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Preface

This book describes a class of models for longitudinal data called antedepen-
dence models, and some important statistical inference procedures associated
with them. Known also as transition models, antedependence models postulate
that certain conditional independencies exist among the observations, which
are related to their time ordering. In the important case of normally distributed
observations, these independencies imply that certain partial correlations are
null. Antedependence models are particularly useful for modeling longitudinal
data that exhibit serial correlation, i.e., correlation that decays as the elapsed
time between measurements increases. The most well-known members of the
class are stationary autoregressive models, but antedependence models can be
much more general. For example, parsimonious antedependence models exist
for which the observation variances are heterogeneous and/or the correlations
between observations lagged the same distance apart change over time.

We wrote this book because it is our belief that antedependence models for
longitudinal data are underappreciated and underutilized, in proportion to their
usefulness. All books on the parametric modeling of longitudinal data of which
we are aware feature either marginal models, which directly specify the joint
distribution of the observations, or random coefficient models, in which each
observation is regarded as a function of covariates with regression coefficients
that vary from one subject to the next, according to some probability distribu-
tion. In those books, only a few pages or at best a short chapter are devoted to
antedependence models. Such brief treatments do not do justice to these mod-
els and their associated inference problems, and they force one who wants to
learn about them, in sufficient detail to exploit their structure in data analy-
sis, to search for widely scattered journal articles on the subject, which use a
variety of jargon and notation. For antedependence models to realize their full
potential, we believe that this body of work needs to be brought together in one
place, presented systematically, and illustrated with numerous examples. That
is what this book attempts to do.

The book is organized as follows. After an introduction to the subject in Chap-
ter 1, most of the remainder of the book divides naturally into two parts.
Chapters 2 and 3 are devoted to a description of antedependence models and
their properties, with Chapter 2 focusing upon unstructured antedependence,

xv
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xvi PREFACE

where nothing more than the aforementioned conditions on the partial corre-
lations are assumed, and Chapter 3 is concerned with structured antedepen-
dence models, in which additional parametric assumptions are made. Chapters
4 through 8 present inference procedures for the models. Chapter 4 consid-
ers informal model identification via simple summary statistics and graphical
methods. Chapters 5 through 7 consider formal likelihood-based procedures
for normal antedependence models: maximum likelihood and residual max-
imum likelihood estimation of parameters (Chapter 5); likelihood ratio tests
and penalized likelihood model selection criteria for the model’s covariance
structure (Chapter 6); and mean structure (Chapter 7). Chapter 8 summarizes
the illustrative examples presented earlier in the book in a (hopefully) coher-
ent fashion and, using the same examples, compares the performance of an-
tedependence models to other models commonly used for longitudinal data.
Chapter 9 takes up some related topics and extensions.

Because the topic of antedependence models is considerably narrower than the
desired coverage of most courses in longitudinal data analysis, it is neither our
intent nor our expectation that the book will serve as a primary text for such a
course. Accordingly, we have not included any chapter exercises. However, the
book can be used as a supplemental text for such a course, or as the primary
text for a special topics course.

The technical level varies throughout the book. Chapters 3 and 4 contain no
theorems or proofs, and much of both chapters can be read easily by any-
one who has been exposed to autoregressive time series models or has had
an upper-level undergraduate/master’s level course in multivariate analysis. In
Chapter 2 and Chapters 5 through 8, a theorem/proof format is used to some
extent, and readers will certainly benefit from more advanced training in mul-
tivariate analysis and the theory of linear models. Even here, however, it is our
hope that the frequent appearance of examples will make the main ideas, if not
the technical details, comprehensible to nearly every reader.

Although software is necessary, of course, to actually implement an analysis of
data from the antedependence perspective, we make little mention of it in the
book. Unfortunately, scant software exists for this purpose, so we have written
much of what was needed ourselves, in either R or FORTRAN. Some relevant
R functions are available for download from Dale Zimmerman’s Web page:

www.stat.uiowa.edu/∼dzimmer

There are many people we would like to thank for assisting us in various ways
throughout this endeavor. First and foremost, we thank Rob Calver and Shashi
Kumar of CRC Press, the former for his continual encouragement and the lat-
ter for technical support. We are indebted to Florence Jaffrézic for providing
the fruit fly mortality data and for her valuable help and willingness to meet
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with us to discuss methodological issues related to these data, and to Scott
Pletcher for explaining additional aspects of these data to us. Thanks also go
to Jie Li, Jorge Virto, and Ignacio Dı́az-Emparanza for some data editing and
programming assistance with R and Gretl. Special thanks go to Miguel An-
gel Garcı́a-Pérez for providing access to the computer that allowed us to fit
some of the models in this book. We are grateful to Kung-Sik Chan and an
anonymous reviewer for providing comments on some parts of the book. We
also gratefully acknowledge support from Ministerio Español de Educación y
Ciencia, FEDER, Universidad del Paı́s Vasco (UPV/EHU), and Departamento
de Educación del Gobierno Vasco (EPV/EHU Econometrics Research Group)
under research grants MTM2004-00341, MTM2007-60112, and IT-334-07.
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CHAPTER 1

Introduction

Antedependence models are useful, albeit underutilized, generalizations of well-
known stationary autoregressive models for longitudinal data. Like stationary
autoregressive models, antedependence models specify parsimonious paramet-
ric forms for the conditional mean and variance of each observation, given all
the observations preceding it (as well as any observed covariates) from the
same subject. Antedependence models differ, however, by allowing these para-
metric forms to change over the course of the longitudinal study. This makes
them much more flexible than their stationary autoregressive counterparts and
hence, as a result, they are often able to fit longitudinal data exhibiting nonsta-
tionary characteristics (e.g., increasing variances or same-lag correlations that
change over time) quite well. In this introductory chapter, we motivate these
models and show where they sit in the broad spectrum of statistical models
used for longitudinal data analysis. We begin by describing some important
features common to many longitudinal data sets, especially the tendency for
observations from the same subject to be correlated. We then briefly review
how various classical methods for continuous longitudinal data analysis and a
more modern parametric modeling approach deal with these correlations. Next,
antedependence models are described very briefly, and an example data set is
used to motivate the use of a first-order antedependence model. The remainder
of the chapter outlines the scope of the book and describes several longitudinal
data sets that will be used throughout the book to illustrate methodology.

1.1 Longitudinal data

Longitudinal data, or repeated measures data, consist of repeated observations
of a given characteristic on multiple observational units generically called sub-
jects. The characteristic of interest, or response, may be categorical, discrete, or
continuous; furthermore, the response may be univariate or multivariate (itself
consisting of several component characteristics). Unless noted otherwise, how-
ever, we will assume that the response is continuous and univariate, as most

1
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2 INTRODUCTION

available results on antedependence models pertain to this type of response.
We defer consideration of antedependence models for categorical/discrete and
multivariate longitudinal data to the last chapter.

The response is usually measured at discrete points in time, but alternatively it
could be measured at points in one-dimensional space. Examples of the former
include the weights of cattle measured at weekly intervals from weaning to
finishing, or the scores on a scholastic aptitude examination taken annually
by students in a particular school district; exemplifying the latter are diversity
indices of pollen grains found at various depths of an ice core sample, or the
lengths of time (“split times”) runners need to complete each consecutive 10-
kilometer section of a 100-kilometer race. Henceforth, for ease of exposition
we shall use terminology appropriate for a response measured at points in time,
but our discourse applies equally well, with a suitable change in terminology,
to the one-dimensional spatial context.

In addition to the response variable, one or more covariates may be observed
on subjects. The covariates may be time-dependent (such as the time of mea-
surement itself, or the subject’s weight or health status at each time of measure-
ment), time-independent (such as gender), or a mixture of both. If the longi-
tudinal study is a comparative experiment in which treatments are randomized
to units, then subjects may be accorded the additional status of experimental
units and one or more of the covariates is then a nominal variable indicating
the treatment group membership of each subject. Usually this treatment group
covariate is time-independent, but it can be time-dependent as in the case of
crossover experiments.

Because the response is measured at multiple times on multiple subjects, lon-
gitudinal data are replicated in two “directions.” However, there is an impor-
tant difference in the dependence structure in the two directions. The subjects
are usually not inter-related in any meaningful way, with the important conse-
quence that observations from different subjects may reasonably be regarded as
independent. The same cannot be said of observations taken at different times
from the same subject. In fact, measurements of the response from the same
subject tend to be considerably more alike than measurements from different
subjects. Consider, for example, the data listed in Table 1.1, which come from
a longitudinal study of cattle growth reported by Kenward (1987). The data are
weights (in kg) of 30 cattle receiving a treatment for intestinal parasites, which
were recorded on 11 occasions; more details pertaining to these data are given
in Section 1.7.1, and we subsequently refer to these data as the Treatment A
cattle growth data. Weights of an additional thirty cattle that received a different
treatment (Treatment B) were recorded on the same occasions, and we will also
consider these data later. Figure 1.1 displays the Treatment A cattle growth data
graphically as a profile plot, i.e., a plot of subjects’ responses versus time, with
successive measurements from the same subject connected by line segments.
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LONGITUDINAL DATA 3

Table 1.1 Weights (in kg) of cattle from the growth study of Kenward (1987): Treatment
A cattle only.

Weeks from start of experiment

Cow 0 2 4 6 8 10 12 14 16 18 19

1 233 224 245 258 271 287 287 287 290 293 297
2 231 238 260 273 290 300 311 313 317 321 326
3 232 237 245 265 285 298 304 319 317 334 329
4 239 246 268 288 308 309 327 324 327 336 341
5 215 216 239 264 282 299 307 321 328 332 337
6 236 226 242 255 263 277 290 299 300 308 310
7 219 229 246 265 279 292 299 299 298 300 290
8 231 245 270 292 302 321 322 334 323 337 337
9 230 228 243 255 272 276 277 289 289 300 303

10 232 240 247 263 275 286 294 302 308 319 326
11 234 237 259 289 311 324 342 347 355 368 368
12 237 235 258 263 282 304 318 327 336 349 353
13 229 234 254 276 294 315 323 341 346 352 357
14 220 227 248 273 290 308 322 326 330 342 343
15 232 241 255 276 293 309 310 330 326 329 330
16 210 225 242 260 272 277 273 295 292 305 306
17 229 241 252 265 274 285 303 308 315 328 328
18 204 198 217 233 251 258 272 283 279 295 298
19 220 221 236 260 274 295 300 301 310 318 316
20 233 234 250 268 280 298 308 319 318 336 333
21 234 234 254 274 294 306 318 334 343 349 350
22 200 207 217 238 252 267 284 282 282 284 288
23 220 213 229 252 254 273 293 289 294 292 298
24 225 239 254 269 289 308 313 324 327 347 344
25 236 245 257 271 294 307 317 327 328 328 325
26 231 231 237 261 274 285 291 301 307 315 320
27 208 211 238 254 267 287 306 312 320 337 338
28 232 248 261 285 292 307 312 323 318 328 329
29 233 241 252 273 301 316 332 336 339 348 345
30 221 219 231 251 270 272 287 294 292 292 299
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4 INTRODUCTION

Although there is some crossing of individual cattles’ growth trajectories over
time, the heaviest cattle at the outset of the study tend to remain among the
heaviest for the study’s duration, and similarly the lightest cattle tend to re-
main among the lightest. This persistence within subjects, sometimes called
“tracking,” manifests as sizable positive correlations among same-subject mea-
surements, as seen in the sample correlations of these data (Table 1.2, below
the main diagonal). Furthermore, these correlations, like those of many other
longitudinal data sets, decrease as the elapsed time between measurements in-
creases — a phenomenon known as serial correlation. This is not so easily
discerned from the profile plot, but manifests clearly in the sample correlation
matrix as a more-or-less monotonic attenuation of correlations within columns
(or rows) as one moves away from the main diagonal.

 

Week

W
ei

gh
t (

kg
)

0 5 10 15

20
0

25
0

30
0

35
0

Figure 1.1 Profile plot for the Treatment A cattle growth data. The thicker line indicates
the overall mean profile.

The inferential objectives of a longitudinal data analysis typically include de-
scribing how the response is related to time and other covariates and describing
how this relationship is affected by treatments or other factors of classifica-
tion. Plainly, these objectives are focused primarily upon the mean structure of
the data. Unfortunately, the presence of within-subject correlation complicates
the achievement of these objectives. The prospects for informative statistical
analysis are far from hopeless, however, for the independent replication across
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CLASSICAL METHODS OF ANALYSIS 5

Table 1.2 Sample variances, along the main diagonal, and correlations, below the main
diagonal, of the Treatment A cattle growth data.

106
.82 155
.76 .91 165
.66 .84 .93 185
.64 .80 .88 .94 243
.59 .74 .85 .91 .94 284
.52 .63 .75 .83 .87 .93 307
.53 .67 .77 .84 .89 .94 .93 341
.52 .60 .71 .77 .84 .90 .93 .97 389
.48 .58 .70 .73 .80 .87 .88 .94 .96 470
.48 .55 .68 .71 .77 .83 .86 .92 .96 .98 445

subjects opens up the possibility of estimating the parameters of non-trivial
models for both the mean structure and the within-subject correlation struc-
ture or, more broadly, for the entire covariance structure of the data. In this
way a full accounting of the covariance structure may be taken when making
inferences about the mean structure.

The parametric modeling approach to which we have just alluded is the cur-
rent “state of the art” of continuous longitudinal data analysis, antedependence
models being one of several large classes of available models. Before describ-
ing this approach and antedependence models in more detail, we set the stage
by briefly reviewing how several rather more classical methods of continuous
longitudinal data analysis deal with within-subject correlation.

1.2 Classical methods of analysis

The methods of longitudinal data analysis discussed in this section have existed
for a long time. Excellent summaries of them are given by Crowder and Hand
(1990), Diggle et al. (2002), Davis (2002), and Weiss (2005), to which we refer
the reader for further details.

The earliest methods of longitudinal data analysis either ignored within-subject
correlation altogether or attempted to circumvent any difficulties it might pose
to inference. In one of the most rudimentary of approaches, the data from each
time point are analyzed separately. For example, if the data are grouped accord-
ing to treatments or some other factor of classification, a separate analysis of
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6 INTRODUCTION

variance (ANOVA) may be carried out using only the data at each time point.
This “time-by-time ANOVA” approach completely ignores within-subject cor-
relations and suffers from several additional weaknesses; for example, it fails
to characterize how the response varies over time or how group effects man-
ifest and evolve over time. Another overly simplistic approach is to perform
separate comparisons among responses, or groups of responses, for each pair
of measurement times. Multiple paired t tests or multiple two-factor ANOVAs,
with treatment and time as the two factors (the latter being dichotomous), might
be used for this purpose. This approach again ignores within-subject correla-
tion and requires the investigator to somehow piece together all the conclusions
from the individual, correlated tests into a coherent story.

A somewhat more satisfactory classical approach, known variously as the “sum-
mary-statistic approach,” “response feature analysis,” or “derived variable anal-
ysis,” is to reduce the vector of multiple measurements on each subject to a
single measurement that characterizes how the response is related to time (for
example, a least squares slope coefficient from a regression of response on
time for that subject), and then use various standard methods (e.g., ANOVA)
to study how treatments or other factors affect this summary statistic. By reduc-
ing all measurements on a given subject to a single measurement, this approach
circumvents difficulties associated with accounting for within-subject correla-
tion and yields a set of derived observations that are often reasonably regarded
as independent. However, some information on the relationship between re-
sponse and time inevitably is lost.

Another classical method for the analysis of longitudinal data is known as the
“repeated measures ANOVA.” In this approach, an ANOVA is performed as
if the data were from a split-plot experiment, with time of measurement as
the split-plot factor. The ANOVA yields F-tests for the hypotheses of no time
effects and no group-by-time interaction effects, but as a consequence of vari-
ance heterogeneity and within-subject correlation these tests are generally not
valid. The tests are valid if and only if a condition on the covariance structure
known as sphericity is satisfied (Mauchly, 1940). One type of covariance struc-
ture that satisfies the sphericity condition is compound symmetry, in which the
variances of responses are constant over time and all correlations are equal, re-
gardless of the amount of time that elapses between measurements. Although
sphericity is slightly more general than compound symmetry, it is still very re-
strictive and in practice it is not often well-satisfied by the data. Various mod-
ifications to the repeated measures ANOVA have been devised to yield F tests
that are approximately valid regardless of the within-subject covariance struc-
ture (Greenhouse and Geisser, 1959; Huynh and Feldt, 1976), but their use is
waning due to the development of better methods of analysis.

Historically, the first approach to the analysis of longitudinal data that ac-
counted directly for within-subject correlation was the “general multivariate
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PARAMETRIC MODELING 7

regression approach.” This approach regards the vector of responses on a given
subject as a multivariate observational unit, and it assumes that vectors from
different subjects are independent and distributed according to some family of
distributions (usually multivariate normal). The mean vectors of these distribu-
tions may be taken to be common across subjects but otherwise arbitrary — the
so-called “saturated” mean structure — or may be permitted to depend func-
tionally on values of observed covariates, including time itself. The covariance
matrix is regarded as an unknown parameter to be estimated and typically is
assumed to be homogeneous either across all subjects or across subjects within
specified groups (e.g., treatment groups). No additional structure (e.g., serial
correlation or homogeneous variances) is imposed upon the covariance matrix
beyond that required for positive definiteness, however. The covariance matrix
is estimated by the ordinary sample covariance matrix in the saturated case, or
by the sample covariance matrix of residuals from the fitted mean structure in
the more general case. This estimate plays an important role in various infer-
ential methods directed towards the data’s mean structure, e.g., Hotelling’s T 2

and multivariate analysis of variance.

Although the general multivariate regression approach is completely flexible
with regard to the covariance structure imposed, unfortunately it has several
shortcomings. First, it is not always applicable, for it requires that the data be
balanced (or rectangular), i.e., that the measurement times be common across
all subjects, with no measurements missing. Thus, it cannot be used, without
substantial modification, when data from some subjects are missing (incom-
plete). Missingness is commonplace for longitudinal data, as a result of such
things as staggered entry, failure to appear for an appointment, or early with-
drawal (“dropout”) of subjects from the study. Nor can the general multivariate
regression approach be used when the number of measurement times exceeds
the number of subjects, for in this event the sample covariance matrix is sin-
gular and hence not positive definite (Dykstra, 1970). Most importantly, even
when the general multivariate approach is applicable it may be quite inefficient
due to the large number of parameters in the covariance structure that must be
estimated. For balanced data with n measurement times, the covariance matrix
has n(n + 1)/2 distinct parameters. If the number of subjects is not substan-
tially larger than n, much of the information content of the data is in some
sense “spent” on estimating the covariance matrix, leaving less for estimating
the mean structure.

1.3 Parametric modeling

Relatively recently, a parametric modeling approach to longitudinal data analy-
sis has gained standing that, while similar to the general multivariate approach
in some respects, does not suffer from its shortcomings. Although it involves
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8 INTRODUCTION

modeling both the data’s mean structure and its covariance structure, the real
novelty of the approach is its parsimonious modeling of the latter and it is upon
this aspect that we focus most of our attention. Parsimonious modeling of the
covariance structure generally results in more efficient estimation of the data’s
mean structure and more appropriate estimates of the standard errors of the
estimated mean structure, in comparison to the general multivariate approach
(Diggle, 1988). Moreover, it can deal effectively with unbalanced and missing
data, and it can be employed even when the number of measurement times
is large relative to the number of subjects, provided that the assumed model
is sufficiently parsimonious. This approach, with several parsimonious model
options, has been coded into widely available software, for example PROC
MIXED of SAS and the lme function of S-Plus.

In order to describe the parametric modeling approach in more detail, we define
some notation. Let N denote the number of subjects, let

Ys = (Ys1, Ys2, . . . , Ysns
)T

be the vector of ns measurements of the response (in chronological order) on
subject s and let

ts = (ts1, ts2, . . . , tsns
)T

be the corresponding vector of measurement times (s = 1, . . . , N). Note that
the data are balanced if and only if t1 = t2 = · · · = tN . If the data are indeed
balanced, then we may dispense with the subscript “s” on the number of mea-
surement times, representing it more simply by n. Any covariates associated
with Ysi, possibly including but not limited to the time of measurement, tsi,
will be collected in a vector denoted by xsi.

It is assumed that the Ys’s are independent random vectors, each with its own
mean vector μs = (μsi) and covariance matrix Σs = (σsij). Thus, subject-
specific mean vectors are allowed, due to possible differences in measured co-
variates and measurement times across subjects, but the elements within these
vectors may be related through their functional dependence on relatively few
parameters. Similarly, elements in the N covariance matrices may be func-
tionally related, both within and across subjects, via relatively few parameters.
Indeed, if the model imposes no such functional relationships, there are too
many parameters to be estimated from the data.

Within the parametric modeling paradigm, three types of models can be distin-
guished, as discussed by Diggle et al. (2002). The first type, marginal models,
specify parametric functions for the elements of the mean vectors and covari-
ance matrices directly, i.e.,

μsi = μ(xsi;β), σsij = σ(tsi, tsj ;θ). (1.1)

Here, β and θ are functionally independent vectors of fixed parameters be-
longing to specified parameter spaces. Usually the parameter space for β is
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PARAMETRIC MODELING 9

unrestricted, but the parameter space for θ must be such that all subjects’ co-
variance matrices are positive definite. In (1.1) the elements of the covariance
matrices are expressed as functions of measurement times only, but this could
be extended to permit dependence on other covariates, if desired. Correlations
being more readily interpretable than covariances, an alternative marginal for-
mulation models the variances and correlations {ρsij}, so that the model for
σsij given above is replaced by

σsii = σ(tsi;θ1), ρsij = ρ(tsi, tsj ;θ2).

Here, θ1 and θ2 belong to specified parameter spaces that yield positive def-
inite covariance matrices, and they are functionally independent so that vari-
ances may be modeled separately from correlations. An extremely parsimo-
nious example of a marginally specified covariance structure of this type is the
compound symmetry model, in which

σsii ≡ σ2, ρsij ≡ ρ

(
σ2 > 0, − 1

maxns
< ρ < 1

)
. (1.2)

Another extremely parsimonious example is the stationary continuous-time
first-order autoregressive covariance model , in which

σsii ≡ σ2, ρsij = ρ|tsi−tsj | (σ2 > 0, 0 ≤ ρ < 1). (1.3)

Here and throughout the book, we use the term “stationary” in conjunction with
a longitudinal covariance structure to mean that the variances are equal across
time and the correlations depend on the times of measurement only through the
absolute value of their differences. Such a covariance structure, together with
a constant mean structure, ensures that the corresponding random process is
weakly stationary.

The second class of models, random coefficient models, are models for the
conditional mean and variance of each measurement, given the covariates and
a set of subject-specific random regression coefficient vectors b1, . . . ,bN . For
example, we might specify that

E(Ysi|xsi,bs) = xT
sibs, cov(Ysi, Ysj |xsi,xsj ,bs) = σ2

(where “cov,” here and throughout the book, is short for “covariance”), and that
b1, . . . ,bN are independent and identically distributed normal vectors with
mean vector β and covariance matrix G, whose elements are unknown param-
eters belonging to specified parameter spaces. Although the observations are
conditionally uncorrelated in this formulation, marginally they are correlated
within subjects as a result of the shared realized value of bs among all mea-
surements from subject s. Thus the covariance structure of the observations
is specified rather more indirectly than for a marginal model, but a marginal
model is implied nonetheless.

The third class of models, transition models, specify parametric forms for the
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the conditional mean and variance of each Ysi given the covariates xsi and all
preceding measurements, {Ys,i−1, . . . , Ys1}, on the sth subject. A commonly
used model of this type for balanced, equally-spaced data is the stationary first-
order autoregressive, or AR(1), model

Ys1 − μ(xs1;β) = εs1,

Ysi − μ(xsi;β) = φ[Ys,i−1 − μ(xs,i−1;β)] + εsi, (1.4)

i = 2, . . . , n,

where the “autoregressive coefficient” φ satisfies −1 < φ < 1 and the “in-
novations” {εsi} are independent zero-mean normal random variables with
var(εs1) = δ/(1 − φ2) and var(εsi) = δ for i = 2, . . . , n and all s. Note
that transition models, like random coefficient models, imply certain marginal
models. For example, the model obtained by marginalizing the first-order au-
toregressive model (1.4) and restricting its parameter space for φ to [0, 1) coin-
cides with model (1.3) when the data are balanced and measurement times are
equally spaced.

Whatever the class of parametric models used for (continuous) longitudinal
data, the standard approach to parameter estimation and other kinds of sta-
tistical inference is to assume that the joint distribution of the observations
(or some transformation thereof) is multivariate normal and use the method
of maximum likelihood or a common variation of it known as restricted, or
residual, maximum likelihood (REML).

1.4 Antedependence models, in brief

For the AR(1) model in particular and for stationary autoregressive models
in general, the innovation variances and the autoregressive coefficients corre-
sponding to a given lag are constant over time (apart possibly from some “start-
up values,” such as the variance of εs1 in the AR(1) model). Consequently, the
marginal variances of responses are constant over time and the marginal corre-
lations between measurements equidistant in time are equal. Often in practice,
however, longitudinal data do not satisfy these stationarity assumptions. Never-
theless, we may still use a transition model if we are willing to consider a more
general class of transition models known as antedependence models. A first-
order normal antedependence model (in its most general form) for balanced
data is given by

Ys1 − μ(xs1;β) = εs1,

Ysi − μ(xsi;β) = φi−1[Ys,i−1 − μ(xs,i−1;β)] + εsi, (1.5)

i = 2, . . . , n,
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where εs1, . . . , εsn are independent normal random variables with mean zero
and variances given by var(εsi) = δi > 0, and the autoregressive coefficients
φ1, . . . , φn−1 are unconstrained. Plainly, this model generalizes the AR(1)
model (1.4) by allowing the innovation variances and lag-one autoregressive
coefficients to vary over time. This, in turn, allows the marginal variances and
lag-one correlations among responses to vary over time as well. Correlations
beyond lag one are also allowed to vary over time, but in a way that is com-
pletely determined by the lag-one correlations. In fact, under this model the
correlations {ρsij} satisfy

ρsij =
i−1∏

m=j

ρm+1,m, i > j,

where ρm+1,m is the lag-one-ahead correlation at time m, which is assumed
to be common across subjects and to satisfy −1 < ρm+1,m < 1 for m =
1, . . . , n− 1. Thus, correlations among observations lagged two or more mea-
surement times apart are completely determined as the product of the lag-one
correlations corresponding to each intervening pair of consecutive observa-
tions. (This result, the relationship between the marginal variances and the
ρm+1,m’s on the one hand and the innovation variances and lag-one autore-
gressive coefficients on the other, and many other results for first-order antede-
pendence models will be established in Chapter 2.)

Higher-order antedependence models generalize higher-order stationary au-
toregressive models similarly, by allowing variances and higher-order same-lag
correlations to vary over time in more flexible ways.

Because antedependence models do not impose any stationarity assumptions,
they can provide for a considerably better fit than stationary autoregressive
models to many longitudinal data sets exhibiting serial correlation. The exam-
ple of the next section illustrates this point. Moreover, maximum likelihood
and REML estimates of the parameters of an important class of such models
known as unstructured antedependence models, of which (1.5) is the first-order
case, exist in closed form when the data are balanced and the mean structure
depends only on time-independent covariates (e.g., the saturated case).

1.5 A motivating example

Consider again the Treatment A cattle growth data, in particular their esti-
mated within-subject covariance structure (Table 1.2), which is computed from
the residuals from an estimated saturated mean structure. We noted previously
that the correlations are all positive and decrease more-or-less monotonically
within columns of the correlation matrix. Two other features of the covariance
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structure are also worth noting. First, the variances (Table 1.2, main diago-
nal elements) are not homogeneous, but instead tend to increase over time; in
fact, the variance quadruples (approximately) from the beginning of the study
to its end. Second, same-lag correlations (correlations within a given subdiag-
onal below the main diagonal) are not constant, but instead tend to increase
somewhat over time.

How might this covariance structure be modeled parametrically? Because the
data are balanced, one option would be the general multivariate approach.
However, in light of the discernible behavior of the variances and correla-
tions, such an approach would appear to be substantially overparameterized.
The compound symmetry model is an altogether unsuitable alternative, owing
to the widely disparate sample variances and clear evidence of serial corre-
lation in the data. Furthermore, sphericity is rejected unequivocally (p-value
< 1.0 × 10−8). We might briefly entertain stationary autoregressive models
or other stationary time series models, but these models do not comport with
the nonstationarity manifested in the sample variances and same-lag (within-
subdiagonal) sample correlations.

Instead of attempting to model the nonstationarity exhibited by these data, we
could try to reduce or eliminate it by transforming the response variable — a
standard ploy for reducing the functional dependence of the variance on the
mean in applied regression modeling — and then use a stationary autoregres-
sive model for the transformed data. Several power transformations (including
logarithms) of the cattle weights were attempted, and the one that best stabi-
lized the variance was the inverse square root transformation. Table 1.3 shows
the sample variances and correlations of the transformed data. Although an in-
verse square-root transformation renders the variances of these data relatively
stationary, the nonstationary behavior of the correlations persists after trans-
formation; in fact, the correlations change very little. It appears, unfortunately,
that we cannot “transform away” the nonstationarity of the variances and cor-
relations simultaneously.

However, the first-order antedependence model (1.5) introduced in the previ-
ous section is flexible enough to accommodate the nonstationarity exhibited by
both the variances and correlations of these data. Table 1.4 displays the REML
estimates of the marginal variances and correlations of the first-order antede-
pendence model, based on the data measured in the original scale. Comparison
with Table 1.2 suggests that this model fits remarkably well. In fact, the vari-
ances and lag-one correlations fit perfectly, which, as we will see later, is a
universal property of REML estimation for this model. Thus a comparison of
the lag-two and higher correlations is actually more relevant, and we see that
the correspondence of these correlations in the two tables is quite good. In par-
ticular, the fitted first-order antedependence model is able to track the increase
in the data’s same-lag correlations over time.
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Table 1.3 Sample variances, along the main diagonal, and correlations, below the main
diagonal, of the inverse-square-root transformed Treatment A cattle growth data. Vari-
ances are in units of 10−8.

247
.83 342
.78 .91 290
.68 .86 .93 253
.65 .82 .89 .94 279
.60 .75 .85 .92 .94 287
.53 .63 .75 .82 .86 .93 276
.54 .68 .78 .84 .89 .94 .93 282
.53 .62 .73 .79 .84 .91 .94 .97 316
.49 .60 .72 .75 .80 .87 .88 .95 .96 356
.49 .57 .69 .72 .77 .83 .85 .92 .95 .98 330

Table 1.4 REML variance estimates, along the main diagonal, and REML correlation
estimates, below the main diagonal, for the first-order antedependence model fitted to
the Treatment A cattle growth data.

106
.82 155
.75 .91 165
.69 .84 .93 185
.65 .79 .87 .94 243
.61 .74 .82 .89 .94 284
.57 .69 .76 .83 .88 .93 307
.53 .65 .71 .77 .82 .87 .93 341
.52 .63 .69 .75 .79 .84 .90 .97 389
.50 .60 .66 .72 .76 .81 .87 .93 .96 470
.49 .59 .65 .71 .75 .80 .86 .92 .95 .98 445
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The first-order antedependence model is not the only nonstationary alternative
to an AR(1) model for these data. Another possibility is to model the data’s
correlation structure as that of a stationary AR(1) model, but let the variances
be arbitrary (but positive). This model, known as the heterogeneous AR(1) or
ARH(1) model, is another first-order antedependence model, which is more
parsimonious than the general case but not as parsimonious as an AR(1). Table
1.5 displays REML estimates of the marginal variances and correlations under
this model. Note that the variance estimates coincide with those from the fitted
first-order antedependence model. Note also that this model is not sufficiently
flexible to track the heterogeneity among the same-lag correlations. We will
see later that other antedependence models exist that are superior, for these
data, to both the first-order antedependence model of the previous section and
the heterogeneous AR(1) model.

Table 1.5 REML variance estimates, along the main diagonal, and REML correlation
estimates, below the main diagonal, for the heterogeneous AR(1) model fitted to the
Treatment A cattle growth data.

106
.94 155
.89 .94 165
.83 .89 .94 185
.78 .83 .89 .94 243
.73 .78 .83 .89 .94 284
.69 .73 .78 .83 .89 .94 307
.65 .69 .73 .78 .83 .89 .94 341
.61 .65 .69 .73 .78 .83 .89 .94 389
.58 .61 .65 .69 .73 .78 .83 .89 .94 470
.54 .58 .61 .65 .69 .73 .78 .83 .89 .94 445

1.6 Overview of the book

This book describes antedependence models, their properties, and some im-
portant statistical inference procedures associated with them. Descriptions of
the models and their properties are the topics of Chapters 2 and 3. Chapter 2
defines and develops antedependence in its most general form, known as un-
structured antedependence, and the related notion of partial antecorrelation.
It also establishes several equivalent characterizations and parameterizations
of unstructured antedependence for normal variables. Chapter 3 is concerned
with structured antedependence models, which retain the essential conditional
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FOUR FEATURED DATA SETS 15

independence properties of unstructured antedependence models but are more
parsimonious. Beginning with Chapter 4, the book turns towards inference
for the models within the classical longitudinal sampling framework. Informal
model identification, using relevant summary statistics and exploratory graph-
ical methods, is the topic of Chapter 4 itself. More formal, likelihood-based
inference procedures for normal antedependence models are derived and pre-
sented in Chapters 5 through 7. Chapter 5 deals with maximum likelihood
and residual maximum likelihood estimation of parameters, Chapter 6 with
likelihood ratio tests and penalized likelihood model selection criteria for the
model’s covariance structure, and Chapter 7 with such tests and criteria for
the model’s mean structure. Numerous examples are provided in Chapters 4
through 7 to illustrate the methodology and to demonstrate the advantages of a
longitudinal data analysis based on an antedependence model. Chapter 8 sum-
marizes these illustrative examples and uses them to compare the performance
of antedependence models to some other parametric models commonly used
for longitudinal data.

Throughout all of the chapters summarized above, we limit our focus in some
ways, for the sake of simplicity. For example, we consider only longitudinal
data that are univariate and continuous, and we suppose that their means are
modeled only as linear functions of unknown parameters. Extensions of models
and inference procedures to multivariate or discrete data and to nonlinear mean
structure, along with some other topics, are described briefly in Chapter 9.

1.7 Four featured data sets

We conclude this chapter by introducing four longitudinal data sets, including
the cattle growth data featured in previous sections, that will be used exten-
sively in this book to illustrate various methods of statistical inference asso-
ciated with antedependence models. All of these data sets arise from studies
within the biological sciences, broadly defined. They exhibit a wide range of
characteristics that can occur with longitudinal data, including observational
and experimental data, equally and unequally spaced measurement times, time-
independent and time-dependent covariates, saturated and unsaturated mean
structure, treatment groups and no grouping factors, homogeneous and het-
erogeneous within-group covariance matrices, and complete and missing data
(monotone and non-monotone).

1.7.1 Cattle growth data

The cattle growth data (Kenward, 1987) come from a comparative experiment
in which cattle receiving two treatments, generically labeled A and B, for in-
testinal parasites were weighed 11 times over a 133-day period. Thirty animals
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received Treatment A and thirty received Treatment B. The first 10 measure-
ments on each animal were made at two-week intervals and the final measure-
ment was made one week after the tenth measurement. Measurement times
were common across animals and no observations were missing. Although
measurement times were not quite equally spaced (due to the shorter inter-
val between the tenth and eleventh measurements), the data are balanced. We
already displayed the data (Table 1.1) and the profile plot (Figure 1.1) for the
cattle receiving Treatment A; the data and profile plot for the cattle receiving
Treatment B are given in Table 1.6 and Figure 1.2, respectively. The main ob-
jective of the analysis is to characterize how cattle growth is affected by the
treatments. In particular, the experimenter wishes to know if there is a differ-
ence in growth between treatment groups, and if so, the time of measurement
at which it first occurs.
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Figure 1.2 Profile plot for the Treatment B cattle growth data. The thicker line indicates
the overall mean profile.

1.7.2 100-km race data

The 100-km race data, kindly provided by Ian Jollife of the University of Kent,
consist of the “split” times for each of 80 competitors in each 10-km section
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Table 1.6 Weights (in kg) of cattle from the growth study of Kenward (1987): Treatment
B cattle only.

Weeks from start of experiment

Cow 0 2 4 6 8 10 12 14 16 18 19

1 210 215 230 244 259 266 277 292 292 290 264
2 230 240 258 277 277 293 300 323 327 340 343
3 226 233 248 277 297 313 322 340 354 365 362
4 233 239 253 277 292 310 318 333 336 353 338
5 238 241 262 282 300 314 319 331 338 348 338
6 225 228 237 261 271 288 300 316 319 333 330
7 224 225 239 257 268 290 304 313 310 318 318
8 237 241 255 276 293 307 312 336 336 344 328
9 237 224 234 239 256 266 276 300 302 293 269

10 233 239 259 283 294 313 320 347 348 362 352
11 217 222 235 256 267 285 295 317 315 308 301
12 228 223 246 266 277 287 300 312 308 328 333
13 241 247 268 290 309 323 336 348 359 372 370
14 221 221 240 253 273 282 292 307 306 317 318
15 217 220 235 259 262 276 284 305 303 315 317
16 214 221 237 256 271 283 287 314 316 320 298
17 224 231 241 256 265 283 295 314 313 328 334
18 200 203 221 236 248 262 276 294 291 311 310
19 238 232 252 268 285 298 303 320 324 320 327
20 230 222 243 253 268 284 290 316 314 330 330
21 217 224 242 265 284 302 309 324 328 338 334
22 209 209 221 238 256 267 281 295 301 309 289
23 224 227 245 267 279 294 312 328 329 297 297
24 230 231 244 261 272 283 294 318 320 333 338
25 216 218 223 243 259 270 270 290 301 314 297
26 231 239 254 276 294 304 317 335 333 319 307
27 207 216 228 255 275 285 296 314 319 330 330
28 227 236 251 264 276 287 297 315 309 313 294
29 221 232 251 274 284 295 300 323 319 333 322
30 233 238 254 266 282 294 295 310 320 327 326

© 2010 by Taylor and Francis Group, LLC



18 INTRODUCTION

of a 100-km race held in 1984 in the United Kingdom. The data include, in
addition to the split times, the ages of all but four of the competitors. The
10-km sections, which in this situation play the role usually played by mea-
surement times, are evenly spaced (obviously). Every competitor finished the
race, hence the data are balanced. Tables 1.7 and 1.8 provide the data, and
Figure 1.3 is a profile plot of the data. Everitt (1994a, 1994b) performs some
additional graphical and exploratory analyses of these data. The analysis ob-
jective here is to find a parsimonious model that adequately describes how
competitor performance on each 10-km section is related to the section num-
ber (i = 1, 2, . . . , 10), age, and performance on previous sections.
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Figure 1.3 Profile plot for the 100-km race data. The thicker line indicates the overall
mean profile.

1.7.3 Speech recognition data

The speech recognition data (Tyler et al., 1988) consist of scores (percentage
of correct responses) on a sentence test administered under audition-only con-
ditions to groups of human subjects wearing one of two types of cochlear im-
plants, referred to here as A and B. Implants were surgically implanted five to
six weeks prior to being electrically connected to an external speech processor.
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Table 1.7: 100-km race data set, first 40 competitors.

Section

Subject Age 1 2 3 4 5 6 7 8 9 10

1 39 37.0 37.8 36.6 39.6 41.0 41.0 41.3 45.7 45.1 43.1
2 39 39.5 42.2 40.0 42.3 40.6 40.8 42.0 43.7 41.0 43.9
3 — 37.1 38.0 37.7 42.4 41.6 43.5 48.7 49.7 44.8 47.0
4 36 37.0 37.8 36.6 39.6 41.0 44.8 44.5 49.4 44.6 47.7
5 34 42.2 44.5 41.9 43.4 43.0 47.2 49.1 49.9 46.8 52.3
6 46 43.0 44.6 41.2 42.1 42.5 46.8 47.5 55.8 56.6 58.6
7 35 43.2 44.4 41.0 43.4 43.0 47.2 52.4 57.3 54.4 53.5
8 47 43.2 46.7 44.8 47.5 47.4 47.7 49.9 52.1 50.7 50.0
9 30 38.5 41.4 40.1 43.2 43.2 51.5 56.7 71.5 56.2 48.2

10 — 42.5 43.1 40.6 44.5 45.4 52.3 59.7 59.3 55.0 49.6
11 48 38.0 40.1 39.1 43.8 46.6 51.9 59.2 63.5 57.6 58.4
12 39 46.0 50.4 46.8 47.4 44.1 43.4 46.3 55.0 64.9 56.2
13 32 44.8 46.0 43.1 46.5 46.3 49.0 52.5 58.4 60.9 55.2
14 43 44.8 46.0 43.1 46.5 46.3 49.0 52.5 58.4 60.9 55.2
15 35 47.0 49.4 46.8 48.6 47.8 50.8 50.3 54.0 54.4 53.6
16 47 45.0 46.7 45.3 49.9 47.8 51.2 54.1 58.7 53.3 50.7
17 38 45.0 46.7 43.8 48.0 47.2 47.5 51.7 57.3 60.4 55.6
18 25 43.1 44.5 41.0 42.5 40.6 42.8 46.5 73.2 70.8 63.4
19 49 45.2 46.9 45.5 48.8 50.1 51.2 56.4 55.2 56.6 53.5
20 50 43.0 46.1 44.7 47.4 47.1 46.8 54.6 60.4 68.0 51.6
21 24 38.3 41.6 39.6 40.7 41.6 41.6 47.2 62.4 82.7 77.1
22 51 45.0 47.1 45.3 49.1 46.8 47.4 50.3 55.1 66.4 64.6
23 41 43.2 46.1 45.2 48.4 49.9 49.6 52.7 58.1 62.8 62.6
24 41 41.2 44.6 43.8 48.4 48.8 53.4 58.9 68.6 59.1 53.4
25 47 49.2 48.8 48.7 51.8 48.2 52.8 50.2 58.0 58.7 57.5
26 43 48.0 52.9 49.6 50.1 48.1 48.1 49.1 54.6 62.7 64.0
27 41 46.0 49.9 47.7 50.4 52.9 51.4 55.6 57.8 59.7 55.8
28 45 46.1 46.0 42.2 44.4 46.0 49.0 53.3 66.7 72.9 67.6
29 39 45.1 49.7 46.5 46.5 49.3 58.8 58.7 64.7 64.0 63.4
30 42 48.0 52.9 49.6 50.1 48.4 50.0 58.5 62.9 60.1 60.1
31 55 49.2 54.5 51.3 56.1 53.9 53.2 53.4 58.8 62.4 59.4
32 42 47.0 49.4 46.8 49.7 50.3 55.5 59.8 67.1 64.2 70.4
33 39 48.2 54.1 51.2 53.5 54.8 55.7 55.2 65.7 62.3 62.3
34 37 46.5 50.8 48.0 51.4 50.0 58.6 61.6 61.5 61.9 75.4
35 33 47.3 51.2 49.5 52.6 57.9 58.6 66.4 70.6 56.4 55.6
36 37 48.2 53.9 50.9 54.0 52.4 59.3 77.5 60.6 55.8 61.4
37 34 43.3 45.2 42.7 44.9 47.3 52.9 69.3 92.2 57.3 79.1
38 35 52.0 53.0 50.0 51.6 55.4 56.3 56.7 68.4 66.9 65.4
39 37 49.2 54.5 50.8 53.6 53.4 56.0 62.3 65.8 66.1 65.6
40 24 49.3 52.8 51.1 53.8 52.4 59.3 63.2 73.7 62.3 62.3
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Table 1.8: 100-km race data set, last 40 competitors.

Section

Subject Age 1 2 3 4 5 6 7 8 9 10

41 28 47.2 51.3 49.5 52.6 51.6 60.1 64.4 66.5 66.6 76.9
42 35 49.2 48.8 49.2 54.2 60.8 60.4 64.0 69.9 66.1 65.1
43 39 45.2 50.2 48.7 53.6 53.5 60.3 59.2 71.4 75.9 71.8
44 50 45.3 51.0 46.9 50.0 51.0 59.7 78.2 68.9 69.7 72.8
45 47 49.2 48.3 46.2 51.6 51.9 61.1 71.8 74.6 70.3 69.9
46 52 49.2 48.7 48.8 52.6 57.9 65.3 71.7 64.1 70.7 68.2
47 22 46.0 49.2 47.5 51.5 54.1 61.4 66.5 76.5 77.0 68.6
48 47 46.5 51.1 49.9 56.1 53.6 58.2 66.3 76.2 70.6 76.3
49 49 51.6 54.0 52.1 55.1 57.4 61.0 63.4 70.2 73.4 67.9
50 — 47.2 50.0 48.1 50.8 55.3 62.6 70.5 76.1 72.7 72.8
51 44 45.0 50.3 48.8 53.6 54.4 58.9 67.6 77.7 79.9 81.1
52 57 48.0 52.9 49.6 50.1 53.5 65.6 72.8 74.1 72.6 78.1
53 36 53.2 55.1 55.0 59.3 59.4 63.2 66.1 66.7 73.7 68.3
54 45 62.5 67.5 73.1 68.2 47.1 51.9 58.3 68.5 64.4 62.1
55 — 49.2 48.8 53.4 56.1 59.8 65.2 72.8 71.4 79.8 70.5
56 46 49.2 48.6 47.5 51.8 57.7 63.5 63.5 69.5 92.6 83.4
57 38 51.6 53.7 49.2 58.3 56.4 65.3 74.8 75.4 75.8 69.2
58 49 58.7 62.7 56.3 58.6 66.3 62.9 67.4 71.4 69.6 60.8
59 39 49.2 53.3 53.7 54.8 59.3 73.9 70.8 86.3 61.8 78.7
60 38 59.0 64.6 61.4 64.0 60.2 64.0 66.2 69.5 69.3 64.9
61 44 50.1 53.9 52.7 59.8 58.2 71.4 72.3 78.4 77.5 74.9
62 43 55.0 58.5 59.4 63.4 57.0 66.4 67.7 68.7 75.9 77.7
63 62 47.2 52.1 51.7 61.0 73.2 74.5 69.2 76.5 75.6 70.9
64 31 51.7 54.0 53.0 55.6 56.0 62.9 76.2 81.1 85.5 87.8
65 36 50.0 47.3 44.1 51.7 62.8 75.3 78.1 81.2 85.5 87.8
66 28 56.2 59.7 55.6 58.2 64.4 76.1 68.4 75.3 84.8 70.5
67 46 56.2 59.7 55.6 58.2 64.4 76.1 68.4 75.3 84.8 70.5
68 34 46.5 51.7 52.3 61.7 66.8 68.1 76.9 74.9 83.7 96.1
69 62 56.2 60.0 60.4 67.7 64.7 73.1 68.7 72.1 70.3 86.9
70 39 49.2 53.0 52.5 55.5 57.1 77.7 86.6 71.2 82.5 104.6
71 43 51.6 54.2 58.7 59.8 65.4 76.2 73.1 93.0 83.7 74.3
72 46 58.1 62.0 60.2 63.7 65.7 78.8 69.4 81.7 79.2 81.9
73 20 48.2 54.0 52.5 55.5 60.1 73.9 71.8 86.8 91.9 110.0
74 49 55.0 60.9 55.0 63.5 68.8 84.6 64.8 95.0 81.8 75.4
75 35 56.2 60.4 63.1 65.0 71.7 78.8 77.0 89.0 83.5 61.0
76 42 48.0 52.9 52.8 70.5 77.1 85.3 76.9 93.9 88.4 68.2
77 20 46.5 51.0 63.6 66.7 75.0 81.0 76.0 95.4 80.9 79.3
78 30 46.5 51.0 63.6 66.7 75.0 81.0 76.0 95.4 80.9 79.3
79 27 52.2 55.5 55.9 70.6 77.7 86.6 71.6 86.9 87.8 71.2
80 34 50.5 55.4 64.1 66.3 75.6 86.6 71.6 87.3 89.2 73.4
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Subjects were profoundly, bilaterally deaf, thus preconnection baseline values
for the sentence test were all zero. Twenty subjects received implant A and 21
received implant B. Measurements were scheduled at 1, 9, 18, and 30 months
after connection. There was some variation in actual follow-up times, how-
ever, so these times were not exact. Moreover, some subjects did not show up
for one or more of their scheduled follow-ups, so some data are missing. Table
1.9 gives the data, and Figure 1.4 displays profile plots of the data for each
type of implant. Our interest centers on describing how the audiologic perfor-
mance of individuals receiving each type of implant depends on the elapsed
time since implantation. More specifically, we wish to know, primarily, how
the mean profiles of the two implant types compare to one another, and sec-
ondarily, whether a subject’s audiologic performance tends to become more
consistent over time.
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Figure 1.4 Profile plots for the speech recognition data: Top panel, cochlear implant
type A; bottom panel, cochlear implant type B. The thicker lines indicate the overall
mean profiles for each implant type.

1.7.4 Fruit fly mortality data

The fruit fly mortality data were kindly provided to us by J. Curtsinger, A.
Khazaeli, and F. Jaffrézic of the INRA Quantitative and Applied Genetics
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Table 1.9: Speech recognition data set.

Months after connection

Subject Implant type 1 9 18 30

1 A 28.57 53.00 57.83 59.22
2 A 9.00 13.00 21.00 26.50
3 A 60.37 86.41 —– —–
4 A 33.87 55.50 61.06 —–
5 A 42.86 44.93 33.00 —–
6 A 26.04 61.98 67.28 —–
7 A 15.00 30.00 58.53 —–
8 A 33.00 59.00 66.80 83.20
9 A 11.29 38.02 40.00 —–

10 A 11.00 35.10 37.79 54.80
11 A 40.55 50.69 41.70 52.07
12 A 3.90 11.06 4.15 14.90
13 A 6.00 17.74 44.70 48.85
14 A 64.75 84.50 92.40 95.39
15 A 38.25 81.57 89.63 —–
16 A 67.50 91.47 92.86 96.00
17 A 14.29 45.62 58.00 —–
18 A 5.00 9.00 37.00 —–
19 A 51.15 66.13 —– —–
20 A 8.00 48.16 —– —–
21 B 11.75 19.00 —– —–
22 B 5.00 11.00 —– —–
23 B 8.76 24.42 40.00 —–
24 B 5.00 20.79 27.42 31.80
25 B 2.30 12.67 28.80 24.42
26 B 12.90 28.34 23.00 —–
27 B 19.23 45.50 43.32 36.80
28 B 68.00 96.08 97.47 99.00
29 B 20.28 41.01 51.15 61.98
30 B 16.00 33.00 45.39 40.09
31 B 65.90 81.30 71.20 70.00
32 B 5.00 8.76 16.59 14.75
33 B 9.22 14.98 9.68 —–
34 B 11.29 44.47 62.90 68.20
35 B 30.88 29.72 —– —–
36 B 29.72 41.40 64.00 62.67
37 B 8.00 43.55 48.16 48.00
38 B 8.76 60.00 60.00 —–
39 B 11.55 55.81 —– —–
40 B 49.77 66.27 —– —–
41 B 8.00 25.00 30.88 55.53
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Figure 1.5 Profile plot for the fruit fly mortality data. The thicker line indicates the
overall mean profile.

(Centre de Researche de Jouy, Jouy-en-Josas, France). The data are age-specific
measurements of mortality for 112 cohorts of Drosophila melanogaster, the
common fruit fly. The cohorts were derived from 56 recombinant inbred lines,
each line replicated twice. Cohorts consisted of roughly an equivalent num-
ber (500 to 1000) of flies. Every day, dead flies were retrieved from the cage
holding each cohort and counted, but these counts were pooled into 11 5-day

intervals for analysis. Raw mortality rates were measured as − log
(

N(t+1)
N(t)

)
,

where N(t) is the number of flies in the cohort living at the beginning of time
interval t (t = 0, 1, . . . , 10). To make the responses more normally distributed,
these raw mortality rates were log-transformed; thus, ultimately the response

variable for analysis was log
{
− log

(
N(t+1)

N(t)

)}
. For reasons unknown to us,

approximately 22% of the data is missing, and the missingness is not mono-
tone. Tables 1.10 through 1.12 list the data, and Figure 1.5 is the profile plot.
Our analysis objective is to find a parsimonious model that adequately de-
scribes how mortality, averaged over recombinant inbred lines, changes with
age (time) and how mortality at any given age is related to mortality at previous
ages.
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Table 1.10: Fruit fly mortality data set, first 50 cohorts.

Five day period from start of study

1 2 3 4 5 6 7 8 9 10 11

–2.83 –2.96 –3.14 –1.27 –0.68 –0.63 –1.70 –0.09 0.33 –0.37 —–
–3.49 –4.86 —– –3.45 –4.81 –4.11 –1.77 –0.83 –0.50 0.02 –0.72
–3.79 –3.25 –4.14 –4.82 –3.70 –2.01 –1.13 –0.56 0.12 –0.17 –1.70
–3.77 –4.16 –4.84 –3.73 –2.37 –2.27 –0.53 –0.02 –0.44 –0.80 0.23
–3.44 –4.11 –4.79 –4.78 –3.15 –1.00 –1.35 –0.54 –0.73 –0.17 0.10
–3.77 –4.85 –4.84 –2.60 –1.85 –0.92 –0.43 –0.98 –0.02 –0.53 –0.67
–3.39 –3.65 –3.62 –3.60 –3.57 –3.25 –2.98 –2.21 –1.22 –0.81 –0.70
–3.57 –2.60 –3.47 –2.49 –0.08 –0.18 –0.51 –0.50 0.09 —– —–
–3.27 –2.89 –4.80 –4.10 –1.87 0.40 0.71 0.09 —– —– —–
–4.82 —– –4.11 –1.11 0.32 —– —– —– —– —– —–

—– –4.25 –3.83 –1.35 0.15 0.88 0.09 —– —– —– —–
—– —– —– —– –4.63 –3.92 –1.97 –0.78 –0.67 –0.79 –0.30

–4.96 —– —– –4.95 —– —– –3.84 –3.82 –2.37 –2.04 –1.64
—– –3.67 –4.05 –3.33 –2.58 –2.38 –1.42 –0.97 –1.20 –1.16 –0.65
—– –4.89 –4.18 –3.24 –2.39 –1.49 –1.71 –1.19 –1.42 –0.96 –0.09

–3.88 –4.96 –4.26 –4.24 –4.92 –4.22 –4.21 –2.12 –1.31 –1.33 –1.07
–4.90 –4.89 —– —– —– –4.89 —– –2.19 –0.76 –0.37 –0.57
–2.58 –2.11 –2.12 0.19 –0.24 0.28 –0.37 —– —– —– —–
–3.80 –4.88 –4.87 –3.24 –2.39 –1.23 –1.98 –0.41 –0.44 –0.51 0.88
–4.99 —– –4.99 —– –3.36 –1.77 –1.81 –1.13 –0.82 0.19 0.03
–4.06 –4.74 –4.73 –4.72 –4.71 –2.59 –1.71 –0.43 –0.82 –0.22 0.38
–3.45 –3.00 –1.86 –0.89 –0.57 –0.87 –2.06 –1.36 –1.64 –0.58 0.33
–2.70 –1.41 –0.82 –0.13 –1.05 –0.60 –1.61 –0.21 –1.25 –0.90 –0.37

—– —– —– –5.01 –2.00 0.15 –0.13 –0.12 –0.58 –1.25 0.09
–4.25 —– —– –1.98 –0.85 0.47 –0.37 –0.02 –0.90 —– —–

—– —– —– —– —– –2.76 –0.27 0.19 0.70 –0.37 —–
–4.96 –4.26 –4.94 –3.31 –4.20 –1.86 –0.38 –0.24 –0.72 –0.55 –0.53
–4.95 –3.83 –2.69 –1.77 –0.62 –0.34 0.12 0.83 —– —– —–
–4.68 –3.27 –3.93 –3.21 –2.03 –1.98 –1.41 –0.47 0.04 –0.24 0.48
–3.63 —– –4.02 –4.00 –1.90 –1.21 –0.70 –0.58 –0.02 –0.21 —–
–3.58 –3.56 –4.92 –3.29 –2.35 –0.73 0.92 —– —– —– —–

—– —– –4.82 –4.82 –2.70 –2.12 –1.36 –0.83 –1.06 –1.38 –0.82
–4.30 –4.28 –3.86 –4.25 –2.96 –1.75 –1.28 –0.54 –0.80 –1.33 –0.70
–3.41 –3.67 –4.05 –2.92 –1.98 –1.91 –1.20 –1.50 –1.35 –0.65 0.01
–4.36 —– —– –3.94 –3.92 –2.32 –1.00 0.31 –0.49 –0.48 0.23
–3.36 —– —– —– –4.25 –2.83 –1.97 –0.37 –0.15 0.21 –0.17

—– –3.87 –3.85 –3.53 –2.21 –0.98 –0.38 –0.30 –1.25 –0.27 –0.58
—– –4.83 —– –2.85 –2.53 –2.15 –1.31 –1.16 –0.77 –0.83 –0.96

–3.57 —– –3.54 –3.10 –3.05 –1.98 –1.90 –1.42 –1.81 –2.29 –1.74
–3.23 –3.19 –2.08 –1.35 –0.57 0.36 0.53 –0.37 —– —– —–

—– –2.84 –1.97 –0.09 –0.09 –0.37 0.23 —– –0.37 —– —–
–4.27 –3.14 –3.80 –1.93 –0.82 –0.10 0.70 –0.37 –0.37 —– —–

—– –4.23 –3.81 –0.92 –0.03 0.46 0.67 —– —– —– —–
–3.07 –2.76 –1.75 –0.37 –0.03 0.53 0.33 —– —– —– —–
–3.56 –2.56 –1.04 0.06 –0.19 –0.12 0.23 —– —– —– —–
–2.90 –1.74 –0.76 1.12 0.09 —– —– —– —– —– —–
–3.46 –2.48 –0.48 1.11 —– —– —– —– —– —– —–
–4.99 –2.88 —– –4.93 –1.80 –0.64 –0.06 0.79 —– —– —–
–3.86 —– –4.25 –3.53 –2.80 –1.20 –0.43 –0.11 0.19 0.09 —–
–4.99 –3.59 –3.34 –3.30 –1.76 –1.63 –1.01 0.33 0.73 —– —–
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Table 1.11: Fruit fly mortality data set, next 50 cohorts.

Five day period from start of study

1 2 3 4 5 6 7 8 9 10 11

–3.56 –2.96 –3.25 –2.31 –0.76 –1.18 –0.68 0.52 —– —– —–
–4.77 —– –2.79 –1.85 –0.84 –0.54 –0.73 –0.17 0.09 –0.90 —–
–5.03 –2.92 –4.97 –1.66 –0.80 –0.25 –0.98 –1.07 –1.64 0.23 —–

—– –4.90 –3.79 –3.47 –2.87 –2.01 –0.64 –0.10 –0.09 –0.09 —–
–4.01 –3.06 –2.10 –1.01 0.79 0.67 —– —– —– —– —–
–2.31 –1.26 –0.25 0.31 0.01 0.33 —– —– —– —– —–
–2.83 –0.59 0.40 1.04 —– —– —– —– —– —– —–

—– –4.74 –2.92 –3.57 –2.30 –0.81 –0.16 0.50 –0.67 –0.90 —–
–2.91 –2.01 –2.29 –1.48 –0.50 0.00 0.58 —– —– —– —–
–3.01 –3.12 –2.20 –0.96 0.20 0.91 —– —– —– —– —–
–1.94 –2.19 –2.07 –1.36 –0.35 0.27 0.83 —– —– —– —–
–4.95 –4.24 –4.92 —– –2.23 –1.09 –0.50 –0.19 –0.30 0.19 –0.90
–4.23 –4.21 –4.20 —– –2.05 –0.92 –1.16 –0.44 –2.25 –0.77 –0.45
–2.78 –3.20 –3.68 –2.94 –3.60 –1.34 –0.15 –0.09 –0.17 0.09 –0.37

—– –4.16 –3.73 –4.12 –2.36 –0.71 –0.04 –0.15 –0.50 –1.70 –0.09
–4.80 —– —– –4.09 –4.08 –2.42 –1.89 –0.85 –0.46 –0.65 –0.97
–4.88 —– —– —– —– —– –1.75 –0.04 0.51 0.33 –0.37

—– –3.72 —– —– —– –4.80 –3.39 –0.67 –0.87 –1.53 –1.73
–3.36 –3.33 –3.52 —– –4.19 –3.25 –1.76 –1.46 –1.63 –0.70 –1.19
–4.61 –4.60 —– –3.19 –3.85 –2.29 –1.96 –1.40 –0.97 –0.19 –0.28

—– —– –4.92 –4.22 –2.93 –0.89 –0.63 –0.37 –0.09 –0.67 –1.70
–4.26 –4.24 –4.92 –3.81 –2.93 –0.91 0.37 1.10 —– —– —–
–4.23 –3.29 –3.25 –4.14 –2.59 –1.36 –0.45 –0.34 0.30 0.09 –0.37

—– —– –3.79 –4.87 –4.17 –1.95 –0.25 0.84 0.48 —– —–
—– –4.32 —– —– —– –2.48 –0.93 –0.17 –0.59 –0.43 –0.37

–4.92 –3.81 –4.89 –4.89 –4.18 –2.64 –2.10 –1.58 –0.59 –0.74 –0.61
–3.17 –3.13 –4.20 –2.91 –3.01 –1.75 –1.45 –0.58 –0.09 –0.21 0.33
–3.82 –2.80 –4.84 –3.21 —– –2.35 –1.36 –0.52 –0.10 0.14 0.58

—– —– –4.92 —– –3.10 –2.89 –1.44 –1.26 –0.39 0.19 0.26
—– –4.90 –4.20 –3.48 –2.41 –2.14 –1.66 –1.02 –0.67 –0.62 –0.17

–3.85 –2.60 –4.17 –3.74 –2.21 –0.42 0.75 —– —– —– —–
–2.65 –3.81 –2.93 –0.49 0.61 0.26 —– —– —– —– —–
–4.93 –4.92 –4.92 –2.68 –1.47 –1.46 –0.59 –0.85 –0.27 –0.58 0.33

—– –4.92 —– –4.22 –2.01 –0.18 0.43 0.88 —– —– —–
—– —– –3.38 –2.93 –2.15 –2.12 –1.27 –0.78 –0.33 –0.09 0.73
—– —– –4.28 –3.56 –1.86 –1.59 –0.35 –0.98 –0.41 –0.45 0.09

–4.93 –1.91 –1.49 –0.38 –0.83 0.50 0.58 —– —– —– —–
–2.65 –1.79 –1.97 –0.58 –0.50 –0.71 –0.29 –0.53 —– –0.09 —–
–2.77 –1.92 –2.55 –0.23 0.75 —– —– —– —– —– —–
–3.25 –3.73 –4.82 —– –4.81 –2.83 –1.01 –0.98 –0.50 –0.37 0.48
–3.11 –3.07 –4.14 –3.19 –2.54 –1.18 –0.81 –0.48 0.33 —– —–
–2.70 –1.83 –0.61 0.44 0.58 –0.37 —– —– —– —– —–
–3.80 –3.48 –4.15 –3.02 –1.10 0.34 –0.17 0.41 —– —– —–
–4.31 —– –4.99 –3.59 –2.27 –3.04 –1.09 0.69 —– —– —–
–3.78 –2.34 –3.14 –3.32 –3.29 –2.02 –1.25 –0.96 –0.88 –1.54 –0.55
–4.96 —– –4.95 –3.55 –3.11 –2.76 –1.31 –0.16 –0.37 0.05 –0.17
–3.86 –3.55 –3.52 –4.89 –1.38 –0.89 –0.57 –0.44 –1.25 0.09 –1.50
–1.29 –1.71 –1.13 –2.58 –1.06 –0.29 0.04 —– —– —– —–
–2.50 –2.41 –3.45 –1.21 –1.01 0.33 0.33 —– —– —– —–
–4.61 –2.78 —– —– –2.72 –0.83 0.50 0.88 —– —– —–
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Table 1.12: Fruit fly mortality data set, last 12 cohorts.

Five day period from start of study

1 2 3 4 5 6 7 8 9 10 11

–4.28 –4.27 –4.26 –4.24 –3.30 –2.12 –0.85 –0.10 –0.23 0.03 –0.67
–3.43 –2.68 –3.10 –2.57 –0.43 0.50 0.48 —– —– —– —–

—– –2.99 –2.05 –1.64 –3.73 –2.58 –1.76 –1.25 –0.25 –0.24 –0.67
–4.95 –4.95 –2.97 –3.49 –2.63 –1.21 –0.16 0.22 0.26 –0.90 —–

—– –3.31 –2.75 –0.07 –0.57 0.37 –0.37 —– —– —– —–
–4.17 –3.74 –3.01 –4.78 –4.07 –1.37 –0.82 –0.63 –1.47 –0.77 –0.63

—– –3.85 –4.23 –3.81 –2.79 –1.23 0.02 –0.45 –1.12 0.38 —–
–3.82 –4.90 –3.08 –3.22 –2.04 0.04 0.44 0.73 —– —– —–
–2.70 –1.40 –2.96 –2.06 –0.55 0.05 0.16 0.33 —– —– —–
–3.72 –4.10 –4.09 –4.07 –1.51 0.01 1.26 —– —– —– —–

—– –2.24 –1.93 –2.51 –2.43 –4.17 –1.89 –0.73 –0.20 0.09 –0.67
–3.86 –3.43 –2.69 –0.56 –0.13 0.05 —– —– —– —– —–
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CHAPTER 2

Unstructured Antedependence
Models

This chapter introduces antedependence models in their most general form,
which are called unstructured antedependence models because no additional
structure beyond that needed for antedependence is imposed upon the model.
We begin with definitions of antedependence and partial antecorrelation, which
are equivalent in the important case of normal random variables. We then es-
tablish a number of equivalent characterizations of the covariance structure of
partially antecorrelated variables, as well as some properties of determinants
and traces involving such a covariance structure. These results will, in later
chapters, be very important for deriving inferential procedures for antedepen-
dence models. The results are specialized to the important first-order case, and
then generalized to the so-called variable-order case. Finally, relationships be-
tween these models and some other, more well known conditional indepen-
dence models are described.

Those readers who have a certain squeamishness insofar as the “innards” of
matrices are concerned may not regard this chapter as their favorite. For, the
derivation of important properties of antedependence models requires that the
observations’ covariance matrix and other related matrices be dissected into
various submatrices and individual elements, and these pieces are assigned no-
tation that, in order to be sufficiently precise, is unavoidably cumbersome.

2.1 Antedependent random variables

Consider n random variables Y1, Y2, . . . , Yn whose indices are ordered in a
meaningful way, for example serially in time (chronologically) or along a tran-
sect in two-dimensional or three-dimensional space. In the following formal
definition of antedependence and subsequently, we use the symbol ⊥ to denote
the independence of two random variables or two sets of random variables;

27
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for example, we write Y1 ⊥ (Y2, Y3) to indicate that Y1 and (Y2, Y3) are in-
dependent. Furthermore, we write Y1 ⊥ Y2|Y3 to indicate that Y1 and Y2 are
conditionally independent, given any value of Y3.

Definition 2.1. Index-ordered random variables Y1, . . . , Yn are said to be an-
tedependent of order p, or AD(p), if

Yi ⊥ (Yi−p−q−1, Yi−p−q−2, . . . , Y1)|(Yi−1, Yi−2, . . . , Yi−p−q),
i = p+ q + 2, p+ q + 3, . . . , n; q = 0, 1, . . . , n− p− 2;

that is, if each variable, given at least p immediately preceding variables, is
independent of all further preceding variables.

Definition 2.1 of antedependence is Gabriel’s original definition (Gabriel, 1962),
but there are several equivalent, somewhat less cumbersome, definitions that
we will consider subsequently. To illustrate the definition, consider n = 4 ran-
dom variables Y1, Y2, Y3, Y4. These variables are AD(2) if Y4 ⊥ Y1|(Y2, Y3),
and they are AD(1) if

Y3 ⊥ Y1|Y2, Y4 ⊥ (Y1, Y2)|Y3, Y4 ⊥ Y1|(Y2, Y3). (2.1)

The order, p, of antedependence may be any integer between 0 and n − 1,
inclusive. The extreme cases p = 0 and p = n − 1 are equivalent to com-
plete independence and arbitrary (general multivariate) dependence structure,
respectively. It is clear from their definition that AD(p) variables are nested;
that is,

AD(0) ⊂ AD(1) ⊂ AD(2) ⊂ · · · ⊂ AD(n− 1). (2.2)

Thus antedependence models of ever-increasing order partition the universe of
all dependence structures. Put another way, every set of random variables with
ordered indices is antedependent of some order.

Since antedependence is defined with respect to a particular ordering of in-
dices, a collection of variables that are AD(p) with respect to one ordering may
not be AD(p) with respect to another ordering. The cases p = 0 and p = n− 1
are exceptions; for these cases antedependence holds with respect to any order-
ing. Of course, for longitudinal data only one ordering, namely chronological
ordering, would seem to be relevant.

Owing to the large number of individual conditional independence conditions
that can be generated by the phrases “at least” and “all further” in Definition
2.1, it appears that there could be some redundancies among the required set of
conditions. This is indeed the case. Consider, for example, the conditions (2.1)
required of four variables to be AD(1), and suppose that the joint probability
density function of these variables exists. If the second of the three conditions
in (2.1) holds, then we have, using obvious notation for the various conditional
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densities,

f4|2,3(Y4|Y2, Y3) =
∫
f4|1,2,3(Y4|Y1, Y2, Y3)f1|2,3(Y1|Y2, Y3) dY1

=
∫
f4|3(Y4|Y3)f1|2,3(Y1|Y2, Y3) dY1

= f4|3(Y4|Y3)
= f4|1,2,3(Y4|Y1, Y2, Y3),

and thus the third condition in (2.1) is redundant. Alternatively, if the first and
third conditions in (2.1) hold, and if Y4 ⊥ Y2|Y3, which is part but not all of
the second condition, then

f1,4|3(Y1, Y4|Y3) =
∫
f1,4|2,3(Y1, Y4|Y2, Y3)f2|3(Y2|Y3) dY2

=
∫
f1|2,3(Y1|Y2, Y3)f4|2,3(Y4|Y2, Y3)f2|3(Y2, Y3) dY2

=
∫
f1|2,3(Y1|Y2, Y3)f4|3(Y4|Y3)f2|3(Y2, Y3) dY2

= f4|3(Y4|Y3)f1|3(Y1|Y3),

which establishes that the remaining part of the second condition holds, i.e.,
Y4 ⊥ Y1|Y3. Thus it is possible to define AD(1) variables using fewer con-
ditional independence conditions than those originally specified by Gabriel.
Indeed, the same sorts of arguments can be used with arbitrary n and p to
establish the following two simpler, but equivalent, definitions of AD(p) vari-
ables.

Definition 2.2. Index-ordered random variables Y1, . . . , Yn are said to be an-
tedependent of order p, or AD(p), if either of the following are true:

(a) Yi ⊥ (Yi−p−1, Yi−p−2, . . . , Y1)|(Yi−1, Yi−2, . . . , Yi−p), for i = p + 2, p +
3, . . . , n; that is, if each variable, given exactly p immediately preceding
variables, is independent of all further preceding variables.

(b) Yi ⊥ Yi−p−q−1|(Yi−1, Yi−2, . . . , Yi−p−q), for i = p + q + 2, p + q +
3, . . . , n; q = 0, 1, . . . , n − p − 2; that is, if each pair of variables with
indices differing by more than p units are independent, given all the inter-
vening variables between the pair.

The number of pairwise conditional independence conditions in either case of
Definition 2.2 is (n− p)(n− p− 1)/2, and these conditions contain no redun-
dancies. Note that Definition 2.2(b) reveals that if the index-ordered variables
Y1, . . . , Yn are AD(p), then so are Yn, Yn−1, . . . , Y1; that is, the variables in
reverse order are also AD(p).
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It is quite easy to construct examples of AD(p) random variables. For example,
let ε1, . . . , εn be independent random variables, and define

Yi =
i∑

k=1

εk, i = 1, . . . , n. (2.3)

It can be shown that Yi ⊥ Yi+2|Yi+1 for all i; for example, if the probability
density functions of these variables exist, then for i = 1, 2, . . . , n− 2,

fi,i+2|i+1(Yi, Yi+2|Yi+1) = fi+2|i,i+1(Yi+2|Yi, Yi+1)fi|i+1(Yi|Yi+1)
= fi+2|i+1(Yi+2|Yi+1)fi|i+1(Yi|Yi+1).

Thus, {Yi : i = 1, . . . , n} are AD(1). Similarly, if cumulative sums are taken
of arbitrary AD(p) variables, i.e., if the εk’s in (2.3) are AD(p) variables, then
the Yi’s are AD(p + 1) variables. We will consider these and other types of
antedependent variables in more detail in Chapter 3.

The term “antedependence,” like its original definition, is due to Gabriel (1962).
Note that the Latin root “ante” means “before” or “preceding,” so the term is
quite apt. The same concept has been called the general Markov property by
other writers (e.g., Feller, 1968, p. 419), and it would also be reasonable to
call it “banded precision matrix structure” or “generalized autoregressive struc-
ture,” for reasons that will become clear in the next section. However, none of
these alternatives are as catchy as the original. There is one unfortunate as-
pect of the term, however: when it is spoken, hearers often misunderstand it
as “anti-dependence” and think it may be either an antonym of dependence,
a type of negative dependence, or who knows what. The confusion is usually
cleared up by spelling the word for the listener.

2.2 Antecorrelation and partial antecorrelation

Consider again n index-ordered random variables Y1, Y2, . . . , Yn, but now sup-
pose that their variances exist. In this event, the conditional independence prop-
erties defining AD(p) random variables imply certain corresponding properties
of the conditional covariances and conditional correlations among the vari-
ables. Let σij|B and ρij|B denote the conditional covariance and conditional
correlation, respectively, between Yi and Yj , given all variables whose indices
belong to a set B. If the variables are AD(p), then it follows from Definition
2.2 that both of the following are true:

ρij|j−1,j−2,...,j−p = 0, i = 1, 2, . . . , j − p− 1,
ρi−p−q−1,i|i−1,i−2,...,i−p−q = 0, q = 0, 1, . . . , n− p− 2.

The same type of result holds, of course, for the conditional covariances. How-
ever, the converse is not generally true; that is, if either equivalent property of
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the conditional correlations holds, this is not sufficient to imply that the vari-
ables are AD(p). The converse does hold, however, if Y1, . . . , Yn are jointly
normally distributed, as a consequence of the normality of all conditional dis-
tributions and the equivalence of uncorrelatedness and independence for nor-
mal variables.

The property of the conditional correlations given above is of interest in its own
right, even though it is not generally equivalent to antedependence. It appears
that no term has previously been given to this property, but it seems reasonable
to call it “antecorrelation” of order p, or AC(p). As noted above, AC(p) and
AD(p) are equivalent for jointly normally distributed variables.

A property of a covariance structure ostensibly very similar to antecorrelation
of order p is one for which the corresponding partial correlations, rather than
conditional correlations, are equal to zero. We call this property partial antecor-
relation of order p, or PAC(p), and we will give a formal definition of it shortly.
First, however, we digress briefly to review some notation, terminology, and re-
sults associated with partial correlations.

Let Y = (Y1, . . . , Yn)T be a random vector with positive definite covari-
ance matrix Σ. Let {i : j} denote any sequence of consecutive integers i, i +
1, . . . , j, and letA andB be any nonempty disjoint subsets of {1 : n}. Suppose
that we form the two vectors of variables, YA and YB , consisting of those ele-
ments of Y whose indices belong toA andB, respectively. Let μA = E(YA),
μB = E(YB), ΣAA = var(YA), ΣBB = var(YB), ΣAB = cov(YA,YB),
and ΣBA = ΣT

AB . Then the regression of YA on YB is the random vector
given by

ŶA·B = μA + ΣABΣ−1
BB(YB − μB).

The residual vector corresponding to this regression is given by

YA − ŶA·B .

Observe that the ith element of ŶA·B is a linear function of the elements of
YB .

The following theorem gives some well-known results about the regression and
residual vectors that will be useful to us.

Theorem 2.1. Let YAi denote the ith element of YA. In the regression of YA

on YB:

(a) the ith element of ŶA·B minimizes the mean squared error E[YAi − (c +
kT YB)]2 among all linear functions c+ kT YB;

(b) the ith element of ŶA·B maximizes the correlation between YAi and c +
kT YB among all linear functions c + kT YB , and the maximized value of
this correlation is given by

Ri·B = (σT
iBΣ−1

BBσiB/σii)1/2, (2.4)
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where σiB = cov(YB , YAi) and σii = var(YAi);

(c) cov(YA − ŶA·B ,YB) = 0;

(d) ΣAA·B ≡ var(YA − ŶA·B) = ΣAA − ΣABΣ−1
BBΣBA;

(e) if the joint distribution of YA and YB is multivariate normal, then ŶA·B is
the conditional mean, and ΣAA·B is the conditional variance, of YA given
YB .

Proof. Proofs of parts (a), (b), (c), and (e) of the theorem may be found in
Anderson (1984, pp. 36–40). For part (d), we have

var(YA − ŶA·B) = var(YA) + var(ŶA·B) − cov(YA, ŶA·B)

−cov(YA, ŶA·B)T

= ΣAA + ΣABΣ−1
BBΣBBΣ−1

BBΣBA − ΣABΣ−1
BBΣBA

−(ΣABΣ−1
BBΣBA)T

= ΣAA − ΣABΣ−1
BBΣBA.

�

The quantity Ri·B defined in part (b) of Theorem 2.1 is called the multiple
correlation coefficient between YAi and YB , and the matrix ΣAA·B defined in
part (d) of the theorem is called the partial covariance matrix of YA, adjusted
for (or partialling out) YB . Denote the (i, j)th element of ΣAA·B by σij·B; this
is called the partial covariance between YAi and YAj (or the partial variance
of YAi if i = j) adjusted for the variables in YB . The partial correlation
coefficient between YAi and YAj adjusted for the variables in YB is then given
by

ρij·B =
σij·B

(σii·Bσjj·B)1/2
.

We can broaden this definition of a partial correlation coefficient to include the
ordinary correlation coefficient as follows: if B is empty, then ρij·B = ρij .

Now we are in a position to define partial antecorrelation of order p.

Definition 2.3. Index-ordered random variables Y1, . . . , Yn are said to be par-
tially antecorrelated of order p, or PAC(p), if

ρi,i+p+q+1·{i+1:i+p+q} = 0

for all q ∈ {0 : n− p− 2} and i ∈ {1 : n− p− q − 1}; that is, if the partial
correlation between each pair of variables with indices differing by more than
p units, adjusted for all intervening variables between the pair, is equal to zero.

PAC(p) neither implies nor is implied by AD(p), but they coincide when Y1,
. . ., Yn are jointly normally distributed. [In this case, of course, they also
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coincide with AC(p), for then Σi,i+p+q+1·{i+1:i+p+q} coincides with the con-
ditional covariance matrix of (Yi, Yi+p+q+1)T given (Yi+1, . . . , Yi+p+q)T .]
For this reason, while we continue to use the PAC(p) terminology for most
of the remainder of this chapter, our discourse applies equally well to normal
AD(p) variables.

We call the characterization of PAC(p) random variables provided by Defini-
tion 2.3 the intervenor-adjusted partial correlation characterization, or simply
the intervenor-adjusted characterization. For this characterization, the natural
parameterization of a PAC(p) covariance structure is in terms of the quantities

{σ11, σ22, . . . , σnn, ρ12, ρ23, . . . , ρn−1,n, ρ13·2, . . . , ρn−2,n·n−1, . . . ,

ρ1,p+1·{2:p}, . . . , ρn−p,n·{n−p+1:n−1}}, (2.5)

but partial covariances could be used in place of the partial correlations if de-
sired. These parameters are in one-to-one correspondence with the elements of
the covariance matrix; indeed, either set of parameters can be exchanged for
the other through the use of the well-known recursion formula for partial cor-
relations, i.e.,

ρi,i+k·{i+1:i+j}

=
ρi,i+k·{i+1:i+j−1} − ρi,i+j·{i+1:i+j−1}ρi+k,i+j·{i+1:i+j−1}

[(1 − ρ2
i,i+j·{i+1:i+j−1})(1 − ρ2

i+k,i+j·{i+1:i+j−1})]
1/2

,

i = 1, . . . , n− 1; k = 2, . . . , n− i; j = 1, . . . , k − 1.

We write this as
Ξ = H(Σ), (2.6)

where H is a one-to-one matrix-valued function mapping the marginal covari-
ance matrix to the matrix Ξ = (ξij) of parameters of the intervenor-adjusted
characterization. Here ξii = σii for i = 1, . . . , n and ξji = ξij = ρij·{i+1:j−1}
for i < j.

The number of distinct parameters in (2.5) is easily seen to be

n+ (n− 1) + · · · + (n− p) =
(2n− p)(p+ 1)

2
. (2.7)

Thus, unless p = n − 1, the PAC(p) covariance structure can be parameter-
ized with fewer parameters than an arbitrary (general multivariate) covariance
matrix for n variables, which has n(n + 1)/2 parameters. Note also that as n
increases, the number of parameters in a PAC(p) covariance structure increases
linearly, in contrast to quadratic growth for the general case.

Although the parameters listed in (2.5) are distinct in the sense that none of
them can be expressed as a function of the others, they are not unconstrained,
for they must be such that Σ is positive definite. For each marginal variance,
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the constraint is merely σii > 0, and the ordinary correlations between con-
secutive variables need only satisfy −1 < ρi,i+1 < 1 for all i. For the partial
correlations adjusted for at least one intervenor, however, the constraints are
interdependent and much more complicated. Thus, it is not generally possible
to completely specify the parameter space for a PAC(p) covariance structure
in terms of simple inequalities on each of the individual parameters listed in
(2.5).

2.3 Equivalent characterizations

The intervenor-adjusted characterization of PAC(p) random variables described
in the previous section is rather indirect in terms of the implied marginal covari-
ance structure of the variables. For the purpose of formulating particular PAC
models or normal AD models, it would be preferable to have a more direct
characterization. It turns out that the covariance structure of PAC(p) random
variables can be characterized alternatively in several equivalent ways, each
quite interesting in its own right, and each with important consequences for
model formulation. In this section we establish these equivalences. In particu-
lar, we derive properties of the precision matrix, i.e., the inverse of the covari-
ance matrix Σ, for PAC(p) variables, and we also derive properties of the mod-
ified Cholesky decomposition of the precision matrix. These lead to the pre-
cision matrix characterization and autoregressive characterization of PAC(p)
variables. Finally, we determine what these characterizations imply about the
structure of Σ itself, yielding the marginal characterization of PAC(p) vari-
ables.

2.3.1 Precision matrix characterization

We begin the process of deriving a precision matrix characterization of PAC(p)
variables by giving a result that expresses a partial covariance from a regression
of two variables on q+1 variables in terms of partial variances and covariances
from a regression of the same two variables on a subset of q of the q + 1
variables.

Lemma 2.1. Let Y1, . . . , Yn be random variables with a positive definite co-
variance matrix Σ. Let B be any subset of {1 : n} consisting of at most n− 3
elements, and suppose that i, j, k are elements of {1 : n} not in B and such
that i �= k and j �= k. Then

σij·B,k = σij·B − σik·Bσjk·B
σkk·B

.

Proof. The lemma follows immediately upon putting n1 = 2 and n2 = 1 in
Corollary A.1.1.3. �
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Lemma 2.1 may be used to establish a useful result about partial covariances
between PAC(p) variables lagged sufficiently far apart when those variables
are regressed on certain subsets of the remaining variables, as developed by
the next two lemmas.

Lemma 2.2. If Y1, . . . , Yn are PAC(p) random variables with positive definite
covariance matrix Σ, then σij·B = 0, where i �= j and B is any set of p or
more consecutive indices between i and j.

Proof. Without loss of generality suppose that j > i. If j = i+ p+1 the result
follows easily from Definition 2.3, so suppose that B = {i+ 1 : i+ p} where
i+ p+ 1 < j. By Lemma 2.1, we have

σij·B − σij·B,i+p+1 ∝ σi,i+p+1·Bσi+p+1,j·B ,
σij·B,i+p+1 − σij·B,i+p+1,i+p+2 ∝ σi,i+p+2·B,i+p+1

×σi+p+2,j·B,i+p+1,

...

σij·B,{i+p+1:j−3} − σij·B,{i+p+1:j−2} ∝ σi,j−2·B,{i+p+1:j−3}
×σj−2,j·B,{i+p+1:j−3},

σij·B,{i+p+1:j−2} − σij·B,{i+p+1:j−1} ∝ σi,j−1·B,{i+p+1:j−2}
×σj−1,j·B,{i+p+1:j−2}.

Observe that the partial covariance immediately to the right of the proportion-
ality symbol in each relation is equal to zero since the variables are PAC(p),
and, for the same reason, so is the partial covariance immediately to the left
of the proportionality symbol in the last relation. Thus σij·B,{i+p+1:j−2} = 0
and this zero “floats up,” initially to the second partial covariance in the penul-
timate relation and then successively to the second partial covariance in each
relation, including the first relation. Thus σij·B = 0 for this particular B. The
same argument is easily extended toB = {i+k : i+k+p+m} where k andm
are positive and nonnegative integers, respectively, such that i+k+p+m ≤ j.
�

For an n×nmatrix A = (aij), define the pth subdiagonal (p = 1, . . . , n−1) to
be the set {aij : i− j = p} and the pth superdiagonal (p = 1, . . . , n−1) to be
the set {aij : j − i = p}. Together, the pth subdiagonal and pth superdiagonal
of A are called the pth off-diagonals of A. Clearly, if A is symmetric, then its
pth subdiagonal and pth superdiagonal coincide, hence specifying either one
also specifies the other. We shall find it convenient to denote the set of indices
of elements on off-diagonals p+ 1, p+ 2, . . . , n of an n×n symmetric matrix
by In

p = {(i, j) : i ∈ {1 : n}, j ∈ {1 : n}, |i− j| > p}.
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Lemma 2.3. If Y1, . . . , Yn are PAC(p) random variables with positive definite
covariance matrix Σ, then σij·{i,j}C = 0 for all (i, j) ∈ In

p .

Proof. Without loss of generality suppose that j− i > p. Since σ1n·{2:n−1} = 0
trivially, we suppose further that j < n. By Lemma 2.1, we have

σij·{i+1:j−1} − σij·{i+1:j−1},j+1 ∝ σi,j+1·{i+1:j−1}
×σj,j+1·{i+1:j−1},

σij·{i+1:j−1},j+1 − σij·{i+1:j−1},j+1,j+2 ∝ σi,j+2·{i+1:j−1},j+1

×σj,j+2·{i+1:j−1},j+1,

...

σij·{i+1:j−1},{j+1:n−1} − σij·{i+1:j−1},{j+1:n} ∝ σin·{i+1:j−1},{j+1:n−1}
×σjn·{i+1:j−1},{j+1:n−1}.

Observe that the partial covariance immediately to the right of the proportion-
ality symbol in each relation is equal to zero by Lemma 2.2, and so is the first
partial covariance in the first relation. Thus this zero “trickles down” to each
successive relation including the last, implying that σij·{i+1:j−1},{j+1:n} = 0.
The same type of argument is easily extended for partialling out those vari-
ables with indices less than i to yield σij·{1:i−1},{i+1:j−1},{j+1:n} = 0 for all
(i, j) ∈ In

p . �

Some additional notation needed for the next lemma in particular, but also
for various results in this and other sections, is as follows. Let Σk:m denote
the submatrix of any positive definite matrix Σ consisting of its rows k, k +
1, . . . ,m and columns k, k+ 1, . . . ,m; let σk:m,l denote the vector consisting
of elements in rows k, k + 1, . . . ,m and column l of Σ; and let σij

k:m denote
the (i, j)th element of Σ−1

k:m. We write σij for σij
1:n.

Lemma 2.4. Let Y1, . . . , Yn be random variables with positive definite covari-
ance matrix Σ. Then σij = 0 for all (i, j) ∈ In

p if and only if σij
k:m = 0 for all

(i, j) ∈ Im−k+1
p and all k and m.

Proof. Putting k = 1 and m = n into the second condition yields the first con-
dition. To show that the first condition implies the second condition, it suffices
to establish that the first condition implies that σij

1:n−1 = 0 and σij
2:n = 0 for

all (i, j) ∈ In
p , as the second condition can then be obtained by repeated use of

these results for successively larger k and successively smaller m.

We show first that if σij = 0 for all (i, j) ∈ In
p , then σij

1:n−1 = 0 for all
(i, j) ∈ In−1

p . Partition Σ (= Σ1:n) and Σ−1 (= Σ1:n) as follows:

Σ =
(

Σ1:n−1 σ1:n−1,n

σT
1:n−1,n σnn

)
, Σ−1 =

(
Σ1:n−1 σ1:n−1,n

(σ1:n−1,n)T σnn

)
.
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Then, by Theorem A.1.1(a),

Σ1:n−1 = Σ−1
1:n−1 + (σnn − σT

1:n−1,nΣ−1
1:n−1σ1:n−1,n)−1

×Σ−1
1:n−1σ1:n−1,nσ

T
1:n−1,nΣ−1

1:n−1

= Σ−1
1:n−1 + {(σnn)2(σnn − σT

1:n−1,nΣ−1
1:n−1σ1:n−1,n)}−1

×σ1:n−1,n(σ1:n−1,n)T (2.8)

where the second equality follows from Theorem A.1.1(e). Now if σij
1:n = 0

for all (i, j) ∈ In
p , then all elements on off-diagonals p + 1, . . . , n of Σ1:n−1

equal zero and all elements of σ1:n−1,n that lie on off-diagonals p + 1, . . . , n
of Σ−1

1:n equal zero. Hence, by (2.8), all elements of Σ−1
1:n−1 on off-diagonals

p+1, . . . , n−1 must likewise equal zero, i.e., σij
1:n−1 = 0 for all (i, j) ∈ In−1

p .

That the first condition of Lemma 2.4 implies that σij
2:n = 0 for all (i, j) ∈

In−1
p can be shown similarly, based on partitioning Σ and Σ−1 alternatively as

Σ =
(

σ11 σT
2:n,1

σ2:n,1 Σ2:n

)
, Σ−1 =

(
σ11 (σ2:n,1)T

σ2:n,1 Σ2:n

)
.

�

Lemma 2.5. Let Y1, . . . , Yn be random variables with positive definite covari-
ance matrix Σ. Then, the partial covariance between Yi and Yj (i �= j) ad-
justed for all remaining variables in Y1, . . . , Yn is given by

σij·{i,j}C = −σij(σii·{i,j}Cσjj·{i,j}C )1/2/(σiiσjj)1/2.

Proof. The lemma follows immediately from Corollary A.1.1.2 upon permuta-
tion of indices. �

We are now ready to give the precision matrix characterization of PAC(p) ran-
dom variables.

Theorem 2.2. Random variables Y1, . . . , Yn with positive definite covariance
matrix Σ are PAC(p) if and only if the elements of Σ−1 satisfy σij = 0 for all
(i, j) ∈ In

p .

Proof. Suppose first that Y1, . . . , Yn are PAC(p) random variables, and suppose
that (i, j) ∈ In

p with i < j. Then Lemma 2.3 yields σij·{i,j}C = 0. It follows
from Lemma 2.5 and the symmetry of Σ−1 that σij = 0 for all (i, j) ∈ In

p .

Conversely, suppose that σij = 0 for all (i, j) ∈ In
p . Then by Lemma 2.4, for

all k andm, σij
k:m = 0 for all (i, j) ∈ In

p , and in particular, σkm
k:m = 0 whenever

m − k > p. But this implies, by Lemma 2.5, that σkm·k+1,...,m−1 = 0 for all
(m, k) ∈ In

p . Hence Y1, . . . , Yn are PAC(p) random variables. �

Theorem 2.2 tells us that the zeroes in the precision matrix of PAC(p) variables
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have a distinctive banded structure. For example, in the case of six PAC(2)
random variables, the precision matrix is given by

Σ−1 =

⎛
⎜⎜⎜⎜⎜⎜⎝

σ11 σ21 σ31 0 0 0
σ21 σ22 σ32 σ42 0 0
σ31 σ32 σ33 σ43 σ53 0
0 σ42 σ43 σ44 σ54 σ64

0 0 σ53 σ54 σ55 σ65

0 0 0 σ64 σ65 σ66

⎞
⎟⎟⎟⎟⎟⎟⎠
.

Thus, we see that the covariance structure of these six variables may be pa-
rameterized by σ11, σ22, . . . , σ66, σ21, . . . , σ64. More generally, Theorem 2.2
reveals that the covariance structure of n PAC(p) variables may be parameter-
ized by those elements of Σ−1 with indices belonging to the complement of
In
p in {1 : n} × {1 : n}, i.e., by

{σ11, σ22, . . . , σnn, σ21, σ32, . . . , σn,n−1, σ31, . . . , σp+1,1 . . . , σn,n−p}.
(2.9)

The number of distinct parameters in this parameterization is easily seen to be

n+ (n− 1) + · · · + (n− p) =
(2n− p)(p+ 1)

2
,

as it must be, of course, since the mapping from the parameters in (2.5) to those
in (2.9) is one-to-one.

There is a one-to-one correspondence between the parameters in (2.9) and
those in the following list:

{1/σ11, 1/σ22, . . . , 1/σnn, π21, π32, . . . , πn,n−1, π31, . . . , πp+1,1 . . . , πn,n−p}
(2.10)

where

πij = − σij

(σiiσjj)1/2
.

Now, by Lemma 2.5, πij is the partial correlation coefficient between Yi and
Yj adjusted for the n − 2 other variables. Furthermore, by Theorems 2.1(d)
and A.1.1(a), 1/σii is the partial variance of Yi adjusted for the n − 1 other
variables. Thus, an alternative, arguably more interpretable version of the pre-
cision matrix characterization results from reparameterizing the elements of
the precision matrix in terms of partial variances [σii·{i}C = 1/σii] and partial
correlations [ρij·{i,j}C = πij], and specifying that

ρij·{i,j}C = 0 if |i− j| > p.

Although the parameters listed in (2.9) are distinct in the sense that none of
them can be expressed as a function of the others, they are not unconstrained,
for they must be such that Σ−1 (or equivalently Σ) is positive definite. For
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each diagonal element of Σ−1, the constraint is merely σii > 0. For each non-
trivial off-diagonal element of Σ−1, however, the constraint involves compli-
cated, nonlinear functions of the remaining non-trivial, off-diagonal elements.
Hence it is not generally possible to completely specify the parameter space
for the precision matrix formulation in terms of simple inequalities on individ-
ual parameters. The alternative parameterization in terms of partial variances
and partial correlations, given by (2.10), offers no particular advantage in this
regard.

2.3.2 Autoregressive characterization

Another characterization of PAC(p) random variables may be obtained by con-
sidering residuals from a particular sequence of regressions for index-ordered
random variables with positive definite covariance matrix. In this sequence,
each variable is regressed on all of its predecessors in the ordered list. That
is, we regress Y2 on Y1, Y3 on Y1 and Y2, and so forth. Let μi = E(Yi),
μ1:i = (μ1, . . . , μi)T , μ = μ1:n, Y1:i = (Y1, . . . , Yi)T , and Y = Y1:n. Also,
put ε1 = Y1 − μ1, and for i = 2, . . . , n let εi denote the residual from the
regression of Yi on its predecessors, i.e.,

ε1 = Y1 − μ1, (2.11)

ε2 = (Y2 − μ2) − (σ12/σ11)(Y1 − μ1), (2.12)

ε3 = (Y3 − μ3) − σT
1:2,3Σ

−1
1:2(Y1:2 − μ1:2), (2.13)

...

εn = (Yn − μn) − σT
1:n−1,nΣ−1

1:n−1(Y1:n−1 − μ1:n−1). (2.14)

These equations may be written in matrix form as

ε = T(Y − μ), (2.15)

where T is a lower triangular matrix with ones along the main diagonal — a
so-called unit lower triangular matrix — and elements {tij} below the main
diagonal, where tij is the jth element of −σT

1:i−1,iΣ
−1
1:i−1. That is,

T =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 · · · 0 0 0
t21 1 0 · · · 0 0 0
t31 t32 1 · · · 0 0 0
...

tn−1,1 tn−1,2 tn−1,3 · · · tn−1,n−2 1 0
tn1 tn2 tn3 · · · tn,n−2 tn,n−1 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎠
.

It follows from (2.15) that var(ε) = TΣTT and, since T is nonsingular, that
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this covariance matrix is positive definite. Moreover, the εi’s are uncorrelated
as a consequence of Theorem 2.1(c). Therefore, we have that

TΣTT = D

or equivalently that
Σ = T−1D(TT )−1 (2.16)

or
Σ−1 = TT D−1T, (2.17)

where D is an n× n diagonal matrix with positive main diagonal elements δi.
Furthermore, δ1 = var(ε1) = var(Y1) and δi = var(εi) = var(Yi − Ŷi·1:i−1)
for i = 2, . . . , n. As a consequence of Theorem 2.1(d) we have

δi = σii·{1:i−1} = σii − σT
1:i−1,iΣ

−1
1:i−1σ1:i−1,i, i = 2, . . . , n. (2.18)

The decomposition of Σ−1 given by (2.17) is known variously as its U ′DU de-
composition (Harville, 1997), square-root-free Cholesky decomposition (Tan-
abe and Sagae, 1992), or modified Cholesky decomposition (Pourahmadi, 1999);
we will use the latter term. This decomposition is known to be unique; see
Theorem A.1.2. Thus, the mapping from Σ to (T,D) is one-to-one, and con-
sequently Σ may be parameterized by the n(n + 1)/2 non-trivial elements of
T and D, i.e., by

δ1, . . . , δn, t21, t32, . . . , tn,n−1, t31, t42, . . . , tn1.

Equivalently, Σ may be parameterized by

δ1, . . . , δn, φ21, φ32, . . . , φn,n−1, φ31, φ42, . . . , φn1,

where φij = −tij . Moreover, the parameters in this last list have useful inter-
pretations: φij is the coefficient corresponding to Yj in the regression of Yi on
its predecessors, and δi is the variance of the residual from that same regres-
sion. We borrow terminology from time series analysis and refer to the φij’s
as autoregressive coefficients, and to the δi’s as innovation variances (the εi’s
being the innovations). Using this notation, and observing that

(φi1, φi2, . . . , φi,i−1) = σT
1:i−1,iΣ

−1
1:i−1 (2.19)

we see that the ith equation in the sequential regression (2.11) through (2.14)
may be rewritten as

Yi − μi =
i−1∑
k=1

φi,i−k(Yi−k − μi−k) + εi, i = 1, . . . , n (2.20)

where δi = var(εi). (Here and subsequently, if a sum’s upper limit of sum-
mation is smaller than its lower limit of summation, we take the sum to equal
0.)
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Our development to this point in this section applies to any positive definite co-
variance structure, not merely that of PAC(p) variables. However, for PAC(p)
variables it turns out that certain subdiagonal elements of T, or equivalently
certain autoregressive coefficients, are equal to zero, as described by the fol-
lowing theorem.

Theorem 2.3. Random variables Y1, . . . , Yn with positive definite covariance
matrix Σ are PAC(p) if and only if φij , the coefficient corresponding to Yj in
the regression of Yi on Y1, Y2, . . . , Yi−1, is equal to 0 for all (i, j) ∈ In

p with
i > j.

Proof. According to (2.19), φij is given by the jth element of σT
1:i−1,iΣ

−1
1:i−1.

By Corollary A.1.1.1,

σT
1:i−1,iΣ

−1
1:i−1 = (−σi1

1:i/σ
ii
1:i,−σi2

1:i/σ
ii
1:i, . . . ,−σi,i−1

1:i /σii
1:i).

Now, if Y1, . . . , Yn are PAC(p) variables, then σij
1:i = 0 for all j = 1, . . . , i −

p− 1 by Lemma 2.4. Thus φij is equal to zero for all (i, j) ∈ In
p with i > j.

Conversely, suppose that the coefficient corresponding to Yj in the regression
of Yi on Y1, . . . , Yi−1 is equal to zero for all (i, j) ∈ In

p with i > j. Then
the subdiagonal elements of T in (2.15) equal 0 for all (i, j) ∈ In

p with i >
j. Consider now an element σij of Σ−1 for which (i, j) ∈ In

p and i > j,
and recall from expression (2.17) that Σ−1 = TT D−1T. By direct matrix
multiplication and recalling that φij = −tij , we obtain

σij =
tij
δi

+
n∑

k=i+1

tkitkj

δk

= −φij

δi
+

n∑
k=i+1

φkiφkj

δk
.

If (i, j) ∈ In
p then φkj = 0 for k = i, . . . , n and thus σij = 0. It follows from

Theorem 2.2 and the symmetry of Σ−1 that Y1, . . . , Yn are PAC(p) variables.
�

The upshot of Theorem 2.3 is that for PAC(p) random variables, the zeros in the
unit lower triangular matrix T of the precision matrix’s modified Cholesky de-
composition, like those in the precision matrix itself, have a banded structure;
that is, those subdiagonals beyond the pth consist of all zeros. For example, the
unit lower triangular matrix corresponding to five PAC(2) random variables is

T =

⎛
⎜⎜⎜⎜⎝

1 0 0 0 0
−φ21 1 0 0 0
−φ31 −φ32 1 0 0

0 −φ42 −φ43 1 0
0 0 −φ53 −φ54 1

⎞
⎟⎟⎟⎟⎠ ,
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and we see that the variables’ covariance structure may be parameterized in this
case by δ1, . . . , δ5 and φ21, φ32, . . . , φ53. In general, the covariance structure
of n PAC(p) random variables may be parameterized by

δ1, . . . , δn, φ21, φ32, φ42, . . . , φn,n−1, φ31, . . . , φn,n−p.

Upon counting the elements in this list, we find that the autoregressive formula-
tion of a PAC(p) covariance structure has (2n−p)(p+1)/2 distinct parameters,
the same (necessarily) as the number of parameters in the intervenor-adjusted
and precision matrix formulations. However, there is an important difference
between the parameters for this formulation and those of the previous two:
whereas the parameters of the intervenor-adjusted and precision matrix for-
mulations must satisfy positive definiteness constraints, which are “messy” in
terms of what they require of at least some of the individual parameters, the
autoregressive parameters {φij} are completely unconstrained and each of the
innovation variances {δi} need only be positive. This makes the autoregressive
formulation of models for PAC(p) [and normal AD(p)] variables much easier
to deal with in practice, as we will see later.

It also follows immediately from Theorem 2.3 that for PAC(p) variables, equa-
tions (2.20) may be written using fewer terms. More specifically, we may write

Yi − μi =
pi∑

k=1

φi,i−k(Yi−k − μi−k) + εi, i = 1, . . . , n (2.21)

where pi = min(p, i − 1). Furthermore, for PAC(p) variables, the general
expressions (2.19) and (2.18) for the autoregressive coefficients {φij} and in-
novation variances {δi}, respectively, may be reexpressed in terms of smaller
vectors and matrices. Specifically, we have

(φi,i−pi
, φi,i−pi+1, . . . , φi,i−1) = σT

i−pi:i−1,iΣ
−1
i−pi:i−1, (2.22)

δi =
{
σ11, for i = 1
σii − σT

i−pi:i−1,iΣ
−1
i−pi:i−1σi−pi:i−1,i, for i = 2, . . . , n. (2.23)

In the proof of Theorem 2.3, (2.17) was used to show that the elements of
PAC(p) variables’ precision matrix Σ−1 with indices in In

p were equal to zero.
In fact, further use of (2.17) yields explicit expressions for every element of
Σ−1 in terms of the parameters of the autoregressive formulation. By direct
matrix multiplication we obtain

σii =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1
δi

+
min(i+p,n)∑

k=i+1

φ2
ki

δk
, for i = 1, . . . , n− 1

1
δn
, for i = n,

(2.24)
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and

σij =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

0, for j = 1, . . . , i− p− 1

−φi,i−p

δi
, for j = i− p

−φij

δi
+

min(i+p−1,n)∑
k=i+1

φkiφkj

δk
, for j = i− p+ 1, . . . , i− 1.

(2.25)

2.3.3 Marginal characterization

The three characterizations of the covariance structure of PAC(p) random vari-
ables that we have described so far are elegant and tidy, as each specifies
that certain quantities (intervenor-adjusted partial correlations, off-diagonal el-
ements of Σ−1, or subdiagonal elements of T) involved in a one-to-one rela-
tionship with the covariance matrix Σ are zero. However, they are all somewhat
indirect in the sense that they do not directly specify properties of the elements
{σij} of Σ itself. In this section we determine these properties. Although they
turn out to be generally more cumbersome than properties of the parameters of
the other characterizations, they are nevertheless interesting and useful.

We begin by showing how expressions may be obtained for the elements of a
PAC(p) covariance matrix Σ in explicit terms of the autoregressive coefficients
and innovation variances. Assume that p > 0; there are no non-trivial autore-
gressive relationships between the variables otherwise. Recall from (2.21) that
the ith equation in the sequence of regressions (2.11) through (2.14) may be
written as

Yi − μi =
pi∑

k=1

φi,i−k(Yi−k − μi−k) + εi, i = 1, . . . , n, (2.26)

where pi = min(p, i − 1). Multiplying both sides of (2.26) by (Yi−j − μi−j)
and taking expectations yields

σi,i−j =
pi∑

k=1

φi,i−kσi−k,i−j + δiI{j=0}, i = 1, . . . , n; j = 0, . . . , i− 1.

(2.27)
This set of equations allows all elements of Σ, beginning with σ11, to be ob-
tained recursively from previously obtained elements of Σ and parameters
of the autoregressive formulation. Furthermore, if desired, the previously ob-
tained elements of Σ may then be eliminated so as to express each element of
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Σ completely in terms of the parameters of the autoregressive formulation. To
illustrate, suppose that p = 2. Then we have

σ11 = δ1,

σ21 = φ21σ11 = φ21δ1,

σ22 = φ21σ12 + δ2 = φ2
21δ1 + δ2,

σ31 = φ32σ21 + φ31σ11 = (φ32φ21 + φ31)δ1,
σ32 = φ32σ22 + φ31σ12 = (φ32φ

2
21 + φ31φ21)δ1 + φ32δ2,

σ33 = φ32σ23 + φ31σ13 + δ3

= (φ2
31 + 2φ32φ31φ21 + φ2

32φ
2
21)δ1 + φ2

32δ2 + δ3,

and so on. Of course, these equations are merely an elementwise rendering of
(2.16) for PAC(2) variables.

The recursive equations just described may also be used to obtain expressions
of covariance matrix elements {σij : (i, j) ∈ In

p } in explicit terms of elements
{σij : (i, j) /∈ In

p }. Let us first illustrate this for a special case and then gener-
alize it. Consider the case p = 2 and n = 5, for which the covariance matrix
is

Σ =

⎛
⎜⎜⎜⎜⎝

σ11 σ12 σ13 σ14 σ15

σ21 σ22 σ23 σ24 σ25

σ31 σ32 σ33 σ34 σ35

σ41 σ42 σ43 σ44 σ45

σ51 σ52 σ53 σ54 σ55

⎞
⎟⎟⎟⎟⎠ .

Then, by (2.27), ⎛
⎝ σ41

σ42

σ43

⎞
⎠ =

⎛
⎝ σ21 σ31

σ22 σ32

σ23 σ33

⎞
⎠
(
φ42

φ43

)
. (2.28)

Solving the last two equations in (2.28) for the autoregressive coefficients
yields (

φ42

φ43

)
=
(
σ22 σ32

σ23 σ33

)−1(
σ42

σ43

)
,

and putting this solution back into the first equation in (2.28) yields

σ41 = (σ21, σ31)
(
σ22 σ32

σ23 σ33

)−1(
σ42

σ43

)
. (2.29)

In similar fashion, (2.27) also gives⎛
⎜⎜⎝

σ51

σ52

σ53

σ54

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝

σ31 σ41

σ32 σ42

σ33 σ43

σ34 σ44

⎞
⎟⎟⎠
(
φ53

φ54

)
. (2.30)
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Solving the last two equations in (2.30) for the autoregressive coefficients
yields (

φ53

φ54

)
=
(
σ33 σ43

σ34 σ44

)−1(
σ53

σ54

)
,

and putting this solution back into the first two equations in (2.30) yields
(
σ51

σ52

)
=
(
σ31 σ41

σ32 σ42

)(
σ33 σ43

σ34 σ44

)−1(
σ53

σ54

)
. (2.31)

Thus are the elements of a PAC(2) covariance matrix Σ that lie on off-diagonals
beyond the second, namely σ41, σ51, and σ52, expressed in terms of elements
of Σ lying on the main diagonal and the first two off-diagonals.

We state the procedure for general p and n as the following theorem. The the-
orem may be proved by induction, but the proof is tedious and is therefore
omitted.

Theorem 2.4. Let Y1, . . . , Yn be PAC(p) random variables with positive defi-
nite covariance matrix Σ. For i = p+ 2, . . . , n, define

ζi =

⎛
⎜⎝

σi1

...
σi,i−p−1

⎞
⎟⎠ , Υi =

⎛
⎜⎝

σi−p,1 · · · σi−1,1

...
σi−p,i−p−1 · · · σi−1,i−p−1

⎞
⎟⎠ ,

Ψi =

⎛
⎜⎝

σi−p,i−p · · · σi−1,i−p

...
σi−p,i−1 · · · σi−1,i−1

⎞
⎟⎠ , ηi =

⎛
⎜⎝

σi,i−p

...
σi,i−1

⎞
⎟⎠ .

Then {ζi : i = p+ 2, . . . , n} comprises all those elements of Σ whose indices
belong to In

p , and these may be obtained in terms of elements with indices not
belonging to In

p by iteratively applying the equations

ζi = ΥiΨ−1
i ηi, i = p+ 2, . . . , n. (2.32)

As a consequence of Theorem 2.4, it is possible to parameterize the marginal
formulation of PAC(p) variables by only those elements of Σ that lie on its
main diagonal and first p off-diagonals, i.e., by

σ11, . . . , σnn, σ21, . . . , σn,n−1, σ31, . . . , σn,n−p.

However, the constraints on these parameters required for positive definiteness
of Σ are generally quite complicated, apart from those on the σii’s. So this
parameterization of a PAC(p) covariance structure, while useful theoretically,
is not necessarily the most convenient one to use for estimation purposes.
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2.4 Some results on determinants and traces

In this section we use the special properties of PAC(p) variables that were
derived in the previous section to establish some results on the determinant and
trace of those variables’ covariance matrix. These results will be useful later for
deriving and computing maximum likelihood estimators and likelihood ratio
test statistics under a normal AD(p) model. Here we merely present the results;
proofs can be found in Appendix 2.

Here and subsequently, we write the determinant and trace of a square matrix
A as |A| and tr(A), respectively.

Theorem 2.5. Let Y1, . . . , Yn be PAC(p) random variables with positive defi-
nite covariance matrix Σ.

(a) Let T and D = diag(δ1, . . . , δn) be the unit lower triangular and diago-
nal matrices, respectively, of the modified Cholesky decomposition of Σ−1.
Then

|Σ| =
n∏

i=1

δi.

(b) Let R2
i·{i−pi:i−1} denote the multiple correlation coefficient between Yi and

Yi−pi
, . . . , Yi−1, where i > 1 and pi = min(i− 1, p). Then

|Σ| =
n∏

i=1

σii

n∏
i=2

(1 −R2
i·{i−pi:i−1})

where we define R2
i·{i−pi:i−1} = 0 if p = 0.

(c) Let ρij·B denote the partial correlation coefficient between Yi and Yj ad-
justed for {Yk : k ∈ B}. Then

|Σ| =
n∏

i=1

σii

n∏
i=2

(1 − ρ2
i,i−1)

n∏
i=3

(1 − ρ2
i,i−2·i−1) · · ·

×
n∏

i=p+1

(1 − ρ2
i,i−p·{i−p+1:i−1}).

(d) Let Σk:m denote the submatrix consisting of elements in rows k, k+1, . . . ,m
and columns k, k + 1, . . . ,m of Σ. Then

|Σ| =
∏n−p

i=1 |Σi:i+p|∏n−p−1
i=1 |Σi+1:i+p|

(2.33)

where we define

n−p−1∏
i=1

|Σi+1:i+p| = 1 if p = 0 or p = n− 1.
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Parts (a), (c), and (d) of Theorem 2.5 express the determinant of the covari-
ance matrix of PAC(p) random variables in computationally efficient terms of
the parameters of its autoregressive, intervenor-adjusted, and marginal formu-
lations, respectively. The reader may wonder whether it is also possible to give
a computationally efficient expression for the determinant in terms of the pa-
rameters of the precision matrix formulation, i.e., the nonzero elements of the
precision matrix. The authors are not aware of any such general expression;
however, algorithms for computing the determinant of tridiagonal and pentadi-
agonal matrices, due to El-Mikkawy (2004) and Sogabe (2008), respectively,
could be used to evaluate the determinant of Σ−1 efficiently when Y1, . . . , Yn

are PAC(1) or PAC(2).

We conclude this section with a theorem for the trace of the product of a sym-
metric matrix and the precision matrix of PAC(p) variables.

Theorem 2.6. Let Y1, . . . , Yn be PAC(p) random variables with positive defi-
nite covariance matrix Σ, and let A be an n× n symmetric matrix. Then

tr(AΣ−1) =
n−p∑
i=1

tr[Ai:i+p(Σi:i+p)−1] −
n−p−1∑

i=1

tr[Ai+1:i+p(Σi+1:i+p)−1]

(2.34)
where we define

n−p−1∑
i=1

tr[Ai+1:i+p(Σi+1:i+p)−1] = 0 if p = 0 or p = n− 1.

2.5 The first-order case

The results on PAC(p) random variables presented so far are valid for any inte-
ger p between 0 and n, inclusive. In this section we consider how these results
specialize for the simplest non-trivial case of p, i.e., p = 1. This case is proba-
bly the most important one from a practical point of view, as its normal cousin,
the AD(1) model, offers the opportunity to model longitudinal data exhibit-
ing variance heterogeneity and nonstationary serial correlation very parsimo-
niously.

According to Definition 2.3 — our original definition of PAC(p) variables —
index-ordered random variables Y1, . . . , Yn are PAC(1) if and only if

ρi,i+q+2·{i+1:i+q+1} = 0 for all i = 1, . . . , n− q − 2 and

all q = 0, . . . , n− 3. (2.35)

In other words, the variables are PAC(1) if and only if the partial correlation
between each pair of non-adjacent variables, adjusted for all intervening vari-
ables, is equal to 0. Of course, if the variables are jointly normally distributed,
then they are AD(1) variables also.
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It turns out that the property of the partial autocorrelations given by (2.35)
confers a fascinating structure upon the marginal covariance matrix of PAC(1)
variables, in particular upon the marginal correlations. Consider σij·m, for i >
m > j. Then by (2.35) we have

0 = σij·m = σij − σimσjm

σmm

= ρij(σiiσjj)1/2 − ρim(σiiσmm)1/2ρjm(σjjσmm)1/2

σmm
,

implying that
ρij = ρimρmj for i > m > j. (2.36)

That is, the correlation between any two of the (ordered) variables is equal to
the product of two correlations, each one being a correlation between one of the
two variables and an arbitrary intervening variable. Furthermore, by repeatedly
substituting for any correlation on the right-hand side of (2.36) between non-
adjacent variables until all such “non-adjacent” correlations have been replaced
with products of “adjacent” (lag-one) correlations, we obtain

ρij =
i−1∏

m=j

ρm+1,m. (2.37)

Thus, the correlation between any variables lagged two or more indices apart
is equal to the product of the lag-one correlations corresponding to each inter-
vening pair of consecutive variables, and we can write the covariance matrix
as follows, putting ρi = ρi+1,i and νij = (σiiσjj)1/2:

Σ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

σ11

ν21ρ1 σ22 symm
ν31ρ1ρ2 ν32ρ2 σ33

ν41ρ1ρ2ρ3 ν42ρ2ρ3 ν43ρ3 σ44

...
...

...
. . .

. . .
...

...
...

. . .
. . . σn−1,n−1

νn1

n−1∏
i=1

ρi · · · · · · · · · · · · νn,n−1ρn−1 σnn

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(2.38)
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Note that this covariance matrix is completely determined by the (2n − 1)
elements on its main diagonal and first subdiagonal, or equivalently, by the
(2n− 1) parameters σ11, ..., σnn, ρ1, ..., ρn−1. In this case, the parameter con-
straints required for positive definiteness of the covariance matrix are easy to
specify; they are σii > 0 for i = 1, . . . , n and −1 < ρi < 1 for i = 1, ..., n−1.

It is interesting to note that the marginal correlations displayed within any col-
umn of (2.38) necessarily are monotone decreasing in magnitude as a function
of distance from the main diagonal. However, there is no requirement of con-
stancy (stationarity in the time series context) of correlations between vari-
ables lagged by the same number of indices. It is also worth noting that the
multiplicative structure of the correlations can be derived by another route,
namely by specializing the general expression (2.32) for obtaining elements
on higher-order off-diagonals of Σ from those on its main diagonal and first p
off-diagonals.

Expression (2.37) may be used to obtain expressions for the covariances (rather
than the correlations) between variables lagged two or more indices apart in
terms of the lag-one covariances, as follows:

σij = (σiiσjj)1/2
i−1∏

m=j

σm+1,m

(σm+1,m+1σmm)1/2

=

∏i−1
m=j σm+1,m∏i−1
m=j+1 σmm

. (2.39)

Another important feature of the covariance structure given by (2.37) through
(2.39) is as follows. Suppose we strike out the jth row and jth column of Σ
in (2.38), and then renumber the variances along the main diagonal as σ11, σ22,
σ33, . . . , σn−1,n−1 and the lag-one correlations along the first subdiagonal as
ρ1, ρ2, . . . , ρn−1. Then the resulting (n− 1)× (n− 1) matrix retains the same
structure as Σ in (2.38). In fact, if we strike out rows j1, j2, . . . , jk and columns
j1, j2, . . . , jk of Σ, where 1 ≤ k ≤ n−1, the resulting (n− k) × (n− k) ma-
trix also retains the same structure. This shows that any subsequence of PAC(1)
variables is also PAC(1), and also that any subsequence of normal AD(1) vari-
ables is also AD(1).

The precision matrix of PAC(1) variables also has an interesting structure. The-
orem 2.2 tells us that this matrix must be tridiagonal; that is, its elements on
all off-diagonals but the first must equal zero. But the theorem gives us no in-
formation about its elements on the main diagonal and first off-diagonal. How-
ever, by solving the equation ΣΣ−1 = I for the non-trivial elements of the
tridiagonal matrix Σ−1, the following explicit formula for the precision matrix
may be obtained relatively easily:
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σij =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

σ22

σ11σ22 − σ2
12

i = j = 1

σn−1,n−1

σn−1,n−1σnn − σ2
n,n−1

i = j = n

σi−1,i−1σ
2
iiσi+1,i+1 − σ2

i,i−1σ
2
i+1,i

σ2
ii(σi−1,i−1σii − σ2

i,i−1)(σiiσi+1,i+1 − σ2
i+1,i)

i = j �= 1, n

−σi,i−1

σiiσi−1,i−1 − σ2
i,i−1

i = j + 1

σji i = j − 1

0 |i− j| > 1.

(2.40)
Expressed alternatively in terms of the marginal variances and lag-one correlations,
this formula is as follows:

σij =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1
σ11(1 − ρ2

1)
i = j = 1

1
σnn(1 − ρ2

n−1)
i = j = n

1 − ρ2
i−1ρ

2
i

σii(1 − ρ2
i−1)(1 − ρ2

i )
i = j �= 1, n

−ρi

(σiiσjj)1/2(1 − ρ2
i )

i = j + 1

σji i = j − 1

0 |i− j| > 1.

These expressions for the inverse have been derived and rederived, in various
guises and for various special cases, several times in the literature. Apparently
the first to give the inverse explicitly was Guttman (1955). Roy and Sarhan
(1956) independently also gave the inverse for a special case, and this was sub-
sequently generalized by Greenberg and Sarhan (1959). Much later, Barrett and
Feinsilver (1978) gave the same expression, referring to it as the inverse of a
positive definite covariance matrix satisfying a condition they called the “trian-
gle property,” which turns out to be equivalent to (2.37); hence, any covariance
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matrix satisfying this property is an AD(1) covariance matrix and vice versa.
There is also a substantial related literature on the inversion of a nonsingular
tridiagonal matrix; see, for example, Schlegel (1970) and Mallik (2001).

The autoregressive characterization of the covariance structure of PAC(1) vari-
ables is given by the modified Cholesky decomposition of the precision matrix,
i.e., TΣTT = D, where D = diag(δ1, . . . , δn) and

T =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0 0
−φ1 1 0 0 0 0
0 −φ2 1 0 0 0
...

. . .
. . .

0 · · · 0 −φn−2 1 0
0 · · · 0 0 −φn−1 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎠
,

and where, for simplicity of notation, we have put φi = φi+1,i, for i =
1, . . . , n− 1. Written as individual equations as in (2.21), we have

Y1 − μ1 = ε1,

Yi − μi = φi−1(Yi−1 − μi−1) + εi, i = 2, . . . , n,

which is essentially identical to model (1.5) introduced in Chapter 1. Using
(2.22) and (2.23), the parameters of this characterization, {φi} and {δi}, may
be expressed in terms of those of the marginal characterization as follows:

φi =
σi+1,i

σii
for i = 1, . . . , n− 1,

δi =

⎧⎨
⎩

σ11 for i = 1

σii −
σ2

i,i−1

σi−1,i−1
for i = 2, . . . , n.

Furthermore, the general recursive approach for expressing the elements of Σ
in terms of the autoregressive parameters, which was given by (2.27), simplifies
for PAC(1) variables to

σi,i−j = φi−1σi−1,i−j + δiI{j=0}, i = 1, . . . , n; j = 0, . . . , i− 1.

Written out equation by equation, we have

σ11 = δ1,

σ21 = φ1σ11 = φ1δ1,

σ22 = φ1σ12 + δ2 = φ2
1δ1 + δ2,

σ31 = φ2σ21 = φ2φ1δ1,

σ32 = φ2σ22 = φ2φ
2
1δ1 + φ2δ2,

σ33 = φ2σ23 + δ3 = φ2
2φ

2
1δ1 + φ2

2δ2 + δ3,

and so on.
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The general expressions for elements of the precision matrix of PAC(p) vari-
ables in terms of the autoregressive parameterization, given by (2.24) and (2.25),
simplify for PAC(1) variables to

σii =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1
δi

+
φ2

i

δi+1
for i = 1, . . . , n− 1,

1
δn

for i = n,

σij =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

0 for i = 2, . . . , n and j = 1, . . . , i− 2,

−φi−1

δi
for i = 2, . . . , n and j = i− 1.

Four general expressions for the determinant of the covariance matrix of PAC(p)
variables were given in Theorem 2.5. For PAC(1) variables, these expressions
all specialize easily to

|Σ| =
n∏

i=1

σii

n−1∏
i=1

(1 − ρ2
i ). (2.41)

Similarly, the general expression for tr(AΣ−1) given by Theorem 2.6, where
A is any n× n symmetric matrix, specializes to

tr(AΣ−1) =
n−1∑
i=1

tr[Ai:i+1(Σi:i+1)−1] −
n−2∑
i=1

tr[Ai+1:i+1(Σi+1:i+1)−1]

=
n−1∑
i=1

tr

[(
aii ai,i+1

ai+1,i ai+1,i+1

)(
σii σi,i+1

σi+1,i σi+1,i+1

)−1
]

−
n−2∑
i=1

ai+1,i+1

σi+1,i+1

=
n−1∑
i=1

aiiσi+1,i+1 − 2ai,i+1σi,i+1 + ai+1,i+1σii

σiiσi+1,i+1 − σ2
i,i+1

−
n−1∑
i=2

aii

σii
.

2.6 Variable-order antedependence

Our discussion to this point has presumed that the order, p, of antedependence
or partial antecorrelation is constant for all variables. It is possible, however,
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to define more general versions of antedependence or partial antecorrelation
by allowing the order to vary among the variables. We give the following two
formal definitions, the first of which is due to Macchiavelli and Arnold (1994).

Definition 2.4. Index-ordered random variables Y1, . . . , Yn are said to be an-
tedependent of variable order (p1, p2, . . . , pn), or AD(p1, p2, . . . , pn), if Yi,
given at least pi immediately preceding variables, is independent of all further
preceding variables (i = 1, . . . , n).

Definition 2.5. Index-ordered random variables Y1, . . . , Yn are said to be par-
tially antecorrelated of variable order (p1, p2, . . . , pn), or PAC(p1, p2, . . . , pn),
if the partial correlation between Yi and Yj , adjusted for at least pi variables
immediately preceding Yi, is equal to zero for all j < i− pi (i = 1, . . . , n).

Note that pi ≤ i− 1 necessarily (and hence p1 = 0), and that if pi = 0 then Yi

is either independent of, or uncorrelated with, all its predecessors, depending
on whether the variables are AD(p1, . . . , pn) or PAC(p1, . . . , pn). Note also
that AD(p1, . . . , pn) variables are nested, in the sense that

AD(p1, . . . , pn) ⊂ AD(p1 + q1, . . . , pn + qn)

if qi ≥ 0 for all i; and that

AD(p1, . . . , pn) ⊂ AD(maxi pi). (2.42)

As was the case for the covariance structure of constant-order PAC variables,
the covariance structure of variable-order PAC variables may alternatively be
characterized in several — though not quite as many — equivalent ways. The
following theorem essentially gives these alternative characterizations. We give
the theorem without proof; a proof can be constructed along the lines of proofs
of certain lemmas and theorems in Section 2.3 pertaining to constant-order
PAC variables.

Theorem 2.7. Random variables Y1, . . . , Yn with positive definite covariance
matrix Σ are PAC(p1, . . . , pn) if and only if either of the following is true:

(i) For all i = 1, . . . , n and j < i− pi, the partial correlation between Yi and
Yj , adjusted for all intervening variables Yj+1, . . . , Yi−1, is equal to zero.

(ii) In the modified Cholesky decomposition of the precision matrix, i.e., Σ−1 =
TT D−1T, the subdiagonal elements −φij of the unit lower triangular ma-
trix T satisfy −φij = 0 for all j such that j < i − pi (i = 2, . . . , n).
Equivalently,

Yi − μi =
pi∑

k=1

φi,i−k(Yi−k − μi−k) + εi, i = 1, . . . , n, (2.43)

where ε1, . . . , εn are uncorrelated zero-mean random variables with var(εi)
= δi.
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We should point out that Theorem 2.7 does not give a precision matrix charac-
terization of variable-order PAC variables. Recall that Theorem 2.2 gave such a
characterization in the constant-order case; in particular, n variables with posi-
tive definite covariance matrix Σ are PAC(p) if and only if all elements of Σ−1

with indices in In
p are zero. On this basis it might be conjectured that n vari-

ables with positive definite covariance matrix Σ are PAC(p1, . . . , pn) if and
only if all elements of Σ−1 in Ip1,...,pn

are zero, where Ip1,...,pn
= {(i, j) :

i = 2, . . . , n; j < i− pi}. But this conjecture is generally not true. Of course,
by virtue of Theorem 2.2 and (2.42), all elements of Σ−1 = (σij) with indices
in In

maxpi
are zero; furthermore, it can be shown that all elements of Σ−1 with

indices satisfying j < mink=i,...,n(k−pk) are zero. Note that this last set of in-
dices is a subset of Ip1,...,pn

. Nevertheless, for a precision matrix satisfying this
last property, the orders (p1, . . . , pn) are generally not uniquely determined, so
this property does not yield a precision matrix characterization either.

The autoregressive formulation given by (2.43) is a particularly convenient
way to represent variable-order PAC variables. As an example, if Y1, . . . , Y6

are PAC(0,1,1,2,3,1), then they may be represented as follows (where we take
μi ≡ 0 to reduce clutter):

Y1 = ε1,

Y2 = φ21Y1 + ε2,

Y3 = φ32Y2 + ε3,

Y4 = φ43Y3 + φ42Y2 + ε4,

Y5 = φ54Y4 + φ53Y3 + φ52Y2 + ε5,

Y6 = φ65Y5 + ε6.

Here, as in Theorem 2.7(ii), the εi’s are uncorrelated, each with variance δi.

According to Theorem 2.7(ii), if variables are PAC(p1, . . . , pn), then subdiag-
onal elements of T with indices in Ip1,...,pn

are equal to zero. This can be used
to derive recursive equations analogous to (2.32) for obtaining expressions of
covariance matrix elements {σij : (i, j) ∈ Ip1,...,pn

} in explicit terms of ele-
ments {σij : (i, j) /∈ Ip1,...,pn

}. We give this result as a theorem.

Theorem 2.8. Let Y1, . . . , Yn be PAC(p1, . . . , pn) random variables with pos-
itive definite covariance matrix Σ. Furthermore, let k1 < k2 < · · · < km

denote the row indices of all rows of Σ which have at least one element in
Ip1,...,pn

. Then we may obtain {σij : (i, j) ∈ Ip1,...,pn
} in terms of {σij :

(i, j) /∈ Ip1,...,pn
} by iteratively applying the equations

ζi = ΥiΨ−1
i ηi, i = k1, k2, . . . , km, (2.44)

where ζi, Υi, Ψi, and ηi are defined by expressions identical to those in The-
orem 2.4 except that p in those expressions is replaced by pi.
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It follows from Theorems 2.7 and 2.8 that the covariance structure of PAC(p1,
. . . , pn) variables can be parameterized by either the marginal variances, non-
trivial lag-one marginal correlations, and nontrivial intervenor-adjusted partial
correlations

{ρij·{j+1:i−1} : i = 3, . . . , n; j = i− pi, . . . , i− 2};
or the nonzero autoregressive coefficients and innovation variances

{δi : i = 1, . . . , n} and {φij : i = 1, . . . , n; j = i− pi, . . . , i− 1};
or the marginal covariance matrix elements

{σij : i = 1, . . . , n; j = i− pi, . . . , i}.
The number of parameters in any of these parameterizations is given by

n+
n∑

i=1

pi = n+
n∑

i=2

pi.

Results on the determinant of a PAC(p1, . . . , pn) covariance matrix, which are
analogous to those given by Theorem 2.5 for a constant-order PAC(p) covari-
ance matrix, may be established in a very similar manner. We state these re-
sults, without proof, as the following theorem.

Theorem 2.9. Let Y1, . . . , Yn be PAC(p1, . . . , pn) random variables with pos-
itive definite covariance matrix Σ.

(a) Let T and D = diag(δ1, . . . , δn) be the unit lower triangular and diago-
nal matrices, respectively, of the modified Cholesky decomposition of Σ−1.
Then

|Σ| =
n∏

i=1

δi.

(b) Let R2
i·{i−pi:i−1} denote the multiple correlation coefficient between Yi and

Yi−pi
, . . . , Yi−1, where i > 1. Then

|Σ| =
n∏

i=1

σii

n∏
i=2

(1 −R2
i·{i−pi:i−1})

where we define R2
i·{i−pi:i−1} = 0 if pi = 0.

(c) Let ρij·B denote the partial correlation coefficient between Yi and Yj ad-
justed for {Yk : k ∈ B}. Then

|Σ| =
n∏

i=1

σii

n∏
i=2

pi∏
j=1

(1 − ρ2
i,i−j·{i−j+1:i−1})
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where we define
pi∏

j=1

(1 − ρ2
i,i−j·{i−j+1:i−1}) = 1 if pi = 0

and
ρ2

i,i−j·{i−j+1:i−1}) = ρ2
i,i−1 if j = 1.

(d) Let Σk:m denote the submatrix consisting of elements in rows k, k+1, . . . ,m
and columns k, k + 1, . . . ,m of Σ. Then

|Σ| = σ11

n∏
i=2

|Σi−pi:i|
|Σi−pi:i−1|

where we define
|Σi−pi:i−1| = 1 if pi = 0.

2.7 Other conditional independence models

Antedependence is a form of conditional independence for random variables
ordered according to a one-dimensional index. As such, it is related to sev-
eral other more well-known models of conditional independence. For example,
Dempster’s (1972) covariance selection model is a conditional independence
model for jointly normal random variables which sets arbitrary elements of
their precision matrix equal to 0. Thus, a pth-order antedependence model for
jointly normal variables is a special type of covariance selection model, for
which, as detailed by Theorem 2.2, the set of null precision matrix elements
consists of those lying on off-diagonals p+1, . . . , n−1. The pth-order antede-
pendence model for jointly normal variables is also a special case of a Gaussian
Markov random field (Rue and Held, 2005).

Graphical models (Whittaker, 1990; Lauritzen, 1996) are extensions of co-
variance selection models and Gaussian Markov random fields which do not
require normality of the variables nor existence of the covariance matrix; they
merely specify that some variables are independent, conditional on other vari-
ables. Because graphical models do not require that the conditional indepen-
dence be related to any ordering among the variables, they are more general
than antedependence models. Graphical models are given their name because
the conditional independence structure of the variables may be characterized
by a graph, with the consequence that elements of graph theory may be brought
to bear on various probabilistic and inferential problems for these models. We
aim here not to discuss graph theory in any detail, but just enough to be able
to describe conditional independence graphs for antedependence models. Ac-
cordingly, a graph is a mathematical entity consisting of two sets: a set of
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vertices {1, 2, . . . , n} and a set of edges consisting of pairs of distinct ver-
tices. An edge (i, j) in the edge set is said to be undirected if the edge set
also contains (j, i); otherwise the edge is directed. The directed conditional
independence graph of a set of index-ordered random variables Y1, . . . , Yn is
a set of vertices and a set of directed edges {(i, j)} satisfying the properties
that (a) i < j and (b) (i, j) is not in the edge set if and only if Yi and Yj

are conditionally independent given all variables preceding Yj (excluding Yi).
The directed conditional independence graph can be displayed as a picture, in
which each vertex is represented by a circle and each directed edge (i, j) is
represented by a line segment with an arrow pointing to vertex j. The arrow
of a directed edge is used to indicate an asymmetry in the interaction between
the two corresponding variables, specifically that Yi “causes” Yj but not vice
versa. Thus antedependence models, with their notion of conditional indepen-
dence among time-ordered random variables, may be represented by directed
conditional independence graphs.

Figure 2.1 displays directed conditional independence graphs for AD(1), AD(2),
and AD(3) variables when n = 10. The graphs have a distinctive chained-link
structure, which occurs because of the conditional independence among pairs
of variables given only one, two, or three immediate predecessors.
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Figure 2.1 Directed conditional independence graphs for AD(1) (top), AD(2) (middle),
and AD(3) (bottom) models for 10 variables.

© 2010 by Taylor and Francis Group, LLC



CHAPTER 3

Structured Antedependence Models

We noted in the previous chapter that the unstructured antedependence (AD)
covariance model is more parsimonious than the general multivariate model
(provided that the order of the AD model is less than n − 1) while also being
more flexible than stationary autoregressive models, and that consequently an
unstructured AD model may be useful for longitudinal data exhibiting hetero-
geneous variances and nonstationary serial correlation. For many longitudinal
data sets, however, an AD covariance model that is more parsimonious than
an unstructured AD model, but possibly not as parsimonious as a stationary
autoregressive model, may be even more useful. For example, if variances in-
crease over time, as is common in growth studies, or if measurements equidis-
tant in time become more highly correlated as the study progresses, then a
model that incorporates these structural forms of nonstationarity is likely to be
more useful. In this chapter we consider such models, which we call structured
antedependence (SAD) models.

Several of the SAD models to be presented here were initially developed for
use with time series data, then subsequently borrowed for use with longitudinal
data. However, it is worth noting that there are some very important differences
between the time series and longitudinal settings. In a typical time series set-
ting, a response variable for a single “subject” is observed on a large number
of equally spaced occasions; for example, we may observe the daily closing
price of a single stock for a year, or the annual gross domestic product of a
single nation for 50 years. In contrast, a longitudinal study consists of multiple
subjects typically observed on relatively few occasions, which frequently are
not equally spaced. Also, the notions of an “infinite past” or “infinite future,”
which are theoretically important for time series, often make little sense for
longitudinal data and, in any case, are not needed. As a consequence, the SAD
models we borrow from time series analysis will be presented in a form that
allows for an abrupt start-up at time t = 1 rather than a form that requires an
infinite past, and the asymptotic regime to which we will eventually appeal will

59
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allow the number of subjects to increase but take the number of measurement
times to be fixed.

Recall that in the previous chapter we described four equivalent characteriza-
tions or formulations of the unstructured AD(p) covariance model: intervenor-
adjusted, precision matrix, autoregressive, and marginal. A SAD(p) model may
be obtained by imposing structure upon the parameters of any of these formula-
tions, according to whichever seems most appropriate, useful, or interpretable
in a particular situation. As we will see, classical autoregressive time series
models are most easily seen as SAD models for which structure is imposed on
the autoregressive formulation. The same is true for several other well-known
SAD models, in part because the nonzero autoregressive coefficients of AD
models are unconstrained. Nevertheless, the consequent marginal covariance
structure of these models is also important and will be described to the extent
reasonably possible. For a few models we will also describe the structure of
the other two formulations.

Throughout, we will take the innovations in the autoregressively specified SAD
models to be independent. Although the marginal covariance structure is the
same in each case if we weaken this requirement to innovations that are merely
uncorrelated, the response variables in the models with this weaker require-
ment are merely antecorrelated, not necessarily antedependent.

For the sake of clarity and economy of notation, initially we will describe each
SAD model in the context of only a single subject, suppressing the subscript
i indexing subjects. Hence we shall write the observations as Y1, . . . , Yn, the
measurement times as t1, . . . , tn, and the marginal variances and correlations
as {σii} and {ρij}, respectively. Furthermore, for several of the models to be
described, it will be assumed initially that the times of measurement are equally
spaced, in which case we put ti = i. In each such case we will subsequently
describe generalizations of the model for use when measurement times are
unequally spaced.

3.1 Stationary autoregressive models

Assume initially that the measurement times are equally spaced, with ti = i.
Then, the first-order autoregressive [AR(1)] model can be given by the follow-
ing autoregressive formulation:

Y1 − μ1 = ε1, (3.1)

Yi − μi = φ(Yi−1 − μi−1) + εi, i = 2, . . . , n,

where −1 < φ < 1 and the innovations {εi} are independent zero-mean
random variables with variances var(ε1) = δ and var(εi) = δ(1 − φ2) for
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i = 2, . . . , n. There are thus two unknown parameters in the covariance struc-
ture of the model: φ and δ. Note that (3.1) starts at time i = 1 and ends at time
i = n; there is no need to appeal to notions of an infinite past or future, as is
common for time series.

The marginal covariance structure corresponding to (3.1) is easily shown to be
given by

σii = δ, ρij = φ|i−j|. (3.2)

Thus, for the AR(1) model the marginal variances are constant and the marginal
correlations are a function of only the elapsed time between measurements, and
consequently the model is stationary. Furthermore, the correlations decrease
(in modulus) exponentially as elapsed time increases.

A precision matrix formulation of the AR(1) covariance structure is also easily
obtained, using for example the AD(1) inverse formula (2.40) and the relation-
ship between the elements of the precision matrix and the conditional variances
and correlations (where the conditioning is on all other observations). We find
that

σii|rest =
{
δ(1 − φ2) for i = 1, n,
δ(1 − φ2)/(1 + φ2) for i = 2, . . . , n− 1,

ρi,i−1|rest =
{
φ(1 + φ2)−1/2 for i = 2, n,
φ(1 + φ2)−1 for i = 3, . . . , n− 1,

and of course ρi,i−j|rest = 0 whenever j > 1.

The AR(1) model can be generalized to a pth order autoregressive [AR(p)]
model, specified incompletely as

Yi − μi =
p∑

j=1

φj(Yi−j − μi−j) + εi, i = p+ 1, . . . , n. (3.3)

Here p is an integer greater than or equal to one, the φj’s satisfy certain con-
straints, and the εi’s are independent random variables with zero means. To
complete the formulation, we take Yi −μi, for i ≤ p, to be given by an autore-
gressive equation of order i−1, with autoregressive parameters and innovation
variances chosen to achieve stationarity, i.e., to yield equal variances among re-
sponses and correlations between Yi and Yj that depend only on |i − j|. This
is always possible; for example, for the AR(2) model, we may take

Y1 − μ1 = ε1,

Y2 − μ2 = φ0(Y1 − μ1) + ε2,

Yi − μi = φ1(Yi−1 − μi−1) + φ2(Yi−2 − μi−2) + εi, i = 3, . . . , n,
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where φ0 = φ1/(1 − φ2),

var(ε1) = δ,

var(ε2) = δ(1 − φ2
0),

var(εi) = δ(1 − φ2
1 − φ2

2 − 2φ1φ2φ0), i = 3, . . . , n.

This yields marginal variances σii = δ for all i, and marginal correlations
given by

ρi,i−1 = φ1/(1 − φ2),
ρi,i−2 = (φ2 − φ2

2 + φ2
1)/(1 − φ2),

ρi,i−j = φ1ρi,i−j+1 + φ2ρi,i−j+2,

i = 4, . . . , n; j = 3, . . . , i− 1.

Note that the relationship between the parameters of the autoregressive formu-
lation and the marginal variances and correlations is considerably more compli-
cated for an AR(2) model than for an AR(1) model. This relationship becomes
still more complicated as p increases, but with sufficient effort it can always be
determined explicitly.

Like unstructured antedependence models, stationary autoregressive models
are nested, i.e., AR(1) ⊂ AR(2) ⊂ · · · ⊂ AR(n− 1). Furthermore, upon com-
parison of the AD(p) model given by (2.21) (plus normality) with the AR(p)
model just given, it is evident that the latter model is a special case of the
former. More precisely, an AR(p) model is a special case of the unstructured
AD(p) model in which, using notation from (2.21):

(a) φi,i−j = φj for i = p+ 1, . . . , n and j = 1, . . . , p;

(b) the p roots of the AR(p) characteristic equation

1 − φ1x− φ2x
2 − · · · − φpx

p = 0

all exceed unity in modulus;

(c) δp+1 = δp+2 = · · · = δn > 0;

(d) the “start-up” parameter values {φi,i−j : i = 2, . . . , p; j = 1, . . . , i− 1} and
δ1, δ2, . . . , δp are chosen so that marginal variances are equal and marginal
correlations depend only on |i− j|.

The number of parameters in the covariance structure of an AR(p) model is p+
1. Recalling from Chapter 2 that the number of covariance structure parameters
in an unstructured AD(p) model is (2n− p)(p+ 1)/2, we see that the number
of covariance structure parameters of the AR(p) model, in contrast to that of
the AD(p) model, does not increase with the number of measurement times.

The stationary autoregressive models presented so far are sometimes called
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discrete-time AR(p) models, owing to their assumption of equal spacing be-
tween observations. If the measurement times are not equally spaced the model
may be applied to the time-ordered observations anyway, but in this case the
covariance structure is no longer stationary (since the marginal correlations
are no longer a function of elapsed time). Indeed, for such an application the
nature of the model’s nonstationarity is dictated by the spacings between suc-
cessive measurements, which usually makes little practical sense. To retain
the functional dependence of marginal correlations on elapsed time when mea-
surement times are irregularly spaced, we must consider stationary continuous-
time AR(p) processes. Such a process is defined as a stationary solution to a
stochastic differential equation and is therefore rather more complicated than
its discrete-time counterpart. In particular, the marginal variances and correla-
tions generally are complicated functions of the parameters of the stochastic
differential equation. However, the first-order continuous-time autoregressive
process is an exception to this; its marginal variances and correlations are given
by the very simple expressions

σii = σ2, ρij = φ|ti−tj |, i, j = 1, . . . , n, (3.4)

where 0 ≤ φ < 1. Note that the marginal variances are constant and the corre-
lations decrease exponentially as a function of elapsed time. Observe also that
the correlations in (3.4) and those in (3.2) coincide, provided that the measure-
ments are equally spaced and φ is nonnegative. Unfortunately, this relationship
does not extend to higher-order models; that is, the marginal covariance struc-
ture of equally-spaced observations of a second-order (or higher) continuous-
time AR process does not coincide with that of the discrete-time AR process
of the same order. Further details on continuous-time autoregressive processes
are beyond the scope of this book, but the interested reader may consult Jones
(1981), Jones and Ackerson (1990), and Belcher, Hampton, and Tunnicliffe
Wilson (1994).

3.2 Heterogeneous autoregressive models

For the stationary autoregressive models considered in the previous section, the
longitudinal observations marginally have equal variances and correlations that
are functions of elapsed time. Heterogeneous extensions of AR(p) models, de-
noted by ARH(p), retain the same marginal correlation structure but allow the
marginal variances to depend on time. Although it is possible to specify such
a model by autoregressive equations, the autoregressive coefficients in these
equations must necessarily be rather complicated functions of the innovation
variances in order to preserve the AR(p) marginal correlation structure. It is
therefore much simpler to specify an ARH(p) by its arbitrary positive marginal
variances {σii} and its AR(p) marginal correlations.
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Clearly, ARH(p) ⊂ AD(p). If the functional dependence of marginal variances
on time is completely general, then the number of parameters in the covariance
structure is n+ p+1, which increases with the number of measurement times.
More parsimonious heterogeneous models result from taking the variance to
be a function of time, for example a log-linear function

log σii = vT
i ψ or σii = exp(vT

i ψ), i = 1, . . . , n, (3.5)

where vi is a vector of functions of time ti and ψ is a vector of unknown
parameters. Verbyla (1993) considers modeling variances in this fashion when
observations are independent, but there is no reason why the same model could
not also be used for variances when observations are dependent. The advantage
of a log-linear model for the variances, relative to a polynomial or some other
linear model, is that its parameters are unconstrained.

3.3 Integrated autoregressive models

Again, assume initially that the measurement times are equally spaced. An inte-
grated autoregressive model of orders p and d, or ARI(p, d) model, generalizes
a stationary autoregressive model by postulating that the dth-order differences
among consecutive measurements, rather than the measurements themselves,
follow an AR(p) model. The simplest case is the ARI(0,1), or random walk,
model given by

(Yi − μi) − (Yi−1 − μi−1) = εi, i = 2, . . . , n, (3.6)

where Y1 − μ1 = ε1 and {εi : i = 1, . . . , n} are independent zero-mean
random variables with common variance δ. For this process,

σii = iδ, i = 1, . . . , n,

and
ρij =

√
j/i, i ≥ j = 1, . . . , n.

Thus, the marginal variances increase (linearly) over time and the serial corre-
lation decays with increasing lag (holding j fixed and increasing i) at an inverse
square root rate. Furthermore, the marginal correlations between equidistant
measurements are monotonic, increasing in a particular nonlinear fashion and
approaching unity as time progresses. There is only one unknown parameter in
the covariance structure, namely δ, of which the marginal variance is a linear
function.

Observe that (3.6) may be written as

Yi − μi = Yi−1 − μi−1 + εi, i = 2, . . . , n,

by which it follows that the ARI(0,1) model is a special case of the AD(1)
model.
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Although the marginal variances and correlations of the ARI(0,1) model vary
quite strongly with time, the partial variances and partial correlations do not.
Specifically, the partial variances and lag-one partial correlations are given by

σii|rest =
{
δ/2 for i = 1, . . . , n− 1
δ for i = n,

ρi,i−1|rest =
{

1/2 for i = 2, . . . , n− 1,
1/
√

2 for i = n,

and of course ρi,i−j|rest = 0 whenever j > 1.

Another special case of an integrated autoregressive model is the ARI(1,1)
model, given by

(Yi − μi) − (Yi−1 − μi−1) = φ[(Yi−1 − μi−1) − (Yi−2 − μi−2)] + εi,

i = 3, . . . , n, (3.7)

where Y1 − μ1 = ε1, Y2 − μ2 = Y1 − μ1 + ε2, and the εi’s are defined as for
the ARI(0,1). Observe that (3.7) may be rewritten as

Yi − μi = (1 + φ)(Yi−1 − μi−1) − φ(Yi−2 − μi−2) + εi, i = 3, . . . , n,

whereupon it is evident that this model is a special case of the AD(2) model.
More generally, it can be shown that an ARI(p, d) model is a particular struc-
tured AD(p+d) model having p+1 unknown covariance structure parameters.

If measurement times are unequally spaced, we may use continuous-time ana-
logues of ARI models. The only case we will mention is the Wiener process,
which is a continuous-time analogue of the random walk model. The marginal
covariance function of a Wiener process is

cov(Yi, Yj) = δmin(ti, tj), i, j = 1, . . . , n,

which yields variances and correlations that coincide with those of the discrete-
time random walk when the data are equally spaced.

3.4 Integrated antedependence models

Let {εi : i = 1, . . . , n} be independent zero-mean random variables, and de-
fine

Yi − μi =
i∑

l=1

εl, i = 1, . . . , n. (3.8)

It follows from results shown in Section 2.1 that Y1, . . . , Yn are AD(1) vari-
ables, a fact which is also evident upon reexpressing (3.8) in autoregressive
form, i.e.,

Yi − μi = Yi−1 − μi−1 + εi, i = 1, . . . , n,
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(where we put Y0 ≡ 0 and μ0 ≡ 0). The marginal covariance structure of
this AD(1) model is obtained as follows. Suppose that the variances of the εi’s
exist but are not necessarily constant across time. Denote these variances by δl
(l = 1, . . . , n). Then

var(Yi) =
i∑

l=1

δl,

cov(Yi, Yj) =
min(i,j)∑

l=1

δl,

and thus for i < j,

corr(Yi, Yj) =
∑i

l=1 δl

(
∑i

l=1 δl
∑j

l=1 δl)1/2
=

(
1 +

j∑
l=i+1

δl

/ i∑
l=1

δl

)−1/2

.

We see that: (a) for fixed i < j, the correlation between Yi and Yj is a decreas-
ing function of j; (b) for fixed j > i, the correlation is an increasing function
of i; (c) as both i and j are incremented equally the correlation may either
decrease or increase. Thus, marginally the variances increase monotonically
(but otherwise arbitrarily) over time and the correlations decrease monotically
with lag (serial correlation) in a manner determined by the innovation vari-
ances. Note that the number of unknown parameters in the model’s covariance
structure is n, and that the marginal variances are linear functions of these pa-
rameters.

The reader has probably recognized that this model is an extension of the clas-
sical random walk given by (3.6). It is not an ARI model, however, so we
need a new name for it and for models that are even more general. We define
an integrated antedependence model of orders p and d, or ADI(p, d) model,
as a model for which the dth-order differences among consecutive measure-
ments follow an AD(p) model. By this definition, the model given by (3.8) is
an ADI(0,1) model. We obtain an ADI(p, 1) model if the innovations in (3.8)
are AD(p) or, in other words, if we form cumulative sums of AD(p) variables
(either structured or unstructured).

It can be shown that an ADI(p, d) model, like an ARI(p, d) model, is a struc-
tured form of AD(p+ d) model. In fact, we have that

ARI(p, d) ⊂ ADI(p, d) ⊂ AD(p+ d).

The number of unknown covariance structure parameters in an ADI(p, d) model
is (p+ 1)(2n− p)/2, which increases with the number of measurement times.

Since the terms in (3.8) or in an autoregressive formulation of any ADI(p, d)
model are AD(p) but do not necessarily satisfy anything stronger, applications
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of the model to longitudinal data do not require that measurement times be
equally spaced.

3.5 Unconstrained linear models

Pourahmadi (1999) introduced a family of SAD(n − 1) models in which the
logarithms of the innovation variances and the same-lag autoregressive coeffi-
cients of the autoregressive formulation of the general multivariate model for
n observations (i.e., the non-trivial elements of the matrices T and D of the
modified Cholesky decomposition of Σ−1) are modeled as parsimonious lin-
ear functions, such as low-order polynomials, of either time of measurement
or time between measurements (lag). For example, an SAD(n − 1) model for
which the log-innovation variances and autoregressive coefficients follow poly-
nomial models of time of orders m1 and m2, respectively, is as follows:

log δi =
m1∑
l=1

ψlt
l−1
i , i = 1, . . . , n, (3.9)

φi,i−j =
m2∑
l=1

θlt
l−1
i , (3.10)

i = 2, . . . , n; j = 1, . . . , i− 1.

Another such model is one for which the log-innovation variances follow (3.9)
but the autoregressive coefficients are given by a polynomial function of lag,
i.e.,

φi,i−j =
m2∑
l=1

θl|ti − tj |l−1, (3.11)

i = 2, . . . , n; j = 1, . . . , i− 1;

in fact, this is the specific model used by Pourahmadi (1999). Either of these
linear SAD(n − 1) models can be specialized to an SAD(p) model, with p <
n − 1, by requiring that (3.10) or (3.11) hold for i = 2, . . . , n and j =
1, . . . ,min(i − 1, p) only, and setting autoregressive coefficients correspond-
ing to lags greater than p equal to zero. The nonnull parameters, {ψl} and
{θl}, in any such model are unconstrained, which gives these models a distinct
advantage over other autoregressively specified SAD models with respect to
parameter estimation. We will develop this point further in Chapter 5.

The marginal covariance structure corresponding to (3.9) and (3.10) depends,
of course, on the values of the ψl’s and θl’s, but the precise nature of this de-
pendence is not transparent. However, the marginal covariance structures for
some low-order polynomial SAD(1) models of this type are displayed in Fig-
ure 3.1, which is the first of several figures we call “diagonal cross-section
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plots” presented in this chapter. Each such plot consists of two subplots, one
directly on top of the other. In the top subplot, marginal variances (σii) are
plotted against a shifted time index (ti − 0.5) and connected by line segments.
In the bottom subplot, each set of same-lag marginal correlations (ρi,i−j for
fixed j) is plotted against a shifted time index and then connected by line seg-
ments. Thus, connected points in the subplots correspond either to elements on
the main diagonal or to elements on a common subdiagonal of the covariance
matrix. The time index for each subdiagonal is shifted so that the profile of that
subdiagonal will comport with the perspective of an observer at the lower left
corner of the matrix looking toward the opposite corner.
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Figure 3.1 Diagonal cross-section plots of marginal variances and correlations of an
AD(1) polynomial model given by (3.9) and (3.10), withm1 = 1,m2 = 2, and ψ1 = 0.
Left panel: θ1 = 0.2, θ2 = 0.1; right panel: θ1 = 1.0, θ2 = −0.1.

For the two specific models shown in Figure 3.1 we put ti = i = 1, 2, . . . , 6.
In both models the log-innovation variances are taken to be constant (m1 = 1),
and that constant is ψ1 = 0 (implying that the innovation variances themselves
are all equal to 1.0), while the autoregressive coefficients are taken to be a
linear function (m2 = 2) of time. Moreover, in the first model (left panel)
θ1 = 0.2 and θ2 = 0.1, so that the lag-one autoregressive coefficients are
increasing (linearly) from 0.4 to 0.8 from time t2 = 2 to time t6 = 6. In
the second model (right panel), θ1 = 1.0 and θ2 = −0.1, so that the lag-one
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autoregressive coefficients are decreasing (linearly) from 0.8 to 0.4 over the
same time period. The plots indicate that lag-one autoregressive coefficients
that increase over time result in marginal variances and correlations that do
likewise, whereas lag-one autoregressive coefficients that decrease over time
result in marginal correlations and variances that may increase early on but
eventually decrease.

Figure 3.2 displays diagonal cross-section plots of SAD(2) models with the
same measurement times and same constant log-innovation variances (ψ1 = 0)
as the previous two models, but with autoregressive coefficients that are func-
tions of lag rather than time (and hence are constant over time for the same
lag). In the first (left panel) of these models, θ1 = 0.9 and θ2 = −0.1, so that
the autoregressive coefficients are decreasing (linearly) from 0.7 to 0.3 with
increasing lag. In the second model (right panel), θ1 = 0.1 and θ2 = 0.1, so
that the autoregressive coefficients are increasing (linearly) from 0.3 to 0.7 with
increasing lag. In comparison to the two previous models, for which the autore-
gressive coefficients for lags two and higher were equal to zero, the marginal
correlations for the present two models are, not surprisingly, more persistent
(stronger at large lags). In fact, for the model in which the autoregressive coef-
ficients increase with lag, the marginal correlations can be higher between an
observation and a distant predecessor than between the observation and a more
proximate predecessor.

3.6 Power law models

Zimmerman and Núñez-Antón (1997) introduced several families of SAD(p)
models in which either the marginal correlations up to lag p, the autoregressive
coefficients up to order p, or the partial correlations of variables lagged at most
p variables apart, adjusted for all other variables — depending on whether
additional structure is imposed upon the marginal, autoregressive, or precision
matrix formulations of the unstructured AD(p) model — are given by a Box-
Cox power function of time. For example, the marginally specified SAD(1)
family of these models is given by

σii = σ2f(ti;ψ), i = 1, . . . , n,
ρi,i−1 = ρ|g(ti;λ)−g(ti−1;λ)|, i = 2, . . . , n, (3.12)

where σ2 > 0; f(·) is a specified positive-valued function of time, such as the
exponential function given by (3.5); ψ is a vector of relatively few parameters;
0 ≤ ρ < 1; and g(·) is of Box-Cox power form, i.e.,

g(t;λ) =
{

(tλ − 1)/λ if λ �= 0
log t if λ = 0. (3.13)
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Figure 3.2 Diagonal cross-section plots of marginal variances and correlations of an
AD(1) polynomial model given by (3.9) and (3.11), withm1 = 1,m2 = 2, and ψ1 = 0.
Left panel: θ1 = 0.9, θ2 = −0.1; right panel: θ1 = 0.1, θ2 = 0.1. Marginal variances
are expressed in units of log, base ten, plus one.

Correlations corresponding to lags beyond the first, i.e., {ρi,i−j : i = 3, . . . , n;
j = 1, . . . , i − 2}, are taken to equal the appropriate products of the lag-one
correlations, in accordance with (2.37). Note that this model does not require
measurement times to be equally spaced. However, if measurement times are
equally spaced then the lag-one correlations (and, for that matter, all same-lag
correlations) are a monotone function of t: they increase if λ < 1 and decrease
if λ > 1. Illustrating this is Figure 3.3, a diagonal cross-section plot of the
marginal covariance structure for cases of this model with constant variance
σ2 = 1.5 and (ρ, λ) equal to either (0.6, 0.5) or (0.8, 1.5). When λ = 1, the
same-lag correlations neither increase nor decrease, but coincide with those of
the continuous-time AR(1) model. From another point of view, the power law
(3.13) effects a nonlinear deformation upon the time axis, such that correlations
between measurements equidistant in the deformed scale are constant: earlier
portions of the time axis are “stretched out” relative to later portions if λ < 1,
or “condensed” relative to later portions if λ > 1.

A natural extension of (3.12) and (3.13) to a marginally specified SAD(p)
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Figure 3.3 Diagonal cross-section plots of marginal variances and correlations of the
marginally formulated AD(1) power model given by (3.12) and (3.13), with constant
variance. Left panel: ρ = 0.6, λ = 0.5; right panel: ρ = 0.8, λ = 1.5.

model (1 ≤ p ≤ n− 1) is given by

σii = σ2f(ti;ψ), i = 1, . . . , n,

ρi,i−j = ρ
|g(ti;λj)−g(ti−j ;λj)|
j , (3.14)

i = j + 1, . . . , n; j = 1, . . . , p,

where 0 ≤ ρj < 1 for all j and the ρj’s are such that Σ is positive defi-
nite, and all other quantities are defined as in (3.12) and (3.13). Correlations
not included in (3.14) are assumed to satisfy the requirements of an AD(p)
model; thus, they can be determined in terms of the parameters of (3.14) via
the iterative application of equation (2.32). Again, this model does not require
measurement times to be equally spaced, but when they are, it prescribes that
the lag-j correlations are monotone increasing if λj < 1, monotone decreasing
if λj > 1, or constant if λj = 1, for j = 1, . . . , p.

The analogue of model (3.14) for the intervenor-adjusted AD(p) formulation
adopts the same parametric model for the variances but specifies that the inter-
venor-adjusted partial correlations satisfy
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ρi,i−j·{i−j+1:i−1} = ρ
|g(ti;λj)−g(ti−j ;λj)|
j , (3.15)

i = j + 1, . . . , n; j = 1, . . . , p.

Here again 0 ≤ ρj < 1 for all j and the ρj’s are such that Σ is positive
definite, and all other quantities are defined as in (3.12) and (3.13). Note, of
course, that the first-order case of this model is merely the same as the first-
order marginally specified model (3.12).

An autoregressively specified SAD(p) counterpart to (3.14) is obtained by im-
posing the following structure on the innovation variances and autoregressive
coefficients of the autoregressive AD(p) formulation:

δi = δf(ti;ψ), i = p+ 1, . . . , n,

φi,i−j = φ
|g(ti;λj)−g(ti−j ;λj)|
j , (3.16)

i = p+ 1, . . . , n; j = 1, . . . , p,

where δ, φ1, . . . , φp are positive and all other quantities are defined as in (3.12)
and (3.13). Note that this model does not impose any structure on the inno-
vation variances and autoregressive coefficients corresponding to the first p
measurement times. Although structure could be imposed on these “start-up”
quantities as well, it has been our experience that keeping them unstructured
usually results in a better-fitting model than requiring them to adhere to the
structural relationship that applies to the innovation variances and autoregres-
sive coefficients at later times.

A precision matrix specification of an SAD(p) model analogous to those given
by (3.14) through (3.16) takes the elements of Σ−1 to satisfy

σii = νf(ti;ψ), i = 1, . . . , n,

πi,i−j ≡ − σi,i−j

√
σiiσi−j,i−j

= π
|g(ti;λj)−g(ti−j ;λj)|
j , (3.17)

i = j + 1, . . . , n; j = 1, . . . , p,

where we recall that σi,i−j is the (i, i−j)th element of Σ−1; ν > 0; π1, . . . , πp

are positive and such that Σ−1 is positive definite; and all other quantities are
again defined as in (3.12) and (3.13). Recall from Section 2.3.1 that πi,i−j is the
partial correlation coefficient between Yi and Yi−j adjusted for the rest of the
measurements, and σii is the reciprocal of the partial variance of Yi adjusted
for the rest of the measurements.

If measurement times are equally spaced, then (3.15), (3.16), and (3.17) pre-
scribe monotonicity for the intervenor-adjusted partial correlations, autore-
gressive coefficients, or ordinary partial correlations, respectively, up to order
p. Note, however, that the monotonicity of either set of quantities, by itself,
neither implies nor is implied by the monotonicity of the marginal variances
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and/or the same-lag correlations. Indeed, the range of possible marginal covari-
ance structures engendered by (3.15) through (3.17) is not obvious. Figures 3.4
and 3.5 are diagonal cross-section plots of marginal covariance structures cor-
responding to some first-order cases of (3.16) and (3.17); the first-order case of
(3.15) coincides with (3.12), as noted previously. For all cases of both models,
ti = i = 1, 2, . . . , 6, f(t) ≡ 1, and δ = ν = 1.
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Figure 3.4 Diagonal cross-section plots of marginal variances and correlations of the
autoregressively-formulated AD(1) power model given by (3.16) and (3.13), with δ = 1.
Left panel: φ = 0.8, λ = 0.5; right panel: φ = 0.8, λ = 2.0.

Figure 3.4 suggests that the effect that exponentiating the lag-one autoregres-
sive coefficients by the power-transformed time scale has on the marginal co-
variance structure is similar to the effect of exponentiating the lag-one corre-
lations themselves by the transformed time scale; that is, marginal same-lag
correlations increase with elapsed time if λ < 1, and decrease if λ > 1. The
same behavior of the marginal correlations is also seen when the lag-one par-
tial correlations of the precision matrix formulation are exponentiated by the
power-transformed time scale; however, the marginal variances do not vary
monotonically for these models.
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Figure 3.5 Diagonal cross-section plots of marginal variances and correlations of the
precision matrix formulation of AD(1) power model given by (3.17) and (3.13), with
ν = 1. Left panel: π = 0.25, λ = 0.5; right panel: π = 0.75, λ = 2.0.

3.7 Variable-order SAD models

Each of the SAD models described in this chapter is of constant order. How-
ever, several of them may be extended easily to a variable-order SAD model.
Such an extension necessarily is nonstationary, even if the constant-order SAD
model from which it is extended is stationary.

As one example, consider an SAD(0,1,1,1,2,2) model for which the innovation
variances and lag-one autoregressive coefficients are constant over time and the
lag-two autoregressive coefficients are constant over the last two times (being
equal to zero prior to that). That is,

Yi − μi =

⎧⎨
⎩

ε1 for i = 1,
φ1(Yi−1 − μi−1) + εi for i = 2, 3, 4,
φ1(Yi−1 − μi−1) + φ2(Yi−2 − μi−2) + εi for i = 5, 6,

(3.18)
where the innovations are independent zero-mean random variables with con-
stant variance δ. Figure 3.6 (left panel) is the diagonal cross-section plot of
the marginal covariance structure for the case of (3.18) in which φ1 = 0.8,
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φ2 = 0.4 and δ = 1.0. The right panel of the same figure is the analogous plot
for the SAD(0,1,2,2,1,1) model

Yi − μi =

⎧⎨
⎩

ε1 for i = 1,
φ1(Yi−1 − μi−1) + εi for i = 2, 5, 6,
φ1(Yi−1 − μi−1) + φ2(Yi−2 − μi−2) + εi for i = 3, 4,

(3.19)
with the same parameter values as the SAD(0,1,1,1,2,2) model. The left plot
shows that same-lag correlations for the first model increase monotonically,
but unevenly, over time. The right plot reveals that marginal variances and
correlations in the second model are not monotonic, as they increase for a
while and then decrease.
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Figure 3.6 Diagonal cross-section plots of marginal variances and correlations of
variable-order SAD models. Left panel: SAD(0,1,1,1,2,2) model given by (3.18), with
φ1 = 0.8, φ2 = 0.4 and δ = 1.0; right panel: SAD(0,1,2,2,1,1) model given by (3.19)
with same parameters as the previous model. Marginal variances are expressed in units
of natural log plus one.
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3.8 Nonlinear stationary autoregressive models

All of the autoregressively specified SAD covariance models described to this
point have been linear, i.e., past observations enter linearly into the equation
describing the dependence of an observation on past observations. Linear au-
toregressively specified SAD models are a broad and useful class, but there
are some types of behavior, for example clustered volatility (periods where ob-
servations’ variances are large followed by periods where these variances are
small), that they may not be able to model parsimoniously. In the past twenty
years or so, a large number of nonlinear time series models have been devel-
oped for modeling such “chaotic” behavior. Some of these are SAD models.
We give several of these SAD models below, but this is by no means a com-
plete list. In all of the models listed, the εi’s are independent zero-mean normal
random variables with equal variances, and we assume that the measurements
are equally spaced. Furthermore, for simplicity we omit start-up conditions and
parameter constraints required for stationarity.

1. The pth-order exponential autoregressive (EXPAR) model of Haggan and
Ozaki (1981):

Yi − μi =
p∑

j=1

[φj + πj exp(−θ(Yi−1 − μi−1)2)](Yi−j − μi−j) + εi.

2. The pth-order threshold autoregressive (TAR) model of Tong (1990):

Yi − μi =
p∑

j=1

φ
(m)
j (Yi−j − μi−j) +

√
δ(m)εi

if Yi−d − μi−d ∈ Ωm, m = 1, . . . ,M

where d ∈ {1, . . . , p} and {Ωm : m = 1, . . . ,M} is a partition of the real
line, and φ(m)

j (for j = 1, . . . , p) and δ(m) are the autoregressive coefficients
and innovation variances, respectively, corresponding to each set Ωm.

3. The pth-order functional coefficient autoregressive (FAR) model of Chen
and Tsay (1993):

Yi − μi =
p∑

j=1

fj(Y∗
i−1)(Yi−j − μi−j) + εi

where Y∗
i−1 is the vector of mean-corrected past observations lagged no

more than p times before time i or some subset of those observations, and
the fj(·)’s are specified functions.

Note that the EXPAR(p) and TAR(p) models are special cases of the FAR(p)
model. All are SAD(p) models. However, normality of the innovations in these
models does not generally yield normally distributed observations. This is an
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important difference between these models and the linear SAD models we pre-
sented earlier in this chapter. For this reason, although the variables in these
models are AD(p) and, in fact, AC(p), they are not PAC(p). Partly for this rea-
son, partly because of their complexity, and partly because experience has not
suggested that nonlinear autoregressive behavior is common for longitudinal
data (for which the time series are relatively short), we believe that the useful-
ness of these models in this context is rather limited.

3.9 Comparisons with other models

For purposes of comparison and contrast, we devote this final section of the
chapter to descriptions of two families of parametric covariance models that
are not antedependence models: vanishing correlation (banded) models and
random coefficient models. These two families have been used extensively for
longitudinal data exhibiting serial correlation and may therefore be viewed as
competitors to antedependence models for such data. Later in the book we will
actually fit some of these models, as well as various antedependence models,
to the data sets introduced in Chapter 1 and determine which models fit better
than others.

3.9.1 Vanishing correlation (banded) models

Assume initially that the measurement times are equally spaced. Then, the qth-
order Toeplitz, or Toeplitz(q), model for a single subject specifies that

σii = σ2 for all i,

ρij =
{
ρi−j if |i− j| = 1, . . . , q,
0 if |i− j| ≥ q + 1.

Here σ2, ρ1, . . . , ρq are parameters subject only to positive definiteness con-
straints. Observe that the Toeplitz(q) model is stationary, i.e., marginal vari-
ances are constant and marginal correlations are a function of only the elapsed
time between measurements. Moreover, the marginal correlations vanish be-
yond a finite elapsed time, giving the zeros in the covariance matrix a distinct
banded structure.

One way in which a Toeplitz covariance structure can arise is as a result of a
moving average process. Consider, for example, the first-order moving average
model

Yi − μi = ei − αei−1, i = 1, . . . , n, (3.20)

where e0, e1, . . . , en are independent and identically distributed random va-
riables with mean zero and variance σ2

e > 0, and α is a real-valued, un-
constrained parameter. It is easily shown that the variance of Yi is equal to
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σ2
e(1 + α2) for i = 1, . . . , n; the correlation between Yi and Yj is equal to

−α/(1 + α2) whenever |i − j| = 1; and the correlation between Yi and Yj

is equal to zero whenever |i − j| > 1. Thus the covariance matrix of Y is
first-order Toeplitz. More generally, if Y1, . . . , Yn follow the qth-order moving
average model

Yi − μi = ei −
q∑

j=1

αi−jei−j , i = 1, . . . , n,

where the ei’s and αi’s are suitably defined, then the covariance matrix of
Y is Toeplitz(q). However, in the finite-n situation we consider here, not all
Toeplitz(q) models can be obtained from a qth-order moving average model. A
case in point is provided by a Toeplitz(1) model with n = 2, σ11 = σ22 =
1 and ρ12 ∈ (−1.0,−0.5) ∪ (0.5, 1.0). As just noted, the correlation be-
tween Y1 and Y2 under the first-order moving average model (3.20) is equal
to −α/(1 + α2), which is constrained to the interval [−0.5, 0.5] even though
α is unconstrained. (In the infinite-n situation, the two models are equivalent;
see, for example, Proposition 3.2.1 of Brockwell and Davis, 1991.)

The Toeplitz(q) model can be generalized slightly, to a qth-order heteroge-
neous Toeplitz model, by allowing the marginal variances to be arbitrary pos-
itive numbers. In turn, this model may be generalized to a qth-order banded
model by continuing to require that the correlations on off-diagonals beyond
the qth are zero, but not imposing any restrictions on the remaining correlations
(apart from those required for positive definiteness). The general banded model
need not be stationary, nor does it require measurements to be equally spaced.
Though it is more flexible than the Toeplitz(q) and heterogeneous Toeplitz(q)
models, the banded(q) model has a larger number of parameters in the covari-
ance structure [(q + 1)(2n − q)/2 for the banded model versus q + 1 for the
Toeplitz(q) model] and this number increases with the number of measurement
times.

The banded structure of the zero correlations distinguishes the qth-order banded
model from antedependence models of any order, and the two classes of mod-
els are mutually exclusive, except when their orders are both 0 or both n − 1.
Thus, although some marginal correlations may be zeroes under an AD(p)
model, their pattern cannot be banded unless p = 0. On the other hand, we
recall from Theorem 2.2 that the precision matrix corresponding to an AD(p)
model has just such a banded pattern of zeros for any p. In fact, any positive
definite banded(q) matrix has a positive definite AD(q) matrix for its inverse,
and vice versa. Equivalently, the partial correlations of the banded(q) model
have the same structure as the marginal correlations of the AD(q) model, and
the marginal correlations of the banded(q) model have the same structure as
the partial correlations of the AD(q) model.

More highly structured vanishing correlation models exist that may be used
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with unequally spaced data, yet are stationary and more parsimonious than the
general banded model. Such models are commonly used as covariance func-
tions for spatial data (Cressie, 1993), but they can be used for longitudinal data
as well. These include the triangular model

σii = σ2, ρij =
{

1 − |ti − tj |/α, if |ti − tj | < α
0, otherwise,

and the spherical model

σii = σ2, ρij =
{

1 − 3
2 |ti − tj |/α+ 1

2 (|ti − tj |/α)3, if |ti − tj | < α
0, otherwise.

3.9.2 Random coefficient models

A rather general random coefficient model for multiple subjects is

Ys = Xsβ + Zsus + es, s = 1, . . . , N, (3.21)

where Z1, . . . ,ZN are specified matrices; u1, . . . ,uN are vectors of random
coefficients distributed independently as N(0,Gs); G1, . . . ,GN are positive
definite but otherwise unstructured matrices; and e1, . . . , eN are distributed
independently (of the us’s and of each other) as N(0, σ2Ins

). Typically the
Gs are assumed to be equal, in which case the covariance matrix of Ys is
given by Σs = ZsGZT

s + σ2Ins
. Special cases include the linear random co-

efficient (RCL) and quadratic random coefficient (RCQ) models. In the linear
case, Zs = [1ns

, ts] and

G =
(
γ00 γ01

γ01 γ11

)
.

In the quadratic case, Zs = [1ns
, ts, (t2s1, t

2
s2, . . . , t

2
sns

)T ] and

G =

⎛
⎝ γ00 γ01 γ02

γ01 γ11 γ12

γ02 γ12 γ22

⎞
⎠ .

Note also that compound symmetry, given by (1.2), is, apart from a slightly
expanded parameter space, equivalent to the case Zs = 1ns

, G = γ00.

Two convenient features of random coefficient models are their parsimony
(note that the number of covariance structure parameters is unrelated to the
number of measurement times) and their applicability to situations in which
the measurement times are unequally spaced or unbalanced.

Random coefficient models have often been considered as distinct from para-
metric covariance models, probably because their conceptual motivation is
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usually a consideration of regressions that vary across subjects rather than a
consideration of within-subject marginal covariance structure. Nevertheless,
random coefficient models yield marginal covariance structures that generally
have nonconstant variances and nonstationary correlations, a fact that does
not appear to be widely appreciated. For example, it is easy to show that the
marginal variances and correlations of the RCL model for a subject observed
at equally-spaced time points t1 = 1, . . . , tn = n are given by

σii = σ2 + γ00 + 2γ01i+ γ11i
2,

ρij =
γ00 + γ01(i+ j) + γ11ij√

σ2 + γ00 + 2γ01i+ γ11i2
√
σ2 + γ00 + 2γ01j + γ11j2

,

i ≥ j = 1, . . . , n.
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Figure 3.7 Diagonal cross-section plots of marginal variances and correlations of the
linear random coefficient model. Left panel: γ00 = 10, γ01 = 0, γ11 = 1; right panel:
γ00 = 20, γ01 = −3, γ11 = 0.5.

This structure is flexible enough to permit several kinds of variance and correla-
tional behavior, including increasing or decreasing variances, and correlations
of mixed sign. Figure 3.7, a diagonal cross-section plot of the marginal co-
variance structure, displays some possibilities. However, the model does have
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some notable limitations. Since γ11 is a variance and hence positive, we see
that the model precludes the variance from being a concave-down function of
time. Furthermore, the variances and correlations share parameters and thus
their behaviors are inextricably intertwined, which, for example, precludes the
variances from being constant if same-lag correlations are not.
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CHAPTER 4

Informal Model Identification

The previous two chapters introduced antedependence models for time-ordered
random variables, first in their most general, or unstructured, form, and subse-
quently in more parsimonious, or structured, forms. Now, we begin to con-
sider statistical inference for such models. In this chapter especially, we de-
scribe informal methods for identifying the mean and covariance structures of
normal linear antedependence models for longitudinal data. Such methods in-
clude the examination of useful summary statistics and graphical diagnostics
and are conducted prior to actually fitting any antedependence models. More
formal methods of inference, including likelihood-based parameter estimation,
hypothesis tests, and model selection criteria, will be considered in later chap-
ters.

It is appropriate to review and clarify the sampling framework(s) within which
our inferences, be they formal or informal, are valid. For some structured an-
tedependence models, it is possible to estimate parameters consistently from
just one realization of the sequence of variables Y1, . . . , Yn, or even from a
subsequence thereof; multiple realizations are not necessary. An example is
the stationary AR(p) model, for which there is a well-established literature on
estimation; for an overview see, for example, Fuller (1976). For other struc-
tured antedependence models, however, and for an unstructured antedepen-
dence model of any order, the parameters of the covariance structure are too
numerous to be estimable from merely one realization. Instead, multiple real-
izations are required, and the estimation is simplified greatly if these copies are
mutually independent. The sampling framework that most naturally gives rise
to independent realizations of time-ordered, correlated variables is longitudi-
nal sampling, hence it is within the general longitudinal sampling framework
introduced in Chapter 1 that we will consider inference for antedependence
model parameters.

A brief review of this sampling framework and some associated notation is
as follows. A response variable, Y , is measured on several occasions for each
of N randomly selected subjects from a population of interest. The number

83
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of measurement occasions and the corresponding times of measurement may
vary across subjects, and observations from different subjects are indepen-
dent. For s = 1, . . . , N let ns be the number of measurement occasions, let
Ys1, Ys2, . . . , Ysns

be the measurements of the response (in chronological or-
der) on subject s, and let ts1, ts2, . . . , tsns

be the corresponding measurement
times. Also, let xsi be a q×1 vector of observed covariates possibly associated
with Ysi (i = 1, . . . , ns).

4.1 Identifying mean structure

We begin with a consideration of mean structure. To a degree, the choice of
mean structure will be guided naturally by the scientific objectives and design
of the study. For example, if the study’s main objective is to determine how
the growth of animals is affected over time by different treatments, and no co-
variates other than time are observed, then an initial specification of the mean
structure for the response would probably consist of treatment effects, one or
more time effects, and effects for time-by-treatment interaction. A separate
effect could be used for each measurement time (i.e., the saturated mean struc-
ture), or the dependence on time could be modeled more parsimoniously using,
say, linear and quadratic terms. The more parsimonious approach is necessary,
of course, if one of the objectives is to estimate the mean response at times
where no measurements were taken (interpolation or extrapolation).

Notwithstanding the importance of the study’s scientific objectives for pointing
to a preliminary specification of a mean structure, the analyst undoubtedly will
want to use the observed data to attempt to improve upon the preliminary spec-
ification, i.e., to determine whether the specified mean structure includes co-
variates that do not help to explain the mean response, or to suggest additional
functions of the observed covariates that do. For these purposes, means of the
response variable at each measurement time should be computed and exam-
ined, as should correlations between the response and each covariate (if there
are any) at each measurement time. Graphical diagnostics related to these sum-
mary statistics are generally more informative, however. The profile plot, for
example, which was introduced in Chapter 1, can help to identify how the mean
varies over time. Plots of responses against covariates other than time may also
be useful. After choosing a provisional mean structure and fitting it, a residual
plot, i.e., a plot of the fitted residuals versus time and/or other covariates can
confirm, or indicate needed modifications to, the provisional mean structure. In
the plot of residuals versus time, those residuals corresponding to successive
measurements from the same subject may be connected with line segments to
highlight how each subject’s residuals vary over time. All of these plots are ap-
plicable generally, regardless of whether the data are balanced. However, they
can become excessively cluttered if the number of subjects is large, in which
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case some pruning may be desirable. Diggle et al. (2002, pp. 33–45) present
some interesting strategies for selecting subsets of individuals whose response
profiles will be included for display, and those strategies could be used for
displaying residual profiles as well.

Example 1: 100-km race data
Figure 1.3 is a profile plot of the split times for each 10-km section of the race,
for all 80 runners. The overall mean profile (obtained by averaging the split
times for each section, plotting these averages and connecting them with line
segments) shows that the mean split time tends to increase rather steadily over
the first 80 km of the race, but then levels off or actually decreases slightly. This
last feature may be at least partly explained by the phenomenon of “kicking”
(faster-than-average running for a relatively short period of time near the end of
a race) that is common among well-conditioned runners. Of course, variation in
topography along the course of the race may also affect a runner’s performance
on different sections, but unfortunately this information is not available. In any
case, it appears that a mean structure with only linear and quadratic time ef-
fects will certainly not be adequate for capturing the perceptible (though small)
undulations in the mean profile, and it seems unlikely that a model with a cubic
time effect added will make it so.

The 100-km race data include observations not only on split time but also on
a covariate, age. Figure 4.1 displays scatterplots of split time versus age, one
for each of the first two and last two sections, for the 76 runners whose ages
were observed. No linear effect of age is evident, but a Lowess smooth of the
data indicates a possible quadratic effect in the last two sections. In those last
two sections, split times appear to increase as runners’ ages either increase
or decrease from about 40 years. These plots thus suggest the possibility that
there is a quadratic effect of age on split time in the later sections of the race,
with middle-aged runners performing slightly better, on average, than either
younger or older runners in those sections.

Example 2: Speech recognition data
Figure 1.4 displays profile plots of the speech recognition test scores for each of
the two types of cochlear implants. Although 41 subjects were tested initially
(20 for implant A and 21 for implant B), the plots clearly show that many
subjects dropped out over the course of the study. The overall mean profiles
for each implant increase as the study progresses, indicating improvement in
speech recognition. Furthermore, the mean profile for implant type A appears
to be more-or-less uniformly higher than that of implant type B for the duration
of the study.
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Figure 4.1 Scatterplots of split time (minutes) versus age of runner (years) for the first
(top left panel), second (top right panel), ninth (bottom left panel), and tenth (bottom
right panel) 10-km sections of the 100-km race. The superimposed line is a Lowess
scatterplot smooth.

4.2 Identifying covariance structure: Summary statistics

Next we turn our attention to methods for identifying the covariance structure
of normal antedependence models for longitudinal data. We assume that a par-
ticular linear mean structure has already been selected, at least provisionally,
and we focus our attention solely on the covariance structure, partly for its
own sake but also because an appropriate, parsimonious choice of covariance
structure can substantially improve the efficiency of inferences made about the
mean structure and provide better estimates of standard errors of estimated
mean parameters. As with methods for identifying a mean structure, useful
informal methods for identifying a covariance structure include the examina-
tion of basic summary statistics and graphical diagnostics. However, informal
methods aimed at identifying the covariance structure are considerably richer
in variety and complexity than those for identifying the mean, so we devote sig-
nificantly more space to them here than was given to their counterparts in the
previous section. Furthermore, in contrast to the situation with mean structure
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identification, the scientific objectives of the study are usually of no help what-
soever for choosing a covariance structure.

In this section we describe what can be learned about the data’s covariance
structure merely from examining certain summary statistics, and then in the
following section we describe various graphical diagnostics and demonstrate
what they can add to the summary statistics. Throughout both sections, we
base the identification of the data’s covariance structure on residuals fitted to
a chosen mean structure. Initially at least, and perhaps even finally, the mean
structure should be taken to be as saturated as possible (within groups, if there
are any) to prevent misidentification of the covariance structure due to underfit-
ting the mean structure. Also, we let n generally denote the number of distinct
measurement times. It is assumed, unless noted otherwise, that the amount
of replication across subjects at each measurement time is sufficient to support
the computation and reliable interpretation of all summary statistics and graph-
ical diagnostics. If there are groups, the entire covariance model identification
enterprise should be done separately for each group first, so that it can be de-
termined whether the covariance structure is sufficiently homogeneous across
groups that the within-group covariance matrices can be pooled.

Recall from Chapter 2 that antedependence models are nested, i.e.,

AD(0) ⊂ AD(1) ⊂ AD(2) ⊂ · · · ⊂ AD(n− 1),

where the class of covariance matrices for a normal AD(n−1) model is simply
the class of all symmetric positive definite matrices. Consequently, every nor-
mally distributed n-variate response vector follows a normal antedependence
model of sufficiently high order. So, if consideration is limited to unstruc-
tured, constant-order normal antedependence models, the problem of choos-
ing the covariance structure is merely to choose the order, p, of the model.
Recall also that AD(p1, . . . , pn) ⊂ AD(max pi), so if consideration is ex-
panded to unstructured variable-order antedependence models, then the prob-
lem is to choose p1, . . . pn. If the analyst wishes instead, or in addition, to con-
sider structured antedependence models, then the problem involves choosing
not only the order of the model but also its particular formulation (marginal,
intervenor-adjusted, precision matrix, or autoregressive) plus a parsimonious
model within the chosen formulation.

Which summary statistics are useful for identifying the data’s covariance struc-
ture? If the data are balanced and the number of subjects is not too small, the
standard sample covariance matrix and a suite of relevant matrices derived
from it, such as the sample correlation matrix, the matrix of sample intervenor-
adjusted partial correlations, the matrix of sample partial correlations, and the
modified Cholesky decomposition of the sample precision matrix, may be com-
puted. If the data are not balanced, the matrix of sample variances and covari-
ances, which for simplicity we will also call the sample covariance matrix, may
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be computed from the nonmissing data at each time (for the variances) or pair
of times (for the covariances), and from it the same suite of matrices can be
derived. It is worth mentioning, however, that in the unbalanced case the sam-
ple covariance matrix, as just defined, is not guaranteed to be positive definite,
no matter how large the sample size. Hence some of the derived matrices may
have a few quirks, for example correlations larger than unity, which should just
be ignored. In any case, an examination of the elements of the derived matri-
ces can inform the choice of a marginal, intervenor-adjusted, precision matrix,
or autoregressive formulation of an antedependence model for the data, as we
now describe.

First, to identify the order of antedependence, off-diagonals of the matrix of
sample intervenor-adjusted partial correlations and/or the sample partial cor-
relation matrix should be examined for the positions of near-zero elements.
To judge whether an arbitrary off-diagonal element, say r, of these matrices
is too large for the corresponding population parameter, ρ, to equal zero, clas-
sical likelihood-based inference procedures for partial correlation coefficients
(e.g., Section 4.3 of Anderson, 1984, and Section 6.1 of this book) may be ap-
plied. Alternatively, a simple rule of thumb may be used, which is based on the
asymptotic distributional result

√
N ∗r → N(0, 1) when ρ = 0.

Here N ∗ represents the number of observations from which r is calculated,
minus the number of variables the partial correlation adjusts for. The rule of
thumb is to regard a sample partial correlation (of either type) as near-zero if
it is smaller than 2/

√
N ∗ in absolute value. However, due to the large num-

ber of these determinations to be made, the analyst may wish to modify this
rule of thumb to control the overall Type I error rate. Since the sample partial
correlation coefficients (of either type) are correlated in a rather complicated
way, a Bonferroni-based approach for controlling error rate may be the most
practical. If, in the end, all elements on off-diagonals p+ 1, . . . , n− 1 of these
matrices are judged to be near-zero, but one or more elements on the pth off-
diagonals are deemed to be different from zero, then by Definition 2.3 and
Theorem 2.2, this suggests that the covariance structure is that of an AD(p)
model. More generally, if the first mi elements in the ith row (i = 1, . . . , n) of
these matrices are deemed near-zero, but the (mi+1)th element is not, then the
covariance structure is indicated to be that of a variable-order AD(p1, . . . , pn)
model, with pi = i −mi. Note that the sample correlation matrix, while im-
portant in its own right, is not as prescriptive for determining the order of an-
tedependence as the other matrices just described for two reasons. First, in
contrast to near-zero sample partial correlations or intervenor-adjusted partial
correlations, near-zero marginal correlations are not indicative of any form of
antedependence (unless all of them are near-zero, in which case an AD(0), or
complete independence, model is indicated). Second, it is virtually impossible,
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except perhaps in the first-order case, to determine from a mere examination
of the sample correlations whether equations (2.32) or (2.44) hold to a good
approximation for some p or some (p1, . . . , pn). Nevertheless, the sample cor-
relations should still be examined, and the same rule of thumb (with N ∗ equal
to N ) may be applied to judge whether any of them are near-zero.

The sample autoregressive coefficients (i.e., the subdiagonal elements of the
unit lower triangular matrix of the sample precision matrix’s modified Cholesky
decomposition) are in principle as prescriptive for antedependence as the par-
tial correlations and intervenor-adjusted partial correlations; hence they should
likewise be examined for near-zero elements. However, the autoregressive co-
efficients are not calibrated as easily as the two kinds of partial correlations
because they are not required to lie between −1 and 1. Consequently, it is diffi-
cult to judge whether an autoregressive coefficient is near-zero merely from its
magnitude or some simple sample-size-based multiple of its magnitude. Never-
theless, a rule (which is actually a size-0.05 likelihood ratio hypothesis testing
approach) for making this determination can be given as follows. We judge a
sample autoregressive coefficient, φ̃ij , to be near-zero if and only if

|φ̃ij |
(δ̃icii,jj)1/2

< t.025,N−i, (4.1)

where δ̃i is the ith sample innovation variance, cii,jj is the jth diagonal element
of the inverse of the upper left i× i submatrix of the sample covariance matrix,
and t.025,N−i is the 97.5% percentile of Student’s t distribution with N − i
degrees of freedom. The rationale for this approach will be given in Section
6.1.

If an examination of the aforementioned matrices of summary statistics sug-
gests a plausible order, p, of antedependence, then the same statistics in the
first p subdiagonals of those matrices should be examined for trends or other
patterns in order to perhaps identify plausible structured antedependence mod-
els. For example, we may observe that the sample variances, correlations, par-
tial correlations, or autoregressive coefficients are increasing over time, which
may point to the use of one or more of the structured antedependence models
described in Chapter 3.

Example 1: Treatment A cattle growth data
Table 1.2 is the matrix of sample variances and correlations of the Treatment
A cattle growth data. We described several interesting aspects of these statis-
tics in Section 1.5, which we briefly review here. The variances increase, from
the beginning of the study to its end, by a factor of about four. The correla-
tions are all positive and decay more-or-less monotonically within columns;
furthermore, same-lag correlations tend to increase as the study progresses.
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To augment these results, we also examine the intervenor-adjusted partial cor-
relations, the partial variances and partial correlations, and the autoregressive
coefficients and innovation variances (Table 4.1). All lag-one marginal corre-
lations exceed the rule-of-thumb value of 2/

√
30 .= 0.365; likewise r68·7 ex-

ceeds 2/
√

29 .= 0.371. The remaining intervenor-adjusted partial correlations,
however, are not significantly different from zero. As for the partial correla-
tions, only three of them, all lag-one, are significantly different from zero (the
rule-of-thumb value for all partial correlations is 2/

√
21 .= 0.436). The sta-

tistically significant autoregressive coefficients correspond to exactly the same
lags for which the intervenor-adjusted partial correlations were deemed signif-
icant. Overall, these statistics suggest that a first-order antedependence model
may adequately characterize the data’s covariance structure, except possibly
for the eighth measurement occasion, for which the antedependence may need
to be extended to second order.

Example 2: 100-km race data
Table 4.2 is the matrix of sample variances and correlations among the split
times of the complete set of 80 competitors. The table reveals several inter-
esting features of the marginal covariance structure: (a) the variances tend to
increase over the course of the race, except for a reversal from the sixth to
the seventh 10-km sections; (b) the correlations are positive and quite large,
all exceeding the rule-of-thumb value of 2/

√
80 .= 0.22; (c) the correlations

between the split time for any fixed 10-km section and split times for succes-
sive sections tend to decrease monotonically; and (d) correlations between split
times of consecutive sections are not as large near the end of the race as they
are earlier.

To supplement these findings, we also examine the intervenor-adjusted partial
correlations, the partial variances and partial correlations, and the autoregres-
sive coefficients and innovation variances (Table 4.3). Using the rule of thumb,
all lag-one marginal correlations are judged to be significantly different from
zero, as are some intervenor-adjusted partial correlations [see part (a) of the
table]: r35·4, r68·7, r69·78, r79·8, r5,10·6789, and r7,10·89. Not quite as many par-
tial correlations [part (b) of the table] are deemed to be different from zero,
but those that are lie mostly in the same rows and columns of entries that are
significant in part (a). The partial variances, like the marginal variances, are
mostly increasing over the course of the race; so too are the innovation vari-
ances in part (c), except for the first which is larger than the next five. The
autoregressive coefficients in part (c) exhibit a very interesting phenomenon.
The lag-one coefficients for the first seven sections of the race are large in com-
parison to higher-lag coefficients on those sections; however, on sections 8, 9,
and 10 the lag-one coefficients are matched or exceeded (in absolute value) by
several for greater lags, including those that are lagged back to the very first
section. Some of the signs of these large higher-lag coefficients are negative,
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Table 4.1 Summary statistics for the covariance structure of the Treatment A cattle
growth data: (a) sample variances, along the main diagonal, and intervenor-adjusted
partial correlations, below the main diagonal; (b) sample partial variances, along the
main diagonal, and partial correlations, below the main diagonal; (c) sample innova-
tion variances, along the main diagonal, and autoregressive coefficients, below the main
diagonal. Off-diagonal entries in parts (a) and (b) of the table deemed to be significant
using the rule of thumb of Section 4.2 are set in bold type; so also are autoregressive
coefficients in part (c) whose corresponding t-ratios are significant at the 0.05 level.
(a)

106
.82 155
.07 .91 165

–.24 .03 .93 185
.03 .02 .07 .94 243
.01 –.23 –.04 .23 .94 284
.16 –.17 –.12 –.18 –.04 .93 307

–.06 .01 .01 –.20 .07 .57 .93 341
.26 –.01 .09 –.22 –.23 –.30 .35 .97 389

–.22 –.07 .21 .02 –.08 –.09 –.24 .15 .96 470
.19 –.25 .03 .27 .16 –.24 –.18 –.28 .20 .98 445

(b)

26.2
.55 16.6
.22 .39 12.7

–.20 .18 .41 10.5
.00 .13 –.01 .37 16.1
.01 –.13 .13 .30 .26 11.4
.03 –.16 .02 .12 .04 .25 24.7

–.17 .10 –.05 .07 .17 .22 –.05 10.8
.24 –.02 –.17 –.15 –.01 .16 .41 .48 8.8

–.28 .29 .03 –.28 –.06 .28 .01 .16 .02 9.1
.19 –.31 .13 .25 .01 –.38 –.11 –.05 .36 .82 9.4

(c)

106
1.00 51
.06 .89 31

–.22 .16 .97 28
.02 .00 .05 1.02 32
.01 –.25 .15 .33 .79 34
.18 –.32 –.04 –.06 .16 1.01 47

–.06 .05 .02 –.27 .23 .61 .42 38
.20 –.13 .02 –.21 –.07 .00 .32 .93 22

–.22 .07 .36 –.21 –.11 –.07 –.15 .32 .99 40
.11 –.23 .11 .24 .01 –.34 –.07 –.05 .38 .83 14
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Table 4.2 Sample variances, along the main diagonal, and correlations, below the main
diagonal, for the 100-km race data.

27
.95 36
.84 .89 50
.79 .83 .92 58
.62 .64 .76 .89 90
.62 .63 .73 .84 .94 147
.53 .54 .61 .69 .75 .84 107
.48 .51 .62 .70 .79 .84 .78 151
.54 .53 .58 .67 .74 .77 .70 .76 149
.41 .44 .47 .51 .54 .66 .72 .66 .78 168

while others are positive, and some of the coefficients that are statistically sig-
nificant (as determined by the corresponding t-ratio) are considerably smaller
in magnitude than others that are not. The coefficients that are statistically sig-
nificant indicate that performance of a runner on the last three sections of the
race is strongly associated not merely with performance on the immediately
preceding section, but also with performance on several earlier sections even
after conditioning on performance on the intervening sections. For the most
part, these conditional associations are positive; the lone negative one occurs
between the fifth and tenth split times. The positive conditional associations
are not surprising, but the negative one is somewhat of a surprise. It appears
to suggest that competitors who run slow on the fifth section, relative to other
competitors and also to their own performance on the sixth through ninth sec-
tions, are able to run relatively faster on the last section. A possible physical
explanation is that saving energy (by running relatively slower) just before the
halfway point of the race enables those competitors to run relatively faster at
the end.

4.3 Identifying covariance structure: Graphical methods

Graphical diagnostics for identifying the covariance structure can add substan-
tially to what is learned from an examination of summary statistics. In addition
to displaying visually the information conveyed by the sample covariance ma-
trix and relevant matrices derived from it, graphical diagnostics may reveal
nonlinear relationships among variables, anomalous observations, clustering
of observations into distinct groups, and other interesting data attributes not
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Table 4.3 Summary statistics for the covariance structure of the 100-km race split
times: (a) sample variances, along the main diagonal, and intervenor-adjusted partial
correlations, below the main diagonal; (b) sample partial variances, along the main
diagonal, and partial correlations, below the main diagonal; (c) sample innovation
variances, along the main diagonal, and autoregressive coefficients, below the main di-
agonal. Off-diagonal entries in parts (a) and (b) of the table deemed to be significant
using the rule of thumb of Section 4.2 are set in bold type; so also are autoregressive
coefficients in part (c) whose corresponding t-ratios are significant at the 0.05 level.
(a)

27
.95 36

–.02 .89 50
.02 .03 .92 58
.07 –.20 –.34 .89 90
.06 .10 .03 .07 .94 147
.02 .03 .03 .04 –.17 .84 107

–.11 –.15 .10 –.05 .04 .55 .78 151
.16 .15 .01 .02 .10 .29 .25 .76 149

–.19 –.00 .06 .04 –.35 –.17 .36 .17 .78 168

(b)

2.4
.81 2.2
.00 .33 4.6

–.05 .13 .59 3.9
–.06 –.07 –.07 .47 6.6
.09 –.02 –.06 .02 .64 11
.06 .01 –.09 .05 –.02 .31 24

–.13 –.03 .20 –.08 .00 .26 .23 36
.22 –.08 –.13 .03 .25 –.04 –.20 .29 33

–.16 .10 .07 –.04 –.31 .19 .39 –.03 .60 46

(c)

27
1.09 3.5
–.03 1.07 11

.03 .01 .97 9.2

.19 –.45 –.32 1.57 17

.16 .02 –.05 .00 1.16 19

.05 .02 .02 –.01 –.30 .91 33
–.44 .02 .49 –.30 .12 .61 .31 44
.73 –.19 –.27 –.04 .27 .17 .08 .41 56

–.83 .67 .18 –.13 –.81 .39 .50 –.01 .72 51
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discernible from summary statistics. Furthermore, some graphical diagnos-
tics may more readily suggest particular structured antedependence models or
other parsimonious models to fit to the data than a mere examination of ele-
ments in a matrix can. Subsequent to actually fitting models, these diagnostics
may also be used to assess whether the model judged to fit “best” (according,
typically, to some numerical criterion) actually provides a reasonable fit.

We now describe several useful graphical methods for identifying the covari-
ance structure. In keeping with a pattern of organization used in previous chap-
ters, we organize the presentation of these methods according to the particular
formulation of antedependence with which they are most closely associated.

4.3.1 Marginal structure

A marginal covariance structure can, of course, be decomposed into two com-
ponents: a variance structure and a correlation structure. Since the marginal
variances in every unstructured antedependence model — even one of order
zero — are arbitrary (apart from the requirement that they be positive), graph-
ical diagnostics for variances are used to guide not the choice of order of an-
tedependence but the selection of either a variance-stabilizing transformation
(if one wants to avoid modeling variances) or an explicit parsimonious model
for the dependence of the variances on time, such as that given by (3.5), i.e.,

σii = exp(vT
i ψ), i = 1, . . . , n.

Here vi is a vector of functions of time, evaluated at time ti. Many graphical
diagnostics that are useful for identifying mean structure also convey useful
information about the behavior of the variances over time. The profile plot, for
example, can indicate how the marginal variances behave. If subjects’ profiles
tend to fan out as time progresses, the response variances are revealed to be
heteroscedastic, increasing with time. This type of behavior is common, es-
pecially in growth studies, and often occurs in conjunction with an increase in
the mean over time. The sample variances themselves (computed from the non-
missing observations at each measurement time) may be plotted against time,
in order to determine whether, and how, time should enter as a covariate in
a model such as (3.5), or whether a different model may be more appropriate.
This plot is the sample analogue of the top portion of the diagonal cross-section
plot introduced in Chapter 3. Evidence of heteroscedasticity in scatterplots of
the response versus each of the other covariates (if there are any) can help to
determine whether the variances depend on any covariates other than time (and
functions thereof).

For identifying the marginal correlation structure, a simple plot of the same-
lag correlations versus time (the sample analogue of the bottom portion of
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the diagonal cross-section plot) may be helpful. The most widely used graph-
ical diagnostic, however, is the ordinary scatterplot matrix (OSM). This is a
two-dimensional array of pairwise scatterplots, each one a plot of standardized
responses at one time against standardized responses at another time, arranged
in the same manner as the correlations in the sample correlation matrix. Typi-
cally, the standardization employed subtracts the sample mean and divides by
the sample standard deviation of responses at the corresponding time, but vari-
ations on this, such as subtracting a fitted mean that includes covariates other
than time, are possible. With the typical standardization, however, the OSM
is a graphical manifestation of the sample correlation matrix, minus its main
diagonal of ones. As such, the OSM is of very limited value for determining
the order of antedependence; rather, its value is in revealing outliers and other
features of the data that the sample correlation matrix cannot reveal, for the
overall purpose of possibly identifying a suitable marginally formulated SAD
or other parsimonious model for the data. Note that only the scatterplots in the
lower or upper “triangle” of the OSM actually need to be included, due to the
OSM’s symmetry about its main diagonal of plots. Note also that if the mea-
surement times are equally spaced and the data arise from a stationary process,
then the population correlations corresponding to a given off-diagonal of the
correlation matrix are equal to each other, in which case all scatterplots along
the corresponding diagonal of the OSM can be superimposed to yield one plot.
The results of such superimpositions are n− 1 scatterplots whose correlations
coincide with those of the sample autocorrelation function, a diagnostic fre-
quently used by time series analysts to guide choices of (a) the amount of
differencing of the series needed to achieve stationarity, and (b) the order of
a moving average model of the differenced data (see, for example, Box and
Jenkins, 1976).

For additional graphical diagnostics for identifying the marginal correlation
structure of longitudinal data, the reader may consult Diggle et al. (2002, pp.
46–53), Dawson et al. (1997), and Verbeke et al. (1998).

Example 1: 100-km race data
Figure 1.3, the profile plot of the complete set of split times, reveals more than
just how the mean split time changes over the course of the race; it shows some
interesting features of the marginal covariance structure as well. The fanning-
out of profiles from left to right indicates that the variances tend to increase
as the race progresses, as we noted previously from our examination of the
marginal variances (Table 4.2). The plot shows that the sharp decline in the
split-time variance from the sixth to the seventh sections, which we also noted
previously, is largely due to a group of about a dozen slower-than-average run-
ners who ran substantially faster on the seventh 10-km section than on the
sixth. Finally, the plot reveals that the behavior of many of the runners is more
erratic, in the sense that consecutive same-runner split times fluctuate more, in
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the later sections of the race. This last feature comports with the decrease in
same-lag correlations in the latter part of the race that we noted previously.

Figure 4.2 Ordinary scatterplot matrix (upper triangle, including main diagonal) and
PRISM (lower triangle, including main diagonal) of 10-km split times for the 100-km
race data.

Figure 4.2 (upper triangle) is the ordinary scatterplot matrix of these data (af-
ter standardization). It reveals the same features of the marginal correlations
noted immediately above, as well as those that were observed from our previ-
ous examination of the marginal correlations. However, it also reveals an out-
lier, visible in the scatterplots in rows 1 through 4 of column 4, among others.
The location of this outlier in each scatterplot suggests that the corresponding
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marginal correlations, which are already quite large, would be even larger if the
outlier were not present. Furthermore, the tendency of many of the scatterplots
to fan out somewhat as both variables increase indicates that the temporal cor-
relation is perhaps somewhat stronger among faster-than-average runners than
among slower-than-average runners. In other words, the faster competitors run
at a more consistent speed (relative to the average speed for the section) than
the slower competitors.

Example 2: Fruit fly mortality data
Figure 4.3 displays the (marginal) sample variances and lag-one correlations
for the fruit fly mortality data, each computed from the available data at the
corresponding measurement time(s). These quantities are also listed in Table
4.4(a). The marginal variances exhibit approximately piecewise quadratic de-
pendence on time, increasing up to the fourth measurement time and then de-
creasing. The lag-one marginal correlations exhibit approximately concave-
down, quadratic behavior with a point of maximum near the study’s midpoint.
The remaining marginal correlations, plus the intervenor-adjusted partial cor-
relations, innovation variances, and autoregressive coefficients, are listed in Ta-
ble 4.4 as well. Intervenor-adjusted partial correlations of order two and higher
are close to zero and do not appear to behave in any systematic fashion; the
same is true of the autoregressive coefficients beyond lag one. In light of these
results, plausible models for the data would certainly include structured first-
order antedependence models in which the marginal variances are modeled as
quadratic or cubic functions of time and the marginal correlations are modeled
as quadratic functions of time.

4.3.2 Intervenor-adjusted structure

The intervenor-adjusted formulation may be parameterized by the marginal
variances, the marginal lag-one correlations, and the partial correlations be-
tween pairs of variables lagged two or more measurement times apart, adjusted
for intervenors. The graphical diagnostics discussed in the previous section
could be used for identifying the marginal variances and lag-one correlations,
so it remains to consider the identification of the partial correlations adjusted
for intervenors. One diagnostic that complements an examination of the ma-
trix of intervenor-adjusted partial correlations is a diagonal cross-section plot
of them. Another is the Partial Regression-on-Intervenors Scatterplot Matrix
(PRISM) (Zimmerman, 2000), which is a rectangular array (or a subset thereof)
of certain partial regression plots (also known as added variable plots). Al-
though it is an acronym, the term “PRISM” also has semantic substance: as a
prism separates visible light into its components, so a PRISM can separate the
dependence structure among within-subject responses into components that are
much easier to understand.
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Table 4.4 Summary statistics for the covariance structure of the fruit fly mortality data:
(a) sample variances, along the main diagonal, and correlations, below the main di-
agonal; (b) sample variances, along the main diagonal, and intervenor-adjusted par-
tial correlations, below the main diagonal; (c) sample innovation variances, along the
main diagonal, and autoregressive coefficients, below the main diagonal. Off-diagonal
entries in parts (a) and (b) of the table deemed to be significant using the rule of thumb
of Section 4.2 are set in bold type; so also are autoregressive coefficients in part (c)
whose corresponding t-ratios are significant at the 0.05 level.
(a)

0.70
.59 1.08
.53 .71 1.66
.48 .62 .78 2.61
.34 .52 .59 .79 2.17
.33 .39 .44 .54 .82 1.72
.21 .25 .21 .28 .57 .78 1.05
.01 .11 .08 .03 .31 .51 .74 0.63

–.02 .07 –.02 .04 .05 .05 .40 .59 0.43
–.01 .16 –.16 .17 .01 .03 .31 .33 .46 0.34

.09 –.05 –.15 .28 .18 .19 .25 .29 .29 .37 0.42

(b)

0.70
.59 1.08
.13 .71 1.66
.01 .19 .78 2.61
.03 .09 –.08 .79 2.17
.07 .06 –.04 –.22 .82 1.72

–.13 .06 .04 –.20 –.16 .78 1.05
–.01 –.13 .11 –.08 –.04 –.10 .74 0.63

.11 .14 –.14 .00 .15 –.27 –.03 .59 0.43

.08 .32 –.15 .13 .07 –.06 .10 .10 .46 0.34
–.07 .01 –.34 .10 .17 .21 .08 .14 .09 .37 0.42

(c)

.70

.73 .72

.19 .90 .93

.02 .31 .81 1.01

.03 .14 –.03 .71 .72

.06 .10 –.05 –.11 .69 .39
–.11 .04 –.01 –.15 –.13 1.08 .39
–.03 –.10 .13 –.05 –.02 .14 .45 .29

.10 .04 –.18 –.02 .21 –.39 .09 .78 .33

.08 .18 –.24 –.12 .06 .24 –.02 .07 .09 .19
–.13 .10 –.49 .35 .06 .14 –.40 .52 .22 .16 .40
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Figure 4.3 Sample variances (top panel) and lag-one correlations (bottom panel) for
the fruit fly mortality data.

The PRISM is laid out as indicated in Table 4.5, where, as for the OSM, it
suffices, due to symmetry, to display only one of the two triangles of plots.
The main diagonal of plots consists of ordinary scatterplots of a standardized
response against its immediate predecessor; thus this diagonal coincides with
the main diagonal of the OSM. The second diagonal of plots in the PRISM
comprises partial regression plots of standardized responses lagged two times
apart, adjusted for the standardized response at the intervening time; that is,
plots of residuals from the ordinary least squares regression (with intercept) of
a standardized variable on its predecessor against residuals from the ordinary
least squares regression (with intercept) of the standardized variable lagged
two times back from the original standardized variable, on its successor. The
third diagonal of plots comprises partial regression plots of standardized re-
sponses lagged three times apart, adjusted for the standardized responses at
the two intervening times, and so on. In general, the plot in row i and col-
umn j (i ≥ j) is the partial regression plot of standardized response vari-
ables Yi+1 and Yj adjusted for standardized responses at the intervening times
tj+1, tj+2, . . . , ti. Thus, the PRISM is the graphical equivalent of the matrix of
sample intervenor-adjusted partial correlations: the (i, j)th plot displays points
whose ordinary correlation is the sample partial correlation between Yi+1 and
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Table 4.5 Layout of partial regression plots in a PRISM. Here Y−I , where I ⊂
{1, 2, . . . , n}, is the set of all response variables except those in I .

Y2
vs.
Y1

Y3|Y2
vs.
Y1|Y2

Y3
vs.
Y2

Y4|Y2, Y3
vs.

Y1|Y2, Y3

Y4|Y3
vs.
Y2|Y3

Y4
vs.
Y3

...
. . .

Yn|Y−{1,n}
vs.

Y1|Y−{1,n}
· · ·

Yn
vs.
Yn−1

Yn|Y−{1,2,n}
vs.

Y2|Y−{1,2,n}

Yj adjusted for all standardized responses at intervening times. It therefore aug-
ments the matrix of sample intervenor-adjusted partial correlations in the same
way that the OSM augments the sample correlation matrix. Random scatter in
the (i, j)th plot indicates that Yi+1 and Yj are partially uncorrelated (condi-
tionally independent under normality), adjusted for the intervening responses,
whereas departures from random scatter indicate non-negligible partial corre-
lation between Yi+1 and Yj adjusted for those intervenors. Counting, from left
to right in the ith row, the number of plots before one with a discernible linear
association is encountered yields, upon subtraction from i, the order pi+1 of
antedependence of Yi+1.

If the measurement times are equally spaced and the data arise from a station-
ary process, then scatterplots along any given diagonal of the PRISM may, as
for the OSM, be superimposed. The results of these superimpositions are n−1
scatterplots whose ordinary correlations coincide with those given by the sam-
ple partial autocorrelation function, a diagnostic commonly used by time series
analysts to help determine the order of a stationary autoregressive model (see,
for example, Box and Jenkins, 1976).

Examples with simulated data
To highlight the relative strength of the PRISM to the OSM for identifying
the order of antedependence, we examine these scatterplot matrices for several
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simulated longitudinal data sets, each having a different covariance structure.
In each case, the data are a random sample of size N = 100 from a six-
dimensional normal distribution with zero means and unit variances, and the
measurement times are ti = i for i = 1, . . . , 6.

Figures 4.4 and 4.5 show the OSMs (upper triangles) and PRISMs (lower tri-
angles) of data simulated from AR(1) and AR(2) models, respectively. For the
AR(1) model, we set φ1 = 0.8, which yields matrices of true correlations and
true intervenor-adjusted partial correlations of⎛
⎜⎜⎜⎜⎝

.80

.64 .80

.51 .64 .80

.41 .51 .64 .80

.33 .41 .51 .64 .80

⎞
⎟⎟⎟⎟⎠ and

⎛
⎜⎜⎜⎜⎝

.80

.00 .80

.00 .00 .80

.00 .00 .00 .80

.00 .00 .00 .00 .80

⎞
⎟⎟⎟⎟⎠ ,

respectively. For the AR(2) model, we set φ1 = 0.3 and φ2 = 0.5, yielding the
analogous matrices⎛
⎜⎜⎜⎜⎝

.60

.68 .60

.50 .68 .60

.49 .50 .68 .60

.40 .49 .50 .68 .60

⎞
⎟⎟⎟⎟⎠ and

⎛
⎜⎜⎜⎜⎝

.60

.50 .60

.00 .50 .60

.00 .00 .50 .60

.00 .00 .00 .50 .60

⎞
⎟⎟⎟⎟⎠ .

Note that the two OSMs appear very similar. Both show the persistence, over
time, of the correlations, which attenuate (eventually) but do not vanish as one
moves up and to the right from the main diagonal. Both also reveal a con-
stancy of correlation strength within diagonals, which is a manifestation of the
stationarity of these two models. The corresponding PRISMs, however, differ
markedly with respect to their second diagonals. Plots in the second diago-
nal of the AR(1)’s PRISM exhibit random scatter, but as a consequence of the
AR(2)’s nonzero values of ρi,i−2·i−1, their counterparts in the AR(2)’s PRISM
do not. The third and higher diagonals of both PRISMs exhibit random scatter.

The OSMs and PRISMs corresponding to two more general antedependence
structures, AD(1) and AD(0,1,1,2,1,3), are given in Figures 4.6 and 4.7. For
the AD(1) model, we set φi,i−1 = 0.3 + 0.1i, which yields matrices of true
correlations and true intervenor-adjusted partial correlations of

⎛
⎜⎜⎜⎜⎝

.50

.30 .60

.21 .42 .70

.17 .34 .56 .80

.15 .30 .50 .72 .90

⎞
⎟⎟⎟⎟⎠ and

⎛
⎜⎜⎜⎜⎝

.50

.00 .60

.00 .00 .70

.00 .00 .00 .80

.00 .00 .00 .00 .90

⎞
⎟⎟⎟⎟⎠ ,

respectively. For the AD(0,1,1,2,1,3) model, we set φi,i−1 = 0.5, φ42 = φ64 =
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Figure 4.4 Ordinary scatterplot matrix (upper triangle, including main diagonal) and
PRISM (lower triangle, including main diagonal) of data simulated from an AR(1) pro-
cess.

0.4, and φ63 = 0.3, yielding the analogous matrices⎛
⎜⎜⎜⎜⎝

.50

.25 .50

.33 .65 .70

.16 .33 .35 .50

.29 .57 .76 .86 .81

⎞
⎟⎟⎟⎟⎠ and

⎛
⎜⎜⎜⎜⎝

.50

.00 .50

.00 .43 .70

.00 .00 .00 .50

.00 .00 .79 .89 .81

⎞
⎟⎟⎟⎟⎠ .

Again, the two OSMs are rather similar: both show the persistence of correla-
tion as one moves up and to the right from the main diagonal but, in contrast
to those of the AR models, they also indicate variation in correlation strength
as one moves down any particular diagonal. The PRISMs also are quite simi-
lar, except for three scatterplots: row 3, column 2; row 5, column 3; and row
5 column 4. These three scatterplots exhibit random scatter for the AD(1) but
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Figure 4.5 Ordinary scatterplot matrix (upper triangle, including main diagonal) and
PRISM (lower diagonal, including main diagonal) of data simulated from an AR(2)
process.

not for the variable-order model, reflecting the latter’s nonzero values of ρ42·3,
ρ63·45, and ρ64·5.

The previous examples clearly demonstrate the superior ability of the PRISM
to identify antedependence structures. Lest the reader be misled, however, it is
important to point out that the OSM may be much more informative than the
PRISM for identifying non-antedependent structures. For example, compound
symmetry and vanishing correlation models are much more easily diagnosed
from the OSM than from the PRISM. This suggests that a better diagnosis of
correlation structure may occurs if the OSM and PRISM are used in tandem.
Doing so would conform to good statistical practice in time series analysis,
where it is recommended that both the sample autocovariance function and
sample partial autocovariance function be examined.
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Figure 4.6 Ordinary scatterplot matrix (upper triangle, including main diagonal) and
PRISM (lower diagonal, including main diagonal) of data simulated from an AD(1)
process.

Example: 100-km race data
Figure 4.2 (lower triangle) displays the PRISM of the standardized split times
for the complete data. Apart from scatterplots on the main diagonal, the plot
in row 7, column 6, and possibly a few others, the plots do not indicate ap-
preciable partial associations. This agrees with the identification of near-zero
intervenor-adjusted partial correlations given in Table 4.3(a). Furthermore, the
scatterplot in row 4, column 3 suggests that the significant negative estimate of
ρ53·4 observed in the aforementioned table is due to one aberrant observation,
corresponding to subject 54 listed in Table 1.8, and that it might therefore be
discounted. Note that among all competitors, the 54th subject ran slowest on
each of the first three sections of the race and third slowest on the fourth sec-
tion, but much faster than average on section 5, and it is his dramatic change
of pace on the fifth section that appears to be responsible for the corresponding
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Figure 4.7 Ordinary scatterplot matrix (upper triangle, including main diagonal)
and PRISM (lower triangle, including main diagonal) of data simulated from an
AD(0,1,1,2,1,3) process.

point being so isolated in all of the column-four scatterplots of the PRISM. As
expected, removal of this subject from the data changes the estimate of ρ53·4
substantially (from –0.34 to –0.07). Whether removal of this subject apprecia-
bly affects how well various models actually fit is a matter to be taken up by
further analyses of these data presented later.

Together, the matrix of sample intervenor-adjusted partial correlations and the
PRISM suggest that antedependence models up to order three should certainly
be fit to the data, and perhaps that antedependence models of orders four and
five should be fit as well. Variable-order antedependence models up to order
five should also be considered. Later in this book we will fit and compare
several of these models, and the fits will be seen to comport well with the
graphical analysis presented here. The PRISM also points to some possible
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further investigations, such as identifying and deciding how to deal with the
outlier visible in the fourth row and fourth column of scatterplots, and seeking
a plausible explanation for the positive, significantly-different-from-zero par-
tial correlations adjusted for one or more intervenors in the last few sections of
the race.

4.3.3 Precision matrix structure

The precision matrix formulation may be parameterized by the partial vari-
ances, i.e., the residual variances from the regressions of Yi on all n − 1 of
the other responses, and the partial correlations, i.e., the correlations between
residuals from regressions of Yi and Yj on all n − 2 other responses. The for-
mer are merely the reciprocals of the main diagonal elements of the precision
matrix, and the latter can be viewed as negatives of ordinary correlations be-
tween variables having Σ−1 as their covariance matrix. Thus, potentially useful
graphical diagnostics for this formulation include a plot of the sample partial
variances against time and a plot of the sample partial correlations against time
or lag. The relevant scatterplot matrix is the aptly named partial scatterplot
matrix (Davison and Sardy, 2000), which is laid out as indicated in Table 4.6.
The (i, j)th scatterplot in this matrix plots the residuals from the regression of
Yi+1 on all other variables save Yj , on the residuals from the regression of Yj

on all other variables save Yi+1. As such, this scatterplot matrix is the graphical
equivalent of the sample partial correlation matrix. However, if the OSM and
PRISM have already been constructed it is generally not worth the trouble to
construct the partial scatterplot matrix, for it usually does not reveal anything
important about the data not already evident in the OSM and PRISM.

4.3.4 Autoregressive structure

A graphical diagnostic that complements an examination of the elements of
the modified Cholesky decomposition of the sample precision matrix was pro-
posed by Pourahmadi (1999, 2002), who called it the regressogram. Pourah-
madi’s regressogram is really two plots: a plot of the autoregressive coefficients
versus lag, and a plot of the log innovation variances versus time. Here, we use
“regressogram” to mean only the first of these plots, and we call the second plot
the innovariogram. Furthermore, we distinguish two types of regressograms,
corresponding to choosing either lag (Pourahmadi’s original prescription) or
time as the variable on the horizontal axis.

The relevant scatterplot matrix for identifying autoregressive structure is the
partial regression-on-predecessors scatterplot matrix, which is depicted in Ta-
ble 4.7. The (i, j)th scatterplot in this matrix is a plot of the residuals from the
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Table 4.6 Layout of partial regression plots in a partial scatterplot matrix. Here Y−I ,
where I ⊂ {1, 2, . . . , n}, is the set of all response variables except those in I .

Y2|Y−{1,2}
vs.

Y1|Y−{1,2}

Y3|Y−{1,3}
vs.

Y1|Y−{1,3}

Y3|Y−{2,3}
vs.

Y2|Y−{2,3}

Y4|Y−{1,4}
vs.

Y1|Y−{1,4}

Y4|Y−{2,4}
vs.

Y2|Y−{2,4}

Y4|Y−{3,4}
vs.

Y3|Y−{3,4}

...
. . .

Yn|Y−{1,n}
vs.

Y1|Y−{1,n}
· · ·

Yn|Y−{n−1,n}
vs.

Yn−1|Y−{n−1,n}

Yn|Y−{2,n}
vs.

Y2|Y−{2,n}

regression of Yi+1 on all its predecessors save Yj , versus the residuals from the
regression of Yj on all those same predecessors of Yi+1. Like the partial scat-
terplot matrix, however, this scatterplot matrix generally does not add anything
to what can be learned from the PRISM.

Example 1: Treatment A cattle growth data
Figure 4.8 displays the innovariogram and regressogram (with lag along the
horizontal axis) for the cattle weights. These plots suggest that the cattle weights
might be modeled reasonably well by an unconstrained linear SAD model of
order between 2 and 10. Their smoothly undulating character also suggests
that we take the model’s log innovation variances to be a cubic function of
time and, if an antedependent model of order higher than eight is adopted, that
it also take the autoregressive coefficients to be a cubic function of lag. We
shall fit such a model, among many others, to these data in the next chapter.

Example 2: 100-km race data
Figure 4.9 displays the innovariogram and regressogram for lags one to three
(with section number along the horizontal axis) for the complete set of split
times. Apart from the initial section, the innovation variances are increasing
over the course of the race, leveling off near its conclusion. It would thus
appear that the possibility exists for modeling the innovation variances par-
simoniously. The lag-one autoregressive coefficients fluctuate somewhat but
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Table 4.7 Layout of partial regression plots in a partial regression-on-predecessors
scatterplot matrix. Here Y−I , where I ⊂ {1, 2, . . . , n}, is the set of all response vari-
ables except those in I .

Y2
vs.
Y1

Y3|Y2
vs.
Y1|Y2

Y3|Y1
vs.
Y2|Y1

Y4|Y2, Y3
vs.

Y1|Y2, Y3

Y4|Y1, Y3
vs.

Y2|Y1, Y3

Y4|Y1, Y2
vs.

Y3|Y1, Y2

...
. . .

Yn|Y−{1,n}
vs.

Y1|Y−{1,n}
· · ·

Yn|Y−{n−1,n}
vs.

Yn−1|Y−{n−1,n}

Yn|Y−{2,n}
vs.

Y2|Y−{2,n}

do appear to be smaller over the last three sections than earlier in the race.
Same-lag autoregressive coefficients for lags two and three, however, do not
display any systematic behavior, but instead seem to have one or two relatively
extreme values haphazardly intermingled with near-zero values. The same is
true for same-lag autoregressive coefficients of higher order, for which we do
not show regressogram plots. Consequently, parametric modeling of autore-
gressive coefficients beyond those for the first lag is unlikely to be successful.

4.4 Concluding remarks

We have presented several summary statistics and graphical methods that can
help identify the mean and covariance structures of longitudinal data. Some of
these, especially those that explore the data’s mean structure and marginal co-
variance structure (e.g., profile plot, sample covariance matrix, ordinary scat-
terplot matrix) are used routinely by analysts of longitudinal data, as indeed
they should be. Unfortunately, however, those statistics and graphs that shed
light on the data’s antedependence or partial covariance structure are used
much less frequently. We believe that the examples presented in this chapter
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Figure 4.8 Sample log innovariogram and regressogram for the Treatment A cattle
growth data.

make a strong case that such summary statistics as sample intervenor-adjusted
partial correlations and autoregressive coefficients, and graphical tools like the
PRISM, should be used just as routinely. A suite of R functions for this pur-
pose, written by the first author, are available for download from his Web page,
www.stat.uiowa.edu/∼dzimmer.
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Figure 4.9 Sample innovariogram and regressogram for lags one to three for the 100-
km race split times.
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CHAPTER 5

Likelihood-Based Estimation

Suppose that the mean structure and an antedependent covariance structure
for a set of longitudinal data have been tentatively identified, possibly using
the informal methods described in the previous chapter. The next step of the
data analysis will naturally be to estimate the tentative model’s parameters. In
this chapter, we consider the estimation of the parameters of this model by
likelihood-based methods, under the assumption that the joint distribution of
responses on each subject is multivariate normal. Under appropriate regularity
conditions, maximum likelihood estimates have several good properties, in-
cluding consistency, asymptotic efficiency, and asymptotic normality. Some al-
ternative estimation methods for antedependence models are described briefly

del with antedependent covariance structure for the longitudinal responses,
{Ys1, . . . , Ysns

: s = 1, . . . , N}, within the sampling framework described at

chapter, as well as for other inference procedures in subsequent chapters. Fol-
lowing that, we describe in detail two likelihood-based estimation procedures,
maximum likelihood and residual maximum likelihood (REML), for the pa-
rameters of this general model. We then specialize these procedures to several
practically important special cases of unstructured antedependence models, for
which it is possible to either express the estimators in closed form or otherwise
obtain them more efficiently than in the general case. Finally, we specialize the
procedures to structured antedependence models.

5.1 Normal linear AD(p) model

5.1.1 Model

The normal linear AD(p) model is a special case of the general linear model

111
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In the first section of this chapter, we formulate a general normal linear mo-

in Chapter 9.

the beginning of Chapter 4. This model serves as the basis for estimation in this

with parametric covariance structure described in Chapter 1. Like that model,
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this model allows the mean of Ysi to depend on the covariates in xsi, but only
as a linear function of q parameters. Thus

E(Ysi) = xT
siβ

for some vector β ∈ Rq. The covariance structure of Ys1, . . . , Ysns
in this

model is taken to be pth-order antedependent, where p is common across sub-
jects and is assumed, in this chapter, to be known; formal methods for choosing
p in practice will be considered in Chapter 6.

Recall that we have considered four distinct parameterizations of an AD(p)
covariance structure. Each of these has its own particular advantages for mod-
eling, so we describe further aspects of the model in terms of each. For this
purpose let

Ys =

⎛
⎜⎜⎜⎝

Ys1

Ys2

...
Ysns

⎞
⎟⎟⎟⎠ and Xs =

⎛
⎜⎜⎜⎝

xT
s1

xT
s2
...

xT
sns

⎞
⎟⎟⎟⎠ .

The marginal parameterization of the normal linear AD(p) model asserts that
for s = 1, . . . , N ,

Ys ∼ independent Nns
(Xsβ,Σs(θσ)) , (5.1)

where Σs(θσ) is AD(p); that is, the elements of Σs(θσ) on off-diagonals p+
1, . . . , ns − 1 can be expressed as functions of elements on the main diagonal
and first p off-diagonals by applying equation (2.32). Here we have written the
marginal covariance matrices as functions of a parameter vector θσ , for it is
assumed that elements {σsij} on the main diagonals and first p off-diagonals
of these matrices are given by a parametric function of the measurement times,
i.e.,

σsij = σ(tsi, tsj ;θσ) for |i− j| ≤ p.

Alternatively, the marginal covariance matrices may be specified by functions
for the variances and correlations, quantities which are easier to interpret than
the covariances. In any case, to complete the model formulation, the parameter
vectors β and θσ are assumed to be elements of a specified joint parameter
space {(β,θσ): β ∈ Rq, θσ ∈ Θσ} where Θσ is the set of θσ-values for
which Σs(θσ) is positive definite for all s.

The normal linear AD(p) model can also be parameterized in terms of its
intervenor-adjusted formulation. Let Ξs denote the matrix of marginal vari-
ances, lag-one marginal correlations, and intervenor-adjusted partial correla-
tions in their natural positions, for the sth subject. Let H denote the mapping
(which is one-to-one) of the marginal covariance matrix to this matrix, i.e.,

H(Σs) = Ξs. (5.2)
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Then the model may be specified as

Ys ∼ independent Nns

(
Xsβ,H

−1[Ξs(θξ)]
)
, s = 1, . . . , N, (5.3)

where the elements {ξsij} of Ξs satisfy ξsij = 0 if |i−j| > p and are otherwise
given by the following parametric function of the measurement times:

ξsij = ξ(tsi, tsj ;θξ) for |i− j| ≤ p.

Here β and θξ are taken to be elements of a specified joint parameter space
{(β,θξ): β ∈ Rq, θξ ∈ Θξ} where Θξ is the set of θξ-values for which
H−1[Ξs(θξ)] is positive definite for all s.

Yet another alternative is to parameterize the model in terms of precision ma-
trices, as follows:

Ys ∼ independent Nns

(
Xsβ, [Σ−1

s (θγ)]−1
)
, s = 1, . . . , N, (5.4)

where Σ−1
s is the precision matrix of Ys, with elements {σsij} satisfying

σsij = 0 if |i − j| > p. All remaining elements of the precision matrix are
given by a parametric function of the measurement times, i.e.,

σsij = γ(tsi, tsj ;θγ) for |i− j| ≤ p;

or, functions may be given for the more interpretable partial variances and
partial correlations. To complete the formulation, β and θγ are taken to be
elements of a specified joint parameter space {(β,θγ): β ∈ Rq, θγ ∈ Θγ},
where Θγ is the set of θγ-values for which Σ−1

s (θγ) is positive definite for all
s.

Finally, the model can be written in terms of an autoregressive parameteriza-
tion, which itself can be formulated in two distinct ways. First, in a manner
similar to (5.1), (5.3), and (5.4), the joint distribution of each Ys may be spec-
ified:

Ys ∼ independent Nns

(
Xsβ, [Ts(θφ)]−1Ds(θδ)[TT

s (θφ)]−1
)
,

s = 1, . . . , N. (5.5)

Here Ts(θφ) and Ds(θδ) are the unit lower triangular and diagonal matri-
ces, respectively, of the modified Cholesky decomposition of the precision ma-
trix of Ys. The subdiagonal elements {−φsij} of Ts(θφ) satisfy φsij = 0 if
i− j > p, owing to the assumed pth-order antedependence of the variables in
Ys. Furthermore, the innovation variances in Ds(θδ) and the nonzero autore-
gressive coefficients in Ts(θφ) are expressible as parametric functions of the
measurement times, i.e.,

δsi = δ(tsi;θδ), (5.6)

φsi,i−k = φ(tsi, ts,i−k;θφ) for k = 1, . . . , pi (5.7)

where we recall that pi = min(i − 1, p). Here, θδ and θφ are vectors of un-
known parameters belonging to specified parameter spaces Θδ and Θφ, the
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former being a set within which δsi is positive for all s and i. Thus, the joint
parameter space is {β ∈ Rq,θδ ∈ Θδ,θφ ∈ Θφ}. A second formulation ex-
pressed in terms of an autoregressive parameterization uses (2.21) to specify
the distribution of each element of Ys conditionally on its predecessors, as
follows:

Ysi|Ys1, . . . , Ys,i−1 ∼ N

(
xT

siβ +
pi∑

k=1

φsi,i−k(Ys,i−k − xT
s,i−kβ), δsi

)
,

i = 1, . . . , ns; s = 1, . . . , N. (5.8)

To complete this formulation, we also require Y1, . . . ,YN to be independent,
and we specify the same parametric functions, (5.6) and (5.7), for the innova-
tion variances and autoregressive coefficients, with the same parameter space
as in the first formulation.

5.1.2 Estimability

Because the general longitudinal sampling framework imposes no restrictions
on subjects’ measurement times, the potential exists for the model’s covariance
structure to be overparameterized. In the worst case, no subjects have any mea-
surement times in common and the pth-order antedependence is unstructured.
In this case the number of parameters in the covariance structure is, using (2.7),

N∑
s=1

(2ns − p)(p+ 1)
2

.

This is far too many parameters to estimate consistently from the observed
data. Two factors can improve this situation: replication of measurement times
across subjects and a more structured type of antedependence.

In the special case of balanced data, for example, measurement times are com-
mon across subjects, with the consequence that the number of covariance struc-
ture parameters for multiple subjects is the same as for one subject. Therefore,
it is possible in this case to estimate covariance parameters consistently. In
fact, the covariance structure for even the least parsimonious pth-order antede-
pendence model, the unstructured AD(p) model, is estimable in this situation,
provided that the mean structure is sufficiently simple and N is sufficiently
large. Further details for this important case are given in Section 5.3.

Although balancedness (rectangularity) of the data is sufficient for ensuring es-
timability of an unstructured antedependence model, it is not strictly necessary.
That is, an unstructured antedependence model can sometimes be used effec-
tively with unbalanced data, provided that the degree of imbalance is not too
extreme. To illustrate, suppose that the response variable could potentially be
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measured at four times t1, t2, t3, t4 for each subject and that the correspond-
ing four variables are AD(1). Further suppose, however, that the response is
actually only measured at times t1, t2, t3 for half of the subjects and at times
t1, t2, t4 for the other half. Then, using (2.38), the covariance matrix among
observed responses for those subjects observed at times t1, t2, t3 is given by

Σ123 =

⎛
⎝ σ11

(σ11σ22)1/2ρ1 σ22

(σ11σ33)1/2ρ1ρ2 (σ22σ33)1/2ρ2 σ33

⎞
⎠ ,

while that for the other half of subjects is given by

Σ124 =

⎛
⎝ σ11

(σ11σ22)1/2ρ1 σ22

(σ11σ44)1/2ρ1ρ2ρ3 (σ22σ44)1/2ρ2ρ3 σ44

⎞
⎠ .

Inspection of these matrices indicates that all parameters of the covariance
structure are consistently estimable from the data actually observed. Note that
this would not be so if the covariance structure among the four variables was
completely arbitrary, for then σ34 would be nonestimable. As another impor-
tant side note, observe that each of Σ123 and Σ124 retains an AD(1) covariance
structure (i.e., the correlation on the second off-diagonal is equal to the product
of the two correlations on the first off-diagonal), despite the “missing” observa-
tions. This is a manifestation of the preservation of first-order antedependence
for any subsequence of normal AD(1) variables, which we noted in Section
2.5.

Unfortunately, however, some departures from balance result in the non-es-
timability of at least some parameters of an unstructured antedependent co-
variance matrix. The previous illustration can be modified to demonstrate this.
Suppose that the actual measurement times were t1, t3 for half of the subjects
and t2, t4 for the other half. Then the two marginal covariance matrices are

Σ13 =
(

σ11

(σ11σ33)1/2ρ1ρ2 σ33

)

and

Σ24 =
(

σ22

(σ22σ44)1/2ρ2ρ3 σ44

)
,

and we can see that none of ρ1, ρ2, ρ3 are estimable. Nevertheless, in cases such
as this one a structured AD model may be used successfully. In fact, some SAD
models are sufficiently parsimonious that their covariance parameters are es-
timable regardless of the degree of imbalance. Consider, for example, adapting
the continuous-time AR(1) model given by (3.4) to the general longitudinal
sampling framework, as follows:

var(Ysi) = σ2, corr(Ysi, Ysj) = φ|tsi−tsj |,
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The two covariance parameters of this model, σ2 and φ, are estimable even if
no two subjects have any measurement times in common.

5.2 Estimation in the general case

Now we consider likelihood-based estimation of the parameters of the normal
linear AD(p) model. In this section we denote the parameters of the covariance
structure generically by θ ∈ Θ, which can represent either θσ , θξ, θγ , or
(θT

δ ,θ
T
φ )T , according to how the covariance structure is parameterized, and

we assume that θ is consistently estimable.

The likelihood function associated with any of the joint formulations (5.1),
(5.3), (5.4), or (5.5) of the model is given by

L(β,θ) = (2π)−n+/2
N∏

s=1

|Σs(θ)|−1/2

× exp

{
−1

2

N∑
s=1

(Ys − Xsβ)T [Σs(θ)]−1(Ys − Xsβ)

}
,

(5.9)

where n+ =
∑N

s=1 ns. Therefore, the log-likelihood function is

logL(β,θ) = −n+

2
log 2π − 1

2

N∑
s=1

log |Σs(θ)|

−1
2

N∑
s=1

(Ys − Xsβ)T [Σs(θ)]−1(Ys − Xsβ).

(5.10)

Maximum likelihood estimates of β and θ are any values of these parameters
(inRq and Θ, respectively) that maximizeL(β,θ) or (equivalently) logL(β,θ).

Now assume, without loss of generality, that Xs is of full column rank q for at
least one s. For any θ0 ∈ Θ define

β̂(θ0) =

(
N∑

s=1

XT
s [Σs(θ0)]−1Xs

)−1 N∑
s=1

XT
s [Σs(θ0)]−1Ys, (5.11)

which would be the generalized least squares estimator of β if var(Ys) was
equal to Σs(θ0) for each s. By employing the standard device of adding and
subtracting Xsβ̂(θ) to and from each occurrence of (Ys −Xsβ) in (5.10) and
expanding the resulting quadratic form, the log-likelihood may be reexpressed
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as follows:

logL(β,θ) = −n+

2
log 2π − 1

2

N∑
s=1

log |Σs(θ)|

−1
2

N∑
s=1

(Ys − Xsβ̂(θ))T [Σs(θ)]−1(Ys − Xsβ̂(θ))

−1
2
(β̂(θ) − β)T

{
N∑

s=1

XT
s [Σs(θ)]−1Xs

}
(β̂(θ) − β).

(5.12)

Clearly, for each θ ∈ Θ this is maximized with respect to β by β̂(θ). Substi-
tuting β̂(θ) for β in (5.12) yields the profile log-likelihood function,

logL∗(θ) = −n+

2
log 2π − 1

2

N∑
s=1

log |Σs(θ)|

−1
2

N∑
s=1

(Ys − Xsβ̂(θ))T [Σs(θ)]−1(Ys − Xsβ̂(θ)).

(5.13)

Thus, a maximum likelihood estimate of θ is any θ̂ ∈ Θ at which logL∗(θ)
attains its maximum, and the corresponding maximum likelihood estimate of
β is β̂(θ̂).

The problem of maximizing logL∗(θ) is a constrained (over the set Θ) nonlin-
ear optimization problem for which a closed-form solution exists only in spe-
cial cases. Some practically important special cases will be considered in sub-
sequent sections. In general, however, maximum likelihood estimates of θmust
be obtained numerically. One possible numerical approach is a grid search, but
this is only effective when the parameter space for θ is low-dimensional, or
in other words, when the antedependence is highly structured. Alternatively,
iterative algorithms can be used. Two important classes of iterative algorithms
are gradient algorithms and the Nelder-Mead simplex algorithm (Nelder and
Mead, 1965).

In a gradient algorithm, the (l+1)st iterate θ(l+1) is computed by updating the
lth iterate θ(l) according to the equation

θ(l+1) = θ(l) + η(l)M(l)g(l),

where η(l) is a scalar, M(l) is an m×m matrix, m is the dimensionality of θ,
and g(l) is the gradient vector of logL∗(θ) evaluated at θ = θ(l), i.e., g(l) =
∂ logL∗(θ)/∂θ|

θ=θ
(l) . The matrix product of M(l) and g(l) can be thought

of as defining the search direction (relative to the lth iterate θ(l)), while η(l)
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defines the size of the step to be taken in that direction. Two gradient algorithms
commonly used in conjunction with maximizing a log-likelihood function are
the Newton-Raphson and Fisher scoring procedures. In the Newton-Raphson
procedure, M(l) is the inverse of the m × m matrix whose (i, j)th element
is −∂2 logL∗(θ)/∂θi∂θj |θ=θ

(l) . In the Fisher scoring algorithm, M(l) =
(B(l))−1 where B(l) is the Fisher information matrix associated with logL∗(θ)
evaluated at θ(l), i.e., B(l) is the m × m matrix whose (i, j)th element is
E{−∂2 logL∗(θ)/∂θi∂θj |θ=θ

(l)}. For both algorithms, one may set η(l) equal
to 1.0. Thus, Fisher scoring is identical to Newton-Raphson except that the
second-order partial derivatives are replaced by their expectations. General ex-
pressions for the gradient vector and the second-order partial derivatives of
logL∗(θ) and logL(β,θ) and their expectations may be found in Harville
(1975).

The Nelder-Mead simplex algorithm (Nelder and Mead, 1965) minimizes a
given function of g variables, in our case the negative of the profile log-likeli-
hood function (5.13), by comparing the function’s values at the (g+1) vertices
of a general simplex, followed by the replacement of the vertex with the high-
est value by another point. The algorithm adapts itself to the local landscape,
elongating down long inclined planes (i.e., extension), changing direction upon
encountering a valley at an angle (i.e., reflection), and contracting in the neigh-
borhood of a minimum (i.e., contraction).

There are a number of practical issues to consider when implementing an it-
erative algorithm for obtaining maximum likelihood estimates of θ. These in-
clude choices of parameterization, starting value for θ, convergence criterion,
and methods for accommodating constraints on θ. Some guidance on these
and other implementation issues for mixed linear models in general is pro-
vided by Harville (1977). For antedependence models in particular, the au-
toregressive parameterization usually is more convenient computationally than
the marginal, intervenor-adjusted, or precision matrix parameterizations. This
is due partly to the simple positivity constraints on the innovation variances
(which, for that matter, may be dispensed with by reparameterizing the inno-
vation variances to their logs) and the complete absence of constraints on the
autoregressive coefficients, and partly to particularly simple expressions for
the determinants and inverses of covariance matrices in terms of their modi-
fied Cholesky decompositions. More details on this point will be provided in
Section 5.5.4.

In general, there is no guarantee of uniqueness of the maximum likelihood
estimator of θ, nor is it assured that all local maxima of the profile likelihood
function are global maxima. In any case, a reasonable practical strategy for
determining whether a local maximum obtained by an iterative algorithm is
likely to be the unique global maximum is to repeat the algorithm from several
widely dispersed starting values.
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Although the maximum likelihood estimator of θ has several desirable proper-
ties, it has a well-known shortcoming: it is biased as a consequence of the “loss
in degrees of freedom” from estimating β (Harville, 1977). This bias may be
substantial even for samples of moderate size if either the correlation among
temporally proximate observations is strong or q (the dimensionality of β) is
appreciable relative to n+ (the overall sample size). However, the bias can be
reduced substantially, and in some cases eliminated completely, by employing
the variant of maximum likelihood estimation known as residual maximum
likelihood (REML) estimation. In REML estimation, the likelihood function
(or equivalently the log-likelihood function) associated with n+ − q linearly
independent linear combinations of the observations known as error contrasts,
rather than the likelihood of the observations, is maximized. An error contrast
is a linear combination of the observations that has expectation zero for all β
and all θ ∈ Θ; furthermore, two error contrasts

N∑
s=1

cT
s Ys and

N∑
s=1

dT
s Ys

are said to be linearly independent if (cT
1 , . . . , c

T
N )T and (dT

1 , . . . ,d
T
N )T are

linearly independent vectors. It turns out that these contrasts need not be ob-
tained explicitly because the log-likelihood function associated with any set of
n+ − q linearly independent contrasts differs by at most an additive constant
(which does not depend on β or θ) from the function

logLR(θ) = −n+ − q

2
log 2π − 1

2

N∑
s=1

log |Σs(θ)|

−1
2

N∑
s=1

(Ys − Xsβ̂(θ))T [Σs(θ)]−1(Ys − Xsβ̂(θ))

−1
2

log

∣∣∣∣∣
N∑

s=1

XT
s [Σs(θ)]−1Xs

∣∣∣∣∣ (5.14)

(Harville, 1977). A REML estimate of θ is any value θ̃ ∈ Θ at which logLR(θ)
attains its maximum. This estimate generally must be obtained via the same
kinds of numerical procedures used to obtain a maximum likelihood estimate.
Expressions for the gradient vector and the second-order partial derivatives of
logLR(θ) and their expectations may be found in Harville (1977). The unique-
ness of a REML estimate, like that of a maximum likelihood estimate, is not
generally guaranteed. Once a REML estimate of θ is obtained, the correspond-
ing estimate of β is obtained as its generalized least squares estimator evalu-
ated at θ = θ̃, i.e., β̃ = β(θ̃).
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5.3 Unstructured antedependence: Balanced data

In this section, we specialize the results of the previous section to the case in
which the antedependence is unstructured and the data are balanced. It turns
out that closed-form expressions for the maximum likelihood and REML es-
timators of the parameters may exist in this case, depending on the model’s
mean structure.

Because the unstructured AD(p) covariance structure may be parameterized
in four distinct ways, we may write it as either Σ(θσ), Σ(θξ), Σ(θγ), or
Σ(θδ,θφ), where

θσ = (σ11, . . . , σnn, σ21, . . . , σn,n−p)T ,

θξ = (σ11, . . . , σnn, ρ21, . . . , ρn,n−1, ρ31·2, . . . ,
ρn,n−p·{n−p+1:n−1})T ,

θγ = (σ11, . . . , σnn, σ21, . . . , σn,n−p)T ,(
θδ

θφ

)
= (δ1, . . . , δn, φ21, . . . , φn,n−p)T .

For each parameterization, the parameter space for the covariance structure is
the subset Θ of [(2n − p)(p + 1)/2]-dimensional Euclidean space for which
Σ is positive definite. As was noted in Chapter 2, the parameter spaces for
θσ , θξ, and θγ cannot be expressed as a Cartesian product of intervals on
individual parameters, while the parameter space for (θT

δ ,θ
T
γ )T is merely {δi :

δi > 0 for i = 1, . . . , n}. The simplicity of the latter parameter space may be
advantageous computationally, but certain theoretical results are conveniently
expressed or derived in terms of two of the other parameterizations, so we do
not limit consideration to merely the autoregressive parameterization.

5.3.1 Saturated mean

Suppose that the model’s mean is saturated. In this case, the general linear
mean structure for subject s, which appeared in previous expressions as Xsβ,
specializes (since Xs = In — the n × n identity matrix — for all s) to sim-
ply β, which we write, using more conventional notation for this case, as μ.
Furthermore, the balancedness ensures that the covariance matrix is common
across subjects. Thus the general model (5.1) specializes to

Ys ∼ iid Nn(μ,Σ(θ)), s = 1, . . . , N. (5.15)

The mean vector μ is unrestricted in Rn, but the positive definite covariance
matrix Σ(θ) is assumed to be unstructured AD(p), where p is known. Hence-
forth we refer to model (5.15) as the normal saturated-mean, unstructured
AD(p) model.
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We first consider the estimation of μ. Substituting In for Xs in expression
(5.11), we find that the maximum likelihood estimator of μ is simply the sam-
ple mean vector,

Y = (Y i) =
1
N

N∑
s=1

Ys,

regardless of the value of θ.

Next consider the estimation of the covariance structure. Define

A = (aij) =
1
N

N∑
s=1

(Ys − Y)(Ys − Y)T (5.16)

and

S = (sij) =
(

N

N − 1

)
A. (5.17)

It is well known (e.g., Theorem 3.2.1 of Anderson, 1984) that A and S are
the maximum likelihood and REML estimators, respectively, of the covariance
matrix when it is positive definite but otherwise arbitrary,N > n, and the mean
is saturated. This is no longer true when the covariance matrix is unstructured
AD(p); however, it turns out that A and S are still highly relevant, as maximum
likelihood and REML estimators of the elements of the unstructured AD(p)
covariance matrix are functions of the elements of A and S.

Specializing equation (5.13) for use with model (5.15), we find that the profile
log-likelihood function is given by

logL∗(θ) = −nN
2

log 2π − N

2
log |Σ(θ)|

−1
2

N∑
s=1

(Ys − Y)T [Σ(θ)]−1(Ys − Y).

The sum of quadratic forms in this expression, being scalar-valued, is equal to
its trace. Hence, using the invariance of the trace of the product of two matrices
of dimensions a× b and b× a with respect to order of multiplication, we may
rewrite the profile log-likelihood function as

logL∗(θ) = −nN
2

log 2π − N

2
log |Σ(θ)|

−N
2

tr(A[Σ(θ)]−1). (5.18)

We are now ready to state and prove a theorem giving the maximum likelihood
estimators of the parameters of this model. We provide two proofs of the theo-
rem. The first, which is based on a precision matrix parameterization, is essen-
tially the same as the classical proof of Gabriel (1962) and we include it here
in homage to him. The second, which is similar to that of Macchiavelli (1992),
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is based on a product-of-conditionals, autoregressively parameterized form of
the likelihood function. The second proof offers some theoretically advanta-
geous representations and is considerably easier to extend to more complex
situations.

Theorem 5.1. If Y1, . . . ,YN are balanced and follow the normal saturated-
mean, unstructured AD(p) model, and N − 1 > p, then:

(a) The maximum likelihood estimators of μ and θσ are, respectively, Y and

θ̂σ = (a11, a22, . . . , ann, a21, . . . , an,n−p)T ,

where A = (aij) is given by (5.16);

(b) The maximum likelihood estimator of Σ is Σ̂ = Σ(θ̂σ), and elements of
this matrix on off-diagonals p + 1, . . . , n may be obtained recursively by
applying equation (2.32) of Theorem 2.4 to Σ̂;

(c) The maximum likelihood estimators of Ξ and Σ−1 are Ξ̂ = H(Σ̂) and

Σ̂
−1

, respectively, and elements on off-diagonals p+ 1, . . . , n− 1 of these
matrices are equal to zero;

(d) The maximum likelihood estimators of the non-trivial autoregressive coeffi-
cients {φij} and innovation variances {δi} are given by

(φ̂i,i−pi
, φ̂i,i−pi+1, . . . , φ̂i,i−1) = aT

i−pi:i−1,iA
−1
i−pi:i−1, i = 2, . . . , n,

and

δ̂i =
{
a11 for i = 1
aii − aT

i−pi:i−1,iA
−1
i−pi:i−1ai−pi:i−1,i for i = 2, . . . , n.

Proof. That Y is the maximum likelihood estimator of μ was established ear-
lier in this section. To show that θ̂σ is the maximum likelihood estimator of θσ ,
let us parameterize the profile log-likelihood function in terms of the nonzero
elements of Σ−1; that is, in terms of

θγ = (σ11, . . . , σnn, σ21, . . . , σn,n−p)T .

By (5.18), the profile log-likelihood function in these terms is given by

logL∗(θγ) = −N
2
(
n log 2π + log |Σ(θγ)| + tr(A[Σ(θγ)]−1)

)
.

Now

log |Σ(θγ)| + tr(A[Σ(θγ)]−1) = − log |Σ−1(θγ)| +
n∑

i=1

n∑
j=1

aijσ
ij

= − log |Σ−1(θγ)| +
n∑

i=1

aiiσ
ii
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+2
∑∑
0<i−j≤p

aijσ
ij .

Let (Σ−1(θγ))ij denote the cofactor of σij , i.e., (−1)i+j times the determinant
of the submatrix of Σ−1(θγ) obtained by deleting its ith row and jth column.
Using Theorems A.1.4 and A.1.5, we obtain, for |i− j| ≤ p,

∂

∂σij
logL∗(θγ) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(N/2)
((

Σ−1(θγ)
)

ii∣∣Σ−1(θγ)
∣∣ − aii

)
if i = j

N

((
Σ−1(θγ)

)
ij∣∣Σ−1(θγ)
∣∣ − aij

)
if i �= j

=
{

(N/2) (σii − aii) if i = j
N (σij − aij) if i �= j.

Setting these equations equal to zero, we find that θσ is equal to

(a11, a22, . . . , ann, a21, . . . , an,n−p)T

at the unique stationary point of logL∗(θγ). Using Theorems A.1.4 and A.1.5
again, it can be verified that the matrix of second-order partial derivatives of
logL∗(θγ) with respect to θγ , at the stationary point, is given by

diag(−σ2
11, . . . ,−σ2

nn,−4σ2
21, . . . ,−4σ2

n,n−p),

which is clearly negative definite. Hence the stationary point is, in fact, the
unique point of maximum. This proves part (a) of the theorem. Part (b) then fol-
lows immediately from Theorem 2.4; part (c) follows from Definition 2.3, ex-
pression (5.2), and Theorem 2.2; and part (d) follows from expressions (2.22)
and (2.23) relating the autoregressive parameterization to the marginal param-
eterization, the almost sure positiveness of aii−aT

i−pi:i−1,iA
−1
i−pi:i−1ai−pi:i−1,i

when N − 1 > p, and the invariance property of maximum likelihood estima-
tors. �

Alternative proof. The joint density of Ys, say f(Ys), may be written as

f(Ys) =
n∏

i=1

fi(Ysi|Ys,i−1, . . . , Ys1)

=
n∏

i=1

fi(Ysi|Ys,i−1, . . . , Ys,i−pi
) (5.19)

where the second equality follows from the definition of pth-order antede-
pendence. Since Ys is multivariate normal, each conditional density in ex-
pression (5.19) is normal as well; more specifically, it follows from (5.8) that
fi(Ysi|Ys,i−1, . . . , Ys,i−pi

) is the density of a

N

(
μi +

pi∑
k=1

φi,i−k(Ys,i−k − μi−k), δi

)
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random variable. Therefore the log-likelihood function may be written in terms
of the autoregressive parameterization as follows:

logL(μ,θδ,θφ) = log
N∏

s=1

n∏
i=1

fi(Ysi|Ys,i−1, . . . , Ys,i−pi
) (5.20)

=
n∑

i=1

N∑
s=1

log
{

(2πδi)−1/2 exp
{
−
[
Ysi − μi

−
pi∑

k=1

φi,i−k(Ys,i−k − μi−k)
]2/

2δi
}}

(5.21)

= −nN
2

log 2π − 1
2

n∑
i=1

N∑
s=1

{
log δi +

[
Ysi − μi

−
pi∑

k=1

φi,i−k(Ys,i−k − μi−k)
]2/

δi

}
. (5.22)

Now define

μ∗
i = μi −

pi∑
k=1

φi,i−kμi−k

and put μ∗ = (μ∗
i ). Observe that μ∗ = Tμ, where T is the unit lower triangu-

lar matrix of the modified Cholesky decomposition of Σ−1. The transformation
from μ to μ∗ is one-to-one, as T is nonsingular. Therefore, we may maximize
a reparameterized version of (5.22), i.e.,

logL(μ∗,θδ,θφ) = −nN
2

log 2π − 1
2

n∑
i=1

N∑
s=1

{
log δi +

(
Ysi − μ∗

i

−
pi∑

k=1

φi,i−kYs,i−k

)2/
δi

}
, (5.23)

to obtain maximum likelihood estimates μ̂∗ = (μ̂∗
i ), θ̂δ , and θ̂φ and then,

using the invariance property of maximum likelihood estimation, obtain the
maximum likelihood estimator of μ as

μ̂ = [T(θ̂φ)]−1μ̂∗. (5.24)

Now, the ith term of the first sum in (5.23) is, apart from an additive constant,
simply the log-likelihood corresponding to an ordinary least squares regres-
sion, with intercept, of the ith response variable on the pi response variables
immediately preceding it. There are n of these regressions, each based on N
observations of the variables. The {φi,i−k}, {δi}, and {μ∗

i} are the slope coef-
ficients, error variances, and intercepts, respectively, in these regressions. Note
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that each error variance is estimable since N > p + 1. Therefore, it follows
from standard regression theory that the maximum likelihood estimators of the
{φi,i−k} and {δi} are given by the expressions in part (d) of the theorem. Also,
standard regression theory tells us that the maximum likelihood estimators of
the intercepts are given by their least squares estimators, i.e.,

μ̂∗
i = Y i −

pi∑
k=1

φ̂i,i−kY i−k,

or equivalently in matrix form, μ̂∗ = T(θ̂φ)Y. By (5.24), we obtain μ̂ = Y.
The remaining parts of the theorem follow by expressions (2.16) and (2.17)
relating the marginal and precision matrix parameterizations to the autoregres-
sive parameterization, and the invariance property of maximum likelihood es-
timators. �

To illustrate Theorem 5.1, consider the first-order case. Recalling from equa-
tion (2.39) that the elements of Σ on off-diagonals 2, . . . , n may be expressed
as ratios of products of elements on the first off-diagonal and main diagonal in
the first-order case, part (b) of the theorem yields

σ̂ii = aii, i = 1, . . . , n,
σ̂i,i−1 = ai,i−1, i = 2, . . . , n,

σ̂ij =

∏i−1
m=j am+1,m∏i−1
m=j+1 amm

, i = 3, . . . , n; j = 1, . . . , i− 2.

Thus, in the first-order case, the maximum likelihood estimates of the elements
of the covariance matrix may be expressed as explicit functions of the maxi-
mum likelihood estimates of certain elements (namely those on the main diag-
onal and first off-diagonal) of the covariance matrix under general multivariate
dependence.

As a further illustration of part (b) of Theorem 5.1, let us revisit the case of an
unstructured AD(2) model with n = 5 that was used in Section 2.3.3 to illus-
trate the recursive computation of elements on off-diagonals p+1, . . . , n of the
covariance matrix from those on previous diagonals. The maximum likelihood
estimator of Σ in this case is

Σ̂ =

⎛
⎜⎜⎜⎜⎝

a11 symm
a21 a22

a31 a32 a33

σ̂41 a42 a43 a44

σ̂51 σ̂52 a53 a54 a55

⎞
⎟⎟⎟⎟⎠

where, using expressions (2.29) and (2.31),

σ̂41 = (a21, a31)
(
a22 a32

a23 a33

)−1(
a42

a43

)
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and (
σ̂51

σ̂52

)
=
(
a31 σ̂41

a32 a42

)(
a33 a43

a34 a44

)−1(
a53

a54

)
.

As this example illustrates, maximum likelihood estimates of the elements of
antedependent covariance matrices of order two and higher are also functions
of maximum likelihood estimates of the elements of the covariance matrix un-
der general multivariate dependence, but the functional dependence is not as
explicit as it is in the first-order case.

Next we consider REML estimation.

Theorem 5.2. If Y1, . . . ,YN are balanced and follow the normal saturated-
mean, unstructured AD(p) model, and N − 1 > p, then:

(a) The residual maximum likelihood estimator of θσ is

θ̃σ = (s11, s22, . . . , snn, s21, . . . , sn,n−p)T ,

where S = (sij) is given by (5.17), and the corresponding generalized least
squares estimator of μ is Y;

(b) The residual maximum likelihood estimator of Σ is Σ̃ = Σ(θ̃σ), and ele-
ments of this matrix on off-diagonals p + 1, . . . , n may be obtained recur-
sively by applying equation (2.32) of Theorem 2.4 to Σ̃;

(c) The residual maximum likelihood estimators of Ξ and Σ−1 are H(Σ̃) and

Σ̃
−1

, respectively, and elements on off-diagonals p+ 1, . . . , n− 1 of these
matrices are equal to zero;

(d) The residual maximum likelihood estimators of the non-trivial autoregres-
sive coefficients {φij} and innovation variances {δi} are given by

(φ̃i,i−pi
, φ̃i,i−pi+1, . . . , φ̃i,i−1) = sT

i−pi:i−1,iS
−1
i−pi:i−1, i = 2, . . . , n,

and

δ̃i =
{
s11 for i = 1
sii − sT

i−pi:i−1,iS
−1
i−pi:i−1si−pi:i−1,i for i = 2, . . . , n.

Proof. By (5.14) and (5.18), the residual log-likelihood function is given by

logLR(θ) = −n(N − 1)
2

log 2π − n

2
logN − N − 1

2
log |Σ(θ)|

−N − 1
2

tr(S[Σ(θ)]−1).

A very similar approach to that used to maximize the profile log-likelihood
function in the first proof of Theorem 5.1 may be used to show that the unique
point of maximum of logLR(θ) is θ̃σ = (s11, s22, . . . , snn, s21, . . . , sn,n−p)T .
This, plus our earlier observation that Y is the generalized least squares esti-
mator of μ regardless of the value of θ, proves part (a) of the theorem. The
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remaining parts follow easily from the invariance property of REML estima-
tors. �

By comparing Theorems 5.1 and 5.2, it is evident that the maximum likelihood
estimators and REML estimators are proportional to each other. That is,

θ̃σ = [N/(N − 1)]θ̂σ, Σ̃ = [N/(N − 1)]Σ̂, Σ̃
−1

= [(N − 1)/N ]Σ̂
−1
,

and for all i and j,

φ̃ij = φ̂ij , δ̃i = [N/(N − 1)]δ̂i.

Moreover, as a consequence of this proportionality, the maximum likelihood
and REML estimators of a correlation — be it marginal, partial, or intervenor-
adjusted — are equal. Proportionality among maximum likelihood and REML
estimators of the elements and/or parameters of a covariance matrix does not
generally occur, so it is an unusual and fortuitous circumstance that it does
occur for unstructured AD(p) models.

The next two theorems and their corollaries establish some statistical properties
of Y, θ̃σ , and Σ̃ under the model considered in this section.

Theorem 5.3. If Y1, . . . ,YN are balanced and follow the normal saturated-
mean, unstructured AD(p) model, and N − 1 > p, then Y and the REML
estimator Σ̃ are unbiased.

Proof. Showing that Y is unbiased is trivial. To show that Σ̃ is unbiased, first
note from Theorem 5.2(b) that σ̃i,i−j = si,i−j for j = 0, . . . , p. It follows from
the well-known unbiasedness of S that

E(σ̃i,i−j) = σi,i−j for j = 0, . . . , p. (5.25)

To establish the unbiasedness of the remaining elements of Σ̃, we exploit the
product-of-conditionals form (5.22) of the log-likelihood function and equa-
tion (2.27) for recursively obtaining elements on off-diagonals p + 1, . . . , n
of Σ from those on previous diagonals. As noted in the alternative proof of
Theorem 5.1, the maximum likelihood estimators (φ̂i,i−pi

, . . . , φ̂i,i−1) of the
non-trivial autoregressive coefficients are merely the estimated regression co-
efficients from the ordinary least squares regression of the response variable at
time i on the responses at the previous pi times (with an intercept). As such,
we know from standard regression theory that, conditional on all responses
prior to time i, (φ̂i,i−pi

, . . . , φ̂i,i−1) is unbiased and hence, since the maximum
likelihood estimators and REML estimators of the autoregressive coefficients
coincide, that

E(φ̃i,i−pi
, . . . , φ̃i,i−1|Y∗

1, . . . ,Y
∗
i−1) = (φi,i−pi

, . . . , φi,i−1). (5.26)

Here Y∗
j = (Y1j , Y2j , . . . , YNj)T , i.e., the set of observations from all sub-

jects at time j. It follows from equation (2.27) that for i = 1, . . . , n and
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j = pi + 1, . . . , i− 1,

σ̃i,i−j =
pi∑

k=1

φ̃i,i−kσ̃i−k,i−j . (5.27)

Consider the case j = pi + 1 of (5.27):

σ̃i,i−pi−1 =
pi∑

k=1

φ̃i,i−kσ̃i−k,i−pi−1.

Now using (5.26), (5.25), and (2.27) (in this order), we obtain

E(σ̃i,i−pi−1) = E{E(σ̃i,i−pi−1|Y∗
1, . . . ,Y

∗
i−1)}

= E

{
pi∑

k=1

σ̃i−k,i−pi−1E(φ̃i,i−k|Y∗
1, . . . ,Y

∗
i−1)

}

= E

{
pi∑

k=1

σ̃i−k,i−pi−1φi,i−k

}

=
pi∑

k=1

σi−k,i−pi−1φi,i−k

= σi,i−pi−1;

hence σ̃i,i−pi+1 is unbiased. Unbiasedness for arbitrary j may be proved by
induction. Because we have just shown that unbiasedness holds for the case
j = pi + 1, it suffices to show that if it holds for j = pi +m, then it holds for
j = pi + m + 1. But this can be shown by essentially the same conditioning
argument as used above for the case j = pi + 1. Thus Σ̃ is unbiased. �

Theorem 5.4. If Y1, . . . ,YN are balanced and follow the normal saturated-
mean, unstructured AD(p) model, and N − 1 > p, then Y and the REML
estimator θ̃σ = (s11, s22, . . . , snn, s21, . . . , sn,n−p)T are a set of complete
sufficient statistics for μ and θσ , and so are Y and (δ̃1, δ̃2, . . . , δ̃n, φ̃21, . . . ,
φ̃n,n−p)T .

Proof. Using a precision matrix parameterization, the likelihood function (5.9)
for the general model may be simplified and reexpressed in this special case as

L(μ,θγ) = (2π)−nN/2|Σ(θγ)|−N/2 exp
{
− N

2
μT [Σ(θγ)]−1μ

}

× exp
{
−1

2
tr(B[Σ(θγ)]−1) +NY

T
[Σ(θγ)]−1μ

}
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where B = (bij) =
∑N

s=1 YsYT
s . Now, by the same argument used to reex-

press the trace of A[Σ(θγ)]−1 in the first proof of Theorem 5.1, we obtain

tr(B[Σ(θγ)]−1) =
n∑

i=1

biiσ
ii + 2

∑∑
0<i−j≤p

bijσ
ij .

Thus, the joint density of the observations may be expressed as follows:

L(μ,θγ) = (2π)−nN/2|Σ(θγ)|−N/2 exp
{
− N

2
μT [Σ(θγ)]−1μ

}

× exp

{
− 1

2

⎛
⎝ n∑

i=1

biiσ
ii + 2

∑∑
0<i−j≤p

bijσ
ij

⎞
⎠

+NY
T
[Σ(θγ)]−1μ

}
.

Written in this form, the family of joint densities of the observations is seen
to be an exponential family. Furthermore, the joint parameter space for μ and
θγ , while not expressible as the Cartesian product of intervals for individual
parameters, nevertheless is easily seen to contain an open rectangle; therefore,
by a well-known result (e.g., Theorem 6.2.25 of Casella and Berger, 2002), the

set of statistics (Y
T
, b11, b22, . . . , bnn, b21, . . . , bn,n−p)T is complete. Clearly,

this set of statistics is sufficent as well by the Factorization Theorem (Theorem
6.2.6 of Casella and Berger, 2002). Finally, since

sij =
1

N − 1
(
bij −NY iY j

)

for all i and j, the mapping of (Y
T
, b11, b22, . . . , bnn, b21, . . . , bn,n−p)T to

(Y
T
, s11, s22, . . . , snn, s21, . . . , sn,n−p)T and the mapping of (Y

T
, s11, s22,

. . . , snn, s21, . . . , sn,n−p)T to (Y
T
, δ̃1, δ̃2, . . . , δ̃n, φ̃21, . . . , φ̃n,n−p)T are one-

to-one, yielding the result. �

Since Y and Σ̃ are unbiased (Theorem 5.3) and these estimators are functions
of the set of complete sufficient statistics (Theorem 5.4), we have (by, e.g.,
Theorem 7.3.23 of Casella and Berger, 2002) the following corollary. The first-
order case of part (a) of the corollary was established by Byrne and Arnold
(1983), the general case by Johnson (1989). The proofs of parts (b) and (c) of
the corollary are trivial.

Corollary 5.4.1. If Y1, . . . ,YN are balanced and follow the normal saturat-
ed-mean, unstructured AD(p) model, and N − 1 > p, then:

(a) Y and Σ̃ are the uniformly minimum variance unbiased estimators of μ
and Σ;

(b) Y is distributed as N(μ, 1
N Σ);
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(c) The covariance matrix of Y may be estimated unbiasedly by 1
N Σ̃.

It follows immediately from Corollary 5.4.1(c) that a reasonable estimate of
the standard error of Y i is given by

ŝe(Y i) =
(

1
N
σ̃ii

)1/2

,

and that this quantity is invariant to the model’s order of antedependence.
Moreover, from Corollary 5.4.1(b) and well-known results on the joint distri-
bution of Y i and σ̃ii, we obtain the following 100(1−α)% confidence interval
for μi:

Y i ± tα/2,N−1ŝe(Y i).

(Here tα/2,N−1 is defined, similarly as in (4.1), as the 100(1−α/2)th percentile
of Student’s t distribution with N − 1 degrees of freedom.) In fact, for any
i, inference for μi:i+p (and any subvector or linear combination thereof) is
identical under the normal saturated-mean, unstructured AD(p) model and the
general multivariate dependence model.

It should be clear to the reader that Theorems 5.1 through 5.4 and Corollary
5.4.1 extend, with appropriate modifications, to variable-order AD models. Re-
call that an unstructured AD(p1, p2, . . . , pn) model can be parameterized by
either the non-redundant marginal covariance matrix elements

{σij : i = 1, . . . , n; j = i− pi, . . . , i},
the variances and non-trivial intervenor-adjusted partial correlations

{σii : i = 1, . . . , n} and {ρij·{j+1:i−1} : i = 1, . . . , n; j = i− pi, . . . , i− 1},
or the innovation variances and non-trivial autoregressive coefficients

{δi : i = 1, . . . , n} and {φij : i = 1, . . . , n; j = i− pi, . . . , i− 1}.
Let us extend our previous notation for θσ , θξ, and (θT

δ ,θ
T
φ )T , respectively, to

represent these three sets of parameters. We give the following theorem with-
out proof. Note that there is an important difference between part (d) of this
theorem and part (d) of Theorem 5.1.

Theorem 5.5. If Y1, . . . ,YN are balanced and follow the normal saturated-
mean, unstructured variable-order AD(p1, . . . , pn) model, andN−1 > maxi pi,
then:

(a) The maximum likelihood estimators of μ and θσ are, respectively, Y and

θ̂σ = (aij : i = 1, . . . , n; j = i− pi, . . . , i)

where A = (aij) is given by (5.16);
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(b) The maximum likelihood estimator of Σ is Σ̂ = Σ(θ̂σ), and the redundant
elements of this matrix may be obtained recursively by applying equation
(2.44) of Theorem 2.8 to Σ̂;

(c) The maximum likelihood estimator of Ξ is Ξ̂ = H(Σ̂) where H is defined
by (2.6), and those elements of Ξ̂ for which i = 1, . . . , n and j = 1, . . . , i−
pi − 1 are equal to zero;

(d) The maximum likelihood estimators of the non-trivial autoregressive coeffi-
cients {φij} and innovation variances {δi} are given by

φ̂
T

i ≡ (φ̂i,i−pi
, φ̂i,i−pi+1, . . . , φ̂i,i−1) = aT

i−pi:i−1,iÂ
−1
i−pi:i−1,

i = 2, . . . , n,

and

δ̂i =
{
a11 for i = 1
aii − aT

i−pi:i−1,iÂ
−1
i−pi:i−1ai−pi:i−1,i for i = 2, . . . , n,

where Âi−pi:i−1 is the matrix consisting of rows i − pi through i − 1, and
columns i− pi through i− 1, of

T̂−1
i−1D̂i−1(T̂T

i−1)
−1;

T̂i−1 is the lower triangular matrix with ones on its main diagonal and −φ̂T

j

for the elements in its jth row immediately preceding that row’s main diag-
onal element, and its remaining elements all equal to zero; and D̂i−1 is the
diagonal matrix with elements δ̂1, . . . , δ̂i−1 on its main diagonal;

(e) The residual maximum likelihood estimators of the parameters listed in
parts (a)-(d) above are given by expressions exactly the same as those of
the maximum likelihood estimators except that elements of A are replaced
by the corresponding elements of the matrix S defined by (5.17);

(f) Y and Σ̃ (the REML estimator of Σ) are the uniformly minimum variance
unbiased estimators of μ and Σ, Y is distributed as N(μ, 1

N Σ), and the
covariance matrix of Y may be estimated unbiasedly by 1

N Σ̃.

Example: Treatment A cattle growth data
Table 5.1 presents REML estimates of marginal variances and correlations for
normal saturated-mean, unstructured antedependence models of orders 10, 1,
and 2 for the Treatment A cattle growth data. Note that: (a) because there are
11 measurement times, REML estimates for the tenth-order model are merely
the ordinary sample variances and correlations; (b) because there are 30 cattle,
maximum likelihood estimates of the variances (not shown) under each model
are equal to merely 29/30 times their REML counterparts, while the maximum
likelihood and REML estimates of the correlations coincide; (c) REML esti-
mates for the AD(1) model coincide with those for the AD(10) model on the

© 2010 by Taylor and Francis Group, LLC



132 LIKELIHOOD-BASED ESTIMATION

main diagonal and first subdiagonal, while estimates for the AD(2) model co-
incide with those for the AD(10) model on the main diagonal and first two
subdiagonals. Comparison of estimates from the models of orders 1 and 10
indicates that the correlations of the first-order model match the sample cor-
relations quite well, the largest discrepancies being due to smaller estimates,
under the AD(1) model, of correlations between the response at time 8 and sev-
eral of its predecessors. The estimated correlations of the second-order model
match the sample correlations between the response at time 8 and its prede-
cessors better, but at the expense of producing many overly large estimated
correlations at large lags. So it is not clear which model, AD(1) or AD(2), fits
best. In Chapter 6 we will revisit this issue using formal hypothesis testing.

5.3.2 Multivariate regression mean

The results of the previous section can be extended to a model having a some-
what more general mean structure, namely that of the classical multivariate
regression model. In this model, the same covariate values are used as explana-
tory variables for all responses from the same subject, or equivalently

Xs = zT
s ⊗ In, s = 1, . . . , N, (5.28)

for some m× 1 covariate vectors z1, . . . , zN , where ⊗ denotes the Kronecker
product. Note, importantly, that this does not require that the regression coef-
ficients be identical across time, but only that the covariates are so. This, in
turn, requires the measurement times to be common to all subjects (balanced
data), and the covariates to be time-independent (which precludes using the
time of measurement as a covariate). This may seem overly restrictive, but
in fact these restrictions are satisfied sufficiently often for this case to be of
some importance. The saturated-mean case already considered corresponds to
putting zs ≡ 1 into expression (5.28).

Thus the assumed model in this section is

Ys ∼ independent Nn

(
(zT

s ⊗ In)β,Σ(θ)
)
, s = 1, . . . , N, (5.29)

where zs is m × 1 and Σ(θ) is an unstructured AD(p) covariance matrix. We
refer to this model as the normal multivariate regression, unstructured AD(p)
model.

Let

Z =

⎛
⎜⎝

zT
1
...

zT
N

⎞
⎟⎠

and assume that Z is of full column rank m. Under model (5.29), we find
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Table 5.1 REML estimates of marginal variances (along the main diagonal) and corre-
lations (off the main diagonal) for the Treatment A cattle growth data, under the normal
saturated-mean unstructured AD(p) model: (a) p = 10; (b) p = 1; (c) p = 2. Estimates
in (b) and (c) are differences between the REML estimate under the lower-order model
and the AD(10) model.
(a)

106
.82 155
.76 .91 165
.66 .84 .93 185
.64 .80 .88 .94 243
.59 .74 .85 .91 .94 284
.52 .63 .75 .83 .87 .93 307
.53 .67 .77 .84 .89 .94 .93 341
.52 .60 .71 .77 .84 .90 .93 .97 389
.48 .58 .70 .73 .80 .87 .88 .94 .96 470
.48 .55 .68 .71 .77 .83 .86 .92 .96 .98 445

(b)

0
.00 0

–.01 .00 0
.03 .00 .00 0
.01 –.01 –.01 .00 0
.02 .00 .03 –.02 .00 0
.05 .06 .01 .00 .01 .00 0
.00 –.02 –.06 –.07 –.07 –.07 .00 0
.00 .03 –.02 –.02 –.05 –.06 –.03 .00 0
.02 .02 –.04 –.01 –.04 –.06 –.01 –.01 .00 0
.01 .04 –.03 .00 –.02 –.03 .00 .00 –.01 .00 0

(c)

0
.00 0
.00 .00 0
.05 .00 .00 0
.04 .00 .00 .00 0
.06 .04 .00 .00 .00 0
.09 .09 .04 .02 .00 .00 0
.08 .06 .03 .02 .00 .00 .00 0
.08 .12 .08 .07 .03 .03 .00 .00 0
.11 .12 .06 .09 .04 .03 .02 .00 .00 0
.10 .14 .08 .10 .07 .06 .04 .02 .00 .00 0

© 2010 by Taylor and Francis Group, LLC



134 LIKELIHOOD-BASED ESTIMATION

that for any θ0 ∈ Θ, the generalized least squares estimator of β given by
expression (5.11) specializes as follows:

β̂(θ0) =
{

(Z ⊗ In)T [IN ⊗ Σ(θ0)]−1 (Z ⊗ In)
}−1

× (Z ⊗ In)T [IN ⊗ Σ(θ0)]−1

⎛
⎜⎝

Y1

...
YN

⎞
⎟⎠

=
[
(ZT Z)−1ZT ⊗ In

]
⎛
⎜⎝

Y1

...
YN

⎞
⎟⎠ (5.30)

≡ β̂.

We have written this estimator simply as β̂ since it does not depend on θ0,
and for the same reason it is the maximum likelihood estimator of β regardless
of the maximum likelihood estimate of θ. Observe that it coincides with the
ordinary least squares estimator.

Now we extend our previous definitions (5.16) and (5.17) of A and S as fol-
lows:

A = (aij) =
1
N

N∑
s=1

[Ys − (zT
s ⊗ In)β̂][Ys − (zT

s ⊗ In)β̂]T (5.31)

and

S = (sij) =
(

N

N −m

)
A. (5.32)

It is easily verified that these extended definitions reduce to those of the previ-
ous section when zs ≡ 1. It is well known (e.g., Theorem 8.2.1 of Anderson,
1984) that A and S are the maximum likelihood and REML estimators, re-
spectively, of the covariance matrix when this matrix is positive definite but
otherwise arbitrary and the mean structure is that of multivariate linear regres-
sion. Furthermore, upon specializing the profile log-likelihood function (5.13)
for use with model (5.29), we find that for this model

logL∗(θ) = −nN
2

log 2π − N

2
log |Σ(θ)| − N

2
tr(A[Σ(θ)]−1), (5.33)

which is identical to expression (5.18) except, of course, that A is defined
more generally here. Similarly, upon specializing the residual log-likelihood
function (5.14) to this model and using the result

log
∣∣∣∣

N∑
s=1

(zT
s ⊗ In)T [Σ(θ)]−1(zT

s ⊗ In)
∣∣∣∣ = log

∣∣ZT Z ⊗ [Σ(θ)]−1
∣∣

= log{∣∣ZT Z
∣∣n∣∣[Σ(θ)]−1

∣∣m}
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(where the last equality follows by Theorem A.1.6), we find that

logLR(θ) = −n(N −m)
2

log 2π − n

2
log |ZT Z|

−N −m

2
log |Σ(θ)| − N −m

2
tr(S[Σ(θ)]−1).

It is also worth noting that the conditional form of the log-likelihood function
for this model may be written in terms of the autoregressive parameterization
as

logL(β∗,θδ,θφ) = −nN
2

log 2π − 1
2

n∑
i=1

N∑
s=1

{
log δi +

(
Ysi − zT

s β
∗
i

−
pi∑

k=1

φi,i−kYs,i−k

)2/
δi

}
,

where

β∗
i = βi −

pi∑
k=1

φi,i−kβi−k.

As a consequence of these results, Theorems 5.1 through 5.4 and Corollary
5.4.1 may be extended to balanced data following the normal multivariate re-
gression, unstructured AD(p) model of this section as follows. Proofs of these
extensions completely mimic those of the original results, hence they are omit-
ted.

Theorem 5.6. If Y1, . . . ,YN are balanced and follow the normal multivariate
regression, unstructured AD(p) model with m covariates, and N − m > p,
then:

(a) The maximum likelihood estimators of β and θσ are, respectively, β̂ and

θ̂σ = (a11, a22, . . . , ann, a21, . . . , an,n−p)T

where β̂ is given by expression (5.30) and A = (aij) is given by expression
(5.31);

(b) The maximum likelihood estimator of Σ is Σ̂ = Σ(θ̂σ), and the redundant
elements of this matrix may be obtained recursively by applying equation
(2.32) of Theorem 2.4 to Σ̂;

(c) The maximum likelihood estimators of Ξ and Σ−1 are H(Σ̂) and Σ̂
−1

,
respectively, and elements on off-diagonals p+1, . . . , n−1 of these matrices
are equal to zero;

(d) The maximum likelihood estimators of the non-trivial autoregressive coeffi-
cients {φij} and innovation variances {δi} are given by

(φ̂i,i−pi
, φ̂i,i−pi+1, . . . , φ̂i,i−1) = aT

i−pi:i−1,iA
−1
i−pi:i−1, i = 2, . . . , n,
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and

δ̂i =
{
a11 for i = 1
aii − aT

i−pi:i−1,iA
−1
i−pi:i−1ai−pi:i−1,i for i = 2, . . . , n;

(e) The residual maximum likelihood estimators of the parameters listed in
parts (a)-(d) above are given by expressions exactly the same as those of
the maximum likelihood estimators except that elements of A are replaced
by the corresponding elements of the matrix S defined by (5.32);

(f) β̂ and Σ̃ (the REML estimator of Σ) are the uniformly minimum variance
unbiased estimators of β and Σ, β̂ is distributed as N(β, (ZT Z)−1 ⊗ Σ̃),
and

(ZT Z)−1 ⊗ Σ̃

is an unbiased estimator of var(β̂).

Let β̂(k−1)n+i denote the element of β̂ corresponding to the kth covariate
and ith measurement time (k = 1, . . . ,m; i = 1, . . . , n). It follows imme-
diately from Theorem 5.6(f) that a reasonable estimate of the standard error of
β̂(k−1)n+i is given by

ŝe(β̂(k−1)n+i) = (bkkσ̃ii)1/2,

where bkk is the kth diagonal element of (ZT Z)−1, and that this estimated stan-
dard error is invariant to the model’s order of antedependence. It also follows
that

β̂(k−1)n+i ± tα/2,N−mŝe(β̂(k−1)n+i)
is a 100(1 − α)% confidence interval for β(k−1)n+i. In fact, for any i, infer-
ence for elements of β corresponding to time indices lagged no more than p
units apart (and any subset or linear combination of these elements) is iden-
tical under the normal multivariate regression, unstructured AD(p) model and
the general multivariate dependence model.

Theorem 5.5 of the previous section may also be extended to balanced data fol-
lowing the normal multivariate regression, unstructured AD(p1, . . . , pn)
model. One merely replaces expressions (5.16) and (5.17) for the matrices
A and S in Theorem 5.5 with their counterparts given by (5.31) and (5.32),
replaces Y in part (f) of Theorem 5.5 with β̂, and replaces the condition
N − 1 > maxi pi with N −m > maxi pi.

Example: 100-km race data
Consider the split times of competitors on each 10-km section of the 100-km
race. In Chapter 4 we presented an exploratory analysis of these data that sug-
gested that competitors’ ages may affect their split times and that this effect
may be approximately quadratic. The results of that exploratory analysis also
suggested that among constant-order unstructured antedependence models, a
third-order model might fit the data reasonably well. Consequently, here we
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fit a model with a multivariate regression mean structure, consisting of an in-
tercept and terms for the linear and quadratic effects of age for each section,
and a third-order unstructured antedependence covariance structure, to the split
times of the 76 competitors whose ages were recorded. The age variable was
centered by subtracting its mean, so as to render the linear and quadratic effects
nearly orthogonal. Thus our model for the mean structure was

E(Ysi) = β0i + β1i[age(s)] + β2i[age(s)]2 (5.34)

where i indexes the 10-km sections and [age(s)] represents the centered age of
subject s; the latter quantity, more specifically, is given by age(s)−39.8815789.
Table 5.2 gives REML estimates (which in this case coincide with ordinary
least squares estimates) of the parameters of the mean structure. Interestingly,
the magnitudes of estimates of all three types of coefficients (intercept, lin-
ear, quadratic) in the mean structure tend to vary in rather systematic ways as
the race progresses. The estimated intercepts increase over most of the race,
decreasing slightly in the last two sections; this tracks the behavior that was
evident from the profile plot given previously (Figure 1.3) and indicates, of
course, that on average the competitors decelerate over most of the race, but
maintain their speed or accelerate slightly over the final two sections. The es-
timated linear coefficients are slightly positive at the beginning of the race and
then trend negative, indicating that early in the race the slightly younger-than-
average competitors run relatively faster, but by the halfway point begin to run
relatively slower, than their slightly older-than-average counterparts. Although
none of the estimated linear coefficients are statistically significant individu-
ally, their reasonably consistent negative trend is compelling. The behavior of
the estimated quadratic coefficients is even more interesting. Slightly positive
but statistically insignificant early in the race, they become ever larger as the
race progresses (apart from the seventh section) and are statistically significant
on sections 5, 6, 8, 9, and 10. The positive coefficient for each section indi-
cates that on average, middle-aged competitors run faster than relatively much
younger and relatively much older competitors, and that this better relative per-
formance is magnified as the race progresses.

Table 5.3 gives REML estimates of the marginal variances and correlations
under AD(9) (general multivariate dependence), AD(3), and AD(0,1,1,1,2,1,1,
2,3,5) models, all with mean structure given by (5.34). The rationale for in-
cluding this particular variable-order AD model will become evident in Ex-
ample 2 of Section 6.5. Comparison of the estimated correlations beyond lag
three for the two constant-order models [part (b) of the table] indicates that
the AD(3) model fits very well until the last two sections of the race, where
it underestimates the two highest-lag correlations with the penultimate split
time and overestimates some moderate-lag correlations with the last split time.
Comparison of the variable-order AD model’s estimated correlations with those
of the AD(9) model [part (c) of the table] shows that this relatively more
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Table 5.2 REML estimates of age effects on 100-km race split times under an unstruc-
tured AD(3) model with multivariate regression mean structure. Estimates of linear and
quadratic effects more than two estimated standard errors from zero are listed in bold-
face.

Section Intercept Linear (×10−2) Quadratic (×10−3)

1 47.7 9.1 1.9
2 50.5 8.9 4.8
3 48.9 1.2 9.9
4 52.2 4.4 13.6
5 53.0 –1.3 21.7
6 58.2 –5.4 25.2
7 61.2 –4.6 15.3
8 67.2 –28.8 27.4
9 66.5 –16.8 28.2

10 64.6 –16.2 34.8

parsimonious covariance structure fits nearly as well as the AD(3) structure
in the first nine sections of the race and rectifies the latter’s overestimation of
moderate-lag correlations with the last split time; however, it fits the highest-
lag correlations with the last split time relatively less well.

Formal testing for the importance of the linear and quadratic effects of age will
be taken up in later chapters, as will formal comparisons of the unstructured
AD models with each other and with other antedependence models.

5.3.3 Arbitrary linear mean

Now let us relax the assumptions on the model’s mean structure even further,
by allowing it to be of arbitrary linear form. That is, we take the model now to
be

Ys ∼ independent Nn (Xsβ,Σ(θ)) , s = 1, . . . , N, (5.35)

where Xs has full column rank q for at least one s, Σ(θ) is an unstructured
AD(p) covariance matrix, and N − q > p. Within the more general mean
structure of this model, time of measurement and functions thereof may be
included as covariates.

For any θ0 ∈ Θ, expression (5.11) for the generalized least squares estimator
of β specializes only slightly in this case, to

β̂(θ0) =

(
N∑

s=1

XT
s [Σ(θ0)]−1Xs

)−1 N∑
s=1

XT
s [Σ(θ0)]−1Ys.
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Table 5.3 REML estimates of marginal variances (along the main diagonal) and
correlations (off the main diagonal) for the 100-km race split times, under nor-
mal multivariate regression-mean, unstructured antedependence models which include
an overall intercept and linear and quadratic effects of age for each section: (a)
AD(9); (b)AD(3); (c)AD(0, 1, 1, 1, 2, 1, 1, 2, 3, 5). Estimates in (b) and (c) are dif-
ferences between the REML estimates for the AD(3) and AD(9) models, and for the
AD(0,1,1,1,2,1,1,2,3,5) and AD(9) models, respectively.
(a)

27
.95 35
.85 .90 49
.79 .83 .92 58
.62 .64 .74 .88 88
.63 .63 .71 .84 .93 145
.53 .55 .59 .69 .74 .83 108
.51 .52 .61 .70 .78 .84 .78 140
.55 .53 .55 .65 .71 .75 .68 .73 136
.41 .42 .42 .47 .48 .62 .71 .61 .74 154

(b)

0
.00 0
.00 .00 0
.00 .00 .00 0

–.01 .00 .00 .00 0
–.04 –.02 .00 .00 .00 0
–.04 –.03 .00 .00 .00 .00 0
–.01 .00 –.01 .00 .00 .00 .00 0
–.11 –.07 –.01 –.02 –.02 .00 .00 .00 0
–.02 –.01 .05 .09 .12 .05 .00 .00 .00 0

(c)

0
.00 0
.00 .00 0

–.01 .00 .00 0
.00 .02 .00 .00 0

–.04 –.02 –.02 –.02 .00 0
–.05 –.03 –.02 .00 .03 .00 0
–.02 –.01 –.03 –.02 .00 .00 .00 0
–.11 –.07 –.03 –.03 –.01 .00 .00 .00 0
–.11 –.10 –.06 –.04 .00 .00 .00 .00 .00 0
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Thus, in contrast to what transpires when the mean structure is that of a multi-
variate regression model, here the generalized least squares estimator depends
on the covariance parameters. As a consequence, closed-form expressions for
the maximum likelihood estimators, β̂ and θ̂, and the REML estimators, β̃ and
θ̃ do not exist. Nevertheless, these estimators may be obtained by iterative max-
imization algorithms, such as the Nelder-Mean simplex or Newton-Raphson
algorithms mentioned earlier in this chapter. Alternatively, the maximum like-
lihood estimators may be obtained by a simpler algorithm, which consists of
iterating between

β̂
(l)

= β̂
(
θ̂

(l−1)

σ

)
and

θ̂
(l)

σ =
(
a
(l)
11 , . . . , a

(l)
nn, a

(l)
21 , . . . , a

(l)
n,n−p

)T

,

for l = 1, 2, . . ., where the a(l)
ij ’s are the elements of

A(l) =
1
N

N∑
s=1

(
Ys − Xsβ̂

(l)
)(Ys − Xsβ̂

(l)
)T

.

To initiate this iterative process, we may set

θ̂
(0)

σ = (1T
n ,0

T )T ,

in which case

β̂
(1)

=

(
N∑

s=1

XT
s Xs

)−1 N∑
s=1

XT
s Ys,

the ordinary least squares estimator of β. Upon convergence, the algorithm’s
final iterates are taken as maximum likelihood estimates.

Estimated standard errors of the elements of β̂ are given by the square roots of
the diagonal elements of the matrix

(
N∑

s=1

XT
s [Σ(θ̂)]−1Xs

)−1

. (5.36)

Denoting the square root of the kth of those elements by ŝe(β̂k), an approxi-
mate 100(1−α)% confidence interval for βk is given by β̂k±tα/2,N−q ŝe(β̂k).
Estimated standard errors of the elements of β̃ are given by square roots of the
diagonal elements of a matrix identical to (5.36) but with θ̂ replaced by θ̃, and
a REML-based approximate 100(1 − α)% confidence interval for βk is given
by β̃k ± tα/2,N−q ŝe(β̃k).

Similar inferential procedures to those just described may also be used when
the unstructured antedependence is of variable order.
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Example: 100-km race data
The multivariate regression-mean, unstructured AD(3) model fitted to the split
times in the previous section had 30 parameters in its mean structure. Might a
model with a much more parsimonious mean structure fit nearly as well? On
the basis of the profile plot of split times (Figure 1.3) and the effects of age on
split time noted in the analysis of the previous section, one relatively parsimo-
nious mean structure that may be of interest is a cubic function of (centered)
section number, plus linear and quadratic effects of (centered) age. That is,

E(Ysi) = β0 + β1(i− 5.5) + β2(i− 5.5)2

+β3(i− 5.5)3 + β4[age(s)] + β5[age(s)]2 (5.37)

where again i indexes the 10-km sections and [age(s)] represents the centered
age of subject s. This mean is not of multivariate regression form, as it includes
section-dependent covariates, namely linear, quadratic, and cubic functions of
section itself. Nevertheless, REML estimates of its parameters, corresponding
to an unstructured AD model of any order, may be obtained using the method
described in this section. The fitted mean for the unstructured AD(3) model
with this mean structure is

Ŷsi = 58.702
(0.933)

+ 3.422
(0.234)

(i− 5.5) − 0.0529
(0.0325)

(i− 5.5)2

− 0.0399
(0.0095)

(i− 5.5)3 + 0.0529
(0.0614)

[age(s)] + 0.0009
(0.0048)

[age(s)]2,

(5.38)

where we have given the estimated standard error of each estimated coefficient
directly under it in parentheses. We see that the linear and cubic effects of
section are statistically significant, but in contrast to the results for the model
fitted in the previous section, neither the linear nor quadratic effect of age is
significant. One possible explanation for this is that smoothing the trend over
sections, rather than using a mean structure saturated with respect to section,
results in fitted residuals that are sufficiently large to obscure the quadratic ef-
fect of age that was evident in the previous model. That many residuals from
the present model are substantially larger than those from the previous model
is clear from a plot of the fitted mean model and from an examination of the
REML estimates of marginal variances. Figure 5.1 plots the fitted mean as a
function of section for a person of near-average age (40 years) and, for com-
parison, it also plots the saturated mean’s profile. The modeled cubic trend
reproduces the gross features of the saturated mean’s profile, but some detail
is lost and the agreement between the two is poor on the second and eighth
sections especially. Table 5.4 gives REML estimates of marginal variances and
correlations for the AD(3) residual covariance structure. The variances in this
table are consistently larger (for some sections even 20% larger) than the cor-
responding variances in Table 5.3(a). Partly as a result, the correlations in this
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Table 5.4 REML estimates of marginal variances (along the main diagonal) and cor-
relations (off the main diagonal) for the 100-km race split times under an unstructured
AD(3) model with mean structure cubic in section and quadratic in age.

30
.95 44
.74 .73 50
.71 .71 .92 59
.46 .43 .75 .87 97
.47 .45 .72 .84 .91 150
.39 .37 .59 .70 .76 .84 110
.37 .36 .55 .65 .68 .81 .73 163
.36 .34 .54 .63 .68 .77 .68 .74 146
.32 .31 .48 .48 .62 .68 .72 .59 .76 172

table tend to be somewhat smaller than their counterparts computed by sum-
ming the entries in Table 5.3(a,b).

However, the additional noise induced by smoothing over sections is not the
only factor responsible for the disappearance of the significant quadratic age
effect. This follows from the fact that REML estimates (not shown) of linear
and quadratic age effects for an AD(3) model with a mean structure that is
saturated, rather than cubic, for sections actually differ very little from those
in (5.38). A much more important factor is that the REML estimator of β no
longer coincides with the ordinary least squares estimator, and so the within-
subject correlation across sections affects the estimation of the model’s mean
structure. Apparently, the within-subject correlation structure accounts for some
of the variability that was ascribed to age effects in the previous fitted model.
The question of whether the more parsimonious AD(3) model fitted in this sec-
tion is as satisfactory as the previous one cannot be resolved without a more
formal approach, which we will take up in Chapter 7.

It is worth mentioning that the maximum likelihood estimates (not shown) of
parameters in these models, while not equal to the REML estimates, differ very
little from them. The differences are at most 1%, and usually less than 0.1%,
of the estimates’ magnitudes.

5.4 Unstructured antedependence: Unbalanced data

It can happen, either by design or by chance, that the data are not balanced.
For example, clinical patients may return for repeated examinations or medical
tests at different times than other patients, or some may drop out prior to the
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Figure 5.1 Fitted mean split times on each 10-km section of the 100-km race under an
unstructured AD(3) model with mean structure cubic in section and quadratic in age.
Solid thin line: fitted mean for a competitor 40 years old; Thick line: saturated mean
profile.

end of the study and never return. An example of a study in which such “drop-
outs” occur is provided by the speech recognition data of Section 1.7.3. In that
study, there were 41 subjects and four intended measurement times. On the
first two measurement occasions all subjects were observed, but on the third
and fourth occasions only 33 and 21 subjects, respectively, were observed.

A fruitful way to deal with unbalanced data is to act as though they are an
incomplete, or missing-data, version of a balanced data set. That is, we act as
though the observed data are a portion of the complete balanced data set that
would have resulted if we had observed all subjects at each time at which at
least one subject was observed. If the complete data follow an unstructured
AD(p) model, and the missing data pattern is “nice,” then estimation of the
model’s parameters from the incomplete data can proceed using the estimation
procedures described in Section 5.3 with minor modifications, as we now show.

We assume throughout this section that the missing data mechanism is inde-
pendent of the observations and has no parameters in common with those of
the joint distribution of the observations. Under these assumptions, the missing
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data mechanism is ignorable for the purposes of likelihood-based inference
(Little and Rubin, 2002). Furthermore, we modify our notation slightly for this
section by letting n be the number of distinct measurement times in the com-
plete data set and lettingN1, . . . , Nn be the time-specific sample sizes, i.e., the
number of subjects actually observed at each measurement time.

One “nice” missing data pattern in longitudinal studies is monotone missing
data, which occurs, as for the speech recognition data, when some subjects
present at the beginning of the study drop out before its conclusion. Formally,
a longitudinal sample is monotone if Ys,j+1 is missing whenever Ysj is missing
(s = 1, . . . , N ; j = 2, . . . , n−1). Here n is the number of measurement times
for subjects that do not drop out. The time-specific sample sizes are ordered as
follows:

N = N1 ≥ N2 ≥ · · · ≥ Nn.

For simplicity of notation we assume, without loss of generality, that indices
s = 1, . . . , N are assigned to subjects in such a way that the Nn subjects with
complete data are listed first, then the Nn−1 − Nn subjects missing only the
last measurement, then the Nn−2 − Nn−1 subjects missing only the last two
measurements, and so on.

We will consider only constant-order antedependence models in this section.
However, all of the results presented can be extended easily to variable-order
unstructured antedependence models.

5.4.1 Monotone missing data, saturated mean

First we consider the estimation of model parameters when the model’s mean
structure is saturated, i.e., when the complete data follow model (5.15).

Theorem 5.7. If Y1, . . . ,YN have a monotone missing data pattern, the corre-
sponding complete data follow the normal saturated-mean, unstructured AD(p)
model, and Ni − 1 > p for all i, then:

(a) The maximum likelihood estimators of the non-trivial autoregressive coeffi-
cients {φij} and innovation variances {δi} are given by

φ̂
T

i ≡ (φ̂i,i−pi
, φ̂i,i−pi+1, . . . , φ̂i,i−1) = aT

i−pi:i−1,iA
−1
i−pi:i−1,i,

i = 2, . . . , n,

and

δ̂i =
{
a11 for i = 1
aii − aT

i−pi:i−1,iA
−1
i−pi:i−1,iai−pi:i−1,i for i = 2, . . . , n
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where ai−pi:i−1,i and Ai−pi:i−1,i are the indicated subvector and indicated
submatrix, respectively, and aij is the ijth element, of the i× i matrix

Ai =
1
Ni

Ni∑
s=1

(Ys,1:i − Yi)(Ys,1:i − Yi)T , i = 1, . . . , n; j = 1, . . . , i,

Ys,1:i is the subvector of Ys consisting of its first i elements, and

Yi =
1
Ni

Ni∑
s=1

Ys,1:i.

(b) The maximum likelihood estimator of Σ is Σ̂ = T̂−1D̂(T̂T )−1, where T̂

is the lower triangular matrix with ones on its main diagonal and −φ̂T

i for
the elements in its ith row immediately preceding that row’s main diagonal
element, and with its remaining elements all equal to zero; and D̂ is the
diagonal matrix with elements δ̂1, . . . , δ̂n on its main diagonal;

(c) The maximum likelihood estimators of Ξ and Σ−1 are H(Σ̂) and Σ̂
−1

,
respectively, and elements on off-diagonals p+1, . . . , n−1 of these matrices
are equal to zero;

(d) The maximum likelihood estimator of μ is given by

μ̂ = T̂−1μ̂∗

where μ̂∗ = (μ̂∗
i ) and

μ̂∗
i = Y i −

pi∑
k=1

φ̂i,i−kY i−k,i, i = 1, . . . , n,

and Y i and Y i−k,i are the ith and (i− k)th elements, respectively, of Yi;

(e) The residual maximum likelihood estimators of the parameters listed in
parts (a)-(d) above are given by expressions exactly the same as those of
the maximum likelihood estimators except that elements of Ai are replaced
by the corresponding elements of Si = [Ni/(Ni − 1)]Ai.

Proof. The log-likelihood function may be written in product-of-conditionals
form, similarly to (5.20) through (5.22), as

logL(μ,θδ,θφ) = log
N∏

s=1

ns∏
i=1

fi(Ysi|Ys,i−1, . . . , Ys,i−pi
)

= log
n∏

i=1

Ni∏
s=1

fi(Ysi|Ys,i−1, . . . , Ys,i−pi
)

=
n∑

i=1

Ni∑
s=1

log
{

(2πδi)−1/2 exp
{
−
[
Ysi − μi
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−
pi∑

k=1

φi,i−k(Ys,i−k − μi−k)
]2/

2δi
}}

= −n+

2
log 2π − 1

2

n∑
i=1

Ni∑
s=1

{
log δi +

[
Ysi − μi

−
pi∑

k=1

φi,i−k(Ys,i−k − μi−k)
]2/

δi

}
.

After reparameterizing the mean structure as in the alternative proof of Theo-
rem 5.1, we have

logL(μ∗,θδ,θφ) = −n+

2
log 2π − 1

2

n∑
i=1

Ni∑
s=1

{
log δi +

(
Ysi − μ∗

i

−
pi∑

k=1

φi,i−kYs,i−k

)2/
δi

}
. (5.39)

Now, as in (5.23), the ith term of the first sum in (5.39) is, apart from an ad-
ditive constant, simply the log-likelihood corresponding to an ordinary least
squares regression, with intercept, of the ith normally distributed response vari-
able on the pi response variables immediately preceding it; here, however, the
number of observations in the ith regression is Ni rather than N . Hence the
maximum likelihood estimators of the {φij} coincide with their least squares
estimators from these regressions, while those of the {δi} are the residual sums
of squares from these regressions divided by Ni; these estimators are given
by the expressions in part (a) of the theorem. Furthermore, maximum likeli-
hood estimators of the intercepts are given by the least squares estimators

μ̂∗
i = Y i −

pi∑
k=1

φ̂i,i−kY i−k,i,

where Y i and Y i−k,i are the ith and (i − k)th elements, respectively, of Yi.
Part (d) then follows from (5.24) and the invariance of maximum likelihood
estimators. The remaining parts of the theorem follow by the same arguments
used to prove the analogous results of Theorem 5.1. �

The upshot of Theorem 5.7 is that when the missing data are monotone, max-
imum likelihood estimates of the parameters of the normal saturated-mean
unstructured AD(p) model may be obtained using the same regression-on-
predecessors approach used when the data are complete. The only difference
is that the ith of these regressions uses only the observations that are complete
up to time i.

© 2010 by Taylor and Francis Group, LLC



UNSTRUCTURED ANTEDEPENDENCE: UNBALANCED DATA 147

5.4.2 Monotone missing data, multivariate regression mean

Now we extend Theorem 5.7 to a model with a multivariate regression mean
structure; that is, we assume that the complete data follow model (5.29). Again
we will find that the approach of obtaining maximum likelihood estimators by
regressing on predecessors and covariates, used when the data are complete,
extends to this situation as well, the only difference being that the ith of these
regressions uses only the observations that are complete up to time i. Let

Zi =

⎛
⎜⎝

zT
1
...

zT
Ni

⎞
⎟⎠

and assume that Zi has full column rank m for all i.

Theorem 5.8. If Y1, . . . ,YN have a monotone missing data pattern, the cor-
responding complete data follow the normal multivariate regression, unstruc-
tured AD(p) model with m covariates, and Ni −m > p for all i, then:

(a) The maximum likelihood estimators of the non-trivial autoregressive coeffi-
cients {φij} and innovation variances {δi} are given by

φ̂
T

i ≡ (φ̂i,i−pi
, φ̂i,i−pi+1, . . . , φ̂i,i−1) = aT

i−pi:i−1,iA
−1
i−pi:i−1,i,

i = 2, . . . , n,

and

δ̂i =
{
a11 for i = 1
aii − aT

i−pi:i−1,iA
−1
i−pi:i−1,iai−pi:i−1,i for i = 2, . . . , n

where ai−pi:i−1,i and Ai−pi:i−1,i are the indicated subvector and indicated
submatrix, respectively, and aij is the ijth element, of the i× i matrix

Ai =
1
Ni

Ni∑
s=1

[Ys,1:i − (zT
s ⊗ Ii)βi][Ys,1:i − (zT

s ⊗ Ii)βi]
T ,

i = 1, . . . , n; j = 1, . . . , i,

and

βi = [(ZT
i Zi)−1ZT

i ⊗ Ii]

⎛
⎜⎜⎜⎝

Y1,1:i

Y2,1:i

...
YNi,1:i

⎞
⎟⎟⎟⎠ ;

(b) The maximum likelihood estimator of Σ is Σ̂ = T̂−1D̂(T̂T )−1, where T̂

is the lower triangular matrix with ones on its main diagonal and −φ̂T

i for
the elements in its ith row immediately preceding that row’s main diagonal
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element, and with its remaining elements all equal to zero; and D̂ is the
diagonal matrix with elements δ̂1, . . . , δ̂n on its main diagonal;

(c) The maximum likelihood estimators of Ξ and Σ−1 are H(Σ̂) and Σ̂
−1

,
respectively, and elements on off-diagonals p+1, . . . , n−1 of these matrices
are equal to zero;

(d) The maximum likelihood estimator of β is given by

β̂ = (T̂−1 ⊗ Im)β̂
∗

where β̂
∗

= (β̂
∗T
1 , . . . , β̂

∗T
n )T ,

β̂
∗
i = (ZT

i Zi)−1ZT
i

⎛
⎜⎝

Y1i

...
YNii

⎞
⎟⎠ if pi = 0,

β̂
∗
i = {ZT

i [INi
− Qi(QT

i Qi)−1QT
i ]Zi}−1

×ZT
i [INi

− Qi(QT
i Qi)−1QT

i ]

⎛
⎜⎝

Y1i

...
YNii

⎞
⎟⎠ , otherwise,

and

Qi =

⎛
⎜⎝

Y1,i−1 · · · Y1,i−pi

...
...

YNi,i−1 · · · YNi,i−pi

⎞
⎟⎠ .

(e) The residual maximum likelihood estimators of the parameters listed in
parts (a) through (d) above are given by expressions exactly the same as
those of the maximum likelihood estimators except that elements of Ai are
replaced by the corresponding elements of Si = [Ni/(Ni −m)]Ai.

Proof. The log-likelihood function (5.39) may be extended to the present situ-
ation as follows:

logL(β∗,θδ,θφ) = −n+

2
log 2π − 1

2

n∑
i=1

Ni∑
s=1

{
log δi +

(
Ysi − zT

s β
∗
i

−
pi∑

k=1

φi,i−kYs,i−k

)2/
δi

}
(5.40)

where

β∗
i = βi −

pi∑
k=1

φi,i−kβi−k. (5.41)

Now, the ith term of the first sum in (5.40) is, apart from an additive constant,
simply the log-likelihood corresponding to an ordinary least squares regression
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of the ith response variable on the pi response variables immediately preceding
it and on the m covariates, based on Ni observations. Hence the maximum
likelihood estimators of the {φij} and {β∗

i} coincide with their least squares
estimators from these regressions, and the maximum likelihood estimators of
the {δi} are the residual sums of squares from these regressions divided by Ni,
all of which are given by the expressions in parts (a) and (d) of the theorem.
Part (d) then follows from (5.41) and the invariance of maximum likelihood
estimators. The remaining parts of the theorem follow by the same arguments
used to prove the analogous results of Theorem 5.1. �

Example: Speech recognition data
We now illustrate the REML estimation methodology of Theorem 5.8(e) us-
ing the speech recognition data. As noted earlier in this section, this data set
has dropouts, which in this case are subjects that were initially fitted with a
cochlear implant and tested on one or more occasions for audiologic perfor-
mance, but after the second or third such occasion did not return for further
testing. Recall from Section 1.7.3 that there are two types of implants, labeled
generically as types A and B, and four intended measurement occasions. Here
N1 = N2 = 41, N3 = 33, and N4 = 21. We adopt an eight-parameter mean
structure for these data that is saturated over time within each implant group,
i.e.,

E(Ysi) =
{
μAi if subject s has implant A
μBi if subject s has implant B

i = 1, 2, 3, 4. (5.42)

For the covariance structure, we assume homogeneity across the two implant
groups. This assumption will be checked in Chapter 6 and shown to be sup-
ported by the data.

Table 5.5 gives REML estimates of the pooled marginal variances and correla-
tions under unstructured AD(3) (general multivariate dependence) and AD(1)
models. We observe that correlations lagged the same number of measurement
occasions apart increase slightly over time, despite being further apart in ac-
tual time. This confirms a prior belief of the researchers who conducted this
study, which is that a typical subject’s audiologic performance becomes more
consistent over time. We also observe that the estimated marginal variances
corresponding to the last two measurement times are different under the two
models. This contrasts with the situation with balanced data, for which esti-
mates of all marginal variances coincide across orders of antedependence. The
estimated lag-one correlations agree well (differences are less than 0.005), but
only the first ones match perfectly. Comparison of the estimated correlations
beyond lag one across the two models indicates that the fitted first-order model
overestimates the lag-three correlation somewhat, but does not fit too badly. In
Chapter 6 we will formally test for the order of antedependence of these data
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Table 5.5 REML estimates of pooled marginal variances (along the main diagonal)
and correlations (below the main diagonal) for the speech recognition sentence scores
data, under normal unstructured antedependence models with saturated means within
each implant group: (a) AD(3); (b) AD(1).
(a)

404
.85 593
.72 .90 549
.64 .87 .95 575

(b)

404
.85 593
.77 .90 547
.73 .85 .95 544

and will find that a first-order model is not rejected at traditional levels of sig-
nificance. REML estimates of the mean structure parameters for the first-order
model are as follows:⎛

⎜⎜⎝
μ̃A1

μ̃A2

μ̃A3

μ̃A4

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝

28.52
49.14
55.87
63.57

⎞
⎟⎟⎠ ,

⎛
⎜⎜⎝

μ̃B1

μ̃B2

μ̃B3

μ̃B4

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝

19.40
38.24
44.49
46.90

⎞
⎟⎟⎠ .

In Chapter 7 we will formally compare the two mean vectors.

5.4.3 Monotone missing data, arbitrary linear mean

Finally, we relax the assumptions on the mean structure to allow it to be of
arbitrary linear form. That is, we suppose that the complete data follow model
(5.35).

As in the case of balanced data with this mean structure, closed-form expressions
for the maximum likelihood and REML estimators of β and θ do not exist, but
we can obtain them by iterative maximization procedures. A Nelder-Mead sim-
plex or Newton-Raphson algorithm can be effective. Alternatively, for the case
of maximum likelihood estimation one can iterate between

β̂
(l)

=

(
N∑

s=1

XT
s

[
Σs

(
θ̂

(l−1)

σ

)]−1

Xs

)−1 N∑
s=1

XT
s

[
Σs

(
θ̂

(l−1)

σ

)]−1

Ys
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and

θ̂
(l)

σ =
(
a
(l)
11 , . . . , a

(l)
nn, a

(l)
21 , . . . , a

(l)
n,n−p

)T

,

for l = 1, 2, . . ., where a(l)
ij is the ijth element of

A(l)
i =

1
Ni

Ni∑
s=1

(
Ys,1:i − Xs,1:iβ̂

(l)
)(

Ys,1:i − Xs,1:iβ̂
(l)
)T

,

i = 1, . . . , n; j = 1, . . . , i.

Here Xs,1:i is the submatrix of Xs consisting of its first i rows and we assume
that Ni − q > p. Note that iterates of the sth subject’s covariance matrix,

Σs

(
θ̂

(l)

σ

)
, utilize only those elements {a(l)

ij } of θ̂
(l)

σ whose first index is less

than or equal to ns. The iterative process may be initiated with the same value,

θ̂
(0)

σ = (1T
n ,0

T )T , that is used in the balanced case.

5.4.4 Other missing data patterns

To this point the only missing data pattern we have considered is that of mono-
tone dropouts. Another relatively simple and commonly occurring missing data
pattern is that of monotone drop-ins (also known as delayed entry or staggered
entry), in which subjects enter the study at different times, but once entered
remain until its conclusion. For such a pattern, the time-specific sample sizes
are monotone increasing, i.e.,

N1 ≤ N2 ≤ · · · ≤ Nn = N

where in this case n is the number of measurement times for subjects that were
present at the beginning of the study. If we define the ns × ns “exchange”
matrix

Es =

⎛
⎜⎜⎜⎝

0 · · · 0 1
0 · · · 1 0
...

...
...

1 · · · 0 0

⎞
⎟⎟⎟⎠ ,

then likelihood-based estimators may be obtained by applying exactly the same
procedures used for the case of dropouts, but with EsYs, the vector of obser-
vations in reverse time order, in place of Ys, and EsXs in place of Xs. This
follows from the fact that pth-order antedependent variables are also pth-order
antedependent when arranged in reverse time order.

For data with an arbitrary pattern of missingness, the EM algorithm (Dempster,
Laird, and Rubin, 1977) may be used to obtain maximum likelihood estimates.
As applied to normal unstructured antedependence models, the EM algorithm
is quite similar to that used to estimate an arbitrary positive definite covariance
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matrix of a normal distribution. For the sake of brevity we consider only the
case where the complete data follow the normal, saturated-mean pth-order un-
structured antedependence model. It is this case, with small p, for which the
EM algorithm is particularly useful, for in this case we may take advantage
of the relatively simple-to-compute expressions for the maximum likelihood
estimates given in Theorems 5.1 and 5.6. Note that assuming pth-order antede-
pendence for the complete data is different than assuming it for the incomplete
data as we did in previous sections, though complete-data antedependence im-
plies incomplete-data antedependence when p = 1. Furthermore, we present
the EM algorithm for maximum likelihood estimation only; modifications for
REML estimation are straightforward.

For each observational vector Ys for which one or more observations of the
complete vector are missing, let Y+

s be the complete n× 1 data vector and let
Ps be the n×n permutation matrix which puts all the observed data first. That
is,

PsY+
s =

(
Y(1)

s

Y(2)
s

)

where Y(1)
s is the ns×1 vector of the observed measurements on subject s and

Y(2)
s is unobserved. (Note that Ps is a generalization of the exchange matrix

Es.) Write (
μ

(1)
s

μ
(2)
s

)
and

(
Σ(11)

s Σ(12)
s

Σ(21)
s Σ(22)

s

)

for the mean and covariance matrix, respectively of PsY+
s . Then the EM al-

gorithm proceeds by iterating between a “prediction step” and an “estimation
step,” as follows:

Prediction step. Given estimates μ̂ and Σ̂ from the estimation step, predict
Y(2)

s , Y(2)
s Y(2)T

s , and Y(2)
s Y(1)T

s by their conditional means:

Ŷ(2)
s = μ̂(2)

s + Σ̂
(21)

s

(
Σ̂

11

s

)−1 (
Y(1)

s − μ̂(1)
s

)
, (5.43)

̂
Y(2)

s Y(2)T
s = Σ̂

(22)

s − Σ̂
(21)

s

(
Σ̂

(11)

s

)−1

Σ̂
(12)

s + Ŷ(2)
s Ŷ(2)T

s , (5.44)

̂
Y(2)

s Y(1)T
s = Ŷ(2)

s Y(1)T
s . (5.45)

Estimation step. Given the pseudo-complete data produced by the prediction
step, update the maximum likelihood estimates of μ and Σ in accordance with
Theorem 5.1:

μ̂ =
1
N

N∑
s=1

P−1
s

(
Y(1)

s

Ŷ(2)
s

)
,
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Â = (âij) =
1
N

N∑
s=1

P−1
s

⎛
⎝ Y(1)

s Y(1)T
s (Ŷ(2)

s Y(1)T
s )T

Ŷ(2)
s Y(1)T

s
̂

Y(2)
s Y(2)T

s

⎞
⎠P−1

s − μ̂μ̂T ,

θ̂σ = (â11, . . . , ânn, â21, . . . , ân,n−p)T ,

Σ̂ = Σ(θ̂σ),

where elements of Σ̂ on off-diagonals p + 1, . . . , n are obtained recursively
through the use of equation (2.32) of Theorem 2.4.

The iterative procedure can be initialized by replacing the right-hand sides of
expressions (5.43) through (5.45) with vectors and matrices of zeros in the first
prediction step.

The EM algorithm just described can deal with any pattern of missingness,
provided that all elements of the unstructured AD(p) complete-data covariance
matrix are estimable. However, if the pattern is nearly monotone, a more com-
putationally efficient implementation of the EM algorithm can be constructed,
which utilizes the closed-form expressions for the maximum likelihood estima-
tors under monotone sampling given by Theorem 5.7, in place of those given
by Theorem 5.1.

If there is little or no duplication of measurement times across subjects, how-
ever, then one or more elements of the unstructured AD(p) covariance matrix
are non-estimable. In this case, more structure must be imposed on the antede-
pendence model to render its parameters estimable, unless similar measurement
times for different subjects are grouped together and treated as equal within
groups.

An alternative to the EM algorithm and its corresponding observed-data likeli-
hood-based approach to inference from incomplete data is a multiple imputa-
tion approach. Zhang (2005) describes and implements such an approach for
antedependence models.

Example: Fruit fly mortality data
Recall that roughly 22% of the fruit fly mortality data are missing, and that
the missingness is not monotone (Tables 1.10 through 1.12). Recall also that
a preliminary model identification exercise (Section 4.3.1) suggested that a
first-order antedependence model is plausible for these data. Accordingly, we
use the EM algorithm described in this section to obtain maximum likelihood
estimates of an unstructured AD(1) model; for comparison purposes we ob-
tain such estimates for the AD(10) (general multivariate dependence) model
as well. Table 5.6 gives maximum likelihood estimates of the variances and
correlations for both models. Estimates for the two models appear to match
reasonably well except in cases of correlations with mortalities at times 9 and
11; the AD(1) model overestimates the former and underestimates the latter.
More formal methods are needed to determine if these discrepancies would
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Table 5.6 Maximum likelihood estimates of marginal variances (along the main diag-
onal) and correlations (off the main diagonal) for the fruit fly mortality data, under
normal saturated-mean unstructured AD(p) models: (a) p = 10; (b) p = 1. Entries
in (b) are differences between the estimates under the two models (first-order minus
tenth-order).
(a)

0.69
.59 1.10
.54 .71 1.69
.46 .61 .78 2.75
.37 .55 .63 .82 2.63
.30 .45 .48 .64 .86 1.94
.22 .36 .32 .40 .65 .81 1.14
.12 .29 .28 .25 .45 .59 .77 0.68
.02 .16 .02 .03 .16 .19 .43 .64 0.48
.11 .28 -.01 .13 .20 .21 .37 .43 .52 0.36
.23 .30 .09 .37 .44 .40 .35 .35 .29 .43 0.49

(b)

.00

.01 –.02
–.11 .01 .02
–.12 –.05 .01 .06
–.09 –.09 .01 .00 –.04
–.06 –.05 .08 .07 .00 .01
–.02 –.03 .14 .18 .06 .01 .06
.04 –.03 .08 .21 .11 .06 .02 .04
.08 .01 .22 .27 .21 .24 .08 .02 .01

–.05 –.19 .12 .02 –.01 .01 –.11 –.10 –.02 –.01
–.22 –.27 –.04 –.30 –.37 –.32 –.26 –.23 –.11 –.06 –.07

lead us to favor a higher-order AD model. As an aside, we compare the esti-
mates for the AD(10) model to the corresponding sample variances and cor-
relations computed previously from the available data [see Table 4.4(a)] to
examine the effects that adjusting for imbalances in the data across time have
on the estimates. We see that the greatest effect on the variances is at time 5,
where the relative difference is about 20%; some of the time-11 correlations
are considerably affected also.

5.5 Structured antedependence models

Next we consider maximum likelihood estimation of the parameters of struc-
tured antedependence models. For these models, closed-form expressions for
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the estimators do not exist (with a few exceptions), regardless of whether the
data are balanced, so the advantages of balance are not as compelling as they
were for unstructured antedependence models. Similarly, it is less of an ad-
vantage for the mean to be of multivariate regression form, for in this case
estimates of at least some of the covariance parameters have to be obtained nu-
merically, even if those of the mean structure do not. Therefore, unless noted
otherwise, in this section we allow the data to be unbalanced and the mean
structure to be of arbitrary linear form. Nevertheless, we require, as previously
to Section 5.4.4, that the observed data be AD(p) for each subject. Further-
more, we consider only maximum likelihood estimation; the results are easily
extended to REML estimation by replacing the log-likelihood or profile log-
likelihood with logLR(θ), as given by (5.14).

Generally, maximum likelihood estimates of the mean and covariance parame-
ters of structured antedependence models may be obtained by iterating between
the equation

β̂ =

(
N∑

s=1

XT
s [Σs(θ̂)]−1Xs

)−1 N∑
s=1

XT
s [Σs(θ̂)]−1Ys (5.46)

(where θ̂ is the current estimate of θ) and numerical maximization of the func-
tion

logL(β̂,θ) = −n+

2
log 2π − 1

2

N∑
s=1

log |Σs(θ)|

−1
2

N∑
s=1

(Ys − Xsβ̂)T [Σs(θ)]−1(Ys − Xsβ̂)

= −n+

2
log 2π − 1

2

N∑
s=1

log |Σs(θ)|

−1
2

N∑
s=1

tr{(Ys − Xsβ̂)(Ys − Xsβ̂)T [Σs(θ)]−1}.

(5.47)

Here θ represents either θσ , θξ, θγ , or (θT
δ ,θ

T
φ )T , depending on the formula-

tion (marginal, intervenor-adjusted, precision matrix, or autoregressive) of the
SAD model.

The numerical maximization of L(β̂,θ) can be a non-trivial computational
problem when the number of measurement times is large for one or more sub-
jects, for then the determinants and inverses of some large covariance matrices
must be evaluated, or so it would appear. Computing the determinant and in-
verse only once for each distinct pattern of measurement times that occurs
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across subjects will result in some savings in computation; indeed, if the data
are balanced, these operations need be performed only once (on each iteration),
regardless of the number of subjects. Additional savings in computation can be
realized through the use of efficient formulae for the required determinants and
inverses. The specifics of these savings depend on which formulation the SAD
model is based upon, so we consider each of them in turn.

5.5.1 Marginal formulation

For marginally formulated SAD models, in general there is unfortunately no
way to avoid computing the inverses and determinants of ns × ns matrices, as
required by (5.46) and (5.47). However, in some special cases these computa-
tions can be performed relatively efficiently. In the first-order case, for instance,
the inverses and determinants may be evaluated via expressions (2.40) and
(2.41), with substantial savings in computation (Zimmerman, Núñez-Antón,
and El-Barmi, 1998). In higher-order cases, the determinants may be evaluated
using expression (2.33) in Theorem 2.5(d); furthermore, if the data are bal-
anced and the mean is of multivariate regression form, the inversion of Σ(θσ)
can be avoided altogether, for in this case the maximum likelihood and or-
dinary least squares estimators of β coincide [cf. (5.30)] and the last sum in
(5.47) may be evaluated by the formula for tr{A[Σ(θσ)]−1} given by Theo-
rem 2.6, with A defined as

∑N
s=1(Ys − Xsβ̂)(Ys − Xsβ̂)T . These formu-

lae allow one to trade computation of the determinant of the ns × ns matrix
Σs(θσ) for computation of the determinants of ns − p matrices of dimensions
(p+1)× (p+1) and ns − p− 1 matrices of dimensions p× p, and trade com-
putation of tr{A[Σs(θσ)]−1} for computations of traces involving inverses of
the same smaller matrices whose determinants are evaluated. When, as usual,
p is considerably smaller than ns for many s, the overall computational effort
can be reduced significantly using these formulae.

Example 1: Treatment A cattle growth data
Recall, from the analysis of the Treatment A cattle growth data presented in
Section 5.3.1, that a first-order unstructured AD model appears to fit the covari-
ance structure of the cattle weights quite well. Recall further that the marginal
sample variances and lag-one correlations of these data both tend to increase
over time [see Table 5.1(a)], suggesting that one or more structured AD mod-
els may also fit well. Here, for illustration we consider a marginally formulated
power law SAD(1) model with a saturated mean structure. This would seem to
be a reasonable candidate model since its variances and lag-one correlations
can exhibit monotone increasing behavior (see Figure 3.3).

The marginally formulated power law SAD(1) model fitted here is as follows:

σii = σ2(1 + ψ1ti + ψ2t
2
i + ψ3t

3
i ), i = 1, . . . , 11,
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ρi,i−1 = ρtλ
i −tλ

i−1 , i = 2, . . . , 11,

where σ2 > 0 and 0 ≤ ρ < 1. For simplicity we scale time in two-week units,
starting at time zero; thus t1 = 0, t2 = 1, . . . , t10 = 9, t11 = 9.5. Again, cor-
relations for lags beyond one, i.e., {ρi,i−j : i = 3, . . . , n; j = 1, . . . , i − 2},
are taken to equal the appropriate products of the lag-one correlations, in ac-
cordance with (2.37). Observe that this model parameterizes the power law
dependence of lag-one correlations on time a bit differently than the original
power law SAD(1) model (3.13) does; the present parameterization, though
simpler than the original, should not be used when the lag-one sample correla-
tions decrease over time, as the case λ = 0 corresponds to a singular covariance
matrix. Since the lag-one sample correlations of these data clearly do not de-
crease over time, however, we may as well use this simpler parameterization.
REML estimates of model parameters are

⎛
⎜⎜⎜⎜⎜⎜⎝

σ̃2

ψ̃1

ψ̃2

ψ̃3

ρ̃

λ̃

⎞
⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎝

110.0889
0.25534
0.02416

−0.00206
0.81208
0.55020

⎞
⎟⎟⎟⎟⎟⎟⎠
.

Figure 5.2 comprises plots of the REML estimates of marginal variances and
lag-one correlations against time, and includes the sample variances and lag-
one correlations for comparison. Based on this informal assessment, the model
appears to fit very well.

Another example of the use of the marginally formulated power law SAD(1)
model is provided by Hou et al. (2005), who use it to model the covariance
structure of growth trajectories in studies of genetic determinants that affect
complex phenotypes undergoing developmental changes over time.

Example 2: Fruit fly mortality data
In Section 4.3.1 we determined, using informal model identification tools, that
plausible models for the fruit fly mortality data would include structured first-
order AD models in which the marginal variances are quadratic or cubic func-
tions of time and the marginal correlations are quadratic functions of time. Here
we estimate such a model, which we label as SAD-QM3(1): “Q” for quadratic
correlations, “M” for marginal, and “3” for cubic variances. Thus, the fitted
model is

σii = σ2(1 + ψ1ti + ψ2t
2
i + ψ3t

3
i ), i = 1, . . . , 11,

ρi,i−1 = λ1 + λ2ti + λ3t
2
i , i = 2, . . . , 11.
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REML estimates of its parameters are as follows:⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

σ̃2

ψ̃1

ψ̃2

ψ̃3

λ̃1

λ̃2

λ̃3

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

0.68973
1.61269

−0.37628
0.02136
0.41577
0.13367

−0.01130

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠
.
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Figure 5.2 REML estimates of marginal variances (top panel) and lag-one correlations
(bottom panel) for the Treatment A cattle growth data plotted against time. Points are
the sample variances and sample lag-one correlations; solid line connects estimates
corresponding to the marginally formulated power law SAD(1) model; and dotted line
connects estimates corresponding to the autoregressively formulated power law SAD(1)
model.

Figure 5.3 displays plots of REML estimates of this model’s marginal vari-
ances and lag-one correlations against time. Sample variances and lag-one cor-
relations, as given previously in Figure 4.3, are also plotted for comparison.
Although the SAD-QM3(1) model is not wholly adequate, it does appear to re-
produce the gross features of the variances and lag-one correlations reasonably
well.
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Figure 5.3 REML estimates of marginal variances (top panel) and lag-one correlations
(bottom panel) for the fruit fly mortality data plotted against time. Points are the sam-
ple variances and sample lag–one correlations; solid line connects REML estimates
corresponding to the SAD-QM3(1) model described in Section 5.5.1.

5.5.2 Intervenor-adjusted formulation

For an intervenor-adjusted formulation of an SAD model, the determinants
in expression (5.47) may be evaluated very efficiently using Theorem 2.5(c),
which yields

log |Σs(θξ)| =
n∑

i=1

log σsii +
n∑

i=2

log(1 − ρ2
si,i−1)

+
n∑

i=3

log(1 − ρ2
si,i−2·i−1) + · · ·

+
n∑

i=p+1

log(1 − ρ2
si,i−p·{i−p+1:i−1}).

The matrix inverses within this formulation, however, generally cannot be ob-
tained efficiently; the best strategy for their computation appears to be to apply
the inverse mapping, H−1, to Ξ to obtain the marginal covariance matrix and
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then use the computational techniques for the marginal formulation described
in the preceding section.

5.5.3 Precision matrix formulation

For an SAD model for which the elements of the precision matrix are parsi-
moniously modeled, it is clear from (5.46) and (5.47) that the computation of
maximum likelihood estimators requires no inversions of ns × ns matrices. It
does require the computation of determinants of such matrices, however. Not-
ing that the first sum in (5.47) may be written as −∑N

s=1 log |[Σs(θγ)]−1|, we
see that it suffices to compute the determinants of the ns × ns precision ma-
trices. By Theorem 2.2, these matrices are banded, with zeros on off-diagonals
p+ 1, . . . , ns − 1. In the first-order case, the precision matrices are tridiagonal
so their determinants can be obtained with O(ns) computations (rather than
the O(n3

s) computations required for an arbitrary ns × ns matrix) using the
algorithm of El-Mikkawy (2004). In the second-order case, the precision ma-
trices are pentadiagonal and their determinants may also be obtained with only
O(ns) computations using the recursive algorithm of Sogabe (2008). For cases
with order higher than two, no O(ns) algorithms for computing determinants
are known to the authors, but several numerical routines exist for the computa-
tion of determinants, which can exploit, to some degree, the bandedness of the
precision matrices.

5.5.4 Autoregressive formulation

For autoregressively formulated SAD models, versions of expressions (5.46)
and (5.47) may be given in terms of θδ and θφ, with the aid of (2.17) and
Theorem 2.5(a), as follows:

β̂ =

(
N∑

s=1

XT
s TT

s (θ̂φ)[Ds(θ̂δ)]−1Ts(θ̂φ)Xs

)−1

×
N∑

s=1

XT
s TT

s (θ̂φ)[Ds(θ̂δ)]−1T(θ̂φ)Ys, (5.48)

logL(β̂,θδ,θφ) = −n+

2
log 2π − 1

2

N∑
s=1

ns∑
i=1

log δsi(θδ)

−1
2

N∑
s=1

rT
s (β̂)TT

s (θφ)[Ds(θδ)]−1Ts(θφ)rs(β̂),

(5.49)
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where rs(β̂) = (rsi(β̂)) = Ys − Xsβ̂. Since Ds(θδ) is diagonal, computing
its inverse is trivial. Thus, maximum likelihood estimators of the parameters
of autoregressively formulated SAD models may be computed without explicit
computation of determinants or inverses of ns × ns matrices. This is a strong
point in favor of this formulation.

As noted by Pourahmadi (1999), an additional simplification occurs when the
nonzero autoregressive coefficients are modeled linearly, as in (3.10), i.e.,

φi,i−j =
m2∑
l=1

θφlui,i−j,l,

i = 2, . . . , ns, j = 1, . . . , pi.

Here the ui,i−j,l’s are observed covariates, which will typically be functions of
the measurement times. Observe that in this case the ith element of Ts(θφ)rs(β̂)
is given by

rsi −
pi∑

j=1

φi,i−j(θφ)rs,i−j

= rsi −
pi∑

j=1

(uT
i,i−jθφ)rs,i−j

= rsi − wT
siθφ

where ui,i−j = (ui,i−j,l), wsi =
∑pi

j=1 rs,i−jui,i−j , and we have temporarily

suppressed the dependence of various quantities on β̂. Putting

Ws =

⎛
⎜⎝

wT
s1
...

wT
sns

⎞
⎟⎠ ,

we have

Ts(θφ)rs = rs − Wsθφ,

whereupon (5.49) may be reexpressed as follows:

logL(β̂,θφ,θδ) = −n+

2
log 2π − 1

2

N∑
s=1

ns∑
i=1

log δsi(θδ)

−1
2

N∑
s=1

[rs(β̂) − Ws(β̂)θφ]T [Ds(θδ)]−1

×[rs(β̂) − Ws(β̂)θφ]. (5.50)

Observe that for each fixed value θδ0 of θδ, (5.50) is maximized with respect
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to θφ by

θ̂φ =

(
N∑

s=1

WT
s (β̂)[Ds(θδ0)]−1Ws(β̂)

)−1 N∑
s=1

WT
s (β̂)[Ds(θδ0)]−1rs(β̂).

(5.51)
Thus, for autoregressively specified SAD models in which the autoregressive
coefficients are modeled linearly, a possibly efficient algorithm for comput-
ing the maximum likelihood estimators is to iterate between equation (5.48),
equation (5.51) with θδ0 = θ̂δ , and the numerical maximization of

logL(β̂, θ̂φ,θδ) = −n+

2
log 2π − 1

2

N∑
s=1

ns∑
i=1

log δsi(θδ)

−1
2

N∑
s=1

[rs(β̂) − Ws(β̂)θ̂φ]T [Ds(θδ)]−1

×[rs(β̂) − Ws(β̂)θ̂φ]. (5.52)

In the further special case in which δsi(θδ) is a saturated function of measure-
ment time, even the numerical maximization of (5.52) can be circumvented, for
in this case an explicit expression can be given for the maximizing value of θδ

in (5.50) for each fixed value θφ0 of θφ. For example, if the data are balanced
and δsi(θδ) = δi for all s, then for each fixed θφ0, (5.50) is maximized by

δ̂i =
1
N

N∑
s=1

[rs(β̂) − Ws(β̂)θφ0]T [rs(β̂) − Ws(β̂)θφ0].

Example: Treatment A cattle growth data
To the analysis of the Treatment A cattle growth data based on the marginally
formulated model presented in Section 5.5.1, we add here analyses based on
two autoregressively formulated models: a power law SAD(1) model and an
unconstrained linear model, each with saturated mean. The autoregressively
formulated power law SAD(1) model fitted here is given by

δi = δ, i = 2, . . . , 11,

φi,i−1 = φtλ
i −tλ

i−1 , i = 2, . . . , 11,

where δ > 0 and φ ≥ 0; δ1 is left unstructured; and time is scaled as it was in
the marginally formulated model. This model takes the innovation variances,
apart from the first, to be constant over time. Allowing the first innovation vari-
ance to be different than the rest is important for the sake of increased flexibil-
ity, as noted previously in Section 3.6. Also, we have used a simpler parameter-
ization for the power law dependence of lag-one autoregressive coefficients on
time than that originally prescribed in Section 3.6; this is permissible because
the lag-one autoregressive coefficients corresponding to the sample covariance
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matrix [Table 4.1(c)] do not decrease over time. REML estimates of model
parameters are ⎛

⎜⎜⎝
δ̃1
δ̃

φ̃

λ̃

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝

102.0266
31.6731
0.99999
0.55136

⎞
⎟⎟⎠ .

These yield REML estimates of marginal variances and lag-one correlations
that are plotted as dotted lines in Figure 5.2. When compared with estimates
from the marginally formulated model fitted previously, it can be seen that the
autoregressively formulated model does not fit the lag-one correlations quite as
well; however, it fits the variances just about as well, despite having two fewer
parameters.

The unconstrained linear model fitted here is motivated by the regressogram
and innovariogram displayed in Figure 5.4 (which is an augmented version of
Figure 4.8 given previously). These plots suggest using an unconstrained linear
SAD(10) model for which the log innovation variances are a cubic function of
time and the autoregressive coefficients are a cubic function of lag. Accord-
ingly we fit the model

log δi = ψ1 + ψ2ti + ψ3t
2
i + ψ4t

3
i ,

φij = θ1 + θ2(ti − tj) + θ3(ti − tj)2 + θ4(ti − tj)3,

where for simplicity we again scale time in two-week units, except for the last
observation which we pretend was also taken two weeks (rather than one) after
the penultimate measurement on each cow. Also, for greater ease of interpreta-
tion we center the time axis by setting t1 = −5, t2 = −4, . . . , t10 = 4, t11 = 5.
REML estimates of this model’s parameters are as follows:⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

ψ̃1

ψ̃2

ψ̃3

ψ̃4

θ̃1
θ̃2
θ̃3
θ̃4

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

3.45036
0.08822
0.00848

−0.01142
1.53842

−0.88356
0.15117

−0.00795

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

The fitted cubic functions, which yield REML estimates of the {δi} and {φij},
are plotted as curves in Figure 5.4. The corresponding REML estimates of
innovation variances and autoregressive coefficients are displayed in Table
5.7, as are the resulting REML estimates of marginal variances and correla-
tions. Comparison of the latter set of quantities with those for the unstructured
AD(10) model in Table 5.1(a) suggests that this SAD(10) model may provide
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a reasonable fit to the data. We will carry out more formal comparisons of this
model to other models in the next chapter.
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Figure 5.4 Sample log innovariogram and regressogram for the Treatment A cattle
growth data. Fitted curves correspond to REML estimates of cubic models for log inno-
vation variances and autoregressive coefficients.

For additional examples of fits of autoregressively formulated structured power
law AD(1) models, both of which pertain to genetic studies, see Zhao et al.
(2005a) and Jaffrézic et al. (2003, 2004).

5.6 Concluding remarks

This chapter has described, in considerable detail and for a variety of scenarios,
likelihood-based estimation of the parameters of normal antedependence mod-
els. The scenarios are distinguished by whether or not the data are balanced
and, if not, whether the missingness is monotone; by whether or not the mean
structure is of multivariate regression form (including the saturated mean as a
special case); and by whether the antedependence is unstructured or structured
and, if the latter, how the antedependence is parameterized. In cases where
the data are balanced or at worst the missingness is monotone, the mean struc-
ture is of multivariate regression form, and the antedependence is unstructured,
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Table 5.7 REML estimates of parameters of unconstrained linear SAD(10) model for
the Treatment A cattle growth data: (a) log innovation variances (along the main diago-
nal) and autoregressive coefficients (below the main diagonal); (b) marginal variances
(along the main diagonal) and correlations (below the main diagonal).
(a)

104
.80 53
.31 .80 360
.03 .31 .80 30

–.09 .03 .31 .80 29
–.09 –.09 .03 .31 .80 32
–.04 –.09 –.09 .03 .31 .80 34

.03 –.04 –.09 –.09 .03 .31 .80 35

.07 .03 –.04 –.09 –.09 .03 .31 .80 33

.04 .07 .03 –.04 –.09 –.09 .03 .31 .80 25
–.13 .04 .07 .03 –.04 –.09 –.09 .03 .31 .80 15

(b)

104
.75 119
.76 .87 163
.73 .86 .92 213
.68 .82 .90 .94 257
.63 .77 .85 .91 .94 290
.58 .72 .80 .86 .91 .94 318
.54 .67 .75 .81 .86 .91 .94 348
.53 .64 .71 .77 .82 .88 .92 .95 383
.53 .63 .70 .75 .80 .85 .90 .94 .97 419
.48 .61 .67 .72 .77 .82 .87 .92 .96 .98 426

explicit expressions for the maximum likelihood (and REML) estimates exist
and can be expressed in terms of regression coefficients and residual sums of
squares from regressions of the response at a given time on a particular num-
ber of its predecessors plus covariates, that number being determined by the
order of the model. Otherwise, the estimates must usually be obtained by nu-
merical optimization. In this event the autoregressive parameterization of the
model has several advantages, including the complete absence of constraints
on the parameters (provided that we model the logs of the innovation variances
rather than the innovation variances themselves), and trivial computation of the
inverse and determinant of the covariance matrix.

In each scenario described in this chapter, we specified the minimum sample
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size needed for the likelihood-based estimates to exist. It should be noted that
in every case, the required sample size is less than or equal to that required
for existence of the maximum likelihood estimate of the covariance matrix
under general multivariate dependence. For example, when the model is the
normal multivariate-regression, unstructured AD(p) model, we require N −
m > p, while for general multivariate dependence we require N −m > n−1.
Thus, relative to general multivariate dependence, AD(p) model parameters are
estimable from fewer observations.

A final remark pertains to software for obtaining the estimates. PROC MIXED
of SAS may be used for likelihood-based estimation of unstructured normal
AD models of order 0, 1, and n − 1. The same procedure in SAS can fit three
structured normal AD models: the first-order stationary, first-order heteroge-
neous, and first-order continuous-time autoregressive models. For estimating
the parameters of unstructured normal AD models of arbitrary order, either
constant or variable, R functions written by the first author are available for
download from his Web page (see Section 4.4 for the address).
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CHAPTER 6

Testing Hypotheses on the
Covariance Structure

After a preliminary attempt to identify the data’s mean and covariance struc-
ture using summary statistics and graphical diagnostics, followed perhaps by
estimation of the parameters of a tentative model, the analyst will often want to
formally test various hypotheses. Likelihood ratio tests (assuming normality)
may be used for this purpose, provided that the hypotheses are nested. Like-
lihood ratio tests may be used to test hypotheses on either the mean structure
or the covariance structure, or both. In this chapter we derive likelihood ratio
tests for several hypotheses on antedependent covariance structures. Tests of
hypotheses on the mean structure are deferred to the following chapter. This
order of presentation corresponds to what we believe to be the most coherent
model selection strategy, which is to determine the covariance structure prior
to testing hypotheses on the mean structure. The assumed mean structure for
the models whose covariance structures are tested should be the most general
one possible; typically this will be saturated across time (within groups), but it
may also include covariates identified by informal methods as possibly being
important.

In practice, the likelihood ratio test statistic for comparing the fits of two nested
antedependence models can be computed by maximizing the likelihood func-
tion under both models using procedures described at length in Chapter 5, and
then forming the ratio of the two maxima; an explicit expression for it in terms
of parameter estimates or other meaningful statistics is not strictly necessary.
Nevertheless, such an expression can be helpful, as it often sheds light on the
behavior of the test and provides a basis for improving the approximation of
the test statistic’s asymptotic distribution. It can also suggest efficient comput-
ing procedures. Consequently, in what follows we provide expressions for the
test statistic for many such tests.

As a likelihood ratio test statistic is the ratio of maxima of the likelihood func-
tion under two models, so also a residual likelihood ratio test (RLRT) statistic

167
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is the ratio of maxima of the residual likelihood under two models. A RLRT
may be used to compare two nested antedependence structures, analogously to
a likelihood ratio test, provided that the mean structures of the two antedepen-
dence models are identical. Valid comparisons of models with different mean
structures cannot be made within the REML framework because the error con-
trasts are different for two such models. For hypotheses about the covariance
structure of unstructured antedependence models, the expression for the RLRT
statistic generally may be obtained from that of the likelihood ratio test statis-
tic by replacing the number of subjects with the number of subjects minus
the number of unknown parameters in each subject’s mean structure, and this
difference is usually not sufficiently large to alter the conclusion reached by
the likelihood ratio test. The relationship between the RLRT and likelihood
ratio test statistics for hypotheses about the covariance structure of structured
antedependence models is not as simple as it is in the unstructured case; never-
theless, in this case, also, the two test statistics do not often differ substantially.
Hence, for the sake of brevity and consistency, in this chapter we feature like-
lihood ratio tests only.

We begin the chapter with likelihood ratio tests for properties satisfied by indi-
vidual parameters of the covariance structure under antedependence. Follow-
ing that, we give likelihood ratio tests for the order of an unstructured normal
antedependence model, for a structured normal antedependence model versus
an unstructured normal antedependence model of the same order, and for ho-
mogeneity of unstructured normal antedependence across treatment (or other)
groups. Finally, for those situations where the hypotheses of interest are not
nested, we describe an approach for covariance model selection based on pe-
nalized likelihood criteria.

6.1 Tests on individual parameters

6.1.1 Partial correlations

Recall from Section 2.3.1 that each partial correlation corresponding to re-
sponses lagged more than p units apart is equal to zero under pth-order antede-
pendence. It may therefore be of interest to test the hypothesis that any one of
these partial correlations is equal to zero (against a two-sided alternative hy-
pothesis). In Section 4.2 we gave an informal rule of thumb for making this
determination but now we consider a formal hypothesis test.

Assume that the data are balanced. Now, by Theorem 4.3.5 of Anderson (1984),
the distribution of the sample partial correlation, rij·rest, based on a random
sample of size N from a normal population with corresponding partial cor-
relation ρij·rest, is identical to the distribution of the sample marginal corre-
lation, rij , based on a random sample of size N − (n − 2) from a normal
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population with corresponding marginal correlation ρij . Consequently, any in-
ference procedure for a partial correlation based on its maximum likelihood
estimate from a sample of size N is analogous to an inference procedure on a
marginal correlation based on its maximum likelihood estimate from a sample
of size N − n + 2. In particular, the well-known likelihood ratio test for zero
marginal correlation and the well-known, Fisher transformation-based, approx-
imate confidence interval for a correlation coefficient can be adapted to test for
zero partial correlation and place confidence bounds on a partial correlation
coefficient. Details are given in the following theorem.

Theorem 6.1. Suppose that Y1, . . . ,YN are balanced and follow a normal
multivariate regression, unstructured AD(n− 1) model, i.e.,

Ys ∼ independent Nn

(
(zT

s ⊗ In)β,Σ(θ)
)
, s = 1, . . . , N,

where Σ(θ) is unstructured AD(n − 1) and zs is m × 1. Assume that N −
m > n − 1, and let rij·rest denote the sample partial correlation between
ordinary least squares residuals (from the fitted mean structure) at the ith and
jth measurement times. For any α ∈ (0, 1), the size-α likelihood ratio test
for the null hypothesis that the corresponding population partial correlation,
ρij·rest, is zero (versus the alternative that it is not) rejects the null hypothesis
if and only if(

N −m− n+ 1
1 − r2ij·rest

)1/2

|rij·rest| > tα/2,N−m−n+1, (6.1)

where tα/2,N−m−n+1 is the 100(1 − α/2)th percentile of Student’s t distribu-
tion with N −m − n + 1 degrees of freedom. Moreover, the endpoints of an
approximate 100(1 − α)% confidence interval for ρij·rest are given by

tanh
(
Uij ± zα/2/(N −m− n)1/2

)
, (6.2)

where

Uij =
1
2

log
(

1 + rij·rest

1 − rij·rest

)

and zα/2 is the 100(1−α/2)th percentile of the standard normal distribution.

Theorem 6.1 can be extended easily to handle dropouts. If Ni subjects are
observed at time i, then we may simply replace N in expressions (6.1) and
(6.2) with Ni.

Examples: Treatment A cattle growth data and 100-km race data
The test described in Theorem 6.1 may be applied to the partial correlations
of the Treatment A cattle growth data and 100-km race split times, which are
displayed in Table 4.1(b) and Table 4.3(b), respectively. Doing so, we find that
the null hypothesis of zero partial correlation is rejected at the 0.05 level of
significance for those partial correlations that were deemed to be significant
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using the rule of thumb of Section 4.2, and only for those partial correlations.
Thus the rule of thumb works very well for these data.

6.1.2 Intervenor-adjusted partial correlations

Like standard partial correlations corresponding to variables lagged p or more
units apart, intervenor-adjusted partial correlations corresponding to those same
variables are equal to zero under pth-order antedependence (Definition 2.3).
Hence it is likewise of interest to test whether any of these quantities are equal
to zero. In Section 4.2, we gave an informal rule of thumb for making this de-
termination. The next theorem, which follows by the same line of reasoning
as that which established Theorem 6.1, gives the likelihood ratio test for this
hypothesis. It can be extended to handle dropouts in exactly the same way that
Theorem 6.1 can.

Theorem 6.2. Suppose that Y1, . . . ,YN are balanced and follow the normal
multivariate regression, unstructured AD(n − 1) model specified in Theorem
6.1. Assume that N − m > n − 1, and let rij·{j+1:i−1} denote the sample
intervenor-adjusted partial correlation between ordinary least squares resid-
uals (from the fitted mean structure) at the ith and jth measurement times
(i > j). For any α ∈ (0, 1), the size-α likelihood ratio test for the null hy-
pothesis that the corresponding population intervenor-adjusted partial corre-
lation, ρij·{j+1:i−1}, is zero (versus the alternative that it is not) rejects the null
hypothesis if and only if

(
N −m− i+ j

1 − r2ij·{j+1:i−1}

)1/2

|rij·{j+1:i−1}| > tα/2,N−m−i+j ,

where tα/2,N−m−i+j is the 100(1 − α/2)th percentile of Student’s t distribu-
tion with N − m − i + j degrees of freedom. Moreover, the endpoints of an
approximate 100(1 − α)% confidence interval for ρij·{j+1:i−1} are given by

tanh
(
Vij ± zα/2/(N −m− i+ j − 1)1/2

)
,

where

Vij =
1
2

log
(

1 + rij·{j+1:i−1}
1 − rij·{j+1:i−1}

)
.

Examples: Treatment A cattle growth data and 100-km race data
We apply the test described in Theorem 6.2 to the intervenor-adjusted partial
correlations of the Treatment A cattle growth data and 100-km race split times,
which are displayed in Table 4.1(a) and Table 4.3(a), respectively. We find, as
was the case for the test for partial correlations, that this test rejects the null
hypothesis of zero intervenor-adjusted partial correlation at significance level
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0.05 for precisely those correlations that were deemed to be significant using
the rule of thumb of Section 4.2.

6.1.3 Autoregressive coefficients

Since autoregressive coefficients corresponding to variables lagged p or more
units apart are equal to zero under pth-order antedependence (Theorem 2.3),
testing whether an autoregressive coefficient is equal to zero may also be of
interest. The final theorem of this section gives the likelihood ratio test for this
hypothesis. The theorem also gives the likelihood ratio test for the hypothe-
sis that, for fixed i, all autoregressive coefficients in the regression of the ith
response variable on its predecessors and the covariates are zero.

Theorem 6.3. Suppose that Y1, . . . ,YN are balanced and follow the normal
multivariate regression, unstructured AD(n − 1) model specified in Theorem
6.1. Assume that N − m > n − 1, let φij (where i > j) denote the autore-
gressive coefficient on Yj in the ordinary least squares regression of Yi on its
predecessors and the covariates, and let φ̂ij and δ̃i denote the maximum likeli-
hood estimator of φij and the REML estimator of δi, respectively, as given by
Theorem 5.6.

(a) For any α ∈ (0, 1), the size-α likelihood ratio test for the null hypothesis
that φij is zero (versus the alternative that it is not) rejects the null hypoth-
esis if and only if

|φ̂ij |
(δ̃icii,jj)1/2

> tα/2,N−m−i+1, (6.3)

where cii,jj is the jth diagonal element of A−1
1:i−1,i and tα/2,N−m−n+1 is

defined as in Theorem 6.2;

(b) For any α ∈ (0, 1), 100(1 − α)% confidence intervals for φij and δi are
given by

φ̂ij ± tα/2,N−m−i+1(δ̃icii,jj)1/2

and (
(N −m− i+ 1)δ̃i
χ2

α/2,N−m−i+1

,
(N −m− i+ 1)δ̃i
χ2

1−α/2,N−m−i+1

)
,

respectively, where χ2
α/2,N−m−i1

is the 100(1 − α/2)th percentile of the
chi-square distribution with N −m− i+ 1 degrees of freedom;

(c) Let φi = (φi1, φi2, . . . , φi,i−1)T and let φ̂i be its maximum likelihood esti-
mator. Then, for any α ∈ (0, 1), the size-α likelihood ratio test for the null
hypothesis that φi is equal to 0 (versus the alternative that it is not) rejects
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the null hypothesis if and only if
(
N −m− i+ 1

i− 1

)
R̂2

i·1,...,i−1

1 − R̂2
i·1,...,i−1

> Fα,i−1,N−m−i+1, (6.4)

where R̂2
i·1,...,i−1 = φ̂

T

i A1:i−1,iφ̂i/aii and Fα,i−1,N−m−i+1 is the 100(1−
α)th percentile of the F distribution with i− 1 and N −m− i+ 1 degrees
of freedom.

Proof. Let i be a fixed integer between 2 and n, inclusive. It follows from
standard results in multiple linear regression theory that, conditional on the re-
sponse and covariates up to time i − 1 (inclusive), φ̂i is distributed as N(φi,
δiA−1

1:i−1,i). Thus, the conditional distribution of φ̂ij is N(φij , δicii,jj). So un-

der the null hypothesis, conditionally φ̂ij/(δicii,jj)1/2 is distributed as N(0, 1).
Also from standard regression theory, conditionally (N −m − i + 1)δ̃i/δi is
distributed as chi-square withN−m−i+1 degrees of freedom, and δ̃i and φ̂ij

are conditionally independent. Thus, under the null hypothesis and conditional
on the response and covariates up to time i− 1,

φ̂ij

(δ̃icii,jj)1/2

is distributed as Student’s t with N −m− i+ 1 degrees of freedom. Since this
distribution is free of the responses up to time i−1, it is also the unconditional
distribution, and parts (a) and (b) of the theorem follow immediately. The proof
of part (c) follows by a similar argument, upon noting that φi = 0 if and only
if R2

i·1,...,i−1 = 0 and that R̂2
i·1,...,i−1 is the maximum likelihood estimator of

R2
i·1,...,i−1. �

By the proof of Theorem 6.3, it is clear that the test given by (6.3) is the stan-
dard t-test for zero slope coefficient on Yj in the ordinary least squares regres-
sion of Yi on its predecessors and the covariates, and that this test may therefore
be carried out using standard software for fitting regression models. If there are
dropouts, we merely replace N with Ni in expressions (6.3) and (6.4). We re-
mind the reader that we performed this test on the autoregressive coefficients of
the Treatment A cattle growth data and 100-km race split times in Section 4.2,
indicating in Table 4.1(c) and Table 4.3(c) which autoregressive coefficients
were significantly different from zero at the 0.05 level of significance.

6.2 Testing for the order of antedependence

The analyst will often want to formally test for the order of antedependence of
the data’s covariance structure. Recall from (2.2) that antedependence models
of increasing order are nested. Here we present the likelihood ratio test for the
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null hypothesis of pth-order unstructured antedependence against the alterna-
tive hypothesis of (p + q)th-order unstructured antedependence, where p and
q are specified integers such that 0 ≤ p ≤ n − 2 and 1 ≤ q ≤ n − p − 1.
Practical strategies for determining the order of antedependence using a series
of such tests will be described subsequently. Observe that the alternative hy-
pothesis of highest possible order, i.e., that for which p+q = n−1, imposes no
structure whatsoever (other than positive definiteness) on the covariance ma-
trix, so in this case the test is one of pth-order antedependence versus general
multivariate dependence.

For our main result, we assume that the observations are balanced and we take
the mean structure to be of multivariate regression form. Recall that the mul-
tivariate regression form of the mean structure includes the saturated mean as
a special case. Our main result is an extension of a result originally given by
Gabriel (1962), who considered only the case of a saturated mean and q = 1.
Eventually we will further extend this result to allow for dropouts and to test
for order in nested variable-order antedependence models.

Theorem 6.4. Suppose that Y1, . . . ,YN are balanced and follow a normal
multivariate regression, unstructured AD(p+ q) model, i.e.,

Ys ∼ independent Nn

(
(zT

s ⊗ In)β,Σ(θ)
)
, s = 1, . . . , N,

where Σ(θ) is unstructured AD(p + q) and zs is m × 1. Assume that N −
m > p + q, and let ri,i−k·{i−k+1:i−1} denote the intervenor-adjusted sample
partial correlation between ordinary least squares residuals (from the fitted
mean structure) at the ith and (i − k)th measurement times. The likelihood
ratio test for the null hypothesis that Σ(θ) is unstructured AD(p) [versus the
alternative that it is unstructured AD(p+ q)] rejects the null hypothesis if and
only if

−N
q∑

j=1

n∑
i=p+j+1

log
(
1 − r2i,i−p−j·{i−p−j+1:i−1}

)
> K, (6.5)

where K is a constant. For any α ∈ (0, 1), an asymptotically (as N → ∞)
valid size-α test is obtained by taking K to be the 100(1−α)th percentile of a
chi-square distribution with (2n− 2p− q − 1)(q/2) degrees of freedom.

Proof. Let θ̂0 and θ̂1 be the maximum likelihood estimators of the marginal
covariance parameter θσ under the null and alternative hypotheses, respec-
tively. It follows from (5.33) and Theorem 5.6(a) that the maximized profile
log-likelihood under the alternative hypothesis is

sup
H1

logL∗(θ) = −nN
2

log 2π − N

2
log |Σ(θ̂1)| − N

2
tr
(
A[Σ(θ̂1)]−1

)
,

where A = (aij) is given by (5.31). Now denote the elements of Σ(θ̂1) and
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[Σ(θ̂1)]−1 by (σ̂ij1) and (σ̂ij
1 ), respectively, and note from Theorem 2.2 that

σ̂ij
1 = 0 for |i− j| > p+ q. Therefore,

tr
(
A[Σ(θ̂1)]−1

)
=

n∑
i=1

n∑
j=1

aij σ̂
ij
1

=
∑∑

0≤|i−j|≤p+q

aij σ̂
ij
1

=
∑∑

0≤|i−j|≤p+q

σ̂ij1σ̂
ij
1

=
n∑

i=1

n∑
j=1

σ̂ij1σ̂
ij
1

= tr
(
[Σ(θ̂1)][Σ(θ̂1)]−1

)
= tr(In)
= n.

Thus

sup
H1

logL∗(θ) = −nN
2

log 2π − N

2
log |Σ(θ̂1)| − Nn

2
. (6.6)

Similarly, it may be shown that

sup
H0

logL∗(θ) = −nN
2

log 2π − N

2
log |Σ(θ̂0)| − Nn

2
.

Now, upon letting Λ denote the usual likelihood ratio test statistic, i.e.,

Λ =
supH0

L∗(θ)
supH1

L∗(θ)
,

we obtain

−2 log Λ = N log

(
|Σ(θ̂0)|
|Σ(θ̂1)|

)
. (6.7)

The determinants in (6.7) may be expressed in terms of various quantities us-
ing Theorem 2.5. Here, we use part (c) of Theorem 2.5 to express them in
terms of certain intervenor-adjusted partial correlations among residuals from
the fitted mean structure. Denote the intervenor-adjusted partial correlations
corresponding to θ̂l (l = 0 or 1) as {ρ̂i,i−k·{i−k+1:i−1},l}, and observe that

ρ̂i,i−k·{i−k+1:i−1},0 = ρ̂i,i−k·{i−k+1:i−1},1 for k = 1, . . . , p

and

ρ̂i,i−k·{i−k+1:i−1},1 = ri,i−k·{i−k+1:i−1} for p+ 1 ≤ k ≤ p+ q;

the sample size condition of the theorem ensures that these quantities are well
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defined. Thus

−2 log Λ = N log

(∏n
i=1 σ̂ii0

∏n
i=2(1 − ρ̂2

i,i−1,0) · · ·∏n
i=1 σ̂ii1

∏n
i=2(1 − ρ̂2

i,i−1,1) · · ·

×
∏n

i=p+1(1 − ρ̂2
i,i−p·{i−p+1:i−1},0)∏n

i=p+q+1(1 − ρ̂2
i,i−p−q·{i−p−q+1:i−1},1)

)

= −N
q∑

j=1

n∑
i=p+j+1

log
(
1 − r2i,i−p−j·{i−p−j+1:i−1}

)
.

This establishes that the likelihood ratio test has the form given by (6.5). Now,
by standard asymptotic theory for likelihood ratio testing, −2 log Λ converges
in distribution (as N → ∞) to a chi-square random variable with degrees
of freedom equal to the difference in dimensionality of the parameter spaces
under the two hypotheses, which is

(2n− p− q)(p+ q + 1)
2

− (2n− p)(p+ 1)
2

= (2n− 2p− q− 1)(q/2). �

The form of the likelihood ratio test given by Theorem 6.4 is eminently rea-
sonable: the test statistic is essentially a scaled average of quantities, each the
log of one minus the square of an intervenor-adjusted sample partial correla-
tion, which are small with high probability under the null hypothesis but not
necessarily so under the alternative hypothesis. In fact, since −N log(1 − r2)
exceeds a constant if and only if |r|/(1 − r2)1/2 exceeds another constant, the
likelihood ratio test is the sum of test criteria which are equivalent to those test
criteria of Theorem 6.2 that correspond to intervenor-adjusted partial correla-
tions between variables lagged at least p units apart.

A modification to the test criterion which yields a better asymptotic approxi-
mation to the chi-square distribution specified in Theorem 6.4 results from the
following considerations. A two-term Taylor series approximation of log(1 −
r2i,i−p−j·{i−p−j+1:i−1}) is given by

log(1 − r2i,i−p−j·{i−p−j+1:i−1})
.= −r2i,i−p−j·{i−p−j+1:i−1}

− r4i,i−p−j·{i−p−j+1:i−1}/2.

Now using expressions given, for example, by Anderson (1984, p. 108) for
the even moments of a sample correlation when the corresponding population
correlation is equal to zero, in tandem with the simple relationship between
inference for ordinary correlations and partial correlations (Anderson, 1984,
Theorem 5.3.5), we obtain

E
(
r2m
i,i−p−j·{i−p−j+1:i−1}

)
=

Γ[ 12 (N − p− j)]Γ(m+ 1
2 )√

πΓ[12 (N − p− j) +m]
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for any positive integer m. (Here, Γ represents the standard gamma function,
defined by Γ(t) =

∫∞
0 e−utu−1 du, for t > 0.) Thus we find that

E
[
log(1 − r2i,i−p−j·{i−p−j+1:i−1})

]
= − 1

N − p− j
+O[(N − p− j)−2].

As a result, the size of the test prescribed by Theorem 6.4 is more closely
approximated by α if we replace the test statistic in (6.5) by

−
q∑

j=1

⎛
⎝(N − p− j)

n∑
i=p+j+1

log
(
1 − r2i,i−p−j·{i−p−j+1:i−1}

)⎞⎠ .

The likelihood ratio test criterion given by Theorem 6.4 is expressed in terms of
certain intervenor-adjusted sample partial correlations. It is possible, however,
to express the criterion in several alternative ways, as a consequence of the var-
ious ways in which the determinant of an antedependent covariance matrix can
be represented (Theorem 2.5). For example, the criterion may be expressed in
terms of maximum likelihood estimates of certain innovation variances [Theo-
rem 2.5(a)], certain multiple correlation coefficients [Theorem 2.5(b)], or cer-
tain principal minors of the residual covariance matrix [Theorem 2.5(d)]. Of
these, the first is especially useful and we now consider it further. This form of
the likelihood ratio test was first given by Kenward (1987).

Theorem 6.5. The likelihood ratio test criterion given by (6.5) may be ex-
pressed equivalently as

N

n∑
i=p+2

[logRSSi(p) − logRSSi(p+ q)] > K, (6.8)

where RSSi(k) is the residual sum of squares from the ordinary least squares
regression of the ith response variable on the ki ≡ min(k, i−1) such variables
immediately preceding it plus them covariates, andK is defined as in Theorem
6.4.

Proof. From (6.7) and Theorem 2.5(a), we have

−2 log Λ = N log

( ∏n
i=1 δ̂

(p)
i∏n

i=1 δ̂
(p+q)
i

)

= N

n∑
i=1

(
log δ̂(p)

i − log δ̂(p+q)
i

)

where δ̂(k)
i is the maximum likelihood estimator of the ith diagonal element

of matrix D of the modified Cholesky decomposition of Σ−1 under an AD(k)
model. Now, it was shown in the proof of Theorem 5.1(d) that δ̂(k)

i under such
a model is merely (1/N ) times the residual sum of squares from the ordinary
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least squares regression of the ith response variable on the ki ≡ min(k, i− 1)
such variables immediately preceding it plus the m covariates. The theorem
follows immediately. �

An important advantage of the test criterion (6.8) relative to (6.5) is that it is
expressed in terms of residual sums of squares from several regression models,
implying that it can be computed using standard regression software.

Like the first criterion, this one’s actual size more closely approximates its
nominal size if it is modified in such a way that its expectation more closely
matches that of the limiting chi-square distribution. Using the fact that for i ≥
p + 2, RSSi(p)/RSSi(p + q) has a Beta distribution with parameters [N −
m−(p+q)i]/2 and [(p+q)i−p]/2 under the null hypothesis, Kenward (1987)
derived the following improved criterion:∑n

i=p+2 [(p+ q)i − p]
∑n

i=p+2 [logRSSi(p) − logRSSi(p+ q)]∑n
i=p+2 ψ [(p+ q)i − p,N −m− (p+ q)i]

> K,

(6.9)
where K is defined as in Theorem 6.4 and

ψ(x, y) =

⎧⎪⎪⎨
⎪⎪⎩

0 if x = 0
(2y − 1)/[2y(y − 1)] if x = 1
2
∑x/2

l=1(y + 2l − 2)−1 if x > 0 and even
ψ(1, y) + ψ(x− 1, y + 1) if x > 1 and odd.

Some important special cases of the likelihood ratio test given by either of The-
orems 6.4 or 6.5 may be singled out. First consider the case (p, q) = (0, n−1),
which corresponds to testing for complete independence against arbitrary de-
pendence. In this case the criterion for an asymptotically valid size-α likeli-
hood ratio test reduces to

−N log |R| > K, (6.10)

where R is the sample correlation matrix of residuals (from the fitted mean
structure) and K is the 100(1 − α)th percentile of a chi-square distribution
with n(n− 1)/2 degrees of freedom. This test coincides with the well-known
likelihood ratio test for independence given, for example, by Anderson (1984,
Theorem 9.2.1). Next consider the case in which p is arbitrary and q = 1,
which corresponds to testing for an AD(p) model versus an AD(p+ 1) model.
In this case the criterion for an asymptotically valid size-α likelihood ratio test
reduces to

−N
n∑

i=p+2

log
(
1 − r2i,i−p−1·{i−p:i−1}

)
> Kp (6.11)

where Kp is the 100(1 − α)th percentile of a chi-square distribution with
n − p − 1 degrees of freedom. It follows easily from Theorem 2.5(c) that
the test criteria (6.11) for the sequence of tests of AD(p) versus AD(p + 1)
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(p = 0, 1, . . . , n − 2) sum to the criterion (6.10) for testing complete inde-
pendence versus arbitrary dependence. Thus, this sequence can be viewed as a
decomposition of the test for complete independence into steps of degree one.
Furthermore, the sequence suggests two practical strategies for selecting the
order of antedependence. Analogously to the selection of order of a polyno-
mial model for the mean structure of a regression model, the analyst may use
either a forward selection strategy [starting by testing AD(0) versus AD(1),
and if AD(0) is rejected then testing AD(1) versus AD(2), etc.] or a backward
elimination strategy [starting with a test of AD(n− 2) versus AD(n− 1), and
if AD(n− 2) is not rejected then testing AD(n− 3) versus AD(n− 2), etc.].

The likelihood ratio test for order of antedependence can be extended easily
for use when there are dropouts. As a consequence of Theorem 5.8, one may
simply compute the intervenor-adjusted partial correlations (for the test cri-
terion of Theorem 6.4) or residual sums of squares (for the test criterion of
Theorem 6.5) from the available data and replace N in the criteria with Ni

(and move it inside the summation) but in every other respect proceed as in the
complete-data case. The test can also be extended for use with variable-order
antedependence models. Suppose that we wish to test the null hypothesis that
the covariance matrix is AD(p1, . . . , pn) versus the alternative hypothesis that
it is AD(p1 + q1, . . . , pn + qn), where the pi’s and qi’s are specified integers
such that 0 ≤ pi ≤ i − 1, 0 ≤ qi ≤ i − 1 − pi, and at least one qi is strictly
greater than 0. For this test, asymptotically valid size-α test criteria analogous
to those of Theorems 6.4 and 6.5 are

−N
n∑

i=2

qi∑
j=1

log
(
1 − r2i,i−pi−j·{i−pi−j+1:i−1}

)
> K

and

N

n∑
i=2

[logRSSi(pi) − logRSSi(pi + qi)] > K,

respectively, whereK is the 100(1−α)th percentile of a chi-square distribution
with

∑n
i=2 qi degrees of freedom.

Simulation results
To demonstrate the improvement in approximating the nominal size that results
from using the modified test criterion (6.9), and to give some indication of
the test’s power, we present the results of a small simulation study. We take
p = q = 1, hence we test AD(1) versus AD(2). We first consider size. For
N = 20, 40 or 80 and n = 5 or 10, we simulated 100,000 data sets of size
N from n-variate normal distributions with zero mean and AD(1) covariance
matrix Σ, where the modified Cholesky decomposition of Σ−1 was given by
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Table 6.1 Estimates of actual sizes of the nominal size-0.05 likelihood ratio test (LRT)
for AD(1) versus AD(2), and of its modification. Estimated standard errors of estimated
sizes are approximately 0.0007.

N n LRT Modified LRT

20 5 0.0927 0.0502
20 10 0.1191 0.0501
40 5 0.0675 0.0498
40 10 0.0776 0.0495
80 5 0.0592 0.0508
80 10 0.0629 0.0503

D = I and

T =

⎛
⎜⎜⎜⎜⎜⎝

1 0 · · · 0 0
−1 1 · · · 0 0

0 −1 · · · 0 0
...

...
...

...
...

0 0 · · · −1 1

⎞
⎟⎟⎟⎟⎟⎠
.

(Thus, the lag-one autoregressive coefficients were all taken to equal 1.0.) Ta-
ble 6.1 reports, for each case of N and n, the proportion of simulations for
which the nominal size-0.05 likelihood ratio test criterion, and its modification
(6.9), reject AD(1) in favor of AD(2). It is clear that the actual size of the like-
lihood ratio test is somewhat too high, and that this discrepancy gets worse as
either n increases or N decreases. Also, we see that in each case the modifica-
tion restores the actual size of the test to a level imperceptibly distinct from the
nominal size.

Next we examine power. For this purpose we simulated 100,000 data sets ac-
cording to exactly the same prescription as above, except that we took

T =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

1 0 · · · 0 0 0
−1 1 · · · 0 0 0

−φ2 −1 · · · 0 0 0
0 −φ2 · · · 0 0 0
...

...
...

...
...

...
0 0 · · · −φ2 −1 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎠
,

where φ2, the common lag-two autoregressive coefficient, is equal to either
0.1, 0.2, 0.3, 0.4, or 0.5. Thus the simulated data are AD(2). Table 6.2 gives
the proportion of simulations for which the size-0.05 modified likelihood ratio
test rejects AD(1) in favor of AD(2) for each case of N and n. The results
indicate, as expected, that the power of the test increases as either the number
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Table 6.2 Estimates of power of the size-0.05 modified likelihood ratio test for AD(1)
versus AD(2). Estimated standard errors of estimated powers are less than 0.0016.

Lag-two autoregressive coefficient, φ2

N n 0.1 0.2 0.3 0.4 0.5

20 5 0.0677 0.1227 0.2262 0.3740 0.5428
20 10 0.0825 0.2035 0.4335 0.6971 0.8813
40 5 0.0925 0.2347 0.4745 0.7254 0.8938
40 10 0.1326 0.4591 0.8324 0.9783 0.9987
80 5 0.1430 0.4622 0.8169 0.9705 0.9978
80 10 0.2593 0.8327 0.9952 0.9999 1.0000

of subjects, the number of measurement times, or the magnitude of the lag-two
autoregressive coefficient increases.

Example 1: Treatment A cattle growth data
Results of likelihood ratio tests for determining the order of antedependence
of the Treatment A cattle growth data, assuming a saturated mean structure,
are summarized in Table 6.3. From an examination of the sample correlations
(displayed previously in Table 1.2), it is clear that observations on the same
subject are not independent [AD(0)]. Therefore, we begin a forward selection
procedure with a test of AD(1) versus AD(2). The modified likelihood ratio
test statistic, (6.9), is

[ψ(1, 27)]−1
11∑

i=3

[logRSSi(1) − logRSSi(2)] = 17.01

and the corresponding asymptotic chi-square distribution has 9 degrees of free-
dom. This yields a p-value of 0.049, which constitutes some, though barely sta-
tistically significant, evidence against the AD(1) model in favor of the AD(2)
model. If the analyst decides to take the selection procedure a step further by
testing AD(2) versus AD(3), a modified likelihood ratio test statistic of 8.58
is obtained, with a corresponding p-value of 0.38. So the procedure stops with
the selection of either a first-order or second-order model, depending on the
level chosen for the test between these two. A backward elimination procedure
results in the same choice. As a final check, we test each of the AD(1) and
AD(2) models versus the AD(10) model, the general multivariate covariance
structure. Both tests are non-significant, leading us to conclude that among
constant-order AD models, those of order higher than two do not fit signif-
icantly better than the first-order and second-order models. For further anal-
yses, we would recommend the second-order model, as it is probably better
to err on the side of overfitting the covariance structure than underfitting it.
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Table 6.3 Results of hypothesis tests for order of unstructured antedependence of the
Treatment A cattle growth data.

Modified likelihood
Null hypothesis Alternative hypothesis ratio test statistic P

AD(1) AD(2) 17.01 0.049
AD(2) AD(3) 8.58 0.38
AD(3) AD(4) 4.98 0.66
AD(4) AD(5) 3.29 0.77
AD(5) AD(6) 1.40 0.92
AD(6) AD(7) 2.64 0.62
AD(7) AD(8) 1.58 0.66
AD(8) AD(9) 2.23 0.33
AD(9) AD(10) 0.67 0.41
AD(1) AD(10) 41.00 0.64
AD(2) AD(10) 25.15 0.91

The use of an antedependence model of order slightly higher than necessary
reduces efficiency slightly, but retains validity, whereas too low an order can
render inferences invalid.

Example 2: 100-km race data
Results of likelihood ratio tests for the order of antedependence of the complete
100-km race data set, assuming a saturated mean structure, are given in Table
6.4. We again begin a forward selection procedure with a test of AD(1) versus
AD(2), in view of the obvious lack of independence among the split times. The
procedure stops unambiguously with the selection of the third-order model,
and a test of AD(3) versus AD(9) confirms this choice. On the other hand,
a backward elimination procedure proceeds by unambiguously reducing the
order to five, but the test of AD(4) versus AD(5) yields a p-value of 0.055.
So at this stage it is a close call, but by the same considerations noted in the
previous example, one might argue in favor of the fifth-order model.

Table 6.4 also includes results of tests comparing several variable-order un-
structured antedependence models. Motivated by which intervenor-adjusted
partial correlations in Table 4.3 were judged previously to be significant, we
perform tests of AD(0,1,1,1,1,1,1,1,1,3) versus AD(0,1,1,1,1,1,1,2,1,3), and
of AD(0,1,1,1,1,1,1,2,1,1) versus AD(0,1,1,1,1,1,1,2,1,3). In both cases the
lower-order model was rejected in favor of the higher-order model. Later in this
chapter we will see that an even higher-order model, AD(0,1,1,1,2,1,1,2,3,5),
minimizes a certain penalized likelihood criterion. Consequently, we also per-
form a test of AD(0,1,1,1,1,1,1,2,1,3) versus AD(0,1,1,1,2,1,1,2,3,5) here, find-
ing that the former model is rejected in favor of the latter.
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Table 6.4 Results of hypothesis tests for order of unstructured antedependence of
the 80 competitors’ split times. In the last three rows of the table, VAD1 repre-
sents AD(0,1,1,1,1,1,1,1,1,3); VAD2 represents AD(0,1,1,1,1,1,1,2,1,3); VAD3 repre-
sents AD(0,1,1,1,1,1,1,2,1,1); and VAD4 represents AD(0,1,1,1,2,1,1,2,3,5).

Modified likelihood
Null hypothesis Alternative hypothesis ratio test statistic P

AD(1) AD(2) 46.29 3 × 10−6

AD(2) AD(3) 20.64 0.0043
AD(3) AD(4) 4.37 0.63
AD(4) AD(5) 10.83 0.055
AD(5) AD(6) 1.70 0.79
AD(6) AD(7) 2.77 0.43
AD(7) AD(8) 1.87 0.39
AD(8) AD(9) 2.60 0.11
AD(3) AD(9) 24.17 0.28
VAD1 VAD2 27.12 2 × 10−7

VAD3 VAD2 12.86 0.0016
VAD2 VAD4 33.03 4 × 10−6

6.3 Testing for structured antedependence

Once a constant order, p, or variable order, (p1, . . . , pn), of antedependence
has been determined for a set of longitudinal data, the analyst may wish to fit
various structured AD models of that order to the data, comparing these fits
to each other and to that of the unstructured AD model of that order. Likeli-
hood ratio tests may also be used for this purpose, provided that the models are
nested. Of course, within any collection of normal antedependence models of
given order having a common mean structure and containing the unstructured
model, an SAD member of the collection is always nested within the unstruc-
tured AD member; however, it can happen that not all pairs of SAD models
in the collection will be nested. In such a case, penalized likelihood criteria
may be used for model comparisons; see Section 6.5. In the present section,
we limit our consideration to testing the null hypothesis that the data follow a
specified SAD(p) model versus the alternative hypothesis that they follow the
unstructured AD(p) model, where p is specified. We again assume that the data
are balanced and that they have a multivariate regression mean structure with
m covariates, and that N − m > p. Furthermore, in this section we do not
provide modifications that make the size of the test closer to its nominal level.

Consider the important case where the null hypothesis is that the data follow an
AR(p) model. It is easy to show that the asymptotically valid size-α likelihood
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ratio test criterion in this case is given by

−N
{

n∑
i=1

(log σ̂ii − log σ̂2) +
p∑

j=1

n∑
i=j+1

[
log
(
1 − r2i,i−j·{i−j+1:i−1}

)

− log
(
1 − ρ̂2

j·{intervenors}
) ]}

> K, (6.12)

where σ̂2 and ρ̂j·{intervenors} are the maximum likelihood estimates, under
the AR(p) model, of the marginal variance and lag-j intervenor-adjusted par-
tial correlation among residuals from the fitted mean structure, and K is the
100(1−α)th percentile of a chi-square distribution with (2n− p)(p+ 1)/2−
(p+ 1) = (2n− p− 2)(p+ 1)/2 degrees of freedom. Thus, the AR(p) model
will be rejected in favor of the unstructured AD(p) model if either the marginal
variances or the same-lag intervenor-adjusted partial correlations (for one or
more lags up to lag p) are sufficiently heterogeneous, or both.

A closely related case of interest is one for which the null hypothesis is that
the data follow an ARH(p) model. For this case, the test criterion is identical
to (6.12) except that the term involving the log variances is omitted and the de-
grees of freedom of the chi-square cut-off value change to p(2n−p−3)/2. Thus
the ARH(p) model will be rejected in favor of the unstructured AD(p) model
if there is a sufficiently great disparity among same-lag intervenor-adjusted
partial correlations up to lag p, which makes perfect sense.

Explicit forms for the likelihood ratio test criterion may be given for testing
the other structured AD(p) models introduced in Chapter 3 against their un-
structured pth-order counterpart. Such forms are not particularly enlightening,
however, so we do not give them here, though we do compute several of them
in the following example.

Example: Treatment A cattle growth data
Recall from the previous section that the order of antedependence for the Treat-
ment A cattle growth data was determined to be either one or two. Might struc-
tured antedependence models of these orders fit the data nearly as well as the
unstructured ones? To answer this question, we perform likelihood ratio tests
for several structured antedependence models of orders one and two against
their unstructured counterparts. Each model’s mean structure is saturated. Re-
sults of these tests are summarized in Table 6.5. The fitted first-order SAD
models are the marginally formulated and autoregressively formulated power
law models whose REML estimates were given in Section 5.5, plus the AR(1)
and ARH(1) models. The fitted second-order SAD models are analogues of
these four. The results indicate that the AR and ARH models of both orders are
rejected in favor of unstructured antedependence models of the corresponding
orders. On the other hand, the marginally formulated SAD power law models
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Table 6.5 Results of hypothesis tests for structured antedependence models versus un-
structured antedependence models, for the Treatment A cattle growth data. Here, SAD-
PM(p) and SAD-PA(p) refer to the pth-order marginally formulated and autoregres-
sively formulated power law antedependence models described in Sections 5.5.1 and
5.5.4, respectively, and POU(10) refers to the tenth-order SAD model of Pourahmadi
described in Section 5.5.4.

Likelihood ratio
Null hypothesis Alternative hypothesis test statistic P

AR(1) AD(1) 33.2 0.023
ARH(1) AD(1) 21.0 0.013

SAD-PM(1) AD(1) 11.0 0.75
SAD-PA(1) AD(1) 20.6 0.24

AR(2) AD(2) 46.2 0.012
ARH(2) AD(2) 33.6 0.010

SAD-PM(2) AD(2) 18.6 0.67
SAD-PA(2) AD(2) 36.0 0.030

SAD-PM(1) SAD-PM(2) 11.4 0.003
POU(10) AD(10) 52.2 0.69

are not rejected and, in the first-order case, neither is the autoregressively for-
mulated power law model. Thus, we would select either first-order power law
model over the unstructured AD(1), and the marginally formulated second-
order model over the unstructured AD(2). Since the marginally formulated
power law SAD(1) model is a special case of the marginally formulated power
law SAD(2) model, we can compare these models by another likelihood ra-
tio test, the result of which is included in Table 6.5. The first-order model is
rejected in favor of the second-order model. Also, we include a test of the
particular unconstrained linear SAD(10) model described previously in Sec-
tion 5.5.4, against the unstructured AD(10) model; this SAD(10) model is not
rejected. Based on these results, our two preferred models for the data’s co-
variance structure at this stage of the analysis are the marginally formulated
SAD(2) power law and unconstrained linear SAD(10) models.

6.4 Testing for homogeneity across groups

The final likelihood ratio test we consider is a test for homogeneity of unstruc-
tured pth-order antedependence across G ≥ 2 groups. Often the groups will
correspond to treatments, but they could instead correspond to some other fac-
tor of classification. In this context we relabel the response vectors as {Ygs :
s = 1, . . . , N(g); g = 1, . . . , G}, where Ygs is the response vector for subject
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s in group g and N(g) is the sample size for group g. Similarly we relabel
the covariates as {zgs : s = 1, . . . , N(g); g = 1, . . . , G}. We allow the mean
parameters and (under the alternative hypothesis) the covariance parameters to
differ across groups, and we label these as β1, . . . ,βG and θ1, . . . ,θG, respec-
tively.

We present the test for homogeneity via the following theorem, which ties
together tests given by Kenward (1987) and Johnson (1989). As usual, we as-
sume initially that the data are balanced and that they have a common mul-
tivariate regression mean structure across groups. Extensions to accommo-
date dropouts and test for homogeneity of variable-order antedependence are
straightforward and will be noted subsequently.

Theorem 6.6. Suppose that {Ygs : g = 1, . . . , G; s = 1, . . . , N(g)} follow
the normal multivariate regression, unstructured AD(p) model

Ygs ∼ independent Nn

(
(zT

gs ⊗ In)βg,Σ(θg)
)

where Σ(θg) is unstructured AD(p) and zgs is an m × 1 vector of observed
covariates. Assume that N(g) −m > p for all g, and let

A(g) =
1

N(g)

N(g)∑
s=1

[
Ygs −

(
zT

gs ⊗ In

)
β̂g

][
Ygs −

(
zT

gs ⊗ In

)
β̂g

]T

and

A =
1
N

G∑
g=1

N(g)A(g),

where N =
∑G

g=1N(g). The likelihood ratio test for testing the null hypothe-
sis H0 : Σ(θ1) = Σ(θ2) = · · · = Σ(θG) versus HA : not H0, rejects H0 if
and only if any of the following three equivalent criteria are satisfied:

(a)

n∑
i=1

[
N log

(
RSSi(p)

N

)
−

G∑
g=1

N(g) log
(
RSSig(p)
N(g)

)]
> K,

whereRSSi(p) is the residual sum of squares from the ordinary least squares
regression of the ith response variable on the pi ≡ min(p, i− 1) such vari-
ables immediately preceding it plus the covariates, and RSSig(p) is the
analogous quantity computed using only the data from the gth group;

(b)

G∑
g=1

N(g)

{
n∑

i=1

(log σ̂ii − log σ̂iig)
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+
n∑

i=2

[log(1 − ρ̂2
i,i−1) − log(1 − ρ̂2

i,i−1,g)] + · · ·

+
n∑

i=p+1

[log(1 − ρ̂2
i,i−p·{i−p+1:i−1}) − log(1 − ρ̂2

i,i−p·{i−p+1:i−1},g)]

}

> K,

where parameter estimates without a subscript g are as defined previously
and those with a subscript g are the analogous quantities computed using
only the data from the gth group;

(c)

−2

(
n−p∑
i=1

log Λi,i+p −
n−p−1∑

i=1

log Λi+1,i+p

)
> K,

where

Λi,i+p =

∏G
g=1 |Ai:i+p(g)|N(g)/2

|Ai:i+p|N/2

is the classical likelihood ratio test statistic for testing for the homogene-
ity of Σi:i+p(θ1), . . . ,Σi:i+p(θG) under general multivariate dependence,
and Λi+1,i+p is defined analogously.

An asymptotically valid (as N(g) → ∞ for all g) size-α test is obtained by
taking K to be the 100(1 − α)th percentile of a chi-square distribution with
(G− 1)(2n− p)(p+ 1)/2 degrees of freedom.

Proof. We will prove part (a); parts (b) and (c) then follow easily using parts
(c) and (d) of Theorem 2.5. The same development that leads to (6.7), followed
by the use of Theorem 2.5(a), yields

−2 log Λ =
G∑

g=1

N(g) log
( |A|
|A(g)|

)

=
G∑

g=1

N(g) log

(∏n
i=1 δ̂

(p)
i∏n

i=1 δ̂
(p)
ig

)
,

where δ̂(p)
i is defined as in the proof of Theorem 6.5 and δ̂(p)

ig is the analog-
ous quantity computed using only the data from the gth group. Upon noting
that

δ̂
(p)
i =

RSSi(p)
N

and δ̂
(p)
ig =

RSSig(p)
N(g)

,

the theorem follows via routine manipulations. �

Parts (b) and (c) of Theorem 6.6 are of mostly academic interest; the most
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useful part of the theorem from a computational standpoint is part (a). Further-
more, the adequacy of the chi-square cut-off point can be improved by modi-
fying the test criterion of part (a) as follows (Kenward, 1987, 1991): reject H0

if and only if

[(G− 1)(2n− p)(p+ 1)/2]∑n
i=1

∑G
g=1N(g){ψ[N −N(g) −G+ 1, N(g) − pi − 1] − log[N/N(g)]}

×
n∑

i=1

[
N log

(
RSSi(p)

N

)
−

G∑
g=1

N(g) log
(
RSSig(p)
N(g)

)]
> K, (6.13)

where ψ was defined in Section 6.4.1. Finally, it is easy to see how to extend the
test criterion to accommodate dropouts and to test for homogeneity of variable-
order antedependence. To handle dropouts, merely replace N and N(g) in all
expressions above with Ni and Ni(g), respectively, where Ni is (as in Section
5.4) the overall number of subjects with complete data at time i and Ni(g) is
the number of such subjects within the gth group. To test for the homogeneity
of G AD(p1, . . . , pn) covariance matrices, we merely replace the test criterion
given in part (a) of the theorem with the following:

n∑
i=1

[
N log

(
RSSi(pi)

N

)
−

G∑
g=1

N(g) log
(
RSSig(pi)
N(g)

)]
> K

where RSSi(pi) is the residual sum of squares from the ordinary least squares
regression of the ith response variable on the pi such variables immediately
preceding it plus the covariates, andRSSig(pi) is the analogous quantity com-
puted using only the data from the gth group; and we change the degrees of
freedom for K to (G− 1)(n+

∑n
i=2 pi).

Example: Speech recognition data
Recall that the speech recognition scores are measured on subjects belonging
to one of two groups, which correspond to the type of cochlear implant the
subject has. Allowing initially for the possibility that the within-group covari-
ance matrices for these two groups are not homogeneous, we carry out separate
forward selection and backward elimination procedures for determining the or-
der of antedependence of these two matrices. We take the mean structure to be
saturated within groups, as in (5.42). These procedures unequivocally select a
first-order model for both groups (numerical details not shown). The natural
next question is, are the two AD(1) covariance structures different, and if so,
how? To address this question, we perform the homogeneity test presented in
this section. The computed likelihood ratio test statistic (6.13), properly ad-
justed to account for the dropouts, is 3.56, and the corresponding p-value is
0.83. We conclude that the two groups’ AD(1) covariance structures are not
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Table 6.6 Results of hypothesis tests for order of unstructured antedependence of the
pooled covariance structure for the speech recognition sentence scores.

Modified likelihood
Null hypothesis Alternative hypothesis ratio test statistic P

AD(1) AD(2) 1.66 0.44
AD(2) AD(3) 1.82 0.18
AD(1) AD(3) 3.69 0.30

significantly different, and that it is therefore reasonable to assume homogene-
ity in further analyses (as indeed we did assume in Section 5.4.2).

Next, assuming homogeneity, we carry out stepwise selection procedures for
the order of antedependence of the pooled covariance structure. Results are
displayed in Table 6.6. Forward selection and backward elimination procedures
unequivocally select a first-order model. This comes as no surprise, in light of
the orders determined separately for each within-group covariance matrix.

6.5 Penalized likelihood criteria

Sometimes the antedependence models we wish to compare, or at least some
of them, are not nested. For example, we may wish to compare the fits of two
unstructured variable-order AD models, neither of which is nested by the other.
Or we may wish to compare the fit of a marginally specified SAD(p) model to
that of an autoregressively specified SAD(p) model. Moreover, we may wish
to compare fits of antedependence models to fits of various other models, such
as the vanishing correlation models or random coefficient models described in
Section 3.9. For comparing models such as these, likelihood ratio testing is not
applicable. However, we may use penalized likelihood criteria, as proposed by
Macchiavelli and Arnold (1994, 1995). In fact, penalized likelihood criteria
may be used for comparing nested models also, and most proponents of such
criteria would probably favor using them consistently rather than switching
between them and likelihood ratio tests on the basis of whether the models
are nested; for relevant discussions of this issue by advocates of the criteria,
see Akaike (1974) and Burnham and Anderson (2002). Here we take a neutral
approach by presenting both methodologies.

A penalized likelihood criterion balances model fit, as measured by a model’s
maximized log-likelihood (or a multiple thereof), against model complexity, as
measured by a penalty term equal to a multiple of the number of parameters
in the model. There are many such criteria, which differ by using a different
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multiplier in the penalty term. We consider criteria of the form

IC(k) = − 2
N

logL∗(θ̂k) + dk
c(N)
N

,

where k indexes the models under consideration, θ̂k is the maximum likelihood
estimator of θ under the kth model, dk is the number of unknown parameters
in the covariance structure of the kth model, and c(N) is the penalty term.
Criteria of this form penalize a model only for the parameters in its covari-
ance structure, as we assume in this section that all models under consideration
have a common mean structure. Furthermore, for models for which that com-
mon mean structure is of multivariate regression form, we also consider these
criteria’s REML analogues,

ICR(k) = − 2
N −m

logLR(θ̃k) + dk
c(N −m)
N −m

,

where m is the number of covariates [cf. (5.28)] and θ̃k is the REML estima-
tor of θ under the kth model. Note that IC(k) and ICR(k) are presented in
“smaller is better” form here, so our objective is to minimize them.

Two of the most well-known and commonly used penalized likelihood criteria
are Akaike’s Information Criterion (AIC and AICR) and Schwarz’s Information
Criterion (BIC and BICR), which we feature here. For these criteria, c(N) = 2
and c(N) = logN , respectively. Because logN > 2 for N > 8, whenever
N > 8 BIC will penalize a model for its complexity more severely than AIC.
Since in practice N is usually larger than 8, BIC will tend to select more parsi-
monious models than AIC. The use of BIC results in strongly consistent model
selection, whereas that of AIC does not (Rao and Wu, 1989); nevertheless AIC
is very popular so we will provide both criteria in our examples.

Model comparison for unstructured variable-order AD models merits special
consideration because there is potentially a very large number of such models
to compare. Specifically, since pi can be any nonnegative integer less than or
equal to i − 1, the number of such models when there are n distinct measure-
ment times is n!. Fortunately, the computation of penalized likelihood criteria
for each model can be circumvented, so that the model that minimizes any pe-
nalized likelihood criterion can be determined very efficiently. We demonstrate
this for the criteria based on the ordinary likelihood, but it is true of REML-
based criteria as well. Suppose that the observations are balanced and that the
mean structure is of multivariate regression form. From (6.6) we see that apart
from an additive constant,

− 2
N

logL∗(θ̂k) = log |Σ(θ̂k)|

= log
n∏

i=1

δ̂
(k)
i
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= constant +
n∑

i=1

logRSSi(k),

where k indexes the n! variable-order AD models. Now recall that Nδ̂(k)
i and

RSSi(k) are two representations for the residual sum of squares from the ordi-
nary least squares regression of the ith response variable on its pi(k) immediate
predecessors and the m covariates, where pi(k) is the order of antedependence
at time i for the kth model. Thus, for the unstructured AD(p1, . . . , pn) model,
we have

IC(p1, . . . , pn) = constant +
n∑

i=1

logRSSi(pi) +

(
n+

n∑
i=2

pi

)
c(N)
N

= constant +
n∑

i=1

ICi(pi), (6.14)

say, where

ICi(pi) = logRSSi(pi) + (pi + 1)
c(N)
N

.

Note that only the ith summand in (6.14) depends on pi. Consequently, IC(p1,
. . . , pn) can be minimized by minimizing ICi(pi) separately for each i, or
equivalently by taking

p̂i = argmin
pi=0,1,...,i−1

(
logRSSi(pi) + pi

c(N)
N

)
. (6.15)

If there are dropouts, we merely compute RSSi(pi) from the Ni observations
available at time i and replace N with Ni in (6.15).

Example 1: Treatment A cattle growth data
Table 6.7 gives the maximized profile log-likelihood and penalized likelihood
criteria, in particular AIC and BIC, for various antedependence models fit-
ted to the Treatment A cattle growth data. In all models the mean is saturated.
The models are listed in order of increasing BIC, but the ordering based on
AIC is not dramatically different. The orderings for the REML-based crite-
ria (AICR and BICR, which are not included in the table) are very sim-
ilar to those of their maximum likelihood-based counterparts. Using (6.15),
the variable-order unstructured antedependence model that minimizes BIC is
found to be AD(0,1,1,1,1,1,1,2,2,1,1), while the constant-order unstructured
antedependence model that minimizes BIC is AD(2); these two models are
the third and fifth best, respectively, based on BIC, among all models consid-
ered. The best two models by either criterion are the second-order marginally
formulated power law SAD model and the tenth-order unconstrained autore-
gressively formulated SAD model introduced in Section 5.5.4, in that order.
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Table 6.7 Penalized likelihood criteria for various antedependence models fitted
to the Treatment A cattle growth data. Here, VAD refers to the variable-order
AD(0,1,1,1,1,1,1,2,2,1,1) model, SAD-PM(p) and SAD-PA(p) refer to the pth-order
marginally formulated and autoregressively formulated power law antedependence
models described in Sections 5.5.1 and 5.5.4, respectively, and POU(10) refers to the
tenth-order SAD model of Pourahmadi described in Section 5.5.4.

Model max logL∗ AIC BIC

SAD-PM(2) –1045.4 70.23 70.09
POU(10) –1046.0 70.27 70.13

VAD –1037.6 70.71 70.31
SAD-PM(1) –1051.1 70.47 70.37

AD(2) –1036.1 71.07 70.55
SAD-PA(1) –1055.9 70.66 70.59
SAD-PA(2) –1054.1 70.81 70.67

AD(1) –1045.6 71.11 70.74
AR(2) –1059.2 70.81 70.76

ARH(2) –1052.9 71.06 70.83
AR(1) –1062.2 70.95 70.91

ARH(1) –1056.1 71.21 71.00
AD(10) –1019.9 72.39 71.24

Example 2: 100-km race data
Table 6.8 gives the maximized profile log-likelihood, AIC, and BIC for var-
ious antedependence models fitted to the complete 100-km race data. In all
models the mean is saturated. The models are listed in order of increasing
BIC; the ordering based on AIC is somewhat different, while those corre-
sponding to AICR and BICR are identical to their ordinary likelihood-based
counterparts. The best variable-order unstructured antedependence model is
AD(0,1,1,1,2,1,1,2,3,5). This model’s increase in order of antedependence over
the last three sections of the race agrees with the increase in the number of
conditionally dependent predecessors seen previously from informal analyses
(Section 4.2). Among the constant-order unstructured antedependence models,
the closest competitor to the variable-order model is AD(2).

Also included in Table 6.8 are results from fitting two structured variable-order
antedependence models, both of order (0,1,1,1,2,1,1,2,3,5). The first of these,
labeled as VAD-PM, is a marginally formulated power law model motivated
by the behavior of the data’s sample variances and correlations, as displayed in
Table 4.3. This model has variances

σii = σ2(1 + ψ1i+ ψ2i
2 + ψ3i

3), i = 1, . . . , 10
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Table 6.8 Penalized likelihood criteria for various antedependence models fitted to
the 100-km race data. Here, VAD refers to the variable-order AD(0,1,1,1,2,1,1,2,3,5)
model, and VAD-PM and VAD-AM refer to structured AD models of the same variable
order, which are described in more detail in Section 6.5.

Model max logL∗ AIC BIC

VAD-PM –2350.6 59.12 59.53
VAD –2328.8 58.90 59.70

VAD-AM –2362.9 59.41 59.84
AD(2) –2343.3 59.26 60.06
AD(3) –2332.5 59.16 60.17
AD(1) –2367.2 59.66 60.22
AD(4) –2330.2 59.26 60.45
AD(5) –2324.4 59.24 60.57
AD(9) –2319.4 59.36 61.00

and lag-one correlations

ρi,i−1 = ρ
iλ−(i−1)λ

i , i = 2, . . . , 10;

correlations corresponding to the nonzero entries of the lower half of the ma-
trix T are left unstructured, and the remaining elements of the covariance ma-
trix are evaluated using (2.44). The other structured variable-order AD model,
labeled as VAD-AM, is an autoregressively formulated power law model mo-
tivated by the innovariogram and regressogram of the data (Figure 4.9). This
model has log innovation variances

log δi =
{
ψ0, i = 1
ψ1 + ψ2i+ ψ3i

2, i = 2, . . . , 10

and lag-one autoregressive coefficients

φi,i−1 = θ1 + θ2i, i = 2, . . . , 10;

the remaining autoregressive coefficients are left unstructured. The VAD-PM
model is the better-fitting of the two; in fact, it fits better than all other models
in Table 6.8. The unstructured variable-order model is second best.

Example 3: Speech recognition data
Finally, Table 6.9 gives the maximized profile log-likelihood, AIC, and BIC
for various antedependence models fitted to the speech recognition data. In
all models the mean is saturated within each implant group; i.e., the mean
structure is that given by (5.42). The orderings with respect to both penal-
ized likelihood criteria (as well as their REML counterparts) are identical.
The variable-order unstructured antedependence model that minimizes these
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Table 6.9 Penalized likelihood criteria for various antedependence models fitted to the
speech recognition data.

Model max logL∗ AIC BIC

SAD-PMS(1) –536.1 26.35 26.51
SAD-PMC(1) –538.7 26.42 26.55

AD(1) –534.8 26.43 26.72
AD(3) –533.3 26.50 26.92

criteria is AD(0,1,1,1), which is equivalent to the AD(1) model. Thus, for these
data, no variable-order unstructured AD model fits better than a constant first-
order AD model. However, two first-order marginally formulated power law
SAD models fit slightly better than either unstructured model. The formula-
tion of these two SAD models was informed by the REML estimates of pooled
marginal variances and correlations displayed in Table 5.5. Based on those es-
timates we took the variance to be either constant over time, or a particular step
function of time defined as follows:

σii =
{
σ2 for i = 1
σ2ψ for i = 2, 3, 4,

where σ2 and ψ are positive parameters. We label these models as SAD-
PMC(1) and SAD-PMS(1), respectively, where “C” stands for “constant” and
“S” stands for “step.” Of these, the model with the step function variance fits
slightly better.

6.6 Concluding remarks

This chapter has presented likelihood ratio tests, and simple modifications to
them which achieve better agreement with nominal size, for several impor-
tant hypotheses on the covariance structure of normal antedependence mod-
els. Penalized likelihood criteria were also introduced. As was the case for the
likelihood-based estimates derived in Chapter 5, many of the test statistics and
criteria are expressible in terms of quantities determined by regressing obser-
vations of the response at a given time on a particular number of its predeces-
sors, plus covariates. This makes them relatively easy to compute. R functions,
written by the first author, for computing several of the modified likelihood
ratio tests and penalized likelihood criteria presented herein are available for
download from his Web page, at the address provided in Section 4.4.
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CHAPTER 7

Testing Hypotheses on the Mean
Structure

Suppose that an antedependent covariance structure has been selected for a
set of longitudinal data, using either the informal methods of Chapter 4 or the
hypothesis testing procedures or penalized likelihood criteria of Chapter 6. To
the extent that the order of antedependence of the selected covariance model
is low to moderate and is structured rather than unstructured, inferences on the
mean structure can be more efficient if this structure is exploited than if the
general multivariate dependence structure is adopted. This chapter describes
hypothesis tests for the mean structure of normal linear antedependence models
which exploit the antedependence.

We begin with several likelihood ratio tests for the mean structure under an
unstructured antedependence model: a test that the mean of a single popu-
lation is equal to a specified vector; a test for equality of the means of two
populations (also known as comparison of profiles); and a test of the impor-
tance of a subset of covariates in a model with multivariate regression mean
structure. These tests are analogues, to unstructured antedependence models,
of the well-known one-sample and two-sample Hotelling’s T 2 tests and Wilk’s
lambda test, respectively, for hypotheses on mean vectors under general mul-
tivariate dependence. In fact, it will be seen that likelihood ratio test statistics
for the mean structure under unstructured antedependence of any order can be
expressed as functions of likelihood ratio test statistics for testing hypotheses
on certain subvectors of the mean vector(s) under general multivariate depen-
dence. We also give tests for contrasts and other linear combinations of the
elements of these mean vectors, which are not likelihood ratio tests but are
asymptotically equivalent to them. Following that, we consider likelihood ratio
testing for the mean structure of structured antedependence models. The chap-
ter concludes with a description of penalized likelihood criteria for comparing
antedependence models with different mean structures (and possibly different
covariance structures as well).

195
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7.1 One-sample case

Consider a situation in which the observations are balanced and follow the
normal saturated-mean, unstructured AD(p) model

Ys ∼ iid Nn (μ,Σ(θ)) , s = 1, . . . , N, (7.1)

and we wish to test the null hypothesis that μ = μ0 against the alternative that
μ �= μ0, where μ0 = (μ0i) is a specified n × 1 vector. Although this is not
usually a practically important hypothesis for longitudinal data from a single
population, it is important in the case of paired longitudinal sampling from two
populations (e.g., matched case-control sampling), for which the Ys’s repre-
sent vectors of within-pair differences of responses at the nmeasurement times
and interest lies in testing the null hypothesis that the mean vector of those dif-
ferences is zero. From (5.22), the log-likelihood function for model (7.1) is
given by

logL(μ,θδ,θφ) = −nN
2

log 2π − 1
2

n∑
i=1

N∑
s=1

{
log δi +

[
Ysi − μi

−
pi∑

k=1

φi,i−k(Ys,i−k − μi−k)
]2/

δi

}
, (7.2)

and this function may be rewritten, in terms of a transformed mean vector
μ∗ = (μ∗

i ), as

logL(μ∗,θδ,θφ) = −nN
2

log 2π − 1
2

n∑
i=1

N∑
s=1

{
log δi +

(
Ysi − μ∗

i

−
pi∑

k=1

φi,i−kYs,i−k

)2/
δi

}
(7.3)

where

μ∗
i = μi −

pi∑
k=1

φi,i−kμi−k.

As noted in the alternative proof of Theorem 5.1, standard regression theory
tells us that (7.3) is maximized with respect to the {μ∗

i}, {φi,i−k}, and {δi}
by the least squares estimates of intercepts and slopes and the residual sums
of squares divided by N , respectively, from the n regressions of each response
variable on its pi predecessors. Furthermore, the log-likelihood function under
the null hypothesis, obtained by evaluating (7.2) at μ0, is

logL(μ0,θδ,θφ) = −nN
2

log 2π − 1
2

n∑
i=1

N∑
s=1

{
log δi +

[
Ysi − μ0i
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−
pi∑

k=1

φi,i−k(Ys,i−k − μ0,i−k)
]2/

δi

}
. (7.4)

It follows, again from standard regression theory, that (7.4) is maximized with
respect to the {φi,i−k} and {δi} by the least squares estimates of slopes and the
residual sums of squares divided by N , respectively, from the n regressions of
each “null-mean-corrected” variable, Yi − μ0i, on its pi predecessors without
an intercept. Furthermore, letting Λ represent the likelihood ratio test statistic,
we have

−2 log Λ = N

n∑
i=1

(
log(δ̂0i) − log(δ̂1i)

)

where δ̂0i and δ̂1i are the maximum likelihood estimators of the ith innovation
variance under the null and alternative hypotheses, respectively. We therefore
have established the following theorem.

Theorem 7.1. Suppose that Y1, . . . ,YN are balanced and follow the normal
saturated-mean, unstructured AD(p) model, and N − 1 > p. The likelihood
ratio test for the null hypothesis that μ = μ0 (against the alternative that
μ �= μ0) rejects the null hypothesis if and only if

N
n∑

i=1

[logRSSi(μ0) − logRSSi(μ)] > K, (7.5)

where RSSi(μ0) is the residual sum of squares from the regression of Yi−μ0i

on its pi predecessors {Yi−k − μ0,i−k : k = 1, . . . , pi} without an intercept,
RSSi(μ) is the residual sum of squares from the regression of Yi on its pi

predecessors {Yi−k : k = 1, . . . , pi} with an intercept, and K is a constant.
For any α ∈ (0, 1), an asymptotically (asN → ∞) valid size-α test is obtained
by taking K to be the 100(1−α)th percentile of a chi-square distribution with
n degrees of freedom.

The likelihood ratio test statistic given by Theorem 7.1 has an interesting in-
terpretation in terms of certain Hotelling’s T 2 statistics, as we now describe.
Let θ̂0 and θ̂1 be the maximum likelihood estimators of θ under the null and
alternative hypotheses, respectively. Then by parts (a) and (d) of Theorem 2.5,
we have

N
n∑

i=1

[logRSSi(μ0) − logRSSi(μ)] = N log

(
|Σ(θ̂0)|
|Σ(θ̂1)|

)

= N log

⎛
⎜⎜⎜⎝

∏n−p

i=1
|Σi:i+p(

ˆθ0)|∏n−p−1

i=1
|Σi+1:i+p(

ˆθ0)|∏n−p

i=1
|Σi:i+p(

ˆθ1)|∏n−p−1

i=1
|Σi+1:i+p(

ˆθ1)|

⎞
⎟⎟⎟⎠
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= N log

⎛
⎜⎜⎝

∏n−p
i=1

|Σi:i+p(
ˆθ0)|

|Σi:i+p(
ˆθ1)|∏n−p−1

i=1
|Σi+1:i+p(

ˆθ0)|
|Σi+1:i+p(

ˆθ1)|

⎞
⎟⎟⎠ .

Now by Theorem 5.1(a), Σi:i+p(θ̂1) = Ai:i+p and Σi+1:i+p(θ̂1) = Ai+1:i+p.
Moreover, it can easily be shown [by the same method used to establish Theo-
rem 5.1(a)] that

Σi:i+p(θ̂0) = Ai:i+p + (Yi:i+p − μ0,i:i+p)(Yi:i+p − μ0,i:i+p)
T .

By Theorem A.1.3, we have

|Σi:i+p(θ̂0)| = |Ai:i+p|[1 + (Yi:i+p −μ0,i:i+p)
T A−1

i:i+p(Yi:i+p −μ0,i:i+p)],

by which we obtain
n−p∏
i=1

|Σi:i+p(θ̂0)|
|Σi:i+p(θ̂1)|

=
n−p∏
i=1

[1 + (Yi:i+p − μ0,i:i+p)
T A−1

i:i+p

× (Yi:i+p − μ0,i:i+p)]

=
n−p∏
i=1

[
1 + (Yi:i+p − μ0,i:i+p)

T

(
N − 1
N

Si:i+p

)−1

× (Yi:i+p − μ0,i:i+p)
]

=
n−p∏
i=1

[1 + T 2
i:i+p/(N − 1)],

where S is the sample covariance matrix and T 2
i:i+p is Hotelling’s T 2 statistic,

N(Yi:i+p − μ0,i:i+p)
T S−1

i:i+p(Yi:i+p − μ0,i:i+p),

for testing the null hypothesis thatμi:i+p = μ0,i:i+p (versus the alternative that
these vectors are not equal) under general multivariate dependence. A similar
development yields

n−p−1∏
i=1

|Σi+1:i+p(θ̂0)|
|Σi+1:i+p(θ̂1)|

=
n−p−1∏

i=1

[1 + T 2
i+1:i+p/(N − 1)],

where T 2
i+1:i+p is Hotelling’s T 2 statistic for testing the null hypothesis that

μi+1:i+p = μ0,i+1:i+p (versus the alternative that these vectors are not equal)
under general multivariate dependence. It follows that

−2 log Λ = N log

( ∏n−p
i=1 [1 + T 2

i:i+p/(N − 1)]∏n−p−1
i=1 [1 + T 2

i+1:i+p/(N − 1)]

)
. (7.6)

Form (7.6) of the likelihood ratio test statistic was derived by Johnson (1989),
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who extended it from an original result given by Byrne and Arnold (1983) for
the unstructured AD(1) model. It can be computed easily using standard soft-
ware for multivariate analysis; however, the form given by Theorem 7.1 can
be computed just as easily, using standard software for regression analysis. A
virtue of the form given by Theorem 7.1 is that it is more obvious how to extend
it to a variable-order antedependence model or to handle dropouts: in the first
case one merely redefines pi as the order of the model at time i, and in the sec-
ond case one replaces N with Ni [and moves it inside the summation in (7.5)].
Another virtue of this statistic, owing to its form as a constant multiple of a
sum of logs of beta random variables, is that it can be modified, analogously
to the likelihood ratio tests of Chapter 6, to attain better agreement between its
nominal size and actual size. The modified criterion is given by

n
∑n

i=1 [logRSSi(μ0) − logRSSi(μ)]∑n
i=1 ψ(1, N − 1 − pi)

> K, (7.7)

where K is defined as in Theorem 7.1.

Still another advantage of the form given by Theorem 7.1 is that it suggests
the possibility of testing sequentially for the first measurement time at which
the mean response differs from the corresponding component of μ0, in a man-
ner that adjusts for the effects of appropriate predecessors. Consider the ith
summand of the first sum in (7.4) but with the restriction lifted on μi, i.e.,

N log δi +
N∑

s=1

(
Ysi − μi −

pi∑
k=1

φi,i−k(Ys,i−k − μ0,i−k)

)2/
δi.

The maximizer of this summand with respect to μi is the least squares estimate
of the intercept in the regression of Yi on {Yi−1 − μ0,i−1, Yi−2 − μ0,i−2, . . .,
Yi−pi

− μ0,i−pi
} (with intercept). It follows that each null hypothesis in the

sequence
μ1:i = μ0,1:i, i = 1, . . . , n,

may be tested against the respective alternative hypothesis in the sequence

μi �= μ0i, μ1:i−1 = μ0,1:i−1, i = 1, . . . , n,

by likelihood ratio tests, the ith of which is the standard t-test that the intercept
is equal to μ0i in the regression of Yi on {Yi−k − μ0,i−k : k = 1, . . . , pi}.
Using the fact that AD(p) variables are also AD(p) in reverse order, a similar
sequential procedure may be devised to test for the last measurement time at
which the mean differs from the corresponding component of μ0. Whether
applied in sequential or reverse sequential order, these tests are independent.
In this respect they differ from the standard t-tests associated with the “time-
by-time ANOVA” approach to the analysis of longitudinal data described in
Chapter 1. The present tests also differ by conditioning on, or equivalently
adjusting for, responses at previous times, so we refer to them as predecessor-
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adjusted tests. As a consequence of the adjustment for predecessors, these tests
are much more sensitive than standard tests to changes in means, relative to
their hypothesized values, at successive measurement times. A forthcoming
example will demonstrate this.

An alternative to the likelihood ratio procedure for testing that μ = μ0 is
obtained by substituting the uniformly minimum variance unbiased estimator
(or equivalently the REML estimator) given by Corollary 5.4.1, i.e., Σ̃, for Σ
in the test that is uniformly most powerful invariant when Σ is known. This
yields a multivariate Wald test criterion: reject the null hypothesis at level α if
and only if

N(Y − μ0)
T Σ̃

−1
(Y − μ0) > K,

where K is defined as in Theorem 7.1 and we assume until noted otherwise
that no observations are missing. This test is equivalent to the likelihood ratio
test when p = n − 1, and asymptotically equivalent otherwise. Letting B =
(Y − μ0)(Y − μ0)T and using Theorems 2.6 and 5.2, the test statistic can be
rewritten as follows:

N(Y − μ0)
T Σ̃

−1
(Y − μ0) = N tr

[
(Y − μ0)

T Σ̃
−1

(Y − μ0)
]

= N tr
(
BΣ̃

−1
)

= N

n−p∑
i=1

tr
(
Bi:i+pΣ̃

−1

i:i+p

)

−
n−p−1∑

i=1

tr
(
Bi+1:i+pΣ̃

−1

i+1:i+p

)

= N

n−p∑
i=1

(Yi:i+p − μ0,i:i+p)
T S−1

i:i+p(Yi:i+p − μ0,i:i+p)

−N

n−p−1∑
i=1

(Yi+1:i+p − μ0,i+1:i+p)
T S−1

i+1:i+p(Yi+1:i+p − μ0,i+1:i+p)

= N

(
n−p∑
i=1

T 2
i:i+p −

n−p−1∑
i=1

T 2
i+1:i+p

)
.

Thus, this test statistic, though generally different than the likelihood ratio test
statistic, is a function of the same Hotelling’s T 2 test statistics appearing in
expression (7.6) for the likelihood ratio test statistic.

Often, it will be of interest to test whether certain contrasts or other linear com-
binations of the elements of μ, rather than the elements of μ itself, are equal
to specified constants. Unfortunately, and in contrast to what transpires in the
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situation described in Theorem 7.1, the likelihood ratio test statistic for this
hypothesis is generally not a simple function of the residual sums of squares
from various regressions on at most p variables. This is due to the fact that lin-
ear combinations of n AD(p) variables are generally not antedependent of any
order less than n− 1. Although the likelihood ratio test for this hypothesis can
be obtained by an argument similar to that which led to (7.6), for simplicity we
will merely consider the asymptotically equivalent test obtained by substitut-
ing Σ̃ for Σ in the test for this hypothesis which is uniformly most powerful
invariant when Σ is known. We give the test via the following theorem.

Theorem 7.2. Let C and c be a specified c × n matrix and c × 1 vector, re-
spectively, where the rows of C are linearly independent. Also, let Σ̃ be the
REML estimator of Σ under the model and conditions of Theorem 7.1. Under
the same model and conditions, the test obtained by substituting Σ̃ for Σ in the
uniformly most powerful invariant test of the null hypothesis Cμ = c against
the alternative hypothesis Cμ �= c rejects the null hypothesis if and only if

N(CY − c)T (CΣ̃CT )−1(CY − c) > K.

For any α ∈ (0, 1), an asymptotically (asN → ∞) valid size-α test is obtained
by taking K to be the 100(1−α)th percentile of a chi-square distribution with
c degrees of freedom.

Modifications to Theorem 7.2 to handle dropouts are straightforward: one sim-
ply replaces Y with the maximum likelihood or REML estimate of μ, given by
Theorem 5.7, and removes the multiplier ofN and multiplies Σ̃ by diag(1/N1,
. . . , 1/Nn).

The tests given by Theorems 7.1 and 7.2, by virtue of incorporating pth-or-
der antedependence, generally are more powerful (when p < n − 1) than
Hotelling’s T 2 test, which does not impose any structure on the covariance
matrix.

Simulation results
In order to demonstrate the gains in power possible from using the tests of this
section, relative to tests that impose less structure on the covariance matrix, we
present the results of a small simulation study. The study is somewhat similar
to those presented in Section 6.2. Without loss of generality we test the null
hypothesis that μ = 0. For several combinations of N , n, and α, we simulated
100,000 data sets of size N from n-variate normal distributions with mean
vector α1n and AD(1) covariance matrix Σ, where the modified Cholesky de-
composition of Σ−1 was identical to that used in the first simulation study of
Section 6.2. We then test the null hypothesis using the modified likelihood ra-
tio test given by (7.7), assuming first-order antedependence. We test the same
hypothesis twice more, again using tests of form (7.7) but assuming antede-
pendence of orders 2 and n− 1 instead of order 1. The third test is, of course,
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merely a modified version of Hotelling’s T 2. Power curves corresponding to
the three tests, taking the nominal size of each to be 0.05, are plotted in Figure
7.1 for N = 40, 20, or 12; for n = 10; and for values of α ranging between
0 (where the power equals the size) and 0.80. The curves show, as expected,
that when n is held constant, the power increases as either N or α increases.
More interestingly, they also show that the tests that do not fully exploit the
AD(1) covariance structure are not as powerful as the test that does. In fact,
the power of Hotelling’s T 2 test, relative to the first test, deteriorates rapidly
as N gets close to n from above. Note that Hotelling’s T 2 cannot be computed
when N ≤ n, for in this case the sample covariance matrix is not positive def-
inite. The power of the second test relative to the first also deteriorates as N
decreases with n fixed, but not as drastically.

Example 1: 100-km race data
For the split times on the ten 10-km sections, there is no particular value, μ0,
for which the hypothesis that μ = μ0 is of real interest. Nevertheless, for
purposes of illustration we shall test such a hypothesis (against the alternative
HA : μ �= μ0) for the complete 100-km race data, setting

μ0 = (48, 51, 50, 54, 54, 60, 63, 68, 68, 68)T

(the measurement units of each component being minutes). We take the co-
variance structure to be that of the best-fitting variable-order, saturated-mean
unstructured antedependence model, namely AD(0,1,1,1,2,1,1,2,3,5), as deter-
mined in Section 6.5. The modified likelihood ratio test statistic given by (7.7)
is equal to 19.64, and the corresponding p-value (based on a chi-square dis-
tribution with 10 degrees of freedom) is 0.033. Thus, there is some evidence
against the null hypothesis. We follow up this “overall” test with a sequence of
predecessor-adjusted t-tests for determining the first section on which the mean
split time differs from its hypothesized value. Results of these t-tests are given
in the fourth column of Table 7.1. They indicate that the earliest mean split
time that is significantly different from its hypothesized value, after adjusting
for the predecessors defined by the AD(0,1,1,1,2,1,1,2,3,5) model, is that of
the fifth section. For comparison purposes, we also include, in the table’s fi-
nal column, results of “standard” t tests, i.e., t tests which make no adjustment
for predecessors. None of the standard tests yield a statistically significant re-
sult. So here, adjustment for predecessors helps to explain the rejection of the
overall equality hypothesis and reveals a noteworthy change, which standard
testing does not detect, in mean split time from the fourth section to the fifth
section when compared to the hypothesized value (zero) of this change.

Although the previous null hypothesis was contrived for purposes of illustra-
tion, there are several hypotheses of the form Cμ = c that may be of real
interest in this situation. Here we illustrate testing one such hypothesis, which
is that the mean profile is flat over the last three sections of the race, against
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Figure 7.1 Empirical power of three modified likelihood ratio tests for μ = 0, as a
function of α, for three combinations of N (number of subjects) and n (number of
measurement times) used in the simulation study: top panel, N = 40 and n = 10;
middle panel, N = 20 and n = 10; bottom panel, N = 12 and n = 10. Solid line,
test which fully exploits AD(1); Dotted line, test which assumes AD(2); Dashed line,
Hotelling’s T 2 test.
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Table 7.1 Predecessor-adjusted and standard t tests for illustrative hypothesis on mean
split times in the 100-km race.

Section (i) μ0i Y i Predecessor-adjusted t Standard t

1 48 47.61 –0.67 –0.67
2 51 50.62 0.22 –0.57
3 50 49.40 –0.56 -0.76
4 54 53.03 –1.09 –1.13
5 54 54.48 3.52 0.45
6 60 59.91 –1.38 –0.07
7 63 62.41 –0.83 –0.51
8 68 69.07 1.78 0.78
9 68 68.42 0.13 0.31

10 68 66.99 –0.76 –0.69

the alternative of a saturated mean over these sections. Recall that the sam-
ple mean profile of these data (Figure 1.3) suggests that the means of the split
times, which increase quite steadily through the first eight sections of the race,
appear to level off and perhaps even decrease from the eighth to the tenth sec-
tions. For a test of flatness over the last three sections, an appropriate matrix C
is

C =
(

0 0 0 0 0 0 0 1 −1 0
0 0 0 0 0 0 0 0 1 −1

)
.

Again we take the covariance structure to be that of the AD(0,1,1,1,2, 1,1,2,3,5)
model. The Wald test statistic given by Theorem 7.2 is 3.46 which, when com-
pared to percentiles of the chi-square distribution with 2 degrees of freedom,
yields a p-value of 0.18. Thus there is insufficient evidence against the null
hypothesis to reject it, and we conclude that the mean profile is not statistically
different from a flat profile over the last three sections of the race.

Example 2: Treatment A cattle growth data
As a further example, we test for linearity of the mean profile of cattle weights
over the 11 measurement times, against the alternative hypothesis of a saturated
mean. Recall that the sample mean profile of these data (Figure 1.1) indicates
that mean weight increases over the entire course of the study but growth ap-
pears to decelerate in its latter part, which suggests that mean growth is not
linear. To test formally for linearity, we may use the Wald test of Theorem 7.2,
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taking the matrix C of the theorem to be, without loss of generality, as follows:

C =

⎛
⎜⎜⎜⎜⎜⎝

1 −2 1 0 0 · · · 0 0
0 1 −2 1 0 · · · 0 0

...
0 0 0 · · · 1 −2 1 0
0 0 0 · · · 1 −3 2

⎞
⎟⎟⎟⎟⎟⎠
.

Observe that the nonzero coefficients in the last row of this C are different
than in the other rows, owing to the difference in elapsed time (one week ver-
sus two weeks) between the tenth and eleventh measurement times. We take
the covariance structure for this test to be unstructured AD(2), which was the
unstructured constant-order AD model we previously selected by both a for-
ward selection and backward elimination procedure (Section 6.2). The Wald
test statistic is 376.8 on 9 degrees of freedom. Thus, the hypothesis that mean
growth of cattle receiving Treatment A over this time period is linear is rejected
emphatically.

7.2 Two-sample case

Now consider a situation in which balanced observations are independently
sampled from two groups; observations within the same group follow a nor-
mal saturated-mean, unstructured AD(p) model; and the covariance matrix is
common to both groups. That is,

Ygs ∼ independent Nn

(
μg,Σ(θ)

)
(g = 1, 2; s = 1, . . . , N(g)) (7.8)

where Σ(θ) is AD(p). Note that this is a special case of the multivariate regres-
sion-mean setting of Section 5.3.2 in which zT

s is equal to either (1,0) or (0,1)
depending on whether subject s belongs to group 1 or group 2. In this setting,
we often wish to test the null hypothesis that the two mean vectors, μ1 and μ2,
are equal against the alternative hypothesis that they are not equal. In the ver-
nacular of longitudinal data analysis, tests of these and other related hypotheses
are called profile comparisons.

The log-likelihood function for model (7.8) is given by

logL(μ1,μ2,θδ,θφ) = −nN
2

log 2π − 1
2

n∑
i=1

2∑
g=1

N(g)∑
s=1

{
log δi +

[
Ygsi

−μgi −
pi∑

k=1

φi,i−k(Ygs,i−k − μg,i−k)
]2/

δi

}
,
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where N = N(1) + N(2). This function may be rewritten in terms of trans-
formed mean vectors, μ∗

1 = (μ∗
1i) and μ∗

2 = (μ∗
2i), as

logL(μ∗
1,μ

∗
2,θδ,θφ) = −nN

2
log 2π − 1

2

n∑
i=1

2∑
g=1

N(g)∑
s=1

{
log δi +

(
Ygsi

−μ∗
gi −

pi∑
k=1

φi,i−kYgs,i−k

)2/
δi

}
(7.9)

where

μ∗
gi = μgi −

pi∑
k=1

φi,i−kμg,i−k (g = 1, 2). (7.10)

By a development similar to that which led to Theorem 7.1 in the one-sample
situation, we obtain the following theorem.

Theorem 7.3. Suppose that observations are balanced and independently sam-
pled from two groups, and that they follow model (7.8), where N(g) − 1 > p
for g = 1, 2. The likelihood ratio test for the null hypothesis that μ1 = μ2

(against the alternative that μ1 �= μ2) rejects the null hypothesis if and only if

N

n∑
i=1

[logRSSi(μ) − logRSSi(μ1,μ2)] > K,

where RSSi(μ) is the residual sum of squares from the regression of Yi on its
pi predecessors {Yi−k : k = 1, . . . , pi} with a common intercept for the two
groups; RSSi(μ1,μ2) is the pooled within-groups residual sum of squares
from the regression of Yi on its pi predecessors {Yi−k : k = 1, . . . , pi} with
group-specific intercepts, and K is a constant. For any α ∈ (0, 1), an asymp-
totically (as N → ∞) valid size-α test is obtained by taking K to be the
100(1−α)th percentile of a chi-square distribution with n degrees of freedom.

The likelihood ratio test statistic given by Theorem 7.3, like that given by Theo-
rem 7.1, may be extended to handle variable-order antedependence or dropouts
in obvious ways. Likewise, this test statistic can be expressed as functions of
certain Hotelling’s T 2 statistics (Johnson, 1989). In this case we have

−2 log Λ = N log

( ∏n−p
i=1 [1 + T 2

i:i+p/(N − 2)]∏n−p−1
i=1 [1 + T 2

i+1:i+p/(N − 2)]

)

where T 2
i:i+p is Hotelling’s T 2 statistic for testing the null hypothesis that

μ1,i:i+p = μ2,i:i+p (versus the alternative that these vectors are not equal)
under general multivariate dependence, given by

T 2
i:i+p =

(
N(1)N(2)

N

)
(Y1,i:i+p − Y2,i:i+p)T S−1

i:i+p

× (Y1,i:i+p − Y2,i:i+p),
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and T 2
i+1:i+p is Hotelling’s T 2 statistic for testing the null hypothesis that

μ1,i+1:i+p = μ2,i+1:i+p (versus the alternative that these vectors are not equal)
under general multivariate dependence, defined similarly. Here, Si:i+p is the
indicated submatrix of the pooled within-groups sample covariance matrix.

A modification to the test criterion given by Theorem 7.3, which improves the
correspondence between nominal size and actual size, is given by

n
∑n

i=1 [logRSSi(μ) − logRSSi(μ1,μ2)]∑n
i=1 ψ(1, N − 2 − pi)

> K, (7.11)

with K defined as in the theorem.

In some applications it may be of interest to determine the first or last times
that the means of the two groups are different. From (7.9) and (7.10), and by
analogy with the development in the previous section for the one-sample case,
we see that each null hypothesis in the sequence

μ1,1:i = μ2,1:i, i = 1, . . . , n,

may be tested against the respective alternative hypothesis

μ1i �= μ2i, μ1,1:i−1 = μ2,1:i−1, i = 1, . . . , n,

by likelihood ratio tests, each of which is a t-test. The null hypothesis for this t-
test is that the contrast μ1i−μ2i is equal to 0 in the regression of Yi on its pi pre-
decessors, assuming common slope coefficients on predecessors across groups
but allowing intercepts to be group-specific. The first one of these tests that is
statistically significant corresponds to the first measurement time at which the
group means are judged to be different. The last measurement time at which
the means of the two groups are different may be determined by re-ordering
the observations in reverse time order, and then proceeding in exactly the same
way.

It will often be of equal interest to test whether certain linear combinations
of the elements of the two mean vectors are equal to zero or other specified
constants. Again the likelihood ratio test statistic for such a hypothesis, though
it can be derived, is generally not expressible as a simple function of residual
sums of squares from certain pth-order regressions, like it is for the hypothesis
of Theorem 7.3. Consequently, we give, via the following theorem, the asymp-
totically equivalent Wald test, which is obtained by substituting the REML
estimator, Σ̃, for Σ in the test that is uniformly most powerful invariant when
Σ is known.

Theorem 7.4. Let C and c be a specified c × n matrix and c × 1 vector, re-
spectively, where the rows of C are linearly independent. Also, let Σ̃ be the
REML estimator of Σ under the model and conditions of Theorem 7.3. Under
the same model and conditions, the test obtained by substituting Σ̃ for Σ in the
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uniformly most powerful invariant test of the null hypothesis C(μ1 −μ2) = c
against the alternative hypothesis C(μ1 −μ2) �= c rejects the null hypothesis
if and only if(

N(1)N(2)
N

)
[C(Y1 − Y2) − c]T (CΣ̃CT )−1[C(Y1 − Y2) − c] > K.

(7.12)
For any α ∈ (0, 1), an asymptotically (asN → ∞) valid size-α test is obtained
by taking K to be the 100(1−α)th percentile of a chi-square distribution with
c degrees of freedom.

Example: Speech recognition data
In Section 5.4.2, we fitted a model to the speech recognition data in which the
mean structure was saturated within groups and the within-groups covariance
matrices were assumed to be homogeneous and unstructured AD(1). Our addi-
tional analysis of these data, given in Section 6.4, justified our assumptions on
the covariance structure. It is of interest now to know whether the data provide
sufficient evidence to conclude that the mean profiles of the two implant types
are different, and if so, how they are different. Results of tests of five relevant
hypotheses are given in Table 7.2. The modified likelihood ratio test for equal-
ity of the two mean profiles, as given by (7.11), indicates that this hypothesis
cannot be rejected, and subsequent standard t tests and predecessor-adjusted
t tests of implant differences at individual times agree with this (results not
shown). Likewise, the Wald test for parallel profiles shows no evidence against
parallelism. A subsequent Wald test for equality of mean profiles, assuming
parallelism, yields some, though rather weak, evidence that the mean profile
for implant A is shifted vertically from that of implant B. Note that this agrees
with the relatively constant (across time) difference of about 10 to 15 units (im-
plant A minus implant B) seen in the REML estimates of mean scores listed in
Section 5.4.2. Additional Wald tests listed in Table 7.2 establish that both mean
profiles increase significantly over time, indicating significant improvement in
speech recognition for both implant types, and that the rate of increase is not
linear, with greater improvement occurring from one month to nine months
after connection than thereafter.

Since these data have dropouts, for all Wald tests the REML estimates of mean
scores were used in place of sample means in (7.12), with a suitable modifica-
tion to the constant multiplier as well.

7.3 Multivariate regression mean

Now consider a situation in which balanced normal AD(p) observations have
a classical multivariate regression mean structure. That is,

Ys ∼ independent Nn

(
(zT

s ⊗ In)β,Σ(θ)
)
, s = 1, . . . , N, (7.13)
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Table 7.2 Likelihood ratio and Wald tests for various null hypotheses about the mean
profiles of the speech recognition data.

Null hypothesis Test statistic P

Profiles equal 6.209 0.184
Profiles parallel 2.957 0.398

Profiles equal, assuming parallel 2.964 0.085
Profiles flat, assuming parallel 68.212 <0.001

Profiles linear, assuming parallel 35.087 <0.001

where Σ(θ) is an unstructured AD(p) covariance matrix, zs is m× 1, and

Z =

⎛
⎜⎝

zT
1
...

zT
N

⎞
⎟⎠

is of full column rank m. Further, consider partitioning the covariate vector zs

into two parts as zs = (zT
s1, z

T
s2)

T , where zs1 ism0×1 and zs2 is (m−m0)×1,
with corresponding partitionings β = (βT

1 ,β
T
2 )T and Z = (Z1,Z2). Suppose

we wish to test whether all covariates in Z are important in explaining the vari-
ability of the response, or whether the covariates in Z1 alone will suffice. That
is, suppose we wish to test the null hypothesis that β2 = 0 against the alterna-
tive hypothesis that β2 �= 0. Note that any linear hypothesis, Cβ = 0, can be
put in this form via reparameterization. In particular, the hypotheses μ = μ0

and μ1 = μ2 considered in the previous two sections are special cases. A
development very similar to that of the previous section yields the following
theorem and the additional results and comments subsequent to it. Some refer-
ences providing more of this development are Kenward (1987), Patel (1991),
Albert (1992), and Macchiavelli and Moser (1997).

Theorem 7.5. Suppose that observations are balanced and follow the normal
multivariate regression-mean, unstructured AD(p) model given by (7.13), with
N − m > p. The likelihood ratio test for the null hypothesis that β2 = 0
(against the alternative that β2 �= 0) rejects the null hypothesis if and only if

N

n∑
i=1

[logRSSi(β1) − logRSSi(β1,β2)] > K,

whereRSSi(β1) is the residual sum of squares from the regression of Yi on its
pi predecessors and them0 covariates in z1;RSSi(β1,β2) is the residual sum
of squares from the regression of Yi on its pi predecessors and allm covariates
in z, and K is a constant. For any α ∈ (0, 1), an asymptotically (as N → ∞)
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valid size-α test is obtained by taking K to be the 100(1−α)th percentile of a
chi-square distribution with n(m−m0) degrees of freedom.

Once again, the likelihood ratio test statistic given by Theorem 7.5 may be ex-
tended to handle variable-order antedependence or dropouts in obvious ways.
It may be expressed as functions of certain Wilk’s lambda statistics as follows:

−2 log Λ = N log

( ∏n−p
i=1 Λi:i+p∏n−p−1

i=1 Λi+1:i+p

)

where

Λi:i+p =
|Σ̂i:i+p|

|Σ̂i:i+p +N−1B̂T
2 ZT

2 [I − Z1(ZT
1 Z1)−1ZT

1 ]Z2B̂2|
and B̂T

2 is the n × (m −m0) matrix whose columns, when stacked one upon
the other, yield β̂2. Also, better correspondence between nominal and actual
size is obtained by using the modified likelihood ratio criterion,

n(m−m0)
∑n

i=1 [logRSSi(β1) − logRSSi(β1,β2)]∑n
i=1 ψ(m−m0, N −m− pi)

> K,

where K is defined as in Theorem 7.5.

Furthermore, we can test the null hypothesis

β2j = 0, j = 1, . . . , i,

against the alternative

β2i �= 0, β2j = 0, j = 1, . . . , i− 1,

by fitting the model that regresses Yi on its pi predecessors and zi and using
the F-test for β2i = 0 in these fits. (Ifm−m0 = 1, then the F-test is equivalent
to a t-test.) These tests may be performed sequentially (starting with i = 1) to
determine the first time at which the covariates in Z2 are important explanatory
variables for the response, after adjusting for predecessors. An analogous pro-
cedure may be applied to the observations in reverse time order to determine
the last time at which the covariates in Z2 are important explanatory variables
for the response (after adjusting for successors).

Example: 100-km race data
We illustrate the methodology of this section with an analysis of the impor-
tance of age effects on the split times of the 76 competitors whose ages were
recorded. Recall, from the exploratory analysis of the effects of age displayed
in Figure 4.1 and the estimates of linear and quadratic age effects (with esti-
mated standard errors) listed in Table 5.2, that there is some evidence that age
has an effect on some of the split times, particularly late in the race, and that
this effect may be quadratic. Thus we will take as our “full” mean structure the
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Table 7.3 Modified likelihood ratio tests for effects of age on 100-km race split times.

Null hypothesis Alternative hypothesis −2 log Λ P

Saturated Quadratic 32.58 0.037
Saturated Linear 17.27 0.069

Linear Quadratic 15.33 0.121

same model fitted in Section 5.3.2, which is

E(Ysi) = β0i + β1i[age(s)] + β2i[age(s)]2

where i indexes the 10-km sections and [age(s)] represents the centered age of
subject s. We take the covariance structure to be AD(0,1,1,1,2,1,1,2,3,5), the
unstructured variable-order AD model found, in Section 6.5, to minimize BIC
for the complete data set.

Results of three modified likelihood ratio tests for age effects are given in Table
7.3. The first test listed tests the saturated mean structure as a null hypothesis
against the alternative of the full quadratic model. For this test, m = 3 and
m0 = 1. The test indicates that some evidence exists against the saturated mean
model relative to of the full model. This suggests that age effects may be of
some importance in explaining the variability of split times among competitors.
To determine whether the important age effects are linear or quadratic (or both),
we next test the saturated mean model as a null hypothesis in the context of
a linear effects model, and the linear effects model as a null hypothesis in
the context of the full quadratic model. The statistical evidence against each
null hypothesis is slight, but suggestive. Our conclusion, based on these results
and those given previously in Table 5.2, is that age has an important effect on
some, but not all, of the split times during the course of the race, and that these
effects are neither merely linear nor merely quadratic. A natural follow-up is to
determine the first split time at which age effects manifest. We accomplish this
with a sequence of predecessor-adjusted F tests on the quadratic model, the ith
of which tests the null hypothesis

β1j = β2j = 0, j = 1, . . . , i, (7.14)

against the alternative hypothesis

β1i �= 0 or β2i �= 0, β1j = β2j = 0, j = 1, . . . , i− 1.

The numerator degrees of freedom for each test is two, while the denomina-
tor degrees of freedom ranges from 68 to 73 as the number of predecessors
included in the model ranges from 0 to 5. Results for these tests are given in
Table 7.4. We find that the third section is the earliest for which the null hy-
pothesis is rejected at the 0.05 level of significance (P = 0.0464), hence we
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Table 7.4 Predecessor-adjusted F tests for combined linear and quadratic effects of
age on 100-km race split times.

Section Predecessor-adjusted F P

1 0.96 0.39
2 1.14 0.32
3 3.20 0.05
4 1.03 0.36
5 1.95 0.15
6 0.24 0.79
7 0.11 0.90
8 5.00 0.01
9 0.61 0.55
10 2.62 0.08

conclude that when the immediately preceding split time is taken into account,
age effects first become important on the third section. Furthermore, we find
that while both the linear and quadratic effects contribute to this rejection, the
linear effect is the more significant of the two; the t statistics for the two equal-
ity hypotheses in (7.14) are –2.01 and 1.48 for the linear and quadratic terms,
respectively, and the associated p-values are 0.048 and 0.143. The negative lin-
ear effect implies that older runners run relatively faster than younger runners
on the third section when split time on the second section is taken into account.

Note that the conclusions from the predecessor-adjusted F tests differ from, but
do not contradict, the findings of the analysis presented in Section 5.3.2 (Table
5.2). In that analysis, which found that the effects of age were not statistically
significant until the fifth section of the race and that the significant effects were
quadratic rather than linear, the effects of age were determined without ad-
justment for previous split times. Such an adjustment may often lead to subtly
different conclusions, as occurs in this case.

7.4 Other situations

The tests of hypotheses on mean structure considered so far in this chapter have
allowed the covariance matrix of the antedependence model to be unstructured
(of order p, where 0 ≤ p ≤ n− 1). When the antedependence model is struc-
tured, it is generally not possible to obtain expressions for the likelihood ratio
test statistics of hypotheses on mean vectors which are simple functions of
residual sums of squares from various regressions. This is also true in situa-
tions in which there are non-monotonic missing observations or heterogeneous
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within-group covariance matrices, and/or the hypotheses being tested, though
linear in the mean parameters, do not correspond to mean structures of multi-
variate regression form. Nevertheless, likelihood ratio testing procedures may
still be carried out in some of these situations, by numerical maximizing the
likelihood function under each of the null and alternative hypotheses and com-
paring minus twice the log of the ratio of the two maxima to a percentile from
a chi-square distribution with degrees of freedom equal to the difference in the
number of parameters in the two models.

Example 1: 100-km race data
In Section 5.3.2 we fitted an unstructured AD(3) model with a multivariate re-
gression mean structure, i.e., model (5.34), to the split times of the 76 competi-
tors whose ages were recorded. That model had an overall intercept, a linear
age effect, and a quadratic age effect corresponding to each of the 10 sec-
tions (30 mean parameters in all). Subsequently, in Section 5.3.3 we fitted an
unstructured AD(3) model with mean structure that was a cubic function of
centered section number plus common (across sections) linear and quadratic
functions of age, i.e., model (5.37) (with 6 mean parameters), to the same data.
The latter model, though its mean structure is not of multivariate regression
form, is nested within the former, hence the two models may be compared via
a likelihood ratio test. Such a test yields a likelihood ratio test statistic of 159.2,
with a p-value of essentially 0. We conclude that the latter, more parsimonious
mean structure is inadequate and we retain the former model.

Example 2: Cattle growth data, Treatments A and B
Figure 7.2 displays the mean profiles for each treatment group for the cat-
tle growth data. It can be seen that the mean weight of Treatment A cattle
is slightly larger at the experiment’s outset and that the difference in means
gradually increases until Week 14, when the mean profiles abruptly cross. The
Treatment B cattle maintain their newly acquired weight advantage until the
last week of the experiment, at which time the profiles cross again. We wish to
test (initially) whether the two mean profiles are equal. A standard likelihood
ratio test for homogeneity of the two unstructured [AD(10)] within-group co-
variance matrices rejects this hypothesis (P = 0.02). Consequently, to test
for the equality of mean profiles we do not use the likelihood ratio test given
by Theorem 7.3, but instead use a Wald test similar to that given by Theorem

7.4, with C taken to be the 11 × 11 identity matrix and
(

1
N(1)Σ̃1 + 1

N(2)Σ̃2

)

substituted for
(

1
N(1) + 1

N(2)

)
Σ̃, where Σ̃1 and Σ̃2 are REML estimates of

AD(3) covariance matrices under separate fits to the data from each group.
We compute the test statistic as 77.3, which, when compared to the chi-square
distribution with 11 degrees of freedom, unambiguously establishes an over-
all difference in mean profiles. To investigate the time(s) at which the profiles
differ significantly, we carry out standard “time-by-time” t tests and two types

© 2010 by Taylor and Francis Group, LLC



214 TESTING HYPOTHESES ON THE MEAN STRUCTURE

of predecessor-adjusted t tests of mean differences at individual time points.
The first type of predecessor-adjusted test is based on an assumption of a ho-
mogeneous AD(3) covariance structure. The rationale for taking the order to
be three for this test is that the highest order in the best-fitting variable-order
models for the covariance structure within either treatment group was three. On
the other hand, this test does not account for heterogeneity of the within-group
covariance matrices, so we consider a second type of predecessor-adjusted t

test that replaces
(

1
N(1) + 1

N(2)

)
δ̃i in the first predecessor-adjusted test with(

1
N(1) δ̃i1 + 1

N(2) δ̃i2

)
and makes a standard Satterthwaite adjustment for de-

grees of freedom. Here, δ̃i1 and δ̃i2 are REML estimates of the group-specific
innovation variances under assumed AD(3) structures, and δ̃i is the REML es-
timate of an assumed common innovation variance. Only one type of standard
t test is considered, for despite the evidence for heterogeneous within-group
covariance matrices there is no evidence for heterogeneous group variances at
any time point, as can be seen by comparing the main diagonal elements in
Table 4.1(a) and Table 8.1(a).

 

Week

W
ei

gh
t (

kg
)

0 5 10 15

24
0

26
0

28
0

30
0

32
0

Figure 7.2 Mean profiles for the cattle growth data. Solid line: Treatment A. Dotted
line: Treatment B.

Results of the t tests are given in Table 7.5. Note that the standard t tests are un-
informative, as none of them find a significant difference in means. In contrast,
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Table 7.5 Standard t tests and two predecessor-adjusted t tests for treatment differences
at individual time points for cattle growth data.

Predecessor-adjusted t, Predecessor-adjusted t,
Week Standard t first type second type

0 0.60 0.60 0.60
2 0.82 0.57 0.59
4 1.03 0.72 0.68
6 0.88 –0.30 –0.33
8 1.21 1.07 1.08

10 1.12 0.15 0.16
12 1.28 0.60 0.64
14 –1.10 –7.26 –7.19
16 –0.95 –1.15 –1.14
18 –0.53 1.15 1.44
19 0.85 3.92 3.89

the predecessor-adjusted tests determine that when the three immediate prede-
cessors are taken into account, the profiles are significantly different at week
14. As it happens, for these data there are not important differences in the
conclusions drawn from the two predecessor-adjusted tests. However, in other
situations with heterogeneous covariance matrices, the reduction in degrees of
freedom produced by the Satterthwaite adjustment for tests of the second type
could affect the assessment of significance.

Diggle et al. (2002) present an alternative time-by-time analysis of successive
weight gains, Ysi − Ys,i−1, instead of the weights themselves. The results of
their analysis are very similar to those of the predecessor-adjusted analysis,
which, in light of the strong positive correlation between successive weights,
is not surprising. However, it is worth noting that time-by-time t tests of succes-
sive differences are correlated if the order of antedependence is higher than one
at any measurement time (as is the case for these data), and they do not account
for the possibility that successive differences have unequal group variances (as
is also the case here at some of the measurement times). Therefore, for gen-
eral use for data with heterogeneous covariance matrices, we recommend the
second predecessor-adjusted approach.

7.5 Penalized likelihood criteria

In Section 6.5, we introduced the use of penalized likelihood criteria to com-
pare models with different (and possibly non-nested) covariance structures.
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Penalized likelihood criteria may also be used to compare models with differ-
ent mean structures, or to compare models with different mean and covariance
structures. Of those criteria considered previously, only the likelihood-based
criteria AIC and BIC are applicable; REML-based criteria are not applica-
ble for these purposes because the residual likelihood function is a function of
covariance parameters only. Thus we consider

IC(k) = − 2
N

logL(β̂k, θ̂k) + dk
c(N)
N

where k indexes the models under consideration, β̂k and θ̂k are the maximum
likelihood estimators of β and θ under the kth model, dk is the number of
unknown parameters in the mean structure and covariance structure of the kth
model, and c(N), the penalty term, is equal to 2 for AIC and equal to logN
for BIC.

Example: Treatment A cattle growth data
Previously (Table 6.7) we compared various covariance structures for the Treat-
ment A cattle growth data using penalized likelihood criteria, under the as-
sumption of a saturated mean structure. Now we useAIC andBIC to compare
mean structures for some of those models. In particular, we compare polyno-
mial mean structures of orders one through ten for the five best-fitting covari-
ance structures listed in Table 6.7. Note that a tenth-order polynomial mean
coincides with a saturated mean for these data. Results for BIC are displayed
in Table 7.6. For the five antedependent covariance structures, the ordering of
mean structures is almost identical, with the saturated mean structure always
best. Similarly, the ordering of covariance structures is identical for all mean
structures, with the second-order marginally formulated power law SAD model
always best. Results for AIC (not shown) are identical with respect to order-
ing of mean structures and nearly identical with respect to ordering of covari-
ance structures, the only differences being that the variable-order unstructured
antedependence model and first-order marginally formulated power law SAD
model are reversed from their order with respect to BIC.

Recall that for the POU(10) model defined previously (Section 5.5.4), the log-
innovation variances and autoregressive coefficients are modeled as cubic func-
tions of time and lag, respectively. Of course, polynomials of other orders for
these quantities could be considered. When combined with comparisons of or-
ders for polynomial mean structures, however, it would appear that there is a
large number, specifically (n − 1)3 in a general balanced longitudinal setting
with n measurement times, of such models that need to be fit to conduct an ex-
haustive search for the one with the smallestBIC (orAIC). Pan and MacKen-
zie (2003) conjectured that the optimal model, with polynomial orders dIV ,
dAR, and dmean for the innovation variances, autoregressive coefficients, and
mean parameters, respectively, could alternatively be found using three BIC-
based searches involving the profile log-likelihoods obtained by saturating the

© 2010 by Taylor and Francis Group, LLC



CONCLUDING REMARKS 217

Table 7.6 Bayesian information criteria (BIC) for comparing polynomial mean struc-
tures of various orders for the Treatment A cattle growth data, for the five best-fitting
antedependence models from Table 6.7.

Polynomial
order SAD-PM(2) POU(10) VAD SAD-PM(1) AD(2)

1 74.89 75.19 75.93 76.11 76.28
2 73.53 73.76 73.80 73.99 74.14
3 73.35 73.46 73.73 73.90 74.08
4 71.77 71.90 72.07 72.30 72.41
5 70.80 70.90 71.07 71.29 71.41
6 70.80 70.86 71.13 71.27 71.34
7 70.46 70.53 70.73 70.86 71.14
8 70.21 70.26 70.40 70.54 70.81
9 70.16 70.19 70.33 70.47 70.67

10 70.09 70.13 70.31 70.37 70.55

three sets of parameters in pairs:

dIV = arg min
i=1,...,n

{BIC(i− 1, n− 1, n− 1)},
dAR = arg min

i=1,...,n
{BIC(n− 1, i− 1, n− 1)},

dmean = arg min
i=1,...,n

{BIC(n− 1, n− 1, i− 1)}.

This approach reduces the number of maximizations required to find the op-
timum model from (n − 1)3 to 3n. Pan and MacKenzie (2003) reported that
their conjecture proved to be correct for the Treatment A cattle growth data, and
that the optimum model of this type for these data has (dIV , dAR, dmean) =
(3, 4, 8). The same type of approach could be used with any autoregressively
formulated SAD model, but it is not known whether it will reliably yield the
optimum model.

7.6 Concluding remarks

We have given, in this chapter, likelihood ratio tests and Wald tests for linear
hypotheses on the mean structure of antedependence models. In comparison
to tests on the mean structure under general multivariate dependence, tests on
the mean structure under antedependence are more powerful, as our simulation
study demonstrated for the likelihood ratio test; similar results for the Wald
test are shown by Byrne and Arnold (1983) and Johnson (1989). Furthermore,
our tests on the mean structure under antedependence can be carried out in
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situations in which the sample size is too small to test the hypothesis under
general multivariate dependence. In every case, the likelihood ratio test statistic
for testing a hypothesis about an n-dimensional mean vector(s) under pth-order
antedependence turns out to be expressible as a function of likelihood ratio test
statistics for hypotheses about subvectors of the mean vector(s) of dimension at
most p+1 under general dependence. It is also expressible in terms of residual
sums of squares from regressions on predecessors (plus covariates), as were
the likelihood ratio test statistics for hypotheses about the covariance structure
described in Chapter 6.

Once again, R functions for performing the tests presented in this chapter are
available from the first author’s Web page.

The likelihood ratio and Wald test statistics are but two of several statistics that
may be used to test hypotheses about the mean structure of antedependence
models. Two others, which are asymptotically equivalent, are the Lawley-Hotel-
ling trace and Pillai trace; details are given by Johnson (1989).

If one of the tests described in this chapter rejects the null hypothesis, then a
natural follow-up is to perform predecessor-adjusted t tests (or F tests) for the
mean(s) at each measurement time. Another follow-up analysis would be to
obtain simultaneous confidence intervals for linear combinations of the mean
parameters. A Wald test, with its elliptical acceptance region, leads directly to a
set of Scheffé-based simultaneous confidence intervals for these combinations.
Byrne and Arnold (1983) give such intervals, under first-order antedependence,
for linear combinations of the elements of a saturated mean in the one-sample
case. Johnson (1989) extends this to unstructured antedependence of arbitrary
order and to the two-sample case as well. These authors show that, as expected,
the simultaneous confidence intervals obtained under antedependence are nar-
rower than their counterparts obtained under general multivariate dependence.
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CHAPTER 8

Case Studies

In Chapters 4 through 7 of this book, we have illustrated various exploratory
and inferential methods associated with antedependence models using four
data sets introduced in Chapter 1: the cattle growth, 100-km race, speech recog-
nition, and fruit fly mortality data. However, due to the specific focus on a par-
ticular method in each instance, the analysis of each data set was presented
in a rather piecemeal fashion. Moreover, for obvious reasons only antedepen-
dence models were considered and we did not fit any alternatives often used
for longitudinal data, such as random coefficient models or vanishing corre-
lation models. In this chapter we present a concise summary of our previous
analyses of each data set, adding to the analysis where it seems appropriate.
Included among the supplemental analyses are fits and comparisons of alterna-
tive models. In each case we attempt to follow a coherent, data-driven approach
to parametric modeling of the data’s mean and covariance structure. We begin
the chapter with a description of the components of this approach, and we close
it out with a discussion of what the case studies tell us about the relative merits
of antedependence models and other models for longitudinal data.

8.1 A coherent parametric modeling approach

The first stage of our modeling approach is to explore the data via summary
statistics (e.g., means, variances, correlations, intervenor-adjusted correlations,
innovation variances and autoregressive coefficients from the modified Choles-
ky decomposition of the precision matrix) and plots (e.g., profile plot, response-
versus-covariate plots, ordinary scatterplot matrix and PRISM, innovariogram
and regressogram). For these purposes, one ordinarily should take the mean
to be saturated and, if the data come from discrete groups of subjects, one
should compute summary statistics/plots separately for each group. In order to
carry out this program, the data must be either balanced or sufficiently well-
replicated across measurement times for the elements of the unstructured co-
variance matrix to be estimable; if this is not so, then the exploratory analyses
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may be based on residuals from a smooth fit to the mean structure across time,
or measurement times may be grouped together until sufficient replication is
achieved. The summary statistics and plots should help to determine whether
parametric modeling of the mean structure or covariance structure or both is
likely to be successful, and if so, which mean structures and covariance struc-
tures are plausible.

The second stage of our modeling approach is to fit saturated-mean models
with plausible covariance structures to the data, estimating parameters by ei-
ther maximum likelihood or its close relative, REML. The methods we present
here assume that the observations are normally distributed, so this assumption
should be checked and the data transformed if necessary to more closely sat-
isfy it. The ordinary scatterplot matrix and PRISM can be helpful in this regard.
For each fitted model, the maximized likelihood and various penalized likeli-
hood criteria may be computed. In this book we feature only AIC and BIC
and their REML analogues but there are several other possibilities; see, for ex-
ample, Burnham and Anderson (2002). The maximized likelihoods may then
be used to conduct formal likelihood ratio tests for comparing nested models,
such as unstructured antedependence models of order 0 through n − 1. The
penalized likelihood criteria may be used to select the “best” model(s) among
all those that were fitted, regardless of whether the models are nested. For data
that come from discrete groups of subjects, another aspect of this stage of the
analysis is a likelihood ratio test for homogeneity of the covariance structure
across groups. This test may be based on an unstructured covariance matrix or,
if both groups are determined to have an antedependent covariance matrix of
the same order (less than n − 1), this additional structure can be exploited to
yield a more powerful test.

Once the best covariance structure(s) for a saturated-mean model has (have)
been identified, then attention may shift to the third stage of the analysis: mod-
eling the mean structure more parsimoniously. This will often involve fitting
and comparing models with mean structures that are polynomial functions of
time and/or other covariates. If the data come from discrete groups of subjects,
it may also involve testing for equality, parallelism, etc. of the groups’ mean
profiles. For this, likelihood ratio testing is usually a viable option, since the
mean structures of interest typically are nested; alternatively, models with dif-
ferent mean structures may, like models with different covariance structures,
be compared using penalized likelihood criteria.

Finally, after completing the third stage of the analysis, revisiting previous
stages may be worthwhile. For example, if, at the third stage, we determine
that the mean structure is well-approximated by a low-order polynomial, say
quadratic, function of time, then we may wish to compute the residuals from
the fitted quadratic function and return to the first stage to compute correlations,
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etc. among these residuals rather than among those computed from a saturated
mean.

8.2 Case study #1: Cattle growth data

The cattle growth data come from a designed experiment in which cattle receiv-
ing two treatments, generically labeled A and B, for intestinal parasites were
weighed 11 times over a 133-day period. Thirty animals received Treatment
A and thirty received Treatment B. The animals were weighed at two-week
intervals except for the final measurement, which was made one week after
the tenth measurement. Measurement times were common across animals and
no observations were missing. The experimenter wishes to know if there is a
difference in growth between treatment groups, and if so, the time of measure-
ment at which it first occurs.

Profile plots of the data corresponding to Treatments A and B (Figures 1.1 and
1.2, respectively) have quite similar shapes, except near the very end of the ex-
periment where Treatment B’s profile dips down somewhat and Treatment A’s
does not. These show that mean growth is relatively slow in the first two weeks
but then accelerates until the end of Week 8, where a long process of deceler-
ation (more or less) in growth begins. They also indicate that the variability of
responses across subjects increases over the course of the experiment. Figure
7.2 superimposes the mean profiles for the two treatments and indicates that the
average weights of the animals receiving Treatment A were slightly higher at
the experiment’s outset and maintained or expanded this difference until Week
14, when the profiles suddenly crossed. The Treatment B cattle maintained
their newfound weight advantage until the last week of the experiment, when
the profiles crossed once more.

Given the experimenter’s objectives and the shapes of the mean profiles, it is
clear that attempting to model the mean structure of each treatment group as
a polynomial function of time would be counterproductive. Thus, we retain a
saturated mean structure within groups for the entire analysis.

An examination of the marginal variances and correlations for each treatment
group separately [Table 1.2 and Table 8.1(a)] reveals that the variances within
each group increase roughly fourfold over the course of the experiment and
the correlations for both groups are positive and large, and though the corre-
lations do broadly decrease as elapsed time between measurements increases,
they remain relatively large (no smaller than 0.44). With such similar behav-
ior across the two treatment groups it might be expected that we could pool
the two within-group covariance matrices; however, the standard likelihood ra-
tio test for the homogeneity of two unstructured covariance matrices rejects
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this hypothesis (P = 0.02). Accordingly, we further investigate each group’s
covariance structure separately.

For the Treatment A data, the sample intervenor-adjusted correlations and the
autoregressive coefficients of the sample precision matrix’s modified Cholesky
decomposition (Table 4.1) suggest that a first-order unstructured antedepen-
dence model may fit the data well except possibly for observations taken on
the eighth occasion (Week 14), for which second-order antedependence is in-
dicated. The innovariogram and regressogram (Figure 4.8) reveal that the log-
innovation variances and autoregressive coefficients may be adequately mod-
eled as cubic functions of time and lag, respectively. Moreover, the same-lag
marginal correlations appear to increase monotonically, more or less, as the
experiment progresses (Table 1.2). The increase in the marginal variances does
not appear to be linear or quadratic, but perhaps cubic (Table 1.2 also). The
ordinary scatterplot matrix and PRISM corroborate these findings and do not
point to any anomalies.

Informed by these results, we proceed to fit and compare many antedependence
models to these data. Table 8.2 is the first of several tables in this chapter that
list fitted models together with the number of covariance parameters, d, the
maximized residual log-likelihood, max logLR, and the penalized likelihood
criteria, AICR and BICR, for each model. For some models we also list one
or more “comparison models,” which are tested as null hypotheses against the
alternative hypothesis of that model via residual likelihood ratio tests. We also
give the p-value, P , corresponding to the test. For Table 8.2, the fitted models
include unstructured AD models of orders 1, 2, and 10; stationary and hetero-
geneous autoregressive models (AR and ARH) of orders 1 and 2; marginally
and autoregressively specified power law SAD models (SAD-PM and SAD-
AM) of orders 1 and 2; the unconstrained SAD(10) model of Pourahmadi in
which the innovation variances and autoregressive coefficients are cubic func-
tions of time and lag, respectively [POU(10)]; and the best-fitting variable-
order AD model (VAD) as determined in Section 6.5. More specifics on these
models may be found in Sections 5.5.1, 5.5.4, and 6.3.

From the results in Table 8.2, we see that the four best models are SAD models
that are capable of accommodating nonstationarity in the variances and cor-
relations. These models outperform both the unstructured AD models, which
are overly flexible for these data, and the stationary and heterogeneous auto-
gressive models, which are too parsimonious. For the sake of comparison, we
also include results for a few non-antedependence models: compound sym-
metry (CS), heterogeneous compound symmetry (CSH), linear random coef-
ficient (RCL), quadratic random coefficient (RCQ), Toeplitz(10) [TOEP(10)],
and heterogeneous Toeplitz(10) [TOEPH(10)] models. Of these, only the RCQ
and TOEP(10) models are somewhat competitive, ranking seventh and ninth
among all fitted models. We do not consider any vanishing correlation models
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Table 8.1 Summary statistics for the covariance structure of the Treatment B cattle
growth data: (a) sample variances, along the main diagonal, and correlations, below
the main diagonal; (b) sample innovation variances, along the main diagonal, and au-
toregressive coefficients, below the main diagonal. Autoregressive coefficients whose
corresponding t-ratios are significant at the 0.05 level are set in bold type.
(a)

105
.86 108
.83 .94 147
.68 .89 .93 198
.67 .84 .88 .95 218
.66 .84 .87 .95 .98 250
.61 .78 .82 .91 .93 .97 248
.63 .81 .84 .92 .92 .95 .95 234
.63 .79 .79 .89 .93 .95 .93 .96 287
.48 .65 .67 .78 .78 .82 .76 .78 .83 405
.44 .57 .62 .73 .68 .74 .71 .71 .75 .92 599

(b)

105
.87 29
.10 1.02 17

–.56 .54 1.04 20
.21 –.19 –.11 1.09 26
.13 –.01 –.29 .49 .76 11
.05 –.26 .00 .15 –.15 1.09 20
.05 .06 –.11 .33 –.23 .37 .51 22
.13 .27 –.60 –.05 .34 .45 –.20 .76 18

–.11 –.53 .20 .64 –.92 1.61 –.73 –.54 1.12 142
.41 –1.16 .51 .98 –1.17 –.04 .70 –.66 .28 1.15 86

for these data, as all the marginal correlations are too large for such models to
be plausible.

Turning now to the covariance structure of the Treatment B data, the autore-
gressive coefficients [Table 8.1(b)] show that at each measurement time but the
tenth, the response is significantly linearly associated with its immediate pre-
decessor. In this respect the covariance structure for Treatment B is similar to
that for Treatment A. However, in the present case some responses are partially
associated with a few more of their predecessors. Thus, while unstructured
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antedependence models of orders one or two fit the Treatment A data best, we
will not be surprised if the best unstructured antedependence model for the
Treatment B data is of order three or higher. We see also that the innovation
variances for Treatment B are about equal to or smaller than their Treatment A
counterparts over the first nine measurement times, but the last two innovation
variances are much larger.

The best constant order of antedependence, as determined by a backward elim-
ination likelihood ratio testing procedure, is three, and the best (minimum
BICR) variable-order antedependence model is VAD≡AD(0,1,1,3,1,2,1,2,3,
1,1). In addition to these models, we fit many of the same structured AD and
non-antedependence models we fitted to the Treatment A data. Some results
are displayed in Table 8.3. Recalling that several structured AD models fit bet-
ter than unstructured AD models for Treatment A, it is interesting that here the
situation is reversed: each structured AD model we fitted performs worse than
the unstructured AD model of the same order (and worse than the best variable-
order model also). Of the non-antedependent models, only TOEPH(10) is rea-
sonably competitive, but it is not as good as the unstructured AD models of
order three or less.

Finally, we test for equality of the two mean profiles, combining the data from
both groups for this purpose but retaining distinct within-group covariance
matrices: either SAD-PM(2) for Treatment A and VAD for Treatment B (the
models determined to fit best), or AD(3) for both groups. In either case, the
test indicates a highly significant difference between profiles (P < 10−10).
Predecessor-adjusted t tests for the Treatment A versus Treatment B mean
comparison at each measurement time lead to the conclusion that the eighth
measurement time (Week 14) is the first time at which the profiles are signifi-
cantly different; see Section 7.4 for more details.

8.3 Case study #2: 100-km race data

The 100-km race data consist of split times for each of 80 competitors on
each 10-km section of a 100-km race. Every competitor completed the race,
so there are no dropouts or other missing responses. The data also include the
ages of all but four of the competitors. The main analysis objective is to obtain
a parsimonious model relating competitor performance to section and age.

The profile plot (Figure 1.3) indicates that the mean split time tends to increase
at an ever-accelerating rate over the first eight sections of the race, but then
level off over the remaining sections. The overall shape of the mean profile
does not appear to be too amenable to parametric modeling by a low-order
polynomial function. The plot also indicates that split time variances tend to
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Table 8.2 REML information criteria and residual likelihood ratio tests of covariance
structures for the Treatment A cattle growth data. The horizontal line in the body of
the table separates antedependence models (above the line) from non-antedependence
models (below the line). Antedependence models are listed in order of increasing
BICR.

Model d max logLR AICR BICR Comparison P
model

SAD-PM(2) 8 –1034.6 109.75 110.15 SAD-PM(1) 0.00
AR(2) 0.00

POU(10) 8 –1035.2 109.81 110.21
SAD-PM(1) 6 –1040.2 110.13 110.42 AR(1) 0.00
SAD-PA(1) 4 –1044.9 110.41 110.61 AR(1) 0.00
AR(2) 3 –1049.0 110.74 110.89
AR(1) 2 –1050.9 110.83 110.93
SAD-PA(2) 8 –1043.1 110.64 111.04 SAD-PA(1) 0.49

AR(2) 0.04
VAD 23 –1027.4 110.57 111.71
ARH(2) 13 –1042.7 111.13 111.77
ARH(1) 12 –1045.0 111.26 111.86 AR(1) 0.30
AD(1) 21 –1034.9 111.15 112.19 ARH(1) 0.02

SAD-PM(1) 0.78
AD(2) 30 –1025.6 111.12 112.61 AD(1) 0.03

SAD-PM(2) 0.71
AD(10) 66 –1009.7 113.23 116.51 AD(2) 0.67

CS 2 –1190.2 125.49 125.59
CSH 12 –1160.3 123.40 124.00 CS 0.00
RCL 4 –1076.8 113.77 113.97 CS 0.00
RCQ 7 –1044.2 110.65 111.00 RCL 0.00
TOEP(10) 11 –1040.8 110.72 111.26
TOEPH(10) 21 –1037.2 111.39 112.43 TOEP(10) 0.96

increase over the entire course of the race, and that the behavior of many run-
ners on later sections of the race is more erratic, in the sense that consecutive
same-runner split times fluctuate more. Section-specific scatterplots of split
time versus age (Figure 4.1) suggest that age may have a quadratic effect on
performance, especially later in the race. In particular, middle-aged runners ap-
pear to perform slightly better, on average, than either younger or older runners
on later sections.

The sample correlations between split times (Table 4.2) are positive and tend to
decline as the number of intervening sections increases, but remain relatively
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Table 8.3 REML information criteria and residual likelihood ratio tests of covariance
structures for the Treatment B cattle growth data. The horizontal line in the body of
the table separates antedependence models (above the line) from non-antedependence
models (below the line). Antedependence models are listed in order of increasing
BICR.

Model d max logLR AICR BICR Comparison P
model

VAD 27 –1010.7 109.33 110.57
AD(1) 21 –1022.9 109.88 110.93 ARH(1) 0.00

SAD-PA(1) 0.00
ARH(1) 12 –1042.7 111.02 111.62 AR(1) 0.00
AD(2) 30 –1016.8 110.19 111.68 AD(1) 0.20

SAD-PA(2) 0.00
AD(3) 38 –1007.0 110.00 111.89 AD(2) 0.01

AD(1) 0.02
SAD-PA(3) 0.00

AD(4) 45 –1002.5 110.26 112.50 AD(3) 0.26
SAD-PA(1) 4 –1070.0 113.05 113.25 AR(1) 0.00
SAD-PA(2) 8 –1069.3 113.40 113.80 SAD-PA(1) 0.84
SAD-PA(3) 13 –1063.4 113.31 113.95 SAD-PA(2) 0.04
AD(10) 66 –989.6 111.12 114.40 AD(3) 0.18
AR(1) 2 –1102.8 116.29 116.39

CS 2 –1186.9 125.15 125.25
CSH 12 –1128.9 120.09 120.69 CS 0.00
RCL 4 –1124.7 118.81 119.01 CS 0.00
RCQ 7 –1092.8 115.77 116.12 RCL 0.00
TOEP(10) 11 –1076.1 114.43 114.98
TOEPH(10) 21 –1034.1 111.06 112.11 TOEP(10) 0.00

strong (greater than 0.4) even for the most widely separated sections. Further-
more, correlations between split times on consecutive sections tend to decrease
late in the race. An examination of sample intervenor-adjusted partial correla-
tions and autoregressive coefficients (Table 4.3) reveals that over the first seven
sections, the split time immediately preceding any given split time is the only
one with which it is significantly associated, when adjusted for the intervening
or remaining split times. However, over the last three sections, some split times
prior to the immediate predecessor also have significant partial associations
with split time. In fact, the tenth split time is significantly partially associated
with the fifth split time, which means that runners who perform well on the
last section, relative to other runners and their own performance on previous
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sections, tend to be ones who performed relatively worse on the fifth section.
These findings, which the PRISM (Figure 4.2, lower triangle) corroborates,
are interesting in and of themselves, but they also suggest that antedependence
models up to order five (at least) should be fitted and that antedependence mod-
els of constant order are unlikely to fit as well as those of variable order.

To carry out more formal inferences, we fit and compare many antedependence
models, of which all have a saturated mean structure. Among the constant-
order unstructured AD models, stepwise procedures for likelihood ratio testing
select an AD(3), although an AD(5) is a worthy competitor (Section 6.2). On
the basis of BICR, however, an AD(2) is the best constant-order model (Sec-
tion 6.5). Furthermore, an AD(0,1,1,1,2,1,1,2,3,5) is the best variable-order AD
model, and it is considerably better than its constant-order competitors (Sec-
tion 6.5). That this VAD model has relatively higher orders late in the race
agrees with the previously noted behavior of the sample intervenor-adjusted
partial correlations and autoregressive coefficients. Among the structured AD
models we fitted are two autoregressively specified power law SAD(2) models,
SADL(2) and SADQ(2), for which the innovation variances are given by a lin-
ear or quadratic function, respectively, of section. Neither of these two models
is competitive. Also included are two structured VAD models, VAD-PM and
VAD-AM, of the same orders as the best unstructured VAD; detailed specifi-
cations of these two models may be found in Section 6.5. The VAD-PM model
is superior to AD(0,1,1,1,2,1,1,2,3,5) on the basis of BICR, though it is worth
noting that a residual likelihood ratio test emphatically rejects the VAD-PM in
favor of the unstructured VAD model. Results for these models are given in
Table 8.4.

In addition to the antedependence models, we fitted compound symmetric,
heterogeneous compound symmetric, linear and quadratic random coefficient
models, and Toeplitz(9) and heterogeneous Toeplitz(9) models. All of these,
save TOEPH(9), prove to be vastly inferior to every antedependence model we
fitted, save AR(1). Note that once again we do not consider vanishing correla-
tion models, in light of the large magnitudes of all the marginal correlations.

The analysis to this point has taken the mean structure to be saturated. In light
of the aforementioned possible quadratic effects of age, we next consider mod-
els with a multivariate regression mean structure consisting of section-specific
intercepts, linear terms, and quadratic terms, as specified in Section 5.3.2. Due
to the missing ages of four of the competitors, however, fitting these models
is not completely straightforward. Assuming ignorability, various strategies of
missing data analysis, e.g., the EM algorithm or multiple imputation, could be
used, but here we opt instead for simply setting the data from those four com-
petitors aside and fitting models to the data from the remaining 76 competitors.
The results from fits of saturated mean models to the smaller data set, though
slightly different numerically, yield the same ordering of models and hence we
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Table 8.4 REML information criteria and residual likelihood ratio tests of covariance
structures for the 100-km race data, for models with saturated mean. The horizontal line
in the body of the table separates antedependence models (above the line) from non-
antedependence models (below the line). Antedependence models are listed in order of
increasing BICR.

Model d max logLR AICR BICR Comparison P
model

VAD-PM 14 –2341.4 67.29 67.75
VAD 27 –2319.6 67.05 67.91 VAD-PM 0.00
VAD-AM 14 –2353.7 67.65 68.09
AD(2) 27 –2334.1 67.46 68.33 AD(1) 0.00
AD(3) 34 –2323.3 67.35 68.44 AD(2) 0.00
AD(1) 19 –2358.0 67.91 68.52 ARH(1) 0.00
AD(4) 40 –2321.0 67.46 68.74 AD(3) 0.60
ARH(1) 11 –2384.7 68.45 68.80 AR(1) 0.00
AD(5) 45 –2316.1 67.43 68.88 AD(3) 0.21
AD(9) 55 –2310.2 67.58 69.34 AD(3) 0.20
SADQ(2) 10 –2412.0 69.20 69.52 SADL(2) 0.00
SADL(2) 9 –2460.5 70.56 70.85
AR(1) 2 –2548.6 72.87 72.94

CS 2 –2671.6 76.39 76.45
CSH 11 –2547.6 73.10 73.46 CS 0.00
RCL 4 –2562.6 73.33 73.46 CS 0.00
RCQ 7 –2518.0 72.14 72.37 RCL 0.00
TOEP(9) 10 –2529.3 72.55 72.87
TOEPH(9) 19 –2377.9 68.48 69.09 TOEP(9) 0.00

draw exactly the same conclusions that we drew from the fits of these models
to the complete data set. Finally, we test for effects of age on split times, using
VAD≡AD(0,1,1,1,2,1,1,2,3,5) as the covariance structure. A likelihood ratio
test suggests that we opt for the full quadratic model rather than the smaller,
saturated-mean or linear effects models (Table 7.3), and we therefore conclude
that age has an important effect on at least some of the ten split times, and
that this effect is not merely linear but quadratic. Standard t tests for signifi-
cance of the linear and quadratic coefficients (Table 5.2) indicate that age has
a significant quadratic effect on performance in five of the last six sections,
but that no linear effects are significant. The quadratic effect takes the form of
better performance among middle-aged runners than among their younger and
older counterparts. On the other hand, predecessor-adjusted F tests reveal that
when split times on previous sections are taken into account, the third section
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is the first at which age effects manifest significantly (Table 7.4). Moreover,
the predecessor-adjusted linear effect on the third section is negative and more
significant, both statistically and practically, than the quadratic effect.

Various antedependence models with mean structures consisting of linear and
quadratic age effects and low-order polynomial functions of section were also
fitted (e.g., Section 7.4), but they fit poorly and we retain the full quadratic
model.

We should note that the PRISM (Figure 4.2, lower triangle) reveals the pres-
ence of an outlier and some other mildly interesting departures from the as-
sumptions of the models fitted here. Additional analyses of these data could
attempt to account for these features. For example, it is worth seeing what
effect(s) the removal of the outlier would have on the analysis. We find that
when the outlier is removed, the penalized likelihood approach for select-
ing the minimum-BICR variable-order AD model selects the model of order
(0,1,1,1,1,1,1,2,3,5), which differs from the result for the complete-data case
only by one degree (order 1 rather than 2) on the fifth section. Furthermore, we
find that removal of the outlier has very little effect on the ordering of models
in Table 8.4.

Finally, we note that the sample size (number of competitors) is large enough
here that tests for the mean structure under the assumption of the VAD-PM or
any other well-fitting AD model probably do not have much greater power than
their counterparts computed assuming general multivariate dependence. Nev-
ertheless, the analysis from the antedependence-model perspective presented
here is useful because it provides insights that analyses from other perspectives
do not, such as the conditional dependence of split time on more immediately
preceding split times in the last few sections of the race.

8.4 Case study #3: Speech recognition data

The speech recognition data consist of audiologic performance scores on a
test administered to 41 profoundly deaf subjects who had received cochlear
implants. The implants are of two types, A and B, with 20 subjects receiving
type A and 21 receiving type B. Measurement times were scheduled at 1, 9,
18, and 30 months after implant connection, but some subjects dropped out of
the study after the second or third measurement. The main analysis objective
is to compare the mean profiles of the two implant types.

Figure 1.4 gives profile plots of the data for each type of implant. We ob-
serve that both mean profiles increase over time, with the largest increases
occurring from t = 1 to t = 9 months after implantation. The variances
appear to increase slightly from the first to second measurement, but remain
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relatively constant thereafter; furthermore, the variances appear to be similar
across types.

Next we examine the two within-type covariance matrices, using a saturated
mean for each type. Neither the ordinary scatterplot matrix nor the PRISM
indicate any outliers or other gross departures from normality, so we proceed
as though the data are multivariate normal. The standard likelihood ratio test
for equality of the two within-type covariance matrices does not reject equal-
ity (P = 0.35). Furthermore, stepwise methods for determining the order of
antedependence unequivocally select first-order models for each type (Section
6.4), and a subsequent test of equality across types, assuming first-order an-
tedependence, does not reject it (P = 0.83) (Section 6.4). Taken together,
these findings indicate that it is sensible to pool the two within-type covariance
matrices and to use a first-order antedependence model.

To determine if any SAD(1) models are plausible, we examine in detail the
REML estimates of correlations and variances corresponding to the pooled
unstructured AD(1) covariance matrix [Table 5.5(b)]. The correlations are pos-
itive and large, and they decrease monotonically as the number of intervening
measurements increases. Furthermore, correlations along the same subdiag-
onal tend to increase slightly over the course of the study, notwithstanding
the longer interval between measurements as the study progresses. This phe-
nomenon confirms a prior belief of the researchers who performed this study,
which is that audiologic performance becomes more consistent over time. It
also suggests that a marginally specified SAD(1) power law model may fit the
data well. As for the variances, they do not differ greatly, though the first is
roughly 70% as large as the average of the other three.

In Section 6.4 we fitted two SAD(1) models to these data, both of which were
marginally specified power law models, but which differ with respect to their
variance functions. The variance function for the SAD-PMS(1) model is a step
function having one value for measurements taken one month after connec-
tion and another value for measurements taken at the three remaining times,
whereas the variance function for the SAD-PMC(1) model is constant. REML
model evaluation criteria for these models are given in Table 8.5. Also in-
cluded in the table are values of the criteria for stationary and heterogeneous
continuous-time AR(1) models, compound symmetric and heterogeneous com-
pound symmetric models, and linear and quadratic random coefficient models.
Vanishing correlation models were not included because they obviously do not
comport with the large correlations in the correlation matrix. Based on AICR

and BICR, the two SAD(1) models fit best, with a slight edge given to the one
with nonconstant variance. The two closest competitors, depending on the cri-
terion used for comparison, are the stationary AR(1) and unstructured AD(1)
models. None of the non-antedependence models fit as well as the four models
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mentioned so far, but the random coefficient models, ARH(1), and AD(3) mod-
els fit about equally well.

It is of primary interest, of course, to test various hypotheses about the mean
profiles for the two types of implants. In Section 7.2 we found that there is
significant improvement in speech recognition for each implant type over time,
but that this improvement is not linear: successive improvements get smaller
over time. The number of measurement times (four) is too small for much to
be gained by adopting a quadratic growth model, so we do not even bother
testing for it, leaving the mean unstructured within each type. We also found
that implant A has a nearly significantly larger mean profile than implant B,
and that these profiles are parallel; that is, the relative improvement from using
implant A rather than implant B does not depart significantly from a constant
(over time) value of about 10 points on the sentence test. These conclusions are
based on an assumed unstructured AD(1) model, but they have been found to
be equally valid under the best-fitting model, SAD-PMS(1). The sample size is
sufficiently small here that we may gain some power from the use of these first-
order models, relative to the use of a general multivariate dependence model.

8.5 Case study #4: Fruit fly mortality data

These data are age-specific measurements of mortality for 112 cohorts of Dro-
sophila melanogaster. The cohorts were derived from 56 recombinant inbred
lines, each replicated twice. Cohorts consisted of approximately equivalent
numbers (500 to 1000) of flies. Every day, dead flies were retrieved from the
cage holding each cohort and counted, but these counts were pooled into 11
5-day intervals for analysis. Raw mortality rates were log-transformed to make
the responses more normally distributed; the response variable is more pre-
cisely defined in Section 1.7.4. Approximately 22% of the data are missing, but
all lags are well-replicated. The missingness is not monotone and we assume
that it is ignorable. Our analysis objective is to find a parsimonious model that
adequately describes how mortality, averaged over recombinant inbred lines,
changes with age (time) and how mortality at any given age is related to mor-
tality at previous ages.

From the profile plot (Figure 1.5), it can be seen that the overall mean profile
is generally increasing; in fact it is rather sigmoidal. It is also clear that the
marginal sample variances increase over the first four time periods and then
decrease (Figure 4.3, top panel). The lag-one sample correlations (Figure 4.3,
bottom panel) have an interesting quadratic behavior, increasing over the first
half of the study and then decreasing. None of the intervenor-adjusted partial
correlations or autoregressive coefficients of lag-two and higher are signifi-
cantly different from zero [Table 4.4(b,c)].
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Table 8.5 REML information criteria and residual likelihood ratio tests of covariance
structures for the speech recognition data. The horizontal line in the body of the table
separates antedependence models (above the line) from non-antedependence models
(below the line). Antedependence models are listed in order of increasing BICR.

Model q max logLR AICR BICR Comparison P
model

SAD-PMS(1) 4 –520.1 31.76 31.95 SAD-PMC(1) 0.03
SAD-PMC(1) 3 –522.6 31.85 31.99 AR(1) 0.00
AR(1) 2 –527.1 32.07 32.16
AD(1) 7 –519.0 31.88 32.20 SAD-PMS(1) 0.55

ARH(1) 0.01
ARH(1) 5 –523.8 32.05 32.28 AR(1) 0.09
AD(3) 10 –517.7 31.98 32.44 AD(1) 0.44

CS 2 –532.6 32.40 32.49
CSH 5 –531.1 32.49 32.72 CS 0.39
RCL 4 –527.1 32.19 32.37 CS 0.00
RCQ 7 –520.8 31.99 32.31 RCL 0.01

Stepwise likelihood ratio testing procedures for determining the order of un-
structured antedependence by likelihood ratio testing unambiguously select an
AD(1) model. Model selection of variable-order AD models by penalized like-
lihood criteria was not considered, due to the difficulty in implementing this
methodology for data with non-monotone missingness. However, several struc-
tured first-order AD models were fitted to the data. The SAD-PM3(1), SAD-
PA3(1), and SAD-PP3(1) models are all power law models, corresponding re-
spectively to marginal, autoregressive, and precision matrix specifications; the
relevant variances (marginal, innovation, or partial) in each model are given by
a cubic function of time. The SAD-QM3(1) model is a marginally specified
first-order AD model for which the marginal correlations are described by a
quadratic function, and the marginal variances by a cubic function, of time.
The SAD-QA3(1) model is defined similarly, but with autoregressive coeffi-
cients and innovation variances given by quadratic and cubic functions of time.
Our consideration of these last two models was motivated by the behavior ex-
hibited by the correlations and variances in Figure 4.3 and (to a lesser degree)
by the innovation variances and autoregressive coefficients in Table 4.4(c).

Results of the fits of these and several other models, some antedependent and
others not, are displayed in Table 8.6. The two best (minimum BIC) models
are SAD-QM3(1) and SAD-PM3(1), the former having a slight edge. The best
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constant-order unstructured AD model is AD(1), which is not rejected at tradi-
tional levels of significance by a likelihood ratio test when pitted against AD(2)
or AD(10). In light of the non-significance of the autoregressive coefficients
at the last two measurement times [Table 4.4(c)], we also fit a variable-order
AD(0,1,1,1,1,1,1,1,1,0,0) model, but it did not fit as well as the AD(1) model
(its BIC is 22.71) and we do not include it in the table. The fits of the com-
pound symmetric (homogeneous and heterogeneous) and random coefficient
models are much inferior to all the antedependence models. Because of the
presence of many near-zero elements in the higher-order subdiagonals of the
marginal correlation matrix of these data [Table 4.4(a)], we include Toeplitz,
heterogeneous Toeplitz, and unstructured banded (BUN) models of various
orders among the non-antedependent alternatives. The best (smallest BICR)
model of each type is included in the table. We see that TOEPH(6) is compet-
itive, being sixth-best among all fitted models. The Toeplitz and unstructured
banded models, however, do not fare as well as most of the antedependence
models.

For the analyses described so far, the mean structure was taken to be saturated.
Low-order polynomial mean structures could be considered, but the sigmoidal
shape of the mean profile suggests that they are not likely to be suitable. This
is substantiated by fits of models with several of the best covariance structures
and polynomial mean structures up to order five, which are all strongly rejected
in favor of an unstructured mean. Nonlinear models for the mean structure may
be more suitable, but we do not consider them here; see, however, Section 9.2
and the references cited therein.

8.6 Other studies

A large number of additional studies have been published which have based
inferences for continuous univariate longitudinal data on non-trivial antede-
pendence models. Many, but not all, of these are genetic studies. Listing all
such studies is not practicable, but we mention the following: Núñez-Antón
and Zimmerman (2000) for a reanalysis of Jones’ data (Jones, 1990); Jaffrézic
and Pletcher (2000) for analyses of reproductive output in fruit flies and growth
in beef cattle (different from the cattle growth data in this book); Jaffrézic et al.
(2002) for an analysis of milk production in dairy cattle; Jaffrézic et al. (2004)
and Albuquerque and Meyer (2005) for analyses of still more cattle growth data
sets; Zhao et al. (2005a) for an analysis of growth in mice; Lin et al. (2007) for
a study of drug response in humans; Kearsley et al. (2008) for an evaluation
of competition data on showjumping and other eventing horses; White et al.
(2008) for a study of the effects of fire on wetland water quality. Still more
studies have developed and fitted antedependence models for longitudinal data
on two or more response variables; see Section 9.4 for references.
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Table 8.6 REML information criteria and residual likelihood ratio tests of covariance
structures for the fruit fly mortality data. The horizontal line in the body of the table
separates antedependence models (above the line) from non-antedependence models
(below the line). Antedependence models are listed in order of increasing BICR.

Model d max logLR AICR BICR Comparison P
model

SAD-QM3(1) 7 –1096.7 21.86 22.03
SAD-PM3(1) 6 –1107.5 22.05 22.20
SAD-QA3(1) 8 –1106.9 22.08 22.28
AD(1) 21 –1083.2 21.87 22.41 ARH(1) 0.00

SAD-QM3(1) 0.02
SAD-PM3(1) 0.00
SAD-QA3(1) 0.00
SAD-PP3(1) 0.00
SAD-PA3(1) 0.00

ARH(1) 12 –1104.5 22.11 22.42 AR(1) 0.00
AD(2) 30 –1080.2 21.98 22.76 AD(1) 0.74
SAD-PP3(1) 6 –1135.8 22.61 22.77
AD(3) 38 –1073.8 22.02 23.00 AD(2) 0.12
AR(1) 2 –1161.1 23.03 23.08
SAD-PA3(1) 7 –1158.3 23.08 23.26
AD(10) 66 –1057.3 22.24 23.95 AD(1) 0.23

CS 2 –1297.5 25.73 25.78
CSH 12 –1227.7 24.55 24.86 CS 0.00
RCL 4 –1287.0 25.56 25.67
RCQ 7 –1272.2 25.33 25.51 RCL 0.00
TOEP(5) 6 –1161.9 23.13 23.28
TOEPH(6) 17 –1105.0 22.22 22.66
BUN(3) 38 –1084.9 22.24 23.22

8.7 Discussion

Over the past several decades, many models that either explicitly or implictly
specify parametric covariance structures have been proposed for longitudinal
data. Of these, stationary autoregressive (AR) models and random coefficient
models seem to get the most attention and use; in contrast, antedependence
models (other than AR models) have received very little press. The early fo-
cus on AR models is easy to understand: they were well-known from their
longstanding importance as models for time series and, due to their extreme
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parsimony, they were relatively easy to fit. However, with experience proving
that stationarity is only occasionally satisfied in practice, nowadays it is clear
that AR models cannot serve as useful all-purpose models for longitudinal data,
even when those data exhibit serial correlation. It is our view that antedepen-
dence models in general can and should play this role. Unstructured antedepen-
dence models, because they can be estimated without numerical maximization
of the likelihood function, are actually easier to fit than AR models, and any
computational obstacles that may once have existed to the fitting of structured
antedependence models more general than AR models have long since been
removed. In our four case studies, a structured antedependence model that was
sufficiently general to accommodate nonstationarity in not merely the vari-
ances but also the correlations always performed better than AR models.

The more recent emphasis on random coefficient (RC) models, stimulated by
the paper of Laird and Ware (1982) and culminating in the publication of en-
tire books devoted to the subject (see, for example, Verbeke and Molenberghs,
2001), is, in our view, more justified. There is something quite appealing about
the notion that the response is a function of covariates (possibly including time)
with regression coefficients that vary from one subject to the next, and that this
variability can be modeled by a probability distribution. This is particularly
so if one wishes to make inferences about the effects of covariates on indi-
vidual subjects rather than the population. However, RC models should not
be used uncritically. We have encountered some analysts of longitudinal data
who choose to fit RC models and nothing else; they never actually examine the
sample covariance matrix to see how well it agrees with the covariance struc-
ture implied by their RC model. RC models in common use, such as the RCL
and RCQ models included in our model comparisons in this chapter, impose
a great deal of structure on the covariance matrix (see Section 3.9.2), and if
the data do not exhibit this structure the RC model likely will not fit the data
as well as other models. In the four case studies presented in this chapter, RC
models usually did not fit nearly as well as an antedependence model of some
kind. Likewise, RC models fared poorly relative to antedependence models in
the published studies cited in the previous section. We admit to some selection
bias in our choice of case studies, and we suppose that there are many instances
where a RC model of some kind fits better than any AD model. Nevertheless,
it seems to us a no-brainer that antedependence models should generally be
accorded as much consideration as RC models for longitudinal data, especially
when the data exhibit serial correlation.

It is natural to wonder whether it would be worthwhile to combine features of
a RC model with those of an antedependence model. For example, we could
extend the random coefficient model (3.21) to the model

Ys = Xsβ + Zsus + es, s = 1, . . . , N,
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where all symbols are defined as they were for model (3.21) and all the same
assumptions are made, except that the elements of each es are assumed to be
antedependent rather than independent. In the vernacular of RC modeling, this
would be a case of a “random coefficient plus residual dependence” model. For
what it’s worth, we have fitted several such models to the Treatment A cattle
growth data and the 100-km race data, but none of them fit nearly as well as
the best-fitting antedependence models.

There are many other non-antedependent covariance structures that can be used
for longitudinal data. When the data are serially correlated, however, they gen-
erally are inferior to antedependence models. The compound symmetry model,
with its constant correlation, is obviously a non-starter for such data. Toeplitz
models, being stationary, are, like AR models, rarely as useful as AD models.
Heterogeneous Toeplitz models, because they allow for arbitrary positive vari-
ances, have more potential, and banded models may be useful if the correlation
decays very rapidly with elapsed time between measurements. However, if the
serial correlation in the data is persistent, meaning that it is substantial even
among observations made at the most widely separated times, then AD models
will generally perform better than banded models.
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Further Topics and Extensions

This book has featured antedependence models for univariate, continuous lon-
gitudinal data and has considered likelihood-based estimation and hypothesis
testing for the parameters of these models. However, there are several related
topics that we have not mentioned, and several ways in which the models and
associated inferential methods may be extended. In this chapter, we briefly sur-
vey some of these additional topics and extensions.

9.1 Alternative estimation methods

9.1.1 Nonparametric methods

Nonparametric methods for the estimation of unstructured antedependence
models are possible, either as a guide to the formulation of structured antede-
pendence models or as a basis for formal inference without imposing as much
structure. For AD(p) models, Wu and Pourahmadi (2003) and Huang, Liu, and
Liu (2007) propose nonparametric smoothing of the subdiagonals of the ma-
trix T of (negative) autoregressive coefficients and a similar smoothing of the
logarithms of the innovation variances. That is, they model the jth subdiagonal
(j = 1, . . . , p) of −T as a smooth function fj , i.e.,

φi,i−j = fj

(
i− j

n− j + 1

)
, i = j + 1, . . . , n,

setting all other subdiagonals to zero, and they model the log innovation vari-
ances as another smooth function f0, i.e.,

log δi = f0

(
i

n+ 1

)
, i = 1, . . . , n.

Wu and Pourahmadi (2003) estimate f0, f1, . . . , fp utilizing local polynomial
smoothing (Fan and Gijbels, 1996), whereas Huang, Liu, and Liu (2007) ap-
proximate these functions with B-spline basis functions (de Boor, 2001) and

237
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then estimate them via maximum likelihood. A relative advantage of the sec-
ond of these two approaches is that it is able to incorporate simultaneous non-
parametric estimation of the mean more naturally than the first.

9.1.2 Penalized regression methods

Very recently, a great deal of research activity has focused upon extending pe-
nalized regression methods, developed originally for variable selection for the
mean structure of regression models, to the estimation of covariance structures.
These methods shrink, either partially or completely, the off-diagonal elements
of either the sample covariance matrix or precision matrix or the subdiagonal
elements of the matrix T of the modified Cholesky decomposition of the pre-
cision matrix. The L1 penalty of the method known as Lasso is especially
useful in this regard, because it shrinks some elements of these matrices all the
way to zero, resulting in greater parsimony and interpretability. Yuan and Lin
(2007), Friedman, Hastie, and Tibshirani (2008), and Rothman et al. (2008)
consider a sparse precision matrix estimate (equivalently a covariance selec-
tion or graphical model) obtained by adding an L1 penalty on the elements
of the precision matrix to the normal likelihood function, while Huang et al.
(2006) add a similar penalty on the elements of T instead. Since these two
approaches can produce zeros in arbitrary off-diagonal locations in the preci-
sion and T matrices, for index-ordered variables they may or may not result
in an antedependence model of any order less than n − 1. However, Bickel
and Levina (2008) impose an AD(p) covariance structure (although they do
not call it such) by forcing T to be banded, and they obtain theoretical results
on consistency without requiring normality. Furthermore, Levina, Rothman,
and Zhu (2008) demonstrate how variable-order antedependence (which they
call “adaptive banding”) may be imposed on the covariance structure through
the use of a “nested Lasso” penalty, which requires that φij = 0 whenever
φi,j+1 = 0 (i = 2, . . . , n; j = 1, . . . , i− 1).

9.1.3 Bayesian methods

In the Bayesian approach to inference, in addition to specifying a likelihood
function for the observed data given an unknown vector of parameters, it is sup-
posed that the unknown parameter vector is a random quantity sampled from a
prior distribution. Inference concerning the parameter vector is based entirely
on its posterior distribution, obtained as the ratio of the likelihood times the
prior, to the integral of the same with respect to the parameter vector. Fur-
thermore, in a hierarchical Bayesian model, the prior distribution may itself
depend on additional parameters, known as hyperparameters, which must be
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either known, integrated out, or, in the case of empirical Bayes inference, es-
timated from the observed data. Typically, the posterior distribution cannot be
given in closed form, but nevertheless it may often be approximated numeri-
cally using Markov chain Monte Carlo methods. For a detailed description of
these methods, including Gibbs sampling and the Metropolis-Hastings algo-
rithm, we refer the reader to Chapter 5 of Carlin and Louis (2000).

Several implementations of the Bayesian paradigm to the estimation of antede-
pendence model parameters for continuous longitudinal data have been pro-
posed. Though they share a lot in common, these implementations differ with
respect to which formulation of antedependence is used and how much struc-
ture is imposed on it, and with respect to the priors chosen. For estimating an
arbitrary [unstructured AD(n−1)] positive definite covariance matrix, Daniels
and Pourahmadi (2002) put a multivariate normal prior on the vector φ of non-
trivial elements of T and independent inverse gamma priors on each innova-
tion variance of the modified Cholesky decomposition of the precision matrix.
These prior distributions yield explicit forms for the full conditional distri-
butions, thereby facilitating Gibbs sampling from the posterior distribution. A
similar approach is taken by Cepeda-Cuervo and Núñez-Antón (2007). Daniels
and Pourahmadi (2002) also consider Bayesian estimation of the parameters of
their structured autoregressively formulated AD(n − 1) model, which we de-
scribed in Section 3.5. In this model the autoregressive coefficients are linear
functions of parameters θ and the natural logarithms of the innovation vari-
ances are linear functions of parameters ψ; and independent normal priors are
placed on θ, ψ, and the mean parameters μ. Full conditional distributions of
θ and μ are readily sampled via Gibbs steps, but the full conditional distribu-
tion of ψ is intractable so it is sampled using a Metropolis-Hastings algorithm.
Cepeda and Gamerman (2004) take a similar approach.

The approach of Smith and Kohn (2002) is similar to the first approach of
Daniels and Pourahmadi (2002), but an additional parameter γ is introduced,
which is a vector of binary random variables of the same length as φ that dic-
tates which elements of φ are zero and which are nonzero. Through its ability
to flexibly identify zeroes in φ, this approach, which is motivated by the same
considerations that lead to penalized likelihood estimation using the Lasso and
similar penalties, allows for more parsimonious modeling of the covariance
structure. Smith and Kohn (2002) put independent beta priors on each element
of γ and independent inverse gamma priors on the innovation variances, and,
conditional on these parameters, they take the prior for φ to be proportional to
the nth root of the (normal) likelihood. In conjunction with a precision matrix
formulation of an arbitrary positive definite matrix, Wong, Carter, and Kohn
(2003) introduce a parameter analogous to γ, but which in this case allows for
flexible identification of null partial correlations rather than null autoregressive
coefficients. They place independent gamma priors on the partial precisions
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and priors on the (negatives of the) partial correlation coefficients too intricate
to describe here.

None of the aforementioned Bayesian approaches explicitly impose antedepen-
dence (of order less than n − 1) on the model, but they can be modified to do
so quite easily, by merely setting the appropriate autoregressive coefficients or
partial correlations equal to zero, and placing on the remaining autoregressive
coefficients or partial correlations the same types of priors that would otherwise
be placed on the entire set of these quantities. Possibilities exist for Bayesian
estimation of highly structured, low-order antedependence models as well. For
example, for the first-order marginally specified power law model given by
(3.12) and (3.13), one could consider putting normal priors on λ and the el-
ements of ψ, an inverse gamma prior on σ2, and a beta prior on ρ, all priors
being independent.

9.2 Nonlinear mean structure

Throughout this book we assumed that the mean structure of the antedepen-
dence model was linear, i.e., that E(Ysi) = xT

siβ, where xsi is a vector of
covariates observed on subject s at time i and β is an unknown parameter vec-
tor. This includes cases where the mean is saturated or is a polynomial func-
tion of the covariates, with or without classificatory variables indicating group
membership or arising as a result of the treatment structure of an experimental
design. However, the saturated mean may not be as parsimonious as possible,
and polynomials and other parsimonious linear models may not be altogether
satisfactory when the mean response asymptotes to an upper or lower bound
or exhibits sudden changes in behavior during the study. For such situations
a nonlinear mean structure may fit better. An example is given by the logistic
mean function,

E(Ysi) =
β1

1 + β2 exp(−β3tsi)
,

where here the only covariate is the time of measurement, tsi. Note that the
mean response at time 0 under this model is β1/(1 + β2), and that the mean
response asymptotes to β1 as time increases. The upper asymptote makes this
model useful for longitudinal studies of animal and plant growth that include
times of measurement beyond the organisms’ age of maturation. Some ad-
ditional nonlinear mean functions useful for animal growth studies are sum-
marized by Zimmerman and Núñez-Antón (2001). Applications of a structured
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antedependence model with logistic mean structure to growth studies are pre-
sented by Zhao et al. (2005a,b) and Cepeda-Cuervo and Núñez-Antón (2009).

9.3 Discrimination under antedependence

In the statistical inference problem known as discrimination, subjects belong
to a number, say G, of groups and the objective of the statistical analysis is to
separate, or discriminate between, the groups on the basis of values of n vari-
ables observed on each subject. The closely related classification problem is
concerned with classifying or allocating a subject whose group membership is
unknown to one of the G groups, again on the basis of n variables observed on
all subjects (including the one whose group membership is unknown). Classi-
cal approaches to both problems yield decision rules that involve the (pooled)
within-groups sample covariance matrix,

S =
1

N − g

G∑
g=1

N(g)∑
s=1

(Ygs − Yg)(Ygs − Yg)T ,

where N(g) and Yg are the sample size and sample mean vector for group g
and N =

∑G
g=1N(g); see, for example, Johnson and Wichern (2002, Chapter

11). For example, the classical approach to classification is to allocate a subject
having observational vector Y to the group that yields the smallest value of the
quantities

D2
g = (Y − Yg)T S−1(Y − Yg), g = 1, . . . , G.

For D2
g to be well-defined it is necessary, of course, that S be nonsingular

(with probability one), which requires that N − g ≥ n. Thus, S will fail to be
nonsingular for data of sufficiently high dimension relative to the sample size.

A common approach for circumventing this difficulty is to reduce the dimen-
sionality of the data to its first few principal components, and then to dis-
criminate/classify on the basis of these. An alternative approach, offered by
Krzanowski (1993, 1999) and Krzanowksi et al. (1995) for use when the n vari-
ables can be ordered in time or along a one-dimensional transect, is to adopt a
low-order antedependence model for the data and to replace S with the REML
estimate of the covariance matrix under that model. Krzanowski (1999) found
this approach to be very effective. For example, for an application involving
n = 100 spectroscopic variables on N = 62 rice samples, the estimated clas-
sification error rate based on an AD(2) covariance matrix was even smaller
than that of the standard approach based on principal components. In another
example, Levina, Rothman, and Zhu (2008) found their nested Lasso estimate
of a variable-order antedependence model to be similarly effective for classifi-
cation.
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9.4 Multivariate antedependence models

An extension of antedependence models to index-ordered random vectors
(rather than random variables) is straightforward. We consider the normal case
only. Let Y1, . . . ,Yn be r-dimensional random vectors ordered in time or
along a transect in space, whose joint distribution is rn-variate normal. Gabriel
(1962) defined Y1, . . . ,Yn to be pth-order antedependent if Yi and (Yi−p−q−1,
Yi−p−q−2, . . . ,Y1)T are independent given (Yi−1, . . . ,Yi−p−q)T for all q =
0, 1, . . . , n−p−2 and all i = p+ q+2, . . . , n, or in other words, if Definition
2.1 holds for the vectors Y1, . . . ,Yn (in place of scalars). As in the univariate
case, there are several equivalent definitions and representations. For example,
if Σ = var[(YT

1 , . . . ,Y
T
n )T ], and its inverse, Σ−1, is partitioned into r × r

submatrices Σij , then under pth-order antedependence Σij = 0 whenever
|i − j| > p. Furthermore, we may write such a model in autoregressive form
as

Yi − μi =
pi∑

k=1

Φi,i−k(Yi−k − μi−k) + εi, i = 1, . . . , n, (9.1)

where pi = min(p, i − 1) and the εi’s are independent and identically dis-
tributed r-variate normal vectors with mean zero and positive definite covari-
ance matrix, analogous to equation (2.21).

A few specific structured multivariate antedependence models have previously
been put forward. For example, Jaffrézic, Thompson, and Hill (2003) consider
a bivariate, autoregressively formulated structured first-order antedependence
model in which the autoregressive coefficients are constant over time and the
innovations are contemporaneously (but not otherwise) cross-correlated. More
specifically, they consider the special case of model (9.1) in which p = 1,

Φi,i−1 =
(
φ11 φ12

φ21 φ22

)
for i = 2, . . . , n,

and the εi’s are independent with

var(εi) =
(

σ2
i1 ρi(σ2

i1σ
2
i2)

1/2

ρi(σ2
i1σ

2
i2)

1/2 σ2
i2

)
,

where σ2
ik = exp(θ1k + θ2ki + θ3ki

2) for i = 1, . . . , n and k = 1, 2, and
ρi = exp(−λ1i)−exp(−λ2i). Zhao et al. (2005b) specialize this model further
by assuming that: (a) the cross-autoregressive coefficients are zero, i.e., φ12 =
φ21 = 0; (b) the innovation variances are constant over time, i.e., σ2

i1 ≡ σ2
1 and

σ2
i2 ≡ σ2

2 ; and the innovation cross-correlation is constant over time, i.e., ρi ≡
ρ. Under these additional assumptions, the marginal variances, correlations,
and cross-correlation are given by the following expressions:

var(Yik) =
1 − φ2i

kk

1 − φ2
kk

σ2
k for i = 1, . . . , n and k = 1, 2
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corr(Yik, Yjk) = φi−j
kk

√
1 − φ2j

kk

1 − φ2i
kk

, i > j

corr(Yi1, Yj2) =

⎧⎪⎪⎨
⎪⎪⎩

ρ(φi−j
11 −φi

11φ22j)

1−φ11φ22

√
(1−φ2

11)(1−φ2
22)

(1−φ2i
11)(1−φ2j

22)
for i > j,

ρ(φj−i
22 −φj

11φ22i)

1−φ11φ22

√
(1−φ2

11)(1−φ2
22)

(1−φ2j
11)(1−φ2i

22)
for j > i.

Observe that the cross-correlation function is not symmetric, i.e., corr(Yi1, Yj2)
�= corr(Yi2, Yj1) for i > j.

Methods of inference for multivariate antedependence models are straightfor-
ward extensions of methods for the univariate case. Byrne (1996), for example,
describes maximum likelihood estimation under the unstructured multivariate
AD(p) model and derives tests of a general linear mean structure under this
model. Gabriel (1962) gives the likelihood ratio test for the order of a mul-
tivariate unstructured antedependence model. Jaffrézic, Thompson, and Hill
(2003) obtain REML estimates of their bivariate, autoregressively formulated
structured antedependence model for bivariate responses from two longitudinal
studies; one of these is the fruit fly study, for which they analyzed reproductive
output in addition to the mortality data that were among the four featured data
sets in this book. Zhao et al. (2005b) fit their simplified version of this model
to stem height and radial diameter of Populus trees by maximum likelihood;
see also Wu and Hou (2006). Lin and Wu (2005) fit a slightly different bivari-
ate SAD(1) model to measures of drug efficacy and toxicity over a sequence
of doses or concentrations. Jaffrézic, Thompson, and Pletcher (2004) embed
marginally formulated power law SAD(1) models for each response variable
in their bivariate “character process” model for genetic evaluation, and apply
it to the fruit fly reproductive output and mortality data.

9.5 Spatial antedependence models

As we have noted several times already, the antedependence models consid-
ered in this book are applicable to continuous observations taken over time or
along a one-dimensional transect. It is natural to consider whether and how
they may be extended to continuous observations taken over two-dimensional
(or higher) space. In fact, such extensions already exist and are known as spa-
tial autoregressive models. Though originally developed as stationary models
on doubly infinite regular lattices (see, e.g., Whittle, 1954; Besag, 1974), they
have been applied most often to finite irregular lattices, such as those formed
by a division of a geographic region into political or administrative subregions,
for which they yield nonstationary covariance structures (Haining, 1990; Besag
and Kooperberg, 1995; Wall, 2004) — a fact that has not always been recog-
nized. Thorough treatments of spatial autoregressive models can be found in
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many spatial statistics books (see, e.g., Cressie, 1993; Banerjee, Carlin, and
Gelfand, 2004), so we do not attempt another one here. We confine ourselves
in this section to a brief review of the Gaussian cases, with an emphasis on
their relationships to normal antedependence models.

Gaussian spatial autoregressive models are of two types: the simultaneous
autoregression (SAR) and conditional autoregression (CAR). Both types can
be viewed as extensions of normal antedependence models to spatial data,
but only the CAR has the distinctive Markov property of such models. In
the following descriptions, let D be a geographic region and let subregions
A1, . . . , An be a finite partition of D, i.e., A1 ∪ A2 ∪ · · · ∪ An = D and
Ai ∩ Aj = for all i �= j. The response on subregion Ai, which is usually a
count or areal average, is denoted by Y (Ai).

The Gaussian SAR model postulates that

Y (Ai) = μi +
n∑

j=1

bij [Y (Aj) − μj ] + εi, i = 1, . . . , n, (9.2)

where ε = (ε1, . . . , εn)T ∼ N(0,Λ) with Λ diagonal, E[Y (Ai)] = μi, and
the {bij} are known or unknown constants satisfying bii = 0 for all i. Typi-
cally, bij is taken to equal 0 unless Ai and Aj are “neighbors,” i.e., regions that
are in sufficiently close proximity for the corresponding responses to influence
each other. Putting B = (bij), we may write (9.2) in matrix form as

ε = (I − B)(Y − μ) (9.3)

where Y = (Y (A1), . . . , Y (An))T and μ = (μ1, . . . , μn)T . Upon compar-
ison of (9.3) and (2.15), we see that I − B plays the same role that the unit
lower triangular matrix, T, plays in (2.15), and that

Y ∼ N
(
μ, (I − B)−1Λ(I − BT )−1

)
.

However, while I−B has ones along its main diagonal, it is generally not lower
triangular, and consequently Y (Ai) and {Y (Aj) : bij = 0} are generally not
conditionally independent, given {Y (Aj) : bij �= 0}. Thus, the distinctive
Markov property of antedependence models does not hold for Gaussian SAR
models.

On the other hand, the Gaussian CAR model specifies that

Y (Ai)|Y (A−i) ∼ N

⎛
⎝μi +

n∑
j=1

cij [Y (Aj) − μj ], κ2
i

⎞
⎠

where Y (A−i) = {Y (Aj) : j �= i}, E[Y (Ai)] = μi, κ2
i is the ith conditional

variance, and the {cij} are known or unknown constants satisfying cii = 0 for
all i. Like bij , cij is typically taken to equal 0 unless Ai and Aj are neighbors.
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It can be shown (see Besag, 1974) that these conditional distributions imply a
joint distribution

Y ∼ N
(
μ, (I − C)−1K

)
where C = (cij) and K = diag(κ2

1, . . . , κ
2
n), provided that I − C is positive

definite and that (I−C)−1K is symmetric, or equivalently that cijκ2
j = cjiκ

2
i .

Thus, the inverse of the covariance matrix of Y is Σ−1 = K−1(I − C), the
elements σij of which satisfy σij = 0 whenever cij = 0. This structure of
the precision matrix is completely analogous to that associated with a variable-
order normal antedependence model for index-ordered random variables in one
dimension, save for the following differences, which are attributable to the lack
of a linear ordering of the variables in two or more dimensions: the zero ele-
ments of a row of the precision matrix do not necessarily begin with the first
element within that row, nor are they necessarily contiguous within rows, as
they are for a (variable-order) AD model for longitudinal data (cf. the discus-
sion immediately following Theorem 2.7).

Typically, only one realization of the process is observed on the lattice, so in
practice only highly parsimonious (structured) CAR models have actually been
fitted to data. For example, one commonly used CAR model takes C = ρW,
where ρ is a scalar-valued “spatial dependence” parameter and W is a user-
defined spatial neighbor incidence matrix that indicates whether regions are
neighbors or not; often, neighbors are defined by adjacencies and the (i, j)th
element of W is therefore taken to equal 1 if Ai and Aj share a common bor-
der, and 0 otherwise. A slightly more general formulation allows for anisotropy
by replacing ρ with either ρEW or ρNS according to whether Ai and Aj are in
east–west or north–south alignment (approximately) with each other. In those
uncommon situations in which multiple independent realizations of the spatial
process are available, more complicated CAR models may be fitted. It may be
possible, for example, to fit a CAR model for which the spatial dependence
parameter varies as a smooth function of spatial location. With a sufficiently
large number of realizations, it is even possible to fit a completely unstructured
Gaussian CAR model of specified order (i.e., one with the null cij’s specified
but the values of the non-null cij’s left unspecified) using, with only slight
modifications, the estimation methodology for variable-order AD models pre-
sented in Chapter 5.

9.6 Antedependence models for discrete data

Antedependence models exist for discrete longitudinal data as well as for con-
tinuous data, though it seems they are never called by this name. Instead, some
names used in the literature are discrete Markov or discrete transition mod-
els for the general case, and autologistic and auto-Poisson for some specific
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cases. Diggle et al. (2002, pp. 190–207) and Molenberghs and Verbeke (2005,
pp. 236–238) describe a useful class of such models, which are obtained by
specifying a generalized linear model for the conditional distribution of each
response given its “history,” i.e., its predecessors and the present and past val-
ues of observed covariates. We summarize this class here and then discuss a
possible extension. Let

Hsi ≡ {Ys,i−1, . . . , Ys1,xsi, . . . ,xs1}
denote the history of Ysi, and define

μC
si = E(Ysi|Hsi) and (σC

si)
2 = var(Ysi|Hsi);

here the superscript C refers to conditional. Assume that the data are balanced
and that

h(μC
si) = xT

siβ +
p∑

k=1

fk(Hsi;φ,β), i = p+ 1, . . . , n, (9.4)

where h is a “link” function, the fk’s are functions of previous responses, and
φ is a vector of p parameters. Assume further that

(σC
si)

2 = δg(μC
si), i = p+ 1, . . . , n, (9.5)

where g is a variance function and δ is an unknown dispersion parameter. The
joint distribution of the first p responses is left unspecified.

Several special cases of model (9.4) and (9.5) are of interest. The case in which
Ysi is Gaussian, h is the identity link, fk(Hsi;φ,β) = φk(Ys,i−k − xT

s,i−kβ),
and g(μC

si) ≡ 1 is identical to the stationary normal autoregressive model of or-
der p, given by (3.3) with μi = xT

siβ. For binary data, letting fk(Hsi;φ,β) =
φkYs,i−k and using a logit link gives

logit(μC
si) = log

(
μC

si

1 − μC
si

)
= xT

siβ +
p∑

k=1

φkYs,i−k,

g(μC
si) = μC

si(1 − μC
si), and δ = 1. This is the Markov model for a binary

time series suggested by Cox and Snell (1989), extended for use with multiple
subjects; by analogy with a similar CAR model on a two-dimensional spatial
lattice, it might be called an autologistic model of order p (see Cressie, 1993,
pp. 423–427). For count data, if one assumes that Ysi|Hsi is Poisson, uses a
log link, and takes fk(Hsi;φ,β) = φkYs,i−k as in the autologistic model, one
obtains a longitudinal analogue of the classical auto-Poisson model for spa-
tial lattice data (Cressie, pp. 427–431). Two alternative auto-Poisson models,
obtained using different fk’s, are considered in detail by Zeger and Qaqish
(1988). Analogously defined “auto-” models for multinomial and ordered cat-
egorical data are also considered by Diggle et al. (2002).
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Note that the class of models proposed by Diggle et al. (2002) takes each func-
tion fk and the innovation dispersion parameter δ to be time-invariant. These
restrictions are the reason why, in the Gaussian case with identity link, an
AR(p) model, rather than an unstructured normal antedependence model, is
obtained. It seems natural to consider an extension of the class to one in which
the Gaussian case with identity link yields the unstructured normal antedepen-
dence model of order p. Such a class is obtained if (9.4) is replaced by

h(μC
si) = xT

siβ +
pi∑

k=1

fik(Hsi;φ,β), i = 1, . . . , n, (9.6)

and (9.5) is replaced by

(σC
si)

2 = δig(μC
si) i = 1, . . . , n. (9.7)

If we put fik(Hsi;φ,β) = φi,i−k(Ys,i−k−xT
s,i−kβ) in (9.6) and g(μC

si) ≡ 1 in
(9.7), we obtain, in the Gaussian case with identity link, the unstructured nor-
mal AD(p) model with linear mean structure given by (2.21) with μi = xT

siβ,
as desired. In addition to being more general than the class of models proposed
by Diggle et al. (2002), (9.6) and (9.7) has the advantage of providing, in non-
Gaussian cases, a model for each observation, not merely for those observed
after time p.

For either class of models, likelihood-based inferences are possible. For the
class proposed by Diggle et al. (2002), the full likelihood function is not avail-
able (except in the Gaussian case), but inferences may be based on the condi-
tional (on the first p responses on each subject) likelihood function

N∏
s=1

n∏
i=p+1

l(Ysi|Hsi;φ,β, δ),

where l is the conditional (on history) probability mass function of Ysi. For fur-
ther details see Diggle et al. (2002, pp. 192-194). The full likelihood function
is available for the extended class.

One drawback of these classes of models, or of any class of Markov models in
which the effect of covariates on responses is specified via a conditional mean
(i.e., conditional on the previous history of responses), is that the population-
averaged effect of covariates is specified indirectly and in such a way that the
interpretation of regression coefficients (β) changes as assumptions regarding
the conditional dependence structure [e.g., the order p or the choice of func-
tions fik in (9.6)] are modified. This is in contrast to so-called marginal mod-
els, in which the population-averaged effect of covariates on the response is
directly specified and interpretation of regression coefficients does not depend
on specification of the dependence in the model. However, it is possible to re-
move this practical shortcoming by separating the Markov model into two parts
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and reparameterizing. The first part is a marginal mean model that directly
specifies the population-averaged effect of covariates on the response, while
the second part is a conditional mean model that describes serial dependence
and identifies the joint distribution of the responses but specifies the depen-
dence on covariates only implicitly. Such a two-part, reparameterized version
of the model is called a marginalized transition model (MTM) (Heagerty and
Zeger, 2000). For example, for binary data, Heagerty (2002), building on ear-
lier work of Azzalini (1994), proposes the following MTM, which he labels
the MTM(p):

logit(μM
si ) = xT

siβ, i = 1, . . . , n

logit(μC
si) = Δsi +

p∑
k=1

φsikYs,i−k, i = p+ 1, . . . , n

φsik = zT
sikαk, i = p+ 1, . . . , n.

Here μM
si = E(Ysi|xsi) (the superscriptM referring to marginal), Δsi is an in-

tercept parameter, φsik is a subject-specific autoregressive coefficient, zsik is a
vector of covariates on subject swhich are a subset of the covariates in xsi, and
αk is a parameter vector. It is assumed that the regression model properly spec-
ifies the full covariate conditional mean (Pepe and Anderson, 1994), such that
E(Ysi|xsi) = E(Ysi|xs1, . . . ,xsn). Parameters β and αk in this model are
unconstrained, but Δsi is fully constrained and must yield the proper marginal
expectation μM

si when μC
si is averaged over the distribution of Hsi; for further

details see Heagerty (2002). Estimation of the unconstrained parameters may
proceed via maximizing the full likelihood, using lower order MTM model
assumptions for the first p responses on each subject. For ordinal categorical
data, Lee and Daniels (2007) propose two extensions of the MTM(p) and a
similar maximum likelihood estimation approach.

In our view, marginalized transition models appear to be a very promising class
of antedependence models for discrete longitudinal data. Because the marginal
mean structure is specified directly, and separately from the dependence struc-
ture, interpretation of the regression coefficients is invariant to modifications of
the assumptions regarding the autoregressive parameters. A further advantage
of these models over ordinary transition models is that estimates of covari-
ate effects are more robust to mis-specification of dependence (Heagerty and
Zeger, 2000; Heagerty, 2002; Lee and Daniels, 2007). It would appear that the
constant-order versions of these models could be extended without difficulty
to variable-order models.
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Appendix 1: Some Matrix Results

We give here some matrix results used in the book. For some of these results,
proofs are provided; for others a reference is provided where a proof may be
found.

Theorem A.1.1. Let A be an n× n nonsingular matrix that is partitioned as

A =
(

A11 A12

A21 A22

)
,

where A11 is n1 × n1, A12 is n1 × n2, A21 is n2 × n1, and A22 is n2 × n2.
Let B = A−1 and partition B as

B =
(

B11 B12

B21 B22

)
,

where the submatrices of B have the same dimensions as the corresponding
submatrices of A. Then, if A11, A22, A11·2 ≡ A11 − A12A−1

22 A21, and
A22·1 ≡ A22 − A21A−1

11 A12 are nonsingular, we have

(a) B11 = A−1
11·2 = A−1

11 + A−1
11 A12B22A21A−1

11 ,

(b) B22 = A−1
22 + A−1

22 A21B11A12A−1
22 = A−1

22·1,

(c) B12 = −B11A12A−1
22 = −A−1

11 A12B22,

(d) B21 = −A−1
22 A21B11 = −B22A21A−1

11 ,

(e) A12A−1
22 = −B−1

11 B12 and A−1
21 A−1

11 = −B−1
22 B21.

(f) A−1
11 = (B11 − B12B−1

22 B21) and A−1
22 = (B22 − B21B−1

11 B12).

Proof. A proof of parts (a) through (d) may be found in Schott (2005, pp.
256–257) or Harville (1997, pp. 99–100). Part (e) follows by multiplying the
equation in part (c) by −B−1

11 and multiplying the equation in part (d) by B−1
22

For part (f), observe that A = B−1 and thus interchanging the roles of A and
B in part (a) yields A11 = (B11 − B12B−1

22 B21)−1. Inverting the matrices
on both sides of this equation yields the first equation in part (f). The second
equation in part (f) can be verified in similar fashion using part (b). �

Corollary A.1.1.1. Suppose that A = (aij) and B = (bij) are defined as in
Theorem A.1.1, with n1 = 1, and that the nonsingularity conditions specified

249
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there hold. Then

A12A−1
22 = (−b12/b11,−b13/b11, . . . ,−b1n/b11)T .

Proof. The corollary follows immediately from Theorem A.1.1(e). �

Corollary A.1.1.2. Suppose that A = (aij) and B = (bij) are defined as in
Theorem A.1, with n1 = 2, and that the nonsingularity conditions specified
there hold. Suppose further that A is symmetric. Let aij·2 denote the (i, j)th
element of A11·2 (i, j = 1, 2). Then

a12·2/(a11·2a22·2)1/2 = −b12/(b11b22)1/2.

Proof. Let cij denote the (i, j)th element of A12A−1
22 A21. Then by Theorem

A.1.1(a) and the symmetry of A,

A11·2 =
(
a11 − c11 a12 − c12
a12 − c12 a22 − c22

)
=

(
b11 b12
b12 b22

)−1

∝
(

b22 −b12
−b12 b11

)
,

from which the corollary immediately follows. �

Corollary A.1.1.3. Let A be an n × n symmetric positive definite matrix that
is partitioned as

A =

⎛
⎝ A11 A12 A13

A21 A22 A23

A31 A32 A33

⎞
⎠ ,

where A11 is n1 ×n1, A12 is n1 ×n2, A13 is n1 ×n3, A21 is n2 ×n1, A22 is
n2 ×n2, A23 is n2 ×n3, A31 is n3 ×n1, A32 is n3 ×n2, and A33 is n3 ×n3.
Let

A11·3 = A11 − A13A−1
33 A31,

A12·3 = A12 − A13A−1
33 A32,

A21·3 = A21 − A23A−1
33 A31,

A22·3 = A22 − A23A−1
33 A32,

A11·2,3 = A11 − (A12,A13)
(

A22 A23

A32 A33

)−1( A31

A32

)
.

Then A11·2,3 = A11·3 − A12·3A−1
22·3A21·3.

Proof. Consider two partitions of A: one in which the upper-left block is A11,
and another in which the lower right block is A33. Applying Theorem A.1.1(a)
to the first partition, we have that the upper left n1 × n1 block of A−1 is equal
to A−1

11·2,3. Applying the same theorem to the second partition, we have that the
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upper left n1 × n1 block of A−1 is also equal to the upper left n1 × n1 block
of (

A11·3 A12·3
A21·3 A22·3

)−1

.

But by the same theorem once again, the latter block is equal to (A11·3 −
A12·3A−1

22·3A21·3)−1. Thus A−1
11·2,3 = (A11·3 − A12·3A−1

22·3A21·3)−1, and the
corollary then follows by matrix inversion. �

Theorem A.1.2. (Modified Cholesky decomposition theorem). Let A be a
symmetric positive definite matrix. Then there exists a unique lower trian-
gular matrix, T, having a main diagonal of all ones, and a unique diag-
onal matrix, D, having positive elements on the main diagonal, such that
A−1 = TT D−1T, or equivalently TATT = D.

Proof. A proof may be found in Harville (1997, pp. 228–229).

Theorem A.1.3. Let A be an n× n nonsingular matrix that is partitioned as

A =
(

A11 A12

A21 A22

)
,

where A11 is n1 × n1, A12 is n1 × n2, A21 is n2 × n1, and A22 is n2 × n2.
If A11 is nonsingular, then

|A| = |A11||A22 − A21A−1
11 A12|.

Similarly, if A22 is nonsingular, then

|A| = |A22||A11 − A12A−1
22 A21|.

Proof. A proof may be found in Harville (1997, pp. 188−189).

Next we give two theorems used to prove Theorem 5.1.

Theorem A.1.4. Let A = (aij) be an n× n symmetric matrix, and let Aij be
the cofactor of aij , i.e., (−1)i+j times the determinant of the submatrix of A
obtained by deleting the ith row and jth column. Then

∂|A|
∂aij

=
{
Aii if i = j
2Aij if i �= j

Proof. A proof may be found in Anderson (1984, p. 599).

Theorem A.1.5. Let A = (aij) be an n × n nonsingular matrix, and let Aij

be the cofactor of aij . Let aij denote the element in the ith row and jth column
of A−1. Then

aij =
Aij

|A| .

Proof. A proof may be found in Harville (1997, p. 192).
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Theorem A.1.6. Let A and B be m × m and n × n matrices, respectively.
Then

|A ⊗ B| = |A|n|B|m.
Proof. A proof may be found in Harville (1997, p. 350).
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Appendix 2: Proofs of Theorems 2.5
and 2.6

We provide here proofs of Theorems 2.5 and 2.6.

Proof of Theorem 2.5

Proof of (a). Since TΣTT = D and the determinant of a lower (or upper)
triangular matrix is the product of its diagonal elements, we have

n∏
i=1

δi = |D| = |TΣTT | = |T||Σ||TT | = |Σ|.

Proof of (b). If p = 0 then Σ is diagonal and |Σ| =
∏n

i=1 σii so the result
holds trivially. Now suppose p ≥ 1. Recall from (2.23) that

δi =
{
σ11 for i = 1
σii − σT

i−pi:i−1,iΣ
−1
i−pi:i−1σi−pi:i−1,i for i = 2, . . . , n.

Furthermore, using expression (2.4) for the multiple correlation coefficient, we
have

R2
i·{i−pi:i−1} = σT

i−pi:i−1,iΣ
−1
i−pi:i−1σi−pi:i−1,i/σii for i = 2, . . . , n.

Thus for i = 2, . . . , n,

δi = σii − σiiR
2
i·{i−pi:i−1}

= σii(1 −R2
i·{i−pi:i−1}). (A.2.1)

Part (b) of the theorem follows upon substituting σ11 for δ1 and (A.2.1) for δi
(i = 2, . . . , n) in part (a).

Proof of (c). By (2.23) and (A.2.1),

σii·{i−pi:i−1} = σii(1 −R2
i·{i−pi:i−1}).

But Lemma 2.1 yields

σii·{i−pi:i−1} = σii·{i−pi+1:i−1} −
σ2

i,i−pi·{i−pi+1:i−1}
σi−pi,i−pi·{i−pi+1:i−1}
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= σii·{i−pi+1:i−1}(1 − ρ2
i,i−pi·{i−pi+1:i−1})

= σii·{i−pi+2:i−1}(1 − ρ2
i,i−pi+1·{i−pi+2:i−1})

×(1 − ρ2
i,i−pi·{i−pi+1:i−1})

...

= σii

pi∏
k=1

(1 − ρ2
i,i−k·{i−k+1:i−1}).

Dividing both expressions for σii·{i−pi:i−1} by σii yields

1 −R2
i·{i−pi:i−1} =

pi∏
k=1

(1 − ρ2
i,i−k·{i−k+1:i−1}).

Part (c) of the theorem may then be obtained by substituting the right-hand side
of this last equation into part (b) for 1 −R2

i·{i−pi:i−1}, and rearranging terms.

Proof of (d). If p = 0 then Σ is a diagonal matrix, whence |Σ| =
∏p

i=1 σii,
which coincides with (2.33). If p = n− 1 then (2.33) holds trivially. Therefore
suppose that 1 ≤ p ≤ n−2. Now for i ∈ {2 : n}, consider the positive definite
matrix

Σi−pi:i =
(

Σi−pi:i−1 σi−pi:i−1,i

σT
i−pi:i−1,i σii

)
.

Using a standard result for the determinant of a partitioned matrix (Theorem
A.1.3) and expression (2.23), we obtain

|Σi−pi:i| = |Σi−pi:i−1|(σii − σT
i−pi:i−1,iΣ

−1
i−pi:i−1σi−pi:i−1,i)

= |Σi−pi:i−1|δi.
By the positive definiteness of Σ, all three terms in this equation are positive.
Thus

δi =
|Σi−pi:i|
|Σi−pi:i−1| for i = 2, . . . , n.

Substituting this expression for δi into part (a) of this theorem yields

|Σ| =
n∏

i=1

δi

= σ11 × |Σ1:2|
σ11

× · · · × |Σ1:p|
|Σ1:p−1| ×

|Σ1:p+1|
|Σ1:p|

× |Σ2:p+2|
|Σ2:p+1| ×

|Σ3:p+3|
|Σ3:p+2| × · · · × |Σn−p:n|

|Σn−p:n−1|

=
∏n−p

i=1 |Σi:i+p|∏n−p−1
i=1 |Σi+1:i+p|

.

�
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Proof of Theorem 2.6

Proof. Result (2.34) holds trivially if p = 0 or p = n − 1. Next suppose that
p = n− 2. Partition the n× n matrices A and Σ−1 as

A =

⎛
⎝ a11 a1,2:n−1 a1n

a2:n−1,1 A2:n−1 a2:n−1,n

an1 an,2:n−1 ann

⎞
⎠

and

Σ−1 =

⎛
⎝ σ11 σ1,2:n−1 σ1n

σ2:n−1,1 Σ2:n−1 σ2:n−1,n

σn1 σn,2:n−1 σnn

⎞
⎠ .

By Theorem 2.2, σ1n = σn1 = 0. Therefore,

tr(AΣ−1) = a11σ
11 + a1,2:n−1σ

2:n−1,1

+ tr(a2:n−1,1σ
1,2:n−1 + A2:n−1Σ2:n−1 + a2:n−1,nσ

n,2:n−1)
+an,2:n−1σ

2:n−1,n + annσ
nn

= tr(A2:n−1Σ2:n−1) + a11σ
11 + annσ

nn

+ 2(a1,2:n−1σ
2:n−1,1 + an,2:n−1σ

2:n−1,n). (A.2.2)

Now by Theorem A.1.1(f),

(Σ1:n−1)−1 =
(

σ11 σ1,2:n−1

σ2:n−1,1 Σ2:n−1

)

−
(

0
σ2:n−1,n

)
(σnn)−1

(
0 σn,2:n−1

)

=
(

σ11 σ1,2:n−1

σ2:n−1,1 Σ2:n−1 − σ2:n−1,n(σnn)−1σn,2:n−1

)
,

and so

tr[A1:n−1(Σ1:n−1)−1] = a11σ
11 + a1,2:n−1σ

2:n−1,1 + tr[a2:n−1,1σ
1,2:n−1

+A2:n−1(Σ2:n−1 − σ2:n−1,n(σnn)−1σn,2:n−1)]
= tr(A2:n−1Σ2:n−1) + a11σ

11 + 2a1,2:n−1σ
2:n−1,1

−σn,2:n−1A2:n−1σ
2:n−1,n/σnn. (A.2.3)

Similarly,

(Σ2:n)−1 =
(

Σ2:n−1 σ2:n−1,n

σn,2:n−1 σnn

)

−
(
σ2:n−1,1

0

)
(σ11)−1

(
σ1,,2:n−1 0

)

=
(

Σ2:n−1 − σ2:n−1,1(σ11)−1σ1,2:n−1 σ2:n−1,n

σn,2:n−1 σnn

)
,
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so that

tr[A2:n(Σ2:n)−1] = tr[A2:n−1(Σ2:n−1 − σ2:n−1,1(σ11)−1σ1,2:n−1)
+a2:n−1,nσ

n,2:n−1] + an,2:n−1σ
2:n−1,n

+ annσ
nn

= tr(A2:n−1Σ2:n−1) − σ1,2:n−1A2:n−1σ
2:n−1,1/σ11

+ 2an,2:n−1σ
2:n−1,n + annσ

nn. (A.2.4)

Likewise, upon permuting the rows and columns of Σ−1 so that the (n− 2) ×
(n−2) block Σ2:n−1 appears in the lower right corner of the partitioned matrix
and then applying Theorem A.1.1(f) once more, we obtain

(Σ2:n−1)−1 = Σ2:n−1 − (σ2:n−1,1 σ2:n−1,n
)( σ11 0

0 σnn

)−1

×
(
σ1,2:n−1

σn,2:n−1

)

= Σ2:n−1 − σ2:n−1,1(σ11)−1σ1,2:n−1

−σ2:n−1,n(σnn)−1σn,2:n−1,

yielding

tr[A2:n(Σ2:n)−1] = tr(A2:n−1Σ2:n−1) − σ1,2:n−1A2:n−1σ
2:n−1,1/σ11

−σn,2:n−1A2:n−1σ
2:n−1,n/σnn. (A.2.5)

Using (A.2.3), (A.2.4), and (A.2.5), we find that

tr[A1:n−1(Σ1:n−1)−1] + tr[A2:n(Σ2:n)−1] − tr[A2:n−1(Σ2:n−1)−1]
= tr(A2:n−1Σ2:n−1) + a11σ

11 + annσ
nn

+ 2(a1,2:n−1σ
2:n−1,1 + an,2:n−1σ

2:n−1,n), (A.2.6)

which is identical to (A.2.2). Thus, (2.34) holds for p = n− 2.

The same argument that yielded (A.2.6) may also be used to show that for any
p and any i = 1, . . . , n− p− 1,

tr[Ai:i+p−1(Σi:i+p−1)−1]
= tr[Ai:i+p(Σi:i+p)−1] + tr[Ai+1:i+p+1(Σi+1:i+p+1)−1]

−tr[Ai+1:i+p(Σi+1:i+p)−1].
(A.2.7)

Finally, we show that if (2.34) holds for p = n − j where 2 ≤ j ≤ n − 1,
then it also holds for p = n− (j + 1), upon which the theorem follows by the
method of induction. So suppose that (2.34) holds for p = n− j. Then

tr(AΣ−1) =
j∑

i=1

tr[Ai:i+n−j(Σi:i+n−j)−1]
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−
j−1∑
i=1

tr[Ai+1:i+n−j(Σi+1:i+n−j)−1]

=
j∑

i=1

{tr[Ai:i+n−(j+1)(Σi:i+n−(j+1))−1]

+ tr[Ai+1:i+n−j(Σi+1:i+n−j)−1]
− tr[Ai+1:i+n−(j+1)(Σi+1:i+n−(j+1))−1]}

−
j−1∑
i=1

tr[Ai+1:i+n−j(Σi+1:i+n−j)−1]

=
{ j∑

i=1

tr[Ai:i+n−(j+1)(Σi:i+n−(j+1))−1]

− tr[Ai+1:i+n−(j+1)(Σi+1:i+n−(j+1))−1

}

+ tr[Aj+1:n(Σj+1:n)−1]

=
j+1∑
i=1

tr[Ai:i+n−(j+1)(Σi:i+n−(j+1))−1]

−
j∑

i=1

tr[Ai+1:i+n−(j+1)(Σi+1:i+n−(j+1))−1]

where we have used (A.2.7) for the second equality. But this last expression is
merely the right-hand side of (2.34) when p = n− (j + 1). Thus (2.34) holds
for p = n− (j + 1), and the theorem follows by induction. �
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Zimmerman, D. L. and Núñez-Antón, V. (2001). Parametric modelling of
growth curve data: An overview (with Discussion). Test, 10(1), 1–73.
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