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    Chapter 1   
 International Perspectives on the Teaching 
and Learning of Statistics       

       Dani     Ben-Zvi      and     Katie     Makar    

 “Statistics is a general intellectual method that applies 
wherever data, variation, and chance appear. It is a 
fundamental method because data, variation, and chance are 
omnipresent in modern life” 

(Moore,  1998 , p. 134). 

        D.   Ben-Zvi      (*) 
  Faculty of Education ,  The University of Haifa ,   Haifa ,  Israel   
 e-mail: dbenzvi@univ.haifa.ac.il   

    K.   Makar      
  School of Education ,  The University of Queensland ,   St. Lucia ,  QLD ,  Australia   
 e-mail: k.makar@uq.edu.au  

1.1          Introduction 

 Being able to provide sound evidence-based arguments and critically evaluate data-
based claims are important skills that all citizens should have. It is not surprising 
therefore that the study of statistics worldwide at all educational levels is gaining 
more attention. The study of statistics provides students with tools, ideas and dispo-
sitions to react intelligently to information in the world around them. Refl ecting this 
need to improve students’ ability to think statistically, statistical literacy and reason-
ing are becoming part of the mainstream school and university curricula in many 
countries. As a consequence, statistics education is becoming a thriving fi eld of 
research and curricular development. This book refl ects this trend by introducing 
cutting edge research in statistics education done by scholars from twenty different 
countries across six continents. The studies in this book introduce and empirically 
tackle unique challenges—challenges that students face as they learn statistics, that 
teachers face as they teach students to understand and reason about data, and other 
important theoretical and techno-pedagogical challenges.  
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1.2     The Growing Importance of Statistics  Worldwide   

 Statistics is vigorously gaining importance and recognition in today’s society. 
Statistics is a central tool in moving science, economics, politics, schools, and uni-
versities forward. Quantitative information is omnipresent in media and in the 
everyday lives of citizens worldwide. Data are increasingly used to add credibility 
to advertisements, arguments, or personal and professional advice. Therefore, there 
is a growing public and policy consensus that being able to provide reliable and 
persuasive evidence-based arguments and critically evaluate data-based inferences 
are crucial skills that all citizens of the twenty-fi rst century should have. All stu-
dents consequently must become statistically literate (Gal,  2002 ) and be able to 
reason statistically—even at an informal level—as part of their compulsory and 
lifelong education (Watson,  2006 ). It is not surprising therefore, that attention has 
accelerated over the last decade to the development of data-based reasoning by the 
statistics, science, and mathematics education communities, as well as policy mak-
ers and the general public worldwide. Refl ecting this essential need to improve stu-
dents’ ability to think statistically, statistical literacy and reasoning are becoming a 
necessary and important area of study that involves distinctive and powerful ways 
of thinking in nearly every fi eld (Moore,  1998 ); however, the challenges of teaching 
and learning statistics are numerous.  

1.3      The Challenges of  Learning   Statistics 

 Despite the increasing awareness of the importance of statistical literacy, statistics 
has been viewed by many students as diffi cult and unpleasant to learn. “ Statistics 
anxiety  ” is experienced by as many as 80 % of graduate students (Onwuegbuzie, 
 2004 ). Many university instructors fi nd statistics and research methods courses 
equally frustrating and unrewarding to teach. In schools, mathematics teachers 
often view statistics as a marginal strand in the mathematics curriculum and there-
fore minimize or ignore its teaching. As more and more students study statistics, 
teachers are faced with many challenges in helping these students succeed in learn-
ing and appreciating statistics. According to Ben-Zvi and Garfi eld ( 2004 , p. 4), four 
key challenges dominate the fi eld:

•    Many statistical ideas and rules are complex, diffi cult, and/or counterintuitive. It 
is challenging to motivate students to engage in the hard work of learning 
statistics.  

•   Many students have diffi culty with the underlying mathematics (such as frac-
tions, decimals, algebraic formulas) and that interferes with learning the related 
statistical content.  

•   The context in many statistical problems may mislead the students, causing them 
to rely on their experiences and often faulty intuitions to produce an answer, 
rather than select an appropriate statistical procedure.  

D. Ben-Zvi and K. Makar
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•   Students equate statistics with mathematics and expect the focus to be on num-
bers, computations, formulas, and one right answer. They are uncomfortable 
with the messiness of data, the different possible interpretations based on differ-
ent assumptions, and the extensive use of writing and communication skills.    

 Amid these challenges many teachers endeavor to enable students to develop 
statistical literacy, reasoning, and thinking. There appears to be a consensus among 
statistics educators and researchers that robust statistical literacy, reasoning, and 
thinking are the most important goals for students’ learning statistics, and that these 
goals are not currently being fully achieved (see current review of research on teach-
ing and learning statistics, Garfi eld & Ben-Zvi,  2007 ). The dissatisfaction with stu-
dents’ ability to think and reason statistically, even after formally studying statistics 
at the undergraduate and graduate level, has led to a reexamination of the fi eld of 
statistics education. 

 As the statistics education discipline has evolved and become more distinct and 
separate from mathematics, changes have been called for in the teaching of statistics. 
The reform movement at the introductory statistics university level has long urged 
for instruction to be focused more on data and less on theory, and has called for 
changes in content (more data analysis, less probability), pedagogy (fewer lectures, 
more active learning), and technology (for data analysis and simulations) (Cobb, 
 1992 ; Gould,  2010 ; Moore,  1997 ). At the school level, there are increasing efforts 
worldwide to help students develop an understanding and familiarity with explor-
atory data analysis (EDA), modeling, and simulation rather than teaching them a set 
of separate skills and procedures. New pedagogical approaches are trialed, such as 
inquiry-based learning or project-based learning, combined with increasing efforts 
to integrate technology to reform learning (Biehler, Ben-Zvi, Bakker, & Makar, 
 2013 ). New K-12 curricular programs set ambitious goals for statistics education, 
including developing students’ statistical reasoning and understanding (e.g., 
Australia—Australian Curriculum, Assessment & Reporting Authority,  2011 ; New 
Zealand—Ministry of Education,  2007 ; USA—National Council of Teachers of 
Mathematics,  2000 ; and Project 2061’s Benchmarks for Science Literacy, American 
Association for the Advancement of Science,  1993 ). 

 Several factors have led to these current efforts to change the teaching of statis-
tics at all educational levels. These factors include critical changes: new techniques 
of data exploration; changes in the use of technology and its growing availability at 
home and work; increased awareness of the implications of not developing stu-
dents’ ability to think or reason statistically, despite good performance in statistics 
courses; and concerns about the preparation of teachers of statistics at the K-12 and 
university level, many of whom have never studied applied statistics nor engaged in 
data analysis activities (Ben-Zvi & Garfi eld,  2004 ). However, despite reform efforts, 
many statistics courses at the university level still teach the same progression of 
content and emphasize the same development of skills and procedures. Many stu-
dents still leave their course perceiving statistics as a set of tools and techniques that 
are soon forgotten. Even current methods of teaching continue to focus on the devel-
opment of skills and have neglected to instill in their courses experiences that 
develop the ability to think statistically (Pfannkuch & Wild,  2004 ).   
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1.4     The Challenges of  Teaching   Statistics 

 The rising worldwide appreciation for the importance of an understanding of sta-
tistics, which means that the subject is now taught throughout school levels includ-
ing primary school, has led to a paradigm shift in the conceptualization of statistics 
teaching and statistics teachers’ professional development. Many teachers, whose 
experience is mainly grounded in descriptive statistics, are challenged by recent 
approaches and guidelines for statistics teaching and learning and new ambitious 
curricula programs for students. Such huge shifts in teaching approaches and 
thinking about the nature, role, and purpose of statistics require teacher educators 
to design and implement novel courses that will develop teachers’ statistical think-
ing. It is also assumed that teachers need to acquire not only statistical knowledge 
but also professional knowledge to teach statistics, and that an effective and posi-
tive learning environment can develop in teachers a deep and meaningful under-
standing of statistics and ability to think and reason statistically (Pfannkuch & 
Ben-Zvi,  2011 ). 

 A recent book about this topic (Batanero, Burrill, & Reading,  2011 ) identifi es 
new approaches to enhancing teachers’ statistical literacy that bridge teacher educa-
tion with teaching practice in the classroom. It advocates professional development 
and teacher education to attend to teachers’ attitudes and beliefs (not just knowl-
edge), strengthen teachers’ statistical pedagogical content knowledge, and encour-
age different experiences and initiatives for teaching statistics, especially for 
primary teachers. For example, experiences which empower teachers to teach statis-
tics by engaging them with real data and statistical investigations and connecting 
these experiences to their teaching practice and classrooms are critical to operation-
alizing these recommendations. Although some research directions are promising 
(e.g., Makar & Fielding-Wells,  2011 ), further study in statistics teachers’ education 
is needed to extend and broaden the infl uence of such research.  

1.5     The Challenges of Research in Statistics Education 

 Current trends and challenges of research in statistics education are represented in 
this book. Generally, we identify a tendency to follow the directions set by the 
reform movement of statistics education (Garfi eld & Ben-Zvi,  2008 ). This is evident 
in the emphasis on learning, teaching, and design of learning trajectories around the 
big ideas of statistics (Burrill & Biehler,  2011 ), challenging traditional rote forms of 
instruction and replacing them with active forms of learning which are typically 
enhanced by modern technology. More and more researchers are involved in evalu-
ation of these interventions that aspire to create inquiry-based and collaborative 
learning environments for learners at all ages. These learning environments often 
incorporate authentic data (in many cases, real data, not merely realistic) that learners 
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collect themselves, organize and represent, analyze and infer, and communicate and 
argue fi ndings and insights. The goals of developing students’ statistical literacy, 
reasoning, and thinking are widely adopted, and more interestingly, interpreted and 
operationalized in a wide array of methods. 

 Many studies in this book explicitly study or rely on the use of technological 
tools not only to graph and calculate, but rather enhance creative learning, simulate 
abstract ideas, and experiment with models. From an affective aspect of learning, 
we see a broader range of attitudes toward statistics, including appreciation of the 
power of statistical processes, chance, randomness, and investigative rigor, and a 
propensity to become a critical evaluator of statistical claims. Finally, a range of 
alternative assessment methods are implemented or experimented to better under-
stand and document student learning. 

 There are several current themes of great interest to researchers in the fi eld, exem-
plifi ed well in this collection of international studies. First, an  ongoing empirical 
effort   is taking place to understand the role of context in students’ statistical reason-
ing and especially in their informal inferential reasoning (see the 2011 double Special 
Issue of  Mathematical Thinking and Learning  on this topic, Makar & Ben- Zvi, 
 2011 ). Research suggests that students typically attend either to their statistical 
knowledge or to their contextual knowledge, but fi nd it challenging to integrate these 
knowledge bases (Makar, Bakker, & Ben-Zvi,  2011 ). Many of the studies in this 
book discuss these challenges of integrating the contextual world and the statistical 
world, evident in all stages of the data investigation: transforming the contextual 
research question into a data-based statistical question, developing appropriate 
measurement tools and data collection procedures, and transforming the data analy-
sis results into meaningful and relevant insights on the context. These studies 
address in multiple ways the concerns about how statistical learners can be mis-
guided by their contextual knowledge, pay attention to students’ novel uncertainties 
related to the context rather than merely to statistical uncertainties, and suggest ways 
to support learners to better coordinate statistical and contextual knowledge. 

 Second, the integration of EDA and  probability   is freshly discussed in these stud-
ies. Fifty years ago, when statistics began to shift from being a course designed for 
a limited cohort of future scientists into its appearance in the broader academic cur-
riculum, it still relied heavily on probability. The reinterpretation of statistics into 
separate practices comprising EDA and confi rmatory data analysis (CDA, inferen-
tial statistics) freed certain kinds of data analysis from ties to probability-based 
models, so that the analysis of data could begin to acquire status as an independent 
intellectual activity (Tukey,  1980 ). The introduction of simple data tools, such as 
stem and leaf plots and boxplots, paved the way for students at all levels to analyze 
real data interactively without having to spend hours on the underlying theory, cal-
culations, and complicated procedures. Computers and new pedagogies later com-
pleted the “data revolution” in statistics education (Ben-Zvi & Garfi eld,  2008 ). 
Studies in this book try to take advantage of new visualization, simulation, and 
modeling tools to reexamine the heart of statistics teaching and learning. It seems 
that the time is ripe for a new balance between approaches to EDA and probability, 
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perhaps through enhanced modeling and simulation approaches, but much more 
innovative design, experimentation, and fi eld testing remains crucially needed. 

 Third, the number of  studies   about teachers in this book is impressive. It refl ects 
the growing understanding that teachers are the driving force in reforming statistics 
education. No doubt, the key to prospering statistics education starts with teachers 
themselves. However, many teachers do not consider themselves well prepared to 
teach statistics nor face their students’ diffi culties (Batanero et al.,  2011 ). The issues 
that are discussed in these studies are complex and varied, for example: teachers’ 
statistical pedagogical content knowledge, teachers’ attitude to statistics, the chal-
lenge of effective professional development, and classroom teaching practices (e.g., 
teachers’ questions in class). 

 Fourth,  technology   continues to draw researchers’ attention in growing num-
bers. Progress in the understandings of teaching and learning of statistical reason-
ing and the availability of innovative technological tools for learning statistics 
have enabled to integrate and readily capitalize on these advances (Biehler et al., 
2013; Chance, Ben-Zvi, Garfi eld, & Medina,  2007 ). The studies on technology in 
this book  provide a fresh perspective on advances in digital technologies and how 
they can support the development of students’ statistical reasoning. Technology is 
used in these studies at the school level as well as in tertiary education, school-
workplace vocational setting, public sector, assessment, and the development of 
teachers. Many challenges are still ahead of us in fulfi lling the educational promise 
and added value of technologies to maximize the potential of learning technologies 
in statistics education. 

 Finally, but perhaps the diamond in the statistic  education research   crown, are 
the studies focusing on students’ learning of statistics. We fi nd it meaningful that the 
current studies emphasize new issues such as linguistic and discourse aspects of 
learning and understanding (such as ambiguity), application of knowledge out of 
school (e.g., border crossing in vocational education), and connecting critical think-
ing and statistical reasoning.  

1.6      Looking Forward: The  International Perspective   

 The impressive achievements of statistics education to improve its teaching and 
learning in a handful of countries have not yet arrived in all corners of the globe. 
Many countries still lack suffi cient resources, updated curriculum materials, effective 
professional development of teachers, and current technologies, infrastructure essen-
tial to carry on the reform movement in statistics education. Citizens in these coun-
tries are especially in need of becoming literate consumers of data that are vital for 
improving the quality of life, monitoring and promoting social justice, economic 
growth and the environment. They are deserving, like any citizen of the world, to own 
the power of data literacy, to be able to add credibility to their claims, and create and 
critically evaluate data-based evidence. Progress in the understandings of teaching 
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and learning of statistical reasoning and the availability of high-quality technologi-
cal tools for learning statistics should be shared with and by everyone, to help every 
country, region, school, and teacher worldwide to integrate and readily capitalize on 
these advances. 

 The studies in this book serve as a contribution in these directions. An arena for 
collaboration in synergetic cross-country research and development projects can be 
created, and a sense of inclusiveness is nurtured and encouraged in this book. It is 
essential to empirically test novel theoretical and practical ideas, successful in one 
context, in other countries and settings to learn more about their local and global 
affordances and constraints. 

 It is encouraging to see the diversity, creativity, richness, and novelty of the con-
tributions across six continents. It is a sound evidence for the growing numbers of 
enthusiastic and able scholars, the success of statistics education community world-
wide, and the increasing recognition that statistics education is receiving in the edu-
cational world, especially in the mathematics and science education. While some 
countries are facing the enormous challenge of introducing statistics into the 
national curriculum for the fi rst time, others are experimenting and evaluating with 
a second or a third wave of curricular reforms that already include strong  ingredients 
of data and chance in the school level. We embrace this diversity, but urge all 
involved to increase the international collaboration, sharing and contribution, to the 
mutual benefi t of our future citizens of the world.   

1.7     Introducing the Book 

 This growing interest in statistics education throughout the world is refl ected in the 
research presented in this book. This collection was contributed by the members of 
 Topic Study Group 12 (TSG-12)   on Teaching and Learning Statistics at the Twelfth 
International Congress on Mathematics Education (ICME-12) that took place in 
July 2012 in Seoul. The researchers in  TGS-12   came from 20 different countries 
and varied signifi cantly by experience, background, and context. The enthusiasm 
and passion for statistics education and the sense of community among its members 
is refl ected in this book. They all shared a common desire to improve statistics edu-
cation by focusing their research on students’ and teachers’ conceptual understand-
ing rather than rote learning and teaching, and developed collegial professional 
networks that supported the discussion of research in statistics education from 
around the world. 

 Talented, ambitious, and articulate young scholars and graduate students joined 
senior researchers from various countries in contributing to this book. It is encour-
aging to see the fl ourishing nature of statistics education research among young 
people, those who will soon be the future leaders of the statistics education com-
munity. Many of them are situated in remote areas or alone in their country, with 
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few opportunities to share and discuss their ideas, successes (and failures) with 
other researchers. Therefore, the  TSG-12   meetings and the creation of this book 
were important opportunities for them to expose their work to others, get useful 
feedback, and start a dialog with other researchers. 

 The book is a valuable resource that presents the breadth and diversity of 
empirical and practical work done currently around the world. The diversity in the 
study themes is inspiring. A wide range of methods are used to respond to the 
research questions, from case studies of single students or teachers, aiming at 
deeply understanding their reasoning processes, to large-scale experimental stud-
ies attempting to generalize trends in the teaching and learning of statistics. 
Various epistemological stances are taken and used. Some researchers theoreti-
cally analyze the epistemology of a statistical concept, or web of concepts, to cre-
ate a “knowledge map” of statistical ideas, which is then used to design innovative 
instructional materials or analyze teachers and students’ learning. Others refer to 
personal learners’ epistemology, the ways they view, apply, and control their own 
statistical knowledge. 

 All levels and types of education are studied, refl ecting the growing spread of the 
teaching of statistics globally. The teaching and learning of statistics is portrayed in 
the book in designed settings for young children, students in formal schooling, ter-
tiary level students, vocational schools, and teacher professional development. A 
diversity is evident also in the choices of what to teach (curriculum), when to teach 
(learning trajectory), how to teach (pedagogy), how to demonstrate evidence of 
learning (assessment), and what challenges teachers and students face when they 
solve statistical problems (reasoning and thinking). This large scope of diversity in 
research focus is fascinating and raises great hopes for the richness and growth of 
statistics education research in years to come. 

 The 38 chapters in this book are organized thematically in the following order:

    1.    Integrating the contextual and the statistical worlds   
   2.    Challenges in learning statistics at the school level   
   3.    Challenges in learning statistics at the tertiary level   
   4.    Technology in statistics education   
   5.    Statistics teachers and teaching     

 While most of the chapters are extended empirical reports, some are shorter 
reports (marked with an asterisk at the end of their title); these authentic and 
thought-provoking short reports are mostly authored from emerging scholars. 

 We hope that the integration of theories, empirical evidence, and instructional 
methods in these chapters can eventually help students and teachers to develop their 
statistical thinking worldwide. These ongoing efforts to reform statistics instruction 
and content have the potential to both make the learning of statistics more engaging 
and prepare a generation of future citizens that deeply understand the rationale, 
perspectives, and key ideas of statistics. These are skills and knowledge that are 
crucial in the current age of information.     
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    Chapter 2   
 Young Students’ Mental Modelling 
of Statistical Situations       

       Andreas     Eichler      and     Markus     Vogel    

2.1             Introduction 

 The review of Jones and Thornton ( 2005 ) referring to the recent decades of research 
in stochastics education yields the following results: The   Piagetian period    (e.g. 
Piaget & Inhelder,  1975 ) and the   Post - Piagetian Period    (e.g. Fischbein,  1975 ) gen-
erated empirical knowledge about the development of the probabilistic reasoning of 
students without schooling. Beyond that, in the   Contemporary Period    research pro-
vides empirical insights into the development of both probabilistic reasoning and 
statistical reasoning of students in the classroom as well as artifi cial learning envi-
ronments deduced from research approaches according to intervention studies 
(Jones & Thornton,  2005 ). However, there is still a lack of empirical knowledge 
about the statistical reasoning of students without systematic schooling in situations 
of uncertainty that are not only focused on probability, and that are not mainly 
reduced to situations that could be modelled by Laplace experiments (cf. Mokros & 
Russel,  1995 ). 

 For this reason, our research approach aims for students’ reasoning in situations 
of uncertainty that predominantly involve statistical data of random events and 
necessitate modelling with empirical (frequentist) probability. We are especially 
interested in how young students without schooling in stochastics deal with simple 
statistical situations of their daily life experience (Eichler & Vogel,  2011 ). 
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  University of Education Freiburg ,   Freiburg im Breisgau ,  Germany   
 e-mail: andreas.eichler@ph-freiburg.de   

    M.   Vogel      
  University of Education Heidelberg ,   Heidelberg ,  Germany   
 e-mail: vogel@ph-heidelberg.de  

mailto:andreas.eichler@ph-freiburg.de
mailto:vogel@ph-heidelberg.de


14

 Accordingly, essential questions of our research are: How do students deal with 
simple statistical situations of their workaday life? What features do they take into 
account when they build up a mental model to cope with the situation’s demands? 

 We use an exploratory study to gain empirical knowledge concerning these 
research questions. Thus, the focus of our research is to develop our theoretical 
framework concerning reasoning of students not having been taught in stochastics, 
but not to prove systematically hypotheses that are deduced from an established the-
ory. In this chapter, we fi rst outline the foundation of our theoretical framework and 
discuss the theory-based development of tasks. Afterwards, we describe the method 
of the exploratory study and, fi nally, discuss exemplary results of our research.  

2.2     Theoretical Framework 

 There are two crucial aspects determining the topic of our research questions: the 
statistical situation and the students, each with their individual characteristics. The 
relationship between available skills (including their development) of the students 
and the problem-determining conditions (including their mental cognition) is 
needed to be theoretically refl ected on. Accordingly, our theoretical framework is 
based on two theories concerning the development of students’ thinking (Siegler, 
 1996 ) and the structure of students’ thinking according to the theory of mental 
models (Johnson-Laird,  1983 ). In the following two sections, we briefl y explain 
both theories. 

2.2.1      Development   of Thinking Processes 

 In recent decades, scientists of different disciplines report research results contra-
dicting the Piagetian stage development theory. For example, Biggs and Collis 
( 1982 , p. 21) state: “As we analysed the responses of hundreds of elementary, high 
school, and college students in several different subject areas, we found that the 
assumptions of stage theory [here the Piagetian stages of development are meant] 
did not hold”. 

 Instead of a static categorisation of a student’s  thinking development  , we are fol-
lowing Siegler ( 1996 ) whose research results demonstrate that children’s thinking is 
far more variable than a staircase-based model suggests. He ascertained a lot of 
empirical evidence for children of a given age using a variety of strategies. This 
applies to different children as well as to an individual child (Siegler,  1996 ). Siegler 
described the development of children’s thinking as “overlapping waves” with each 
wave corresponding to a different rule, strategy, theory, or way of thinking. Within 
this metaphor children’s development of thinking is envisioned as a gradual ebbing 
and fl owing of changing ways of thinking, with new approaches being added and 
old ones being eliminated (Siegler,  1996 , p. 86). 

A. Eichler and M. Vogel
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 Siegler ( 1996 ) aims for explaining the observed variability of children’s thinking. 
This variability depends on different factors, like specifi c circumstances, require-
ments and available knowledge, which infl uence a child’s concrete actions within 
different situations.  

2.2.2     The Structure and Function of Thinking Processes: 
Mental Models 

 Highlighting the situation and its constituting characteristics when analysing 
children’s thinking is also a main aspect of the theory of mental models (e.g. 
Johnson- Laird,  1983 ).  Mental models   are defi ned as representations of an entire 
situation in contrast to both the semantic representation of isolated propositions 
of a situation and the representation of superfi cial features of a situation 
(Kintsch,  1998 ). There is empirical evidence that mental models are not to be 
seen as fi xed structures of memory being only recalled (Baguley & Payne, 
 1999 ). Following the information processing model of Schnotz and Bannert 
( 1999 ), mental models are constructed individually according to a task and its 
requirements within a situation representing the structure as well as the function 
of the modelled object in an analogous way. Thus, mental models potentially 
show interpersonal differences. 

 Referring to the structure representing the static aspect of mental models, 
Johnson-Laird ( 1983 , p. 156) states: “A  mental model   […] plays a direct represen-
tational role since it is analogous to the structure of the corresponding state of affairs 
in the world—as we perceive or conceive it”. An  essential process   of mental model-
ling a situation’s structure is recognising the physical objects of the situation, e.g. a 
die and its characteristics, as well as the relationship of these objects and their char-
acteristics. Given data are also to be seen as being part of a situation’s structure 
because they represent results of a process having passed. Concerning the dynamic 
aspect of mental models, i.e. the function, Seel ( 2001 ) suggests that, when coping 
with demands of a specifi c situation, the learner constructs a mental model in order 
to simulate relevant aspects of the situation to be cognitively mastered. Thus, the 
function of mental models allows for deriving answers via mental simulation of 
systems by anticipating possible results given for example by throwing dice. Mental 
simulations do not result in quantitatively exact conclusions but in qualitative ideas 
about the expected outcomes of such simulations (De Kleer & Brown,  1983 ). These 
“ qualitative simulations  ” (De Kleer & Brown,  1983 , p. 155) require sense making 
about the system or process that should be simulated, its constituent components 
and their relationships. 

 According to Schnotz and Bannert ( 1999 ) mental models are hypothetical inter-
nal quasi-objects. Thus, they can only be inferred from observable information 
which represents mental modelling of a situation or task, the conditions of a stu-
dents’ specifi c situation (experience, pre-knowledge) and students’ outcomes after 
working with tasks (written responses, videotapes).   

2 Young Students’ Mental Modelling of Statistical Situations
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2.3     Theory-Based Task Construction 

 According to our research focus and our theoretical approach we regard static and 
dynamic characteristics impacting on the structural relationships and dynamic 
behaviour of simple statistical situations when we thought about adequate tasks’ 
construction. We distinguish: 

  Structure  of a  statistical situation  : The tasks should refer to simple situations of 
decision making which could be expected easily to be understood by children of a 
given age. The structure is expected to be essentially judgeable by analyses of 
 objects  (including people) being involved in the situation as well as their relation-
ship. In addition, given  data  representing former events should yield important 
information. 

  Function  of a  statistical situation  : The tasks should demand for generating data 
(not necessarily in physical reality but in mind) and for  mental simulation  to come 
to a prognostic decision on basis of the available information. Thus, the function of 
a statistical situation is expected to be adequately estimated. 

2.3.1     Model of  Complexity Levels   

 According to this distinction as well as to our theoretical framework we deduced 
theoretically a hierarchal model of complexity levels. The levels of task complexity 
in this model are developed according to the degree of the visibility of  objects  and 
 data  that mainly impact on the data generation in a given situation. Further, we 
understand an explicit demand for  mental simulation  in a task as further challenge 
for students. For the tasks we have used in our studies we identifi ed four different 
levels (some tasks are explained exemplarily later). 

 From a theoretical point of view, it can be summarised: The more information 
about  data  and  objects  is given on the one side and the less demands with regard to 
mental simulation are requested, the more easily is a task to be estimated. Of course, 
this theoretical deduction has to be empirically proven. This was one of the goals of 
our empirical studies. Before we present some empirical results in the following 
section, we will exemplify the task construction by some concrete tasks.  

2.3.2     Examples 

 We constructed four pairs of tasks. Each pair refers to a statistical situation which is 
well known for the students, e.g. in the  money game task   (Fig.  2.1 ). A pair of tasks 
is divided in two subtasks. One subtask refers to a small data sample (Fig.  2.1 , left 
picture on right side). The other subtask refers to a bigger data sample (Fig.  2.1 , 
right picture on right side).

A. Eichler and M. Vogel
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   The tasks are from different levels of complexity with regard to the different 
criteria displayed in Table  2.1 . For example, in the  money game task   (Fig.  2.1 ) both 
the data as well as the objects which mainly impact on the situation are given. Thus, 
the process and results of data generation are made visible. In the money game task, 
there is no need for mental simulation in terms of mentally anticipating results. 
However, the formulation “Who is better (at throwing a coin)”? demands for a decision 
which contains at least indirectly a mental simulation based on the situation’s structure 
comprising objects and data. Summarising with regard to the model of the tasks’ 
complexity (Table  2.1 ), the money game task is on the lowest level: data and objects 
and, thus, the data generation are visible. Moreover, the task does not include an 
explicit request for mental simulation, i.e. a prediction of a future event.

   Examples for more complex levels were the so-called  car task   (low level) and the 
die task with the highest level of complexity according to the model shown in 
Table  2.1 . With regard to be short of pages these tasks are presented in a nutshell only 
giving an overview (for details and for the other tasks see Eichler & Vogel,  2012 ).   

2.4     Method 

 Our research approach and our main research questions mentioned earlier are part 
of a research programme which includes both quantitative as well as qualitative 
studies. In the following, we will especially focus on those analyses of one study 
which we have carried out for getting answers with regard to the tasks’ construction 
and accordingly to the students’ performances in dealing with these tasks. 

In a game two players have to throw a coin (”Cent-Müne“) near the wall
(”Wand“).

The first player throws the coin... and the coin end’s near the wall

The player, Who has thrown the coin nearer to the wall, is the winner.

Andreas and Markus have trained to throw the coin an reached the following
result

Andreas Markus

Andreas Markus

Who would be better in throwing a coin? Give a rationale for your answer:

  Fig. 2.1    The money game task       

     Table 2.1    Criteria determining a model of the tasks’ complexity (task names in brackets)   

 Four levels of complexity  Data  Objects  Mental simulation 

 Lowest (money game)  Given  Given  No explicit demand  
 Low (car)  Given  Given  explicitly Requested 
 High (M&M)  Given  Partly given  explicitly Requested 
 Highest (die)  Not given  Partly given  explicitly Requested 
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2.4.1      Participants   

 In the study we report on, 134 students of grade 4 (primary school, about 9–10 years 
old) and grade 6 (secondary school, about 11–12 years old) participated. In Germany, 
there are different types of secondary schools. Thus, the sample for grade 6 is 
divided into students from secondary schools with potentially lower performances 
(Hauptschule; coded with HS) and schools with potentially higher performances 
(Gymnasium; coded with Gym). All students participating in this study have not 
been taught in stochastics before.  

2.4.2      Material   and Procedure 

 All students were asked to solve a set of four tasks. These four tasks were from dif-
ferent levels in terms of our model. On each level a pair of tasks is divided in two 
subtasks comparably to the example of the money game task mentioned earlier. 
Overall, there were two different task sets with each task consisting of one of the 
two subtasks mentioned earlier. In each class half of the students’ group get one of 
the two sets of tasks. We randomised the students’ assignment to one of the two sets 
of tasks. The students had 45 min to work on the tasks. By each task they were asked 
for a decision or an answer and for a rational. We avoided any intervention in terms 
of giving students further information about the tasks.  

2.4.3      Data   

 Concerning the students’ performances in dealing with the tasks mentioned ear-
lier the frequency of different levels of the quality of students’ rationales was of 
primary interest. Thus, these rationales were coded for using an adaption of the 
SOLO model of Biggs and Collis ( 1982 ) including the following complexity 
levels of responses (in comparison to a specifi c adaption of Watson & Moritz, 
 2000 ): prestructural level, unistructural level, multistructural level and relational 
level. We illustrate each level by one student’s rationale concerning the money 
game task (see Table  2.2 , we assign the category 0 if the students did not provide 
any rationale). The coding was done independently by two researchers to con-
fi rm reliability.

   This fi rst step of the analysis is aimed to arrange the students’ solutions for each 
task in a hierarchical structure to facilitate investigating differences in these solu-
tions regarding age. In a second step, we interpreted the students’ rationales differ-
entiated by our SOLO adaption levels to identify potentially different types of 
mental models underlying the students’ solutions and to characterise these types 
(for details see Eichler & Vogel,  2012 ).   
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2.5     Results 

2.5.1      Quantitative Results   for Proving Aspects 
of the Theoretical Framework 

 We have reason for assuming that the complexity level of the tasks representation, 
which is defi ned by the visibility of objects and data in the task and the request of 
mental simulation, correlates with the students’ performance. 

 Figure  2.2  illustrates some computations of the comparison of the students’ solution 
for each pair of tasks. These results fi t our theoretical model of the tasks’ complexity. 
Thus, a task of a theoretically defi ned lower level of complexity seems to be also empir-
ically seen more diffi cult for the students: The students’ performances decrease. This 
effect proves to be signifi cant particularly if more than one step of increased complexity 
is considered. When the comparison over two steps of the complexity levels is regarded, 
all differences prove to be statistically signifi cant as well as to be (adequate) practically 
signifi cant (Cohen’s  d  ≈ 0.5). Figure  2.2  (right side) shows the  p -value of a  t -test refer-
ring to the means that represent the students’ performance of two different tasks.

   Although the one-step differences between the low and high level as well as 
between high and highest level are also remarkable they proved not to be statisti-
cally signifi cant. Deeper analyses of students’ rationales lead to the assumption that 
the car task (low level, see Table  2.3 ) sometimes was interpreted in an unintended 
way, which might hinder statistical signifi cance. Eliminating the car task from the 
analysis the aforementioned differences are without exception signifi cant.

   With regard to age-related  differences   we found that although students of grade 
6 achieve slightly higher than students of grade 4 (Fig.  2.3 , left), these differences 
are statistically not signifi cant ( t -test;  p  = 0.227). This fi nding meets the expectations 
according to the situational paradigm of our theoretical framework, or said it the 
other way round: If we had found statistically signifi cant differences, we have had 
empirical reason for reconsidering the theoretical foundation.

   Table 2.2    Codes and examples to the codes   

 Code  Example 

 Code 1, prestructural level: no or, respectively, 
no relevant justifi cation of the response 

 “Markus is better” (grade 6, HS) 

 Code 2, unistructural level: justifi cation of the 
response contains a single feature of the 
situation’s structure concerning objects or data 

 “Markus is better, because three coins are 
close to the wall” (grade 6, HS) 

 Code 3, multistructural level: justifi cation of the 
response contains more than one, although 
isolated features of the situation’s structure 
concerning objects or data 

 “Markus because he has some coins close 
to the wall. However, he has also a lot of 
coins far away” (grade 6, HS) 

 Code 4, relational level: justifi cation of the 
response contains interrelated features of the 
situation’s structure concerning objects or data 

 “Andreas is better. On average, he has the 
most coins at a point close to the wall. By 
contrast, Markus has his [coins] close to the 
wall and more far away [from the wall]” 

2 Young Students’ Mental Modelling of Statistical Situations
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   Besides from that we also looked for differences with regard to school form to 
enrich database for further studies. Here, we found signifi cant differences on all 
complexity levels except from the low level including the car task (lowest level: 
 F  = 8.688,  p  < 0.001; low level:  F  = 1.355,  p  = 0.262; high level:  F  = 4.540,  p  = 0.012; 
highest level:  F  = 5.851,  p  = 0.004; distribution of, e.g. the money game task, see 
Fig.  2.3 , right).  

   Table 2.3    Examples of tasks   

 Task  Car task (low level)  Die task (highest level) 

 Situation 

            

 A player starts an automatically 
accelerated car several times beginning 
from a fi xed starting line. Each time the 
cars’ end position is marked on the fl oor 

 In this game, the player wins when 
he gets a three in the next throwing 
of a die. A cuboid die and the 
ordinary die are available 

 Question  Mark the position(s) where the next car 
(the next two cars) could stop. Give a 
rationale for your answer 

 Which of the dice would you take 
for the next throw? Give a rationale 
for your answer 

 Judgement  Data: given; objects: given (player, car); 
mental simulation: requested 

 Data: not given; objects: partly 
given (dice); mental simulation: 
requested 
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  Fig. 2.3    Differences in students’ performances       
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  Fig. 2.2    Comparison of the tasks concerning the representation complexity       
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2.5.2      Qualitative Results   to Develop the Theoretical 
Framework 

 Besides the results being presented to prove aspects of our theoretical framework 
quantitatively, we gained insights into students’ reasoning from qualitative analy-
ses. We briefl y discuss most important results for purposes of illustrating possible 
directions of theory development. 

 The students’ rationales differ with respect to their quality coded according to 
our adaption of the SOLO model. However, the students’ rationales also differ 
within a specifi c model level, in particular concerning the students’ perception of 
 objects  and  data . 

 In all tasks the students identify different objects (human or non-human), as well 
as different characteristics of an object to mainly impact the data generation, but the 
students’ also differ in their identifi cation within a level of the SOLO model. For 
example, concerning the die task about 25 % of the students’ identify the dice’s roll-
ing to mainly impact on the result of throwing the dice whereas also 25 % of the 
students identify the characteristics of the dice’s sides: 

 Student GS27:  “I would take the die on the right side [the ordinary die], because it 
is a square” (prestructural level). 

 Student Gym27:  “The die on the right [the ordinary die], because it rolls better” 
(prestructural level). 

 Just as well, the students differ in their perception of a given data distribution. 
For example, referring to the money game task, 10 % use the minimum of the coin 
distance for their written rationales, and about 45 % use one of each, the centre and 
the maximum of coin distances. The differences are existent also in one level of the 
SOLO model: 

 Student GS16:  “Markus is better, because he has two coins [directly] located at the 
wall” (unistructural level). 

 Student GHS24:  “Andreas has performed better, since he is closer [to the wall] if 
the rear coins are included” (unistructural level). 

 To analyse differences in the students’ perception of objects and data in a given 
situation with uncertainty seems to be crucial for two reasons: On the one side, the 
analysis of the students’  perception   of both objects and data yields an insight of 
students’ reasoning beyond their categorising according to the SOLO model. On the 
other side, this analysis could potentially provide a theory based and empirically 
guided development of a diagnostic tool. Thus, the better a student is able to ade-
quately perceive the main characteristics of objects and data in a given situation the 
more adequate seems to be his mental model and, in particular, his mental simula-
tion of a situation. However, we found that the students’ perception of a statistical 
situation is strongly infl uenced by the situation itself. For example, we have proved 
different levels of the tasks’ complexity. However, the tasks’ complexity seems to 
explain the students’ reasoning as a group only, but not a student as an individual. 
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For example, about 50 % of the students provide an increase of the quality of their 
rationale from one task to another although the complexity of the fi rst task is lower 
than that of the other task.   

2.6     Discussion and Conclusion 

 In this report, we explained our research into young students’ mental modelling of 
statistical situations by embedding our research questions in the fi eld of existing 
research into stochastic education. We identifi ed the characteristics of a statistical 
situation and a student’s reasoning as being constitutive for mental modelling within 
a specifi c situation of uncertainty. Accordingly, our theoretical framework is based 
on theories of development of thinking process of Siegler ( 1996 ) and mental model 
theory (e.g. Johnson-Laird,  1983 ) because these theories allow for highlighting the 
dependence of reasoning of a specifi c situation. Based on this, we deduced theoreti-
cally a hierarchal model of complexity levels of tasks representing (simple) statisti-
cal situations and developed two sets of tasks which exemplify this model. 

 Summarising the quantitative analyses of our study we can state with regard to 
the hierarchical model that the theory-based construction has been empirically 
proven in general but in detail some modifi cations have to be refl ected on when 
revising material for further studies. With regard to the students’ performances we 
found no remarkable differences between fourth and sixth graders but with regard 
to school forms. These fi ndings we read in being consonant with implications of our 
theoretical framework. 

 The results of our qualitative analyses concerning this study affi rm the quantita-
tive results and yield interesting more in-depth information about students’ mental 
modelling: Analysing the students’ rationales qualitatively in detail allowed us to 
distinguish different qualities of argumentations on the same level of our SOLO 
adaption with regard to the problem situation being resolved into objects, data and 
mental simulation as determining elements. Thus, according to the situational para-
digm of our theoretical framework the claim for individual and problem-specifi c 
considerations could be met in a more adequate way. 

 This gives us reason to be confi dent for being able to develop a theoretically 
founded and empirically proven diagnostic tool in our future work. Furthermore, 
our database leads us to focus in further studies on questions of long-term effects 
and classroom implementation when we ask for improving young students’ mental 
modelling within statistical situations of their workaday life.     
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    Chapter 3   
 Children’s Wonder How to Wander Between 
Data and Context       

       Dani     Ben-Zvi      and     Keren     Aridor-Berger   

3.1             Introduction 

 Aiming to make statistics meaningful and motivated for students, statistics teaching 
increasingly becomes context based, using authentic activities that are signifi cant 
for the students (Garfi eld & Ben-Zvi,  2008 ; Wild, Pfannkuch, Regan, & Horton, 
 2011 ). One result of this trend is the growing interest in studying the role of context 
in developing students’ statistical reasoning (Makar & Ben-Zvi,  2011 ). This chapter 
discusses the relations between data and context in learning to make informal statis-
tical inferences (ISIs) by examining a pair of fi fth-grade students’ emergent under-
standing in a growing samples approach. We briefl y review the literature on data 
and context, Informal Statistical Inference (ISI), Informal Inferential Reasoning 
(IIR), and the growing samples approach. We present several episodes that demon-
strate students’ transitions between the context and data worlds, and their growing 
understanding of the ways to integrate and use the two worlds.  

3.2     Literature Review Data and Context 

 Statistics is the science of learning from data (Moore,  2005 ) that involves data pro-
duction, data analysis, and statistical inference (Moore,  1997 ). Exploratory Data 
Analysis ( EDA  )    was suggested by Tukey ( 1977 ) to make sense of data by organiz-
ing, describing, representing, and analyzing them—relying on informal analysis, 
visual displays, and technology (Cobb & Moore,  1997 ; Garfi eld & Ben-Zvi,  2008 ). 
In EDA we search iteratively for patterns and trends to gain more insight about the 
data while combining local and global views of them (Ben-Zvi & Arcavi,  2001 ; 
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Konold & Higgins,  2003 ). The purpose of a statistical investigation is to exploit 
data to gain insights about a realistic event (Makar & Ben-Zvi,  2011 ) in its own 
context world (Wild & Pfannkuch,  1999 ). Thus, the recognition of data as “numbers 
in context” (Moore,  1990 , p. 96) is critical to the development of statistical reason-
ing (Langrall, Nisbet, Mooney, & Jansem,  2011 ). 

 The notion of context has been studied in various disciplines and was given dif-
ferent meanings (e.g., Boaler,  1993 ). Our  interpretation   of the  context world  in the 
current study relies mainly on the idea of  context knowledge —the knowledge about 
the context of the situation from which the statistical investigation arises (Gal, 
 2002 ). Important part of the context knowledge is the knowledge about the process 
of data collection (Pfannkuch,  2011 ). 

 The integration between the preacquired knowledge emanating from the context 
of the problem (such as beliefs, theories, dispositions) and the knowledge arising 
from the data allows interpreting and explaining the data rather than just manipulat-
ing it (Moore,  1990 ). Moreover, the frequent tension between these two types of 
knowledge can elicit the development of new insights about the problem in its con-
text (Dierdorp, Bakker, Eijkelhof, & van Maanen,  2011 ; Makar, Bakker, & Ben-Zvi, 
 2011 ). 

 A  statistical investigation   can be described as a tapestry, in which its warp threads 
are the statistical knowledge, and the woof threads are the context knowledge 
(Cobb,  1999 ). 

 Statistical reasoning that does not fully consider these crisscross knowledge 
bases is not complete.  Experienced researchers   make ongoing transitions between 
the data world and context world during the statistical investigation. This transfer 
from data to context helps explain phenomena seen in the data in its context, while 
the opposite transfer helps answer new questions about the data and change the 
researcher’s initial understanding (Wild & Pfannkuch,  1999 ). Konold and Higgins 
( 2003 ) describe this process as “a give-and-take conversation” between the hunches 
of the expert researcher about the investigated problem and the “story” that the data 
tells about these hunches. 

 These analogies emphasize the importance of the context in a statistical investi-
gation, suggesting that context that is integrated in authentic environment and driven 
by authentic goals can scaffold the development of IIR by providing the investiga-
tors with a common language, through which they can better express their statistical 
ideas. However, the use of context might be an obstacle when, for example, the 
application of the context investigation as the main evidence allows the investigator 
to ignore the data (Makar et al.,  2011 ).  

3.3     ISI and IIR 

 A statistical inference is a generalization of the data in hand expressed by probabi-
listic language and evidenced by and extends beyond the data (Makar & Rubin, 
 2009 ).  Informal Statistical Inference  ( ISI  )    is a theoretical and pedagogical approach 
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for developing statistical reasoning, while connecting between key statistical ideas 
and informal aspects of statistical inference by making such inferences informally 
(Garfi eld & Ben-Zvi,  2008 ). The main goal of teaching ISI is to deepen the under-
standing of the purpose and the gain that can be driven of the data and its interpreta-
tions (Makar & Rubin,  2009 ). 

 The reasoning process leading to making ISIs is called  Informal Inferential 
Reasoning  ( IIR  , Makar et al.,  2011 ).  IIR   is a cognitive activity engaged in formulat-
ing generalizations (e.g., conclusions, predictions) from random samples of data 
using various statistical tools, while paying attention to evidence and uncer-
tainty (Ben-Zvi, Bakker, & Makar,  2015 ). The development of students’ IIR can 
bridge informal data exploration to formal statistical inference later (Ben-Zvi, Gil, & 
Apel,  2007 ). IIR can be nurtured by an inquiry-based learning environment with 
suitable tasks, tools, teacher scaffolds, and inquiry drivers (such as doubt, explana-
tion, and resolution of cognitive confl icts) that focus on statistical concepts, statisti-
cal tools, and context knowledge (Makar et al.,  2011 ). An example for a useful 
educational approach that can support the development of IIR is the “growing sam-
ples” task design.  

3.4      Growing Samples   

 A key element of the current design of the educational materials is the approach of 
 growing samples —an instructional idea mentioned by Konold and Pollatsek ( 2002 ), 
worked out by Bakker ( 2004 ,  2007 ), and elaborated by Ben-Zvi ( 2006 ). Starting 
with small datasets, students go through investigations of random samples with 
increasing sizes, taken from the same population (e.g.,  n  = 10 cases, a class  n  = 30, a 
grade  n  = 90, a school  n  ≈ 500), where they are asked to make   informal inferences    
for each of them and to  predict  about their conclusions for an even larger sample. 
The goal for students is to develop their IIR by experiencing the strength and con-
straints of different size samples, and by examining the roles of context and data and 
their connections. This approach can be helpful in supporting coherent reasoning 
with key statistical concepts such as data, distribution, variability, tendency, and 
sampling (Bakker,  2004 ). It can also help students observe aggregate features of 
distributions, identify signals in them, account for the uncertainty in their infer-
ences, and provide persuasive data-based arguments (Ben-Zvi,  2006 ).  

3.5     Research Question 

 The goal of this case study is to characterize fi fth-grade students’ evolving under-
standings and use of the data and context worlds and the relationship between them, 
while they engage in drawing ISIs in growing samples investigations. In particular, we 
focus on illuminating the ways in which the connections between the two worlds 
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evolve and are expressed. Given this context, the two main research questions are: 
(1) How does the process of  building connections   between the context and the data 
worlds look like among young students? (2) How does this process  develop   over time?  

3.6      Method   

 To address these questions we draw on data from the 2010  Connections  Project in 
three Grade 5 classrooms in Israel. In this Project (2005–present) a group of 
researchers and teachers design and study an inquiry-based learning environment to 
encourage the development of statistical reasoning in grades 4–6 using  TinkerPlots  
(Konold & Miller,  2005 ).  

3.7     The  Setting and Participants   

 The fi fth-grade students participated in fi ve extended data investigations (each last-
ing 2–3 lessons of 90 min). In each investigation, students iteratively posed research 
questions, organized their sample data using  TinkerPlots , and interpreted it in order 
to draw informal inferences. Each lesson included a short whole class preview dis-
cussion about the investigated topic, an extended hands-on data investigation sup-
ported by  TinkerPlots  in small groups, and a closing whole class presentation and 
discussion of students’ informal inferences. The students investigated data collected 
by themselves in a survey of four grades in their school (270 cases, 33 attributes, 
such as free time activities, body dimensions). 

 According to the growing samples design, students were given updated larger 
sample and asked to compare it to the previous sample and draw inferences infor-
mally. These informal inferences were derived by “what-if” questions in order to 
speculate what can be inferred about the next and larger sample taken from the same 
population. Students started investigating a sample of eight students from their 
class, continued to 27 cases (the entire class), then 81 cases (a grade level), and 
fi nally 270 cases (four grades). We focus on one pair of academically successful and 
articulate boys—Liron and Shay—following the development process of their sta-
tistical reasoning about data and context. Their investigations were fully videotaped 
using   Camtasia™    to capture both their computer screen and discussions.  

3.8     The Episodes 

 The episodes were selected from Shay and Liron’s fi rst two independent data inves-
tigations with  TinkerPlots . In the fi rst episode, the pair studied issues of free time 
(e.g., what students do in their free time) using a sample of eight students from their 

D. Ben-Zvi and K. Aridor-Berger



29

class (including themselves) with 11 attributes. They were guided by a handout that 
included questions about sampling and inference, e.g., “Would the conclusions you 
have reached apply also to a larger group of students in your class, for example, half 
of the class? Please explain.” In the second episode, the sample size was increased 
to 27 (their whole class) and they were asked to investigate if their conclusions still 
held for the larger sample.  

3.9      Data Analysis   

 The videos were carefully observed, transcribed, translated from Hebrew to English, 
and annotated for further analysis of the development of students’ reasoning about 
data and context. We used interpretive microgenetic method (Siegler,  2006 ) taking 
into account verbal, gestural, and symbolic actions within the situations in which 
they occurred. Interpretations were discussed until consensus was reached.  

3.10     Results 

 The following results illustrate the boys’ statistical reasoning about data and context 
while making informal inferences, from initial primary reliance on data or context 
(Episodes  1  and  2 ) to a growing level of integration of data and context (Episodes  3  
and  4 ). 

3.10.1      Episode 1: Focusing Primarily on Data 

 In the fi rst activity the boys analyzed a small sample of eight cases. Frustrated from 
their initial inability to make any sensible inference from the small sample, Shay 
and Liron searched for an attribute in the dataset whose graph was not too “spread 
out,” as Shay phrased it. Only when they looked at a plot of the number of after- 
school  activities   per week (Fig.  3.1 ), they became more confi dent about drawing a 
conclusion from the data.

0 1 2 3 4 5 6
after_school_activity_in_a _week

  Fig. 3.1    A TinkerPlots stacked dot plot of the number of  after school activities   per week       
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 34  S  Hmm, we got that it’s usually three, that in a week there are three kids a  
 35  L  Wait a minute, there is one [child] b  with six, you know. I bet you it’s Shira [a female 

student in their class] 
 36  S  How do you know? 
 37  L  It doesn’t matter. Four, four [three] after-school activities 
 38  S  Well, in short … 
 93  L  Three is the biggest. It is the most frequent 
 40  S  According to what we see, the most frequent here is three. What we see is that it can be 

said also that the average here is three. The average here is three 

   a The translation from Hebrew to English was made to preserve the authenticity of the original 
utterances at the expense of correct English phrasing. Differences between Hebrew and English 
connotations of words were extensively discussed 
  b Insertions in square brackets represent our best guesses of what students mean given the context 

    Shay and Liron are encouraged by the clear signal they identifi ed in the after- 
school activity graph (Fig.  3.1 ). However, their response to this fi nding was differ-
ent. Liron was aware of the problem context when he focused on one student [35] 
and the mode [37]. Unlike him, Shay viewed the data as numbers by focusing on the 
mode and average with no reference to the attribute in question or the context. He 
seems to examine the graph as a mathematical object detached from its context, and 
a few minutes later, when he saved this fi le, he even used a wrong title not related to 
the context. We regard these initial negotiations with the role of context in the 
unknown EDA fi eld as an aspect of an enculturation process (e.g., Ben-Zvi & 
Arcavi,  2001 ): entering and picking up the points of view of a new discipline.  

3.10.2      Episode 2: Focusing Primarily on the Context World 

 After several  investigation cycles   on different attributes, Shay and Liron felt they 
have extracted all available information from the data and moved on to report their 
work in writing. When they were requested to formulate an interesting question on 
free time based on the data at hand, Shay suggested: “How much free time do you 
have? I don’t know how to formulate this. I mean those things you have to go to, like 
school and after-school activities, which you have them, and have to go to them at a 
certain time.” In formulating this question, Shay ignored the data at hand (that did 
not include such an attribute) and reasoned with his context knowledge. He also 
offered ways to collect new data in order to answer it. When the interviewer pointed 
that they were to use their given data, Shay complained that the given sample 
“doesn’t help,” nevertheless the boys tried formulating another question.

 103  S  So I think of [another question], I think I have an idea: Do you feel … 
 104  L  That you have free time? 
 105  S  Yes. That you have free time 
 106  L  No, it is not [such a good idea] … 
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 107  S  No, I think that it is [a good idea]. If you fi nd out there are kids that feel they are 
stressed … Wow, there are so many kids who feel stressed. This is not a good 
thing—you need to give them freedom. Or if you fi nd out that there are kids that feel 
free, then you’ll see, then you’ll see, wow, yes! [Writing down this question, “do you 
feel that you have free time”?] 

 108  S  [Reading from the handout] OK, “Organizing and analyzing the data.” But we don’t 
have data! 

   In spite of the interviewer’s explicit request to constrain themselves to data in the 
sample, Shay suggested a question about an attribute that did not exist in this sam-
ple, based on his context knowledge and personal experience. His abductive expla-
nation [107] (Gil & Ben-Zvi,  2011 ) eventually convinced Liron to accept this 
proposal. It seems that their disappointment of what the “data world” (represented 
by the sample) offered them so far [108] led them to focus their reasoning primarily 
on the context world.  

3.10.3      Episode 3: Context and Data Worlds Becoming Partly 
Connected 

 In the second data analysis activity, the sample was increased to 27 cases (the whole 
class).  The   students were asked to examine whether their previous inferences still 
held for the larger sample. The following dialog took place when they compared the 
graphs of the two samples (Fig.  3.2 ).
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  Fig. 3.2    Activity in free time by  gender  : ( a )  n  = 8, ( b )  n  = 27       
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 359  S  Now, you see [looking at Fig.  3.2b ]? … I see my hypotheses materializing! Boys like 
computers more than girls do. Girls like going to friends more than boys do. Where 
is sports? 

 360  L  Sports they are both together [Boys and girls like sports equally] 
 361  S  Wow, that’s it, right 
 362  L  You are right, it is as if boys are into … 
 363  S  I was sure that boys are into sports more than girls 
 364  L  Yes, me too 
 365  S  But it [looking at Fig.  3.2b ] is exactly the same [as Fig.  3.2a ]! It is similar to the 

previous data [the small sample], look! 
 366  L  Yes, and still, right, because this is 27 kids from our same class 

   The beginning of this dialog derived its power mainly from the data and its 
graphical representations. Shay was astonished by the similarity between the plots 
of the two samples (Fig.  3.2 ) and the reinforcement it provided to their previous 
hypotheses and inferences [359]. This contradicted his previous anticipation that 
the small sample cannot tell him anything about the larger sample. However, one 
aspect of the data was disturbing for them: girls like sports equally to boys [360]. 
Here the data confl icts with their contextual preconception that, “boys are into 
sports more than girls” [363]. A choice between the data and their context knowl-
edge had to be made. In accepting that boys and girls like sports equally, Shay’s 
reasoning seems to rely more on the data than on his personal context knowledge. 
But this was not always the situation. For example, the following dialog took 
place when Shay and Liron addressed similar questions concerning the whole 
school population.

 605  Int.  Now I’m interested to hear your description of the whole school … who starts? 
Liron 

 606  L  [The whole school is] very different [than our class sample] 
 607  Int.  Very different? Why? Different in what? 
 608  L  Different in what? Let’s say the kids of the school are from grades 7–9; they do 

more sports during the breaks. I see them all the time playing soccer and tag. All 
sorts of stuff like these [pointing with the cursor at the sports category in the plot, 
Fig.  3.2b ] 

 611  S  I think, I want to say: I agree with Liron that if we defi ne a larger range of ages, 
then there will be also [more] boys, because boys like sports more than girls 

 612  Int.  Really? Do you claim that what seems here the same [boys and girls in sports] will 
be [different when the sample is increased]? 

 613  S  [Ignores the question] And also there will be boys who like to go to friends, a lot, 
like how it is [pointing with his hand toward the screen] 

 614  int.  Which here [the current sample, Fig.  3.2b ] there is none [no boy likes to go to 
friends] 

 615  S  No one 

D. Ben-Zvi and K. Aridor-Berger



33

   When asked to describe the distribution of the whole school, Shay and Liron had 
to imagine a larger population with a larger range of ages (grades 1–9). Once again 
they paid attention to the confl ict between the data and their contextual preconcep-
tion that boys prefer sports more than girls. This dialog, unlike the previous one, 
derived its power mainly from their context knowledge about children in different 
ages [608, 611]. In the context of a prediction task [605], when data about other age 
levels were not available, their reasoning was dominated by their context knowl-
edge, while keeping an eye on the sample data by frequent pointing at its plot and 
emphasizing the difference between the distributions.  

3.10.4      Episode 4:  Integrating   Context and Data 

 So far, we presented Shay and Liron’s shuttling back and forth between the data and 
context worlds. Toward the end of the second investigation, the boys integrated the 
worlds more often, by providing abductive explanations, raising conjectures or 
drawing informal inferences, in which data and context were both taken into 
account. For example, the following dialog took place when the boys addressed a 
prediction question concerning the fi fth-grade population. Liron speculated that the 
whole grade’s graph would maintain the proportion among the categories as in the 
class’ graph except for minor changes.

 537  Int.  Try to think of something typical [in the distribution of the whole grade] 
 538  L  The computer. These are modern times; most of the kids prefer computers over 

music 
 539  S  Or over reading books 
 540  Int.  And is this the picture you see here [in the class, Fig.  3.2b ] too? 
 541  L  Yes 
 542  Int.  You have just said something general. You have said: “most of the kids” 
 543  L  Computer games, trrr tik [pretends counting the cases in the computer category, 

Fig.  3.2b ], and music is three, it’s a lot 
 544  S  Computer games are the most 
 545  L  And reading is just me, only I did this activity 

   The interviewer’s question at the beginning of the dialog referred to the data 
world [535]. However, Liron integrated both context and data in his answer. 
Beginning from his context knowledge, he explained why children preferred a com-
puter over watching television or reading a book [538–9]. He used the data at hand 
as evidence [543] to support his claim, comparing the frequencies of attributes and 
his personal outlying case as the only student that preferred reading.   

3 Children’s Wonder How to Wander Between Data and Context



34

3.11     Discussion 

 The examples brought above from Shay and Liron’s investigations provide some 
insights on young students’ building an understanding of the roles and relations of 
the context and the data worlds in an inquiry-based learning environment. Based on 
interpretive microgenetic analysis of video data, we sketched a nonlinear back and 
forth reasoning process of the students, strewn with many diffi culties and chal-
lenges. The episodes presented the students’ progress from initial transitions 
between the two worlds to their gradual meaningful integration. In our case, stu-
dents’ reasoning derived initially more often from their context knowledge rather 
than from the data at hand. During this long and complex stage, the students oscil-
lated between the two worlds, putting aside or completely rejecting one of the 
worlds and returning to it later. We speculate that this behavior can be attributed to 
the small sample size used at the fi rst activity (according to the growing samples 
design) and students’ lack of fl uency in graphicacy and in EDA. As the data analysis 
activities progressed and different investigations were experienced, students made 
more and more use of the connections between the worlds. These emergent connec-
tions were present in their explanations, predictions, and informal inferences, in 
which both worlds were considered. 

 This development in students’ reasoning seems to be supported by the growing 
samples curricular design, the interviewer’s interventions, and the social interac-
tions between the students. The growing samples design helped increasing students’ 
confi dence in their ability to infer from the data and explain their informal infer-
ences by weaving the two worlds. The use of prediction questions especially sup-
ported students’ reasoning since they had to imagine what the population would 
look like based on both the data at hand and their context knowledge. They were 
thus forced to use both worlds simultaneously. Situations of confl ict between the 
data and context were particularly catalyzing, in a similar manner to what is 
described in other studies (e.g., Ben-Zvi, Aridor, Makar, & Bakker,  2012 ). This 
process was enhanced also by the interviewer’s persistence on asking the students’ 
for clarifi cations of their prediction by providing data-based evidence and abductive 
explanations. Students’ collaborative work also assisted in this process especially in 
situations in which each of the boys inferred from a different perspective. This elic-
ited fruitful discussions that contributed to the development of their reasoning about 
data and context. 

 This concise description of the way young children wander between the data 
and context worlds while learning to make ISIs is far from being exhaustive 
and therefore still full of wonder. In our ongoing research, we intend to culti-
vate the above ideas and questions in order to shed more light on the role of 
different types of contexts, instructional situations, and learning environment 
designs in helping students confidently integrate data and context in informal 
inferential reasoning.     
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    Chapter 4   
 Supporting Students to Develop Concepts 
Underlying Sampling and to Shuttle Between 
Contextual and Statistical Spheres       

       Adri     Dierdorp    ,     Arthur     Bakker     ,     Jan     van     Maanen    , and     Harrie     Eijkelhof    

4.1              Shuttling Between  Contextual and Statistical Spheres   

 This chapter deals with a fundamental challenge in educational design: to stimulate 
students to shuttle back and forth between a contextually phrased problem and sta-
tistics. The importance of moving between the contextual world of life and the sta-
tistical world of symbols is stressed in many different areas. Many contextual 
problems can be solved with the help of statistics. However, the results of computa-
tion or modeling need to be evaluated on their merits and validity in the context. 
More generally, Wild and Pfannkuch ( 1999 , p. 228) stressed the signifi cance of 
“shuttling between the contextual and statistical spheres.” 

 From the literature, we know that such shuttling is not easily promoted in stu-
dents. Ainley, Pratt, and Hansen ( 2006 ) propose to focus on the purpose of tasks and 
utility of what is learned. A purposeful task is one that has a meaningful outcome 
for the student, for example, in terms of an engaging problem. Utility is the con-
struction of meaning for the ways in which mathematical concepts are useful. 
Ainley et al. ( 2006 , p. 25) consider “the provision of authentic tasks inherently 
problematic,” but we think that suitable authentic contexts can provide both purpose 
and utility. The approach we investigate in this chapter is to base tasks in upper 
secondary education on problems from authentic professional practices. Research 
has shown that such a design approach can help students see the purpose of what 
they do in classrooms and the utility of what they learn. However, such an approach 
might come at the expense of conceptual learning. 
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 The aim of this chapter is to examine whether realistic tasks, inspired by authentic 
professional practices, and embedded in appropriate teaching, can in principle support 
students’ conceptual understanding of sampling in such a way that they also learn to 
shuttle between contextual and statistical spheres. To us, this “shuttling” not only 
includes students’ application of statistical knowledge, but also seeing the purpose 
of the task, and the utility of what they learn.  

4.2      Concepts Underlying Sampling 

 Basing tasks on situations from authentic professional practices has been studied in 
science education, but much less so in statistics education (Dierdorp, Bakker, 
Eijkelhof, & van Maanen,  2011 ). Here we focus on sampling to help students see 
the utility of correlation and regression and shuttle between the contextual and sta-
tistical spheres. Sampling is considered a key aspect to the teaching of  informal 
inferential reasoning  . For example, Pfannkuch ( 2008 , p. 1) argued: “when students 
are not aware of sampling their informal inferential reasoning is limited.” We 
address fi ve concepts underlying sampling (inspired by Pfannkuch,  2008 , p. 4) 
which are important for students’ statistical reasoning: sample size, random process, 
distribution, intuitive confi dence interval, and relationship between sample and 
population. We address these fi ve concepts one by one and show later that we rec-
ognize these concepts in students’ reasoning. The chapter’s focus is schematically 
represented in Fig.  4.1 .

Purpose

UtilitySolution

Professional

  Fig. 4.1    Shuttling between the contextual and statistical spheres during the sampling tasks       
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4.2.1       Sample  Size   and  Law of Large Numbers   

 Students need to understand that increasing sample size generally leads to better 
estimates of probability and population characteristics. For understanding sampling 
it is therefore necessary that students develop a concept of sample size. A “big idea” 
connected with sample size is the law of large numbers which says that predictions 
become more reliable when made from larger than from smaller samples.  

4.2.2      Random Process   

 Students also need to realize that random processes such as repeated measurements 
of the same phenomenon will lead to different outcomes. Then they can understand 
that inferences are infl uenced by the drawn sample.  

4.2.3      Distribution   

 The aforementioned concepts underlying sampling relate to the big idea of distribu-
tion. Rubin, Bruce, and Tenney ( 1990 ) argued that a sample gives the practitioner 
information about the distribution of a population and that this is a central idea of 
statistical inference. Drawing enough samples can support students’ understanding 
that the shape of the graph obtained by a “bigger” sample becomes more similar to 
the graph of the population as a whole. Confronting students with samples of 
increasing sizes, so-called growing samples, can help students to become more 
aware of emerging distributions by means of stabilizing measures of variation (ten-
dency) and smoothening shape (e.g., Bakker,  2004 ).  

4.2.4      Intuitive Confi dence Interval   

 Shaughnessy ( 2006 , p. 87) argues that students “should have a sense of the reason-
ably expected variability around the expected value, something as a confi dence 
interval.” In real life, predictions are not based on one value obtained by a regres-
sion line because often a margin around the predicted value is essential. For exam-
ple when a physiotherapist fi nds a client’s peak heart rate just under the value 
predicted by a common formula he or she will not worry (Dierdorp et al.,  2011 ). He 
has a sense of what could be called an intuitive confi dence interval.  

4 Supporting Students to Develop Concepts Underlying Sampling and to Shuttle…



40

4.2.5     Relationship of Sample and Population 

 Research into school  statistics reports   the problems students have in drawing 
inferences that make sense in the context (Makar & Rubin,  2009 ). One problem of 
how to draw sensible inferences is caused by a lack of awareness of variability 
when generating samples. Samples often provide a distorted image that is yet in 
some way representative.  

4.2.6     Research Question 

 Given the problems and challenges mentioned in Sect.  4.1 , and the complex multi-
faceted concepts underlying sampling summarized in Sect.  4.2 , we formulated the 
following  research question  : How can students be supported to develop concepts 
underlying sampling and shuttle between contextual and statistical spheres?   

4.3     Method 

 The research question is addressed through two case studies that were part of a 
design experiment on correlation and regression with a twelfth-grade group of 13 
students and an eleventh-grade group of 16 students from the preuniversity track. 
Both groups had opted to study the school subject “Nature, Life, and Technology.” 
The fi rst group was taught by the fi rst author. The second group was taught by 
another teacher, with the fi rst author observing and interviewing. Two sample tasks 
covered three of the 23 lessons, each 50 min in both schools. Students used Fathom 
for drawing samples and Excel for making their own scatter plots to investigate their 
results from the sampling software. 

4.3.1     Sampling  Tasks   

 To stimulate students to develop concepts underlying sampling and to shuttle 
between contextual and statistical spheres, we designed two realistic tasks based on 
authentic professional practices. 

 To stimulate students’ reasoning about sampling we drew on a professional prac-
tice, namely, research on peak heart rates (PHR). Gellish et al. ( 2007 ) measured 
many people and found a different relationship (PHR = 207−0.7A, with A as age) 
between age and peak heart rate than the one typically used in sport physiotherapy 
(PHR = 220−A). We provided the students with their data set of 908 measurements. 
In the Heart rate task, we asked the students if we could do with a smaller sample: 
What smaller sample size would be suffi cient to fi nd a reliable formula that is close 
to the original formula based on Gellish et al.’s data set? 
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 The task is based on the instructional idea of growing samples. Such an approach 
is helpful in supporting coherent reasoning about sampling, distribution, and other 
statistical key concepts (Bakker,  2004 ). The students started with Gellish et al.’s 
data set and regression line, and then investigated smaller samples to fi nd the small-
est sample size that still produced a reliable model using the sampling option in 
Fathom. We conjectured that the question about how small a sample can be and still 
allow a suffi ciently reliable inference can stimulate students to reason about all fi ve 
aforementioned sampling concepts (and not just one aspect of sampling at the time, 
as happens in atomistic approaches to task design). 

 The second task is inspired by the practice of monitoring the height of dikes. 
A dike is an artifi cial construction to prevent fl ooding. Dike monitoring is essential 
for the Netherlands because large parts of the country are below sea level. A persis-
tent problem is that dike heights decrease over time. If the height reaches a “critical 
value” (so named by the Ministry of Transport and Water Management) high sea 
and river water levels are a danger. 

 We introduced the Dike sampling task: Keeping in mind the high cost of mea-
surement, what smaller sample would still have led to a reliable prediction of when 
the critical value will be reached? The students got 44 real data points of the devia-
tions of a dike location. 

 The students could change the sample size and got the corresponding scatter plot 
with a regression line and a formula. They had to decide themselves which number 
of measurements was required to fi nd a reliable prediction based on a smaller sam-
ple which is close to the prediction obtained by the regression line for the complete 
set. The students were only told that they had to save money by reducing the number 
of measurements. 

 To address the research question, we sought an effi cient way to check if our tasks 
could in principle support students’ concepts underlying sampling and their shut-
tling between context and statistics. To this end, it seemed suffi cient to use case 
studies of students working with these tasks. 

 The fi rst case study focused on Rick, aged 17. While Rick worked on the tasks, 
we video recorded his activities and transcribed the spoken text. To identify which 
sampling concepts were at stake in the interaction, we divided the transcripts into 26 
fragments of interactions between students or between student(s) and teacher. Each 
fragment consisted of several turns, that is, the spoken text of a person which is not 
interrupted by another person as a turn. Each fragment was coded by means of inter-
pretive microanalysis with one or more items of the fi ve aforementioned concepts 
underlying sampling. 

 The second case study focused on two 11th-grade students, Sean and Kars, 
both aged 17 from another yet similar school. Sean and Kars were both motivated 
students, and their school results were similar to Rick’s. Sean and Kars wrote in 
their questionnaires that they were not familiar with the authentic professional 
practices or the statistical techniques central in the tasks. This second case study 
focuses on the Dike sampling task, during which the researcher observed and inter-
viewed the students. We video recorded the interaction and transcribed the spoken 
text. To analyze what teachers may need to do to stimulate students to shuttle 
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between the contextual and statistical spheres, we divided the transcripts into 
three phases and categorized the researcher’s attempts to help them shuttle back 
from statistics to context.   

4.4     Results 

 We present the results of the analysis of the data collected during the Heart rate and 
Dike sampling tasks and show what kind of reasoning about sampling these tasks 
potentially support. 

4.4.1     Developing Concepts Underlying Sampling (Case 1) 

 Case study 1 was carried out to investigate the potential of the tasks to support stu-
dents’ development of concepts underlying sampling. We fi rst present a  quantitative 
impression  . 

 From the rather well-balanced distribution of codes across the different concepts 
underlying sampling, we conclude that the tasks have the potential to raise students’ 
concepts underlying samples. Many fragments were coded by more than one con-
cept suggesting that these concepts were developed and used in relation to each 
other. In the following subsections, we illustrate the fi ve conceptual concepts under-
lying sampling. The origin of excerpts is indicated by Fn, where  n  is the number of 
the fragment.  

4.4.2     Sample Size 

 From the eleven fragments in sample  size   column of Table  4.1 , we infer Rick had 
developed a sense of sample size and law of large numbers. For example, he 
expected that when the sample size becomes big enough the regression coeffi cients 
would stabilize. He also formulated it reversely as follows:

   Rick [F4]: You get [when drawing 100 instead of 500 cases] more variability. 
More deviations but the line will have a negative slope. The intersection with the 
vertical axis will be different too. By changing the number of cases you can monitor 
the effect on the regression line. 

 This last sentence may indicate that he understood the utility of sampling. In 
other words, he seemed to understand why the concept of sampling is useful in this 
task. When he drew samples of size 50 he mentioned the difference of the coeffi -
cients of the regression lines when executing samples of this same size. He 
 mentioned that when he drew bigger samples, he would expect a formula closer to 
the original formula of the population. Such examples indicate that Rick was aware 
of the effect of sample size and had a sense of the law of large numbers.  
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4.4.3      Random Process   

 There were indications that Rick developed understanding of the concept of random 
process during his work on the task. At fi rst, he believed that a bigger sample size 
would lead to a more reliable regression line, but when he took a sample of size 100 
he noticed that the regression coeffi cients deviated more than those of the last sam-
ple of size 50. He then realized that a relatively small extension of sample size 
would not necessarily lead to a “better” formula and tried to explain this with the 
concept that the software randomly sampled the higher PHR. The teacher tried to 
stimulate a refl ection on Rick’s former statement that a higher amount of cases 
would imply a formula for the regression line more similar to the original. Rick 
seemed to be clear about the fact that the randomness of the sample leads to unpre-
dictable outcomes and that it is not necessary [F7] to fi nd a regression line more 
similar to that of the larger set when taking a slightly bigger sample. We see this as 
growth in Rick’s understanding of how samples behave.  

4.4.4      Intuitive Confi dence Interval      

 Rick mentioned that with bigger samples the points were getting closer together. He 
entered all regression coeffi cients in a spreadsheet, seemed to be aware of an inter-
val per sample size, called this “margin,” and found a margin for samples size of 200 
and up acceptable to make a prediction. Rick considered a margin around an 
expected value: “Till 200 it is too varied, if you do not combine. It can be a coinci-
dence. You can build a safety margin. Then you go to 250.” He explained that the 
margin of the slopes he found at size 200 could be small as the result of coincidence 
and thought that a sample size of 200 would allow him to predict a reliable regres-
sion line. When he said “if you do not combine” he probably meant that this is only 
the case when focusing only on the slope. For safety reasons he suggested a sample 
size which was one “step” bigger, such as 250. The fact that Rick mentioned a safety 
margin supports that the realistic context of this task may have provoked him to 
reason about the outcomes.  

4.4.5      Distribution   

 In previous lessons the students discussed the role of a physiotherapist using a 
regression line to advice his clients. Rick and his fellow students decided that a cli-
ent’s peak heart rate must be in a margin around the regression line. When the 
teacher asked Rick if he expected a larger correlation when drawing a larger sample, 
he answered negatively and explained: 

 Rick [F13]: When you start taking random values and do so the tenth time, taking 
random values, they are still random. Only the margin will become more colored 
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[fi lled by colored dots]. It will not be wider and will never become narrower and 
never become much wider. 

 This excerpt indicates Rick’s sense of margin and distribution and that he seemed 
to be aware of the purpose of the task. He expected the margin to be about the same 
for each sample size. Only when drawing a sample with a bigger size did he men-
tion that the margin became more colored. Probably, he mentioned this because he 
expected more points within the margin when the sample is larger. 

 Rick considered the shape of the distribution (see Fig.  4.2 ) which he called “a 
trumpet shape.” From his remarks it was clear that he had expected to see a stabiliz-
ing trumpet shape. He saw this shape in the Dike sampling task as well. This time 
he did not draw the trumpet but only mentioned: “You see again the trumpet shape.” 
At this point we proceed with the Dike sampling task, in which students were chal-
lenged to apply what they had learned in the Heart rate task.

4.4.6        Relationship Between Sample and Population 

 Rick showed some understanding of a relationship between sample and  population   
and seemed to be aware of the purpose of the task: to fi nd a smaller sample size in 
order to save money and still have a reliable formula for the regression line. He said 
to his fellow student Eline: “It [software] plots the regression line. Then you are 
able to see how much points [measurements] can be saved and still fi nd a reliable 
regression line [F18].” Further analysis suggests that Rick was aware of the pur-
pose of the task and the utility of sampling. Rick talking about the reliability of a 
sample with a certain size indicates that he thought about the relationship between 
the sample and population distribution. He compared the results of every sample 
with the results of the original set. The observations gave us indications that other 
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  Fig. 4.2    The trumpet shape distribution of the slopes of regression lines obtained by growing 
samples drawn by Rick       
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students also developed conceptual understanding of the relation between the sample 
distribution and population distribution, but shuttling back to the context was not 
obvious to them. Many only considered the trumpet shape distribution of the slope 
to consider the sample size for making a reliable inference. Only Rick and Eline 
shuttled between the spheres basing their inference on the total effect on the defor-
mations instead of only looking at the slope of the regression line.  

4.4.7     Using the Dike  Sampling Task  ’s Potential to Improve 
Students’ Shuttling (Case 2) 

 To study how a teacher can use the task potential to improve students’ shuttling 
between the statistical and contextual spheres, we carried out another case study. 
From this case study we present the Dike sampling task, in which the researcher 
needed to put a great deal of effort in supporting Sean to link back to the context. 
We distinguished three phases in Sean’s working on the task with his fellow student 
Kars: Phase 1: in which students were self-reliant working on the task, Phase 2: with 
several types of questions and hints by the researcher, and Phase 3: in which the 
students were self-reliant working on the researcher’s context question. 

 During the fi rst 20 min (Phase 1), Sean and Kars worked self-reliantly. Although 
all tasks were based on authentic professional contexts and the students seemed to 
see the purpose of the task, they stayed in the math world focusing on formulas: 

 Sean:  The slope [−0.00124, slope of the regression line at sample size 20] is 
almost the same [as from the original formula, −0.00123]. 

 Kars: Yes, the  b  too [the  b  from  y  =  ax  +  b ; −2.74 vs. −2.8]. 

 After about 20 min, when the researcher discovered that Sean and Kars reasoned 
without referencing back to the contextual problem, he tried to focus their attention 
to the contextual meaning of their decisions in several ways (Phase 2). To gain 
insight into the support that the researcher gave, we classifi ed his turns as informa-
tive questions, with which he tried to fi nd out what the students did and meant 
( n  = 10), revoicing questions and remarks in which he rephrased the students remarks 
( n  = 7), explanation questions to fi nd out why they did certain actions ( n  = 5), instruc-
tional support to do general suggestions ( n  = 2), and reducing degrees of freedom 
support to let the students shuttle between the contextual and the statistical sphere 
( n  = 1). Despite the researcher’s questions, Sean and Kars stayed focused on the 
slope of the regression line and did not use the context. Often the slope was different 
only in the fourth decimal, and they thought that the formula obtained by sample 
size 30 was close enough to the original formula. They judged this purely on the 
basis of the formula, whereas the researcher hoped they would think through the 
contextual consequences of the differences between the regression formulas. 

 At the end of phase 2, the researcher again tried to reduce the degrees of freedom 
and asked more specifi cally about the difference in days between the prediction 
based on the regression line with sample size 30 and the prediction based on the 
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original formula based on a sample of 44 (Phase 3). Sean and Kars then continued 
to work self-reliantly on this question. They used the spreadsheet to calculate the 
day for which according to the regression line  H  = −10, and found that the random 
sample with size 30 produced a regression line which would imply raising the dike 
almost a year later than the original line. Then they realized that the context asked 
for a more precise approach. Because Sean and Kars were no longer satisfi ed with 
sample size 30, they decided to take samples of other sizes. For each sample they 
also calculated the difference between the corresponding calculated predicted days 
and the day when the original formula would predict the critical value of −10 mm. 
They also calculated the average of differences for each sample size. They decided 
that in this context sample size 40 was acceptable. They were disappointed that they 
only saved four measurements, but when the researcher asked how much money 
would be involved in skipping four helicopter fl ights, they were more satisfi ed. This 
last case study indicates that the students were focused on the mathematical con-
cepts of the tasks. The researcher repeatedly had to emphasize the contextual prob-
lem to stimulate the shuttling back to the contextual sphere. He had to reduce the 
degrees of freedom by asking about specifi c contextual consequences of difference 
in the formula obtained by their sample and the original formula.   

4.5     Conclusion and Discussion 

 Our research question was how students can be supported to develop concepts 
underlying sampling and to shuttle between contextual and statistical spheres. It 
seems possible to use authentic problems from professional practices to design 
tasks that are purposeful from a student perspective and lead students to see the util-
ity of what they learn. This might help students apply what they have learned. 
However, it is not self-evident that students develop rich conceptual understanding 
from authentic tasks because designers seem to have less control about what stu-
dents learn conceptually. We wanted to know whether it is feasible, in principle, that 
students see purpose and utility while also developing a rich conceptual understand-
ing of what is at stake, in this case sampling. In response we conclude that the analy-
ses show that the realistic sampling tasks, inspired by authentic professional 
practices, are rich and focused enough to stimulate reasoning about the concepts 
underlying sampling in a balanced way and in relation to each other. This seems an 
advantage over atomistic approaches to statistics education that deal with aspects of 
concepts one by one (cf. Bakker & Derry,  2011 ) and this seems to address Ainley 
et al.’s ( 2006 ) concern that engaging tasks seem to be less focused. 

 Because with task design the devil is in the detail, it is worth speculating on what 
makes the sampling tasks suitable in helping students develop the main concepts 
underlying sampling in relation to each other. We think this has to do with the ques-
tion of asking how small a sample can be so that the inference is still reliable. This 
explicitly requires reasoning about sample size and the relation between sample and 
population. Moreover, the issue of randomness comes up when students compare 
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samples with the same size when trying to judge if inferences are reliable. When 
comparing samples of the same size, intuitive confi dence intervals and distributions 
also come into play. These fi ndings are in line with earlier fi ndings at the middle 
school level that tasks based on growing samples have the potential to stimulate 
students to reason about multiple facets of distribution and uncertainty. 

 We also wanted students to shuttle between contextual and statistical spheres. 
More concretely, we think it is important they learn to model contextual problems 
and apply their statistical knowledge, but also focus on purpose and utility. The pur-
pose of the tasks was clear for the students involved: to fi nd a smaller sample size in 
order to save money and still have a reliable formula for the regression line. It seemed 
that they did see the utility of sampling in order to fi nd such a reliable formula. 

 By means of a second case study, we explored what types of questions teachers 
may need to ask. What helped best was to ask specifi c questions about practical 
consequences of mathematical issues (e.g., what would such a small difference in 
coeffi cients mean in terms of the prediction?). 

 We addressed a persistent design challenge and do not claim to have solved it. 
More research is needed to investigate the support students need to shuttle between 
contextual and statistical spheres. More specifi cally, we suggest investigating teach-
ers’ scaffolding of students’ shuttling.     
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    Chapter 5   
 The Language of Shape       

        Pip     Arnold       and     Maxine     Pfannkuch    

5.1             Introduction 

 The power of statistical data analysis lies in describing and predicting aggregate 
features of data sets that cannot be noted from individual cases (Bakker,  2004 , 
p. 100). 

 In a New Zealand national assessment, students in year 11 (age 15) are expected 
to be able to undertake a statistical investigation about a comparison situation. The 
assessment requires students to (in brief): pose an appropriate comparison investi-
gative question; select and use appropriate display(s); give summary statistics; dis-
cuss features of distributions comparatively, such as shape; and communicate 
fi ndings in a conclusion. For many years teachers have struggled with exactly what 
describing the shape of a distribution means and recent research on informal infer-
ential reasoning (IIR) identifi ed describing shapes of data distributions as an area 
where students demonstrated impoverished reasoning (Pfannkuch, Arnold, & Wild, 
 2011 ). Discussions were held with overseas experts and a clear solution was not 
evident, though fl edgling ideas existed. These ideas were developed into activities 
to explore several aspects of distribution including the language of shape, making 
predictions and building a contextual knowledge base about shape.  
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5.2     Literature Review 

 Over the last 10 years there have been a number of research projects with a focus on 
distribution and students’ reasoning about distribution; for example, the Freudenthal 
Institute team (Bakker,  2004 ; Bakker & Gravemeijer,  2004 ), the Nashville team 
(McClain,  2005 ; McClain & Cobb,  2001 ) and the 2005 Fourth Statistical Reasoning, 
Thinking and Literacy Research Forum focused on reasoning about distribution. 
Five themes emerged from the research: (1) the notion of distribution, (2) measures 
of centre, (3) shape of distributions, (4) predicting distributions and (5) contextual 
knowledge. This chapter will focus on the shape of distributions and describing 
distributions. 

  Distribution   is a multi-faceted notion involving centre, spread, skewness, shape 
and density (Bakker,  2004 ; Ben-Zvi & Amir,  2005 ; Konold, Higgins, Russell, & 
Khalil,  2004 ; McClain,  2005 ; Pfannkuch,  2005 ; Reading & Reid,  2006 ). Students 
need to consider measures of centre, measures of spread, where the majority of data 
values are in relation to extreme values, and how density and skewness provide 
detail about shape when viewing distributions. It is this global reasoning, the coor-
dination of these ideas that makes distribution a complex notion that students fi nd 
diffi cult (Ben-Zvi & Arcavi,  2001 ; delMas, Garfi eld, & Ooms,  2005 ; Hancock, 
Kaput, & Goldsmith,  1992 ; McClain & Cobb,  2001 ). 

 Describing shapes of distributions has had fl eeting mention, with Bakker ( 2004 ) 
providing the only real depth in work on shape. Despite the relative superfi cial 
exploration of shape, there are some starting points to consider. Firstly, the type of 
graph used to display the data has a major infl uence on students’ ability to perceive 
shape. For example, box plots and even histograms at earlier ages can prove a prob-
lem for students to use as they are too abstract and the actual data cannot be seen 
(Bakker,  2004 ; Friel, Curcio, & Bright,  2001 ). Dot plots, on the other hand, provide 
an initial starting point for students to explore shape along with simple case-value 
bar graphs (Bakker,  2004 ; delMas et al.,  2005 ). Pfannkuch ( 2005 ) suggests that  dot 
plots and stem-and-leaf plots   can provide a strong basis for interpreting and under-
standing distributions and students can transition from them to box plots. Most criti-
cally displays used should allow sense to be made of the information with as much 
ease as is possible (Friel et al.,  2001 ). Secondly, Bakker ( 2004 ) suggests that  single 
univariate distributions   are a good starting point, but cautions that students can ini-
tially assume that all distributions are symmetric if only this type is selected. 
Students’ thinking can be challenged by deliberately choosing distributions that are 
skewed as well as symmetric (Bakker,  2004 ; delMas et al.,  2005 ; Makar & Confrey, 
 2005 ; Rubin, Hammerman, Puttick, & Campbell,  2005 ). Linked to this is providing 
many opportunities for students to recognise and understand the direction of a skew 
(delMas et al.,  2005 ), which is also a problem for college level students. Descriptors 
of shape include uniform, normal, skewed to the right or left (Bakker,  2004 ) and 
normal, skewed, bimodal or uniform (delMas et al.,  2005 ), with early student ideas 
describing the data in terms of low, average and high values and naming shapes 
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using  pyramid  ,  semi-circle and bell shaped   (Bakker,  2004 ). Thirdly, shape helps to 
develop meaning for mean, spread, density and skewness (Bakker,  2004 ; Rubin 
et al.,  2005 ) and connections between measures of centre and shape can be made 
(Konold & Higgins,  2003 ; Rubin et al.,  2005 ). Finally, Bakker ( 2004 ) found that too 
small a sample size, unsuitable scaling and lack of context were problems when 
trying to identify the shape of distributions. 

 An end goal is that students are able to describe sample distributions as part of 
the statistical enquiry cycle to answer an investigative question about a population. 
The research questions for this chapter are: What shapes do year 10 students (age 
14) realise from data distributions? and what descriptions of distributions are year 
10 students capable of producing?  

5.3     Theoretical Frameworks 

 Two  theoretical frameworks   were considered in the analysis of student responses in 
pre- and post-tests. Bakker and Gravemeijer ( 2004 ) proposed a structure (Fig.  5.1 ) 
for analysing the relationship between data and distribution. They said that students 
as novices typically see individual values and use these to fi nd values such as the 
median, range or quartiles, but that this does not mean they are seeing the median, 
for example, as representative of a group.

   Ben-Zvi, Gil, and Apel ( 2007 ) IIR theoretical framework provides cognitive 
aspects that relate to distribution—reasoning about variability (spread, density), dis-
tributional reasoning (aggregate views, pattern and trend, hypothesis and prediction, 
individual cases, outliers), reasoning about signal and noise (centre, measures, 
modal clumps, summary), contextual reasoning (interpretation, alternative explana-
tions) and graph comprehension (decoding visual shapes).  

5.4     Methodology 

 The  research method   follows design research principles (Roth,  2005 ) for a teaching 
experiment in a classroom. In the preparation and design stage, the fi rst author 
developed the teaching and learning materials to use in the teaching experiment in 

distribution

centre spread density skewness

data

  Fig. 5.1    Between data and distribution (Bakker & Gravemeijer,  2004 , p. 148)       
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conjunction with the classroom teacher, considering relevant literature. In addition, 
purposefully built into the teaching and learning sequence were activities with a 
focus on shape prediction and building a ‘library’ of knowledge around contexts and 
shape but these are not reported in this chapter. Both the classroom teacher and fi rst 
author were involved in the implementation of the activities in the teacher’s year 10 
class. Following each lesson there was refl ective discussion and adjustments were 
made as needed to the learning trajectory. 

 The 29 students in the class were above average in ability and from a mid-size 
(1300), multicultural, mid socio-economic inner city girls’ secondary school. 
Students were given a pre- and post-test, the lessons were videotaped and student 
work was photocopied. A group of six girls were observed specifi cally as well as the 
teacher led whole class discussions. The six girls also had pre- and post-interviews 
about their responses to their tests. 

 The retrospective analysis for this chapter focuses on the development of stu-
dents’ use of the language of shape and their descriptions of distributions. The 
learning activities were designed to support students’ understanding of these two 
aspects. The activities built on work previously undertaken in IIR project (Pfannkuch 
et al.,  2011 ). They also included new thinking as we considered the bigger picture 
of what we were trying to achieve. The new/updated activities were based on the 
themes that emerged from the literature: in particular, they focused on the language 
of shape, making predictions and building a contextual knowledge base for the sorts 
of variables that have symmetric, skewed or uniform  distributions  . Unpacking stu-
dents’ existing contextual knowledge and misunderstandings were key ingredients 
in predicting distributions. 

 This chapter focuses on lessons 2–4 of a 16-lesson unit on statistics. Lesson one 
was a review. Lesson two had a focus on seeing and describing shape and involved 
developing the language for shape of distribution descriptors, sketching shapes 
from graphs, grouping similar shaped graphs and matching shape descriptors to 
groups of graphs. Shape of distributions was a big idea in the lesson. Lesson three 
had a focus on linking shape and context and involved making predictions of the 
graph from contexts, matching contexts to graphs and starting to develop a ‘library’ 
of similar shaped graphs. Big ideas in this lesson were shape of distributions, pre-
dicting distributions and contextual knowledge. Lesson four focused on using the 
language of shape to describe distributions and involved sorting graphs according to 
shape of distribution and starting to describe distributions. The big ideas in this les-
son were the notion of distribution, shape of distributions and contextual knowl-
edge. The fi rst author (FA) taught lessons three and four as the teacher was ill.  

5.5     Teaching Activities 

 The three lessons described demonstrate how student-generated concepts, ideas and 
language were gradually transformed towards a statistical approach. 
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5.5.1      Lesson 2:  Seeing and Describing Shape   

 The students fi rstly sketched the shape of 15 data distributions that were briefl y 
shown using a PowerPoint presentation. Secondly, the students grouped the sketches 
of the graphs into similar shapes and used their own language to describe the shapes 
in each group. At this point the teacher asked about the number of groups they had 
made. For example:

   Teacher: Four groups, what were they based on?  
  Student: Sloped to the left, and sloped to the right, symmetric ones  
  Teacher:  So you have sloped to the left, sloped to the right, symmetric and what 

was your other group?  
  Student: You know [gestures with hand—up, across and down] it is even on the top  
  Teacher:  Even on the top, so let’s see, symmetrical, some sloped to the left, slope 

to the right, other one was … [Various student responses with ‘fl at top’ 
being the loudest]    

 The teacher used these four group headings—symmetrical, sloped to the left, 
sloped to the right and fl at top—as a starting point. The class then sorted the graphs 
into one of the four groups (Fig.  5.2 ). Finally, the students were introduced to the 
statistical language used to describe shapes and were asked to match these words to 
their graphs. Intuitively the students re-grouped the graphs according to symmetry, 
symmetric or not symmetric, splitting the skewed into two groups (left and right) 
and the symmetric into two groups (uniform and other). Interestingly modality was 
not used for grouping. 

5.5.2         Lesson 3:  Linking Shape and Context   

 In order to get students to think about how context and shape were linked, they 
were given 15 contexts without the graphs and asked to sketch a shape for these 
contexts with some possible values. Discussion justifying shapes for particular 

  Fig. 5.2    Four shape groups with graphs and additional ideas       
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contexts followed. Students were then given the actual dot plots of the contexts 
and they matched these plots to the context. The graphs were sorted again into the 
four groups (symmetric, sloped to the left, sloped to the right, fl at top) and each 
group was labelled using appropriate statistical terminology—symmetrical, right 
skew, left skew and uniform, including a discussion around why and which way 
the skew was recognised. At this point the distinction between unimodal and 
bimodal was made.

   FA teacher: These are the graphs yesterday that you said were symmetric, and I’ve 
moved this one out to the bottom. Why do you think I have done this?  

  Student: Because it’s bimodal.  
  FA teacher: Because it’s bimodal. So these are symmetric, and unimodal, which 

means that they have one bump or one peak. So they have one mode, 
or peak and this one here is symmetric and bimodal because it has two 
peaks.    

 From this brief conversation the way to sort the shapes became clear—sort by 
symmetry and then by modality (Fig.  5.3 ). The shape descriptors developed from 
the way the students intuitively sorted the graphs. The students did not make a sepa-
rate group for bimodal, as the research team did. They sorted into four groups and 
then split three of the groups by modality. 

  Fig. 5.3    Final collation of shapes into four groups with modality distinction       
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5.5.3        Lesson 4: Using the Language of Shape to Describe 
Distributions 

 The students fi rstly classifi ed some more  data graphs   by shape and added these to 
their growing ‘library’ of shapes and contexts (note in Fig.  5.3  the label other 
examples). The next activity involved starting to describe distributions. The FA 
teacher facilitated a class discussion on key features for describing graphs. They 
were given the challenge that if they had to draw the graph from the description, 
what information would they need. Shape was a given, but a number of other fea-
tures surfaced. A few excerpts from the discussion are:

   FA teacher: So if I was going to describe this graph what other things might I want 
to describe about it?  

  Student: The range.  
  FA teacher: What other things would be important?  
  Student: Its highest point.  
  FA teacher: What are we calling that highest point?  
  Student: The peak ….  
  FA teacher: What else might we want to talk about? What makes that graph (points 

to number 3) different to say number 14 (see Fig.  5.3 )?  
  Student: The amount of peaks [modality].    

 In the discussion the features that the students suggested included: target popula-
tion, variable, units, general shape sketched, overall shape, modality, peaks, range, 
median and mode. A further conversation in the same lesson where the focus was on 
describing one of the right skew graphs additional features surfaced: clustering den-
sity, majority, modal group and describing shape in terms of parts of the whole.   

5.6      Pre- and Post-test Written Responses   

 Student pre- and post-test responses were analysed to see if their ability to describe 
distributions had improved over the course of the statistics unit. In one of the ques-
tions, students were asked for each of three situations (see Fig.  5.4 ) to  sketch the 

  Fig. 5.4    ( a ) All Blacks’ (NZ rugby team) scores in test matches 2005–2010; ( b ) heights of NZ 
year 5–10 students; ( c ) heights of Tokoeka Kiwis (NZ native bird)       
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shape of the distribution  of the variable and to  write two statements about the 
distribution  of the variable.

   The SOLO taxonomy (Uniservices asTTle Team,  2008 ) was used as a basis for 
grading student responses. The particular descriptors aligned to each question were 
developed through a process of moving between the literature, in-class observations 
and student responses. In brief the descriptors for grading the student responses are: 
 no response  (NR-0);  pre-structural  (PS-1)—context and/or evidence missing;  uni- 
structural  (US-2)—gives one correct piece of evidence in simple context OR multi- 
structural evidence without any context;  multi-structural  (MS-3)—identifi es a 
simple context and correctly describes two features OR relational evidence without 
any context;  relational  (R-4)—identifi es the context, connects the context and cor-
rectly describes the overall shape and at least two other features;  extended abstract  
(EA-5)—identifi es the context, connects the context throughout the description, 
correctly describes the overall shape and at least three other features and may 
include some explanation or interpretation of results to the context (see Fig.  5.5c  for 
an example of an extended abstract response).

   The median grade across the three situations was used to represent the students’ 
overall grade. These are summarised in Fig.  5.5a . In the pre-test the highest median 
grade was multi-structural with two students achieving this. In the post-test three 
students achieved at an extended abstract level and all but two students reached at 
least a multi-structural level. This means that the students could identify the context 
and describe at least two features. A lot of these students actually described more 
than two features, but they failed to make the broader link to the context, which was 
required to show relational thinking. The biggest movements were from students 
who scored 0–2 in the pre-test, perhaps indicating that acquisition of language and 
knowledge for describing distributions assists students. Figure  5.5b  shows the 
median difference between students’ pre- and post-test scores. The students made a 
signifi cant improvement ( p -value ≈ 0) in their median scores from the pre- to post- 
test question and on average increased their median grade by 1.7 points (95 % 
C.I. = [1.34, 2.07]).  

Post-test responses

The distribution of the heights of 
To koeka kiwis is approx 
symmetrical and bimodal.The 
heights range from 35-43cm.The 
middle to koeka kiwi height is 39cm. 
The heights peak at around
36.5 and 40cm. The heights are 
tightly grouped in two groups one 
between 36-39cm and another 
between 39-42cm. These two groups 
might mean the two different
genders.
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  Fig. 5.5    Pre- and post-test results for one assessment question. ( a ) Pre- and post-test results. 
( b ) Median grade movement from pre- to post-test. ( c ) Extended abstract response example for 
plot in Fig.  5.4c        

 

P. Arnold and M. Pfannkuch



59

5.7     Conclusions 

 ‘Distribution’ is another fundamental given of statistical reasoning. I can fi nd a 
great deal written about specialised usages and defi nitions of ‘distribution’ but 
almost nothing about ‘distribution’ itself as an underlying conceptual structure 
(Wild,  2006 , p. 10). 

 The research questions were: What shapes do year 10 students (age 14) realise 
from data distributions? and What descriptions of distributions are year 10 students 
capable of producing? The year 10 students in this study intuitively sorted the data 
distributions into four groups, symmetric, right and left skew and uniform. These 
groups were further refi ned using a modality distinction. The classifi cation realised 
by the students was based on what they noticed as they sought to group the graphs 
by shape. The teacher acknowledged student language and introduced appropriate 
statistical language which was connected to their four groups. These year 10 stu-
dents appear to have the capacity to write thorough descriptions of data distribu-
tions. Further work and teacher modelling is needed to move students to a relational 
level where they can see the signifi cance of parts of the whole description and inter-
twine context throughout the description. 

 Distribution is a complex notion. During the retrospective analysis phase, when 
student pre- and post-test responses were analysed, the two frameworks (Bakker & 
Gravemeijer,  2004 ; Ben-Zvi et al.,  2007 ) that had previously been considered were 
found to only provide part of the picture. These frameworks need to be linked with 
a specifi c focus on the underlying conceptual structure of distribution. Combining 
the two frameworks led to our new proposed framework, the  Distribution Description 
Framework (DDF),   for thinking about, exploring and describing distribution. The 
 DDF   (Fig.  5.6 ) is organised by: (1)  overarching statistical concepts  that underpin 
distribution, (2)  characteristics of distribution  and (3) the  specifi c features  that are 
used when describing distributions.

   Ben-Zvi et al. ( 2007 ) cognitive aspects from their IIR theoretical framework—
reasoning about variability, distributional reasoning, reasoning about signal and 
noise, contextual reasoning and graph comprehension—were used to inform the 
overarching statistical concepts for distribution descriptions. Bakker and 
Gravemeijer’s ( 2004 ) characteristics of distribution—centre, spread, density and 
skewness—formed the backbone, with Pfannkuch, Regan, Wild, and Horton ( 2010 ) 
ideal data dialogue providing further characteristics and features to supplement 
those listed in the IIR theoretical framework. The result of the analysis of student 
pre- and post-test responses and in-class observations in this research provided the 
additional characteristics and features noted in Fig.  5.6  in italics. 

 Collectively these sources of data and ideas build a richer picture of the possible 
features that may be present in a particular distribution. While some aspects will be 
true and relevant in all descriptions (e.g. variable, overall shape), others (e.g. clus-
tering density, mode) will depend on the data and whether or not they are relevant 
in the description. When students are describing statistical distributions they need: 
(1) to invoke contextual knowledge, (2) to know what relevant characteristics of 
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distributions they can actually see in the plots and therefore describe and (3) to be 
explicit about the evidence for specifi c features. In other words, students need to be 
able to identify which features are evident in a particular plot, name and provide 
evidence (values) for the features and to interlace these with contextual information 
such as the population, variable and units. 

 Bakker and Gravemeijer’s ( 2004 ) framework appears to be about data distribu-
tions. In this study, the data distribution is conceived as a sample distribution and 
therefore more concepts come into play. At year 11 students are introduced to new 
concepts such as sampling variability, sketching inferred shapes and comparing 
sample distributions. This means that the DDF would be extended with students 
co- ordinating more ideas. The DDF would expand again in senior secondary where 
students start to consider distributions of statistics. Similarly, the DDF can be modi-
fi ed to support student progressions at lower curriculum levels. We believe our DDF 
has the potential to inform curriculum developers, researchers and teachers as they 
introduce students to the conceptual structure underlying distribution. Further 
research is needed both above and below the level reported here to ascertain what is 
appropriate for students at the different levels.     
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    Chapter 6   
 Development of an Understanding 
of a Sampling Distribution       

       Eun-Sung     Ko    

6.1            Introduction and Background 

 Sampling variability is generated because any two samples taken from a single 
population are not identical and because any single sample is not identical to the 
population (Franklin & Garfi eld,  2006 ). In sampling, the propriety of the sample 
size is not related to the size of the population. Sampling variability is affected by 
the sample size, not the proportion of the sample to the population. The greater the 
sample size, the less sampling variability there will be. Distribution is a tool through 
which we view patterns of variability (Wild,  2006 ). Reasoning about sampling 
variability requires an understanding of sampling distributions. The distribution of 
one very large-sized sample is similar in shape to its population. However, the shape 
of sampling distribution does not rely on population distribution. Studies have 
shown that students confuse the distribution of a sample and the sampling distribu-
tion and therefore they believe that the sampling distribution resembles the popula-
tion distribution (Chance, delMas, & Garfi eld,  2004 ).  

6.2     Method 

6.2.1     Participants 

 The  participants   in this study consist of two groups of students: the fi rst group is a 
group of mathematically talented students and the second group is a group of 
nontalented students. Table  6.1  shows a summary of the characteristics of the 
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participants of this study. At the time of this study the fi fth-grade students had 
learned to display and summarize data, by working with tables, bar graphs, line 
graphs, stem- leaf graphs, and means. In addition, the eighth-grade students learned 
pie charts, frequency tables, frequency polygons, histograms, the relative frequency, 
the cumulative frequency, and probabilities.

6.2.2        Tasks 

 Figure  6.1  presents the  tasks   of this study. Q1 and Q2 are questions that were 
meant to examine students’ thinking in relation to understanding of sampling 
distributions.

6.2.3         Data Collection and Analysis   

 Students were asked to complete questionnaires. The students for the interview 
were determined based on their responses on the questionnaire. They were students 
who presented typical responses in each category and students who did not fall into 
any category owing to their ambiguous languages and expressions. Interviews were 
video-taped or audio-taped, and transcripts of the interviews were made. 

 Two analyses were conducted. During the fi rst analysis, students’ responses to the 
questions were classifi ed on the basis of their terms, languages, and expressions. These 
categories are not existing categories but are inductive products that emerged on the 
basis of their responses (Denzin & Lincoln,  1994 ; Goetz & LeCompte,  1984 ). During 
the second analysis, the structure of the observed learning outcomes (SOLO) taxon-
omy (Biggs & Collis,  1982 ) was used. Categories from the fi rst step were regrouped 
into fi ve groups considering the levels of the students’ responses on the basis of the 
 SOLO model  . Both written responses and interview data were used to determine stu-
dents’ thinking levels. Intercoder reliability ( k  = .874) by two researchers was done.   

6.3     Results and Discussion 

  Level 0 . At this level, the students did not understand sampling variability. They 
believed that different samples have the same statistics. For example, they selected 
the fi rst option, “Surveyor B obtains the same result as that of surveyor A” in Q1a 

   Table 6.1    Participants in this study   

 Fifth grade  Eighth grade  Total 

 Talented students  34  36   70 
 Nontalented students  31  29   60 
 Total  65  65  130 
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[Q1] The National Statistical Office examines the average size of the Korean family every two
years. Surveyor A surveyed 1000 households and found that the average size of a family was
four.

(a) Predict the result for surveyor B when he or she surveys 1000 households and select the best
     answer from the options below. Explain your selection.

Surveyor B obtains the same result as that of surveyor A.
Surveyor B obtains a different but similar result to that of surveyor A.
Surveyor B obtains an entirely different result from that of surveyor A.

(b) What do you think is the most appropriate method for determining the average size of 
      a family? Select the best answer from the options below and explain your selection.

The average size of a family is four because the survey produced four members per
household.
I will examine a set of data obtained from many 1000-household surveys.
I cannot determine the family size because results are different from survey to survey.

[Q2] The display on the right shows the numbers of pencils that
each student in our country carries in their pencil case. (The
horizontal axis indicates the number of pencils and the vertical
axis denotes the number of students.)

(a) Which display do you think shows the averages obtained from groups of four students? Select
      the best answer from A, B, C and D and explain your selection.

0 2 4 6 8 10

0 2 4 6 8 10 0 2 4 6 8 10

0 2 4 6 8 10 0 2 4 6 8 10

A B

C D

(b) Which display do you think shows the averages obtained from groups of twenty-five students?
      Select the best answer from A, B, C and D and explain your selection.

  Fig. 6.1    Tasks of this study       
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and the fi rst option, “The average size of a family is four because the survey pro-
duced four members per household” in Q1b. Below are some sample responses in 
level 0. 

 Figure  6.2  presents  NE03’s response to Q1b   and the following transcripts are his 
explanations obtained during the interview. This student responded that there is no 
variability in the population based on his personal experience and that different 
samples have the same statistics.

    Interviewer:  You thought “B surveyor will get the same result as A surveyor” and 
“The average size of a family is four because the survey produces 
four members per household.” Why did you think so?  

  NE03:  Because there are four members in my family and there are also four 
members in my friends’ families.  

  Interviewer:  Your friends and you have four-member families. If so, do all surveys 
obtain the same results?  

  NE03: Yes.    

  Level 1 . At this level, the students confused the data in a sample with sample 
statistics as a data set. While they believed that different samples can have different 
statistics, they confused the data in a sample with sample statistics, and as such, did 
not recognize the patterns in the sample statistics. For example, they did not select 
the fi rst option in both Q1a and Q1b but also did not select the correct option in 
either Q2a or Q2b. Below are some example responses in level 4. 

 Figures  6.3  and  6.4  present  TE23’s responses to Q2a and Q2b  , respectively. This 
student selected the fi rst graph in Q2a. He believed that sample statistics are differ-
ent from population statistics because the sample size is too small. He also selected 
the last graph in Q2b. He believed the sample statistics has a similar distribution to 
that of the population because the sample size is big. He confused the data in a 
sample with the sample statistics. He focused on the likeness between the sample 
and the population but not on the patterns of the sample statistics.

    Figure  6.5  presents  NM12’s responses to Q2a  . This student selected the fi rst 
graph in Q2a. He confused the sample statistics with the individual data. More spe-
cifi cally, he confused the number of pencils that each student carries with the set of 
the sample statistics. He also selected the last graph in Q2b. Figure  6.6  presents his 
responses to Q2b and the following transcripts are his explanations obtained during 
the interview. His responses show that he confused sample statistics with individual 
data. To understand sampling distribution, fi rst of all, students should recognize the 
creation of a new data set composed of sample statistics and visualize the distribu-
tion of the new data. This student, however, did not understand the creation of a new 
data set composed of sample statistics.

“Because most families have four members.”

  Fig. 6.2    NE03’s response 
to Q1b       
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     Interviewer:  Why do you think the result will be similar to the population if it was 
repeated many times?  

  NM12: If we do it many times, we can get as many data as the population.    

  Level 2 . At this level, the students paid attention to the spread of the sample sta-
tistics but did not recognize their central tendency. Consequently, they did not infer 
that the center of sampling distribution parallels that of the population and did not 
visualize the correct shape of the sampling distribution. Below are some example 
responses in level 2. 

 TE31 selected the fi rst graph in both Q2a and  Q2b  . Figures  6.7  and  6.8  show his 
responses to Q2a and Q2b, respectively, and the following transcripts are his explana-
tions obtained during the interview. This student thought similar means are obtained 
when we calculate means of four-size samples and 25-size samples. In other words, he 
recognized the spread of the means but failed to predict how they will be distributed.

“The result will be different from population because
four people are too small.”

  Fig. 6.3    TE23’s response to Q2a       

“Similar result to population can happen because the
sample size is big.”

  Fig. 6.4    TE23’s response to Q2b       

“Because the numbers of pencils that students carry in
their pencil case are similar.”

  Fig. 6.5    NM12’s response to Q2a       

“If we repeated it many times, the result will be similar
to population.”

  Fig. 6.6    NM12’s response to Q2b       
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     Interviewer:  You wrote here “all of them are similar to each other.” What did you 
mean by “all of them”?  

  TE31:   When we calculate the means of the four students, the means will be 
similar. And here, the means of the 25 students will be similar, too.    

  Level 3 . At this level, the students recognized the central tendency and spread of 
the sample statistics. However, they did not understand the relationship between 
sample size and sampling variability. Below are some example responses in level 3. 

 TE16 selected the second graph in  Q2a   and the third graph in  Q2b  . Figure  6.9  
presents TE16’s responses to Q2a and the following transcripts are his explanations 
obtained during the interview. This student did not provide any written response to 
Q2b. He recognized the shape of the sampling distribution and the mean of the 
sampling distribution as six. However, he did not understand that the bigger the 
sample size, the lesser the sampling variability.

    Interviewer:  Here [in Q2a], you wrote “because the sample size is small” but here 
[in Q2b], you did not provide any response. Can you explain your 
answers for both questions?  

  TE31:  First, let me explain [Q2b]. In fi nding out the means of the 25 stu-
dents, each student carries different numbers of pencils. The means 
will have the most frequent six, and the more distant it is from six, 
the lesser the frequency.  

“I think all them are similar each other.”

  Fig. 6.7    TE31’s response to Q2a       

“I think all them are similar each other.”

  Fig. 6.8    TE31’s response 
to Q2b       

“Because the sample size is small.”

  Fig. 6.9    TE16’s response to Q2a       
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  Interviewer:  How about [Q2a]?  
  TE31:  It is similar [to Q2b]. If we calculated the means of four students, the 

means will have the most frequent six. And then the more distant it 
is from six, the lesser frequency.  

  Interviewer:  The graph for the 25 students is different from the graph for the four 
students?  

  TE31:  I think they are different because they have different numbers of 
students.    

  Level 4 . At this level, the students recognized the central tendency and spread of 
the sample. They also understood the relationship between sample size and sam-
pling variability. Below are some example responses in level 4.  TM20   selected the 
third graph in Q2a and the second graph in Q2b. The following transcripts are his 
explanations obtained during the interview.

   TM20:  (Pointing to the population distribution) This shows a distribution of 
all the students. Now, we have to fi nd out the means. I think, if we 
picked all the four- student samples from here (pointing to the bar 
indicating two pencils), the means will be around two. If we picked 
all four-student samples from here (pointing to the bar indicating 
eight pencils), the means will be around eight. However, six will 
have the most frequency. They will be gathering around six in the B 
and C graphs.  

  Interviewer:  Why do you think six has the most frequency?  
  TE31:  Because six is produced from four sixes, from two fours and two 

eights, from one four, one fi ve, one seven, and one eight … There are 
so many cases that produce six.  

  Interviewer:  Why is the B graph for 25 students and the C graph for four 
students?  

  TE31:  The 25 students are more [than the four students]. So it is more likely 
that the 25 students will be picked from the various groups. However, 
I think, for the four students, it is more likely to select the four stu-
dents from one or two specifi c groups and produce extreme values. 
Considering the C graph, it has two and nine. For 25 students, the 
likelihood of two or nine is low.    

 Table  6.2  presents a summary of the characteristics of the students’ understand-
ing of sampling distribution at each level.

   This study found that images of sampling and understanding of distribution are 
crucial for students to understand a sampling distribution. This study suggests that 
visual aids such as simulation can lead to instrumental understanding when students 
did not have images of sampling and understanding of distribution.     
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 Level  Students’ understanding of sampling distribution at each level 

 0  No understanding of sampling variability: Students did not understand the concept of 
sampling variability. They believed different samples have the same statistics 

 1  Confusion of the data in a sample with the sample statistics: Students confused data 
in a sample with sample statistics, so they did not pay attention to the patterns of the 
sample statistics 

 2  Focusing on the spread of the sample statistics: Students recognized the spread but 
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 4  Understanding the relationship between sample size and sampling variability: 
Students recognized the central tendency and spread of the sample statistics and 
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    Chapter 7   
 Korean High School Students’ Understanding 
of the Concept of Correlation       

       A-Ra     No     ,     Soo-Yun     Han     , and     Yun     Joo     Yoo    

7.1             Introduction and Background 

 The concept of correlation is one of basic statistical concept that can be used to 
understand the phenomena experienced in everyday life. The concept of correlation 
is related to covariational reasoning, reasoning about the relationship between two 
variables regarding their changes in values (Zieffl er & Garfi eld,  2009 ). Correlation 
is a standardized measure of statistical covariation considering the variability of two 
variables observed in data. Covariational reasoning requires some understanding of 
bivariate data and the joint distribution of two random variables. The popular mea-
sure of correlation,  Pearson correlation coeffi cient  , is considered as an advanced 
topic in statistics since it requires the theory of joint distribution and the formula for 
Pearson correlation coeffi cient is diffi cult to understand intuitively. 

 Many countries such as United States, Australia, England, and New Zealand 
have been teaching the concept of correlation, time series, and linear regression 
along with related graphical representations as a part of mathematics education 
(Moritz,  2004 ). The secondary curriculum in Korea does not include the formula for 
Pearson correlation coeffi cient and only informal defi nition of correlation has been 
taught with bivariate data representations such as scatter plots and contingency 
tables. 

  Scatter plots   and the concept of correlation are usually introduced together to 
students. Students learn about the data patterns of “correlation/no correlation” and 
“positive/negative correlation” for scatter plots. However, there could be some mis-
conceptions generated since the concept of correlation is taught with only an infor-
mal defi nition. Cleveland, Diaconis, and McGill ( 1982 ) conducted an interesting 
study with two scatter plots of same data in that the scale of one plot is doubled, 
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which results in data points being more concentrated in the middle. The signifi cant 
portion of subjects did say that the scatter plot with more concentrated data points 
looked more correlated even though they were told the correlation coeffi cients are 
same. 

  Contingency tables   of two qualitative variables, especially 2-by-2 tables are 
introduced to teach the concept of correlation. Judging association from 2-by-2 
tables require understanding of conditional probabilities (Baterno, Estepa, Godino, & 
Green,  1996 ). Without knowing formal test methods for the association in 2-by-2 
tables, a person can judge the amount of association informally if she understands 
the comparison of conditional proportions at each level of one variable can give a 
brief idea on how two variables are related. 

 Also, the correlational relationship can be described in a text within scientifi c 
literatures, newspapers, or magazines, which requires correct interpretation based 
on the knowledge of correlation (Gal,  2004 ). Students may need the knowledge of 
correlation when they are learning other subjects of science and social studies. 

 As discussed above, the concept of correlation is inherent in various forms of 
data from everyday life. Because the ability to identify relationships between differ-
ent factors through the concept of correlation is required in various fi elds (Zieffl er & 
Garfi eld,  2009 ), many countries teach correlation in secondary education (Moritz, 
 2004 ). Since the  2007 Revised National Mathematics Curriculum  , 1  however, Korean 
school mathematics does not cover the concept of correlation not even informally in 
the secondary education (Ministry of Education, Science and Technology,  2007 ). 
Therefore, a question can be raised: Can Korean high school students interpret vari-
ous forms of statistical data and judge correlations among variables in the data with-
out learning about correlation or with learning it informally? 

 To fi nd answers to above question, this study set research questions as follows:

    1.    Are Korean high school students who have learned the concept of correlation 
informally able to understand correlation-related characteristics clearly in a scat-
ter plot? What misconceptions arise from the visual characteristics of scatter 
plots?   

   2.    Are Korean high school students who have learned the concept of correlation 
informally able to interpret correlations correctly in texts given in the context of 
real-life situations?   

   3.    Are Korean high school students who have learned the concept of correlation 
informally able to interpret a 2-by-2 contingency table and tell whether there is 
a correlation between two qualitative variables and to present reasons for their 
judgment?      

1   2007 Revised National Curriculum  was announced on 28 February 2007, and this curriculum has 
been implemented since the 2009 school year starting with the fi rst year students in middle school 
(seventh grade) and the fi rst year students in high school (tenth grade). The subjects of this study, 
who are the fi rst- and second-year high school (tenth and 11th grade) students at the time of 2011 
had been taught under the previous curriculum, seventh curriculum in their middle school period. 
These students learned the concept of correlation informally through the bivariate data presenta-
tions of scatter plots in the middle school. 
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7.2     Method 

7.2.1     Research Subjects and  Methods   

 This study surveyed Korean high school students’ understanding of the concept of 
correlation in order to fi nd implications for Korean secondary mathematics educa-
tion, in particular, statistics education. For this purpose, we developed items to 
examine the understanding of the concept of correlation. Items ask about data given 
in three different forms: scatter plot, 2-by-2 contingency table, and text stating cor-
relational relationship of two variables. 

 In order to refi ne items and check the validity and the reliability of the test, we fi rst 
asked seven experts’ opinions on items in terms of content validity and then conducted 
two pilot studies. The fi rst pilot study was performed on 47 tenth-grade students in a 
high school in Incheon. The second pilot study was performed on 40 tenth-grade stu-
dents in a high school in Seoul. Based on the analysis of items with the data from pilot 
study, we fi nalized a test consisting of 25 items for 20 min administration time. The main 
study was conducted on 140 tenth-grade students and 100 11th-grade students from two 
high schools in Seoul. These students have learned about scatter plot, correlation, and 
contingency table in ninth grade. As insincere responses could distort the results of data 
analysis, they were excluded from the analysis, based on the number of missing values 
and extreme responses. The most frequent type of insincere respondents was those who 
did not reply a large number of questions. Respondents who did not answer eight 
(around 23 % of the whole) or more of the 25 items were all removed and, as a result, 
19 students were removed. Then, fi ve extreme respondents who chose the same alterna-
tive for all the questions were also removed. Resultantly, 24 students were removed out 
of a total of 240 respondents and analysis was made with data from 216 respondents.  

7.2.2     Categories and Contents of the Items 

 As presented in Table  7.1 , the test instrument consisted of three categories in terms 
of the  tools of presentation   for the correlation in the bivariate data: scatter plot (15 
items), text (3 items), and 2-by-2 contingency table (7 items). Of the 25 questions in 
the questionnaire, 22 are of multiple choice type and three of true–false type. For ten 
items, students were asked to write the reason for their choices. The reliability of the 
test was computed with SPSS and Cronbach’s alpha was .645.

7.3         Result 

7.3.1      Correlations Presented in  Scatter Plots   

 Items 1–3 and 5 ask about distinguishing several scatter plots between positive/
negative/no correlations. The correct response rates for items 1–3 and 5 were 
93.52 %, 93.52 %, 84.26 %, and 88.43 %, respectively, all exceeding 80 %. 
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Most students were able to interpret the presence and direction of correlation in 
given scatter plots. 

 The items 4, 11–15 ask students to compare the strength of correlations among 
multiple scatter plots. The correct response rates for these items were 79–89 % 
except for item 13 (47.69 %). Item 13 asks to determine higher correlation between 
one plot with strong negative correlation and one with modest positive correlation 
whereas other items require comparing the strength of correlation between plots 
with same direction of correlation (or with no correlation). For item 4, students were 
asked to write the reason of the choice. Students determined the strength of correla-
tion simply based on the density or dispersion of points in the scatter plot and only 
7.87 % related the strength of correlation to linearity. This result suggests that stu-
dents might have some confusion between the strength of correlation and the direc-
tion of correlation. 

 Items 6, 7 are for the misconception regarding the steepness of the slope of 
regression line and the strength of correlation. Students were shown four scatter 
plots presented in Fig.  7.1 . In item 6, students had to fi nd correct statements. A total 
of 26.85 % students chose the statement “Among plot (b)–(d), the weakest correla-
tion is the plot (b)” as a correct one, revealing the misconception that the less steeper 
regression line means weaker correlation. In item 7, students compared the correla-
tion between plot (b) and (c), which actually have the same correlation coeffi cient 
value with different slope coeffi cient in the regression line. Only 17.34 % of the 
students determined that their correlations are similar (correct response), and 
72.22 % students thought the plot (c), the steeper slope, has stronger correlation 

   Table 7.1    The concept of correlation measured by the test items and the corresponding item 
numbers   

 Representations  Objectives  Items 

 1. Scatter plot  (a) Determines “correlation/no correlation” and “positive/
negative” correlations from the data in scatter plot 

 1–3, 5 

 (b) Compares the strength of correlations in two scatter 
plots 

  4 , 11–15 

 (c) Misconception regarding the steepness of the slope of 
regression line and the strength of correlation 

 6,  7  

 (d) Knows that the change of the scale of variables does 
not change the strength of the correlation 

  8  

 (e) Knows the infl uence of outliers on correlation  9, 10 
 2. Text  Correctly interprets the correlation given in real-life 

situation example 
  16–18  

 3.  2-by-2 contingency 
table 

 (a) Compares the strength of the association between two 
populations from two 2-by-2 contingency tables 

  19  

 (b) Determines “correlation/no correlation” from data 
presented in 2-by-2 contingency table with proper 
justifi cation 

  20–25  

  The multiple choice items that require the reason of the choice in  bold  and the true–false items in 
 underline   
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than plot (b). For item 7, students were asked to write the reason for the choice. The 
students who have chosen plot as the stronger correlation stated the reasons such as 
“because the slope is steeper,” “because the change (of the regression line) is more 
obvious,” “because (c) is closer to the form of graph  y  = − x ,” etc. All of these are 
directly or indirectly connected to the slope of regression line.

   Item 8 was adapted from Cleveland et al.’s ( 1982 ) third experiment. Students 
were asked to compare two scatter plots of the same data with different scales 
(Fig.  7.2 ). In the explanations for the plots, it was clearly stated that the plot (b) is 
the enlarged version of plot (a). However, 60.04 % replied that scatter plot (a) has a 
stronger correlation, 18.52 % replied that scatter plot (b) has a stronger correlation, 
and 18.98 % replied that the two plots have the same correlation. These proportions 
were quite similar to the results of Cleveland et al. ( 1982 ), which were 66 %, 13 %, 
and 22 %, respectively. Students who had chosen plot (a) as the stronger correlation 
stated that “points in (a) are distributed more densely than those in (b).”

   Items 9 and 10 were based on the questionnaire of Zieffl er and Garfi eld ( 2009 ). 
A scatter plot was presented (Fig.  7.3 ) and students were asked about the change in 
the correlation if an outlier was removed at the location (a) (item 9) and if an outlier 
was added at the location (b) (item 10). The choices for the change of the correlation 
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  Fig. 7.1    Four scatter plots corresponding to items 6, 7       
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were “becomes stronger,” “becomes weaker,” “no change.” The correct response 
rates of the items 9 and 10 were 46.3 % and 51.39 %, respectively. Also, 35.19 % 
and 36.57 % of the students, respectively, replied that the addition or removal of 
outliers did not change the correlation.

   For true–false type items 16–18, a text describing the results of a statistical 
investigation was given as follows: 

 The Math and English exam scores of seventh-grade students and ninth-grade 
students in a middle school were investigated. We found that Math scores and 
English scores were correlated overall. Also, the correlation between Math scores 
and English scores were stronger in the ninth-grade students than the correlation in 
the seventh-grade students. 

 The statements for true–false type items 16–18 were as follows:

    16.    The relationship between Math scores and English scores is closer in the ninth- 
grade students than the correlation between Math scores and English scores in 
the seventh-grade students.   

   17.    The differences in English scores for the students with Math score of 60–70 in 
the ninth grade were bigger than the differences in English scores for the stu-
dents with Math score of 60–70 in the seventh grades.   

   18.    The difference of English scores of two seventh-grade students whose Math 
scores are ten points apart is bigger than the difference of English scores of two 
ninth-grade students whose Math scores are ten points apart.     

 The correct response rates for items 16–18 were 88.43 %, 74.54 %, and 47.69 %, 
respectively. The intent of item 17 was to see if students understand less correlation 
means more dispersion in local distribution of one variable. In the responses to item 
18, students also revealed confusion between the correlation and the slope of cor-
relation. Some students tried to solve the problem by drawing scatter plots for the 
situation described by the text in scatter plots (Fig.  7.4 ). 

  Fig. 7.3    A scatter plot corresponding to items 9, 10       
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7.3.2          Correlations Inferred from  2-by-2 Contingency Tables   

 For item 19, two  2-by-2 contingency tables   were shown and students had to com-
pare the strength of association between two populations (Table  7.2 ). A total of 
77.31 % of the students have chosen UK as showing stronger correlation between 
gender and the choice of cars. Students stated the reasons for the judgment such as 
“because inclination to a specifi c type of cars according to gender is stronger in the 
USA,” “because difference between men and women is more obvious in the UK.”

   Items 20–25 were developed modifying the items of Baterno et al. ( 1996 ) in 
order to test whether the students can determine the presence of association between 
two qualitative variables presented in each of six 2-by-2 contingency tables. All the 
numbers of the 2-by-2 contingency tables presented in the items were verifi ed for 
statistical association through Fisher’s exact test. Students had to state the reason for 
their judgment. 

 Associations were present in Table  7.3  (item 20) and Table  7.4  (item 21). The 
difference between two items was that the predictor was the row variable in item 20 
whereas the predictor was the column variable in item 21. The correct response 
rates of two items were 75.00 % and 68.52 %, respectively. As the reasons for the 
answer to item 20, 156 of 162 students who answered item 20 correctly replied 
“because there is obvious difference in the presence of skin allergy according to 
lifestyle” and three of them replied “because those having sedentary lifestyle are 
exposed less to virus causing skin allergy.” These answers suggest that they replied 
not based on given data but based on their preconceived ideas. Such a pattern of 
response was observed for the reasons for the judgment to item 21.

    The data in Table  7.5  (item 22) and Table  7.6  (item 24) had no correlation, and 
only 35.19 % and 57.41 % of students answered such, respectively. The difference 
in the correct response rate between the two items was statistically signifi cant 
( p -value < 0.001). The difference of two tables was in that the sample sizes of pre-
dictor categories (row variable) were same in the item 24 but different in the item 
22. Students with incorrect judgment might have compared the absolute numbers of 
the data instead of conditional proportions in each category of the predictor vari-
able. In the reasons stated for item 22 and item 24, only 14.35 % (31, 35.19 % of the 

  Fig. 7.4    An example of a drawing of scatters plot to understand the text       
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correct answerers) and 6.02 % (13, 10.48 % of the correct answerer) of the students 
mentioned the concept of conditional probability.

    The data in Table  7.7  (item 23) and Table  7.8  (item 25) are correlated but the 
categories in the predictor variables (row variables) have different sample sizes 
with one category almost twice of the other. The correct response rates were 37.5 % 
and 36.11 %, respectively. Also, almost a third of students have chosen “no correla-
tion.” Some of these students who have chosen “no correlation” might have meant 
they cannot determine the correlation since the reasons they stated were “because 
the difference in the margin of row is large,” “because the sample size is too small” 
(for item 25), “because the sample size was different between two groups.”  

   Table 7.3    The presence of skin allergies according to life style   

 Skin allergy  No skin allergy  Total 

 Sedentary life style  132  35  167 
 Nonsedentary life style  17  116  133 
 Total  149  151  300 

   Table 7.4    The opinion survey about an agenda A according to the ages   

 20s  40s  Total 

 Agreement  39  78  117 
 Opposition  61  22  83 
 Total  100  100  200 

   Table 7.2    The distribution of gender for compact car owners and SUV owners of USA and UK   

 Country  USA  UK 

 Car  Compact car  SUV  Compact car  SUV 

 Gender 
   Men  16  37  8  54 
   Women  25  12  36  2 

   Table 7.5    The presence of bronchial disease due to smoke   

 Bronchial disease  No bronchial disease  Total 

 Smoke  90  60  150 
 Not smoke  60  40  100 
 Total  150  100  250 

   Table 7.6    The survey of car color preference by gender   

 Purple  Blue  Total 

 Women  42  73  115 
 Men  44  71  115 
 Total  86  144  230 
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7.4          Conclusion and Discussion 

 This study surveyed Korean high school students’ understanding of the concept of 
correlation with a group of items for the data expressed in scatter plots, texts, and 
contingency tables. As shown by the analysis results in the previous section, the 
correct response rates were over 70 % in 13 out of 25 items but below 50 % in eight 
items. Particularly for item 7 and 8, the correct answer rate was below 20 %. From 
these results, we can derive issues to be discussed and educational implications as 
follows. 

 First, students do not have right criteria for determining the strength of correla-
tion presented in scatter plots. Most of students could determine if there is correla-
tion/no correlation and if the correlation is positive/negative by seeing the data 
presented in scatter plots. However, they seemed not to have more sophisticated 
criteria to judge about the strength of the correlation. We observed misconceptions 
such as: (1) if the slope of regression line is steeper, the correlation is stronger; (2) 
if the data points are relatively close to each other, the correlation is stronger even 
if the data are same. These misconceptions were demonstrated clearly by the fact 
that the correct response rate was only 17.13 % for item 7 asking about the slope of 
regression line and the strength of correlation and 18.98 % for item 8 asking about 
change in the scale of variables. Both of the two misconceptions arise from the 
visual characteristics of scatter plots and this is probably because the students had 
learned only the informal defi nition of correlation without learning about statistical 
concepts such as regression line and correlation coeffi cient. 

 Second, when data on the strength of correlation were given in text, the students 
had diffi culty in understanding the distribution-related characteristic of the data. 
Students had diffi culty in fi guring out the local distribution characteristic of data, 
which cannot be guessed merely based on the expression “The correlation is strong” 
without statistical knowledge of correlation. Also, they again have shown confusion 
between strong correlation and steeper slope. Without clear understanding of the 
concept of correlation, it will be diffi cult to interpret a text describing a situation in 
the real world using the term correlation. Nevertheless, such texts related to correlation 

   Table 7.7    The acceptance/reject according to the origin of raw materials   

 Accepted goods  Rejected goods  Total 

 Japanese raw materials  127  58  185 
 Domestic raw materials  68  15  83 
 Total  195  73  268 

   Table 7.8    The preference for imported cars and domestic cars by region   

 Imported car  Domestic car  Total 

 Gangnam-gu  27  24  51 
 Gangbuk-gu  21  3  24 
 Total  48  27  75 
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are circulated frequently through various media around us and utilized as ground 
materials for making various decisions. This suggests the necessity of adequate edu-
cational measures for helping students get used to such materials and utilize them in 
making decisions. 

 Third, a large number of students did not have the concept of conditional prob-
ability or were not able to apply the concept properly to the data in 2-by-2 tables. 
Most of students did not show clear criteria for judgment of association and they 
rather approached each problem using intuitive guess comparing absolute count of 
cases without applying the concept of conditional probability, which is necessary 
for the decision. Also, we found many students could not determine the presence of 
correlation even with a contingency table showing the presence of correlation 
clearly. Some students were hesitant to say “there is correlation” even if the num-
bers in the table clearly shows strong association between two variables. The rea-
sons for the hesitance were: (1) the sample size is too small; (2) data are the results 
of random sampling, therefore, not truthful; (3) the sample sizes of two groups are 
different; (4) they got confused with correlation and causation. These four reasons 
or misconceptions leading students to wrong intuitive conjectures may be overcome 
through education of statistical thinking emphasizing decision making through 
exploratory data analysis. 

 Summing up the discussion, Korean high school students who had learned ele-
mentary knowledge about scatter plot and contingency table showed low-level 
understanding of the concept of correlation. In particular, this study confi rmed that 
they had misconceptions arising from the visual elements of scatter plots and were 
unable to interpret texts and contingency tables related to correlation. From these 
results, we concluded that educational measures are required in order to remove 
such misconceptions and to improve understanding of correlation. Considering that 
the current mathematics curriculum does not cover the concept of correlation, we 
need to improve the curriculum as well. 

 This study surveyed how the concept of correlation was understood by high 
school students who had completed the 7th National Curriculum for middle school, 
but we need to expand/change the survey to include students who had completed the 
new 2007 Revised National Curriculum, namely, those who had not learned the 
concept of correlation in secondary school at all. Through in-depth interviews, what 
is more, further detailed discussions should be made on the causes of misconcep-
tions related to correlation and reasons for students’ diffi culty in understanding spe-
cifi c concepts. These research efforts are expected to set the future direction of 
statistics education in Korea.     
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    Chapter 8   
 Connections Between Statistical Thinking 
and Critical Thinking: A Case Study       

       Einav     Aizikovitsh-Udi     ,     Sebastian     Kuntze     , and     David     Clarke    

8.1             Introduction 

 Both Critical Thinking skills and Statistical Literacy are considered as prerequisites 
for the participation of responsible citizens in democratic societies. Consequently, 
fostering competencies in these areas is an important goal for schooling internation-
ally. However, research activities in psychology, mathematics education and educa-
tional research related to Critical Thinking skills on the one hand and competencies 
in Statistical Literacy on the other have followed almost separate paths so far—the 
two domains call for an interconnected perspective. The lack of empirical research 
appears as astonishing given common foci and intersection areas of both areas seen 
from a theoretical point of view. Consequently, the project “Connections between 
Critical Thinking and Statistical Thinking” (CCTST) concentrates on carrying out 
research aimed at describing how competencies in both of these areas are intercon-
nected and identifying focused and interconnected ways of fostering both of these 
competencies through classroom instruction. In the fi rst phase, a cross-cultural 
interview study (Israel, U.S., and Germany) is being carried out in order to generate 
hypotheses about the interconnectedness of critical and statistical thinking by means 
of qualitative methods. In this chapter, we present a fi rst part of this ongoing work 
in the form of a case study. On the basis of evidence collected so far, we have 
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tentatively identifi ed aspects of critical thinking with possible links to statistical 
thinking and vice versa. 

 The fi rst section of this chapter reviews key elements of the theoretical background, 
relating statistical thinking to critical thinking. The second section introduces the 
research questions. Information about the research ical tmethodology is given in the 
third section of this chapter, and results are reported in the fourth section. The fi fth 
section contains a short discussion of the evidence and conclusions.  

8.2     Theoretical Background 

8.2.1     Statistical Thinking and Critical Thinking 

 In a well-known defi nition of Statistical  Literacy   by Gal ( 2004 ), a “critical stance” 
is included among the key attitudes for successful statistical thinking (ST)—hence, 
Gal includes such attitudes in the notion of statistical literacy (cf. also Wallman, 
 1993 ; Watson,  1997 ; Reading,  2002 ). However, being critical in statistical contexts 
is not only an attitude, but it is possible to describe specifi c abilities that have to be 
used in order to critically evaluate statistical data. Two key concepts or overarching 
ideas in statistical thinking relevant for a critical evaluation of data are  manipulation 
of data by reduction  (Kröpfl , Peschek, & Schneider,  2000 ) and  dealing with statisti-
cal variation  (e.g. Watson & Callingham,  2003 ). Successfully manipulating  data   by 
reduction requires the awareness that, e.g. calculating a mean value affords an over-
view on the original data, but it reduces the initial information. Hence, the resultant 
 statistical value   is (only) an indicator corresponding to a specifi c mathematical 
model, and we should not forget that it refl ects only a part of the information. For 
critically evaluating the data, we might need additional information about the distri-
bution, such as the variance, or information about extreme values. Dealing success-
fully with statistical variation means that an awareness of chance variability is 
necessary when evaluating data (Wild & Pfannkuch,  1999 ). A value in statistics 
often cannot be taken for granted as being exact, it might be different, e.g. as a con-
sequence of a second survey. Such knowledge about statistical variation and abili-
ties for dealing with it can be described in terms of critically evaluating data, 
questioning its stability and an awareness of the signifi cance of differences. Another 
specifi c example consists in the aspect of  sampling . Watson, Kelly, Callingham, and 
Shaughnessy ( 2003 ) describe abilities related to sampling as a sign of a deeper 
understanding of statistics and hence of advanced elements of ST. Indeed, the 
awareness of where the data comes from, of the sample size and of the choice of the 
sample is crucial to the quality of any statistical analyses—and it can again be seen 
as an ability related to critical thinking, as, for example, inductive reasoning as well 
as questioning evidence is involved. 

 Critical thinking (CT) skills rely on self-regulation of the thinking processes, con-
struction of meaning and detection of patterns in supposedly disorganized  structures. 
Critical thinking tends to be complex and often terminates in multiple solutions that 
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have  advantages and disadvantages  , rather than a single clear solution. It requires the 
use of multiple, sometimes mutually contradictory criteria, and frequently concludes 
with uncertainty. This description of the notion of CT already suggests links with ST, 
such as dealing with uncertainty, contradictions and a critical evaluation of given 
claims (cf. McPeck,  1981 ). Dealing critically with such information—a crucial aspect 
for both domains—demands critical/evaluative thinking based on  rational thinking 
processes and decisions   (Aizikovitsh-Udi,  2012 ; Aizikovitsh-Udi & Amit,  2008 ). 

 The two key concepts of manipulation of  data   by reduction and dealing with 
statistical variation have been implemented in a corresponding hierarchical compe-
tency model of a sub-aspect of statistical literacy (Kuntze, Lindmeier, & Reiss, 
 2008 ; Kuntze, Engel, Martignon, & Gundlach,  2010 ), using the core metaphor of 
data-related reading (cf. Curcio,  1987 ). According to the considerations earlier we 
can expect that the competency of “using models and representations in statistical 
contexts” encompasses aspects of critical thinking. These theoretical connections 
seem very evident, but can they be distinguished empirically in thinking processes 
when solving tasks related to Statistical Thinking or Critical Thinking?  

8.2.2      Empirical   Findings Relating Critical Thinking 
to Statistical Thinking 

 There are prior studies in which relationships between CT and ST have been inves-
tigated in a quantitative correlational design. For instance, Royalty ( 1995 ) found a 
correlation of  r  = .49 between the scores on the Cornell CT Test (Ennis & Millman, 
 1985 ) and on a selection of statistics items. However, Royalty ( 1995 ) does hardly 
describe the structure or the model associated with this ST instrument, nor does he 
discuss the correlation he found from a content point of view. His study with 109 
participants rather focuses on the question of generalizability of CT, and ST is con-
sidered as a domain-specifi c variable. This research calls for in-depth analyses 
about  how  CT and ST may interdepend, and the fi ndings of Royalty indicate that 
such in-depth analyses may yield interesting and important possible explanations of 
the correlations which open up the way also for follow-up quantitative research.   

8.3     Research Questions 

 Consequently, this study aims to provide evidence for the following  research ques-
tion  : How is critical thinking connected with statistical thinking? How can the 
simultaneous interpretation, using both Critical Thinking and Statistical Thinking, 
of an individual’s problem solving help to better explain evidence related to think-
ing processes in either domain? Beyond the theoretical character of this research 
interest, these questions are also relevant for the context of seeking to inform class-
room instruction.  
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8.4      Methods   

 For exploring thinking processes related to tasks in the domains of both Statistical 
Thinking and Critical Thinking, individual semi-structured interviews are being 
conducted with teachers. The interviews focus on thinking aloud when solving tasks 
and last about 40–50 min. Beyond solving the tasks, the interviewed persons are 
also free to give their personal view on the tasks, respectively. We report in the fol-
lowing section results of one interview. The  bottom-up analysis   of the evidence that 
has been carried out concentrated on thinking processes relevant from the point of 
view of Statistical Thinking (ST), on the one hand, and of Critical Thinking (CT), 
on the other. For attaining this goal, a fi rst analysis of the evidence was done focus-
ing on an interpretation against the background of ST only, then a second analysis 
concentrated on an interpretation employing a CT point of view. The analysis was 
carried out in a bottom-up-approach, focusing on criteria from the theoretical frame-
works, respectively (Ennis & Millman,  1985 ; Watson,  1997 ). In a third step, we 
carried out a combined interpretative analysis, drawing on both approaches, in order 
to explain thinking processes in more depth and to highlight relationships between 
CT and ST elements. In this methodological approach, the analyses were done by 
two raters.  

8.5     Results 

 Our aim in this study was to exercise and evaluate CCTST. In order to answer the 
research questions, the fi ndings from this study were analysed from the perspectives 
of Critical Thinking and Statistical Thinking separately and then by a joint perspec-
tive, discussing possible connections between the two. We would like to illustrate 
this with a fi rst example taken from the interview with Nena, a U.S. secondary 
teacher. Nena was an experienced Mathematics instructor with 20 years of mathe-
matics teaching experience. She had been teaching in the same school for 12 years. 
According to observations by the fi rst author, her teaching is very detailed and pre-
cise and is accompanied by oral and written explanations. Nena gives many instruc-
tions during the process of solution: how to solve equations, perform calculations, 
work with models, when to contract, etc. Nena solves each equation until the fi nal 
result and does not skip stages in problem simplifi cation, including detailed substi-
tutions and all the necessary calculations. Her teaching is best described as “tradi-
tional” and extensive  descriptions   of such teaching can be found in the literature 
documenting traditional teaching (e.g. Chazan,  2000 ). Nena is dedicated to improv-
ing her teaching wherever possible and had been participating in a year-long profes-
sional development programme for mathematics teachers at the time this interview 
occurred. In the interview, Nena had been asked to solve the problem in Fig.  8.1 , 
among others, while thinking aloud. Here is the corresponding part of the interview 
with Nena:
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    Interviewer:     What do you think? From which year on has the population been 
decreasing?   

  Nena:     Well … the population has been decreasing since 1963 until about 
1973, where the population begins to rise a bit … but it is still down 
since 1963 ….   

  Interviewer:    Are you confi dent about it?   
  Nena:     of course … I am sure! You can look at this problem mathematically, 

anywhere there is a positive slope you could say the population is 
increasing, where there is a negative slope the population is decreas-
ing. But compared to 1963, it’s always been down. Am I right?   

  Interviewer:    Sorry, I can’t say.    

  Seen from the perspective of Critical Thinking (CT), the analysis yielded that in 
this part of the interview, dealing with assumptions is one of the key elements 
(Ennis & Millman,  1985 ). Nena initially has an assumption, interpreting the graph 
of births as completely determining the  population development  . Even when asked 
to refl ect on this assumption, Nena does not generate possible counter-arguments 
for testing her initial assumption, nor does she appear to question this assumption. 
Consequently, her way of dealing with assumptions appears to be unsuccessful; she 
tends to seek for confi rming evidence rather than for evidence that might challenge 
her initial assumption. 
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„The Germans don’t have enough children’’, was a recent
newspaper’s headline. Consider the following diagram about the
development of the German population:

From which year on has the population been decreasing?

Natür liche Bevölkerungsentwicklung in Deutschland
(bis 1990: BRD + DDR)

  Fig. 8.1    Task “population” (Kuntze et al.,  2008 )       

 

8 Connections Between Statistical Thinking and Critical Thinking: A Case Study



88

 Seen from the perspective of Statistical Thinking (ST), Nena chooses an  inap-
propriate statistical model   for interpreting the data given in the diagram (cf. descrip-
tion of this task in Kuntze et al.,  2008 ). She appears to focus on the data related to 
the births only, and she deducts her conclusions from a mathematical consideration 
of slopes. Even when encouraged by the interviewer, she does not check this model 
against the background of the full data given in the diagram. 

 Consequently, the (separate) analyses suggest that Nena’s answers show defi cits 
both in Critical and Statistical Thinking. Looking at the relationships between CT 
and ST in more depth, we attempt a combined analysis: At the very beginning of 
Nena’s thinking process, she shows a partial or incomplete perception of the evi-
dence, focusing on the birth data from 1963 on. This selective focus may have been 
a result of the headline given in the diagram (“The Germans don’t have enough 
children”), which can be interpreted as an assumption in CT terms. This headline 
may hold from about 1972 on, or, within Nena’s misinterpretation of the births 
determining the population, from the turning point in 1963 on. Nena does not ques-
tion the given headline, which would have been a characteristic of CT. This stance 
of questioning assumptions derived from data is also an important aspect of ST 
performance. In the next statements by Nena, it becomes even more apparent just 
how important questioning assumptions can be for ST: Nena does not question her 
fi rst—and partial—interpretation of the diagram and hence does not challenge her 
model of the data in terms of ST, neither by looking at the complete curve of the 
births, nor by developing a model of considering the population as a sort of “reser-
voir” with “incomings” and “outgoings”. The latter would permit to discover that 
the intersection point(s) of the curves are meaningful. In this context, it is interest-
ing that Nena emphasises that it is possible to “look at this problem mathemati-
cally”, which suggests that she sees a discrepancy between looking at the situation 
from the perspective of a mathematical model and looking at it from the perspective 
of the context (population and children born in Germany). Possibly the mathemati-
cal or statistical  model   is considered as an authority that is used to justify the appro-
priateness of the assumption instead of questioning the model chosen initially. We 
may conclude from this combined analysis that the shortcomings in CT go hand in 
hand with shortcomings in ST and that the elements of reasoning in both domains 
interfere and interact. Hence, help in either domain, i.e. both in CT and ST, could 
possibly have had a positive impact on the thinking process as a whole. Moreover, 
the CT and ST approaches can give not only simultaneous and parallel ways of 
interpreting the reasoning process, but, through a combined analysis, can explain 
even better how knowledge and awareness of both CT and ST can be mutually ben-
efi cial, reinforcing related reasoning approaches. However, CT and ST are not 
always interdependent in an obvious way, as the following example suggests (cf. 
Fig.  8.2  and the corresponding interview section): Aizikovitsh-Udi, Kuntze and 
Clarke

    Interviewer:      So, what do you think, with which of the following statements do 
you agree?   

  Nena:    I would agree with the third statement.   
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  Interviewer:    Can you explain, please?   
  Nena:     Yes … 400 computers is not a large sample when talking about com-

puters so I would go with the third statement and just listening to the 
comments of her friends and the consumer’s magazine, it is possible 
that both the computers could be just so.   

  Interviewer:    Are you sure?   
  Nena:    Sure. I like this question!    

  Seen from the perspective of CT, an important aspect of Nena’s answers is that 
she questions not only the experiences of the friends, but also the results from the 
study with the 400 laptops. On this base, she expresses agreement only with the 
third statement, which corresponds to a high level of questioning evidence as a sub- 
aspect of CT. 

 However, considering Nena’s answers under the lens of ST, she appears not to 
fully acknowledge the statistical power of the sample of 400 laptops. So even though 
Nena remarks that it is not possible to make a prediction on the base of the data, and 
even if she appears to compare the number of the 400 laptops to the number of all 
laptops, she does not refl ect in depth on the higher statistical power of the  computer 
magazine study  . 

 In a joint perspective, including aspects from CT and ST, Nena might even have 
had to face a confl ict: Her CT  evaluation   of the situation may have lead to a view 
that predictions are impossible and that a laptop of any type may cause problems. 
This dominant critical attitude may have somewhat blocked the awareness of ele-
ments of ST, e.g. reasoning related to the sample size and representativeness. This 
section of the interview may at fi rst sight suggest that CT and ST were relatively 
independent here, because a high level of CT coincides with incomplete ST 
 processes. However, as CT and ST have probably interacted in Nena’s thinking 
process, with CT “blocking” a deeper ST analysis, this example also gives insight 
how CT and ST may interfere. An increased awareness of ST could even have con-
tributed to the development of CT in this example: e.g. when a decision for a laptop 
has to be made, acknowledging the study with the 400 laptops can be seen as a form 

  Fig. 8.2    Task “Laptops”       
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of thinking critically about one’s own critical thinking, i.e. questioning the initial 
assertion that predictions are impossible. 

 Conversely, also ST can be dominant over CT, as the following example (associ-
ated to the problem in Fig.  8.3 ) suggests:

    Interviewer:     … and here … Do you agree with the interpretation of the police 
president? Why or why not?   

  Nena:     I do not see a big difference with the number of crimes for any given 
year that would warrant extra police force to be hired ….   

  Interviewer:    Can you justify it, please?   
  Nena:     It looks like the average is approximately 520 which is close to all 

the numbers so I do not think anything different is really happening 
from any given year.    

  According to Ennis’ taxonomy (Ennis & Millman,  1985 ) one crucial element of 
CT is raising questions, having doubts and exploring the defi nition of important 
notions like “crime”. In our case it is very important to know about the nature of the 
crimes for drawing conclusions. For example, if we knew that all the crimes were 
murders, we would decide differently than if these crimes were related to paying 
taxes or fraud. In our case, no question about such a defi nition was raised and the 
focus was just on the pure numerical aspect. Hence, in terms of CT, Nena doesn’t 
show the complete spectrum of CT skills. 

 From the point of view of ST, Nena uses an appropriate model and shows an 
awareness of statistical  variation  . By these means, she arrives at the conclusion, 
that, given the variation of the data of the past years, the rise of the crime number is 
not signifi cant. Consequently, seen from the ST perspective, Nena shows an appro-
priate understanding of the statistical situation. 

 Looking at this part of the interview in the joint CT and ST interpretation mode, 
the analysis yields that Nena successfully questions the statement of the police pres-
ident by using the data given in the problem and a statistical argumentation. In the 
following, she appears to remain in the statistical domain, giving more details 
related to the model she had chosen (distances to the average value). This focus on 
the ST model may have hindered her use of any of the CT skills in the following, 
e.g. analysing and questioning the defi nition of “crime” as the key notion here, 
questioning the evidence (i.e. the way the data had been collected), etc. 

540 538

530

535

525

515

505

510

520 518

Number of crimes

2005 2006

The police president shows the following diagram and says: “This diagram shows,
that since 2005, the numberof crimes in the city center has increased,so thatwe
have toexpect that itwill furthergoup in thenextyears.We needmorepolicemen
for patrol in the city center.”

In a more extensive press communication, Fred has found the data of the last 7 years:

Year 2000 2001 2002 2003 2004 2005 2006

Number of crimes 504 528 525 499 529 518 538

Do you agree with the interpretation of the police president?
Why or why not?

  Fig. 8.3    Task “crimes”       
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  Questioning data   plays a role also in the following example related to the problem 
in Fig.  8.4 :

     Nena:    And here … I think tablet one takes too long to get rid of the headache. 
Tablet two seems to get rid of the headache a lot quicker for the major-
ity of the people. You don’t really know the age or weight of the peo-
ple. Many factors play into the reason why a headache might occur so 
the statistics are poor. Based on the chart, I would have to pick tablet 
number two in hope of a speedy recovery.    

  From the perspective of CT, Nena not only evaluates the given statements, but 
she also shows CT elements when going beyond the data given: She gives examples 
of relevant infl uencing factors, and questions the data provided in the diagram (“the 
statistics are poor”). 

 From the point of view of ST, the analysis of Nena’s short answer yields that 
Nena chose an appropriate model and was aware of the key elements of the prob-
lem, even if she did not explicitly discuss the minority of cases with very slow 
recovery for tablet 2. These considerations led to her personal conclusion to pick 
tablet number two, as she obviously sees the chance of a “ speedy recovery  ” as more 
important than the risk of a very slow recovery. 

 Looking at both CT and ST, the example appears to highlight how elements of 
CT can contribute to ST, e.g. when evaluating data, its presentation and analysis, 
planning data collection, etc. In the example, Nena suggests an analysis that takes 
into account the age or weight of the persons in the study. Conversely, aspects of ST 

A company produces two sorts of headache tablets. Both sorts have been tested in
a laboratory with respectively 100 persons suffering from headache.The diagram
below shows, how long it took until the headache was over. Each point represents
one test person.

Find counter-arguments!

No, because 

Find counter-arguments!

No, because 

Tablet 1

Tablet 2

Time in minutes

Dr. Green: Dr. Jenkins:

0 20 40 60 80 100

  Fig. 8.4    Task “tablets” (Kuntze et al.,  2008 )       
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like dealing with statistical variation and uncertainty can contribute to CT, especially 
when it comes to decisions in non-determinist situations, where full data is 
unavailable.  

8.6     Discussion and Conclusions 

 This exploratory study investigates CCTST and demonstrates that these connec-
tions clearly exist at the level of individual reasoning practices. Specifi c CCTST are 
suggested by the evidence related to the thinking processes elicited in the interview. 
It might be said that an individual employing Statistical Thinking had access to a 
structured framework of analytical principles that could guide and support their 
reasoning. That is, the relationship between measures of central tendency and vari-
ance, for example, structure any consideration of distribution of data that might be 
invoked in drawing evidence-based conclusions or making evidence-based judge-
ments. On the other hand, the components of Critical Thinking are not related in 
such a structured fashion and an individual’s inclination to employ one strategy (e.g. 
Questioning Evidence or Questioning Assumptions) can be given expression with-
out any obligation to also invoke other components of Critical Thinking. Some 
Critical Thinking skills resemble the “heuristics” that were the focus of the enthusi-
asm for problem solving in the 1980s and 1990s (Clarke, Goos, & Morony,  2007 ). 
Catalogues of such heuristics were similarly fragmented. Ennis and others have 
catalogued critical thinking skills (Ennis & Millman,  1985 ) and even arranged these 
categories in a form of hierarchy, but the connection between specifi c critical think-
ing skills is under-theorised in comparison with Statistical Thinking. Nonetheless, 
the forms of Critical Thinking identifi ed in such classifi catory schemes are clearly 
of signifi cance, both as aspects of reasoning and as potential curriculum content. 
The question of how best to conceptualise these skills, how to integrate or connect 
them with other curricular goals and how best to promote them and nurture their 
development in the classroom remains a major challenge. The case study presented 
in this chapter has made some aspects of that challenge explicit. 

 When the individual being offered the opportunity to employ Statistical Thinking 
and/or Critical Thinking is a mathematics teacher (Nena), with more or less com-
plete access to the principles and practices of Statistical Thinking, then it seems 
reasonable to anticipate the dominance of Statistical Thinking as a characteristic of 
the individual’s reasoning processes. In fact, Nena’s inclination to question evi-
dence served as a general behavioural reference point and was capable of overruling 
statistical considerations, while avoiding any obligation to employ complementary 
Critical Thinking skills such as attempting to generate counter examples or identify-
ing and questioning assumptions. The lack of an established theoretical structure in 
Critical Thinking seriously restricts the utilization of Critical Thinking in the 
 manner in which Statistical Thinking can be employed. However, if it were possible 
to develop a structure for Critical Thinking in which the component elements were 
not only identifi ed, but also their relationship established, then to invoke one aspect 
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of Critical Thinking would serve to catalyse the use of other related aspects, because 
the connections between elements would be well known and understood. 

 Since it has been (1) argued, and (2) demonstrated in this chapter that ST requires 
many of the reasoning processes essential to CT, it is possible that careful education 
in the use of ST might be employed as the entry point for specifi c instruction in 
CT. An earlier study (Aizikovitsh-Udi,  2012 ) has documented efforts to produce CT 
through a programme of instructional immersion in the related topic of probability. 
The arguments and data reported here suggest that similar efforts might be made to 
develop a structured programme of instruction in ST that also integrated analogous 
elements of CT. In such a programme, the structure and utility of CT would be 
elaborated by analogy with related aspects of statistical thinking requiring reason-
ing processes common to both ST and CT. This proposal warrants investigation. 

 The case study reported in this chapter suggests several imperatives if such a 
programme is to be realised: (1) A structure must be found for Critical Thinking that 
consists of more than just a list of components (hierarchical or not); (2) aspects of 
Statistical Thinking must be identifi ed that are analogous to corresponding aspects 
of Critical Thinking; (3) an instructional programme must be devised that provides 
the opportunity to employ Statistical Thinking, while simultaneously introducing 
students to the practices and structure of Critical Thinking; and (4) teacher educa-
tion programmes must initiate pre-service (and in-service) teachers into not only the 
instructional practices required for such a programme but the thinking skills them-
selves (characteristic of both Statistical Thinking and Critical Thinking).     
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    Chapter 9   
 Tasks Associated to the Treatment of Tables 
at Elementary School and Its Level 
of Diffi culty       

       Soledad     Estrella     ,     Arturo     Mena-Lorca     , and     Raimundo     Olfos    

       Piaget and Inhelder ( 1955 ) argued that some types of tables should be presented to 
students who are at least 12 years old. In turn, Duval ( 2003 ) argued that various 
types of tables and their interpretations demand different cognitive resources, and 
that it is relevant to explain that not all tables are the same, and not all students 
understand in the same way; moreover, students’ diffi culties with tables can endan-
ger other learning. What concepts are present in students’ mind during their inter-
pretation of tables? What are the main semiotic confl icts in the task? In 2010, two 
Chilean studies, (Estrella,  2010 ; Estrella, Olfos & Mena-Lorca,  2015 ) referred to 
pedagogical content knowledge, showed that treatment of tables presents diffi cul-
ties for teachers ( n  = 85) and students ( n  = 1500). This research analyses various 
tasks associated to the treatment of tables at elementary school and their level of 
diffi culty, according to Curcio’s taxonomy of graphical undertanding (Curcio,  1989 ; 
Friel, Curcio, & Bright,  2001 ). 

 Some diffi culties that would arise in the treatment of the  tables  : reading headers 
and titles is complex because it differs from the verbal register by eliminating the 
syntactic organization of sentences; it can be read like the graphics or plans, as 
available location goes from vertical/horizontal, or diagonal, or both; cognitive 
demand to complete a table inside (body of data) is smaller than to construct mar-
gins of the table; there are different levels of reading comprehension of the table by 
number of variables in play to categorize (based on a variable, according to a second 
variable, and according to both variables); there are different levels in the 
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 construction of the table by number of variables in play to categorize (depending on 
a variable, according to a second variable, and as the two variables); there are 
also diffi culties in counting the items in each cross-category because the cross- 
classifi cation may be a necessary but not suffi cient condition to construct a table.    
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    Chapter 10   
 An Analysis of the Statistical Contents 
Covered In China, Singapore and Taiwan 
Mathematics Textbooks at the Primary Level       

        Hak     Ping     Tam      and     Ou     Yung     Chih   

10.1            Introduction 

 Items on probability and statistics account for a sizable percentage in both TIMSS 
and PISA. Yet their coverage in Taiwan’s mathematic curricula has been gaining 
ground rather slowly. Moreover, the statistical content is presented more as a set of 
individual techniques rather than organized around some big ideas. In order to vital-
ize the statistic curricula in Taiwan, an attempt is initiated to compare local primary 
mathematics textbooks with those from China and Singapore in relation to how they 
differ in their arrangement of statistic. It is believed that useful insight can be 
gleaned via a careful comparison across all versions of textbooks.  

10.2     Methodology 

 All three available versions of Taiwan  textbook   are included in this study. The 
Beijing Normal University’s version and  My Pals Are Here  are chosen to represent 
textbooks from China and Singapore, respectively. Every version carries twelve 
textbooks at the primary level. Comparisons are made regarding the topics being 
covered, their coverage, grade levels in which they are introduced, their sequences 
of presentation as well as the way the concepts are discussed. The analysis was done 
in 2012.  
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10.3     Results 

 It was found that the three Taiwan versions have a relatively lower coverage on 
 statistics content  . They tend to be introduced at grades four, fi ve and six, rather than 
spreading out throughout all primary grades as in their counterparts. Beijing 
Normal’s version covered more topics and at greater length than all the other ver-
sions. It contained more review materials to refresh students’ memory of concepts 
learned previously.    
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    Chapter 11   
 Mathematical Modelling for Critical Statistics 
Education       

       Luana     Oliveira     Sampaio      and     Maria     Lucia     Lorenzetti     Wodewotzki    

       This study involved 55 students of the discipline Statistics for Administration. With 
them, we conducted an extracurricular activity through Mathematical Modelling 
(MM) in an attempt to create conditions for a Critical Statistics Education (CSE). In 
this line, MM involves investigations of reality, while providing an environment 
where students gain space for discussions. Those discussions that have some con-
nection with the construction of the Mathematical Model is what Barbosa (2006) 
calls Modelling Routes, which consists of three types of discussions: mathematical, 
technological and refl exive. However, outside the Modelling Routes, there are the 
Parallel Discussions, that refers to general aspects of the problem without being 
used in the construction of the mathematical model. In our research we identifi ed 
new branches within the Parallel Discussions (SAMPAIO, 2010): Mathematical 
Parallel Discussions: refers to the speeches belonging to the fi eld of pure mathemat-
ics and/or statistics; Technological Parallel Discussions: refers to the way, or set of 
procedures and tools used to plan, develop and evaluate the learning environment; 
Refl exive Parallel Discussions: refers to ideas related to aspects of social life and 
can involve socio-critical interpretations of the results of mathematical or statistical 
studies; Other Parallel Discussions: refers to the speeches that do not meet the defi -
nitions above. Faced with this classifi cation, we observe that the discussions outside 
the Modelling Routes can also have an important role in MM Practices. We con-
clude that the Refl exive Discussions and Refl exive Parallel Discussions contribute 
more to the development of CSE, that, according to Campos (2007), brings together 
the goals of Statistics Education and goals of Critical Education in order to produce 
a pedagogy that is democratic, refl ective and engaged in its greatest role of social 
responsibility with students. 
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    Chapter 12   
 Survey and Research on the Levels of High 
School Students’ Critical Evaluation 
of Statistical Information and the Infl uence 
Factors       

       Ma     Ping    

12.1            Study Questions 

 With the rapid development of economic globalization and information society, 
statistics, as an important tool, is widely used in many fi elds. According to Gal 
( 2002 ), in order to satisfy the needs of the society, we should have “the ability to 
explain and give critical evaluation on statistical information, viewpoints relating to 
data, and random phenomena, under different situations.” According to Watson and 
Moritz ( 1997 ) from Australia, there are three levels in the understanding of statistical 
conception, and the highest level is “to be able to observantly raise questions for 
improper use of statistics.” (The other two levels are “to understand basic statistical 
conception” and “to understand statistical language and concepts used in various 
backgrounds.”) Both Gal and Watson emphasize that critical evaluation of statistical 
information is one of the important sides of statistical literacy. One of the important 
objectives for statistical teaching in many countries is to teach students to use statisti-
cal knowledge to carry out critical analysis and evaluation on statistical statements. 

 In China, with the publication of Curriculum Standards in the Phase of Full-
time Compulsory Education in 2011 and the Mathematics Curriculum Standard 
for Senior High School in 2003, Statistics, together with “number and algebra” 
and “space and graphics,” has become an important part in mathematics teaching. 
For the fi rst time, in the Curriculum Standard, “ statistical conception  ” becomes 
one of the important objectives in statistical teaching. According to Dan, Jiansheng, 
and Chunli ( 2002 ), “statistical conception” includes not only the consciousness 
of thinking questions from the point of view of statistics but also the process of 
collecting, describing, and analyzing data by oneself and then making appropriate 
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judgment. Therefore, in the implementation of the new Curriculum Standards, 
how is the level of critical evaluation of statistical information for Grade One 
students in senior high school? What are the infl uence factors? How does it infl u-
ence the development of critical thinking to let students participate in a statistical 
activity? How should mathematics teacher cultivate students’ critical thinking 
ability in statistical teaching in senior high school? This study focuses on these 
questions.  

12.2     Methodology 

12.2.1     Sample Selection 

 The  sample   is selected from a key senior high school in Jinan, Shandong Province, 
China, which includes 229 Grade One students. There are two phases in the study. 
In the fi rst phase, 134 students were organized into several teams to carry out a 
statistical activity which they are interested in, and the results (including statistical 
report, statistical poster, and PPT) were exhibited in the school. In the second phase, 
229 students, including 122 girls and 107 boys, received tests based on the question-
naire. The gender ratio is more or less balanced, so as to analyze if there is gender 
difference in critical evaluation of statistical information. One hundred and seven 
students participated in the statistical investigation and 112 students did not, so as 
to analyze the infl uence of statistical investigation on critical evaluation of statisti-
cal information.  

12.2.2        Questionnaire Preparation      

 The questionnaire includes four questions. Two of them are from the study of 
Kazuhiro ( 2007 ), and the other two were prepared by the author and some other 
mathematics teachers of the high school. Three principles are followed in the selec-
tion and preparation of the test questions: (1) All questions require students to give 
explanation for their answers, so as to distinguish students’ level of critical evalua-
tion of statistical information. (2) The situations of the test questions refer to the 
division of situations in PISA test (OECD  2006 ). Considering the “distance” from 
the students’ daily life, four situations are selected, namely, personal situation, edu-
cational situation, social situation, and scientifi c situation, so as to analyze the rela-
tion between situations with different “distance” and the students’ level of critical 
evaluation of statistical information. (3) Statistical diagrams in the test questions 
include column diagram, diagram with a single variable, bar diagram, data point 
diagram with various variables, and scatter diagram, so as to study the infl uence of 
different types of statistical diagrams on the students’ level of critical evaluation of 
statistical information. 
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 For each question, the statistical diagrams are provided fi rst and a statistical 
judgment is given. Then the students are required to judge if the statistical judgment 
is reasonable or not, and to give their own reasons. 

 Before the formal test, the author carried out a pretest in another class in the same 
Grade. Based on the results of the pretest, the author made some adjustment for the 
order of some questions and modifi ed the wording of some questions. Two days 
later, the formal test was carried out.    

12.2.3       Classifi cation   Standard for Levels of Critical Thinking 

 The question analysis method in this study refers to the study of Kazuhiro ( 2007 ). 
Based on  SOLO classifi cation method   (Biggs & Collis,  1982 ) (prestructure level, 
single structure level, correlation level, and extended abstract level), and combined 
with Curcio’s ( 1987 ) three levels of statistical diagrams reading (data reading, read-
ing of the information between data, and reading of the information above data), the 
classifi cation standard for students’ levels of critical evaluation of statistical infor-
mation (see Table  12.1 ) is specifi ed according to the relations between data, reason-
ing process, and explanation above statistical diagrams. Question 2 is used as an 
example to explain classifi cation standard for levels of critical thinking.

   Question 2: The following diagram is the result of a survey for primary school 
students. The vertical axis shows the time to play computer games every day, and 
the horizontal axis shows the chance for the occurrence of behaviors with violence 
tendency (e.g., push or kick classmates, pull other students’ hair). (From left to 
right, there are “a few,” “moderate numbers,” “quite a lot,” and “many.”) 

 Based on the diagram, someone concludes that the reason for the occurrence of 
violent behaviors among primary school students is that they play computer games 
for quite a long period of time. Do you agree? Please give your reason. 

 A. Agree B. Not agree C. Neither A nor B D. I don’t know
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    In this study, the classifi cation standard for students’ levels of critical evaluation 
of statistical information is as follows (see Table  12.1 ): 

 Based on the standard, the author classifi ed the students’ answers to each question 
into fi ve levels, from 0 to 4. Then SPSS was used to analyze the data, and the results 
are as follows.    

    Table 12.1    Classifi cation standard for students’ levels of critical evaluation of statistical 
information   

 Level  Classifi cation standard 
 Students’ answers (take question 2 
as an example) 

 4  • Being able to fi nd out the relations 
between data in statistical diagrams; 

 According to the diagram, we can fi nd 
out that playing computer games for a 
long period of time may cause more 
violent behaviors. However, playing 
computer games is not the cause of 
violent behaviors. The conclusion is not 
complete. There are many other factors 
that may cause violent behaviors, such as 
human relations, characters, family 
environment, etc. 

 • Being able to make correct reasoning 
and explanation to the rationality of 
the statistical statement, according to 
the relations between data; 

 • Being able to give other reasons 
besides the information of statistical 
diagrams 

 3  • Being able to fi nd out the relations 
between data in statistical diagrams; 

 According to the diagram, we can fi nd 
out that the occurrence of violent 
behaviors is related to time for playing 
computer games. However, playing 
computer games is not the cause of 
violent behaviors. Playing computer 
games may have great infl uence on 
violent behaviors 

 • Being able to make correct reasoning 
and explanation to the rationality of 
the statistical statement, according to 
the relations between data; 

 • Not being able to give other reasons 
besides the information of statistical 
diagrams 

 2  • Being able to fi nd out the relations 
between data in statistical diagrams; 

 According to the diagram, the level of 
students’ violent behaviors increases with 
the increase of time to play computer 
games, with slight fl uctuation. Therefore, 
playing computer games for a long period 
of time is the cause of violent behaviors 

 • Not being able to make correct 
reasoning and explanation to the 
rationality of the statistical statement, 
according to the relations between 
data 

 1  • Being able to fi nd out the relations 
between data in statistical diagrams; 

 The students only choose A, B, or C, 
without giving explanation 

 • Not being able to provide reasoning 
process 

 0  • Not being able to fi nd out the relations 
between data in statistical diagrams 
(choosing “I don’t know,” not 
answering the question or making 
irrelevant answers) 

 I play computer games everyday, but 
never fi ght with other people 
 Indulging oneself with fi ctitious computer 
games for a long period of time may 
cause people to have hallucination, etc. 

M. Ping



105

12.3     Conclusion and Analysis 

12.3.1     The Students’ Overall Level of Critical Evaluation 
of Statistical Information 

 Table  12.2  shows that the critical thinking levels of the  students   who received the 
test are distributed in an “olive” shape. The number of 0 and 4 levels account, 
respectively, for about 10 % of the total number of the students. A total of 62.5 % of 
the students (reaching level 2, 3, and 4) are able to fi nd out the relations between 
data in statistical diagrams; 35.6 % of the students (reaching levels of 3 and 4) are 
able to think critically about the statistical statement; however, only 10.2 % of the 
students are able to use their knowledge in daily life to give new understanding and 
explanation to the statistical statement. Therefore, 25.4 % of the students have 
grasped basic knowledge to carry out critical thinking but have not reached the 
highest level of critical evaluation of statistical information.

   According to the above-mentioned results, three conclusions can be reached. 
First, more than one-third of the students are not able to carry out critical evaluation 
on statistical statement. Among all of the  students  , those with level 0 and level 1 
account for 37.5 %. These students are not able to fi nd out the relations between data 
in statistical diagrams and have not grasped basic statistical knowledge and skills to 
carry out critical thinking. Second, 25.4 % of the students have the ability to carry out 
critical evaluation on statistical statement, but their critical evaluation on statistical 
statement only limits to the question itself. Finally, most of the students (62.5 %) are 
able to fi nd out the relations between data in statistical diagrams and to carry out 
some reasoning according to their own understanding, which shows that they have 
reached basic requirements for statistical learning in senior high school.  

12.3.2     Comparison between Boys and Girls in Levels 
of Critical Evaluation of Statistical Information 

 Table  12.3  shows that there is no signifi cant  gender difference   at every level. At 
level 4, data distribution for girls is 3.3 % higher than that for boys. The average 
score for boys is 14.6, and the average score for girls is 15.2, which is slightly higher 
than that for boys. Analysis of variance shows that concomitant probability 
(P) = 0.31 > 0.05. There is no signifi cant gender difference statistically.

  Table 12.2    The critical 
thinking levels of the students 
who received the test  

 Level  Percentage (%)  Accumulated percentage (%) 

 4  10.2  10.2 
 3  25.4  35.6 
 2  26.9  62.5 
 1  27.9  90.4 
 0  9.6  100 
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   Wu’s ( 2004 ) study on 907 junior high school students’ (from 13 to 15 years old 
in Singapore) understanding ability for statistical diagrams shows that there is no 
signifi cant gender difference in the interpretation and evaluation of statistical 
diagrams. Zhang ( 2007 ) in her Master’s thesis, points out that there is no signifi cant 
gender difference in the evaluation of statistical diagrams. Tian Zhong’s (1999) 
study also shows that the mathematical thinking ability for boys and girls in junior 
high school is generally balanced. The author’s study confi rms the above-mentioned 
conclusions: there is no signifi cant gender difference in critical evaluation of 
statistical information.  

12.3.3     The  Students’ Participation   in Statistical Activities Can 
Effectively Enhance Their Critical Thinking Level 

 Table  12.4  shows that the percentage of students in level 0 and level 1 who participate 
in statistical activities is 32 %, which is 16.2 % lower than that of the group who don’t 
participate in statistical activities. The percentage of students in level 3 and level 4 
who participate in statistical activities is 36.4 %, which is almost 8 % higher than that 
of the group who don’t participate in statistical activities. The students’ participation 
in statistical activities can effectively enhance their critical thinking level.

   This conclusion is expectable. Based on different survey questions, groups of stu-
dents design questionnaires, collect data, analyze data, reach conclusions, write sta-
tistical reports, draw statistical posters, and exhibit the results. In this course, students 
need to use their statistical knowledge to solve practical problems. In order to solve 
these problems, sometimes they need to better understand the statistical knowledge 

   Table 12.3    Distribution of critical thinking levels for boys and girls   

 Level 0 (%)  Level 1 (%)  Level 2 (%)  Level 3 (%)  Level 4 (%) 

 Data distribution for boys  10.1  28  27.6  25.9  8.4 
 Data distribution for girls  9.2  27.7  26.4  25  11.7 

   Table 12.4    The distribution of critical thinking level for students who participate and don’t 
participate in statistical activities   

 Level 0 (%)  Level 1 (%)  Level 2 (%)  Level 3 (%)  Level 4 (%) 

 Data distribution for 
students who 
participate in statistical 
activities 

 6.5  25.5  31.5  28  8.4 

 Data distribution for 
students who don’t 
participate in statistical 
activities 

 12.3  35.9  23  23.1  5.7 
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they have learned or even need to learn more knowledge by themselves. In this 
course, students can better understand the effectiveness and limitation of statistics as 
a tool to process data. Many factors, including questionnaire design, sample selec-
tion, the use of statistical methods, and the choice of statistical diagrams, may have 
direct infl uence on statistical results. Not all conclusions drawn from statistical sur-
vey are reasonable. In order to get scientifi c conclusions, students need to think about 
how to design comparatively reasonable survey plan. This process may cultivate stu-
dents’ critical consciousness and enhance their critical thinking capacity. 

 Besides, members from other groups may raise questions when one group exhibits 
their survey results. In order to convince the audience, students must think carefully 
about their survey plan before exhibition, which may also help to enhance their critical 
thinking capacity.  

12.3.4     Analysis of Factors Infl uencing on Students’ Levels 
of Critical Evaluation of Statistical Information 

 In order to fi nd out  factors   that may directly infl uence on the levels of students’ critical 
thinking, the author makes further analysis on test questions. The author has carefully 
studied the questions and analyzed the infl uencing factors. The results are as follows. 

  According to Table   12.5  , the author reaches the following conclusions: 

12.3.4.1       The Situation and Background of Statistical Questions May 
Have Infl uence on Students’ Levels of Critical Thinking 

 Comparatively speaking, the students did a good job for questions 1 and 2. One-fi fth 
of the students reach level 4. Question 1 is about urbanization, and the students have 
learned some knowledge about urbanization in their geographic lessons. Question 2 
is about computer games, which is an important topic in the education of the students 
for both parents and teachers. Both situations are close to the everyday life of the 
students, and they grasp more knowledge about these situations. Therefore, the students 
are able to think critically about this kind of information. 

 Question 3 includes the line charts of three kinds of price indexes (real estate 
price index, producer’s price index for manufactured products, and international 

   Table 12.5    Distribution of levels of students’ critical thinking for the questions   

 Questions  Level 0 (%)  Level 1 (%)  Level 2 (%)  Level 3 (%)  Level 4 (%) 

 1  1.7  25.8  14.8  35.8  21.8 
 2  5  16.8  25.8  30.1  22.3 
 3  9.4  55.9  25.5  5.2  4 
 4  14.8  30.1  37.6  12.7  4.8 
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crude oil price index). The students are required to tell if there are relations between 
the three kinds of price indexes, and they did a quite bad job. Only 9.2 % of the 
students are able to reach level 3 and level 4, and 65.3 % of them lie in level 0 and 
level 1. Most students do not understand the statistical situation about how interna-
tional crude oil price infl uences producer’s price for manufactured products and real 
estate price; therefore, they are not able to think critically about and give explanation to 
the conclusion. According to the defi nition of situation of PISA, the above- mentioned 
situation falls into “scientifi c situation” which is comparatively far away from their 
everyday life. The students are not able to think critically and effectively about this 
kind of information because they are not familiar about knowledge relevant to this 
question and situation. The students’ answers to this question also refl ect the fact 
that they lack knowledge about social life. 

 Gal’s ( 2003 ) study also shows that it is very diffi cult for the common people to 
think critically about statistical conclusions when they read online the information 
and documents (e.g., national economic report, the research report of health infor-
mation, national import and export information) that they are not familiar about. 
People’s familiarity about the situations of statistical questions may have direct 
infl uence on their level of critical thinking. 

 Data in nature are numbers under certain situation. Situations are the source and 
base for enhancing understanding, and without specifi c situation people are not able 
to explain statistical conclusions. Without relevant situational knowledge, people 
are only passive receivers of information, and they do not concern about how the 
data are collected and what calculation and analysis have been carried out. Whether 
or not the students are able to think critically about statistical information depends 
on their understanding of situational knowledge. Test results also show that differ-
ent background of situational knowledge may have infl uence on students’ levels of 
critical thinking.  

12.3.4.2     Different Types of Statistical Diagrams May Have Infl uence 
on Students’ Levels of Critical Thinking. 

 Careful analysis of the questionnaire shows that the students’ mastery of different 
statistical diagrams is quite diversifi ed. Different types of statistical diagrams may have 
infl uence on students’ levels of critical thinking. Generally speaking, the students are 
good at column diagrams and diagrams with a single variable. They are bad at bar 
diagrams, data point diagrams with various variables, and scatter diagrams, and some-
times are not able to get useful information from diagrams and give reasonable 
explanation. 

 With the development of the economy, it has become one of basic abilities for citi-
zens to understand statistical diagrams and to make decisions based on the diagrams. 
In statistical teaching, the basic requirement is to teach students to be able to draw 
and understand statistical diagrams. However, this is far from enough. Teachers 
should also use examples to teach students basic skills and methods to understand 
statistical diagrams. In the reading of statistical diagrams, students should not only 
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get useful information from diagrams but also be able to reach some new conclusions 
and give their own explanation and hypothesis. In statistical teaching, teachers shall 
help students to learn by themselves. An important part in statistical teaching is to let 
students discuss their understanding about some statistical diagrams.  

12.3.4.3     Whether or not to Participate in Statistical Survey Activities 
may Have Infl uence on Students’ Levels of Critical Thinking. 

 The objective  of   statistics teaching is to teach students basic methods of statistics 
and analysis. More importantly, statistics teaching shall let students understand the 
role and basic thoughts of statistics, know about the difference between thinking of 
mathematical statistics and thinking of certainty, and notice the randomness of 
statistical results. Statistical statements can be right or wrong, which depends on the 
randomness of mathematical statistics. Statistics teaching shall especially empha-
size students’ participation in statistical process, and let students fully understand 
thoughts and role of statistics. The most effective method is to let students partici-
pate in statistical process. 

 Through their participation in statistical activities, students have experienced by 
themselves the process of questionnaire design and data collection. Therefore, they 
can have better understanding of knowledge about sample selection. For example, 
in the process of statistical activities, students may realize the randomness of 
sample. That is to say, when two persons use the same method to treat the same 
problem, they may get different results because of their different sample selection 
process. The results have the characteristics of randomness and the conclusion may 
be wrong. Teachers shall let students realize that although the results may be wrong, 
statistical deduction is of its signifi cance. It is very necessary for students to think 
critically about statistical statements. If students have not participated in statistical 
survey activities by themselves, it is very diffi cult for them to realize the signifi -
cance and limitation of statistical deduction. Students’ participation in statistical 
activities is good for the cultivation of their critical thinking ability for statistical 
statements.    

12.4     Teaching Measures and Suggestions 

12.4.1     In Statistics Teaching Teachers Shall Teach Students 
 Skills and Methods   of Critical Thinking 

 In order to teach students how to think critically, in statistics teaching teachers shall 
teach them skills and methods of critical thinking. Gal ( 2002 ) designs a table (see 
Table  12.6 ) on how to raise critical questions relevant to statistical information.

   The purpose of these ten questions is to cultivate students’ critical thinking ability. 
These ten questions, one after another, help students to think critically from the 
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perspectives of statistical knowledge, source of data and conclusions, and to treat all 
of the conclusions and data in an objective and unbiased way. These ten questions 
may help students to have an objective understanding of statistical conclusions and 
may help teachers to cultivate students’ skills of critical thinking in statistics 
teaching.  

12.4.2     In Statistics Teaching, Teachers Shall Consider 
the Classifi cation of Situations and Diversity 
of Diagrams When Selecting Sample Questions 
and Exercises 

 This study shows that students’ levels of critical thinking are infl uenced by types of 
statistical  situations and diagrams  . In statistics teaching, teachers can choose personal 
life situation as sample questions, which are more “close” to students’ everyday life. 
Students are more familiar with knowledge and background of this kind of questions, 
and it is easier for them to think critically about these questions. Through discussion 

   Table 12.6    How to raise critical questions relevant to statistical information in statistics learning   

 Raise critical questions relevant to statistical information 

 Where do these data come from (what is the base for relevant statement)? What type does the 
study belong to? In the situation, is this type of study reasonable? 
 Is there any sample used in the study? How is the sample selected? How many people have 
participated in sample selection? Is the sample big enough? Does the sample include 
representative groups of people? Is the sample incomplete in certain aspect? In a word, is 
relevant conclusion drawn from the sample reasonable? 
 How is the reliability and preciseness of the tools and measures (test, questionnaire, interview) 
used to get the data of the report? 
 What is the distribution of the original data (or the data used as the base for statistical 
deduction)? Is the distribution fi gure important for the original data? 
 Is the statistical method used in the report applicable for this type of data? Is it a reasonable 
model (e.g., using average to summarize conclusion relevant to ordinal numbers)? Does the 
conclusion using the method of data analysis distort the original meaning of the data? 
 Is the statistical diagram a proper one? Does the diagram properly describe the trend of data? 
 How does the probability statement come from? Are there complete and reliable data to verify 
the likelihood estimation? 
 As a whole, is the conclusion a reasonable one based on relevant data? For example, is the 
relationship between data and conclusion close enough? Similar data may lead to quite different 
conclusions 
 Is there any other information and method which can help me to understand and evaluate the 
validity of the conclusion? Is there any information neglected? For example, does the author 
“habitually forget” the origin of the data for percentage change or sample size? 
 Is there any other explanation to survey results? For example, is there any intervention or 
moderator variable with furthering effect which may have infl uence on the results? Are there 
any other additional and different meanings which are not mentioned here? 
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among students and summarization by teachers, students can gradually grasp skills 
and methods of critical thinking and have ability to think critically about statistical 
statements. 

 Types of diagrams in sample questions and exercises shall be diversifi ed. 
Through presentation and discussion of different types of  diagrams  , teachers shall 
let students experience three levels of statistical diagrams reading: data reading, 
reading of the information between data, and reading of the information above 
data. Students shall be able to read the information between data according to sta-
tistical diagrams, to carry out relevant statistical deduction, and to think critically 
about statistical statements, which shall become an important part of statistics 
teaching. In this way, students can use their statistical knowledge to think critically 
about statistical conclusions, to carry out reasonable deduction, and to solve practi-
cal problems.  

12.4.3     In Statistics Teaching, Teachers Shall Let Students 
Experience a  Complete Statistical Survey Activity  . 

 In order to develop and cultivate students’ critical thinking ability, it is very neces-
sary to let students experience a complete statistical survey activity in statistics 
learning. Through statistical survey activity, students can gradually understand 
that questionnaire design, sample selection, and the application of analytical meth-
ods may all have infl uence on statistical results. For any statistical survey, we can 
evaluate the credibility of statistical conclusions only by learning about its survey 
methodology. Therefore, it is necessary and important to think critically about 
statistical results. 

 Besides, by participating in a statistical survey, students can have better under-
standing of statistical knowledge and methods that they have learned. In the process 
of solving practical problems, students can gradually change their knowledge into 
abilities. A precondition for students to be able to think critically about statistical 
conclusions is to grasp basic statistical knowledge. 

 What is more, carrying out statistical survey activity in statistics teaching is 
also a measure to change students’ way of learning. When the author organizes 
students to carry out statistical survey activity, in the process of data analysis, 
the students have not learned how to use EXCEL to carry out data analysis. The 
author encouraged students to learn EXCEL by themselves. The students 
referred to relevant websites to learn by themselves and completed tasks. They 
provided various types of statistical diagrams. Students from different groups 
also helped with each other. All of the 22 groups taking part in the survey activ-
ity did a good job in data analysis. Therefore, statistical survey activity provides 
a platform for the development of the students and is good for the cultivation of 
students’ mathematical literacy.   
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12.5      Limitations   of This Study 

 This study was carried out in the late of June, when grade one students in senior high 
schools in Shandong Province are preparing for the examination of academic level 
and terminal examination. After the author carried out questionnaire test, question-
naire coding and analysis, there was no time to carry out interview with students 
taking part in the test. Therefore, the author cannot make further analysis on the 
thinking process in the test through in-depth interview, which is a limitation of this 
study. Coding in this study is based on the results of the questionnaire in written form. 

 Besides, the sample in this study is grade one students from a key senior high 
school in Shandong Province. Then how about students from grade two and grade 
three? Do their critical thinking levels change with different grade? How about 
students from other regions of China? Is there obvious regional difference? This 
study cannot answer the above-mentioned questions. There are much more to do in 
the study of this fi eld.       

12.6     Appendix:  Test Questions   for Senior High School 
Students’ Critical Evaluation of Statistical Information 

     1.    The fi rst diagram shows the pollution of a river in a town in Shandong Province 
from 1990 to 2000 (PCB refers to the pollution level). The second diagram 
shows the change of traffi c in that town from 1990 to 2000.
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    According to the two diagrams, someone concludes that the town has urban-
ized from 1990 to 2000. Do you agree? Please tick the answer which you agree 
and give your reason. 

 A. Agree B. Not agree C. Neither A nor B D. I don’t know 
 Your reason:   
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   2.    The following diagram is the result of a survey for primary school students. 
The vertical axis shows the time to play computer games every day, and the 
horizontal axis shows the chance for the occurrence of behaviors with vio-
lence tendency (e.g., push or kick classmates, pull other students’ hair). 
(From left to right, there are “a few,” “moderate numbers,” “quite a lot,” and 
“many.”) 

 Based on the diagram, someone concludes that the reason for the occurrence 
of violent behaviors among primary school students is that they play computer 
games for quite a long period of time. Do you agree? 

 A. Agree B. Not agree C. Neither A nor B D. I don’t know 
 Your reason:
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        3.    The following chart shows the change of three kinds of price indexes (the ratio 
of prices, namely, the ratio of the price of this year to that of last year, so as to 
describe price change) from 2000 to 2006.
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 Year  Real estate price 
index 

 Producer’s price index for 
manufactured 

 International crude 
oil price index 

 Products (PPI) 
 2000  101.1  102.8  159.5 
 2001  102.2  98.7  93.4 
 2002  103.7  97.8  100.8 
 2003  104.8  102.3  132 
 2004  109.7  106.1  106.9 
 2005  107.6  104.9  149.6 
 2006  105.5  103  116.4 

   Based on this chart, someone concludes that there is no correlation between 
the three kinds of price indexes. Do you agree? 

 A. Agree B. Not agree C. Neither A nor B D. I don’t know 
 Your reason:   

   4.    The following charts show sales and repair quantity of a certain type of mobile 
phone in a shop.
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    According to the third chart, someone concludes that the repair quantity of 
this type of mobile phone is gradually increasing. Therefore, the quality of this 
type of mobile phone is becoming worse and worse, and consumers should not 
buy this type of mobile phone. Do you agree? 

 A. Agree B. Not agree C. Neither A nor BD. I don’t know  
 Your reason:       
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    Chapter 13   
 The Conceptual Understanding of Variability 
in the Data Distributions       

       Eun-Jeung     Ji      and     Won Kyoung     Kim    

        Recent studies on the concept of variability propose that the idea of spread, or variability 
should permeate the entire curriculum of statistics, and educators need to modify 
learning experiences so that students can move comfortably from identifying  vari-
ability  ; to describing, representing, and sifting out causes for variability; and fi nally, 
to measuring variation(Garfi eld & Ben-Zvi,  2008 ). Given this background, the chapter 
fi rst presents the hypothetical learning trajectory for the concept of variability in brief. 
This chapter is part of the research carried out for author’s doctoral dissertation. The 
purpose of the original study is to demonstrate a hypothetical learning trajectory for 
the concept of variability based on  local instruction theory   as a didactic idea for 
learning design of the variability concept in the  data distributions   and 
 sampling situations  , theoretically based on the design research. 

 For the study, we fi rst identifi ed the nature of variability in data distributions 
and sampling situations. Then we extracted the didactic idea for instruction on 
the concept of variability from previous studies, the curriculum of the Tasmania 
in Australia which includes the concept of variability and the materials of AIMS 
project (Garfi eld et al.,  2010 ). And then we defi ned our  local instruction theory   
to teach the concept of variability in the data distributions and sampling situa-
tions. Based on our local instruction theory, we developed the hypothetical learn-
ing trajectory to be made up of the learning goal that defi nes the direction, the 
learning activities, and the hypothetical learning process predicted how the stu-
dents’ thinking and understanding will evolve in the context of the learning 
activi ties. According to the  hypothetical learning trajectory  , we conducted teaching 
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experiments of 14 lessons with ninth-grade students. This chapter shows some 
examples of the conceptual understanding of variability for 8 ninth- grade stu-
dents, which is shown in the ways of students describing variability and measuring 
variation in the teaching experiments.    
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    Chapter 14   
 Students’ Misconceptions and Mistakes 
Related to Measurement in Statistical 
Investigation and Graphical Representation 
of Data       

       Hyung     Ju     Yun     ,     Eun-Sung     Ko     , and     Yun     Joo     Yoo    

        In  statistical investigations  , the decisions related to the measurement process and 
the scales of variables can affect the analysis procedures for statistical inference. 
Students may have diffi culty interpreting graphical representations and pursuing 
statistical inferences due to lack of understanding measurement aspects in data analysis. 
Misconceptions and misunderstandings related to measurement could arise in various 
areas in statistical investigations. To measure, proper operational defi nitions for 
variables should be given. The consistency of measurement should be maintained. 
The level of measurement matters.  Measurement error   should be controlled. For 
histogram representations, the decision on the number of classes is required and the 
continuous variables are transformed into categorical variables resulting in some 
information lost. In this study, we developed a questionnaire to investigate the  mis-
conceptions   related to measurement in above areas and analysed 213 middle school 
students’ responses to identify how often these misconceptions are observed. 

 Students were asked to judge about the data within several example situations 
such as investigations on the distance between school and students’ house, foot 
length, eyesight, amount of water drunk, math exams and broad jump record. 
Related to operational defi nition, 21.6 % students thought measuring the ‘time to 
get to school’ is enough to investigate the distance between school and students’ 
house instead of obtaining ‘house address’ (52.6 %). Only 8.0 % of students found 
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it problematic using shoe size to learn about the foot length. For the consistency of 
measurement, 96.7 % students did not fi nd the problem in mixing the values from 
two different measuring tools (Snellen chart testing and power of lenz) resulting 
different units mixed in the data of eyesight and 95.8 % did not fi nd the problem in 
using different sized cups to measure the amount of drunk. For the level of measure-
ment, 60.6 % students could choose proper graph representation between histogram 
and bar chart for various continuous and categorical variables but for shoe size 
variable 63.4 % thought histogram is more appropriate even though the number of 
different values is only six. Only 12.7 % of students were hesitant to use one-time 
measurement to decide on the ability for broad jump recognizing the possibility of 
measurement error. For the number of classes in the histogram, students showed 
fi xation on the number of classes to be around 6–8 and the look of the graph to be 
familiar to the ones shown in school texts (65.3 %) even though the other histogram 
with many classes (29.6 %) provides accurate information for the purpose of the 
investigation. 37.6 % students thought the distribution of the values in each interval 
of a  histogram   is uniform and tried interpolation to obtain a conclusion on the middle 
value within an interval. 

 In conclusion, we found various misconceptions and misunderstanding occurring 
in many students even though these are related to basic characteristics of measure-
ment in  statistical investigation  . We suggest students be taught about statistics and 
graphical representation with more stress on the context of measurement process and 
scales of measured variables.   
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    Chapter 15   
 Overall Understanding of the Middle School 
Mathematics Course in Teaching Statistics 
Main Line       

        Guan     Jian       ,     Bai     Xue       ,     Wu     Peng       , and     Li     Qiusheng     

        Compared with statistical teaching in foreign countries, it is relatively late in China. 
At present, the number of the research on the development of the case teaching 
statistics is very little in China. On the base of the analysis of Chinese obligation 
education stage and high school math curriculum standard and by comparing 
domestic and international mathematics curriculum standards in statistics, we fi nd 
that there are no concrete cases in statistical teaching in China, although the cur-
riculum standard explicitly points out the case of statistics is so important. From 
the “overall understanding of the  middle school mathematics course teaching sta-
tistics   main line” point of view, this chapter describes our understanding of the 
teaching statistics main line in middle school mathematics course with the guid-
ance of statistics thinking. 
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 First, we defi ned  statistical thinking   from the angle of philosophy and statistics. 
Then this chapter provides some typical statistical cases which are of practical 
value. After that it introduces statistical teaching case of elementary school, junior 
high school, and senior high school. Finally, we analyze the cases of the statistics 
from the angle of philosophy and statistics. 

 This research provides a more feasible pattern for China’s statistics teaching. On 
the base of analyzing a few classic cases, we formed the view of overall under-
standing of the middle school mathematics course teaching statistics main line, 
which refl ects statistical thinking. This chapter suggests middle school mathemat-
ics teachers should grasp middle school mathematics course teaching content of 
statistics as a whole. They should help students to think in statistical way and to use 
it in real life. 

 Statistics → statistical thinking → curriculum standard → the overall assurance    
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    Chapter 16   
 Growth on Fourth-Grade Students’ 
Mathematical Understanding of Average       

       Jun     Wu    

        Many articles had discussed students’ various diffi culties of understanding of average 
from different aspects. However, as a complex psychological phenomenon, under-
standing is interior and indirectly observed. It is not easy to reveal the nature and 
development of it. How do we present the development process of understanding? 

 We used  Pirie–Kieren dynamical model   (Pirie & Kieren,  1994 ) to analyze students’ 
growth of mathematical understanding of average. The instrument is  Hats Averaging 
Problem   (Cai,  2000 ) (see Fig.  16.1 ), and we interviewed three fourth- grade students A, 
B, and C in a primary school in a city. It could be presented with a sketch map in which 
a curve described student C’s development of understanding of average (see Fig.  16.2 ). 
Comparatively speaking, student A and B had extra experience of folding back from 
property-noticing level to image-making level and turned back again.      

        J.   Wu      (*) 
  School of Mathematics and Information Science, Qujing Normal University ,   Qujing ,  China   
 e-mail: ynwujun@126.com  

mailto:ynwujun@126.com


124

Week 1

Week 2

Week 3

Week 4 ?

  Fig. 16.1    Hats averaging problem       

  Fig. 16.2    Pirie–Kieren model       
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    Chapter 17   
 Exploring Dot Plot in the Perspective 
of Embodied Cognition       

       Verônica     Yumi     Kataoka     ,     Irene     Cazorla     ,     Eurivalda     Santana     , 
and     Claudia     Borim     da     Silva    

        The effective inclusion of Probability and Statistics teaching in Brazilian schools 
faces great challenges: teachers’ training and a lack of didactic materials and soft-
ware among others (Cazorla,  2006 ). In this teaching context, it is common to 
observe, among the students and even in textbooks, conceptual errors and not 
explore some graphs, for example, the  dot plot   and the  box plot  . Refl ecting on these 
questions, in 2008, a group of Statistics educators started to develop the  Virtual 
Environment for Supporting Statistics Literacy in Basic Education (AVALE–EB)  , 
which is a free virtual learning environment that currently offers ten  didactic 
sequences (DS)   to help Probability and Statistics teachers at school, both in a pencil 
and paper environment and in a virtual environment. 

 One of the graphs that is explored in the most DS is the  dot plot   since it is con-
sidered a graph with a high didactic potential to help students to understand mainly 
the concept of variability, but also it possible the immediate visualization of the 
mode, maximum and minimum values, total range. The objective of this chapter is 
to present theoretical aspects of the human and paper dot plot exploration in the 
perspective of embodied cognition. According to this theory, cognitive processes 
not only depend on brain activity but are also linked with different parts of the 
human body (Lakoff & Johnson,  2002 ). 
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 In order to construct the human dot plot, the students are asked to line up at the 
front of the classroom or in the school playground, according with the variable of 
interest, for example, to measure the variable height the students are asked to line up 
according with their height, and it is natural for the students with the same height to 
form perpendicular lines (piling dots). The students have the chance to witness the 
tendency of data using their own bodies. After that the students draw the dot plot on 
paper. It has been observed when working with students that the human dot plot is 
a graphic representation that seems to be representative to them and how it becomes 
less abstract.    
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    Chapter 18   
 Students’ Diffi culties in Understanding 
of Confi dence Intervals       

       Ana     Henriques     

18.1            Introduction 

 The teaching and learning of statistics has acquired a great importance due to its recog-
nized role in the general education of citizens (NCTM,  2000 ). This increasing attention 
has resulted in the development of research related to students’ diffi culties with statisti-
cal concepts which should guide the construction of teaching situations to overcome 
the cognitive obstacles identifi ed (Garfi eld & Gal,  1999 ; Shaughnessy,  2007 ). 

 The concept of confi dence interval (CI) is central in introductory courses in 
statistics, both in secondary education and at university. However, as a teacher of 
statistics, there is plenty of evidence from my own experience that the proper under-
standing of confi dence intervals seems to be unusually diffi cult, a view which is 
confi rmed by several research studies (Callaert,  2007 ; Canal & Gutiérrez,  2010 ; 
Olivo,  2008 ; Shaughnessy,  2007 ). 

 This study aims to describe and analyse the students’ diffi culties in understand-
ing of confi dence intervals and to determine whether they are specifi c to the learning 
environment of students or are common to those mentioned in other studies. 
The study also aims to develop a more elaborated view concerning the presence of 
the diverse elements of meaning in students’ responses which reveal the concept 
comprehension (Godino & Batanero,  1994 ). In this sense, this study extends and 
deepens the previous works about students’ understanding of confi dence interval 
and thus contributes to the dissemination of research results related to the conceptual 
diffi culties of students, which are not yet suffi ciently known to teachers and should 
be taken into account to improve the teaching and learning of this topic.  
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18.2     Theoretical Framework 

 The confi dence interval is one of the general procedures of statistical inference that 
can be applied to various fi elds of problems (Callaert,  2007 ; Fidler & Cumming, 
 2005 ; Olivo,  2008 ). The most commonly referred are: Estimation of unknown 
parameters of a population, comparison of distributions, hypotheses testing of pop-
ulation parameters, determination of the appropriate sample size to make an infer-
ence and determination of the limits of tolerance. Each of these fi elds is very broad 
and varied and includes the estimation of averages, proportions, variances and 
regression and correlation parameters. Depending on the parameter, we also fi nd 
many different conditions and assumptions (cases of known or unknown variance, 
equal or different variances, large or small samples and normal or non-normal popu-
lations). These assumptions determine the sampling distribution to be used in the 
construction of the confi dence interval, and therefore there is a wealth of probability 
distributions that students should learn and relate to the conditions of the problem 
(e.g. normal,  t -student, chi-square and  F ). Procedures, such as computing probabili-
ties and critical values, linear or functional transformations, are also necessary. The 
confi dence interval is thus considered a complex concept and diffi cult to understand 
since it involves various problems and situations from which the concept arises, dif-
ferent representations of the concept, defi nitions and properties, procedures and 
strategies to solve problems and arguments that the student must know in advance 
to validate propositions. 

 Godino and Batanero ( 1994 ) defi ne fi ve interrelated components in the meaning 
of a mathematical object that should be specifi cally dealt with in organizing instruc-
tion or in assessing students’ learning:  Extensive elements —fi elds of problems from 
which the concept arises, the context from where it is induced and to where the CI is 
applied;  Ostensive elements —representations of the concept used in the mathemati-
cal activity (graphics, tables, notations, expressions, terms);  Actuating elements —
procedures and algorithms to solve problems or to compute its values;  Intensive 
elements —defi nitions of the concept, its proprieties and relationships to other 
concepts and  Validating elements —type of arguments and proofs used to validate 
solutions and propositions. 

 Confi dence intervals are not always properly interpreted and are prone to mis-
conceptions. Although students might be able to perform all necessary manipula-
tions and formal calculations to construct confi dence intervals, it has been shown 
that many of them hold deep misconceptions that have a direct impact on learning 
inferential statistics because of the interconnection of the concepts and methods and 
the relevance of their understanding for an appropriate interpretation of inferential 
results and conclusions. Thus, the diffi culties experienced by students in under-
standing the confi dence intervals were the focus of previous research. A very 
 common diffi culty is to interpret confi dence intervals as a statistical descriptive 
object rather than a statistical inferential one providing information about the value 
of a population parameter (Canal & Gutiérrez,  2010 ; Fidler & Cumming,  2005 ). 
In other studies (Behar,  2001 ; Fidler,  2005 ) it has also been reported that students 
are not clear on the direct or inverse relations between the interval width, the sample 
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size and the confi dence level. Olivo and Batanero ( 2007 ) identifi ed other diffi culties 
involving errors in determining the critical values or the selection of the adequate 
sampling distribution. These studies also made clear that much more research is still 
needed to shed light on the sources of those diffi culties, clarifying the fundamental 
components in the meaning of this specifi c concept since students might have 
diffi culties in all of them.  

18.3     Method 

 In order to assess students’ diffi culties in understanding of confi dence intervals, a 
written test was applied to 33 second-year students (4 female and 29 male) of the 
Naval Academy who attended an introductory statistics course taught by the author 
through traditional learning situations. Students answered the test individually in 
one of the last classes of the semester, after the topic had been addressed. The test 
consisted of fi ve multiple choice items, in which students were asked to select the 
single correct answer and four problems for which students were encouraged to give 
detailed explanation to their answers. The questions that comprised this test were 
obtained from Olivo ( 2008 ). Due to restrictions in length, in this chapter I mainly 
present: (1) the quantitative results for the fi ve multiple choice items focus on the 
conceptual nature of the CI and the relations between their width and the level of 
confi dence, the sample size and the variability of the population; and (2) a qualita-
tive analysis of students’ diffi culties in solving four problems concerning the proce-
dural knowledge in the construction of CI. The students’ answers for each problem 
were classifi ed as correct, partially correct or incorrect based on previously devel-
oped criteria of Olivo ( 2008 ). That classifi cation fi ts the needs raised from the nature 
of the responses in this study and allows a comparative analysis with the results 
obtained by the author. I also use the theoretical model of Godino and Batanero 
( 1994 ) to describe the elements of meaning present in the students’ responses.  

18.4     Results and Discussion 

 Table  18.1  shows a summary of the answers to the multiple choice items in the test, 
the proportion of correct answers and the description of their content. It is observed 
that all items were solved correctly by more than half of students and that the average 
percentage of correct answers was approximately 65 %.

   The students revealed some diffi culties in the defi nition of confi dence interval. 
Although 70 % of students have answered item 1 correctly, we have identifi ed errors 
in understanding the inclusion of the population parameter in the interval in 24 % of 
the answers and in 6 % of the answers, students do not understand its inconsistency 
considering the sample. 

 A number of facts stand out from the analysis of the answers to items 2–5, which 
focus on relations between interval width and confi dence level, sample size and 
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population variability. About 80 % of the students know the correct relation between 
precision and sample size. However, for 50 % of the students it is not clear how the 
confi dence level of the interval affects its width. In item 3, the answers are divided 
between the correct answer and the answer that is contrary to that same one, thus 
revealing that students recognize the infl uence of the confi dence level in the interval 
width but they fi nd it diffi cult to identify the trend of that relation (direct or inverse). 
In item 4, 21 % of the students indicate a relation in the same direction between the 
width of the interval and the sample size, confi rming the diffi culties which have 
occurred in the previous item. A lower percentage of students (9 %) revealed diffi -
culties in understanding the effect of the population variability in the interval width. 
This result is consistent with the answers in item 5 in which the percentage of cor-
rect answers is 67 %. The diffi culties in this item are divided between considering 
that the variability increase decreases the interval width or makes it the same. 
Therefore, we can say that students revealed many diffi culties in questions concern-
ing factors which infl uence the interval width. 

 Table  18.2  presents a summary of the students’ answers to the problems in the 
test, including their written statements, the percentage of correct answers (C), 
partially correct answers (PC), and incorrect answers (I), as well as the description 
of their content. In order to complete this table, I am also analysing the students’ 
answers to the problems, concerning the diffi culties which were observed and also 
the presence of several elements of meaning.

   Table 18.1    Students’ answers to multiple choice items   

 Frequency 
item  a  b  c  d 

 Correct 
answers (%)  Item content 

 1  2  5  23  3  70  Confi dence interval defi nition 
 2  0  26  3  4  79  Relation of interval width and sample size 
 3  0  16  17  0  52  Relation of interval width and confi dence level 
 4  7  18  3  5  55  Relation of interval width and confi dence level 
 5  1  22  5  5  67  Relation of interval width and population 

variability 

   Table 18.2    Students’ answers to problems   

 Problem  C  PC  I (%)  Field of problem 

 The average of 100 classifi cations in a mathematics 
test is 75. Assuming  σ  = 7, fi nd a 95 % CI on  μ  

 97  0  3  Construction of CI 
on  μ , large 

 We have obtained the following data for the daily 
emission of sulphur oxides, for a sample of 100, 
 x  = 18 and  s  2  = 36. Find a 95 % CI for the real daily 
average emission of sulphur oxides 

 97  0  3  Construction of CI 
on  μ , large sample, 
unknown  σ  

 Find a 95 % CI for the mean value of a normal 
population with unknown standard deviation if a 
random sample of 10 gives  x  = 25 and  s  = 6 

 61  0  39  Construction of CI 
on  μ , small sample, 
unknown  σ  

 Let  σ  2  be the variance of disruptive tension 
distribution. The sample variance obtained for 
n = 16 is  s  2  = 13,700. Find a 95 % CI on  σ  

 49  33  18  Construction of CI 
on  σ  
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   Items 1 and 2 stand out due to the near absence of incorrect answers which, accord-
ing to Muñiz ( 1994 ), indicates how easily students deal with their resolution. In these 
items, all students but one symbolically represent the problem data, which refer to 
various concepts—sample size, sample or population standard deviation, degrees of 
freedom and confi dence level (ostensive and intensive elements were used), and they 
have correctly identifi ed the population parameter to be estimated—mean value, in 
order to justify the choice of the sampling distribution to be used (intensive and vali-
dating). In item 1, these students used the normal distribution correctly. In item 2, the 
correct answers, were divided between the 51 % who used the normal distribution, 
justifying that sample size is greater than 30, the 30 % who used the normal distribu-
tion without justifying (this seems to be implied as these students, in item 3, do not 
reveal misconceptions regarding the choice of distribution when  σ  is unknown) and 
the 19 % who have focused on the  σ  unknown, and they do not take into account the 
sample size and select the student-t distribution (intensive and validating). However, 
that does not condition the solution because the table that was available for this distri-
bution does not include the 99 degrees of freedom and students make an approxima-
tion to 100, thus obtaining the critical value corresponding to the normal distribution 
and ending up getting the same interval (intensive and ostensive). 

 Therefore, the students correctly determine the critical values of the normal dis-
tribution or the  t -student corresponding to the 95 % confi dence level by subtracting 
this value to the total probability (1) and dividing the remainder 0.05 into two equal 
parts (intensive and actuative). Some students feel the need to represent the distribu-
tion graphically to help them with this calculus (ostensive). Even though not every-
body remembers to write the CI expression, they replace the problem data in the 
expression and, by using deductive reasoning, they perform several algebraic opera-
tions with inequations in order to fi nd the confi dence interval (actuative and inten-
sive). In the Fig.  18.1  below, we can fi nd examples of the situations mentioned 
which were considered correct answers:

  Fig. 18.1    Examples of correct answers to item 2 (using an approximation to  N (0,1) and justifying 
the choice of  N (0,1))       
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   Only one student incorrectly answered these two items because he made an error 
in reading the table of the normal distribution (intensive and ostensive) and possibly 
he transfers that value from one item to the other, without using the table again. 
When looking for the critical value corresponding to a probability of 0.025, the 
student used the value 0.25 by distraction and then he confused the critical value 
with the respective probability (he looked for  P [ X  = 0.25] instead of Φ −1 (0.025)). 
Some notational inaccuracies (ostensive) were also observed and he didn’t fi nish the 
problem as shown in Fig.  18.2 :

   In item 3, it was expected that students understood the infl uence of the sample 
size in the selection of the sampling distribution when the  σ  is unknown. Only 61 % 
of students answer correctly, constructing a confi dence interval by selecting the 
 t -student distribution. These students evoke the population parameter which they 
want to estimate (mean value) and the fact that  σ  is unknown and sample size less 
than 30 in order to justify the choice of sampling distribution to be used (intensive 
and validating). In none of the answers do we see errors in the determination of the 
degrees of freedom. The diffi culties identifi ed in these answers are associated with 
the notation (ostensive), although this does not affect the solution. The incorrect 
answers were originated in two different situations. Seven students (21 %) showed 
diffi culty in obtaining the critical values from the table, by considering 5 % for each 
of the tails of the  t -student distribution rather than 2.5 % (Fig.  18.3 ):

   This result is surprising due to the fact that it has not occurred in previous items. 
In addition, the diffi culty is not related to the concept of CI, but it originates from 
the lack of understanding of what the critical value is (intensive). The other  incorrect 

  Fig. 18.2    Example of incorrect answer to item 1       

  Fig. 18.3    Example of incorrect answer to item 3       
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answers (18 %) do not originate from errors made in applying the procedure of 
constructing intervals but, possibly, either from the lack of careful reading of the 
written statement or from the confusion with item 4 that followed since all of these 
students constructed a confi dence interval for the variance. Thus, they have not 
answered as required. 

 Item 4 was the most diffi cult one for the students since only 49 % of them 
answered correctly. In these answers, students identify the population parameter to 
be estimated (standard deviation), and they justify their choice of the sampling dis-
tribution for the variance (intensive and validating). Most of these students repre-
sent graphically the  χ  2  distribution (ostensive). However, some students show a 
confl ict related to their representation (ostensive) because they draw a symmetric 
graph, as they are probably confusing the normal distribution, as shown in the 
example of Fig.  18.4 . However, this does not affect the solution since they use the 
Chi-square table to fi nd the critical values of  χ  2  corresponding to the confi dence 
level of 95 % (ostensive and actuative).

   For the answers considered partially correct, several diffi culties were identifi ed. 
Seven students did not fi nish the problem since they seem to have forgotten the last 
step and to provide an answer for the problem indicating a confi dence interval for 
the variance instead of the standard deviation. Four students still made procedural 
errors in the resolution of the inequations (actuative) due to the fact that the param-
eter to be estimated is in the denominator in the expression of the random variable, 
although the entire previous process of the interval construction was carried out 
with no mistakes (Fig.  18.5 ):

   For the answers considered incorrect (18 %), one of the students selected the nor-
mal distribution (intensive), but he did not perform any further procedure, ultimately 
not answering the problem. One other student mentions the Chi-square distribution 
and other concepts—sample size, variance and degrees of freedom (intensive)—but 

  Fig. 18.4    Example of a correct answer to item 4       
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he writes one formula incorrectly (ostensive), thus displaying notational confl icts, as 
he equals the interval and the probability and he seems to recall only one limit. 
Therefore, he is not answering to as required. One other diffi culty presented by some 
students (4) was the calculus of the critical value of the distribution related with 
the level of confi dence of the CI, as already seen in the previous item. Students use 
the table correctly to fi nd the critical values of  χ  2 , but they make a procedural error by 
replacing them by the positions corresponding to the confi dence level of 90 % 
(instead of 95 % as required), and not considering the bilateral interval (ostensive and 
actuative). The following excerpts are examples of that and also show other diffi culties 
already described (Fig.  18.6 ):

   In short, the main diffi culties encountered regarding the understanding of elements 
of meaning that were deducted from the analysis of answers to problems are: 

  Extensive elements . We can observe diffi culties in the selection of the appropriate 
sampling distribution to construct a confi dence interval for the mean value when  σ  
is unknown which will infl uence the confusion between problem fi elds and the 
corresponding application of incorrect procedures for calculating intervals. 

  Fig. 18.5    Example of partially correct answer to item 4       

  Fig. 18.6    Examples of incorrect answers to item 4       
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  Intensive elements . Some students had diffi culty in obtaining the critical values 
from the table taking one tail area which was double of the correct one, resulting in 
a CI of less confi dence than the required. In addition, they do not always discrimi-
nate the cases of known and unknown population standard deviation by selecting 
the appropriate sampling distribution to construct the CI. 

  Actuating elements . Students both understand and fi nd it easy to apply the algo-
rithm to fi nd the CI. The resolution of inequalities in order to calculate the CI 
when it is necessary to perform inversions to fi nd the  σ  2  seems to be the hard-
est for students. The careless reading of the written statement or their distraction 
has also caused many students not to fi nish problem 4, presenting a CI for  σ  2  
instead of  σ . 

  Ostensive and Validating elements . Concerning the symbolic language, diffi culties 
consist of: they do not write the indexes 1− α /2 and  α /2 in the critical values of 
distributions; they forget to use the  P  (representing probability) and they often equal 
the interval to 95 % or they use the P without indication of the variable 
(e.g.  P [0.025] = 0.68); they do not always present the CI in the form of interval; and 
they make mistakes in the expression of the CI to the  σ  2  presenting only one side. 
One student also confused the critical value with the respective probability when 
reading the table. There was also some confusion between the graphs of normal and 
 t -student distributions (symmetric) and the  χ  2  distribution, which students presented 
with the same symmetry allowing for these to take negative values. There is a ten-
dency for students not to explicit the arguments which they have used, despite these 
being suitable in most cases.  

18.5     Conclusions 

 The results suggest that, in general, students understand the concept of confi dence 
interval. Students recognize both the problem fi elds and the properties of the 
concepts used in the construction of the CI, and they are able to perform the algo-
rithm correctly. However, that understanding is only apparent since they made many 
errors and revealed some diffi culties in relation to confi dence intervals (conceptual, 
procedural and interpretative) that reinforce the conclusions of previous investiga-
tions. The answers from multiple choice items show that the defi nition of confi -
dence interval proved to be a diffi cult issue for students. As in Fidler and Cumming 
( 2005 ) and Behar ( 2001 ), students tend to interpret confi dence intervals as a statisti-
cal descriptive object. The most frequent errors occurred when students had to inter-
pret the relations between width and other elements associated with the concept 
(sample size, confi dence level and population variability). There were also diffi cul-
ties in the selection of the adequate sampling distribution, in particular related with 
the construction of CI on variance and in the determination of critical values, which 
may have to do with the lack of students’ understanding of probability distributions 
as referred in Olivo and Batanero ( 2007 ). 
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 The analysis of the elements of meaning in the problems confi rmed the diffi culties 
of some students in relation to the CI which can be explained by the existence of 
a wide variety of semiotic confl icts to be taken into account when organizing 
teaching. Consequently, these results refl ect the need for dedicating more time to 
the topic and for changing teaching approaches at university. 

 Although students in this study perform better, the results and the observed diffi -
culties are consistent with those found in Fidler ( 2005 ) or in Olivo and Batanero 
( 2007 ) with students from the same level of education. Thus, the results seem to indi-
cate that students’ diffi culties with the confi dence interval concept are not specifi c 
to the education systems and highlight the need for further research, with large 
groups of participants from different backgrounds in order to present empirical evi-
dence about misconceptions and to develop pedagogical tools to confront students 
with their diffi culties and to fi nd possible means to help students to overcome them.
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    Chapter 19   
 A Modeling and Simulation Approach 
to Informal Inference: Successes 
and Challenges       

        Jennifer     Noll     ,     Mulugeta     Gebresenbet     , and     Erin     Demorest     Glover    

19.1            Introduction 

 Nolan and Lang ( 2010 ) argue that computational literacy is now “fundamental to 
statistical practice… vital to all facets of a statistician’s work… yet it occupies an 
astonishingly small proportion of the statistics curricula” (p. 98). Cobb ( 2007 ) 
argues that computer technology offers statistics educators an opportunity to place 
more emphasis on the key concepts of inference (i.e., chance models and determining 
statistical unusualness) and less emphasis on procedures (i.e., formulaic hypothesis 
tests like  z  and  t -tests). He states, “we may be living in the early twenty-fi rst century, 
but our curriculum is still preparing students for applied work typical of the fi rst half 
of the twentieth century” (p. 7). Based on the recommendations of these statisti-
cians, educators are developing new approaches to the teaching of statistics that 
align with recent trends in the way statisticians work with data. In the past 2 years, 
new curricula have emerged that focuses on randomization techniques and computer 
simulations (e.g., Change Agents for Teaching and Learning Statistics (CATALST), 
Garfi eld, delMas, & Zieffl er,  2012 ; Morgan,  2011 ). The arguments made by  statisti-
cians and educators   to update and develop new technology-driven curricula are only 
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one component of improving introductory statistics. If we are to change the “culture” 
of the statistics classroom, aligning it more closely to the way statisticians  do  statistics, 
a better understanding of how technology impacts students’ development around 
the logic of inference is needed. This chapter presents an empirical investigation of 
introductory statistics students’ developing informal conceptions of inferential 
statistics as they engage in modeling and simulation using TinkerPlots™       (TP).  

19.2     Background 

 Working with samples of data and using samples to make inferences about unknown 
populations are key components of statistical investigations. Research on students’ 
informal inferential reasoning suggests that students have many diffi culties in 
understanding and using statistical inference, including building a schema of many 
interrelated ideas such as representativeness, sampling variability, and distribution 
(Saldanha & Thompson,  2003 ). 

 Rubin, Bruce, and Tenney’s ( 1991 ) research revealed a tension among students 
between being focused on sampling representativeness and sampling  variability     . 

 Many statistics educators now advocate teaching inference from an empirical per-
spective through simulation, which they argue helps students better understand how 
statistical decisions are made (Chance, Ben-Zvi, Garfi eld, & Medina,  2007 ; Chance, 
delMas, & Garfi eld,  2004 ; Cobb,  2007 ; Garfi eld & Ben-Zvi,  2009 ). From an empiri-
cal approach, the study of sampling  variability   typically focuses on taking repeated 
samples from a population, creating a distribution of sample statistics from those 
repeated samples (such as sample means or sample proportions), and comparing the 
observed sample statistic from the research to the empirical sampling distribution. 
This comparison allows students to see how the observed sample statistic compares 
to the distribution of sample statistics created from repeatedly sampling the popula-
tion (created under a random chance model), directing them to determine if a sample 
is surprising (unlikely) or not surprising. Cobb argues for such an approach, suggest-
ing that, “randomization-based inference makes a direct connection between data 
production and the logic of inference that deserves to be at the core of introductory 
statistics” (p. 1). In addition, he suggests that students can easily grasp the models 
and interpret the results. However, Cobb’s argument that students can easily create 
models, run simulations and interpret results is a conjecture that needs to be empiri-
cally tested. 

 There is a growing body of research that reports on the impact of technology on 
the development of students’ statistical thinking (e.g., Ben-Zvi & Friedlander,  1997 ; 
Fitzallen & Watson,  2010 ; Maxara & Biehler,  2006 ; Saldanha & Thompson,  2003 ). 
In many of these studies, researchers either used  TinkerPlots™      or  Fathom ®      , dynamic 
statistical software designed specifi cally for teaching statistics. For example, 
Fitzallen and Watson used TinkerPlots™ with middle school students and found 
that the technology helped facilitate students’ ability to represent data, create data 
summaries, and make informal inferences. 
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 Maxara and Biehler studied college students’ reasoning while creating models and 
running simulations with Fathom. They noted that students did experience diffi culty in 
modeling statistical problems and that certain probabilistic misconceptions continued 
to exist despite the outcome of a simulation showing evidence to the contrary. Saldanha 
and Thompson documented that high school students could not easily envision the 
process of repeated sampling that underlies the construction of sampling distributions. 
While this body of research reveals some of the affordances of technology as a learning 
tool for teaching statistical concepts, more research is needed to fully support Cobb’s 
( 2007 ) conjecture of the  pedagogical value   of using computers to model and simulate 
data when teaching informal inference. We need to understand how students might 
construct models, run simulations and interpret results, and what kinds of challenges 
students might have within such a pedagogical approach. The research reported here 
describes some of the successes and challenges students in our study faced when mod-
eling and conducting simulations to answer statistical problems.  

19.3     Methods 

 Data was collected in an introductory statistics course at a large urban university in 
the Northwest region of the United States. The fi rst author was the classroom 
instructor and the third author assisted with classroom activities and data collection 
during the quarter. This particular introductory statistics course was designed for 
students prior to entering the traditional introductory statistics sequence (descriptive 
statistics, probability, inferential statistics). Students enrolled in this course as a 
prerequisite for the traditional sequence or to satisfy the required math elective 
needed to graduate. A total of 16 students enrolled in the course and all students 
consented to be participants in the study. All 16 students identifi ed themselves as 
poor math students and expressed low confi dence in their abilities. 

 The fi rst author implemented the  CATALST curriculum   materials (Garfi eld 
et al.,  2012 ) with some minor modifi cations. The CATALST curriculum consists of 
three units and each unit begins with a modeling eliciting activity (MEA, see Lesh 
et al.,  2000 ). Following each MEA, there are several activities in each unit that 
guide students through key ideas raised in the MEA (e.g., randomness, chance/null 
model, informal inference based on a single population, p-value). 

 Data collection consisted of all student work on in-class activities, task-based 
semistructured interviews, and student assessment items. Students completed the 
MOST assessment (see Garfi eld et al.,  2012 ) at the end of the course as part of their 
fi nal exam. This chapter focuses on the results of the  MOST assessment   data for two 
primary reasons: (1) the fi nal outcomes of student work on activities do not represent 
the range of reasoning we observed in the MOST assessment because by the end of 
each class period groups had discussed ideas and often the class discussions led stu-
dents to consensus on their fi nal write-up for each class activity; and, (2) the MOST 
assessment provides information about where students were after completing a 
10-week experimental course focused on MEA, modeling, simulation, and robust 
use of TinkerPlots™ software. 
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 The  MOST assessment   consists of four problems, and this chapter reports on 
results from the fi rst two problems. The fi rst problem, the Facebook Task, investigated 
changes in relationship status and particular days of the week when relationship 
status changed. The task stated that in a random sample of 50 breakups reported on 
Facebook, 20 % occurred on Monday. Students were then asked to explain how they 
would determine if the result found by the researchers was surprising under the 
assumption that there is no difference in the chance for a relationship breakup 
among the 7 days of the week (null model). The second task, the Music Task, 
described an experiment where a music teacher plays one of seven notes (A, B, C, 
D, E, F, or G—no sharps or fl ats) one at a time, the teacher plays a total of 10 notes 
and after each note is played a music student must try to select the correct note. 
Students are then told a music student identifi ed seven notes out of ten correctly and 
asked if this result would be surprising if this student was merely guessing. 

 In our refl ections on the goals and purposes of the  CATALST curriculum  , as well 
as our synthesis of the research literature on modeling, simulations, and informal 
inference (e.g., Chance et al.’s ( 2004 ) work on student thinking about sampling 
distributions in the context of computer simulations; Cobb’s ( 2007 ) call for teaching 
the logic of inference using computer simulations), we concluded that there are four 
primary phases of reasoning one goes through in the statistical modeling and simu-
lation process using TinkerPlots™ (see Table  19.1 ). We conjecture that students 
need to understand each of these phases and the role each phase plays in answering 
informal inference questions in order to have robust knowledge of the logic of infer-
ence and how to use computer technology to model and answer a statistical question.

   During the implementation of the  CATALST curriculum  , the fi rst and third 
authors observed students thinking through the four phases (Table  19.1 ) of the sta-
tistical modeling and simulation process in different ways, from uncritical attempts 
at modeling, merely following  TinkerPlots™   directions from a prior activity, to 
statistically meaningful thinking at one or more of the four phases, and fi nally to 
metacognitive types of thinking about the entire process and critically evaluating 
alternative models and the results of those models. Based on these observations, and 
the idea of mode-level reasoning developed by Ben-Zvi and Friedlander ( 1997 ) to 
describe middle school students’ statistical thinking in technology-rich environ-
ments, we constructed fi ve modes of statistical thinking within the four  phases   of 
modeling and simulation (see Fig.  19.1 ). The mode number corresponds to the num-
ber of phases a student provided explicit evidence of statistically meaningful rea-
soning. For example, a student might express statistically meaningful reasoning 
about setting up a model for the statistical problem (phase 1), but not be able to 
create a meaningful representation of one trial of the simulation or multiple trials 
(phases 2 and 3), and thus would be coded as Mode 1—Phase 1. Alternatively, a 
student may create a model that is not statistically meaningful and, thus, cannot 
adequately model the statistical problem (phase 1), but they may be able to con-
struct a reasonable and meaningful representation of one or more trials of the simu-
lation and/or be able to discuss the results in ways that suggest evidence of 
understanding the null model and the logic of inference (phase 4). Such an example 
would be coded as Mode 3—Phases 2–4.
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    Table 19.1    Phases of reasoning in the statistical modeling and simulation process   

 Phases of the statistical modeling and simulation process (via TinkerPlots™ technology): 

 Phase 1  Model set up that allows for an accurate simulation of the experiment (statistical 
problem). Constructing the TinkerPlots™ sampler to appropriately model the 
statistical problem and be able to interpret what  draw ,  repeat , and  trial  represents 
within the context of the problem 

 Phase 2  Running a single trial of the experiment (as set up in the model), investigating the 
outcomes from the single trial, constructing a suitable representation of the outcomes 
from the single trial, and interpreting the results of a single trial 

 Phase 3  Understanding what the variable of interest is, “Collecting statistics” on the variable 
of interest that was created in the single trial from Phase 2, creating the null (or 
chance) model distribution from the collection of statistics, describing the process 
that allowed for the construction of the sampling distribution, interpreting the 
resulting distribution within the context of the problem (e.g., what does the data in 
the chance model represent?) 

 Phase 4  Coordinating the actions of Phases 1–3 and drawing conclusions. Comparing the 
observed sample data from the problem to the null model generated by the 
simulation and interpreting the results as well as drawing inferences based on the 
data at hand. An explicit description of what the null model represents and how it 
allows for inferences based on the observations from the sample 

(Uncritical thinking at all four phases of the statistical modeling and simulation process)

(Mode 1: explicit evidence of meaningful/ critical thinking at one phase of the modeling and simulation process)

(Mode 2: explicit evidence of meaningful/ critical thinking at 2 phases of the modeling and simulation process)

(Mode 3: explicit evidence of meaningful/ critical thinking at 3 phases of the modeling and simulation process)

(Mode 4: explicit evidence of all 4 phases of the modeling and simulation process)

(Mode 5: At Mode 4 AND evidence of creative, coordinated, and critical thinking about modeling and simulation)

MODE 0

MODE 4

MODE 5

MODE 1 - Phase 1 MODE 1 - Phase 2

MODE 2 - Phases 1 & 2 MODE 2 - Phases 2 & 3

MODE 3 - Phases 2,3, & 4MODE 3 - Phases 1,2 & 3

  Fig. 19.1    Interaction of mode-level reasoning and the phases of statistical modeling and 
simulation       
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19.4        Results 

 In order to provide a sense of students’ statistical development over the course of the 
quarter, we briefl y describe the mode-level reasoning for students at the beginning 
of the quarter when they fi rst encountered Tinkerplots™ software and were asked to 
model and simulate statistical problems. The fi rst TinkerPlots™ activity contained 
three parts: modeling the fl ip of a coin 10 times and tracking the number of heads, 
modeling the roll of a die 10 times and tracking the number of three’s, and modeling 
drawing 10 cards from a standard deck and tracking the number of hearts. The  activ-
ity guided students   through setting up each model and then asked them to answer 
questions about whether or not particular outcomes for each experiment were sur-
prising and why or why not. The fi rst author modifi ed this activity by taking away 
the directions for modeling drawing 10 cards from a deck and tracking the number 
of hearts, instead students were asked to construct a model. There were three stu-
dents who successfully modeled the  card task   (Mode 1) and two students who could 
also explain what a single trial of the simulation would look like and the variable of 
interest, hearts (Mode 2). None of the students knew what a sampling distribution 
was or had a sense for building a collection of the counts of hearts for many trials of 
the experiment. For the  Facebook and Music tasks   (occurring at the end of the 
term), about half of the students were coded at Mode 3 or 4 and the other half coded 
at Mode 0 or 1. Data was coded according to the scheme described in the methods 
section and inter-rater reliability was 97 % for 2 coders. Table  19.2  shows the fre-
quency counts for the  Mode level   assigned to students for each of the two MOST 
tasks, as well as the Card activity.

19.4.1       Successes 

 Most of the class had no conception of the phases of statistical modeling and simulation 
at the start of the term, but by the end of the term half of the class was coded at Mode 
3 or 4. Student descriptions varied, but to be given a Mode 4 code they appeared 
similar to the following example (“Lena’s” write up for the Facebook task): 

   Table 19.2    Mode-level reasoning for the 16 student participants on the tasks   

 Mode level  Cards task  Facebook task  Music task 

 0  13 (81.25 %)  2 (12.5 %)  4 (25 %) 
 1   1 (6.25 %)  5 (31 %)  4 (25 %) 
 2   2 (12.5 %)  0  0 
 3  0  3 (19 %)  4 (25 %) 
 4  0  6 (37.5 %)  4 (25 %) 
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 To determine whether 20 % of breakups occurring on Monday is due to random 
chance instead of another factor, I need to construct a null model that assumes there 
is no difference between the  days   ( Phase 4 ). I started with a mixer sampler with 
seven items, each labeled for a day of the week. I set the draw value to 1, because 
only one breakup is happening for each individual, and the repeat value is set to 50, 
because we are looking at 50 breakups… ( Phase 1 ). After running one trial 
( Phase 2 ), “collect statistic” was used on the percentage of Monday breakups. I 
plotted the results.... In this case, the p-value is approximately .16, because 16 % of 
the data is 20 % or higher. This means that it’s 16 % likely to see 20 % or more 
breakups happening on Monday ( Phase 3 ). From this simulation I wouldn’t say that 
the observed data in the random sample is surprising to see in a chance model 
( Phase 4 ). 

 Another example of a Mode 4 response is “Brandon’s” write up for the Music 
task (his TinkerPlots™ results are shown in Fig.  19.2 ):

   To determine how surprising this result (correctly identifying 7 notes out of 10) 
is and whether it is strong evidence that the student wasn’t just guessing the notes, I 
will use TP to simulate a null model where a student’s guessing the notes at random. 
There will be an equal probability for the simulated student to guess each of the 7 
notes ( Phase 4 ). Then I will conduct 1000 trials and see how many times the simu-
lated student guessed 7 or more of the notes correctly ( Phase 3 ). I set up a sampler 
with two mixer devices each with seven balls. …I set the repeat to 10 to simulate 10 
notes being played and 10 guesses being  made   ( Phase 1 ). … Because I collected 
1000 statistics and there were none with 7 correct ( Phase 3 ), I know that the p-value 
for guessing correctly 7 times out of 10 is less than 0.1 %. This is strong evidence 
against the null model ( Phase 4 ). 

 The write-ups of these two students provide evidence that they could identify an 
appropriate null model and subsequent simulation to create a sampling distribution, 
which provided statistical evidence to answer the problems they were given.  

  Fig. 19.2    “Brandon’s” model and simulation results for the Music task       
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19.4.2     Challenges 

 There were two  challenges   with the modeling and simulation approach that caused 
problems for many of the students in this class: (1) the inability to create statistically 
appropriate representations of the simulation and interpret results based on those 
representations; and, (2) the inability to set up statistically appropriate models. 

 In the Facebook task, two students created a valid model, but their choice of rep-
resentation for one or more trials was not appropriate. Figure  19.3  shows an example 
of one student’s model and her representation of one trial of the simulation.

   This student received a Mode 1—Phase 1 code. Her model (phase 1) is statistically 
meaningful, as randomly assigning each person to either breakup on Monday or on 
another day of the week in such a way that the percentage of breakups for Monday 
(14 %) represents what one would expect under a null model that Monday is just as 

  Fig. 19.3    Example of a correct model, but statistically meaningless choice of representation       
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likely as any other day for a couple to breakup. However, when she creates a repre-
sentation of her model she treats the number of couples breaking up (on the x-axis) 
as continuous data, rather than the particular number a couple was assigned. She also 
graphs Monday breakups with non-Monday breakups and then calculates the mean 
difference. She went on to collect statistics on the mean difference and create a 
sampling distribution of mean differences, despite the fact that the mean value is 
senseless here. Before students took this assessment they were doing activities that 
required them to fi nd mean differences in fl ight delay time for two different airlines. 
It is likely that the two students who completed their assessment in this way were 
copying the representations from this prior model, rather than making statistically 
meaningful choices of representations with the data on breakups. 

 In other instances, students struggled to set up an appropriate model. Figure  19.4  
shows an example of a student who received a Mode 3—Phases 2–4 code.

   While he included the 7 days of the week in his model, he attached that bin to a 
spinner that modeled 20 % breakup and 80 % stay-together. This is problematic 
because it does not represent a model that will simulate the null distribution 
(e.g., a random chance model), but rather simulates the 20 % breakups mentioned in 
the observed sample data. He was able to create statistically meaningful representa-
tions of one or more trials of the experiment. For instance, he displays a graph of 

  Fig. 19.4    Example of a student’s incorrect model, but statistically meaningful representations       
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one trial of seven and looks at the counts for breakups and staying together over the 
days of the week. He continued to collect statistics on the count of breakups on 
Mondays and interpreted his results in an appropriate way. However, because his 
model was incorrect he could not correctly answer the statistical problem. This 
particular issue,  modeling the observed sample data , was detected during class 
activities throughout the term. 

 Another common incorrect model involved student’s confl ating the idea that 
there are two outcomes for the music student’s guess, correct or incorrect, with the 
probability that there is a 50 % chance of guessing correctly or incorrectly when in 
fact there is only a 1/7 chance of guessing correctly because there are seven notes to 
choose from (see Fig.  19.5 ).

   Throughout the term, we observed students assigning two  outcomes   with a 50/50 
probability, rather than considering the probability that should be assigned to each 
outcome.   

19.5     Discussion and Conclusions 

 About a quarter of the students were able to consistently build correct simulation 
models, run a single trial of the simulation, and interpret that result. Half of the class 
was not only able to build correct models and run a single trial, but were able to also 
collect statistics on the correct statistic and draw relevant conclusions about the 
statistical question. Given the weak background and low confi dence of these students, 
and the goal of having students use technology to draw appropriate conclusions about 
statistical problems, these results were a huge success with regard to student learning. 
We saw an increase in statistical reasoning from all students over the course of the 
quarter. In addition, a few students transcended our expectations and were able to use 
creative statistical reasoning to answer more challenging questions. 

  Fig. 19.5    Example of an incorrect application of a 50/50 model       
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 However, we also observed challenges for students using this curriculum. One of 
the biggest challenges students faced was setting up appropriate simulation models. 
We observed 50/50 models where they did not apply because students equated two 
outcomes (such as correct and incorrect on a test) as  always  having equal 
 probabilities. We also observed students modeling the observed data provided in the 
problem, rather than a null model based on random chance. Furthermore, our students 
often struggled with the notion of collecting statistics because they thought increasing 
the sample size or the number of trials would be enough to make conclusions about 
the problem. These results suggest a need to focus on how technology can be best used 
to support student learning to set up models, run simulations, and interpret results. 

 There is huge potential for future research in the area of technology in introductory 
statistics courses. Curriculum supported by the use of dynamic statistics software will 
become more prevalent in introductory statistics classes and beyond. Following 
students as they navigate traditional introductory statistics courses versus courses 
using technology may provide deeper insight into how students think about statistical 
concepts and ideas in one context versus another. In addition, long-term studies tracking 
students who go on to take more advanced statistics may provide insight into develop-
mental pathways over time.     
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    Chapter 20   
 Students’ Understanding of Statistical Terms 
Having Lexical Ambiguity       

       Soyeon     Jung      and     Jihyun     Hwang    

20.1            Introduction 

 Understanding terms is very important to learn mathematics. Lemke ( 1990 ) stated 
unfamiliar presentation makes it hard for students to fi nd the lecture interesting or 
valuable. In addition, using specialized language in science is essential to every goal 
of science education. However, most students do not succeed in achieving their 
goals. Therefore, science seems more diffi cult for students than it is. Learning sta-
tistics is not different than learning science. There are many specialized terms in the 
statistic classroom. 

 Konold ( 1995 ) claimed that adults have strongly held intuitions and theories 
about probability and statistics. However, in many cases, the ideas are at odds with 
accepted theory. Therefore, the ideas are problematic when teaching statistics. Also, 
he investigated students’ understanding about a lot of concepts in probability and 
statistics. He found three characteristics in the students’ understanding. First, stu-
dents have theories or intuitions about probability and statistics before an instruc-
tion, many of which are opposite with conventional thinking. Second, students’ 
theories are diffi cult to change. Last, a student can hold multiple and often opposite 
beliefs about a particular situation. 

 Shuard and Rothery ( 1984 ) said lexical words which have a similar meaning in 
mathematics and everyday language. Also, Barwell ( 2005 ) defi ned the same or sim-
ilar words expressing two or more different meanings as the words having lexical 
ambiguity. Durkin and Shire ( 1991 ) classifi ed different types of  lexical ambiguity   in 
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a mathematical context, as they have been identifi ed by linguistics and their catego-
rization is not limited to mathematics. Table  20.1  shows four main types of words.

   Barwell ( 2005 ) conducted research on how ambiguity is presented in mathematical 
classroom discourse. He said that ambiguity can be seen as a resource for participants. 
He critically examined the ambiguity in two data. He concluded that the strict separa-
tion between formal and informal language is not always effective in a mathematics 
classroom.  Informal language   can be used to explore and develop delicate mathematical 
ideas and to take part in mathematical exercises. Therefore, he said ambiguity plays 
an important role as a resource for students and teachers, serving as a means of articulating 
between thinking and discourse. 

 Kaplan, Fisher, and Rogness ( 2009 ) examined the meanings of some statistical 
words association, average, confi dence, random, and spread which are most 
commonly used by students entering an undergraduate statistics course. The results 
showed that each of these words were problematic for different reasons. In the case 
of average and spread, both had a variety of meanings for the students entering an 
introduction to statistics class. It was problematic that there were many common uses 
for the words, but also these uses were not consonant with the statistical uses of the 
words. Association, random, and confi dence were fairly convergent in terms of com-
mon usage from the student perspective. They claimed students make incorrect asso-
ciations between the words they know and the similar words that have different 
meanings in statistics from the common usage defi nitions. Therefore, they concluded 
that linking the every day and statistical meanings of these words should be done 
with care and statistics teachers should consider the linking. 

  Lexical ambiguity   makes it hard for students to accept terms as the mathematical 
ones. The impact of linguistic ambiguity on mathematics learning has been studied 
variously. Although Kaplan has studies about the statistical words having lexical 
ambiguity, the ambiguity corresponds to the English language. Because there are a 
variety of languages, the kind of ambiguity varies in each language. This chapter set 
out to examine how the students understand Korean statistical terms. The methods can 
apply in any language though the exemplar words may be different in each language. 

 The mathematical meanings of many terms in Korea are different from their 
everyday meanings. In this respect, students easily get confused and have signifi -
cant diffi culties in learning these terms. Therefore, mathematics educators’ impor-
tant problems are fi nding the terms that have lexical ambiguity and identifying how 
students understand these terms. In this chapter, it is discussed how college students 

   Table 20.1    Category by Durkin   

 Homonymy  The property of some words that share the same form but have different 
meanings 

 Polysemy  The property of some words that have two or more different but related meanings 
 Homophony  The phenomenon where two different words have the same pronunciation 
 Shifts of 
application 

 Occasions where the same sense can be considered from different perspectives 
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accept each of fi ve statistical terms which have lexical ambiguity in Korean secondary 
school mathematics. The main sample is 20 college students whose major is mathe-
matics education. They have not taken any subjects related to statistics in college. The 
research questions are: 

 What do college students whose major is mathematics education know about the 
variance, variable, frequency, class, and sample? 

 How much does lexical ambiguity affect the understanding of the variance, variable, 
frequency, class, and sample?  

20.2     Methods 

 To make a determination, qualitative data were collected by surveys and interviews. 
The data provided what students understand about each statistical term to check if 
the daily meanings of statistical terms interfere with their learning of statistics. 
Durkin and Shire ( 1991 ) criteria was used to classify the statistical terms. The crite-
ria gave characteristics of terms to make a framework. After the surveys, two coders 
analysed the students’ answers based on the Kaplan et al. ( 2009 ) tool. Kaplan et al. 
( 2009 ) researched American students on the lexical ambiguity. The tool is easy to 
use and appropriate to apply in Korean terms. 

 I made a list of statistical terms used  in secondary education   that were considered 
to have lexical ambiguity because there was no study on lexical ambiguity in Korea. 
The meaning of each word is from Chinese. Table  20.2  is a list of the terms with 
Korean expressions, phonetic symbols, Chinese expressions, and statistical meanings 
in English.

   I chose the fi ve terms which daily meanings are familiar to students. Table  20.3  
shows the fi ve chosen terms that are categorized by Durkin and Shire ( 1991 ) criteria.

   The sample used during the research was 21st year undergraduate students in the 
department of Mathematics Education at Seoul National University. The 1st year 
students had not taken any college statistics courses. They were remarkably 

   Table 20.2    Terms which were considered to have lexical ambiguity   

 Korean [phonetic symbol]  Chinese  Statistical term in English 

 [Bun-San]  分散  Variable 
  [Byeon-In]  變因  Variance 
  [Do-Su]  度數  Frequency 
  [Gye-Geup]  階級  Class 
  [Pyeon-Cha]  偏差  Deviation 
  [Pyo-Bon]  標本  Sample 
  [Sang-Gwan]  相關  Correlation 
  [Sin-Roi]  信賴  Confi dence 
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mathematical oriented compared to other students their age. In addition, they were 
not only college students but also pre-service teachers who will teach statistics in 
secondary schools. 

 I conducted the surveys twice. The fi rst survey was done on March 16, 2012. The 
second survey was done on March 23, 2012. All subjects had 1 h to complete the 
survey after calculus class. The students were given a questionnaire asking fi ve sets 
of two questions. The fi rst set asked two questions about  Byeon - In . The students 
could write more than one answer for each question.

    (a)    Defi ne the word  Byeon - In .   
   (b)    Build sentences using   Byeon - In   . The same questions were repeated in each set.    

  Six students were chosen for interviews because their answers of the fi rst survey 
were confusing. The interviews were done on March 19, 2012. Each interview took 
about 20 min. 

 I fi rst started fi nding the daily meanings of terms based on  the Standard Korean 
Language Dictionary  ( 2008 ). Statistical meanings of fi ve terms were referred to  1st 
grade middle school mathematics textbook  (Jung, Kim, Oh, & Lim,  2011 ),  3rd 
grade middle school mathematics textbook  (Yoon et al.,  2011 ),  Integration and 
Statistics  (Lee et al.,  2011 ),  the Basic of Calculus and Statistics  (Lee et al.,  2011 ). I 
made the fi rst framework using these materials. The six students’ answers were 
coded according to the framework. Two coders analysed the original data indepen-
dently. After that, I compared each result and discussed with the other coder.  

20.3     Results 

 This chapter set out to examine how the students understand statistical terms. The 
results of the data analysis for each term were divided into three sections in alphabeti-
cal order. First, the agreement ratio between two coders is shown. The second part is 
the results of data analysis for the fi rst question related to the defi nition of terms. Next 
is a table describing the defi nition given by the students. This part is the core of this 
chapter. Last, the second question studied the students’ sentences using each term. 
There were some disparities between the defi nition and the meaning in the sentences. 

   Table 20.3    Five terms familiar to students   

 Term  Category 
 Statistical 
meaning  Daily meaning 

 Bun-San (分散)  Polysemy  Variance  Scatteration 
 Byeon-In (變因)  Polysemy  Variable  A factor that makes others to change Stranger 
 Do-Su (度數)  Homonymy  Frequency  The number of repetition 

 The fi gure that represents the size of something 
 Gye-Geup (階級)  Homonymy  Class  Rank 
 Pyo-Bon (標本)  Polysemy  Sample  Exemplary behaviour or person 
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20.3.1      Coding   

 After creating coding categories, two researchers independently coded all responses. 
Table  20.4  indicates the agreement ratio of initial coding. Two researchers discussed 
coding categories and coded data to research an agreement between the two 
researchers. After analysis of the fi rst survey, I found two unexpected problems. 
First, some answers did not have correspondence between a written defi nition and 
the written sentence.

   Therefore, I conducted data analysis based on only the answers of the fi rst ques-
tion, defi ne the word. Second, I needed to subdivide our framework because some 
of the students answered a part of one meaning in the dictionary or combination of 
two different meanings. Thus, I made a fi nal framework and I again conducted cod-
ing the data with the fi nal framework. 

20.3.1.1     Bun-San 

  Bun-San   means a variation in statistics, whereas scatteration in everyday life. Five 
students answered the daily meaning such as something scattering, scatteration, and 
a degree of dispersion. One student had no answer, and the other students defi ned 
Bun-San as the statistical meaning. The most frequent answer (45 % of all students) 
defi ned Bun-San as a degree of distance from the representative value, but it was an 
incorrect answer. During the interview, the students described the variance in rela-
tionship to the width of the normal distribution. Therefore, it made students to 
connect a variation with the distance from the representative value. “Sum of devia-
tion” and “a degree of dispersion of data in statistics” are examples that indicated 
incorrect statistical meanings. However, only fi ve students wrote correct answers. 
Among them, two students mentioned just the equation without words, ∑( x  i − m ) 2  p  i . 
Table  20.5  shows the replies of subjects to the defi nition of Bun-San.

   Two students wrote the equation which means a variation. They defi ned the 
meaning of Bun-San without a word. During the interview, the students could cal-
culate Bun-San though they did not know what Bun-San was.  

20.3.1.2      Byeon-In   

 Byeon-In has three meanings: (1) a variable in statistics, (2) a factor that makes others 
change, or (3) a stranger in daily life. Fifty-fi ve percent of the students are characterized 
by the general meanings, such as a changing factor, a factor that makes something 
change. All daily meanings written by students included “factor” and “changing” 

   Table 20.4    Agreement between coders   

 Term  Bun-San  Byeon-In  Do-Su  Gye-Geup  Pyo-Bon 

 Ratio  .90  .95  .75  .95  .75 
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simultaneously. “Changing factor” is the most popular answer in daily meaning answers. 
Five students chose a changing factor as the defi nition of Byeon-In. On the other hand, 
45 % of the students defi ned Byeon-In in experimental terms. The answers classifi ed 
into experimental terms were characterized by the statement, “in experience”. Also, they 
used academic terms such as operated, independent, dependent, and control. Similar to 
the daily meaning, all statistical answers were also connected to a factor. Although half 
of the students gave answers in science, there was no correct defi nition of Byeon-In. 
Table  20.6  shows the students’ answers to the defi nition of Byeon-In.

20.3.1.3       Do-Su 

  Do-Su   signifi es a frequency in statistics. Do-Su is the number of repetition or the 
fi gure that represents the size of something in everyday life. Fifty percent of the 
students answered daily meaning. The fi gure representing the size of something was 

   Table 20.5    Student defi nitions of Bun-San   

 Defi nition 
 Number 
of Answers 

 Daily Meaning  Scatteration/Something scattering/Scatter  4 
 Degree of dispersion  1 

 Statistical 
Meaning 

 Incorrect  Sum of deviation  1 
 Degree of dispersion of data or variation in statistics  5 
 Degree of distance from the representative value  9 

 Correct  ∑( x  i − m ) 2  p  i   2 
 Square of the standard deviation  1 
 Mean of the square of the deviations  2 
 No answer  1 

 Total  26 

   Table 20.6    Student defi nitions of Byeon-In   

 Defi nition 
 Number 
of answers 

 Daily 
Meaning 

 Changing factor  5 
 Factor that has a possibility to change  2 
 Factor that can make others to change/A factor has an effect on others  4 

 Experimental 
Meaning 

 All data related to changing quantities in experiments  1 
 Factor that has an infl uence on something or a results in experiments  2 
 Operated factor in experiences  2 
 Factor changing under some conditions  1 
 Infl uenced or infl uencing factor in experiments  2 
 Specifi c setting that can be assigned to subjects  1 

 Total  20 
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the most frequently written (40 % of the students) defi nition among students’ 
replies. 20 % of the students wrote only daily meaning. It means that 80 % of the 
students showed statistical meanings, and 30 % of the students gave both daily 
meaning and statistical meaning. Remarkably, most of the students gave the correct 
answer. Four students defi ned Do-Su as the correct answer, “the number of instance 
in which a variable takes each of its possible values”. 

 Among the incorrect statistical meaning, “the number for each variable” was 
given by fi ve students. Table  20.7  shows the replies of students to the defi nition of 
 Do-Su  . Two students defi ned Do-Su as “the frequency in the frequency table” with-
out any additional explanation, and six students also made sentences with frequency 
table. It shows that a frequency table is an important part of learning a frequency. 
Activities with a frequency table such as analysing a frequency table and making a 
frequency table brought the strong relationship between a frequency and a fre-
quency table.

20.3.1.4       Gye-Geup 

  Gye-Geup   means a class in statistics, but a rank ordinarily. Seventy-fi ve percent of 
the students stated one of the daily meanings. Moreover, 70 % of the students gave 
only one daily meaning. The ratio of students who answered only daily meaning is 
the highest among the fi ve terms. The most frequent meaning given by 45 % of the 
students was “people’s status”. Just seven students gave statistical meanings. 
However, there was no common characteristic. One student indicated the correct 
statistical answer. Table  20.8  shows the results of students’ answers about the defi -
nition of Gye-Geup.

   Table 20.7    Student defi nitions of Do-Su   

 Defi nition 
 Number 
of answers 

 Daily 
Meaning 

 Number of repetitions  5 
 Figure that represents the size of something such as angle, 
temperature, and light intensity. 

 8 

 Statistical 
Meaning 

 Incorrect  Ratio of data under a specifi c condition  2 
 Frequency in the frequency table  2 
 Number for each variable  5 
 Figure used to inform distribution in statistics  1 
 Number for the set of similar samples  1 

 Correct  Number of instances in which a variable takes each of its 
possible values. 

 4 

 No answer  1 
 Total  29 
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20.3.1.5       Pyo-Bon 

  Pyo-Bon   denotes a sample in statistics, whereas usually means exemplary behaviour 
or person. In addition, Pyo-Bon indicates a subject of experience. Contrast to Gye-
Geup, there are only four answers considered as daily meanings such as an exem-
plary person and a sample to fi nd characteristics. Ninety-fi ve percent of the students 
answered the statistical meanings. The incorrect statistical meanings answered by 
students were classifi ed by two main characteristics: randomness and representa-
tiveness. Table  20.9  shows that four students defi ned Pyo-Bon with randomness and 
three students did with representativeness. Eight answers considered Pyo-Bon as a 
subject. Among them, four answers are a subject in biology, and the other four 

   Table 20.8    Student defi nitions of Gye-Geup   

 Defi nition 
 Number of 
answers 

 Daily Meaning  Criteria for classifi cation  1 
 People’s rank or social status  9 
 Division or rating based on grade or quality  3 
 Range  1 
 Group included something  1 

 Statistical 
Meaning 

 Incorrect  Regular interval  2 
 Set of data with similar level  1 
 Standards for dividing variables  1 
 Name for characteristics in an arbitrary sample  1 

 Correct  Interval to classify or divide variables  1 
 Total  21 

   Table 20.9    Student defi nitions of Pyo-Bon   

 Defi nition 
 Number of 
subjects 

 Daily Meaning  Exemplary behaviour or person  3 
 Samples to examine characteristics  1 

 Experimental meaning  Subjects for experiments  4 
 Statistical 
Meaning 

 Incorrect  Subjects in statistics  4 
 Randomly extracted group from the whole 
group 

 4 

 Part of the population having 
representativeness 

 3 

 Space or range where arbitrary conduction 
can be done in statistics 

 2 

 Subject that makes meaningful values  1 
 Correct  Extracted part of the population  2 

 Total  24 
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answers are one in statistics. The correct statistical answer was given by only two 
students.

   The students who put an emphasis on randomness did not consider representa-
tiveness. It revealed that these students regarded randomness as an essential factor 
of representativeness. Actually, only random sampling appeared in high school 
mathematics. Figure  20.1  shows the ratio of daily meaning in the students’ answers.

20.3.2         Sentences 

 The results of analysis for written sentences by the subjects are shown in this section. 
An example for a daily meaning sentence of Bun-San is “Scatter the people!” Most 
of the sentences that contained variance, statistical meaning of Bun-San, were 
related to the scores of tests. For example, “the mean of students’ score is 70 and the 
variation is 5”. 

  Byeon-In   in the sentence was not in line with the written defi nition. For example, 
one students’ defi nition was “specifi c setting”, but the sentence was “temperature is 
a control variable in this experiment”. All of the students except for one made sen-
tences related to experiments. Remarkably, almost all students mentioned, “oper-
ated and control variables in the sentence”. The subjects were frequently exposed to 
the variable in science courses, but they did not learn the variable in secondary 
school mathematics. For this reason, the students connected the variable with 
 experiments. Though it is the scientifi c meaning, it is not distinct from the statistical 
meaning. The control, independent, and dependent variable are also statistics terms. 
Therefore, it was hard for the students to use the daily meaning in sentences. Daily 
meaning is involved in only one sentence, “the atmosphere is causing the matter”. 

 In  Pyo-Bon  , instances for daily meaning were “he is a sample of this job” and “a 
rat is caged for an experimental the sample”. A sentence having Pyo-Bon as a sta-
tistical meaning was “it is good to extract sample correctly in statistics”. Bun-San, 
Byeon-In, and Pyo-Bon are in the category of polysemy, the property of some words 
to have two or more different but related meanings. In this case, the ratio of the 
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  Fig. 20.1    Ratio of Daily Meaning. Note:  Light gray bars  indicate homonymy and  black  ones 
mean polysemy words       
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students who answered with the daily meaning is low. Nevertheless, most subjects 
did not know the correct statistical defi nition of each term. 

 In the case of  Do-Su  , it was distinctive that six students made a sentence using “a 
frequency table”. For instance, “complete the following frequency table” are a rep-
resentative sentence given by these students. “The frequency of boys is ten in this 
statistical data” is an example written by students using frequency alone. The exam-
ple for usual meaning is “the number of car accidents is increasing every year”. 

 In the cases of  Gye-Geup  , an example for daily meanings was “a rank in a mili-
tary”. When three students made sentences with class, the statistical meaning of 
Gye-Geup, they used frequency simultaneously. For example, “the frequency of the 
class about using bicycles is thirty”. Fourteen students gave only the daily meanings 
and fi ve students did only statistical meanings. In addition, just one student made 
the correct statistical defi nition. These remarkable results for Gye-Geup indicate 
either that the students did not know the defi nition or that the students could not 
recognize Gye-Geup as a statistical term. Similar fi ndings appeared in the written 
sentences by the students. Actually, Gye-Geup appeared very often in everyday life. 
Activity with a frequency table also confused the defi nition of Gye-Geup similar to 
Do-Su. Do-Su and Gye-Geup are in the category of homonymy, the property of 
some words to share the same form but have different meanings. In this case, the 
high ratio (50 % for Do-Su, 75 % for Gye-Geup) of the students answered with the 
daily meanings. Also, some students (30 % for Do-su, 5 % for Gye-Geup) wrote 
the daily meaning and statistical meaning together. But, these students clearly dis-
tinguished the daily meanings from the statistical meanings.   

20.4     Discussion 

 The most frequent answer of Bun-San was “a degree of distance from the representa-
tive value”. This is a misconception of a variance. In addition, there were some stu-
dents who defi ned Bun-San with an equation. This revealed that some students were 
able to calculate a variance though they did not know the defi nition of Bun- San. In 
the case of Byoen-In, most of the answers were related with experiments. There are 
two main fi ndings. First, there was a difference between the sentences and the defi ni-
tion given by the students. All sentences except one were related to scientifi c experi-
ments regardless of their own defi nition. Second, the results showed that all of the 
statistical meaning given by the students included “change” or “infl uence” and “fac-
tor”. The fi gure representing the size of something was the most frequently written 
(eight students) defi nition of Do-Su among student replies. A considerable number 
of students made the defi nition of Do-Su with a frequency table. Especially, a fre-
quency table appeared in both the defi nitions and the sentences. Most of the students 
gave only the daily meanings of Gye-Geup among the fi ve terms. Almost half of the 
students considered Gye-Geup as a person’s status. Seven students’ statistical 
answers had no common characteristic. In the case of Pyo-Bon, the number of stu-
dents who wrote the daily meanings is the least of the fi ve terms. It results from the 

S. Jung and J. Hwang



161

fact that there are two Korean words independently,  Sample  and  Pyo - Bon , although 
a sample is translated to Pyo-Bon in Korea. Sample is used mainly in daily life, 
whereas Pyo-Bon is used for experiments or statistics. For this reason, the ratio of the 
students who gave the daily meaning was lower than any other terms. Moreover, the 
statistical meanings given by 95 % of the students were divided into two groups. 
One group was characterized by randomness, and the other group was characterized 
by representativeness. A random and representative sampling is emphasized in 
Korean secondary schools. Thus, the students recognized randomness and represen-
tativeness as essential characteristics of a sample. 

 The polysemy words, Bun-San, Byeon-In, and Pyo-Bon, have a relation between 
a statistical meaning and a daily meaning. In this case, the ambiguity can be seen as 
a resource for instruction as Barwell ( 2005 ) argued. Ambiguity can be important, 
however, it demands great caution. The subjects gave the various meanings for each 
term. Considering the reasons of these results, two keys can be found in Konold’s 
research. The fi rst one is the students’ intuition related to daily life. A variety of the 
intuitions had a great infl uence on the meaning which the students thought diversely. 
The second is multiple beliefs. The case of Byeon-In which appeared respectively 
in different courses shows not only that the students can have multiple beliefs but 
also that the students can have an overwhelming experimental meaning among the 
multiple beliefs. In addition, the other cases indicated the students’ multiple beliefs 
such as the equations and a frequency table. The students interpreted the statistical 
words as daily meanings in practice. This results are in line with Kaplan et al. 
( 2009 )’ idea and inform that her idea similarly established in Korea.     
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Chapter 21
Student Understanding of Symbols 
in Introductory Statistics Courses

Hyung Won Kim, Tim Fukawa-Connelly, and Samuel A. Cook

21.1  Research Questions

In the field of mathematics, significant importance was placed upon symbolic 
representations of communication, teaching, and learning (Arcavi, 1994). In par-
ticular, students at introductory level statistics courses have been found to mix up 
the symbols for statistics and parameters (Mayen, Diaz, & Batanero, 2009), which 
could hinder them from developing the concepts that such symbols represent. 
However, our literature search suggests that there have not been any studies pub-
lished that explore students’ understanding of the symbolic system of statistics. 
Therefore, we investigate the following questions:

•	 How do students perceive the symbols for mean and standard deviation after a 
lecture course?

•	 How does students’ symbolic fluency relate to their ability to make sense of more 
advanced statistical concepts?

•	 When students have a strong mathematical background, how does that support or 
inhibit their ability to be successful in developing symbolic reasoning in statistics?
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Previous research suggests (Mayen et al., 2009) and our results confirm that stu-
dents find the choices of symbols arbitrary and difficult to associate with related 
concepts, and that students need particularly strong conceptual and symbolic under-
standings in order to make conceptual sense of the standard deviation of a sampling 
distribution. We also found that student understanding of the relation of statistics to 
parameters was not robust, and they did not consistently view statistics as variables. 
We found that many students did consistently look for meaning based upon the 
symbolic representation of concepts.

21.2  Literature Review

Onto-semiotic research proposes that “representations cannot be understood on 
their own. An equation or specific formula, a particular graph in a Cartesian system, 
only acquires meaning as part of a larger system with established meanings and 
conventions” (Font, Godino, & D’Amore, 2007, p. 6). The implication is that the 
system of practices is complex in that each one of the different object/representation 
pairs provides, without segregating the pairs, a subset of the set of practices that are 
considered to be the meaning of the object (Font et al., 2007). Within the realm of 
statistics, even when the object under consideration seems relatively simple, such as 
the mean, there are often multiple symbolic representations used interchangeably. 
For example, x x ni= ( )å /  may be used without consideration of any other type of 
representation: graphical, verbal, etc. The relationships between object and repre-
sentations become even more complex when moving toward a more complex idea, 
such as the standard deviation of a sample mean. Due to a layering of representa-
tions, it is conceivable that the different possible pairs of object/representation con-
vey different meanings of the same object.

For example, when learning the standard error of a sample mean, students are 
confronted with the simple looking formula: s sx n= / . This formula has a seem-
ingly simple explanation: “the population standard deviation of the sample means is 
given by the population standard deviation divided by the positive square root of the 
sample size.” In this case, the representation s x  draws on the agreed-upon symbols 
for the population standard deviation and the sample mean to communicate the 
meaning “the population standard deviation of the sample means.” However, it does 
not give information about how to determine the value. Moreover, the symbol s x  
requires students to be able to make sense of a mixture of previously separate 
representational systems: those that represent statistics derived from a sample 
(for example, x ) and those that represent parameters derived from a population 
(for example, σ). When given the representation on the right-hand side of the equation, 
s sx n= / , students read a formula that implies they should perform a calculation 
by mixing the pieces of symbols up from separate representational systems. Most 
importantly, the right- and left-hand symbols could be interpreted as different  meanings 
of the standard error of the sample mean. So, students are potentially confronted with 
various possible representations of the same object as described above.
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A representation is “something that can be put in place of something different 
to itself and on the other hand, it has an instrumental value: it permits specific 
practices to be carried out that, with another type of representation, would not be 
possible” (Font et al., 2007, p. 7). In this case, the standard error of a sampling 
distribution, the object s x , can be understood as a necessary concept that emerged 
from a system of practices although the choice of symbols can be understood as 
arbitrary (Hewitt, 1999). It should be considered unique, with a holistic meaning 
that is agreed upon by the community of practice; however, the concept is expressed 
by a number of different representations. Hewitt pointed out that for students to 
communicate with experts, they must memorize the arbitrary elements, the sym-
bols used to represent concepts, and correctly associate them with appropriate 
understandings of the necessary elements. Each of these object/representation 
pairs should be understood as encapsulating a different possible set of meanings 
and enabling different practices.

21.3  Rationale

A literature search suggests that although there have been investigations of students’ 
understanding of measures of center (Mayen et al., 2009; Watier, Lamontagne, & 
Chartier, 2011), variation (Peters, 2011; Watson, 2009; Zieffler & Garfield, 2009), 
and even students’ preconceptions of the terms related to statistics (Kaplan, Fisher, & 
Rogness, 2009), no one has yet explored student understanding of the symbolic 
system of statistics. Only one paper has described student errors related to represen-
tations of the mean and median (Mayen et al., 2009).

Recently, Shaughnessy called for research into “students’ conceptions of the 
interrelationships of the aspects of a distribution” (2007, p. 999). But he focused only 
on the special place of graphs as a tool in statistical thinking, and did not acknowl-
edge the importance of the representational system in which graphs are situated. The 
research on students’ conceptual understanding of statistical concepts has avoided 
discussion of the importance of representation; yet, onto-semiotic research claims 
that descriptions of conceptual understanding are incomplete when pursued only via 
one or two possible representations of a concept. This study contributes to the grow-
ing body of research on student understanding of statistical concepts by describing 
students’ symbolic fluency and the ways they link concepts and symbols.

21.4  Methods

Data for this study was drawn from eight participants in a mid-sized public university 
in New England. Two of the participants were in a lower level introductory statistics 
class and six were from an upper level class. The lower level class was designed to 
allow first-year students to meet the general education requirement of the university, 
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and thus is non-calculus based. The upper level class was designed to serve mathe-
matics majors, and thus is calculus-based. The two courses occurred in the same 
semester. While the curricular organization of the courses in this study conformed 
to those typically found in a reform-oriented classroom, the instruction itself was 
essentially traditional. The instructors had almost total responsibility for daily class-
room activities and the content was delivered primarily via lecture.

We used a phenomenological approach to collect data, the process of which 
was conducted in two steps: a survey assessment and a follow-up interview. For 
the survey, we developed a 14-item assessment. Some of these items were modi-
fied from Assessment Resource Tools for Improving Statistical Thinking, devel-
oped by the faculty members of the University of Minnesota in 2006. The rest of 
the items were created by our research team. The entire survey is available by 
request from the first author. The assessment items sought to evaluate student 
understanding of what the symbols represented and their conceptual understand-
ing primarily via their symbolic representations.

The goal of the interview process was to identify how students’ understanding 
of symbolic representations and their level of symbolic fluency potentially 
impacted their understanding of certain symbol-oriented concepts. The interview 
of the two participants from the lower level class was conducted a few days after 
the survey; the interview of the seven participants from the upper level class was 
conducted immediately after the survey. Based upon their work on the content 
survey, the nine students appear to range from low achieving to high achieving in 
statistics.

Both the survey and the interview were analyzed qualitatively. All interviews 
were audio-recorded and transcribed. For coding, each utterance was assessed to 
examine the information it gave about symbolic understandings. Then, within each 
transcript, we categorized and summarized the utterances that deemed informative 
understandings by the type of concepts and connections it described with their sym-
bolic understanding. We read within and across categories to develop conclusions. 
We continually rechecked our conclusions against the data that described the stu-
dents’ proficiencies. In this process, to find out how students’ understanding of con-
cepts in descriptive statistics is related with their ability to make symbol sense, parts 
of the grounded theory approach were blended in.

21.5  Results

Through the data analysis process, we drew three conclusions regarding the 
pedagogical difficulties that many participants encounter when attempting to reason 
symbolically in statistics. We also detected that high achieving students face a peda-
gogical hindrance caused by their academic disposition. A detailed description of 
the findings is illustrated below.
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21.5.1  Students Find the Choice of Symbols Seemingly 
Arbitrary and Difficult to Associate with Related 
Concepts

According to onto-semiotic research, holding various connections that a concept 
has with its various expressions is essential for one to internalize the concept. 
One of the connections is associated with the symbol that typically represents the 
concept. In introductory statistics courses, many concepts of descriptive statistics 
are introduced with their associated symbols. The choice of the symbols, however, 
is somewhat arbitrary and students have difficulty connecting the symbols with the 
concept that they represent. For example, consider the following claims made by 
Aaron:

Aaron:  Well, it (μ) is sort of the mean of the whole population. So, it’s the 
big mean, as opposed to the sort of small, local mean (for x).

Interviewer: Okay. And then, the notation for the smaller one is …
Aaron:  It seems arbitrary to me. It just seems like they didn’t have a good 

symbol, so they just used x-bar. …… But it’s one of those where I 
just remember it, because I just had to force myself to memorize 
that. There’s no intuitive connection there, to mean. It’s just, some-
one said that that’s what that is. So that’s what I remembered it to be.

. . .
Interviewer:  Okay. What about sigma, there? What’s your understanding of 

sigma?
Aaron:  Sigma would be the standard deviation. The sigmas actually make 

more sense. Sigma, being the standard deviation, at least there’s the 
relationship, there’s s. So, you know, I guess, it’s interesting that they 
used the Greek s for the sort of whole standard deviation, where sort 
of local, standard deviations have regular, lower case s. But in the 
case, like, it’s more intuitive than x-bar for the observation.

In this example, while Aaron acknowledges the importance of the symbolic con-
nections, he struggles to find such connections. If students do not connect the con-
cepts with their associated symbols in descriptive statistics, they will be hindered 
from acquiring new concepts about inferential statistics. The items 1, 2, 5, and 6 on 
the survey were designed to assess students’ ability to discern the symbols for 
 statistics from the symbols for parameters. While students’ responses on the assess-
ment instrument regarding symbols were 72 % correct overall, they consistently 
reported, during the interviews, that they struggled to understand the difference 
between statistics and parameters and to distinguish between the symbols. Consider 
further, Michael’s claims:

I know μ, I just always associate μ with the mean. I wasn’t really sure, I don’t remember if 
it was in the population, if it was the mean of the population or the sample, so I just kind of 
guessed on that one. And, for x, I think I’ve learned that is also the mean…
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He continued,

So, μ would be, like, all the data, and then, sorted, from smallest to largest, and then divided 
by how many were in the sample…. And then, x  is, I think x  is the same, it’s just not 
sorted by smallest to largest. I’m not really sure.

Based on his performance on other items, it appears that Michael knows how to 
calculate the mean and understands what it implies mathematically. But these are 
only part of a complete understanding the concept of mean. Another aspect of 
understanding the mean is the ability to pair it with the distinction between sample 
and population, which Michael was not able to do. Instead, he attributed an incor-
rect difference of meanings to the two symbols for mean. While he may be able to 
correctly answer questions that require calculating the mean, the lack of connection 
may prevent him from acquiring symbolic fluency.

21.5.2  Students Need Particularly Strong Conceptual 
and Symbolic Understandings in Order to Make Sense 
of the Standard Deviation of a Sampling Distribution

The concept of the standard deviation of a sampling distribution was determined to 
be one of the most difficult concepts for students in our survey. When Ian was asked 
to describe what a particular symbol represents, such as s / n , Ian said, “This is 
the population standard deviation.” He continued:

(s is) the standard deviation of our sample. I think we used s in class. I’m not sure. But we 
used another thing to separate, just like this, our mean in our sample. And so I thought that 
was what it was.

That is, he understood s / n  as the sample standard deviation even though the 
class had used s as the symbol for the sample standard deviation. This implies that he 
was so unsure in his knowledge that he was willing to believe that a different symbol 
could be substituted for s and still mean the same thing. Moreover, Ian’s responses to 
the questions were initially definitive; only after further questioning did he admit hav-
ing any insecurity of his knowledge. Even then, he did not express concern about mixed 
understandings or possible misattribution of meaning to symbols. We have two more 
examples that show students’ disconnected understanding on the concepts regarding 
standard deviation. One of them can be seen in the case of Riley as follows:

Interviewer:  But what kind of thing can we pull out, from σ and s? Does s esti-
mate σ? Or does it estimate any of these things in here?

Riley: s over square root of n estimates σ, I believe.

Also one of our participants, Andrea, was doing very well in her class and had a 
very firm understanding of statistics and parameters as was shown in the following 
conversation:
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Interviewer:  Could you explain what your understanding … (is about parameters 
and statistics?)

Andrea:  A parameter is just a piece of information about an entire population, 
and a statistic is a piece of information about the sample, and maybe 
a statistic is kind of, you use it to kind of guess at the parameter.

Further, when discussing item one, her misconception between sample standard 
deviation and the standard deviation of a sampling distribution was detected:

Andrea:  But I kind of thought these, I had trouble, on my last exam, with, 
like, the difference between this one and this one. Because, like, 
I had a problem with—

Interviewer: The sigma over radical N, and S.
Andrea:  Yeah. Because I kind of thought, I don’t really, I guess I don’t know 

what the difference, because I thought we, in class, we kind of used 
this to talk about the variability in a sample, but I thought s described 
the variability in a sample. So, I think I’ve got those two things kind 
of confused.

She acknowledges herself that she is confused with the difference between the 
symbols s / n  and s. We confirmed this again in the following part of the inter-
view on item 14:

Interviewer:  And what is over radical, then? What’s the place for that? Why do 
we ever consider over radical?

Andrea:  Well, maybe I, what I thought, maybe, was that, sometimes you 
know what the, maybe you know what is, but you don’t know what 
that (s / n ) is, and you use over radical—

Interviewer: You mean, we know, we don’t know?
Andrea:  Maybe, if you do know, I don’t know in what situation you would 

know but you wouldn’t know. But maybe you can use this to esti-
mate that one?

Interviewer: You can use over radical to estimate?
Andrea:  I don’t really know what I’m talking about. [LAUGHTER] But 

that’s my best guess.

After Andrea understood the meaning of “… is an estimator of …,” she made a 
comment (in bold above) to imply that over radical estimates. One way to explain 
this misunderstanding is to realize that students are trained to distinguish statistics 
from parameters through in-class learning. Once students establish the distinction, 
they habitually try to discern statistics from parameters; yet their work shows that 
they admit to struggling in doing this. It should be noted that the expression s / n  
has a great potential to confuse new learners because the symbol σ represents a 
population standard deviation, but the process of dividing by radical n is associated 
with a sample. Students can be easily confused as to what s / n  is associated with 
because they are trained to distinguish samples from population in order to be able 
to distinguish statistics from parameters.

21 Student Understanding of Symbols in Introductory Statistics Courses



170

21.5.3  Students Had Difficulty Viewing Statistics as a Variable

One of the items was designed to find out if students were able to view statistics as 
variables and parameters as fixed constants. This skill is an essential aspect of 
understanding the relationship between statistics and parameters and lays the 
groundwork for understanding the sampling distribution. We found that all eight 
students had difficulty holding this view. For example, Michael said,

I think a statistic is a calculated value, and a parameter is a, like a, it would be like a bound-
ary that satisfies a value. S, so, I think would be a, I think would be a parameter, because is 
the statistic. Its [measured estimator?]

Also, Brian said, “because it ( ) is representative of standard deviation. I guess that 
varies, but—.” When he was asked for the question from interviewer, “Have you 
thought of x  as a variable before?,” his answer was “No. I thought it’s more just a 
sample, as a value that you give to a particular group.” Another example is from Ian. 
He said, “I didn’t understand that at all. I didn’t know what we were looking at as, 
what was changing and what wasn’t changing.” However, with some guidance dur-
ing the interview, some students were able to understand how a statistic could be 
viewed as a variable. For example, Andrea said,

Well, I guess, I really don’t know, but I guess, my guess would be that, maybe, it would be 
x and, because maybe mu and sigma don’t vary, because they, I don’t feel like I’m interpret-
ing this question correctly, but I think that would be my guess, because maybe mu and 
sigma don’t vary.

These examples imply that without interruption students’ understanding of 
statistics as a variable was minimal or nonexistent.

21.5.4  Mathematically Strong Students Experienced Special 
Kinds of Struggles in Learning Statistics

One of the research questions was to identify how students with a strong mathemati-
cal background develop symbolic reasoning in statistics. Thus, we designed three 
items (4, 8, and 11) in the survey to evaluate students’ reasoning level of mathemati-
cal concepts. Some participants showed strength on the algebraic and probabilistic 
reasoning that underlies statistical formulas. This strength was first detected via the 
survey and was confirmed during the interview process. For example, with the three 
items in the survey, while the average achievement rate of all eight participants for 
those three items was 61 %, Ian had 100 % and Jen 89 %. Especially, Ian proved to 
have a firm understanding of the concepts focused on in the three items during the 
interview. For example, item 8.a in the survey asked:

In a university, 75 % of the students are male and 25 % are female. 5 % of the male students 
and 15 % of female own a car. For each statement, determine whether it is true?

 (a) We can conclude that 20 % of the students in the university own a car.
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During the interview, he claimed, without doing the real calculation, “I would 
say it’s between 5 and 15. Probably around 7 %?” Not only was he one of the few 
students who could correctly describe both the process and concept of a weighted 
average, but also he was able to give an approximation of the average using the four 
numbers shown in the question. Ian further proved his mathematical strength with 
his academic record showing high grades in multiple advanced undergraduate math-
ematics courses.

One of the characteristics that students with this disposition had was symbolic 
fluency. Ian, in discussing item 11, claimed:

The center would still be zero. But the standard deviation would be, because you forgot to 
divide. …… Because if you divided, if you do the shift first, by μ, you’re centering it at 
zero. But if you divide x by μ first, then subtract μ, your center would actually be 
[UNINTELLIGIBLE], because you’re going to decrease your center when you divide by μ, 
and then you’re going to shift it the original shift. (*)

This remark of Ian’s about z-score shows that he understands the mathematical 
concepts that underlie the z-score formula. In this remark, it is also evident that Ian 
has a strong mathematical symbol sense. He was able to describe each of the pieces 
of the formula in terms of its relationship to function transformation; he described 
shifts (translations) as happening when subtracting a constant and noted that not 
dividing by n has no effect on the location of the center. This development of sym-
bolic fluency (or symbol sense?), we suppose, might be the result of Ian’s pedagogi-
cal disposition because such a disposition helps students to make sense of the 
underlying concepts of a statistical expression that use various symbols. Thus this 
disposition of a student would work as a great pedagogical tool for the student when 
explanations of statistical expressions are provided to his or her satisfaction.

However, when these mathematically strong students attempt to bring the tools that 
helped them be successful in K-16 mathematics to their statistics classes, they could 
feel as though there were different norms for perceiving mathematical concepts in 
statistics classes because in these classes, contrary to other mathematics classes, it is 
not common for instructors to provide a complete description of the statistical expres-
sions. As such, participants claimed during the interview that the mathematical con-
cepts were not fully explained in their classes. For example, Ian said, “I feel like we 
just didn’t get any of the foundational stuff. Like, this is the most lost I’ve ever been in 
a class.” He further claimed during the discussion of item 7:

And then, there was another question where, you said, like, which of these can be consid-
ered variables, or something? Well, I never understood, he never specifically said that, and 
I never grasped what variables were considered, in stats. So, I guess, when you don’t have 
that basic, basic stuff, it’s, everything that comes after, you just struggle to try to put pieces 
together, all at the same time.

This remark not only shows Ian’s frustration that they didn’t learn basic statistical 
concepts from which they can develop more advanced concepts, but also reflects the 
conflict with Ian’s pedagogical disposition to seek out an explanation. Now, it seems 
as though this pedagogical disposition of Ian may have hindered him from developing 
symbol senses needed to perform well in their class reflects. For example, Ian said, 
“So, now, I’m questioning myself. This median, capital M, is that the median of the 
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whole population? Like, can they have the median of the sample? I’ve never 
heard that.” On one hand, such a deep understanding of statistical expressions and 
symbolic fluency described above in (*) was the result of the kind of academic 
disposition that Ian had. But, on the other hand, this academic disposition causes 
pedagogical conflicts with these students because they feel that the explanations 
provided are not to their satisfaction.

21.6  Discussion

Students, in introductory statistics courses, often struggle with symbols and making 
sense of concepts in relation with symbols. In an attempt to elucidate the issue, this 
chapter addressed the following research questions:

•	 How do students perceive the symbols for mean and standard deviation after a 
lecture course?

•	 How does students’ symbolic fluency relate to their ability to make sense of more 
advanced statistical concepts?

•	 When students have a strong mathematical background, how does that support or 
inhibit their ability to be successful in developing symbolic reasoning in 
statistics?

In investigating the first of the three research questions above, we found that the 
majority of students made good sense of the basic statistical symbols in descriptive 
statistics and distinguished the symbols for statistics from those for parameters. 
However, some students found the choice of symbols seemingly arbitrary and some 
students had difficulty associating with related concepts and attributed that diffi-
culty to the arbitrary choice of symbols. To alleviate these difficulties, it might be 
necessary, as a future study, to investigate if it might be necessary that statisticians 
develop more systematic symbols for novices.

The second research question inquired how students’ symbolic fluency relates to 
their ability to make sense of more advanced statistical concepts. Even though 
the majority of students were successful in pairing up the symbols for the mean and 
the standard deviation to the meanings they represent, students, in general, had trou-
ble making sense of more advanced statistical concepts that use those symbols. 
In particular, it was conspicuous that students did not develop strong conceptual and 
symbolic understandings in order to make sense of the standard deviation of a sam-
pling distribution. Also, the failure to view statistics as a variable was clearly shown 
in all eight students. The problem may have less to do with the conceptual challenge 
of holding that view, but more to do with some students’ claim that they never had 
a chance to think of a statistic as a variable. To help solve this issue, we suggest that 
instructors give more attention to the concept of the nature of statistics in relation to 
their corresponding parameters. It remains, as a future study, to find what kind of 
examples are effective in teaching and learning how statistics vary sample by sample 
and thus can be treated as a variable in the given context.
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The last research question focused on how the academic disposition of mathemat-
ically strong students supports or inhibits their ability to be successful in developing 
symbolic reasoning in statistics. This was shown in Ian’s case. He had an academic 
disposition to seek an explanation of mathematical concepts and showed, during 
the interview, a strong reasoning ability about the mathematical expressions that use 
symbols. Our speculation on this matter is that while the academic disposition that 
mathematically strong students have supports their study in usual mathematics 
courses, this disposition could cause such students pedagogical conflicts in statistics 
courses. This phenomenon is attributed to the fact that in traditional statistics lec-
tures, instructors do not provide a complete description of the statistical expressions. 
In order to mitigate the conflict, it would be necessary for statistics instructors to 
acknowledge the issue and inform students of the difference between the nature of 
statistics courses and that of other mathematics courses.

The findings of our chapter now leave us with the following future research 
questions. First, at the end of an introductory statistics course, students are expected 
to be able to associate statistical symbols with their accepted statistical meanings and 
acquire the symbolic fluency. This would lay the foundation for developing a firm 
understanding of more advanced concepts in descriptive statistics and in the broader 
domain of inferential statistics. Our study suggested that, without improved practices 
or more instructional focus, students are likely to continue to create incorrect semi-
otic links and experience great difficulty in developing conceptual understanding. 
This leads to the next question, “what pedagogical approaches help students make 
better sense of symbol sense?” For example, it would be worth exploring various 
types of examples with which students can make better sense of symbols.

Second, we found in this study that not providing students with complete expla-
nations of statistical concepts could hinder learning, especially for the students with 
the academic disposition described above. Thus the following question should be 
answered: “to what degree should instructors provide the explanations of statistical 
expressions?” Due to the dual nature of statistical concepts between mathematics 
and social science, it would be unrealistic to provide complete proofs of statistical 
expressions in class. Thus, it is important to identify effective pedagogical methods 
that balance well between the two aspects of the discipline.
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    Chapter 22   
 Two-Year College Mathematics Instructors’ 
Conceptions of Variation       

       Monica     Dabos    

        This chapter presents and discusses the results pertaining to three of the questions 
dealing with conceptions of variation in repeated samples. 

  Despite the large number of empirical studies investigating students ’  diffi culties 
with statistics ,  there are limited studies exploring the level of understanding of 
statistics instructors. This becomes particularly relevant if we consider a 5 - year 
period report ,  which showed a 60  %  increase in enrollment for introductory statistics 
courses  ( Kirkman ,  Lutzer ,  Maxwell , &  Rodi ,  2007 ).  Even though the increase in 
student enrollment is substantial ,  there is little information about who is preparing 
those students to succeed in statistics. According to the CBMS report ,  only 2  %  of 
full - time and 2  %  of part - time instructors at 2 - year colleges in the United States 
have degrees in statistics . 

  Within statistics ,  variation is fundamental as it is part of every step of the statistical 
analysis process. The current literature reveals that students at the K - 12 level  
( Shaughnessy et al .,  2004 )  as well as college students  ( Meletiou - Mavrotheris & Lee , 
 2005 )  struggle to understand the complexities associated with the concept of variation. 
There seems to be an implicit understanding behind researchers ’  recommendation that 
those teaching statistics possess the appropriate understanding of variation. Therefore , 
 the focus of this study was to investigate the extent of understanding of the conceptions 
of    variation     held by 2 - year college mathematic instructors. A total number of 52 
instructors participated in the study from 33 different California community colleges. 
They responded to a survey designed to explore their conception of variation. There 
were a total of 16 questions ,  all of which were previously used in research to investigate 
students ’  conceptions of variation. This chapter presents and discusses the results 
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pertaining to three of the questions dealing with conceptions of variation in repeated 
samples . 

  The results indicate that 2 - year college instructors ’  responses refl ect ,  for the 
most part ,  what other studies have found  ( Reading & Shaughnessy ,  2004 ).  For 
example ,  it appears that the wording of the question altered the kind of response 
instructors gave as indicated by the contrast of 12  % ( n  =  6 )  of instructors predicting 
variability in one question ,  while 77  % ( n  =  40 )  predicted variability in another. 
Additionally ,  in the short answer question, it was discovered that while different 
numerical values were reported for repeated sample questions ,  it did not necessarily 
indicate an appropriate conception of    variation   ,  as some of the predicted values 
were considered too low ,  too high ,  or too broad. Instructors ’  reasoning also high-
lights a division between those who readily predicted and justifi ed sample variability 
and those who gave explanations that do not show that sample variability has been 
considered. However ,  the difference does not seem to be highlighted by the instructors ’ 
 degree or by their statistics teaching experience. This study suggests further research 
could clarify if the questions utilized in this and prior studies are valid tools for 
measuring variability. If the questions are proven not to be the problem ,  then deeper 
investigation into instructors ’  knowledge of variability may be required .    
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    Chapter 23   
 Students’ Sense-Making of Graphical 
Representation in a Basic Statistics Module       

       Hui     Teng     Chia    

23.1            Introduction 

 The Singapore mathematics curriculum (MOE,  2001 ) introduces statistics educa-
tion in Primary One. An analysis of the syllabi and curriculum materials revealed 
that solving mathematical problems based on graphical representations is a com-
mon theme throughout primary and secondary school statistics education (except 
for Primary 5 where students are taught the concept of average). Graduating second-
ary school, students would have encountered graphs such as picture graphs, bar 
graphs, line graphs, pie charts, histograms, ogives, stem-and-leaf plots, dot plots 
and box plots. Given that Singapore students in the primary and secondary schools 
are taught mathematical problem-solving based on these graphs, how well then do 
post-secondary school students make sense of information presented graphically?  

23.2     Methods and Results 

 Although students were taught mathematical calculations when responding to ques-
tions based on graphs, it was surprising that many students chose to use logical 
reasoning to respond to the task in Fig.  23.1 . This made the typical grading of right 
or wrong solution inappropriate and hence, the SOLO taxonomy was employed to 
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examine the quality of students’ responses. Figure  23.2  provides a summary of the 
classifi cation of students’ responses.

    One response met three of four characteristics of an extended abstract response 
and was categorized as the transitional state from relational to extended abstract.     
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  Fig. 23.1    The task ( left panel ) and two examples of students’ responses ( right panel )       

  Fig. 23.2    Summary of classifi cation of students’ responses       

 

 

H.T. Chia

�http://www.moe.gov.sg/education/syllabuses/sciences/files/maths-primary-2001.pdf
�http://www.moe.gov.sg/education/syllabuses/sciences/files/maths-primary-2001.pdf


   Part IV 
   Technology in Statistics Education        



181© Springer International Publishing Switzerland 2016 
D. Ben-Zvi, K. Makar (eds.), The Teaching and Learning of Statistics, 
DOI 10.1007/978-3-319-23470-0_24

    Chapter 24   
 Bootstrapping Confi dence Intervals       

        Ross     Parsonage     ,     Maxine     Pfannkuch     ,     Chris     J.     Wild     , and     Kate     Aloisio    

24.1            Introduction 

 In most undergraduate introductory statistics courses, the conceptual foundations 
underpinning confi dence intervals are the normal distribution, the Central Limit 
Theorem, and the sampling distribution of estimates. However, research evidence 
suggests that the theoretical and mathematical procedures involved in statistical 
inference act as a barrier to student understanding, particularly with regard to 
hypothesis testing (delMas, R, Garfi eld, & Chance,  1999 ; Jones, Lipson, & 
Phillips,  1994 ). Although confi dence intervals have been taught for years in 
introductory statistics courses, very little research has been conducted on stu-
dents’ understanding of them (Sotos, Vanhoof, Noortgate, & Onghena,  2007 ). The 
sparse research that has been conducted on the understanding of confi dence 
intervals has thrown up a raft of misconceptions. These misconceptions include 
the thinking that a 95 % confi dence interval (for a mean) contains the plausible 
values for the  sample  mean, covers 95 % of the sample, is the range of individual 
scores, increases in width with sample size, or is not affected by sample size 
(Fidler,  2006 ). 

 Increasing access to technology, calls to reform the introductory statistics 
curriculum (Cobb,  2007 ), and recent changes in statistical practice (Hesterberg, 
Moore, Monaghan, Clipson, & Epstein,  2009 ) have led our project team to intro-
duce the randomization (permutation) and bootstrapping methods. The appeal of 
both the randomization and the bootstrapping methods is that they are logical, 

        R.   Parsonage      (*) •    M.   Pfannkuch      •    C.  J.   Wild      
  The University of Auckland ,   Auckland ,  New Zealand   
 e-mail: r.parsonage@auckland.ac.nz; m.pfannkuch@auckland.ac.nz; c.wild@auckland.ac.nz   

    K.   Aloisio      
  Smith College ,   Northampton ,  MA ,  USA   
 e-mail: kaloisio@gmail.com  

mailto:r.parsonage@auckland.ac.nz
mailto:m.pfannkuch@auckland.ac.nz
mailto:c.wild@auckland.ac.nz
mailto:kaloisio@gmail.com


182

accessible, and lend themselves to dynamic visualization processes, which we 
conjecture may assist students with their understanding of statistical inference. 
They also do away with the need for distributional assumptions and can be applied 
to many different situations. In this chapter, we focus on the bootstrap method and 
our pilot study fi ndings.  

24.2     Bootstrap Method Literature 

 All of the current literature in statistics education on the bootstrap is centered on 
explaining the method, giving teaching examples, and arguing that the method 
will give students better access to ideas underpinning inference. There is no research 
to date on the bootstrap method’s effectiveness in improving student learning, 
on students’ reasoning using the bootstrap, or on any learning issues that need to 
be resolved. Therefore, in this section, we will discuss the bootstrap method and 
the rationale for using it from a discipline perspective and from an education 
perspective. 

24.2.1     Breaking with Tradition in Statistics 

 In  1979  Brad Efron produced a landmark paper on the bootstrap method that has 
revolutionized the practice of statistics.  Statistical inference   is underpinned by the 
sampling distribution of sample statistics through considering all random samples 
from the population. Efron’s idea was to estimate a sampling distribution from just 
one sample. By treating this one sample as if it were the population and mimicking 
the data production process (Hesterberg,  2006 ), multiple resamples of the same size 
as the original sample are taken with replacement from this original sample with the 
statistic being calculated each time. The  variation   in estimates from resamples from 
this original sample approximates the variation in estimates that would be obtained 
if many samples from the population were taken. Since the advent of Efron’s paper, 
well over 1000 papers have been written justifying the theoretical basis for the boot-
strap (Efron,  2000 ). As Efron ( 2000 ), p. 1295 noted:

  it has taken me a long time to get over the feeling that there is something magically powerful 
about formulas … and to start trusting in the effi cacy of computer-based methods like the 
bootstrap for routine calculations. 

   Since the bootstrap method is capable of generating bootstrap distributions for 
summary statistics such as medians, quartiles, measures of spread, and correla-
tions, it goes far beyond the scope of classical mathematical methods simple 
enough to be commonly taught. Cobb ( 2007 ) and Efron lament that the bootstrap, 
which has had a major effect on the practice of statistics is not part of the introduc-
tory statistics curriculum. With computing power now available to students, the 
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time is ripe to introduce students to the bootstrap method and correct the mismatch 
between statistical practice and the introductory curriculum.  

24.2.2      Breaking with Tradition  in Statistics Education   

 In  1976  Simon, Atkinson, and Shevokas used the Monte Carlo method for teaching 
probability to students. The Monte Carlo method is similar to the bootstrap method 
in the sense that the probability of an event is estimated through simulation rather 
than mathematical theory (e.g., Binomial distribution). Simon et al. found that 
students exposed to the Monte Carlo method did better than students who used 
conventional methods. They argued that a complete rethinking of how probability 
was taught was necessary. For students the  Monte Carlo method   was intuitive, logi-
cal, and readily accessible, whereas conventional methods took more time and 
depended on greater mathematical ability. Their fi ndings and suggestions for chang-
ing teaching have remained in abeyance until recently. A concerted effort is now 
afoot to promote computer-intensive methods in introductory courses (Engel, 
 2010 ; Gould, Davis, Patel, & Esfandiari,  2010 ; Hesterberg,  2006 ; Holcomb, Chance, 
Rossman, Tietjen, & Cobb,  2010 ; Tintle, VandenStoep, Holmes, Quisenberry, & 
Swanson,  2011 ; Wood,  2005 ). 

 Apart from the fact that bootstrapping is rapidly becoming the preferred way to 
do statistical inference, there are strong pedagogical arguments for introducing the 
bootstrap into the curriculum. First, the bootstrap can be used to make the abstract 
concrete by providing “visual alternatives to classical procedures based on a cook-
book of formulas” (Hesterberg,  2006 , p. 39). These visual alternatives have the 
potential to make the concepts and processes underpinning bootstrap inference 
transparent, more accessible, and connected to physical actions. Student under-
standing can be enhanced by the addition of visual representations and by encourag-
ing students to generate mental images. Technology also enables students to link 
multiple representations—visual, symbolic, and numeric—and it facilitates under-
standing through promoting a visualization approach to learning (Sacristan et al., 
 2010 ).  Dynamic software   can allow students to analyze directly the behavior of a 
phenomenon, to visualize statistical processes in ways that were not previously pos-
sible, such as viewing a process as it develops rather than analyzing it from the end 
result. Exposure to such processes “can help develop the abilities and intuitive 
thinking that can enhance powerful mental conceptualizations” (Sacristan et al., 
 2010 , p. 188). 

 Second, students experience a set of general approaches or a method that applies 
across a wide variety of situations to tackle problems rather than learning multiple 
and separate formulas for each situation (Wood,  2005 ). Such formulas work in special 
circumstances but the general approach works in most situations and sometimes it 
is the only option. Third, simulation is currently seen as a teaching aid to improve 
understanding of inference rather than a replacement for standard methods (Engel, 
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 2010 ; Hesterberg et al.,  2009 ), since client departments or employers, who are not 
familiar with more modern practice, may demand traditional methods. However, for 
the majority of students, who will never need to study analytic methods, simulation 
methods such as the bootstrap should be promoted as the only method (Wood, 
 2005 ). Moreover, these methods coupled with dynamic visualization infrastructure 
allow access to statistical concepts previously considered too advanced for students, 
as mastery of algebraic representations is not a prerequisite. As Wood ( 2005 ), p. 9 
states, simulation approaches such as the bootstrap “offer the promise of liberating 
statistics from the shackles of the symbolic arguments that many people fi nd so dif-
fi cult.” Similarly statistics teachers need to liberate themselves from theoretical for-
mula-based teaching and intellectually to accept new ways of practice and thinking.    

24.3     Methodology 

 A collaborative research project team of 33 members is involved in the development 
of innovative approaches to teaching statistical inference. The team consists of two 
education researchers, two resource developers, a statistical software conceptual 
developer, eight university lecturers, 14 secondary school teachers, 5 professional 
development facilitators, and 1 international advisor. Using design research principles 
(Hjalmarson & Lesh,  2008 ), the development process involves  two research cycles   
with four phases: (1) understanding and defi ning the conceptual foundations of 
inference; (2) development of learning trajectories, new resource materials, and 
dynamic visualization software; (3) implementation with Year 13 (last year of high 
school) and introductory university statistics students; and (4) retrospective analysis 
followed by modifi cation of teaching materials. 

 In the fi rst research cycle, a pilot study was conducted with ten students, fi ve 
from Year 13 and fi ve from university. A one-day teaching session was conducted, 
with half of the day devoted to the randomization method, and the other half to the 
bootstrapping method. Data collected were: student pre- and posttests and interviews, 
videos of teaching implementation, and refl ections and observations of the project 
team. A thematic qualitative data analysis using nVivo was conducted on the student 
interviews (Braun & Clarke,  2006 ), while numbers of students who responded to 
multichoice and true/false questions were recorded. In the second research, cycle 
data will be collected from about 3000 students.  

24.4      Description of  Tasks   

 Our aim is to develop in students an overview of the “big ideas” and purpose of taking 
random samples and an intuitive grasp of statistical inference by introducing the 
concepts of confi dence intervals via the bootstrapping method. We start students 
with hands-on experiences of implementing the bootstrap method with a small 
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number of repetitions and then progress to the next level of the inferential argument 
using dynamic visual imagery software that closely resembles the hands-on experi-
ence but is capable of doing thousands of repetitions. The instruction sequence, 
which is designed for classes of over 300 students, is now briefl y described. 

 First, the students are introduced to a media article that quotes averages from a 
survey. Ideas are raised about using a sample to make an inference about the popula-
tion and whether the average would be the same if someone took a different sample. 
Since all the estimates reported in the article are uncertain, the question about how 
to improve on a point estimate is asked. Second, students are shown a population 
bag of 521 datacards, where one datacard records information about a male student 
from an actual online survey of introductory statistics students. One of the variables 
on the datacard is weight. Questions are posed about the shape of the population 
distribution for the weights and the median weight of the population. A sample of 
nine cards is taken from the population bag. It is stressed that the situation presented 
is for teaching them some “big ideas” and that in the real world we do not have the 
weights of every person and in practice we would take a larger sample. From the 
nine cards the sample median is calculated. Since this estimate is uncertain, the 
question about how to fi nd plausible values for the population median is discussed. 
We then introduce students to the approach Brad Efron used in 1979 and we empha-
size ideas such as treating the sample as if it were the population and mimicking the 
data production. Third, to experience the bootstrapping process the students have 
nine paper squares with each square representing the weight of the student sampled. 
In pairs they take a resample of size 9 from the original sample with replacement, 
plot the data, and record the median. They repeat the process several times. The 
resample medians are gathered from the class and a plot of the medians represented 
by vertical lines is built up. Students then suggest what interval of plausible values 
they would use for the population median. 

 Fourth, students are reminded that they are trying to estimate the population 
median and that the bootstrapping process will be automated using dynamic visual-
izations that we have especially developed. Using the same hands-on data students 
are introduced to VIT—visual inference tools (see:   http://www.stat.auckland.ac.
nz/~wild/VIT    ). Development of specialized software was an integral part of the proj-
ect. Figure  24.1  shows an example of the  fi rst  version of the dynamic visualization 
tools. The data panels screen shows a tracking feature for sampling with replace-
ment. The top section of the graphics panel plots the observed weight data, the mid-
dle section gradually builds up the sampling variability in the resample medians, and 
the bottom section displays the bootstrap distribution and confi dence interval. Each of 
the four displays is revealed separately and built up dynamically for the students. The 
lecturer discusses the bootstrapping process relating each part of the display to the 
hands-on activity. The fi nal display (not shown) shows the confi dence interval 
moving up to rest on the box plot. Note that Fig.  24.1  displays data for a sample of 
size 36, a later activity given to the students.

   Fifth, we ask how successful the bootstrapping process is at capturing the popu-
lation median. Using our visualization tools, 1000 random samples of size 9 are 
taken from the population of male weights. For each of these samples, a bootstrap 
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confi dence interval is built (using 1000 resamples) and checked to see whether the 
population median is in the interval. The software produces numerically and visu-
ally the overall success rate for these 1000 bootstrap confi dence intervals. Finally, 
students are introduced to bootstrapping a confi dence interval for the population 
mean and confi dence intervals for differences in population medians and means and 
how to interpret them.   

24.5     Pilot Implementation Results 

 Our main research question for this pilot study was: What issues arise in students’ 
reasoning processes when they experience new methods such as bootstrapping? 
From the student responses we were specifi cally interested in: What aspects of the 
design of the learning trajectories, resources, software, pre- and posttests, and post-
task need to be improved before we implement the main study? Data are drawn 
from written responses and interviews with the students. We highlight three main 
issues concerning student responses (in the areas of visualizations, “big ideas” and 
verbalizations) that we learnt about student reasoning and discuss our consequent 
actions to ameliorate the perceived problem area. 

24.5.1      Visualizations   

 One issue that arose was the number of multiple images or representations for a 
confi dence interval that students were expected to grasp—a band of resample medi-
ans, a distribution of resample medians, a numeric interval, a verbalization of the 

  Fig. 24.1    Software panels for performing the bootstrapping process       
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interval, and a horizontal line on the original sample. When eight of the students 
were asked in the posttest interview to draw their image of a confi dence interval for 
the population median for boys only, none of them drew a horizontal line as shown 
in the software. One student drew the bootstrap distribution (Fig.  24.2 ), one a partial 
distribution, three drew marks indicating uncertainty in the median (Fig.  24.2 ), and 
the other three put two vertical lines to indicate the boundaries of the confi dence 
interval. When one of them was asked what happened after the confi dence interval 
was calculated on the bottom screen, she said she did not remember. Lack of famil-
iarity with the confi dence interval representation image, the fl eeting movement of 
the image to the original box plot, the visual dominance of the bootstrap distribu-
tion, and prior knowledge all seemed to have played a role in students missing the 
fi nal representation of the confi dence interval. From responses to other questions, 
we realized the bootstrap distribution was dominant in their imagery.

   Since the bootstrap distribution should just be regarded as a calculating device 
we decided to change the color of the distribution to a lighter color and incorporate 
a fade button so that students’ attention could be drawn to a more prominent depic-
tion of the confi dence interval superimposed on the original data. Furthermore, the 
resources only gave a numeric representation and an interpretation of the confi dence 
interval, not a plot of the data with the confi dence interval represented. These were 
changed so that the students physically drew the confi dence interval on the plot.  

24.5.2     “ Big Ideas  ” 

 In the posttask, pairs of students were interviewed. They were given data on guinea 
pig survival times in a drug treatment trial. They were asked to teach the interviewer 
how to obtain the typical survival time of guinea pigs that took this drug. Their 

  Fig. 24.2    Students’ images of a confi dence interval for the population median of boys only       
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initial reaction was to produce the observed median but when asked if the inter-
viewer could report the observed median as the typical survival time they responded 
that they needed to produce a confi dence interval. The students could easily handle 
the software, and when questioned about what they doing and why, they were able 
to discuss the mechanics of the bootstrapping process and describe what each of the 
visual components represented. Four of the seven students who were asked about 
the reason for sampling with replacement seemed to be aware that the sample was 
being treated as if it were the population with comments such as “so that the sample 
is representative of the population.” The dynamic software visualizations seemed to 
help students attain the concepts underpinning the bootstrapping process. 

 What was missing from the student responses were big ideas such as: all estimates 
are uncertain; if other samples were taken different estimates would be obtained; 
and to make an inference about a population parameter, a confi dence interval as a 
set of plausible values for the population parameter needed to be constructed. In all 
of the posttest and task interviews only one student mentioned the word estimate, 
saying it only once, and none used the word uncertain even though the teacher in the 
pilot study believed he carefully emphasized this language. We conjecture that the 
words estimate and uncertain are part of everyday language and therefore did not 
become part of students’ statistical language or thoughts. Their initial learning 
seemed to be focused on “what to do to get the answer” rather than the “big ideas” 
underpinning confi dence intervals. Part of the problem may have been the short 
teaching session but nevertheless we developed the idea of an uncertainty band 
around an estimate and modifi ed the teaching resources to emphasize and highlight 
the “big ideas.”  

24.5.3      Verbalizations   

 In the tests and posttask interview transcripts, we noticed students tended not to 
verbalize terminology such as  sample means  and  population mean  rather they used 
the word  it  or left the words unsaid. For example, a student stated: “for a large 
sample size you’re going to get less variability.” To demonstrate further she drew 
two bell-shaped curves with the one for the larger sample size narrower than the one 
for the smaller sample size and she did not label or talk about what the  x -axis was 
measuring. This practice of not stating what one gets less variability in and not 
labeling the  x -axis of the sampling distribution of the statistic was prevalent among 
the students. When a student constructed a bootstrap confi dence interval using the 
software he gave the following description:

  it is a fairly safe bet  it  is somewhere between here … Rather than just saying  it  will be this 
many days. It’s more certain that the value you will get from doing another  one  that  it  will 
fall in between the two rather than saying  it  will be that value. 

   Another student, who also constructed her own bootstrap confi dence interval 
said:
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  we observed at the start  it  is 108 and then the confi dence interval is 90 to 140.5 so we would 
be reasonably confi dent the [ note word omission ] survival time would be between this … if 
the guinea pigs took the drug. 

   All the students seem to understand that the population mean was within the 
confi dence interval with comments such as “where we believe the mean value is of 
the entire population of guinea pigs.” However, when they were confronted with 
answering true or false to the following confi dence interval statement in the posttest 
(adapted from delMas, R, Garfi eld, Ooms, & Chance,  2007 ): “We believe that it is 
a fairly safe bet that each cookie for this brand has approximately 18.6–21.3 choco-
late chips,” four of them answered true, two answered false with incorrect reasoning 
such as “you can’t have 0.6 of a chocolate chip,” and four answered false with cor-
rect reasoning. Even though the students could clearly state the bootstrap distribu-
tion was a distribution of resample medians when looking at and talking about what 
they were seeing on screen, the idea of a distribution of a statistic seemed to slip 
from some of their minds when faced with a new situation. 

 We conjecture that the students’ reluctance to  verbalize   sample mean and popu-
lation mean and to label the  x -axis for the bootstrap distribution is hindering their 
understanding and partially preventing them from transitioning from viewing a plot 
as a distribution of data to a distribution of a statistic. Another reason is that we did 
not pay suffi cient attention to this key transition phase of a new concept of a familiar 
plot in our learning trajectory. We also noted that our software does not have  x -axis 
labels, for space and visual perception reasons, and our resources have the measure 
in the title for the plots rather than as labels on the  x -axes. We are still thinking about 
how to address this issue and how to get students to produce a bootstrap distribution 
visual mental image and what it means when dealing with interpreting a confi dence 
interval in a word-only context.   

24.6     Conclusion 

 The purpose of the pilot study was to detect problems in the pre- and posttests, post-
task, learning trajectories, and software before trialing the bootstrap method with 
over 3000 students. Through interviewing students we identifi ed many issues, some 
of which are reported in this chapter. We learned that attention to the interplay 
between verbalizations, language, and the “big ideas” is very important; that visual 
imagery can go unnoticed; and that imagery has the potential to assist concept 
development. Unfortunately, it seems that the bootstrap method will not be a pana-
cea for erasing confi dence interval misconceptions already identifi ed by other 
researchers such as students thinking that the confi dence interval covers 95 % of the 
sample (Fidler,  2006 ). 

 The strength of our bootstrap software, however, is that the students always see 
the confi dence interval developing visually as part of a distribution, never as a 
numeric representation alone. Students seem to understand the components of the 
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software dynamic visualizations and what each represents. Experiencing the visual 
building up and development of a confi dence interval gives students direct access to 
the behavior of the sampling variability phenomenon (Sacristan et al.,  2010 ). We 
believe that the bootstrap method coupled with our visual thinking tools allows 
underpinning concepts such as mimicking the data production process and variation 
in sample medians to be more accessible and transparent to students. Compared to 
mathematical confi dence interval formulas, we conjecture that students did learn 
more about statistical inference using the bootstrapping method (cf. Tintle et al., 
 2011 ). Questions are currently still being raised about how we can encourage stu-
dents to make connections between visual, symbolic, and verbal representations of 
confi dence intervals; to make the transition to recognizing a distribution of a statis-
tic rather than as a distribution of data; and to attend to the “big ideas” behind 
estimations.     
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    Chapter 25   
 Undergraduate Students’ Conceptions 
of Variability in a Dynamic Computer-Based 
Environment       

       George     Ekol      and     Nathalie     Sinclair    

25.1            Introduction 

 The goal of this study is to shed light on how undergraduate introductory statistics 
students connect their everyday experiences to the meaning of  statistical variability   
in static and in dynamic mathematics environments. We chose variability for two 
main reasons. First, from a teaching and learning perspective, variability can be 
seen as a gateway to understanding other concepts in statistics (see e.g. Garfi eld & 
Ben-Zvi,  2008 ; Rossman,  1996 ). For instance, in descriptive statistics, reasoning 
about graphs, mean, median, and standard deviation clearly requires an understand-
ing of variability. Moreover, concepts which are usually taught in inferential statis-
tics such as confi dence intervals, hypothesis tests, sampling distributions, regression 
analysis, and  p -values also necessitate a good appreciation of statistical variability. 
Second, we are interested in developing and using appropriate computer technolo-
gies for building concepts in mathematics and statistics. 

 A number of studies have already drawn attention to the need to help students 
take a balanced approach towards learning statistics (see e.g. Fischbein,  1987 ; Makar 
& Confrey,  2005 ). By balanced approach, we mean having students build meaning 
of the concepts they learn, along with the standard procedures. A conceptual frame-
work we have called individual meaning building (IMB) for analysing our data is 
developed in the next section. The main idea in the IMB framework comes from 
Fischbein’s ( 1987 ) original idea on intuition building. Intuition building is further 
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developed and used by Makar and Confrey ( 2005 ) in their study with pre- service 
teachers. As mentioned earlier, our goal is to gather information on undergraduate 
students’ multimodal communication about the concept of variability, in both static 
and dynamic mathematics environments. In the next section, the IMB conceptual 
framework is developed together with a summary of related studies.  

25.2       Framework   and Related Studies 

 Several studies have been conducted on the topic of variability at different school 
levels (e.g. del Mas & Liu,  2005 ; Garfi eld & Ben-Zvi,  2008 ; Reading & 
Shaughnessy,  2004 ). Overall, studies at the undergraduate introductory statistics 
level seem to indicate that students are more likely to describe measures such as 
mean and standard deviation using symbolic representations than saying these in 
their own words to explain variability in a data set (del Mas & Liu,  2005 ; Garfi eld 
& Ben-Zvi,  2008 ). In their study, del Mas and Liu ( 2005 ) designed a computer 
program for studying variation in data sets. The students used the software to coor-
dinate how the mean varied with standard deviation in different pairs of distribu-
tions. The researchers report that although in general, students moved from a 
process-based notion of standard deviation, many of them did not use the dynamic 
imagery of the mean and standard deviation to reason about variability. Instead, 
they resorted to single values of the mean, rather than reasoning about the size of 
standard deviation. 

 Makar and Confrey ( 2005 ) point to a number of studies that have advocated for 
learning environments which support students to develop their own intuition and 
meaning about concepts that they learn. The researchers suggest that while formal 
procedures are necessary for developing effi cient means to problem solving at higher 
levels of mathematics, the procedures should be carefully taught so that students are 
conversant with the underlying concepts. Makar and Confrey ( 2005 ) refer to 
Fischbein’s ( 1987 ) work on intuition. According to Fischbein ( 1987 ), intuition build-
ing requires personal experience and involvement in practical or theoretical activi-
ties. He further submits that developing intuition implies situations in which a student 
is asked to evaluate, conjecture, devise, predict, and to check solutions. Another 
important aspect of  Fischbein’s theory   is the role of visualization in intuition build-
ing. He argues that what one cannot imagine visually is hard to realize mentally:

  it is a trivial affi rmation that one tends naturally to think in terms of visual images and that 
what one cannot imagine visually is diffi cult to realize mentally. […] visualization embed-
ded in an adequate cognitive activity remains an essential factor contributing to an intuitive 
understanding (p. 103). 

   More recently, researchers have drawn attention to the importance of dynamic 
visual imagery in mathematical thinking and learning (see Presmeg,  1986 ; Sinclair 
& Schiralli,  2003 ; Sinclair & Gol Tabaghi,  2010 ). This attention to the dynamic 
visual images has been inspired in part by studies of learning environments  involving 
dynamic geometry environments and by the growing attention to the role the body 

G. Ekol and N. Sinclair



195

plays in mathematical meaning-making (see Arzarello, Paolo, Robutti, & Sabena, 
 2009 ). Building on Makar and Confrey’s ( 2005 ) argument that “emphasis must be 
on  building meaning , not […] assuming that standard procedures or terms can 
themselves carry the meanings of the underlying concepts” (p. 31), we propose a 
framework of IMB that seeks to articulate and develop the personal, intuitive mean-
ings that students develop in working with statistical concepts. This involves atten-
tion to the metaphors and nonstandard language that learners use. For example, 
Makar and Confrey ( 2005 ) found that pre-service teachers described data in terms 
of triads (low-middle-high), modal clumps (points where majority of data were 
grouped), and distribution chunks (unique units of data distributed within the over-
all distribution). In our study, for example, descriptions of the mean may include 
dynamic visual imagery of a self-adjusting fulcrum or seesaw. For standard devia-
tion, descriptions may focus on the distances of individual data points from the 
mean. IMB also involves attention to learners’ non-verbal forms of communication, 
such as gestures, which have been shown to play an important role in the students' 
constructions of mathematical meanings (e.g. Radford,  2009 ).   

25.3     Design and Methodology 

 Our study was carried out at a university in North Western Canada. We interviewed 
a total of 15 undergraduate students, 5 male and 10 female, all registered in an intro-
ductory statistics course. Selecting participants in the study was non-random, but 
we tried to be as representative as possible by selecting students across different 
majors: Actuarial Science, Business, Engineering, and Health Science. Participation 
was voluntary and not linked to fi nal grades. Before participating in the interviews, 
the students had already covered introductory statistics concepts related to our 
study, as ascertained by the fi rst author who worked as a tutor in the statistics lab. 
We interviewed each student one 30–45 min. Each interview had three partssuch 
that in the fi rst part, students were asked to describe their understanding of the mean 
and standard deviation; in the second part, the students were invited to interact with 
a dynamic geometry sketch designed by the authors, and to answer questions related 
to the sketch; in the third part, the students were again asked to describe their under-
standing of the mean and standard deviation. In this chapter, we focus our analysis 
on the second part of the interview because we are more interested in how students 
construct meanings of variability from their physical and visual interactions with 
the dynamic sketch. We analyse four cases, which we believe represent the diversity 
of responses in our data collection. 

25.3.1     Design of the  Dynamic Sketch   

 The sketch consists of a number line along which six data points are positioned, as 
in Fig.  25.1a . We used only six data points in order to create a simple model which 
could still evoke different kinds of distribution. On each data point, a square is 
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constructed that represents the magnitude of the standard deviation with respect to 
the mean, which is represented by the vertical line. As a data point is dragged along 
the horizontal axis, the square changes in size as does the location of the mean, as 
seen in Fig.  25.1b .

   The dynamic model also includes an option to show the Gaussian curve for the 
six data points as shown in Fig.  25.2a . When the data points are dragged, it is pos-
sible to create something approaching a normal curve, that is, a Gaussian with mean 
of 0 and standard deviation of 1.

25.3.2         Interview Protocol   

 In the second part of the interview, students were shown the sketch and asked to 
predict what would happen to the mean and standard deviation as the six data points 
were dragged on the horizontal axis. We expected students to predict that as they 
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  Fig. 25.1    ( a ,  b ) The dynamic model of mean and standard deviation       

  Fig. 25.2    ( a ,  b ) The Gaussian curve changes peak as data vary on horizontal axis       
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dragged the data points closer together, the value of the mean would decrease as 
well as the standard deviation (the size of the squares on each data point). But if the 
data points were dragged farther away from each other, the mean and standard devi-
ation would both increase on the right side of the mean line (vertical line); but on the 
left side of the mean line, the mean value decreases as standard deviation increases. 
The students were then asked to drag the data points and check their predictions. 

 In the second task, the Gaussian curve was shown and students were asked to 
predict how it would change as the data points were dragged along the horizontal axis. 
We expected students to predict that as the data points were dragged away from 
each other, the curve would get fl atter; but as the points were dragged closer together, 
the curve would rise. Students were then invited to drag the points and check their 
predictions. The second task proved more diffi cult for the students than the fi rst task 
in the sense that students had noticed in the fi rst task, that when they dragged all 
data points together the squares seemed to converge to a single point, which behav-
iour they also seemed to attribute to changes in the normal curve. 

 The interviewer never used the word variability. However, the goal of the tasks 
was to fi nd out  how  students would describe the changing positions of the data 
points as well as the changing values of the mean and the squares representing the 
standard deviation. More specifi cally, we were interested in whether the students 
would talk about the variability of the data in terms of their relative positions (how 
close together or far apart) and in terms of their distances from the mean.   

25.4     Results 

 As explained earlier, we asked participants to talk about the mean and standard devi-
ation before introducing them to the dynamic models. We present data for four par-
ticipants: Kimberly, Remy, Bonita, and Yuro (not real names, as required by ethics). 

25.4.1     Mean and Standard Deviation: Part I of Interview 

 After a brief  introduction  , the interviewer asked students to talk about the  mean  and 
the  standard deviation .

   Kimberly: the mean is the answer to a formula where we add up […]…so mean 
is like a specifi c number […] mean is more specifi c, it’s calculated, 
[…], makes me think like when we weigh something and the mean is 
like the exact center, the exact middle […]. I see standard deviation in 
graphs […] one, two, three, negative one, negative two […]. You can 
calculate standard deviation. 1   

1   In the transcripts we use “[…]” to indicate that some parts of the sentence is not included to make 
it shorter, while “…” is used for pauses. [ Words in italics inside the square brackets are added by 
the interviewer ]. 
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  Remy: the mean […] the statistical thing […] [ it involves ] pretty much adding 
all the numbers and dividing by the number of numbers. [ On standard 
deviation ] I would think of a symbol, yeah, […] but this is the vari-
ance…yeah I would think like that, there is lots of formula, more 
abstract concept, that’s what comes to mind.  

  Bonita: [ About the mean ] I immediately think of the averages because simple 
defi nition of the mean I guess would be adding up all the numbers in 
the data set […]. [ On standard deviation, Bonita referred to what she 
said before about the mean ] I think that is kind of related to the mean. 
As I said before, if you can fi gure out the mean of a data set […] then 
you can derive the standard deviation […].  

  Yuro: [ On the mean Yuro’s response had only two words ] Mean? average [ he 
laughed. Similarly, Yuro did not talk much about standard deviation ] 
… spread, like same things, deviation and standard deviation are like 
same things to me.    

 The verb “add” is used by three of the four students with respect to the mean, 
indicating that the students were thinking of the mean in terms of a computational 
activity that generates a single number. This thinking does not take into account the 
notion of variability. Yuro’s response (“average”) shows less emphasis on the pro-
cess type of thinking, but it is not clear whether his sense of average relates to 
variability. 

 In terms of standard deviation, the participants’ answers are less precise. 
Kimberly’s reference to graphs and distribution of points on a number line does 
express a sense of the variability of data in terms of standard deviation. But she 
quickly returns to computational-oriented type of thinking, saying “you can calcu-
late standard deviation”. Bonita also mentions that standard deviation can be 
derived, but emphasizes its relationship to the mean. Remy mentions the notion of 
“variance” but connects standard deviation to “a symbol” and “lots of formulas”. 
Yuro mentions the word “spread” in talking about standard deviation, which can be 
seen as a way of describing the data set in terms of their relative positions, and per-
haps alluding to the concept of data variability.  

25.4.2      Mean and Standard Deviation in  Dynamic Mathematics 
Environments   

 We present the interview data in the same sequence as we did with the static data, 
and analyse each in terms of the emergence of the participant’s idea of variability. 

   Kimberly: Well, I guess when I move the points to the right the squares will 
increase [ Kimberly actually pointed to the left side with her right index 
fi nger at the very moment she said the squares will increase ] .   

  Int: Which is your right?  
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  Kimberly: Oh no to the left, and when I move it to the left the square area will 
decrease  

  Int: Why do you say that?  
  Kimberly: Because the farther away the point is from the centre, then the greater 

area it has.  
  Int: [ Although Kimberly’s last statement was correct, she was not clear 

about the left or right directions from the centre, so the interviewer 
asked her to clarify her prediction ]. Ok, so your claim is that when you 
move the data points to the left side of the center line, the area will 
increase. What if you move the points to the right side?  

  Kimberly: When I move them [ the data points ] to the right, then the area will 
decrease [ she pointed to the right side using her right index fi nger as 
she said ‘right’ ]  

  Int: Ok, now you can test. [A s Kimberly dragged the point to the left side, 
the square increased in size, as she had predicted. The interviewer 
then said ] “You are right … what does that tell you about data and the 
center?”  

  Kimberly: When data points are [ dragged ] farther away from the center, then the 
slope, ah, their values will be greater but when the points are closer to 
the center, they [ their values ] tend to be smaller.    

 Kimberly attended to the changes in the mean and the standard deviation as she 
dragged the data points along the horizontal axis. As she found confi rming evidence 
of her hypothesis, by dragging the points. She seemed to pay close attention to the 
variability in the data points as the mean and standard deviation changed.

   Int: How about the curve? What will it look like as you drag the points?  
  Kimberly: […] I guess as I move [ data ] points, the line [ the curve ] will also rise 

[Fig.  25.3  a  shows hand movement when she said ‘rise’ ]. So when 
standard deviation increases the curve [ the peak ] will also increase.

      Kimberly did not specify how the curve will rise—was it by moving the data 
points away from the centre or moving them toward the centre?—but she did relate 

  Fig. 25.3    ( a ) The curve will rise. ( b ) It’s like a hill       
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the changing values of the points to a change in the curve. Her last statement about 
standard deviation was the opposite of our expectation, as Kimberly herself 
confi rmed.

   Int: Ok, now go ahead and check.  
  Kimberly: Opposite (she laughed), opposite, oh opposite to what I, to what I got. 

It’s like a hill! [Fig.  25.3b  , she moved her index fi nger in the air from 
left to right to show a rising curve ].    

 We were not surprised that Kimberly did not use her earlier prediction about the 
squares to talk about the curve. As we noted earlier on, connecting the Gaussian 
curve with standard deviation and variability in the data set was challenging to the 
students. But after checking her prediction by dragging the data points closer to the 
centre, Kimberly was able to confi rm that as the mean and the standard deviation 
decreased, the Gaussian curve began to rise. 

  Remy’s interaction.

   Int: [ Remy did not make a prediction about the mean and standard deviation 
as data were dragged on the horizontal axis. Instead, he asked to try out 
the model. After taking more than fi ve minutes exploring the dynamic 
model, he remarked ]  

  Remy: This is kind of, this stuff is interesting.  
  Int: What do you mean?  
  Remy: It’s not something you see everyday, I mean, like… because you have the 

formula […] but they don’t show it, they don’t show it like this. I mean 
this is like, what is going on here, I mean this is very visual right, so it’s 
easy to remember actually. Say oh yeah, the squares are moving right now, 
what are they doing? Then you say ok, if I move this one over here, then 
and so on. Um, so it is easy to remember when you see it like this 
actually.    

 Remy was able to recognize the use of the sketch for showing variability in the 
data points, by observing how the squares were varying with respect to their dis-
tances from the mean. The changing values of the data points and the corresponding 
mean and standard deviation seemed to provoke Remy to question, to check, and to 
confi rm variability in the data set. 

 Bonita’s interaction.

   Int: [ Bonita predicted that the squares would get bigger as data points varied 
from the center, but the interviewer wanted her to talk of variability in 
terms of the mean and standard deviation ].  

  Bonita: Well, if I take one [ data ] point […] and move it away from the center [ to 
the left side of the center ], […] I think the square will move this way [ to 
the left side ], um … so it will get a bit bigger … and if I move it toward 
[ the center ], it will become a bit smaller because I’m going more toward 
the center and I’m going in the positive direction, that’s what I think.  

  Bonita: If the mean gets smaller, the standard deviation gets larger.  
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  Int: If the mean gets smaller, the standard deviation gets …?  
  Bonita: It would get larger, but by not a signifi cant amount, so it will be very little 

with respect to that.  
  Int: Now you can test them.  
  Bonita: Oh! So, both of them got larger, yeah ok, I thought the mean would get 

smaller and the standard deviation would get larger, but actually both of 
them are increasing.  

  Int: [ About the curve described in  Fig.  25.2a, b  , Bonita made the following 
predictions ].  

  Bonita: I think if you move the point […] here, toward the mean here [ she pointed 
toward the center with her right index fi nger ], it will make the shape rise 
a bit more.  

  Int: Why do you say that, what makes you say that?  
  Bonita: Because already at the D point over here (Fig.  25.4a ) […] this part […] 

nearby the D point is really fl at.
     Int: But it could well rise as you move the data points away […]. Ok, go 

ahead and test. [ As she dragged the points closer to the center, the curve 
began to rise, as shown in  Fig.  25.4b ].  

  Bonita: I didn’t know that. Well, when I was working on the other example [ with 
the squares ], it also had six data points and they were clustered… and 
[ now ] I see it more of a normal distribution [ she drew Gaussian curve in 
space with her right index fi nger as shown in  Fig.  25.4b ].    

 After interacting with the dynamic models, Bonita gained awareness about how 
standard deviation changed with respect to the mean. Her statement, “Oh! I didn’t 
know that”, showed that she was seeing something new. It is interesting that Bonita 
described the curve as the normal curve, not say, using the metaphor of a hill like 
Kimberly did. The transition from the fl at Gaussian curve in Fig.  25.4a  to the  normal 
curve Fig.  25.4b  shows a reduction in variability of the data points. Bonita was able 
to describe the shape of the data set as a whole in terms of the relative position of 
each data point to the other. 

 Yuro’s interaction.

  Fig. 25.4    ( a ) This part is really fl at. ( b ) I see more of a normal curve       
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   Int: [ Yur o  started with prediction on how the mean and standard deviation 
would vary as data points were dragged on the horizontal axis. ]  

  Yuro: The squares, if you start moving it this way [ moved his right index fi nger 
from left side toward center of the sketch, as in  Fig.  25.5a ], the squares 
would decrease.

     Int: Why is that?  
  Yuro: Oh, because over here you have […] like a central point (Fig.  25.5b ). And 

then these are distributions around the central point, and if you are going to 
move this way [ he indicated the left side ], your distribution is going to 
increase.   [ Yuro later dragged a point to the left side and discovered that the 
squares did not move as he predicted ]  

  Yuro: So I take this and go … Oh, ok!  
  Int: Why did you say oh?  
  Yuro: Coz I was wrong (he laughed) […]. Because I only thought that this [ hori-

zontal length as shown in  Fig.  25.5a ] was gonna increase but not this one 
[ the vertical length of the square ], but now that I think about it makes sense.    

 Yuro predicted a decrease in the size of the squares as the data points were 
dragged away from the centre on left side. After checking his prediction on the 
dynamic model, Yuro seemed to connect well how the size of standard deviation 
and the mean explained the variability of the data points. His comment, “and now 
that I think about it makes sense”, provides some evidence to his awareness of the 
relationships.    

25.5     Summary 

 We began the study with a hypothesis that dynamic mathematics environments can 
help promote a more physical and temporal understanding of statistical variability. 
Using IMB conceptual framework to analyse the video data, we were able to show 
that, when interacting with the sketch, the students spoke about the mean and the 
standard deviation in terms of thier physical and numerical changes on the sketch, 

  Fig. 25.5    ( a ) This way, the squares increase. ( b ) Here you have a central point       
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e.g., “I thought the mean would get smaller and standard deviation would get larger, 
but actually both of them are increasing” (Anita). The changing values of the data 
points, along with the associated changes in the size of the squares and the position 
of the mean seemed to invite the students to attend to the relationship between the 
mean and the standard deviation. In addition, by dragging the data points, they 
seemed to attend to the distance between the data points and the mean as well as to 
ways in which the data points were positioned one relative to the other. In describing 
their observations, the students drew on dynamic language (e.g., moving, increas-
ing, decreasing, rising, etc.), on metaphors (hill, cluster), and on gestures. These 
actions shifted students’ thinking away from using a formula to calculate the mean 
or standard deviation that was prevalent at the beginning, to thinking about the 
mean and standard deviation more qualitatively in terms of variability. 

25.5.1     Limitations 

 We started with 15 students and reported only on 4 cases. We recognize that this 
imposes some restrictions to how generalizable our claims can be.      
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    Chapter 26   
 Transforming Statistics Education Through 
ICT Application       

       Tae     Rim     Lee    

26.1           Introduction 

 Korea National Open University has been utilizing one-way education delivery sys-
tems during its history of distance education since 1972. In this one-way mode of the 
systems, isolation of students in their learning process has been the most impor-
tant problem to solve. ICT application such as e-Learning or m-Learning is an 
alternative instructional model that enables students to have more interaction 
with their instructors and peers by providing more accessibility to multimedia learning 
resources than the conventional delivery system provides. 

 Since 1997, KNOU have been carrying out e-learning projects as a member of 
KVC (Korea Virtual Campus) consortium, which consists of 10 ordinary universi-
ties and ITCU (Information Technology Cyber University) consortium, which con-
sists of 36 universities in Korea (KVC,  2003 ). These consortium projects have been 
mainly carried out for small classes having 70 students or fewer, while using the 
start-up e- Learning Management System (LMS). 

 On behalf of starting online graduate school programs of four departments, 
e-Learning Center was established with 24 members including educational tech-
nologists, web programmers, web designers, computer system analysts in 2001. 
During the next year 2002, the e-Learning hub site, “e-Campus,” was launched, and 
38 e-Learning courses were developed, funded by  Ministry of Education (MOE)   & 
 Human Resources Development  . During 2004 to 2005, KNOU e-Learning Center 
developed eight international e-Learning courses in English, funded by  MOE  : 
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courses on Korean History, Korean Culture & Art, Economic Development and 
Economic Policy in Korea, Click Korean, Statistics, Water Quality Test Method, 
Introduction to Computers, History of Economy (  http://elic.knou.ac.kr/    ). 

 The  e-Learning system   for distance education has improved the lack of two-way 
communication and repeatability of learning, the main weaknesses of the conven-
tional media such as TV, radio, and written text (Jung & Kim,  2002 ). The e-Learn-
ing system has extended the opportunity of learners by operating a variety of 
curriculums on the basis of e-learning (Clark & Mayer,  2003 ). The 2005 project was 
to evaluate effectiveness of the e-LGD project with class diversity that was launched 
for undergraduate students in the fi rst semester in 2004 and to make suggestions for 
its future expansion to all regular courses. The volunteer students of each course had 
a chance to access e-learning contents and relevant learning materials, and were also 
given some announcements and chances to interact with their professors and col-
leagues during the one semester. The survey was included in e-LGD project for the 
course evaluation to identify the current status of e-Learning and the improvements 
to be made for more effective e-Learning. The fi ndings in this study surveyed by 
faculty members and students were analyzed in terms of learning contents, course 
management, and administrational support. 

 In December 2008, KNOU launched the mobile learning  system   under the 
MOU with a major Korean telecommunication company, KT. The mobile learning 
and ubiquitous learning systems for distance education enable any aspiring stu-
dents to study anywhere, anytime with the Internet and multimedia systems using 
portable electronic devices. m-Learning can become an ordinary part of open and 
distance learning (ODL) for lifelong education and distance learning in the near 
future. Several projects were launched to evaluate the effectiveness of e-learning 
courses and to suggest future improvements of e-Learning courses and future views 
of a more advanced education system of mobile and ubiquitous learning systems. 
In the future knowledge-based society with a rapid change of educational circum-
stances and paradigm, distance education using ICT technology can satisfy the 
educational needs in various levels of learners. KNOU has provided students with 
distance statistics education contents through broadcasting and ICT-adopted media 
through Internet. 

 Mobile technologies, including mobile devices and wireless Internet services, 
have the potential to introduce new innovations to education with m-learning, a new 
form of education using the mobile Internet system and handheld devices. This can 
offer students and teachers the opportunity to interact frequently with and gain 
access to educational materials independently of time and space. The 2009 study 
made some considerable suggestions for preparing for the future of distance educa-
tion based on mobile and one-step-further advanced ubiquitous learning systems. 

 Internationally, KNOU was assigned as the coordinator of e-ASEM network 
under the research theme, “ICT Skill, e-Learning and the Culture of e-Learning in 
Lifelong Learning,” among the four education and research network themes of 
ASEM LLL (Life-Long Learning) in May 2005. The project team, therefore, plans 

T.R. Lee

http://elic.knou.ac.kr/


207

to establish an online community for sharing ICT skills and e-learning-related 
 educational knowledge and researches among the ASEM LLL member countries 
(  http://asem.knou.ac.kr/    ). 

 In 2006, KNOU organized the Asia-Europe Colloquy on University Co-operation 
on “e-Learning for Higher Education” with the theme, “Challenges and 
Opportunities,” where 87 delegates from Belgium, Brunei, Cambodia, China, Czech 
Republic, Denmark, Estonia, Finland, France, Germany, Hungary, Indonesia, Japan, 
Laos, Latvia, Lithuania, Malaysia, Malta, Netherland, Philippines, Poland, 
Singapore, Slovakia, Thailand, UK, and Vietnam attended and had a highly produc-
tive and successful colloquy (  www.elearningcolloauy.org    ). 

 In 2007, KNOU organized an e-ASEM follow-up meeting at Seoul, Korea, 
where we exchanged our detailed experiences and knowledge of ICT application to 
ODL and LLL (  http://infostat.knou.ac.kr/eASEMnetwork2007/    ). 

26.1.1     Overview of Situation 

 Since its opening in 1972, KNOU has been growing as the only one mega-university 
in Korea for ODL with a considerable scale for the past 30 years. KNOU consists of 
4 colleges including 22 departments. It has approximately 183,400 students and has 
turned out 290,000 graduates so far. Also, it has opened a graduate school based on 
e-learning with 6 departments and 568 students. The large number of students 
reveals the  high and dynamic demand   for lifelong learning of the Korean society. 
KNOU has managed various curriculums corresponding to such a high demand for 
lifelong learning. However, recent sociocultural and environmental changes related 
to the ODL provide many suggestions for the new direction for the development of 
KNOU. 

 First, the major  delivery system   of statistics education has changed as informa-
tion and communication technology develops. KNOU has been using one-way 
delivery systems such as TV, radio, and audio cassette tape. However, the develop-
ments in computer science and communication technologies opened the path to a 
two-way delivery system that enables learners to actively participate in their learn-
ing process (Kolondner & Guzdial,  1996 ). 

 Second, it was a hot issue that several  cyber universities conferring   a bachelor’s 
degree. Since 2001 in Korea, 16 cyber universities have been established (Ministry 
of Education and Human Resources Development,  2003 ). As a result, the variety of 
lifelong education institutes brought about competition among the conventional dis-
tance education institute of KNOU and those other cyber universities. 

 Third, there has been an increasing tendency in the variety of the students in 
KNOU. In the past, most of the students of KNOU were those who had no chance 
to enter a university after graduating from high school, but recently the proportion 
of those who enter KNOU for reeducation or transition into a different major after 
a bachelor’s degree has grown considerably as in Table  26.1  and Fig.  26.1 . 
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This implies that the needs for a  fl exible teaching–learning system   corresponding to 
the varying levels of the students should be analyzed.

    KNOU decided to launch its own  full-scale e-learning project   to overcome this 
challenging problem. KNOU has been running its own e-Learning courses and 
adopting the cross registration system through KVC and ITCU, the consortiums 
consisting of 10 universities and 36 universities, respectively. 

 Additionally, the number of courses developed for e-Learning among the entire 
undergraduate curriculums reached up to 153 (18.9 %) by  developing courseware 
and supplementary learning resources  . The number of students in e-Learning classes 
of KVC and ITCU ranges only from 60 to 70, and thus it is inappropriate to directly 
apply the course management strategy designed for a class of this size to the ordinary 
class of KNOU having over 10,000 students in each class. 

 Therefore, KNOU recognized the need for a study on an  e-Learning course 
management plan   considering various class sizes. The objective of the 2005 
project was to develop a future plan for applying the e-Learning model to regular 
courses of KNOU after evaluating the e-Learning contents that were run in ten 
courses for the college students during the fi rst semester in 2004. To accomplish 
this objective, in the project, we analyzed the e-Learning contents, the course 
management and student support, and the present situations of institutional and 
administrative support, and then produced an improved vision and practical 
plans for the future.  

   Table 26.1    Distribution of bachelor students’ admission to KNOU   

 Year  2005  2006  2007  2008  2009 

 Number 
bachelor 
admission 

 20,835 (19.9 %)  16,699 (6.8 %)  16,238 (15.9 %)  15,671 (14.3 %)  9016 (8.3 %) 

 Total  104,724  99,061  102,268  109,311  108,367 
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  Fig. 26.1    Trend in students’ enrollments in KNOU according to their education level       
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26.1.2     Earlier e-Learning Projects in KNOU 

26.1.2.1     Objectives of  e-Learning Adaptation   

 The objectives of e-learning adaptation in KNOU courses are as follows: 
 First, to provide students with easy accessibility to learning resources. One of the 

typical advantages of distance education is fl exibility in learning as to time and 
space, which means that a student can learn anywhere and anytime. This provides 
usefulness to those who used to have diffi culty in following the fi xed regular course 
schedule (KNOU,  2003 ). 

 Second, to provide various learner-oriented materials comprehensively. 
According to the research results, the learners could access fruitful self-study mate-
rials and study them comprehensively by e-Learning (KNOU,  2003 ). It can be said 
that the management and delivery of study materials through ICT is an effective 
way to meet the learner’s needs for interactivity. 

 Third, to motivate the students to become a self-regulated learner. The self- 
regulated learning ability can be an important factor greatly affecting whether 
e-learning could be successful or not since the learner takes the initiative in mak-
ing a decision about the study process and method. The self-regulated learning 
has the characteristics of meta-cognitive strategies that further, manage, control, 
and improve one’s learning through setting the goals of study, reviewing, evaluat-
ing, and managing oneself (Knowles,  1975 ). The self-regulated learning is the 
ability to include a motivating element to continue one’s learning and a behav-
ioral element to practice (   Zimmermann,  1990 ). Since e-Learning requires learn-
ers to play an active role in their learning process, they naturally develop 
self-regulating ability.  

26.1.2.2      Readiness   for e-Learn 

 According to the data from the National Computerization Agency (2004), in 2002, 
the number of Korean population who own a personal computer reached 49 per 100, 
and the rate of the population using the Internet 61 %, and that of the high-speed 
network 23.3 %. Our international information index holds the eighth rank. 
Additionally, according to the data from Korean Ministry of Information and 
Communication ( 2004 ), the Internet and high-speed network use rates increased to 
74.8 % and 24.2 %, respectively. These data imply the suffi ciency of technical infra-
structure, which is the ideal condition for the adaptation of e-learning. 

 To provide the most effective e-Learning service, the following conditions need 
to be met at the three levels of the participants in the e-Learning system including 
learners, instructors, and the service organization as follows. 

 First, for preparation at the learner level, how well learners can prepare for learn-
ing is infl uenced by how much they can use the Internet and the high-speed net-
work. According to the survey for ‘A Study on the Actual Condition of the Use of 
Learning Media of the Students who are attending Korea National Open University 
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(KNOU,  2004 ),’ where 102,940 students (52 %) among 196,402 who registered for 
the fi rst term of 2003 responded, the rate of the students who were using the Internet 
was 95.3 %, and almost all of the students could have access to academic informa-
tion and learning information on the Internet. In addition, the high-speed network 
use rate of those students reached 81.9 % and the LAN use rate 12.8 %. Thus, it was 
indicated that 93.7 % of the students had no diffi culty using the variety of multime-
dia learning resources. In the 2007 student survey, 83 % of registered students 
responded that they can take class on the high-speed Internet system, and 84.7 % 
responded their main communication and information delivery tools were comput-
ers. These fi ndings provide the grounds for developing high-quality learning con-
tents and utilizing them actively. 

 Second, for preparation at the instructor level, how much experience instructors 
have in e-learning contents development and course management infl uence to the 
quality of e-Learning contents and evaluation results of course management. In 
2004, 55.9 % of the professors of KNOU had an experience in e-learning contents 
development. In particular, 90.0 % of the professors of the Faculty of Science had 
contents development experience. These statistical fi ndings can be interpreted as the 
possibility of e-learning contents utilization initiated by the professors with enough 
experience. 

 Third, the organization level preparation is one of important factors. By 2004, 
KNOU developed e-learning contents for 103 courses out of total 554 courses annu-
ally opened by the faculty, which amounted up to 18.9 %, and had e-learning staff, 
who were wholly responsible for e-learning contents development, course manage-
ment, consultation, faculty training, and educational program management, by 
establishing the e-Learning Center at 2001 to build an effective e-learning support 
system.   

26.1.2.3     Major Issues 

 The variety of educational demands and the change of paradigm in statistics educa-
tion in ODL were strong motivations to renovate the educational media by ICT 
application. As the students’ access to the Internet and use of ICT has been increas-
ing rapidly, educational space in this area is expected to be enlarged signifi cantly 
and we need to explore various levels in the teaching–learning system.  Standardization 
and quality control process   will be needed to support development of high-quality 
e-contents and m-contents.

•    Variety of educational demands  
•   Change of paradigm in distance education  
•   Increased access to the World Wide Web  
•   Enlargement of educational space  
•   Explore various levels in the teaching–learning system  
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•   Standardization of e-contents and m-contents for quality improvement  
•   Necessity for complete transfer from e-contents to m-Learning contents    

26.1.3     KNOU Ubiquitous Learning Campus 

 KNOU  ubiquitous learning campus   was launched in December 2008. Mobile tech-
nologies using mobile devices and wireless Internet services have the potential to 
introduce new innovations in the area of statistical education, a new form of statis-
tics education using the mobile internet system and handheld devices, which can 
offer students and teachers the opportunity to interact with and gain access to edu-
cational materials independently of time and space. This study made some consid-
erable suggestions for preparing the future of open and distance education based on 
mobile technology and one-step-further advanced ubiquitous learning in statistics 
education. Figure  26.2  shows the title window for KNOU mobile learning cooper-
ated with Korean telephone company KT under the support system for student’s 
mobile learning like in Figure  26.3  .

       Mobile Campus   in Hand 

 Using a new information sharing device, the mobile phone, makes renovation to 
U-Campus, and the technology solutions promote the renovation to the new para-
digm of KNOU U-CAMPUS in hand. It provides composite solutions of on and 

  Fig. 26.2    Title window of 
U KNOU m-Learning 
Campus       
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  Fig. 26.3    Support system for the student’s mobile learning       

off line direct connections between the LMS for KNOU U-Campus and KT Mobile 
Solution. 

 For the high-quality m-Learning, it should be continued to evaluate and give 
feedback to the ODL statistics learning resources under the team approach which 
brings educational technologists, computer analysts, web programmers, web 
designers, and contents specialists together.     

26.2     Conclusion 

 This study intended to draw up plans for introduction of e-learning m-learning courses 
to the whole undergraduate statistics curriculums in the near future through the evalu-
ation of learning contents, course management and student support, and institutional 
and administrative aspects. 

 This study led to the following conclusions and suggestions: 
 First, there is no meaningful difference in the students’ level of satisfaction with 

e-Learning contents and e-Learning course management according to class size. 
Therefore, further studies should be conducted on e-Learning course models accord-
ing to the various class sizes of KNOU. The e-learning courses should be developed 
considering various elements such as type of study, class size, and study goal, and 
standardized management programs according to each model. Also, it is necessary 
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to conduct further research over how methods of teaching and learning should be 
implemented according to various operation models of e-Learning courses. 
Recursive studies are required to supplement the e-learning operation plans by the 
model through implementing the results of these studies into the actual teaching 
environment and verifying their effi ciency. 

 Second, improvement in self-evaluation methods is needed for active learning 
participation by learners. Based on learners’ questionnaire survey, the preference is 
that they tend to have a lesson in a rather passive mode held by the teacher. These 
results are derived from the evaluation method that evaluates the understanding of 
lesson contents. However, refl ecting on the fact that learning should be reinterpreted 
through the experience of learners and they are to be able to put their learning in 
practice, a self-evaluation method that can require a more active participation by 
learners is needed here. 

 Third, the incorporated policies for various media such as TV, radio, and e- learning 
are required. The e-learning can utilize previously developed broadcasting media 
usefully. Therefore, the broadcast media should be developed as a component con-
sisting of e-learning contents considering that they can be reused for e-learning from 
the planning stage of TV or radio program development. 

 Fourth, a systematic study support system should be built. KNOU has been 
mostly focusing on support for professors, but the actual situation is that the con-
struction of the student support system is not suffi cient. Consequently, the type of 
help and support that learners need should be broken down through in-depth follow-
 up studies, and the appropriate countermeasures should be groped for. The con-
struction of learner-centered service is the subject that KNOU should concentrate 
on for the future. 

 Fifth, a learner-tendency analysis program is required. To develop this kind of 
program, the information on learners such as their preference and level should be 
systematically managed and it should be actively applied to the course development 
and management (Joung & Kwak,  2004 ). 

 Sixth, quality should be continuously controlled during the whole process of 
e-learning course development (Joung & Jang,  2004 ). Presently, KNOU is con-
trolling quality from the e-learning course development stage through an 
instructional system design, but it needs to establish a circulative quality control 
system by confi rming whether evaluation results have improved in the next 
courses.     
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    Chapter 27   
 Selecting Technology to Promote Learning 
in an Online Introductory Statistics Course       

        Megan     Mocko     

27.1            Introduction to the Technology 

 The purpose of this chapter is to help other instructors who are asked to teach an 
online course for the fi rst time to learn from the experience of others. At the end of 
the chapter, several recommendations will be made for instructors who plan on 
teaching an online statistic course for the fi rst time. 

 How to deliver content is often the fi rst area of need that instructors must satisfy 
for an online course. The chapter will discuss SoftChalk, a lesson-building software 
package that can be used to build lessons with videos, short quizzes, and fl ash-based 
activities. In addition to the instructor prepared website lessons, the textbook pub-
lisher’s website called MyStatLab will also be discussed briefl y. Additionally, com-
munication between the student and the teacher as well as communication among 
students is critical for a good learning environment. Several forms of communica-
tion programs will be discussed including programs within Sakai (the course man-
agement system) and Elluminate by Blackboard. Elluminate is an online software 
package that includes video chat, text chat, and an interactive whiteboard. Sakai is 
an open source course management system that includes a text chat room and dis-
cussion board. Conjointly, a brief review of the hardware used in the creation of the 
recordings for the online course will be covered including the tablet PC and wireless 
microphone systems. Finally, how do you handle formalized assessment exams in 

 An extended version of the chapter has been published in: Megan, M. (2013). Selecting technology 
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an online environment? How do you test the student’s understanding of the material 
when you are not physically in the same location? An online test proctoring service, 
ProctorU, will be discussed in detail.  

27.2      Setup   

 This research was conducted with a class of 67 undergraduates at a large research 
institute in the United States. The course was taught during the summer over a 
period of 6 weeks. The stipulation made by the university was that the students 
would not be required to come to campus for any portion of the class and therefore 
everything had to be done completely online. There were multiple areas of assess-
ment in the course: exams, daily lesson quizzes, chapter quizzes, small group dis-
cussion board assignments, daily homework, and a fi nal project. Each of these 
assignments utilized technology at some level. 

 The students were asked, but not required, to complete a 38-question presurvey 
and a 40-question postsurvey. Out of the 67 students enrolled in the course, 28 started 
the presurvey and 25 completed it. For the postsurvey, 28 started it and 22 completed 
the survey. All students who completed the survey were 18 years old or older. 

 A brief overview of the class  demographics   from the survey showed that 89.5 % 
of the students were female and 10.5 % were male and that 47.4 % were sopho-
mores, 42.1 % were juniors, and 10.5 % were seniors in college. The students were 
also asked if they had taken a statistics class before and 73.7 % had never taken a 
statistics class while 5.3 % had taken a (non-AP) statistics class and 21.1 % had 
taken an AP level statistics class in high school. After earning a bachelor’s degree, 
the student’s plans for the future included 21 intending to pursue a post-bachelor 
degree in medical school, veterinary school, graduate school, or law school, while 
one each intended on entering the work force, military, and Peace Corps. These 
 demographics   show that most students that completed the survey were female, had 
not taken a previous statistics class, and were planning for a post-bachelor degree.  

27.3     Background 

 For more than a decade, statistics educators have been researching how to imple-
ment statistics courses online and determining if there is a difference between online 
courses and traditional courses. 

 Utts, Sommer, Acredolo, Maher, and Matthews ( 2003 ) compared a traditional 
course to a hybrid course (partially online) that met only once a week. She found 
that “performance of students in the hybrid offering equalled that of the traditional 
students, but students in the hybrid were slightly less positive in their subjective 
evaluation of the course” (2003, p. 1). 

 Tudor ( 2006 ) discussed a course for public health students where she included 
voice over PowerPoint slides and quizzes for self-assessment. The quizzes were 
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static quizzes on Word fi les with answers supplied. She did include discussion board 
assignments in her course, but concluded that “. . . it appears that the effectiveness 
of online discussion in a statistics class is still debatable. The biggest factors affect-
ing their success may be the topic of discussion and the quality of the questions” 
(2006, p. 7). 

 Everson and Garfi eld ( 2008 ) discussed using discussion boards in her online 
courses to align her course with  GAISE   (Aliaga et al.,  2005 ) guidelines. She states:

  An important goal of the online course described in this chapter was to align them with the 
GAISE recommendations. Based on our experiences and observations, structuring our 
online courses in this manner has resulted not only in student learning but in student satis-
faction. (2008, pp. 9–10) 

   The  GAISE guidelines   are a series of guidelines for educators teaching statistics 
in the United States. The GAISE guidelines recommend:

  that instructors emphasize statistical literacy and develop statistical thinking, use real data, 
stress conceptual understanding rather than mere knowledge of procedures, foster active 
learning in the classroom, use technology for developing conceptual understanding and 
analyzing data, and use assessments to improve and evaluate student learning. 

   Mills and Raju ( 2011 ) summarized and compared 20 articles about online 
courses in statistics over the past decade. Mills asserts that:

  In the middle to latter part of this decade, more importance was and has been placed on: 
selecting “appropriate” uses of technology for the online statistics environment, improving 
interaction among students and the instructor, enhancing the overall learning experience for 
online students, and conducting formative and summative evaluations to carefully monitor 
the teaching and learning process. (2011, p. 21) 

   Additionally, general education literature can also tell us about the important 
components of an online course. The text, “The Online Teaching Survival Guide: 
Simple and Practical Pedagogical Tips,” contains a list of ten best practices for 
online teaching including the following three items; “create a supportive online 
course community,” “use a variety of large group, small group, and individual work 
experiences,” and that the instructor should “prepare discussion posts that invite 
responses, questions, discussions and refl ections” (Boettcher & Conrad,  2010 ). 
These best practices describe the necessity of building community in an online 
course as well as the need for a variety of assignments. The discussion board assign-
ments, fi nal project, and chat room offi ce hours described in this chapter were spe-
cifi cally designed in order to refl ect GAISE guidelines as well as the best practices in 
the online environment.  

27.4     Technology 

 Technology plays a vital role in an online course; however, the technology should 
be there to assist the course not be a hindrance. The subject matter of the course 
should be of primary importance for the students, not the technology used to deliver 
the course. 

27 Selecting Technology to Promote Learning in an Online Introductory Statistics…



218

27.4.1      Hardware   

 For this course, the student needed a copy of the textbook and a copy of the course 
notes. The shell of the notes, a workbook, is a 120-page document with the exam-
ples, exercises, terms, and important concepts for the course; however, the examples 
and exercises are not completed. The students complete these examples and exer-
cises with the instructor as they watch the tutorials. This allows for the students to 
concentrate on statistical understanding, rather than copying. 

 In order to understand the course design, it is necessary to understand the capa-
bilities of Microsoft OneNote for the tablet PC. The program allows a user to 
include handwritten notes in a fi le by using a stylus. So, instead of working out a 
problem on a chalkboard, the instructor could work out the problems on the screen 
in OneNote. In OneNote, the color and width of the pen could be easily changed 
during the lecture. The shell of the notes that the students had was imported into 
OneNote allowing the instructor to write directly on the notes and then the instruc-
tor recorded video tutorials of the discussion. Microsoft OneNote was chosen rather 
than Microsoft Powerpoint because it allowed for a less restricted working space. 
For course creation the instructor used several pieces of hardware, including a 
microphone, webcam, and a Fujitsu T5010 tablet PC with a stylus pen and 4GB 
ram. 

 As for sound in the video tutorials, four sets of microphones were tested: the 
microphone built into the tablet PC laptop, the Azden WLX-PRO VHF wireless 
microphone, the Samson SWAM2SES N6 Airline Micro wireless ear set, and an 
H530 Logitech headset microphone. Two things should be considered when evalu-
ating a microphone for online course use: the sound quality of the recording and the 
ease of use. Except for the Samson microphone, the other microphones had poor 
sound quality in the instructor’s opinion and the breathing of the instructor was 
picked up on the recording. The Samson microphone did not pick up the breathing 
of the instructor and fi ltered out surrounding area noise making it the best option. 

27.4.1.1     Content-Building  Software   

 The content for the course was delivered in multiple ways using instructor built les-
sons and publisher supplied materials. For this course,  SoftChalk   was used to create 
a course website which covered 24 detailed lessons spanning 143 web pages and 
included complete topic explanations, 254 quiz questions, and 128 short instructor 
videos. The lessons also contained 22 activities including fl ash-based dynamic 
study tools written in SoftChalk, online applets, and exercise problems for the stu-
dents to solve using  StatCrunch  .  SoftChalk   made it very easy to insert graphics, 
videos, sound clips, or web pages. It also made it possible to test the students on 
what they had learned and prepare fl ashcards or games to emphasize important top-
ics. Grading these activities ensured that the student actually completed them and 
hopefully reached a higher level of engagement. 
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 The lessons start with a list of about three to eight objectives that the student 
should master for that day. The lesson then steps the student through learning each 
of those objectives by fi rst giving an explanation of why the objective is important 
and how it relates to the other material in the course. After the lesson objectives, 
there was a video (or videos) that explained the main concepts of those objectives. 
Following the video(s) there was usually either a quiz exercise, study tool such as 
fl ashcards, or a statistical applet for them to see the concept in action to help the 
student test their knowledge about what they had just learned. 

 For example, one of the fi rst lessons of the course discusses “Measures of Center, 
Spread and Position.” On the fi rst page of the lesson, a baseball data example is 
presented along with a brief discussion about why it would be important to quantify 
the measures of center, spread and position for this data set. The objectives of the 
day are then presented. 

 On the next page of the lesson, the fi rst objective is discussed with a short tutorial 
which explains the defi nitions of the mean, median, and mode as well as fi nding the 
mean and median of two data sets. The students are then asked to complete a quiz 
where they have to fi nd the mean and median of a data set in addition to matching 
the terms mean, median, and mode with their defi nitions. For the second objective, 
the students are asked to explore the effect of an outlier on the mean and median by 
playing with an applet designed by the publisher of the textbook and they are then 
quizzed on their fi ndings. For the third objective, the students watch a short video 
that shows them how to compute the median from a stem and leaf plot from Minitab, 
a statistical software package. For the fourth objective, the measures of variance, 
standard deviation, and range are discussed in a short video and then the students 
are asked to compute these values for a data set as well as to predict the effect of an 
outlier on these measures. For the fi fth objective, the empirical rule is explained in 
video and the students are asked to answer a question about the rule. The sixth 
objective includes videos that show how to compute the quartiles and how to use the 
quartiles to make, interpret, and read boxplots. The objective fi nishes with the stu-
dents answering questions by comparing side-by-side boxplots. The last objective 
discusses output from Minitab and working with StatCrunch. Students watched a 
video by Webster West, the creator of StatCrunch and were asked to use  StatCrunch   
to analyze a data set. The last page of the lesson reviews the important concepts that 
they have learned. 

 In addition to the  SoftChalk   lessons, the students were required to use MyStatLab 
for homework problems provided by the publisher for each lesson assignment. The 
homework problems accompanied the textbook,  Statistics: The Art and Science of 
Learning from Data  by Agresti and Franklin ( 2009 ). From an instructor’s point of 
view, the assignments were easy to select and assign and provided instant feedback 
to the students. But what was the experience from the student’s point of view? In the 
postsurvey, the students were asked how much time they spent working on the course 
(including everything related to the course: activities, quizzes, watching lectures, 
doing homework, studying) per day? The average amount of time spent on the course 
per day was 3.05 h. The standard deviation was 2.76 h. The data did have one outlier 
where the student said that they spent 15 h per day on the course, which seems 
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doubtful. If this point is removed, the average is 2.47 h with a standard deviation of 
0.75 h. The students were also asked how many hours they spent on the course per 
week. The average time spent on the course was 11.64 h and the standard deviation 
was 5.36 h. The minimum number of hours per week was 3 and the maximum num-
ber of hours per week was 28. 

 Additionally, the students were asked in the presurvey how much of the home-
work they planned to complete. All but one of the responses said 100 % on the 
presurvey (one response said 80 %). On the postsurvey, the average response for the 
percent of homework completed was 97.5 % and the standard deviation was 3.628 %. 
The minimum was 90 % and the maximum was 100 %.   

27.4.2      Computer/Video Screen Capture   for Content Creation 

 Two forms of lecture capture software programs were used during the semester, 
Camtasia Relay and Jing!. Camtasia Relay was chosen because it was supported by 
the university and video storage was free but unlike the full version of Camtasia, it 
did not allow editing of the video beyond setting start and end times. Additionally, 
for Mac users an extra program called Flip4Mac had to be downloaded so they 
could watch the videos. Otherwise, Camtasia Relay was very easy to use. At the end 
of the semester, the students were asked what percentage of the videos they 
watched. Based on the students self reported usuage, the average percentage of 
videos watched by the students was 91.73 %. 

 The other video capture program used was Jing! and it was selected for the stu-
dent’s projects because it was free and easily accessible online for students to use. 
The main limitation of free Jing! is that it only allows for 5 min recordings. A few 
students initially had issues understanding how the program worked and were resis-
tant to learning a new software program. However, after they were pointed to the 
help tutorials on Jing!’s website, they were quickly able to make the software work. 
Afterward several students noted how easy it was to use and how they planned on 
using it in the future.  

27.4.3      Interactive Communication Programs   

 During the semester, interaction was also encouraged between the students and 
between the instructor and the students. Several formats of interactive computer 
programs were used: email, the chat program in Sakai, the discussion board in 
Sakai, and the Elluminate software package. The students were sent list serv emails 
almost every day of the course reminding them of upcoming deadlines or giving 
additional instructions. The students were also encouraged to email questions about 
grades directly to the instructor and to post all questions about the content of the 
course and the administration of the course on the Q/A board. 
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 The instructor initially thought not having a whiteboard in the Sakai chat function 
to answer questions would be limiting but it wasn’t, instead the instructor made 
Camtasia Relay videos and posted it for the students. The  Elluminate software   
allows instructors to conduct online offi ce hours using video chat, text chat, or an 
interactive whiteboard. Additionally, it was possible for students to be polled about 
a concept or simply asked to raise their hand. Although the program had many capa-
bilities, this also made it diffi cult to operate the program and teach at the same time. 
The initial plan for the online offi ce hours for the course was to use the Sakai Chat 
room and then to transition to Elluminate. The transition, however, was not made 
due to complexity of the software. It felt that  Elluminate   had become the primary 
focus rather than learning the course material. 

 The discussion board in Sakai was used for two reasons: for a question and 
answer board and for a small group discussion board. Students were encouraged to 
post questions about the content of the course and general administration issues on 
the question and answer discussion board. The small group discussion board was 
used for discussion between randomly selected groups of about eight students. The 
students were asked to complete fi ve activities during the 6-week semester. The fi rst 
activity was for the students to introduce themselves to the group and then to reply 
to at least three other students’ introductions. The second activity was for the group 
to select three articles from the internet that contained  information   about an experi-
ment and/or survey. The students were then asked to identify various aspects of the 
study such as the explanatory and response variable and to discuss what aspects of 
the experiment/survey were good and what could be improved. The group then 
ranked each of the three surveys/experiments in terms of quality and adherence to 
the good survey/experimental protocol that they established. The third activity was 
for the students to conduct a lesson style called a Four Corner Debate that has the 
students debate a particular concept. The idea for a Four Corner Debate came from 
the talk by Michelle Everson and Jackie Miller at USCOTS  2011  (for more informa-
tion on a Four Corner Debate visit this website   http://www.educationworld.com/a_
lesson/03/lp304-04.shtml    ). The concept for the debate was for students to consider 
issues about privacy and ethics as it relates to data collection and statistical analysis. 
Sometimes it is helpful for students to see other sides of an issue by not getting to 
pick the point of the view that they are arguing. So each student was told that in a 
few days a statement was going to be posted to the discussion board which they 
would need to debate. However, they had to pick their point of view before the state-
ment was posted. The students had to pick if they “strongly agreed,” “somewhat 
agreed,” “somewhat disagreed,” or “strongly disagreed” with the statement. Several 
days later the statement that “Data can only do good things in today’s world,” was 
posted. The students then had to support their point of view in respect to this state-
ment. The fourth activity asked the students to complete a collaborative quiz on four 
questions with multiple parts about the sampling distribution of the sample propor-
tion and the sample mean. The students were fi rst asked to complete the assignment 
on their own and post their answers and then to work together as a group to com-
plete a response from the whole group. This idea of the use of a collaborative online 
quiz came from a talk by Audbjorg Bjornsdottir and Ellen Gundlach who also 
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presented at USCOTS  2011 . Only the fi nal quiz responses from the entire group 
were graded and participation in building the team’s response to the assignment was 
a part of the grade. The last assignment was for the students to critique other stu-
dents’ semester fi nal project. 

 The instructor found grading the discussion board very time consuming for 67 
students, particularly the second assignment. The students also resisted the group 
activities because they were uncomfortable coordinating with other students not in 
the same town or who didn’t respond in a timely manner. Additionally, for the fourth 
assignment there was very little discussion over the quiz answers since they didn’t 
want to point out that another student was wrong. In the future, the instructor plans 
to have students submit a group contract laying out each student’s responsibilities to 
help students feel more comfortable with the assignment. 

 The communication  software   and email were all used to improve interaction in 
the online course and to help build a sense of community. The students were asked 
in the pre- and post survey how important these technologies were to them and a few 
of the results are below (Table  27.1 ).

   The students were also asked how important was interaction and how frequently 
they visited the  Small Group Discussion Board (SGDB)   and the class  Q&A 
Discussion Board (QADB)   (Tables  27.2  and  27.3 ).

    Although this survey does not represent a random sample of students, it is inter-
esting that the students preferred form of communication was still email.  

   Table 27.1    How important was the following with the instructor to you?   

 Very (%)  Somewhat (%)  Minimally (%)  Not at all (%) 

 Interaction  55  35  10   0 
 Email  88   8   8   0 
 Discussion board  40  28  20  16 
 Online offi ce hours  32  12  36  20 

   Table 27.2    How important was interaction with other classmates on the 
SGDB and QADB?   

 Very (%)  Somewhat (%)  Minimally (%)  Not at all (%) 

 SGDB   8  24  40  28 
 QADB  12  12  44  32 

   Table 27.3    How frequently did you visit the SGDB and QADB?   

 Every 
day (%) 

 Two or three 
times a week (%) 

 Several times 
a semester (%) 

 Only once per 
semester (%) 

 Did not 
participate (%) 

 SGDB  4  52  44   4   0 
 QADB  0  16  12  32  40 
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27.4.4      Grading   

 Determining how to setup high stakes testing in an online environment can be very 
diffi cult. The instructor needs to think about what type of assessments work the best 
at determining how well the students have learned the material, what type of mecha-
nisms need to be in place to ensure that the students are who they say they are, and 
that the security and integrity of the exam itself remains protected. 

 For this course, the instructor determined that the best way to conduct high stakes 
testing was with an online proctored multiple choice test. All students had to begin 
their exam within 3 h of the fi rst exam being started. The ordering of the questions 
and the answers was randomized for each student. The students were also directly 
proctored during the exam by an online test proctoring company called ProctorU. 
Before the exam, the students were encouraged to perform a system check of their 
computer to make sure that it would fully function with ProctorU’s monitoring soft-
ware. On the night of the exam, the students logged in to the ProctorU software and 
were greeted by a proctor in a video chat using a webcam. The students would then 
allow the proctor to see their computer screen so that whatever is on the computer 
screen is viewed by both the student and proctor as well. The proctor then asked to 
see the student’s id and asked a few questions to ensure their identity. The company 
also took a picture of the student that could be used for later reference if needed. 

 For an instructor, setting up an exam time with  ProctorU   required completing a 
short Excel spreadsheet that included start and stop times, exam length, the date of 
the exam, the password of the exam, and if any special accommodations were 
needed. The instructor then setup the exam within the course management system 
and set a password for the test. The students would only fi nd out the password after 
communicating with the proctor at ProctorU.   

27.5     Conclusions 

 For conclusions, the specifi c course assessment will be given as well as a set of 
recommendations for teachers teaching the course for the fi rst time. 

27.5.1     Specifi c Course  Evaluation   

 The course will be evaluated in two ways, the overall instructor evaluation and the 
overall course grades given. The overall instructor rating from student course evalu-
ations was 4.42 out of 5. Table  27.4  shows the fi nal grade distribution for the course.

   Grades are a fairly limited source of assessment because they can be arbitrarily 
determined by the instructor. However, it does show that most students were suc-
cessful in the course. The drop rate was 7.5 % and although this value is similar to 
other non-online courses taught by the instructor, it would be nice if the drop rate 
was smaller.  
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27.5.2     Overall Assessment of Technology 
and  Recommendations   

  SoftChalk   was easy to learn for someone without a strong website HTML programming 
background. Additionally, its ability to add quizzes and other activities helped 
improve the learning experience. The tablet PC was a good tool allowing for quick 
graphics to be drawn for illustrating statistical concepts.  Camtasia Relay recordings   
were easy to make and allowed for quick explanations of material to be presented to 
students.  StatCrunch   allowed for the students to collect and investigate their own 
data as encouraged by the GAISE guidelines. Finally, the SoftChalk lessons and 
 MyStatLab   allowed for immediate feedback while students were practicing work-
ing with statistical concepts. As for recommendations, don’t assume that students 
will quickly pick up different software. Introductions to all forms of software used 
in the course should be provided to make the students more comfortable with the 
environment. Encourage communication through chat rooms and especially email 
since this is still their most comfortable form of communication. Software should be 
chosen to enhance a course and should take the back stage to the course material. 
Elluminate’s software was cumbersome to use, whereas the other programs worked 
seamlessly in the background and aided in the learning of the material. Finally, 
more interference from the instructor to stimulate discussion and team work should 
be made. The discussion board  assignments   did not generate the sense of commu-
nity that was their primary goal so students didn’t work together well to make sure 
the work submitted was correct.      
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    Chapter 28   
 The Role of Technology in Indian Statistics 
Education: A Review       

       D.  S.     Hooda      and     B.  K.     Hooda    

28.1            Introduction 

 Information technology has revolutionized the research and teaching methodology 
in last few decades. Its educational effectiveness is well established in many areas 
of research and teaching in statistics education. Statistics as a subject serves the dual 
purpose of effi ciently collecting, recording, processing of observational data and 
making valid interpretations. It is a broad scientifi c discipline with theory and meth-
ods developed through use of mathematical tools and probability theory for making 
optimal decision under uncertainty. Originated to solve certain types of problems, 
the initial statistical methodology was based on common sense and convenience. 

 On the advancement in information technology, calculators and computers 
proved to be indispensable tools for analysis and interpretation of large data sets. 
Statistics education and practice these days is also supported by ever updating 
software packages. Initially known as a branch of applied mathematics, statistics 
has now emerged as mature discipline with its own philosophy and techniques. 
The role of technology in statistics education has been discussed by some statisti-
cians, namely, Kish ( 1978 ), Prajneshu and Srivastava ( 1998 ), Ganchi ( 1999 ), and 
Sisodia ( 2007 ). 
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 Before the advent of high-speed computers, the subject of statistics, by and large, 
was considered as branch of mathematics applied to observational data. The success 
of classical statistics was because of a mathematically sound theory which was suf-
fi ciently realistic to handle a wide range of applications. But in the present scenario, 
the complicated mathematical arguments have been augmented with computing in 
the form of well-understood computer algorithms. Computer-intensive statistical 
methods have been developed in response to the challenges of making effective use 
of modern computational facilities. 

 Ironically, many statisticians in India and other developing countries are not well 
versed with their use and utility. This is mainly because of the fl aws in statistics 
education and practice of statistics in these countries. The present study, therefore, 
is designed to give a brief account of  Indian Statistical System  . The role technology 
for effective teaching and learning statistics at different levels is discussed. Some 
suggestions and future strategies for improvement in statistics education in develop-
ing countries particularly in India are also discussed.  

28.2     Backgrounds of Indian Statistical System Section 

 This collection and use of statistics for administrative purposes in India has a long 
history spread over many centuries. The  Arthasastra  and the  Ain-i-Akbari  mention 
the practice of numerical data collection for purposes of statecraft in ancient and 
medieval India. The Mughals had a system of collection and compilation of crop 
statistics to help them in land revenue collection. During the British period, consoli-
dation efforts were made for the collection of socioeconomic data. But their system 
was restricted to a few specifi c fi elds like trade and commerce, selected industrial 
products, some basic crop statistics, and livestock. Just after independence in 1947, 
the system of data collection followed by the Britishers was found inadequate to 
meet the necessity of a strong database covering a variety of social and economical 
aspects. A very important step in this direction was the creation of the Directorate 
of National Sample Survey in 1950. Its aim was to collect essential statistics related 
to the socioeconomic conditions and agricultural production in India. 

 The Indian statistical system pertains to the collection, compilation, and dissemi-
nation of data relating to socioeconomic, agricultural, and industrial statistics in 
India. Under the  Ministry of Agriculture (MOA)  , the  Central Statistical Organization 
(CSO)   and the  National Sample Survey organization (NSSO)   are some of the impor-
tant agencies at the national level involved in collection, compilation, and dissemi-
nation of data. The  CSO   is mainly responsible for coordination of statistical 
activities as well as evolving and maintaining statistical standards. The NSSO has 
been a leading sample survey organization since its establishment and continues to 
conduct major multi-subject surveys that provide valuable data required by the pol-
icy makers. 

 The  NSSO   also conducts large-scale surveys at the national level and collects 
and disseminates information on different areas. The NSSO, under the scheme of 
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improvement of crop statistics, also provides technical guidance to the states in 
respect of the crop estimation surveys and performs sample checks to assess the 
quality of primary work done by the state agencies in area and crops estimation 
surveys. In addition to DOS and MOA, some other agencies like the state govern-
ment departments, institutions and autonomous bodies and nongovernment organi-
zations are also actively involved in the creation of large database.  

28.3     Present Status of Statistics Education in India 

 Realizing the importance of statistics, some elementary topics are taught at 10 + 1 
and 10 + 2 levels in school. At undergraduate level, statistics is taught as one paper 
in mathematics subject in most of the Indian universities; however, some other uni-
versities have introduced statistics as a separate subject. In general, statistics is 
taught in most of the Indian universities at the postgraduate level. Universities in 
some states offer UG as well as PG degrees in statistics. In order to impart training 
at postgraduate level, leading to M.Sc. and Ph.D. degrees, Calcutta University was 
the fi rst to establish the departments of statistics in 1943. The several other universi-
ties also established separate departments of statistics and started postgraduate pro-
gram in statistics. 

 During last few decades, statistics has penetrated into almost all sciences like 
biology, business, social, engineering, and medical including agriculture. Its wide 
and varied applications have led to the growth of many new branches, such as 
Industrial Statistics, Business Statistics, Biostatistics, and Agricultural Statistics. 
These branches have emerged as distinct entities with a bulk of statistical techniques 
specifi c to their application areas. It comprises the area of statistical science that 
deals directly with the problems of fi eld experimentation and interpretation of 
results in agricultural sciences.  Agricultural   Statistics is the most important disci-
pline regarding the training of the fi eld research scientists, to help them in planning 
of their experiments and in the analysis of data and drawing inferences thereof. 
Statisticians working in Agricultural Universities/Institutions not only provide a 
strong technical support to other departments and disciplines for agriculture-related 
programs but also conduct their own research in Statistics. 

 In all Indian Agricultural Universities, Statistics is compulsory supporting sub-
ject in UG and PG programs of their disciplines. It is also taught as an independent 
subject leading to the formal degrees of M.Sc. and Ph.D. in Statistics. Generally, the 
teaching of Statistics particularly to agricultural background students is considered 
a tough job. This is mainly because of the fact that the agricultural students are not 
well trained in mathematical concepts and face diffi culty in understanding the sub-
ject matter itself. Also, the teaching methodology in majority of these universities is 
traditional one of using chalk and blackboard. Further, most of the faculty members 
are on the verge of retirement and they are not well versed with the development in 
information technology software packages. 
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28.4        Technology in Statistical Education 

 Use of technology in the fi eld of statistics education is commonly thought of in 
terms of computers and the associated statistical computing packages, which these 
days have become every statistician’s indispensable working tool. Technology, 
especially in developing countries ranges from frequently used and low cost materi-
als like chalk to the expensive and sophisticated computers and LCDs which are less 
used. Although there is no doubt that the impact of such new technology has caused 
changes in the nature of both statistical research and statistical practice, however, its 
effect on the teaching and learning of statistics varies considerably. Consequently, 
there is no uniformity in statistics education in Indian universities. Most of the uni-
versities start statistics at post graduate level and make use of the current statistical 
methodology based on probabilistic models developed for the analysis of small data 
sets, which is inadequate. 

 In order to make the statistical education system competitive, vibrant and useful, 
new upcoming technologies should be integrated with it and the statistics education 
curricula be made coherent. Recently,  Indian Council of Agricultural Research 
(ICAR)   constituted a Subject Matter Committee on the Broad Subject Matter Area 
(BSMA) of statistical science consisting of Agricultural Statistics, Biostatistics, and 
Computer Applications to update the curricula to meet the challenges of the millen-
nium. This Committee prepared the new syllabi keeping in view the recommenda-
tions of the Third Deans’ Committee Anonymous ( 1995 ) on Agricultural Education 
in India, syllabi of Agricultural Universities, and suggestions received from teach-
ers of various State Agricultural Universities and Deemed Universities having a PG 
program in Statistical Science was in vogue. 

 The new syllabus prepared by this committee proved useful and helpful in unify-
ing the teaching at the PG level to a great extent. The fast growing information 
technology needs to be integrated with the classroom teaching to provide adequate 
support to the teaching of the subject. The theory needs to be supported and 
explained by live practical examples through computers. So students should be 
trained in the use of computers and application of various standard statistical soft-
ware packages for analysis of data using different statistical techniques. The net-
work technology could be advantageously exploited to update the knowledge of the 
statisticians working in remote regions of the country through distance education 
program. Such program may consist of supplying lecture notes and other reading 
material through Internet. 

 Application of computer-based graphics and  methods   of data processing has 
opened ways for the development of new statistical methods. Development of the 
widely used  statistical methods   like generalized linear models, nonlinear regression, 
Neural Networks, Cross Validation, Monte Carlo simulations, Jackknife and 
Bootstrapping, and Image Analysis would have been unthinkable without the avail-
ability of high-speed computers. 

 From an instructional perspective, especially while teaching computer-intensive 
methods, teachers sometimes struggle to fi nd ways to demonstrate to the expectations 

D.S. Hooda and B.K. Hooda



231

of students. It is often diffi cult to demonstrate abstract concepts and consequently to 
tell students how they would be assessed. Teachers’ expectations can be made clear 
when technology is used to post concrete examples. When such examples are made 
available to students, they can better perform to meet the teachers’ expectations 
regarding instructional and assessment goals. Just as students need time to adapt to 
new technologies in the context of instruction, in the same way teachers will need 
assistance in learning how such technologies can be used to facilitate instruction 
and assessment. 

 The use of  graph theory      in describing the nature of data, choosing appropriate 
model, and reporting and interpreting the results of statistical analysis is well known 
in statistical literature. After development of high-speed computers and possibilities 
of viewing high dimensional data through parallel coordinates and data reduction 
by canonical coordinates and principal components, graphical analysis is becoming 
a valuable tool in discovering patterns in data. Automatic recognition of various 
aspects of human face can now be accomplished with computer and image process-
ing technology. 

 On the other hand, wide applicability of computer-intensive methods in statisti-
cal education and practice has made signifi cant progress in statistical education in 
developed and advanced countries. For instance, many problems in statistical infer-
ence can be solved in seconds, which otherwise supposed to take days or months to 
solve manually or using simple calculators. Such problems may require evaluations 
of integrals and solution of equations having no explicit solutions but can be solved 
by numerical evaluation. In particular, the Jackknife Method helps in reducing bias 
where unbiased estimates are not available. 

 It consists of leaving, say, one observation at a time and calculating the estimate 
from the remaining values. Averaging then all the estimates gives an estimate that 
has made smaller bias. 

 The bootstrap is another computer-intensive method known as re-sampling 
method which provides estimates of standard errors especially when they are not 
easily obtainable. It takes repeated samples from the empirical distribution function 
of the obtained sample. The statistics of interest is then evaluated from each sample. 
Thousands of such samples are taken, the statistic is computed, and then standard 
errors and confi dence intervals can be obtained using the empirical distributions. 
The novel techniques of data mining, Jackknifi ng, bootstrap, pattern recognition, 
and image analysis are essentially computer intensive and frequently used tech-
niques in advanced countries, and statisticians in developing countries are still fac-
ing diffi culty in using such techniques.  

28.5     Strategies for  Improvements   in Statistics Education 

 New technologies like e-commerce, e-business, and e-learning are emerging with 
the advent of multimedia and Internet technologies. There is a need to include ele-
ments of these topics suitably in the curriculum to equip the students with all 
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modern computing tools for effective and hi-tech decision making during their 
professional career in future. These technologies provide an advanced area of edu-
cational technology that can be applied to statistical education too. Tutorial soft-
ware, including 3D graphics and animation effects, may be developed by the 
teachers for self-guided learning by students and to understand the otherwise com-
plicated concepts and methodology of statistics. The students may complete such 
sessions at their own place by sitting on their personal computers at their homes, 
hostels, etc. For making this an effective technique, students should be encouraged 
to keep their own Laptops or PCs. 

 Further, the teachers and students can exploit the intranet facilities existing on 
the campus for effective interaction. Teachers can provide handouts, assignments 
and make various announcements for students through the local area network sys-
tem of the institute. They can also make available the solutions to the question 
papers and communicate the comments to the students’ assignments through the 
LAN. This is supposed to help the students to judge their performance themselves. 
Similarly, students can make queries to the teachers in case of any doubt and submit 
their assignments using the LAN facilities. Also, the new state-of-the-art technol-
ogy should be adopted immediately by the universities/institutions so as to impart 
training to students as well as the faculty members on the latest computing equip-
ment for improvement in the statistics education.  

28.6     Conclusions 

 The new challenges in statistics education are never trivial but offer opportunities 
inherent to the richness of statistics as a discipline and a servant. The external chal-
lenges current in India are many including:

•    University structures that tend to encourage competition rather cooperation 
between faculties and thus tend not to reward good service teaching.  

•   The Juxtaposition of a general decline to reward good service in teaching and in 
quantitative preparation versus increased quantitative needs of business and 
industry.    

 The awareness in statistical profession of the importance of statistics education 
and commitment of teaching community to their students and good applications of 
technologies in teaching of statistics have laid excellent foundations for the future.     
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    Chapter 29   
 Building Up the Box Plot as a Tool 
for Representing and Structuring Data 
Distributions: An Instructional Effort Using 
 Tinkerplots  and Evidence of Students’ 
Reasoning       

       Luis     Saldanha      and     Michael     McAllister    

29.1            Introduction and Background 

 The  box plot   is a powerful reductive graphical inscription for representing and comparing 
data distributions, allowing the user to attend to key features visually, such as summary 
of center and spread of the data, while obscuring individual values. In the USA, box plots 
have made their way into mathematics curricula in Grades 6–8. In recent years, however, 
several researchers have investigated and documented students’ challenges in under-
standing and using box plots as a tool for representing and comparing data distributions. 
According to Bakker, Biehler, and Konold  (2004) , young students’ sources of diffi culty 
include the fact that box plots mask individual data values and convey only aggregate 
features of a data set. More specifi cally, box plots display densities rather than the more 
intuitive or familiar frequencies. In addition, partitioning data sets into quartiles and 
thinking of the median as a measure of center appear to be far less intuitive or sensible for 
students than we might assume. One of Bakker et al.’s salient instructional recommenda-
tions is that box plots be introduced in combination with dots plots of data sets in appro-
priate ways, such as overlaying them on the latter before obscuring the individual cases. 
Similarly, in a study of Grade 11 students’ ability to use box plots to make group com-
parisons and inferences, Pfannkuch ( 2007 ) suggested that “keeping data under the box 
plot for as long as possible” (p. 164) may be a factor in improving students’ inferential 
reasoning. Garfi eld and Ben-Zvi ( 2010 ) have integrated these suggestions into their 
development of lesson sequences for reasoning with box plots and using them as a tool 
for comparing groups. Konold ( 2007 ) seems to have taken these suggestions into 
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consideration in his design of the  TinkerPlots  software (Konold & Miller,  2005 ). 
  Tinkerplots       is a constructive and dynamically linked data analysis environment 
designed for students in Grades 6–9. The software was borne out of a research 
and development effort that drew on research fi ndings summarized by Bakker et al.  
 (2004) .  TinkerPlots  provides students with a number of intuitive precursors of the box 
plot, and it allows great fl exibility in building up and overlaying box plots on graphs that 
display individual cases, and in obscuring both types of inscriptions as needed. 

 A salient instructional implication that we draw from this literature and product 
developments is that it may be productive to “build up” students’ understanding of 
box plots by engaging them in the activity of organizing and representing data sets 
in ways they might see as natural precursors of box plots. Our chapter describes an 
instructional effort in that direction and presents evidence of students’ thinking that 
emerged from their engagement with this instruction.  

29.2     Participants and Their Prior Knowledge 

 Six students chosen from a seventh-grade class in a suburban middle school in the 
southwest United States participated in a group teaching experiment involving a 
sequence of 8 after-school lessons that engaged them in analysis of univariate data sets 
within the  TinkerPlots  software environment (Konold & Miller,  2005 ). Students had 
been exposed to some basic statistical ideas and graphs within curricular units of their 
previous coursework. Their responses to pretest questions revealed some of their  prior 
statistical skills and knowledge     : students were able to construct and read frequency 
histograms and dot plots; they were familiar with terms like “mean” and “median,” but 
had limited understandings of the meaning and signifi cance of the former. 

 With specifi c regard to box plots, Fig.  29.1  displays a  pretest scenario   1  and three 
accompanying clusters of questions used to query students’ understanding of box 
plots. Table  29.1  shows the  features   identifi ed in students’ responses to Question (i) 
of this scenario and the number of students who identifi ed each of them. 2  The table 
indicates that representation of extreme values, median, and range were salient 
aspects of box plots for students. A striking result is that only one student identifi ed 
quartiles. 3  Although not indicated in the table, two students did implicitly allude to 
the second and third quartiles as a unifi ed region representing the “majority” or 
“bulk” of data values. One student remarked that the box plot does not indicate the 
number of data values being represented.

1   Scenario and box plots were retrieved from  http://onlinestatbook.com/chapter2/Box plots.html  on 
April 28, 2011. 
2   The results for Question (ii) were nearly identical to those for Question (i) and are therefore not 
displayed here. 
3   We follow Tukey’s ( 1977 ) usage and refer to “hinges” as the numerical values that delineate the 
boundaries of the boxes and whiskers, and to “quartiles” as the intervals constituted by those boxes 
and whiskers. 
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  Fig. 29.1    Pretest items used to query students’ prior knowledge of box plots       

     Table 29.1    Frequency of students’ identifi cation of box plot features in pretest Question (i)   

 Features identifi ed 

 Max and min  Median  Quartiles  Interquartile range  Range 

 Frequency  6  6  1  2  4 

    All six students’ responses to Question (iii) concluded that women performed 
faster than men in the experiment described in the problem scenario. Moreover, fi ve 
students justifi ed their conclusions by explicitly citing appropriate supporting fea-
tures of the box plots. Some indicated that either or both the women’s median and 
middle 50 % were below those of the men, respectively; one student also said that 
the women’s range was smaller than the men’s, while another said that the men’s 
data were more spread out than the women’s. Regarding Question (iv), only two 
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students understood the question. Both of those students associated variability with 
range: one said “the men have a larger range than women,” and the other said “men 
had a broader range so their times varied more.” Students’ responses to Question (v) 
are arguably most indicative of the limits of the imagery that box plots evoked for 
them. Three of the six students created a data set al l of whose values  coincided only 
with the box plot’s hinges, concentrated at the median and containing no data within 
the quartiles (Fig.  29.2 , left panel), despite having mentioned quartiles or interquar-
tile  range   in their responses to the preceding questions. The other three students 
created data sets whose values were concentrated within only the second and/or 
third  quartiles   (Fig.  29.2 , right panel), instead of being dispersed throughout all four 
quartiles. This last is consistent with their thinking that only the boxes, and not a 
box plot’s whiskers, represent quartiles of a data set.

   Overall, the results of these pretest questions indicated that students were able to 
use box plots globally as an inscription for making valid group comparisons. 
However, their focus on the salient global  features   indicated in Table  29.1 —which 
was almost to the exclusion of attention to quartiles—together with their responses to 
Question (v) also suggested that their understanding of box plots was somewhat frag-
mented and incomplete. There was little evidence of an understanding that box plots 
partition a data set into ordered quarters. Additionally, students had largely impover-
ished images of how a data set represented by a box plot might be distributed.  

29.3        Instructional Method and Sample Activities      

 In light of the prior research and the abovementioned indications about our students’ 
understandings of box plots, we designed a sequence of instructional activities to 
support their understanding the box plot as a tool for representing and measuring 
patterns of dispersion within univariate data sets. 
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  Fig. 29.2    Two types of student responses to pretest Question (v)       
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 As a preamble to the instructional sequence, students fi rst spent two lessons 
exploring a data set consisting of battery life-span values (Bright et al.,  2003 ). 
Students discussed aspects of the data that were salient to them and posed questions 
about the diversity of values in the set. They then displayed the data in a graph of their 
choosing in order to answer a question designed to orient their attention to the data 
set’s dispersion and variability:  Are the life-span values in this data set, on the whole, 
very similar to each other or do they differ a lot?  This exploration concluded with a 
class discussion about students’ graphs in relation to this question. In preparation for 
Lessons 3–5—those constituting the sequence on which we report here—the pre-
amble activities culminated with a tutorial of the  TinkerPlots  software (Konold & 
Miller,  2005 ) in which students experimented with its basic features and learned to 
create histograms and dot plots of the battery life-spans’ data set. 

 Each of Lessons 3–5 lasted approximately 65 min and was held on a separate day 
within a period of 1 week. The instructional sequence aimed to promote students’ 
reasoning about patterns of dispersion within univariate data distributions by focus-
ing their attention and refl ection on two attributes: the  location  of portions of the 
data along a continuum of values and the  spread  of those portions. The activities 
moved to achieve this by having students fi rst employ  TinkerPlots’ divider  and  ruler  
tools (in Lesson 3), and then the  percentile hat  tool (in Lessons 4–5) to organize 
ordered dot plots of the battery life-spans data set in ways intended to highlight the 
abovementioned attributes. Activities were presented in the form of structured 
worksheets that guided students through a sequence of actions to perform on the 
data set in  TinkerPlots , followed by refl ection questions about the results of those 
actions. Students worked the activities in pairs on a computer and responded indi-
vidually to the refl ection questions. This was typically followed by discussions of 
students’ responses and their reasoning with regard to the questions. 

 Figure  29.3  shows a representative excerpt from the activity worksheets of Lesson 
4 that engaged students in using the percentile hat and ruler tools. Figure  29.4  displays 

  Fig. 29.3    Excerpts from the activity sequence of Lesson 4       

 

29 Building Up the Box Plot as a Tool for Representing and Structuring Data…



240

a screenshot of the associated product of students’ work in  TinkerPlots , which was to 
form the basis of their answers to the worksheet refl ection questions. The percentile 
hat tool gives the user precise control in partitioning a data set by dragging the edges 
of a hat’s “crown” to highlight any desired portion of the data displayed as a dot plot. 
The ruler tool allows the user to measure the length of any portion of a data set by 
dragging an arrow icon from any initial point to any end point along a horizontal or 
vertical direction and returning the length of the resulting segment. The worksheet 
(Fig.  29.3 ) guided students’ activity of methodically using the percentile hat tool to 
partition the data set into quartiles, moving in order from the lowest to the highest, and 
measuring the length of each quartile with the ruler tool. For each quartile so high-
lighted (Fig.  29.4 ), students answered questions about the location and spread of that 
portion and about how adjacent quartiles compared in their spreads.

    The systematic use of  TinkerPlots’  divider, percentile hat, and ruler tools to parti-
tion and highlight portions of a data set in the sequence of activities across Lessons 3 
and 4 was intended to provide students with an imagistic basis for how they might 
organize and structure data sets when comparing them, and for orienting their attention 
to the location and the spread of portions of a data set when doing so. The particular 
sequence of actions and questions entailed in the worksheet of Lesson 4 (Fig.  29.3 ) 
was specifi cally intended to build toward the box plot as a conventional inscription that 

  Fig. 29.4    A sequence of four dot plots of the battery life-spans data, each with one quartile high-
lighted by a  TinkerPlots  percentile hat and its spread indicated by the ruler tool       
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highlights the partitioning of a data set into ordered quarters (Konold,  2007 ), so that 
students would see box plots as emerging naturally from their activity of having orga-
nized a data set in the way that they had. Indeed, this intention provided the entry point 
for Lesson 5, which focused on explicating and solidifying the connection between 
students’ prior activity and box plots. Here, the instructor fi rst recapped what students 
had done and created in Lesson 4, and then introduced a box plot of the data set as the 
culmination of the sequence of percentile hat plots shown in Fig.  29.4 . Discussions 
focused on explaining how each of the quartiles and their boundaries shown in their 
graphs (Fig.  29.3 ) corresponded to the box plot’s whiskers or boxes, and hinges, 
respectively. The aim was for students to see the box plot as a very natural, but small, 
extension of their ordered sequence of 25th-percentile hat plots. 

 Figure  29.5  displays a culminating task of the instructional sequence that we will 
discuss in this report. Students had to (a) create a hypothetical data set that could be 
represented by a given box plot, and (b) explain what the box plot indicates about 
how a represented data set might be distributed. 4   

29.4         Data Corpus and Analysis   

 The data corpus collected over the course of the entire teaching experiment includes 
video recordings of group discussions around the instructional task sequence and 
questions, students’ written responses on these and pre- and posttest questions, and 
video recordings of individual interviews conducted with students at the end of the 
experiment. However, in addition to the pretest responses already discussed in an 
earlier section, our report focuses only on students’ responses to the questions in the 
culminating task of Lesson 5 (see Fig.  29.5 ). 

4   The task was designed to mimic Question (v) of the pretest, so that we might assess students’ 
thinking at post-experiment. 

  Fig. 29.5    A culminating task of the instructional sequence. (a) Guess what the “hidden” data set 
might look like. (b) What does this box plot tell us about how the data values might be 
distributed?       
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 Each of the authors fi rst independently examined students’ responses to the 
culminating task for evidence of their plausible imagery and conceptions related to 
a data collection’s patterns of dispersion. We then compared each of our docu-
mented evidences and created an initial set of codes that focused on capturing 
salient aspects of the students’ created data sets (part (a)) and their responses to 
part (b) of the task. Through a process of successive applications of these initial 
codes to the students’ work and responses, we refi ned the codes until they con-
verged to the set of features described by the column headings in Tables  29.2  and 
 29.3 . This convergence was driven partly by our interest in providing a snapshot 
assessment of the richness of students’ imagery when creating a data distribution 
under the structuring constraints of a given box plot, and partly by consideration of 
the features identifi ed in students’ pretest responses (see Table  29.1  and Fig.  29.1 ) 
for the purpose of comparison.

29.5         Results and Discussion 

29.5.1     Culminating Task (a):  Guess the Hidden    Data Set    

 Table  29.2  summarizes the results of our analysis of students’ responses to part (a) 
of the culminating task (Fig.  29.5 ). Four of the six students created data sets con-
taining between 20 and 32 values, while two had relatively small sets containing 

      Table 29.2    Salient features of students’ data sets created in the culminating task, part (a)   

 Features of students’ data sets 

 Student  Size 

 Correct 
extreme 
values? 

 No. of 
values at 
each hinge 

 No. of values 
within each 
quartile 

 Dispersion 
within 
quartiles 

 Diverse 
distribution? 

 S1  26  Yes  1 or 2  6  Uniform  Yes 
 S2  28  No  1 or 2  7  Uniform  Yes 
 S3  20  Yes  1 or 2  5  Clustered 

near hinges 
 Yes 

 S4  32  Yes  1  7  Uniform  Yes 
 S5  9  Yes  1  0 or 2  Uniform  No 
 S6  9  Yes  1  1  Uniform  No 

      Table 29.3    Frequency of students’ identifi cation of features in the culminating task, part (b)   

 Features identifi ed 

 Box plot divides 
data into 
quarters 

 Box plot 
indicates 
location of 
quartiles 

 Quartile 
length 
indicates 
spread 

 Range 
indicates 
spread 

 Median 
indicates 
center 

 Frequency  4  2  4  3  1 
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only 9 values (Column 1). We will speak to the potential signifi cance of this later 
in this section. All except one student chose appropriate minimum and maximum 
values (Column 2). The exception (S2) chose only a correct minimum value; this 
was possibly just a careless omission, given the lack of such error on pretest 
Question (v). 

 A salient feature of the students’ data sets was the small number of values placed 
at the box plot’s hinges (Column 3), particularly in the larger sets. Another salient 
feature is shown by the entries in Column 4 of the table: fi ve of the students created 
a data set that contained values within all four quartiles, whereas the exception (S5) 
placed no values in the fi rst and fourth quartiles. Figure  29.6  displays the work of 
one of these fi ve students (S1) on this part of the culminating task. These last two 
features are in contrast with the results of pretest Question (v): as reported in an 
earlier section, half of the students created a data set of the type shown in the left 
panel of Fig.  29.2  (also made by S1), involving no values within the quartiles. The 
others created data sets whose values were concentrated largely within the second 
and third quartiles, as if whiskers did not represent quartiles for them.

   As indicated by the entries in Column 5 of Table  29.2 , all but one student’s data 
sets had their values distributed fairly uniformly within each of the quartiles. 
Figure  29.6  also exemplifi es this type of data set. The exception (S3) is shown in 
Fig.  29.7 , wherein the values tend to be clustered near the box plot’s hinges.

   Each entry in the last column of Table  29.2  indicates our assessment of whether 
that student’s data set was relatively diverse. We view this as a summary assessment 
of a data set’s distributional richness, relative to the structure of the given box plot. 
Thus, in order for a data set is to be assessed as diverse in the context of this task, it 

  Fig. 29.6    S1’s data set from the culminating task of Lesson 5       

  Fig. 29.7    S3’s data set having a nonuniform distribution of values within quartiles       
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must be large enough to provide opportunity for creating a variety of data values, it 
should contain few or no repeated values, and it should have a distributional structure 
commensurate with the given box plot. We considered four students’ data sets to be 
diverse according to this defi nition. The data sets produced by students S5 and S6 
were both too small to exhibit a rich distributional structure, and in the case of S5 did 
not fully adhere to the box plot’s structure. These diversity assessments also suggest 
that four of the students enriched their imagery of data distributions from pre- to 
post-instruction. This is likely a consequence of their engagement with our instruc-
tional sequence. 5   

29.5.2     Culminating Task (b):  What Does the Box Plot 
Indicate about How Data Is Distributed?  

 Table  29.3  summarizes  features   identifi ed in students’ responses to part (b) of the 
culminating task (Fig.  29.5 ) and it shows the number of students who identifi ed 
each of them. 

 Table  29.3  indicates that the most salient features, overall, for students were that 
the box plot partitions the data set into quarters and that a quartile’s length indicates 
how spread out is that portion of the data. Regarding the former, three students 
specifi ed that these were equal percentages independent of the number of values in 
each. Regarding the latter, all students who mentioned it also indicated that length 
and spread are in a direct relationship. 6  The frequency of the two features in Columns 
1 and 3 are in contrast with the results of the pretest, which indicated that quartiles 
were largely outside of students’ attention. While the results in Columns 1 and 3 of 
Table  29.3  indicate increased attention to quartiles, particularly to their length as an 
indicator of the spread of data, the frequency count in Column 2 also suggests that 
the location of quartiles may not have become as salient to students as we intended. 
Regarding this last point, we have two conjectures. One conjecture is that our 
instructional sequence’s strong focus on the relationship between quartile length 
and spread of data may have inadvertently overshadowed the idea of a quartile’s 
location in students’ minds. Another conjecture is based on evidence from the group 
discussions and individual interviews that we cannot present here due to space limi-
tations: a number of students exhibited persistent diffi culty in teasing apart a quar-
tile’s location from its length, as though the latter implied the former and was thus 
not viewed by students as a separate attribute. These conjectures and the  relationship 
between them will be explored in a future report that draws on our extended data 
corpus and on a subsequent whole-class teaching experiment that we conducted 
with a different group of students.   

5   These students were not studying statistics in their regular class during the semester in which they 
participated in the teaching experiment. It is therefore implausible that this enrichment was due to 
their regular school instruction. 
6   This information is not indicated in the table. 
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29.6     Summary 

 We have reported on part of a teaching experiment that engaged six 7th-grade 
students with a sequence of activities in which they used  TinkerPlots  to organize a 
data set in ways intended to build toward the structure of box plots—by highlight-
ing and comparing the location and spread of ordered quarters of the data set. Our 
comparison of students’ responses on pretest and culminating task questions sug-
gests that their imagery of data distributions and of box plots as representing quar-
tiles and spread was consequently enriched, but that location of quartiles was not 
as salient for them as we had intended.     

  Acknowledgment   This report is based upon work supported by the National Science Foundation 
under Grant No. 0953987. Any opinions, fi ndings, and conclusions or recommendations expressed 
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    Chapter 30   
 Integrated Reasoning About Statistical 
Variation: Secondary Teachers’ 
Development of Foundational Understandings       

       Susan     A.     Peters      and     Ksenia     S.     Kopeikin    

30.1            Introduction and Background 

 The explosion of digital data in today’s technologically driven world necessitates 
graduating statistically savvy students.  Policy makers and educators   have addressed 
this need by recommending the signifi cant study of statistics for all students (e.g., 
NCTM,  2000 ). High-quality teachers are important for students to reach curricular 
goals. Research suggests that the largest school factor affecting student achievement 
is teacher quality (e.g., Hanushek, Kain, & Rivkin,  1998 ), and an important aspect of 
 teacher quality   is knowledge. Recent studies confi rming the positive effects of teacher 
knowledge on student achievement further underscore the importance of teachers 
being knowledgeable about the content they teach (e.g., Hill, Rowan, & Ball,  2005 ). 

 Expository literature presents a prevalent view that many teachers have not had 
suffi cient statistics learning experiences to develop requisite knowledge of statistics 
for teaching (e.g., Shaughnessy,  2007 ). These views are supported by research that 
reveals teachers’ diffi culties with understanding fundamental statistical concepts 
such as average or variation (Batanero, Burrill, & Reading,  2011 ). Teachers’ diffi -
culties with statistics content precipitated a joint ICMI/IASE study (Batanero et al., 
 2011 ). Much of the work associated with the study detailed the limited statistical 
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knowledge that a majority of teachers expressed. Novel programs offering promise 
for developing teachers’ knowledge were also examined. 

 Rather than focus on what teachers do not know or design a program that might 
be successful in developing teacher knowledge, the larger study from which this 
chapter emerges focuses on teachers with robust understandings of statistical content 
and explores the activities and experiences that led to development of those under-
standings. This chapter focuses on teachers’ learning of the foundational concept of 
variation—learning that arguably parallels the general learning of statistics—to 
address the research question: for secondary statistics teachers who exhibit integrated 
reasoning about variation, what are the factors that contributed to their current under-
standings of variation as refl ected in their perceptions and recollections?  

30.2     Theoretical and Conceptual Frameworks 

 Design, data centric, and modeling perspectives form the basis of the perspectives 
framework employed by this study to consider the nature of teachers’ reasoning 
about variation. Reasoning about variation from the  design perspective   includes 
identifying the nature of and potential sources of variation and considering strate-
gies to control variation. Reasoning from the  data-centric perspective   entails mea-
suring, describing, and representing variation while exploring distributions and 
relationships among data and variables. Reasoning about variation from the  model-
ing perspective   encompasses modeling data or data characteristics to infer relation-
ships among data and variables. Indicators of reasoning from each perspective 
emerged from analysis of teachers’ responses to variation-related tasks (Peters, 
 2009 ), research related to variation (e.g., delMas & Liu,  2005 ), and expositions on 
understanding variation (e.g., Garfi eld & Ben-Zvi,  2005 ). Analysis of teachers’ rea-
soning from the larger study led to identifying four elements that transcend perspec-
tives: variational disposition, variability in data for contextual variables, variability 
and relationships among data and variables, and effects of sample size on variabil-
ity.  Integrated reasoning about variation  incorporates elements within one or more 
perspectives or multiple elements across perspectives. The complete list of indica-
tors for each element from each perspective and description of the analysis that led 
to their identifi cation appear in Peters ( 2009 ,  2011 ). 

  Transformative learning theory      (Mezirow,  2000 ) serves as this study’s theoreti-
cal frame. Grounded in constructivist assumptions, an overarching premise of the 
theory is that adult learning differs from student learning. Refl ection is an important 
aspect of learning, but most students do not have the life experiences to critically 
evaluate the assumptions and beliefs upon which their knowledge is built. Students’ 
refl ections tend to focus on questions of what and how—the content and processes 
of educational studies that are important for constructing understanding if new 
ideas are encountered or to enhance current understanding. Many adults have the 
capacity to also refl ect on the premises behind content and processes to question the 
importance, validity, or utility of knowledge. Refl ection on premises—  critical 
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refl ection   —is a key component of transformative learning. Critical refl ection typically 
begins with events that   trigger dilemmas   —confl icts from internal or external stim-
uli that signal dissatisfaction with knowledge. An individual may become aware of 
previously implicit assumptions and assess those assumptions through critical 
refl ection. Upon critical refl ection, the individual may explore options for new roles 
and actions by engaging in rational discourse to develop and act on a plan to resolve 
the dilemma(s). In   rational discourse   , the individual engages in discourse with self 
or others to question assumptions, weigh evidence, and assess justifi cations to 
resolve dilemmas while searching for understanding. The main elements of critical 
refl ection, rational discourse, and action are used to frame teachers’ experiences.  

30.3     Methods 

 This study uses phenomenological methods (Moustakas,  1994 ) to investigate the 
phenomenon of developing understandings of variation for integrated reasoning 
about variation. To ensure the highest probability of fi nding teachers who experi-
enced the phenomenon, the lead author developed explicit criteria for teachers’ 
inclusion in the study. Due to their wealth of background experiences, AP Statistics 
teacher-leaders were consulted because they were more likely to exhibit integrated 
reasoning about variation than a random sample of teachers. School students receive 
college credit for introductory statistics if they successfully complete an AP 
Statistics course and examination. To consider diverse experiences, teachers who 
were selected for participation: differed in the number of years they taught statistics, 
displayed a variety of educational backgrounds and course-related statistics experi-
ences, encountered varied professional development learning and teaching experi-
ences and informal experiences with statistics, exhibited leadership through a 
variety of venues, and differed according to other characteristics such as gender. 
The resulting purposeful sample consisted of 16 secondary statistics teacher-leaders 
from 14 states in the United States. 

 The larger study explored factors that contributed to teachers’ development of 
robust understandings of variation for the fi ve teachers who exhibited reasoning 
consistent with robust understanding (Peters,  2009 ). Processes used to identify 
these teachers appear in Peters ( 2009 ,  2011 ). The same processes led to identifying 
fi ve more teachers who exhibited integrated reasoning about variation. This study 
considers the learning of these ten teachers. 

30.3.1       Data and Instruments   

 Phenomenological studies often use semistructured interviews to elicit feelings 
about and experiences with the studied phenomenon. Participants retrospectively 
recall their experiences and feelings through self-report. Because of the reliance on 
memories and concerns related to the accuracy of those memories, this study 
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employed event history calendars (EHCs), critical incident reports, and two 90- to 
120-min semistructured interviews to enhance teachers’ abilities to recall and report 
learning events accurately. 

  EHCs   enable individuals to reconstruct past events and experiences by using 
cues for signifi cant past events (Martyn & Belli,  2002 ). The calendar is a table with 
timing cues for columns and signifi cant events for rows. Teachers recorded personal 
information, including times when they were studying statistics and teaching math-
ematics or statistics, and events and experiences related to their statistics education, 
including events related to AP Statistics and to professional development. For each 
experience, teachers recorded details of the event and people, places, and feelings 
associated with the experience. See Peters ( 2009 ) for an example of an EHC and 
examples of other study instruments. 

  Critical incidents (CIs)   are unique events that are signifi cant to individuals. CIs 
“highlight particular, concrete, and contextually specifi c aspects of people’s experi-
ences” (Brookfi eld,  1990 , p. 180) and can serve as a window for inferring people’s 
assumptions and beliefs. Teachers recounted two CIs related to their formal or 
informal study of variation or statistics—one positive and one negative—to focus 
on salient experiences. 

 Interviews allow participants to reconstruct the fi ner details of experiences 
(Seidman,  2006 ). Two interviews reconstructed details of experiences listed in 
teachers’ EHCs and CIs. Prior to conducting each teacher’s fi rst experience-related 
interview (Int I), the lead author used the teacher’s EHC and CIs to determine the 
temporal positioning of educational experiences, become familiar with the teacher’s 
infl uential experiences, and construct a preliminary set of questions unique to each 
teacher. In general, teachers’ interviews asked them to describe valuable statistics 
and variation learning experiences, the content learned during experiences, beliefs 
about why the experiences benefi tted their learning, infl uential people associated 
with the experiences, actions taken in response to the experiences, and how the 
experiences changed the way they thought about statistics or variation. In the sec-
ond interview (Int II), teachers responded to questions about why the events trans-
pired the way they did.   

30.3.2     Data Analysis 

  Data analysis   followed systemic procedures recommended for phenomenological 
studies (Moustakas,  1994 ). For teachers who exhibited integrated reasoning about 
variation, we examined their context interviews, EHCs, and CIs to fi nd evidence of 
experiences related to developing understanding of variation. We recorded experi-
ences that teachers identifi ed as important for learning about variation and their 
perceptions of characteristics that helped or hindered development. We sought evi-
dence of elements related to transformative learning such as events that triggered 
dilemmas, critical refl ection, rational discourse with self or others, seeking knowl-
edge related to statistics, experimenting with new roles, and changes in assumptions 
related to the teaching and learning of statistics. In the fi rst phase of analysis, 
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interview passages for each teacher were grouped according to reasoning perspec-
tives and elements of transformation. During the next phase, for each perspective, 
we organized statements into themes and grouped them to produce a factual descrip-
tion of each teacher’s phenomenon in relation to the elements of transformative 
learning. We extracted the essence of the phenomenological experience by reading 
and rereading passages using the constant comparative method. The fi nal stage of 
 analysis   involved integrating descriptions of teachers’ experiences for each perspec-
tive into a composite description. This synthesized description captures the overall 
essence of the experience of developing understandings of variation and exhibiting 
integrated reasoning about variation.   

30.4     Results 

 Many of the learning factors identifi ed by the teachers who exhibited robust under-
standing of statistical variation also applied to the fi ve additional teachers who 
exhibited integrated reasoning. These factors, including triggers and dilemmas and 
personal and environmental factors, transcend perspectives. Brief descriptions of 
these general factors follow; additional information can be found in Peters ( 2009 ). 
Following this brief overview are descriptions of critical factors associated with 
teachers’ developing understandings for each of the three perspectives, including 
engagement in rational discourse and participation in key activities. 

30.4.1     General Factors Related to Learning and Reasoning 
about Variation 

 When preparing to teach statistics and when teaching statistics, each teacher expe-
rienced triggers that prompted self-awareness of limitations in their knowledge of 
statistics. Triggers stimulated  dilemmas   that were resolved through the creation, 
enhancement, or transformation of specifi c knowledge, beliefs, or attitudes. When 
faced with a dilemma, each teacher viewed the dilemma as a learning opportunity, 
embraced the opportunity, and reacted to the dilemma by forming and following a 
plan of action to construct statistical knowledge. 

 Common to all ten teachers were personal factors that may have infl uenced their 
learning. Key among these factors was motivation to encounter and resolve dilem-
mas, refl ection on content, and commitment to their students and to teaching. In 
addition to personal factors, there were environmental factors that were conducive 
to their learning. Each teacher cited the importance of a “comfortable” learning 
 environment   in which s/he could feel free to ask about content questions as those 
questions arose. They attributed a sense of community to secondary teachers and 
statisticians who were active in AP Statistics and described the benefi ts they attrib-
uted to membership in this community, including rational discourse.  
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30.4.2      Factors Related to Learning/Reasoning about Variation 
from the  Design Perspective   

 Teachers had few experiences with designing studies or considering designed stud-
ies before teaching AP Statistics. Aspects of design repeatedly triggered dilemmas. 
Common learning factors included engaging in rational discourse while reading and 
comparing textbook descriptions, actively conducting studies and involving stu-
dents in designing studies, making sense of problems and activities focused on criti-
cal design aspects, and authoring materials. 

 With the prominence of observational and experimental study design in AP 
Statistics, every teacher consulted textbooks to deepen their understandings and 
were confronted with their limited knowledge when preparing to teach the course. 
By engaging in rational discourse with authors and themselves and refl ecting on the 
premises behind the content, teachers resolved their dilemmas. Dustin, for example, 
encountered different terminology for similar concepts such as confounding, lurk-
ing, and extraneous. “I’d sit there with three or four books open, and I’d read…try 
to fi gure out, okay, where the points of commonality were, where they were differ-
ent” (Int II). He suggested that by critically reading, rereading, and considering 
textbook passages, divergent images of lurking, confounding, and extraneous trans-
formed into a unifi ed conception of variables different from the independent 
variable(s) of interest. Cheyenne also indicated how “different ways the authors will 
write things about blocking” (Int II) allowed her to consider differing views to 
enhance her understanding. Teachers compared authors’ perspectives with their 
emerging understandings and considered authors’ arguments as part of resolving 
their dilemmas to advance their understandings. 

 Opportunities for teachers and students to design experiments were important for 
teachers to develop integrated reasoning about variation. Teachers suggested that 
they generated more ideas about sources of variability and ways to control variability 
by conducting experiments collaboratively than by reading about similar experi-
ments. For example, Ivy discussed design considerations that arose when conducting 
an experiment with colleagues: “We shot rubber bands…depending on the angle. 
What do you notice, does it matter…how many times you shoot the rubber band? 
Because it loses elasticity” (Int I). Dana also learned from student projects to design 
and conduct studies. Students’ questions prompted her to engage in rational discourse 
to consider how and why students might design studies to answer their questions.  
  Active and collaborative engagement with designing studies and participating in 
rational discourse with colleagues or more knowledgeable others to explore the depth 
and meaning of design aspects led to deep consideration of potential sources of varia-
tion such as rubber band elasticity and methods for controlling variation from sources.  

 Other experiences that advanced teachers’ understanding of design concepts 
included responding to AP Statistics problems and considering underlying prem-
ises. Problems focused on key concepts that were not well understood by teachers 
triggered dilemmas that were resolved by engaging in rational discourse with more 
knowledgeable others and by refl ecting on the premises underlying the arguments 
presented. Dilemmas were triggered when Everett, for example, recognized that his 
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responses to problems about key concepts such as randomization and blocking 
would not receive full credit. Resolution occurred from discussing the problems and 
rubrics with more knowledgeable others and assessing and refl ecting on the argu-
ments presented. Similarly, Hudson described how “failure to notice the primary 
issue being variation” in his response to a question “was concerning” (Int II). His 
dilemma was resolved through a statistician’s use and discussion of a key example. 
His engagement with the example and consideration of what the statistician identi-
fi ed as the key aspects of the problem enabled Hudson to see the effects of a particu-
lar variable and how removing that potential source of variation would better isolate 
the treatment’s effects. 

 Engaging vicariously with students in carefully constructed activities focused on 
fundamental design concepts and issues prompted learning for teachers. Rational 
discourse with students and refl ection on classroom activities enhanced teachers’ 
understandings of blocking, stratifi cation, and variation. Hudson, for example, 
noted the benefi ts of using the same carefully designed set of data to consider com-
pletely randomized, nonoptimal block, and optimal block designs for him and his 
students to learn about how blocking reduces variation. “The larger variation in that 
case due to mixing plots…potentially interfered with you being able to detect which 
variety of tree was actually more productive. Versus when you blocked with the 
nonoptimal blocking scheme…block the correct way…all you were looking at was 
the difference in tree varieties” (Int II). This activity and students’ engagement with 
similar activities to explore the benefi ts of blocking and stratifi cation were also 
mentioned by Cheyenne and Gavin as powerful for their learning. Important fea-
tures were comparisons of different methods such as completely randomized or 
randomized block designs and use of multiple representations to clearly illustrate 
 how  blocking or stratifi cation reduced variation. 

 As leaders, many teachers designed and published tasks and activities. Dana, 
Everett, and Isaac authored some of the aforementioned activities. Each indicated 
how authoring required even greater clarity and understanding than teaching because 
readers could not ask clarifi cation questions. Many publications were collaborations 
with one or more statisticians, and the statisticians raised issues and questions that 
triggered dilemmas. Collaborative environments, statisticians’ practical insights and 
willingness to engage in rational discourse, and teachers’ considerations of the 
insights offered ideal settings for teacher learning. Everett recalled an illustrative 
experience: “Having a conversation…for like two hours because we had written 
something, an initial draft of some activity and [statistician] had some things to say…
trying to understand what, what she had a problem with took me a long time” (Int I).   

30.4.3      Factors Related to Learning/Reasoning about Variation 
from the  Data-Centric Perspective   

 Teachers often reasoned about variation from the data-centric perspective in their 
early learning experiences. Most experiences focused on reasoning about proce-
dures such as calculating standard deviation. Although foundational, teachers felt 
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that the experiences did not lead to deep understanding. Preparations to teach statis-
tics triggered dilemmas that were resolved through active exploration with data 
using multiple representations and consideration of the affordances offered by each. 
Technology use enhanced their pursuits. Teachers’ experiences to learn and reason 
from the data-centric perspective were diverse. 

 With the exception of Hudson, every teacher described early data-centric experi-
ences as involving “cookbook” procedures. To best describe data, open-ended 
explorations with real data required more than creating graphical representations or 
calculating statistics. Cheyenne indicated, “I’ve played around a lot with real data…
fl uky things that show up in real data…if you had just looked at the mean and stan-
dard deviation, you’d have gotten a totally different picture…mean and standard 
deviation really isn’t telling you a lot” (Int II). Multiple experiences with data and 
questions about how to best describe data led to recognition of shortcomings associ-
ated with limited data representations. Cheyenne further noted, “in courts of law 
you’re always looking for a preponderance of evidence” (Int II). She likened gener-
ating multiple representations, calculating multiple summary values, and consider-
ing affordances and constraints of each as evidence for understanding and describing 
data. 

 Teachers benefi ted from using graphing calculators and computers to explore 
data. Active exploration of data, “curiosity,” and premise refl ection provided oppor-
tunities to deepen understandings of variation. Cheyenne noted the ease of creating 
multiple representations to compare variability within and between distributions. 
“Looking at distributions…set the scales the same. You can put them on the same 
page so that you can look at them right next to one another” (Int I). In addition to 
visualization benefi ts, Blake noted learning potential from computer output. 
“Regression analysis…I circled every number and started asking myself what in the 
heck does this number mean?…sum of the squared residuals. Here’s the explained. 
Here’s the total…I was drawing for myself pictures of that and what that meant” (Int 
II). By considering explained and total variation, he “learned what  r  2  was” (Int I). 
Teachers’ individual explorations with data, questions about the meaning of the 
resulting measures and displays, and refl ections on their activities enhanced their 
reasoning about data and variation. 

 Teachers’ variation-related learning experiences were more diverse when rea-
soning from the data-centric perspective than design or modeling perspectives. 
Blake, for example, valued experiences with curricula using a transformational 
approach to consider problems such as how the value of standard deviation changed 
if fi ve were added to each data value. Gavin cited the importance of a question for 
which the rubric identifi ed standard deviation as approximate average deviation 
from the mean, and Everett and Gavin indicated that the AP Statistics focus on 
describing and comparing distributions using shape, center, and spread infl uenced 
their views of distribution and use of representations. Isaac described benefi t from 
programming computers to compute summary values and construct graphical repre-
sentations of data and from considering multiple data possibilities for the programs 
to be useful. Other learning resulted from considerations such as nonparametric 
statistics and sports data.   
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30.4.4      Factors Related to Learning/Reasoning about Variation 
from the  Modeling Perspective   

 As with the data-centric perspective, teachers’ early experiences with reasoning 
about variation from the modeling perspective focused on reasoning about proce-
dural calculations such as standard error. As teachers sought to understand and jus-
tify the methods, they encountered dilemmas that were resolved through simulations 
and pursued new dilemmas by studying content beyond introductory statistics to 
deepen their understandings. 

 Active engagement with physical simulations followed by technological simula-
tions was important for teachers to develop meaning of inferential concepts such as 
sampling distribution. Gavin, for example, identifi ed a simulation to explore the 
sampling distribution of a sample proportion as important for developing his under-
standing of sampling distribution. “We did the proportion of brown [candies] and 
then all went up and plotted it [on a class dotplot]…The intended result that we saw, 
fairly normal distribution, um, was kind of surprising to me” (Int I). The emerging 
shape of the distribution piqued his curiosity, and subsequent exploration of the 
sampling distribution of sample means with a physical and technological simulation 
of penny ages helped him to realize the relationship between the variation of a popu-
lation and the variation of sampling distribution. Other teachers, including Blake, 
Haley, and Hudson, cited similar activities as benefi cial for learning. Learning 
resulted from the combination of physical and technological simulation, the power 
of visualization, questioning of the processes, and refl ection. Further attribution for 
the power of technology came from applets to explore sampling distributions from 
populations of different shapes and ideas of chance. 

 To some extent, simulations substituted for theory. The mathematics to prove 
many of the generalizations teachers used to make inferences about data required 
signifi cant theoretical statistics study; simulations provided the means to consider 
premises in the absence of proof. As Gavin noted, simulation “kind of gives more 
validity to the theory. Because I’ve never been taught the theory, I don’t know the…
mathematical justifi cation” (Int II) behind sampling distribution. Teachers used 
simulations to consider the premises underlying content and processes for reasoning 
about variation from the modeling perspective. For example, Dana conducted simu-
lations to examine the conditions needed to use inferential procedures for regression 
and to explore why  t  procedures were considered to be fairly robust. 

 Connecting inference with design by considering inferential methods beyond AP 
Statistics enhanced teachers’ understandings of the methods within AP Statistics. 
Everett, for example, described benefi t for understanding blocking from attending a 
workshop focused on ANOVA. “[The instructor] presented a matrix/vector model 
for partitioning the variance in a response variable. We started…with the familiar 
two-sample  t  test, but then applied the same procedures to an experiment with three 
treatments and then to an experiment with blocking. Finally I understood how 
blocking reduces variability” (CI). Isaac indicated how multiple regression led to 
recognizing the fundamental role of modeling in statistics: “you’re constructing a, 
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um, a model of the behavior of the real world and trying to account…for the vari-
ability that you’re observing by appealing to other variables” (Int II). Cheyenne and 
Everett also ascribed importance to nonparametric methods for deepening under-
standings of sampling distribution and chance and for enhancing their overall 
images of statistics.    

30.5     Discussion 

 As the preceding discussion highlights, multiple factors contributed to teachers’ 
learning. Primarily, engagement in rational discourse with self, students, colleagues, 
statisticians, and textbook authors and active engagement to explore content, pro-
cesses, and premises by solving problems and exploring data with or without the use 
of technology were important for teachers to develop understandings of variation 
and to reason about variation in an integrated manner. Subtleties existed in  how  fac-
tors enhanced learning within perspectives. 

 Within perspectives, rational discourse with others and with oneself differed for 
developing understandings to reason about variation. To reason from the design 
perspective, teachers valued rational discourse with more knowledgeable others, 
such as statisticians, and with other colleagues and students while designing and 
conducting studies. Benefi ts came from considering others’ perspectives to under-
stand underlying premises related to potential sources of variation from context and 
error and ways to control that variation. Teachers’ reasoning about variation from 
the data-centric perspective tended to occur while engaging in rational discourse 
with themselves. They refl ected on the meanings attributed to summary measures 
such as standard deviation and the processes used to describe and compare distribu-
tions and justify informal inferences from data. Similarly, rational discourse when 
reasoning from the modeling perspective tended to occur within teachers even 
though interactions with others were necessitated when conducting physical simu-
lations. Self-discourse focused on discerning the statistical principles underlying 
simulated results, and technology provided alternative perspectives of statistical 
concepts. Unlike reasoning from the data-centric perspective, in which teachers 
could generate multiple perspectives to provide their own justifi cations, the technol-
ogy produced multiple perspectives of sampling distribution for informal justifi ca-
tion of inferential methods and for considering chance. 

 The roles of tasks and activities in teachers’ learning revealed similarities and 
differences. Across perspectives, teachers’ learning was enhanced by reasoning 
about variation when engaged with tasks and activities that attended to fundamental 
statistical concepts and principles and key aspects of variability. The focus of learn-
ing, however, differed when reasoning from different perspectives. Teachers’ initial 
limited experiences with design led them to focus on content and processes when 
engaging with activities and tasks to construct understanding for new ideas or to 
enhance minimal understandings. As teachers developed understandings, their 
learning continued from vicarious engagement with students’ activities and author-
ing materials as their foci shifted to justifi cation and connecting design with data 
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analysis and inference. Because teachers knew content and processes associated 
with the data-centric perspective, their learning focused on examining the underly-
ing premises and engaging with the art of statistics to tell the story of data. Hands-on 
explorations with data and use of technology tools to generate multiple representa-
tions led teachers to make and justify informal inferences. Teachers were profi cient 
at procedurally reasoning about variation from the modeling perspective prior to 
teaching AP Statistics but felt they needed to develop understandings to explain the 
rationale for the procedures and the logic of inference to better teach statistics. 
Simulations helped to develop rationale and provide justifi cation for methods such 
as calculating standard error. 

 One of the more striking features of teachers’ identifi ed learning experiences is 
that the experiences are accessible to most teachers. Although these ten teachers 
may more readily embrace learning opportunities than other teachers, this study 
provides insights into the types of triggers that may stimulate dilemmas and the 
types of experiences that may enable teachers to resolve dilemmas as a step toward 
meeting larger curricular and societal goals.     
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    Chapter 31   
 Preservice Teachers’ Diffi culties 
with Statistical Writing       

       Min-Sun     Park     ,     Mimi     Park     ,     Eun-Jung     Lee     , and     Kyeong-Hwa     Lee    

31.1            Introduction 

 Statistical literacy has been emphasized as a goal of statistics education. Statistical 
literacy is the ability to interpret, critically evaluate, and communicate statistical 
information, arguments, and data (Gal,  2004 , p. 70). In information-laden societies, 
statistical literacy is necessary for citizens since they have to choose and interpret 
useful information for them. With the emphasis on statistical literacy, the impor-
tance of communication is receiving a lot of attention. In addition to the generic 
reason that it improves statistical literacy, communication is important in statistics 
for many other reasons. Since statistics is concerned with information about the real 
world, people have to be able to take problems vaguely conceived in natural lan-
guage terms through the statistical investigation and analysis cycle to arrive at con-
clusions that they can successfully communicate to others in natural language 
(Phillips,  2006 ). 

 Communication involves listening and speaking, reading and writing, and repre-
senting (Begg,  1997 , p. 19). Among these, “writing” is very important, since it is 
mainly used as a way of assessment (Biehler,  2007 ; Truran,  1998 ; Weldon,  2007 ), 
and it is also the last step of presenting what people conclude from data analysis. 
Nevertheless, students usually have trouble with expressing what they understand 
through writing (Pierce & Roberts,  1998 , p. 1202). Many researchers have investigated 
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ways to facilitate students’ writing (Francis,  2005 ; Parke,  2008 ; Peck,  2005 ). 
However, researches usually suggest guidelines or particular writing formats, rather 
than discuss the parts that students cannot express through writing and suggest a 
solution. Thus, it is necessary to investigate which parts are being excluded from 
their writing and present a way to bridge the gap between their thinking and 
writing. 

 In this chapter, by looking at both written and verbal language, we examined the 
missing information in preservice teachers’ writing even though they understood 
and considered. For the investigation, a written task about the variance concept was 
carried out and interviews were conducted. We compared both written and verbal 
language in the preservice teachers’ use of terms, presentation of factors of the con-
cepts that they had considered, and presentation of the solving strategies that they 
had used. From the results, we suggest instructional ideas for teaching writings and 
some consideration points for writing assessment.  

31.2     Literature Review 

 In mathematics education, there are some studies that argue that writing can support 
the problem solving by  improving meta-cognitive ability  . Pugalee ( 2004 ) compared 
ninth-grade students’ written and verbal descriptions of their algebraic problem- 
solving processes. Through the comparison, he tried to fi nd the connection between 
problem solving and writing. As a result, students who wrote descriptions of their 
thinking were signifi cantly more successful in the  problem-solving tasks   than the 
students who verbalized their thinking. Differences in students’ use of both types of 
language showed that  writing   can be an effective tool in supporting meta-cognitive 
behaviors. 

 In statistics education, writing is emphasized as well. Lipson and Kokonis ( 2005 ) 
showed that a  writing task   may be classifi ed as a meta-cognitive activity, and in it of 
itself provides a means of facilitating the development of conceptual understanding 
in students. Parke ( 2008 ) also investigated the infl uence of writing. Individual writ-
ing assignments, small group activities, and a student-led scoring activity enhanced 
students’ writing as well as their reasoning, understanding, and confi dence. Writing 
tasks encouraged students to take a holistic view of the statistical process (Lipson & 
Kokonis,  2005 , p. 8). 

 Accordingly, there are many studies presenting ways to facilitate students’ writ-
ing. Francis ( 2005 ) presented an approach that involves giving students a process to 
follow, clear instructions on the sort of language which is appropriate, and some 
model reports to use as a guide. Peck ( 2005 ) also suggested some ways of facilitat-
ing students’ writing: being explicit about what is needed for good communication 
in different settings, emphasizing the importance of context, asking questions that 
require explanation and interpretation throughout the course, not accepting 
“mechanics only” answers as correct on homework or exams, encouraging students 
to read as well as to write, and asking students to write about statistical processes. 
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 Even though both the importance of statistical writing and the way of facilitating 
students’ writing are issued continuously, students still have much trouble with 
writing. Francis ( 2005 ) pointed out some of the reasons, which are as follows: con-
sidering statistics as divorced from the real world rather than a source of informa-
tion about the real world, not knowing what the statistical analysis is about, 
experiencing diffi culty in writing a cohesive report even when understanding a par-
ticular analysis, not understanding some of the subtleties of the language, having 
diffi culty with understanding and using statistical terms correctly, and being unsure 
of what should be included in writing and what should not. All of these diffi culties 
can be connected to the main ideas of statistical literacy. Especially, these are rele-
vant to statistical knowledge and context knowledge, which are knowledge elements 
in a model of statistical literacy given by Gal ( 2004 , p. 51).  

31.3        Methodology   

 In this research, 44 preservice teachers took a writing assessment and 12 of them, 
who were selected by the method of stratifi ed sampling, were interviewed. Since 
preservice teachers should evaluate their students in the future and should be able to 
respond correctly in the writing assessment and interview, they are appropriate 
participants. 

 The task used in the writing assessment was about a variance concept. We were 
focused on presenting items which require explanation and interpretation (Peck, 
 2005 ) to facilitate preservice teachers’ writing rather than presenting items which 
require writing about a simple defi nition of variance. As a result, there were items 
asking about the meaning of variance in a particular context, comparing the degree 
of variances with reasons, and estimating the change of variance when data sets 
were changed with reasons. The items were taken from previous studies on vari-
ability (Canada,  2004 ; delMas & Liu,  2005 ; Lee & Meletiou-Mavrotheris,  2003 ; 
Watson, Kelly, Callingham, & Shaughnessy,  2003  and CAOS test), and after the 
pilot study, the items were modifi ed for preservice teachers’ understanding. Several 
items used in the writing assessment are given in Fig.  31.1 .

   The writing assessment took 40–70 min and the interview took 30–60 min per 
person. In the interview, preservice teachers were asked about their way of thinking 
when they took the writing assessment. By analyzing both the written responses and 
interview results, we tried to fi nd the missing information in their written language 
compared to the verbal language which revealed what the preservice teachers knew 
or had considered. There is some possibility that the researcher’s reactions during the 
interview could affect the interviewee’s response; also, preservice teachers were able 
to change their answers after they thought about the question again meta- cognitively. 
Because of these limitations, we excluded the parts for which preservice teachers 
changed their answers and spoke retrospectively. The interview was in a semi-
structured format, and every interview was recorded and transcribed for  analysis. 
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2. There is a spinning disk that is half-white and half-black. A class did 30 sets of 50 spins and
the results for the number of times it landed on the black part are recorded below.
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5. For each pair of graphs, determine which graph has the bigger variance. Explain your answer.

5-1)

5-2)

8. In the following graph, if the two lowest data points had a value of 1 instead of 2, how would
the variance be changed? Explain your answer.

11. Of the followings, determine which sentence has the bigger variance. Explain your answer.

Age of trees in a national forest         Diameter of new tires coming off one production line
Scores on an aptitude test given to a large number of job applicants Daily rainfall
Weight of a box of cereal 

2-1) If you got a variance for the graph above, what does it mean?

  Fig. 31.1    Examples of several items in written  assessment         

 

M.-S. Park et al.



265

From the written response and interview transcripts, we compared the following:  
  The subjects’ usage of terms; presentation of factors of the concepts that they consid-
ered; and presentation of the problem-solving strategies that they used.     

31.4     Results and Discussion 

 After comparing the preservice teachers’ written response and interview results, there 
were the following differences between written language and verbal language: con-
necting of the terms contextually and conceptually, presentation of various factors of 
the concepts that they considered, and presentation of the problem-solving strategies 
that they used. These were not apparently exposed in written language, which means 
that these are the points with which preservice teachers have diffi culty. 

31.4.1     Diffi culty in  Connecting Terms Contextually   

 In the writing assessment, almost all of the items were based on some context. Thus, 
the preservice teachers were required to interpret the meaning of the variance of the 
given data sets rather than merely provide the formal defi nition of the variance. This 
requirement ensured that the preservice teachers could connect their usage of terms to 
the context. Several preservice teachers, in their written responses, described the for-
mal defi nition of variance instead of refl ecting the context of the problem. However, 
in the interview, they showed much understanding of the context (Table  31.1 ).

   Both S7 and S10 described the formal defi nition of variance in written language. 
So their terms that were used to show the meaning of the concept did not refl ect the 
context well. In contrast, the preservice teachers considered the mean of the given 
data sets and focused on the outlier in the interview, which means that they used 

   Table 31.1    Examples of diffi culty in  connecting terms contextually     

 Written language  Verbal language 

 S7: The degree of 
the distance of the 
data values from 
the mean (Q2-1) 

 S7: Maybe I was thinking about the mean value that I calculated. I used 
some process of elimination. I can eliminate the same number of each 
data which are at the same distance from 25. It was not 25 exactly. Maybe 
about 24.5 or 25.5, if I remember it correctly… So I think that the 
variance would be the degree of distance from that point. 

 S10: The degree of 
the spread in the 
result (Q2-1) 

 S10: In the experiment, somewhat regular values should be given. So 15 
seems awkward. If this graph was not given and only the variance value 
was given, we can calculate the probability without looking at this graph. 
If the variance seems unusually big, then we can expect that in the 
experiment, there were some extreme points, like 15. That’s what we can 
know from the variance. 
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appropriate words connected to the context. As Cobb and Moore ( 1997 ) said, data 
in statistics are not just numbers, but numbers with a context. Therefore, consider-
ing the context is essential. Peck (2005) mentioned that the importance of context is 
a primary reason that communication is such an important aspect of statistics prob-
lems. From the result, we examined the preservice teachers’ diffi culty in connecting 
terms contextually in written language.  

31.4.2     Diffi culty in  Connecting Terms Conceptually   

 When communicating about statistics, the usage of terms showing the understand-
ing of the concept which is included in the problem was required. The task was 
about a variance concept. To show conceptual understanding of the variance, the 
preservice teachers should properly connect explanatory terms like mean, deviance, 
and frequency to common words. If they use their own informal terms, then their 
response would be considered to be the opposite of a conceptual response.  Some 
preservice teachers used their own terms in the writing assessment, even though 
they connected terms conceptually well in the interview  (Table  31.2 ). 

 We can see that S9 used his own terms like “pointed” and “thick tails.” He said 
that he used those words because they were the words that he usually used. However, 
in the interview, he tried to approach the variance conceptually by connecting terms 
like mean, data values, and deviance. Likewise, S1 referred to a big range as a “wide 
spectrum.” However, in the interview, she showed her understanding of the variance 
by using terms like mean and deviance. Using statistical terms is important since it 
is an element of the statistical knowledge base in a model of statistical literacy. 
Moreover, preservice teachers should connect those terms to the common words 
conceptually to show their understanding of the concept. From Table  31.2 , we could 
see that preservice teachers feel diffi culty in  connecting terms conceptually  .

    Table 31.2    Examples of diffi culty in  connecting terms conceptually     

 Written language  Verbal language 

 S9: ① less pointed 
(Q5-1) 

 S9: … In graph ②, the data values are very crowded around 75 and in 
graph ①, the data values are evenly spread from 75. So I thought ②’s 
variance is smaller because it is much gathered. I mentioned “pointed” 
in my reason because that is the term that I usually use. 

 S9: ① thick tails 
(Q5-2) 

 S9: Suppose that the mean is 5. If the values of both ends are big, then 
the deviance would be big accordingly. Since the values show big 
deviance, meaning that the values on the very end are big, or have high 
values, the variance is bigger. That’s why I wrote “thick tails.” 

 S1: ④ Wide spectrum 
from no rain to very 
much rain (Q11) 

 S1: There are days when there is no rain and there are days when there 
is very much rain. We have to fi nd the mean of rainfall from those days. 
So if the mean lies between these days, then the deviance would be big. 
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31.4.3        Diffi culty in Presenting Various  Factors   of a Concept 

 When dealing with the variance concept, people should consider various factors of 
variance: mean, data values, frequency, and variability, which can be seen from the 
distribution. Especially, when trying to compare the degree of variance, they should 
consider more than two factors. The preservice teachers presented one or two fac-
tors related to the meaning of variance in the written assessment; however, in the 
interview, they explained variance by including various factors that they had actu-
ally considered (Table  31.3 ). 

  In the writing assessment, S5 only considered the mean and data values. However, 
from the interview, we could fi nd that he was considering the same value, symmet-
ric graph, and the same range, which are rather various and specialized. Also, S11, 
in his written response, wrote only about his consideration of the movement of data 
values. That is a different result from that of the interview in which he mentioned 
the movement of the mean and the change of the deviance of other data values. He 
said that he had somewhat considered those factors when he solved the problem. 
Distribution itself is a multifaceted concept (Bakker & Gravemeijer,  2004 ). When 
considering the variability of the distribution, we should integrate various factors of 
the distribution. Regarding this point, we could fi nd that the preservice teachers had 
diffi culty in writing about integrating the various factors of the concept.  

   Table 31.3    Examples of diffi culty in presenting various factors of a  concept     

 Written language  Verbal language 

 S5: ① The number of 
data values and degree 
from the mean are 
bigger in ① than ②. 
(Q5-1) 

 S5: … In graph ①, since the size of the data sets are the same, the 
degree of spread would affect the variance. Obviously, the mean of 
both graphs is 75, and they are symmetric. If in graph ②, the values of 
55 and 95 were 45 and 105, then there would be many things to 
consider. However, they are 55 and 95 and both the number and data 
are the same as those of ①. Thus, they do not affect the variance very 
much … 

 S11: The variance gets 
bigger since the 
gathered data values 
are scattered. (Q8) 

 S11: … If we look at the shape of the graph, only these data values are 
moved in this way. Then the mean would be moved in the same way 
and the distance between these values and the mean would be bigger. 
If we square those numbers, that is, if we consider the formula of 
variance, then the value of (x−m) 2  gets bigger. So the variance gets 
bigger. 
 R: The explanation you just gave and the writing… When you solved 
this problem, did you consider what you just said? 
 S11: I thought about the movement of the mean. I don’t think I 
considered all of the things specifi cally. I just thought that the mean 
would be changed and the deviance would be bigger. 
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31.4.4     Diffi culty in Presenting  Problem-Solving Strategies   

 When comparing variance, people usually use some strategies. delMas and Liu 
( 2005 ) presented various strategies that students used in comparing standard devia-
tion. The preservice teachers did not mention the strategies that they used in their 
written responses. However, after the interview, we could fi nd that they indeed used 
some strategies like changing one graph to the other graph or imagining a bell- 
shaped graph with which they had already dealt (Table  31.4 ).

   S11, in the writing task, compared the variance of the graphs using the degree of 
the spread. However, in the interview, he mentioned the strategy that he had used, 
which was sending some of the data values in one graph to apply them to the other 
graph. By checking the movement of the data values, he could compare the variance 
of the graphs. S6 also presented some factors of variance in writing, which differed 
from the interview result where she mentioned her image of bell-shaped graphs. In 
the case of S7, he mentioned the strategy of transforming the graph like S11 did. 

   Table 31.4    Examples of diffi culty in presenting  problem-solving strategies     

 Written language  Verbal language 

 S11: ① Values are 
rather spread to the 
outer side. (Q5-1) 

 S11: The end points, which are 55 and 99, are 1 each, and the middle 
area is empty. In graph ②, all of the values are stacked in the middle. 
So if we consider the possibility of changing ② to ①, that is, keeping in 
mind the changing situation, then we can imagine cutting these points 
in the middle and sending them to the side. We can think like that. 
 R: So you made a transformation? 
 S11: Yes, I changed the data… the shape of the graph. Then now we 
can think that if the mean is 75, we sent data values around the mean to 
the side, and the variance got bigger. 

 S6: ① The frequencies 
of the values which 
are far away from the 
mean are relatively 
bigger. (Q5-1) 

 S6: … If we draw the shape of the graph, ② is much thinner and ① has 
wide bell-shaped. In my mind, the variance and standard deviation of 
the wide bell-shaped graph are always big. So I could make a guess. 
 R: How did you make those images? 
 S6: In high school, I learned a lot about normal distribution and I 
usually draw the graph in a bell-shape. Also, I saw that thinner graphs 
have small standard deviation and wide graphs have big standard 
deviation. I applied those images to this problem. 

 S7: ① The number of 
values that are far 
away are bigger than 
those that are near. 
(Q5-2) 

 S7: If we change the order of the data values like a step function, … If 
we change these two values, then it would be in the shape of steps. 
Also, if we send this value to the end, then it would be in the shape of 
steps. Oh, not steps, but mountains. No, maybe a pyramid? Anyway, it 
would be in the shape of a mountain. Then both graphs are shaped like 
a mountain, which is the shape that has the smallest variance. So, 
intuitively, the fi rst one was much more twisted than the mountain 
shape, which means that it has a bigger variance. 
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Also, by saying that the “mountain shape is the one that has the smallest variance,” 
he also used some images in his mind like S6 did. All three preservice teachers 
presented strategies and they were focusing on the informal aspect of the  distribution 
that Bakker and Gravemeijer ( 2004 ) emphasized. However, these considerations 
were not communicated well in the writing assessment, which means that the pre-
service teachers have diffi culty in presenting problem-solving strategies.   

31.5     Conclusion 

 All four aspects that are presented in the results section are important aspects that 
students should have for statistical literacy. Students should be able to connect terms 
contextually and conceptually, and present various factors of a concept and the 
problem-solving strategies that they considered or used. From the interviews, we 
could fi nd that the preservice teachers considered all of the four aspects; however, 
they could not explain them in writing very well though they were able to discuss 
the aspects during the interviews. If we compare those diffi culties with the result of 
Francis ( 2005 ), diffi culty in connecting terms contextually is relevant to “consider-
ing statistics as divorced from the real world rather than a source of information 
about the real world,” and diffi culty in presenting various factors of a concept and 
the problem-solving strategies that they considered or used is relevant to “being 
unaware of what belongs in writing and what does not.” Francis also mentioned the 
diffi culty of understanding and using statistical terms correctly; however, in this 
chapter, we found the additional diffi culty of connecting statistical terms and com-
mon words conceptually rather than the direct use of statistical terms. 

 This study included tasks which require explanation and interpretation to facili-
tate preservice teachers’ writing (Peck,  2005 ). However, the gap existing between 
the preservice teachers’ written and verbal language indicates that they still have 
diffi culty in writing. Further research should consider other ways of facilitating 
students’ writing. The diffi culties of presenting various factors of a concept and the 
problem-solving strategies that they considered or used could be resolved if we 
include some items that ask students to write about statistical processes, as Peck 
mentioned.     
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    Chapter 32   
 Teachers’ Questions in the Statistics Class       

       Lucia     Zapata-Cardona       and     Pedro     Rocha-Salamanca     

32.1            Introduction 

 There is empirical evidence that teachers’ knowledge strongly infl uence students’ 
learning (Hill & Ball,  2004 ). Teachers’ knowledge has been a matter of interest in 
research. Some authors have studied teachers’ knowledge as the result of teacher 
preparation and teacher experience while others have studied what teachers do with 
that content knowledge. This is the abilities of the teacher to understand and use 
subject matter knowledge to accomplish the tasks of teaching. In other words, how 
the content knowledge is used in the class. In this view, teachers’ knowledge goes 
beyond subject courses taken in college or results in content tests. Consequently, 
teachers’ knowledge cannot only be pictured by means of teachers’ subject matter 
skills but by means of teachers’ use of specifi c representations, explanations, and 
analysis of students’ solutions. The skills the teacher places on the design of stu-
dent’ assignment, management of class discussion, and questioning in the class are 
better indicators of teacher knowledge than that offered by the teachers’ subject 
matter skills. 

 In this research, we were interested in the teachers’ knowledge that is dis-
played in the statistic class at different educational levels. We studied different 
aspects that account for statistical knowledge for teaching such as teachers’ expla-
nations and representations, type of examples displayed, ways of dealing with 
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students’ diffi culties, class design and evaluation, and type of questions exhibited. 
In spite of the different aspects studied, in this chapter and because of space con-
strains, we will only report the results related to the teachers’ questions asked in 
the statistics class.  

32.2     Brief Literature Review 

 Questions in the classroom play a very important role in the teaching and  learning  . 
Effective questioning reveals the teachers’ knowledge about the subject and about 
students’ information processes (Moyer & Milewicz,  2002 ). The importance of 
teachers’ questions in the statistics classroom cannot be underestimated. The ques-
tions the statistics teacher exhibits in class are a very good way to look at the class 
quality and at the teachers’ knowledge. These questions are important in shaping 
the classroom atmosphere that allows the development of students’ statistical think-
ing. Questions in the statistics classroom have different intentions. Some questions 
can be used for provoking students thinking, for analyzing students’ thoughts, for 
initiating students’ discussions, and for reviewing material. Several studies have 
focused on teachers questioning in the classroom. Some scholars have categorized 
and count the teachers’ questions in an effort to predict students’ achievement 
(Adedoyin,  2010 ; Cotton,  1989 ; Hancock,  1995 ). Others have focused on the differ-
ent  types   of questions and have studied if different kinds of questions lead to differ-
ent levels of students thinking. Some of these studies have focused on  high-order 
questions   (Brualdi,  1998 ), factual questions (Vacc,  1993 ), open-ended questions 
(Hancock,  1995 ; Vacc,  1993 ), and probing questions (Newmann,  1988 ). 

 Research on teachers’ questioning in the classroom has spread out in different 
subject matters and has been linked to the teaching process. The majority of the 
studies in this topic have been carried out mainly by observing teachers in the class-
room (Brock,  1986 ). However, there are also studies that have used  indirect meth-
ods   (Adedoyin,  2010 ; Çakmak,  2009 ). One study, for example, developed a survey 
for preservice teachers in which they were asked the reasons for questioning in the 
classroom. Findings revealed that preservice teachers think that questions are 
important  to control whether pupils understand or not  and  to make teaching active  
but are less important  to manage the classroom . In this study, only 6.19 % of the 
participants considered that questioning in the classroom is important to  encourage 
students to think  (Çakmak,  2009 ). 

 In fi elds like science education, researchers have studied the  types of   questions 
displayed by the teacher according to the required knowledge to answer the ques-
tions (Chi, de Leeuw, Chiu, & LaVancher,  1994 ). The researchers found that teach-
ers ask different kind of questions in the classroom. Some of them are  literal  that 
only require recall of facts, others require  inference of understanding , others  infer-
ence of knowledge , and only few of them require that the students use their knowl-
edge in a practical  application . 
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 In language education, teachers’ questions have also been a matter of concern. 
A study in English as a Second Language classrooms showed that there is substan-
tial difference in the learning when students are asked   display questions    (answers 
already known by the students but calling for the recognition or recall of factual 
information) and when they are asked   referential questions    (suggesting evaluation 
or judgment) (Brock,  1986 ). Such a study showed a strong positive relationship 
between the cognitive level of the teachers’ question and the cognitive level, length, 
and syntactic complexity of the students’ response. 

 A study in  mathematics education   focused on the students’ perceptions in rela-
tion to teachers’ questions and students’ achievement in mathematics. The study 
applied a Likert scale to 471 junior secondary students from Botswana. Results 
revealed that teachers’ questions have no effect on the students’ mathematics per-
formance. This might indicate that the learning of mathematics in junior secondary 
schools is not promoted through teachers’ questions in the classroom (Adedoyin, 
 2010 ). Although the study was focused on classrooms questions, it did not have data 
from the real classrooms but from students’ perceptions. 

 As the brief literature review shows, teacher questioning in the classroom is a 
problem that has been studied in the context of different subject matters and the 
results have shown that the teachers’ questions can be considered as the most 
powerful device to lead, extend, and control communication in the classroom. 
When used well in teaching, questions function to activate thinking. By using 
questioning and other appropriate teaching strategies teachers can facilitate the 
development of critical thinking, decision making, and problem solving in stu-
dents. In spite of the results from research and the curriculum reforms, teachers 
still ask similar questions in the classroom. 

 There is a resent reform in  mathematics curriculum   in Colombia. We have gone 
from a mathematics curriculum that emphasized the numerical component to an 
integrated curriculum that focus evenly on arithmetic, algebra, geometry, statistics, 
and measurement (MEN,  2006 ). Particularly, the statistical component of the new 
curriculum emphasizes more in the skills of interpreting, reasoning, predicting, 
comparing, justifying, and inferring than in applying algorithms and having factual 
knowledge. The new demands of the  Colombian curriculum   suggest new ways of 
teaching. Focusing on the teachers’ questions in the statistics classrooms is crucial 
at this historical moment in Colombia since it would give us a fl avor of how the cur-
ricular reform is being adopted in the statistics classroom and it would uncover the 
statistical knowledge of the teachers.  

32.3      Methodology   

 We gathered information from: Eighteen Colombian elementary through high 
school statistics classrooms observations, teachers’ interviews before and after a 
statistics class (eight male and ten female), teachers’ artifacts, and discussions in 
learning communities. Classroom observations were kept in video and interviews 
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were kept in audio; classes and interviews were transcribed  verbatim . The main 
source of data for this particular report was classroom observations. We analyzed 
the information with the aim of Atlas.ti software. Each researcher, independently, 
saw the video of each class and, with the help of the transcripts, the episodes where 
teachers asked questions were coded. Then the researchers got together to compare 
the coding and there was agreement in most of the codes. Those where there was 
disagreement were discussed up to fi nding a common ground. Once the coding was 
done, the research team got together in the learning community to study each of the 
questions asked by the teachers and to construct the emerging categories (as it is 
suggested by Hernandez-Sampieri, Fernandez-Collado, & Baptista-Lucio,  2008 ). 
The learning community involved the principal investigator, coinvestigators, 
research assistants, and some of the in-service statistics teachers who participated in 
the study. The teachers’ questions were classifi ed in four emerging categories 
according to the purpose of the question and the level of knowledge required for the 
students to answer them.  

32.4     Results and Discussion 

 A total of 267 questions asked by the eighteen in-service statistics teachers were 
identifi ed. The coding, organization, and analysis of the questions that took place in 
the classrooms seem to be indicative of a pattern. The questions led to four emerg-
ing categories that are explained as follows: 

   Close Questions   : These are the questions the teacher asked when interested in get-
ting a specifi c answer associated with knowledge of facts or with short answers that 
did not require further elaboration. Most of the time these questions were related to 
expressions such as: how many, which one, what is. From time to time teachers 
specifi cally asked for defi nition of concepts. Some examples of questions in this 
category are: How many red cards are there in a deck of cards? What is a sample 
space? What is probability for you? How can we defi ne random? What is the smaller 
value I can get in a probability calculation? 

   Procedural     Question : Sometimes teachers were interested in examining the way of 
carrying out certain algorithmic routine. Examples of these questions are: How can 
you fi nd the average? How can we calculate probability? How can we get a specifi c 
value of the sample space? 

   Monitoring     Questions : Sometimes teachers used these questions to check if students 
were following certain explanations. These questions are intended for examining stu-
dents’ pace in the class but not necessarily to study students’ understanding in a deep 
way.  Monitoring Questions  might resemble  Close Questions . A central characteristic 
to differentiate them is to consider that the purpose of  Monitoring Questions  is to 
check if students are following the class and those questions need to be related to the 
current class discourse. Some examples of these questions are: What is the sample in 
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this example? What is what we need to fi nd in this exercise? Does somebody have 
any question up to hear? What is the population we are talking about here? 

   Analysis     Questions : These are high-order questions and different versions of them 
included teachers demand for justifi cation, reasoning, prediction, or decision mak-
ing. Teachers explored the reasons students give for certain actions or decisions, 
checked on students’ ability to use information for making conclusions, pushed 
students to reason about the validity of certain information, gave information, and 
asked students to make decisions. Although these types of questions were very 
absent in the classroom observations, we present some examples: What are the rea-
sons you have to say that player A has some advantages over player B? What would 
be the usefulness of knowing the probability of an event? What do you think of your 
classmate reasoning? We toss a die, if we get a divisor of three I clean the dishes, 
but if we get a divisor of two you clean the dishes. Is this proposal fair? 

 Table  32.1  shows the percentage of questions of each type asked for the teachers. 
The  percentage of   questions varied from teacher to teacher but there seems to be a 
pattern where teachers privilege  Close, Procedural,  and  Monitoring Questions  over 
 Analysis Questions . Only one teacher had an even pattern among the questions but 
the total percentage of all questions reveals that there is a strong privilege for  Close 
Questions . The table also indicates that very few teachers asked students  Analysis 
Questions .

   The  classifi cation   revealed that  Close Questions  took place in the classrooms 
52.1 % of the times,  Procedural Questions  15.4 %,  Monitoring Questions  19.1 %, 
and  Analysis Question s 13.5 %. These results make public that the statistics class 
strongly privilege low-order thinking questions while higher order thinking ques-
tions that stimulate students’ statistical reasoning are sporadic. Additionally, these 
results make clear that the statistics class in Colombia is short to be considered in 
agreement with the last curriculum reform that claims for the development of stu-
dents’ statistical reasoning more than the learning of facts and procedures. 

 The results from this study can be explained by taking different  approaches  . 
First, low-level thinking questions take little time to prepare while high-level think-
ing questions are demanding and require a well-integrated teachers’ knowledge 
about the subject, the students, and the class management. Second, teachers might 
not be aware of the level of thinking promoted through their questions. Most of the 
participant teachers in the study were surprised when the results were shared. The 
teachers concluded that they might not be challenging their students enough. Third, 
statistics teachers might not feel comfortable with the topic taught and they might 
prefer to ask questions in which they have full control and do not risk with unex-
pected answers. A recent study revealed that 20 % of statistics teachers in Colombia 
have never taken a single course in statistics and 50 % only have taken one course 
(Zapata-Cardona & Rocha-Salamanca,  2012 ). The abundant interaction in which 
the teacher has the control of the class with  close questions  is also a revelation of the 
teacher knowledge. The amount of  close, procedural,  and  monitoring questions  in 
the classroom could reveal the teachers’ lack of confi dence in the subject matter 
they teach. Open-ended questions were scarce perhaps due to the unpredictability of 
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the students’ responses. Finally, all the participant teachers in this study were aware 
of the curriculum reform and what they did in class was supposed to follow the cur-
riculum requirement; however, the type of questions they encouraged in the class-
room were far to be considered promoters of the statistical reasoning claimed in the 
reform. Perhaps what they do in the class refl ects how they interpret the curriculum 
reform. This could indicate that a successful adoption of a reform requires a strong 
participation of refl ective teachers not only as consumers but as creators.  

   Table 32.1    Percentage of questions of each type asked by the statistics teachers   

 Type of questions 

 Teacher  Grade  Class topic  Close  Procedural  Monitoring  Analysis 

 Carlos    Sixth  Graphic 
representation of 
data 

 55.6  11.1  33.3  0.0 

 William  Ninth  Probability  91.7  8.3  0.0  0.0 
 Mosquera  Eighth  Graphic 

representation of 
data 

 12.5  12.5  75.0  0.0 

 Susana  Ninth  Counting 
techniques 

 12.5  50.0  25.0  12.5 

 Marta  Tenth  Spread 
measurements 

 50.0  0.0  16.7  33.3 

 Rodrigo  Tenth  Central tendency 
measurements 

 0.0  0.0  0.0  0.0 

 Gloria  Tenth  Probability  50.0  25.0  16.7  8.3 
 Claudia  Eighth  Statistical 

concepts 
 25.0  25.0  25.0  25.0 

 Pablo  Eleventh  Probability  44.4  25.9  11.1  18.5 
 Fredy  Tenth  Probability  45.5  18.2  0.0  36.4 
 Diana  Ninth  Central tendency 

measurements 
 40.5  14.3  21.4  23.8 

 Oswaldo  Tenth  Graphic 
representation of 
data 

 39.1  4.3  47.8  8.7 

 Ricardo  Seventh  Central tendency 
measurements 

 83.3  16.7  0.0  0.0 

 Rosalba  Fifth  Graphic 
representation of 
data 

 71.4  0.0  28.6  0.0 

 Marcela  Seventh  Probability and 
graphic 
representation 

 63.6  13.6  9.1  13.6 

 Zoraida  Third  Data collection  88.9  0.0  11.1  0.0 
 Carmen  Fourth  Data collection  100.0  0.0  0.0  0.0 
 Sonia  Tenth  Probability  55.2  24.1  13.8  6.9 
  Total 
percentage  

 52.1  15.4  19.1  13.5 

  Teachers’ names are pseudonyms to protect the confi dentiality of the participants  
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32.5      Implications   

 Results from this study suggest that teacher refl ection is needed. Teachers might not 
be aware of the level of thinking promoted in their classroom by means of their 
questioning if somebody else does not help them see the implications of the ques-
tions. Teachers can sharpen their questioning skills by becoming familiar with dif-
ferent typologies of questions to help students think critically. Teachers should be 
provided with refl ective training in developing their questioning techniques. There 
is evidence that with training teachers can modify their questioning skills so that 
they can ask high-order questions in the classroom (Brock,  1986 ). A good question 
is a powerful teaching tool and teachers should know how to use questions to teach 
effectively. Good questioning requires technical knowledge. 

 These results also suggest that Colombian in-service statistics teachers use ques-
tions in the classroom for many different reasons but  encourage students to think  is 
one of the less valuable reasons. The majority of the questions proposed by the 
statistics teachers in the classroom focused on low-level thinking which just check 
for students’ knowledge of facts or procedures. The low frequency of high-level 
thinking questions could be an indicator of the limitation of the teachers’ knowl-
edge. Students should be challenged with questions that are not only checking 
knowledge but offer opportunities to go beyond that. Those opportunities should 
promote the development of the statistical reasoning as it is required in the recent 
curriculum reform in Colombia. However, although good questioning techniques 
are favorable skills in teachers, developing students’ statistical reasoning requires 
well-developed and well-integrated teachers’ subject matter knowledge. Perhaps 
professional development programs for teachers are even more complex than antici-
pated and they should be focused on holistic training and not only on isolated 
aspects of teaching.     
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    Chapter 33   
 Statistical Training of Pre-service Teachers 
with Application in School Practice       

       Miriam     Utsumi     ,     Irene     Cazorla     , and     Verônica     Yumi     Kataoka    

33.1            Introduction 

 In Brazil, teachers are expected to have an understanding of probability and statis-
tics, as suggested by the National Curricular Parameters for correct teaching. Those 
concepts are in section known as “Treatment of Information” (data handling) in 
elementary schools (Brasil,  1997 ) and middle schools (Brasil,  1998 ), and in the 
“Data Analysis” section for the high school (Brasil,  2002 ,  2006 ). However, results 
for the last National Examination of Performance to Students from Mathematics 
Courses show that the performance of pre-service teachers (undergraduate students) 
is much lower than expected, with the further problem that these graduates are legally 
authorised to work with students in elementary and high schools without having 
suffi cient knowledge, especially relating to the didactical aspects, to provide a qual-
ity education. 

 With the aim of reversing this situation, in 2007 the Brazilian government 
created the Scholarship Program for Pre-service Teachers (PIBID) in order to support 
and enhance the learning of teaching by pre-service teachers, by placing them in 

 An extended version of this chapter was published in: Utsumi, M. C., Cazorla, I. M., & Kataoka, 
V. Y. (2014). Statistical training of pre-service teachers with application in school practice. 
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schools, with responsibility for preparing and implementing activities in partnership 
with adviser professors at the university and supervisor teachers at school. 

 Several researchers have reported experiences with pre-service teacher training 
and studies have been developed about these experiences. For instance, Groth and 
Bergner ( 2004 ) reported on teaching statistical sample, Canada ( 2006 ) about 
variation in a probability context and Leavy ( 2010 ) about informal inferential 
reasoning. 

 In this chapter, we present a discussion about an application of probability and 
statistics activities by a group of four pre-service teachers in mathematics, all par-
ticipants in PIBID with students from the sixth to ninth years of schooling (from 11 
to 14 years old) at two public schools in the State of São Paulo.  

33.2     Literature Review 

 As in other countries, statistics and probability are part of the mathematics curricu-
lum in Brazilian schools. According to Batanero, Godino, and Roa ( 2004 ) this is 
due to the usefulness of statistics and probability in daily life, its instrumental role 
in other disciplines, the need for basic stochastic knowledge in many professions 
and its role in developing critical reasoning. 

 Despite this, Shaughnessy ( 1992 ) points out that the unfamiliarity of mathemat-
ics teachers during their training with statistics is a major obstacle to successful 
teaching and school learning of this subject. Indeed, Cazorla ( 2006 ), Contreras, 
Batanero, Díaz, and Fernandes ( 2011 ), Nicholoson, Road, and Darnton ( 2003 ), 
Peck and Gould ( 2005 ) all argue that teachers from mathematics graduate courses, 
sometimes have some basic training in probability and statistics, but generally are 
not trained in issues related to teaching these subjects. According to Viali ( 2008 ), 
most of major mathematics courses in Brazil offer only a single 60–75 h course on 
descriptive statistics and probability, and this rarely deals with aspects of teaching 
statistics. For example, in the “Introduction to the Theory of Probability” course, 
the goals involve familiarising the student with probabilistic reasoning and provid-
ing a basic knowledge for the proper understanding of statistical  methods. 

 In this study, the statistics course provided is the  Theory of Probability   at a higher 
education level without discussing about didactical aspects of statistical thinking. 
This way,    it will be diffi cult for prospective teachers to teach in basic education as 
shown below. An analysis of the contents of the course (frequency and probability, 
conditional probability and independence, random variables, discrete distributions 
(Uniform,  Bernoulli, Binomial, Geometric, Hypergeometric and Poisson), continu-
ous distributions (Uniform, Exponential, Gamma, Normal and  t -Student), Normal 
approximation to the Binomial,  n -dimensional variables, hope, variance, covari-
ance, Markov inequality and Central Limit Theorem)—suggests that there are many 
topics covered, but the topics refer only to probability and statistics at an advanced 
level, and therefore do not take account of the level of content that these teachers 
will have to teach in middle school, much less how to teach such content. 
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 Franklin and Kader ( 2010 ) propose that the knowledge required by math teachers 
who are teaching statistics must be based upon three  principles  : knowledge of what 
we would expect educated members of society to know; that the knowledge used for 
teaching statistics is not the same as the statistical knowledge needed for other 
statistics-based professions; and, the statistical knowledge needed for teaching must 
be usable for such challenges as interpreting a student’s error, using multiple forms 
to represent a statistical idea and developing alternative explanations. 

 Thus, the Brazilian teachers who teach statistics need to understand the basic 
concepts of statistics. They should gain “both  technical and conceptual knowledge  ” 
of the statistics and probability content that appears in the curriculum for their 
students, which is described in Brasil ( 1998 ) and is summarised in Table  33.1 .

   In this context, we have, in our study, similar goals to Peck and Gould ( 2005 , 
p. 1): the development of an experience for pre-service teachers that would provide 
them with the necessary background to teach introductory statistics; the provision 
of help for teachers to incorporate real data, active learning and technology in teach-
ing introductory statistics; to provide access to a variety of resources for teaching 
statistics; to create a community of learners who can advise and support each other 
in matters of classroom practices, pedagogy and understanding statistical concepts. 

 To achieve these goals, we trained pre-service teachers in applying two Didactical 
Sequences ( DS     ): “Profi le of the Class” and “ Water Planet     ” (Cazorla & Santana,  2010 ). 

 The concepts involved in these  DS       are suggested in “Treatment of Information” 
(data handling) Section (Brasil,  1998 ). These DS were  designed      for statistics 
 teachers and are available in the Virtual Environment to Support Statistics Literacy 
Basic Education: AVALE- EB   (Fig.  33.1 ).

   In these DS students follow the steps of a cycle of  scientifi c investigation     : back-
ground of the problem situation, formulation of hypotheses, defi ning the variables, 
collecting and recording the data, calculation of statistical measures and constructing 
tables and graphs, data interpretation and communicating the results. 

   Table 33.1    Statistic and probability content in the curriculum for Brazilian schools   

 Content  Sixth to seventh grade  Eighth to ninth grade 

 Table and graphs  To read and understand data 
in tables and graphs 

 To build pie charts, column charts, 
histograms and frequency polygons 

 To collect, organise and 
describe data in tables and 
graphs 

 Absolute and relative frequency samples, 
population 

 Central tendency 
measures 

 To understand mean as a 
tendency indicator 

 To calculate and understand mean, mode, 
median 

 Sample space, 
probability 

 Synthesise, communicate 
and draw conclusions 

 To present the data globally, highlighting 
relevant aspects, to allow inferences 

 Sample space and estimation 
by ratio 

 Multiplicative principle 
 Design of experiments and simulations to 
estimate probabilities and check provided 
probabilities 
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 These DS  use      interdisciplinary content, contextualised within the school 
environment, exploring the cognitive aspects of learning and those related to the 
development of critical awareness of the use of natural resources and a respect for 
diversity. In DS students actively participate in all activities, so DS can contribute to 
statistical literacy by using statistical and probabilistic concepts that enable the 
development of the critical reading ability of basic education students and can also 
contribute to the scientifi c education of these students.  

33.3     Methodology 

 Initially, the four pre-service teachers were invited to participate in a training activ-
ity on two Didactical Sequences (DS) that would work with students in middle 
schools. 

 Following the training activity the four pre-service teachers made a plan to 
implement each DS at school for 2 h per week for a month, using 3 weeks to work 
in a “ pencil and paper environment     ” and 1 week to work in a “ computing environ-
ment     ” followed by the application of a small statistical test. These activities were 
developed with students from fi ve classes of sixth and seventh grade, and three 
classes of eighth and ninth grade students, totalling 16 classes in middle school.  

  Fig. 33.1    AVALE-EB’s homepage (  http://www.iat.educacao.ba.gov.br/avaleeb    )       
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33.4     Key Results 

 Throughout their training we found that despite the pre-service teachers having 
already attended an introductory course in statistics, they didn’t know how to iden-
tify the nature of variables, which is an important competency to work within the 
DS “Profi le of the  Class     ”, in which students are encouraged to formulate research 
questions and helped to identify the treatment of nominal or ordinal qualitative vari-
ables and discrete or continuous quantitative variables and shown how to represent 
their data. They also revealed a feeling of insecurity, due not so much to lack of 
preparation in statistics, but more especially to a lack of preparation for the teaching 
of statistics. As a result the pre-service teachers studied each step of the sequences 
and did additional reading to remedy their concerns and develop complementary 
activities before implementing DS with the students, especially in the interpretation 
of graphs for middle school students, as this is the most commonly required activity 
in Brazilian educational assessments. 

 In the fi rst application of the DS “ Profi le Class     ” with the classes of seventh grade, 
students were very excited and formulated several questions about aspects of every-
day life, regarding for instance, favourite soccer team, number of pets, favourite 
food, taste in vegetables and salads, favourite sports and favourite teacher. The DS 
gave students the opportunity to learn statistics while working with their own data 
and the contents explored could include: charts: bar, pie and dotplot graphs, mea-
sures of central tendency (mean, median and mode) and measures of dispersion 
(total amplitude). 

 In the “ pencil and paper environment     ”, the activities were as planned: students 
were asked to construct statistical tables or graphs, they could see how to build up 
and to understand information from different kinds of sources. One of the pre- 
service teachers felt that there was a need to strengthen the interpretation of several 
kinds of chart in his two classes. 

 Before working with measures of central tendency with the students’ data, the 
pre-service teachers decided together that it would be interesting if such measures 
were intuitively perceived and they decided to use a game. 

 The game chosen was based  on   Super Trunfo ®  (Super Trumps) because it 
requires throughout that the player realises that there are better cards than others in 
certain respects, and values that tie more easily than others. The original game has 
32 cards and each card contains 6–8 pieces of information. 

 The pre-service teachers decided to create a version of Super Trunfo ®  themed 
movies with fewer cards (20), separated into four groups of fi ve. The game pro-
duced was named “Super Movie”. It was important to reduce the number of cards 
and the amount of information from that in the original game so that study of the 
distribution of data was possible. 

 The pre-service teachers also studied the dynamics of watching games with 
 students     : how the cards were distributed according to three variables (release year, 
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duration and revenue) and the best strategy for certain groups of cards (Fig.  33.2 ). 
Throughout the game the students realised for example, that revenues worth more 
than $1 billion had great chances of winning and that movies of more than 120 min 
duration were too long. The median, which is traditionally studied as an end in 
itself, had a practical utility in the game, because if in one of the variables, a piece 
of information was greater than the median, the possibility of gaining the card was 
over 50 %. So the students had to compare variables, and calculate the mean, median 
and mode to beat their opponent. This game stressed statistical concepts.

   The pre-service teachers tried to use the “ computing environment     ” with students, 
but there were problems, for example a slow internet connection when accessing the 
AVALE-EB made it impossible to work with the DS. 

 In the statistical test these students performed well. The pre-service teachers 
believe that their performance indicated that the questions were appropriate to the 
topics covered in this DS. 

 In the application of the DS “ Water Planet     ”, with students from the eighth and 
ninth grades,  the concepts were studied only in the “pencil and paper environment”. 
The contents that can be explored are: variables ordered by time; charts: bar, line 
and dot plot; measures of central tendency (mean, median and mode) and measures 
of dispersion (total amplitude, deviation, mean deviation, variance, standard devia-
tion and coeffi cient of variation). It is also possible to relate the concept of per capita 
consumption of water with the arithmetic mean. 

 The pre-service teachers expected that using data from the student’s own water 
 bills      (Fig.  33.3 ) would motivate them to work with this DS. However this didn’t 
happen, as most of the students didn’t provide their own water bills, requiring pre- 
service teachers to work with data from the  AVALE-EB database      (Fig.  33.4 ).

  Fig. 33.2    Examples of cards designed by pre-service teachers for the game “Super Movie”       
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    This activity demonstrated the diffi culty students had in working with scales and 
the “simple rule of three”. More time was thus spent making and interpreting graphs. 
The third week began with defi nitions of some measures of dispersion, amplitude, 
deviations and mean deviation. These measures were presented using graphs previ-
ously used by the students to help them understand their meaning. For example, 
students were asked to chart the average monthly water consumption of a family using 
a bar graph showing the consumption each month, and this showed that the deviations 
were nothing more than the distance from the top of the base to the mean line. 

 Students were given a table to fi ll with the data provided in the water bills and 
with which to calculate several measures of  dispersion   (Fig.  33.5 ). With this table 
the students made calculations of the dispersion measures discussed and were able 
to make comparisons with their peers.

   In the second school the pre-service teachers decided not to use  AVALE-EB      for 
the calculations, and instead made a simple table in Excel format, similar to that 
given to the students to fi ll in at the third stage. The table was completed automati-
cally    when students entered the water consumption for each month. The graphics 
were also constructed automatically when the table was completed. 

 The  statistical test   was very extensive and demonstrated that the concepts of 
median and average deviation weren’t learned effectively in both schools.  

  Fig. 33.3    Example of a water bill in Brazil       

  Fig. 33.4    Class database in AVALE-EB       
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33.5     Final Considerations 

 The pre-service teachers were limited in several ways: they were most focused on 
pedagogy over content. It considered that training activity as short workshop format 
is not conducive to the development of full content understanding. This is in accord-
ing to Gattuso and Pannone ( 2002 ). 

 The diffi culties experienced by the pre-service teachers can be explained, in part 
because the subject is not covered in their initial course for teachers of mathematics, 
and they are therefore untrained to present the contents of the Data Handling project 
and the didactic aspects that should be taught in basic education. 

 Their initial course for teachers of mathematics have only a list of concepts and 
procedures, but there is no evidence of statistics as a tool of quantitative scientifi c 
research, which allows the formulation of hypotheses, planning the collection, 
 processing and analysis of data, nor as a language that permeates information con-
veyed by the media. 

 In general, the experiment in school was evaluated positively, due to the active 
participation of the students—capable students took responsibility for helping the 
weak students, lazy students were stimulated to work—and because most students 
were able to make sense of the tables and graphs, and learned to compute the mean, 
the median, mode for much grouped data with the help of Excel or AVALE-EB. 

 After qualitative correction of the statistical tests, the pre-service teachers 
discussed the results amongst themselves and with their advising professors and 

Month(i) Consumption
(xi)

Mean*
x

Deviation
( x i   − x )

Square Deviation
( x  −  x ) 2

i

January
February
March
April
May
June
July
August
September
October
November
December
Sum -----
Mean -----
*To repeat the mean in the all lines

Mean Deviation Variance

( )

  Fig. 33.5    Example of worksheet for the ST planet water       
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supervising teachers about, considering perceptions of failure and changes to the 
next application of these DS. For the in-service teachers the PIBID has been an 
opportunity for continued education. One of the supervisors, who had been in a state 
of great emotional distress about the profession, and had demonstrated great apathy 
in merely repeating former semesters, changed his attitude with the new activities 
proposed by the pre-service teachers and the reasoned response of the students, 
going to give suggestions and participate in more activities in general school. 

 It is therefore believed that the PIBID has provided important moments of train-
ing to pre-service teachers: in teaching statistical concepts that will be needed for 
teaching in the future, and providing opportunities to prepare and execute activities 
in the classroom with the guidance and supervision of professors and teachers, 
which gives greater security for pre-service teachers who are learning to teach.     
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    Chapter 34   
 Statistics in Primary Education in Greece: 
How Ready Are Primary Teachers?       

       Eugenia     Koleza      and     Aristoula     Kontogianni    

34.1            Introduction 

 Although there is a prominent belief that statistics is not actually mathematics 
(e.g., Cobb & Moore,  1997 ; delMas,  2004 ; Pereira-Mendoza,  2002 ), in the school 
reality is part of the mathematics syllabus. In Greece, like other countries worldwide 
(e.g., NCTM,  2000  for USA; [ACARA],  2010  for Australia) statistics is taught 
within the course of mathematics. 

 Compulsory education in Greece consists of primary and secondary education 
and its duration is of 9 years. Primary education is about primary school which consists 
of six grades (ages 6–12). Statistical notions that were taught in the last three grades 
according to the national standards (CTCF,  2003 ) included:

•    Collection, organizing, and interpretation of data.  
•   Construction and interpretation of graphs (bar graphs, pictographs, and line 

graphs).  
•   Computation and interpretation of the mean.    

 The new curriculum that was released on May 2011 places more emphasis on 
statistics: statistics will be taught in every grade and will include, in addition to the 
previous curriculum, the teaching of stem-and-leaf plots, line plots, double bar 
graphs, mode, median, and range. Given that a recognized key player in the 
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 curriculum reform process is the teacher (Shaughnessy,  1992 ), it turns out that 
successful implementation of new statistical contents will be problematic because 
of poor knowledge and inexperience of primary teachers.  

34.2     Research About Teachers’  Statistical Knowledge   

 While there are many studies about the statistical competence of students (e.g., Garfi eld, 
 2003 ; Watson & Callingham,  2003 ), those concerning statistical competence of 
teachers are relatively few and concern mainly: comprehension of measures of center 
and graphs as well as teachers’ beliefs and attitudes towards statistics. More precisely, 
studies about teachers’ comprehension of measures of center (e.g., Batanero, Godino, 
& Navas,  1997 ; Cai & Gorowara,  2002 ; Groth & Bergner,  2006 ; Jacobbe,  2008 ) 
revealed a lack of understanding of the algorithm for calculating the average, a diffi -
culty in discriminating the mean with the other measures of center and little or no 
understanding of the effect of outliers on the mean (Jacobbe & Carvalho,  2011 ). 

 Research involving teachers’ comprehension of graphs (e.g., Bruno & Espinel, 
 2009 ; Espinel, Bruno, & Plasencia,  2008 ; Jacobbe & Horton,  2010 ; Monteiro & 
Ainley,  2003 ) revealed that teachers had diffi culties in the interpretation of statistical 
graphs, they weren’t able to make generalizations about the data (Gonzalez et al., 
 2011 ) and were unsuccessful with questions that assessed higher levels of graphical 
comprehension (Jacobbe & Horton,  2010 ). 

 Studies about teachers’ beliefs and attitudes towards statistics (e.g., Begg & Edwards, 
 1999 ; Chick & Pierce,  2008 ; Estrada et al.,  2008 ) showed that they reacted in a negative 
way towards the subject in question, although they stated that statistics enables people to 
comprehend better their world. 

 In Greece, research (Chadjipadelis,  1999 ; Pagge,  1999 ) is restricted in results’ 
analysis of professional development programs, without a prior examination of the 
statistical knowledge level of participants. The present study, given the appearance 
of new mathematics curricula, attempts to investigate and describe the level of 
statistical competence of primary teachers in Greece.  

34.3     Theoretical Framework and Research Question 

 Several studies have shown that teacher knowledge is connected to what and how 
students learn and depends on the context in which it is used (Ball & Bass,  2000 ; 
Cobb,  2000 ). According to Shulman ( 1986 ), there are three layers of knowledge 
that are necessary for effective teaching: (a)  subject matter knowledge  , (b)  peda-
gogical matter knowledge  , and (c)  curricular knowledge  . Our conviction is that in 
order to teach according to modern standards, teachers need to understand subject 
matter deeply and fl exibly enough, so they will be able to help students create useful 
cognitive maps, relate one idea to another, and address misconceptions. Teachers 
need to see how mathematical ideas connect across different fi elds and to everyday 
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life. This kind of understanding provides a foundation for pedagogical content 
knowledge that enables teachers to make ideas accessible to others (Shulman, 
 1987 ). This is why in our research we focused on teachers’ subject matter knowl-
edge. More specifi cally, our research question was as follows: 

 How ready are primary school teachers in Greece for the teaching of statistics 
with respect to the standards set forth in the new curriculum of mathematics? 

 The  research question   was restricted to the knowledge of primary teachers in 
regard to:

•    The computation of measures of center and measures of spread. The reading, 
interpreting, and inferring data from graphical displays.  

•   The above competencies were chosen because of their importance as they are part of 
the mathematics curriculum of primary school and they are omnipresent in research 
literature.     

34.4     Method 

 In order to answer the research question, a combination of  quantitative and qualitative 
techniques   was used. The primary researcher spent extensive time in the fi eld of reading 
and analyzing the offi cial documents and similar studies, constructing and administrat-
ing an assessment instrument, and conducting interviews with the participants. 

34.4.1      Setting and Participants   

 The participants were selected using purposeful sampling (Patton,  1990 ). The ten 
participants (four female and six male) were selected because they were rated highly 
as they were all principals and vice-principals of primary schools in an urban area 
located in the southwest region of Greece. In particular, these teachers were selected 
as they had many years of teaching experience (from 10 to 32 years) in all grades of 
primary education and all had participated in programs of professional develop-
ment. Three of them had a master degree in teaching science, one a doctorate degree 
in philosophy and two a second degree in early childhood education. 

 The research was conducted during the fi rst days of September 2011 as September 
is the fi rst month of school year and the new standards for Mathematics education 
were released on May of 2011.  

34.4.2     Two Phases of  Data Collection   

 The data for the present study were collected during two phases. In the fi rst phase, 
an assessment instrument was administrated to the participants. The second phase 
of data collection consisted of face-to-face semi-structured interviews, duration of 
20 min, with each one of the participants. The interview’s purpose was to clarify 
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individual teacher responses of the written instrument and for this reason the 
questions were guided by the nature of the written responses. 

 The assessment instrument was developed to assess only statistical content 
knowledge with respect to the standards as proposed by the offi cial documents. 
Reliability of the instrument was tested using a Cronbach’s alpha simulation 
approach (Leontitsis & Pagge,  2006 ) and the results showed  α  = 0.83. 

 The assessment instrument’s items in order to measure the statistical content 
knowledge included the following:

•    Reading, interpreting, and inferring data from graphical displays such as line 
plots, stem-and-leaf plots, pictographs, and double bar graphs.  

•   Computation of measures of center (mean, median, and mode) and measures of 
spread (range) and inferring conclusions from these.    

 The assessment instrument measured different levels of cognitive outcomes for 
each aspect and consisted of seven open-ended items with multiple parts intended to 
be answered in 45 min. Statistical literacy’s domain was measured through the 
recognition, identifi cation, computation, and understanding of measures of center 
and spread using the framework developed by Garfi eld ( 2002 ) and delMas ( 2002 ). 
As for the graphical displays, the three components of graph comprehension were 
considered: reading the data, reading between the data, and reading beyond the data 
(Curcio,  1987 ; Friel, Curcio, & Bright,  2001 ). 

 The analysis was conducted by coding each item’s responses utilizing a rubric 
for levels of correctness (0–4) adapted from Garfi eld ( 1993 ) and Thompson and 
Senk ( 1998 ) and used by Sorto ( 2004 ). The total number of questions was 17, making 
a total of 68 possible points.  

34.4.3      Limitations   

 The present study is limited by the sample size because examining only ten teachers 
is inappropriate to infer for all primary teachers. Nonetheless, because of the fact 
that for the data collection it was used an assessment instrument followed by inter-
views and the sample consisted of ten highly ranked and well-educated teachers 
allows us to make an early estimation about the level of statistical content knowl-
edge of the primary in-service teachers in Greece.   

34.5     Discussion and Results 

34.5.1     Overall Performance 

 In general, the participants’ performance was not suffi cient. Specifi cally, as it con-
cerns the fi rst part of our research question—about the measures of central ten-
dency—the majority of them (9–10) were unable to compute the median for a set of 
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ten numbers, as they were unfamiliar with this concept. They interpreted “median” 
as “the number in the middle” when the data are placed in order, but they didn’t 
know how to compute it. All of them were able to compute the mean, but four of 
them answered that it can’t be a decimal number. Despite the fact that they were 
able to compute the mean in various contexts (data sets or graphs), most of them had 
diffi culties to understand that it is an indication point for a data set rather than a 
number that can give as always accurate information. However, it is amazing that 
two of them noticed that the mean can’t be representative enough of a set of data 
when there are outliers, without having prior knowledge of it. As it concerns the 
notion of range, all of them were able to understand what it is about, but described 
it as a space rather than a number. 

 In respect to the second part of our research question, the results showed that 
they were able to understand and interpret double bar graphs and pictographs, but 
they had diffi culty in understanding the structure of the stem-and-leaf plot and of 
the line plot. These particular graphs are new to mathematics curriculum and most 
of the teachers believed that are inappropriate for the primary school. In addition, 
most of them connected the choice of a graph with the conclusion that occurs and 
not with the data that are represented by the particular graph.  

34.5.2     Discussion of Specifi c Items 

 The majority of the participants showed diffi culty in answering the questions that 
involved a  stem-and-leaf plot   and a  line plot  , although an explanation was provided. 
These items come from the research of Sorto ( 2004 ) (Figs.  34.1  and  34.2 ).

  Fig. 34.1     Stem-and-leaf plot   question (Sorto,  2004 )       
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   Specifi cally for the  stem-and-leaf plot   teachers expressed their disapproval as 
they believed that it was very diffi cult for them and for their students. They supported 
their belief by the fact that they weren’t able to make inferences about it, as they 
showed diffi culty in combining the numbers at the two sides of the stem.

   Interviewer: What do you think about the stem-and-leaf plot?  
  Sophia:  It is very diffi cult… I can’t understand it…I can’t believe that my 

students will be able to understand it…  
  Interviewer: Why?  
  Sophia:  Because of the way that the data are represented…The fact that there 

is a digit that you must combine with the rest numbers is very con-
fusing…I believe that it will be very diffi cult for the students…some 
of them aren’t able to discriminate the value of the digits in a 
number…  

  Interviewer: What do you think about the stem-and-leaf plot?  
  Maria:  It is very diffi cult for me… It is the fi rst time that I see such a graph…

I couldn’t “read” it because I was not able to understand the connec-
tion between the numbers at the two sides of the line…    

 The next item was about a line plot and the notion of the mean. Except for the 
diffi culty they showed in understanding of the certain graph, they expressed also 
misunderstandings about the mean (Fig.  34.2 ).

    Interviewer: Is it possible the mean to be a decimal number?  
  Bill:  No it can’t be, because we use the mean in order to express a value 

approximately…. So it isn’t necessary for us to be punctual. It isn’t 
necessary to use decimal numbers.  

  Interviewer: Do you think that the mean can be a decimal number?  
  Ann :  I don’t know…Is it possible to have a family with 3.5 members?…It 

doesn’t exist such a thing…No, I don’t think so…but I can’t tell for 
sure…    

The following line plot shows the number of people in households in a neighborhood 

Number of People In Households

X
XX X X

X

1 2 3 4 5 6 7

a. Find the mean. Show how you find it.

b. Is it possible to have other sets of data with the same mean?
    Explain why or why not.

c. Is it possible to have a data set of six households with mean 3  people ?

If yes, give an example.
If not, explain why.

2
1

  Fig. 34.2     Line-plot   question (Sorto,  2004 )       
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 Among the items concerning the measures of center and spread, the following 
one that was constructed by the researchers proved to be diffi cult for the teachers as 
they lacked the necessary content knowledge: Not only most of them didn’t know 
how to compute the median, furthermore, the analysis of the transcript showed that 
they confused it with the mean and the  mode   (Fig.  34.3 ).

    Interviewer: What is the median?  
  Sophia: It is the value that occurs more often…the repeated value…  
  Interviewer:  Is it the same thing the mean and the median?  
  Andrew:  No, it isn’t …The median is the tension I think…the tension that 

exists in the data. The mean shows us an element…that…I can’t 
describe it…it shows us the middle of our data while the median 
shows the tension….      

34.6     Conclusion 

 The main conclusion of this study is that primary teachers involved had a low-level 
knowledge of basic statistical notions. Some of these notions like the median, the 
mode, the range, the stem-and-leaf plot, and the line plot were completely unknown 
to them. 

 This result coincides with the results of previous studies (Jacobbe & Horton, 
 2010 ) as it is impossible for people to have mastery of ideas that have not been 
taught. However, this study also revealed that the participants were unable for 
deeper thinking even in notions that they were familiar with, like the mean or the 
choice of the appropriate graph. This fact leads us to conclude that only content 
knowledge is not suffi cient and the implementation of professional development 
programs for the in-service teachers in the fi eld of statistics is necessary. If the main 
goal of a mathematics curriculum is not only superfi cial knowledge for students, but 
a deep understanding of statistical notions, it is important for the teachers fi rst to 
understand these notions at least one level beyond the level they will teach. If teach-
ers strive to make their students lifelong learners, they too must continue to be 
lifelong learners, for this is where real understanding takes place (Arnold,  2008 ). 
With adequate training, teachers will be more confi dent and they will be able to 
encourage students to speculate and explore phenomena, to create their own data 
representations and make their own conjectures instead of limiting them to the prac-
tice of procedural skills and execution of calculations (Gattuso & Ottaviani,  2011 ). 

 The partial results of this study—though limited—coincide with studies around 
the world (e.g., Groth & Bergner,  2006 ; Jacobbe & Horton,  2010 ; Sorto,  2004 ) 
about the teachers’ low level in understanding statistics. As it concerns the measures 

Ten students take every day as allowance the above amount of money
                                     4,5,3,2,2,7,8,4,5,2
For these data compute the median, the mode and the range.

  Fig. 34.3    Measures of  center and spread   (Sorto,  2004 )       
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of center, it is profound that the understanding of the content needed to teach these 
notions at the elementary level is a nontrivial matter (Groth & Bergner,  2006 ). 
While, as far as graphs are concerned, it was apparent that the in-service teachers 
had a low-level comprehension of these (Jacobbe & Horton,  2010 ). The results of 
this study reveal that in Greece, like other countries around the world, the teaching 
of statistics needs a different approach in contrast to other subjects in mathematical 
syllabus.     
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    Chapter 35   
 Developing Statistical Literacy (DSL): Student 
Learning and Teacher Education       

       Hélia     Oliveira     ,     Ana     Henriques     , and     João     Pedro     da     Ponte    

        Recent mathematics curriculum orientations stress the importance of developing 
students’ statistical literacy at different school levels. Many students can read and 
understand tables, charts, and graphs and perform the procedures to fi nd statistical 
measures, but they miss the conceptual abilities to interpret and draw conclusions 
from graphs, or to make decisions on which calculation is appropriate to study a 
particular situation (Shaughnessy,  2007 ). In Portugal, the mathematics syllabus for 
basic education which started in 2010 presented more demanding learning objec-
tives for statistics. This was a challenging situation for teachers requiring them to 
develop new perspectives and professional knowledge, since many of them did not 
have a suitable preparation in statistics. In this context, we planned a project aiming 
to construct knowledge about statistical literacy development, with two main  foci  : 
(1) the characterization of students’ statistical literacy from preschool to secondary 
levels, and the possibilities and constraints for its development, and (2) the develop-
ment of teachers’ statistical and didactical knowledge for teaching in in-service and 
preservice teacher education settings. A review of literature supported both the 
planning and development of teaching experiments in classrooms at different school 
levels, based on sequences of tasks and the use of technological tools and the plan-
ning of courses in preservice education of educators and elementary school teachers 
and in-service teacher education, as well as creating contexts of collaborative 
work with teachers. The project used a design research methodology in teaching 
and teacher education experiments. Data was collected by a variety of methods 
including interviews, classroom observations, students’ written work, tests, and 
questionnaires. Data analysis included mainly qualitative approaches. 
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    Chapter 36   
 Teacher Capacity as a Key Element 
of National Curriculum Reform in Statistical 
Thinking: A Comparative Study Between 
Australia and China       

       Qinqiong     Zhang      and     Max     Stephens    

36.1            Introduction 

 In the offi cial curriculum documents of many countries, statistics and statistical 
reasoning have become part of the mainstream in school curriculum. In The 
Australian Curriculum: Mathematics (ACARA,  2010 ), “Statistics and Probability” 
is one of three key content areas. In its overview statement to this strand, ACARA 
( 2010 ) states that: “Statistics and probability initially develop in parallel, and the 
curriculum then progressively builds the links between them. Students recognise 
and analyse data and draw inferences…They develop … to critically evaluate 
chance and data concepts …and develop intuitions about data” (p. 2). A corre-
sponding strand, Chance and Data has been present, for at least 5 years, in related 
State curriculum documents. e.g. VELS (VCAA,  2008 ) and the Mathematics 
Developmental Continuum (DEECD,  2006 ). China’s newly revised Mathematics 
Curriculum Standard for Compulsory Education (Ministry of Education of PRC, 
 2011 ) also presents a single strand entitled Statistics and Probability. In the over-
all objective for this content strand, it is stated that “to experience the process of 
collecting and dealing with data in practical problems, as well as using data to 
analyse questions and obtaining information” in “knowledge and skills” (p. 8); 
and it refers to “to experience the signifi cance of statistical methods, to develop 
ideas of statistical analysis and to experience random phenomena” in “mathemati-
cal thinking” (p. 9). 
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 These intentions are endorsed by Garfi eld and Ben-Zvi ( 2008 ) who point out 
that in contrast to traditional approaches to teaching which focus on computa-
tions of theoretical probability, new emphases are squarely focused on under-
standing data and development of statistical thinking and literacy (p. 7). They 
argue that “the goals for students at the elementary and secondary level tend to 
focus more on conceptual understanding and attainment of statistical literacy and 
thinking and less on learning a separate set of tools and procedures” (p. 14). These 
goals are refl ected in the National Curriculum in Australia and China, where stu-
dents are expected to learn and understand that: (1) explanations supported by data 
are more powerful than personal opinions or anecdotes; (2) variability is natural 
and is also predictable and quantifi able; (3) association is not the same as causa-
tion; and (4) random sampling allows results of surveys and experiments to be 
extended to the population from which the sample was taken. (cf. Garfi eld & 
Ben-Zvi,  2008 , p. 15). 

 However, the implementation of curriculum change is never simply from the top 
down. Teachers’ interpretations and responses at the level of practice are never simple 
refl ections of what is contained in offi cial curriculum documents. While curriculum 
documents set out broad directions for change, any successful implementation of 
these “big ideas” depends on teachers’ capacity to apply subtle interpretations and 
careful local adaptations (Datnow & Castellano,  2001 ). We argue that teacher 
capacity is a key dimension in realising that goal.  

36.2     Teacher Capacity and Mathematical Knowledge 
for Teaching 

 While the term “teacher capacity” is not widely used in mathematics education 
research, it has clear connections with the research of “Pedagogical Content 
Knowledge” by Shulman ( 1986 ,  1987 ) and “Mathematical Knowledge for Teaching” 
by Ball, Thames and Phelps ( 2008 ). 

36.2.1      Shulman’s Model      

 Shulman ( 1987 ) identifi ed  pedagogical content    knowledge    as the category most 
likely to distinguish the understanding of the content specialist from that of the 
expert teacher. The importance given to PCK suggests that what is needed in 
mathematics teaching is not just knowledge of the subject, or general knowledge 
of pedagogy, but rather a combination of both. However, after 25 years of expo-
sure to Shulman’s thinking, Petrou and Goulding ( 2011 ) conclude that: “Although 
Shulman’s work was groundbreaking and his ideas continue to infl uence the 
majority of research in the fi eld, later researchers in the same tradition argue that 
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it is not suffi ciently developed to be operationalised in research on teacher 
knowledge and teacher education” (p. 12). We note that Shulman did not write 
specifi cally for mathematics teaching, but for all teaching subjects; and that his 
categories tend to refl ect the educational context of the USA where there was no 
national curriculum.  

36.2.2      Michigan Model      

 Ball et al. ( 2008 ), while sympathetic to Shulman, prefer to use the term  Mathematical 
knowledge for teaching (MKT)  . Within this idea, they identify four constituent 
domains or categories: (1)  Common content knowledge (CCK)   defi ned as the math-
ematical knowledge and skill used in settings other than teaching; (2)  Specialised 
content knowledge (SCK)   as the mathematical knowledge and skill unique to teach-
ing specifi c topics; (3)  Knowledge of content and students (KCS)   defi ned as knowl-
edge that combines knowing about students and knowing about mathematics; and 
(4)  Knowledge of content and teaching (KCT)  , which combines knowing about 
teaching and knowing about mathematics. 

 Among these four domains discussed by Ball et al. ( 2008 ),  CCK   is a primary 
component of mathematical knowledge and needs to be combined with a teach-
er’s  SCK  , the subject matter knowledge needed for teaching specifi c mathemat-
ics content or topics. KCS)    and KCT)    are both intended to describe distinct 
knowledge for teaching. However, “content” used in the four categories may 
refer to: today’s worksheet, or this year’s textbook, or what is contained in offi -
cial curriculum documents. In this sense, KCT may not be too far removed from 
Shulman’s category of curriculum knowledge under which he includes teachers 
having a grasp of relevant materials and programs. While these knowledge 
domains are intended to anticipate classroom use, their instructional conse-
quences are only implied. What is more, what appears to be a common feature of 
both Ball et al. ( 2008 ) and Shulman ( 1986 ,  1987 ) is an interpretation of “curricu-
lum” and “curriculum knowledge” which may be based too closely on their USA 
experience, where curriculum knowledge can be interpreted simply as “the par-
ticular grasp of the materials and programs that serve as ‘tools of the trade’ for 
teachers” (Shulman,  1987 , p. 8); and Ball et al. ( 2008 ) do not seem to have 
moved beyond this.  

36.2.3      Limitations         of Research on  PCK   and MKT 

 Ruthven ( 2011 ) has presented four distinct conceptualisations of MKT —Subject 
knowledge differentiated; Subject knowledge contextualised; Subject knowledge 
interactivated  and  Subject knowledge mathematised— each of which is intended to 
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move forward debate about and research—but in different directions. These four 
lines of thinking show that MKT is no longer a single unifi ed idea. Researchers also 
need to be aware of the limitations of some or all of these four approaches:

    (1)    All four have a strong focus on how to improve pre-service teachers’ mathematical 
knowledge needed for their teaching in the future; 

 (2) apart from the fi rst framework adopted by Petrou and Goulding ( 2011 ), the 
other three do not appear to place a strong emphasis on the way in which offi cial 
mathematics curriculum documents are intended to guide teaching in many 
countries; 

 (3) apart from the fi rst framework, the other three tend to view knowledge for teach-
ing mathematics in general terms, rather than considering the specifi c areas of 
mathematical content important for curriculum reform; 

 (4) all four conceptualisations into empirically conducted research. 

Our own position on MKT is closest to that of Petrou and Goulding ( 2011 ). We 
use this framework to inform our construct of teacher capacity, and to show where 
it differs from that of Ball et al. ( 2008 ), especially in its stronger links to research on 
curriculum reform and school change.    

36.2.4       Teacher Capacity  Model   

 The term “Teacher capacity” comes out of the literature of school improvement, 
school leadership and system reform (Fullan,  2010 ; McDiarmid,  2006 ). When used in 
this context, teacher capacity usually relates to teachers’ ability to understand and act 
on the reforms that policy makers are seeking to implement (Spillane,  1999 ). It is 
close to our defi nition of teacher capacity as professionally informed judgement and 
disposition to act. Researchers such as Floden, Goertz, and O’Day ( 1995 ) emphasise 
that teacher capacity is multidimensional and evolving. Firstly, they argue that teach-
ers’ ability to assist students in learning is dependent on teachers’ own knowledge, 
which includes knowledge of the subject matter, knowledge of curriculum, knowl-
edge about students and knowledge about general and subject- specifi c pedagogy; sec-
ondly, they argue that, while knowledge interacts with skills, there is a considerable 
gap between what teachers believe they should be doing in the classroom and their 
ability to teach in the desired ways; and thirdly, they point to the importance of dispo-
sitions, since enacting reform requires having the dispositions to meet new standards 
for student learning and to make the necessary changes in practice. 

 There are clear parallels here with Ball et al. ( 2008 ) who make the equally strong 
point that any defi nition of MKT should begin with teaching, not teachers. Any such 
defi nition must be “concerned with the tasks involved in teaching and the mathe-
matical demands of these tasks (our emphasis). Because teaching involves showing 
students how to solve problems, answering students’ questions and checking stu-
dents’ work, it demands an understanding of the content of the school curriculum” 
(p. 395).   
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36.3     Methodology 

36.3.1      The  Research Instrument   

 Teachers were invited to complete a written questionnaire consisting of two parts. Part 
A has four questions which were based on tasks developed in previous research, con-
taining some situations relating to statistical thinking that students are expected to meet. 

 Question 1 was adapted from Shaughnessy, Canada and Ciancetta ( 2004 ): 
 A gumball machine has 100 gumballs in it. 20 are yellow, 30 are blue and 50 are 

red. The gumballs are all mixed up inside the machine.

    (a)    Suppose you do the following experiment: you pick out a handful of ten gum-
balls, count the reds and write down the number of red gumballs in one handful. 
How many reds do you expect to get?   

   (b)    You replace the handful of ten gumballs back in the machine and mix them up again. 
Now you draw another handful of ten gumballs. Would you expect to get the same 
number of reds in every handful if you did this several times? Briefl y describe why.   

   (c)    How many reds would surprise you in a handful of ten? Why would that sur-
prise you?   

   (d)    If each time a handful of ten gumballs is taken, these are replaced and remixed 
before taking another handful again, what do you think is likely to occur for the 
numbers of red gumballs that come out for a sequence of fi ve handfuls? Please 
write the number of reds in each handful here.   

   (e)    Look at these possibilities that some students have written down for the numbers 
they thought likely when they answered question d. Which one of these lists do 
you think best describes what is most likely to happen? Circle it. (A. 8,9,7,9,10; 
B. 3,7,5,8,5; C. 5,5,5,5,5; D. 2,4,3,4,3; E. 3,0,9,2,8; F. 7,7,7,7,7). Why do you 
think the list you chose best describes what is most likely to happen?   

   (f)    In the above six repetitions of the experiment, what do you think will be the 
highest and lowest number of reds in one handful? Please discuss briefl y why 
you think this.     

 Question 2 was adapted from Meletiou and Lee ( 2002 ): 
 Look at the histogram of the two distributions on the right. Which of the two 

distributions you think has more variability? (a) Distribution A (b) Distribution B.
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    Briefl y describe why you think this. 
 Question 3 was adapted from Garfi eld and Gal ( 1999 ): 
 Half of all newborns are girls and half are boys. Hospital A records an average of 

50 births a day. Hospital B records an average of 10 births a day. On a particular day, 
which hospital is more likely to record 80 % or more female births?   (a) Hospital A 
(with 50 births a day); (b) Hospital B (with 10 births a day); (c) The two hospitals 
are equally likely to record such an event; (d) There is no basis for predicting which 
hospital would have that percentage of female births. Give a brief explanation of 
why you think like this. 

 Question 4 was adapted from Garfi eld and Gal ( 1999 ): 
 For 1 month, 500 elementary students kept a daily record of the hours they spent 

watching television. The average number of hours per week spent watching televi-
sion was 28. The researchers conducting the study also obtained report cards for 
each of the students. They found that the students who did well in school spent less 
time watching television than those students who did poorly. 

 Which of the following statements is (are) correct? (a) The sample of 500 is too 
small to permit drawing conclusions; (b) If a student decreased the amount of time 
spent watching television, his or her performance in school would improve; (c) 
Even though students who did well watched less television, this doesn’t necessarily 
mean that watching television hurts school performance; (d) One month is not a 
long enough period of time to estimate how many hours the students really spend 
watching television; (e) The research demonstrates that watching television causes 
poorer performance in school; (f) I don’t agree with any of these statements. For one 
statement that you agree with, explain why you think that way. For one statement 
that you disagree with, explain why you think that way. 

 Part B of the questionnaire had three questions which asked teachers to consider 
teaching implications arising from the questions in Part A. Specifi cally, they were 
asked to consider common misunderstandings and diffi culties for students in the 
Part A questions; how the key mathematical ideas or critical points presented in 
these questions are addressed in their respective country’s offi cial curriculum docu-
ments; and how to design some lessons to help students to understand these key 
ideas.   

36.3.2     The  Participants   

 There were 17 Australian secondary and primary schools randomly selected in both 
urban and rural regions in Melbourne. Up to four teachers of Year 6 or Year 7 in 
each participating school were invited to complete the questionnaire. The Australian 
sample consisted of 41 Australian teachers, 28 secondary teachers and 13 from 
primary schools. The China sample comprises 41 teachers randomly selected from 
training programs in Chongqing, Hangzhou and Wenzhou. Twenty eight were 
secondary and 13 were primary teachers.  
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36.3.3       Theoretical Framework   

 Our construct of Teacher Capacity, as professionally informed judgements and dis-
positions to act, is intended to capture a common ground between movements for 
school system and curriculum reform  and  the construct of MKT elaborated by Ball 
et al. ( 2008 ). Four criteria inform our theoretical model. 

 Criterion A:  Knowledge of Mathematics —is intended to be applied to the tasks 
that the students have completed or are being asked to complete. Knowledge of 
Mathematics is intended to capture the key mathematical ideas for teaching specifi c 
content. 

 Criterion B:  Interpretation of the Intentions of the Offi cial Mathematics 
Curriculum —is concerned with how teachers relate what is mandated or recom-
mended in offi cial curriculum documents of China and Australia to what their stu-
dents are being asked to learn. This criterion differs from MKT (Ball et al.,  2008 ) in 
giving a greater emphasis to offi cial curriculum documents and teachers’ willing-
ness to use them in planning instruction. 

 Criterion C:  Understanding of Students’ Mathematical Thinking —is directly 
concerned with teachers’ capacity to interpret and differentiate between what stu-
dents actually do (or did) and to anticipate what they are likely to do. It implies that 
teachers are able to recognise the typical errors that students make and what math-
ematical thinking led to these errors. 

 Consequently, Criterion D:  Design of Teaching —places a clear emphasis on teach-
ers’ capacity to design teaching in order to move students’ thinking forward and to 
respond to specifi c examples of students’ thinking in the light of offi cial curriculum 
documents. Criterion D is intended to give greater emphasis to how teachers use their 
professionally informed judgement to design practical teaching on specifi c topics.  

 Each criterion of above was elaborated in terms of four specifi c indicators (see 
Table  36.1 ).

   Table 36.1    Four criteria and associated indicators   

  Criterion A: Knowledge of Mathematics  
 (1) Is the teacher able to solve the theoretical mathematical probability problem (Q1a) and be 

able to understand relationship between chance of real events and sample size (Q3)? 
 (2) Does the teacher consistently understand the variability of theoretical probability always 

happens in natural events in real life (Q1b, 1d), and the variability has a certain range close 
to the theoretical probability (Q1c, 1e, 1f)? 

 (3) Does the teacher understand the meaning of “variability” by giving specifi c certain 
information (Q2)? 

 (4) Does the teacher recognise that the difference between association and causation (Q4)? 
  Criterion B: Interpretation of the Intentions of Offi cial Mathematics Curriculum  
 (1) Does the teacher realise that “statistical thinking” should be valued in teaching and 

learning beyond the solutions of probability problems or does the teacher refer to relevant 
statements on statistical thinking in the offi cial curriculum documents? 

(conutined)
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 (2) Does the teacher understand and support the intention of the curriculum of helping 
students understand key ideas of statistical thinking such as theoretical probability, 
sampling, sample size and inevitable variability in actual data, rather than calculating 
theoretical probabilities? 

 (3) Does the teacher think it important to consider statistics and probability by linking natural 
events and real life? 

 (4) Does the teacher show in his/her descriptions of developing students’ ability to read and 
understand data and information which is important for their further learning and future life? 

  Criterion C: Understanding of Students’ Mathematical Thinking  
 (1) Is the teacher able to anticipate students’ common diffi culties and misconceptions on 

Question 1(e) in questionnaire? 
 (2) Does the teacher give clear and reasonable explanations to students’ incorrect answers? 
 (3) Is the teacher able to discriminate between students’ different levels of understanding 

statistics and probability according to their answers, especially discriminating between 
incorrect answers? 

 (4) Does the teacher recognise the importance of using familiar contexts, such as coin tossing 
or rolling dice, to help students understand the statistical features of (less familiar) 
situations that contain similar statistical characteristics 

  Criterion D: Design of Teaching  
 (1) In design of teaching, does the teacher focus on the important key conceptions of statistical 

thinking (theoretical probability, sampling, sample size and inevitable variability in actual 
data, as well as using familiar contexts to simulate real world events), not focusing too 
much on general teaching strategies or overall descriptions on statistics and probability? 

 (2) Does the teacher have the subsequent plan in next one or several lessons to respond 
students’ incorrect answers in Question 1(e)? 

 (3) Does the teacher have a long-term plan to consistently develop students’ deep 
understanding of statistical thinking (see 1 above), not just aiming to have students 
correctly calculate theoretical probability problems? 

 (4) Does the teacher, in his/her teaching, give concrete examples that are familiar and easy for 
students to help them understand statistical thinking and its relationships with real life? 

Table 36.1 (conutined)

36.4         Qualitative Analysis 

 The following examples provide evidence of Chinese and Australian teachers’ 
(coded either as Teacher  n  CH or Teacher  n  AU) responses with respect to each of 
the four criteria. Teachers in both countries showed their different levels of under-
standing on all four criteria. 

36.4.1     Criterion A (Knowledge of  Mathematics  ) 

 Teacher 57 AU responded to Question 3 of Part A: “Hospital B is more likely to record 
the 80 % as it has a much smaller population… Larger samples or more trials give 
results that are closer to theoretical probability”. This teacher clearly demonstrated 
understanding of the relationship between sample size and variation from theoretical 
probability. 
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 However, Teacher 31 AU answered: “Both hospitals are equally likely to record 
80 % female births because the probability is the same for each birth to be a boy or 
a girl”. This teacher considered this problem as a completely theoretical probability 
question and did not realise variation exists and the sample size will infl uence the 
variation. And, Teacher 28 CH didn’t identify the key point of this question by saying 
“it is random and no absolute result”.  

36.4.2     Criterion B (Interpretation of the Intentions 
of Offi cial Mathematics Curriculum) 

 When referred to  offi cial mathematics curriculum  , Teacher 35 CH said, “This is the 
typical question representing thinking of probability and statistics. In the stage of 
primary school, statistics is more important. The main content of statistics is data 
processing, not to infer or guess with (theoretical) probability…” 

 Meanwhile, some teachers like Teacher 53 AU just listed several headings that are 
used in curriculum documents such as “measurement, chance and data” and some 
related ideas such as “calculating theoretical probabilities”. And Teacher 24 CH referred 
to “including mathematical thinking of abstraction, transformation, and modelling”, but 
could not identify any specifi c mathematical thinking implied in the questionnaire.  

36.4.3     Criterion C (Understanding of Students’ 
Mathematical  Thinking  ) 

 When teachers were required to comment on students’ answers in Question 1(e) of 
Part A, Teacher 21 AU said, “Students who choose C do not consider the variation 
but understand the basic principles of chance. Students who choose A, D, E and F, 
… do not understand the basic principles of chance”. This teacher gave reasonable 
explanations for each response of students and was able to discriminate students’ 
different thinking level on statistics. 

 But these “typical” answers of students were confusing for some teachers. For 
example, Teacher 4 CH initially thought that “Students’ understanding is there are 
more red balls”, but then pointed that “Students will think all outcomes are possible, 
it’s diffi cult to judge”. This teacher did not understand the various misconceptions 
embedded in the “typical” answers.  

36.4.4     Criterion D ( Design of Teaching  ) 

 When discussed on how to help students understand the critical mathematical thinking 
of Question 3 of Part A, Teacher 54 AU articulated teaching plans: “There are many 
activities that can be carried out using counters, coins and dice to simulate certain events. 
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In the case of babies being born male or female, tossing a coin ten times and record-
ing Heads as female and Tails as male could be done. If every student 
performs the ten tries, I would have enough data to compare and expect a good 
range including possibly 80 % female. I could then compare individual trials of ten 
to collective trials by putting together fi ve groups of ten results and comparing the 
male and female numbers and hopefully show that the results tend more to 50:50 
female: male”, concluding “(one) would need to get across the idea that when an 
experiment is conducted many times over, certain patterns are likely to appear”. 
This teacher correctly focused on the critical points and designed very elaborate 
simulation—coin tossing—which is more familiar to students, not just talking about 
general teaching strategies. 

 Teacher 19 CH indicated that the teaching focus was about “statistical knowl-
edge”, but offered no discussion of any specifi c statistical concepts, giving only 
very general teaching strategies like having “students conduct various kinds of 
experiments… they need practical manipulations to explore possibility”. Likewise, 
Teacher 2 focused only on “understanding of fractions, percentages and decimals. I 
would introduce whole numbers and equivalence and converting decimals to per-
centages”. This teacher referred only to some general strategies like “open-ended 
questions including ratio of boys and girls”.   

36.5     Quantitative Analysis 

 By assigning a score of 1 if one of the four indicators was evident in a teacher’s 
response, and 0 if it was omitted from their response or answered inappropriately, it 
was possible to construct a score of 0–4 for each criterion, and hence a maximum 
score of 16 across the four criteria. We allowed for the possibility that teachers 
might provide convincing alternative indicators to the four indicators listed. 

 The two researchers operated independently to score teachers’ responses; then a 
careful confi rmative check took place in order to resolve any difference. A high 
degree of consistency was present in the initial grading by the two graders, where, 
in less than 30 cases of 0/1 grading, only minor differences occurred. Any resulting 
differences in grading the 82 responses across the four criteria were easily resolved 
by consensus. 

36.5.1     A Summary for Chinese and Australian Samples 

 For the 41  Chinese teachers  , the highest score was 14 and the lowest score was 3, 
with a median score of 8. For Australian teachers, the highest score was 15 and the 
lowest was 4, with a median score of 9. The respective mean scores were 8.34 
(Chinese) and 9.27 (Australian) with standard deviations 2.70 and 2.63, respec-
tively. Table  36.2  shows means and deviations that were calculated for each of the 
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criteria and total score. Of the four criteria, Criterion D (Design of Teaching) had 
the lowest mean (1.77) followed by Criterion B (Interpretation of the Offi cial 
Mathematics Curriculum) with the mean of 2.11, followed by Criterion C 
(Understanding of Students’ Mathematical Thinking) with the mean of 2.38. 
Criterion A (Knowledge of Mathematics) had the highest mean at 2.56.

    Australian teachers   scored slightly higher on all four criteria than their Australian 
counterparts, but there was no statistically signifi cant difference. On Criterion A, 
Australian teachers were clearer on the understanding critical concepts in statistics, 
especially in distinguishing variability from theoretical probability; on Criterion B, 
Chinese teachers paid more attention to methods to calculate possibility or chance 
that students need to learn, but Australian teachers were more focused on the devel-
opment of how to deal with data in practical situations; on Criterion C, Australian 
teachers performed better on anticipating diffi culties and misunderstandings that 
students might encounter; on Criterion D, Australian teachers were more likely to 
locate the key statistical idea in the hospital question in Part A and could show in 
more practical ways how to develop related statistical thinking.  

36.5.2     Three Classifi cations of Teacher Capacity 

 Three subcategories of our construct of teacher capacity were created, with the 
boundaries set on the basis of the qualitative analysis of teachers’ responses as 
discussed earlier. These were High capacity (score 11–16), Medium capacity (score 
6–10) and Low capacity (score 0–5). These classifi cations using the two samples are 
shown in Table  36.3 .

   There were more High Capacity teachers in Australian sample than in Chinese 
sample (respectively 8 and 7); less Australian teachers were classifi ed as Low Capacity 
than Chinese teachers (respectively 7 and 8). In both Chinese and Australian samples, 
Medium Capacity group was the biggest group which included 26 teachers out of 41, 
that was more than 60 %. 

  High Capacity teaching   of statistical thinking was evident in nearly 20 % of 
Chinese and Australian teachers’ responses to the questionnaire. It was shown by a 
clear understanding of the critical thinking and concepts in statistics of the four 
questions of Part A; relating the tasks to relevant curriculum documents; by high 
interpretative skills when applied to each of the six possible answers of students’ 
work in Question 1(e); and by an extensive range of ideas for designing and imple-
menting a teaching program to support the development of students’ statistical 

   Table 36.2    Means for each criterion and global means and deviations   

 Sample  Criterion A  Criterion B  Criterion C  Criterion D  Total 

 Chinese (41)  2.42 (0.67)  2.02 (0.96)  2.27 (0.71)  1.66 (0.97)  8.37 (2.70) 
 Australian (41)  2.72 (0.86)  2.21 (0.83)  2.49 (0.76)  1.85 (0.93)  9.26 (2.63) 
 CH and AU (82)  2.56 (0.82)  2.11 (0.90)  2.38 (0.76)  1.77 (0.97)  8.82 (2.79) 
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thinking.  Medium Capacity   was shown by approximately 60 % of teachers who, 
while possessing knowledge and skills supportive of these directions, clearly need 
to increase their current levels of professional knowledge and skills. In both sam-
ples,  Low Capacity   was evident in a minority of teachers—nearly 20 %—who 
appeared unable to express a clear articulation of the mathematical nature of the 
tasks, or what differentiated the six students’ answers in Question 1(e). These teach-
ers were unable to point with any confi dence to how the tasks related to what is 
contained in offi cial curriculum documents, and found it diffi cult to describe how 
they would plan a program of teaching to foster students’ statistical ideas.   

36.6     Conclusions 

 Our construct of teacher capacity, presented here as teachers’ professionally 
informed judgements and dispositions to act, connects to but differs from earlier 
research into Pedagogical Content Knowledge by Shulman ( 1986 ,  1987 ) and MKT 
by Ball et al. ( 2008 ). Here teacher capacity was investigated in terms of Knowledge 
of Mathematics, Interpretation of the Intentions of Offi cial Curriculum documents, 
Understanding of Students’ Thinking and Design of Teaching to foster the underly-
ing mathematical ideas. Performance on each criterion was ascertained using a pre-
cise set of indicators that were related to the specifi c mathematical tasks, students 
expected thinking in relation to those tasks, the relationship between the tasks and 
offi cial curriculum documents and teachers’ ability to design explicit teaching 
sequences to support students’ learning. 

 Design of Teaching, informed by the other three criteria, appears to be the critical 
dimension for the implementation of curriculum reform; and the criterion that most 
clearly distinguishes between different levels of teachers’ capacity to enact reform. 
Our construct of teacher capacity strongly refl ects the view that effective implemen-
tation of any curriculum reform depends on teachers’ subtle interpretations of offi cial 
curriculum documents and their professional dispositions to act on those ideas, 
which go well beyond general descriptions or statements of intent that are usually 
embodied in offi cial curriculum advice.     

  Table 36.3    Classifi cations of 
teacher capacity  

 Capacity  Chinese  Australian 

 High  7 (17.1 %)  8 (19.5 %) 
 Medium  26 (63.4 %)  26 (63.4 %) 
 Low  8 (19.5 %)  7 (17.1 %) 
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    Chapter 37   
 A Framework for Assessing Statistical 
Knowledge for Teaching Based 
on the Identifi cation of Conceptions 
of Variability Held by Teachers       

       Orlando     González    

37.1            Introduction 

 Aiming toward statistical literacy in today’s information society, recent curricular 
reforms in many countries have brought a number of topics related to statistics and 
probability into the school mathematics curriculum (e.g., NCTM,  2000 ), it being 
noticeable that variability may arise in many different ways in such topics. 

  Variability  —a property of an statistical object which accounts for its propensity 
to vary or change—is considered by several researchers as a fundamental concept in 
statistics (e.g., Pfannkuch & Ben-Zvi,  2011 ; Shaughnessy,  2007 ); and its acknowl-
edgement and understanding are regarded as essential skills for statistical literacy, 
reasoning, and thinking (e.g., Sánchez, da Silva, & Coutinho,  2011 ; Wild & 
Pfannkuch,  1999 ). According to Gattuso and Ottaviani ( 2011 , p. 122), “[t]o be part 
of a modern society in a competent and critical way requires citizens to … under-
stand the variability, dispersion, and heterogeneity which cause uncertainty in inter-
preting, in making decisions, and in facing risks,” and teachers are in charge to 
foster and develop such knowledge and skills in their students. Despite all these 
facts, scarce studies can be found in the literature focused on the conceptions of 
variability held by in-service teachers, as well as on the knowledge entailed by 
teaching variability-related contents, and statistics in general, to help students 
achieve the aims of statistics education (Shaughnessy,  2007 ). Hence, it is by no 
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means surprising the urgent call for increasing research on these areas made for a 
number of concerned researchers, particularly for studies on teachers’ professional 
knowledge and teachers’ practices while teaching variability (e.g., Sánchez et al., 
 2011 , p. 219), as well as for the developing and improvement of the models for the 
didactic knowledge required to teach statistics (e.g., Godino, Ortiz, Roa, & Wilhelmi, 
 2011 , p. 281). Accordingly, the purpose of this chapter is to respond to such calls for 
research. 

 In the present article, I propose a conceptualization of SKT—the knowledge, 
skills, and habits of mind needed to carry out effectively the work of teaching statis-
tics in a way that supports student learning and achievement—aiming to contribute 
to a better understanding of what knowledge is necessary and suffi cient to teach 
statistics well, by addressing and helping to fi ll in some notable gaps in the research 
literature on statistics education. The proposed model focuses on investigating 
teachers’ knowledge for teaching variability-related concepts, and its main implica-
tions are (a) preparing the ground for future empirical research on SKT at school 
level; (b) bringing closer together SKT and the model for MKT developed by Ball, 
Thames, and Phelps ( 2008 ); (c) extending such model to include teachers’ beliefs 
about statistics, teaching and learning of the various statistical topics in the school 
mathematics curriculum; and (d) identifying and taking into account teachers’ con-
ceptions of variability.  

37.2     Literature Review 

 In the next subsections, the author presents a summary of some of the research 
literature relevant to the development of the framework for SKT proposed in the 
current article. 

37.2.1     The MKT Model 

 Infl uenced by the criticisms directed at the aspects of teacher knowledge identifi ed 
by Shulman in his breakthrough article (Shulman,  1986 ), and examining ways in 
which Shulman’s ideas could be operationalized in mathematics education, Ball 
et al. ( 2008 ) developed the notion of mathematical knowledge for teaching (MKT), 
a practice-based model of content knowledge needed for teaching mathematics 
effectively, focused on both what teachers do as they teach mathematics and what 
knowledge and skills teachers need in order to be able to teach mathematics effec-
tively. This model describes MKT as being made up of two domains—subject 
matter knowledge ( SMK  ) and pedagogical content knowledge ( PCK  )—each of 
them structured in a tripartite form, as depicted in Fig.  37.1 .
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   According to Ball et al. ( 2008 ), SMK can be divided into common content 
knowledge ( CCK))        , specialized content knowledge ( SCK  ))      , and horizon content 
knowledge ( HCK  )   )   . The construct CCK refers to the mathematical knowledge and 
skills expected of any well-educated adult, which are commonly used in any setting, 
not necessarily the one of teaching. SCK is the mathematical content knowledge 
specifi c to the work of teaching and needed in its practice—and not in the practice 
of other professions. The third construct, HCK, is an awareness of where both the 
present learner experience and the instructional content are situated over the span of 
mathematics included in the school curriculum, and of what their connections are 
with the key mathematical practices and major disciplinary ideas and structures that 
lie ahead, on the curricular horizon. 

 Furthermore, Ball and her colleagues presented a more refi ned division of 
Shulman’s PCK, comprised by knowledge of content and students ( KCS  )      , knowl-
edge of content and teaching ( KCT     ))      , and knowledge of content and curriculum 
( KCC))     . The construct KCS represents the teacher’s amalgamated knowledge about 
how students come to understand mathematics and mathematics content itself. KCT 
refers to the knowledge about how to carry out the design of instruction in order to 
develop mathematical understanding in students, and about how a particular math-
ematical content shapes mathematics instructional practice. Finally, KCC is the 
knowledge that teachers have on how specifi c topics, procedures, and concepts are 
offered in school curricula at a particular grade level, along with an understanding 
of the grade-wise relationships among them and the variety of educational materials 
that can be drawn on to facilitate the development of students’ mathematical 
understandings. 

 Through this model for MKT, Ball and her colleagues made signifi cant progress 
in identifying the relationship between teacher knowledge and students’ achieve-
ment in mathematics, as well as in developing reliable and valid measures of 
MKT. Nevertheless, as highlighted by some researchers (e.g., Petrou & Goulding, 
 2011 , p. 16), Ball et al.’s ( 2008 ) model of MKT does not acknowledge the role of 
beliefs in teachers’ taking on, and performance of, educational practices, which 
could be a drawback since beliefs are often regarded in the literature as important 
factors affecting teachers’ instructional practice.  
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  Fig. 37.1    Domains of 
MKT, according to Ball 
et al. ( 2008 )       
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37.2.2     MKT-Based Models for SKT 

 It is by no means surprising that almost all the few conceptualizations of SKT 
proposed to date have assimilated some of the categories present in the aforemen-
tioned model for MKT developed by Ball and her colleagues, due to the consider-
able overlap and cooperation between mathematics and statistics, as well as between 
the structure of mathematics education and statistics education (see Hand,  1998 ). 
Nevertheless, due to the specifi city of statistics as discipline (see Gattuso & 
Ottaviani,  2011 ; Godino et al.,  2011 ), it is not surprising either the effort that has 
been made through those few conceptualizations of SKT to adapt MKT components 
in order to meet the particular case of statistics education. In this subsection, the 
author presents an overview of the MKT-based models of SKT developed by 
Burgess ( 2011 ), Groth ( 2007 ), and Noll ( 2011 ). 

 Groth ( 2007 ) developed a  hypothetical framework   to explain the SKT required 
for teaching statistics at high school level, borrowing and focusing on the constructs 
of  CCK      and SCK described by Ball et al. ( 2008 ), and merging and adapting them 
with the framework for statistical problem solving given in the  Guidelines for 
Assessment and Instruction in Statistics Education (GAISE) Report   (Franklin et al., 
 2007 ), in order to characterize the work of teaching statistics, make distinctions 
between the mathematical and nonmathematical knowledge needed for it, and dif-
ferentiate such work from the one of teaching mathematics. 

 In his model, Groth argues that some aspects of the common and specialized 
knowledge entailed by the teaching of statistics require a growing research base, 
particularly the specialized one related to nonmathematical knowledge, which 
encompasses the pedagogical activities that take place in the classroom. 

 In order to examine, through a classroom-based approach, the knowledge that 
elementary school teachers need to successfully implement the teaching of statistics 
through projects and investigations, Burgess ( 2011 ) developed a two-dimensional 
framework comprised by four of the knowledge components described by Ball et al. 
( 2008 )— CCK           ,  SCK  ,  KCS  , and  KCT  —and six out of eight components of Wild and 
Pfannkuch’s ( 1999 ) model for statistical thinking in empirical enquiry. Through his 
model, Burgess identifi ed the different types of knowledge that were either needed 
and used, or needed but not used, in the context of teaching experiences based on 
statistical investigations, fi nding, among other things, that all the aspects of knowl-
edge included in his proposed model were necessary in the classroom. 

 Noll ( 2011 ) investigated the SKT held by 68 American graduate teaching assis-
tants’ (TAs) using a task-based survey and a series of semistructured interviews, 
focusing on TAs’ knowledge about distributions of data and empirical samples, as 
well as in their knowledge of student thinking about sampling concepts. Noll selected 
three of the components described by Ball et al. ( 2008 )— CCK     ,  SCK     , and  KCS  —to 
develop her framework. Key features in her model are the interpretation of CCK and 
SCK as statistical literacy and statistical thinking, respectively. The fi ndings from 
Noll’s research indicate that TAs have a limited SKT in all the three components in 
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study, which is particularly noticeable in their diffi culty teaching certain topics
—especially conceptual ideas of variability—and making sense of students’ work 
and interpretation about variability and other sampling-related concepts.   

37.3     A New Conceptualization of SKT 

 The purpose of this section is to make a contribution to the literature on statistics 
education, by proposing a conceptualization attempting to characterize some criti-
cal components related to the knowledge required to teach statistics effectively. On 
the basis of literature review and personal research experience, several components 
that were thought to be potential predictors of SKT were identifi ed and considered 
for analysis, and the following arguments were raised as a result of such analysis:

    (a)     The    proposed model     of SKT should be closely tied to a model of MKT : On the 
basis that school statistics is often taught as part of mathematics curriculum by 
mathematics teachers, as well as due to the common grounds shared by math-
ematics and statistics, it is anticipated that a model of SKT should be closely 
tied to a model of MKT. Consequently, I argued that the six constructs neces-
sary for having a solid MKT identifi ed by Ball et al. ( 2008 ) in their framework 
would serve as a useful starting point to hypothesize what knowledge might be 
needed for teaching statistics effectively.   

   (b)     Some    knowledge components     in the MKT model used must be redefi ned to meet 
the requirements of teaching statistics : Although mathematics and statistics 
share some common grounds, the two disciplines are different in several ways 
(an in-depth discussion of these differences can be found in Gattuso & Ottaviani, 
 2011 ). Therefore, in order to acknowledge such differences and meet the 
requirements specifi c to the teaching of statistics, some knowledge components 
in the MKT model used must be redefi ned. In the case of the conceptualization 
proposed here, CCK will be seen as statistical literacy, which development is 
regarded as one of the main goals of statistics education and mathematics cur-
ricula at all educational levels (e.g., Gal,  2004 ; Pfannkuch & Ben-Zvi,  2011 ), 
and thus its acquisition is expected from any individual after completing school 
education. The rest of knowledge components in this framework are defi ned in 
the same way as in the model of MKT by Ball et al. ( 2008 ), but rephrased in 
some cases to meet the requirements of teaching statistics.   

   (c)     In order to conceptualize SKT, teachers’ beliefs about statistics, teaching and 
learning must be considered : The relationship between beliefs—defi ned by 
Philipp ( 2007 , p. 259) as “psychologically held understandings, premises, or 
prepositions about the world that are thought to be true”—and teachers’ class-
room practice has been well articulated in the literature by several researchers 
(e.g., Gal, Ginsburg, & Schau,  1997 ; Philipp,  2007 ; Pierce & Chick,  2011 ). 
Moreover, beliefs are identifi ed by Gal ( 2004 ) as one of the dispositional ele-
ments of statistical literacy, being the latter regarded as CCK in the present 
conceptualization of SKT. On the basis of these facts, in this model of SKT 
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 teachers’ beliefs   about statistics,  teaching and learning   are going to be regarded 
as fundamental, attempting in that way to obtain a much richer and broader 
picture of the knowledge needed to teach statistics effi ciently, as well as to 
overcome a common drawback in all the MKT-based frameworks of SKT 
reviewed previously.   

   (d)     Tasks designed to elicit teachers’ conceptions of    variability     would be helpful to 
provide indicators to measure SKT as defi ned in this study : In the case of teach-
ers, conceptions—the set of internal representations and corresponding associa-
tions that a mathematical concept evokes in the individual—have been proved 
to infl uence their own approaches to teaching, and consequently their students’ 
approaches to learning (e.g., Trigwell, Prosser, & Waterhouse,  1999 ). Also, the 
work carried out by González ( 2011 ) and Isoda and González ( 2012 ) provides 
empirical evidence that the use of tasks addressing variability and variability- 
related concepts is an effective method for eliciting, identifying, describing, and 
assessing not only the conceptions of variability held by teachers but also their 
SMK in statistics. On the basis of these facts, and because conceptions repre-
sent knowledge and beliefs working in tandem (Knuth,  2002 ), gaining insight 
into the teachers’ conceptions of variability is regarded as necessary in the pro-
posed model for SKT.     

37.3.1     An Instrument to Assess SKT Based 
on the Identifi cation of Conceptions 
of  Variability   Held by Teachers 

 Based on the four arguments outlined above, a pen-and-paper instrument, com-
prised by tasks addressing variability and variability-related concepts present in the 
school mathematics curriculum, was designed in order to assess the eight compo-
nents of SKT identifi ed and described by this study— the six knowledge compo-
nents in the model for MKT developed by Ball et al. ( 2008 ); teachers’ beliefs about 
statistics, teaching and learning; and teachers’ conceptions of variability. Each item 
in the instrument was developed based on questions used in previous studies with 
similar aims reported in the literature (e.g., Ball et al.,  2008 ; Isoda & González, 
 2012 ), which were adapted to refl ect the context of the item, the case of teaching 
school statistics, and the specifi c objectives of the present conceptualization of SKT. 

 In order to provide a comprehensive framework for conceptualizing SKT in the 
context of  variability  , twelve indicators were identifi ed and selected for assessing 
SKT from the teachers’ answers to each of the designed items (see Table  37.1 ).

   Item 1 is provided as an example of the designed items (see Fig.  37.2 ). The original 
version of the task (by Garfi eld, delMas, & Chance,  1999 ) was adapted and enriched 
with questions aiming to elicit all the facets of SKT identifi ed by this framework. 
A mapping between the components of SKT that would be brought out by each 
question in Item 1 and the indicators associated to such components identifi ed by 
this framework could be appreciated in Table  37.2 .
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    The context of the task posed in Item 1—comparing distributions—has been 
acknowledged as “a fruitful arena for expanding teachers’ understanding of distri-
bution and conceptions of variability” (Makar & Confrey,  2004 , p. 371). Moreover, 
giving an appropriate answer to Item 1 requires from teachers, among others things, 
knowledge and understanding of several fundamental concepts and ideas in school 
statistics—as in Questions (a) and (b)—; ability to connect and represent such con-
cepts and ideas—as in Questions (a), (b) and (e)—; ability to make sense of students’ 
answers and to sort out the reasonable ones from those that are incorrect—as in 

   Table 37.1    Set of proposed indicators to assess SKT through the answers to Item 1   

  A: Indicators associated to Statistical Literacy (CCK)  
 1. Is the teacher able to give an appropriate and correct answer to the given task? 
 2. Does the teacher consistently identify and acknowledge variability and correctly interpret 

its meaning in the context of the given task? 
  B: Indicators associated to SCK  

 1. Does the teacher show evidence of ability to determine the accuracy of common and 
nonstandard arguments, methods, and solutions that could be provided on a single 
question/task by students (especially while recognizing whether a student’s answer is 
right or not)? 

 2. Does the teacher show evidence of ability to analyze right and wrong solutions that could 
be given by students, by providing explanations about what reasoning and/or mathematical/
statistical steps likely produced such responses, and why, in a clear, accurate and 
appropriate way? 

  C: Indicators associated to HCK  
 1. Does the teacher show evidence of having ability to identify whether a student comment 

or response is mathematically/statistically interesting or signifi cant? 
 2. Is the teacher able to identify the mathematically/statistically signifi cant notions that 

underlie and overlie the statistical ideas involved in the given task? 
  D: Indicators associated to KCS  

 1. Is the teacher able to anticipate students’ common responses, diffi culties, and 
misconceptions on the given task? 

 2. Does the teacher show evidence of knowing the most likely reasons for students’ 
responses, misconceptions, and diffi culties in relation to the statistical ideas involved in 
the given task? 

  E: Indicators associated to KCT  
 1. In design of teaching, does the teacher show evidence of knowing what tasks, activities, 

and strategies could be used to set up a productive whole-class discussion aimed at 
developing students’ deep understanding of the key statistical ideas involved in the given 
task, instead of focusing just on in computation methods or general calculation 
techniques? 

 2. Does the teacher show evidence of knowing how to sequence such tasks, activities, and 
strategies, in order to develop students’ deep understanding of the key statistical ideas 
involved in the given task? 

  F: Indicators associated to KCC  
 1. Does the teacher show evidence of knowing at what grade levels and content areas 

students are typically taught about the statistical ideas involved in the given task? 
 2. Does the designed lesson (or series of lessons) show evidence of teacher’s understanding 

and support of the educational goals and the intentions of the offi cial curriculum 
documents in relation to the teaching of the statistical contents present in the given 
problem, as well as statistics in general? 
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Question (c)—; understanding of how students reason in the context of the given 
task—as in Question (d)—; knowledge about how the concepts and ideas involved 
in the posed task are developed curriculum-wise as one move up the education 
ladder—as in Question (f)—; knowledge about how to interpret and teach different, 
but interconnected and interdependent, variability-related concepts used in statis-
tics, as well as how to teach and put into practice the statistical habits of mind 
related to them—as in Question (g). Also, since teachers are expected to know how 
to map the characteristics of the given histograms to alternate representations in 
order to provide an evidence-based statistical argument to justify and defend their 
answers (see Fig.  37.3 ), it is anticipated that Question (g) will also elicit how teachers 
promote the development of statistical discourse and argumentation into the class-
room, which is of crucial importance to develop statistical literacy and avoid stu-
dents’ misperceptions of statistics (Gal,  2004 ; Pfannkuch & Ben-Zvi,  2011 ), as well 
as to make visible teachers’ ability to recognize what concepts can be addressed 
through a particular data set, and to plan and implement effective learning in the 
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  Fig. 37.2    Item 1—“Choosing the distribution with more variability” task       

   Table 37.2    Knowledge components of SKT elicited by each of the questions posed in Item 1   

 Elicited knowledge component of SKT  Associated indicator of SKT  Question 

 Statistical literacy (as CCK)  A1  (b) 
 A2  (b) 

 Specialized content knowledge (SCK)  B1  (c) 
 B2  (c) 

 Horizon content knowledge (HCK)  C1  (e) 
 C2  (a) 

 Knowledge of content and students (KCS)  D1  (d) 
 D2  (d) 

 Knowledge of content and teaching (KCT)  E1  (g) 
 E2  (g) 

 Knowledge of content and curriculum (KCC)  F1  (f) 
 F2  (g) 
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classroom with data, abilities required from teachers in order to be competent in 
developing statistical literacy in their students (Batanero & Díaz,  2010 ). Based on 
these arguments, all of them strongly related to specifi c components identifi ed in the 
model of SKT proposed by this chapter, the selection of the task and questions 
posed in Item 1 is amply justifi ed.

   Regarding teachers’ beliefs, a useful way to identify them is from how teachers 
answer to students’ thinking in the classroom, interpret offi cial curriculum docu-
ments, and design learning activities. For example, by answering to Question (g) in 
Item 1, it is anticipated that teachers’ personal approaches to teach specifi c statisti-
cal contents will give evidence of their beliefs about whether, for example, teaching 
and learning of statistics is better accomplished through emphasizing the memoriza-
tion of formulas and procedures, rather than through the developing of students’ 
conceptual understanding of statistics and their ability to apply and interpret statistics 
in meaningful ways (Pierce & Chick,  2011 ). 

 Finally, regarding teachers’ conceptions of  variability  , it is anticipated that 
several characteristics about how teachers acknowledge and describe variability in 
the context of the given task will emerge through their answers to Question (b) in 
Item 1. The types of conceptions of variability identifi ed by Shaughnessy ( 2007 , 
pp. 984–985) will be used in this study to classify those distinguished in teachers’ 
answers through the proposed framework.   

37.4     Conclusions 

 To teach statistics at any educational level, teachers must grapple with the concept of 
variability, one with which students often struggle. In this article, it is argued that 
teachers’ SMK and PCK (as in Ball et al.,  2008 ), beliefs, and conceptions of variabil-
ity (as in Shaughnessy,  2007 ) play altogether an important role in the shaping and 
effectiveness of the teaching practice in statistics. Therefore, after a literature review 
and theoretical considerations, a model for SKT combining the aforementioned facets 
was developed, and an approach for the upcoming empirical research was presented. 

  Fig. 37.3    Frequency distribution tables, boxplots, and ogives are some of the alternate representa-
tions and connections expected from teachers when dealing with Item 1       
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 The conceptualization of SKT being arisen in this article not only attempts to 
respond to the calls that have been made for more research on particular issues in 
statistics education, but also proposes posing tasks that involve dealing with vari-
ability as a way to assess specifi c components of the knowledge needed by teachers 
to teach school statistic effectively. 

 Since new school mathematics curricula worldwide require from teachers com-
petence to build and scaffold students’ statistical knowledge and conceptions, and 
to help their students to develop both their ability to think and reason statistically 
and their statistical argumentation (Pfannkuch & Ben-Zvi,  2011 ), answers to Item 1 
are anticipated to provide enough information on how developed these knowledge 
and skills are in our school mathematics teachers. 

 Finally, the proposed conceptual framework attempts to serve as a useful tool for 
discussing about in-service teachers’ knowledge and skills in contexts in which 
variability may arise, and upcoming empirical research using this framework, as 
well as continued work in this area, may bring about further refi nements to the con-
ceptualization proposed.     
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    Chapter 38   
 An Investigation into the Statistics 
Education of Preservice Mathematics 
Teachers in an Irish University       

       Olivia     Fitzmaurice     ,     Ailish     Hannigan     , and     Aisling     Mary     Leavy    

      This chapter investigates how well second-level  preservice mathematics teachers   at 
one Irish third-level teacher education college are prepared to teach statistics. 
An empirical study on the conceptual understanding of core statistical concepts of 
these preservice teachers as they prepare to graduate is presented. This issue is 
pertinent internationally (Shaughnessy,  1992 ; Zieffl er et al.,  2008 ) but particularly 
in Ireland currently as a new mathematics curriculum at second level, entitled 
“Project Maths,” was rolled out to all schools nationally in September, 2010. This 
new curriculum included a move from a situation where Statistics and Probability 
was previously an optional component of the exit-level school state examinations to 
a situation where it forms a compulsory one-fi fth of the new curriculum. A study 
was carried out on 115 (86 % of the total 134) preservice mathematics teachers in 
the institution to assess how well prepared these preservice teachers are to teach 
statistics when they qualify. The chapter concludes with a discussion of the implica-
tions of these fi ndings and the potential impact on their future students.    
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