. This simple demonstration once 
more illustrates the influence that effect size, which in this case is the odds ratio, has 
on statistical power. Our example featured a continuous predictor. If the predictor 
were binary instead, one could use powerLogisticBin, also in the power-
Mediation package. See Qiu (2013) for details. 

11.13 FURTHER DIRECTIONS 

As noted by Crawley (2013), if the distribution of the error term is uncertain enough 
that we are not comfortable with specifying a particular structure (e.g., binomial, 
Poisson), we may use a robust alternative to estimation called quasi-likelihood. This 
can be requested in R by specifying the family as quasi (if the error term was 
distributed Poisson, one would specify family = poisson). Another alternative is 
to use a generalized additive model (or, “GAM”), which essentially makes fewer 
assumptions about the error term. For details, see Crawley (2013, pp. 565–566). 

In this chapter, we surveyed the case of a single predictor in logistic regression. 
However, there is nothing preventing a researcher from entering multiple predictors, 
analogous to modeling multiple predictors in OLS regression so long as one notes the 
interpretive distinctions and transformations on the estimated coefficients. Interac
tions are therefore also quite easily modeled. Stepwise approaches can likewise be 
conducted. 

A researcher could also use logistic regression to predict responses over time on the 
same individuals in a repeated measures or longitudinal context. These models are 
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often analyzed as generalized linear mixed models (see Crawley (2013, pp. 710–714) 
or Venables and Ripley (2002, p. 292) for details). Nonlinear mixed models can also 
be fit relatively easily using R (see Venables and Ripley (2002, p. 286)). Indeed, most 
of the models suitable in ordinary analysis of variance and regression can be 
generalized to logistic regression with the assumption that the response variable is 
binary (or in the case of multinomial regression, polytomous). Modeling product 
terms in logistic regression is quite straightforward given some experience with 
modeling interaction terms in multiple regression. For relatively large models that 
contain numerous predictors and interaction terms, one could use R’s addterm and 
dropterm functions in the MASS package, along with that of stepAIC, to test 
which terms in the model can be added or dropped to better the parsimony and fit. For 
details on how to use these functions, see Venables and Ripley (2002, pp. 201–202). 

Finally, recall that the chi-square test of independence for a 2 × 2 table, as 
discussed in Chapter 3, was easy to interpret because we were only modeling the 
association between two factors. When we classify counts by a third (and perhaps a 
fourth and fifth) variable, log-linear models are called upon to handle the multiway 
classification of counts. For details, see Agresti (2002). As well, instead of modeling 
such count data using Poisson regression requiring a link function, one can also model 
the data using a multinomial model approach. For details, see Venables and Ripley 
(2002, p. 203). 

11.14 CHAPTER SUMMARY AND HIGHLIGHTS 

•	 A vast majority of statistical models make the assumption of linearity in the 
parameters. These include the well-known linear models. There are many cases, 
however, where a nonlinear relationship may be hypothesized, which necessi
tates a nonlinear model. 

•	 Linearity in the parameters means that parameters, not necessarily variables, are 
raised to the exponent 1 in the model. 

•	 Reasons for hypothesizing nonlinear models instead of linear ones include the 
fact that the actual empirical relationship between the response and predictor is 
thought to be nonlinear in form (e.g., Yerkes–Dodson inverted U curve) or the 
operationalization of the response variable necessarily makes the relationship 
nonlinear, such as in the case of a binary response. 

•	 The class of models known as generalized linear models, first proposed by 
Nelder and Wedderburn (1972), can incorporate the classical linear model as a 
special case, but also features nonlinear cases either due to implicit or explicit 
nonlinearity. 

•	 The classical linear model, yi � α � βxi � ϵi, can be said to be generally 
composed of two components, one that is systematic, α � βxi, and one that 
is unsystematic or random or stochastic, ϵi. 

•	 The generalized linear model utilizes a link function to transform a nonlinear 
response variable (e.g., binary response) into one that is (approximately) linear. 
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•	 Canonical links are those link functions that are natural to the family of 
distributions in a given context. For instance, the link function for a binomial 
variable is the log of the odds, known as the logit. For a Poisson variable, the 
canonical link function is the log. For a Gaussian variable, the canonical link is 
the identity function. 

•	 A dispersion parameter is an index measuring the degree of spread in a 
distribution. Overdispersion is said to exist if the dispersion parameter, either 
estimated or known, exceeds the dispersion expected for the given distribution. 

•	 The logistic regression model is useful for modeling binary or polytomous 
response variables. Mathematically, it is quite different from the discriminant 
analysis model, but pragmatically, it can be interpreted as a competing 
alternative to discriminant analysis. 

•	 In logistic regression, the logit can be exponentiated to provide a measure of the 
odds. Both the logit and the odds can be converted to probabilities. These 
transformations can be helpful if for no other reason than in helping one digest 
logistic regression results. 

•	 Power and sample size can be easily estimated for logistic regression using 
powerLogisticCon in R. 

REVIEW EXERCISES 

211.1.	 Briefly discuss why the model yi � α � β1x1 � β2x2 � ϵi is regarded as a 
linear model, even with the presence of x22 in the equation. 

11.2.	 Briefly discuss why the model yi � α � β1x1 � β22x2 � ϵi is regarded as 
nonlinear. Compare and contrast this model with the model in Exercise 11.1. 

11.3. Distinguish between intrinsic and nonintrinsic linearity. 

11.4.	 How does discontinuity in a response variable introduce nonlinearity into a 
model? Explain. 

11.5. Discuss how maximizing 

n1 
L�γ; σ2� �  

1 
exp � �yi � γ0exp �γ1xi��2 

2σ2 �2πσ2�n=2 
i�1 

for a nonlinear model is analogous (conceptually) to maximizing the 
likelihood for a linear model. 

11.6.	 Give a research example in your field where you might expect the phenomena 
under investigation to follow an exponential function. A logarithmic one? 

11.7.	 Discuss what is meant by a generalized linear model, and how and why linear 
models are considered to be contained within, or a special case of the wider 
and more inclusive generalized linear model framework. 
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11.8.	 Describe the role of a link function in the generalized linear model. 

11.9.	 Discuss the nature of a canonical link in a generalized linear model. What is 
the canonical link for a Gaussian variable? Why is this so? 

11.10.	 What are the three components to a generalized linear model? Explain each. 

11.11.	 What is the appropriate link function for a binomial setting? 

11.12.	 Discuss a distinguishing feature between the negative binomial and the 
Poisson model. 

11.13.	 Discuss what is meant by the statement The limiting form of the Poisson 
distribution is that of the normal distribution. More generally, what does it 
mean to say one distribution is the limiting form of another? 

11.14.	 Consider once more the following data published by Fisher in 1947 (first 
discussed in Chapter 9) on the bodyweight, heartweight, and sex of domestic 
cats: 

> fisher <- read.table("fisher_1947.txt", header = T) 
> some(fisher) 

bodyweight heartweight sex 
3 2.9 9.9 1 
17 2.1 7.6 1 
21 2.6 10.1 1 
54 3.0 13.3 2 
57 3.0 10.0 2 
58 2.6 10.5 2 
72 2.5 12.7 2 
82 2.2 10.7 2 
96 3.5 15.7 2
 
127 3.6 13.3 2
 

(a)	 Perform a logistic regression in which bodyweight is used to predict 
the binary-coded response variable, sex. Is bodyweight a statistically 
significant predictor of sex? 

(b)	 Perform a logistic regression in which bodyweight and heartweight are 
used to predict sex. Do bodyweight and heartweight jointly predict 
group membership on sex? 

(c)	 Estimate a bodyweight by heartweight interaction for the analysis 
conducted in part (b). Interpret what it would mean for there to be 
an interaction of this kind, and comment on whether the data provide 
evidence for one in the population. 

11.15.	 Run a logistic regression using Fisher’s iris data (see Chapter 9) predicting 
group membership on species setosa and versicolor based on petal length 



478 LOGISTIC REGRESSION AND THE GENERALIZED LINEAR MODEL 

and petal width. Are either petal length or petal width statistically significant 
predictors of species? If so, which predictor is more relevant? Why? 

11.16.	 Use powerLogisticCon in R to estimate required sample size for a 
logistic regression with a continuous predictor in which desired power is set 
at 0.95, with an event rate equal to 0.3 and odds ratio equal to 1.1. Use a 
significance level of 0.05. 
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MULTIVARIATE ANALYSIS 
OF VARIANCE 

A generalization of quite a different order is needed to test the simultaneous deviations of 
several quantities . . . Joint comparisons of correlated variates, and variates of unknown 
correlations and standard deviations, are required not only for biologic purposes, but in a 
great variety of subjects. 

(Hotelling, 1931, pp. 361–362) 

Multivariate analysis of variance (MANOVA) can be conceptualized either as an 
extension of univariate analysis of variance (ANOVA) or as a more general linear model 
with ANOVA constituting a “special case” of that more general model. The primary 
conceptual difference is that ANOVA includes a single continuous dependent variable, 
while MANOVA includes multiple dependent continuous variables, all considered 
simultaneously in the analysis. The dependent variable in a MANOVA is a linear 
combination (or linear composite) of response variables. As in univariate ANOVA 
where the user tests a null hypothesis of equality of population means, in MANOVA the 
researcher usually also tests null hypotheses about equality, although such a test is now 
on a vector of continuous dependent variables that make up the composite variable. 

MANOVA is not suitable for every research context. Indeed, prior to constructing 
a linear composite of response variables, one should justify whether it is even 
substantively meaningful to hypothesize such a thing with regard to the variables 
under consideration. This decision must ultimately be made on grounds external to the 
statistical method. Statistical and software technology will allow us to analyze 
virtually anything and in any way. Whether what we analyze are in any way in 

www.wiley.com/go/denis/appliedmultivariatestatistics
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accordance with our scientific pursuits or theoretical interests, which is presumably 
the reason why we are running statistical analyses in the first place, is another matter 
entirely. As we will see, the decision regarding whether or not to use MANOVA 
provides a good context for having this discussion. 

Johnson and Wichern (2007) is a good source for multivariate methods in general, 
and includes a thorough chapter on MANOVA (Chapter 6). Rencher and Christensen 
(2012) and Rencher (1998) cover MANOVA in addition to multivariate multiple 
regression. For a treatment involving more hands-on applications using software, 
Tabachnick and Fidell (2007) has become a classic resource. Tatsuoka (1971), Harris 
(2001), and Timm (2002) are also good sources, the last of these on the technical side. 
Hair et al. (2006) provide applications in business and marketing contexts. Anderson 
(2003) provides a deeper theoretical treatment and historically is a classic resource 
among mathematical statisticians. Bilodeau and Brenner (1999) is a wholly theoreti
cal and abstract treatment. 

12.1 A MOTIVATING EXAMPLE: QUANTITATIVE AND VERBAL 
ABILITY AS A VARIATE 

To illustrate the context in which one may wish to conduct a MANOVA, recall the 
hypothetical Q–V data used to illustrate both regression analysis (Chapter 8) and 
logistic regression (Chapter 11). Recall that for these data, measures were taken of 
individuals’ quantitative and verbal abilities using standardized tests, where scores on 
such tests could range from 0 (no ability) to 10 (maximum ability). In this chapter, we 
will treat both variables as dependent variables. Recall also that in our previous 
chapter on logistic regression, we extended the data to include a training group 
variable (coded 0, 1) corresponding to whether subjects received or did not receive a 
prior training program designed to improve their quantitative and verbal abilities. Five 
subjects received the training program (group = 1), while five did not (group = 0). The 
data are reproduced in Table 12.1. 

TABLE 12.1 Hypothetical Data on Quantitative and Verbal Ability for Those 
Receiving Training (Group = 1) versus Those Not Receiving Training (Group = 0) 

Subject Quantitative Verbal Training Group 

1 5 2 0 
2 2 1 0 
3 6 3 0 
4 9 7 0 
5 8 9 0 
6 7 8 1 
7 9 8 1 
8  10  10  1  
9  10  9  1  
10 9 8 1 
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Consider now how we might analyze the data. We could run one analysis with 
quantitative as our dependent variable and group as our independent variable, then 
another analysis with verbal as our dependent variable and once again group as our 
independent variable. The function statements and null hypotheses for each analysis 
against two-sided alternatives would be therefore: 

Quantitative as a f unction of Group−H0 : μ1 � μ2 against H1 : μ1 ≠ μ2 

Verbal as a f unction of Group−H0 : μ1 � μ2 against H1 : μ1 ≠ μ2 

The appropriate analysis for each null hypothesis would be an independent 
samples t-test or, equivalently, a between-subjects ANOVA on two groups. A 
rejection of the null hypothesis in the first analysis would suggest there to be 
mean population differences on quantitative. A rejection of the null hypothesis in 
the second analysis would suggest there to be mean population differences on verbal. 

Suppose now that instead of learning whether there are mean population differ
ences on quantitative and verbal considered separately, we instead wanted to learn 
about any mean population differences on quantitative and verbal considered jointly. 
That is, suppose we were interested in generating a composite score on quantitative 
and verbal such that our new function statement becomes 

�quantitative � verbal� as a function of group 

Why might we want to consider these two variables simultaneously in such a 
manner? Why would we want to analyze them together instead of independently 
using separate ANOVAs? Perhaps it is because we believe quantitative and verbal 
ability “go together” in some sense, that they represent some underlying theme or 
construct. Indeed, if a student excels well in quantitative and verbal learning, we might 
be tempted to designate that student as intelligent. This is exactly the kind of rationale 
for why we might want to consider these variables jointly, because taken together, we  
believe, or hypothesize, that they represent some overall theme or construct. Had our 
variables been quantitative ability and height, for instance, we would probably not be 
interested in considering them as a linear sum as we would quantitative and verbal. 
The consideration of variables jointly in such a manner usually only makes sense if their 
combination makes sense to us on a scientific, substantive level. Exploratory searches 
are always good ideas, but combining quantitative ability and height would probably not 
be a meaningful linear composite, mostly because such a composite would likely be 
impossible to describe substantively.1 

1This again is not to discourage exploratory research. It is only to point out that blindly including two 
variables such as quantitative ability and height into the same analysis would likely not be substantively or 
scientifically meaningful, unless of course it turns out that there is a correlation between these two variables 
and that we could attribute meaning to it. Otherwise, an appropriate guideline for generating a linear 
composite in MANOVA is to include variables that the investigator a priori theorizes “go together” in some 
theoretical sense. If, on the other hand, the investigator concedes his or her work to be 100% in the 
exploratory phase and does not wish to confirm any hypothesis whatsoever, then testing a variety of linear 
combinations may be more permissible, so long as the researcher indicates the nature of this exploratory 
search in any report or presentation of findings and encourages cross-validation of whatever findings may be 
“discovered.” 
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12.2 CONSTRUCTING THE COMPOSITE 

Consider now how we might go about generating this linear sum. Naively, we could 
give each dependent variable equal weight, assigning scalars of “1” to each. Under 
this condition, our function statement would become: 

�1�quantitative � �1�verbal as a function of group 

Or, perhaps in our theory of what we consider intelligence to actually be, we 
believe that verbal should get more weight in the linear composite, perhaps double the 
weight of quantitative. If this were the case, then we might weight our composite as 

�1�quantitative � �2�verbal as a function of group 

We could continue this process of pondering “ideal” scalars. But instead of simply 
guessing, let us instead set some criteria by which these weights should be chosen. 
What should be our goal in the choosing of such weights? It seems reasonable to select 
weights such that the ensuing linear combination provides maximum separation 
between groups on the independent variable. That is, we would like to weight our 
composite such that the linear sum a1(quantitative) + a2(verbal) provides more 
separation between groups on the independent variable than any other weights a1 

and a2 we could have chosen. The solution to this problem is essentially the technical 
basis on which MANOVA and discriminant analysis rest, that of choosing a suitable 
linear combination of variables to satisfy a set of mathematical constraints, usually 
already implied by the model parameterization. Discriminant analysis is discussed in 
the following chapter, and as we will see, it is essentially the “reverse” of MANOVA. 

12.3 THEORY OF MANOVA 

To properly develop the theory behind fixed effects multivariate analysis of variance, 
we first briefly review the concept of a linear combination. A linear combination yi of 
variables x1; x2; . . . ; xn can be defined as 

yi � a1x1 � a2x2 � ∙ ∙ ∙  � anxn 

where yi is the outcome of the linear combination (it is the set of values generated by 
combination of a1x1 � a2x2 � ∙ ∙ ∙  � anxn), a1, . .  . ,  an are scalars, typically all real 
numbers, and x1, .  . . ,  xn are variables of which when weighted by respective scalars 
a1, . .  . ,  an make up the linear sum yi. 

Regardless of the context for which the given linear combination is being 
generated or estimated, the magnitude and sign of the scalars a1, . . .  ,  an play a 
significant role in the determination of yi. These scalars are of utmost importance, 
since, in combination with x1, . .  . ,  xn, they determine the value for yi. Note carefully 
that when we say MANOVA analyzes a dependent variable that is a linear 
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combination, we mean that it analyzes a single variable yi, only that yi is now a 
weighted composite of other variables. The idea of a linear combination is definitely 
not new. This whole book, in one way or another, is about linear combinations. This 
commonality may at first glance not be apparent to the reader. Consider where linear 
combinations have already figured prominently: 

•	 In simple linear regression, the response variable yi is a linear combination of 
observed responses on a single predictor variable. That is, yi � α � βxi � εi is a 
linear combination with weights (i.e., parameters) α and β chosen (in OLS 
regression) such that they minimize ε2 

i . 

• In analysis of variance, the dependent variable yi is a linear combination of the 
sort yij � μ � αj � εij where weights (again, these are parameters) μ and αj are 

chosen such that they again minimize ε2 
i (in ANOVA just as in least-squares 

regression, effects in both are typically estimated by ordinary least-squares). 

•	 In considering contrasts and post-hocs in the ANOVA setting, we generated 
such linear combinations Ci � c1μ1 � c2μ2 � ∙ ∙ ∙  � cJ μJ , which were nothing 
more than linear sums of weighted population means. The job here too was to 
choose suitable scalars c1; . . . ; cJ that would weight the linear combination 
appropriately, generating a linear contrast that was substantively meaningful. 

•	 Independent and paired samples t-tests were other examples of linear combi
nations (and contrasts) in which the computation of observed t was nothing 
more than a weighted sum of sample means, where we implicitly weighted the 
numerator appropriately (1 and �1) to generate the contrast of interest: 

�1�μ1 � ��1�μ2t � p p�s1= n1� � �s2= n2� 
That is, though we typically cast the numerator of the independent samples 
t-test as μ1 � μ2, it was always implied that such a difference was actually a 
contrast of the form �1�μ1 � ��1�μ2, where it was also clear that the sum of 
coefficients for this contrast was equal to 0 (i.e., 1 + (�1) = 0). 

All of this is to say that when it comes to working with linear combinations, we 
have already dealt with them aplenty in one way or another in this book. In 
MANOVA, we again seek to generate a linear combination, but this time our linear 
combination will consist of a string of dependent variables and test null hypotheses 
about equality of mean vectors on this linear composite or “variate,” as it is 
sometimes called. 

12.4 IS THE LINEAR COMBINATION MEANINGFUL? 

We mentioned earlier that if the linear combination of dependent variables is 
not hypothesized to be representative of some construct, or otherwise responses 
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“go together” in some sense, then performing a MANOVA may not be your best 
analytical choice, unless of course you are simply on an unguided purely exploratory 
mission. Again, our goal is not to diminish the purpose or utility of unguided 
exploratory searches. But this is different than simply performing MANOVA because 
as a “recipe,” you believe it appropriate since you have more than a single dependent 
variable in your data file. The fact that you have multiple dependent variables at your 
disposal is not alone justification for running a MANOVA. Too often, students (and 
sometimes researchers) “justify” their use of MANOVA based on the availability of 
several dependent variables. Such is not an ideal justification. As mentioned, a much 
more suitable rationale is a belief or theory held such that the variables you do have at 
your disposal are suitable to being combined into a composite variable. A compelling 
historical case for constructing such a linear composite is that of Spearman’s (1904) 
theory of intelligence, the so-called g-factor, variations of which have been studied ad 
nauseum since. But what is the g-factor? It is a linear combination of observed 
abilities, such that when summed, is thought to reflect some construct of interest, that 
of IQ. 

Given this starting point and substantive rationale for MANOVA, there also turn 
out to be a few statistical benefits to the method compared to running several 
independent univariate ANOVAs. These include control over type I error rate, 
covariance among dependent variables, and the fact that a multivariate effect can 
be observed even in the absence of univariate effects, known as Rao’s paradox. We  
discuss each of these now. 

12.4.1 Control Over Type I Error Rate 

One reason to like MANOVA statistically is that it (apparently) keeps overall 
omnibus α (i.e., familywise type I error rate) at a nominal level. Recall that with 
each running of a statistical test (e.g., an F-ratio in ANOVA) is associated a type I 
error rate, equal to the significance level at which you set your decision criteria for 
rejection of the null hypothesis. For instance, if you run three separate ANOVAs, each 
at α � 0:05, the overall error rate will not be 0.05, but rather will compound. This 
compounding is approximately additive across the three tests. It is not a simple sum of 
αPC, but is nearly so. As Hays (1994) notes, the probability of making no type I errors 
on three significance tests, each set at α � 0:05, can be considered a binomial random 
variable with distribution: 

n r n�rp�r� �  p �1 � p�
r 

where recall from Chapter 3 that r is the number of successes, n is the number of trials, 
and p is the probability of a success on any given trial. For the case of n � 3 
significance tests, if we set r � 0 (for zero type I errors) and the probability p of a 
success (i.e., “success” being a type I error) equal to 0.05, and we assume these three 
tests are independent of one another, then the probability of making zero type I errors 
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is equal to 

3 
p�0; 3; 0:05� �  �0:05�0 �0:95�3 � 0:86

0 

Thus, the probability of making at least one type I error is equal to 1–0.86 = 0.14. We 
see then that the overall probability of a type I error is roughly additive for chosen 
constant α across the three tests. A general rule for estimating the probability of one or 
more type I errors in a series of independent significance tests is given by 

p�type I error �1� � 1 � �1 � αPC�k 

where αPC is the significance level of each test and k is the number of successive tests 
being made. For example, with five dependent variables, should we choose to analyze 
each individually with its own ANOVA and not implement a correction on αPC (e.g., 
Bonferroni adjustment), the estimated probability of making one or more type I errors 
across the five tests is 

p�type I error �1� � 1 � �1 � αPC�k � 1 � �1 � 0:05�5 � 0:23 

A probability of 0.23 of making at least one type I error across the five tests is quite 
high. If we performed a MANOVA on these five response variables simultaneously 
instead, we could constrain the error rate to be that of our nominal level (0.05 in this 
example). Hence, control over familywise type I error is a primary statistical reason 
why MANOVA is sometimes preferred over independent univariate ANOVAs. 
Again, to reiterate, this is a statistical reason for preferring MANOVA. If it does 
not make substantive sense to consider your dependent variables jointly in a 
MANOVA context, then the fact that MANOVA controls type I error rates is not 
in itself justification for forging on with the procedure. Otherwise, substantive 
considerations are taking a back seat to statistical benefits, instead of statistical 
benefits aiding in substantive discovery. Remember that in the realm of scientific 
application, statistics is used as a tool to help address scientific questions of interest. 
Just as one does not adapt the construction of a house to appease a hammer, one 
should not adapt one’s scientific mission to appease a statistical test. 

12.4.2 Covariance among Dependent Variables 

A second statistical reason for running a MANOVA over independent ANOVAs is 
that the MANOVA incorporates covariances that may exist among dependent 
variables that would otherwise go unaccounted for and unanalyzed in separate 
univariate analyses. For example, height and weight are examples of such measures 
likely to be correlated. Modeling this covariance into our analysis often generates a 
more powerful test against the multivariate null hypothesis compared to if we were to 
conduct separate univariate tests on each dependent variable. Though, as summarized 
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by Field (2009, p. 586), the power of MANOVA is both a function of the pattern of 
correlation among dependent variables and the size of multivariate effect. For further 
details, see Cole et al. (1994). 

Regardless of what factors generate a most powerful test of a multivariate 
hypothesis, it must be emphasized again that the consideration of the covariance 
among dependent variables only makes sense if it first makes good research sense to 
lump these variables into the same design. As we will discuss with reference to Rao’s 
paradox, one should not perform a MANOVA because it may be a more powerful test 
over univariate analyses. Such would make little scientific sense. On a substantive 
level, one should conduct a MANOVA because one wishes to analyze a linear 
combination of dependent variables, regardless of whether it may be more or less 
powerful than univariate tests. The fact that MANOVA accounts for correlations 
among dependent variables is, indeed, an analytical and statistical charm (who 
wouldn’t want to boost power?), but this does not necessarily equate to scientific 
meaning.2 As William James so adeptly noted, we should not confuse data with the 
abstractions used to analyze such data. 

12.4.3 Rao’s Paradox 

A third reason for sometimes preferring MANOVA over successive ANOVAs can be 
summed up in a problem first brought to the forefront by C.R. Rao in 1966, known as 
Rao’s paradox. The essence of the problem is that it is possible to reject a null 
hypothesis in a multivariate setting, but simultaneously not reject subset univariate 
hypotheses. Conversely, it is possible to reject univariately but not multivariately. As 
noted by Healy (1969), Rao’s paradox is essentially equivalent to saying that for a 
given multivariate hypothesis, there will be a univariate test of significance within the 
multivariate hypothesis that may be more powerful than this latter hypothesis. The 
opposite scenario is also possible in that the multivariate test is more powerful than 
component univariate tests. 

But how can this occur? Though the problem can be understood by drawing 
ellipses with corresponding rejection regions (Healy, 1969, p. 412), relying on basics 
of probability theory can help us, in an informal approximate way at least, understand 
the paradox such that we may come to believe it not to be a “paradox” at all, but rather 
something quite logical. The essential principle is that a joint event (or more precisely, 
a joint probability on two events) can be more or less probable than each event, 
considered exclusively, that make up the joint event. 

For example, the probability of selecting a person at random and that person being 
married is a marginal probability equal to some number. The probability of selecting a 
person at random and that person being aged 19 years or less is also a marginal 

2Because of spurious correlations that are due to third variables, even a relatively substantial correlation 
among variables does not in the least imply they are suitable for MANOVA. For example, murder rate and 
ice cream cone sales are likely correlated, though combining such variables in a MANOVA would make 
little substantive sense. Even if seasonal temperature accounts for the correlation, it still does not help us 
know what murder rate + ice cream sales would mean as a “construct.” 
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probability. Both of these respective probabilities, that of being married and that of 
being aged 19 or less are likely relatively high. After all, many people are married, and 
many people are 19 years of age or less. Each considered univariately would result in 
relatively substantial probabilities. 

Now, consider the event married and age 19 or less. The probability of being 
married and aged 19 or less, recall, is a joint probability, the probability of which 
undoubtedly would differ from each of the marginal probabilities that make up 
the event. The probability of marginal events does not necessarily coincide with 
the probability of the corresponding joint event. Translated into the language of 
MANOVA, though there may be mean population differences on each dependent 
variable considered univariately, this does not guarantee mean differences on such 
dependent variables considered jointly. Likewise, mean differences on dependent 
variables considered jointly do not necessarily translate into mean differences on such 
dependent variables when considered univariately. 

An understanding of Rao’s paradox has very important implications for research
ers. We summarize what the principle means in this regard: 

When you perform a MANOVA, you are testing a different null hypothesis than when 
you perform separate univariate ANOVAs, and as such, should not assume that the 
rejection of one hypothesis (e.g., multivariate hypothesis) automatically informs you of 
the status of other hypotheses (e.g., univariate hypotheses). Likewise, you should not 
assume that individual univariate findings on separate response variables will necessarily 
generate a multivariate effect if “combined.” 

Is this idea really unique to MANOVA? Not at all. We have emphasized it 
repeatedly in our discussions of multiple regression when considering partial and 
semipartial correlations, as well as emphasizing that effects in a multiple regression 
model are virtually always contingent on what other variables are included in the 
model. Recall this important principle, because it applies equally well to MANOVA 
as it did to multiple regression: 

Whenever you test a model, it is the MODEL that you are testing, not unique individual 
effects contained within the model. 

Any effects evaluated in a model, no matter how simple or complex the model may 
be, must always be evaluated in the context of the model. This is as true for t-tests as 
for the most advanced and sophisticated of statistical methods. Effects in models are 
always context dependent. 

12.5 MULTIVARIATE HYPOTHESES 

Having surveyed some of the substantive issues germane to MANOVA, we now 
consider some of the specifics concerning testing a multivariate hypothesis. Recall 
from Chapter 4 that in a univariate setting, the typical null hypothesis under test in a 
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one-way analysis of variance is 

H0 : μ1 � μ2 � μ3 � ∙ ∙ ∙  � μj 

against the alternative H1 that a pairwise or other contrast among means 
μ1; μ2; μ3; . . .; μj is unequal somewhere among the population means (e.g., 
H1 : μ1 ≠ μ2 � μ3 � ∙ ∙ ∙  � μj as one possibility). In a multivariate setting, since 
we are now interested in testing a null hypothesis about equivalency on mean vectors, 
our null hypothesis becomes 

H0 : 

μ11 
μ21 
μ31 

..

.

..

.

..

.

μj1 

� 

μ12 
μ22 
μ32 

..

.

..

.

..

.

μj2 

� 

μ13 
μ23 
μ33 

..

.

..

.

..

.

μj3 

∙ ∙ ∙  � 

μ1p 
μ2p 
μ3p 

..

.

..

.

..

.

μjp 

(12.1) 

where μ11; μ21; μ31; . . . ; μj1 are means for dependent variables 1 through j for group 1 
of an independent variable. That is, the first column vector in (12.1) represents level 1 
of the independent variable for dependent variables 1 through j. The second column 
vector represents level 2 of the independent variable for dependent variables 1 
through j, etc.  

The model for a one-way fixed effects MANOVA can be given by 

Yij � μ � α � εij (12.2) 

where Yij is a vector of response variables, μ is a vector of grand means, α is a vector 
of sample or treatment effects, and εij is a vector of errors. In the absence of treatment 
effects, (12.2) reduces to simply Yij � μ � εij. Notice that the one-way fixed effects 
model of Chapter 4, yij � μ � αj � εij, can be regarded as a “special case” of model 
(12.2) in which we have only a single dependent variable. And while both models 
typically generate a single column of errors, it is customary to write the multivariate 
model using vector εij rather than simply εij as in the univariate case. We develop the 
even “wider” matrix formulation of the general multivariate model later in this 
chapter, one that encompasses (12.2) along with that of the linear regression model 
studied in Chapter 8. We also briefly demonstrate how to expand such models to 
include random effects in addition to fixed effects. 

12.6 ASSUMPTIONS OF MANOVA 

The assumptions of MANOVA are generally parallel to those made in the analysis of 
variance, such as normality, independence of observations, and  homogeneity of 
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variance, except that they now apply to linear combinations of the response vector 
rather than to single variables. Because we are now working in higher dimensions, 
the assumption of normality for each dependent variable is not sufficient. We must 
also make the assumption of multivariate normality for all linear combinations on 
the response vector. Such an assumption is important, for instance, in the T2 

distribution used as the multivariate generalization of univariate t. The  assump
tion of multivariate normality in this case ensures the independence of y and S. 
Verifying multivariate normality, as discussed briefly in Chapter 3, is inherently 
difficult if not impossible due to the number of dimensions involved and what 
could be occurring in any subset of those dimensions. Verifying such normality 
is usually accomplished through plotting residuals and inspecting Q–Q plots.  
Fortunately, except for relatively small and unequal sample sizes, most multi
variate tests are rather robust to violations of multivariate normality. 

While in ANOVA we were required to make the assumption of equality (homo
geneity) of variances, in MANOVA we will need to assume equality of covariance 
matrices. We will discuss this assumption at some length in Section 12.12. 

12.7 HOTELLING’S T2: THE CASE OF GENERALIZING 
FROM UNIVARIATE TO MULTIVARIATE 

When discussing the nature of analysis of variance in Chapter 4, recall we said it could 
be considered an extension of the independent samples t-test. We follow a similar 
approach in developing the multivariate counterpart to the independent samples t-test, 
known as Hotelling’s T2, named after Harold Hotelling who derived its distribution 
in 1931. 

Recall that in an independent samples t-test, we evaluate the tenability of the null 
hypothesis H0 : μ1 � μ2 against the statistical alternative H1 : μ1 ≠ μ2. The multi
variate counterpart, Hotelling’s T2, evaluates the tenability of whether two population 
vectors are equal: 

μ11 μ12�H0 : μ21 μ22 

The statistical alternative is that there is an inequality between population vectors: 

μ11 μ12≠H1 : μ21 μ22 

How should we test a difference between mean vectors? In what follows, we develop 
Hotelling’s T 2 by drawing on our knowledge of univariate t. The following derivation 
is of high importance, since through extending univariate t to its multivariate 
counterpart, we gain a general understanding as to how multivariate tests, in general, 
are distinct from univariate ones. 
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Recall the univariate independent samples t-test: 

E�y1� � E�y2� � δ0 μ1 � μ2 � δ0t � � 
2 2 2 2 �n1 � 1�s1 � �n2 � 1�s 1 1 �n1 � 1�s1 � �n2 � 1�s 1 12 2� � 

n1 � n2 � 2 n1 � n2 � 2n1 n2 n1 n2 

(12.3) 

where recall y1 and y2 are the sample means for each group, and their expectations 
E�y1� and E�y2� are equal to μ1 and μ2, respectively, δ0 is a constant subtracted from 

2 2the mean difference y1 � y2, n1 and n2 are the sample sizes of each group, s1 and s2 are 
the sample variances of each group used as estimators of the corresponding popula
tion variances σ21 and σ22. In most cases the constant δ0 will be equal to 0, as we 
implicitly assumed in our review of the t-test in Section 3.19.2, so that the null 
hypothesis tested is that of H0 : μ1 � μ2 or, equivalently, H0 : μ1 � μ2 � 0. In some 
research contexts however, null hypotheses other than these may be useful. For 
example, in a medical setting, if we wished to demonstrate that our drug decreased 
cholesterol by more than 5 units, we might hypothesize a null such that 
H0 : μ1 � μ2 � 5, in which case, the numerator of the t-test would be 

y1 � y2 � δ0 � y1 � y2 � 5 

Cases in which null hypotheses other than the typical H0 : μ1 � μ2 � 0 are none
theless quite rare in practice. However, it is a good habit to never make assumptions 
about what the null hypotheses actually are that appear in a research report. If in doubt, 
confirm with the authors which null exactly was evaluated, since without knowledge 
of the null hypothesis, statements such as p < 0.05, along with effect sizes, carry with 
them little meaning. 

As also reviewed in Chapter 3, the quantity 

2 2 �n1 � 1�s1 � �n2 � 1�s2 

n1 � n2 � 2 

under the square root sign in the denominator denotes an estimate of the pooled 
2variance, s (or σ2 

pooled). Hence, we can ^pooled to emphasize it as an estimate of σ2 
p 

simplify (12.3) to be 

y1 � y2 � δ0t � (12.4) 
s2��1=n1� � �1=n2��p 

2Recall that when n1 � n2, the denominator in (12.4) can be reduced to �s1 =n1� �  p
2 2 2 �s2 =n2� so that the standard error of the t-statistic is now �s1 =n1� � �s2 =n2�. 
The multivariate counterpart T2 is remarkably similar to univariate t, only that now 

it must encompass vectors rather than simply scalars. We proceed first to square both 
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the numerator and the denominator of t in (12.4), while also simultaneously allowing 
δ0 to again drop out of the equation since its value will customarily be equal to 0: 

�y1 � y2�2 

t � 2 2 �n1 � 1�s1 � �n2 � 1�s 1 12 � 
n1 � n2 � 2 n1 n2 

Next, we rewrite the equation by expressing the denominator as an inverse: 

�12 2 � 1 � �n2 � 1�s 1 1n1 � 1�s 2t � �y1 � y2�2 � (12.5) 
n1 � n2 � 2 n1 n2 

We denote the pooled variance as an inverse to facilitate our generalization to the 
multivariate domain. We do not yet have matrices in our formulation, but will very 
soon, and recall from matrix theory that expressing a term as an inverse is simply a 
way of denoting “division” using matrices. Hence, by expressing the denominator as 
an inverse now, we are “prepping the ground” so to speak, on our way to defining T2. 
The term ��1=n1� � �1=n2�� in (12.5), when simplified, is equal to �n1 � n2�=n1n2, 
yielding 

�12 2 �n1 � 1�s1 � �n2 � 1�s n1 � n22t � �y1 � y2�2 (12.6) 
n1 � n2 � 2 n1n2 

Now, take a close look at (12.6) and ask yourself what is the multivariate matrix 
equivalent to the pooled variance? It is S, the sample variance–covariance matrix. And 
what is the equivalent of �y1 � y2�2 in terms of matrices? It is �y1�y2�2 where y1 and y2 
are mean vectors for each level of the independent variable, which recall for T2, there 
are two. Hence, when we translate the univariate formulation in (12.6) to a multi
variate one, we get the following: 

�12 2 � 1 � �n2 � 1�s n1 � n2n1 � 1�s 2t � �y1 � y2�2 ! t � �y1 � y2�2 �S�1� n1n2 

n1 � n2 � 2 n1 � n2n1n2 

And since a squared vector is in matrix terms, the original vector y multiplied by its 
´ transpose y , we can rewrite the squared difference between vectors y1 � y2 as ´ �y1 � y2� �y1 � y2�, giving us the multivariate generalization for t, known as T2: 

n1n2 ´ T2 � �y1 � y2� �S�1��y1 � y2� (12.7) 
n1 � n2 

The one-sample multivariate generalization of t is analogously obtained, and equal to 

´ T2 � n�y � μ0� �S�1��y � μ0� 
where μ0 now represents the mean population vector under the null hypothesis. 
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Analogous to univariate t for either the one-sample or two-sample case, T2 is useful 
in situations where Σ is not known and must be estimated by S. The corresponding Z2 

test statistics are thus Z2 � n�y � μ0�´�Σ�1��y � μ0� for the one-sample case, and 

n1n2Z2 � �y1 � y2�´�Σ�1��y1 � y2� n1 � n2 

for the two-sample case. As usual, however, since Σ is rarely if ever known, we focus 
our development on T2. 

12.8 THE VARIANCE–COVARIANCE MATRIX S 

In seeking to understand any statistical equation, not unlike that of understanding the 
workings of an automobile or aircraft, it behooves one to literally take it apart, study 
its components, and then put it back together again. We take a close look at what S�1 

in Hotelling’s T2 represents. To better appreciate what S actually is, it is helpful to 
once more recall univariate t, specifically how the estimate of the pooled population 

2variance was obtained. Recall once more, sp in (12.3): 

2 2 �n1 � 1�s1 � �n2 � 1�s2 

n1 � n2 � 2 

2 2The terms in the numerator, �n1 � 1�s1 and �n2 � 1�s2, are actually sums of squares 
terms for the respective groups on the independent variable. How are these sums of 
squares for each group? To understand how, recall how we formulated an unbiased 
estimate of the population variance: 

�yi � y�2 

i�12 � 
n � 1

s

To eliminate the denominator “n � 1,” we can multiply both sides by n � 1: 

�yi � y�2 

i�12 � 
n � 1

�n � 1�s �n � 1� 

Canceling out, this yields simply �yi � y�2on the right-hand side. Since we have two 

levels of the independent variable, we will have two sums of squares values, one for 
�n1 � 1�s21 andone for �n2 � 1�s22. Hence, we can write thepooled sample variance (s2) as  p

n 

n 

n 

i�1 

2 ss1 � ss2 s � p n1 � n2 � 2 
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where ss1 and ss2 are the sums of squares for each level of the independent variable in an 
independent samples t-test. 

In the multivariate setting, we now have more than a single dependent measure. 
Hence, instead of having ss1 and ss2 alone to express within-group variability, we 
need to impose the matrix equivalent counterpart. We will have one matrix E1 to 
express the cross-products in level 1 of the independent variable, and another 
matrix E2 to express the cross-products in level 2 of the independent variable. 
The dimension (i.e., the number of rows and columns) of each matrix will be 
determined by how many dependent variables we include in the given model. For 
instance, in the case of three dependent measures, we define E1 for level 1 of the 
independent variable as 

E1 � 
ss11 ss12 ss13 

ss21 ss22 ss23 

ss31 ss32 ss33 

where ss11, ss22, and ss33 represent the sum of squares for the first, second, and third 
dependent variables, respectively. Likewise, for the second level of the independent 
variable, we have the corresponding matrix E2. Then, just as is done in the 
univariate case, we pool E1 with E2 to get the matrix of sums of squares and 
cross-products: 

ss11 ss12 ss13 ss11 ss12 ss13 

E1 � E2 � �ss21 ss22 ss23 ss21 ss22 ss23 

ss31 ss32 ss33 ss31 ss32 ss33 

Note again that for Hotelling’s T2, there will always be only two sums of squares and 
cross-product matrices to add, since Hotelling’s T2 is defined as having only two 
levels of the independent variable. In the general multivariate case however, the 
number of matrices will depend on how many levels exist on the independent 
variable. For example, for the case of three levels on the independent variable, we 
would have 

ss11 ss12 ss13 ss11 ss12 ss13 ss11 ss12 ss13 

E1 � E2 � E3 � � �ss21 ss22 ss23 ss21 ss22 ss23 ss21 ss22 ss23 

ss31 ss32 ss33 ss31 ss32 ss33 ss31 ss32 ss33 

In the case of a factorial MANOVA model (not considered in this book), it stands that 
each cell of the design will contain a matrix Ejk in row j, column k. For example, 
consider the case of the 2 × 3 factorial univariate model discussed in Chapter 5. 
Within each cell will be a matrix Ejk (see Table 12.2). 
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TABLE 12.2 Cross-Product Matrices in 2 × 3 Multivariate Factorial Analysis 
of Variance 

Factor 2 

Factor 1 Level 1 Level 2 Level 3 

Level 1 E11 E12 E13
 

Level 2 E21 E22 E23
 

12.9 FROM SUMS OF SQUARES AND CROSS-PRODUCTS 
TO VARIANCES AND COVARIANCES 

In our matrices E1 and E2, elements of each matrix consist of sums of squares along 
the main diagonal, and cross-products on the off-diagonal. To get respective 
variances and covariances for E1, E2, Ep, we divide each element of Ei by degrees 
of freedom, which are n � 1 for each Ei. When we do so, we  get the  variance– 
covariance matrix Si for level i of the independent variable. For example, for E1, we  
would have 

ss11 ss12 ss13 

�n � 1� �n � 1� �n � 1�ss11 ss12 ss13 
ss21 ss22 ss231� �S1 � ss21 ss22 ss23 �n � 1� �n � 1� �n � 1� 

ss31 ss32 ss33 

�n � 1� 
ss31 ss32 ss33 

�n � 1� �n � 1� �n � 1� 
Quantities along the main diagonal, ss11=�n � 1�, ss22=�n � 1�, ss33=�n � 1�, are  now  
sample variances, and quantities on the off-diagonals, ss12=�n � 1�, ss13=�n � 1�, 
ss23=�n � 1� are now covariances. Recall that since S1 is symmetric, the lower 
triangular will mirror that of the upper triangular. Likewise, for E2; E3; . . . ; Ep, we  
will have respective matrices S2; S3; . . . ; Sp (where p denotes the number of 
populations). Each of these sample variance–covariance matrices are estimators 
of their corresponding population variance–covariance matrices Σ1; Σ2; . . . ; Σp 

^(where the notation Σ1; Σ̂2; . . . ; Σ̂p is sometimes used to denote estimation). The 
pooled variance–covariance estimator is, thus, for p populations: 

n1 � 1�S1� � n2 � 1�S2� �  ∙ ∙ ∙  � �np � 1�SpSpl � n1 � n2 � ∙ ∙ ∙  � np � p 

where Spl serves as an estimator of Σ. When the subscript pl in Spl is not given, such 
that only S is shown, one might assume we are typically working with the pooled 
variance–covariance estimator. 
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12.10 HYPOTHESIS AND ERROR MATRICES OF MANOVA 

Having considered the development of T2, we now consider the case where there are 
more than two levels on the independent variable. Recall that Hotelling’s T2 only 
applies to the case of two groups. We need the requisite matrices that will allow for 
two or more levels on the independent variable. 

Analogous to the univariate case where we have between and within sums of 
squares, in the general multivariate case we will have matrix counterparts also 
corresponding to between and within sources of variation. Only that now, in the 
language of the MANOVA model, these matrices will be customarily referred to as H 
for “hypothesis” and E for “error.” These respective matrices are given by 

k k n ´ ´ H � n � � �� � � and E � �yij � yi:��yij � yi:�yi: y:: yi: y::
i�1 i�1 j�1 

A look at these matrices for H and E reveal that their computations are somewhat 
analogous to the computation of sums of squares in ANOVA, only that now, more 
than a single dependent variable is taken into account. The H matrix is one of potential 
treatment effects, that is, deviations of cell means yi: from a grand mean y::, while the 
E matrix is a matrix corresponding to “within” variability computed by taking 
observations within cells, yij, and subtracting corresponding cell means, yi:. Analo
gous to univariate ANOVA, the total variation T in MANOVA can be partitioned into 
two parts, that of H and E. Hence, T � H � E. We use this identity next in developing 
test statistics for MANOVA. 

12.11 MULTIVARIATE TEST STATISTICS 

Recall that in one-way univariate ANOVA, we tested a null hypothesis of equality 
among population means by constructing an F-ratio, the ratio of two variances MS 
between to MS within, where MS between was a measure of between-group variance 
and MS within was a measure of within-group variance. This was the only “omnibus” 
test statistic in ANOVA. In MANOVA, because of the potentially complex configura
tions as a result of working in higher dimensions on mean vectors, no single statistical 
test is uniformly most powerful under all circumstances such as is true for the F-test in 
the ANOVA model. Hence, in MANOVA and most other multivariate techniques, there 
exist several test statistics that we may draw upon when evaluating statistical signifi
cance for a multivariate effect. We now briefly survey these test statistics. 

Our first test, and undoubtedly most popular and of most historical significance, is 
that of Wilk’s lambda, Λ, which bears a similar resemblance (but in reverse) to the 
univariate F-ratio. Wilk’s Λ is given by 

E Ej j  j jΛ � � (12.8)
H � Ej j jj T
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where j jE and jH � Ej indicate determinants of E and H � E, respectively. It is easy to 
see what Wilk’s test accomplishes. Since T � H � E, the extent to which there are 
treatment effects is the extent to which more of the variation is being accounted for by 
H relative to E. If total variation is not being accounted for by treatment effects, then 
the size of E will dominate relative to H. Note that Λ is an inverse criterion, meaning 
that smaller values of Λ are preferable to larger ones. To see this, consider the situation 
where the total variation T were completely accounted for by E: 

j jE Ej jΛ � � � 1:0
0 �E Ej j j j  

On the other hand, if all variation is accounted for by treatment effects, or between-
group differences, then Λ would be 

j jE j j0Λ � � � 0
H � 0j j jj H

Hence, the range on Λ is 0 for a perfectly fitting model to 1.0 under H0 in which there 
is no multivariate effect. Unlike the F-ratio in univariate ANOVA, smaller values of Λ 
lead to a rejection of H0 and an inference of the statistical alternative H1. Indeed, when 
the number of dependent variables is reduced to one, Λ is equal to the ratio of SS 
within to SS total for univariate F, which also corresponds to 1 � η2 in the one-way 
model. Wilk’s Λ can also be written as a function of eigenvalues λ1; λ2; . . . ; λp of 
E�1H: 

s 1
Λ � ∏ (12.9) 

i�1 1 � λi 

where λi denote respective extracted eigenvalues for the given MANOVA for i � 1 to  
s eigenvalues. This definition for Λ is more applicable when interpreting discriminant 
function analysis, which, as we will see in Chapter 13, is intimately related to 
MANOVA in that it defines the eigenvector(s) for which group separation on the 
independent variable is maximized. For the case in which there are only two levels on 
the independent variable, there will only be one eigenvalue extracted, and hence the 
product operator, ∏s 

1 in (12.9) becomes unnecessary, and Λ reduces simply to i�
1=�1 � λ�. 

The statistical significance of Λ can be evaluated by 

χ2 � ���N � 1� � �p � k�=2�ln Λ 

which is distributed approximately as a chi-square variable on p�k � 1� degrees of 
freedom, where p in this case is the number of dependent variables and k is the number 
of populations (i.e., levels on the independent variable). This approximation is good 
for moderate to relatively large sample sizes. For details, see Bartlett (1947). 
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Given the conceptual similarity between F and Λ, it should come as no surprise that 
the statistical significance of Λ can also be tested via an F-test. Since the determinant 
of a variance–covariance matrix is a generalized variance, it stands that the 
comparison of E j j by means of a ratio is a generalization of a univariate j j with T
F-statistic in which a sum of squares within is compared to the total sum of squares 
(Tatsuoka, 1971). That is, the following relationship holds for the one-way ANOVA: 

E E 1j j j j  SSwithinΛ � � � � (12.10)j jT jH � Ej SSbetween � SSwithin 1 � �SSbetween=SSwithin� 
It is also true that since 

SSbetween=�J � 1� 
F �

SSwithin=�N � J� 
it stands that 

(12.11)F � 
SSbetween 

SSwithin 

N � J 
J � 1 

Equation (12.11) implies that we can express the ratio of sums of squares 
SSbetween=SSwithin as a function of F: 

J � 1SSbetween � F 
N � JSSwithin 

which also implies 

1 1� 
1 � �SSbetween=SSwithin� 1 � �� J � 1�=�N � J�� � F 

What all this means then is that Λ can thus be written as a function of F in the case of 
the one-way ANOVA: 

1
Λ � 

1 � �� J � 1�=�N � J�� � F 

This translation of Λ as a function of F is pedagogically useful, because it demonstrates 
what was intuitively apparent in the definition of Λ, in that it accomplishes something 
very similar to that of F in the univariate case. The difference is that since Λ is a function 
of H and E, it is also a function of cross-products and not only sums of squares. 
As also shown in Bartlett (1947, p. 179), Λ can also be related to R2 in regression: 

p 

∏�1 � Ri 
2� � Λ 

i�1 
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where R2 
i results from the successive regression of the linear combination of dependent 

variables on each independent variable. In the case of a single independent variable 
such as one would have in one-way MANOVA, the product notation, ∏p

i�1 and 
subscript on R2 may be dropped and the expression simplified to 1 � R2 � Λ.i 

12.11.1 Pillai’s Trace 

Pillai’s trace (Pillai, 1955) is a second multivariate test statistic used for evaluating the 
statistical significance of a multivariate effect. It sometimes goes by the name of 
Bartlett–Nanda–Pillai V, and is defined as 

s λiV �s� � tr �E � H��1H � 
i�1 1 � λi 

where tr is the trace and λi is the ith eigenvalue. For the case of two levels on the 
independent variable, since only a single eigenvalue is extracted, V �s� reduces to 
simply 

λ 
V �s� � (12.12)

1 � λ 

For the case of several λi, if we consider only the largest of these in (12.12), then we 
have what is known as Roy’s largest root: 

λ1θ � (12.13)
1 � λ1 

where λ1 is the maximum eigenvalue extracted. Roy’s test uses only the  largest  
eigenvalue of E�1H, and so it is more powerful than other multivariate test 
statistics under the condition that the mean vectors are collinear. What does it 
mean to say vectors are collinear? Recall that vectors “happen” in Euclidean 
space, whether in two, three, or higher dimensions. When we say vectors are 
collinear, what we mean is that they lay in a linear subspace of this wider and 
more general Euclidean space. For example, consider two possibilities for three 
mean vectors (see Figure 12.1) 

Each of μ1; μ2; μ3 represents mean vectors. In the first case (Figure 12.1a), mean 
vectors lay more or less in a straight line. What this means algebraically is that each 
vector is a linear combination of the remaining vectors. In the second case 
(Figure 12.1b), mean vectors are not collinear, meaning they are not linear combina
tions of one another. That is, they do not lay in a linear subspace. Roy’s largest root 
considers only the largest of extracted eigenvalues. The reason why the situation of 
collinearity of vectors is ideal for interpreting Roy’s is that typically in such a case, the 
size of one eigenvalue will dominate the size of the others, because, as will be 
elaborated on in Chapter 13, it is suggestive that a single discriminant function 
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FIGURE 12.1 (a) Collinear vectors. (b) Noncollinear vectors. (Rencher and Christensen, 
2012). Reproduced with permission from John Wiley & Sons, Inc. 

suffices in accounting for group separation on the independent variable. Hence, it 
makes sense to consider only the largest of these eigenvalues. For situations in which 
mean vectors are not collinear, other tests such as Wilk’s, Pillai’s, or the Lawley– 
Hotelling trace (to be discussed) are generally recommended for use in place of Roy’s. 
When the mean vectors are spread out (i.e., not collinear), these other tests are 
generally more powerful. Note as well that for the case in which only a single 
eigenvalue is extracted, θ reduces to V �s� since there is only a single root that is 
extracted, and hence it must also be the largest root. 

Pillai’s trace is a function of the trace of �E �H��1H and as such is a direct measure 
of how much greater H is relative to T. The statistical significance of Pillai’s trace can 
be evaluated as an approximate F-statistic. Pillai also suggested two alternative F-
approximations (Pillai, 1956). Pillai’s trace is quite robust and is therefore usually the 
statistic of choice when assumptions such as equality of covariance matrices are likely 
violated. 

12.11.2 Lawley–Hotelling’s Trace 

The Lawley–Hotelling trace (Lawley, 1938; Hotelling, 1951) is given by 

s 

U�s� � tr�E�1H� �  λi (12.14) 
i�1 

�1HConsider the difference between V �s� and U�s�. In  V �s� we took the trace of �E �H�
s�or �T��1H. In  U�s� we are taking the trace of E�1H. Hence, in the case of V � , we are 

comparing the size of H relative to T, whereas in U�s� we are comparing H relative to 
E; thus, U�s� is a comparison of how much variation is accounted for by treatments in 
H relative to how much variation is “left over” in E. Instead of comparing variation 

s�in H with the total variation in T, as in  V � , U�s� compares this variation with that 
unexplained, that is, E, analogous to comparing SSbetween with SSwithin in the 

s�univariate case. Since T � H � E, the value of V �s� will always be smaller than U� . 
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12.12 EQUALITY OF VARIANCE–COVARIANCE MATRICES 

Recall that in univariate ANOVA, we required that variances across populations be 
equal, σ2 1 � σ2 2 � σ2 

J . In the MANOVA case, this assumption is also required, but j� j� j�
in addition to it, we also require the assumption that the covariance matrices across 
populations also be equal. Recall that we also required equality of covariance matrices 
in blocking and repeated-measures models. That is, for a problem in which there are 
p populations, we require that 

Σ1 � Σ2 � Σ2 � ∙ ∙ ∙  � Σp (12.15) 

For example, for a three-group MANOVA problem, what (12.15) implies is that the 
following matrix must be constant across populations as defined on the levels of the 
independent variable: 

� 
σ2 
v covc covc 

covc σ2 covcv 
covc covc σ2 

v 

where σ2 is a common population variance and covc is a common population v 
covariance. The null hypothesis is thus 

H0 : Σ1 � Σ2 � Σ3 (12.16) 

tested against the alternative H1 that at least two matrices Σ1; Σ2; Σ3 are unequal. A 
test of the null hypothesis of equal variances and covariances is available and known 
as the Box M-test. The test is described by Box (1949, 1950) in which he attributes it to 
Wilks (1946), who in turn references the likelihood ratio method of Neyman and 
Pearson (1928). The likelihood ratio test required for testing (12.16), and which we 
will use for establishing the Box M-test, is given by 

�ng�1�=2 
n SgΛ � ∏ (12.17)

Spg�1 

where Sg is the sample variance–covariance matrix for groups (or levels or popula
tions) g = 1, 2, . . . , n, and ng�1. The pooled matrix across groups is given by Sp, and 
as before is equal to the sum of sample variance–covariance matrices across groups 
(i.e., levels of the independent variable). What will make Λ small? If we assume the 
exponent ng�1=2 is constant for a given problem, then the real “action” of Λ is in 
the ratio Sg to . The extent to which �Sg�1� � �Sg�2� � �Sg�3� � �Sg�g� holds is Sp 

the extent to which the numerator Sg and the denominator Sp converge to the same 
Sgvalue, under which case j j � 1:0. On the other hand, the extent to which �Sg�1� �Spj j
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�Sg�2� � �Sg�3� �  ∙ ∙ ∙  � �Sg�g� is a fraction of the denominator is the extent to which 
an “imbalance” among Sg is occurring, and hence support for the alternative 
hypothesis that at least two Sg are different from one another. 

Given Λ, we can now establish the Box M-statistic: 

M � �2 ln  Λ (12.18) 

Note that in the trivial case where Λ is equal to 0, M is undefined, since ln�0� is 
likewise undefined. For Λ equal to 1, M is equal to 0, since ln�1� � 0. Under H0, since 

Sgj jwe would expect � 1:0, it stands that values lower than not for M are expected. 
Spj j

Sgj jConversely, as < 1:0, M gets larger, providing evidence against H0 and in favor of 
Spj j

H1, suggesting at least one pairwise difference among population variance– 
covariance matrices Σ. 

It has been shown that the Box M-test is distributed as an approximate χ2 

distribution. An F-approximation may also be used (see Box, 1950). The test is 
rather sensitive to nonnormality and kurtosis, and so a rejection of the null might occur 
even in situations for which the violation of equality of variance–covariance matrices 
is minimal. For this reason, some authors (e.g., Johnson and Wichern, (2007)) suggest 
interpreting MANOVA tests even in light of a statistically significant finding. 

12.13 MULTIVARIATE CONTRASTS 

Recall that whenever we perform a contrast, no matter what its complexity, such 
always boils down to a comparison of two groups. Whether each group is a linear 
combination of means, or a single mean, we nonetheless compare groups. In the 
univariate case, we built our contrasts by hypothesizing comparisons among popula
tion means of the form 

Ci � c1μ1 � c2μ2 � ∙ ∙ ∙  � cJ μJ 

When we move from the univariate case to the multivariate case, we are required to 
build our contrast not as a function of the population means, but rather as a function of 
population mean vectors, u1; u2; . . . ; up. Hence, for the multivariate case, we can 
represent a contrast by 

Ci � c1μ1 � c2μ2 � ∙ ∙ ∙  � cpμp 

As was true for the univariate case, unless we are working specifically with population 
data, we will not ordinarily know the parameters of our contrast, and hence will 
estimate them using functions of our sample data (i.e., estimators): 

Ĉi � c1y1 � c2y2 � ∙ ∙ ∙  � cpyp 
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A relevant null hypothesis is that population mean vectors are equal: 

H0 : Ci � 0
 

against an alternative that population mean vectors somewhere in the set are unequal:
 

H1 : Ci ≠ 0
 

Now, just as was true for the univariate case, we will want to test our sample
 
contrast for statistical significance. Hence, we need to know how to estimate the 

^standard error of such contrasts. Recall how we estimated σ2 
C 

univariate contrast: 

2cjσ2 � σ2 
e^

in the case of a 

^^

Ci njj 

for which an estimator for σ2 was provided by MS error. We follow an analogous e 
approach in the multivariate case. However, we cannot simply use MS error as our 
estimator. Why not? Because we are in the MANOVA context and there is no 
corresponding single MS error value as there was in the univariate context. To obtain 
our error estimate for the MANOVA case, we must also account, as usual, for the 
covariances among dependent variables, which means we will use S as our estimator 
of . As was true for the univariate case, we will again compute a t-statistic, only 
now, because we are working with a linear combination of dependent variables instead 
of a single variable, we use T2 as our test statistic. Hence, the contrast is given by 

�1p 2 ´ i C Ci 
c

T2 � 
nii�1 

iS
�1 (12.19) 

Does (12.19) look familiar? It should, since it is analogous to Hotelling’s T2 featured 
earlier in our generalization of univariate t for the case of two levels on the independent 
variable. Only now, instead of the constant term for sample size equal to 

p 2n1n2=�n1 � n2�, it is now equal to i =ni for the case of the contrast. Also, in i�1 c
(12.19), we are not restricted to contrasts of the type �y1 � y2�. For equal n per group, 

´ 
iS

�1as noted in Stevens (2002, p. 230), (12.19) reduces to T2 � �n=2� ^Ĉ Ci for a paired 
comparison. 

12.14 MANOVA IN R AND SPSS 

In demonstrating a simple example of MANOVA in R, we amend our data slightly 
from Table 12.1 to now include three levels on the independent variable. Recall that 
there are two dependent variables, and since we can conceptualize quantitative and 
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TABLE 12.3 Hypothetical Data on Quantitative and Verbal Ability as a Function 
of Training (1 = No training, 2 = Some training, 3 = Extensive training) 

Subject Quantitative Verbal Training 

1 5 2 1 
2 2 1 1 
3 6 3 1 
4 9 7 2 
5 8 9 2 
6 7 8 2 
7 9 8 3 
8  10  10  3  
9  10  9  3  

verbal ability as a composite variable, it makes sense to consider them simultaneously 
in a MANOVA. The independent variable for this example is whether or not subjects 
received prior training in courses that would foster the development of intellectual 
capacity and learning (1 = no specialized prior training, 2 = some training, 3 = exten
sive training). There are a total of n = 3 observations per group. The data are given in 
Table 12.3. 

The null hypothesis we wish to test is 

μ11 μ12 μ13� �H0 : μ21 μ22 μ23 

against the statistical alternative hypothesis 

μ11 μ12 μ13≠ ≠H1 : μ21 μ22 μ23 

We generate the vectors Q, V, and T, for levels quantitative, verbal, and 
training, respectively, and then request R to generate the requisite data frame 
(iq.data): 

> Q <- c(5, 2, 6, 9, 8, 7, 9, 10, 10) 
> V <- c(2, 1, 3, 7, 9, 8, 8, 10, 9) 
> T <- c(1, 1, 1, 2, 2, 2, 3, 3, 3) 
> iq.data <- data.frame(Q, V, T) 

Next, we bind the columns of Q and V to generate our dependent variable, which 
recall will be a linear combination of Q and V: 

> Y <- cbind(Q, V) 
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We confirm that Y has been constructed correctly, printing only the first three 
observations: 

> Y 
Q V  

[1,] 5 2 
[2,] 2 1 
[3,] 6 3 

We now generate factor levels for the independent variable training, naming our 
new factor T.f. We also identify T.f as having three levels, none, some, and  much 
to reflect the extent of training received: 

> T.f <- factor(T, levels = 1:3) 
> levels(T.f) <- c("none", "some", "much") 

For demonstration, we now proceed to run the wrong MANOVA, requesting 
Wilk’s Λ as our multivariate test statistic, and then requesting a summary of results: 

> manova.fit <- manova(Y ∼ T) 
> summary(manova.fit, test = "Wilks") 

Df Wilks approx F num Df den Df Pr(>F) 
T 1 0.17871 13.787 2 6 0.005708 ** 
Residuals 7 
---

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

In the output we note that our effect for T has only a single degree of freedom. 
However, since T is a grouping variable with three levels, the degrees of freedom 
should have been equal to 2 (i.e., 3 � 1 = 2). What went wrong? What went wrong is 
that we used T instead of T.f, which recall we had designated as our factor. Using T 
is a good example of a mistake to avoid when fitting models. The failure to designate T 
as a factor caused R to treat it as a continuous variable, which of course it is not. It is a 
categorical variable with categories corresponding to the levels of the independent 
variable. 

We now fit the correct model: 

> manova.fit <- manova(Y ∼ T.f) 
> summary(manova.fit, test = "Wilks") 

Df Wilks approx F num Df den Df Pr(>F) 
T.f 2 0.056095 8.0555 4 10 0.003589 ** 
Residuals 6 

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
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Notice now that the degrees of freedom for T.f are equal to 2, which are the 
correct degrees of freedom for the factor. The p-value for Wilk’s Λ is equal to 0.004 
(rounded up), leading to a rejection of the null hypothesis. We could have also instead 
requested Pillai’s trace as our multivariate test: 

> summary(manova.fit, test = "Pillai") 

Df Pillai approx F num Df den Df Pr(>F) 
T.f 2 1.0737 3.4775 4 12 0.04166 * 
Residuals 6 

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

We note that while still calling for a rejection of H0 at a significance level of 0.05, 
the observed p-value for Pillai is larger than that for Wilk’s Λ. We could have also 
obtained the Lawley–Hotelling test and Roy’s test by specifying the option test = 
"Hotelling-Lawley" and test = "Roy", respectively, though we do not show 
the output of these tests here. 

Analyzing these data in SPSS is straightforward and the output will mimic that 
generated in R. Consequently, we do not display its output. One can obtain the 
MANOVA in SPSS through manova Q V by T(1, 3). Of more interest, as it will 
relate to the material of the following chapter on discriminant analysis and canonical 
correlation, we can obtain the eigenvalues and canonical correlations from SPSS: 

/print = sig(eigen). 

Eigenvalues and Canonical Correlations 

Root No. Eigenvalue Pct. Cum. Pct. Canon Cor. 

1 14.35158 98.88896 98.88896 .96688 
2 .16124 1.11104 100.00000 .37263 

The eigenvalue for the first root can be computed by (0.96688)2/1
(0.96688)2 = 14.35. This was calculated using the canonical correlation reported 
in the far-right column (Canon Cor), which, when squared, provides a measure of 
how much variance r2 is accounted for by the given function. To get the squared 
canonical correlation r2 from the eigenvalue, we compute λi=�1 � λi� for each 
function. That is, for the first function, we compute 

2 λ1 14:35158 14:35158 
r1 � � � � 0:93

1 � λ1 1 � 14:35158 15:35158 

Notice that the above value of 0.93 matches up with that for the squared canonical 
correlation for the first function, �0:96688�2. For the second function, we can likewise 
compute a squared canonical correlation: 
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0:16124 2 λ2 r2 � � � 0:139
1 � λ2 1:16124 

We discuss the canonical correlation more thoroughly in Chapter 13. The eigenvalue 
for the second root is equal to (0.37263)2/1-(0.37263)2 = 0.1612. We can see then that 
the first root dominates the second in terms of size. What this suggests is that they both 
lay in a single dimension. Recall we had said that under such a case, Roy’s test would 
be most powerful. When we compute Roy’s on these data, we obtain 

> summary(manova.fit, test = "Roy") 
Df Roy approx F num Df den Df Pr(>F) 

T.f 2 14.352 43.055 2 6 0.0002764 *** 
Residuals 6 
---

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

As expected, the p-value for Roy’s is smaller than that computed earlier for both 
Wilk’s and Pillai. Roy’s largest root in this case provides the most powerful test as a 
result of the mean vectors laying in generally the same linear subspace. 

Two eigenvalues are extracted from this analysis because there are three levels on 
the independent variable. As we will learn in our discussion of discriminant analysis 
in Chapter 13, each eigenvalue extracted corresponds to a “proportion of variance” 
accounted for by each discriminant function. The importance of the first extracted 
root (eigenvalue) is computed as 14.35/(14.35 + 0.16) = 14.35/14.51 = 0.989, 
while the importance of the second extracted root (eigenvalue) is computed as 
0.16/14.51 = 0.011. Clearly, the first discriminant function is responsible for most 
of the group separation between groups on the independent variable. 

Tests for outliers in MANOVA can be performed using the mvoutlier package 
(Filzmoser and Gschwandtner, 2014). We request an aq.plot, which plots the 
ordered squared robust Mahalanobis distances of the observations against the 
empirical distribution function. For our data, we compute 

> library(mvoutlier) 
> aq.plot(iq.data) 
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The above plots suggest that case 2 (bottom left corner) may be somewhat extreme. 
This finding also agrees with our informal visual look at the data, as we notice the 
second observation in our data set (Table 12.3) has a value of 2 on quantitative and 1 
on verbal, each quite distant from the rest of the observations. 

For evaluating multivariate normality, Mardia’s test in the  MVN package 
(Korkmaz, Goksuluk, and Zararsiz, 2014) can be computed, though not demon
strated here. Multivariate normality can also be evaluated using the Shapiro–Wilk 
test in the mvnormtest package (Jarek, 2012) by calling the function msha
piro.test, which is a generalization of the Shapiro–Wilk test for univariate 
normality. Influential observations can also be detected by requesting Cook’s d  
values (see Chapter 8 for details). Q–Q plots and histograms can also be 
generated. 

For the covariance assumption, we can use the boxM test in the package 
biotools (da Silva, 2014) to test the assumption of equal covariance matrices. 
For a test of the homogeneity of variances only, one can use bartlett.test. 

In SPSS, we can obtain Box’s test for our Q–V data by 

/PRINT=HOMOGENEITY 

Box’s Test of Equality of Covariance Matricesa 

Box’s M 9.949 
F 0.849 
df1 6 
df2 897.231 
Sig. 0.532 

aDesign: Intercept + T 

The test is not statistically significant, suggesting we do not have evidence to doubt 
the assumption of equal variance–covariance matrices between populations on 
the independent variable. Though recall as a result of the test being quite sensitive 
to even minimal assumption violations, it is generally recommended that we proceed 
with the MANOVA even in cases of a statistically significant Box M-test. 

12.14.1 Univariate Analyses 

It is custom to follow up a statistically significant MANOVA with univariate 
ANOVAs. However, when one does so, one should be acutely aware of why one 
is doing such a thing. Oftentimes researchers will follow up with univariate analyses 
in an attempt to “break down” or otherwise “decompose” the multivariate effect. 
Recall from our earlier discussion of Rao’s paradox, however, that a multivariate 
effect may not always decompose into individual univariate effects, and vice versa, 
the presence of univariate effects does not necessarily indicate the presence of a 
multivariate effect. Hence, the idea of performing univariate follow-up tests in an 
effort to “deconstruct” the multivariate effect is misguided. Furthermore, there was 
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presumably a reason why you chose MANOVA over independent univariate analy
ses. If you find yourself more interested in the univariate effects than the multivariate 
findings obtained from your analyses, you might want to ask yourself why you 
performed the multivariate tests in the first place. Recall that the fact that you have 
numerous dependent variables at your disposal, by itself, should not be a rationale for 
why the MANOVA is performed. 

Univariate tests can be obtained for our data via summary.aov (manova.fit). 
Using summary.lm will provide us with contrasts on levels of T.f on each 
dependent variable. For instance, for quantitative, we can compute 

> summary.lm(aov(Q ∼ T.f)) 

Coefficients: 
Estimate Std. Error t value Pr(>|t|) 

(Intercept) 4.3333 0.7935 5.461 0.00157 ** 
T.fsome 3.6667 1.1222 3.267 0.01709 * 
T.fmuch 5.3333 1.1222 4.753 0.00315 ** 
---

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

Residual standard error: 1.374 on 6 degrees of freedom 
Multiple R-squared: 0.7976, Adjusted R-squared: 0.7302 
F-statistic: 11.82 on 2 and 6 DF, p-value: 0.008289 

By default, and contrary to SPSS, R uses the first group (T.f = 1) as the reference 
group (to generate similar contrasts in SPSS, use /PRINT=PARAMETER). The 
intercept estimate is that of the mean of Q for T = 1 (4.33). The value of 3.67 for 
T.fsome is the mean difference between T = 2 and T = 1 (8.0 – 4.3). The final value 
of 5.3 is the mean difference between T = 3 and T = 1 (9.6 – 4.3). 

As in univariate ANOVA, there is nothing stopping us from modeling several 
factors simultaneously in MANOVA and computing interaction terms. For example, 
had we a second factor in our Q–V data, we could have easily modeled the interaction 
with a second factor X by computing manova(Y ∼ T + X + T:X). The interpretation 
of the interaction term parallels that in univariate ANOVA, except, of course, it is on 
the linear combination Y instead of a single dependent variable. 

12.15 MANOVA OF FISHER’S IRIS DATA 

We now demonstrate MANOVA on Fisher’s classic Iris data. Recall that the data 
consist of a total of 150 observations on three species of Iris: 50 on  Iris setosa, 50 on  
Iris virginica, and 50 on Iris versicolor. On each sample, the length and width of both 
sepals and petals were recorded. In our analysis, we would like to learn whether 
“species” (setosa, versicolor, and virginica) can predict a linear combination of flower 
features. 
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We first generate a combination of Sepal.Length + Sepal.Width + 
Petal.Length + Petal.Width through cbind, then request  the  
MANOVA: 

> attach(iris)
 
> iris.manova <- lm(cbind(Sepal.Length, Sepal.Width, Petal.Length,
 
Petal.Width) ∼ Species, data = iris)
 
> anova(iris.manova) 

Analysis of Variance Table 

Df Pillai approx F num Df den Df Pr(>F) 
(Intercept) 1 0.99313 5203.9 4 144 < 2.2e-16 *** 
Species 2 1.19190 53.5 8 290 < 2.2e-16 *** 
Residuals 147 

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

By default, R produces Pillai’s test, yielding a value of 1.19 with associated 
p-value of 2.2e-16. Clearly, there is an effect of species on the linear combination of 
flower features. To get all four multivariate tests, as well as the sums of squares and 
products matrices, we could, via the car package, compute summary(Anova 
(iris.manova), univariate = FALSE, digits = 4). Doing so would 
reveal that all four multivariate tests are statistically significant. 

We can plot the findings of the multivariate result using a heplot (Friendly, 2007) 
as shown in Figure 12.2. Both an “ordinary” heplot (a) and a three-dimensional 
heplot (b) (heplot3d) are shown: 

> library(heplots) 
> heplot(iris.manova) 

By the use of corresponding ellipses, the heplots of Figure 12.2 display the 
variation due to mean differences on species (i.e., in the hypothesis matrix H) relative 
to error (i.e., matrix E). As can be seen in both plots, species accounts for much more 
variation relative to that generated by error, as evidenced by the much more elongated 
ellipse in the corresponding direction. To preview what will be discussed in the 
following chapter, we can also see that the discriminant function does a good job of 
separating setosa from virginica and versicolor, whereas virginica and versicolor are 
rather poorly separated from one another. 

12.16 POWER ANALYSIS AND SAMPLE SIZE FOR MANOVA 

Power analysis for MANOVA can be conducted using G∗power similar to how we 
conducted it in ANOVA, where one specifies in advance an estimated effect size 
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FIGURE 12.2 Heplots of MANOVA on Iris data: Two-dimensional (a) and three-
dimensional (b) 

(entered as f 2 in G∗power), desired significance level (α), desired power, and the 
number of groups on the independent variable. Because the analysis is multivariate, 
one needs to also specify the number of dependent variables for the analysis, since this 
number can no longer be assumed to equal 1 as in the univariate case. As an example, 
suppose a researcher estimates an effect size of f 2 � 0:10 at a significance level of 
0.05, with power set to 0.95. Suppose the researcher has three groups on the 
independent variable and is interested in analyzing such group differences on a 
linear combination of two response variables. In G∗power, one specifies "MANOVA: 
Global effects," and then enters the parameters for the effect size, error 
probability, power, number of groups, and the number of response variables: 
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We see that for the inputted parameters, the total sample size required for this study is 
96 (i.e., 32 per group, since there are three groups). 

12.17 MULTIVARIATE ANALYSIS OF COVARIANCE 
AND MULTIVARIATE MODELS: A BIRD’S EYE VIEW 
OF LINEAR MODELS 

As both analysis of variance and analysis of covariance can be considered special 
cases of the wider general linear model, so too can the multivariate analysis of 
variance and multivariate analysis of covariance be conceptualized as special cases of 
the wider multivariate multiple regression model or multivariate general linear 
model. That is, we expand the landscape from our earlier general linear model for 
regression in (8.7), y � Xβ � ε, to an even more inclusive general linear model, first 
introduced in Section 3.24: 

Y � XB � E (12.20) 

where Y is an n × m matrix of n observations on m response variables, X is the model 
matrix whose columns contain k regressors which includes the intercept term, B is a 
matrix of regression coefficients and E is a matrix of errors. Model (12.20) is 
adaptable to a variety of variable-types and can accommodate a wide number of 
variables. For example, in the multivariate regression model, because it is multi
variate, Y in (12.20) could contain more than a single continuously distributed 
response, and X could contain a mix of continuous and polytomous predictor 
variables. If we expand (12.20) even further, we obtain model (6.11) discussed in 
the context of ANOVA models: 

Y � XB � ZU � E (12.21) 

where ZU contains random effect terms (over and above the random effect E). Recall 
model (12.21) is the matrix formulation of the mixed model (Chapter 6), which 
contains a blend of fixed (in XB) and random (in ZU) effects. A researcher could also 
include one or more covariates in a MANOVA in an effort to reduce the error term 
(and hence, boost power) for testing treatment effects, yielding the MANCOVA 
model. 

The point of this brief discussion is to emphasize the numerous possibilities for 
fitting a wide variety of models starting with a very general framework. As one 
becomes more familiar with more complicated models, one begins to see previously 
learned models as simply “special cases” of the wider landscape. Indeed, both models 
(12.20) and (12.21) could in turn be considered special cases of the wider generalized 
linear model, as previously discussed in Chapter 11. 

This is the extent to which we discuss the comparison of parameterization options 
for the multivariate general linear model. A thorough discussion would require a 
chapter in its own right if not an entire book. The reader interested in learning about 
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such parameterization options should refer to Fox (1997) for an overview of such 
work with regard to the more global models briefly discussed here. 

12.18 CHAPTER SUMMARY AND HIGHLIGHTS 

•	 Multivariate analysis of variance (MANOVA) is a statistical method useful for 
situations in which one wishes to analyze group differences on a linear 
combination of dependent variables. The typical null hypothesis for MANOVA 
is that there are no population mean differences on a vector of dependent 
variables. 

•	 MANOVA can be conceptualized as either an extension of univariate ANOVA 
or as a more general linear model of which ANOVA is a special case. 

•	 For MANOVA to be a suitable model for a research problem, the hypothesized 
linear combination of dependent variables should usually be constructed based 
on theory or, at the very least, make some sense a priori to the investigator. 
If combining dependent variables is not logical for the given research 
context, then other than for strictly exploratory pursuits, MANOVA is not 
recommended. 

•	 Statistical reasons for running a MANOVA include control over the additivity 
of the type I error rate and the capitalization of covariance between dependent 
variables, which in separate univariate ANOVAs would not be modeled. 

•	 Rao’s paradox describes the fact that one can fail to reject a multivariate 
hypothesis and yet still reject individual univariate hypotheses, or fail to reject 
univariate hypotheses and yet still find a multivariate effect. The essence of the 
paradox is a reminder that whenever one tests a model, it is the model you are 
testing and never individual effects within the model. 

•	 Hotelling’s T 2 tests for mean population differences between two groups on a 
linear combination of response variables. It can be understood as an extension of 
univariate t, or as a special case of the wider MANOVA model. Showing how 
Hotelling’s T 2 is derived from univariate t is a powerful way to reveal how its 
structure is very much analogous to univariate t. Studying its makeup is also a 
powerful way of being introduced to the nature of multivariate methods. 

•	 Wilk’s Λ is historically the most popular multivariate test statistic. It is an 
inverse criterion, meaning that smaller values are more indicative of evidence 
against the null than are larger values. It is defined as the ratio of determinants of 

j j Ej jthe error matrix relative to the total matrix, Λ � H
E
�Ej � j j.j T

• Pillai’s trace is a multivariate test statistic defined as V �s� � tr��E �H� 1H� �  
s 
1 λi=�1 � λi�, where λi are eigenvalues. i�

•	 Roy’s largest root is another multivariate test statistic, given by θ � λ1=�1 � λ1�, 
where λ1 is the maximum eigenvalue extracted for the given problem. Roy’s test 
is most powerful over competing multivariate tests when mean vectors are 
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collinear. In problems where only a single eigenvalue is extracted, θ and V �s� 
will be the same. 

• The Lawley–Hotelling’s trace is another multivariate test statistic, given by 
sU�s� � tr�E�1H� �  i�1 λi. 

•	 MANOVA requires the assumption of equality of variance–covariance matri
ces. This assumption can be tested using the Box M-test, though because the test 
is sensitive to distributional assumptions, even when Box reveals a statistically 
significant finding (thereby rejecting the assumption of equal variance– 
covariance matrices), it is recommended that in most cases one should none
theless proceed with the MANOVA. Nonetheless, both statistically and 
substantively, the Box M-test is important because it provides insight into 
the structure of variance–covariance matrices. 

•	 Contrasts in MANOVA can be constructed in a similar manner as contrasts in 
univariate ANOVA, only that in MANOVA mean vectors are being compared 
instead of simply univariate means. 

•	 Following up a MANOVA with individual univariate ANOVAs on each 
dependent variable is acceptable if one has a theoretical reason for doing so. 
Because of Rao’s paradox however, one should not conduct the follow-up 
univariate analyses in an effort to “decompose” the multivariate effect. 

•	 Heplots are a useful graphical tool in multivariate models for visualizing the 
extent to which multivariate treatment effects in H are large relative to error in E. 

•	 MANOVA can be performed quite easily using R or SPSS. Simple effects and 
simple interaction effects can also be estimated and tested. 

REVIEW EXERCISES 

12.1.	 Describe how the multivariate analysis of variance differs from univariate 
analysis of variance. What are the distinguishing features? Discuss how 
MANOVA can be understood as either an extension of ANOVA or how 
ANOVA can be understood as a “special case” of MANOVA. 

12.2.	 In the context of MANOVA, describe what is meant by a linear combination 
or linear composite of variables. 

12.3.	 Discuss why it is that even if one has several response variables at his or her 
disposal, MANOVA may still not be a suitable statistical approach. 

12.4.	 Discuss why using scalars of “1” in the linear combination (1)quantitative + 
(1)verbal = group would be considered a naïve approach to generating the 
given linear combination. 

12.5.	 Discuss how the concept of linear combinations is not at all “new” to 
MANOVA and how it has been featured, sometimes indirectly, in virtually 
all statistical methodologies up to now learned in this book. 
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12.6.	 Why is it that if the variate is not in some sense, even if minimally, 
“meaningful,” then the fact that MANOVA helps to regulate the type I 
error rate is not in itself a “selling point” to using MANOVA. 

12.7.	 Discuss what is meant by the familywise error rate. 

12.8.	 Discuss the essential feature of Rao’s paradox. As an applied researcher, 
how does this paradox influence the way you analyze your data? Why is the 
paradox especially relevant to your own research pursuits and your reading 
of the scientific literature? 

12.9.	 Describe in words Hotelling’s T2 and draw as many parallels as you can 
between it and univariate t. 

12.10.	 Describe the nature of the H and E matrices of MANOVA. How are they 
similar and different from scalar quantities used in ANOVA? Is the 
correspondence between H and E to such scalars in ANOVA a perfect 
one? Why or why not? 

12.11.	 Why is Wilk’s Λ referred to as an inverse criterion? Explain. 

12.12.	 What does a Wilk’s Λ of 1.0 mean? What does a Wilk’s Λ of 0.0 imply? 

12.13.	 When is it most appropriate to use Roy’s largest root as a multivariate test? 
Give two scenarios where the value of Roy’s is guaranteed to match that of 
Pillai’s. Why is this so? 

12.14.	 Explain how the Box M-test goes about testing the assumption of equal 
variance–covariance matrices. Referring to its formula, explain the structure 
of the test. 

12.15.	 Distinguish between a univariate and a multivariate contrast. 

12.16.	 Discuss the components of the multivariate general linear model 
Y � XB � E. Discuss how this model can be considered a special case 
of the model Y � XB � ZU � E and how this latter model can be considered 
a special case of the generalized linear model. 

12.17.	 Recall the data in which quantitative ability Q and verbal ability V were 
hypothesized as a function of training T. Make up data for a variable named 
prior experience P, with levels “none” and “at least some” accounting for how 
much prior educational experience individuals brought to the study. Generate 
the data such that there is a statistically significant training by prior experience 
interaction effect on the variate. Interpret its meaning, then conduct simple 
main effects and post-hocs to tease apart the interaction effect. 

12.18.	 Consider data from Holzinger and Swineford, 1939 (contained in package 
lavaan in R (Rosseel, 2012), obtained from an article “A study in factor 
analysis: the stability of a bifactor solution”. The complete data set contains 
301 observations on the following 15 variables (note that tests x1–x9 
constitute 9 of the 15): id (identifier), sex, ageyr (age in years), agemo 



515 REVIEW EXERCISES 

(age in months), school (school attended by the child), grade, x1–x9 (9 tests 
of mental ability). We rename the data frame hs and print a few cases below: 

> library(lavaan)
 
> hs <- data.frame(HolzingerSwineford1939)
 
> library(car)
 
> some(hs)
 

> some(hs) 
id sex ageyr agemo school grade x1 x2 x3 x4 x5 

2 2 2 13 7 Pasteur 7 5.333333 5.25 2.125 1.666667 3.00 
20 21 2 12 3 Pasteur 7 6.333333 8.75 3.000 3.666667 3.75 
34 36 2 12 3 Pasteur 7 4.166667 6.00 2.375 3.333333 4.25 

x6 x7 x8 x9
 
2 1.285714 3.782609 6.25 7.916667
 
20 2.571429 3.478261 5.35 4.916667
 
34 1.857143 5.391304 4.35 5.638889
 

(a)	 Test the hypothesis that mental tests x1 through x9, considered as a 
composite, are a function of sex. 

(b)	 Adapt the analysis in part (a) to include grade as a second independent 
variable in the model. Evaluate the potential effects for sex, grade, and 
comment on whether or not you have evidence to believe there is a sex by 
grade (i.e., two-way) interaction. 

(c)	 Adapt the analysis in part (b) to include school as a third independent 
variable in the model. Evaluate all two-way and the three-way interactions 
and report findings. 

12.19.	 Andersen (2003) analyzed data on Egyptian skulls (p. 345) where it was 
hypothesized that change in skull size is a function of period of time (i.e., 
“epoch”). Skull size is operationally defined with four different variables: mb 
(maximum breadth of skull), bh (basibregmatic height of skull), bl (basial
veolar length of skull), and nh (nasal height of skull). Duplicate Andersen’s 
analysis in R. The data are stored in the HSAUR package (Everitt and Hothorn, 
2015). A few cases from the data frame appear below. Is there evidence that 
the linear combination mb + bh + bl + nh is a function of epoch? 

> library(HSAUR)
 
> skulls
 

epoch mb bh bl nh
 
2 c4000BC 125 131 92 48
 
6 c4000BC 138 137 89 56
 
20 c4000BC 132 131 101 49
 

12.20.	 Reanalyze the data in (12.19), this time defining the linear combination of 
response variables as composed of only bh, bl, and  nh, discarding mb. 
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Is epoch statistically significant? Did the p-value for epoch change? Why 
might it have changed? 

Further Discussion and Activities 

12.21.	 We have learned that the multivariate analysis of variance is a relatively 
technically elegant statistical method. However, does application of the 
statistical method to empirical data “advance” science more than if we only 
had univariate methods (e.g., ANOVA) at our disposal? Do you believe it is 
reasonable substantively, even if doable mathematically, to hypothesize 
linear combinations of dependent variables as representative of constructs? 
Are social scientists’ claims made stronger or weaker by hypothesizing 
linear combinations rather than single variables as responses? What benefits 
or drawbacks can you think of by operationalizing variables in this way of 
linear combinations that either advance, or retard the pursuits of scientific 
knowledge? Discuss. 
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DISCRIMINANT ANALYSIS
 

When two or more populations have been measured in several characters, x1; . . . ; xs, 
special interest attaches to certain linear functions of the measurements by which the 
populations are best discriminated . . . In the present paper the application of the same 
principle will be illustrated on a taxonomic problem . . . We shall first consider the 
question: What linear function of the four measurements 

X � λ1x1 � λ2x2 � λ3x3 � λ4x4 

will maximize the ratio of the difference between the specific means to the standard 
deviations within species? 

(Fisher, 1936, p. 466) 

Discriminant analysis is a statistical method that was first proposed by R.A. Fisher in 
1936 for the purpose of classifying objects, subjects, or items into typically one of two 
or more mutually exclusive populations. Analogous to regression in which the task is 
to make predictions on a response variable based on a linear combination of 
predictors, the job of discriminant analysis is to use a linear combination of 
explanatory variables (typically, continuous ones) to predict a response on a binary 
or polytomous dependent variable. 

Recall that in MANOVA, we were interested in testing hypotheses about 
population differences on a mean vector. In linear discriminant analysis (LDA), 
we turn things around, and ask whether a linear combination of predictors might prove 
useful in predicting group membership. More formally, for a two-group problem, the 

www.wiley.com/go/denis/appliedmultivariatestatistics
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discriminant function is the linear combination of predictors that maximizes the 
distance between the two-group mean standardized vectors, and reduces errors of 
classification. More technically, LDA seeks a projection (i.e., a mapping of vectors 
onto a vector subspace) of observations such that the ratio of between-group 
variability to within-group variability is maximized. If a cost function is incorporated 
into the analysis, we can say as well that discriminant analysis seeks to minimize the 
cost of misclassification, although it is not necessarily the case that good discriminant 
functions are always one-to-one with good classification (Timm, 2002). 

Fisher first demonstrated the technique of discriminant analysis on the Iris data 
introduced in Chapter 9 and also analyzed as a MANOVA in the previous chapter. In 
the MANOVA, we were interested in learning whether mean species differences 
(setosa, virginica, and versicolor) could be inferred to exist on a linear combination of 
flower features sepal length, sepal width, petal length, and petal width. In the current 
chapter, we “reverse” the problem, and ask whether one can use a linear combination 
of these four features to maximize discrimination between species. Fisher’s contri
bution in 1936 was to show how one could predict the species of Iris based on 
characteristics of sepals and petals. 

Many introductory sources are available on discriminant analysis. Among them are 
Johnson and Wichern (2007), Rencher (1998), and Flury (1997). 

13.1 WHAT IS DISCRIMINANT ANALYSIS? THE BIG PICTURE ON 
THE IRIS DATA 

To motivate our development of discriminant analysis, we consider first the end 
result of Fisher’s analysis, which we will also generate for ourselves later in the 
chapter. Consider Figure 13.1, which appeared on the final page of Fisher’s seminal  
1936 paper. The diagram is one of the final classification results based on using 
linear functions, called discriminant functions, to classify  species  of  Iris. Without 
even knowing what the discriminant functions are yet, through inspection of the 
diagram, we can informally assess how “good” the functions were that Fisher 
developed. 

Consider first the classification of setosa. Notice how that distribution of classifi
cation scores is very well separated from both versicolor and virginica. Informally 
then, whatever function rules that were derived from the LDA appear to have done a 
pretty good job at providing separation between setosa and the other two species. Are 
they discriminating well between versicolor and virginica? Not as well it seems, 
because between these there is substantial overlap in distribution. The goal of this 
chapter is to learn what these discriminating functions look like, how they are 
obtained, and how to assess their “goodness” in terms of how well they discriminate, 
analogous to how we evaluated regression equations in terms of how well they could 
make predictions. 

As we will see, Fisher desired his discriminant functions to be ones that would 
“maximize the ratio of the difference between [italics added] the specific means to the 
standard deviations within [italics added] species” (Fisher, 1936, p. 466). That is, 
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FIGURE 13.1 Fisher’s discriminant function analysis of the Iris data (Fisher, 1936). 

Fisher derived functions that maximized between variation relative to within varia
tion. Does this sound familiar? This is a very similar idea to that encountered in our 
study of the analysis of variance in Chapter 4 through MS between and MS within, 
and even more so in the multivariate analysis of variance in Chapter 12 via matrices H 
and E. In MANOVA, the goal was to use a grouping variable to make predictions on a 
linear composite variable. We tested null hypotheses about population mean differ
ences on a mean vector, but we did not identify what function was actually responsible 
for maximizing differences between groups. In discriminant analysis, we learn the 
nature of such functions, the so-called discriminant functions. Refer to Table 13.1 for 
an overview comparison of the two approaches in terms of the typical makeup of 
response and predictor variables in each case. 

TABLE 13.1 Comparison of Typical Response and Predictor Variables for MANOVA 
versus Discriminant Analysis 

Response Variable Predictor Variables 

Multivariate analysis Continuous Dichotomous (Hotelling’s T2) or  
of variance Polytomous (MANOVA) 

Discriminant analysis Dichotomous or polytomous Continuous 
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13.2 THEORY OF DISCRIMINANT ANALYSIS 

In surveying some of the theory behind discriminant analysis, we begin with the 
situation of predicting membership on two populations, then move on to considering 
LDA for several populations. Along the way we demonstrate how features of the 
output obtained in LDA can be related to that obtained in MANOVA. 

13.2.1 Discriminant Analysis for Two Populations 

In a discriminant analysis for predicting membership on one of two mutually 
exclusive populations, we want to derive a linear combination of predictor variables 
that best discriminates group membership on a binary response variable. Recall from 
Chapter 3 the definition of a linear combination of the form 

ℓi � a1y1 � a2y2 � ∙ ∙ ∙  � apyp (13.1)´� a y 

where a ́ � �a1; a2; . . . ; ap�. These values are scalars, and serve to weight the respective 
values of y1 through y . For example, for k linear combinations on p variables, we have p

´ ℓ1 � a11y1 � a12y2 � ∙ ∙ ∙  � a1pyp � a1y 
´ ℓ2 � a21y1 � a22y2 � ∙ ∙ ∙  � a2pyp � a2y 

´ ℓk � ak1y1 � ak2y2 � ∙ ∙ ∙  � akpyp � aky 

n1 ´ The means of the set of linear combinations are given by ℓ1 � ℓ1i =n1 � a y1 and 
i�1
 

n2 n1
´ ℓ2i =n2 � a y2, where each mean y is computed as y1 � y1i =n1 and 
i�1 i�1
 
n2
 

ℓ2 � 

y2 � y2i =n2. 

The essence of discriminant analysis is to find a vector a that will maximize the 
standardized difference between groups on the response variable. That is, we want a 
vector that maximizes 

�ℓ1 � ℓ2� d �
sℓ 

where sℓ is the pooled standard deviation of linear combinations. Because we know 
that ℓ1 � ℓ2 can be negative, we will use the squared distance instead: 

�ℓ1 � ℓ2�2 

d2 � (13.2)2sℓ 

... 

... 

... 

... 

... 

... 

i�1 
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But what vector will maximize the squared distance in (13.2)? It can be shown (see 
Rencher and Christensen, 2012, Chapter 8; Tatsuoka, 1971, Chapter 6) that the 
squared distance between mean vectors is a function of a, given by 

´ �ℓ1 � ℓ2�2 �a �y1 � y2��2 

d2 � � (13.3)2s a ́Spaℓ 

´ where a is the transpose of estimated coefficients, y1 � y2 is the mean difference 
2between vectors, and a ́Spa is the variance of ℓ (i.e., sℓ � a ́Spa). It can be shown 

further that the maximum occurs when 

a � S�1 �y1 � y2� (13.4)p 

or when a is any multiple of (13.4). The maximizing vector a, in this sense, is not 
unique. However, the direction of the vector is unique. What this means is that 
although we can multiply values of a by a scalar, the ratios of elements of a will 
remain the same. For example, if a1 � 10 and a2 � 20, the ratio of “2 to 1” (i.e., a2 to 
a1) remains even if we multiply by a scalar. Recall that if a is a vector, then when 
multiplied by a scalar of 3, for instance, 3a simply elongates the vector without 
changing its direction. This is what we mean by saying the direction is unique. Recall 
our simple vector (1, 3) from Chapter 2 in which we multiplied it by a scalar of 2 
(Figure 13.2). The length of the vector increased by a factor of 2, yet the direction of 
the vector remained the same. 

FIGURE 13.2 Multiplication of a vector by a scalar of 2. 
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13.2.2 Substituting the Maximizing Vector into Squared 
Standardized Difference 

We have said that the squared standardized difference between groups, that of (13.3), will 
be maximized by finding the vector (13.4). Substituting (13.4) into (13.3), we can state: 

�ℓ1 � ℓ2�2 ´ S�1d2 � � �y1 � y2� �y1 � y2� (13.5) 2 psℓ 

We can see that structurally we are squaring the mean difference in vectors, that of ´ �y1 � y2� (i.e., �y1 � y2� �y1 � y2�) and dividing by the pooled covariance matrix, Sp, 
where multiplying by its inverse, S�1, recall, is the equivalent of division in matrix p 
operations. To understand (13.5) better, imagine for a moment we wrote it as 

2 2 �ℓ1 � ℓ2� �y1 � y2��2s Spℓ 

Though the above of course is not a technically correct way of displaying the equation, 
it does reveal what is going on. When we compute (13.5), all we are doing is generating 
a ratio of squared mean vector differences in the numerator relative to an overall 
measure of variance and covariance in ℓ. Interpreted geometrically, what (13.5) is 
“accomplishing” is making an adjustment on the original axis in the Cartesian plane 
that best accounts for mean vector separation by consideration of the contents of Sp, 
which of course contain variances and covariances. By “standardizing” the squared 
distance �y1 � y2�2, this effectuates a new dimension (axis) along which group 
separation is maximized. For a simple demonstration of the geometrical interpretation, 
see Lattin, Carroll, and Green (2003, pp. 429–434). 

We demonstrate the essential concepts of discriminant analysis through a simple 
and straightforward example. Consider the hypothetical generic data in Table 13.2 
having response variable yi and predictors x1 and x2. 

Our goal is to find a linear combination of x1 and x2 such that the discrimination 
between groups 0 and 1 on yi is maximal. That is, the task is to generate a linear 

TABLE 13.2 Hypothetical Data on Binary 
Response and Continuous Predictors 

Subject y x1 x2 

1 0 4 2 
2 0 3 1 
3 0 3 2 
4 0 2 2 
5 0 2 5 
6 1 8 3 
7 1 7 4 
8 1 5 5 
9 1 3 4 
10 1 3 2 
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combination of x1 and x2 that will aid in predicting group membership on yi. But what 
does maximal discrimination mean? It is possible that our discriminant function, because 
of the nature of our data, will do less than a perfect job at discriminating between groups. 
What then does it mean to say the function will maximally discriminate? 

To understand what this means, we draw on our knowledge of least-squares 
regression. What did it mean to say we were fitting the least-squares line? It meant 
that of all the possible lines we could theoretically fit to our sample data, the least-
squares line is the one that minimized the sum of squared errors around the line (or plane 
in the case of multiple regression) better than any other line that could be fit to the given 
data. Did this fact guarantee that for the given set of data the sum of squared errors would 
be necessarily small? Not at all. For sloppy, high-variability data, the least-squares line 
will likewise provide a sloppy fit. But then again, OLS cannot guarantee anything about 
data. It can only guarantee to minimize the sum of squared error on that data. 

A parallel to OLS is somewhat evident in discriminant analysis. By the theory of 
LDA, we know we are maximally discriminating between groups, but whether this 
maximum discrimination is “good” or not will depend on the data we are computing 
the function on. Analogous to building a house with poor versus quality materials, 
LDA, as was true for OLS regression, will produce as good of a function (house) as 
the data (materials) allow, but no better. Regardless of the statistical model, it must 
always be remembered that no matter how sophisticated the model may be, it can 
never work miracles on effects that are just not there to begin with. 

13.3 LDA IN R AND SPSS 

We carry on now with a discriminant analysis on the data in Table 13.2. We enter our 
data in R by generating the relevant vectors and construct the data frame, which we 
name discrim: 

> y <- c(0, 0, 0, 0, 0, 1, 1, 1, 1, 1) 
> x1 <- c(4, 3, 3, 2, 2, 8, 7, 5, 3, 3) 
> x2 <- c(2, 1, 2, 2, 5, 3, 4, 5, 4, 2) 
> discrim <- data.frame(y, x1, x2) 
> discrim 

y x1  x2  
1 0 4 2 
2 0 3 1 
3 0 3 2 
4 0 2 2 
5 0 2 5 
6 1 8 3 
7 1 7 4 
8 1 5 5 
9 1 3 4 
10 1 3 2 
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We perform the discriminant analysis by calling the function lda (“linear 
discriminant analysis”) denoting y as a function of x1 + x2: 

> library(MASS)
 
> lda.fit <- lda(y ∼ x1 + x2, data = discrim)
 
> lda.fit
 

Call:
 
lda(y ∼ x1 + x2, data = discrim)
 

Prior probabilities of groups: 
0 1 

0.5 0.5 

By default, the prior probability of group membership is set at 0.5 for each group. 
For some problems, we may want to adjust this prior probability to differ from the 
default. This can be done for a similar reason why we may wish to incorporate 
baseline or base rate information in a wide variety of problems, such as the probability 
of surviving versus not surviving an operation, or the probability of passing or failing 
a university course. As discussed in Chapter 2, these are prior probabilities, so they 
should to some extent reflect the “current status” with regard to the probability of a 
success or failure. Priors in this regard could also be selected as a function of sample 
size per group to represent proportional “baselines” in the population. 

R provides us with the cell means across each group, and then follows this up with 
the discriminant function coefficients: 

Group means: 
x1 x2 

0 2.8 2.4 
1 5.2 3.6 

Coefficients of linear discriminants: 
LD1 

x1 0.4973955 
x2 0.4310761 

The coefficients of linear discriminants are the raw coefficients of the discriminant 
function estimated on our data. We can obtain the linear discriminant function scores 
quite easily (only the first three scores are given below): 

> predict(lda.fit) 

$posterior 
0 1 

1 0.67646834 0.32353166 
2 0.91102713 0.08897287 
3 0.83042643 0.16957357 
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TABLE 13.3 Posterior Probabilities and Predicted Group Membership (Posterior G), 
along with Discriminant Scores 

Posterior 0 Posterior 1 Posterior G D Scores Y X1 X2 

0.68 0.32 0 �0.43 0 4 2 
0.91 0.09 0 �1.36 0 3 1 
0.83 0.17 0 �0.93 0 3 2 
0.92 0.08 0 �1.43 0 2 2 
0.56 0.44 0 �0.13 0 2 5 
0.03 0.97 1 1.99 1 8 3 
0.04 0.96 1 1.92 1 7 4 
0.09 0.91 1 1.36 1 5 5 
0.53 0.47 0 �0.07 1 3 4 
0.83 0.17 0 �0.93 1 3 2 

LD1 
1 -0.4310761 
2 -1.3595477 
3 -0.9284716 

The above are the posterior probabilities of group membership, along with 
the discriminant function scores for LD1. This information is summarized in 
Table 13.3. 

The first two columns in Table 13.3, Posterior 0 and Posterior 1, are the 
probabilities of being classified in group 0 or 1 based on the estimated discriminant 
function. Note that because they are probabilities, they are continuously scaled 
measures, not binary ones as required to predict membership on the response variable. 
The third column, Posterior G, is the predicted group membership based on the 
discriminant function. This group classification is based on the derived discriminant 
scores of the fourth column, D Scores. Notice that the sign of the discriminant scores, 
+ or �, corresponds with whether an observation was classified into group 0 or 1, 
since zero is the balance point used for classification. We note from inspection of the 
column Posterior G and that of D scores that the function correctly classified all of the 
cases for yi � 0, and 3 out of 5 for yi � 1. That is, our function misclassified two cases. 
We can request R to produce the following classification table to summarize this fact, 
sometimes called a confusion matrix: 

> table(discrim$y, predict(lda.fit)$class) 

0 1 
0 5 0 
1 2 3 

Along the main diagonal of the matrix are the correct classifications. The 
misclassifications appear in the off-diagonal. The confusion matrix confirms the 



526 DISCRIMINANT ANALYSIS 

results of our analysis regarding the misclassified cases, that though two cases actually 
belong to yi � 1, they were instead predicted into yi � 0 (the two misclassified cases 
are in row 2, column 1). 

We now conduct the analysis in SPSS. As we will see, the output essentially 
mirrors that of R, though SPSS will automatically also provide us with the corre
sponding eigenvalue for the discriminant function. The following syntax generates 
the discriminant analysis: 

DISCRIMINANT * requests the discriminant analysis procedure 
/GROUPS=y(0 1) * specifies the binary grouping variable having levels “0” and “1” 
/VARIABLES=x1 x2 * the predictors 
/ANALYSIS ALL * includes all observations in the analysis 
/SAVE=CLASS SCORES * requests to save classification results and discriminant scores 
/PRIORS EQUAL * sets the prior probabilities as equal (in this case, 0.5) 
/PLOT=CASES * requests a plot of the discriminant function results 

The eigenvalue for the discriminant function is 0.915, and accounts for 100% 
of the extraction (Table 13.4). Contrary to how “% of variance” may appear in 
SPSS, the 100% figure is not an estimate of effect size or variance explained. It 
would be incorrect to conclude that the discriminant function accounts for 100% 
of the variance in the response variable. The “100%” figure in this case denotes 
the fact that this is the only discriminant function extracted for the analysis, 
which, of course, makes sense, since there are only two groups on the response 
variable. 

The canonical correlation, equal to 0.691, and when squared, �0:691�2 � 0:48, 
provides us with a measure of association or effect size for the discriminant function. 
The squared canonical correlation is equal to the ratio λi=�1 � λi� � 0:915= 
�1 � 0:915� � 0:48. Wilk’s lamda of 0.522 yields a p-value of 0.103, and hence 

TABLE 13.4 Eigenvalue and Significance Test for Discriminant Function 

Eigenvalues 

Function Eigenvalue % of Variance Cumulative % Canonical Correlation 

1 0.915a 100.0 100.0 0.691 

Wilks’ Lambda 

Test of Function(s) Wilks’ Lambda Chi-Square df Sig. 

1 0.522 4.548 2 0.103 
aFirst 1 canonical discriminant functions were used in the analysis. 



527 LDA IN R AND SPSS 

TABLE 13.5 Unstandardized Coefficients (left), Standardized Coefficients (middle), 
and Structure Coefficients (right) for Discriminant Analysis 

Standardized Canonical 
Canonical Discriminant Discriminant Function 
Function Coefficients Coefficients Structure Matrix 

Function Function Function 
1 1 1 

x1 0.497 x1 0.854 x1 0.817 
x2 0.431 x2 0.578 x2 0.523 
(Constant) �3.283 
Unstandardized coefficients 

the function is not statistically significant at α � 0:05; however, depending on our 
priority for minimizing type II errors, the function may still be of use, even if 
statistically significant at a more liberal level. 

The standardized canonical discriminant function coefficients (Table 13.5, mid
dle) reveal which variables have the greatest “impact” on the discriminant function. 
For our data, variable x1 has the largest absolute weight (0.854) and hence can be said 
to be more “relevant” to the discriminant function than x2, which has a weight of 
0.578. Note that these are the standardized versions of the raw coefficients generated 
in R earlier (Table 13.5, left). Also included is the intercept (constant) term of �3.283, 
which, just as in regression, is required for obtaining predicted values. The model 
equation for raw scores is thus: 

´ y � �3:283 � 0:497x1 � 0:431x2i 

The structure matrix (Table 13.5, right) provides the raw bivariate correlations 
between the given observed variables and the discriminant function. The relative 
magnitude of these coefficients does not always correspond with those of the 
standardized coefficients, since both coefficients measure something different. 
However, for these data, both the standardized and the structure coefficients 
generally tell the same story, in that x1, with a standardized coefficient of 
0.854 and structure coefficient of 0.817, is more relevant to the discriminant 
function than x2 with a standardized coefficient of 0.578 and structure coefficient 
of 0.523. 

SPSS next provides the classification results that are more or less parallel to those 
given earlier in R: 
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Matching up the results with those of R is straightforward. The second column, 
Actual Group, and the third column Predicted Group, provide the same information 
we generated earlier in Table 13.3. As we noted then, and as reported by SPSS, cases 9 
and 10 were misclassified, but all other cases were classified correctly. By default, 
SPSS also provides us with squared Mahalanobis distances. These distances take the 
form 

´ S�1D2 � �y1 � y2� �y1 � y2� 
where y1 and y2 are data sample vectors and S�1 is the pooled sample variance– 
covariance matrix of S1 and S2, respectively. Notice that values of D2 coincide with the 
respective columns reporting predicted probabilities of group membership to the 
immediate left of D2. This is not a coincidence, since P(G = g | D = d) denotes the 
probability that a case belongs in a given group g given its respective Mahalanobis 
distance. Cases with relatively large distances relative to a given centroid (i.e., mean of 
discriminant scores) have a lower probability of being classified to that group. 
Conversely, cases with relatively small distances have an increased probability. 
The right-most column of the SPSS output provides the computed discriminant 
scores, analogous to those reported by R and given in Table 13.3. Entire chapters 
exist on so-called classification analysis, and a further discussion of these procedures 
is beyond the scope of this chapter. However, an understanding of how to classify 
based on discriminant scores or D2, as evidenced from R and SPSS output for our 
example, provides the essential idea about what classification analysis is generally all 
about. 

13.4 DISCRIMINANT ANALYSIS FOR SEVERAL POPULATIONS 

Up to now we have discussed discriminant analysis for the case of using a linear 
combination of predictors to predict group membership where there are only two 
groups on the response variable. If there are more than two groups defined on the 
response, we need to expand the theory underlying the method similar to how we did 
so in the case of MANOVA. 

For a problem in which there are more than two groups, we require more than a 
single discriminant function to account for group separation. The number of 
functions necessary to maximally discriminate between groups is referred to as the 
dimensionality, or  rank of the separation (Timm, 2002). Referring once more to 
Fisher’s Iris data, while one discriminant function may distinguish species setosa 
from versicolor and virginica for instance, a second discriminant function may 
prove useful in differentiating between versicolor and virginica. Each discriminant 
function then serves a purpose when it comes to the overall discrimination between 
species. 

We survey some of the theory behind discriminant analysis for several populations 
by expanding the theory already discussed for the two-population discriminant 
function. We then illustrate how to conduct an analysis for the multi-population case. 
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13.4.1 Theory for Several Populations 

Recall for the two-group problem, we sought a vector a that maximally separated 
�ℓ1 � ℓ2�2. The separation criterion for the two-group case was given by (13.3). At its 
core, d2 was expressing a very simple idea, that of a squared difference between means 
relative to overall variance. If the squared difference between means �ℓ1 � ℓ2�2 is large 

2relative to overall variance sℓ, then separation is “better” than if �ℓ1 � ℓ2�2 is relatively 
2small or equal to overall variance sℓ. Of course, the overtones to what is accomplished in 

ANOVA are glaring. What we found for the two-group problem was that the vector 
1a � S� �y1 � y2� is what provides the maximum separation between groups on the p 

binary response. When we made the relevant substitution, we got (13.5). 
We now extend these principles to the p-group case for p populations where we 

have a polytomous response variable. For this, we will naturally invoke ideas and 
matrices from MANOVA, since recall that LDA and MANOVA are essentially 
inverses of one another. The LDA for several groups is quite easy to grasp if the 
principles of MANOVA were understood. We follow Rencher and Christensen 
(2012, pp. 289) quite closely in our development. 

Recall that MANOVA featured two primary matrices: the “hypothesis” matrix, or 
H, and the “error” matrix, or E. In going from the two-group case to the multigroup 
situation, we will use H in place of �y1 � y2��y1 � y2�´ and E in place of Sp. This ´ ´substitution yields λ, a ratio of a Ha to a Ea: 

´a Ha 
λ � (13.6) 

a ́Ea 

Some algebra on (13.6) reveals that 

´a Ha 
λ �

a ́Ea ´ ´a Ha � λa Ea 
´ a �Ha � λEa� � 0 

We now ask the question: “What values of a (other than a � 0, which is the trivial 
case) result in a maximum for λ?” We find solutions by 

�Ha � λEa� � 0 
(13.7) �E�1H � λI�a � 0 

The solutions of (13.7) are the eigenvalues and corresponding eigenvectors of E�1H 
(Rencher and Christensen, 2012). 

The number of nonzero eigenvalues is the rank of H, and is the smaller of the 
number of predictors k or one less the number of populations p. The largest eigenvalue 

´ ´λ1 is the maximum value of λ � a Ha=a Ea, with a1 being the coefficient vector that 
generates the maximum. In obtaining the eigenvectors a1; a2; . . . ; as of E�1H 
corresponding to λ1 to λs eigenvalues, we generate s discriminant functions of the 

´ ´ ´ like, ℓ1 � a1y; ℓ2 � a2y; . . . ; ℓs � a y, which reveals the dimensions or directions of s
differences among y1; y2; . . . ; yp. As noted by Rencher and Christensen, such 
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discriminant functions are uncorrelated but are not orthogonal because E�1H is not a 
symmetric matrix. When we survey principal component analysis in Chapter 14, we 
will extract linear combinations that are both uncorrelated and orthogonal. This 
distinction is a crucial one when deciphering between discriminant functions and 
principal components. Components have the stronger property of orthogonality. 

As an example of discriminant analysis for several groups, recall the Q–V data in 
Chapter 12 (Table 12.3), in which we performed a MANOVA testing the null 
hypothesis of no mean vector differences on training, having levels 1 = no training, 
2 = some training, and 3 = extensive training. Suppose instead we wished to learn 
whether the linear combination of Q and V can differentiate between training groups. 
We compute the discriminant analysis as follows: 

> lda.fit <- lda(T.f ∼ Q + V, data = iq.data)
 
> lda.fit
 

Call:
 
lda(T.f ∼ Q + V, data = iq.data)
 

Prior probabilities of groups:
 
none some much 

0.3333333 0.3333333 0.3333333 

Group means: 
Q V  

none 4.333333 2 
some 8.000000 8 
much 9.666667 9 

Note that the prior probabilities, by default, are set to 0.33 in each group. This is 
analogous to them being set to 0.5 by default in the two-group problem, only that now, 
because we have three groups, we divide the total probability of 1.0 by 3, yielding 
0.33 per group. We also note the group means reported on Q and V for each level of 
the training factor. They are 4.33, 8.00, and 9.67 for groups 1, 2, and 3, respectively. 

Next are given the raw discriminant function coefficients. Recall that because we 
have three groups on the independent variable, this calls for two discriminant 
functions to be extracted: 

Coefficients of linear discriminants: 
LD1 LD2 

Q 0.02983363 0.8315153 
V 0.97946790 -0.5901991 

Proportion of trace: 
LD1 LD2 

0.9889 0.0111 
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Plots of discriminant scores across LD1 (i.e., the first discriminant function) and 
LD2 are given below (to get the plots with the labels instead of numbers, levels 
(T.f) <- c("none", "some", "much")). 

> plot(lda.fit) 

The way to read these plots is to draw a vertical line at LD1 = 0 and a horizontal 
line at LD2 = 0. Looking at LD1, for instance, it is clear that the function is providing 
good separation between group 1 versus 2 and 3, while for LD2, it is not providing 
nearly as much separation. Of course, these are very small data, so we would not put 
too much stock in the results, but the essence on how to read these plots is the same for 
larger data sets as well. 

How “important” is LD1 compared with LD2? Recall that we can obtain a measure 
of the overall relevance of a discriminant function by contrasting its eigenvalue to the 
sum of eigenvalues extracted: 

λi (13.8)s 
λj 

j�1 

swhere λi is the ith eigenvalue for the ith discriminant function and j�1 λj is the sum 
of all s eigenvalues from j � 1 (i.e., the first) to the last (i.e., s). Recall that the 
eigenvalues obtained through MANOVA for this problem were equal to 14.35 and 
0.16 for functions 1 and 2, respectively (Section 12.14). Hence, for the first function, 
(13.8) is equal to 14.35/(14.35 + 0.16) = 14.35/14.51 = 0.98897, which is as noted in 

sR’s output under Proportion of trace. For the second function, λi= j�1 λj is 
equal to 0.16/14.51 = 0.011, which is reported by R as well for LD2. We already 
suspected by a look at the LD plots that the first function was “doing all the work,” and 
indeed, our computation of (13.8) for each function confirms it. LD1 is accounting for 
most of the group separation. 

13.5 DISCRIMINATING SPECIES OF IRIS: DISCRIMINANT 
ANALYSES FOR THREE POPULATIONS 

We demonstrate a discriminant analysis for three populations on the Iris data. Recall 
that these data were analyzed as a MANOVA in the previous chapter. Since LDA is 
essentially the “reverse” of MANOVA, we remark once more on parallels between 
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the two analyses. Our goal is to learn whether we can predict species membership 
(setosa, versicolor, virginica) based on knowledge of explanatory variables sepal 
length, sepal width, petal length, and petal width. 

> lda.iris <- lda(Species ∼ ., iris) 

Note that since we are modeling all predictors, we can specify the model statement 
as “ ∼ .” to indicate this. The output now follows: 

> lda.iris 

Call:
 
lda(Species ∼ ., data = iris)
 

Prior probabilities of groups: 
setosa versicolor virginica 

0.3333333 0.3333333 0.3333333 

Group means: 
Sepal.Length Sepal.Width Petal.Length Petal.Width 

setosa 5.006 3.428 1.462 0.246 
versicolor 5.936 2.770 4.260 1.326 
virginica 6.588 2.974 5.552 2.026 

Coefficients of linear discriminants: 
LD1 LD2 

Sepal.Length 0.8293776 0.02410215 
Sepal.Width 1.5344731 2.16452123 
Petal.Length -2.2012117 -0.93192121 
Petal.Width -2.8104603 2.83918785 

Proportion of trace: 
LD1 LD2 

0.9912 0.0088 

As a result of having a total of three groups, the prior probabilities, by default, are 
again set at 0.33 for each. LDA has extracted two linear discriminant functions, LD1 
and LD2. Recall that it extracted 2 as a result of the response variable having three 
levels. The proportion of trace figures reveal that the first eigenvalue and 
second eigenvalues extracted account for 99.12% and 0.88%, respectively, of the total 
sum of eigenvalues. Clearly, the first discriminant function is much more relevant than 
the second. To gain an appreciation of their respective importance, we plot the 
discriminant functions. With begin with the first function (dimen = 1): 

plot(lda.iris, dimen = 1) 
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We can see that the first function appears to do a good job of separating setosa 
from versicolor and virginica. To visualize results for both functions, we request 
dimen = 2, and also request a density plot displaying the performance of the first 
function in distinguishing between species: 

> plot(lda.iris, dimen = 2)
 
> plot(lda.iris, type = "density", dimen = 1)
 

As confirmed by both plots, the first linear discriminant function, LD1, is doing a 
great job at differentiating versicolor and virginica from setosa. The second linear 
discriminant function, LD2, is not differentiating species very well. Of course, this 
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aligns with the fact that the second eigenvalue extracted accounts for only 0.88% of 
the sum total of eigenvalues. 

We request classification results: 

> fit <- lda(iris$Species ∼., iris) 
> table(iris$Species, predict(fit)$class) 

setosa versicolor virginica 
setosa 50 0 0 
versicolor 0 48 2 
virginica 0 1 49 

We can see that the discriminant analysis does a perfect job in the sample at 
classifying setosa (50 for 50), but makes two errors in classifying versicolor (48 for 
50) and one error in classifying virginica (49 for 50). 

13.6 A NOTE ON CLASSIFICATION AND ERROR RATES 

While on the topic of classification, we should also emphasize that discriminant 
function analysis is usually distinguished by many authors as distinct from what is 
generally known as classification analysis. Their difference is best summarized by 
Timm (2002): 

A classification rule usually requires more knowledge about the parametric structure 
of  the groups.  The goal of classification analysis is to create rules for assigning 
observations to groups that minimize the total probability of misclassification or the 
average cost of misclassification. Because linear discriminant functions are often 
used to develop classification rules, the goals of the two processes tend to overlap 
and some authors use the term classification analysis instead of discriminant 
analysis. (p. 420) 

In this chapter, our focus has been on linear discriminant analysis. We have not 
covered classification analysis in any depth other than displaying select results of said 
analyses in R and SPSS output in the form of predicted values and confusion matrices. 
Linear classification functions have been developed in the pursuit of generating 
optimal rules that attempt to minimize errors in classification. Quadratic classification 
functions have also been developed for situations in which it is not reasonable to 
assume equality of covariance matrices across groups. 

Though we do not discuss classification in any depth in this chapter, it 
behooves us nonetheless to consider how we can conceptualize the importance 
of costs associated with misclassification. For example, let us consider the 
simplest of cases, that of classification for two populations. Table 13.6 shows 
a 2  × 2 table where Decision denotes the choice we are making with regard to 
classifying into populations P1 and P2. Population reflects the actual true 
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TABLE 13.6 Decision Table for Discriminant 
Analysis with Binary Dependent Variable 

Decision 

D1 D2 

Population P1 0 C(2|1) 
P2 C(1|2) 0 

population status. The costs of misclassification, denoted by C(2|1) and C(1|2), 
are given as follows: 

•	 C(2|1) is the cost associated with deciding on D2 when in actuality, P1 is the 
correct population 

•	 C(1|2) is the cost associated with deciding on D1 when in actuality, P2 is the 
correct population 

The elements of C(2|1) and C(1|2) in Table 13.6 are the costs associated with 
making the wrong decision. The reader may have noticed that if we regard P1 as 
standing for the null hypothesis and P2 as the alternative hypothesis, then C(2|1) 
represents the cost of making a type I error. Likewise, C(1|2) represents the cost of 
making a type II error. 

You might ask how and why estimating costs is relevant in the discriminant 
problem. Recall from our discussion in Chapter 2 that in any decision, it behooves 
us to consider the costs of making the wrong decision and, even if informally, 
quantifying these costs in terms of a cost function. True,  for Fisher’s Iris data, the 
costs associated with misclassifying an observation into the wrong species class are 
in actuality not so great. That is, if a case of versicolor is misclassified as virginica, 
though to the plant biologist this may indeed be symbolic of a catastrophe, in the 
end, nobody gets hurt. However, it is quite another matter when considering the 
costs of misclassification in the treatment of mental illness, for instance. If a 
classification rule designates a client’s suicidal probability as “low risk,” when in 
fact the client is at high risk of committing suicide, the cost associated with making 
the wrong decision could indeed be catastrophic. Likewise, if a discriminant 
function predicts preflight wing de-icing on an airplane to not be required when 
in fact it is required, the costs of making a wrong decision in this context could 
likewise be life-threatening. 

Decisions dominate science as they do everyday life. Each decision has associated 
with it an error rate, whether known or unknown. A point emphasized throughout this 
book is that decision criteria need to be set in an intelligent and thoughtful manner, 
relatively specific to the cost functions for a given problem. The problem, of course, 
inherent in any decision task is in estimating or otherwise quantifying the costs 
associated with making wrong decisions. Many times these costs are implicit in that 
we do not always acknowledge their existence, or are even aware of their existence. 
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As an example, consider the situation where on a stretch of highway, one or two 
lives have been lost in each of the preceding 10 years. Suppose that each of these 
deaths is quite easily attributed as due to not having a median separating the lanes of 
oncoming traffic. Each year however, nothing changes. Deaths occur, but still no 
median is constructed. Could these deaths be avoided? Of course. If they could be 
avoided by constructing the median, then why is the median not constructed? Quite 
simply, the energy, in terms of money, political motivation, and so on, is simply not 
“worth it” in terms of saving 1–2 lives per year. That is, statistically, 1–2 lives per year 
is, even if implicitly, regarded as acceptable risk and associated cost for this problem. 
Each death in this regard is generally what is referred to as a statistical life. But what if 
in the following 2 years, each year 10 persons die on the highway instead of only 1–2? 
What happens is that a median is constructed the following year. Why? Statistically 
speaking, because the risk and costs associated with the status quo decision of doing 
nothing have become too high. Under the new data of 10 deaths, the decision is 
changed to one of putting up a median, and consequently the required finances and 
political motivation suddenly surface. 

Our point then in our brief discussion of costs of misclassification is merely to 
emphasize an awareness of them in virtually every decision context one may 
consider. The assessment of them, and hence their quantification, can be quite 
challenging. The point is, however, that they are usually still there, and any decision, 
made in an intelligent and rational manner, requires their consideration whether the 
problem is one of highway construction, career choices, family decisions, medical 
surgery choices, or spinning the wheel in roulette. Indeed, much of statistical and 
probabilistic analysis can be said to serve the end goal of rational decision making. 
And as emphasized, it is impossible to make good decisions without at least some 
insight into the costs and benefits of making the right or wrong choices. 

We have only skimmed the surface with regard to decision analysis, which is 
largely (but not exclusively) a branch of probability and statistics. The reader 
interested in learning more about how probabilities and other considerations (e.g., 
value appraisals) can be used in pragmatic decision making is encouraged to refer to 
Goodwin and Wright (2004). A useful source on decision making in the medical 
sciences is Hunink et al. (2001). For the behavioral side of decision making, see 
Kahneman and Tversky (2000). 

13.7 DISCRIMINANT ANALYSIS AND BEYOND 

Just as was true for logistic regression in which we said that higher-order factorial and 
within-subjects designs could be used, such extensions can also be applied to discrimi
nant analysis. For instance, suppose we wished to classify recovery (yes versus no) 
based on repeated health status measurements taken several times over the course of a 
year. One could estimate classification rates based on this series of repeated measure
ments. One could also test the hypothesis that the repeated measure interacts with 
another variable (e.g., gender) in predicting recovery. The interested reader is referred to 
Lix and Sajobi (2010) for discriminant analysis for repeated measures. 
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All of the model-building strategies reviewed in Chapter 9 on multiple 
regression, such as forward selection, backward elimination, and stepwise, are 
also available in discriminant analysis. Just as is true for the application of many 
other statistical models, cross-validation of a discriminant analysis is always a 
good idea if one has such availability in terms of sample size. Various sample-
splitting approaches can be used such as the holdout (also known as leave-one
out) method in which all but one observation is used in generating a classification 
rule. The rule is then evaluated on how well it classifies the omitted observation. 
As discussed by Rencher and Christensen (2012), such a method can prove useful 
in estimating error rates. 

13.8 CANONICAL CORRELATION 

We close this chapter with a brief survey of canonical correlation analysis (CCA). 
Recall that in results obtained both in MANOVA and LDA, software provided us with 
canonical correlation coefficients for respective discriminant functions. We demon
strated how these coefficients could be related to eigenvalues extracted in accounting 
for the respective discriminant functions. But what are these canonical correlations, 
exactly? In concluding this chapter, we survey the nature of this coefficient, as well as 
provide an example of one of the first canonical correlation analyses, Hotelling’s 
analysis of 1936: 

Concepts of correlation and regression may be applied not only to ordinary one-
dimensional variates but also to variates of two or more dimensions . . . For example 
the scores on a number of mental tests may be compared with physical measurements on 
the same persons. The questions then arise of determining the number and nature of the 
independent relations of mind and body shown by these data to exist, and of extracting 
from the multiplicity of correlations in the system suitable characterizations of these 
independent relations. 

(Hotelling, 1936, p. 321) 

CCA is a method of assessing the linear relationship between two sets of linear 
combinations. For example, suppose a researcher would like to test the hypothesis that 
intelligence is related to achievement in school. The researcher could, in practice, 
collect data on a student’s IQ using a single test, then use this to predict his or her GPA 
in school. One could test for a possible linear relationship using Pearson’s correlation 
coefficient, evaluate it for statistical significance, and proceed to make an inference on 
the population. 

However, on a substantive level, we must ask the question of whether that single 
IQ test truly “captures” the construct of intelligence. If we believe there is more to 
measuring IQ than the administration of a single test, then we might wish to use an 
additional measure in assessing one’s IQ—perhaps another test that purports to 
measure another facet of intelligence. Likewise, we must ask whether GPA truly 
captures all there is to know about school achievement. In addition to GPA, we might 
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use the general test from the GRE,1 for instance, to assess one’s mastery of verbal, 
quantitative, and analytical skills. It is in contexts such as these where canonical 
correlation may prove useful. We wish to generate a linear combination of one set of 
variables (e.g., IQ test 1 and IQ test 2) and use that linear combination to predict 
another linear combination (e.g., GPA and GRE). 

As another motivating example, suppose a researcher would like to assess the 
degree of relationship between reading and arithmetic. One might conceptualize the 
construct of “reading ability” by (1) reading speed, and (2) reading power, and define 
the construct of “arithmetic ability” by (1) arithmetic speed, and (2) arithmetic power. 
By generating linear combinations of reading speed + reading power on the one hand, 
and arithmetic speed + arithmetic power on the other, the researcher could then 
correlate these two linear combinations. This was exactly the approach used by 
Hotelling (1936). We will reproduce his analysis toward the end of this chapter. 

For canonical correlation to be substantively interpretable by the research scientist, 
each linear combination is usually hypothesized to represent some kind of construct or 
“variate.” As was the case in our discussion of MANOVA, if the constructed variates 
do not carry with them some kind of theoretical meaning, then canonical correlation is 
usually not advised, except other than for exploratory purposes. Usually, the 
researcher employing canonical correlation should have at least some reason for 
wanting to combine variables into linear combinations other than the fact that he or 
she simply has many variables at his or her disposal. As always, theory should guide 
whatever statistical analyses you perform, not simply the availability of data.2 

13.9 MOTIVATING EXAMPLE FOR CANONICAL CORRELATION: 
HOTELLING’S 1936 DATA 

Harold Hotelling obtained data from Truman L. Kelley in which measurements on the 
aforementioned variables were recorded on 140 seventh-grade school children: 
reading speed, reading power, arithmetic speed, and arithmetic power. What Hotel-
ling wanted to know from these data is whether reading speed and reading power, 
considered together, or as a  set, were linearly related to arithmetic speed and 
arithmetic power, also considered together, or again, as a set. That is, Hotelling 
wanted to assess the linear relationship between the construct of reading and the 
construct of arithmetic, but knowing all too well that these constructs are multifaceted, 
developed a statistical method that would consider both speed and power simulta
neously on each side of the equation. We can express the function statement for this 

1The GRE, or “Graduate Record Examination” is a standardized test published by ETS, the Educational 
Testing Service. It is taken by thousands of graduate school applicants each year as one of the many criteria 
used on which academic committees base entrance requirements into graduate school. The “general test” on 
the GRE tests skills such as verbal reasoning, quantitative abilities and aptitude, as well as analytical 
capacities. 
2Once more, as discussed in previous chapters, this is not to discourage exploratory work. However, even 
the most rudimentary exploration is somewhat theory-guided. As a researcher, you should have some 
“reason” for wanting to correlate linear combinations over and above the fact that it can be done statistically. 
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problem as 

reading speed � reading power � arithmetic speed � arithmetic power 

As we originally proposed when introducing MANOVA, one naïve way of computing 
the bivariate r between these constructs of reading and arithmetic would be to add 
reading speed to reading power, and arithmetic speed to arithmetic power. That is, 
naively, we could compute the bivariate correlation between the sums of 

reading speed � reading power 

and 

arithmetic speed � arithmetic power 

However, if we simply added them in this fashion, we would have no guarantee 
that these linear combinations would be maximally correlated and yield the largest R 
possible. That is, as we did in our initial “attempt” at MANOVA, our addition of 
reading speed to reading power implicitly weighted these variables as (1) reading 
speed + (1) reading power. Likewise, we implicitly weighted the construct of 
arithmetic with values of “1”: (1) arithmetic speed + (1) arithmetic power. Does 
using weights of “1” result in the maximum correlation possible between the two 
linear composites? Probably not. What is needed is a method of estimating these 
coefficients that will weight the variables of each construct in such a way that the 
maximum correlation between linear combinations is achieved. 

Below is the correlation matrix analyzed by Hotelling, which we have reproduced 
in R: 

reading speed reading power arithmetic speed arithmetic power 

reading speed 1.0000 0.6328 0.2412 0.0586 

reading power 0.6328 1.0000 -0.0553 0.0655 

arithmetic speed 0.2412 -0.0553 1.0000 0.4248 

arithmetic power 0.0586 0.0655 0.4248 1.0000 

In what follows, we learn how to take such a correlation matrix and decompose it 
into canonical correlations. The canonical variates extracted will represent the 
dimensions along which the constructs reading and arithmetic are linearly related. 
For a proof of why the canonical correlation is the maximum correlation, see Anderson 
(2003, pp. 495–496). 

13.10 CANONICAL CORRELATION AS A GENERAL 
LINEAR MODEL 

Canonical correlation can be interpreted as a technique that encompasses other 
techniques as special cases. Indeed, in learning statistical methods, it is advantageous 
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to the learner to be able to see some analyses as “subcategories” of other analyses. In 
terms of function statements, canonical correlation can be expressed as 

y1; y2 � x1; x2 

where y1,y2 is one linear combination, and x1,x2 is another. Notice that from this 
“wider” analysis can be identified many smaller analyses in the following function 
statements: 

•	 If we use x1; x2 to predict y1; y2, both continuous, then the model can be 
conceptualized as a multivariate multiple regression. It is a multiple regression 
because we have more than a single explanatory variable. It is multivariate 
multiple regression because we have more than a single response variable. 

•	 If we drop one of the dependent continuous variables, y2, such that our model is 
y1 � x1; x2, and we are interested in having continuous variables x1; x2 predict y1 
simultaneously, the analysis becomes a multiple regression. It is a multiple 
regression because we have more than one explanatory variable predicting a 
single response variable. 

•	 If we keep y1; y2 as continuous but change x1; x2 to categorical predictors with 
“levels,” then the model becomes a two-way factorial multivariate analysis of 
variance. 

•	 If we again drop one of our dependent variables, and make y1 binary or 
polytomous (i.e., having several groupings), then our analysis could either be a 
discriminant analysis or logistic regression. Recall that discriminant analysis 
and logistic regression, although differing in assumptions and interpretation, 
both use explanatory variables to predict group membership on a response 
variable. 

We summarize the idea of model “generality” toward the end of this chapter. We 
also revisit it in Chapter 16 when we discuss path analysis and structural equation 
modeling (SEM). As we will see, canonical correlation itself can be conceived as a 
special case of the wider SEM framework. 

13.11 THEORY OF CANONICAL CORRELATION 

We begin the development of canonical correlation by first considering two sets of 
random variables y ́ � �y1; y2; . . . ; yp� and x ́ � �x1; x2; . . . ; xp�. As mentioned earlier, 
the first set of p variables y1; y2; . . . ; yp might consist of a set of measures of 
intelligence, while the second set of p variables x1; x2; . . . ; xp might consist of 
scholastic achievement data. Or, in the case of Hotelling’s data, they might consist 
of reading speed and reading power for y1; y2; . . . ; yp and arithmetic speed and 
arithmetic power for x1; x2; . . . ; xp. It is important to recognize that both sets of 
measurements are on the same individuals. The goal of CCA is to measure the extent 
to which these two sets of variables are linearly related. 
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Notice that in the situation in which we were to reduce each set to a single variable, 
y1 and x1, the canonical correlation would reduce to the simple Pearson correlation 
coefficient r in which the linear relationship between two variables is assessed. 
Canonical correlation is simply the maximum bivariate correlation, but on sets, or  
linear combinations, of variables rather than on individual variables. 

Typically, both sets are assumed to be random variables, however work has been 
done on considering one set fixed and the other random (e.g., see Andersen, 2003, 
p. 488). Technically, canonical correlation accomplishes something very similar to 
principal components analysis (see Chapter 14) in that it seeks to transform the first p1 
coordinate axes along with a transformation of the second p2 coordinate axes to a new 
system p1 � p2 that depicts the correlations between vectors. 

Recall the sample covariance matrix, S of Chapter 3: 

S � �sjk� �  

s11 s12 ∙ ∙ ∙  s1p 

s21 s22 ∙ ∙ ∙  s2p 

. .

. . .
. . .

. . .
. 

. .

. . .
. 

∙ ∙ ∙  . .
. 

. .

. . .
. 

∙ ∙ ∙  . .
. 

sp1 sp2 ∙ ∙ ∙  spp 

(13.9) 

where sjk are the covariances for variables j by k. Equation (13.9) can be partitioned as 

Syy SyxS � 
Sxy Sxx 

where Syy and Sxx are the covariance matrices for y and x, respectively, and Syx and Sxy 
are covariance matrices between y and x. Now, suppose we have two linear 

´ combinations, ℓ1 � a y and ℓ2 � b ́ x. The sample correlation coefficient between 
two linear combinations can be defined as 

covℓ1;ℓ2 a ́Syxb 
rℓ1;ℓ2 � � p

2 2 �a ́Syya��b ́ Sxxb�s sℓ1 ℓ2 

Note the parallel between the correlation between linear combinations above and the 
“ordinary” Pearson correlation between two variables (rather than variates). In the 
numerator, we have a ́Syxb, which is essentially a cross-product, somewhat analogous 
to the cross-product in an ordinary Pearson correlation. In the denominator, we have p�a ́Syya��b ́ Sxxb�, which is analogous to the product of standard deviations in 
ordinary Pearson correlation. The only conceptual difference between canonical 
correlation and ordinary Pearson correlation is that the former is conducted on a linear 
combination of variables, while the latter is performed on much “simpler” linear 
combinations (i.e., consisting of only single variables). If you forever think of simple 
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correlation as a correlation of linear combinations consisting of only single variables, 
then canonical correlation will rightfully appear as an extension and expansion into 
more complex linear combinations made up of several variables. 

The goal of canonical correlation analysis is to find coefficient vectors a and b such 
that the correlation between linear combinations, rℓ1;ℓ2 is as large as possible. How 
can these coefficients be found? They are obtainable in several ways, one of which is 
appeal to multiple R, of which R2 may be defined as: 

S�1jSyx Sxy jxxR2 � jSyy j 
Notice that we are dividing by the determinant of Syy, jSyy j. We can rewrite the 
above as: 

S�1R2 � jS�1Syx Sxy j (13.10) yy xx 

Why does this form of R2 make sense? One way to understand why, in an informal sense, 
is to consider what is contained in the product S�1SyxS�1Sxy. Again, notice that what we yy xx 
are computing is somewhat analogous to what we compute when calculating Pearson r. 
That is, we are computing the product Syx by Sxy and then “dividing” by the product Syy 
by Sxx, only we have to write  S�1 and S�1 to denote the “division” because we are using yy xx 
matrices. The computation of R2 is somewhat conceptually analogous to Pearson r 
because the product is divided by the product of standard deviations. Recall Pearson r: 

n �xi � x��yi � y�=�n � 1� 
i�1 cov 

r � � 
sx 
2 ? sy 

2 s2 
x ? s

2 
y 

Of course, it is not the same as Pearson r, since in (13.10) we are in a multivariable 
setting and there is a lot more going on in (13.10) than with r. But if you are able to spot 
parallels, or even generic inexact similarities between simpler statistical concepts and 
computations and more advanced ones, you will be well on your way to realizing that 
understanding advanced statistical procedures usually depends on your grasp of the 
simplest, most core essentials. Advanced statistical methods are usually expansions 
and extensions of such core, fundamental concepts, and many times these can be used 
as stepping stones to more sophisticated methodologies, or at minimum, informal ways 
to try to make sense of formulae. 

2It can also be shown that (13.10) is equal to the product of respective ri values 
extracted. That is, 

R2 S�1� jS�1Syx Sxy jyy xx 
s � ∏r2 

i 
i�1 
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2 S�1These r are the eigenvalues of S�1Syx Sxy. The square roots of these eigenvalues i yy xx 
are called the canonical correlations. Tests of statistical significance for each 
canonical correlation are analogous to those used in MANOVA and LDA. Hence, 
one can interpret Wilk’s lambda, Pillai’s trace, Lawley–Hotelling or Roy’s largest 
root, where, for instance, in the context of canonical correlation, Wilk’s can be given 
by (Timm, 2002, p. 483): 

jSj jRj
Λ1 � � jSyy jjSxx j jRyy jjRxx j 

Note that we are specifying the subscript “1” under Λ (i.e., Λ1) to indicate that this is 
Wilk’s Lambda computed for the first canonical correlation. If we are extracting more 
than a single canonical correlation, then Wilk’s can be used to test these successive 
dimensions (i.e., Λ2; Λ3; Λ4; . . . ; Λs). We reject the null hypothesis of no linear 
relationship if Λ1 � Λα, where Λα is the critical value based on our chosen signifi
cance level. For making inferences, canonical correlation generally assumes multi
variate normality, homogeneity of covariance matrices, and of course, a linear 
relationship among canonical variates. 

The number of canonical correlations extracted will be the smaller of the number of 
y variables or x variables. Just as for ordinary Pearson r, canonical correlations are 
invariant to linear transformations on scales of the variables making up the correla
tion. That is, even if we linearly transposed the scale of x or y, the canonical correlation 
between variates would remain the same. 

13.12 CANONICAL CORRELATION OF HOTELLING’S DATA 

We perform a simple canonical correlation on Hotelling’s data discussed at the outset 
of this section. We generate Hotelling’s matrix in R: 

> cancor <- c(1.0000, .6328, .2412, .0586, 
+ .6328, 1.0000, -.0553, .0655, 
+ .2412, -.0553, 1.0000, .4248, 
+ .0586, .0655, .4248, 1.0000)
 
> cancor.matrix <- matrix(cancor, 4, 4, byrow = TRUE)
 

> cancor.matrix 
[,1] [,2] [,3] [,4] 

[1,] 1.0000 0.6328 0.2412 0.0586 
[2,] 0.6328 1.0000 -0.0553 0.0655 
[3,] 0.2412 -0.0553 1.0000 0.4248 
[4,] 0.0586 0.0655 0.4248 1.0000 

Because it is a correlation matrix, it is symmetric, meaning that the lower triangular 
is a mirror image of the upper triangular. The correlation between reading speed 
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and reading power is the highest correlation (row 1, column 2, r = 0.6328), with the 
correlation between arithmetic speed and arithmetic power being the second highest 
(row 3, column 4, r = 0.4248). The correlation between arithmetic speed and reading 
power is quite small (r = �0.0553) as is the correlation between reading power and 
arithmetic power (r = 0.0655). 

To get the relevant canonical correlations as found by Hotelling (1936, p. 342, 
(6.2)), we can use CanCor: 

> CanCor(cancor.matrix, 1:2) 
$cor 
[1] 0.39450592 0.06884787 

R next provides us with the raw coefficients for the extracted canonical correla
tions, both for the x variables and the y variables: 

$xcoef 
Can.1 Can.2 

1 1.256845 0.2970177 
2 -1.025317 0.7852413 

$ycoef 
Can.1 Can.2 

3 1.1044722 -0.01818009 
4 -0.4527216 1.00758746 

Two canonical correlations are represented (Can.1 and Can.2) on four variables. 
The weights associated with the first canonical correlation are 1.2568 and �1.0253 for 
reading speed and reading power, respectively, and 1.1045 and �0.4527 for arith
metic speed and arithmetic power, respectively. The weights associated with the 
second canonical correlation are 0.2970 and 0.7852 for reading speed and reading 
power, respectively, and �0.0182 and 1.0076 for arithmetic speed and arithmetic 
power, respectively. Hence, the first canonical correlation is given by 

1:2568 �reading speed� � 1:0253 �reading power� with 

1:1045 �arithmetic speed� � 0:4527 �arithmetic power� 
where “with” is replaced with the canonical correlation of 0.3945. That is, the above 
weighting of reading speed with reading power correlates to a degree of 0.3945 with 
the above weighting of arithmetic speed and arithmetic power. If we square the 
coefficient, we can say that approximately 16% [i.e., �0:3945�2 � 0:1556] of the 
variance is accounted for by this first canonical dimension. The second canonical 
correlation is given by 

0:2970 �reading speed� � 0:7852 �reading power� with 

� 0:0182 �arithmetic speed� � 1:0076 �arithmetic power� 
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where, this time, “with” is replaced with the canonical correlation of 0.0688. Again, we 
conclude that the above weighting of reading speed with reading power is correlated to a 
degree of 0.0688 with the above weighting of arithmetic speed and arithmetic power 
given the extraction of the first canonical dimension. That is, the canonical correlation of 
0.0688 is the maximum correlation possible between these linear composites given the 
extraction of the first canonical correlation (i.e., uncorrelated to it, though not 
orthogonal). If we square the coefficient, we can say that approximately 0.005 [i.e., 
�0:0688�2 � 0:005] of the variance is accounted for by this second canonical dimension. 

13.13 CANONICAL CORRELATION ON THE IRIS DATA: 
EXTRACTING CANONICAL CORRELATION FROM 
REGRESSION, MANOVA, LDA 

We close this chapter by computing a canonical correlation on the Iris data analyzed 
through MANOVA in the previous chapter and through LDA of the current chapter. 
The correlation between variates that we are about to calculate is a strong way to 
conceptualize the similarity between these multivariate techniques. As discussed, 
MANOVA, LDA, and regression analysis can all be conceptualized as special cases 
of the wider canonical correlational model. 

When we run the MANOVA in SPSS, we obtain (where species has levels 0, 1, 2): 

manova sepal_length sepal_width petal_length petal_width by 
species(0, 2) 
/print = sig(eigen). 

Test Name 
Pillais 
Hotellings 
Wilks 
Roys 

Value 
1.19190 

32.47732 
.02344 
.96987 

Approx. F 
53.46649 

580.53210 
199.14534 

Hypoth. DF 
8.00 
8.00 
8.00 

Error DF S

290.00 
286.00 
288.00 

ig. of F 
.000 
.000 
.000 

Note.. F statistic for WILKS’ Lambda is exact. 
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - Eigenvalues 
and Canonical Correlations 

Root No. Eigenvalue Pct. Cum. Pct. Canon Cor. 

1 32.19193 99.12126 99.12126 .98482 
2 .28539 .87874 100.00000 .47120 

The first canonical correlation between variates y (species) and x (Iris features) is 
reported to be 0.98482. As a demonstration, recall from Chapter 12 that Pillai’s is  
defined as 

s λiV �s� � tr �E � H��1H � 
i�1 1 � λi 
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The respective eigenvalues for this problem are 32.19193 and 0.28539, with which 
s 2 2V �s� � 1:19190 can be easily verified. We can also compute V �s� as i�1 ri , where ri are 

respective squared canonical correlations, which for this problem can also be easily 
confirmed. And since LDA is essentially the “reverse” of MANOVA, the above 
canonical correlations provide a general “link” between these procedures. But what 
about regression? The corresponding analysis would be a multivariate regression since 
there are several response variables and a single predictor. However, the only analytical 
difference between such a model and that of the MANOVA model would be in coding 
the independent variable appropriately to accommodate a regression framework. 
Otherwise, the two analyses are essentially the same. Whether the model be ANOVA, 
MANOVA, LDA, or regression, canonical correlation subsumes them all. 

13.14 CHAPTER SUMMARY AND HIGHLIGHTS 

•	 Discriminant analysis, originally proposed by R.A. Fisher in 1936, is a proce
dure useful for classifying objects, subjects, or items into one of two or more 
mutually exclusive populations. The response variable is either dichotomous or 
polytomous, making ordinary least-squares regression inappropriate. 

•	 Discriminant analysis is essentially the reverse of multivariate analysis of 
variance. In MANOVA, the linear composite is the response variable; in 
discriminant analysis, the linear composite is the predictor. 

•	 Through the computation of eigenvalues and eigenvectors, discriminant analy
sis finds a vector that maximizes the ratio of the difference between population 
means to the standard deviations within. This vector is called the discriminant 
function. 

•	 The number of discriminant functions extracted will be the smaller of the number 
of predictors or one less the number of populations on the response variable. 

•	 Discriminant analysis in R can be performed using the lda function with a 
model statement analogous to that used for the lm function. 

•	 Prior probabilities of population membership can be set to represent a priori 
base rate knowledge before conducting the discriminant analysis, analogous to 
how the probability of “success” versus “failure” can be set prior to modeling a 
binary variable with the binomial distribution. These prior probabilities can 
have an influence on the post-discriminant analysis classification results. 

•	 For any discriminant analysis extracting more than a single function, the 
respective eigenvalue can be compared relative to the sum of eigenvalues to 
ascertain the relative “importance” that the function carries with discriminating 
populations. 

•	 As was true in the case of MANOVA, Wilks’ Lambda can be obtained for each 
discriminant function along with an associated significance test. A consideration 
of error rates and their respective costs, even if informally, should be considered in 
any decision rule, not only those used in LDA. 
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•	 Canonical correlation analysis is a method for assessing the linear relationship 
between two sets of linear combinations. 

•	 Each linear combination is usually hypothesized to represent some kind of 
construct or “variate.” If the variates are not meaningful, then other than for 
blind data reduction, canonical correlation is usually not advised. 

•	 Scalars for the linear combinations are chosen such that they result in linear 
combinations that are maximally correlated. “Maximally correlated” does not 
equate to obtained canonical correlations being necessarily “large.” 

•	 Harold Hotelling’s early use of canonical correlation was to correlate the linear 
combination of reading speed + reading power to arithmetic speed + arithmetic 
power. 

•	 Canonical correlation can be seen as a technique that encompasses other 
techniques as “special cases.” For instance, if y1; y2 � x1; x2 is the function 
statement for canonical correlation, then y1 � x1; x2 is the function statement for 
a multiple regression. 

•	 The number of canonical correlations extracted is equal to the lesser of the number 
of variables on the left-hand or right-hand side of the function statement. 

•	 Canonical correlation can be derived in many ways, one of which is through 
multiple R. As is true of Pearson r, canonical correlations are scale invariant. 

•	 Canonical correlation subsumes ANOVA, MANOVA, LDA, and regression, 
and is pedagogically useful in linking such methods. 

REVIEW EXERCISES 

13.1.	 Briefly summarize the similarities and differences between the multivariate 
analysis of variance (MANOVA) and linear discriminant analysis (LDA). 
When is one analysis more suitable than the other? 

13.2.	 Discuss the conceptual similarities between regression analysis, discriminant 
analysis, and logistic regression. On a conceptual, practical level, technical
ities aside, what should be the motivating decision regarding which analysis 
a researcher should choose? 

13.3.	 Compare the discriminant analysis on two populations with that on several 
populations. What are the primary technical distinctions? 

13.4.	 Discuss the relevance of the following for the two-group discriminant 
problem: 

2 �ℓ1 � ℓ2� ´ S�1 
2 � �y1 � y2� p �y1 � y2� sℓ 

13.5. Interpret and discuss the statement “The maximizing vector a is not unique, 
however the direction is.” What does this mean, exactly? 
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13.6.	 Compare a residual in least-squares regression with that of one in discrimi
nant analysis for two populations. How could they be considered concep
tually similar? Different? 

13.7.	 Why is it important to be aware of costs of misclassification in a discriminant 
analysis or any other procedure in which decisions are made regarding a 
case? 

13.8.	 Distinguish between raw and standardized discriminant functions. Which, in 
general, should be interpreted? Why? 

13.9.	 Conduct an LDA on Fisher’s 1947 data in which a linear combination of 
bodyweight and heartweight is used to differentiate between populations of 
sex. Summarize your overall findings. 

13.10.	 Compare and contrast the MANOVA of Fisher’s Iris data with the discrimi
nant analysis of the Iris data. How does output from each procedure 
compare? What are the similarities and differences? 

13.11.	 Recall the achiev data of Chapter 4. Perform a discriminant analysis using 
ac to predict group membership on teach. Summarize the overall findings 
of your analysis, and compare them to the fixed effects ANOVA analysis of 
the same data conducted in Chapter 4. Note as many parallels and differences 
between the two analyses as you can. 

13.12.	 Give an example of a substantive application of canonical correlation from 
your research area of interest. That is, when might a researcher be interested 
in performing canonical correlation in your field? 

13.13.	 For Hotelling’s data, why is simply correlating (1)reading speed + (1) 
reading power to (1)arithmetic speed + (1)arithmetic power not going to 
give us the canonical correlation? 

13.14.	 In what way can canonical correlation be considered a general linear model 
and encompass other techniques as “special cases”? 

Further Discussion and Activities 

13.15.	 In terms of their pragmatic use, discriminant analysis has many parallels with 
the logistic regression model studied in Chapter 11. A common goal of each 
is to classify observations into one of two or more mutually exclusive 
populations. The question often arises as to which method should be used 
and under what circumstances one method is preferable to the other. Press 
and Wilson (1978) compared the two procedures and reported on similarities 
and differences. Read the article and summarize the primary differences 
between the procedures, commenting on the accuracy of classification for 
each procedure on the breast cancer data featured in Example 1 of the article 
on p. 702. 



550 DISCRIMINANT ANALYSIS 

13.16.	 It has been shown that a two-group discriminant analysis generates weights 
that are proportional to those estimated in the analogous regression analysis 
(e.g., see Flury and Riedwyl (1985)). Perform a regression analysis on the 
Iris data where features sepal length, sepal width, petal length, and petal 
width are used to predict categories on species setosa and versicolor. 
Then, perform the analogous discriminant analysis. Compare the results 
of regression to discriminant analysis in each analysis and comment on any 
similarities and differences. 
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PRINCIPAL COMPONENTS ANALYSIS
 

Of course the term “best fit” is really arbitrary; but a good fit will clearly be obtained if we 
make the sum of the squares of the perpendiculars from the system of points upon the line 
or plane a minimum. . . . 

(Pearson, 1901, p. 560) 

Suppose a researcher has collected data on 100 variables, and is interested in knowing 
whether the information in this collection of variables can be expressed in fewer than 
100 dimensions. Perhaps the majority of the variability in this set of variables can be 
summarized in four to five dimensions without losing too much of the original 
information. These four or five dimensions could then potentially be used as 
predictors in a future analysis. The researcher may even try to identify these new 
dimensions and give them names. An appropriate statistical tool for this purpose is 
that of principal components analysis (PCA). 

Principal components analysis is a technique concerned with extracting informa
tion from a covariance or correlation matrix such that a group of p random variables 
can be represented by fewer than p component variables. PCA attempts to reduce the 
dimensionality of a group of correlated variables into a set of mutually orthogonal 
linear combinations of the variables of lower dimension (i.e., of lower rank) and yet 
simultaneously attempting to explain most of the variance in the original variables. 
Substantively, PCA can be considered a data reduction technique. 

Technically, principal components analysis involves the rotation of the original 
coordinate system to a new coordinate system with inherently desirable statistical 

www.wiley.com/go/denis/appliedmultivariatestatistics
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FIGURE 14.1 Basic principal components analysis where E1 and E2 are extracted 
components (Pearson, 1901). 

properties. More precisely, we seek to define an orthogonal transformation to a 
diagonal covariance matrix. Recall that a diagonal matrix means that everywhere 
else other than the main diagonal are zeros, which implies a covariance among 
variables equal to zero. Principal components analysis is essentially, and quite 
simply, a re-expression of the variance encapsulated in a data matrix such that the 
reduction in dimensionality may provide more “insight” into patterns not immedi
ately obvious by inspection of a covariance matrix alone. Computationally, PCA 
reduces to solving for the eigenvalues and eigenvectors of an at least semipositive 
definite matrix by a process generally referred to as eigenvalue analysis or spectral 
decomposition. 

The general idea of PCA is depicted in Figure 14.1, featuring a bivariate plot on 
variables A1 and A2. The vectors E1 and E2 are the principal components. Essentially, 
all that PCA does is establish new axes on the original data so that variance is maximized. 
Note that as is the case of the original A1 and A2 axes (i.e., representing the abscissa and 
ordinate, respectively), the angle between E1 and E2 is one of 90°. That is, the 
components extracted, E1 and E2, are orthogonal to one another. 

A second related goal of PCA is to account for the substantive structure of these 
derived component variables, and if possible, to name these newly obtained variates. 
Identifying whether these linear combinations are substantively meaningful is 
sometimes a priority for the user of PCA, while other times, a primary goal is to 
estimate scores based on the newly obtained components and use these scores as 
inputs to other analyses. 

14.1 HISTORY OF PRINCIPAL COMPONENTS ANALYSIS 

The history of principal components analysis can be traced to Karl Pearson’s work 
“On lines and planes of closest fit to systems of points in space” published in 1901 in 
Philosophical Magazine. In the paper, Pearson outlined the essential method of PCA 
using a least-squares approach. His technique for obtaining components has generally 
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come to be known as the planes of closest fit approach (Anderson, 2003). Pearson 
introduced the problem as follows: 

In nearly all the cases dealt with in the text-books [sic] of least squares, the variables on 
the right of our equations are treated as the independent, those on the left as the 
dependent variables. The result of this treatment is that we get one straight line or plane if 
we treat some one variable as independent, and a quite different one if we treat another 
variable as the independent variable. There is no paradox about this; it is, in fact, an easily 
understood and most important feature of the theory of a system of correlated variables. 
(p. 559) 

The quote from Pearson quite simply notes that the regression of y on x is not the 
same as the regression of x on y, and that each has its own regression line. The 
motivation for principal components analysis comes from Pearson’s following words, 
where he considers the situation in which both independent and dependent variables 
comprise an entire set or system: 

In many cases of physics and biology, however, the “independent” variable is subject to 
just as much deviation or error as the “dependent” variable . . . In the case we are about 
to deal with, we suppose the observed variables – all subject to error – to be plotted in 
plane, three-dimensioned or higher space, and we endeavor to take a line (or plane) 
which will be the “best fit” to such a system of points. (pp. 559–560) 

Pearson then goes on to give an example of principal components, methods for 
finding roots, and then specifies many algebraic and geometrical implications of the 
fitting of the new best fit line, beginning first with telling us exactly what he considers 
to be a “best-fitting” line: 

Of course the term “best fit” is really arbitrary; but a good fit will clearly be obtained if we 
make the sum of the squares of the perpendiculars from the system of points upon the line 
or plane a minimum . . . We  shall make U � S�p2� a minimum. If y were the dependent 

´ variable, we should have made S�y � y�2 a minimum. 
(Pearson, 1901, p. 560) 

With these words, Pearson contrasted his method of principal components with 
that of the then fairly recent, but still relatively established, method of least-squares in 
which the sum of squared deviations about the regression line is minimized (i.e., 

´ S�y � y�2 in Pearson’s quote). Instead of minimizing this sum, Pearson wanted to 
minimize the sum of squared perpendiculars (i.e., U � S�p2�), and gave Figure 14.2 to 
illustrate what he was up to. A principal component is a line that minimizes the sum of 
these squared perpendicular distances. 

Pearson then went on to derive the principal components and provided a 
geometrical representation of his derivation (Figure 14.3). 

In Figure 14.3, Pearson drew three lines, EE ́ , FF  ´ , and AA ́ . The lines EE ́ and FF ́ 

are the least-squares regression lines of y on x and x on y, respectively. The line AA ́ is 
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FIGURE 14.2 Pearson’s 1901 depiction of minimizing perpendiculars. Each P1, P2 is the 
perpendicular distance from the component line (best-fit line in Pearson’s use of the word) to the 
given data point (Pearson, 1901). 

the principal components line. As summarized by Pearson (p. 566), 

EE ́ is found by making S�y ́ � y�2 a minimum; 
FF ́ is found by making S�x ́ � x�2 a minimum; 
AA ́ is found by making S�p2� a minimum 

FIGURE 14.3 Principal component line of best fit versus least-squares regression lines 
(Pearson, 1901). 



HOTELLING 1933 555 

The line AA ́ is the first principal component accounting for maximum variance in 
the data. The line BB ́ , “line of worst fit” is the second principal component 
accounting for maximum variance unexplained by AA ́ , but orthogonal to it since 
it is positioned at a 90° angle relative to the first component. Pearson’s original 
representation of the principal components line of best fit will surely make more sense 
once we have surveyed a modern treatment of PCA in the remainder of this chapter. 

14.2 HOTELLING 1933 

Harold Hotelling is also historically recognized as an “inventor” of principal 
components analysis. In 1933, Hotelling published a paper titled “Analysis of a 
complex of statistical variables into principal components” in The Journal of 
Educational Psychology, emphasizing the technical similarities between it and factor 
analysis. Referring to a set of observed x variables, Hotelling began his paper: 

The x’s will ordinarily be correlated. It is natural to ask whether some more fundamental 
set of independent variables exists, perhaps fewer in number than the x’s, which 
determine the values the x’s will take. If γ1, γ2, . . . are such variables, we shall then 
have a set of relations of the form xi � f i�γ1; γ2; . . .� �i � 1; 2; . . . ; n�. Quantities such 
as the γ’s have been called mental factors in recent psychological literature. However in 
view of the prospect of application of these ideas outside of psychology, and the 
conflicting usage attaching to the word “factor” in mathematics, it will be better simply to 
call the γ’s components of the complex depicted by the tests. (p. 417) 

Hotelling’s reference to “mental factors” was as a result of much of the driving force 
behind components analysis and factor analysis occurring in the field of psychology in 
the early 1900s. Despite Hotelling’s apparent alignment of PCA with the factors of 
factor analysis, PCA should not be interpreted nor viewed as a “special case” of factor 
analysis. Many writers have warned against equating PCA with FA (e.g., see Jolliffe 
(2002)). We emphasize from the outset—principal components analysis is not equiv
alent to factor analysis. PCA generates successive orthogonal linear combinations of 
the variables, whereas factor analysis, as we will see in the chapter to follow, generates 
linear combinations of the factors. And whereas PCA models focus on variance, factor 
analysis models focus more on commonality among variables. How this distinction 
materializes in practice is that in PCA, the to-be-analyzed matrix typically contains unit 
variances (1’s) along the main diagonal. That is, the trace is equal to the sum of variables 
inputted into the analysis. In this way, each observed variable in the procedure 
contributes a single unit of variance before the covariance or correlation matrix is 
subjected to analysis. In factor analysis however, the main diagonal consists of what are 
called communalities, or, more crudely, the amount of shared variance that the given 
variable has in common with other variables also subjected to the factor analysis. 

As well, though PCA and FA often result in similar findings (assuming of course that 
components or factors are actually empirically present and not merely a wishful hope of 
the researcher), PCA is generally considered a relatively atheoretical technique when 
contrasted with FA. That is, a principal components analysis simply seeks to reduce the 
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dimensionality of observed data. Factor analysis also seeks to reduce the dimensionality 
of data, but usually under the assumption that unobserved or latent variables subsume 
the observed correlation among the set of variables. The user of principal components 
often does not, at least to such an extent, assume an underlying “latent” scientific 
structure. Rather, he simply seeks to make the observed data more parsimonious 
through the extraction of components. In general, principal components analysis is a 
much simpler procedure than that of the factor-analytic methods, in both derivation 
and extraction, and also generally in substantive use and application. And though PCA 
is generally widely accepted across virtually all scientific fields, factor analysis 
carries with it a storied past of severe criticism, misuse, and rejection. One of the 
technical issues that plagues exploratory factor analysis (EFA), as we will discuss in 
Chapter 15, is that loadings for factors are not unique, and hence all EFA solutions are 
subject to an orthogonal rotation. Principal components analysis, on the other hand, 
derives unique loadings. 

We delay further discussion of factor analysis to the following chapter where we 
will also discuss some of the similarities and differences between EFA and PCA. For 
now, we focus our attention on components analysis. 

14.3 THEORY OF PRINCIPAL COMPONENTS ANALYSIS 

We now consider a summary of the formal development of principal components. Our 
treatment is very brief. For much deeper and thorough technical introductions to PCA, the 
reader is encouraged to refer to Johnson and Wichern (2007) and Jolliffe (2002) where the 
latter provides a book-length and thorough treatment of the topic along with applications. 

We start by considering x ́ to be a random vector of p observed variables with 
covariance matrix Σ. For ordinary PCA, the p random variables will usually be 
measurable on a continuous scale. PCA can also be performed on the standardized 
covariance matrix, that is, correlation matrix R. The decision as to whether to analyze 
the covariance or correlation matrix for PCA is an important one, one which will be 
discussed later in this chapter. 

We know from results in matrix theory (see Appendix A) that associated with 
covariance matrix Σ are p eigenvalues and p eigenvectors. For example, supposing 
p � 10 observed variables in Σ implies that we can extract 10 eigenvalues and 
10 eigenvectors. We will see that each of these extracted eigenvalues and associated 
eigenvectors are associated with a principal component, and hence for p � 10 observed 
variables, there will be extracted a total of 10 components. There are always as many 
principal components extracted as there are variables that serve as inputs to the 
principal components analysis. The goal of PCA is to learn whether fewer than 
p components can be used to summarize the variance in the original p variables. 

14.3.1 The Theorem of Principal Components Analysis 

Principal components analysis is founded on a theorem that says if the expectation of 
the random vector x is equal to 0 (i.e., E�x� � 0) and for a covariance matrix Σ, then 
one can conduct an orthogonal linear transformation to generate components that have 
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maximum variance and are unrelated to successive components. See Anderson (2003, 
p. 464) for a proof of this theorem. 

Following Rencher and Christensen (2012), for every square matrix A, we can 
obtain a scalar λ and a vector x (other than zero) so that the following equality holds: 

Ax � λx (14.1) 

The scalar λ is called an eigenvalue of the matrix A and the vector x is called an 
eigenvector associated with λ. To solve for A and x, we can rewrite (14.1) as 

Ax � λx � 0 

�A � λI�x � 0 

It stands that if jA � λIj ≠ 0, then �A � λI� has an inverse, which means that x � 0 is 
the only solution. This is referred to as the trivial solution. To obtain nontrivial 
solutions, we deliberately set jA � λIj � 0 and find values of λ that can be plugged into 
�A � λI�x � 0 to then provide a solution for x. 

The equation jA � λIj � 0 is referred to as the characteristic equation. For a matrix 
A that is n ? n (i.e., square, with n rows and n columns), the characteristic equation will 
have n roots, which means n eigenvalues λ1; λ2; . . . ; λn, not all necessarily different 
from one another and not all nonzero. Eigenvectors are unique only up to multipli
cation by a scalar. That is, we can multiply the elements of a given eigenvector 
without “changing” the eigenvector in any fundamental way. This idea of “uniqueness 
up to multiplication by a scalar” can be expressed by 

�A � λI�kx � k0 � 0 

where k is some scalar. What this means fundamentally in matrix terms is that, as was 
the case in discriminant analysis, we can adjust the length of x, but that the direction of 
the vector from the origin is unique (meaning that the direction remains the same even 
after the length adjustment). See Rencher and Christensen (2012, p. 33) for details. 

If eigenvectors are unique up to multiplication by a scalar, the question then 
becomes one of having some way to set the values of the eigenvector in some 
consistent, normative way so that the variance of derived components cannot grow 
infinitely large depending on the size of the weights chosen. The way that is typically 

´ adopted in PCA is to scale the eigenvector such that x x � 1. That is, we scale the p
eigenvector such that its length (i.e., x ́ x) is equal to 1. An eigenvector of length 1 is 
said to be normalized. 

14.4 EIGENVALUES AS VARIANCE 

We have discussed the fact that each extracted eigenvector is associated with a 
respective eigenvalue. Each eigenvalue represents the variance for the given compo
nent. A given component of the p extracted components accounts for a certain amount of 
variance in the observed data. This variance is encapsulated in the associated eigenvalue 
for this component so that, similar to what was done in LDA (but not exactly the same, 
since discriminant functions are typically not orthogonal), if we would like to know the 
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proportion of variance accounted for, we take the ratio of the given eigenvalue to the 
total number of eigenvalues extracted, which, as already discussed, is equal to p. Why p? 
Because p represents the total variance sought to be “explained” in the observed data, or 
equivalently, Σ. The total variance to be explained is also equal to the trace of the 
covariance matrix Σ, since along the main diagonal will lie values of one. 

For example, suppose the PCA extraction revealed eigenvalues 1.5, 1.0, and 0.5 for 
a three-variable problem. The proportion of variance accounted for by the first 
extracted component would be 1.5/(1.5 + 1.0 + 0.5) = 1.5/3 = 0.50, or, 50%. Ideally, 
in the spirit of data reduction, one hopes that most of the original variance in the data 
can be accounted for by as few components as possible. 

14.5 PRINCIPAL COMPONENTS AS LINEAR COMBINATIONS 

We have discussed that an extracted component is, in actuality, an eigenvector 
associated with an eigenvalue. In this way, the elements of the extracted eigenvector 
simply represents the “weights” by which we attribute a measure of “importance” to 
the given observed variables. For example, for a three-variable problem, there will be 
three components extracted. The three linear combinations can be expressed as 

´ ℓ1 � a1x � a11x1 � a12x2 � a13x3 

´ ℓ2 � a2x � a21x1 � a22x2 � a23x3 

´ ℓ3 � a3x � a31x1 � a32x2 � a33x3 

´ ´ where a1 through a3 are vectors of coefficients or loadings corresponding to each 
extracted principal component, and x is a vector of random variables, which in this 
example consists of three variables. It is easy to see that a principal component is 
nothing more than a weighted sum, a  linear combination of the observed variables, 
each weighted by respective elements of the extracted eigenvector. What features are 
special to this extraction? What characteristics do these linear combinations possess? 
What is so unique about these linear combinations, these components? We discuss 
these issues next, starting with the extraction of the first component. 

14.6 EXTRACTING THE FIRST COMPONENT 

´ The goal of PCA is to extract the first component a1x such that its variance is maximized. 
But what does this mean, exactly? This means that the component will account for as 
much of the variance in the original observed data as possible. That is, out of all the linear 
combinations that could theoretically be computed on the observed variables, the 
principal component is the linear combination accounting for the most variance. 

´ However, since we could feasibly make the variance of a1x (i.e., the linear combination) 
as large as possible by simply multiplying it by a constant, we must place a constraint on 
its maximization. What this means is that we cannot arbitrarily inflate the variance of a 
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component without bound so that we account for increasingly larger amounts of 
variance. What we need is a guidepost, a benchmark of sorts from which to do our 
maximization. This benchmark is what we refer to as an imposed constraint on our 
analysis. These constraints are present in many statistical procedures where a maximi
zation or minimization technique is applied. In the case of PCA, as we have already 
alluded, it is ordinarily the case to impose the constraint that the sum of squared loadings 
for the component be 1.0. That is, when we extract our first component, we maximize the 

´ ´ variance of a1x subject to the constraint a1a1 � 1. As mentioned, this particular 
constraint is referred to as a normalizing constraint. We seek to maximize the variance 
of the linear combination relative to the length of a (i.e., the squared length of a is 
´ a1a1 � 1). 
How does the maximization take place? The actual maximization procedure is 

usually accomplished by using Lagrange multipliers, which we will not detail here, 
but suffice to say is a widespread technique in linear algebra and the field of numerical 
analysis that is often used to find maximum or minimum values of a function when 
that function is first subjected to certain constraints (such as the normalizing constraint 

´ of a1a1 � 1). For an overview of Lagrange multipliers as used in structural equation 
models, see Mulaik (2009). 

14.6.1 Sample Variance of a Linear Combination 

We have said that the principal component is the linear combination of random 
variables extracted that has maximal sample variance out of all possible linear 
combinations that could have been extracted. But to know what this means, we 
need to know just what quantity it is actually maximizing. That is, we need to know 
what the sample variance of a linear combination actually is. In helping us arrive at the 
answer, recall first the “ordinary” sample variance for a variable: 

�yi � y�2 

i�12 �s
n � 1 

What we need now is the equivalent variance computation for a linear combination. 
Recall that a linear combination ℓ of the kind 

´ ℓi � a1y1 � a2y2 � ∙ ∙ ∙  � apy � a yp 

is simply a weighted sum. That is, the composite variable ℓi is merely a weighted sum of 
the random variables y1; y2; . . . ; y . When we compute a linear combination, we in p

actuality generate an entirely new variable. And just like any other variable, we want to be 
able to compute its mean and variance. Recall that the mean of ℓi is easily computed. We 
simply sum up the respective values of our new variable ℓi and divide by the number of 
pieces of information that went into the sum. The mean for the linear combination ℓi is thus 

n 

n1 
ℓi � ℓi n 

i�1 



n 
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What is the variance of the linear combination? We can conceptualize it the same way 
we computed the variance of the variable yi above, but this time, with respect to ℓi: 

�ℓi � ℓ�2 

2 i�1 sℓ � (14.2) 
n � 1 

2In addition to computing sℓ as in (14.2), the variance of ℓi can also be expressed 
through 

2 ´ sℓ � a Sa (14.3) 

That is, the variance of ℓi is a function of the weights a used in deriving the linear 
combination as well as the sample covariance matrix S. So when we speak about the 
variance of a principal component in this chapter, we will be talking about (14.3). 

Getting back to our discussion of extracting the first principal component, we can 
now put our understanding on a more solid footing. That is, the first principal 
component extracted is such that s2 � a ́Sa is maximized.ℓ 

14.7 EXTRACTING THE SECOND COMPONENT 

Now that we have extracted the first component to account for maximal variance 
´ subject to the constraint that a1a1 � 1, we now wish to extract the second and ensuing 

´ components. Similar to the first component, the second component, that of a2x, is  
extracted subject to the constraint that its variance again be maximized and that 
´ ´ a2a2 � 1. However, in addition to the constraint of a2a2 � 1 imposed, the second 

component is extracted subject to a second constraint. That second constraint is that the 
covariance of the second component with that of the first component be equal to 0. 

´ ´ That is, we extract and maximize the variance of a2x subject to the constraints a2a2 � 1 
´ ´ and cov�a1x; a2x� � 0. We can also refer to this second condition more simply as 

´ ´ ´ ´ a2a1 � 0. Why? Because what makes cov�a1x; a2x� � 0? What will make this true is 
´ ´ if the two vectors a1 and a2 are orthogonal to one another. That is, they are geometri

cally perpendicular, and their product is equal to zero. More formally, the idea of 
orthogonality in this case is that of a covariance matrix of derived components ℓi 

through ℓp that is a diagonal matrix with component variances along the main diagonal 
and zeros everywhere else. If Sℓ is the variance–covariance matrix of components, then 
we want Sℓ to be 

2sℓ1 0 ∙ ∙ ∙  0 
20 sℓ2 ∙ ∙ ∙  0 

Sℓ � ASA ́ � (14.4) 20 0 s 0ℓ3 

0 0 ∙ ∙ ∙  s2 
ℓp 
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What (14.4) implies is that because extracted components will be orthogonal to one 
another, we expect zero covariances between them (though note that covariance of zero 
and orthogonality are not the same concepts). In other words, we are diagonalizing the 
matrix. What we are most interested in are the variances of the components 
2 2 2s ; s ; . . . ; s along the main diagonal. These, as we will see, are the respective ℓ1 ℓ2 ℓp 

eigenvalues, λ1; λ2; . . . ; λp of Sℓ. 

14.8 EXTRACTING THIRD AND REMAINING COMPONENTS 

As a recap, the first component is extracted subject to the normalizing constraint. 
The second component is extracted subject to the normalizing constraint and the 

´ ´ orthogonality constraint, that of a2a1 � 0. The third principal component extracted, 
´ a3x, will be so subject to the normalizing constraint but will also be orthogonal to 

´ ´ ´ ´ components one and two. That is, a1x; a3x � 0 and  a2x; a3x � 0. This third 
component will exhibit maximal variance subject to these two constraints. Note 
as well that if the third component is the last component to be extracted, then we can 
also say that this component exhibits minimal variance out of the three components. 
That is, it is the least “relevant” (in the sense of variance) component in accounting 
for variance in the observed data. 

Remaining components are extracted in an analogous fashion. That is, each 
remaining linear combination is extracted that accounts for maximal variance given 
the already included extracted components before it, which really means, in PCA, 
given that it is orthogonal to the previously extracted components. 

14.9 THE EIGENVALUE AS THE VARIANCE OF A LINEAR 
COMBINATION RELATIVE TO ITS LENGTH 

We have discussed the idea that when extracting linear combinations (i.e., compo
nents), we are doing so such that we extract the component that has maximal variance, 
but subject to the constraint that it achieves this relative to the squared length of the 

´ eigenvector (equal to a a). We can express this idea of “relative to” through a ratio, 
essentially comparing the variance of the linear combination with its squared length: 

a ́Sa 
(14.5) 

a ́ a 

The ratio (14.5) has a special name. It is named the eigenvalue of the linear 
combination. As usual, we denote the eigenvalue by λ (lambda) and write 

a ́Sa 
λ � 

a ́ a 
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´ The eigenvalue is also the maximum value of the ratio a ́Sa=a a. For a proof of why 
´ ´ ´ the variances a1x; a2x and a3x are given by the eigenvalues λ1; λ2, and λ3, see Johnson 

and Wichern (2007, p. 432). 
Theoretically, though seldom if ever in practice, a PCA could generate 

eigenvalues that are equal. What this means substantively is that each extracted 
component accounts for the same amount of variance. Technically, what this 
translates to is that the given eigenvectors in question (i.e., the eigenvectors 
making up the equal components), though orthogonal to one another, have values 
that are not unique. The solution to this problem is, pragmatically speaking, to 
choose that component of the two that makes the most substantive sense (if either 
of them do). 

Furthermore, it sometimes happens that one or more eigenvalues are equal to zero. 
This is suggestive of a redundancy (or “dependency”) among observed variables, 
which implies that one variable may be an exact linear combination of another. As 
recommended by Jolliffe (2002), an appropriate course of action is to examine the raw 
observed variables (not components) and delete variables as necessary to ease the 
dependency, and then redo the components analysis. 

14.10 DEMONSTRATING PRINCIPAL COMPONENTS ANALYSIS: 
PEARSON’S 1901 ILLUSTRATION 

To demonstrate a very simple principal components analysis, we consider data featured 
in Pearson (1901, p. 569). Pearson gave data on two variables x and y, which we reproduce 
below: 

> x <- c(0.0, 0.9, 1.8, 2.6, 3.3, 4.4, 5.2, 6.1, 6.5, 7.4)
 
> y <- c(5.9, 5.4, 4.4, 4.6, 3.5, 3.7, 2.8, 2.8, 2.4, 1.5)
 
> pc.data <- data.frame(x, y)
 
> pc.data
 

x y 
1 0.0 5.9 
2 0.9 5.4 
3 1.8 4.4 
4 2.6 4.6 
5 3.3 3.5 
6 4.4 3.7 
7 5.2 2.8 
8 6.1 2.8 
9 6.5 2.4 
10 7.4 1.5 

> plot(x, y) 
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Obviously, the data are currently in two dimensions (x and y). However, do we 
really need these two dimensions to account for the variance in the data? The job of 
principal components analysis will be to learn whether the variance in the data can be 
accounted for primarily by the first component. Because there are two variables, PCA 
will extract two components. We hope, however, that the first component accounts for 
most of the variance and that we could conveniently discard the second component as 
not worthwhile. 

We will perform the PCA directly on the covariance matrix. First, we build the 
covariance matrix: 

> A <- cov(pc.data) 
> A 

x y 
x 6.266222 -3.381111 
y -3.381111 1.913333 

We can verify that R has constructed the matrix correctly by computing variances 
and pairwise covariances to match the entries above: 

> cov(x, y) 
[1] -3.381111 
> var(x) 
[1] 6.266222 
> var(y) 
[1] 1.913333 

We now run the PCA on the covariance matrix A using R’s princomp, 
specifying covmat = A to identify the covariance matrix we want to analyze: 
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> pca <- princomp(covmat = A) 
> summary(pca) 

Importance of components: 
Comp.1 Comp.2 

Standard deviation 2.8479511 0.262164656 
Proportion of Variance 0.9915973 0.008402695 
Cumulative Proportion 0.9915973 1.000000000 

R has extracted two components (Comp.1 and Comp.2), which should make sense, 
since there are two variables in Pearson’s original data. The standard deviation of the 
first component is 2.848. When we square this number, we get the variance of the 
component, equal to (2.8479511)2 = 8.11, which is the eigenvalue for the first compo
nent. The standard deviation of the second component is 0.262. When we square this 
number, we get the variance of the component, equal to (0.262164656)2 = 0.07, which 
is the eigenvalue (rounded up) for the second component. 

The proportion of variance accounted for by the first component is equal to 0.99, 
computed as the variance for the given component divided by the total sum of 
variances across both components (i.e., 8.11/(8.11 + 0.07) = 8.11/8.18 = 0.99. The 
proportion of variance accounted for by the second component is equal to 0.008, 
computed as the variance for the given component divided by the total sum of 
variances across both components (i.e., 0.07/8.18 = 0.008). 

We obtain the loadings in R by 

> loadings(pca) 

Loadings: 
Comp.1 Comp.2 

x -0.878 -0.479 
y 0.479 -0.878 

Recall that the loadings for a principal component are actually elements of the 
eigenvector that make up the component. That is, in a linear combination (component) 
of the form 

´ ℓi � a1y1 � a2y2 � ∙ ∙ ∙  � apy � a yp 

the “loadings” are the values a1; a2; . . . ; ap. 
We can also easily obtain the same eigenvectors as above, as well as the corre

sponding eigenvalues, within rounding error, by solving for them directly using R’s 
eigen function: 

> eigen(A) 
$values 
[1] 8.11082525 0.06873031 
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$vectors 
[,1] [,2] 

[1,] -0.8778562 -0.4789243 
[2,] 0.4789243 -0.8778562 

Note that the loadings and eigenvectors (i.e., $vectors) are identical. We can 
easily demonstrate the orthogonality of eigenvectors by obtaining their product: 

> eigen.1 <- c(-.8778562, 0.4789243) 
> eigen.2 <- c(�0.4789243, -0.8778562) 
> eigen.1%*%eigen.2 

[,1] 
[1,] 0 

The product of eigenvectors computed in R is equal to 0, confirming that both 
extracted components are orthogonal to one another, as they are required to be. 

We can also easily demonstrate that each eigenvector extracted must have a 
squared length equal to 1.0. That is, recall that the sum of squared loadings must equal 

´ 1.0 (x x � 1). We verify that this is indeed the case: 

> sum(eigen.1*eigen.1) 
[1] 1 
> sum(eigen.2*eigen.2) 
[1] 1 

Recall that components analysis does not generate “new” variables, but rather 
simply transforms existing ones into new linear combinations. Because of this, the 
actual total variance in the sample data remains the same. This idea is encapsulated by 
a general property of principal components analysis: 

p 
2 2 2λi � s1 � s2 � ∙ ∙ ∙  � s (14.6)p 

i�1 

That is, the sum of eigenvalues will equal the sum of variances of the original 
variables, where p is the number of observed variables, λi is the ith eigenvalue, and 
2 2 2s1 � s2 � ∙ ∙ ∙  � s is the sum of the respective variances for each observed variable. p 
The orthogonal transformation to new coordinates preserves the generalized 

variance as well as the sum of variances (Andersen, 2003, p. 465). PCA does nothing 
more than summarize the variance of the original variables in a different way. It 
“repackages” the variance of the original variables onto new dimensions. The 
transformation does not fundamentally change the variability inherent in the data. 
It only reorganizes it. Indeed, property (14.6) can be used as a quick check of one’s 
work in computing components in that if the sum of eigenvalues does not total the sum 
of observed variable variance, it could be indicative of a miscalculation or other more 
serious problem. 
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We can easily confirm (14.6) for Pearson’s data. Recall the eigenvalues for 
components 1 and 2 were equal to 8.11 and 0.07, respectively, for a sum of 8.18. 
The original variances of variables x and y were equal to 6.27 and 1.91, respectively, 
for likewise a sum of 8.18. We can see then that the total variance in the data has been 
preserved. All the PCA has done is to find new axes, mutually orthogonal to one 
another, for which the first few (in our case, first only) accounts for as much of the 
total variance as possible. PCA does not “change” the amount of variance in a set of 
data, it merely reconstructs the dimensions on which this variance exists. 

14.11 SCREE PLOTS 

The scree plot is a graphical device used for helping in deciding the number of 
worthwhile components to retain from a principal components or factor analysis. It is 
generally attributed to Cattell (1966), although as noted in Jolliffe (2002), scree plots 
were well in use before Cattell. In a scree plot, eigenvalues are plotted in order of 
decreasing magnitude. Generally, and quite subjectively, where one sees a “bend” or 
“elbow” in the plot, one uses this as a cutoff point for the number of components to 
retain. 

We obtain a scree plot in R by following up the princomp function with the 
plot function: 

> plot(pca,type="lines") 

For Pearson’s data, the plot clearly reveals that the first component is accounting 
for the majority of the variance, while the second component is accounting for little 
(Figure 14.4). Naturally, scree plots are more useful when the number of components 

FIGURE 14.4 Scree plot for Pearson’s data. 
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FIGURE 14.5 Screen plot for seven-component problem on cormatrix. 

is quite large. For instance, consider Figure 14.5, where a plot was made for a seven-
component problem, one which we will feature toward the end of this chapter (where 
we analyze the generic matrix cormatrix). 

Inspection of Figure 14.5 reveals that the “elbow” appears to occur at component 
number 2, which may suggest the retention of one to two components, the first 
explaining quite a bit more variance than that of the second. 

Contrary to what some researchers profess about the scree plot along with Cattell’s 
original enthusiasm for it, I personally do not find them very useful. There is nothing 
inherently significant about the elbow in the graph, and one can usually draw an 
identical conclusion about component retention with or without the plot. In addition, 
as we will discuss more so with regard to factor analysis, component or factor 
retention is somewhat of an art at best, and should be influenced more by researcher 
judgment than by a simple diagram such as the scree plot. Thus, while I do not 
discourage its use, if you find yourself retaining a certain number of components 
based solely on the results of such a plot, I suggest you seek additional advice when 
interpreting your findings. Scree plots should be used at most as aids to decision-
making in this regard, and not relied on exclusively for the determination of the 
number of components or factors. 

How many components should you then retain? The purpose of the analysis 
should, in part, influence your decision. Presumably, components analysis was 
performed for one of two reasons, or both: 

•	 You wished to reduce a large body of data into a few components that account 
for most of the variance in the original data, but you are not overly concerned 
with substantive interpretation of the components since you simply wanted to 
use the component scores in a future analysis (e.g., regression analysis) as a 
predictor of a response variable. 

•	 You wished to reduce the large body of data into fewer components, but were 
also very interested in the interpretation of these extracted components. 
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The question of component retention is never easily answered, and its answer 
depends in large part on how many components can be properly interpreted or 
otherwise valued by the researcher, unless the extraction was done for purely 
statistical variance-maximization reasons alone. The following guidelines may prove 
useful: 

•	 Using a scree plot, as discussed, detect where the primary “elbow” occurs, and 
base the retention of components on this indicator. However, recall that this 
must be considered a very crude and atheoretical way of proceeding in making 
the decision regarding component retention. We generally discourage using the 
scree plot exclusively as a decision tool in this regard. It can, however, be useful 
as an initial screening of your components solution. 

•	 Retain only those components that have eigenvalues associated with them that 
are greater than or equal to the average of eigenvalues. The rationale behind this 
rule is that because eigenvalues are corresponding variances that represent each 
component, the average eigenvalue can be considered the average variance of 
the observed variables subjected to the PCA. Hence, in this way, the most 
“important” components will be those that are “above average” relative to the 
set of extracted eigenvalues. 

•	 Retain only those components with eigenvalues equal to or greater than 1.0. 
This is generally known as the Guttman–Kaiser criterion, which originated with 
Guttman’s work in 1954 and was adapted and modified by Kaiser (1960, 1961). 
Yeomans and Golder (1982) summarize the decision rule: 

The technique is justified in the original Guttman article in terms of it providing a 
lower bound for the number of common factors underlying a correlation matrix of 
observed variates having unities in the main diagonal. More intuitively the 
argument has been advanced that no component “explaining” less than the variance 
of an original variate can be deemed to represent a significant source dimension. 
(pp. 222–223) 

However, as noted by these same authors, using the criterion as a decision rule, 
especially an exclusive one, is usually ill-advised. Under most circumstances, they 
found the criterion to be a poor predictor of the number of factors or components 
inherent in a set of data. They also found that only when the number of factors is 
substantially lesser than the number of variables, and communalities are relatively 
high, does it make any sense to use the criterion at all. Hence, these authors advise 
that if one is to use the criterion, one must ensure to also include information about 
estimated communalities. 

Overall, our general recommendation regarding the Guttman–Kaiser criterion is 
similar to that of using the scree test: It is a poor decision tool if used exclusively to 
render a decision, but is potentially useful if used in conjunction with researcher 
expertise and judgment. Component retention should not be made based on statistical 
evidence alone. 
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14.12 PRINCIPAL COMPONENTS VERSUS LEAST-SQUARES 
REGRESSION LINES 

The reader initially examining the principal component plot first produced by Karl  
Pearson in 1901 (Figure 14.2) might very well ask a good question: What is the 
difference between a least-squares line and a principal component “line?” After 
all, they look very similar in that they both seem to account for variation in the 
plane. However, as mentioned, they are constructed in a different manner. Recall 
Pearson’s explanation discussed earlier in reference to his original 1901 article. In 
least-squares regression, we regress y on x so that the so-called least-squares 
criterion is satisfied. Recall that in ordinary least-squares, the objective is to fit a line  
subject to the minimization criterion that the sum of squared errors be as small as 

n 
i�1 ϵ

2 to a minimum. What this possible. That is, the line is fit subject to keeping i 
amounts to geometrically is minimizing the squared vertical distances between 
observed values and fitted values along the regression line, as depicted in 
Figure 14.6. 

In PCA on the other hand, we do not wish to minimize the vertical distances. 
Geometrically, we want to minimize the sum of squared orthogonal or perpendicular 
distances from the line. This is why Pearson minimized S�p2�, which represented the 
sum of squared perpendicular distances, where S stood for “sum” and p2 stood for 
“squared perpendiculars.” That is, in PCA, we minimize the horizontal distances 
rather than the vertical ones. We can see from Pearson’s plot (see Figure 14.2) that this 
is indeed what he had in mind. 

Notice the distances are horizontal to the line instead of vertical as they were with 
the least-squares line. Another way to understand this idea is to consider the 
scatterplot given by Pearson in Figure 14.3 where both regression lines and the first 
principal component are plotted. Note again that the three lines are different. This is 
because they satisfy different objectives. 

FIGURE 14.6 Vertical distances are minimized in least-squares regression. 
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14.13 COVARIANCE VERSUS CORRELATION MATRICES: 
PRINCIPAL COMPONENTS AND SCALING 

The most ideal situation for a PCA is that all variables subjected to the analysis are 
measured in the same units. That is, principal components analysis is most suitable 
when all observed variables are measured on the same or at least similar metric. 
Eigenvalues and eigenvectors are not invariant to scale, which means that depend
ing on whether one analyzes the covariance or correlation matrix, one will generally 
obtain different roots and vectors (Andersen, 2003). As summarized by Rencher and 
Christensen (2012), 

Generally, extracting components from S rather than R remains closer to the spirit and 
intent of principal components analysis, especially if the components are to be used in 
further computations. However, in some cases, the principal components will be more 
interpretable if R is used. For example, if the variances differ widely or if the 
measurement units are not commensurate, the components of S will be dominated 
by the variables with large variances. The other variables will contribute very little. 
For a more balanced representation in such cases, components of R may be used. 
(pp. 419–420) 

Performing a PCA on R rather than on S will, however, not result in the same 
analysis. For one, the variance accounted for by each component is not guaranteed to 
remain constant across both matrices, nor will the coefficients of the eigenvectors 
remain the same. Also, though the components extracted from S are not scale 
invariant, the components extracted from R are so. This is simply because R itself 
is scale invariant, whereas S, of course, is not. Recall from Chapter 3 that two 
variables could have a very high covariance, yet still very little linear standardized 
relationship simply due to the fact that one or both variables exhibit high variances, 
which is what may be making the covariance large. In the case of correlation, due to 
standardization (i.e., dividing the average cross-product by the product of standard 
deviations), correlations become scale invariant. 

To summarize then, if variables have wildly different variances, then standardizing 
the covariance matrix to get the correlation matrix is a reasonable solution, so long as 
one is aware of the differences inherent in analyzing the one matrix versus the other 
and that different solutions for each may be obtained. Otherwise, in the case of 
analyzing S, variables with much higher variances will dominate the determination of 
components. For a demonstration and example of this effect, see Rencher and 
Christensen (2012, pp. 420–422). 

14.14 PRINCIPAL COMPONENTS ANALYSIS USING SPSS 

We now demonstrate a PCA in SPSS on cormatrix, a hypothetical correlation 
matrix consisting of eight observed variables, tests 1–8 (T1–T8). Principal 
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components analysis is considered an “option” in SPSS’s factor analysis function. As 
already discussed however, factor analysis should not be equated with that of 
components analysis. 

In preparing the matrix, we specify in SPSS that the input data are of the form of 
a matrix, then list the observed variables of the matrix (first row of code below). 
We will base this components analysis assuming 1000 observations are available on 
each variable, hence the reason why the third line of the input reads “1000 1000 . . .” 
a total of eight times (once per variable). We also use the first column of the matrix to 
specify CORR for each row, which tells SPSS that a correlation matrix is being 
analyzed: 

MATRIX DATA VARIABLES=ROWTYPE_ T1 T2 T3 T4 T5 T6 T7 T8. 
BEGIN DATA 
N 1000 1000 1000 1000 1000 1000 1000 1000 

CORR 1.00000 

CORR .343 1.00000 

CORR .505 .203 1.00000 

CORR .308 .400 .398 1.00000 

CORR .693 .187 .303 .205 1.00000 

CORR .208 .108 .277 .487 .200 1.00000 

CORR .400 .386 .286 .385 .311 .432 1.00000 

CORR .455 .385 .167 .465 .485 .310 .365 1.00000 

END DATA. 

To run the components analysis, we request: 

FACTOR MATRIX=IN(CORR=*) * specifies a correlation matrix is being inputed. 
/PRINT= INITIAL EXTRACTION CORRELATION REPR * requests initial and 
extraction communalities for both original matrix and reproduced matrix. 
/CRITERIA FACTORS(8) * requests that 8 factors (i.e., components) be extracted, 
which is the maximum number in this case. 
/EXTRACTION=PC * specifies the extraction to be that of principal components. 
/METHOD=CORRELATION. * requests the correlation matrix be analyzed. 

The first part of the output is the correlation matrix we requested in our syntax. 
SPSS gives us the full correlation matrix, not only the lower triangular. We confirm 
that the correlation matrix matches that which we input into SPSS. 
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Correlation T1 
T2 
T3 
T4 
T5 
T6 
T7 
T8 

T1 

1.000 
0.343 
0.505 
0.308 
0.693 
0.208 
0.400 
0.455 

Correlation Matrix 

T2 T3 T4 

0.343 0.505 0.308 
1.000 0.203 0.400 
0.203 1.000 0.398 
0.400 0.398 1.000 
0.187 0.303 0.205 
0.108 0.277 0.487 
0.386 0.286 0.385 
0.385 0.167 0.465 

T5 

0.693 
0.187 
0.303 
0.205 
1.000 
0.200 
0.311 
0.485 

T6 

0.208 
0.108 
0.277 
0.487 
0.200 
1.000 
0.432 
0.310 

T7 

0.400 
0.386 
0.286 
0.385 
0.311 
0.432 
1.000 
0.365 

T8 

0.455 
0.385 
0.167 
0.465 
0.485 
0.310 
0.365 
1.000 

Next are the communalities (given below), both the initial and the extracted. 

Communalities 

Initial Extraction 

T1 1.000 1.000 
T2 1.000 1.000 
T3 1.000 1.000 
T4 1.000 1.000 
T5 1.000 1.000 
T6 1.000 1.000 
T7 1.000 1.000 
T8 1.000 1.000 

Extraction method: principal component analysis 

Notice that all initial communalities are equal to 1.0. Recall that the reason why 
they are all equal to 1.0 is because we are requesting a principal components solution, 
and hence each variable is contributing unit variance to begin. In the typical 
exploratory factor analysis solution, as we will discuss in the next chapter, the initial 
communalities will no longer be equal to 1.0, and hence each variable will no longer 
contribute unit variance. For instance, in the case of principal axis factoring, initial 
communalities will reflect the degree to which the given observed variable shares 
variance with other variables in the model. Indeed, such measures will be a more 
accurate and representative depiction for what is meant by communalities. We will 
discuss this concept more thoroughly when we survey factor analysis in the following 
chapter. 

The extraction communalities reflect the degree to which a given variable shares 
commonality across the extracted components. Because we are extracting the 
maximum number of components (eight) in this case, SPSS reports all extraction 
communalities equal to 1.0, the same as those for the initial communalities. Had we 
requested a smaller number of components to be extracted (i.e., seven or less), 
then all of the extracted communalities would not have been equal to the initial 
communalities. 
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Next, SPSS provides us with the breakdown of the eigenvalue extraction:
 

Total Variance Explained 

Initial Eigenvalues Extraction Sums of Squared Loadings 

% of  Cumulative % of  Cumulative 
Component Total Variance % Total Variance % 

1 3.447 43.088 43.088 3.447 43.088 43.088 
2 1.157 14.465 57.554 1.157 14.465 57.554 
3 0.944 11.796 69.349 0.944 11.796 69.349 
4 0.819 10.237 79.587 0.819 10.237 79.587 
5 0.658 8.226 87.813 0.658 8.226 87.813 
6 0.390 4.873 92.686 0.390 4.873 92.686 
7 0.336 4.201 96.887 0.336 4.201 96.887 
8 0.249 3.113 100.000 0.249 3.113 100.000 

Extraction method: principal component analysis 

The eigenvalue for the first extracted component is equal to 3.447, and is clearly 
the largest of all eigenvalues extracted. Since there are a total of eight possible 
components, the variance explained by component 1 is equal to 3.447/8 = 0.43088, or 
43.088%, as shown in the first row of the table. Component 2 has associated with it an 
eigenvalue of 1.157, which accounts for 1.157/8 = 0.1446, or 14.46% of the variance. 
SPSS also provides the cumulative percentage of variance explained, which for 
components 1 and 2 is equal to 43.088 + 14.465 = 57.55%. 

Notice that the extraction sums of squared loadings, located on the right-hand side 
of the output, are identical to those on the left-hand side. The reason for this is because 
in a PCA, whether we extract all possible components or a subset of all possible 
components, the extraction of eigenvalues for each component remains the same. In 
factor analysis, however, as we will see in the following chapter, this is typically not 
the case, and the value of eigenvalues will change depending on the number of factors 
extracted. 

Next are the component loadings in SPSS’s component matrix. These are scaled 
eigenvectors corresponding to each eigenvalue. That is, the first eigenvector, for 
component 1, that of 0.766, 0.563, 0.591, 0.693, 0.663, 0.559, 0.680, and 0.707, is 
the scaled eigenvector corresponding to the first extracted eigenvalue of 3.447. 
The sum of squared loadings for each eigenvector is equal to its respective 
eigenvalue. 
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Component Matrixa 

1 2 3 

Component 

4 5 6 7 8 

T1 
T2 
T3 
T4 
T5 
T6 
T7 
T8 

0.766 
0.563 
0.591 
0.693 
0.663 
0.559 
0.680 
0.707 

�0.492 
0.123 

�0.074 
0.463 

�0.585 
0.531 
0.232 

�0.051 

0.096 
�0.619 
0.531 
0.002 
0.066 
0.370 

�0.059 
�0.353 

0.080 
0.427 
0.526 
0.101 

�0.284 
�0.363 
�0.055 
�0.359 

0.054 
0.072 

�0.099 
�0.382 
0.004 
0.053 
0.629 

�0.310 

0.084 
0.293 

�0.120 
�0.110 
0.137 
0.338 

�0.277 
�0.246 

�0.053 
0.076 
0.214 

�0.371 
�0.180 
0.142 

�0.061 
0.297 

�0.377 
0.072 
0.132 

�0.020 
0.286 

�0.029 
0.028 

�0.012 

Extraction method: principal component analysis 
aEight components extracted 

Virtually all observed variables load relatively high on component 1, especially T1 
(0.766), T4 (0.693), and T8 (0.707). Negative signs for loadings are interpreted to 
mean that the given variable correlates negatively with the component. For instance, 
the negative loading of �0.492 for T1 on component 2 indicates a moderate negative 
relationship between T1 and the given component (whatever we shall name it, if it 
indeed makes sense to give it a name for these data). 

We can generate the respective scree plot in SPSS: 

/PLOT EIGEN 

The scree plot confirms what the numerical output suggested, that the first 
component accounts for the majority of the variance in the data. 
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14.15 CHAPTER SUMMARY AND HIGHLIGHTS 

•	 Principal components analysis is a statistical technique that extracts information 
from a covariance or correlation matrix such that the original information within 
the matrix may be represented in fewer dimensions without a loss of too much 
information. 

•	 The number of principal components extracted from a data set will always equal 
the number of variables in that data set and originally subjected to the PCA. The 
user retains the number of components that adequately account for as much of 
the original variance as possible. Should the user choose to keep all derived 
components, then no data reduction has occurred, and only a transformation of 
the original axes to new dimensions has taken place. 

•	 PCA can be said to have originated with the work of Karl Pearson in 1901 and 
was extended with the work of Harold Hotelling in 1933. 

•	 The primary technical distinction between principal components analysis and 
factor analysis is that the former generates successive orthogonal linear 
combinations of the variables, whereas factor analysis generates successive 
linear combinations of the factors. Principal components analysis and factor 
analysis often yield similar findings, but should nonetheless be regarded as 
distinct techniques. 

•	 The primary theorem of PCA states that for a vector of random variables with 
associated covariance matrix, an orthogonal linear transformation can take place 
that generates components having maximum variance and that are unrelated to 
successive components extracted. In the classic PCA, each component extracted 
is orthogonal to those previously extracted. 

•	 PCA generally proceeds by the extraction of eigenvalues and eigenvectors from 
a covariance or correlation matrix. The extracted eigenvalues correspond to 
variances of the components. The extracted eigenvectors correspond to weights 
used to derive the components, and are often and conveniently scaled such that 
the sum of squared weights equals 1.0. This is typically referred to as the 
normalizing constraint. 

•	 PCA is most ideally performed on variables measured on the same units. 
Caution should be exercised when conducting PCA on variables not of the same 
units. Analysis of the correlation matrix instead of that of the covariance matrix 
may be suitable in cases that feature incommensurate variables. 

•	 The scree plot, depicting eigenvalues in decreasing order, is a tool that may 
prove useful in helping the analyst decide on the number of components to 
retain. However, other than in a purely exploratory sense, it should never be 
used exclusively in deciding on the number of components to keep. 

•	 A comparison of PCA with linear regression reveals that while ordinary least-
squares regression seeks to minimize the sum of squared errors around the line 
of best fit, that is, the vertical distances from the line, PCA likewise seeks to 
minimize the sum of squared errors around the line of best fit, but this time, it is 
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the perpendicular distances (not vertical) that are minimized. Pearson clearly 
distinguished between these two cases in his 1901 paper. 

•	 The sum of eigenvalues for a PCA is equal to the sum of variances of the 
original variables, that is, the trace of the covariance matrix. This is because 
PCA does not “change” data, it merely projects it onto new axes as a way of “re
expressing” it. The original variance in the data remains intact. 

REVIEW EXERCISES 

14.1.	 Interpret Karl Pearson’s quote to open this chapter that “the term ‘best fit’ is 
really arbitrary.” What does this mean, exactly? And how did such thinking 
on his part reflect ingenuity in developing the principal components solution? 

14.2.	 Provide two interpretations of the goal of principal components analysis. 
Which do you think is most relevant? Why? 

14.3.	 Why is it said that PCA seeks to define an orthogonal transformation to a 
diagonal covariance matrix? What does this mean, exactly, and what does it 
mean in this case for the covariance matrix to be diagonal? 

14.4.	 We said that PCA reduces to solving for the eigenvalues and eigenvectors of 
an at least semipositive definite matrix. What does it mean for the matrix to 
be semipositive definite, and why does this matter in the context of PCA? 

14.5.	 Recall Francis Galton’s correlational ellipse (a). Compare and contrast 
Pearson’s ellipse of 1901 (b). Can you identify similarities? 

14.6. Explain why it is true that there are always as many principal components 
extracted in PCA as there are variables input into the procedure. Why does 
this make sense? 

14.7. Recall that the theorem of principal components states that if the expectation 
of the random vector x is equal to 0 (i.e., E�x� � 0) and for a covariance 
matrix Σ, then one can conduct an orthogonal linear transformation to 
generate components that have maximum variance and are unrelated to 
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successive components. Explain what it means for components to have 
“maximum variance.” 

14.8.	 What does it mean to say that eigenvectors are unique only up to multipli
cation by a scalar? 

14.9.	 If jA � λIj ≠ 0, why does this imply that �A � λI� has an inverse? 

14.10.	 How is the eigenvector usually scaled in PCA, and what is this constraint 
typically called? 

14.11.	 Discuss how a principal component is a linear combination. What does this 
mean, exactly? How are the linear combinations obtained in PCA similar 
or different from previous linear combinations encountered in this book 
(e.g., t-tests, regression, and discriminant analysis)? That is, what distin
guishes these different types of linear combinations for each setting? 

14.12.	 What is the variance of a linear combination equal to, and how does PCA go 
about “normalizing” this variance? 

14.13.	 Explain the process of extracting the first and second principal components. 
What condition must be satisfied when extracting the second component that 
did not (and could not) apply when extracting the first? 

14.14.	 Compare the procedures of principal components analysis with that of least-
squares regression. How are they similar? How are they different? 

14.15.	 Under what conditions should the correlation matrix rather than the 
covariance matrix be analyzed in a PCA? Which matrix is more in the 
“spirit” of PCA? 

14.16.	 Conduct a principal components analysis on variables x1 through x9 
representing nine tests of mental ability of the Holzinger and Swineford 
(1939) data. Interpret results. How many components would you extract? 
Why? Without knowing more about the variables x1–x9, their meaning and 
nature, and the general substantive purpose for conducting the PCA, why 
might decisions regarding component retention be difficult if not impossible 
in a substantive, as opposed to, statistical context? That is, why might the 
statistical indicators of component retention not be enough for you to make a 
decision? 

14.17.	 Anderson (2003, p. 471) performed a PCA on a subset of the Iris data using 
only the species versicolor. Duplicate that analysis, and confirm that the first 
component extracted accounts for the majority of the variance in the original 
data. 

Further Discussion and Activities 

14.18.	 A useful strategy for better understanding and appreciating statistical methods 
is to compare methodologies with one another. In the case of principal 
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components analysis, a comparison of the geometry of PCA with that of the 
analysis of variance (ANOVA) proves insightful. Read Smith (1980) and 
provide a brief account of how the two techniques compare geometrically. 

14.19.	 The biplot is an innovative graphical technique for depicting multivariate 
data in spirit similar to how scatterplots are used to depict bivariate data. 
They are the multivariate analog to the scatterplot. The seminal publication 
for biplots is Gabriel (1971). Read this article and then for the PCA 
performed in Exercise 14.17, generate a biplot in R using biplot(). 
Interpret the plot. 



15
 
FACTOR ANALYSIS 

When the factors are partialled out from the observed variates there no longer remains 
any correlation between these. 

(Jöreskog, 1978, pp. 453, 455) 

Factor analysis is a statistical method used to uncover latent structures that may 
hypothetically underlay covariance or correlation among typically continuously 
observed variables. A more crude designation of the method is that it is a data 
reduction technique, similar in vein to that of principal components analysis in which 
linear combinations are extracted from empirical observations. As emphasized in the 
previous chapter however, factor analysis is not equivalent to principal components 
analysis, and as argued by many, efforts to seemingly equate them are severely 
misguided (e.g., see Chatfield and Collins (1981)). More technically, we may say that 
the task of factor analysis is to approximate one matrix, whether it be the covariance or 
correlation matrix, by one of lower rank (Eckart and Young, 1936). More in the spirit 
of Jöreskog’s quote, we can also interpret the factor-analytic model as addressing the 
question of whether there exist a number of factors, necessarily less than the number 
of observed variables, such that the partial correlations between every pair of observed 
variables equal zero. As noted by Gnanadesikan (1997, p. 16), this interpretation also 
gives rise to the factor-analytic model of the current chapter. 

www.wiley.com/go/denis/appliedmultivariatestatistics
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While principal components analysis seeks to generate linear combinations of 
observed random variables, in factor analysis, it is the observed variables that are 
hypothesized as linear combinations of hypothetical underlying factors. While the 
priority of PCA was to explain as much of the total variance of variables as possible, 
the priority of factor analysis is to explain the covariance or correlations, or more 
generally, the commonality among variables. And though factor analysis and principal 
components do share the goal of summarizing variation of a potentially large number 
of variables into a smaller set of linear combinations, the assumptions that underlie 
each procedure are quite different, and their purposes and applications can equally be 
quite distinct. 

15.1 HISTORY OF FACTOR ANALYSIS 

Factor analysis is an enormous subject and has a turbulent history to say the least. 
Since its original inception with the work of Charles Spearman in 1904, the method 
has been a favorite target of criticism. And though the mathematics and structural 
development of factor analysis has been, historically, generally agreed upon, it is its 
usage and ties with psychological theory, along with its philosophical difficulties, that 
have been at the root of the majority of criticisms directed at the procedure (e.g., see 
Mulaik (1987)). As will be elucidated later in this chapter, I believe the storied and 
extensive criticism of factor analysis to be somewhat misguided. The statistical 
procedure cannot be blamed for its misuse, just as a set of tools cannot be held 
responsible for the poor construction of a building. It is the users of factor analysis 
who are well-deserving of attack for its extensive misuse, abuse, and too often 
arbitrary “discovery” of factors. Used correctly, and with an appreciation of its 
limitations, factor analysis is a helpful tool in the arsenal of the social or natural 
scientist on par with any other statistical method so long as one does not prescribe 
powers to it for which it does not possess. We thus find that factor analysis has much 
merit to it if used judiciously in the hands of a cautious and conscientious data analyst. 
Should the technique not be used with this sense of care, we strongly believe it can 
misguide more than it can serve, and under these circumstances should not be used 
at all. 

One domain where factor analysis has especially (and successfully) flourished is in 
test construction and item analysis. For an excellent account of the history of factor 
analysis, along with its philosophical foundations, the reader is strongly encouraged 
to refer to Mulaik (1987). 

15.2 FACTOR ANALYSIS: AT A GLANCE 

To motivate our technical development of factor analysis, we consider first a brief 
overview of the end result of a factor analysis performed on the Holzinger and 
Swineford data of 1939, where recall a subset of the data consists of tests of mental 
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ability. These tests were subjected to a factor analysis, in which the following 
output was obtained: 

Factor1 Factor2 
visual perception 0.354 0.376 
cubes 0.232 0.219 
lozenges 0.364 0.293 
paragraph comprehension 0.866 0.112 
sentence completion 0.794 0.205 
word meaning 0.815 0.114 
addition 0.126 0.624 
counting dots 0.864 
straight-curved capitals 0.288 0.635 

We can see, for instance, that the bivariate correlation between visual perception 
and factor 1 is 0.354, the correlation between visual perception and factor 2 is 0.376, 
and so on for the remainder of the variables. Note especially that there exist high 
correlations between paragraph comprehension, sentence completion, and word 
meaning on factor 1, and high correlations between addition, counting dots, and 
straight–curved capitals on factor 2. These correlations between variables and 
factors are called loadings. They are used in part to help name the hypothetical 
factors. Note carefully that factor 1 and factor 2 are not “observed” variables. They 
are, from a technical standpoint, linear combinations, and from a substantive 
standpoint, potentially hypothetical constructs extracted from the factor-analytic 
procedure. Observed variables that helped generate the factors are then correlated 
with the factors for the purpose of attempting to name these latent (or “unobserved”) 
constructs. 

In this chapter we survey some of the theory and application of this controversial 
technique, as well as highlight some of the more salient issues and concerns that lay at 
the forefront of the data-analytic tool. It is important to understand that of all the 
statistical tools surveyed in this book, factor analysis, and its close relative structural 
equation modeling, their subjects at least, are perhaps the most philosophically 
controversial. Factor analysis, its theory and application, is a subject on which 
many books have been written. Even rotational methods for FA alone can take up 
half a book. In this chapter, we genuinely only scratch the surface to provide a basic 
overview and introduction to some of its features. For a thorough and book-length 
study of factor analysis, refer to Mulaik (1972). 

15.3 EXPLORATORY VERSUS CONFIRMATORY 
FACTOR ANALYSIS 

In this chapter we consider only exploratory factor analysis, leaving the study of 
confirmatory factor analysis to the following chapter where we include our study of it 
as a special case of structural equation modeling. The distinction between exploratory 
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versus confirmatory factor analyses is, by its nature, quite fuzzy. As noted by 
Jöreskog, pioneer in the field of factor analysis: 

Most studies are to some extent both exploratory and confirmatory since they involve 
some variables of known and other variables of unknown composition. The former 
should be chosen with great care in order that as much information as possible about the 
latter may be extracted (1978, p. 444). 

Though we refrain here from delving too deeply into philosophical discussions of 
their differences, it is enough to define the exploratory model as factor analysis 
performed with fewer a priori theoretical predictions about what one will discover or 
uncover from the outset of the analysis. Needless to say, this definition is limited, 
since whenever one undertakes a factor analysis of any kind, the researcher usually 
arrives at the scene with at least some idea of what he or she will find. However, in a 
confirmatory factor analysis, one usually makes many more explicit predictions about 
virtually every facet of the hypothesized model, which often includes hypothesizing 
correlated error terms, constraining select parameters to certain values, or even testing 
improvement in model fit by slight modifications of the tested model. 

One might summarize this distinction to say that what differentiates EFA from 
CFA is that in the former, the specification of the model is usually quite elementary 
and “automatic,” whereas in the latter, the specification of the model, essentially every 
part of it, is required and expected before the model-fitting process even begins. On 
the technical side, the difference between EFA and CFA is that through the 
identification of proper constraints, CFA can generate uniquely estimated factor 
loadings. As we will discuss, loadings in EFA are typically not uniquely determined. 
We survey why this is the case later in this chapter. 

15.4 THEORY OF FACTOR ANALYSIS: THE EXPLORATORY 
FACTOR-ANALYTIC MODEL 

As we have undoubtedly come to see thus far in our study of statistical modeling, 
understanding statistical analysis is very much facilitated by an awareness that for 
each and every statistical procedure, there is an underlying hypothesized statistical 
model that we, as researchers, must implicitly or explicitly propose at the outset. Other 
than for simple descriptive statistics computed on samples, statistical modeling is the 
process of arriving at the data with an a priori imposed hypothetical structure, 
however simple or complex. This is true whether we are working in a binomial 
situation in which we have to hypothesize a value for p (probability of success) or in 
more complex modeling situations in which we are confronted with many more 
parameters. Whatever the model in each case, we impose the given model onto 
empirical data, and the extent to which it fits or “accounts” for the data, generally 
speaking, it is regarded as “well-fitting.” The extent to which our model does not fit is  
a sign that our theory needs revision. 
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Be sure to note that whenever you test a model, you want it to be under test, not the 
data, otherwise there is little point to model-fitting at all. Sometimes researchers, upon 
learning that their model does not fit, blame the data for not being as it somehow 
“should” be. Before any model-fitting occurs, you need to ensure that your data were 
collected in a scientifically standardized fashion, and have a clear understanding of 
the population to which you seek to generalize. If your model then does not fit the 
data, your theory should be to blame, not the data.1 Just imagine where physics would 
be if all along we decided our theories were correct and the atoms were wrong. 

15.5 THE COMMON FACTOR-ANALYTIC MODEL 

The model traditionally assumed in most exploratory factor-analytic work is the 
following, usually referred to as the common factor-analytic model: 

x � μ � Λf � ε (15.1) 

where x is a vector of random variables that are assumed observable (or “manifest”), μ 
is a vector of means for the random variables in x, Λ is a matrix of factor loadings, f is 
a vector of unobservable common factor random variables,2 and ε is a vector of 
specific factors. These specific factors comprise of variation unexplained by μ � Λf 
for each observed variable in vector x. 

The model in (15.1) is customarily written in terms of mean deviations, that is, 

x � μ � Λf � ε 

When we “unpack” the model for p variables and m factors, we find 

x � μ � Λf � ε 
x1 � μ1 � l11f 1 � l12f 2 � ∙ ∙ ∙  � l1mf � ε1m 

x2 � μ2 � l21f 1 � l22f 2 � ∙ ∙ ∙  � l2mf � ε2m 

xp � μp � lp1f 1 � lp2f 2 � ∙ ∙ ∙  � lpmf m � εp 

1Of course, should you discover after the fact that you collected data from the wrong population, then yes, in 
this sense, your data may be to “blame” for the model not fitting. I am not meaning to avoid or disregard this 
possibility. What I am saying is that if you have collected data from your intended population and your 
hypothesized model does not fit, the most likely explanation for the nonfit is your model, not the data. 
2In some models, we may wish to consider the vector f as fixed instead of random. However, such a model, 
as noted by Anderson (2003), would imply that the individuals specifically sampled are of interest, instead 
of regarding them as a random sample from a wider population. In the case that f is fixed, writing the model 
as x � Λf � ε � μ would be more appropriate. See Anderson (2003, p. 571) for details. 

... 
... 
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where x1; x2; . . . ; xp are observed variables, μ1; μ2 . . . ; μp are the means of the p 
variables, l11; l21; . . . ; lp1 are loadings for the p variables, l11; . . . ; l1m are loadings on 
the f 1; f 2; . . . ; f m factors, and ε1; ε2; . . . ; εp are errors associated with each observed 
variable x1; x2; . . . ; xp. 

Notice that the model of (15.1) is strikingly similar to the regression models 
discussed in Chapters 8 and 9. Consider a side-by-side comparison of these models: 

x � μ � Λf � ε versus y � xβ � ε 

Consider for now only the right-hand side of each model Λf � ε versus xβ � ε. We see 
that for both models, observed vectors x and y are linear functions of estimated 
coefficients, Λ in the factor model, and β in the regression model. These weights are 
applied to both f and x, respectively. But here is where the factor-analytic model and 
the regression model differ. Whereas in the regression model x is a vector of observed 
manifest variables, in the factor model, f is a vector of unobserved latent variables. 
That is, as the theory goes in FA, there are no real, true, empirical variables contained 
in the vector f as there are in the vector x in the regression model. This is the key 
distinction between these two models. In the factor analysis model, we are essentially 
hypothesizing that x is a function, in part, of unobserved variables. In the regression 
model, we make no such assumption, instead hypothesizing that y is a function of 
observed variables. 

Both models also have a vector of errors, ε, which in each case can be thought of as 
variation unaccounted for by the systematic portion of each model. In observed data, 
these will assume the name of errors in regression, whereas in factor analysis, these 
generally assume the name of unique variances. Some factor analysts further 
delineate unique variance into two components, one of specific variance and the 
other of error variance. The distinction is that specific variance is thought to be 
variance that is uncorrelated with other variables. In this regard, it is considered to be 
“true” variance, which is a reliable part of a variable that is found in no other variable. 
Error variance, on the other hand, is variance that is not necessarily unique to the given 
variable. While specific and error variances may indeed exist, they are inexorably 
difficult to distinguish in a pragmatic manner. Our position is that the error term in 
factor analysis can be more or less thought of as analogous to the error term in the 
regression model. They both represent variation unaccounted for by the given 
systematic portion of the model, that being x � μ � Λf in factor analysis and 
y � xβ in regression. 

A model is defined by the assumptions it makes. This is especially true of 
the factor-analytic model. We consider shortly the many assumptions made by the 
exploratory factor analysis model. We restrict our discussion for now to the 
orthogonal model, in which “orthogonal” in this context implies a requirement 
that estimated factors be uncorrelated, and hence each factor accounts for a distinct 
amount of covariance among observed variables. There is no “overlap” in the 
orthogonal model. This assumption can be relaxed somewhat, and later in this 
chapter we will briefly discuss factor models in which orthogonality among factors 
is not a requirement. We refer to such models as oblique factor models. 
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Before considering the assumptions, it is worth asking whether the assumptions we 
are about to discuss are necessarily correct when applied to empirical data. The answer 
is that for some assumptions, given the way in which the covariance or correlation 
matrix is analyzed and decomposed, we can be assured that these assumptions will 
hold. For instance, the fact that we are beginning with the orthogonal model and 
specifying it as such guarantees that the assumption of no covariance among factors 
will be satisfied. We are assured it is satisfied because we are parameterizing our 
model as such. In other cases however, assumptions are not guaranteed in this way, 
and we make them oftentimes out of convenience, or as a means to identify3 the given 
model. The situation is not unlike that of assumption-making in regression models. 
We regularly assume, for instance, that errors are normally distributed, but we are 
required to perform residual analyses in order to verify this assumption to learn if it is 
even plausible in practice. In other cases, the “assumption” of OLS regression that the 
sum of squared errors will be kept at a minimum value is not a true assumption at all, 
but is more of a constraint imposed by the method of estimation. 

15.6 ASSUMPTIONS OF THE FACTOR-ANALYTIC MODEL 

Perhaps more than any other statistical method, an understanding of the assumptions 
of factor analysis is vital. We now survey the most salient of these. In our discussion 
of each, we try as much as possible to “unpack” the assumption so that the reader 
becomes aware of what these assumptions actually mean in practice. When we 
analyze data for factor analysis toward the end of the chapter, we will have 
opportunity to revisit some of these: 

1.	 It is typically assumed that the mean of the latent vector f is equal to 0. That is,  
E�f� � 0. Why is this assumed? It is assumed as such mostly for convenience, 
and since the actual vector f is latent and thus unobserved, it is especially easy 
to make this assumption (how easy it is to make assumptions about variables 
that do not exist!). This idea of imposing a constraint on a model may seem 
quite arbitrary within an EFA framework, but when we consider structural 
equation models in the following chapter, we will see that the act of 
constraining parameters to specific values is common practice, and the 
assumption that E�f� � 0 in the exploratory model will no longer seem so 
bold an assumption.  

2. In the	 orthogonal factor-analytic model, it is assumed that factors do not 
covary. In a covariance matrix of estimated factors, we would expect pairwise 
covariances between factors to equal zero. And because we are still dealing 
with an unobserved random vector f , it is convenient to assume that the 
covariances of these derived factors will equal E�ff  ́� � I. That is, the 

3Identification will be discussed in more detail in Chapter 16 on structural equation modeling. For now it is 
enough to know that a parameter is deemed “identified” if there is enough information in the data to estimate 
it. If all parameters in a model are identified, the model is said to be identified. 
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covariance matrix of factors we would expect to be an identity matrix. For 
instance, for a two-factor model: 

1:0 0 
cov�f� �  

0 1:0 

The fixing of these covariances in a factor model provides another constraint 
and hence a parameter we do not need to estimate. In an oblique factor model, 
one in which we allow the extracted factors to correlate, this assumption will no 
longer hold, and we will expect the off-diagonal elements to be unequal to 
zero. As a reference to what we are talking about, note that in a multiple 
regression we do not constrain the covariances between observed variables 
to equal 0. However, when we standardize variables, we do constrain the 
variances to equal 1.0 by the simple fact that standardizing a variable gives it a 
mean of zero and a variance of 1.0. Again, it is pedagogically useful to 
appreciate the parallels and differences between the factor analysis model and 
the classic multiple regression model in terms of what assumptions are made 
(and not made) in each. 

3. It is assumed that the errors in the factor-analytic model have a mean equal to 0. 
Since the matrix of errors, ε, is a random vector, the assumption is that E�ε� � 0. 
This assumption is not unlike that of the assumption for the error term in the 
classic multiple regression model. 

4. We assume that the errors, the specific variances in matrix ε, do not covary. 
That is, the unexplained variation for each observed variable has nothing in 
common with the unexplained variation for another observed variable. In 
matrix terms, we assume the covariance matrix of errors to have zeros every
where except the main diagonal (i.e., a diagonal matrix) where are located the 
variances of the errors. We can state this assumption more concisely to say that 
the expectation of the cross-product of errors for the two-factor case is equal to a 
matrix ψ: 

ψ1 0ψ � 
0 ψ2 

Does this seem like an unreasonable assumption? Is it unreasonable to assume 
that specific variances (errors) are unrelated? It may be, which is one reason 
why confirmatory factor analysis is useful in contexts in which we do wish to 
hypothesize a covariance among errors. It would seem reasonable in many 
substantive scenarios that the unexplained variance in a given observed variable 
is related to the unexplained variance in a second observed variable. In the 
following chapter on structural equation models, we discuss how we can allow 
the matrix ψ to be something other than a diagonal matrix, thus freeing up 
errors to covary. Such decisions are usually heavily steeped in the theory of the 
researcher. 
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5. Finally, it is assumed that the estimated factor and its unique variance do not 
covary. That is, E�εf ́� � 0. The analogous assumption in regression is that 

´E�εx � � 0, that is, the covariance between the error term and the predictor 
variable is equal to 0. As we have seen throughout this book, this is a common 
assumption made in linear models, and hence it is a relatively easy one to also 
make in the case of the factor-analytic model. 

We also expect that observed variables are linearly related in the common factor 
model. If there is little to no correlation among observed variables, then it should be 
obvious that performing a factor analysis will not make much sense, analogous to 
computing a variance on a set of data consisting of constants would likewise make 
little sense. And if nonlinear relationships are hypothesized among variables instead 
of linear ones, then options such as nonlinear factor analysis are also available (e.g., 
see Yalcin and Amemiya (2001)), although not discussed in this book. 

15.7 WHY MODEL ASSUMPTIONS ARE IMPORTANT 

In light of the aforementioned assumptions, recall again why explicitly stating 
model assumptions is important and relevant, not only in the factor-analytic model 
but also generally in all statistical models. Recall that we use a model to provide a 
rational and coherent theoretical representation of the observed data. In identifying 
the model, we need to make certain basic assumptions about the structure we are 
imposing, otherwise, it is impossible to fit any model to data since it is impossible to 
even begin the process. We must start somewhere, and that  “somewhere” takes the 
form of a statistical model along with its implied and imposed assumptions. This 
idea is not unlike that of a psychologist coming to the careful analysis of human 
behavior with a priori  “background” assumptions already in place, whether 
emanating from psychoanalytic, behaviorist, or humanistic traditions. The point 
is that when we seek to explain or model, or otherwise provide a narrative to 
empirical data, we have to come to the data with at least some theoretical stance, 
even if minimal. 

15.8 THE FACTOR MODEL AS AN IMPLICATION FOR THE 
COVARIANCE MATRIX Σ 

The assumptions that we made for the factor-analytic model imply a structure of the 
covariance matrix among observed variables. We follow Johnson and Wichern (2007) 
in showing how the assumptions made in (15.1) imply the observed covariance matrix 
to be a function of squared factor loadings plus a unique variance. That is, (15.1) 
implies 

� ΛΛ ́ �ψ 



588 FACTOR ANALYSIS 

To see why this is true, consider once more the factor model thus stated: 

x � μ � Λf � ε 

When we square x � μ, or in matrix terms, multiply x � μ by its transpose �x � μ�´ to 
get the covariance matrix, we perform the same operation on the right-hand side, 
and get 

x � μ � Λf � ε 
(15.2) �x � μ��x � μ�´ � �Λf � ε��Λf � ε�´ 

When we expand the right-hand side of (15.2), we get 

�Λf � ε��Λf � ε�´ � Λf�Λf�´ � Λfε ́ � ε�Λf�´ � εε ́ 

Hence, we can write �x � μ��x � μ�´ as equivalent to Λf�Λf�´ � Λfε´ � ε�Λf�´ � εε´ . 
At this point, we remind ourselves that the actual definition of the covariance for a 

random variable is E�x � μ��x � μ�´ , and since we are taking expectations on the left-
hand side of the above derivation, we must also take expectations on the right-hand 
side. However, we cannot simply take the expectation of Λf�Λf�´ � Λfε´ � ε�Λf�´ � εε´ 
at once. Why not? Because the expression is not entirely made of random variables. It  
makes less sense to take the expectation of Λ, for instance, because Λ is a matrix of 
loadings, not of random variables. However, it does make sense to take expectations of 
f, since f is a vector of random variables. It also makes sense to take the expectation of ε, 
since the matrix ε is also a matrix of random variables (i.e., recall in our discussions of 
ANOVA that we eventually regarded the error in the model as a random effect, 
conceptually analogous to other random effects in the random effects model or the 
mixed model). 

Hence, when we take the relevant expectations, we get 

E�x � μ��x � μ�´ � ΛE�ff  ́�Λ ́ � E�εf ́�Λ ́ � ΛE�fε ́� �  E�εε ́� (15.3) 

Now, recall the assumptions we began with in developing the factor model. Since 
E�f� �  0 and E�ff  ́� �  I, (15.3) reduces to 

E�x � μ��x � μ�´ � ΛE�ff  ́�Λ ́ � E�εf ́�Λ ́ � ΛE�fε´� �  E�εε´� 
� Λ�I�Λ ́ � �0�Λ ́ � Λ�0� �  E�εε ́� 

(15.4)� ΛΛ ́ � 0 � 0 � ψ 
� ΛΛ ́ � ψ 

Equation (15.4) is very important. In words, it says that the covariance matrix Σ 
is equal to squared factor loadings (ΛΛ ́ ) plus error associated with each observed 
variable (ψ). Recall that since ψ is a diagonal matrix containing only error variances 
along the main diagonal and covariances equal to 0 everywhere else, the factor model 
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under consideration does not allow error terms (or “specific variances” to use factor-
analytic language) to covary. 

15.9 AGAIN, WHY IS Σ � ΛΛ ́ � ψ SO IMPORTANT A RESULT? 

Result (15.4) is of significance in defining the factor-analytic model because it reveals 
that one can essentially reproduce or generate the covariance matrix by knowledge of 
the factor loadings and specific variances. Hence, if we can estimate loadings for Λ, 
and likewise consider the unique variances in ψ, we can, in theory, account for the 
makeup of the covariance matrix Σ. Just as the goal of building a model in regression 
is to regenerate existing data through specification of a suitable regression model, in  
factor analysis the goal is to specify a model such that the covariance matrix Σ is 
reconstructed. The trick in factor analysis is, of course, to specify a matrix Λ that is 
best suited in reproducing Σ. Should the matrix Λ contain a single factor? Should it 
contain two factors? Three? If a factor-analytic solution is to be deemed somewhat 
sensible and reasonable, determining the appropriate or correct number of factors is 
one of the most significant challenges faced by the analyst. Technically, however, the 
challenge reduces down to reproducing the covariance matrix Σ. Theoretically and 
substantively, the job is much more difficult, and the factor analyst must also justify 
the reproduction of the covariance matrix based on a meaningful, substantive solution, 
not only one that adequately reproduces Σ. 

15.10 THE MAJOR CRITIQUE AGAINST FACTOR ANALYSIS: 
INDETERMINACY AND THE NONUNIQUENESS OF SOLUTIONS 

The primary criticism against factor analysis since its inception is that the derived 
factor loadings in the matrix Λ are not unique. Recall that for a solution to be unique 
implies that there should be a single solution to the equation. The estimation of Λ 
actually does, in a manner of speaking, provide a unique solution, but only up to an 
orthogonal matrix. The implication of this is that regardless of the solution obtained 
in the estimation process, we are able to quite freely rotate the factor solution and yet 
provide the same reproduction of the covariance matrix as with the original solution. 
As Mulaik (1972) summarizes: 

Thus factor analysis, at least in the traditional sense, is concerned with the problem of 
analyzing a variable into components . . . from a strictly mathematical point of view, there 
is an infinite number of potential sets of components which might be determined for a given 
set of variables. Because of this mathematical ambiguity, the history of factor analysis has 
been filled with controversy over what are the appropriate components into which to 
analyze a set of variables. These controversies are by no means over today. (pp. 95–96) 

The two components Mulaik speaks of are the common factors and unique factors 
previously discussed. Mulaik’s words were written in 1972 but are just as relevant 
today. 
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In what follows, we work through the technical argument to show that the factor 
solution is unique only up to an orthogonal matrix. Recall what the orthogonality of a 
matrix implies. If matrix T is an orthogonal matrix, it implies that TT ́ � T ́ T � I, 
where I is the identity matrix with values of 1 along the main diagonal. Consider now 
introducing this matrix into the factor-analytic model we have been working with. We 
post-multiply the loading matrix Λ by TT ́ , and get 

x � μ � Λf � ε 
� ΛTT ́ f � ε 

Notice that we haven’t “changed” the model per se, since if T is orthogonal, then it 
must be true that TT ́ is equal to I, and so we could have just as easily written the 
above model as 

x � μ � ΛTT ́ f � ε 
� ΛIf � ε 

What is the problem then with introducing the orthogonal matrix T? The problem is 
that ΛTT ́ f � ε in x � μ � ΛTT ́ f � ε can be written as �ΛT��T ́ f� � ε. That is, we 
may consider our original matrix of loadings Λ, subject to the transformation T to be 
equal to ΛT, and the vector of factors f to be equal to �T ́ f�. What this means is that 
through an orthogonal transformation matrix T, we are able to define a new loading 
matrix ΛT and a new factor vector �T ́ f�. 

The question now becomes, does this new definition of Λ and f change things in 
terms of the model? We check this through taking the relevant expectations once 
more. We do not take the expectation of ΛT, since ΛT represents the matrix of 
loadings (transformed), and so taking its expectation would be less useful. However, 
we do take the expectation of �T ́ f�, and since E�f� � 0, it stands that E�T ́ f� � 0. That 
is, the expectation of the transformed factor vector is identical to that of the 
untransformed vector. In both cases, before transformation and after, the expectation 
is equal to 0. In plain English, this means that both the original factor vector and the 
transformed factor vector have the same mean. 

The next question that needs to be addressed is whether the expectation of the 
covariance of �T ́ f� changes as a result of its transformation by T. With the 
transformation, the covariance term becomes T ́ E�ff  ́�T. Since T is an orthogonal 
matrix, and by definition TT ́ � I, this means that the covariance of the transformed 
factor matrix �T ́ f� remains I. Hence, the point is that the transformation of f by the 
orthogonal matrix T does not alter the expectation for the covariance matrix of f. 
Again, in plain English, this means that both the original covariance matrix and the 
transformed covariance matrix have expectations equal to the identity matrix I. 

In summary then, the process of transforming the factor-analytic solution by an 
orthogonal matrix does not change its expectations, and as such, whether we use 
Λf � ε or ΛTT ́ f � ε, we are able to reproduce the same covariance matrix. Be sure 
you understand this result because it is extremely important and has wide implications 
for factor analysis and the kinds of conclusions one draws from it. Both the original 
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loadings and the transformed loadings generate the same covariance matrix, and 
hence, if one were to apply an orthogonal transformation to loadings estimated in a 
factor analysis, one could still just as well reproduce the original covariance matrix. 
The question then naturally arises: 

Which loadings are the “correct” loadings, the ones originally derived, or the ones 
derived through an orthogonal rotation? 

The answer to this question does not arise from mathematical derivation or 
deduction. And hence, we have come to the primary critique charged against factor 
analysis. The answer must come from the subjective consideration regarding which 
loadings make the most sense to the researcher. It is the researcher who must select 
the solution he or she prefers. This is often the reason cited for the disdain for factor 
analysis by some, since some perceive it as a statistical methodology one can “adjust” 
until one arrives at a solution that agrees with one’s factor-analytic hypothesis. 

15.11 HAS YOUR FACTOR ANALYSIS BEEN SUCCESSFUL? 

If a factor analysis does not provide a meaningful structure to your data, it may very 
well be because there is no structure to your data. It does not necessarily mean 
something went “wrong” in your factor analysis. It is the stream of consciousness of 
the self-absorbed narcissistic researcher who subjects his data to factor analysis, not to 
find the common structure hypothesized to exist (even after rotation after rotation), 
and concludes that something must have gone “amiss” with the statistical technique or 
that “weird” data were obtained. What is much more likely is that there are no 
underlying factors that theoretically gave rise to observed correlations. In other words, 
it didn’t work. Conservatism in scientific discovery is unfortunately not publishable, 
but it makes one a better scientist. 

Though significance tests for factor loadings do exist, one should usually not rely 
on such things to establish whether a factor analysis has been successful. Oftentimes 
researchers adopt a sequential testing strategy and test a number of hypothetical 
factors until a given solution “meets their expectations.” It is reasonable to suspect that 
error probabilities will accumulate under this process. However, these error proba
bilities are generally unknown (Anderson, 2003), which further complicates the 
process. More recently, computationally intensive approaches have been proposed for 
factor selection. For example, Chen, Huang, and Tu (2010) proposed a new approach 
based on unbiased risk estimation, which has shown to recover factors better than 
some traditional approaches. 

Even if an apparent structure does reveal itself from the analysis, the question of 
the size of loadings on estimated factors remains. How large is “large enough” to 
consider a variable loading on a given factor? Though there have been rough rules of 
thumb-type guidelines advanced on this issue, it is not a hard science, and some 
flexibility in decision rules must be granted. Generally, if a loading is greater than 0.3 
or 0.4, it is probably worth looking at. However, one can also envision a situation 
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where, if theoretically meaningful, a loading of 0.2 should also make its way into the 
determination of an overall factor solution. The point is that there is no absolute 
cutoff, and efforts to establish such cutoffs from a substantive point of view are at best, 
imperfect. 

Our advice for deciding whether a factor solution is meaningful or not parallels that 
of Johnson and Wichern (2007), which they call the “WOW” criterion: “If, while 
scrutinizing the factor analysis, the investigator can shout ‘Wow, I understand these 
factors,’ the application is deemed successful” (p. 526). If you sit with your factor 
solution for weeks splitting hairs, it may be time to concede the absence of a solution 
and move on. This can be said to be true of any statistical model that you run. Too 
often researchers advance models that account for such small proportions of variance 
under the presumption that because the model explains any variance, it must some
how be worthwhile. Random data can also account for variance, which is something 
researchers should always keep in mind. As is true of most statistical findings, factor-
analytic results and solutions should be cross-validated if possible to help confirm 
(or disconfirm) the existence of a solution. Jackknife or bootstrap validation (see 
Lattin, Carroll, and Green (2003) for a brief discussion) may be used to help confirm 
results found in one sample to another. 

15.12 ESTIMATION OF PARAMETERS IN EXPLORATORY 
FACTOR ANALYSIS 

Recall that in any statistical model, one must estimate parameters. For instance, recall 
in the simple linear regression model, 

yi � α � βxi � ε 

we estimated parameters α and β with estimators a and b, respectively. These 
parameters in regression were usually obtained using ordinary least-squares regres
sion or maximum likelihood (ML). In factor analysis, we likewise need to estimate 
parameters. What are the parameters that need to be estimated in factor analysis? 
Typically, they are the variances of, and covariances among observed variables. 

There are numerous options available for estimating parameters in factor analysis. 
Most require the assumption of multivariate normality. We survey only two, that of 
principal factor (or principal axis factoring) and maximum likelihood, since they are 
the most widely used and have desirable statistical properties. Principal axis factoring, 
when compared to ML, has been shown to be more efficient at recovering weaker 
factors. Recent results also suggest that PAF (i.e., principal axis factoring) is 
sometimes more efficient at extracting factors with few indicators per factor. For 
details, see Winter and Dodou (2012). These researchers also found that extractions 
by PAF and ML are not always asymptotically equivalent. For literature on other 
methods of estimation, the interested reader is encouraged to consult Mulaik (1972). 
For a specific discussion of generalized least squares, the reader should consult 
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Anderson (2003, pp. 583–584). For a comparison of results based on different 
extraction methods, see Tabachnick and Fidell (2007, pp. 633–635). 

In our discussion of estimation to follow, we assume, as we have done throughout 
this chapter, that factors in the factor analysis model are random and not fixed. 
Methods of estimation are well developed for estimating parameters in the case that 
factors are considered random quantities. In cases where factors are fixed, estimation 
methods are less well developed. Regardless, whether factors are random or fixed 
leads to the same structure of the factor model, that of: Σ � ΛΛ ́ � ψ (Timm, 2002). 

15.13 ESTIMATION OF FACTOR SCORES 

After conducting a factor analysis, the researcher may wish to estimate factor scores 
based on the extracted solution. Factor scores are in principal analogous to predicted 
values in regression analysis, only that factor scores must be estimated from 
unobservable variables rather than from observable ones as in regression. A factor 
score is estimated for each factor extracted in the analysis. For example, for a two-
factor model, one would estimate a factor score for each factor for each individual in 
the data set. 

There are numerous methods for estimating factor scores. The so-called regression 
method is among the more popular choices. For a discussion and numerical example 
of the procedure, see Johnson and Wichern (2007, pp. 516–518). Factor scores are 
easily estimated in R and SPSS, though SPSS will not allow one to estimate factor 
scores if data are analyzed through the MATRIX command via correlation or 
covariance matrix. 

15.14 PRINCIPAL FACTOR 

A common method of estimating factors is that of principal factor, which, as 
mentioned, also goes by the name of principal axis factoring. This is a least-squares 
estimation technique that makes no distributional assumptions (Gnanadesikan, 1997), 
and accomplishes its job by minimizing the unweighted least squares (ULS) or 
ordinary least squares (OLS) of the residual matrix (Winter and Dodou, 2012): 

FOLS � 
1 
tr �S � Σ�2 

2 

In this method, initial communalities are estimated and inputted into the diagonal of 
the covariance or correlation matrix. For example, consider the following correla
tion matrix on  five observed variables. An initial visual inspection reveals that 
variables 1  and 3 are highly correlated (.96) along with variables 2 and 5 (.85) as 
well as 4 and 5 (.79). Other bivariate correlations are quite small, for instance 1 and 
2  (.02)  as  well  as  1 and 5 (.01).  
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Note that 1.00 appears in the diagonal of the correlation matrix, since these are 
essentially correlations of variables with themselves. Recall that in principal compo
nents analysis, values of 1.00 appeared along the diagonal to indicate that each 
variable contributed an even 1 unit of variance to the problem. Since factor analysis is 
typically interested in analyzing commonality rather than unique variance, these 
numbers along the main diagonal will be different in EFA than they are in PCA. 
Principal axis factoring replaces these 1’s with initial communality estimates before 
estimating relevant parameters. A popular estimator for these diagonal elements in the 
correlation matrix is 

ĥ
2 � R2 

i � 1 � 
1 

i rii 

ĥ
determination for regressing variable on all other observed variables, and isi rii 
the ith diagonal element of the inverse of the correlation matrix R. 

If you consider for a moment what the coefficient of determination is telling us, it 
makes good sense to name it “communality.” The communality for a given variable is 
estimated using all other variables in the data set to predict the variable under 
consideration. In this way, we are interested in learning how much variance for the 
given variable is shared with other variables in the set. Be sure to note that in this way 
of estimating communalities, a variable’s estimated communality will be a function of 
what other variables are under consideration in the factor analysis. Hence, as can be 
said for virtually all multivariate models, the results one obtains are at least somewhat 
dependent upon other variables simultaneously considered in the model. This is why, 
for instance, we emphasized a careful interpretation of partial regression coefficients 
in Chapter 9 as distinct from zero-order coefficients. Models are context dependent. 

If the covariance matrix S is analyzed instead of the correlation matrix, an appropriate 
estimator is 

2 
is the estimated communality for variable i, Ri 

2where is the coefficient of i 

^2 1 
h � ssii � � ssiiR2 
i issii 

where ssii is now the ith diagonal element of S�1 (Rencher and Christensen, 2012). 
Other ways of estimating communalities are also available. The key point to retain 

however is the concept that these numbers are being estimated as a “starting point” to 
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conducting the factor analysis. The estimated communalities, in a sense, initiate the 
factor-analytic procedure. 

15.15 MAXIMUM LIKELIHOOD 

One of the most common methods of estimating parameters in the context of factor 
analysis is that of maximum-likelihood estimation. The log-likelihood function for a 
multivariate normal distribution is given by 

p 1 1 1 ´ Σ�1ln L�μ; Σ� � �np ln 2π � n ln jΣj � �n � 1� tr�Σ�1S� � n�y � μ� �y � μ�
2 2 2 

Substituting the maximum-likelihood estimator y for μ, along with substituting the 
assumed structure of ΛΛ ́ �Ψ for the population covariance matrix, Σ, the log-
likelihood function reduces to the following: 

p 1 1
ln L�Λ; Ψ� � �np ln 2π � n ln jΛΛ ́ �Ψj � �n � 1� tr �ΛΛ ́ �Ψ��1S

2 2 

Maximizing the log-likelihood function is equivalent to minimizing the following fit 
function, where we now emphasize model parameters in Σ through the notation Σ�θ�: 

SΣ�1FML � ln jΣ�θ�j � tr� �θ�� � ln jSj � p (15.5) 

where p is the number of observed variables. As will be discussed in the following 
chapter, the fit function of (15.5) is very general in that it specifically does not define 
the exact nature of the covariance matrix of model parameters in Σ�θ�. In the 
orthogonal factor model under consideration in this chapter, by substituting in the 
exploratory factor model for Σ�θ�, we can rewrite FML to be 

SΣ�1FML � ln jΣ�θ�j � tr� �θ�� � ln jSj � p 
�1� ln jΛΛ0 �Ψj � tr�SjΛΛ0 �Ψj � � ln jSj � p 

Notice that similar to how we did for the log-likelihood function, in place of Σ�θ�, we  
now have inserted the nature of the covariance matrix for the estimation problem of 
the factor model under consideration, that of ΛΛ ́ �Ψ. In Chapter 16 on structural 
equation and latent variable models, we most often use the general form Σ�θ� in our 
notation, even though for any particular problem the covariance matrix may be 
different. For instance, in some models we will impose restrictions and constraints on 
the covariance matrix that in other models are not present. 

As will also be discussed more fully in Chapter 16, the fitting function will equal 
zero when Σ�θ� � S. To the extent that Σ�θ� ≠ S, the value of the fitting function will 
be greater than zero (i.e., FML > 0). 
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Both the minimizing of FML and the maximizing of L�μ; Σ� amount to the same 
thing and will yield identical parameter estimates. The minimizing of FML or the 
maximizing of L is achieved through numerical iteration methods of which the study 
is a field in itself and is a rather specialized area in mathematical statistics and 
numerical algebra. For a survey of the methodology, the reader is encouraged to refer 
to Bollen (1989). For a readable introduction to the field of numerical algebra, refer to 
Trefethen and Bau (1997). 

Estimation for factor analysis using maximum likelihood is essentially an iterative 
procedure since no analytical expression, or “closed solution” can usually be obtained. 
Closed-form solutions for maximum-likelihood estimates typically involve setting 
partial derivatives to zero and solving equations, similar in spirit to ideas of finding 
maxima and minima of simpler functions, as briefly discussed in Chapter 2. Often
times however, analytical solutions cannot be found and hence iterative procedures 
and algorithms are our only way of obtaining a solution. Iterative procedures for 
maximum-likelihood estimation go as far back to at least Lawley (1958) who 
proposed an iterative procedure to estimate a confirmatory factor analysis model. 

The reader interested in the computational iterative details on maximum-likelihood 
estimation as it relates to factor analysis is encouraged to refer to Johnson and 
Wichern (2007, pp. 527–530) and Lawley and Maxwell (1971). Historically signifi
cant papers can be found in Lawley (1958) and Jöreskog (1967, 1969). Recall from 
Chapter 3 that among many features to like about maximum-likelihood estimates is 
that they are asymptotically unbiased (Gnanadesikan, 1997), meaning for large-
enough sample size, they provide valid estimates of corresponding parameters. 

There are several other methods of factor analysis as well. These include image 
analysis, alpha factoring, the centroid method, among others. Regarding which 
method to use, it is probably best to heed the recommendation of Rencher (1998): 

The various methods of estimating factor loadings will generally yield different 
solutions. However, for samples from populations in which the basic factor analysis 
model is valid, most methods yield similar loadings, at least after rotation. Thus if the 
researcher has data to which a factor analysis model can be successfully fit with large 
communalities, the choice of technique is not important. To a lesser extent, if the number 
of variables is large, the various methods will also yield similar results, regardless of the 
adequacy of fit. (pp. 385–386) 

15.16 THE CONCEPTS (AND CRITICISMS) OF FACTOR ROTATION 

Oftentimes in factor analysis, interpretation of the extracted solution can prove difficult 
in terms of whether or not it defines true factors. Factor rotation is a procedure used for 
the purpose of facilitating interpretation of derived factors and in an effort to achieve 
what Thurstone called simple structure, best described by Mulaik (1972): 

Thus if in a factor analysis of n variables r common factors were obtained, Thurstone 
deemed the factor solution ideal when each variable required fewer than r factors to 
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account for its common variance. By the same token, when it came to interpreting the 
common factors by noting the observed variables associated with each respective factor, 
parsimony of interpretation could be obtained when each factor was associated with only 
a few of the observed variables. A factor solution displaying these properties of 
parsimony was designated a simple-structure factor solution. (pp. 218–219) 

Rotation of factors is one way in which a factor analyst attempts to ameliorate the 
solution so as to approximate simple structure as closely as possible. However, as with 
many decisions in the factor-analytic process, choosing the correct rotation can 
likewise come down to a subjective choice. As noted by Jöreskog (1967): 

Though Λ* and Λ are equivalent from the mathematical point of view, they may not be so 
from the psychological point of view. The problem of choosing one particular psycho
logically meaningful Λ out of the infinite set fΛT�1g has been called the problem of 
rotation, although the problem of transformation would be a better term, since it includes 
also the transformation to oblique factors, in which case the transformation matrix T is 
not orthogonal and hence does not represent only a rotation. (p. 166) 

Rotations are generally divided into two broad categories, orthogonal rotations 
and oblique rotations. Orthogonal rotations transform factors to new axes, but keep 
the axes at a 90° angle. That is, orthogonal rotations do not allow factors to correlate. 
Two popular methods of orthogonal rotation include varimax and quartimax, both of 
which will be discussed shortly. Oblique rotations allow factors to correlate, and 
hence overlap will exist between factors. Examples of oblique rotations include 
promax, oblimin, quartimin, and covarimin. We do not detail oblique methods in this 
chapter, although if one has a general understanding of what rotation means for the 
orthogonal case, it is easy enough to generalize this understanding, at least concep
tually, to nonorthogonal rotations. 

Before surveying the idea of factor rotation, we must once more recall what is 
meant by an orthogonal transformation. We briefly discussed the concept earlier in 
our discussion of the nonuniqueness of solutions. A square matrix T is orthogonal if 
the following condition holds: 

TT ́ � T ́ T � I 

Recall that the idea of orthogonality was one that allowed a variety of solutions (up to 
an orthogonal matrix) to be found for a given covariance matrix when considering the 
fundamental equation for factor analysis, Σ � ΛΛ ́ � ψ. When we introduced an 
orthogonal matrix and rewrote the covariance matrix as Σ � ΛTT ́ f � ε, we found we 
were still able to produce the same covariance matrix as before. This is why factor 
rotation in factor analysis is allowable and mathematically “permissible,” because 
despite the rotation, the generation of Σ does not change. 

We now detail to some extent how rotation works in factor analysis. After 
estimating loadings in the factor-analytic routine, we wish to rotate the coordinate 
axes by an angle that will typically maximize or minimize some quantity. The decision 
criteria by which the rotation will take place will depend on the type of rotation we 
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wish to perform, that of orthogonal, which recall does not permit the factors to be 
correlated, or oblique, which does allow factors to be correlated. We discuss these 
rotation criteria shortly. 

Consider now the rotation of the loading matrix Λ. In rotating the loading matrix Λ, 
we multiply this matrix by O, which is an orthogonal matrix. Upon multiplying by this 
matrix, we obtain ΛR, which is the rotated loadings matrix. As an example, consider a 
rotation for a simple (and arithmetically easy) two-dimensional structure: 

ΛR � ΛO 

To rotate the matrix Λ clockwise, we multiply Λ by coordinates of rotation in O1: 

cos ϕ sin ϕ
O1 � �sin ϕ cos ϕ 

To rotate the matrix Λ counterclockwise, we multiply Λ by O2: 

cos ϕ �sin ϕ
O2 � 

sin ϕ cos ϕ 

As an example, for a 20° rotation, we would have 

cos ϕ sin ϕ cos �20� sin �20�� ΛΛR � Λ �sin ϕ cos ϕ �sin �20� cos �20� 

which, when we evaluate the values for cos, sin, and �sin, means we are multiplying 
the matrix Λ as such: 

cos ϕ sin ϕ 0:940 0:342� ΛΛR � Λ �sin ϕ cos ϕ �0:342 0:940 

But why define the coordinates of our rotation specifically by cos ϕ, sin ϕ, and 
�sin ϕ? That is, why are the coordinates of rotation the way they are? There is a 
simple answer to this question. Note that in the above example featuring the clockwise 
20° rotation, �0:940�2 � �0:342�2 � 1:0 and ��0:342�2 � �0:940�2 � 1:0. In trigonom
etry, the following identities are well known: 

�cos θ�2 � �sin θ�2 � 1 
��sin θ�2 � �cos θ�2 � 1 

These trigonometric identities are what we are seeing “at work” in the factor rotation. 
The defining of the transformation matrix guarantees that the original matrix can be 
“preserved” as such so that these identities hold. 
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FIGURE 15.1 Orthogonal rotation in two dimensions where the new axes are indicated by 
dashed lines. Reproduced with permission from Abdi (2003). 

That the rotation is orthogonal can also be demonstrated by recourse to 
TT ́ � T ́ T � I: 

cos θ sin θ cos θ �sin θ 
T ́ T � �sin θ cos θ sin θ cos θ 

�cos θ��cos θ� � �sin θ��sin θ� �cos θ���sin θ� � �sin θ��cos θ� � ��sin θ��cos θ� � �cos θ��sin θ� ��sin θ���sin θ� � �cos θ��cos θ� 
1 0  � 
0 1  

It is of course very useful to depict a factor rotation geometrically, as done in 
Figure 15.1. As can be seen from the figure, the rotation in this case is simply 
transforming the original axes of x1 and x2 to y1 and y2. 

15.17 VARIMAX AND QUARTIMAX ROTATION 

There have been numerous rotations for factor analysis proposed. We here only 
briefly survey the most common ones, varimax and quartimax. Both are orthogonal 
rotations. These are the ones that the reader will likely perform when conducting a 
factor analysis. An understanding of these makes it easier to grasp other rotations one 
might encounter. We do not discuss nonorthogonal, so-called oblique rotations in this 
book. For a relatively detailed and thorough account of rotational methods, refer to 
Mulaik (1972, pp. 249–292). 
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The goal of the varimax rotation (Kaiser, 1958) is to maximize “within factor” 
variance of squared loadings for extracted factors. What will make the variance of 
squared loadings large? All else equal, they will be large when there is much 
dispersion among the loadings. In other words, loadings that are either high (near 
1.0) or small (near 0.0) are preferred over “mediocre” loadings since loadings 
approaching the upper and lower limits of 1.0 and 0.0 serve to maximize the 
variability of loadings. The varimax rotation essentially drives large loadings to 
be even larger, and small loadings to be even smaller. This makes sense, since the 
minimum variance of factor loadings occurs when all loadings are identical, in which 
case the variability in loadings is equal to zero. Hence, maximizing high loadings and 
minimizing smaller ones “disrupts” this “minimal variance” pattern. The disruption of 
this homogeneity often helps in the interpretation of the factor-analytic solution. 

The question then is: What kind of transformation matrix should the original 
solution be rotated against so that the variance of factor loadings is maximized? Kaiser 
(1958) found that the transformation matrix should be chosen such that the following 
quantity is maximized: 

p 2 
l2 � l

2
V � ij j 

i�1 

2 pwhere l2 
ij are the squared loadings i to p for a given factor and lj � i�1�l2 

ij =p� is the 
average squared loading across the p variables. The varimax technique works to 
emphasize within factor distribution of loadings to high versus low on each observed 
variable. V is usually maximized using iterative techniques and hence its maximiza
tion is dependent upon a computing algorithm for computational ease and efficiency. 

Whereas the varimax rotation attempts to maximize the variance of squared 
loadings by focusing on the columns of factor loadings (i.e., the columns representing 
each factor), the quartimax rotation focuses on the rows of the loading matrix, seeking 
to maximize the variance of loadings across factors instead of within factors. The 
quartimax criterion is given by 

2 �l2 
j �2Q � ij � l

where now the sum is across factors j � 1 through m. Different, yet somewhat 
analogous to V in what it accomplishes, Q drives loadings across factors to either 0 or 
1 instead of within factors. 

15.18 SHOULD FACTORS BE ROTATED? IS THAT NOT 
CHEATING? 

The question of whether factors should be rotated has existed since the advent of 
factor analysis. Sometimes students, upon first learning of factor rotation, mistakenly 
believe that it “cheapens” the value of one’s data, or at minimum, constitutes 

m 

j�1 
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“dishonest” data analysis. However, this view is misguided. One must realize that the 
original axes upon which the factor solution was derived are not, in themselves, 
“special” in any way, at least not when it comes to the substantive interpretation of the 
factor solution. Since factors are hypothetical structures that do not have “true” axes, 
the fact that we are rotating axes simply represents a different way of interpreting 
these unknown structures. 

Once we agree that rotation is acceptable for factor analysis, the next question that 
usually presents itself is whether orthogonal rotations are more valid compared to 
oblique rotations. Recall that in an oblique rotation, factors are allowed to covary, 
whereas in orthogonal rotations, they are not. There are differing views on this topic, 
but in the end, it largely comes down to subjective opinion regarding the nature of 
what the factors should be or how they are idealized by the analyst. Indeed, according 
to Thurstone (1947), “It seems just as unnecessary to require that mental traits shall be 
uncorrelated in the general population as to require that height and weight be 
uncorrelated in the general population.” In our view then, allowing factors to correlate 
is acceptable so long as it coincides with one’s theory. Indeed, in confirmatory factor 
analysis, the topic of Chapter 16, researchers quite often estimate correlations between 
factors, and hence it would seem acceptable to allow them to likewise correlate in 
EFA models. 

15.19 SAMPLE SIZE FOR FACTOR ANALYSIS 

Factor analysis is inherently a large sample technique, meaning one usually requires a 
reasonably strong sample size in order to have any “trust” in the findings of the 
analysis. How large is large enough? How small is too small? Historically, writers on 
factor analysis have offered many “rules of thumb” recommendations regarding 
adequate sample size. Recommendations are not consistent across the board, and 
according to MacCallum et al. (1999), they are not equally applicable from study to 
study: 

Our theoretical framework and results show clearly that common rules of thumb 
regarding sample size in factor analysis are not valid or useful. The minimum level 
of N, or the minimum N:p ratio, needed to assure good recovery of population factors is 
not constant across studies but rather is dependent on some aspects of the variables 
and design in a given study. Most importantly, level of communality plays a critical role. 
(p. 96) 

What MacCallum et al. generally found was that when communalities are high 
(e.g., greater than 0.6) and factors are well determined (and the computational 
algorithm converges), samples even smaller than 100 may be enough to conduct 
the analysis. However, as communalities get smaller, in general, a greater sample size 
is required. For instance, with communalities ranging in the neighborhood of 0.5, 
sample size in the general range of 100–200 is recommended. If communalities are 
quite low for estimating a small number of factors with very few indicators for each 
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factor (e.g., 3–4), sample sizes in the neighborhood of 300 or more are preferred. For 
cases in which communalities are very low and factors are poorly determined, sample 
sizes of 500 are generally required. 

Overall, since factor analysis is a large-sample technique (t-tests, in comparison, 
are a small sample technique), in general, the greater the sample size, the more 
confidence one can have in the stability of the factor solution. 

15.20 PRINCIPAL COMPONENTS ANALYSIS VERSUS FACTOR 
ANALYSIS: TWO KEY DIFFERENCES 

As mentioned at the outset of this chapter, factor analysis is a method distinct from 
that of principal components analysis. We summarize two primary distinctions we 
have already touched upon throughout our discussion up to now. 

15.20.1 Hypothesized Model and Underlying Theoretical Assumptions 

This first distinction is perhaps the most important one when comparing EFA with 
PCA. In EFA, a definitive model is subsumed, whereas in PCA, no such model is ever 
hypothesized. In PCA, the analyst does not seek to usually “uncover” underlying 
latent structures to his or her data. Rather, she simply wants to know if her data can be 
expressed in a simpler form while still accounting for most of its variance. In this way, 
principal components analysis is simply an empirical transformation of observed 
data. We are not fitting a theoretical model to empirical observations, nor do we 
require model assumptions such as multivariate normality in the typical components 
analysis (Timm, 2002). As is true of most statistical methods however, PCA has been 
shown to be sensitive to outliers. 

Factor analysis, on the other hand, is by its very nature much more theory driven, 
with the focus on uncovering hypothesized lurking variables that subsume observed 
correlations or covariances. What this technically translates into is an emphasis on 
different parts of the covariance or correlation matrix, as summarized by Jolliffe 
(2002): 

Both factor analysis and PCA can be thought of as trying to represent some aspect of the 
covariance matrix Σ (or correlation matrix) as well as possible, but PCA concentrates on 
the diagonal elements, whereas in factor analysis the interest is in the off-diagonal 
elements. (p. 158) 

The above materializes, as Jolliffe notes, into the fact that an extracted principal 
component can result from a single variable being independent of remaining variables 
in the sample. That is, if one variable “does the job,” then it is possible in a PCA that it 
be designated as the component to account for the variance in the sample. In a factor 
analysis, since commonality between variables is the focus, the given factor must be 
“determined” by at least two or more observed variables. This is an example of how 
the emphasis in factor analysis is on covariance, whereas the emphasis in principal 
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components is on variance. This distinction is critical in understanding the difference 
between PCA and EFA, and is one that clearly distinguishes the two methodologies. 

While it is also true that analysts will sometimes seek to name derived components 
in PCA, it is not a typical assumption of the analysis. Factor analysis, or perhaps more 
appropriately the tradition of factor analysis, usually encourages the researcher to 
make at least some sense out of derived factors, to assign them names or meaning, 
otherwise, the procedure is usually considered “unsuccessful” in the sense that 
underlying latent variables were not discovered. Of course, the mechanics of EFA 
do not care whether you name or not name linear combinations of factors. So in this 
sense, this characteristic has nothing to do with the actual procedure, but rather more 
to do with the substantive use, application, and tradition of the factor-analytic method. 
When a researcher performs a factor analysis, it is usually not simply for data 
reduction, otherwise they would likely be performing a PCA instead. 

15.20.2 Solutions Are Not Invariant in Factor Analysis 

A second key and very important difference between EFA and PCA is the contin
gency issue of loadings on the number of derived components or factors. In a principal 
components analysis, whether the analyst decides to derive or keep two or three 
components, for instance, will not have an effect on the loadings for such components. 
In factor analysis however, whether the analyst decides to extract two or three factors 
will typically have an effect on the loadings. For those in opposition to the factor-
analytic method, this issue provides them with much ammunition. What it means is 
that the very nature of a given factor usually depends on how many other factors were 
extracted along with it. 

The situation is similar, although by no means identical, to the effect one predictor 
may have on the estimated partial regression weight of a second predictor in a multiple 
regression model in that the model is specified by the inclusion of all predictors, with 
the interpretation of each predictor contingent upon other predictors in the model. 
Likewise in EFA, the solution of one factor is contingent upon the solution to others in 
the model. This leads some to look upon EFA with great suspicion. However, so long 
as researchers are aware of this issue, and communicates it to the audiences to which 
they present their results, it should not be regarded as an “obstacle” to factor analysis 
any more than the interpretation of predictors in a wider multiple regression model. In 
both cases, and as emphasized throughout this book with regard to multivariate 
methods in general, estimated coefficients are dependent upon the model tested and 
should never be interpreted independent of this context. As long as one is also aware 
of such limitations when interpreting solutions to factor analysis, the “subjectivity” of 
solution selection should not be a barrier to using EFA. So long as one has some 
understanding of the tool they are using, the tool may prove quite useful. Of course, if 
one is making nonsensical conclusions about the existence of factors that make little 
substantive sense (e.g., all one-factor solutions could be named “jello” and the fitted 
models would not object!), then this is reason for proper critique, but that critique is 
more appropriately targeted toward the (mis)user than the technique. Factor analysis 
itself is quite innocent. It is the users who have blood on their hands. 
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15.21 PRINCIPAL FACTOR IN SPSS: PRINCIPAL AXIS FACTORING 

We now demonstrate exploratory factor analysis in SPSS. We later feature an example 
in R. Recall that the method of principal axis factoring in SPSS, or “PAF,” is a method 
of common factor analysis that uses the squared multiple correlation coefficient as its 
estimate of communality for each variable. For our example, we factor analyze 
cormatrix, first featured in Chapter 14 on which we conducted a PCA: 

DATASET ACTIVATE cormatrix. 
MATRIX DATA VARIABLES=ROWTYPE_ T1 T2 T3 T4 T5 T6 T7 T8. 
BEGIN DATA 
N 1000 1000 1000 1000 1000 1000 1000 1000 
CORR 1.00000 
CORR .343 1.00000 
CORR .505 .203 1.00000 
CORR .308 .400 .398 1.00000 
CORR .693 .187 .303 .205 1.00000 
CORR .208 .108 .277 .487 .200 1.00000 
CORR .400 .386 .286 .385 .311 .432 1.00000 
CORR .455 .385 .167 .465 .485 .310 .365 1.00000 
END DATA. 

Recall that the columns are designated by T1 through T8, and there are 1000 
observations per column. One could insert the N row either where it currently is or just 
before the END DATA statement: 

N 1000 1000 1000 1000 1000 1000 1000 1000 
END DATA. 

Just as we did for the PCA example of the previous chapter, we can have SPSS 
reproduce the correlation matrix of observed variables by appending CORRELATION 
to the PRINT command: 

/PRINT CORRELATION 

Correlation Matrix 

T1 T2 T3 T4 T5 T6 T7 T8 

Correlation T1 1.000 0.343 0.505 0.308 0.693 0.208 0.400 0.455 
T2 0.343 1.000 0.203 0.400 0.187 0.108 0.386 0.385 
T3 0.505 0.203 1.000 0.398 0.303 0.277 0.286 0.167 
T4 0.308 0.400 0.398 1.000 0.205 0.487 0.385 0.465 
T5 0.693 0.187 0.303 0.205 1.000 0.200 0.311 0.485 
T6 0.208 0.108 0.277 0.487 0.200 1.000 0.432 0.310 
T7 0.400 0.386 0.286 0.385 0.311 0.432 1.000 0.365 
T8 0.455 0.385 0.167 0.465 0.485 0.310 0.365 1.000 
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The statistical significance of the above correlations can also be requested by 
/PRINT SIG. We resist printing the statistical significance of these correlations, 
however, mostly for the reason that they are not required for us to push on with the 
factor analysis. In EFA, we are not interested in making inferential statements about 
any particular pairwise correlations. Recall as well that in the previous chapter on 
PCA, we designated EXTRACTION = PC to request a components analysis on these 
data. By specifying EXTRACTION = PAF now, we are requesting a principal axis 
factoring solution in which we extract two factors (i.e., /CRITERIA FACTORS(2)). 

FACTOR MATRIX=IN(CORR=*) 
/PRINT= INITIAL EXTRACTION 
/CRITERIA FACTORS(2) 
/EXTRACTION=PAF 
/METHOD=CORRELATION. 

SPSS provides us with the following initial and extraction communalities: 

Communalities 

Initial Extraction 

T1 0.619 0.916 
T2 0.311 0.236 
T3 0.361 0.256 
T4 0.461 0.678 
T5 0.535 0.551 
T6 0.349 0.340 
T7 0.355 0.382 
T8 0.437 0.398 

Extraction method: principal axis factoring. 

How were the initial communalities obtained? The initial communality of 0.619 
was computed by regressing T1 (i.e., T1 is the response variable in this case) on 
variables T2 through T8. Likewise, the initial communality of 0.311 for T2 was 
computed by regressing T2 on variables T1, T3, through to T8. Recall what the 
extracted communalities represent. They are a measure of how much the given 
observed variable has in common with the derived factors after the factor-analytic 
routine has done its job. For instance, note that the communality for T1 rose from 
0.619 to 0.916, which in turn means that the given variable is, overall, substantially 
correlated with the derived factors. In other words, T1 appears to be a key contributor 
to the derived factors. The balance of the communality of 0.916 is equal to 
1 � 0.916 = 0.084, which is the specific variance associated with T1. That is, this 
is the proportion of variance in the observed variable unaccounted for by the derived 
factors. 

SPSS next provides us with a breakdown of the eigenvalues extracted by the factor 
analysis. We note that these are identical to the eigenvalues extracted by the PCA of 
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Chapter 14, and which also sum to a total of 8 corresponding to the number of 
variables in the EFA. They are named “initial” eigenvalues because they are the 
eigenvalues extracted under a principal components model (i.e., with 1.0’s in the main 
diagonal) rather than a common factor analysis model in which communalities have 
been estimated. We see that the first factor accounts for 43.09% of the variance. This 
number was obtained by the ratio 3.447/8. Additional initial eigenvalues are reported 
in decreasing value. 

Total Variance Explained 

Initial Eigenvalues Extraction Sums of Squared Loadings 

% of  Cumulative % of  Cumulative 
Factor Total Variance % Total Variance % 

1 3.447 43.088 43.088 2.974 37.171 37.171 
2 1.157 14.465 57.554 0.784 9.799 46.970 
3 0.944 11.796 69.349 
4 0.819 10.237 79.587 
5 0.658 8.226 87.813 
6 0.390 4.873 92.686 
7 0.336 4.201 96.887 
8 0.249 3.113 100.000 

Extraction method: principal axis factoring. 

The right-hand side of the above table contains the extraction sums of squared 
loadings, and reports eigenvalues based on common variance rather than total 
variance. SPSS also only reports the extraction sums of squared loadings for a 
two-factor solution, since this is what we requested. These then are the “real” 
eigenvalues of interest to us, since they are based on the estimated communalities 
inserted in the main diagonal of the correlation matrix. We see that the first factor, 
yielding an eigenvalue of 2.974, accounts for 37.17% of the variance, while the 
second factor, with a corresponding eigenvalue of 0.784, accounts for 9.80% of the 
variance. As discussed in this chapter, the choice of how many factors to retain must 
wholly be a decision made by the researcher, given the requisite substantive 
interpretation of the factor solution. However, in absence of this, if we were to 
follow the Guttman–Kaiser criterion, retaining only factors with eigenvalues equal to 
or greater than 1.0, then only the first factor would be retained. The first two factors, 
considered together, account for a total percentage of the variance of 46.97% of the 
original variance in the set of variables. 

Next in SPSS’s output is the factor matrix, also known as the loading matrix. 
These weights correspond to how much an observed variable loads on, or correlates 
with, a given factor. These weights often go by the name of structure coefficients 
because they are thought to reveal the “structure” of the given factor. From this matrix, 
we can also compute the extraction communalities previously discussed. For “T1,” 
the extraction communality of 0.916 is obtained as (0.819)2 + (�0.496)2, and as 
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mentioned, represents the proportion of variance contributed by the observed variable 
across estimated factors. 

Factor Matrixa 

Factor 

1 2 

T1 0.819 �0.496 
T2 0.472 0.115 
T3 0.506 �0.013 
T4 0.666 0.485 
T5 0.633 �0.389 
T6 0.480 0.331 
T7 0.596 0.163 
T8 0.629 0.040 

Extraction method: principal axis factoring. 
aTwo factors extracted. Thirty iterations required. 

As an aid in defining the substantive existence and nature of a factor, as was the 
case for PCA, we generally look for observed variables having relatively high-
magnitude correlations with the given factor. We can see that for our data, most 
variables load at least moderately well on the first factor. Based on the factor matrix 
in conjunction with the aforementioned eigenvalues, the EFA seems to be domi
nated by a one-factor solution. Indeed, a scree plot appears to confirm this, although 
depending on the substantive context, an argument can also be made for a two-
factor solution: 

/PLOT EIGEN 
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We now rotate the solution via both varimax and quartimax: 

/PRINT = ROTATION 
/ROTATION VARIMAX QUARTIMAX 

SPSS first provides us with a brief summary and overview of how the variance was 
redistributed (shown here for varimax rotation only): 

Total Variance Explained 

Factor Total 

Rotation Sums of Squared Loadings 

% of Variance Cumulative % 

1 
2 

1.891 
1.867 

23.638 
23.332 

23.638 
46.970 

Extraction method: principal axis factoring. 

We note that the proportion of variance explained by the two factors is still the 
same as in the unrotated solution (i.e., 46.97%); however the eigenvalues have been 
recomputed to reflect a change of axes. Whereas in the unrotated solution they were 
2.974 and 0.784 for factors 1 and 2, respectively, they are now 1.891 and 1.867, 
respectively. Notice that the sum of these eigenvalues has not changed, in that they 
still sum to 3.758 in each case. Only the distribution of variance has changed among 
the two factors. 

In Table 15.1, factor matrices for varimax and quartimax rotations are given. 
Recall that there is no magic formula regarding which rotation should be interpreted. 
Rotations that make most substantive sense are those typically adopted by the 
researcher. 

TABLE 15.1 Estimated Loadings for Varimax and Quartimax Rotations of Cormatrix 

Varimax Rotated Factor Matrix Rotated Factor Matrix 

Factor Factor 

1 2 1 2 

T1 0.931 0.223 T1 0.604 0.742 
T2 0.255 0.413 T2 0.483 0.051 
T3 0.369 0.346 T3 0.472 0.182 
T4 0.132 0.813 T4 0.790 �0.233 
T5 0.723 0.168 T5 0.465 0.579 
T6 0.108 0.573 T6 0.564 �0.151 
T7 0.309 0.535 T7 0.616 0.046 
T8 0.419 0.471 T8 0.606 0.174 
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SPSS also provides us with the transformation matrices for each rotation:
 

Factor Transformation Matrix 

Factor 1 2 

1 0.711 0.704 
2 �0.704 0.711 

Extraction method: principal axis factoring.
 
Rotation method: varimax with Kaiser normalization.
 

Factor Transformation Matrix 

Factor 1 2 

1 0.942 0.335 
2 0.335 �0.942 

Extraction method: principal axis factoring.
 
Rotation method: quartimax with Kaiser normalization.
 

Using these transformation matrices, we can demonstrate, for instance, the 
computation of the varimax rotation in R. We first generate the column vectors of 
the original, unrotated factor matrix: 

> f1 <- c(.819, .472, .506, .666, .633, .480, .596, .629)
 
> f2 <- c(-.496, .115, -.013, .485, -.389, .331, .163, .040)
 
> f.sol <- cbind(f1, f2)
 
> f.sol
 

f1 f2 
[1,] 0.819 -0.496 
[2,] 0.472 0.115 
[3,] 0.506 -0.013 
[4,] 0.666 0.485 
[5,] 0.633 -0.389 
[6,] 0.480 0.331 
[7,] 0.596 0.163 
[8,] 0.629 0.040 
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The vectors f1 and f2 are the respective loadings for the two extracted unrotated 
factors. We named the object f.sol simply to bind f1 and f2 into columns. We 
now generate the transformation matrix: 

> tm.1 <- c(.711, -.704) 
> tm.2 <- c(.704, .711) 
> t.matrix <- cbind(tm.1, tm.2) 
> t.matrix 

tm1 tm2 
[1,] 0.711 0.704 
[2,] -0.704 0.711 

Finally, we post-multiply the two-factor solution by the varimax transformation 
matrix: 

> varimax <- f.sol%*%t.matrix 
> varimax 

tm1 tm2 
[1,] 0.931493 0.223920 
[2,] 0.254632 0.414053 
[3,] 0.368918 0.346981 
[4,] 0.132086 0.813699 
[5,] 0.723919 0.169053 
[6,] 0.108256 0.573261 
[7,] 0.309004 0.535477 
[8,] 0.419059 0.471256 

Note that the above “manually” computed transformed factor loadings are equal to 
those generated by SPSS for the varimax solution. The quartimax rotation can 
likewise be demonstrated. 

Finally, we can request the reproduced matrix of correlations. These are the 
correlations implied by the specification of the factor-analytic model. Recall that 
from a technical vantage point, the goal of EFA is to regenerate the observed 
correlation matrix by way of the factor solution. SPSS also provides us with the 
residuals of the reproduced correlations, which are merely the differences between 
the empirical correlations observed in our data and the correlations implied by the 
model. A perfectly fitting model would have a residual matrix filled with zeros. 
Inspection of the matrix can help us identify on a substantive level correlations for 
which the model did well at regenerating. For instance, the two-factor model in this 
case did a nice job at reproducing the correlation of T1 and T4, since it yields a quite 
small residual of only 0.004. 

/PRINT REPR 
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15.22 BARTLETT TEST OF SPHERICITY AND KAISER– 
MEYER–OLKIN MEASURE OF SAMPLING ADEQUACY (MSA) 

As you might imagine, one must have at least some initial correlation among 
observed variables for factor analysis to have any hope of providing a sensible 
solution. But how much covariance or correlation is enough? Ordinarily, a visual 
inspection of the correlation matrix provides us with enough details on the sizes of 
correlations to make an informal decision as to whether or not it is worth proceeding. 
If correlations are quite small (e.g., if most of them are less than 0.20), then 
conducting the analysis may not be worthwhile (although there is certainly no 
reason to not try the procedure and see what happens, you definitely will not “break” 
the software). Typically, we would prefer relatively sizable correlations to justify 
pushing forward with the analysis. 

The Bartlett test of sphericity (Bartlett, 1950, 1954) tests the null hypothesis that 
the correlation matrix is an identity matrix, which recall implies there to be values of 
“1” along the main diagonal and zeros everywhere else. Bartlett’s test is given by 

�2p � 5� 
χ2 � �  �n � 1� �  ln jRj

6 

where p is the number of variables, n is the number of observations, and ln jRj is the 
natural logarithm (i.e., log ) of the determinant of the correlation matrix. The most e

relevant component of the test is ln jRj. For a constant value of � �� n � 1�� 
��2p � 5�=6��, we note that what will make the value for Bartlett increase or decrease 
is entirely a function of jRj, which recall can be regarded as a measure of generalized 
variance. A rejection of the null hypothesis suggests that overall and across the board, 
pairwise correlations are not equal to zero. The test however is very much a function 
of sample size, and therefore a rejection of the null hypothesis should not be taken 
too seriously under most circumstances. According to Tabachnick and Fidell (2007), 
the test should ordinarily only be used if there are relatively few cases per variable 
(e.g., 5–10). 

For the analysis of cormatrix, we obtain: 

/PRINT= INITIAL EXTRACTION KMO 

KMO and Bartlett’s Test 
Kaiser–Meyer–Olkin Measure of Sampling Adequacy 0.741 
Bartlett’s test of sphericity Approx. Chi-square 2702.770 

df 28 
Sig. 0.000 

SPSS first reports the Kaiser–Meyer–Olkin test, which is a ratio of the sum of squared 
correlations to that of the sum of squared correlations and squared partial correlations 
(Tabachnick and Fidell, 2007). Values generally exceeding 0.7–0.8 are preferred, 
although so long as values are not too low (e.g., 0.6 or lower), it is typically not cause for 
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concern. Bartlett’s test of sphericity is statistically significant, suggesting that the 
correlation matrix is not an identity matrix, although as just discussed, this is hardly 
surprising in this case since sample size is that of 1000 for cormatrix. To demonstrate 
the influence of sample size on this test, we rerun the analysis with the exact same 
correlation matrix but with sample size equal to 10 for each variable. We obtain: 

KMO and Bartlett’s Test 
Kaiser–Meyer–Olkin Measure of Sampling Adequacy. 0.741 
Bartlett’s test of sphericity Approx. Chi-square 14.932 

df 28 
Sig. .979 

We note that with a sample size of n � 10, KMO remained the same, although 
Bartlett’s test of sphericity is no longer statistically significant due to using such a 
small sample size. Hence, as with all significance tests, one must be cautious when 
drawing conclusions as a function of Bartlett’s p-value. 

We can also request the determinant of the correlation matrix in SPSS: 

/PRINT= DET 

Correlation Matrixa 

aDeterminant = 0.066 

A determinant unequal to zero indicates the matrix is not singular. Had the 
correlation matrix been singular, SPSS would have provided an error message and 
halted the factor analysis. Singularity can occur when two vectors of a matrix 
(variables, in this case) are perfect linear combinations of one another. 

15.23 FACTOR ANALYSIS IN R: HOLZINGER 
AND SWINEFORD (1939) 

We demonstrate a factor analysis in R using the Holzinger and Swineford data. Recall 
that we featured the output to this analysis at the very outset of this chapter. We now 
come full circle and perform the factor analysis to obtain those results. Recall that this 
classic data set consists of mental ability tests of seventh- and eighth-grade children 
from two different schools. The data here are a subset of the original Holzinger and 
Swineford data featuring 15 variables: 

• id is an identifier 

• sex 

• ageyr (age in years) 

• agemo (age in months) 

• school (school attended by the child) 

• grade 
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•	 x1–x9 (nine tests of mental ability; x1 = visual perception, x2 = cubes, x3 = 
lozenges, x4 = paragraph comprehension, x5 = sentence completion, x6 = word 
meaning, x7 = addition, x8 = counting dots, x9 = straight–curved capitals) 

We use the factanal function in R to perform maximum-likelihood factor 
analysis on psychological tests x1–x9. These tests are stored in the form of a 
correlation matrix based on a total of 145 observations in the object Holzinger.9: 

> library(psych) 

> Holzinger.9 

vis_perc cubes lozenges par_comp sen_comp wordmean addition 

vis_perc 1.00000 0.325800 0.448640 0.34163 0.30910 0.31713 0.104190 

cubes 0.32580 1.000000 0.417010 0.22800 0.15948 0.19465 0.066362 

lozenges 0.44864 0.417010 1.000000 0.32795 0.28685 0.34727 0.074638 

par_comp 0.34163 0.228000 0.327950 1.00000 0.71861 0.71447 0.208850 

sen_comp 0.30910 0.159480 0.286850 0.71861 1.00000 0.68528 0.253860 

wordmean 0.31713 0.194650 0.347270 0.71447 0.68528 1.00000 0.178660 

addition 0.10419 0.066362 0.074638 0.20885 0.25386 0.17866 1.000000 

count_dot 0.30760 0.167960 0.238570 0.10381 0.19784 0.12114 0.587060 

s_c_caps 0.48683 0.247860 0.372580 0.31444 0.35560 0.27177 0.418310 

count_dot s_c_caps 

vis_perc 0.30760 0.48683 

cubes 0.16796 0.24786 

lozenges 0.23857 0.37258 

par_comp 0.10381 0.31444 

sen_comp 0.19784 0.35560 

wordmean 0.12114 0.27177 

addition 0.58706 0.41831 

count_dot 1.00000 0.52835 

s_c_caps 0.52835 1.00000 

We request a two-factor solution on these data: 

> fa <- factanal(covmat = Holzinger.9, factors = 2, n.obs = 145, rotation = 

“varimax”) 

Call:
 

factanal(factors = 2, covmat = Holzinger.9, n.obs = 145)
 

Uniquenesses: 

vis_perc cubes lozenges par_comp sen_comp wordmean addition count_dot 

0.733 0.899 0.781 0.237 0.327 0.323 0.595 0.253 

s_c_caps 

0.514 

Loadings: 

Factor1 Factor2 

vis_perc 0.354 0.376 

cubes 0.232 0.219 

lozenges 0.364 0.293 
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par_comp 0.866 0.112 

sen_comp 0.794 0.205 

wordmean 0.815 0.114 

addition 0.126 0.624 

count_dot 0.864 

s_c_caps 0.288 0.635 

Factor1 Factor2 

SS loadings 2.455 1.882 

Proportion Var 0.273 0.209
 

Cumulative Var 0.273 0.482
 

Test of the hypothesis that 2 factors are sufficient.
 

The chi square statistic is 61.7 on 19 degrees of freedom.
 

The p-value is 2.08e-06
 

The “Uniquenesses” that begin the output are the specific variances corresponding 
to each variable across both factors. For instance, for visual perception (vis_perc), 
the sum of squared estimated factor loadings is equal to �0:354�2 � �0:376�2 � 0:267, 
which when we subtract from 1, we obtain the specific variance of 0.733. Other values 
for “Uniqueness” are computed in an analogous manner. 

Regarding the actual factor solution, based on the loadings for each factor, it would 
appear that the first factor is composed of variables paragraph comprehension, 
sentence completion, and word meaning, which are all verbal tasks. Hence, we 
might name the first factor by verbal ability or somesuch. The second factor appears to 
be “made up of” addition, counting dots, and straight–curved capitals, which are all 
quantitative-related tasks. Hence, we might name the second factor by quantitative 
ability or similar. The loading for counting dots under the first factor is suppressed 
because it is very small and thus negligible. 

In addition to inspecting the loadings numerically, it is useful to visualize them 
through a loading plot. We generate what is called a cluster plot (psych package 
(Revelle, 2015)) which is a bivariate plot where each point represents the joint loading 
for each variable on each estimated factor: 

> library(psych) 
> cluster.plot(fa) 
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The numbers in the plot correspond to the x1–x9 tests subjected to the factor 
analysis. That is, the point “1” corresponds to the first test, that of visual perception. 
The point “2” corresponds to the second test, that of cubes, and so on for the other 
points. One can quickly discover based on the plot which variables are most 
instrumental in the EFA solution and on which factor. For instance, point “8,” 
corresponding to counting dots, loads very highly on the second factor while not so 
much on the first factor. Points “4” and “6,” in the lower right of the plot (somewhat 
hidden), corresponding to tests paragraph comprehension and word meaning, load 
high on the first factor but low on the second factor. 

15.24 CLUSTER ANALYSIS 

We conclude this chapter with a brief and rather cursory survey of the statistical 
method of cluster analysis. Cluster analysis is a method with the aim of grouping 
cases or individuals that are in some sense similar. Using a measure of similarity, 
cluster analysis groups cases into mutually exclusive sets. Once this partitioning of 
cases into sets is complete, identifying or otherwise naming these clusters often is a 
priority for the cluster analyst. 

Why conclude this chapter with a discussion of cluster analysis? While cluster 
analysis is a technique distinct from that of factor analysis, it does share with it some 
parallels. At their core, both methods are concerned with generating groups based on 
an index of similarity. In traditional EFA, as we have seen, it is customarily the case 
where variables are grouped into factors. The index of similarity in EFA is that of 
covariance or correlation. In cluster analysis, cases are the typical objects of 
classification on which similarity may be defined and conceptualized in many 
different ways. Having made this distinction, we could, in theory, also “cluster 
analyze” variables in addition to cases. For our purposes however, we assume 
clustering procedures to operate on cases rather than on variables. Indeed, most 
applications of cluster analysis are concerned with the clustering of cases. In all that 
follows, we assume to be working with continuous data. For a discussion of cluster 
analysis applied to dichotomous data, see Finch (2005). 

Generating groupings is rather easy. Generating good groupings is much more 
difficult. It is how these groupings should be made that is the topic of research in the 
cluster analysis field. As a problem of combinatorics, it is well known that the number 
of ways of partitioning n cases into g clusters is given by 

1 g 
g ��1�g�kknN�n; g� �  
kg! 

k�1 

where n is the number of cases and g is the number of clusters. The number can also be 
approximated by gn=g!. This number can get unreasonably large very fast, and hence 
the challenge of cluster analysis algorithms is to be able to shrink the problem to a 
manageable size. As Johnson and Wichern (2007) note, “Even fast computers are 
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easily overwhelmed by the typically large number of cases, so one must settle for 
algorithms that search for good, but not necessarily the best, groupings” (p. 672). 
Ward (1963) summarized this idea perfectly: 

Situations often arise in which it is desirable to cluster large numbers of objects, symbols, 
or persons into smaller numbers of mutually exclusive groups, each having members that 
are as much alike as possible. Grouping in this manner makes it easier to consider and 
understand relations in large collections; hence it often increases efficiency of manage
ment. Grouping, however, ordinarily results in some loss of information that may be 
quantified in a “value-reflecting” number. (Ward, 1963, p. 236) 

15.25 WHAT IS CLUSTER ANALYSIS? THE BIG PICTURE 

A simple way to conceptualize cluster analysis, even if somewhat crudely, is to 
consider the following swarm of data points: 

Suppose these points represent that of 1000 human beings. Theoretically, on each 
observation is associated an infinite number of characteristics, some measured, some 
unmeasured. For instance, some of the possible characteristics on these individuals 
include height, age, gender, temperament, personality, motivation, and brain chem
istry. We could indeed go on to list an infinite number of characteristics. The question 
cluster analysis asks about this undefined, messy swarm is the following: 

Can any of the measured characteristics in this swarm be useful in establishing a group 
(or “cluster”) structure of any kind? 

For instance, if we considered individuals’ heights in the swarm, do any patterns of 
cases emerge? Perhaps we might find a pattern of shorter people versus taller people. 
Likewise, if we considered gender, perhaps we might discover a pattern of males 
versus females. As an example, consider the hypothetical data of Table 15.2 of heights 
and weights across four persons. 

What cluster analysis will generally try to do with the data in Table 15.2 is use 
variables height and weight and search for similarity among cases. For example, 
consider a plot of height and weight in Figure 15.2. 
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TABLE 15.2 

Person 

Mary 
Bob 
Julie 
Mark 

Fictional Data for Simple Cluster Analysis 

Height Weight (lb) 

4 ft 2 in. 120 
5 ft 2 in. 190 
5 ft 8 in. 180 
4 ft 3 in. 130 

FIGURE 15.2 (a) Plot of height and weight. (b) Identifying similarity. 

What do we notice? Even in such a simple plot of four individuals, already a group 
structure seems to be emerging, as evidenced in Figure 15.2b. Cluster analysis 
essentially looks at the data in Table 15.2 (and corresponding plot in Figure 15.2) and 
asks the question: Which points are closest to one another, and can this closeness be 
used to potentially define different “groups” or “clusters” of observations? Notice 
that even if cluster analysis is able to identify groups, it does not purport in any way to 
be able to identify what those groups are, apart from actually fitting nicely into the 
given cluster structure. We thus ask the question: Why are Mark and Mary similar, yet 
both different from Bob and Julie, who are themselves similar to each other? 

Of course, there are literally an infinite number of reasons why the data in 
Figure 15.2 might group the way it does. Individuals are complex and have many 
characteristics. However, can we theorize on at least one of those reasons? It may very 
well be that Mark and Mary are in the group called “children” and Bob and Julie 
belong to a cluster called “adults.” Indeed, if we happened to have these individuals’ 
ages at our disposal, it would not take long to identify this as a covariate to the group 
separation. At its core, this is how cluster analysis generally works. Though cluster 
analysis is often spoken of as discovering natural groupings, it must be emphasized 
that groupings are only as “natural” as we designate them to be. For instance, it is also 
quite possible that Mary and Mark eat more candy than do Bob and Julie, but since age 
is a more “natural” distinguisher, we would hardly be interested in a cluster solution 
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separating those who eat a lot of candy versus those who eat less. In other situations, 
as with the Iris data which we will cluster analyze later, cluster groupings are indeed 
more naturally defined (e.g., by species). 

Just as the factor analyst must guard against the possibility of seeing structure 
where none is apparent, the cluster analyst must also be wary of finding clusters 
simply because mathematical optimization has been successful. As eloquently put by 
Everitt, Landau, and Leese (2001): 

The problem is, of course, that since in most cases the investigator does not know a priori 
the structure of the data (cluster analysis is, after all, intended to help to uncover any 
structure), there is a danger of interpreting all clustering solutions in terms of the 
existence of distinct (natural) clusters. The investigator may then conveniently ‘ignore’ 
the possibility that the classification produced by a cluster analysis is an artefact of the 
method and that actually she is imposing a structure on her data rather than discovering 
something about the actual structure. (pp. 7–8) 

Hence, cluster analysis will, under most circumstances, generate respectable 
clusters. As is true in factor analysis however, whether or not the solution means 
anything is usually left up to the judgment of the researcher. As R.A. Fisher once said 
about ANOVA, cluster analysis, as is true of virtually all statistical methods, is simply 
an exercise in arranging the arithmetic. Cluster analysis, or any other method, cannot 
purport by itself to make scientific discoveries. 

15.26 MEASURING PROXIMITY 

We have said that cluster analysis is based on identifying similarity among cases. But 
how should we define such proximity, or its opposite, that of distance? The choice of a 
good proximity measure is by no means obvious in all cases, and is often quite 
discretionary and subjective. As was true for factor analysis, this subjective compo
nent can generate some skepticism. Indeed, if what you see is dependent on the 
microscope you use to see it, then it becomes difficult to define what you are looking 
at as distinct from the tool you are using to do the viewing. Which objects in a data set 
are more similar or distant than others? The answer depends on what definition of 
similarity or distance we use. We survey some of the more popular distance measures 
now. 

Euclidean distance is that which we think of when we want to compute the 
distance between two points on a straight line. It is by far the most easily recognizable 
and historically relevant distance measure. The Euclidean distance between two p-
dimensional objects, x ́ � x1; x2; . . . ; xp and y ́ � y1; y2; . . . ; yp is defined as 

d�x; y� �  �x1 � y1�2 � �x2 � y2�2 � ∙ ∙ ∙  � �xp � yp�2 

p ´ � �x � y� �x � y� 
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where d�x; y� is the distance between vectors, with differences between observations 
denoted by �x1 � y1�2; �x2 � y2�2; . . . ; �xp � yp�2. As remarked by some (e.g., Johnson 
and Wichern (2007) and Rencher and Christensen (2012)), one might be tempted to 
use the statistical distance: 

´ S�1d�x; y� �  �x � y� �x � y� 
where S�1 is the inverse of the variance–covariance matrix. However, the argument 
against this is that if so-called natural groupings do end up emerging from the data, 
then computing S on the entire sample might be misleading and not provide accurate 
estimates of variances and covariances. This is because presumably, in computing S, 
we would be pooling across the data without any attention to the potential existence of 
groups. For this reason, Euclidean distance is usually preferred over a measure of 
statistical distance. 

To illustrate a simple example of Euclidian distance, consider the two vectors 
x and y: 

x � �2; 4� 
y � �4; 7� 

We compute the Euclidean distance between the two vectors to be 13: 

d�x; y� �  �x1 � y1�2 � �x2 � y2�2 � ∙ ∙ ∙  � �xp � y �2 
p

� �2 � 4�2 � �4 � 7�2 

� 3:61 

We can visualize the distance in R by computing 

> plot(c(2,4), c(4,7)) 
> arrows(2, 4, 4, 7) 
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TABLE 15.3 Hypothetical Data for Cluster Analysis 
on Two Variables Using Euclidean Distance 

Object Variable 1 Variable 2 

1 5 4 
2 6 6 
3 8 7 
4 2 2 
5 3 1 

Note that the vector begins at the point (2,4) and ends at the point (4,7). We can 
easily compute Euclidean distances in R. For instance, consider data for two variables 
on five objects in Table 15.3. 

We first generate a matrix for these two variables: 

> v1 <- c(5, 6, 8, 2, 3) 
> v2 <- c(4, 6, 7, 2, 1) 
> M <- cbind(v1, v2) 
> M 

v1 v2 
[1,] 5 4 
[2,] 6 6 
[3,] 8 7 
[4,] 2 2 
[5,] 3 1 

We compute the distances using the dist function by requesting “euclidean” for 
the distance function: 

> dist(M, method = "euclidean") 
1 2 3 4 

2 2.236068 
3 4.242641 2.236068 
4 3.605551 5.656854 7.810250 
5 3.605551 5.830952 7.810250 1.414214 

Note that the matrix is a symmetric matrix, since the upper part, above the main 
diagonal, is a mirror image of the lower part. By inspecting the distance matrix, we 
can informally survey which objects are similar to other objects. For example, objects 
4 and 5 appear to be rather similar, with a distance of only 1.41, while objects 3 and 4 
and 3 and 5 appear to be quite dissimilar, with distances of 7.81. This process of 
inspecting a distance matrix and attempting to spot similarities parallels that of 
initially inspecting another distance matrix, that of the correlation matrix in factor 
analysis where we got a first glance at which variables might “go together” in the 
sense of potentially indicating underlying constructs. 
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The Minkowski metric is given by 

1=mp 
m

d�x; y� �  jxi � yi j
i�1 

where when m � 2, the distance reduces to Euclidean distance: 

d�x; y� �  
p 

i�1 

jxi � yi jm 
1=m 

� 
p 

i�1 

jxi � yi j2 
1=2 

� �x1 � y1�2 � �x2 � y2�2 � ∙ ∙ ∙  � �xp � yp�2 

That is, the only difference between the Minkowski distance and that of Euclidean 
is that m in Minkowski is not fixed at m � 2 as it is in Euclidean. A third and similar 
distance measure, city-block (or Manhattan) is given by 

p 

d�x; y� �  jxi � yi j
i�1 

where jxi � yi j is now the absolute difference. The choice of which distance measure to 
use for which type of problem has been investigated (e.g., see Gower (1988)). It was 
found, in general, that the choice of measure can lead to somewhat different findings. 
According to Everitt, Landau, and Leese (2001), more research is required before a 
conclusion as to which measure is most optimal (in some sense) is reached and the 
circumstances required for such optimality. For instance, if multicollinearity is 
inherent between variables, using a distance measure that compensates for this, 
such as Mahalanobis, is usually advised. Mahalanobis distances (1936) are given by 

´ S�1D2 � �y1 � y2� �y1 � y2� 

where y1 and y2 are data sample vectors and S�1 is the pooled sample variance– 
covariance matrix of S1 and S2, respectively. Mahalanobis distances can be consid
ered a generalized Euclidean measure since it adjusts for the covariance among 
variables through S�1. Relatively large values of D2 are also used in spotting outliers 
in multivariate analysis in general. 

In other cases, and as a working rule, researchers might do well to run a data set 
under a variety of proximity options, and if substantively meaningful clusters emerge 
under each choice, this may then lend credibility to the given cluster solution. 
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It must be emphasized that regardless of the distance measure chosen, magnitudes 
in data can at times simply be reflective of the scales used in the analysis. A solution to 
this problem is to standardize the data to z-scores when working with continuous 
measures. Standardization is not a panacea for all problems in cluster analysis, but it 
does help guard against the possibility of one or two variables contributing most 
heavily toward the final solution relative to other variables. Hence, standardizing data 
prior to performing cluster analysis is usually advised. 

15.27 HIERARCHICAL CLUSTERING APPROACHES 

Generally, there are two ways in which one can cluster observations. We can begin 
with single observations considered uniquely and then proceed to join “alike” 
observations on the road to building clusters. This is generally known as the 
agglomerative or hierarchical approach. Alternatively, one can start with a single 
cluster containing all cases and then partition these cases into respective clusters in 
a stepwise fashion. This latter form of clustering is generally known as the divisive 
approach. Regardless of adopted approach, generally, once two cases are “fused,” 
they cannot be unfused. The consequence of such a constraint to cluster formation 
was highlighted in Ward’s depiction of cluster analysis featured earlier, in which 
recall he noted, “Grouping, however, ordinarily results in some loss of information” 
(Ward, 1963, p. 236). Akin to developing a circle of friends, not everyone can be 
included in the group, and the fact that you are friends with one person might 
exclude you being friends with another. At some point, some degree of simplifica
tion has to occur. Decisions, to some extent, “burn bridges,” but to some degree this 
is required if progress is to be made. Hence, no cluster algorithm will ever provide a 
“perfect” solution. Some will be simply more preferable than others for a particular 
context. 

The linking of objects by their similarity or dissimilarity can be pictorially 
represented using what is known as a dendrogram (Figure 15.3). A dendrogram 
reveals the chain of linkage of objects deemed similar enough to be fused. The 
dendrogram can be conceived as a kind of historical record of the clustering process. 
Icicle plots can also be used to visualize results from hierarchical cluster analysis, 
although we do not feature their use here. See Kruskal and Landwehr (1983) for 
details. 

In Figure 15.3a, we can see that at step 1, objects 4 and 5 were fused together into 
one cluster, while objects 1 and 2 were fused into another cluster. Next, the clusters of 
1 and 2 were fused with object 3. We can see then that at the top of the dendrogram, 
the hierarchical cluster routine for Figure 15.3b appears to have generated two groups. 
Of course, if one’s substantive theory suggests that object 3 should be kept distinct 
from merging with objects 1 and 2, then one could conclude that 3, not 2, groups were 
generated by the cluster solution, that is, (4,5) versus (3) versus (1,2). Note carefully 
then that without knowing what objects 1 through 5 actually are, one cannot, other 
than possibly in an algorithmic sense, make a determination about the final cluster 
solution. Hence, so-called stopping rules in cluster analysis can be quite subjective. 
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FIGURE 15.3 (a) Dendrogram of single linkage clustering. (b) Possible final cluster solution. 

Just as in factor analysis, one requires an understanding of the substantive nature of 
the variables one is working with in order to draw meaningful conclusions from the 
procedure. 

Within the hierarchical clustering paradigm, several different methods exist for 
fusing objects. These include single linkage, complete linkage, and  average linkage. 
In single linkage, also known as minimum distance or nearest-neighbor, cases 
having the smallest distance between them are merged at each successive step. After 
each merger, the smallest distance between clusters is once more computed, and 
those clusters having the smallest distance are then likewise merged together. As an 
example of single linkage, recall the Euclidean distance matrix featured earlier: 

1 2 3 4 
2 2.236068 
3 4.242641 2.236068 
4 3.605551 5.656854 7.810250 
5 3.605551 5.830952 7.810250 1.414214 

The first step in the cluster process via single linkage is to merge the two closest 
objects, which for this matrix are objects 4 and 5 (distance of 1.41). These two objects 
constitute the “nearest-neighbors” in the given matrix of distances. The merger of 
objects 4 and 5 is what gave us our first “cluster” in the dendrogram of Figure 15.3. 
Next, the algorithm evaluates distances between our newly formed cluster (4,5) and 
remaining objects. It continues in this fashion until it arrives at the final cluster 
solution, which for our data, was that given in Figure 15.3. 

Complete linkage, also known as maximum distance or farthest neighbor, is  
opposite to that of single linkage. Unlike single linkage in which proximity was 
preferred, in complete linkage we are interested in observations between clusters that 
are most distant. 
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Finally, for average linkage, distance between clusters is defined as the average 
between all pairs of objects where one member of a pair belongs to each cluster 
(Johnson and Wichern, 2007). That is, the distance between two clusters is determined 
by 

dij 

d�1;2�3 � 
i j 

n�1;2�n3 

where n�1;2� and n3 are the numbers in each respective cluster and dij is the distance 
between object i in cluster (1,2) and object j in cluster 3. 

We note then that as a result of different ways of defining distance, mergers 
between clusters will likewise be different depending on one’s choice of linkage. The 
decision of which linkage to use is often made on subjective grounds and hence the 
extent to which one finds something in the data is at least somewhat dependent on 
one’s choice of linkage. These are by no means the only methods for linking or joining 
clusters. Another quite common method is that of centroid linkage, where distance 
between cluster centroids (i.e., means) is employed as the metric. Minimax linkage 
(Bien and Tibshirani, 2011) has also been evaluated as an alternative, boasting some 
favorable properties. In brief, this method defines what is called the minimax radius 
between clusters, and bases its assessment of distance on this radius. We neither 
discuss this nor other additional methods of linkage in this chapter. The take-home 
point for the reader is simply to realize that there exists a whole literature on methods 
of hierarchical linkage, and hence those typically offered by mainstream software are 
by no means the only ones available. 

15.28 NONHIERARCHICAL CLUSTERING APPROACHES 

Thus far we have surveyed some of the more common hierarchical methods for 
clustering objects as a function of distance matrices. Nonhierarchical approaches, on 
the other hand, do not operate on distance matrices and hence are typically less 
computationally demanding than hierarchical approaches. As was the case for the 
hierarchical case, numerous nonhierarchical methods have been proposed. Of these, 
the K-means approach, or variants thereof, is typically the most popular. The method 
was introduced by J. MacQueen in 1967: 

The main purpose of this paper is to describe a process for partitioning an N-dimensional 
population into k sets on the basis of a sample. The process, which is called ‘k-means,’ 
appears to give partitions which are reasonably efficient in the sense of within-class 
variance . . . Stated informally, the k-means procedure consists of simply starting with k 
groups each of which consists of a single random point, and thereafter adding each new 
point to the group whose mean the new point is nearest. After a point is added to a group, 
the mean of that group is adjusted in order to take account of the new point. Thus at each 
stage the k-means are, in fact, the means of the groups they represent (hence the term 
k-means). (pp. 281, 283) 
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As summarized by MacQueen, the general algorithm for K-means begins by 
partitioning cases into k initial clusters. This can be accomplished through a random 
process or by specifying seeds to initiate the clustering algorithm. Once these seeds 
are chosen, remaining cases in the data are assigned to the cluster having the nearest 
seed, usually based on a measure of Euclidean distance. That is, once a cluster has 
more than a single case, the initial starting seed is replaced with that of the centroid, 
which is the mean of the given cluster. Each time a new case is added to the cluster, the 
centroid is recalculated. The process is repeated until no new assignments are made. 

Arguably, the most challenging part of K-means, as was the case for hierarchical 
methods, is still in identifying or naming the clusters generated. Again, be sure to note 
that K-means will generate clusters. Whether such clusters have any inherent meaning 
is to a large extent a substantive decision, not a statistical one. Analogous to factor 
analysis, when one performs a cluster analysis, one should generally be prepared to 
experience an “aha!” moment upon looking at the output. If you need to spend hours 
and hours contemplating the “nature” of the solution, it becomes more and more 
difficult to argue that so-called natural groups were produced.4 

15.29 K-MEANS CLUSTER ANALYSIS IN R 

We demonstrate a K-means cluster analysis in R on the Iris data. For pedagogical 
purposes, this data set is ideal for demonstrating cluster analysis since we already 
know in advance of a suitable cluster solution, that of species. We begin by first 
identifying the variables we wish to cluster: 

> iris.data <- cbind(Sepal.Length, Sepal.Width, Petal.Length, Petal.Width)
 
> library(car)
 
> some(iris.data)
 

Sepal.Length Sepal.Width Petal.Length Petal.Width
 
[1,] 4.7 3.2 1.3 0.2
 
[2,] 5.0 3.4 1.5 0.2
 
[3,] 5.0 3.0 1.6 0.2
 

We could have also used data.frame (Sepal.Length, Sepal.Width, 
Petal.Length, Petal.Width) to generate the data set. Obtaining a scatterplot 
matrix is helpful in being able to visualize initial degrees of separation: 

> pairs(iris.data) 

4Of course, perhaps the cluster analysis did generate natural groupings but that as of yet, you are unaware of 
what those groups could be. I am not meaning to discount or disregard the use of exploring possibilities 
about why cluster analysis solutions come out the way they do. Indeed, a huge part of scientific discovery is 
the pondering of data in hopes that eventually insight into the structure of such data is achieved. This 
practice is fine, so long as one is aware that numerous theories can be fit to the same data and that the theory 
of one’s preference is not necessarily the right one. 
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Though scatterplots will not tell us what the final solution will look like, initial 
insights into potential clusters can nevertheless be gleamed by a cursory explo
ration of such plots. For instance, we can see that the scatterplot of sepal width and 
petal length seems to suggest the presence of two groups or clusters (i.e., the 
groups circled in ovals in row 2, column 3). By performing a cluster analysis, we 
wish to “discover” a variable on which such separation might be based. Note that 
if we were already aware of the species grouping structure, then the task might be 
to learn how well a linear combination of Iris features predicts type of species. 
Such would call for the linear discriminant function analysis of Chapter 13 or the 
logistic regression of Chapter 11. Of course, a MANOVA or a dummy-coded 
multivariate multiple regression could also be performed to test a multivariate 
hypothesis of equality among mean vectors across species. In the case of cluster 
analysis, however, we do not yet know the groups. It is in this sense that cluster 
analysis is usually considered more exploratory than these other more “confir
matory” approaches. 

We proceed to now fit the K-means cluster solution: 

> k.means.fit <- kmeans(iris.data, 3) 
> k.means.fit 

K-means clustering with 3 clusters of sizes 50, 62, 38 
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Cluster means: 
Sepal.Length Sepal.Width Petal.Length Petal.Width 

1 5.006000 3.428000 1.462000 0.246000 
2 5.901613 2.748387 4.393548 1.433871 
3 6.850000 3.073684 5.742105 2.071053 

Clustering vector: 
[1]  1 1 1  1 1 1 1 1 1  1 1 1 1 1 1  1 1 1 1 1 1  1 1 1 1 1 1  1 1 1 1 1 1  1 1 1 1  

[38] 1 1 1 1  1 1 1 1 1 1  1 1 1 2 2 3  2 2 2 2 2 2  2 2 2 2 2 2  2 2 2 2 2 2 2  2 2  
[75] 2 2 2 3  2 2 2 2 2 2  2 2 2 2 2 2  2 2 2 2 2 2  2 2 2 2 3 2  3 3 3 3 2 3 3  3 3  

[112] 3 3 2 2 3 3 3  3 2 3 2 3 2  3 3 2 2 3 3  3 3 3 2 3 3 3  3 2 3 3 3 2  3 3 3 2 3  
[149] 3 2 

Within cluster sum of squares by cluster: 
[1] 15.15100 39.82097 23.87947 
(between_SS / total_SS = 88.4 %) 

Available components: 

[1] "cluster" "centers" "totss" "withinss" "tot.withinss" 
[6] "betweenss" "size" 

Provided in the output are the cluster means for each of the input variables. The 
clustering vector tells us which observation each cluster has been assigned. For 
instance, the first observation is in cluster 1, the second observation is in cluster 1, the 
75th observation is in cluster 2, etc. R also provides us with within cluster sum of 
squares for each cluster as an overall indicator of the degree of homogeneity within 
each cluster grouping, along with a ratio of SS between to SS total for an estimate of 
how much variance is accounted for by cluster membership. 

As mentioned, since we are in the rather unique position of actually knowing a 
priori clusters for these data, we can request classification results similar to how we 
did so for the discriminant analysis of Chapter 13, only that now the numbers 1, 2, 3 
across the first row represent cluster membership and not species: 

> table(Species, k.means.fit$cluster) 

Species 1 2 3 
setosa 50 0 0 
versicolor 0 48 2 
virginica 0 14 36 

Cluster 1 (50 cases) is made up of the species setosa, with no cases from versicolor 
or virginica. Cluster 2 is made up of 48 cases of versicolor and 14 cases of virginica. 
Cluster 3 is made up of 2 cases from versicolor and 36 cases from virginica, with no 
cases from setosa. 

We next obtain plots of petal width against petal length and sepal width against 
sepal length to reveal the three clusters: 
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Cluster membership in both plots is evident. Clearly, and in agreement with the 
classification table, species setosa (i.e., “∗”) distinguishes itself from species versi
color and virginica. 

To perform a hierarchical cluster analysis in R, we first define the distance matrix, 
and follow this up with a contrast of single versus complete linkage cluster solutions 
(Figure 15.4). 

> d <- dist(iris.data)
 
> clust.single <- hclust(d, method = "single")
 
> clust.complete <- hclust(d, method = "complete")
 
> plot(clust.single)
 
> plot(clust.complete)
 

Though the dendrograms generated from these respective solutions are of little 
practical “visual” use due to the number of objects being fused (they require a much 
larger screen for deciphering object numbers), for pedagogical purposes, one can 
nonetheless appreciate a comparison of single versus complete linkage dendrograms. 
One can see how the final cluster solution differs depending on which approach is 
adopted. 

FIGURE 15.4 Dendrograms for single linkage (a) and complete linkage (b) cluster analyses 
of Iris data. 
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15.30 GUIDELINES AND WARNINGS ABOUT CLUSTER ANALYSIS 

Cluster analysis is generally considered a rather crude exploratory technique. As 
discussed, performing a cluster analysis is relatively straightforward using high-
powered computers. The more difficult part, of course, is making sense of the clusters 
that do emerge. In concluding our brief discussion of cluster analysis, we issue some 
general guidelines and warnings about its use: 

•	 Cluster algorithms will usually be quite sensitive to outliers. Before running a 
cluster analysis, ensure that you have properly recorded data and that no 
observations are extremely distant from all other observations. Using criteria 
such as Mahalanobis distances can be useful in identifying multivariate 
outliers. 

•	 Always consider the final clustering solution to see if it is sensible. If it is not, 
one possible “verdict” of a given cluster analysis must be that there does not 
appear to be any ‘natural’ groups in these data. That is, the possibility of 
there being no substantive solution must exist as a potential outcome to the 
analysis. 

•	 For any given data, it is advisable to try several clustering methods and calculate 
distances in various ways for each method. If the outcomes from the several 
methods are roughly consistent with one another, this might help in “triangu
lating” an argument for “natural” groupings. 

•	 Statistical significance testing in cluster analysis is generally inappropriate. 
Since the goal of cluster analysis is to maximize group differences, the 
probability of the data given the null, if low (e.g., p < 0.05) is hardly surprising, 
since you actually put to work an algorithm to accomplish just this! Hence, resist 
the temptation to run inferential tests on your cluster solution to “support” a 
claim of naturally occurring clusters. 

15.31 CHAPTER SUMMARY AND HIGHLIGHTS 

•	 Factor analysis is a statistical method useful for uncovering latent structures that 
are thought to underlay covariance or correlation among observed variables. It 
may also be conceived as a data reduction technique similar to, but in the end 
quite different from, that of principal components analysis. 

•	 While the priority of PCA is to account for as much total variance among 
variables as possible, the priority of factor analysis is to explain as much 
commonality among variables as possible. 

•	 Exploratory factor analysis, or EFA, originating with Charles Spearman in 1904, 
has had a turbulent history. Due to its nonuniqueness of estimated loadings, 
along with its misuse by researchers, it has been a favorite target of criticism. 

•	 Whereas principal components are linear functions of observed variables, 
outcomes in EFA are linear combinations of factors. 
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•	 Comparing and contrasting the common factor model of x � μ � Λf � ε with 
the multiple regression model y � xβ � ε is pedagogically useful. In the 
regression model, x is a vector of observed manifest variables, whereas in 
the factor model, f is a vector of unobserved latent variables. 

•	 The EFA model implies that the structure of the observed covariance matrix is a 
function of squared loadings and specific variances. That is, � ΛΛ ́ � ψ. 

•	 In EFA, the factor solution is only unique up to an orthogonal matrix. What this 
means substantively is that deciding on the correct rotation usually reduces to a 
substantive concern, not a statistical one. 

•	 Common methods of estimation in EFA include principal axis factoring (PAF), 
which requires communality estimates, and maximum likelihood. 

•	 Varimax is an orthogonal rotation in which the within factor variance of squared 
loadings is maximized. Quartimax, also an orthogonal rotation, maximizes the 
variance of loadings across factors. 

•	 Factor analysis is generally a large-sample technique, although research sug
gests that required sample size can be in part a function of the magnitude of 
communalities. 

•	 Bartlett’s test of sphericity and the Kaiser–Meyer–Olkin measure of sampling 
adequacy can be used to help determine whether sufficient correlation exists 
among a set of variables for it to be suitable for factor analysis. 

•	 Cluster analysis is a statistical method based on the idea of grouping cases or 
individuals that are in some sense similar. 

•	 Cluster analysis, although distinct from factor analysis, can nonetheless be 
likened to it in that both methods seek to exploit the similarities in data. Both can 
be said to use distance measures for this purpose. 

•	 The number of ways in which n cases can be partitioned in g clusters is usually 
exceedingly large; hence, one goal of cluster analysis algorithms is to shrink this 
large number into a partitioning that is more manageable, while not losing too 
much information in the process. 

•	 Cluster analysis does not “discover” groupings any more than factor analysis 
“discovers” underlying factors. In both cases, similarity is simply exploited to 
reveal potential structures in data. These structures are only as meaningful as 
they represent something of interest to the researcher. 

•	 Euclidean distance is the most common approach to defining distance, and is 
usually preferred over any type of statistical distance that incorporates the 
covariance matrix. 

•	 Other ways of defining distance in cluster analysis include the Minkowski 
metric and city-block (or “Manhattan”) distance, among others. 

•	 When variables are measured on different units, distance measures may reflect 
magnitude simply because of the inflated variance of particular variables. 
Standardization of data is usually advised to solve this problem. 

•	 Approaches to clustering include agglomerative or hierarchical clustering, which 
begin by considering each observation separately before building up clusters, 
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and divisive clustering, which begins with all objects in a single cluster then 
proceeds to partition these into separate clusters at each step of the procedure. 

•	 A dendrogram is a convenient picture that displays the linkage history in a 
hierarchical cluster analysis. 

•	 Nonhierarchical clustering methods, such as the K-means approach, typically do 
not require the computation of a matrix of distances or similarities. Consequently, 
these methods are usually less demanding computationally compared to compet
ing hierarchical methods. 

REVIEW EXERCISES 

15.1.	 Discuss two goals of factor analysis. Though they mechanically amount to 
the same thing (i.e., factor solutions), are these goals substantively equiv
alent? Why or why not? 

15.2.	 Discuss one important way in which factor analysis is different from 
principal components analysis. 

15.3.	 What does it mean to say that principal components analysis explains 
variance but that factor analysis seeks to explain covariance? How does 
this difference distinguish the two procedures, both mathematically and 
substantively? 

15.4.	 Do you agree that factor analysis uncovers latent variables? Why or why not? 
What are some of the philosophical issues inherent in such a statement? 

15.5.	 Distinguish between exploratory versus confirmatory factor analysis. How 
are they different? Is the distinction always evident in a practical setting? 
How so? 

15.6.	 Describe the components of the common factor-analytic model x � 
μ � Λf � ε. 

15.7.	 Compare the factor-analytic model x � μ � Λf � ε with the regression model 
of previous chapters y � xβ � ε, noting their similarities and differences. 

15.8.	 “A model is defined by the assumptions it makes.” Discuss this statement, 
and explain what it means. 

15.9.	 State and summarize the assumptions for the orthogonal factor-analytic model. 

15.10.	 What does it mean to say that the factor model implies a structure to the 
covariance matrix? How might this idea help you understand statistical 
modeling in general? 

15.11.	 State precisely how EFA is parameterized to imply a covariance or correla
tion matrix. 

15.12.	 What is the major critique targeted against factor analysis? Do you believe it 
is justified? Why or why not? 
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15.13.	 What does it mean to say that factor analysis suffers from the problem of 
indeterminacy and nonuniqueness of solutions? 

15.14.	 How can you tell whether your factor analysis has been successful? Do you 
agree with the “WOW” criterion recommended by Johnson and Wichern? 
Why or why not? 

15.15.	 Briefly describe the principal axis factoring method of factor analysis, and 
then briefly compare it with the maximum-likelihood method of estimating 
factors. 

15.16.	 Interpret Jöreskog’s quote: 

Though Λ* and Λ are equivalent from the mathematical point of view, they 
may not be so from the psychological point of view. The problem of choosing 
one particular psychologically meaningful Λ out of the infinite set fΛT�1g has 
been called the problem of rotation, although the problem of transformation 
would be a better term, since it includes also the transformation to oblique 
factors, in which case the transformation matrix T is not orthogonal and hence 
does not represent only a rotation. (p. 166) 

In your interpretation, be sure to comment on the “mathematical point of 
view” versus “psychological point of view” distinction Jöreskog highlights. 
What do you think he means by this? 

15.17.	 Distinguish between varimax and quartimax rotations. 

15.18.	 Do you believe factors should be rotated? Or, do you believe that rotating 
factors is “fudging the data” so to speak? Why or why not? 

15.19.	 In this chapter we conducted a two-factor solution on the Holzinger data. 
Request a three-factor solution and compare your findings with that of the 
two-factor solution. 

15.20.	 Consider the following correlation matrix depicting the correlations between 
disciplines on the GRE. 

Intercorrelations Among The G.R.E. Tests Of General Education 

Math P.S. B.S. Soc. Lit. Arts Exp. Voc. 
Mathematics .55 .44 .51 .36 .35 .52 .38 
Physical Science .55 .49 .43 .20 .40 .32 .29 
Bioogical Science .44 .49 .57 .42 .42 .46 .50 
Social Studies .51 .43 .57 .54 .40 .61 .59 
Literature .36 .20 .42 .54 .39 .53 .54 
Arts .35 .40 .42 .40 .39 .42 .52 
Effecive Expression .52 .32 .46 .61 .53 .42 .66 
Vocabulary .38 .29 .50 .59 .54 .52 .66 

Conduct an exploratory factor analysis on these data, requesting a two-factor 
and then a three-factor solution. Rotate the factors in each case, and 
summarize the main findings. Can you name the factors? 
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15.21.	 Describe the goal(s) of cluster analysis. 

15.22.	 Interpret Joe H. Ward’s statement made in 1963 that “Grouping, however, 
ordinarily results in some loss of information that may be quantified in a 
‘value-reflecting’ number.” More specifically, how does clustering result in a 
loss of information? 

15.23.	 How is cluster analysis similar to and different from factor analysis? How do 
they both utilize measures of distance? 

15.24.	 In how many ways can 20 cases be partitioned into five clusters? Provide 
both the exact number of ways and an approximation to this number. 

15.25.	 Consider the statement “In discriminant analysis, we know the grouping 
structure. In cluster analysis, we do not yet know it.” Interpret the statement, 
emphasizing how cluster analysis can be seen as a more “primitive” 
technique compared to discriminant analysis or ANOVA. 

15.26.	 Comment on whether or not cluster analysis discovers natural groupings. 
What might this statement mean, and do you agree with it? 

15.27.	 Provide a verbal interpretation or definition of Euclidean distance. 

15.28.	 Distinguish between hierarchical versus divisive methods of clustering. 

15.29.	 Distinguish between single linkage and complete linkage as methods of 
hierarchical clustering. How are these two different from average 
linkage? 

15.30.	 Discuss how K-means clustering goes about generating clusters, and how 
this process generally differs from hierarchical methods. 

15.31.	 Using SPSS, perform and interpret a K-means cluster analysis on the Iris data 
originally analyzed using R in this chapter. Use the following syntax to 
generate the cluster analysis. You will have to first build the data set in SPSS 
(you can obtain the data from > iris in R). 

QUICK CLUSTER sepal_length sepal_width petal_length petal_width 

/MISSING=LISTWISE 

/CRITERIA=CLUSTER(3) MXITER(25) CONVERGE(0) 

/METHOD=KMEANS(NOUPDATE) 

/SAVE CLUSTER DISTANCE 

/PRINT ID(species) INITIAL ANOVA. 

15.32.	 Visualize your cluster solution in Exercise 15.31 using 

GRAPH 

/SCATTERPLOT(BIVAR)=petal_width WITH petal_length BY QCL_1 

/MISSING=LISTWISE. 
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15.33.	 Perform both a hierarchical and K-means cluster analysis of the 
Holzinger.9 data featured in our discussion of factor analysis. Is a 
particular number of clusters especially evident in either procedure? 

Further Discussion and Activities 

15.34.	 It was mentioned in this chapter that the user of factor analysis, in addition to 
acquainting oneself with its technical limitations, should also be somewhat 
familiar with its philosophical foundations. Refer to Mulaik (1987) and 
summarize some of the more salient philosophical issues surrounding the 
interpretation of solutions in factor analysis. 
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PATH ANALYSIS AND STRUCTURAL 
EQUATION MODELING 

The path coefficient, measuring the importance of a given path of influence from cause to 
effect, is defined as the ratio of the variability of the effect to be found when all causes are 
constant except the one in question, the variability of which is kept unchanged, to the 
total variability. 

(Wright, 1920, p. 329) 

Any correlation between variables in a network of sequential relations can be analyzed 
into contributions from all of the paths (direct or through common factors) by which the 
two variables are connected, such that the value of each contribution is the product of the 
coefficients pertaining to the elementary paths. 

(Wright, 1934, p. 163) 

This terminology is unfortunate, since most models do not establish causality, but only 
establish an empirical linear association among the latent and manifest variables under 
study. 

(Timm, 2002, p. 557) 

Path analysis is a statistical technique useful for modeling simple to complex 
networks of relationships among observed variables. Observed variables in path 
analysis are often referred to as manifest variables, because it is assumed they are, in 
general, readily measurable. The models considered in this chapter generally assume 
that all variables are more or less continuous in nature. 

In many respects, path analysis is similar to multiple regression, although unlike 
multiple regression, path analysis allows the user more freedom in specifying and 

www.wiley.com/go/denis/appliedmultivariatestatistics
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hypothesizing models that may more closely mimic correlational reality than is possible 
with multiple regression. For instance, in regression, the model typically “ends” with 
the prediction of a response variable. In path analysis, one can use that very response as 
a predictor of further responses. Path analysis allows for the specification of networks of 
observed variables and hence widens the multiple regression landscape. As some 
would argue, this “widening” better represents social reality.1 

Structural equation modeling (SEM) is a rather sophisticated statistical method
ology that incorporates elements of both factor analysis and regression or path 
analysis to test hypotheses about relationships among manifest and unobserved 
variables alike. These unobservable variables often go by the name of latent variables. 
Such variables are generally assumed to not be easily or readily measurable, and 
hence their existence is usually inferred by manifest variables. 

In this chapter, we provide but a cursory overview and introduction to path and 
structural equation models. Authoritative sources on the subject include Bollen 
(1989) and Mulaik (2009) and should be consulted for more thorough introductions. 
For a very readable introduction to path models with applications to biology, refer to 
Shipley (2002). Byrne (2009) provides applications of SEM models using AMOS, 
while a useful introduction to such models using LISREL is that by Schumacker and 
Lomax (2010). Structural equation modeling is a book-length topic even when 
considering special cases of such models. To say that their scope of application is 
vast is an understatement. With SEM, researchers gain virtual unlimited flexibility in 
generating models tailored to their research hypotheses. Among the possibilities 
include the modeling of longitudinal data (Timm, 2002, pp. 600–604) and latent curve 
models (Bollen and Curran, 2006), as well as multilevel or mixed models (Bauer, 
2003). They have also proved useful in the fitting of nonlinear polynomial structures 
(Wall and Amemiya, 2000). 

16.1 PATH ANALYSIS: A MOTIVATING EXAMPLE—PREDICTING 
IQ ACROSS GENERATIONS 

It is easiest to introduce path analysis through a simple substantive example that will 
help highlight some of its features and point out how it builds on, but ultimately differs 
from, multiple regression models. 

A classic question in late nineteenth and early twentieth century was that of 
determining the mechanism by which genetic characteristics were transmitted from 
one generation to subsequent generations. General cognitive ability was among the 
mental characteristics thought to be inherited by children based on their parentage and 
familial history. The path diagram, or directed graph (Mulaik, 2009), in Figure 16.1 
shows a simple model in which parental IQ is hypothesized to predict offspring IQ, 
which in turn is hypothesized to predict the next generation’s IQ (i.e., IQ 2). 

The goal of path analysis for this example is to estimate respective coefficients 
along each arrow from parental IQ to offspring IQ to offspring IQ 2. As we will see, 

1An equally plausible argument is that social reality is not complex at all, and that we should commit to 
representing it in as simple a manner as possible. 
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FIGURE 16.1 Path diagram modeling predictability of IQ across generations. 

these weights are nothing more than standardized regression coefficients and as such 
are interpreted in analogous fashion to those featured in our study of multiple 
regression (Chapter 9). Variables d1 and d2, both assumed to be latent and 
unobservable, are referred to as disturbances, and comprise the sum of all other 
influences extraneous to the model but unaccounted for by the exogenous variables in 
the system of equations. For example, d1 pointing to offspring IQ would denote the 
sum of all variables other than parental IQ that play a role in predicting offspring IQ. 
Likewise, d2 pointing to offspring IQ 2 denotes the sum of all influences other than 
offspring IQ that can be assumed to predict or determine (in this case) offspring IQ 2. 
Such sources can usually be assumed to be infinite in number but are not currently 
observed in the given model. Variables offspring IQ and offspring IQ 2 are named 
endogenous in path models, a term originating from econometric models, and 
indicating that they have at least one predictor pointing to them. Exogenous variables 
are those variables that are featured as predictors of endogenous variables. 

We summarize a couple of the key differences between path analysis and multiple 
regression: 

•	 Path analysis allows one to model a dependent (endogenous) variable as a 
predictor (exogenous) variable of one or more other dependent variables. 
Multiple regression models typically do not allow this. 

•	 Path analysis allows one to specify models more precisely than one could ever do 
in a multiple regression framework. For example, one can estimate relationships 
among disturbance terms, or model reciprocal prediction among variables where 
two (or more) variables are predictive of each other. For example, it is theoretically 
possible to adjust the model in Figure 16.1 and test the following path model: 
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The two-headed arrow joining d1 and d2 specifies a covariance among disturbance 
terms. Substantively, what this modeling of the covariance would suggest is that all 
that predicts offspring IQ that is unaccounted for by parental IQ is related to all that 
predicts the next generation of offspring IQ that is unaccounted for by the previous 
generation’s IQ. In such a context, the modeling of the disturbance terms in this way 
makes good sense. Drawing on the nature–nurture debate for instance, one may 
hypothesize that both d1 and d2 contain the influence of nurturing factors, and hence 
may help in accounting for both IQs. Path analysis allows one to easily model such 
relationships, and it is in this sense that path analysis allows a greater sense of model 
specificity than could ever be possible in the typical multiple regression. 

16.2 PATH ANALYSIS AND “CAUSAL MODELING” 

Perhaps more than any other statistical method discussed in this book, understanding 
the history of path analysis and structural equation modeling is crucial to gaining an 
appreciation of its strengths, and more importantly, its limitations. Path analysis owes 
its origins to the geneticist Sewall Wright (1889–1988), who developed the technique 
roughly between 1918 and 1921. The history of the development of path analysis is 
well documented elsewhere (e.g., see Denis and Legerski (2006)) and we do not 
survey its history in any depth here. For our purposes, it is enough to know that path 
analysis originated with Wright’s studies of heredity in which he wished to learn of 
the genetic transmission of biological traits. One of Wright’s first publications 
introducing the technique was The Relative Importance of Heredity and Environment 
in Determining the Piebald Pattern of Guinea-Pigs (Wright, 1920). In this publica
tion, he included the historically significant path diagram in his discussion 
(Figure 16.2). 

FIGURE 16.2 Sewall Wright’s guinea pig path diagram of 1920 (Wright, 1920). 
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Without detailing every aspect of Wright’s diagram, one can nonetheless achieve a 
basic understanding of how path analysis fit into Wright’s goals in his study of these 
animals. Each one-headed arrow in the figure represents a directional influence of one 
characteristic onto another. For instance, consider a subset of his diagram, the lower 
right quadrant where lay one of the offspring guinea pigs: 

Letting H ́ represent influences of heredity, E environmental influences, and D a 
disturbance term, it becomes clear that Wright was hypothesizing the overall 
“makeup” of the baby guinea-pig. Wright asked such questions as “To what extent 
does heredity vs. environment contribute to the color of the offspring?” What made 
path analysis so useful to him is that he was able to model a dependent variable both as 
a response and as a predictor to another variable. Notice that in Figure 16.2, G ́́  ́has an 
arrow pointing to H ́ , which then has an arrow pointing to the guinea pig. Allowing 
dependent variables to serve simultaneously as predictors of other dependent 
variables was at the time an advancement over multiple regression. Wright named 
these coefficients path coefficients. And though these paths a, h, e, and d were 
fundamentally analogous to regression coefficients, since it also made sense that 
heredity and environment caused color in the offspring, Wright referred to these 
coefficients simultaneously by the name of causal coefficients. Such coefficients 
could be used to estimate presumed causal pathways. 

Because this chapter is in no way intended as an historical analysis of Wright’s 
contributions, we cut to the chase rather quickly and give you the bottom line: Wright 
developed path analysis in a context in which “cause and effect” was an assumption 
that was quite reasonable, if not obvious. That heredity and environment contributed 
to characteristics in guinea pig offspring was very much biologically apparent, and 
hence referring to cause and effect when defining a path coefficient made at least 
reasonable sense in the context in which Wright was working. Beyond that however, 
there was nothing at all “causal” about his coefficients, and Wright himself acknowl
edged this in a contentious debate about causation with Henry Niles of John Hopkins 
University beginning in 1922 (see Denis and Legerski (2006) for details). 

Regardless of Wright’s attempt to clear the record, path analysis has since become 
linked to the misnomer “causal modeling,” and has unfortunately been misused and 
misinterpreted in a wealth of substantive areas where causal “intuition” could never be 
considered obvious. This is unlike the study of the genetic transmission of color in 
guinea pigs or the mechanism of heredity by which parents are hypothesized to 
transmit intellectual capacities to their children. The statistical technique, whether that 
of path analysis or structural equation modeling, has no more claim to causality than 
any other statistical method. Both methods are best considered simply as extensions to 
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regression and factor analysis where causality enters the discussion only if it is 
warranted by factors extrinsic to the model (e.g., experimental design). For a 
discussion of causation in the context of structural equation modeling, see Mulaik 
(2009, pp. 63–110). 

16.3 EARLY POST-WRIGHT PATH ANALYSIS: PREDICTING 
CHILD’S IQ (BURKS, 1928) 

One of the earliest uses of path analysis following Wright was in modeling children’s 
IQ as a function of both parental intelligence and environment (i.e., the classic 
nature–nurture debate mentioned previously). The work appeared in Burks (1928). 
The path diagram in Figure 16.3 was featured in Burks’ work. 

We note the following from Burks’ path diagram: 

•	 A one-headed arrow from parental intelligence to child’s IQ is indicated, 
representing the hypothesis that parental intelligence is a partial predictor 
(or even “cause” in such a context) of child’s IQ. The arrow is pointing to 
child’s IQ to indicate the direction of the hypothesized relationship. The 
coefficient of r = 0.6036 is called a path coefficient, and as such is equivalent 
to a standardized partial regression coefficient. 

•	 A one-headed arrow from environment to child’s IQ is indicated, representing 
the hypothesis that environment is a partial predictor (again, perhaps even 
cause) of child’s IQ. The coefficient of r = 0.4771 is another path coefficient, 
equivalent to a standardized partial regression coefficient. 

•	 A two-headed arrow is indicated between parental intelligence and environ
ment, representing the hypothesis that these two variables are linearly related. 
The coefficient of r = 0.7653 is the correlation between parental intelligence and 
environment. 

Burks’ analysis is significant for a few reasons. First, it was one of the first 
applications of path analysis to a problem in social science since Wright’s introduction 

FIGURE 16.3 Burks’ path diagram hypothesizing parental intelligence and environment as 
partial causes of child’s IQ (Burks, 1928). 
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of the method in genetics and biology. Second, Burks’ use and application of path 
modeling evidenced a keen awareness of what the method could do versus what it could 
not do in terms of its ability to deduce causal claims. As Burks noted early in her paper: 

The method [of path coefficients] is limited by the rarity with which we have actual 
knowledge of causal relations; but it provides a toll of the nicest precision in such 
situations as do offer an adequate basis for postulating causation. It cannot, itself, 
uncover what is cause and what is effect, though in the absence of definite knowledge 
regarding causal relationships between variables, the method ‘can be used to find out the 
logical consequences of any particular hypothesis in regard to them.’ Conservatively 
stated, in any situation in which we feel justified in drawing conclusions regarding the 
effects of certain phenomena upon others, the Wright method provides a numerical 
expression of such conclusions. 

(Burks, 1928, p. 299) 

Every student, researcher, and user of path analysis and structural equations would 
do well to memorize the above quote from Burks, and repeat it to themselves each and 
every time they fit such a model. In Burks we find the correct contextualization of path 
modeling. It is a statistical technology, which no more than regression, makes any 
claims about uncovering or otherwise establishing causality. As Burks correctly 
emphasizes, should one be working with variables for which causal relations among 
them may be safely assumed, then naming a path coefficient with that of a causal 
coefficient perhaps makes more sense, assuming one can make sense of what such a 
partial cause actually means on a philosophical level (good luck with that one!). What 
permitted Burks to associate any element of causality with her model was not the fact 
that she employed path analysis. It was the fact that it made methodological sense, 
given the paradigm at the time, that intelligence was a hereditary trait, and thus 
“smart parents” often had “smart kids.” Why? Because of a genetic causal link. 
Without evidence for a presumed causal link, speaking of causation makes little sense. 

What has unfortunately happened since the advent of path analysis (and its 
overachieving offspring, structural equation modeling) is that the term causality 
has made its way into models that have absolutely no evidence of being causal 
extrinsic to the method. One can model the causal coefficients linking self-esteem to 
life satisfaction all one wants, but unless evidence exists to suggest the pathway is in 
fact causal, the so-called causal coefficient is more akin to an ordinary regression 
coefficient and should be interpreted as such. Our theories may be causal, but our 
coefficients are not. Causality is simply not that easy. 

16.4 DECOMPOSING PATH COEFFICIENTS 

When we speak of “decomposing” a path coefficient, what we mean is learning what 
the coefficient is a function of. That is, we want to know ways in which the coefficient 
can be generated by reference to other pathways. The decomposition of path 
coefficients is the essence of path analysis, so we begin with a simple example 
from Wright’s original work. 
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FIGURE 16.4 Wright’s generic path diagram (Wright, 1920). 

Consider another of Wright’s diagrams in Figure 16.4, also featured in his classic 
1920 paper. 

In the diagram, X and Y are designated as response variables, which recall in path 
models are typically known as endogenous variables. A, B, C, and D are the 
explanatory variables in Wright’s model, which also recall are known as exogenous 

´ variables in path analysis. Path coefficients in the model are given by a, b, c, b ́ , c , and 
d ́ . The two-headed arrow joining B and C represents the correlation between these 
two variables, denoted by rBC. 

Following Wright, we would like to know the influences on the endogenous 
variable X. Notice that X has three arrows pointing to it: one from A, one from B, and 
one from C. However, since B and C are correlated, this correlation must also be taken 
into account when determining the influences on X. Squared path coefficients yield, as 
Wright put it, “the degree of determination by each cause.” (Wright, 1920, p. 329). 
How can we then write the equation for the determination of X? 

Wright noted the following: 

a2 � b2 � c2 � 2bcrBC � 1 (16.1) 

That is, the determination of X is a function of the sum of all squared path coefficients 
pointing to it, that is, a2 � b2 � c2. However, we must also account for the correlation 
between B and C (i.e., bcrBC in (16.1)). Note that if the correlation between B and C 
were equal to zero, then the equation would reduce to 

a2 � b2 � c2 � 2bcrBC � 1 

a2 � b2 � c2 � 2bc�0� � 1 
2 � b2 � 2a c � 1 

We see then that under the condition of zero correlation between B and C, the 
determination of X is simply a function of the sum of squared coefficients. 

You might ask why it makes sense, conceptually, to add 2bcrBC to the sum of 
squared coefficients should there be a correlation between B and C. Suppose we did 
not add this term, even under the condition that rBC ≠ 0. Without this correlation 
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accounted for, however, can we really say we are determining the contributing factors 
of X? The reason we are adding 2bcrBC is to account for the fact that there is shared 
variation between these variables. In doing, we are attempting to model the “system” 
of variables, however far-reaching that system may be. 

Of note as well in Wright’s analysis is the assumption that the correlation between 
A and B is equal to 0. How do we know this? We do not actually, but we do know that 
Wright was not interested in modeling it, otherwise a two-headed arrow connecting A 
and B would have been included. This idea of explicitly not modeling a path is an 
essential feature of path analysis and structural equation modeling. It is very important 
to understand that not modeling something still constitutes an act of modeling. 
Choosing not to correlate A and B should be a product of one’s theory. It is in such 
ways that path and SEM models demand the investigator think carefully and clearly 
about the model he or she is subjecting to test. One can appreciate then how with path 
and SEM models, the constrained environment of regression and factor analysis has 
just been expanded to allow more flexibility in modeling possibilities. 

16.5 PATH COEFFICIENTS AND WRIGHT’S CONTRIBUTION 

If a path coefficient is essentially nothing more than a standardized regression 
coefficient, what then was Wright’s contribution? It certainly was not simply that of 
calling a standardized regression coefficient by the name of a path coefficient. The 
contribution lay in demonstrating how coefficients along pathways could be decom
posed, essentially revealing that correlations and the like could be written as a series of 
alternative pathways in a given model. This gave us the mathematics to compute, for 
instance, the effect of one variable on another through an intervening variable. By a series 
of rules, we could now trace paths in a system to determine the effects one variable has on 
others through intermediary pathways. Ordinary regression models, even multivariate 
ones, do not allow for this, since the regression typically “ends” with the given 
endogenous variable(s). These variables are not given the opportunity to predict other 
variables in the system. Path analysis and structural equation modeling provide the user 
more flexibility in modeling a wider variety of hypotheses and more control over the 
fixing or freeing of parameters. Virtually all regression models can be considered as 
special cases of the wider path-analytic framework, just as most statistical models can be 
considered special cases of the wider structural equation modeling framework. If for no 
other reason, structural equation models are useful as a pedagogical tool for concep
tualizing statistical models in general, a point we will return to later in this chapter. 

16.6 PATH ANALYSIS IN R: A QUICK OVERVIEW—MODELING 
GALTON’S DATA 

Several software programs are available for fitting path and SEM models (e.g., 
AMOS, R, LISREL, EQS, and SAS). We illustrate a very simple path analysis 
using R’s lavaan package (Rosseel, 2012), using for now only a chi-square 
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goodness of fit test to assess model fit (we discuss additional indicators of model fit 
later). We once again use data from the package HistData (Friendly, 2014), this time 
on the heights of mothers and fathers and their offspring. The data are located in 
GaltonFamilies: 

> library(car) 

> some(GaltonFamilies) 

family father mother midparentHeight children childNum gender childHeight 

46 014 73.0 67.0 72.680 2 2 male 67.0 

190 050 71.0 64.5 70.330 2 1 male 73.0 

219 056 71.0 62.0 68.980 5 3 male 70.5 

About the data: 

•	 family is simply an index number identifying a given family in the data. 

•	 father is the height of the father. 

•	 mother is the height of the mother. 

•	 midparentHeight is the mean height. 

•	 children is the number of children spawn by the family. 

•	 childNum is the placement of the child among siblings (e.g., “2” means 
second-born). 

•	 gender is the sex of the child. 

•	 childHeight is the height of the offspring child. 

For this example, we use data only on father, mother, and childHeight, and 
consider the hypothesized model of Figure 16.5 (generated using semPaths, in the 
semPlot package (Epskamp, 2014)), where mth represents mother, fth represents 
father, and chH represents the height of the child. 

> library(semPlot)
 
> gf.model <- ’childHeight ∼ mother + father’
 
> semPaths(gf.model)
 

We first try a model in which childHeight is a function of both mother and 
father heights: 

> library(lavaan)
 
> gf.model <- ’childHeight ∼ mother + father’
 
> sem.fit <- sem(gf.model, data = GaltonFamilies)
 
> summary(sem.fit)
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FIGURE 16.5 Path model of mother and father height as predictors of child height. 

lavaan (0.5-16) converged normally after 1 iterations 

Number of observations 934 

Estimator ML 
Minimum Function Test Statistic 0.000 
Degrees of freedom 0 
P-value (Chi-square) 0.000 

Estimate Std.err Z-value P(>|z|) 
Regressions: 
childHeight ∼ 
mother 0.291 0.048 5.996 0.000 
father 0.368 0.045 8.218 0.000 

Variances: 
childHeight 11.451 0.530 
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The model is based on a total of 934 observations and was estimated using 
maximum likelihood (ML). Note the model has zero degrees of freedom, which 
means it is saturated, implying that it will fit perfectly yielding a chi-square value of 
0.000. A model with zero degrees of freedom regenerates the data perfectly, and hence 
has no opportunity to be wrong. Since the model is saturated, we do not interpret 
parameter estimates, and move on to specifying a model that is not saturated. We 
accomplish this by imposing a constraint. We choose to constrain the path from 
mother to childHeight to be equal to 1.0 (1∗mother). Doing such frees up a 
degree of freedom. When fitting this model, we obtain: 

> gf.model <- ’childHeight ∼ 1*mother + father’ 
> sem.fit <- sem(gf.model, data = GaltonFamilies) 
> summary(sem.fit) 

lavaan (0.5-16) converged normally after 11 iterations 

Number of observations	 934 

Estimator ML 
Minimum Function Test Statistic 193.065 
Degrees of freedom 1 
P-value (Chi-square) 0.000 

Estimate Std.err Z-value P(>|z|) 
Regressions: 
childHeight ∼ 
mother 1.000 
father 0.329 0.050 6.626 0.000 

Variances: 
childHeight 14.080 0.652 

We note the following regarding the output: 

•	 Since the path from mother to childHeight is now fixed at 1.0, the model 
gains a single degree of freedom. 

•	 The parameter estimate for mother is reported as 1.000, since we fixed it as 
such and hence is not evaluated for statistical significance. 

•	 Other parameter estimates have changed as a result of fixing the path to 1.0. For 
instance, note that the variance for childHeight has increased from 11.451 
to 14.080. 

•	 Likewise, the parameter estimate for father has changed from 0.368 to 0.329 
as a result of fixing the mother to childHeight parameter at 1.0. It remains 
statistically significant just as it was in the saturated model. 

We can request R to print both the path coefficients and the variances of each 
observed variable by requesting est in the ensuing path diagram, where we can see 
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all features of the output reflected, including the fixing of the path from mother to
 
childHeight at 1.0 (as indicated by the dashed line):
 

> semPaths(fit, "model", "est")
 

Our example given here is simply a cursory overview of fitting a path model and an 
introduction to the concept of fixing parameters. Later, we will discuss a variety of fit 
indices for models such as that just featured, which will include the chi-square test as 
only one possibility. As we will see, the p-value obtained for Galton’s model suggests 
we not deem the model well-fitting. Problems abound with the chi-square test 
however as a measure of model fit, and other statistics will be discussed that seek 
to improve on it. 

16.7 CONFIRMATORY FACTOR ANALYSIS: 
THE MEASUREMENT MODEL 

Having briefly introduced the main ideas of path analysis, we now move on to a brief 
consideration of what will form a central component of a structural equation model, 
that of the measurement model. The measurement model in SEM usually takes the 
form of hypothesizing latent factors or hypothetical structures. The structural model, 
on the other hand, usually denotes relationships among such hypothetical constructs, 
although structural models can also be as simple as the path models provided earlier 
where no latent variables were hypothesized. 

Recall that in our presentation of the exploratory factor analysis model of 
Chapter 15, we made a cursory attempt to distinguish an exploratory model from 
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that of a confirmatory model, and provided a tentative conclusion that at best, the 
distinction is, at least from a substantive point of view, quite fuzzy. From a technical  
point of view, confirmatory factor analysis (CFA) distinguishes itself from EFA in 
that the former overcomes the rotational indeterminacy problem and that given the 
proper constraints, usually imposed by the investigator, will yield an identified 
model with unique parameter estimates. Even so, as Jöreskog noted, the distinction 
between CFA and EFA from a substantive vantage point is quite imprecise. For 
instance, when we choose to extract two instead of three factors in EFA, are we not 
engaged in confirmatory work? Of course we are. The fact that we specified a priori  
the extraction of two factors instead of three implied, however imprecise or ill-
defined, an underlying hypothesis. In this sense then, the EFA was not “explor
atory” at all. 

A convenient definition for our purposes then might be that when we start 
imposing additional constraints on a model, we might be said to be entering, at a 
technical level, the confirmatory stage of model-building, whether that be a factor 
analysis, multiple regression, or any other type of model. But surely, at a substantive 
or scientific level, this distinction is not really important. The difference then between 
exploratory and confirmatory models is one more of flavor and degree than it is one of 
absolute difference. One never finds oneself at a computer station, unsure of how he 
got there and totally naïve about the data before him, and proceeds to engage in 
exploratory modeling. In the end, all models are confirmatory, some less so than 
others. In models increasingly confirmatory in nature, the investigator is typically 
more aware of the fixing and freeing of parameters. 

We turn again to Jöreskog in defining the nature of confirmatory factor analysis: 

We shall describe a general procedure for performing factor analysis in the following 
way. Any values may be specified in advance for any number of factor loadings, factor 
correlations and unique variances. The remaining free parameters, if any, are estimated 
by the maximum likelihood method. 

(Jöreskog, 1969, p. 183) 

As previously mentioned in relation to path analysis, and as emphasized by Mulaik 
(2009), estimated parameters are no more “important” than parameters either not 
estimated or constrained to particular values. As we mentioned in Wright’s analysis, 
that we not modeled a relation is nevertheless a choice to model it by fixing it equal to 
0. Hence, in the full range of SEM models, there is nowhere for the investigator to 
“hide” or simply relegate decisions about parameter estimates to the “computer.” One 
must know one’s model inside and out. 

The CFA model can be given by 

x � Λf � ε 

where, as before, x is a vector of manifest observed variables, Λ is a matrix of factor 
loadings corresponding to the latent variables in f , and ε is a matrix of “unique 
factors” or “specific variances” unique to each manifest variable in x. As an example 
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of a simple CFA model, consider the following model consisting of four observed 
variables and two hypothesized factors: 

x � Λ f � ε 
x1 λ11 0 ε1 

x2 ε2f 1λ21 0 � � 
0 λ32x3 ε3 

x4 0 λ42 ε4 

f 2 

Multiplying through matrices, we obtain the following: 

x1 � λ11f 1 � 0f 2 � ε1 

x2 � λ21f 1 � 0f 2 � ε2 

x3 � 0f 1 � λ32f 2 � ε3 

x4 � 0f 1 � λ42f 2 � ε4 

Understanding the meaning of each of the above equations is important. Consider, for 
instance, the first equation. We are hypothesizing that observed variable x1 can be 
written as a function of latent variable f 1 (weighted by the loading λ11) plus a 
disturbance term ε1. For the second equation, we hypothesize that observed variable 
x2 can also be written as a function of latent variable f 1 plus its own unique 
disturbance term ε2. Notice then that both of these first two manifest variables 
load onto latent variable f 1. The final two manifest variables load onto the latent factor 
f 2 only, since 0f 1 � 0 in each case. That is, it is hypothesized that x3 can be written as 
a function of f 2 plus its own disturbance term ε3. Finally, it is hypothesized that x4 can 
be written as a function of f 2 plus its own disturbance term ε4. Note that a loading set 
to zero, such as with 0f 1 � 0, still constitutes a confirmatory move. Such a fixing 
should still be supported by theory. This is what we are referring to when arguing that 
freely estimated parameters are no more “important” than those fixed. In most 
“nonconfirmatory” modeling contexts, a path may be constrained without the 
researcher having any awareness of the given parameterization of the model. In 
this way, the user is never given the opportunity to consider the theoretical implica
tions of the implicit constraining of such paths. It is somewhat akin to a disbelief in 
something. The disbelief is nonetheless a belief, analogous to how not modeling a 
path is still an act of modeling. In the confirmatory model, the researcher is implicitly 
accountable for virtually every parameter of the model, whether that parameter is 
freely estimated or a priori fixed. 

16.8 STRUCTURAL EQUATION MODELS 

Having surveyed the essentials of both path and CFA models, we now introduce the 
full structural equation model, of which both path analysis and CFA, as well as most 
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other statistical modeling techniques, can be considered special cases of this wider 
framework. 

The classic structural equation model is given by 

η � Bη � Γξ � ζ 

where η is a vector of latent endogenous variables (appearing on both sides of the 
equation to allow endogenous variables to predict one another), ξ is a vector of latent 
exogenous variables, ζ is a vector of latent errors, B is a coefficient matrix for latent 
endogenous variables, and Γ is a coefficient matrix for latent exogenous variables. 
The assumptions underlying a structural equation model include E�η� � 0, that is, the 
mean of endogenous variables is equal to 0, E�ξ� � 0, the mean of latent exogenous 
variables is equal to 0, E�ζ� � 0, the mean of latent errors is equal to 0, and that ζ are 
uncorrelated with ξ, that is, latent errors are uncorrelated with exogenous variables. 

The assumptions underlying a structural equation model in large part parallel those 
underlying the classic multivariate linear model, with the key exception being, of 
course, that the multivariate linear model does not explicitly feature such things as 
latent variables. Indeed, this distinction was also paramount as you may recall when 
comparing the EFA model to regression in the previous chapter. As we did then, it is 
pedagogically meaningful to compare the two models: 

Y � XB � E	 (16.2) 

versus 

η � Bη � Γξ � ζ	 (16.3) 

To highlight the similarities and differences, consider the simple SEM model in 
Figure 16.6. Differences between the model in Figure 16.6 and that of the classic 
multivariate linear model (16.2) include the following: 

•	 Y, rather than η, is the response variable in the regression model. It is an 
observed vector of responses, whereas η is a vector of endogenous response 
variables. In contrast to the classic linear model, η is unobserved. Note that Bη 
in (16.3) also allows for the possibility of relating endogenous variables. In the 
model of (16.2), no such allowance is made for Y. 

•	 In both models, E and ζ are measures of unexplained variation. 

FIGURE 16.6 Simple structural equation model. 
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Just as was the case in EFA where we learned that the covariance matrix could be 
decomposed into � ΛΛ ́ � ψ, the general structural equation model, of which 
recall the EFA model may be considered a special case, can also be decomposed into Σ. 
See Bollen (1989, pp. 323–326) for details. 

16.9 DIRECT, INDIRECT, AND TOTAL EFFECTS 

Three types of effects can be distinguished in a path or structural equation model. A 
direct effect is the prediction of one variable on another, unmediated by any other 
variables. An indirect effect is the prediction of one variable on another, but mediated 
by at least one other intervening variable. A total effect is the sum of direct and indirect 
effects. 

We illustrate these effects by considering a now classic structural equation 
reproduced from Bollen (1989, p. 37) on industrialization and political democracy 
(Figure 16.7). For our purposes here, the actual substantive meaning of the variables is 
not relevant. What we wish to demonstrate here is simply how direct, indirect, and 
total effects can be interpreted. 

Some immediate features of Bollen’s model are as follows: 

• There are three latent variables: η1, η2, and ξ1. 

• η1 is indicated by manifest variables y1 through y4, with errors ε1 through ε4. 

• η2 is indicated by manifest variables y5 through y8, with errors ε5 through ε8. 

• ξ1 is indicated by x1 through x3, with errors δ1 to δ3. 

• Disturbances are associated with η1 and η2 (i.e., ζ1 and ζ2 respectively). 

• Path parameters include λ1 through λ11, γ11, γ21 and β21. 

Recall that when we speak of a direct effect, as the name suggests, it is the effect of 
an exogenous variable on an endogenous variable that does not go through any other 
variables. For example, the effect of ξ1 on η1 in Figure 16.7 is a direct effect, 
represented by parameter γ11. Notice that ξ1 on η1 does not go through any other 
intermediary path. If we compare this with the effect of ξ1 on η2, the distinction 
between a direct effect and an indirect effect becomes immediately apparent. Note that 
like ξ1 on η1, ξ1 has a direct effect on η2 modeled by coefficient γ21. However, it also 
has an indirect path. That path is ξ1 ! η1 ! η2. We say that ξ1 “acts on” η2 through η1. 
Again, using the words “acts on” or “goes through” is fine, so long as one knows 
what one means by such physical sounding statements. What would be incorrect to 
assume is that our semantics alone somehow give these coefficients “powers” they do 
not possess. Stemming from our earlier discussions of Wright and those of mediation 
and moderation earlier in the book, coefficients along paths in any model are simply 
functions of a calculating machine. Any assignment of substantive powers must be a 
function of factors external to the modeling process. If you conclude that ξ1 truly “acts 
on” η2, for instance, this conclusion must be defended not with reference to the model, 
but rather with reference to the objects you are modeling or the design adopted that 
presumably permits such powerful action statements. 



653 THEORY OF STATISTICAL MODELING 

FIGURE 16.7 Bollen’s classic structural equation model on industrialization and political 
democracy (Bollen, 1989). With permission from John Wiley & Sons, Inc. 

Finally, the total effect is the sum of direct effects and indirect effects. For ξ1 on η2, 
we sum two pathways, the first being the direct path of ξ1 ! η2, the second 
ξ1 ! η1 ! η2. Hence, to get the direct effect of ξ1 on η2 we add γ21 to �γ11��β21�. 
We could obtain other effects in the model in an analogous fashion. 

16.10 THEORY OF STATISTICAL MODELING: A DEEPER LOOK 
INTO COVARIANCE STRUCTURES AND GENERAL MODELING 

Having provided a cursory overview of path analysis, confirmatory factor analysis, 
and structural equation models, we now provide a slightly deeper account of how 
models are fit in general. The following is a very general account of the principles 
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involved in model-fitting, and serves in part to summarize the modeling processes, 
whether the model be one of a simple t-test or that of an elaborate structural equation 
model. In the end, the model-fitting process is remarkably similar in virtually all cases 
when considered from a global perspective. From a pedagogical standpoint, standing 
on the “summit” of the structural equation model allows us to review the principles of 
modeling in its full generality. Our discussion is motivated by leaders in the field such 
as Bollen (1989), Fox (1997), and Mulaik (2009). 

The models we have been considering in this chapter go by different names, for 
instance simultaneous linear equations, linear causal analysis, path analysis, struc
tural equation modeling, covariance structure modeling, to name but a few. Of these, 
the one that most logically “encapsulates” all others is that of simultaneous equations. 
Regardless of the model, the task usually boils down to solving a set of equations 
(usually, linear). As noted by Bollen (1989), the fundamental hypothesis on which 
virtually all statistical modeling (as opposed to other types of mathematical modeling, 
such as deterministic ones) is based can be given by 

Σ � Σ�θ� (16.4) 

where Σ denotes the population covariance matrix of observed variables, θ is a vector 
of model parameters unique to the particular model under test, and Σ�θ� represents the 
covariance of observed variables reproduced as a function of the model parameters 
contained in θ, usually referred to as the implied covariance matrix (sometimes 
designated Σ̂�θ�, since it is that “implied” by the model function). Be sure to note that 
this implied matrix does not exist on real, observed variables. The matrix Σ exists 
since it is based on real, empirical variables. Σ�θ�, on the other hand, is a reproduction 
based on how well our given model is specified. Good models imply covariance 
matrices that reproduce population covariance matrices. This is precisely what “fitting 
a model” ultimately means in most contexts. As noted by Bollen: 

The simplicity of this equation is only surpassed by its generality. It provides a unified 
way of including many of the most widely used statistical techniques in the social 
sciences. Regression analysis, simultaneous equation systems, confirmatory factor 
analysis, canonical correlations, panel data analysis, ANOVA, analysis of covariance, 
and multiple linear indicator models are special cases of Σ � Σ�θ�. 

(Bollen, 1989, p. 2) 

Hence, technically speaking, the job of the statistical modeler and scientist 
becomes one of equating the population covariance matrix Σ with the covariance 
matrix implied by his or her theory, that of Σ�θ�. Because we do not actually know the 
population covariances, we estimate them using S, the sample covariance matrix. 
Estimators are then sought, which will, in some sense, ensure for us that the match 
between S and S�θ� is, on average, as close as possible. That is, we want our estimates 
to be ones that in some sense help minimize the distance between S and S�θ�, leaving 
our theory to do the rest in helping S be as close as possible to S�θ�. This logic 
applies to even the simplest case of fitting a least-squares line to bivariate data. 
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The least-squares criterion guarantees distance will be minimized, but it is up to our 
theory to get us as close as possible the rest of the way. To formalize this idea further, 
we require the concept of discrepancy functions. 

A discrepancy function is a general name used to describe functions that minimize 
the degree of misfit between S and S�θ�. Again referring to the case of fitting to data a 
line of best fit, in the language of discrepancy functions, we were minimizing the 
discrepancy between observed and fitted values by estimating parameters (e.g., 
intercept and slope coefficients) in such a way that such minimization is assured. 
Differential calculus provided us with the solutions, the so-called normal equations 
that guaranteed not that the function would be small necessarily, but that it would be 
minimized. 

Path analysis and structural equation modeling likewise use discrepancy functions 
in minimizing the degree of misfit between S and S�θ�. Rather than seeking to 
minimize the sum of squared errors as in OLS regression, much of covariance 
modeling uses maximum likelihood (ML) to minimize the following very general 
fitting function: 

FML � logjΣθj �  tr�SΣ�1 �θ�� � logjSj � �p � q� (16.5) 

where jΣθj is the determinant of the population covariance matrix, S is the sample 
covariance matrix, Σ�1 �θ� is the inverse of the population covariance matrix, and 
p and q refer to the number of observed and latent variables, respectively. Minimizing 
such a fitting function as FML subject to particular constraints (see Bollen, 1989, 
p. 106) results in a consistent estimator of hypothesized free parameters (e.g., variances 
and covariances). Should S � S�θ�, then  FML � 0. In general then, as S�θ� gets closer 
and closer to S, we expect a value for FML closer and closer to zero. 

16.11 OTHER DISCREPANCY FUNCTIONS 

The discrepancy function FMLof (16.5) is but one of many potential discrepancy 
functions one may use in minimizing the distance S � S�θ�. Other discrepancy 
functions, depending on the circumstance, may also be used. One such function is 
that of unweighted least squares (ULS) with fitting function FULS: 

1 
tr��S � Σθ��2� (16.6)FULS � 

2 

Another fitting function is that of generalized least squares (GLS): 

1 2 
tr f�S � Σ�θ��W�1gFGLS � 

2 
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where W is a matrix containing information about the residual covariance matrix. As 
remarked by Timm (2002, p. 562), when W�1 � I, FGLS becomes FULS, since 

1 2 
tr f�S � Σ�θ��W�1gFGLS � 

2 

1 2� tr f�S � Σ�θ��Ig
2 

1� tr��S � Σθ��2� 
2 

which as we can see is equal to FULS in (16.6). Other fitting functions include two-
stage and three-stage least squares, as well as full-information maximum likelihood 
(FIML). It is well beyond the scope of this book to delve into further discussion 
regarding these or other fitting functions. What is essential that you take away from 
this brief discussion is the concept of what a fitting function is, generally considered, 
and how they are used in the modeling process. 

16.12 THE DISCREPANCY FUNCTION AND CHI-SQUARE 

We focus now on the maximum-likelihood discrepancy function since, as mentioned, 
it is the most commonly used for evaluating fit under a wide variety of situations. As 
well, �n � 1�FML is a chi-square estimator, χ2, which we can use for testing the null 
hypothesis in (16.4): 

H0 : Σ � Σ�θ� (16.7) 

against the statistical alternative hypothesis 

H1 : Σ ≠ Σ�θ� 

In addition to the chi-square being a test of the null in (16.7), it can also be shown as a 
test that all residual covariances of the form Σ � Σ�θ� are equal to zero (Bollen, 1989, 
p. 263). Hence, if our model fits the data perfectly, then χ2 should approximate 0. 
To the extent that the matrices of (16.7) differ, we would increasingly expect the 
covariances to not “match” those of the implied covariance matrix, and thus residual 
covariances would be unequal to 0. That is, Σ � Σ�θ� ≠ 0. 

Recall that in traditional hypothesis testing, we ordinarily seek to reject a null 
hypothesis in favor of a statistical alternative. For instance, recall that in an 
independent samples t-test, we ordinarily test the null H0 : μ1 � μ2 against the 
alternative H1 : μ1 ≠ μ2 and reject the null should we observe a t-statistic that is 
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large enough in absolute value (two-tailed test) to make it improbable under H0. In the 
SEM environment, because of the way the null is stated in (16.7), a rejection of the 
null hypothesis actually indicates an unfavorable result for the researcher, because it 
implies that the observed covariance matrix does not match that of the implied 
covariance matrix. Hence, achieving the infamous p < 0.05 would actually designate a 
disappointment to the researcher in testing her model. To the contrary, she actually 
seeks to find support for the null hypothesis and not reject it. A “confirmation” of the 
null hypothesis for a path or structural equation model is thus deemed a positive result. 

As a preliminary indicator of the extent to which the fitted model has made use of 
the information available, one may compare the size of χ2 with its degrees of freedom. 
Once again, Jöreskog explained it best: 

If a value of χ2 is obtained, which is large compared to the number of degrees of freedom, 
this is an indication that more information can be extracted from the data. One may then 
try to relax the model somewhat by introducing more parameters. This can be done by 
relaxing some restrictions on the common factor space or by introducing additional 
factors or both. If, on the other hand, a value of χ2 is obtained which is close to the 
number of degrees of freedom, this is an indication that the model “fits too well.” Such a 
model is not likely to remain stable in future samples and all parameters may not have 
real meaning. 

(Jöreskog, 1969, p. 201) 

Jöreskog goes on to say that the final determination of model fit cannot be decided 
on fit statistics alone, but rather must be evaluated primarily on its usefulness. Still, the 
ratio of χ2 to that of degrees of freedom can be regarded as a first useful step toward 
model evaluation. 

16.13 IDENTIFICATION 

Identification is a property of a statistical model, and though a feature of all models, 
nowhere does it come to the forefront moreso than in SEM models. In classic 
ANOVA and regression, the identification of parameters is often implicitly assumed 
and rarely is an analyst confronted with having unidentified parameters. Such models 
are usually parameterized so that identification is assured. In SEM however, as a 
consequence of the modeling flexibility available to the researcher, identification of 
parameters is just one of the many facets to which the user must devote at least some 
attention. What does it mean to say a parameter is identified? Formally, a parameter is 
identified if unique values of the parameter correspond to unique probability 
distribution functions (Casella and Berger, 2002). Less formally, a parameter is 
identifiable if one can estimate a unique value for that parameter. 

A simple example will help clarify the concept of identification. Suppose we wish 
to solve the following equation: 

y � f �x� 
4 � 2x 
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The solution to the equation is of course 2, since 

4 
x � � 2

2 

That is, the value of “2” is the unique value that satisfies the equation 4 � 2x. In this 
case, we say that x, the parameter we are seeking a solution for, is identifiable because 
a unique and distinct value for it exists such that the equation 4 � 2x is solvable. 

Now, consider the following equation: 

x � y � 10 

Do unique values for x and y exist? Since a whole host of possibilities exist for what 
x and y could be that will satisfy the equation, we say the parameters x and y are not 
identified. 

As mentioned, identification is not a property of path or SEM models alone. In the 
analysis of variance, for instance, the so-called sigma constraint or “sum-to-zero 
constraint” (Fox, 1997, pp. 157–158) is typically used to ensure identifiability of 
parameter estimates. Recall that in the analysis of variance model parameterized as 
yij � μ � αi � εij, we required estimating parameters μ, α1; α2; α3; . . . ; αj. However, 
there are only j means available, and so under this parameterization, we are trying to 
estimate more parameters than we have information. The sigma-constraint sets 

αi � 0, which reduces the number of parameters to be estimated to the number 
of means, leading to a model that is identified. 

In structural equation models, we must ensure that each of the parameters of the 
given model is identified. If every parameter is identified, then the model is said to 
be identified. For any model, any one of three conditions can be true regarding 
identification: 

•	 The model is underidentified, meaning that there are more parameters to be 
estimated than there is available information (e.g., x � y � 10). 

•	 The model is just-identified, meaning that the number of parameters to be 
estimated is equivalent to the amount of available information (e.g., 4 � 2x). 
This is typically the saturated model. 

•	 The model is overidentified, meaning that there is more information available 
than there are parameters to be estimated. 

Students new to statistical modeling, and especially to SEM, are often taken aback 
by the issue of identification. After all, the teachings in any science regularly 
encourage students to place inherent value on empirical observations, that is, to 
allow data to speak for themselves. Surely then, it would seem that “tweaking” a 
statistical model for the purpose of solving an identification issue should have no 
place in the repertoire of the serious scientist, would it? After all, data are data, right? 
True, data are data, but identification is not about the data, it is about the model we are 
fitting to data. The process of model-building is one of theorizing a structure to data. 
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Data on its own are of little use without a theory or narrative imposed on it to help us 
understand it, imperfect as the model may be. For this, we must ensure that parameters 
we wish to estimate as a function of the data are identified. 

16.14 DISTURBANCE VARIABLES 

Throughout this chapter we have incorporated unobserved disturbance variables into 
our models. But what exactly is a disturbance in SEM? At first thought, and drawing 
on our knowledge of linear models studied thus far, it may be tempting to think of 
disturbances as typical residuals one would obtain in a multiple regression analysis. 
However, it is generally incorrect to equate a disturbance term in SEM with that of a 
residual in multiple regression. To understand why, we quote Mulaik (2009) at some 
length: 

Disturbance variables represent extraneous influences such as errors of measurement 
and random shocks that are combined with the effects of exogenous and/or endog
enous variables on a given endogenous variable. Disturbances are analogous to 
unique factors in common factor analysis or errors of measurement in classical test 
theory. However, disturbances may contain both systematic and unsystematic error. 
They are usually assumed to be mutually uncorrelated and uncorrelated also with the 
exogenous variables. Technically disturbances are also exogenous variables, but 
whatever is contained in them is not of focal interest in contrast to the explicitly 
named exogenous variables . . . Requiring the disturbances to be uncorrelated with 
the exogenous variables implies that there are no other hidden relevant causes, not 
explicitly represented in the model, and permits unbiased estimation of the structural 
coefficients. In other words, the model represents a conception of external reality, and 
disturbances and their properties are supposed to hold in reality. When these 
assumptions are violated, the model may be compromised and yield misleading 
inferences when seemingly confirmed  against  data . . . Disturbances  are  not  residual  
variables. Residual variables are formed when one partials from a set of variables 
what can be predicted in them from other variables. They are the result of a 
mathematical operation. In linear models, residuals are necessarily uncorrelated 
with the predictor variables on which the partialled components are based. Distur
bances, on the other hand, represent other causes of the variables not explicitly 
represented in the model otherwise, and subjunctively it is possible in some cases to 
imagine their being correlated with the explicit causal variables within the system and 
with each other. The constraints imposed on disturbances, that they are mutually 
uncorrelated and uncorrelated with exogenous variables of the system, must be 
satisfied in the real-world situation represented by the model to achieve a closed 
system of variables in which causal relations can be inferred and structural 
coefficients estimated without bias. Residual variables become equivalent to distur
bances when these constraints are satisfied [emphasis added]. But if the constraints 
are not satisfied in the situation represented by the model, for example, there are 
hidden relevant causes in the disturbances that are correlated with the exogenous 
variables, then the residuals are not true disturbances and parameter estimates are 
likely biased.” (p. 122) 



660 PATH ANALYSIS AND STRUCTURAL EQUATION MODELING 

We quoted Mulaik at length because of the clarity with which he defines what is 
and what is not a disturbance variable. In applying his distinctions to our IQ model in 
Figure 16.1, d1 represents everything else that could be accounting for the prediction 
of offspring IQ over and above parental IQ. And as emphasized by Mulaik, it is only in 
the idealistic situation where disturbance terms are mutually uncorrelated with one 
another and uncorrelated with exogenous variables contained in the system that they 
can quite possibly be equated to residual terms. For our model of IQ transmission, this 
would mean that the disturbance d1 is uncorrelated with both Parental IQ and the 
disturbance d2 associated with third generational IQ. Of course, such is very unlikely 
to ever hold in practice, but if we could assume it to be true for the substantive setting 
under consideration, then the disturbance associated with offspring IQ becomes more 
analogous to a residual such as one would have in a multiple regression model. For a 
further discussion of disturbance terms, see Jöreskog (1978). 

16.15 MEASURES AND INDICATORS OF MODEL FIT 

We survey a few of the more common measures of model fit that have been proposed 
to evaluate SEM models. Recall that in regression analysis, a measure of model fit 
such as R2 was meant to evaluate, in general, how well fitted values “regenerated” 
observed data on a response variable. The extent to which predicted values correlated 
with observed values was the extent to which we deemed our regression model to fit 
the data. The general idea of fit statistics is no different in path and SEM models, 
though because of the complexity and multivariable nature of such models, more 
options exist for evaluating fit, each attempting to overcome shortcomings of 
competing statistics. However, the general idea is the same across the range of 
possibilities, and that is to ultimately evaluate how well one’s theoretical model 
accounts for observed empirical data. 

We begin by surveying the chi-square goodness of fit test, the root mean-square 
residual, and the standardized root mean-square residual. We also survey the root 
mean square error of approximation. These are all generally considered absolute or 
overall measures of model fit. Such assess the extent to which the hypothesized model 
fits the data in a global fashion, measuring the extent to which S � S�θ� ≠ 0. Overall 
fit measures, however, should not be used to evaluate models that are just-identified, 
since for these models recall that S � S�θ�, and so evaluating overall fit does not make 
sense. In addition, overall measures do not tell us about the performance of separate 
individual model equations within the global model. 

16.16 OVERALL MEASURES OF MODEL FIT 

The χ2 test, already discussed, is the classic fit statistic historically used to assess the 
general overall and global fit of path and SEM models. For populations not 
multivariate normal, χ2 has been found to be biased and the Satorra–Bentler χ2 is 
typically preferred (see Hu and Bentler (1995)). Under the null hypothesis, we expect 
χ2 to equal zero, and hence the extent to which χ2 > 0 is the extent to which the 
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hypothesized model is less well fitting. Recall, however, that one of its major 
weaknesses is that the statistical significance of χ2 is largely a function of sample 
size. Given any discrepancy between observed and expected, one merely has to 
collect an increasingly large sample size to essentially ensure statistical significance. 
Hence, even if the model was well-fitting, a statistically significant χ2 would suggest 
the model not be retained, since statistical significance of χ2 in the context of SEM 
works against the hypothesized model rather than in support of it. 

Other drawbacks with χ2, as noted by Bollen (1989), include the fact that it can be 
quite sensitive to kurtosis, it requires the covariance matrix to be analyzed, it requires 
relatively large samples, and is tested under the assumption that H0 is exactly true. 
Other limitations of the chi-square test include the fact that χ2 will generally decrease 
as model complexity increases. As one adds more parameters to one’s model, χ2 will 
generally diminish, which could give an illusion that a “better” model has been 
achieved. Surely, we do not want to judge the “goodness” of our model by simply the 
number of parameters we are estimating. Indeed, recall from Jöreskog (1969) that 
better fitting models are generally those for which the ratio of χ2 to df is relatively 
small. 

As a result of such problems with χ2, it is seldom interpreted without a simulta
neous consideration of other available criteria for assessing model fit. Indeed, as 
emphasized by Bollen (1989), though χ2 should always be reported for any structural 
equation model, it should nonetheless be supplemented with a number of other indices 
and indicators. We briefly survey those now. 

16.16.1 Root Mean Square Residual and Standardized Root Mean Square 
Residual 

The root mean square residual (RMR) is an index of fit proposed by Jöreskog and 
Sörbom (1981). It is essentially a measure of how well a model does not fit, since it is 
based on the residuals of the fitted model. The root mean square residual is given by 

1=2q i ´ �2 �sij � sijRMR � 2 
q�q � 1�

i�1 j�1 

´ where sij is a given element of the observed covariance matrix S, sij is a given element 
of the model-implied covariance matrix, S�θ�, and q is the number of observed 
variables for the given model. A look at the equation for RMR reveals that in general, 

´ the greater the sum of differences sij � sij for a constant q, the greater the size of the 
measure. Hence, the smaller the value of RMR, in general, the better the fit of the 

´ model. It is easy to see, however, that the differences sij � sij could be large or small 
depending on the sizes of the variances and covariances of observed variables, 
somewhat analogous to how the covariance for two variables could be small or large 
in part due to the variability exhibited on each scale. If the raw observations are highly 
variable, then RMR will tend to be larger than not, and hence assessing model fit in  
any “absolute” fashion is very difficult using RMR. 
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A measure that purports to solve the scale issue problem of RMR is the standardized 
root mean square residual (SRMR). As the name suggests, SRMR first standardizes 

´ residuals sij � sij in RMR by first dividing by respective standard deviations sisj, that ´ is, �sij � sij�=sisj. Smaller values of SRMR are preferred over larger ones. According 
to Hu and Bentler (1999), values of 0.08 or less are indicative of good fit. 

16.16.2 Root Mean Square Error of Approximation 

A final measure of overall model fit discussed here is the root mean square error of 
approximation (RMSEA) (Steiger and Lind, 1980) given by 

1 χ2 � dfm mRMSEA � 
n � 1 df m 

The extent to which χ2 � df is large relative to df , RMSEA will likewise be larger m m m

than not. Conversely, the extent to which χ2 � df m is small relative to df m is the m 
extent to which RMSEA will approach zero. General cutoffs in the range of 0.01, 
0.05, and 0.08 have been proposed to indicate excellent, good, and relatively poor-
fitting models (MacCallum, Browne, and Sugawara, 1996). As we will see, the 
RMSEA is somewhat similar in spirit to that of the Tucker–Lewis index, in that it 
essentially penalizes one for having “too complex” of a model by the discrepancy 
χ2 � df m.m 

Other measures of overall model fit include the goodness of fit index (GFI) and the 
adjusted goodness of fit index (AGFI), both proposed by Jöreskog and Sörbom 
(1986), although not discussed here. 

16.17 MODEL COMPARISON MEASURES: INCREMENTAL 
FIT INDICES 

To reiterate, the measures of fit we have so far discussed, that of χ2, RMR, SRMR and 
RMSEA, are all considered overall or absolute measures of model fit in that they 
make no attempt to compare the fit of a given model with that of a competing model. 
Rather, they simply provide an indication of the extent to which S � S�θ� ≠ 0. 
Oftentimes, however, we are more interested in comparing the fit of our hypothesized 
model with a relatively simpler model. Model comparison measures, or incremental 
fit indices attempt to address this need. In what follows we survey a few of the more 
popular of such measures. Our discussion of a few of them should give you an idea of 
how such incremental fit indices generally work. 

The first measure we discuss is that of the normed-fit index (NFI) (Bentler and 
Bonett, 1980) given by 

χ2b � χ2 Fb � FmmΔ1 � � 
χ2 
b Fb 
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where χ2b and χ2 are obtained chi-square values for the baseline and hypothesized m 
models, respectively, and since χ2 � �n � 1�FML, Fb and Fm are values of the 
corresponding fitting functions. The baseline model on which Fb is computed is 
one that shows more restrictions on it compared with the hypothesized model on 
which Fm is calculated. Indeed, the baseline model is usually quite restrictive and 
hence the difference Fb � Fm is indicative of how much the respective fitting 
function for Fm decreases the “default” value of Fb. The difference Fb � Fm is 
divided by Fb in order to provide a “context” for evaluating Fb � Fm, that is,  it  
provides a maximum for evaluating the distance between competing models. Since 
Fm must be equal to or less than Fb, it stands that when there is maximum 
improvement in model fit, then 

Fb � 0

Δ1 � � 1
 

Fb
 

Conversely, when the hypothesized model provides no improvement, then we would 
expect Δ1 to equal approximately 0, since Fb � Fm � 0 and so 0=Fb � 0. Values of 
0.95 and higher are typically indicative of a well-fitting model, not in the “absolute” 
sense as in the case of such statistics as χ2, but instead relative to a baseline model. 
As noted by Bollen (1989) however, a weakness of Δ1 is that it does not incorporate 
degrees of freedom into its measure. Furthermore, like χ2, it is also quite sensitive to 
sample size. 

Bollen’s ρ1 (1986) is similar to another fit statistic called the Tucker–Lewis Index 
(1973), which will be discussed shortly. There is a slight difference between these 
two statistics, and hence for pedagogical purposes, we keep the two statistics 
distinct as to more easily study the logic of their formulations. Bollen’s ρ1 is 
given by 

�Fb=df b� � �Fm =df m� ρ1 � �Fb=df b� 
�χb2=df b� � �χ2 =df m�m� �χb2=df b� 

where as before, Fb and χ2 are the corresponding fit function and chi-square, b 
respectively, for the baseline model, and Fm and χ2 are the corresponding fitm 
function and chi-square, respectively, for the hypothesized model. 

Let us examine what ρ1 actually measures. We first note that it is very similar to our 
previous measure Δ1, in that it assesses how the hypothesized model improves overall 
fit relative to a baseline model. There is, however, an important difference in that ρ1 
divides each χ2 by its respective degrees of freedom. Why are degrees of freedom 
relevant in this regard? The logic of ρ1 is that it rewards the fitting of models that 
“spend” a smaller number of degrees of freedom in order to improve model fit relative 
to the baseline model. It essentially evaluates the difference between χ2b � χ2 relativem 
to χ2b, but also relative to degrees of freedom under each model. 



664 PATH ANALYSIS AND STRUCTURAL EQUATION MODELING 

As a simple and somewhat exaggerated hypothetical numerical demonstration, 
suppose we are testing a model in which baseline χ2 is equal to 10 on df � 20.b 
Suppose also that χ2 were equal to 5 on df � 2. The value for ρ1 would thus be m 

�χb2=df b� � �χ2 =df m� �10=20� � �5=2�mρ1 � � � �4:0 �χb2=df b� �10=20� 
The value for ρ1 is so small in part because to obtain χ2 , we had to “use up” 18 degrees m
of freedom (i.e., 20-2). Consequently, the fit measure essentially “punishes” us for 
needing to estimate everything under the sun to improve the fit of the model. 
Contrast this now with the situation in which we only had to utilize 10 degrees 
of freedom: 

�χb2=df b� � �χ2 =df m� �10=20� � �5=10�mρ1 � � � 0:0 �χb2=df b� �10=20� 
Notice that even when χ2 remains the same, ρ1 increases simply as a result of not m 
having to use up as many degrees of freedom to achieve the same improvement in 
model fit. And in the best scenario for such a case, we would have 

�χ2b =df b� � �χ2 =df m� �10=20� � �5=19�mρ1 � � � 0:48 �χb2=df b� �10=20� 
in which case only a single degree of freedom was required in order to decrease χ2 

from 10 to 5. Hence, ρ1 of 0.48 is rather impressive in this regard with respect to 
degrees of freedom, since it demonstrates to some extent the strength of our theory in 
being able to improve model fit so substantially while only “costing us” a single 
degree of freedom to achieve this end. Generally, values of ρ1 greater than 0.95 are 
indicative of well-fitting models in relation to the baseline model. 

A measure of fit related to ρ1 is the Tucker–Lewis index (NNFI) given by 

�χ2b =df b� � �χ2 =df m�mρ2 � �χ2b =df b� � 1 

The distinction between ρ1 and ρ2 is such that for ρ1, the best case scenario for 
evidence of model improvement occurs when �χ2b =df b� � �χ2 =df � is equal to m m�χ2b =df b� in the numerator driving the value of ρ1 toward 1.0. Again, note that in 
this regard, the improvement in model fit as evidenced by �χb2=df b� � �χ2 =df m� ism 
considered relative to �χb2=df b�. For ρ2, �χb2=df b� � �χ2 =df m� is not compared relative m 
to �χ2b =df b� but rather to �χb2=df b� � 1. In this denominator, we have a contrast 
between the baseline fit and a “best fit” as indicated by “1.” That is, ρ2 puts �χb2=df b� in 
some context of a best-fit model, something that is not done in ρ1. Values of ρ2 greater 
than 0.90–0.95 are generally indicative of well-fitting models. For further details on ρ2, 
see Bollen (1989, pp. 273–274) and Mulaik (2009, pp. 330–333). 
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A final measure of incremental fit discussed here is the comparative fit index (CFI) 
given by 

max� χ2 � df m;0�mCFI � 1 � 
max� χ2b � df b; χ2 � df m;0�m 

We can see that the logic of the CFI is similar in spirit to that of ρ1, only now we are 
subtracting df from χ2 (i.e., χ2b � df b) instead of taking ratios as was done for ρ1. A  
value of CFI close to zero suggests that the additional estimated parameters used in 
generating χ2 are hardly worthwhile. Values of CFI in the range of 0.90–0.95 are m 
typically indicative of good fit. 

16.18 WHICH INDICATOR OF MODEL FIT IS BEST? 

Our purpose in surveying a select sample of fit measures and indices was merely to 
give you a hint of how models are assessed in the SEM literature. Numerous measures 
of model fit have been proposed and there exists a whole literature of simulation 
studies and the like meant to evaluate their performance under conditions of violated 
assumptions, small to large sample sizes, and so on. A complete evaluation of fit 
measures is well beyond the scope of this chapter. Hence, deciding on which measure 
of fit is  “best” under a variety of contexts is a decision tree we will not build here. 

According to Hu and Bentler (1998), who have extensively evaluated a variety of 
fit indices, the SRMR and RMSEA, supplemented with such indices as the TLI or 
CFI, assuming adequate sample size, are generally recommended in reporting the 
results of most SEM models. The SRMR and RMSEA, in addition to reporting χ2, 
provide an overall assessment of model fit, and when coupled with incremental fit 
indices such as TLI or CFI should give an overall adequate account of one’s model. 
The reader is encouraged to refer to Jackson, Gillaspy, and Purc-Stephenson (2009) 
for a useful overview of reporting practices in CFA models and SEM models more 
generally, which also includes a relevant discussion of fit indices. 

What to do if model fit is unsatisfactory? Poor-fitting models should generally 
either be abandoned or improved. When attempting to improve on model fit, one may 
conduct specification searches, in which tests are performed on model parameters 
with the goal of estimating how the model would be improved given the fixing, 
constraining, or freeing of relevant parameters. Specification searches are often 
guided by computing so-called modification indices, which are numerical estimates 
of how much a model’s fit would improve by adjusting parameters of the model. Of 
course, one can envision how such searches could potentially be misused. Indeed, a 
well-fitting model that is such because it has undergone a series of specification 
searches, though perhaps well-fitting statistically, may nonetheless be quite mean
ingless scientifically. If you “tweak” a model enough, fit will improve, but if the 
“tweaking” was not based on your ideas and rather on an optimization criterion alone, 
then well-fitting as the final model may be, it will nonetheless be of minimal value 
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from a theory validation point of view. At minimum, extensive cross-validation will 
be required. If one is to engage in specification searches, then the number and nature 
of them should be guided primarily by theory. And if one is to extrapolate on one’s 
theoretical predictions based on the results of such a search, he should be upfront 
about this to an audience when reporting how the well-fitting model came to be. We  
discuss specification searches no further here. 

16.19 STRUCTURAL EQUATION MODEL IN R 

As a simple demonstration of an SEM model in R, we fit a three-factor CFA model to 
the Holzinger and Swineford data, using only tests x1–x9 (recall from Chapter 12, we 
named the data hs). Hypothesized factors are visual, textual, and speed: 

> hs.model <- ’ visual =∼ x1 + x2 + x3 
+ textual =∼ x4 + x5 + x6 
+ speed = ∼ x7 + x8 + x9 ’ 

We proceed to fit the model, displaying only partial results below: 

> fit <- lavaan(hs.model, data = hs, auto.var = TRUE, auto.fix.first = 
TRUE, auto.cov.lv.x= TRUE) 
> summary(fit, fit.measures = TRUE) 

Number of observations 301 

Estimator ML 
Minimum Function Test Statistic 85.306 
Degrees of freedom 24 
P-value (Chi-square) 0.000 

Model test baseline model: 

Minimum Function Test Statistic 918.852 
Degrees of freedom 36 
P-value 0.000 

We can see that the model was fit using maximum likelihood yielding a statistically 
significant χ2 on 24 degrees of freedom. 

User model versus baseline model: 

Comparative Fit Index (CFI) 0.931 
Tucker-Lewis Index (TLI) 0.896 
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Both the CFI and TLI are reported to be 0.931 and 0.896, respectively, indicating 
somewhat modest fit. 

Root Mean Square Error of Approximation: 

RMSEA 0.092 
90 Percent Confidence Interval 0.071 0.114 
P-value RMSEA <= 0.05 0.001 

RMSEA is reported as 0.092, higher than the preferred cutoff of 0.05 or lower. 

Standardized Root Mean Square Residual: 
SRMR 0.065 

SRMR of 0.065 meets the preferred cutoff of 0.08 or less for a reasonably well-
fitting model. 

Parameter estimates: 

Information Expected 
Standard Errors Standard 

Estimate Std.err Z-value P(>|z|) 
Latent variables: 

visual =∼ 
x1 1.000 
x2 0.554 0.100 5.554 0.000 
x3 0.729 0.109 6.685 0.000 

textual =∼ 
x4 1.000 
x5 1.113 0.065 17.014 0.000 
x6 0.926 0.055 16.703 0.000 

speed =∼ 
x7 1.000 
x8 1.180 0.165 7.152 0.000 
x9 1.082 0.151 7.155 0.000 

Parameter estimates for the factor loadings are given above. We had specified the 
path of the first variable on each factor at 1.0 through auto.fix.first = TRUE, 
which is why the estimates for x1, x4, and x7 are all equal to 1.0. We can see that all 
other paths are statistically significant yielding very low p-values. Covariances 
between latent variables appear below along with significance tests. Variances 
with respective standard errors are also given. 
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Covariances: 
visual ∼∼ 

textual 0.408 0.074 5.552 0.000 
speed 0.262 0.056 4.660 0.000 

textual ∼∼ 
speed 0.173 0.049 3.518 0.000 

Variances: 
x1 0.549 0.114 
x2 1.134 0.102 
x3 0.844 0.091 
x4 0.371 0.048 
x5 0.446 0.058 
x6 0.356 0.043 
x7 0.799 0.081 
x8 0.488 0.074 
x9 0.566 0.071 
visual 0.809 0.145 
textual 0.979 0.112 
speed 0.384 0.086 

16.20 HOW ALL VARIABLES ARE LATENT: A SUGGESTION FOR 
RESOLVING THE MANIFEST–LATENT DISTINCTION 

Recall that a latent variable in confirmatory factor analysis or structural equation 
modeling is generally defined as a variable that is unobserved or considered 
unmeasurable. We must infer its existence by “indicating” it through the measure
ment of so-called manifest variables, which are variables considered to be more 
measurable. 

When one attempts a distinction between manifest versus latent variables, however, 
one more than not finds himself in philosophical quicksand, and some kind of “merger” 
of the two concepts is really the only way out. For instance, consider the traditional 
interpretation of a characteristic such as weight. One would rarely refer to such an 
attribute as “latent,” but would instead consider it to be quite observable. That is, though 
potentially subject to slight measurement error, its measurement is relatively straight
forward. On the other hand, an attribute such as intelligence is more times than not 
considered unmeasurable, and its very existence must be inferred in reference to 
variables that are measurable. Indeed, one might collect data on quantitative, verbal, and 
analytical skills, and use these as indicators of intelligence. 

The distinction between what is manifest versus what is latent, however, is in 
actuality quite trivial. When one considers the finer points of such a distinction, one 
naturally designates all variables, no matter however seemingly measurable some 
might be, as latent variables. Some latent variables are simply more measurable than 
others, but this does not remove from the fact that all variables, generally speaking, are 
being used to indicate some construct. This idea is summarized in Figure 16.8, in 
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FIGURE 16.8 Weight (a) is less of a latent variable (indicated by smaller circle) than is 
intelligence (b). 

which in both cases weight and intelligence are regarded as latent variables indicating 
their respective constructs. In this sense, all variables (even physical ones measured 
quite precisely) may be considered latent, some less so than others. 

16.21 THE STRUCTURAL EQUATION MODEL AS A GENERAL 
MODEL: SOME CONCLUDING THOUGHTS ON STATISTICS 
AND SCIENCE 

In our discussion of canonical correlation analysis in Chapter 13, it was remarked that 
models such as multiple regression can be considered subsumed as “special cases” of 
the canonical correlation model. Recall we had also concluded that MANOVA (and 
MANCOVA) could likewise be considered special cases of the wider multivariate 
multiple regression model. 

We now extend this idea to note that virtually all of these models, and more, can in 
general be considered special cases of the wider structural equation modeling 
framework. In the spirit of what Bollen (1989) remarked about virtually all models 
being subsumed under the fundamental identity Σ � Σ�θ�, it becomes clear that the 
process of modeling, considered in totality, simplifies very much to that of the fixing 
and freeing of parameters within a given theory-driven structure in which one has a 
reasonable statistical theory for estimating unknown parameters. Most of the remain
ing details concern themselves with how the given model is parameterized and the 
research context to which it is applied. As emphasized throughout this book, there is 
nothing inherently “experimental” about ANOVA models, no more than there is 
anything “correlational” about regression models. Likewise, there is nothing “causal” 
about structural equation models any more than there is anything “uncausal” about a 
t-test. There is, on the other hand, something inherently experimental about exper
imental studies, just as there is something inherently correlational about correlational 
studies, as there is something inherently causal about causal studies. For the scientist, 
research design always begets statistics (Haddad, 2014, personal communication). 
Statistics themselves can never really tell us what happened. 

In the end then, for the scientist, it is the quality of measurements obtained, the 
thought process, ingenuity, care and experience that went into conjuring up hypotheses, 
and the insistence of a convincing research design that will ultimately determine one’s 
success and future discovery. Indeed, the distinction between what is statistical versus 
what is scientific has been emphasized throughout this book. Statistics and modeling 
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serve as tremendous aids to discovery for the scientist, but they are not panaceas that 
could ever replace what makes a good scientist a good scientist, which usually boils 
down quite simply to doing good science, of which choosing and interpreting the correct 
statistical model is but one of many responsibilities toward this end. 

16.22 CHAPTER SUMMARY AND HIGHLIGHTS 

•	 Path analysis and structural equation modeling are techniques useful for the 
simultaneous modeling of a network of variables. In the case of SEM, latent 
variables, in addition to manifest variables, may be hypothesized, whereas in 
path analysis, all variables are considered to be observable. 

•	 Structural equation models distinguish between endogenous and exogenous 
variables. The former are predicted by at least one explanatory variable, while 
the latter are variables shown as predictors of endogenous variables. 

•	 The phrase “causal modeling” has become associated with path analysis (and by 
extension, SEM models) partly because of the methodological context in which 
such models arose historically, with Wright’s work on modeling color in guinea 
pigs in which a causal “context” was not a far-fetched idea. 

•	 For an accurate and precise account of what path coefficients can and cannot do, 
one should read (and reread) Burks’ 1928 interpretation. 

•	 The true contribution of Wright was not in developing a causal methodology, 
but rather one of demonstrating how path coefficients could be decomposed. 

•	 Confirmatory factor analysis solves the rotational indeterminacy problem of 
EFA by allowing researchers greater flexibility in fixing and freeing parameters, 
thereby providing more opportunity for parameters to be identified. 

•	 Substantively, the distinction between what constitutes exploratory versus 
confirmatory modeling is fuzzy. 

•	 The structural equation model η � Bη � Γξ � ζ can be likened somewhat to the 
regression model Y � XB � E in some respects, the chief difference being that 
the former allows one to incorporate latent structures, whereas the latter does 
not, at least not explicitly so. 

•	 A direct effect is the prediction of one variable on another, unmediated by any 
other variables. An indirect effect is the prediction of one variable on another, 
but mediated by at least one other intervening variable. A total effect is the sum 
of direct and indirect effects. 

•	 As noted by Bollen (1989), virtually all statistical modeling can be reduced to 
solving the equality Σ � Σ�θ�. Most statistical methods can be conceptualized as 
special cases of this wider framework. 

•	 A discrepancy function is a general name used to describe functions that 
minimize the degree of misfit between S and S�θ�. Ordinary least-squares, 
maximum likelihood, unweighted and generalized least-squares are all exam
ples of such discrepancy functions. 
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•	 Identification is a property of a model. A model may be underidentified, just-
identified, or overidentified. Typically, researchers seek to make their models 
overidentified. 

•	 Disturbance variables are conceptualized as influences outside of the model, 
typically considered unmeasurable, that have an influence on a given endog
enous variable. The distinction between what constitutes a disturbance variable 
and that of a residual is important. 

•	 Several measures and indicators of model fit for SEM have been proposed. They 
are generally classified into absolute (or overall) measures and incremental fit 
indices. The more popular ones and those generally recommended for minimal 
inclusion into virtually every SEM model include χ2, SRMR, RMSEA, TLI, and 
CFI. 

•	 Poorly-fitting models should be either discarded or improved. Specification sear
ches, which generate modification indices, can be conducted and reported so long 
as one is upfront about this process when reporting findings to an audience. 

•	 In resolving the manifest versus latent distinction, it is suggested to consider all 
variables as latent, some less so than others. 

•	 Structural equation models can be fit using R, among several other software 
programs. 

•	 The structural equation model may be considered the most “general” model of 
all models considered in this book, such that other models can be subsumed 
under this wider framework. 

•	 Statistics and modeling serve as tremendous aids to discovery, but choosing and 
interpreting the correct statistical model is but one of the many responsibilities 
of the successful scientist. 

REVIEW EXERCISES 

16.1.	 Give a definition of path analysis, emphasizing its similarities and differ
ences from regression analysis. 

16.2.	 Distinguish between observed or manifest variables and latent variables. 
Why and how is this distinction somewhat blurry and fuzzy? How can this 
fuzziness be potentially resolved? 

16.3.	 Discuss the historical influence of how path analysis (and by extension, 
structural equation modeling) came to be known as “causal modeling.” 

16.4.	 Critically evaluate path analysis and structural equation modeling as 
“causal” methodologies. Make an argument for why path and SEM models 
are or are not more causal than regression models. 

16.5.	 Why is it somewhat reasonable that in Burks’ early use of path analysis, it 
was safe to assume that parental intelligence and environment, at least to 
some extent, caused child’s IQ? 



672 PATH ANALYSIS AND STRUCTURAL EQUATION MODELING 

16.6. Define a path coefficient as used in path analysis. 

16.7. Interpret and discuss Burks’ quote: 

The method [of path coefficient] is limited by the rarity with which we have 
actual knowledge of causal relations; but it provides a toll of the nicest precision 
in such situations as do offer an adequate basis for postulating causation. It 
cannot, itself, uncover what is cause and what is effect, though in the absence 
of definite knowledge regarding causal relationships between variables, the 
method ‘can be used to find out the logical consequences of any particular 
hypothesis in regard to them.’ Conservatively stated, in any situation in which we 
feel justified in drawing conclusions regarding the effects of certain phenomena 
upon others, the Wright method provides a numerical expression of such 
conclusions. (Burks, 1928, p. 299) 

16.8. What does it mean to decompose path coefficients? How 
contribution of Sewall Wright? 

was this a 

16.9. What does it mean to have a saturated model? Why does a saturated model 
always generate a perfect (hence, typically nonuseful) model fit? 

16.10. Explain why having positive degrees of freedom for a path analysis model 
(or structural equation model) is necessary in order to meaningfully evaluate 
parameter estimates. 

16.11. Explain what it means to fix a parameter in path analysis. Furthermore, 
explain why a researcher might want to do this. 

16.12. Consider the statement: The distinction between exploratory and confirma
tory models is one more of flavor that it is one of absolute difference. 
Comment on what this might mean. Then, counter this argument by 
discussing how CFA solves the rotational indeterminacy problem of EFA. 

16.13. Provide a precise definition of a structural equation model. 

16.14. Define and discuss each component of the structural equation model 
η � Bη � Γξ � ζ. 

16.15. Distinguish between direct, indirect, and total effects. How are such effects 
not necessarily indicative of processes inherent in one’s data? 

16.16. What, according to Bollen (1989), is the fundamental relation upon which 
virtually all statistical modeling is based? Explain the overreaching concept 
implied by the equality. 

16.17. Distinguish between observed versus implied covariance matrices. 

16.18. Describe what is meant by a discrepancy function, and give a few examples 
of some. 

16.19. According to Jöreskog, “If a value of χ2 is obtained, which is large compared 
to the number of degrees of freedom, this is an indication that more 
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information can be extracted from the data.” Interpret and discuss Jöreskog’s 
statement and why such an indicator is meaningful in a general sense. 

16.20. What does it mean, in general, to say that a parameter is identified, and how 
is the concept of parameter identification different from or similar to that of 
model identification? 

16.21. In the equation x � 5 � 10, is x identified? Why or why not? 

16.22. Distinguish 
models. 

between underidentified, just-identified, and overidentified 

16.23. Discuss what is meant by a disturbance variable, using Mulaik (2009) as a 
guide to disentangling this theoretically complex topic. 

16.24. Distinguish between overall indicators of fit and incremental indicators. 
How are they different? 

16.25. Discuss how the root mean square residual is more a measure of how well a 
model does not fit rather than does fit. 

16.26. What is the difficulty with RMR and how does SRMR attempt to resolve this 
difficulty? 

16.27. Define the root mean square error of approximation and explain how it 
assesses model fit. 

16.28. Compare the index ρ1 with that of ρ2, the Tucker–Lewis index. Discuss their 
structural similarities and differences. 

16.29. Define the comparative fit index, and compare it with ρ1. How are they 
similar? Different? 

16.30. Consider once more the Holzinger and Swineford (1939) data. Run a two-
factor confirmatory factor analysis on variables x1–x9 as hypothesized by 
the following model equations. Compare the fit with the CFA performed in 
this chapter. Is the fit better or worse? 

visual =∼ x1 + x2 
textual =∼ x4 + x5 
speed =∼ x7 + x8 

16.31. Consider again the data featured in Exercise 16.30. Run and interpret another 
confirmatory factor analysis, this time hypothesizing a one-factor solution: 

factor =∼ x1 + x2 + x3 + x4 + x5 + x6 + x7 + x8 + x9 

Compare and contrast the model fit with that in Exercise 16.30 and with the 
three-factor model of this chapter. 
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Further Discussion and Activities 

16.32.	 As discussed in the chapter, most statistical models can be conceptualized as 
“special cases” of the wider general structural equation modeling frame
work. Read Graham (2008) as a guide and generate representative path 
diagrams for the following models: (1) multiple regression, (2) multivariate 
analysis of variance (MANOVA), and (3) discriminant analysis. Finally, 
generate a path diagram for a repeated measures model in which there are 
two within-subjects variables each measured across four time points. 

16.33.	 Consider how scientists, both natural and social, define the phenomena they 
study. Would you claim that a characteristic such as weight is more real or 
less “real” than an attribute such as intelligence? Why or why not? What 
makes one more real than another? Is it the fact that we are able to better 
define weight that might, in the end, make it more real? What do you think? 
For some insight into the problem of how concepts have been historically 
defined and operationalized, read Green (1992). 

16.34.	 As discussed in the chapter, path analysis and structural equation modeling 
have historically been associated with the phrase “causal modeling.” Cau
sality, however, is an enormous subject on which philosophers have 
grappled for centuries. Indeed, identifying when causation is actually 
occurring is challenging. For example, if a person suffers from a headache 
and she takes medication to alleviate that headache, is it correct to say that 
the medication caused a lessening of symptomology? What would be the 
difference had we said the medication is associated with a lessening of 
symptomology? Discuss how these statements are different from one another 
and brainstorm some of the issues involved in identifying just what does and 
does not connote causation in science. 



MATRIX ALGEBRA 

In this appendix, we provide a brief survey, “sketchy” overview and review of 
essential matrix and linear algebra that is useful for understanding parts of the book at 
a deeper level. Since we assume the reader is at least already somewhat familiar with 
this material, we proceed quickly in demonstrating these operations using R software. 
Once the student overcomes the initial learning curve (it can be quite steep at times) 
for performing such operations in R, she will experience a tremendous wealth of 
computing power at her hands, unlike what could ever be experienced using packages 
such as SPSS. Working with R, the user becomes the body of knowledge, the 
“stimuli,” for which the computer is the response. The user can input even a single 
request and immediately receive a response. This is a very powerful way to learn 
univariate and multivariate analysis along with its numerous matrix operations and 
computations. 

The contents of this Appendix are by no means designated to be formal, thorough, 
or even “complete” in any sense whatsoever. It is merely a shorthand collection of 
notes on select topics in matrix operations and linear algebra useful for understanding 
statistical methods. There exist a plethora of excellent texts on the mathematics of 
matrix algebra, and the reader is strongly encouraged to refer to such texts while 
studying this book and multivariate analysis more generally. One of the most readable 
sources is Searle (1982). Gill (2006) also contains chapters devoted to essentials of 
linear algebra and matrices. Carroll and Green (1997) provide a good overview of the 

www.wiley.com/go/denis/appliedmultivariatestatistics
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mathematics of multivariate analysis. Strang (1993), Anton and Rorres (2000), and 
Harville (1997) are matrix texts for the mathematical sciences, the latter on the 
technical side. 

A.1 MATRICES 

A matrix is simply an ordered array of numbers, square or rectangular, denoted by 
n rows and m columns. For instance, the following matrix A is a three-row by two-
column matrix (i.e., it is of order 3 × 2): 

a11 a12 

A � a21 a22 

a31 a32 

The contents of the matrix consist of elements a11, a12, a21, and so on. A matrix is 
square if the number of n rows equals the number of m columns. For example, the 
matrix B is a square matrix: 

b11 b12
B � 

b21 b22 

A.2 BUILDING MATRICES IN R 

We can generate a matrix in R in many different ways. As an example, suppose 
we wish to produce a matrix containing a sequence of numbers from 1 to 8 
and having  four  rows  and two  columns.  We  say that the  dimension of the matrix 
is 4 × 2. We can use the function matrix to create the matrix. Let us call this 
matrix S: 

> S <- matrix(1:8, 4, 2) 
> S 

[,1] [,2] 
[1,] 1 5 
[2,] 2 6 
[3,] 3 7 
[4,] 4 8 

where S is the name we are giving to our matrix, 1:8 designates the matrix to 
have entries 1–8, and 4,2 designates the matrix to have four rows and two columns. 
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We could expand on the above code and generate a wide variety of matrices of 
various dimensions. We could also change the contents of the matrix. For instance, 
suppose that instead of inputting entries from 1 to 8, we chose instead to input entries 
from 20 to 27. We would have 

> S <- matrix(20:27, 4, 2) 
> S 

[,1] [,2] 
[1,] 20 24 
[2,] 21 25 
[3,] 22 26 
[4,] 23 27 

Suppose we now wanted to add two new elements to the matrix, elements 28 
and 29. To accommodate these new elements, we would need to expand on 
the number of rows in the matrix. Instead of having four rows, we would now 
have five rows: 

> S <- matrix(20:29, 5, 2) 
> S 

[,1] [,2] 
[1,] 20 25 
[2,] 21 26 
[3,] 22 27 
[4,] 23 28 
[5,] 24 29 

where (20:29, 5, 2) requests to build a 5 × 2 matrix with entries 20–29. Notice 
that if we specified a range of entries the dimension of the matrix could not handle 
neatly, R will still compute a matrix, but will either shrink or expand the entries 
smaller or greater than the range 20–29 as needed. For instance, suppose we again 
requested entries 20–29, but instead a 2 × 2 matrix: 

> S <- matrix(20:29, 2, 2) 
> S 

[,1] [,2] 
[1,] 20 22 
[2,] 21 23 

Notice that because we asked for a 2 × 2 matrix, R simply generated the first four 
entries in the range of 20–29. On the other hand, if we requested a “too large” of a 
matrix given the range, R will simply start repeating values. For example, suppose we 
specified the same range of 20–29, but asked for a 10 × 5 matrix: 
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> S <- matrix(20:29, 10, 5) 
> S 

[,1] [,2] [,3] [,4] [,5] 
[1,] 20 20 20 20 20 
[2,] 21 21 21 21 21 
[3,] 22 22 22 22 22 
[4,] 23 23 23 23 23 
[5,] 24 24 24 24 24 
[6,] 25 25 25 25 25 
[7,] 26 26 26 26 26 
[8,] 27 27 27 27 27 
[9,] 28 28 28 28 28 

[10,] 29 29 29 29 29 

Notice that R accommodated the 10 × 5 matrix by replicating values. 

A.3 DIMENSION OF A MATRIX 

The dimension of a matrix is defined by the number of rows and columns in the 
matrix. For instance, consider the matrix S just computed. Matrix S has 10 rows 
and 5 columns. We can easily verify the dimension of a matrix by requesting 
dim: 

> dim(S) 
[1] 10 5 

where “10” is the number of rows and “5” is the number of columns. Two matrices 
are considered equal only if they are of the same dimension and have the same 
elements. For example, matrices A and B are equal, whereas each is unequal to 
matrix C: 

2 7  4 92 7  
A � B � C � 

4 9  4 9  2 7  

A.4 CONSTRUCTING A COVARIANCE OR CORRELATION MATRIX 

Though there are many ways to build matrices in R, we demonstrate a simple way of 
producing a matrix that is used in the book. Consider the following lower triangular 
correlation matrix: 
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.343 1.00000 

.505 .203 1.00000 

.308 .400 .398 1.00000 

.693 .187 .303 .205 1.00000 

.208 .108 .277 .487 .200 1.00000 

.400 .386 .286 .385 .311 .432 1.00000 

.455 .385 .167 .465 .485 .310 .365 1.00000 

We could generate the above matrix in an ASCII file and read it directly from that 
file using a function such as read.table, but we could also easily build the matrix 
in R. We build the matrix by first “concatenating” the row vectors. By defining each 
row as r1, r2, r3, etc., and by specifying c to concatenate each vector, we build the 
vectors for the matrix: 

> r1 <- c(1.000, 0.343, 0.505, 0.308, 0.693, 0.208, 0.400, 0.455) 
> r2 <- c(0.343, 1.000, 0.203, 0.400, 0.187, 0.108, 0.386, 0.385) 
> r3 <- c(0.505, 0.203, 1.000, 0.398, 0.303, 0.277, 0.286, 0.167) 
> r4 <- c(0.308, 0.400, 0.398, 1.000, 0.205, 0.487, 0.385, 0.465) 
> r5 <- c(0.693, 0.187, 0.303, 0.205, 1.000, 0.200, 0.311, 0.485) 
> r6 <- c(0.208, 0.108, 0.277, 0.487, 0.200, 1.000, 0.432, 0.310) 
> r7 <- c(0.400, 0.386, 0.286, 0.385, 0.311, 0.432, 1.000, 0.365) 
> r8 <- c(0.455, 0.385, 0.167, 0.465, 0.485, 0.310, 0.365, 1.000) 

Recall that since in a correlation or covariance matrix, the lower triangular of the 
matrix is identical to the upper triangular, it was a simple matter to insert the correct 
off-diagonal correlations in producing the above column vectors (i.e., notice that the 
upper triangular part of the matrix mirrors that of the lower). We then use the rbind 
function (i.e., “bind the rows together”) to join the rows 1, 2, 3, etc., of the above 
vectors, identifying the new matrix as cormatrix: 

> cormatrix <- rbind(r1, r2, r3, r4, r5, r6, r7, r8) 

To verify that we built the matrix correctly, we request it by its name: 

> cormatrix 
[,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] 

c1 1.000 0.343 0.505 0.308 0.693 0.208 0.400 0.455 
c2 0.343 1.000 0.203 0.400 0.187 0.108 0.386 0.385 
c3 0.505 0.203 1.000 0.398 0.303 0.277 0.286 0.167 
c4 0.308 0.400 0.398 1.000 0.205 0.487 0.385 0.465 
c5 0.693 0.187 0.303 0.205 1.000 0.200 0.311 0.485 
c6 0.208 0.108 0.277 0.487 0.200 1.000 0.432 0.310 
c7 0.400 0.386 0.286 0.385 0.311 0.432 1.000 0.365 
c8 0.455 0.385 0.167 0.465 0.485 0.310 0.365 1.000 
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We can see that the generated cormatrix was correctly built, and is now ready 
for analyses that require a correlation matrix as input. Cormatrix is featured in 
Chapters 14 and 15. 

A.5 BUILDING THE MATRIX BY CONCATENATING COLUMNS 
INSTEAD OF ROWS 

We could have just as easily built cormatrix by concatenating columns instead 
of rows. To proceed this way, we build each vector by their respective columns. 
To make things easier, we name each column vector 1, 2, 3, etc., by c1, c2, c3, and so 
on for columns 1, 2, 3, . . . instead of r1, r2, r3, which recall was used to designate 
rows: 

> c1 <- c(1.000, 0.343, 0.505, 0.308, 0.693, 0.208, 0.400, 0.455) 

> c2 <- c(0.343, 1.000, 0.203, 0.400, 0.187, 0.108, 0.386, 0.385) 

> c3 <- c(0.505, 0.203, 1.000, 0.398, 0.303, 0.277, 0.286, 0.167) 

> c4 <- c(0.308, 0.400, 0.398, 1.000, 0.205, 0.487, 0.385, 0.465) 

> c5 <- c(0.693, 0.187, 0.303, 0.205, 1.000, 0.200, 0.311, 0.485) 

> c6 <- c(0.208, 0.108, 0.277, 0.487, 0.200, 1.000, 0.432, 0.310) 

> c7 <- c(0.400, 0.386, 0.286, 0.385, 0.311, 0.432, 1.000, 0.365) 

> c8 <- c(0.455, 0.385, 0.167, 0.465, 0.485, 0.310, 0.365, 1.000) 

We then use the cbind function instead of the rbind function to join the column 
vectors, assigning the matrix once again the name cormatrix: 

> cormatrix <- cbind(c1, c2, c3, c4, c5, c6, c7, c8) 

> cormatrix 

c1 c2 c3 c4 c5 c6 c7 c8 

[1,] 1.000 0.343 0.505 0.308 0.693 0.208 0.400 0.455 

[2,] 0.343 1.000 0.203 0.400 0.187 0.108 0.386 0.385 

[3,] 0.505 0.203 1.000 0.398 0.303 0.277 0.286 0.167 

[4,] 0.308 0.400 0.398 1.000 0.205 0.487 0.385 0.465 

[5,] 0.693 0.187 0.303 0.205 1.000 0.200 0.311 0.485 

[6,] 0.208 0.108 0.277 0.487 0.200 1.000 0.432 0.310 

[7,] 0.400 0.386 0.286 0.385 0.311 0.432 1.000 0.365 

[8,] 0.455 0.385 0.167 0.465 0.485 0.310 0.365 1.000 

A covariance or correlation matrix is a symmetric matrix, meaning the upper and 
lower triangulars are mirror images of each other. Generating it by concatenating rows 
or columns results in the same matrix. 



681 APPENDIX A: MATRIX ALGEBRA 

A.6 OPERATIONS ON MATRICES 

Matrix addition and subtraction are defined only for matrices of the same dimension. 
For example, we can add matrices A and B: 

a11 a12 a13 b11 b12 b13 

A � B �a21 a22 a23 b21 b22 b23 

a31 a32 a33 b31 b32 b33 

such that 

a11 a12 a13 b11 b12 b13 a11 � b11 a12 � b12 a13 � b13 

A � B � � �a21 a22 a23 b21 b22 b23 a21 � b21 a22 � b22 a23 � b23 

a31 a32 a33 b31 b32 b33 a31 � b31 a32 � b32 a33 � b33 

Addition of matrices A and C, however, is undefined since A and C are not of the 
same dimension: 

a11 a12 a13 c11 c12 

A � C ≠ �a21 a22 a23 c21 c22 

a31 a32 a33 c31 c32 

5 9  1 3
To demonstrate in R, let matrix A � and matrix B � . A � B is

3 4  7 2
therefore 

> A + B 
a1 a2 

[1,] 6 12 
[2,] 10 6 

The following properties hold for the addition of matrices. Many of these 
properties you might also recognize from the general properties of real numbers. 

Matrix addition is commutative, which means 

A � B � B � A 

That is, whether you add matrix B to matrix A or matrix A to matrix B, the same 
answer will be obtained. 

Matrix addition is associative, which means 

A � �B � C� � �A � B� � C 

That is, whether you add A to the sum of B � C or add the sum of A � B to C, you will 
obtain the same answer. Matrix multiplication also obeys the associative law, which 
states 

�AB�C � ABC 
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When multiplying matrices A and C, the product AC is defined only for matrices for 
which the number of columns in A is equal to the number of rows in C. When the 
number of columns in the first matrix is equal to the number of rows in the second 
matrix, we say the matrices are conformable for multiplication. For example, let 
matrices A and C be defined as 

a11 a12 a13 c11 c12 

A � C �a21 a22 a23 c21 c22 

a31 a32 a33 c31 c32 

Notice that the number of columns in A is equal to the number of rows in C. That is, 
there are three columns in A and three rows in C. They are conformable for 
multiplication so long as we wish to generate the product AC. Notice that the 
product CA is not defined, since the number of columns in C (equal to 2) is not equal 
to the number of rows in A (equal to 3). 

To get the product AC, we carry on with multiplying each element in respective 
rows of A against each element in respective columns of C: 

a11 a12 a13 c11 c12 a11c11 � a12c21 � a13c31 a11c12 � a12c22 � a13c32 

AC � �a21 a22 a23 c21 c22 a21c11 � a22c21 � a23c31 a21c12 � a22c22 � a23c32 

a31 a32 a33 c31 c32 a31c11 � a32c21 � a33c31 a31c12 � a32c22 � a33c32 

so that the product AC has the n rows of A and the m columns of C. 

5 9
Multiplying matrices in R is easy. To get the product A � and

3 4
1 3

B � , we compute 
7 2  

> r1 <- c(5, 9) 
> r2 <- c(3, 4) 

> A <- rbind(r1, r2) 
> A 

[,1] [,2] 
r1 5 9 
r2 3 4 

> c1 <- c(1, 7) 
> c2 <- c(3, 2) 
> B <- cbind(c1, c2) 
> B 

c1 c2 
[1,] 1 3 
[2,] 7 2 
> A%*%B 

b1 b2 
[1,] 68 33 
[2,] 31 17 
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As mentioned, since matrix multiplication is not commutative, BA will yield a 
different result than AB: 

> B%*%A 
a1 a2 

[1,] 14 21 
[2,] 41 71 

Note that the above matrix product is not equal to that of AB computed earlier. 
Finally, be sure when multiplying matrices that you use “%” to enclose “∗” and not 

“∗” alone to get the product. If you use “∗”, as might at first seem like the obvious 
thing to do, you will not get a matrix product as computed above. What you will get is 
a product elementwise, meaning each respective element in each position in the matrix 
is multiplied by each other. 

For example, in multiplying AB using only “∗” instead of “%∗%”, we  get  

> A*B 
[,1] [,2] 

r1 5 27 
r2 21 8 

As can be seen, it generated the matrix product AB by multiplying corresponding 
elements in each position. It generated a product, but not the product we typically 
want when multiplying matrices. 

For a given matrix A that is symmetric and y a vector, the product y ́ Ay is known as 
a quadratic form. In many multivariate procedures, it is important that the product 
y ́Ay be positive (i.e., y ́Ay > 0). Such quadratic forms are called positive definite. 
Positive semidefinite quadratic forms are those for which y ́ Ay � 0. Matrices that are 
positive definite have eigenvalues greater than zero, while matrices that are positive 
semidefinite have eigenvalues of zero or greater. Matrices that are not positive definite 
or positive semidefinite have negative eigenvalues. Matrices that are of full rank (see 
Section A.19) will have all eigenvalues positive. 

A.7 TRANSPOSE AND TRACE 

The transpose of a matrix is the matrix generated when one interchanges the rows and 
b11 b12columns of a matrix. For instance, we denote the transpose of matrix B � 
b21 b22 

as B ́ : 

b11 b21B ́ � 
b12 b22 

The trace of a square matrix is the sum of elements along the main diagonal. For 
example, the trace of the 3 × 3 matrix: 
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p 

i�1 

a11 a12 a13 

A � a21 a22 a23 

a31 a32 a33 

is equal to a11 � a22 � a33. The trace of non-square matrices is not defined. Because 
elements that make up the trace of a covariance matrix represent variances, the 
computation of the trace is very common in multivariate analysis. For instance, in the 
derivation of principal components (Chapter 14), one of the properties of principal 
components is that the sum of their variances, which are called eigenvalues, is equal to 
the sum of the variances of the original variables. In a covariance matrix, that sum of 
the individual variances of each variable is found along the main diagonal. Hence, we 
say that a feature of principal components analysis (PCA) is that the sum of 
eigenvalues is equal to the trace of the original covariance matrix: 

2 2 2λi � s1 � s2 � ∙ ∙ ∙  � sp 

2 2 2where the sample variances s1 � s2 � ∙ ∙ ∙  � s are found along the main diagonal of p 

the covariance matrix: 

s21 0 ∙ ∙ ∙  0 
20 s ∙ ∙ ∙  02S � ASA ́ � 

20 0 s 03 
20 0 ∙ ∙ ∙  sp 

We can easily demonstrate in R some useful results in matrix algebra involving 
transpose and traces: 

1.	 tr�A � B� � tr�A� � tr�B�: In words, the trace of a sum is equal to the sum of 
the traces. In R, we request the trace of a matrix by tr. We  first request the trace 
of the sum A � B: 

> library(psych)
 
> tr(A + B)
 
[1] 12 

The above represents the left-hand side of the result. Computing the right-
hand side, we find that the above sum is equal to 

> tr(A)+ tr(B) 
[1] 12 

which demonstrates the equivalence. 
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2.	 �A � B�´ � A ́ � B ́ : In words, the transpose of a sum is equal to the sum of 
transposes. We  first generate the transpose of the sum (i.e., �A � B�´ ): 
> t(A+B) 

[,1] [,2] 
a1 6 10 
a2 12 6 

We then request the sum of the transposes (i.e., A ́ � B ́ ): 

> t(A) + t(B) 
[,1] [,2] 

a1 6 10 
a2 12 6 

which demonstrates the equivalence. 

3.	 �AB�´ � B ́ A ́ : In words, the transpose of a product is equal to the transpose of 
products in reverse order. Recall that to multiply matrices in R, we use the 
operator %∗%. Thus, for the expression on the left-hand side, we compute the 
transpose of the matrix product AB: 

> t(A%*%B) 
[,1] [,2] 

b1 68 31 
b2 33 17 

The expression on the right-hand side is computed as the transpose of B 
multiplied by the transpose of A: 

> t(B)%*%t(A) 
[,1] [,2] 

b1 68 31 
b2 33 17 

which demonstrates the equivalence. 

A.8 IDENTITY MATRICES 

An identity matrix is defined as a matrix having zeros everywhere, except the main 
diagonal that has elements equal to 1. A property of identity matrices is that for any 
matrix A, it is true that IA � AI � A. For example, a 3 × 3 identity matrix is given as 

1 0 0  

I � 0 1 0  

0 0 1  
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We could construct the matrix simply via diag(3). We can also generate a 3 × 3 
identity matrix I in R by 

> I <- matrix(0, nrow = 3, ncol = 3) 
> I[1, 1] <- 1  
> I[2, 2] <- 1  
> I[3, 3] <- 1  
> I 

[,1] [,2] [,3] 
[1,] 1 0 0 
[2,] 0 1 0 
[3,] 0 0 1 

where I is the name of our newly created matrix, the line matrix(0, nrow = 3, 
ncol = 3) requests a matrix of zeros with three rows and three columns, I[1,1] <-1 
requests R to put a “1” in row 1, column 1, I[2,2] <- 1 requests R to put a “1” in 
row 2, column 2, and I[3,3] <- 1 requests R to put a “1” in row 3, column 3. Had 
we not requested these last three lines of code, R would have simply generated a 3 × 3 
zero matrix: 

> I <- matrix(0, nrow = 3, ncol = 3) 
> I 

[,1] [,2] [,3] 
[1,] 0 0 0 
[2,] 0 0 0 
[3,] 0 0 0 

If we desired a larger identity matrix, suppose 5 × 5, we could likewise code: 

> I <- matrix(0, nrow = 5, ncol = 5) 
> I[1,1] <- 1  
> I[2,2] <- 1  
> I[3,3] <- 1  
> I[4,4] <- 1  
> I[5,5] <- 1  
> I 

[,1] [,2] [,3] [,4] [,5] 
[1,] 1 0 0 0 0 
[2,] 0 1 0 0 0 
[3,] 0 0 1 0 0 
[4,] 0 0 0 1 0 
[5,] 0 0 0 0 1 

We could also alter the general matrix code, and easily generate a matrix with 
values of, say, 5 everywhere, except for values of 2 along the main diagonal: 
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> M <- matrix(5, nrow = 3, ncol = 3) 
> M[1,1] <- 2  
> M[2,2] <- 2  
> M[3,3] <- 2  
> M 

[,1] [,2] [,3] 
[1,] 2 5 5 
[2,] 5 2 5 
[3,] 5 5 2 

We can also verify the main diagonal of an identity matrix or any other matrix for 
that matter, by the function diag. For example, for the matrix M, we request the 
diagonal: 

> diag(M) 
[1] 2 2 2 

which also serves to confirm the matrix to be a 3 × 3 matrix (since there are three 
matching values of 2). 

Even more generally, we can use the matrix function to generate any matrix with 
specific values in each position. For instance, if we wanted to generate the matrix 

5 9
A � , we would enter the following code: 

3 4  

> A <- matrix(nrow = 2, ncol = 2) 
> A[1,1] <- 5  
> A[1,2] <- 9  
> A[2,1] <- 3  
> A[2,2] <- 4  
> A 

[,1] [,2] 
[1,] 5 9 
[2,] 3 4 

Of course, it is usually much easier to generate such matrices by simply binding 
column or row vectors, as we did earlier, especially for large matrices. Even more 
efficiently, we could have also constructed A by 

> A <- matrix(c(5, 3, 9, 4), nrow = 2) 
> A 

[,1] [,2] 
[1,] 5 9 
[2,] 3 4 
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A.9 VECTORS 

A vector is a matrix that consists of a single row or a single column. For example, 
vector c is a 3 × 1 matrix (i.e., 3 rows, 1 column): 

c � 

c11 

c21 

c31 

´ whereas c is a 1 × 3 row matrix: 

´ c � c11 c12 c13 

´ As we can see, c is the transpose of c. 
Let us now assign real numbers to vector c. Let vector c equal: 

5 

c � 2 

9 

To generate this vector in R, we compute 

> c <- c(5, 2, 9) 
> c 
[1] 5 2 9 

A.10 INNER PRODUCT OR “DOT PRODUCT” 

The inner product is the product generated when two vectors are multiplied by one 
´ another, where a a denotes a sum of squares. Two vectors are orthogonal if their inner 

´ product is equal to 0. If we take the square root of a a, we obtain the length of a. 
The inner product of vectors c and d is equal to 

6 

c ́ d � 5 2 9  2 � 30 � 4 � 45 � 79 

5 

To demonstrate in R, we first generate the vector d: 

> d <- c(6, 2, 5) 
> d 
[1] 6 2 5 
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The inner product of vectors c and d is therefore 

> c%*%d 
[,1] 

[1,] 79 

which we note is equal to that computed manually. 
Notice that in computing the product c ́ d in R, we did not have to specify vector c as 

its transpose. R makes the adjustment itself and multiplies the vectors. Had R not 
made this adjustment, we would be multiplying two column vectors, which would not 
be conformable for multiplication. We could have also specified the transpose directly 
and obtained the same inner product: 

> t(c)%*%d 
[,1] 

[1,] 79 

Multiplication of c by a scalar a proceeds by multiplying each element of c by that 
scalar. Thus, the product ac is given by 

c11 a�c11� 
ac � a �c21 a�c21� 

c31 a�c31� 
5 

For example, suppose we wish to multiply matrix c � 2 by the scalar a � 10. The 
result is 9 

> 10*c 
[1] 50 20 90 

As we can see, R multiplied each element of the vector by the scalar 10. 
Multiplying vectors by scalars is a key operation in multivariate analysis. For 
instance, when obtaining principal components, each component is nothing more 
than a vector (called an eigenvector) associated with a unique scalar (called an 
eigenvalue). The eigenvector determines the direction of the component, while the 
eigenvalue determines the magnitude (or length) of the vector. For details, see 
Chapter 14. 

A.11 ZERO MATRIX 

In a zero matrix (or “null” matrix), every element is equal to 0. We can easily produce 
a zero matrix in R. For instance, suppose we want a 3 × 3 zero matrix: 
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> M <- matrix(0, nrow = 3, ncol = 3) 
> M 

[,1] [,2] [,3] 
[1,] 0 0 0 
[2,] 0 0 0 
[3,] 0 0 0 

It is easy to see that the zero matrix is the matrix equivalent of zero in scalar 
algebra, such that pre- or post-multiplication of a matrix by the zero matrix always 
generates another zero matrix. For example for a nonzero matrix A, the products A0 
and 0A are the same. In both cases, the solution is 0. 

A.12 INVERSE OF A MATRIX 

Inverses in matrix algebra are very important and play a significant role in multivariate 
analysis. Recall that in scalar algebra, the inverse of an ordinary scalar a is defined as 
a�1 so that 

a 1 a�1 �a � a � � � 1
1 a a 

is true, assuming a ≠ 0 (if a � 0, then while a is defined, 1 is not). 1 a 
In matrix algebra, the analogous statement of the scalar relation for matrices A and 

B is 

AB � BA � I 

That is, if A and B are square matrices and a matrix can be found such that 
AB � BA � I, then the matrix A is regarded as an invertible matrix, and matrix 
B is regarded as the inverse of matrix A. 

Generating matrix inverses in R is easy. Oftentimes in multivariate analysis, we are 
required to invert either covariance or correlation matrices, usually not explicitly, but 
rather as a part of one or more of the statistical tests we run. For instance, consider 
once more the previously constructed correlation matrix: 

> cormatrix 
a b c d e f g h 

[1,] 1.000 0.343 0.505 0.308 0.693 0.208 0.400 0.455 
[2,] 0.343 1.000 0.203 0.400 0.187 0.108 0.386 0.385 
[3,] 0.505 0.203 1.000 0.398 0.303 0.277 0.286 0.167 
[4,] 0.308 0.400 0.398 1.000 0.205 0.487 0.385 0.465 
[5,] 0.693 0.187 0.303 0.205 1.000 0.200 0.311 0.485 
[6,] 0.208 0.108 0.277 0.487 0.200 1.000 0.432 0.310 
[7,] 0.400 0.386 0.286 0.385 0.311 0.432 1.000 0.365 
[8,] 0.455 0.385 0.167 0.465 0.485 0.310 0.365 1.000 
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We can request R to compute the inverse of cormatrix by solve(corma
trix). We name the new matrix by the name D: 

> D <- solve(cormatrix) 
[,1] [,2] [,3] [,4] [,5] [,6] [,7] [8] 

a 2.62391779 -0.32529402 -0.79748547 0.07143344 -1.34883744 0.14277980 -0.27074036 -0.25993622 

b -0.32529402 1.45211520 0.03592592 -0.40955548 0.22539180 0.31041745 -0.38009280 -0.29342246 

c -0.79748547 0.03592592 1.56495953 -0.48016535 0.04087805 -0.13719304 -0.03786275 0.34747695 

d 0.07143344 -0.40955548 -0.48016535 1.85491453 0.19261836 -0.58606745 -0.05349807 -0.54938320 

e -1.34883744 0.22539180 0.04087805 0.19261836 2.14973569 -0.07659356 -0.06236400 -0.56556392 

f 0.14277980 0.31041745 -0.13719304 -0.58606745 -0.07659356 1.53618210 -0.49852528 -0.14614977 

g -0.27074036 -0.38009280 -0.03786275 -0.05349807 -0.06236400 -0.49852528 1.55055676 -0.08044157 

h -0.25993622 -0.29342246 0.34747695 -0.54938320 -0.56556392 -0.14614977 -0.08044157 1.77763927 

To verify that the above matrix is indeed the inverse of cormatrix, it can easily 
be demonstrated that their product is equal to the identity matrix, hence establishing 
the relation AB � BA � I. 

We now demonstrate some of the more common properties of matrix inverses. 

1. �A�1�´ � �A ́��1: In words, the transpose of the inverse of a matrix is equal to 
5 9

the inverse of its transpose. We demonstrate with matrix A � . We  first
3 4  

request the left-hand side of the property, that of the transpose of the inverse 
(recall that t in R is the function for transpose, whereas tr is the function for 
trace): 

> t(solve(A)) 
a1 a2 

[1,] -0.5714286 0.4285714 
[2,] 1.2857143 -0.7142857 

We then compute the inverse of the transpose, and note that it is equal to the 
transpose of the inverse computed above: 

> solve(t(A)) 
a1 a2 

[1,] -0.5714286 0.4285714 
[2,] 1.2857143 -0.7142857 

�12.	 �AB��1 � �B� �A��1: In words, the inverse of the product of matrices is equal 
to the product of inverses in reverse order. We demonstrate this property by 
first requesting the inverse of the product (left-hand side): 

> solve(A%*%B) 
[,1] [,2] 

b1 0.1278195 -0.2481203 
b2 -0.2330827 0.5112782 
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We then request the right-hand side, the product of inverses in reverse order: 

> solve(B) %*% solve(A) 
[,1] [,2] 

b1 0.1278195 -0.2481203 
b2 -0.2330827 0.5112782 

Note that the resulting matrix is identical to that produced above. 

3.	 �A�1��1 � A: In words, the inverse of the inverse of a matrix is equal to the 
original matrix. This is also easily demonstrated in R. The left-hand side, 
�A�1��1, is computed as 

> solve(solve(A)) 
a1 a2 

[1,] 5 9 
[2,] 3 4 

which is easily shown to be equal to the original matrix A: 

> A  
a1 a2 

[1,] 5 9 
[2,] 3 4 

A.13 MOORE–PENROSE GENERALIZED INVERSE 

The Moore–Penrose inverse (Searle, 1982, p. 212) M of matrix A is defined such that 
the following condition holds: 

AMA � A 

In words, A multiplied by a matrix M multiplied by matrix A is equal to the original 
matrix A. Matrix M is said to be the Moore–Penrose inverse of A. To obtain the M–P 
inverse, we require the package MASS (Venables and Ripley, 2002). We can compute 

5 9
the M–P generalized inverse of matrix A � with the function ginv(A):

3 4  

> library(MASS) 
> ginv(A) 

[,1] [,2] 
[1,] -0.5714286 1.2857143 
[2,] 0.4285714 -0.7142857 
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We easily demonstrate that AMA � A holds by pre-multiplying ginv(A) by A 
and post-multiplying ginv by A: 

> A%*%ginv(A)%*%A 
a1 a2 

[1,] 5 9 
[2,] 3 4 

We note that AMA reproduced the original matrix A, and thus the matrix 
computed by ginv(A) is indeed the M–P inverse of matrix A. For more on 
generalized inverses, see Timm (2002, pp. 47–50). 

A.14 SYMMETRIC MATRICES AND INVERSES 

An n × n matrix A is symmetric if it is equal to its transpose, that is, A ́ � A. For 
instance, consider the matrix S: 

6 4 8  

S � 4 9 3  

8 3 7  

The matrix is symmetric since the upper triangular is a mirror reflection of the lower 
triangular such that S ́ � S, as we can easily demonstrate in R. First, we construct the 
matrix S: 

> s1  <- c(6, 4, 8) 
> s2  <- c(4, 9, 3) 
> s3  <- c(8, 3, 7) 
> S  <- cbind (s1, s2, s3) 
> S  

s1 s2 s3 
[1,] 6 4 8 
[2,] 4 9 3 
[3,] 8 3 7 

When taking the transpose, we find 

> t(S) 
[,1][,2][,3] 

s1 6 4 8 
s2 4 9 3 
s3 8 3 7 
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which we note is equivalent to the original matrix S. Hence, matrix S is symmetric. If a 
matrix is symmetric and invertible, then its inverse is also symmetric. For instance, 
computing the inverse of S, we obtain 

> solve(S) 
[,1] [,2] [,3] 

s1 -0.31395349 0.02325581 0.34883721 
s2 0.02325581 0.12790698 -0.08139535 
s3 0.34883721 -0.08139535 -0.22093023 

We note that the matrix S�1 is symmetric, as was the original symmetric matrix S. 

A.15 DETERMINANTS 

The determinant of a matrix is a distinct number associated with a matrix. Deter
minants are defined only for square matrices. Though the computation of determi
nants for matrices of higher dimensions can quickly become unwieldy and is best left 
to software, it is a simple matter to demonstrate the computation for simple lower 
dimension matrices. For 2 × 2 matrix A, the determinant is computed as 

a11 a12jAj �  � a11a22 � ��1�a12a21 � a11a22 � a12a21 
a21 a22 

For a 3 × 3 matrix, the computation of the determinant is computed: 

jAj �  

a11 a12 a13 

a21 a22 a23 

a31 a32 a33 

� a11��1� a22 a23 

a32 a33 
� a12��1� a21 a23 

a31 a33 
� a13��1� a21 a22 

a31 a32 

� a11a22a33 � a11a23a32 � a12a21a33 � a12a23a31 � a13a21a32 � a13a22a31 

We can obtain the determinant of a matrix easily in R. For example, the determinant of 
cormatrix aforementioned is computed as 

> det(cormatrix) 
[1] 0.06620581 

Determinants play a significant role in statistical analyses. When computing, for 
instance, the normal equations of regression analysis, b � �X ́ X��1X ́ Y in Chapter 8, 
to solve for b, we are required to take the inverse of �X ́ X�. The inverse, however, does 
not exist for a matrix whose determinant is equal to 0. What this translates into 
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statistically is that if the data matrix X exhibits any kind of problems, such as being of 
less than full rank (which translates to columns and rows being dependent instead of 
independent—see Section A.16), this means X ́ X may not be invertible, and hence a �1X ́ solution for b in b � �X ́ X� Y is not obtainable. The geometric interpretation of a 
determinant for two vectors is that of a quadrilateral for which if the two vectors are 
perfectly correlated, the quadrilateral collapses into a line, which simultaneously 
generates a determinant of zero (Lattin, Carroll, and Green, 2003). 

Some properties and results of determinants include the following: 

A ́ 1. j j � jAj: In words, the determinant of the transpose of a matrix is equal to the 
determinant of the matrix. We demonstrate in R using cormatrix. We  first 
compute the determinant of the transpose: 

> det(t(cormatrix)) 
[1] 0.06620581 

This is equal to the original determinant of cormatrix, since 

> det(cormatrix) 
[1] 0.06620581 

2.	 jABj � jAjjBj: In words, the determinant of a product of matrices (if defined, 
which means if A and B are conformable for multiplication) is equal to 
the product of determinants. This is easily demonstrated. Recall matrices 

A � 
5 9  
3 4  

and B � 
1 3  
7 2  

. We compute the determinant of AB: 

> det(A%*%B) 
[1] 133 

and equate this to the product of determinants, 

> det(A) %*% det(B) 
[,1] 

[1,] 133 

which demonstrates the equivalence. 

3.	 jkAj � kn jAj: In words, if k is a constant, then for a square matrix with n rows, 
the determinant of the product of the constant and the matrix is equal to the 
product of the constant raised to the power of n and the determinant of the 
matrix. This is also easily demonstrated in R. Suppose we let k = 3. Then the 
determinant of 3A is found: 

> det(3*A) 
[1] -63 
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and is shown equivalent to 

> 3^2%*%det(A) 
[,1] 

[1,] -63 

A.16 LINEAR INDEPENDENCE, DETERMINANTS, AND MATRIX 
INVERTIBILITY 

The concepts of linear independence and dependence are at the core of linear and 
matrix algebra, and since these are the structural foundations of statistics, they are 
likewise important concepts in applied analysis. 

We begin by first defining linear dependence. Given a set of vectors, if we can write 
one or more vectors as a scalar multiple of another vector, then the set of vectors is 
deemed linearly dependent. If we cannot write one or more vectors as a scalar multiple 
of another vector, then the set of vectors is linearly independent. 

More formally, consider the following linear combination: 

a1v1 � a2v2 � ∙ ∙ ∙  � anvn � 0 (A.1) 

If equality (A.1) holds true for possible scalars a1, a2, . . . other than 0 (i.e., the trivial 
case), then the set of vectors is a set of linearly dependent vectors. If the above equality 
holds for 0 only, then the set of vectors is a set of linearly independent vectors. 

For instance, consider the matrix D: 

2 5 7 

D � 3 1 8 

4 10 14  

Is the set linearly dependent? Yes, because notice that row 3 (i.e., 4, 10, 14) is a scalar 
multiple of row 1 (i.e., 2, 5, 7), since if we multiply row 1 by a scalar of 2, we get row 
3. Hence, there is linear dependence among these two rows, and when there is linear 
dependence, this also implies that the determinant of the matrix will equal 0 and the 
matrix will not be invertible. Notice that linear dependence or independence refers to 
the particular set of vectors you are considering. Speaking of the linear independence 
or dependence of a single vector has no meaning. 

We demonstrate the linear dependence of matrix D in R. First we construct the matrix: 

> c1  <- c(2, 3, 4) 
> c2  <- c(5, 1, 10) 
> c3  <- c(7, 8, 14) 
> D  <- cbind(c1, c2, c3) 
> D  

c1 c2 c3 
[1,] 2 5 7 
[2,] 3 1 8 
[3,] 4 10 14 
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We compute the determinant of D, and  find it equal to 0: 

> det(D) 
[1] 0 

Given that D has a determinant equal to 0, we should also expect to not be able to 
compute its inverse. When we attempt to solve, we obtain 

> solve(D)
 
Error in solve.default(D) :
 

Lapack routine dgesv: system is exactly singular 

R reports that “system is exactly singular.” A matrix is regarded as singular when it 
cannot be inverted. Analogously, it implies that its determinant is equal to 0. Another 
equivalent statement is to say the matrix is not of full rank (see Section A.19). 
Nonsingular matrices have determinants that are not equal to 0 and are of full rank. 

A set of linearly independent vectors in a vector space that span the space, is 
generally referred to as a basis for the space. As we will discuss shortly, the number of 
linearly independent vectors in that space is the rank or dimension of the vector space. 
If the pairs of vectors in that space are pairwise orthogonal, then that basis is regarded 
as an orthogonal basis. Furthermore, if each of the vectors in the space is of unit 

´ length (i.e., a a � 1), then the basis is called an orthonormal basis. Orthonormal bases 
can be generated using what is known as the Gram–Schmidt orthogonalization 
process. If every vector in a vector space is expressible as a linear combination of 
particular vectors, then these vectors are said to span the vector space. 

A.17 ORTHOGONALITY 

A square matrix A is said to be an orthogonal matrix if (and only if) the following holds: 

AA ́ � A ́ A � I 

In words, a matrix post-multiplied by its transpose is equal to the matrix pre-multiplied 
by its transpose, and both of these products are equal to the identity matrix. If this 
condition exists, matrix A is defined as orthogonal. Analogously, AA ́ � A ́ A � I also 
implies that the columns or rows of A form an orthonormal basis. 

Substantive areas of multivariate analysis in which orthogonal matrices play a very 
important role are in principal components analysis and factor analysis. More 
specifically, these concepts play a role in the orthogonal rotation of estimated 
component or factor loadings. For example, as discussed in Chapter 15, to rotate a 
factor solution to a new coordinate system, loadings are multiplied by the transforma
tion matrix T: 

cos θ �sin θ 
T � 

sin θ cos θ 
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Rotation by matrix T constitutes an orthogonal rotation since 

T0T � I 

That this rotation is orthogonal is easily demonstrated, since all we have to do to show 
orthogonality is to multiply the matrix by itself: 

cos θ sin θ cos θ �sin θ 
T ́ T � �sin θ cos θ sin θ cos θ 

�cos θ��cos θ� �  �sin θ��sin θ� �cos θ���sin θ� � �sin θ��cos θ� � ��sin θ��cos θ� � �cos θ��sin θ� ��sin θ���sin θ� � �cos θ��cos θ� 
1 0  � 
0 1  

Note that the matrix we end up with is an identity matrix. Also, the orthogonal 
property T ́ T � I holds regardless of the choice of angle θ. That is,  whether we  
choose θ � 20° or θ � 60° or any other angle, the orthogonal property remains. 
The angle we choose for rotation simply denotes the extent to which we wish to 
rotate, but maintains axes at 90° to each other. Now if we choose an oblique rotation, 
then the transformation matrix would change, and the orthogonal property would not 
be maintained. In oblique rotations, factors are allowed to correlate. See Chapter 15 
for details. 

The following are few other properties of orthogonal matrices (which we do not 
demonstrate): 

• If A is an orthogonal matrix, then its inverse, A�1 is also an orthogonal matrix. 

•	 If A is an orthogonal matrix, and B is an orthogonal matrix, then AB is an 
orthogonal matrix. 

• The determinant of an orthogonal matrix is equal to either 1 or �1. 
• Eigenvectors of a square symmetric matrix are pairwise mutually orthogonal. 

A.18 EIGENVALUES AND EIGENVECTORS 

The importance and relevance of the concepts of eigenvalues and eigenvectors in both 
univariate and multivariate applied statistics cannot be overstated. Quite simply, much 
of so-called advanced statistical analysis boils down to the extraction of eigenvalues 
and eigenvectors of covariance or correlation matrices. For a deeper study of these, 
see Timm (2002). 



699 APPENDIX A: MATRIX ALGEBRA 

Though there are numerous substantive reasons for applying eigenvalue and 
eigenvector decomposition (EVD) to problems in the social and natural sciences, 
our consideration here is to simply survey how they are computed. Throughout the 
book, especially in later chapters, their use will become apparent. 

Let A be a n � n square matrix. The eigenvalue problem is to find a number λi and a 
vector v of dimension n such that the following equation holds: 

Av � λv (A.2) 

Each number λi extracted is an eigenvalue of the matrix A with corresponding vector 
v. Equation (A.2) can also be expressed as 

�A � λI�v � 0 

We seek to determine values for λ (other than when v � 0, which is the so-called 
trivial solution) for which the system of equations has a solution. In linear algebra, it 
can be shown that �A � λI�v � 0 has a solution if (and only if) the determinant of 
A � λI equals 0, that is, 

jA � λIj � 0 

As a simple example of EVD, consider the following matrix A: 

2 2  
A � 

0 6  

0:4472136
The vector v � is an eigenvector of A that corresponds to the

0:8944272 
eigenvalue 6, because 

2 2  0:4472136 0:4472136 � 6 
0 6  0:8944272 0:8944272 

We can easily demonstrate in R that the above holds. We first construct the matrix A: 

> a1  <- c(2, 0) 
> a2  <- c(2, 6) 
> A  <- cbind(a1, a2) 
> A  

a1 a2 
[1,] 2 2 
[2,] 0 6 
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along with vector v: 

> v  <- c(0.4472136, 0.8944272) 
> v  
[1] 0.4472136 0.8944272 

The product of Av is equal to 

> A%*%v 
[,1] 

[1,] 2.683282 
[2,] 5.366563 

which is equal to the product of 

> 6*v 
[1] 2.683282 5.366563 

0:4472136
and hence we have demonstrated that v � is an eigenvector of

0:8944272
 
2 2 


A � corresponding to an eigenvalue of 6. 
0 6  

Computing eigenvalues and eigenvectors for matrices of small dimension provides 
little computational difficulty. However, the majority of times in multivariate 
analysis, we are required to compute EVD for matrices of much larger dimension 
and computed manually “by hand,” the computations quickly become unwieldy and 
software is consequently required. For instance, consider once more cormatrix. 
We can request the eigenvalues and eigenvectors of this matrix quite easily in R by 
using the eigen function: 

> eigen(cormatrix) 

$values 

[1] 3.4470520 1.1572358 0.9436513 0.8189869 0.6580753 0.3898612 0.3360577 

[8] 0.2490798 

$vectors 

[,1] [,2] [,3] [,4] [,5] [,6] 

[1,] -0.4125682 -0.45771854 -0.098873465 0.08795002 0.066755981 -0.1352881 

[2,] -0.3034726 0.11443307 0.637320040 0.47138991 0.088175982 -0.4697628 

[3,] -0.3180940 -0.06869755 -0.546391282 0.58136533 -0.121757436 0.1921707 

[4,] -0.3730602 0.43006317 -0.001725853 0.11149001 -0.471416291 0.1757057 

[5,] -0.3572744 -0.54341592 -0.067983885 -0.31379342 0.005351703 -0.2192800 

[6,] -0.3008318 0.49347718 -0.380799221 -0.40057953 0.065440460 -0.5409419 

[7,] -0.3664721 0.21605328 0.060830978 -0.06123129 0.775010839 0.4437028 

[8,] -0.3806410 -0.04717545 0.363552650 -0.39618322 -0.381782069 0.3945174 
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[,7] [,8] 

[1,] 0.0911831 0.75610613 

[2,] -0.1315217 -0.14378501 

[3,] -0.3684690 -0.26465820 

[4,] 0.6393505 0.03954700 

[5,] 0.3112839 -0.57354688 

[6,] -0.2453502 0.05840491 

[7,] 0.1046301 -0.05574971 

[8,] -0.5116712 0.02337248 

The first eigenvalue extracted is equal to 3.4470520 with associated eigenvector 

�0:4125682 

�0:3034726 

�0:3180940 

�0:3730602 

�0:3572744 

�0:3008318 

�0:3664721 

�0:3806410 

In line with our earlier discussion of EVD, then it should be true that the product of 
cormatrix and the eigenvector is equal to the eigenvalue multiplied by the 
eigenvector. We verify this in R by first producing the eigenvector, and then 
generating the two products: 

> cormatrix%*%eigenvec 
[,1] 

c1 -1.422144 
c2 -1.046086 
c3 -1.096486 
c4 -1.285958 
c5 -1.231543 
c6 -1.036983 
c7 -1.263249 
c8 -1.312089 

> eigenvalue*eigenvec 
[1] -1.422144 -1.046086 -1.096487 -1.285958 -1.231543 -1.036983 -1.263248 
[8] -1.312089 

We note that both vectors, cormatrix∗eigenvec and eigenvalue∗ei
genvec, are equal, confirming that the stated eigenvector is indeed an eigenvector of 
the eigenvalue 3.4470520. 
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An especially important and relevant property of eigenvalues is the following: 

∏n 
1λi � jAj: In words, the product of eigenvalues for matrix A is equal to the i�
determinant of matrix A. We can verify this for cormatrix. We  first produce 
the vector of extracted eigenvalues and then request the product (prod) of these 
eigenvalues: 

> eigenvalues <- c(3.4470520, 1.1572358, 0.9436513, 
0.8189869, 0.6580753, 0.3898612, 0.3360577, 0.2490798) 
> prod(eigenvalues) 
[1] 0.06620582 

We note that the value of 0.06620582 matches that value of the determinant of 
cormatrix computed earlier [i.e., det(cormatrix) = 0.06620581] 

Another important feature of eigenvalues that is relevant to multivariate analysis is 
that the trace of a square matrix is equal to the sum of eigenvalues for that matrix. That 
is, for matrix A, the following holds: 

n 

tr�A� �  λi 
i�1 

For a covariance matrix, the trace of the matrix is the sum of variances along the main 
diagonal. What the above implies is that once we solve for the given eigenvalues of 
the matrix, we can re-express the trace of the original matrix through summing 
eigenvalues. This simple equality is the basis on which the method of principal 
components analysis rests. More formally, PCA operates by diagonalizing the 
covariance (or correlation) matrix such that all entries in the matrix other than 
that in the trace are equal to 0. In the spirit of factor analysis and structural equation 
modeling, eigenvalues are also sometimes referred to as latent values and their 
associated eigenvectors as latent vectors (Bollen, 1989). 

A.19 RANK 

A central problem of linear algebra, and hence one that also makes its way into 
multivariate analysis, is to obtain a solution for x in the fundamental equation: 

Ax � b 

The solution for x exists only if we can solve x � A�1b. That is, the solution for x 
exists only if the inverse of A exists. The rank of a matrix is defined as the number of 
linearly independent rows and columns of a matrix. If the number of columns or rows 
in a matrix is equal to the number of linearly independent columns or rows, the matrix 
is said to be of full rank, and A�1 exists. If the number of columns or rows in a matrix 
is unequal to the number of linearly independent columns or rows, the matrix is said to 
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be not of full rank, or equivalently, reduced rank. The objective in principal 
components analysis, for example, is to obtain a low-rank approximation of a given 
covariance or correlation matrix. The lower rank approximation constitutes the subset 
eigenvectors of the analyzed matrix. For instance, in a 10-variable problem, we will 
extract 10 components (there are always as many components as there are variables), 
but we choose to retain only a few of these components if they account for most of the 
variance in the initial variables. Hence, through retaining only a few “meaningful” 
components, we obtain a lower rank approximation without, hopefully, losing too 
much information in the process. 

Checking whether rows or columns of a matrix are linearly independent or depen
dent can be a lengthy ordeal. Fortunately, if linear independence does hold for a set 
of vectors, then it is a fact of matrix theory that the determinant of a matrix will not 
equal 0. Hence, as a quick check to ensure a matrix is of full rank, one simply needs to 
compute the determinant of the matrix in question and ensure it is not equal to 0. 

For example, recall matrix A: 

2 2  
A � 

0 6  

The determinant of this matrix is equal to 12. Hence, we know the matrix is of full 
rank because the determinant is not equal to 0. Equivalently, the rows and columns in 
A are linearly independent. If the rows are linearly independent, this implies the 
columns are linearly independent as well. 

In R, we can obtain the rank of a matrix by the function qr, which stands for the 
QR factorization of a matrix. Because the rows and columns of matrix A are linearly 
independent, we should expect the rank to be equal to 2. We confirm this in R (the 
function qr will produce more output than we need, we only show the output for 
matrix rank below): 

> qr(A) 

$rank 
[1] 2 

Indeed, as R confirms, the rank of matrix A is equal to 2. One can also use a variety 
of other functions in R to compute rank. For example, rank.condition() in the 
package corpcor (Schafer et al., 2014) will return the rank of a matrix. 

A.20 SINGULAR VALUE DECOMPOSITION 

Instead of employing eigenvalue-eigenvector decomposition (EVD) to extract 
characteristic values and associated vectors, a technique called singular value 
decomposition (SVD) is often considered computationally more efficient, and can 
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be used for matrices that are not square (EVD only works on square matrices). SVD 
decomposes a matrix A into the following: 

A � USV ́ 

where U is a matrix of variables with identical variance but uncorrelated, S is a 
transformation matrix, and V ́ is an orthogonal rotation matrix. In R, we can compute 
SVD by the function svd. For example, we compute SVD for matrix A: 

2 2  
A � 

0 6  

> svd(A) 
$d 
[1] 6.359174 1.887038 

$u 
[,1] [,2] 

[1,] 0.3469462 -0.9378850 
[2,] 0.9378850 0.3469462 

$v 
[,1] [,2] 

[1,] 0.1091168 -0.9940289 
[2,] 0.9940289 0.1091168 
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313–314
 
Intrinsically linear, 445
 
Inverting conditional probabilities, 39–43
 
Iris data (see Anderson’s iris data)
 
Irrational numbers, 27
 

Joint probability, 23
 
Just-identified, 658
 

K-means clustering, 625–629 
Kaiser-Meyer-Olkin measure of sampling 

adequacy (MSA), 612–613
 
Kolmogorov’s axioms, 30
 
Kruskal-Wallis test, 227–228
 
Kurtosis, 111–112
 

Lagrange multipliers, 559
 
Latent variables, 637–638, 669
 
Law of large numbers, 36–37
 
Lawley-Hotelling’s trace, 499
 
Least-squares:
 
line, 342–343 
solution, 350–351 

Levene’s test of homogeneity of 
variances, 225, 229
 

Likelihood ratio tests, 121–122
 
Limits, 52–55
 
Linear:
 
combinations, 149–151, 207,
 

482–484, 558
 
equations, 70–72
 
function, 50
 
regression, 333–388
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Linearity in parameters, 346, 443–444
 
Link function, 447–450
 
Local minimum, 64
 
Log of the odds, 449
 
Log-linear models, 97
 
Logarithmic function, 456–461
 
Logistic regression, 443–478
 

Challenger data, 466–473 
Loss ratio, 46–47 

Mahalanobis distance, 529, 622
 
Main effect, 238
 
and interactions plot, 264
 

Malaysia airlines flight 370, 3
 
Manifest variables, 636–637
 
Matched-pairs designs, 146
 
Mathematical:
 
relation, 25
 
variables vs. random variables, 101
 

Mathematics, 10–12
 
Matrix inverse, 690
 
Mauchly’s test, 313, 323–325, 328
 
Maxima, 63–64
 
Maximal discrimination, 523
 
Maximum likelihood estimation,
 

121–122, 592–596
 
Mean (balance point), 104
 
Mean-centering, 434
 
Measurement, 98–101
 
Measurements nested within subject,
 

258, 320–321
 
Mediation, 411–414
 
Minima, 63–64
 
Minkowski metric, 622
 
Missing data, xxvi–xxvii
 
Mixed model ANOVA, 294–298
 
Moderation analysis, 418–442
 
Moderators, philosophical
 

considerations, 432–433
 
Moments, 103
 
Mosaic plot, 95
 
Multicollinearity:
 
regression, 403–405 
and mean-centering, 435–436
 

Multilevel modeling, 299–300, 342
 
Multiple linear regression, 389–417
 
Multiple R, 396–397
 
Multivariate analysis of variance
 

(MANOVA), 479–516 

INDEX 

Multivariate: 
contrasts, 501–502 
hypotheses, 487–488 
tests for repeated measures, 323–325 

Mutually exclusive events, 32–35 

Natural:
 
link, 448
 
logarithm, 459
 
numbers, 27
 

Negative binomial, 452–453
 
Negatively skewed, 111
 
Neighborhood, 64
 
Nested designs, 256–257
 
Nesting of levels vs. subjects, 257
 
Newman-Keuls method, 213–215
 
Nomial, 48
 
Nonhierarchical clustering, 625–626
 
Nonlinear models, 444
 
Normal:
 

approximation to the binomial, 87–88
 
distribution, 79–80
 
science, 17
 

Normality:
 
of residuals, 378–379
 
of sampling distribution (CLT), 116
 

Normalizing constraint, 559
 
Normed fit index, 662
 
Null hypothesis significance testing (NHST),
 

criticism, 155–164
 
Number theory, 27
 

Oblique (rotation), 597
 
Ockham’s razor, 16
 
Odds, 93, 461
 

ratio, 93, 461
 
Omega-Squared, 204
 
Operant conditioning, 2
 
Ordinal (scale), 100
 
Ordinary least-squares, 350–351
 
Orthogonal:
 

contrasts, 209
 
linear combinations, see Principal
 
Components Analysis 

Outliers (regression), 372–373 
Overall measures of model fit (SEM), 

660–662
 
Overdispersion, 453–454, 467
 
Overidentified, 658
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P-value (nature of), 155
 
Paired-samples t-test, 146–147
 
Partial correlation, 390–391
 
Path:
 
analysis, 636–648
 
coefficients, decomposing, 642–643
 
diagram (Wright), 639
 

Pearson:
 
Product-Moment correlation, 125
 
r vs. canonical correlation, 543
 

Penalized log-likelihood statistics, 121–122
 
Perpendiculars (in PCA), 553–554
 
Phi coefficient, 96
 
Pillai’s trace, 498
 
Point estimator, 106
 
Poisson models, 452
 
Polynomial, 48
 
regression, 402
 

Polytomous moderator, 425–426
 
Pooled variance, 136, 490
 
Positively skewed, 111
 
Post-hocs, 212–217
 
Posterior:
 
odds, 47
 
probabilities, 42
 

Power:
 
statistical, 139–146
 
in ANOVA, 218
 
in logistic regression, 473–474
 
in multiple regression, 410
 
in regression, 383–384
 

Principal: 
components analysis, 551–578 
factor (factor analysis), 593–594 

Prior odds, 47
 
Probability, 28–39
 
classical vs. analytical, 35
 

Product term, 420
 
Proper subset, 21
 
Proximity, 619
 

Quartimax (rotation), 599–600
 
Quasi-likelihood estimation, 474
 

Random: 
effects analysis of variance, 271–294 
variable, xxiv, 101–102 

Randomization, 201
 
Randomized block designs, 303–314
 
Rao’s paradox, 486–487
 

Ratio (scale), 100–101
 
Rational numbers, 27
 
Rationalism, 2
 
Relative risk, 94
 
Relativity, 12–13
 
REML, 273, 279, 281
 
Repeated measures, 314–330
 
Resampling techniques, 119–120
 
Riemann sums, 55
 
Rolle’s theorem, 64
 
Root:
 
mean square error of approximation, 662
 
mean square residual, 661
 

Roy’s largest root, 498
 

Sample:
 
size, ANOVA, 218–219
 
space, 29
 

Sampling distributions, 113–116
 
Saturated models, 121, 647, 658
 
Scalar, 66
 
Scale parameter, 454
 
Scales of measurement, 98–101
 
Scheffé test, 216–217
 
Scree plots, 566
 
SEM as general model, 669–670
 
Semipartial correlation, 392
 
Sensitivity, 98
 
Serial correlation, 375–376
 
Set theory, 20–24
 
Sets of numbers, 26–27
 
Shapiro-Wilk normality test, 224
 
Simple:
 
main effects, 254–256
 
slopes, 418, 423, 430
 

Simultaneous:
 
linear equations, 71, 654
 
regression, 406
 

Spearman’s rho, 128–131
 
Specific variance, 584
 
Specification searches, 665
 
Specificity, 98
 
Spectral decomposition, 704
 
Sphericity, 312–313
 
Standard:
 
deviation, 109
 
error of the estimate, 352
 
form of linear equation, 70–71
 
normal distribution, 79
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Standardize vs. normalize, 82 Tukey: 
Standardized: HSD, 215–216 
regression coefficient (Beta), 343 test for nonadditivity, 311 
root mean square residual, Type I error rate, 484–485 
661–662 Type I, II, errors, xxiii 

Statistical: 
alternative, 86 Unbiased estimator, 106 
inference, 44 Unconditional probability, 31 
vs. physical, 14–15 Uncorrelated predictors, 394 

Stem-and-leaf plots, 154–155 Underidentified, 658 
Stepwise regression, 405, Union (sets), 22 

408–409 
Structural equation modeling, Variance: 

636–674 sample, 108 
Student’s t distribution, 131 components random effects, 276 
Subject, fixed vs. random, 316–317 inflation factor (VIF), 403–405 
Subjective probability, 37–38 of the estimate, 352 
Subset, 20 Varimax (rotation), 599–600 
Substantive alternative, 86 Vector: 
Success vs. failure (binomial), 84 space, 66–67 
Sufficiency, 107 subspace, 67 
Sum: Venn diagram, 20 
of eigenvalues, 565, 684 Vertical asymptote, 56 
of squares and cross-products in Vertical-line test, 50–52 
MANOVA, 493–494 

Welch adjustment, 137, 230 
t-scores, 80 Wilcoxon rank-sum test, 138 
t-test: Wilk’s lambda: 
one sample, 132–136 statistic, 495–497 
two samples, 136–138 and F statistic, 497 

Theorizing, 2–4 
Tolerance, 403–404 Yates’ correction for continuity, 94 
Total effect, 412, 652 
Trace (of a matrix), 683 z-scores, 80–81 
Tucker-Lewis index, 664 z-test for mean, 136 
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