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Preface 

Tl1ere are many books which set out the more commonly used statistical 
methods in a form suitable for applications. There are also widely available 
computer packages for implementing these techniques in a relatively painless 
way. We have in the present book concentrated not so much on the techniques 
themselves but rather on the general issues involved in their fruitful 
application. 

The book is in two parts, the first dealing with general ideas and principles 
and the second with a range of examples, all, however, Involving fairly small 
sets of data and fairly standard techniques. Readers who have experience of 
the application of statistical methods may want to concentrate on the first 
part, using the second part, and better still their own experience, to illuminate 
and criticize the general ideas. If the book is used by students with little or no 
experience of applications, a selection of examples from the second part of the 
book should be studied first, any general principles being introduced at a 
later stage when at least some background for their understanding is available. 

After some hesitation we have decided to say virtually nothing about 
detailed computation. This is partly because the procedures readily available 
will be different in different institutions. Those having access to GLIM will 
find that most of the examples can be very conveniently handled; however the 
parameterization in GLIM, while appropriate for the great generality 
achieved, is not always suitable for interpretation and presentation of con
clusions. Most, although not all, of the examples are in fact small enough to 
be analysed on a good pocket calculator. Students will find it instructive 
themselves to carry out the detailed analysis. 

We do not put forward our analyses 'of the examples as definitive. If the 
examples are used in teaching statistical methods, students should be en
couraged to try out their own ideas and to compare thoughtfully the con
clusions from alternative analyses. Further sets of data are included for use 
by students. · · · 

Many of the examples depend in some way on application of the method 
of least squares or analysis of variance or maximum likelihood. Some famili- . 
arity with these is assumed, references being given for specific points. 

The examples all illustrate real applications of statistical methods to some 
branch of science or technology, aliliough in a few cases fictitious data have 

vii 
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been supplied. The main general limitation on the examples is, as noted 
above, that inevitably they all involve quite small amounts of data, and im
portant aspects of statistical analysis specific to large amounts of data are 
therefore not well covered. There is the further point that in practice over
elaboration of analysis is to be avoided. With very small sets of data, simple 
graphs and summary statistics may tell all, yet we have regarded it as legiti
mate for illustration in some cases to apply rather more elaborate analyses 
than in practice would be justified. 

We are grateful to Dr C. Chatfield, University of Bath, for constructive 
comments on a preliminary version of the book. 

London, September 1980 

D.R. Cox 
E.J. Snell 
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Chapter 1 

1.1 Introduction 

Nature and objectives 
of statistical analysis 

Statistical analysis deals with those aspects of the analysi~ of data that are 
not highly specific to particular fields of study. That is, the object is to provide 
concepts and methods that will, with suitable modification, be applicable in 
many different fields of application; indeed one of the attractions of the 
subject is precisely this breadth of potential application. 

This book is divided into two parts. In the first we try to outline, without 
going into much specific detail, some of the general ideas involved in applying 
statistical methods. In the second part, we discuss some special problems, 
aiming to illustrate both the general principles discussed earlier and also 
particular techniques. References to these problems are given in Part I where 
appropriate. While all the examples are real, discussion of them is inhibited 
by two fairly obvious constraints. Firstly, it is difficult in a boo!( to convey 
the interplay between subject-matter considerations and statistical analysis 
that is essential for fruitful work. Secondly, for obvious reasons, the sets of 
data analysed are quite small. In addition to the extra computation involved 
in the analysis of large sets of data, there are further difficul_tie~ connected, for 
example, with its being hard in large sets of data to detect initially unanticip
ated complications. To the extent that many modern applications involve 
large sets of data, this book thus paints an oversimplified picture of applied 
statistical work. 

We deal very largely with methods for the careful analysis and interpreta
tion of bodies of scientific and technological data. Many of the ideas are in 
fact very relevant also to procedures for decision making, as in industrial 
acceptance sampling and automatic process control, but there are special 
issues in such applications, arising partly from the relatively mechanical 
nature of the final procedures. In many applications, however, careful con
sideration of objectives will indicate a specific feature of central interest.'· 

Special considerations enter also into the standardized analysis of routine 
test data, for example in a medical or industrial context. The need here may 
be for clearly specified procedures that can be applied, again in a quite 
mechanical fashion, giving sensible answers in a wide range of circumstances, 
and allowing possibly for individual 'management by exception' in extremely 
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4 Applied statistics [1.1 

peculiar situations; quite commonly, simple statistical procedures are built 
in to measuring equipment. Ideally, largely automatic rejection of 'outliers' 
and routine quality control of measurement techniques are incorporated. In 
the present book, however, we are primarily concerned with the individual 
analysis of unique sets of data. 

1.2 Data quality 

We shall not in this book deal other than incidentally with the planning of 
data collection, e.g. the design of experiments, although it is clear in a general 
way that careful attention to design can simplify analysis and strengthen 
interpretation. 

We begin the discussion here, however, by supposing that data become 
available for analysis. The first concerns are then with the quality of the data 
and with what can be broadly called its structure. In this section we discuss 
briefly data quality. 

Checks of data quality typically include: 

(i) visual or automatic inspection of the data for values that are logically 
inconsistent or in conflict with prior information about the ranges likely to 
arise for the various variables. For instances of possibly extreme observa
tions, see Examples E and S. Inspection of the minimum and maximum of 
each variable is a minimal check; 

(ii) examination of frequency distributions of the main variables to look 
for small groups of discrepant observations; 

(iii) examination of scatter plots of pairs of variables likely to be highly 
related, this detecting discrepant observations more sensitively than (ii); 

(iv) a check of the methods of data collection to discover the sources, if 
any, 'of biases in measurement (e.g. differences between observers) which it 
may be necessary to allow for in analysis, and to assess the approximate 
measurement and recording errors for the main variables; 

(v) a search for missing observations, including observations that have 
been omitted because of their highly suspicious character. Often missing 
observations are denoted in some conventional way, such as 0 or 99, and it 
will be important not to enter these as real values in any analysis. 

Concern that data quality should be high without extensive effort being 
spent on achieving unrealistically high precision is of great importance. In 
particular, r'ecording of data to a large number of digits can be wasteful; on 
the other hand, excessive rounding sacrifices information. The extent to which 
poor data quality can be set right by more elaborate analysis is very limited, 
particularly when appreciable systematic errors are likely to be present and 
cannot be investigated and removed. By and large such poor-quality data 
will not merit very detailed analysis. 
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In nearly all the problems we shall be dealing with there will be appreciable 
uncontrolled variation. Our attitude to this will vary a little depending on 
whether the variability is natural variation that is an intrinsic part of the 
system under study or on whether it represents error of measurement or lack 
of control that could in principle be eliminated. In both cases we consider 
the frequency distribution of the variation. In the former case we may well 
be interested in detail in the form of the distribution; this applies, for instance, 
to the survival times of Example U. In the second case, interest will ultimately 
be in the basic constants under study, i.e. in what would have been observed 
had 'error' been eliminated. Example 0, concerned with the determination 
of a physical constant, is an extreme example. 

When the amount of data is large, the recording and st9rage of data in a 
form that makes analysis relatively easy become very important. Thus re
cording directly on punched cards or magnetic tape may be called for. In 
other cases, especially in the physical sciences, it is common for digital, or 
less often analogue, computation of summarizing quantities to be part of 
the measuring equipment. While digital computers have greatly extended the 
possibilities for the analysis of data, it is important to realize that, at least in 
some fields, they have produced an even greater increase in the amount of 
data that can be obtained and recorded, the so-called 'information explosion'. 
The relative ease with which data can be obtained and analysed varies greatly 
between different fields and has important implications for the depth of 
analysis that is sensible. 

1.3 Data structure and quantity 

Most; although not all, data have the following broad form. There are a 
number of individuals (people, plots, experimental animals, etc.) and on each 
individual a number of types of observation are recorded. Individuals are 
thought to be in some sense independent of one another. 

The following questions then arise: 

(i) what is to be regarded as an individual? 
(ii) are the individuals grouped or associated in ways that must be taken 

account of in analysis? 
(ii) what are the variables measured on each individual? 
(iv) are any observations missing, and if so, what can be done to replace 

or estimate those values? 

Data structure is thus· a question partly of the number and nature of the 
variables measured on each individual, and partly of the classification and 
groupings of individuals. The quantity of data is best thought of as having 
two aspects, the number of individuals and the number of variables per in
dividual. As already noted, there is a qualitative difference between situations, 
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like those in Part II, in which the total amount of data is such that it can all 
be carefully inspected during analysis and, at the other extreme, applications 
in which the amount of data is so vast that at most a small proportion of it 
can be analysed. 

1.4 Phases of analysis 

It is convenient to distinguish four broad phases to statistical analysis. 
These are: 

(i) initial data manipulation, i.e. the assembling of the data in a form suit
able for detailed analysis and the carrying out of checks on quality of the 
kind outlined in Section 1.2; 

(ii) preliminary analysis, in which the intention is to clarify the general 
form of the data and to suggest the direction which a more elaborate analysis 
may take. Often this is best done by simple graphs and tables; 

(iii) definitive analysis, which is intended to provide the basis for the 
conclusions; 

(iv) presentation of conclusions in an accurate, concise and lucid form. 
This leads usually to a subject-matter interpretation of the conclusions, 
which, while obviously crucial, we regard as outside the present discussion. 

While this division is useful, it should not be taken rigidly. Thus an analysis 
originally intended as preliminary may give such clear results that it can be 
regarded as definitive. Equally, an analysis intended as definitive may reveal 
unexpected discrepancies that demand a reconsideration of the whole basis 
of the analysis. In fields in which there is substantial experience of previous 
similar investigations one may hope largely to bypass preliminary analysis. 

Clear presentation of conclusions is of great importance; the style to be 
adopted of course depends to some extent on the potential audience. It is 
virtually always important that the broad strategy of the analysis is explained 
in a form that seems reasonable to a critical nontechnical reader. 

These points imply that conceptually simple methods are to be preferred 
to conceptually complicated ones. In particular, direct links between the final 
conclusions and the data are a good thing. This is partly because presenta
tion of conclusions is eased and partly because sensitivity of the conclusions 
to assumptions is more readily assessed. Thus in Example L we have chosen 
not to transform some proportions on the grounds that the conclusions are 
more easily appreciated directly. 

Effort spent in trying to present in a simple way the conclusions of complex 
analyses is almost always worth while. On the other hand, simplicity is to 
some extent a subjective feature strongly correlated with familiarity. Under
standing of a particular technique comes partly from fruitful application of 
it. Thus, time permitting, it can be valuable to try out as yet unfamiliar 
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techniques on reasonably well understood sets of data, as essentially a train
ing exercise rather than as part of the immediate scientific analysis. 

1.5 Styles of analysis 

Methods of analysis can be grouped in several broad ways. Firstly, we may 
distinguish between descriptive methods and probabilistically based methods. 
In the latter, but not the former, the notion of a probability model for the 
data and often of the probabilistic properties of estimates and' their un
certainty occur explicitly. In descriptive statistics the probabilistic aspects are 
either absent or at least receive little emphasis. Many of the most valuable 
methods, however, are sensible from both points of view. If, as is often the 
case, explicit consideration of the uncertainty in the conclusions is required, 
probabilistic methods are likely to be needed. 

A second broad distinction is between graphical and numerical techniques. 
Definitive probabilistic analysis is virtually always numerical rather than 
graphical, but even with these methods graphical methods can be valuable 
in presenting conclusions. In other types of analysis, there will often be a 
role for both graphical and numerical techniques. 

Graphical methods are of much value in presenting qualitative aspects of 
conclusions in an easily grasped way. Nevertheless, it will almost always be 
desirable to give the main summarizing quantities numerically, together with 
suitable measures of precision, such as estimated standard errors: or at least 
the information from which such measures of precision can be calculated. 
One reason for requiring numerical statements is that future workers wishing 
to use the results will often have convenient access only to the reported con
clusions. Reconstruction of numerical information from published graphs 
nearly always introduces further errors. More broadly, especially in preparing 
papers for scientific journals, one should consider the needs of future workers 
in the field, who may wish to use the results in unexpected ways. 

1.6 Computational and numerical analytical aspects 

Two important aspects of statistical analysis about which rather little will be 
said in this book are the numerical analytic and computational. Numerical 
analytic considerations arise in ensuring that procedures are not sensitive to 
rounding errors in calculation and that where iterative procedures are 
necessary they converge, preferably speedily, to the required point. Example 
F illustrates the possibility that an apparently simple analysis may be subject 
to major rounding errors. 

Computational considerations are broader and involve the organization 
of the raw data and the arrangement of the final conclusions, as well as the 
implementation of the main analysis. The wide availability of computers 
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means that larger sets of data can be handled, that more ambitious methods of 
analysis can be used and that, once a particular ldnd of analysis is pro
grammed, the calculations can be repeated many times in slightly different 
forms without much extra work. Program packages are available for most of 
the more standard statistical calculations, although these sometimes lack the 
flexibility that ideally should be allowed. For most of the small sets of data 
and relatively simple analyses contemplated in Part II of this book, an 
electronic pocket calculator is adequate. 

For very large-scale investigations with large amounts of data, a sub
stantial effort is likely to be necessary on data recording and storage. It is thus 
justifiable to devote, if necessary, some time to the development of special 
programs for analysis. In principle it is, of course, desirable that the planning 
of the recording and of the analysis of the data should be coordinated. For 
investigations with a small amount of data of relatively simple structure, 
computational considerations will not normally be critical. For what is 
probably the most common occurrence, data of moderate size with limited 
resources available for analysis, major development of special programs for 
analysis is not feasible and the availability of flexible and general program 
packages is of central importance. The temptation to use elaborate methods 
of analysis just because programs are available is, however, to be avoided, 
except as a training exercise. 

Because computational considerations depend so much on the resources 
available and on rapidly developing technology, we shall in this book say 
little on the subject. Of its great importance there is, however, no doubt. 

1.7 Response and explanatory variables 

A rough classification of kinds of observation will be given in Section 2.1, but 
one distinction is sufficiently important to mention immediately. This is 
between response variables and ·explanatory variables. In any particular sec
tion of analysis, we typically regard one or more variables as responses and 
other variables as explanatory variables and consider the question: how does 
the response variable depend on the explanatory variable? The· distinction is 
most clear cut when the explanatory variables represent treatments imposed 
by the investigator, and it is required to assess the effect of treatment on some 
subsequent response; for example, the response variable may be the yield 
from a chemical reaction and the explanatory variables may specify the tem
perature and pressure of the reaction, the concentrations of reactants, etc. 
More broadly, the response variables are in some general sense regarded as 
dependent on the explanatory variables; indeed, dependent variable is an 
alternative name for response variable. Sometimes the response variable is so 
chosen because the ultimate object is to predict it from the explanatory 
variables. For two social science problems where the correct isolation of 



1. 7] Nature arid objectives of statistical analysis 9 

response from explanatory variables is important and not straightforward, 
see Examples W and X. 

The recognition of response and explanatory variables is one of the first 
steps in clarifying the approach to analysis. Often in practice there are several 
response variables, e.g. yields of several products from a chemical reaction, 
or a whole frequency distribution, as in Example C. A1ialysis is much simpli
fied if the individual response variables can, at least for detailed analysis, 
either be dealt with entirely separately or a single combined response variable 
formed, as in Examples C and M. Multivariate analysis is that part of 
statistical analysis dealing with several response variables simultaneously and 
tends to give conceptually fairly complicated results. Its use is not illustrated 
in the present book. Fruitful use is mostly in fields where many response 
variables of a rather similar kind are recorded and reduction of dimensional
ity is essential. 

In essence, then, response variables are the primary properties of interest 
(yield of product, success or failure of medical treatment, energies and life
times of particles in nuclear physics, etc.). Explanatory variables (dose level, 
treatment applied, etc.) hopefully explain systematic variations in the response 
variables. 

Sometimes it is useful to distinguish intermediate response variables, 
which are broadly response variables which in some stages of analysis and 
interpretation may be treated as explanatory variables. For instance, in an 
agricultural field trial, the main response variable may be yieW per m2, 

whereas an intermediate response variable may be a number of plants per m2• 

In a medical trial, say on the relief of pain, the main response variable may 
be a subjective score of relief achieved and an intermediate response variable 
may be change in blood pressure or some biochemical variable. In both 
examples, it would be possible to analyse the intermediate response variable 
as a response, assessing, for example, the effect of treatments on it. If, how
ever, we use the intermediate response as an explanatory variable we are 
addressing the more subtle question as to the extent to which the effect of 
treatment on the main response variable is accounted for by the action of the 
intermediate variable. 

It is important throughout the discussion of analysis that a variable, 
whether response or explanatory, may well have been produced by an initial 

·,~cess of combination of raw observations. For instance, in a sugar-beet 
experiment an important response variable may be effective sugar yield in 
kg/m2, derived from measurements on yield of beet and on chemical analysis 
of sugar content. A more elaborate example concerns growth curves, say in an 
animal feeding experiment. Here possible response variables are: (i) live 
weight after some fixed time, measured directly; (ii) an estimate of asymptotic 
weight; (iii) some estimate of rate of approach to that asymptote; (iv) some 
measure of the efficiency of conversion of food into body weight. The last 
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three would all involve nontrivial intermediate analysis of the original 
observations. Where necessary such new variables will be called derived 
variables. Examples C, E and M all illustrate simple instances of the 
formation of a derived variable, in the first and last by combination of a set of 
frequencies into a single summarizing quantity. 

1.8 Types of investigation 

The design of investigations will not be considered in detail in the present 
book; nevertheless, it is desirable from the point of view of interpretation to 
distinguish a number of types of investigation. While the same technique of 
analysis, e.g. regression analysis, may be used in numerically identical form 
for any one of the main types of study, the limitations on scientific interpreta
tion are quite different in the different types. It is helpful to distinguish 
between the following: 

(i) Experiments, in which the system under study is set up and controlled 
by the investigator. Typically, one of a number of alternative treatments is 
applied to each individual, or experimental unit, and responses measured. If 
the allocation of treatments to experimental units is organized by the in
vestigator, and especially if an element of objective randomization is involved, 
it will be possible to conclude that any clear-cut difference in response 
between two treatments is a consequence of the treatments. 

(ii) Pure observational studies, in which data have been collected on in
dividuals in some system, the investigator having had no control over the 
collection of the data, other than perhaps some role in checking the quality 
of the data. While it may be possible to detect from such data clear effects, 
such as differences between different groups of individuals, interpretation of 
such differences will nearly always call for much caution. Explanatory vari
ables that would provide the 'real' explanation of the differences may not 
have been measured, and may even be unknown to the investigator. 

(iii) Sample surveys, in which a sample is drawn from a well-defined 
population by methods, usually involving randomization, ·under the in
vestigator's control. Conclusions can be drawn with confidence about the 
descriptive properties of the population in question, but the interpretation of, 
for example, relationships between variables raises problems similar to (ii). 
Control of data quality may be stronger than in a pure observational study. 

(iv) Controlled prospective studies, in which a group of individuals, chosen 
by the investigator, have various explanatory variables measured and are. 
then followed through time, often to see whether some particular event of 
significance (e.g. death) occurs. To the extent that all important explanatory 
variables can be measured, and of course this is never totally possible, these 
studies have some of the virtues of an experiment. 
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(v) Controlled retrospective studies, such as the epidemiological investiga
tion summarized in Example V, in which a characteristic response variable 
has been observed on individuals, and the history of those individuals is 
examined to isolate relevant explanatory variables. 

Experiments are strongly interventionist, the investigator having in prin
ciple total control over the system under study, and lead to the clearest 
interpretation. While very often experiments can be arranged tq lead to 
simple 'balanced' sets of data, this is not the crucial point. In principle 
virtually any method of statistical analysis might be relevant for any style of 
investigation; it is the interpretation that differs. 

An outline example will clarify the distinction between an experimeilt and 
a pure observational study. Consider the comparison of two alternative 
medical treatments A and B. In an experiment each eligible patient is assigned 
a treatment by an objective randomization procedure, each patient having 
equal chance of receiving each treatment. Suppose that subsequent patient 
care is closely standardized, identically for the two treatments, and that a 
clearly defined response variable is measured for each patient, e.g. survival for 
at least one year versus death within one year. Suppose that, as judged by an 
appropriate statistical procedure, the two groups of response variables differ 
by more than can reasonably be ascribed to chance. We can then conclude 
that, provided the experiment has been correctly administered and reported, 
the difference between the groups is a consequence of the difference between 
A and B; for the two groups of patients differ only by the accidents of random 
assignment and in virtue of the difference between A and B. 

Contrast this with a pure observational study in which, from hospital 
records, information is assembled on the same response variable for two 
groups of patients, one group having received treatment A and the other 
treatment B. Note first that the structure of the data might be identical for 
the experiment and for the observational study. Suppose that again there is a 
clear difference between the two groups. What can we conclude? 

The statistical analysis shows that the difference is unlikely to be a pure 
chance one. There are, however, initially many possible explanations of the 
difference in addition to a possible treatment effect. Thus the groups may 
differ substantially in age distribution, sex, severity of initial symptoms, etc. 
Specific explanations of this kind can be examined by suitable statistical 
analysis, although there always remains the possibility that some unmeasured 
explanatory variable differs very substantially between the two groups. 
Further, we rarely know why each patient was assigned to his or her treat
ment group: the possibility that conscious or unconscious assessment of the 
patient's prognosis influenced treatment choice can rarely be excluded. Thus 
the interpretation of the difference is more hazardous in the observational 
study than in the experiment. 
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In the light of these distinctions it is quite often useful to divide explanatory 
variables into two types. First there are those which represent, or which 
could conceivably have represented, treatments. Then there are those that 
give intrinsic properties of the individuals; we call the latter type intrinsic 
variables. 

For example, suppose that in a medical investigation the explanatory 
variables are dose of a drug, patient sex and patient initial body weight, 
response being some measure of success of treatment. Now analysis would 
usually be directed towards relating response to dose. The role of body weight 
might be to indicate an appropriate scale for dose, e.g. mg per leg body 
weight, or to show how the response-dose relation is modified by body 
weight. Similarly, it may be necessary to estimate different response-dose 
relations for men and for women. It would usually be meaningful to think of 
dose as causing response, because it is possible to contemplate an individual 
receiving a different dose from the one he or she in fact did receive. But it 

., would be bad_termin.ology, if no more, to say that patient sex 'causes' a 
difference in response, even were it to happen that the only systematic differ
ence found in the data were a difference between men and women. This is 
because it is not usually meaningful to contemplate what response would have 
been observed on an individual had that individual been a woman rather than 
a man. The point is related to the physicists' well-known dictum that passage 
of time cannot be regarded as a cause of change. 

1.9 Purposes of investigation 

In the previous section we have classified investigations by their design, the 
primary distinction being between experimental and observational studies. A 
rather different division of investigations can be made on the basis o( their 
broad purpose. In one sense, of course, it is trite to remark that the purpose 
of the investigation is to be borne in mind, particularly in determining the 
primary aspects of the model. Indeed, in some applications the objectives may 
be very specific and of such a kind that the quantitative techniques of decision 
analysis may be applicable. 

Nevertheless, it is useful to .draw a broad qualitative distinction between 
investigations, or parts of investigations, whose objective is in some sense to 
increase understanding and those with a much more specific 'practical' ob
jective. The terms 'scientific' and 'technological' might be used. We shall 
prefer 'explanatory' and 'pragmatic', partly to avoid the misunderstanding. 
that the subject matter is at issue. Thus an investigation in nuclear physics to 
calibrate a technique or to compare alternative experimental procedures 
might b1! severely pragmatic, whereas an experiment on alternative animal 
management techniques in agriculture might be explanatory, being set up to 
give understanding of the biological reasons for differences, and not just a 
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determination of which is the economically better technique in the context 
studied. 

The distinction has bearing on the kinds of conclusion to be sought and on 
the presentation of the conclusions. For example, a pragmatic application of 
multiple regression might aim to predict one or more response variables from 
suitable explanatory variables. Then if there were a number of alternative 
predicting equations giving about equally good results, the choice between 
them could be made on grounds of convenience or even essentially arbitrarily. 
If, however, the objective is the understanding of the relation betw~en the 
response variable and the explanatory variables, interest will lie in which 
explanatory variables contribute appreciably to the relation and the nature 
of their contribution. It is then dangerous to choose essentially arbitrarily 
one among a number of different but equally well-fitting relations. 

The question of balance between explanatory and pragmatic approaches, 
i.e. in effect between fundamental and short-term research, in investigating 
technological problems, whether say in industry or in medicine, raises im
portant and very difficult issues beyond the range of the present discussion. 
Even in the much narrower context of multiple regression as outlined in the 
previous paragraph, the distinction between the two approaches is important 
but not to be taken too rigidly. There is some hope that a prediction equation 
based on an understanding of the system under study may continue to per
form well if the system changes somewhat in the future; any predicljon tech
nique chosen on totally empirical grounds is at risk if, say, the interrelation
ships between the explanatory variables change. 

Questions of the specific purpose of the investigation have always to be 
considered and may indicate that the analysis should be sharply focused on a 
particular aspect of the system under study, e.g. the proportions outside 
certain tolerance limits in Examples D and S. 



Chapter 2 Some general concepts 

2.1 Types of observation 

We now discuss briefly some of the types of observation that can be made, 
by far the most important distinction, however, being that made in Section 
1. 7 between response variables and explanatory variables. 

The first distinction depends on the physical character of the measurements 
and is between extensive and nonextensive variables. An extensive variable is 
one which is physically additive in a useful sense: yield of product, count of 
organisms and length of interval between successive occurrences of some 
repetitive event are all examples. In all these, regardless of distributional 
shape, the mean value has a physical interpretation in terms of, for example, 
the total yield of product from a large number of runs; see Example M con
nected with the yield of cauliflowers. Thus for extensive response variables, 
however the analysis is done, the mean value of the variable is among the 
quantities of interest. Note especially that yield has this property, whereas 
log yield, or more generally any nonlinear function of yield, does not. An 
example of a nonextensive variable is blood pressure: the sum of the blood 
pressures of two individuals has no direc;t physical interpretation. 

The next distinctions depend rather more on the mathematical character 
of the variable, and in. particular on the set of values which it may in principle 
take. The main possibilities are: 

(i) an effectively continuous measurement on a reasonably well-defined 
scale, i.e. for which a difference of one unit in different parts of the range 
has in some sense the same interpretation. Analysis will normally be done in 
terms of the variable itself or some simple function of it; 

(ii) an effectively continuous measurement on a relatively ill-defined scale; 
for example, 'merit' may be scored subjectively on a scale 0 to 100, there 
being no guarantee that the difference, say 5 to 10, is meaningfully compar
able with the difference 80 to 85; 

(iii) an integer-valued variable, usually in effect counting numbers of 
occurrences in some form; 

(iv) a discrete variable, often in effect integer-valued, scoring something 
on an ordered but relatively ill-defined scale, e.g. 4 = very good, 3 = good, 
2 = satisfactory, l = bad, 0 = very bad. This is broadly equivalent to (ii) 

14 
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with a much reduced range of possibilities. Sometimes the quantitative values, 
which are essentially conventional, are omitted. Examples Nand W illustrate 
this kind of variable; 

(v) a qualitative variable in which the possible values are not ordered, e.g. 
eye-colour; 

(vi) a binary variable, in which there are only two possible forms, e.g. 
dead, survived; success, failure, etc.; see Examples H, L and X. 

Possibilities (i), (iii) and (vi) are the easiest to handle and probably the most 
widely occurring. In the physical sciences most measurements are of type (i), 
measuring techniques being well developed, clearly defined and 1\1-rgely 
standardized. In the social sciences, (iv)-(vi) are relatively con'lmon. Any kind 
of measurement can be reduced to binary form by merging categories, although 
serious loss of information may be incurred by doing this injudiciously. 

2.2 Descriptive and probabilistic methods 

A broad distinction has already been made between descriptive statistics, in 
which no explicit probabilistic element is involved, and methods in which the 
idea of probability is central. Under descriptive statistics we include the 
tabulation of data for inspection and the use of graphical techniques. The 
latter are particularly important, both in the preliminary inspectiop of data 
and in the final presentation of conclusions. Current developments in com
puter graphics may lead to improved ways of dealing with complex relations, 
especially in several dimensions. 

The distinction between descriptive and probabilistically based methods is 
not a rigid one. Often a probabilistic argument will suggest the calculation of 
certain quantities which can then be plotted or summarized in a table and 
regarded as meaningful independently of the original argument which led to 
their calculation. The method of least squares, which is central to a big part 
of advanced statistical methods, has various sophisticated probabilistic 
justifications. It can also very often be regarded as a qualitatively plausible 
method of fitting. It is, however, a cent~al theme in statistical analysis that 
important conclusions should have some assessment of uncertainty attached. 
While sometimes this can be done informally, probabilistic arguments 
normally play a central role in measuring uncertainty, especially via the 
calculation of limits of error for unknown parameters. 

Most of Part II illustrates methods which have a quite direct probabilistic 
justification, but it is always important to consider the extent to which the 
quantities calculated are directly useful as reasonable summaries of the data 
regardless of the probability model. 

The typical form which a probabilistically based analysis takes is as follows. 
We have observations on one or more response variables and we represent 



16 Applied statistics [2.2 

the observations collectively by y. Next we consider a family of probability 
distributions for the observations, i.e. we regard y as an observation on a 
random variable Y having a distribution {probability in the discrete case or 
probability density in the continuous case) usually specified except for values 
of parameters which are unknown. We call this family of distributions a 
model. In simple cases the model involves the standard distributions (normal, 
exponential, Poisson, binomial, etc.) with means (and variances) that depend 
on any explanatory variables that are available. In the general discussion of 
this part it aids clarity to distinguish between the observations y and the 
random variable Y. In the particular applications of Part II it is much simpler 
to use Y for both random variables and observed values, when it is clear a 
respon~e variable is under consideration. 

Some particular models arise so often in applications that the methods 
associated with them have been extensively developed. It is, however, very 
important that the formulation of a model and of scientifically relevant 
questions about that model are made properly, bearing in mind the unique 
features of each application; standard models and questions may not be 
appropriate. 

It is useful to have simple examples in mind. 

Example 2.1. If the data y consist of n repeat observations (y1, ••• , Yn) on 
the same random system, the model will often be that Y1, •.. , Y11 are in
dependent and identically distributed random variables. Further, depending 
on the context, the distribution may be taken as of simple functional form, 
e.g. normal with unknown mean p. and unknown variance a2• 

Example 2.2. If the data y consist of n pairs of observations (xt, Yt), where 
the first variable is an explanatory variable and the second a response 
variable, it will often be sensible to represent y 1, ••• , y1, by random variables 
Y1, ••• , Y11 with, for some appropriate function g, 

(2.1) 

where E( Yt) denotes the expected value of Yt, p being a vector of unknown 
parameters. An important special case is the simple linear regression model, 

(2.2) 

To complete the model the distribution of the Y's has to be specified. Just 
one possibility, although a very important one, is that Y1, ••• , Yn are in
dependently normally distributed with the same variance a 2• A less simnle 
case of Equation (2. I) is Example U in which 
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Example 2.3. Equation (2.2) is a special case of a very important general 
and flexible family of models called univariate normal-theory linear models. 
These assign the random variables Y1, ••• , Y1, independent normal distribu
tions of variance a2 and means depending linearly on the explanatory vari
ables with unknown coefficients. That is, 

p 

Yt = ~ Xtrf3r+ et (i=l, ... ,n), (2.3) 
r~o 

where et is an unobservable random variable representing error, {30, ••• , {3p 
are unknown parameters, and Xtr is the value of the rth explanatory va(iable 
corresponding to the ith observation Yt· The random errors Ill are independ
ently normally distributed with zero mean and variance a2• This model allows 
the inclusion of simultaneous dependence on several explanatory variables. 
Very often Xio = I (i = 1, ... , n) corresponding to a 'constant' term {:10 in 
the relation. 

2.3 Some aspects of probability models 

The following comments about models are of general importance and apply 
to virtually all the subsequent discussion. 

(i) There are at least two different physical meanings possible for tbe model. 
In the first there is a well-defined population of individuals, and the in
dividuals observed (the sample) are drawn from the population in a 'random' 
way. The probability model then specifies the properties of the full popula
tion. Here the population is real and could in principle be fully measured. A 
more common situation is where observations are made on some system 
subject to random fluctuations and the probability distributions in the model 
specify what would happen if, entirely hypothetically, observations were re
peated again and again under the same conditions. Sometimes the word 
'population' is used again in such contexts but the population is now a 
hypothetical one. In some contexts the whole idea of repetitions is notional. 
For example, a probability model of monthly unemployment numbers for a 
particular country essentially amounts to saying that it may be useful to 
treat the numbers, which are of course unique, as if they were generated by a 
physical random mechanism capable of repetition under the same conditions. 
Example C, concerned with literary data, is another instance where the 
relevance of a probability model is indirect. 

(ii) The distributions arising in the models nearly always involve unknown 
parameters. These play a crucial role. Much of statistical theory is taken up 
with the question of how to use the data as effectively as possible to answer 
questions about unknown parameters. For any particular part of the analysis 
we distinguish between the parameters of interest, i.e.- under direct study, and 
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the others which we call nuisance parameters. In Example 2.1 above, f..£ might 
be the parameter of interest and a2 a nuisance parameter, especially when the 
variable is extensive or the random variation is error rather than natural 
variation. When the data are sampled from existing populations the para
meters describe properties of the populations and it is natural to be interested 
in them. In other cases we normally think of the parameters as constants 
determining the nature of the random systems under investigation free of the 
accidental particular random disturbances encountered in the data. Para
meters representing fundamental physical constants, as in Example 0, are an 
illustration. Also the parameters and probability distributions in effect 
determtne the distribution of future observations that might be obtained on 
the same random system in the future. Occasionally we work explicitly with 
an answer expressed in terms of predicted future observations rather than 
with parameters; see again Examples D and S. 

(iii) The model is always tentative. In some contexts it is pretty clear from 
previous experience what a suitable family of models is likely to be, and 
rough inspection of the data for gross discrepancies may be all that is neces
sary to examine the adequacy of the model. In other cases, especially with 
rather complex data from an unfamiliar field, it may be far from clear what 
is the best formulation. A very important part of the. analysis is then a pre
liminary analysis to search for a suitable model. This involves not just 
testing the adequacy of any initial model, but doing so in a way that will 
suggest better models and bring to light possibly unsuspected effects in the 
data. 

(iv) Quite often it is useful to distinguish two aspects of a model. The 
primary aspect serves in effect to specify the main questions of interest. The 
secondary aspects serve to complete the model and thus to indicate the 
analysis likely to be suitable, and the precision of the conclusions. For in
stance, in the simple linear regression model of Example 2.2 above, interest 
would usually, although not necessarily, be concentrated on the dependence 
of E( Y) on x and in particular on the parameter {11, which specifies the change 
in E(Y) per unit change in x. Assumptions of normality, etc., Would then be 
secondary, not in the sense of being unimportant, but rather in affecting the 
conclusion indirectly, whereas ~ wrong specification of the dependence of 
E(Y) on x leads to an ill-conceived question being considered. The primary 
aspect is more important in the sense that an approximate answer to the 
'right' question is to be preferred to a very precise answer to a 'wrong' 
question. The distinction between primary and secondary aspects is a subject
matter issue. 

(v) Most models involve at some point an assumption that certain random 
variables are mutually independent and this is often one of the most sensitive 
assumptions made. While· such an assumption can to some extent be tested 
from the data, consideration of the way the data are obtained is usually the 
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main guide as to what independence assumptions are reasonable. Observa
tions obtained on the same individual at nearby time points will not normally 
be independent. The rather rare exception is when pure error of measurement 
is the dominant source of variation. Another example is that in Example 2.2 
above, then points (xt, Yt) might correspond to n/2 individuals each observed 
twice. To be quite specific, measurements on x and y might be taken on the 
left eye and on the right eye of a number of men. It would normally be very 
misleading to treat the random variables Yt as mutually independent; in 
extreme cases they might be nearly equal in pairs. The assumption that Yt 
corresponding to different men are independent would, however, quite often 
be made. Specification of independence is one of the most commonly occur
ring sources of difficulty in choosing a model. The more complex forms of 
analysis of variance, such as Examples I, Q and R, illustrate the care needed 
in dealing with structured random variation. 



Chapter 3 Some strategical aspects 

3.1 Introduction 

In the previous chapter we introduced some of the general ideas that are 
involved in statistical analysis and in the following chapter we outline the main 
kinds of technique that are useful. The present chapter develops some of the 
broader strategical ideas involved in applying statistical techniques. These 
ideas are of greatest importance in complex investigations and therefore are 
relatively difficult to illustrate in the small-scale examples in Part II of this 
book. They bear also on the interplay between statistical analysis and subject
matter interpretation. 

3.2 Incorporation of related data and external information 

The scientific or technological interpretation of investigations never proceeds 
in isolation, although individual investigations may have very considerable, 
even if ultimately temporary, importance. In each situation some reasonable 
balance has to be drawn between, on the one hand, making individual investi
gations satisfactory in their own right, and, on the other hand, achieving a 
synthesis of information from many sources. The latter requires the fitting of 
forms of systematic relation that will apply widely, that are consistent with 
theoretical information and any known limiting behaviour, and which will 
allow testing of the consistency of separate sources of information. 

In principle, one should aim for description of all available data in a single 
form of model with as many parameters as possible constant over all data sets, 
and variation that does occur between data sets should, so far as is feasible, be 
'explained'. The essentially iterative nature of this is important. The phases of 
preliminary and definitive analysis are not clearly isolated. 

Often it will be realized that earlier data have been inappropriately analysed; 
it will be for consideration whether it is worth re-analysing them. 

Where previous work, general knowledge of the specific situation, or reason
ably well accepted theory, suggest, say, a particular form of regression 
relation, it will usually be wise to base the initial analysis on that model, 
possibly supplemented by additional parameters to allow adequacy of fit to be 
examined. If a clear discrepancy with previous work is isolated, it should be 
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given a rational interpretation and, at least in principle, a new formulation 
should be found that explains the previous and current data in a single setting. 

3.3 Role of special stochastic models 

A relatively recent emphasis in statistical work has been on special theoretical 
stochastic models representing simplified theories of the system under investi
gation. Their properties can be studied either mathematically or by computer 
simulation. The use of these in statistical analysis is an attempt to relate data 
to some underlying physical or biological mechanism and therefore some of 
the points in Section 3.2 are relevant. Despite its great interest, some of the 
work on stochastic models seems rather remote from data. Often to be'at all 
realistic, models have to be very complicated and involve many parameters, 
so that discrimination between alternative models requires extensive data of 
high quality. 

The use of simple models for qualitative understanding can, of course, be 
very fruitful. Quite possibly, more use of very simple models could be made in 
the analysis of data, one focal point of the analysis being the careful descrip
tion of the ways in which the model does not fit. Thus comparison with a 
Poisson process is a natural way to describe systems of point events; see 
Examples A and T. Certainly there is a need in planning analyses to bring 
empirical analysis of data and theoretical analysis of stochastic models into 
closer contact, and concern with the development of special stochastic models 
is likely increasingly to become a feature of statistical work. 

3.4 Achievement of economical and consistent description 

In relatively complicated problems, as typified by regression problems with 
many explanatory variables, the main objective is an economical description of 
the data in a form consistent with external information. There are two broad 
approaches, called 'forward' and 'backward'. 

The 'forward' approach is to start from a relatively simple point and to 
complicate the model only when the data explicitly indicate the need to do so; 
if the starting point is soundly based, and not an arbitrary choice among 
several radically different possibilities, the use of the 'forward' approach.is an 
expression of mildly sceptical optimism. The backward' approach is to start 
from a complicated model and to simplify it as much as the data permit: .. 

In principle, the 'backward' approach starting with a rich family of models 
and ending with a list of all those simple models reasonably consistent with the 
data, bypasses the difficulties associated with complex sequences of inter
related choices; see Example Con 'clustering' of literary works. Any choice 
between alternative quite different models fitting roughly equally well has to be 
made explicitly on grounds external to the data. 
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The 'backward' approach is the safer one and should normally be used 
when it is not too ponderous and especially when there is a major interest in 
and uncertainty over the primary formulation of the problem. The 'forward' 
approach is more appropriate for the secondary aspects of the problem, e.g. 
over the structure of error. In any case it is obviously impossible and 
undesirable to start with a model that covers all possibilities that could arise, 
so that some mixture of the two kinds of approach is nearly always in
evitable. Examples G, R and W illustrate in simple form the arguments 
involved. 

For example, in the classical orthogonal analyses of variance a version of the 
'backward' approach is to start with the full analysis of variance indicated by 
the log'ic of the design, and to hope that this will point to a simple description, 
e.g. one with many interactions negligible. A more extreme version of the 
'backward' approach would allow from the beginning the possibility of 
transformation of the response variable. A version of the 'forward' approach 
is to start with a model involving, say, only main effects and to add to it as 
seems necessary; see Example P on the analysis of a 'random balance' ex
periment. In more conventional sets of balanced data the 'backward' approach 
seems normally much preferable. It is simple, yet allows the detection of 
unanticipated complexities and also the possibility of finding simple structure 
other than that tied to main effects and low order interactions. 

Another aspect of the 'forward'-'backward' contrast, already touched on, 
concerns the analysis of data in rational sections. For instance, with data on 
men and women, one may: 

(i) first ignore sex differences and then check residuals for the possible 
presence of sex differences; 

(ii) fit a model with a single parameter for a sex difference and then check 
the residuals for interactions; 

(iii) fit a model allowing for a sex difference and for some sex x explanatory 
variable interactions; 

(iv) analyse the data for men and women separately, aiming for a single 
model to be formulated after inspection of the results of the separate analyses. 

Form (iv) can be regarded as a version of the 'backward' approach. In very 
complex problems there may be a number of advantages, e.g. ease of com
munication, in analysing the data in manageable sections. Procedure (iii) can 
be useful, ~s in Example G, if a section is too small for separate analysis. 

The issues touched on here are central ones in the strategy of statistical work. 
The ability to go 'forward' straight to the simple essence of a complex topic is 
to be highly prized. The 'backward' approach is likely often to be slower, but 
perhaps safer, provided that the complex starting point is judiciously chosen 
and regarded as no more than a basis for ultimate simplification. The task is 
usually to judge what mixture is appropriate. 
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With very extensive data it will frequently be good to begin by analysing 
suitably small subsections of data. A very widely applicable approach is to use 
an analysis of subsections of data to replace each subsection by a small 
number of summarizing quantities which can be regarded as derived response 
variables for a second stage of analysis. Even, however, where a single unified 
analysis is aimed at, as for example in applying analysis of variance to relatively 
complicated but balanced multifactor systems, it can be very helpful to start 
from the analysis of easily manageable subsections of data; see, for instance, 
Examples K and S. 

A different but related aspect is the question arising widely in economic 
statistics and econometrics, and more broadly in the analysis of official 
statistics, of the merits of aggregation and disaggregation. Simplicity calls for 
aggregation, i.e. the merging of similar and related sets of data, whereas 
investigation of detailed effects may call for disaggregation, i.e. breaking down 
of data into component parts. Modern capabilities of fitting models with 
quite large numbers of parameters allow a greater degree of disaggregation 
than was formerly possible but it is hard to make useful comments in general
ity. Ideally data should be available in a form for checking the absence of 
interaction (see Section 4.13) one level higher than that used in ·the final 
presentation of conclusions. 

3.5 Attitudes to assumptions 

The broad division mentioned in Section 3.4 has some parallel in attitudes to 
the assumptions underlying the more formal probabilistically based statistical 
methods. The additional power and subtlety of probabilistically based 
methods· are bought at a price, namely the introduction of assumptions 
about the probability distribution supposed to have generated the data. 
These assumptions are virtually always idealized representations of the 
real situation and the question is not so much whether the assumptions 
are. exactly correct as to : 

(i) whether it is possible from the data to obtain a clear indication of how 
to improve the model; 

(ii) whether it is likely to be important to do so; and 
(iii) whether critical assumptions in the model can be bypassed. 

One important approach, essentially that common in applied mathematics 
generally, is to be very critical about assumptions judged central to the pr~b
Iem, but to make quite drastic simplifying assumptions about secondary 
aspects; at the end of the analysis one considers, at least qualitatively, how 
sensitive the main conclusions are to the assumptions made. This is essentially 
the spirit underlying the use of such methods, to be outlined later, as least 
squares and normal-theory tests of significance, preceded or followed by 
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inspection for anomalous points. This is one facet of the 'forward' approach. 
One corresponding 'backward' approach is to make minimal reasonable 
assumptions feasible without major loss of efficiency. In relatively simple 
situations, and where cautious testing of significance is of central importance, 
use ofnonparametric methods may be wise. In more complex situations where 
concise description of effects is required, and tests of significance play a sub
sidiary role, the use of simplifying assumptions about, for example, error 
structure will usually be needed. Drastic simplification of aspects subsidiary 
to the main purpose is essential in relatively complex problems and elabora
tions of the secondary assumptions that have little effect on the final con
clusions should, wherever feasible, be avoided. An illustration when the final 
description is in terms of a model which does not quite fit is Example T on the 
analysis of intervals between equipment failures. 

3.6 Depth and complexity of analysis appropriate 

Judgement of the amount of detail sensible in analysis is difficult. There are a 
number of aspects. What should be the relative effort devoted to data collec
tion and to analysis, especially in fields where relatively large amounts of data 
can be obtained fairly easily? The efforts should not be too disparate. When is 
it sensible to try to settle an outstanding issue by more refined analysis of data 
already available rather than by getting new observations? How elaborate a 
preliminary analysis is desirable? 

In the central analysis, the wide availability of computer packages has made 
quite complicated methods of analysis painlessly available even to those with 
little statistical training, and the dangers of this have often been discussed. 
There is another side, however; it is now also painless for the statistician to 
generate large numbers of plots of residuals, tests of normality, analyses on 
numerous different scales, etc., and thus to get very large amounts of computer 
output even from very simple data. Without some ruthlessness in appreciating 
that the great majority of this must be discarded, the objective of achieving 
and reporting simple conclusions is threatened. 

A particularly difficult issue is to decide when simple descriptive analysis is 
adequate and when explicit calculations of uncertainty involving probabilistic 
arguments are called for. If straightforward descriptive methods, graphical or 
numerical, lead to apparently clear-cut conclusions, the role, if any, of prob
abilistic methods is in danger of being confined to attaching a somewhat objec
tive seal of approval. The necessity or otherwise of this depends on the circum
stances, although pressures to apply, say, tests of significance to totally obvious 
effects should be resisted, except perhaps as a training exercise. Note, however, 
that calculation of limits of error for the size of effects may still be valuable. 
A more interesting application of probabilistic ideas is to the isolation, des
cription and confirmation of effects in relatively complex situations, although 
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even here the possibility of simpler, largely descriptive, methods for the 
presentation of conclusions is important. 

To pursue the same general point, if in relating a response variable y to an 
explanatory variable x, a plot shows a very simple, e.g. virtually linear, relation, 
further analysis may be superfluous; see Example B. If, however, it is required 
either now or in the future, to compare the slope with the slope from similar 
data obtained under rather different conditions, or if it is required to put 
limits of error on a prediction from the line, then probabilistic methods will 
find fruitful application. 

3.7 Analysis in the light of the data 

An important strategical issue concerns the extent to which methods of 
analysis are to be settled in advance and the extent to which it is legitimate and 
desirable to modify the approach to final analysis in the light of preliminary 
analysis. 

Firstly, it is highly desirable in the planning stages of an investigation to 
consider at least in broad outline how the analysis is to proceed. Even further, 
it is normally wise to try to anticipate the main qualitative kinds of response 
pattern that might be observed, to check that the information for their proper 
interpretation will be available. In major investigations, especially ones in
volving collaboration between different centres and where the COI.)Clusions 
may be controversial, it is desirable to go still further and in advance to 
set out a scheme of analysis in some detail. This applies, for example, 
to some major clinical trials, and to large-scale international studies of cloud 
seeding. 

Yet, especially with complex data, it is quite unrealistic to suppose that the 
form of appropriate models and questions can be precisely settled in advance. 
Further, there is always the possibility that the data will show some entirely 
unanticipated features of considerable importance; to ignore such features 
just because they were not part of the scheme of analysis set out in advance 
would be foolish. Moreover, in initial investigations of fields about which 
little is known in advance, bodies of data may have to be analysed with not 
much idea to begin with of what aspects are likely to be interesting. 

For these reasons, preliminary analysis will often, although by no means 
always, be needed and the possibility of modification of analysis in the light of 
the data always kept open. 

In studies where the protocol sets out a detailed method of analysis, it is 
clear that the agreed method of analysis should always be carried through and 
reported. If the data show that analysis to be inappropriate, the reasons for 
this then need to be argued and the preferred analysis defended. 

In other cases, the effect of modifying analysis in the light of the data is 
different depending on whether the modification: 
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(i) affects only the secondary aspects of the model; 
(ii) changes the precise formulation of the primary aspects of the model, 

although leaving the central question unchanged; 
(iii) leads to a new focus of interest. 

For example, suppose that primary interest lies in the slope of a linear 
regression relation. Unexpectedly the data suggest that the relation, while 
linear, is such that the variance of response, Y, increases markedly with the 
explanatory variable, x. Ordinary least squares is therefore replaced by 
weighted least squares. So long as the change in variance is of no intrinsic 
interest, we have situation (i). Suppose now that in a similar situation it is 
found that linear regression of log Yon log x would give a better linear fit 
than Y on x. The qualitative question, namely the study of a monotonic 
relation between Y and x bas not changed, although its precise mathematical 
formulation has. This is situation (ii). In both cases it does not seem that any 
special adjustment to the final analysis is called for to allow for choice in the 
light of the data. 

Suppose, however, that in the first example the change in variance is of 
intrinsic interest and that in particular it is required to assess the significance of 
the change. A test of the null hypothesis that the variance is constant can be 
set up, but testing that hypothesis has been suggested by the magnitude of the 
departure observed in the data. It is clear that direct use of the ordinary 
significance level may overestimate the evidence in favour of the effect under 
study. The usual procedure is to introduce an adjustment for selection. This is 
approximately that if the effect studied is the largest of m effects that might 
have been chosen for study, the observed significance level is to be multiplied 
by m. This maintains at least approximately the physical interpretation of a 
significance level (see Section 4. 7) as the probability of a deviation as or more 
extreme than that observed arising by chance. In some cases the value of m may 
be unclear, although of course in extreme cases it may not be necessary to 
specify m with any precision. Thus possibility (iii) of those listed above is the 
one where allowance for adjustment of the analysis in the light of the data 
may be crucial. 

A conceptually different but formally rather similar situation would arise 
if for a null hypothesis specified in advance one were to apply several tests, e.g. 
parametric tests under rather different detailed assumptions and nonpara
metric tests of different kinds, and then to choose the test giving the most 
significant result. This is a poor approach, dishonest if what is done is con
cealed; if it were to be adopted, however, some adjustment for selection would 
again be essential. 

To summarize, the one case where special adjustment is needed for adopting 
an analysis chosen in the light of the data is where the statistical significance of 
an effect suggested by the data is at issue. The matter is not totally a technical 
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statistical issue. In some fields it may be feasible to take the line that effects 
whose study was not the original objective need an independent confirmatory 
investigation before their existence can be regarded as established. Indeed, in 
the long term this is a sensibly cautious approach, but in subjects where data 
take a long time to obtain some assessment of significance in the initial investi
gation, even if its interest is ultimately temporary, can still be valuable. 



Chapter 4 

4.1 Introduction 
' 

Some types of 
statistical procedure 

The objective of statistical analysis is to discover what conclusions can be 
drawn from data and to present these conclusions in as simple and lucid a form 
as is consistent with accuracy. As outlined in Section 1.4, there will typically 
be a number of phases to the analysis. Within the phases of preliminary and 
definitive analysis, technical devices of various kinds are quite commonly used, 
and these we now outline. 

Understanding of these ideas is achieved partly by experience with appli
cations and the following very brief account is meant as a general guide, to be 
read in conjunction with the applications in Part II, and with more systematic 
discussions. 

4.2 Formulation of models: generalities 

The more formal statistical procedures are based on a probability model for 
the data and we begin with some general comments on model formulation. 

The setting up of such a model for a particular application can be a crucial 
issue and, as with problems of mathematical formulation in general, it is hard 
to give more than general guidelines on how to proceed. It will be an advantage 
to use wherever reasonably possible a fairly standard model, or minor n;J.Odifi
cations thereof, so that methods of analysis, including appropriate computer 
programs, are readily available. 

Models are always to some extent tentative. This is obviously so in prelimin
ary analysis, but even in what is hoped to be a definitive analysis formal or 
informal checks on model adequacy are required. 

We have already in Section 2.3 (iv) outlined an important distinction 
between the primary aspects of a model, which in effect serve to define the 
problem under study, and the secondary aspects, which complete the speci
fication in sufficient detail to allow the calculations of the precision of the finaJ 
conclusions and, more broadly, which indicate appropriate methods of 
analysis. 

Very often another distinction can usefully be drawn, namely between the 
model for the systematic part of the variation and the model for the haphazard 

28 
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part. This distinction is not always clear cut, but the general idea will usually be 
fairly clear. Thus in Example 2.2 the systematic relation between a response 
variable Yt on the ith individual and an explanatory variable Xt is such that 

(4.1) 

where g is a known function and p is a vector of unknown parameters. 
In some applications the distribution of Yt may be determined by the mean, 

as for example in Poisson, binomial and exponential distributions. In other 
applications it may be possible to express Yt (i = 1, ... , 11) in terms of a set of 
independent and identically distributed random variable el> ••• , e11, say in an 
extended notation 

(4.2) 

For instance, we may have 

(4.3) 

where the et are independent and identically distributed random variables of 
zero mean. 

In these cases, modelling of the systematic and random components of the 
variables can be considered separately. Note, however, that if the shape of the 
distribution of Yt changed notably with the explanatory variable, such separ
ation of systematic and random components of the system might not be 
feasible. If the random variation represents 'error' rather than" 'natural' 
variation, the systematic part of the model describes the variation that would 
be observed 'l"ere error eliminated. 

The contrasts 'primary' versus 'secondary' and 'systematic' versus 'random' 
are logically quite separate. While it is quite conceivable that the primary 
aspects could include or consist of the random part of the model, this is in 
practice relatively rare. Where the effect of the explanatory variables can be 
entirely captured within the systematic part of the model, it is likely that the 
primary aspect of the model will be all or part of the systematic component. 

4.3 Formulation of models: systematic component 

It is clearly impracticable to give a comprehensive discussion of all the mathe
matical functions that might be used to describe systematic variation. Here we 
discuss briefly some of the considerations that enter into such a choice, con
centrating on the description of how the expected value of a response variabie, 
"1 = E( Y), depends on an explanatory variable x or more generally on several 
explanatory variables x1, ••• , Xp. 

Firstly it is often worth distinguishing cases in which the relation "1 = 'I)( X): 

(i) is adequately described by specifying, numerically or graphically, values 
of 7J for suitable chosen values of x, without fitting a mathematical formula. 
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Thus in Example B mathematical description of the smooth variation seems 
superfluous; 

(ii) is to be fitted by a mathematical formula which is to be used for inter
polation or numerical differentiation and integration, or for future prediction, 
but in which no detailed scientific interpretation is to be based on the 
precise form of equation to be used or on the parameters in the assumed 
relation; 

(iii) is to be fitted by a mathematical formula, the particular form being the 
basis of at least a qualitative interpretation, including often the use of particular 
parameters to describe concisely the difference between different similar sets 
of datfl. 

The second case is conceptually easier than the third. To an appreciable 
extent the particular mathematical form used is secondary in (ii) and the main 
matter for consideration is the extent of smoothing that is appropriate in 
fitting. Computational simplicity suggests fitting a model linear in unknown 
parameters, flexible families of such models being polynomials and Fourier 
series. Alternatively, empirical smoothing techniques not based on explicit 
formulae for 'rJ == TJ(x) can be used. If, however, some extrapolation is required, 
or if the data are rather poor in some parts of the x-range of interest, more 
attention to careful choice of a model may be wise and some of the following 
considerations become relevant. 

We now concentrate on (iii), where choice of an appropriate model is more 
critical. The following general points arise. 

' (a) If some limiting or boundary behaviour is known it will usually be wise 
to fit a model consistent with that behaviour, For example, suppose that when 
x = 0, E( Y) = 0, i.e. 'r/(0) = 0. Now if the data are obtained for values of x 
fairly remote from x = 0 it is entirely conceivable that the data are consistent 
with a straight-line relationship not through the origin. If, however, they are 
consistent also with TJ(X) = {J0xl11 ({31 > 0), the latter is to be preferred as being 
consistent with the boundary behaviour. Similarly, gently Cl.!rved data ob
served over a relatively narrow range may be consistent with a parabola, 
TJ(X) = {10+ {J1x+ {J2x2, but if general considerations suggest that TJ(X) tends to 
a limit as x -4 oo, some other function should be fitted for any but very re
stricted purposes. See also Example U on the analysis of survival times. 

(b) If t)lere is a theoretical treatment of the system under study, a model 
that establishes a link with that theory will be valuable. In a 'forward' approach 
we start from the theoretical model and amend it if and only if the data so· 
dictate. In a 'backward' approach we extend the theoretical model by adding 
additional parameters and recover the theoretical solution as one special case, 
if the data so allow. For example, if we started with the theoretical model 

(4.4) 
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we could add as additional terms polynomials in x, e.g. a term f13x. An alter
native and in some ways preferable possibility is to add terms in the partial 
derivatives of 71 with respect to the f3r, leading here to the model 

(4.5) 

Equation (4.5) has the advantage of being invariant under transformations, 
e.g. of x into log x. 

(c) Previous data may indicate an appropriate form at least for preliminary 
analysis. Consistency with previous data should wherever feasible be 
checked. 

(d) The ability to fit a range of similar data is of great importance in'model 
choice. It will usually be wise to aim to fit all the sets of data with the same form 
of model. For instance, if in a number of sets of similar data, some are ade
quately fitted by straight lines whereas others need to be fitted by parabolas, it 
will normally be sensible to fit all the sets of data by parabolas, unless some 
rational explanation can be found for the split into two kinds. 

(e) Low-degree polynomials can be valuable for interpretation as well as 
for fitting for interpolation. In particular, in a parabola 

(4.6) 

the parameter {3 2 gives an indication of the direction and amount ofeurvature; 
see Example F on the analysis of process effects in the presence of trend. A 
cubic is occasionally useful for indicating a point of inflexion, but higher
degree polynomials by and large are not very helpful for interpretation, 
partly because of the difficulties of interpreting the separate parameters. 

Tables 4.1 and 4.2 give a number of special relations useful in fitting system
atic relations. These may be used empirically, i.e. a choice of relation may be 
based solely on inspection of the data and on the adequacy of the fit. Alter
natively, a relation may be suggested by some considerations external to the 
data, for example by study of a deterministic or stochastic theory of the system. 
The linearized form of the relation, where it exists, is often useful both for 
initial fitting and for examining adequacy of fit. 

For problems with more than one explanatory variable, an alternative to the 
fitting of a relation to all explanatory variables simultaneously is to fit in 
stages. For instance, with two explanatory variables x1 and x 2, it may be pos
sible to divide the data into sets with exactly or nearly constant x 2 and then to 
fit a relation of the same form within each set for the variation with x1• Then 
the parameters, or rather their estimates, can be related to x 2 and hence a 
single model constructed. 

The above discussion is for quantitative explanatory variables. If the 
explanatory variables are qualitative, such as qualitatively 'different treat
ments, we have to describe how a suitable aspect of response, for instance a 
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Table 4.1. A few formulae useful in describing systematic variation: one explanatory variable 

1. Line through 
origin 

2. Line 

3. Second degree 
(parabola) 

4. General poly
nomial 

S. Powerlaw 

6. Power law (non
zero origin) 

'I= Px 

'I = PoXP, 
'I == p0(x- 8)P, 

7. Exponential decay 'I = Poe-P,a: 
or growth with 
zero asymptote 

8. Exponential decay 'I = p0e-P,a:+ Po 
or growth 

9. Mixture of 
exponentials 

(x > 8) 

10. Passage between p,eP,<a:-P,l 
two asymptotes 'I= Po+ l+eP,<z-P,l 

11. Modified exponen- 'I == Po exp(- p,xP,) (x ~ 0) 
tial decay or 
growth 

12. Periodic wave
length 2.,/ "'o 

Linearized form* 

log 'I = Yo+Y1 log x 
log 'I = Yo+ y1 log(x- 8) 

log 'I = Yo+ y,x 

• The linearizing transformations are stated for positive p•s and may need modifications of 
sign otherwise. The P's andy's are adjustable parameters, different for each case. The y's are 
functions of P's. All equations can be reparameterized. 

mean, varies between levels. With several different qualitative explanatory 
variables, it will be usual to employ the concepts of main effects and inter
actions to attempt to simplify the description; for balanced data, the elegant 
techniques of analysis of variance lead to systematic investigation of those 
interrelationships that can be studied from a given design. See Examples K 
and L. The same ideas can be applied very widely although their implementa
tion can be computationally difficult in situations where nonlinear methods of, 
analysis must be employed. 

For mixtures of qualitative and quantitative explanatory variables a choice 
between describing how the effect of the qualitative variables depends on the 
quantitative variables, or how the response pattern to the quantitative variables 
depends on the qualitative variables, will depend on the context. 
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Table 4.2. A few formulae useful in describing systematic variation: p explanatory variables 

1. Plane through 
origin 

2. Plane 

3. Second-degree 
surface 

4. General poly
nomial 

5. Powerlaw 

'1/ = flo+ fl,x, + ... + {lpXp 

'1/ = Po+ p,x, + ... + Ppxp 
+ Pux,• + ... + PPvXp9 

+2{310x1x 0+ ... +2flv-upXv-•Xv 

6. Power law (non- "1 == {30(x1-8Jfl, ... (x11 -8p)fl. 
zero origin) (x1 ~ 8, ... , Xp ~ 811) 

7. Exponential decay "1 == Po exp(- p,x,- ... - Pvxv) 
or growth in all 
variables, zero 
asymptote 

8. Exponential decay "1 == Po exp(,- P1x1 - ••• - Pvxv) 
or growth + PvH 

Linearized form 

log v == ro+r,log x, + ... 
+yp log Xp 

logv == Yo+Y• log(x,-ll,)+ ... 
+ Yv log(xv- 8p) 

log 'f/ == Yo+ y,x, + ... + ypXp 

log(TJ- PvH) = Yo+y,x, + ... 
+rvxv 

The arrangement and conventions are given in the footnote to Table 4.1. 

4.4 Formulation of models: random component 

The formulation of a suitable model for the random component of variability 
is much more a tet.:hnical statistical matter than is the discussion in Section 4.3 
of systematic variation. From a general point of view there are typically three 
broad matters to be considered: 

(i) what assumptions of independence are appropriate in setting up a 
model for the random variation; 

(ii) what formulation will lead to a type of error distribution as stable as 
possible over the whole data; 

(iii) what assumptions are appropriate about the form of the probability 
distribution of the random variation. 

Of these, (i) is frequently the most critical aspect. In a carefully designed 
experiment or sample survey, the structure of the randomization in the design 
will indicate the appropriate independence assumptions and a hierarchy of 
error structure may apply, to be investigated by careful use of analysis of 
variance, see Examples Q, R and S. In observational studies, however, the 
reasonable assumptions to make may be less clear. Frequently observations 
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taken close together in space or time, or by the same observer or on the same 
set of apparatus, are to be treated as positively correlated; see some of the 
discussion of the retrospective study, Example V. Common sources of mistake, 
very easily made unless the method of obtaining the data is quite clearly 
understood, are as follows: 

(a) to treat n observations as independent when in fact they consist of, say, 
r repeat observations on m individuals, rm = n; 

(b) to treat as independent repeat observations made by the same observer 
close together in time, the observer knowing that the observations 'ought' to 
be the ~arne; and 

(c) to ignore serial correlations in studies of a phenomenon varying in time. 

One characteristic of statistical studies should be a careful study of the 
structure of random variation. An uncritical assumption that random vari
ation is modelled by independent and identically distributed random variables 
is frequently naive, although of course sometimes justified. 

In connection with point (ii), the use of as stable a form of error distribution 
as possible, it will be central, especially if the random variation is the secon
dary aspect of the model, that random variables of essentially the same form 
are used for the whole data. Thus we might describe each stratum of error 
variation by normally distributed random variables of constant variance. In 
some contexts an error variance might be different in different sections of data, 
but a model in which quite different assumptions are made in different parts of 
the data should be avoided if feasible. See Example T on the comparison of 
failure rates. 

Over point (iii), the form of probability distribution to use, the nature of the 
problem may indicate one of the fairly standard distributions, normal, expo
nential, gamma, Poisson, binomial, and so on, as a reasonable starting point, 
possibly after transformation of the response. If distributional shape is of 
primary interest, attention will focus on a test of distributional form, possibly 
by comparison of a nonparametric estimate of distributional shape with the 
theoretical form, and possibly by the calculation of suitable test statistics for 
distributional shape. If distributional shape is a secondary aspect it will often 
be simple to begin with a special simplifying assumption and then later to 
consider whether that assumption has materially affected the conclusions. If 
very careful and cautious testing of significance is required, a nonparametric 
or distribution-free analysis may be sensible, usually assuming that the error 
variation is independent and identically distributed with unspecified form. ' 
Note that, of course, such an analysis does not avoid assumptions, especially 
ones of independence, about the random variation present. A further serious 
disadvantage of nonparametric methods, when error structure is a secondary 
aspect, is that the analysis of complex dependencies tends to be cumbersome. 
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4.5 Calculation of summarizing quantities 

It is often required to replace sets of data, e.g. groups of observations obtained 
on a particular batch of material, by one or more summarizing statistics 
describing aspects of the data, for instance, position, scatter, or trend. These 
summarizing statistics may be used: 

(i) as a final summary analysis, conclusions being'drawn by inspection of 
tables; 

(ii) as an intermediate stage in analysis, the final analysis being an examin
ation of how the summary statistics, or derived variables,· depend upon ex
planatory variables; 

(iii) as a basis for graphical analysis. 

We discuss graphical methods separately in a moment. 
Often summarizing statistics are chosen from purely descriptive consider

ations, as in the literary study, Example C, and in Example E. If, however, their 
choice is to be approached probabilistically, it can usually be regarded as a 
problem in point estimation. There is a particular component of the unknown 
parameter vector that is of interest. From the relevant data vector y we cal
culate a function t = t(y) intended to be as close to the parameter B of interest 
as possible. To the quantity t, often called a point estimate, there c~rresponds 
a random variable Thaving for each possible parameter value fl, a probability 
distribution with density, say /T(t;B). This distribution is usually called the 
sampling distribution ofT. It will in general depend on nuisance parameters, 
i.e. on,unknown parameters not of immediate interest in their own right. Its 
physical meaning is that it gives the hypothetical frequency distribution of the 
estimate t if repeat sets of data were obtained under the same conditions and t 
calculated from each set. We now want to choose a function t(y) such that 
/T(t;B) is as closely concentrated around Bas possible, whatever may be the 
true B. Once this is expressed more formally it is a mathematical problem to 
find a suitable t, subject of course to feasibility of computation. 

One very particular way of expressin'g the requirement is that we should 
insist that 

E(T) = B (4.7) 

and subject to this choose T so that 

var(T) = E(T- fl)2 (4.8) 

is a minimum. Estimates satisfying (4.7) are called unbiased. Estimates 
satisfying both Equations (4.7) and (4.8) are called mfnimum-variance 
unbiased. 
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4.6 Graphical analysis 

Graphical methods are important both in the preliminary analysis of data 
and in the final presentation of conclusions. There will be many illustrations 
in Part II and here we outline briefly a few general points, although it is 
difficult to give a systematic discussion. 

It is relatively easy to detect by eye systematic departure from linearity and, 
with a little training in necessary caution, to detect departure from a totally 
random plot. This suggests that we should arrange plots so that under 'ideal' 
conditions either a straight line or a random plot should result. The former 
is most relevant when the systematic part of the variation is the focus of 
attention and the latter when the random components, e.g. the residuals from 
a fitted linear model are under study; see, for instance, the regression analysis 
of Example G and the exponential plots in Example T. 

It is also an aid to interpretation, although not always achievable, to arrange 
that points have independent errors, preferably of equal and known standard 
errorsi this eases assessment of the reliability of the plot. Of course the non
linear transformations that may be necessary to induce approximately linear 
plots may be in conflict with these other requirements. Note, however, that 
it is usually unwise to adopt a nonlinear transformation to linearize a plot if 
thereby ranges of a variable of little interest are accentuated. For example, a 
transformation from survival time to log survival time would have the effect 
of accentuating the behaviour near zero survival time and contracting the 
part of the graph connected with long survival times and, depending entirely 
on the context, this might be undesirable; see again Example T. 

When graphical methods are used in preliminary analysis the precise form 
of arrangement used is not critically important. For the final presentation of 
conclusions, however, careful attention to format is desirable and the 
following guidelines are suggested: 

(i) axes should be clearly labelled with the names of the variables and the 
units of measurement; 

(ii) scale breaks should always be used for 'false' origins; 
(iii) comparison of related diagrams should be helped, for example by 

using identical scales for plotting and by placing related diagrams on the same 
or facing pages; 

(iv) scales should be arranged so that systematic and approximately linear 
relations are plotted at roughly 45° to the coordinate axes; 

(v) legends should make diagrams as nearly self-explanatory, i.e. independ
ent of the text, as is feasible; 

(vi) interpretation should not be prejudiced by the technique of presenta
tion, for example by superimposing thick black smooth curves on largely 
random scatters of faint points; 
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(vii) too much information should not be put in one graph, either by 
putting too many points or by supplying unduly extensive supplementary 
information. 

To some extent the choice between graphical and tabular display is a 
matter of taste. Graphical methods are on the whole the more suitable for 
showing broad qualitative features. Tabular methods are definitely to be pre
ferred in presenting conclusions whenever it is possible that some further 
analysis may be made later, partly on the basis of the summary values being 
reported. Points (i), (iii), (v) and (vii) given above for graphical methods have 
fairly direct analogues for tabular presentation of conclusions and are there 
equally important. · 

4. 7 Significance tests 

We now turn to those types of analysis where the probability element is more 
central; the objective is to assess the uncertainty in the conclusions. Of course 
in some cases the important conclusions may be quite clear cut once the 
right approach to analysis is found. Thus with very extensive data; compari
son of analyses of separate sections of data may be enough to ,establish the 
reliability of the general conclusions. We now, however, concentrate on the 
more formal assessment of uncertainty. 

A widely used device for this is the significance test. We assume that the 
reader is familiar with the general argument involved: consistency with a 
null hypothesis H0 is examined by calculating a P-value, the chance under 
the null hypothesis of obtaining a deviation as or more extreme than that 
observed. 

There follow some miscellaneous comments on this procedure; these are 
best understood as experience of applications is gained. 

(i) In practice it is rarely necessary to find P at all precisely. Often we can 
make a rough translation as follows: 

P > 0.1, reasonable consistency with H0 ; 

P "" 0.05, moderate 'evidence against H0 ; 

P ::;; 0.01, strong evidence against H0• 

In reporting conclusions, the achieved P should, however, be given approxi
mately. Note these remarks refer to a single test. The problem of combining 
information from several sets of data will be discussed later. 

If P ::;; 0.05, we say that the departure from H0 is (statistically) significant 
at the 5 per cent level, etc. 

(ii) A verbal definition of P is that it is the chance of getting a departure 
from H 0 as or more extreme than that observed, the chance being calculated 
assuming H0 to be true. It may clarify this to give a more direct hypothetical 
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physical interpretation to P. Suppose that we accepted the data under 
analysis as just convincing evidence against H0• Then we would have to accept 
also more extreme sets of data as such evidence. Thus P is the long-run 
proportion of times in which we would falsely reject H 0 when it is in fact 
true, if we were to accept the data under analysis as just decisive against H 0• 

We stress that this is usually entirely hypothetical, one exception being the 
monitoring of routine testing. 

(iii) The null hypothesis to be tested may arise in a number of ways. Some
times it is a hypothesis thought quite conceivably to be true or very nearly so. 
For example, the null hypothesis might assert the absence of extra-sensory 
perception, the independence of certain genetic effects, the consistency of 
data with some physical theory, etc. A second kind of null hypothesis is con
sidered not because it is in any way especially likely to be true, but because 
it divides the range of possibilities into two qualitatively different types. 
Thus a parameter 8 may measure the difference between the mean yields of 
two alternative industrial processes. There may be no reason for thinking 
that 8 = 0, i.e. that the mean yields are the same, but the hypothesis that 
8 = 0 may be of Interest in that it divides the situations in which the first 
process has the higher mean yield from those in which it has the lower. So 
long as the data are reasonably consistent with H 0 the direction of the differ
ence between the mean yields is not clearly established. In technological 
applications this second kind of null hypothesis is the more common. 

One important use of significance tests is in the preliminary phase of an 
analysis as a guide to choice of models. It is useful there to distinguish between 
null hypotheses asserting simple primary structure, i.e. those that concern 
the primary aspects of the model, and null hypotheses asserting simple 
secondary structure, i.e. those that concern the secondary aspects of the 
model. As a simple example, suppose that it is hoped to interpret some data 
in the light of a linear regression relation between a response variable y and 
an explanatory variable x, particular interest focusing on the slope f3 of this 
relation. The null hypothesis that the regression is indeed linear is a hypo
thesis of simple primary structure: if evidence against the null hypothesis is 
found, the basis for the interpretation will be changed and different questions 
asked. By contrast, the null hypothesis of normality and constancy of variance 
would then be a hypothesis of siinple secondary structure: evidence against 
the hypothesis would not change the objective of the analysis, although it 
might affect; c~nceivably to a major extent, the precise techniques of analysis 
to be used. 

(iv) In order to develop a test, some knowledge of the ldnd of departure 
from H 0 of interest is essential. All sets of data will be exceptional in some 
respects. If several different kinds of departure are of interest, several tests 
applied and the most significant taken, it is essential to make an allowance for 
selection; see Section 3. 7. 
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(v) A significance test is not directly concerned with the magnitude of any 
departure from H 0• It measures only consistency with the null hypothesis. 
The data may be consistent with the null hypothesis and at the same time be 
consistent with situations radically different in their practical implications. 
Thus in comparing the mean yields of two processes with limited data, the 
data might be consistent with zero difference, a large positive difference or a 
large negative difference between the two processes. On the other hand, 
sometimes a highly significant departure from H 0 may be of such small 
magnitude as to be for most purposes of little practical importance. For 
example, evidence against the inverse square law of gravitation was highly 
significant from data available from Newton's time onwards, i.e. tl,lere was 
strong evidence of some departure from the law. Yet the· magnitude of the 
departure was so small that for most purposes the law was and is entirely 
adequate. 

(vi) It should be clear from the above discussion that a significance test is 
not a procedure for deciding, say, which of two industrial processes should 
be recommended for use. This must depend on what other evidence is avail
able and on economic considerations. All the significance test can do is to 
assess whether the data under analysis provide reasonably decisive ·evidence 
concerning the direction of any difference. 

(vii) To summarize, significance tests have a valuable but limited role to 
play in the analysis of data. Rarely is a significance test the OJ11Y analysis 
required. Nearly always we need also some idea of the magnitude of any 
departure from the null hypothesis that may be present. 

The most widespread use of significance tests is in fields where random 
variation is substantial and where there is appreciable danger of premature 
claims that effects and relationships have been established from limited data. 
Significance tests play a valuable part in limiting such claims. Nevertheless, 
it is important that this rather negative role does not inhibit general judge
ment and initiative. This is one reason why estimation of effects is usually 
desirable as well as significance testing. Significance tests are concerned with 
questions like 'is such and such an effect reasonably firmly established by 
these data', and not with the question 'might there be something here well 
worth further study'. 

4.8 Interval estimation 

Suppose now that we are interested in some component parameter () in a 
model. In some cases it will be enough to obtain a good point estimate of () 
without considering explicitly the precision of the estimate. Now, however, we 
consider what is to be done when explicit calculation of precision is required. 

A simple example related to the one above concerns data (y1, ••• , Yn) 
represented by a model according to which the random variables Y1, ••• , }'j, 
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are independently normally distributed with unknown mean I" and known 
variance a02• A point estimate, such as the sample mean ji = "Zy;fn, gives a 
value likely to be close to the unknown parameter I"· If we want to show the 
precision of the estimate it is natural to try to calculate intervals likely to 
contain the unknown I"· 

Quite generally, with an unknown parameter (} in a specified model, a 
quantity t" = t"(y) is called an upper 1-a: confidence limit for(} if, whatever 
the true value of (}, 

pr{(J ~ T" = t"(Y)} = 1-a:. (4.9) 

That is, the confidence limit is calculated by a procedure giving an upper 
limit that would be wrong only in a proportion a: of trials in hypothetical 
repetitions. 

We can define lower confidence limits in a similar way. Very often it is 
convenient to specify the uncertainty in the parameter by giving for a few 
values of a: a 1-ia: upper limit and a 1-ta: lower limit, thereby forming a 
so-called 1-a: equi-tailed confidence interval. This is an interval of values 
calculated from the data in sueh a way that only in a proportion to: of hypo
thetical repetitions will it lie below the calculated lower limit, and similarly 
for the upper limit. 

In the special case of the normal distribution mentioned above, the 1-a: 
confidence interval using the mean of the data is 

(4.10) 

where ell( -let,) = to:, ell(.) denoting the standardized normal integral. 
No attempt will be made here to cover the full theory of confidence

interval estimation. The following general points need watching in working 
with the various special cases which we shall encounter later. 

(i) There is a close formal relation between confidence intervals and 
significance tests. We can look on a 1- a: confidence interval as,. the collection 
of possible parameter values that would not be judged inconsistent with the 
data at level a: in a two-sided significance test. 

(ii) Very often the confidence intervals are at least approximately sym
metrical about some estimate t and the limits at various levels correspond to 
a normal distribution of standard deviation at. Then it is convenient to say 
that (} is estimated by t with a standard error at. This is to be rega~ded as a 
simple, concise way of describing a collection of confidence intervals at ' 
various levels. Occasionally, other concise descriptions are useful. Note that 
transformation of the parameter may help in this description by making the 
confidence limits more nearly symmetrical and more nearly described by 
Equation (4.10). 
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(iii) Very occasionally it is misleading to give an interval of values because, 
for example, two disjoint intervals of values may well be consistent with the 
data, the intermediate values being inconsistent. Then a generalized idea, 
namely of confidence regions, is called for. 

(iv) If there are several ways of calculating intervals with the right proba
bility of covering the true value, theoretical arguments are normally used to 
find which method produces the most sensitive analysis, in the sense of con
fidence intervals that are as selective as possible. Of course other considera
tions such as ease of computation and insensitivity to secondary assumptions 
in the model also enter. 

(v) When, as is usually the case, there are nuisance parameters pre~ent, it 
is important that the probability that the random interval· covers the true 
value should be at the required level, at least approximately, whatever may 
be the true value of the nuisance parameter. 

(vi) The physical meaning of the confidence interval is given by the pro
perties of the interval in hypothetical repetitions. The distinction between a 
confidence interval and a probability statement is fairly subtle and for some 
purposes unimportant. 

(vii) Occasionally we work with intervals for future observations from the 
same random system. Prediction intervals can be defined in virtually the 
same way as for confidence intervals. 

4.9 Decision procedures 

The idea of statistical analysis as a tool for decision making in the face of 
uncertainty is important. It is nearly always fruitful to consider: 

I 

(i) What is the precise objective of the analysis? 
(ii) What are the possible courses of action open? 
(iii) What are the consequences of taking the 'wrong' decision? 
(iv) What relevant evidence is available in addition to the data under 

analysis? 

Where these aspects can be precisely formulated, and (iii) and (iv) specified 
quantitatively, a formula specifying the optimum decision corresponding to 
the data can be obtained. While there are important applications of quantita
tive decision theory (for example in control theory and industrial acceptance 
sampling), most statistical analyses are concerned rather with assessing the 
information in data and describing the conclusions which it is reasonable to 
draw. For this reason we shall not put much emphasis on procedures ex
plicitly for decision making, although the broad points (i)-(iv) above are of 
wide qualitative importance, particularly in giving sharp focus to the analysis; 
see Examples D and S concerned with proportions of observations outside 
tolerance limits. 
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4.10 Examination of the adequacy of models 

The conclusions drawn from a probabilistically based analysis will typically 
be phrased in terms of the parameters of one (or more) models, these models 
being provisionally treated as correct. Checking on the adequacy of the 
model is important not only in the definitive stage of the analysis, but more 
particularly in the preliminary phase when we are aiming to develop an 
appropriate model. There are broadly five ways of examining the adequacy 
of a model, although some of these ways are quite closely related. They are: 

(i) the calculation of discrepancies between observed values of key re
sponses and values fitted from the model. These discrepancies, usually called 
residuals, can be calculated so that if the model is adequate, the residuals 
should be very nearly completely random. As in the regression problem of 
Example G, plots of the residuals looldng for systematic structure give a 
graphical test of the model; 

(ii) we may proceed as in (i), but inspect a table of observed and fitted 
values and residuals to see whether the nature of the discrepancies gives a 
clue as to model inadequacy. ·Observed and fitted frequencies are compared 
in Examples W and X; 

(iii) an overall test statistic may be calculated measuring the discrepancy 
between observed and fitted values and, assuming that its distribution, under 
the null hypothesis that the model is adequate, can be found, a test of signi
ficance results. See, for instance, Example P; 

(iv) the model may, as in Example T, be expanded by the insertion of one 
or more additional parameters representing departures thought of potential 
interest, these extra parameters estimated and their magnitude and the 
statistical significance of the departures assessed. This is essentially equivalent 
to examining particular aspects of the residual configuration; 

(v) a quite different kind of model can be fitted and the adequacy of fit of 
the two models compared in some way. 

Method (iv) is to be preferred when there is some fairly clear notion of 
important types of departure from the model likely to arise, whereas methods 
(i)-(iii) are of more use for suggesting previously unanticipated features. 

4.11 Pa.rameters and parameterization 

We now comment oh the role of parameters in probability models and 
probabilistic statistical analysis. Some of these points belong to Chapter 3 on 
strategical issues, but ,they have been postponed to here because of their 
rather more technical character. 

The physical interpretation of a parameter is sometimes as giving a 
property of a well-defined population of individuals, but more commonly as . 
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giving a property of a hypothetical system obtained by repetition under 
similar conditions. As such, parameters, at least those of primary interest, 
are intended io represent in idealized form important properties of the system 
under investigation. Sometimes, however, as explained in Section 2.3 (ii), the 
parameters are of main interest as an intermediate step in the prediction of 
future observations from the same or related random system. 

Use of parameters in this way seems essential if relatively complex data are 
to be described concisely, if comparisons are to be made conveniently 
between a considerable number of sets of similar data and if sensitive 
probabilistically based comparisons are to be made. 

Suppose, for example, that we have a fairly large set of data on a response 
variable y measured, say, for two different treatments and that ·no explanatory 
variables, other than treatment, are available. It will then be sensible to 
estimate, e.g. by a histogram, the frequency distribution of the y in each 
treatment group and/or to give the corresponding cumulative frequency 

. curves. This might well be the simplest and best way of presenting the data. 
Confidence bands and other indicators of precision could if required be 

' calculated. But if: -

(i) there are many such sets of data, comparing the same two treatments 
under rather different conditions; or 

(ii) there are other explanatory variables to be considered simultaneously; or 
(iii) great interest attaches to the comparison of the location of the"two dis

tributions and to assessing the precision with which this comparison can be 
made; 

then it will normally be good to introduce a parametric formulation. Thus in 
(i) there would be at least one parameter for each set of data defining the 
difference between treatments; some interest would probably attach to the 
null hypothesis that these parameters are the same for all sets of data, and if 
evidence against this is obtained there may be need for a second stage of 
modelling in attempting to explain how the differences vary between data sets. 
In (iii) again we may introduce a parameter for the difference in location, and 
perhaps other parameters for other aspects of the comparison, and consider 
the efficient estimation with confidence limits of that difference parameter; see 
Example F. 

This is broadly the reason why parametric representation of the primary 
aspects of the problem will often be desirable. Parametric representation of the 
secondary aspects of the problem is a rather different issue. 

In the above example, if previous experience and inspection of the data 
suggest it to be reasonable, it would often be very convenient and sensible to 
make the secondary assumption that the random variation is normally dis
tributed, perhaps even with constant variance. Of course, in parti"cular contexts 
special parametric distributions other than the normal might be called for; 
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an exponential distribution is taken in Example U. It would be important that 
the assumption say of normality, was not strongly contradicted by the data 
(Example P) and that the conclusions did not depend critically on the assump
tion of normality; in fact, provided due care is taken in checking for the in
fluence of isolated extreme observations, the assumption of normality, possibly 
after transformation of the responses, will quite often in practice be an ex
tremely convenient simplifying fiction. Of course, if attention is focused on the 
tails of the distribution, e.g. on the chance oflong survival in a medical context, 
the assumption of a parametric distributional form may have to be looked at 
very critically. 

If it has been decided to represent some features of a system by unknown 
parameters in a parametric model, there remains the choice of the particular 
mathematical form for the parameters concerned. As a simple example, the 
equation of simple linear regression, 

(4.11) 

can be written in the alternative forms 

(4.12) 
and 

(4.13) 

here x = L.xtfn, so that whereas {30 is the value of E( Y) at x = 0, y0 is the value 
of E( Y) at x =· x, the data mean, and 80 is the value of x for which E( Y) = 0. 
Now the relations (4.11)-(4.13) are exactly equivalent; with the proviso that 
the slope is nonzero, we can pass from any one form to any other by an ap
propriate transformation of parameter values, e.g. 

(4.14) 

Provided that the parameters are allowed to take arbitrary real values, the 
models are mathematically equivalent. We call the passage from one form to 
another reparameterization: infinitely many such changes o~form are always 
possible. 

Note that discussion of choice of parameterization presupposes that we 
have chosen a model. How is a parameterization to be chosen? There are a 
number of considerations, sometimes conflicting: when there is a serious 
conflict it may be necessary to use, for example, different parameterizations in 
carrying 'out the analysis and in presenting the conclusions. 

There are broadly four things to.aim for: 

(i) physical interpretability of the individual component parameters; 
(ii) stability of the parameter values over different similar systems; 
(iii) simplicity of discussions of errors of estimation; 
(iv) numerical-imalytical stability of the estimation procedure. 
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The two prime considerations for the final interpretation are (i) and (ii). 
Often the slope is of main concern and then there is nothing to choose between 
Equations (4.11) and (4.12). But specific subject-matter considerations may 
indicate, for instance, that 80 is of special interest and that Equation (4.13) is 
the appropriate form. Alternatively, analysis of a large number of sets of data 
might show that, although they had different slopes and values of y0, all had the 
same intercept {30 atx = 0 and that therefore Equation ( 4.11) is a valuable form. 

Consideration (iii), the assessment of precision, points toward Equations 
(4.11) and (4.12), and especially to (4.12), where errors of estimation in 'Yo and 
y1 are independent. While numerical stability is not often critical in calculations 
as simple as that for fitting a straight line, problems would be encounte.red if 
model (4.11) were fitted directly when the origin is remote from the region of 
values of x covered by the data. The model in the form (4.12) would raise no 
such problems. The general moral is that both for obtaining estimates with 
errors having simple properties, and for reasons of numerical stability, fitting 
of models with approximately orthogonalized parameters is advantageous. 
The details of fitting are thus best carried out in that form, but, as stressed 
above, the more basic pointS' of interpretation (i) and (ii) may dictate trans
formation of the results to a reparameterized form. Examples F and 1 both 
illustrate the advantages of careful parameterization in handling linear models. 

There are further general points about model choice and parameter for
mulation that apply when a number of similar sets of data are under. analysis. 
As stressed in (ii) above, it will be an advantage to find a parameterization in 
which as many component parameters as possible are effectively constant over 
data sets. Consider now a parameter of interest for which this is not possible: 
suppose, to be specific, that with a number of straight-line relationships the 
slope varies between data sets in an important way. The first objective, which 
may not be achievable, is to find a representation in which the variation be
tween se"ts of data has been 'removed' or 'explained'. Possibilities include the 
following: 

(a) it may be that transformation, e.g. to consideration oflogy versus log x, 
will lead to effectively linear relations of constant slope; 

(b) it is possible that, if the ranges of the explanatory variable are different 
in different data sets, that the different straight lines are really all par( of a 
single nonlinear function'; 

(c) it may be that there is a further explanatory variable z associated with 
each whole data set, that will 'explain' the variation in slope, e.g. by a represen-
tation · 

f3lj = cp+ r/J(Zj-Z), 

where f3li is the slope in thejth data set; 
(d) it may be that the slopes can be divided into two or more sets, in a 

rational way, such that slope is constant in each set; 
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(e) a final possibility if (a)-(d) seem inapplicable is to suppose that the 
variation between sets of data is random; one might suppose that the true 
slopes vary between data sets in a normal distribution with unknown mean and 
variance. 

All these possibilities are in effect devices for avoiding models with large 
numbers of parameters. Of these (e) is conceptually the least satisfactory, 
because it provides merely a description of the fact that slope varies in an 
unpredictable way; the other approaches (a)-(d) explain or predict the slope to 
be achieved in specified circumstances. We repeat that these considerations are 
relevant only when the variation in slope is judged important. 

4.12 Transformations 

Although in principle each major new statistical analysis deserves formulation 
from first principles, there are obvious arguments of computational economy 
and standardization of presentation in using wherever reasonably possible a 
standard model for which the techniques of analysis are readily available and 
well understood. In particular the normal-theory linear model, Example 2.3, 
has many attractions. Often, moreover, the analysis of complex sets of data can 
be pieced together by combining a number of relatively standard analyses in 
sections. 

One powerful method for extending the range of applicability of standard 
methods is transformation, i.e. the taking oflogs, powers and other nonlinear 
functions. This can be done in three distinct ways, namely by: 

(i) a nonlinear transformation of an effectively continuous response variable 
to a new form; 

(ii) a nonlinear transformation of the parameter, usually an expected value, 
in a representation of systematic variation; 

(iii) a nonlinear transformation of an explanatory variable. 

In (i) we might assume that some transformed form of the response variable 
satisfies a normal-theory linear model; see Example J, where taldng logs is 
crucial, and Example G, where taking logs seems desirable. In determining a 
transformation we aim at achieving a simple linear structure, at achieving con
stant variance and at achieving normal distributions. In case of conflict 
between these aims, attention should be concentrated on the primary aspect of 
the model, usually, but not necessarily, the simplicity of the systematic struc-, 
ture. Choice of transformation is very often based on previous experience and 
preliminary analysis, but more systematic procedures are available by regard
ing a transformation parameter as one to be estimated. 

In (ii) the nonlinear transformation is applied not to the response but to a 
parameter, usually the mean, ofits distribution. Thus in·analysing binary data, 
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the expected response is the probability of'success', and an important family of 
models is obtained by supposing that 

1 {pr (success)} 
og pr (failure) 

obeys a linear model; see Examples V, Wand X. 
The distinction between (i) and (ii) is' illustrated in the context of normal 

theory by supposing that: 

(a) some function g( Y1) of the response Yt, e.g. g( Yt) = log Y1, is normally 
distributed with constant variance, and with mean having some simple 
structure in terms of the explanatory variables; 

(b) Yt is normally distributed with constant variance and that some function 
g{E( Yt)} of its mean, e.g. log E( Yt), has simple structure in terms of the ex
planatory variables. 

In this particular context, (a) is the procedure almost always used. 
Linear transformations of response and explanatory variables, i.e. the use of 

a new origin and unit of measurement, will usually bring about no essential 
change in the model and its interpretation, but such changes may often be 
desirable for numerical analytical reasons, to avoid rounding errors. With 
a considerable number of explanatory variables it will be a wise precaution to 
scale them to have in the data approximately zero mean and unit standard devi
ation. This is for computation; for interpretation one would normally return to 
the original units. 

4.13 Interaction 

Finally we discuss some qualitative aspects of the important concept of inter
action and more specifically the notion of absence ofinteraction. These aspects 
concern the systematic relation between a response variable and two or more 
explanatory variables and are best discussed by considering idealized situations 
in which random variation is absent. 

Suppose initially that there are two explanatory variables, x1 and x 2• The 
discussion and interpretation are rather different depending on whether these 
are: 

(i) variables representing treatments; or 
(ii) variables representing intrinsic properties of the individuals; 

and 
(a) take a continuous range of variables; or 
(b) take a number of qualitatively different values. 

Absence of interaction between x1 and x 3 means that the true response 
71(x1, x 2) is such that the difference of11 between any two levels of x 2 is the same 
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Fig. 4.1. Response to two factors x1, x,. (a) No interaction; (b) interaction 

for all levels of x1• If, say, x1 is continuous this means that if 7J is plotted against 
x1 for fixed x 2, the resulting curves are parallel for different levels of x 2 ; see 
Fig. 4.1. If both x1 and x 2 are quantitative, the curves are parallel also when 
plotted against x 2 for fixed x1• Note that if one variable is a treatment and the 
other an intrinsic property, we would normally plot against the former 
for various levels of the latter. Mathematically the requirement is that 
7J(X1, x 2) = 7}1(x1) +7J 2(x2). If the levels are qualitative, absence of interaction is 
exemplified by the artificial data of Table 4.3, in which the difference between 
two rows is the same for all columns and the difference between two columns 
the same for all rows. 

Interaction is any departure from this condition: of course with random 
variation no set of data can be expected to accord exactly with the structure of 
Table 4.3 and we are normally interested mainly in departures from the simple 
no-interaction structure too large to be reasonably accounted for by chance. 

There are two rather different reasons why absence of interaction is impor
tant. First, if both x1 and x 2 represent treatments, the discussion cftheir effects 
is simplified; in fact in Table 4.3 the marginal means specify the changes in 
response as we change the levels of one variable holding the other fixed, and if 

r 

Table 4.3. Fictitious example of absence of inter-
action for two qualitative variables. Values are 
responses TJ in absence of random variation 

Level of x, Level of x1 

2 3 4 Mean 

I 8 10 6 12 9 
2 10 12 8 14 11 
3 3 5 1 7 4 

Mean 7 9 5 11 
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we change both variables the separate effects are additive. There is sometimes 
also a reasonable implication that because the effects of the two treatment 
variables add, their effects are in some sense physically independent. 

If, however, x1, say, represents a treatment and x 2 an intrinsic property ofthe 
individuals, absence ofinteraction has a slightly different implication. The effect 
of changing levels of treatment does not depend on x 2 and this means that, 
for some purposes at least, x 2 can be disregarded. This both simplifies inter
pretation and strengthens the base for extrapolation to new individuals. In a 
sense, absence of appreciable interaction is a key element in rational extra
polation. Thus, suppose that there are two levels of x1 representing two alter
native medical or industrial treatments and that a limited number of lev.els of 
x 2 have been investigated. If there is no interaction, i.e. if the treatment differ
ence is always the same, there is some hope that the same difference 
will apply to individuals with new values of x 2• On the other hand, if there 
is appreciable interaction, and especially if different treatments are preferable 
at different levels of x 2, extrapolation of any ldnd may be hard and in any case 

, interpretation is considerably more complicated. Thus investigation for pos
sible interactions in such contexts can be very important. 

If interaction is present, it must be described, and if possible interpreted, in 
as simple a fashion as seems possible. Inspection of graphs like Fig. 4.1 or 
tables like Table 4.3 will normally be an essential first step. It would involve 
too much detail to develop fully ways of describing interaction. Atnong the 
more important possibilities are the following: 

(i) to transform from 7J to some function such asy7], log 7], 7]-1, etc., chosen 
so that on the transformed scale there is no interaction. Note, for example, 
that had we started in Table 4.3 with squares of the values given there, inter
action would have been present. This interaction could then have been 're
moved' by taking square roots. We might then carry out the whole interpreta
tion on the new scale, although in some circumstances, as when the original 
scale is extensive, transformation back to the original scale may be desirable at 
the end. Of course, only rather special patterns of interaction can be removed 
in this way; 

(ii) when x1 and x 2 are both quantitative, to build up a fairly simple 
mathematical form for the function 7J(X1, x 2); , 

(iii) especially if x1 and x 2 take qualitatively different levels, to recognize 
individual cells (i.e. combinations of x1 and x 2), or individual values of x1 or. of 
x 2 which depart from a general pattern of no interaction. An extreme exainp1e 
of the first possibility is that all combinations of x1 and x 2, except one, give the 
same response. The situation is then most aptly described by specifying the 
unique combination and the two levels of response. 

We have above sketched two rather different interpretations of interaction, 
the second indicating whether a treatment effect is independent of an intrinsic 
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variable. There is a third possible use of interaction. Suppose that the levels of 
the factor x 2 correspond to an aspect which varies in an unstructured and 
largely haphazard way; for example, the levels may correspond to different 
sets of apparatus, different observers, different unidentified batches of experi
mental material, etc. Then interaction of treatment effect with x 2 that cannot 
be removed by transformation is in some sense random variation and the 
magnitude of such interaction may provide some basis for assessing the pre
cision of the estimated treatment effect. In particular, in terms of the tech
niques of analysis of variance an interaction mean square may under such 
circumstances be used in the estimation of the error of treatment contrasts. 

The previous discussion has been for two explanatory variables, where in 
fact very simple techniques of fitting and display are often adequate. 

With more than two explanatory variables the notion of interaction becomes 
more complicated but in a sense more useful. With three explanatory variables, 
we consider two-factor interactions x 2 x x 3, x 3 x xl> x1 x x 2, the last, for 
example, being defined by averaging response over a fixed set of levels of x3 

to form a table such as Table 4.3. Similarly a three-factor interaction can be 
formed that in effect measures how much the pattern of a two-factor inter
action shifts from one level to another of the third factor. The highly developed 
technique of analysis of variance allows the relatively straightforward com
putation of sums of squares of deviations associated with interactions. 

For interpretation, broadly the same points apply as for two factors. 
Absence of interaction between treatments allows simple description and 
interpretation via the marginal averages; presence of interaction always calls 
for more detailed interpretation. Absence of interaction between treatments 
and intrinsic variables means that treatment effects can be studied regardless of 
the value of the intrinsic variable. Sometimes interactions can be used to esti
mate the magnitude of the random variation present. Several of the examples 
in Part II concerned with factorial experiments illustrate these points. In 
particular, see Examples J and 0 for interpretation without interactions; 
Examples L, R and W illustrate the presence of interaction. 
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Example A Admissions to 
intensive care unit 

Description of data. Table A. I gives arrival times of patients at an intensive 
care unit. The data were collected by Dr A. Barr, Oxford Regional Hospital 
Board. Interest lies in any systematic variations in arrival rate, especially any 
that might be relevant in planning future administration. · 

General considerations. These data represent point events occurring in time. 
A very simple model for comparison with such data is the completely random 
series or Poisson process. In this events occur (i.e. patients arrive) independ-
ently, the chance that an event occurs in a short period of length h being ph, 
where p is a single parameter, the arrival rate. Occurrences in different time 

Table A.l. Arrival times of patients at intensive care units. (To be read down the columns.) 

1963 1963 1963 1963 

M 4 Feb. 11.00 hr s 6 Apr. 22.05 hr w 5 June 22.30 br T 23 Jyly 21.45 hr 
17.00 T 9 Apr. 12.45 M 10 June 12.30 W 24July 21.30 

F 8 Feb. 23.15 19.30 13.15 s 27 July 0.45 
M II Feb. 10.00 W 10 Apr. 18.45 W 12 June 17.30 2.30 
s 16 Feb. 12.00 Th 11 Apr. 16.15 Th 13 June 11.20 M 29 July 15.30 
M 18 Feb. 8.45 M 15 Apr. 16.00 17.30 Th I Aug. 21.00 

16.00 T 16 Apr. 20.30 Su 16 June 23.00 F 2 Aug. 8.45 
w 20 Feb. 10.00 T 23 Apr. 23.40 T 18 June 10.55 s 3 Aug. 14.30 

15.30 Su 28 Apr. 20.20 13.30 17.00 
Th 21 Feb. 20.20 M 29 Apr. 18.45 F 21 June 11.00 w 7 Aug. 3.30 
M 25 Feb. , 4.00 s 4 May 16.30 18.30 15.45 

12.00 M 6 May 22.00 s 22 June 11.05 17.30 
Th 28 Fob. 2.20 T 7 May 8.45 M 24 June 4.00 Su 11 Aug. 14.00 
F I Mar. 12.00 s 11 May 19.15 7.30 T 13 Aug. 2.00 
Su 3 Mar. 5.30 M 13 May 15.30 Tu 25 June 20.00 11.30 
Th 7 Mar. 7.30 T 14 May 12.00 21.30 17.30 

12.00 18.15 W 26 June 6.30 M 19 Aug. 17.10 
s 9 Mar. 16.00 Tb 16 May 14.00 Th 27 June 17.30 W 21 Aug. 21.20 
F 15 Mar. 16.00 s 18 May 13.00 s 29 June 20.45 s 24 Aug. 3.00 
s 16 Mar. 1.30 Su 19 May 23.00 Su 30 June 22.00 s 31 Aug. p.30 
Su 17 Mar. 11.05 M 20 May 19.15 T 2July 20.15 M 2 Sept. 23.00 
w 20 Mar. 16.00 W 22 May 22.00 21.00 Th 5 Sept. 20.10 
F 22 Mar. 19.00 Th 23 May 10.15 M 8July 17.30 s 7 Sept. 23.15 
Su 24 Mar. 17.45 12.30 T 9July 19.50 Su 8 Sept. 20.00 

20.20 F 24 May 18.15 W 10 July 2.00 T 10 Sept. 16.00 
21.00 s 25 May 21.05 F 12 July 1.45 18.30 

Th 28 Mar. 12.00 T 28 May 21.00 s 13 July 3.40 W 1l Sept. 21.00 
12.00 Th 30 May 0.30 4.15 F 13 Sept. 21.10 

s 30 Mar. ·18.00 s 1 June 1.45 23.55 Su 15 Sept. 17.00 
T 2 Apr. 22.00 12.20 s 20 July 3.15 M 16 Sept. 13.25 

22.00 M 3 June 14.45 Su 21 July 19.00 W 18 Sept. 15.05 
(colll/llued 011 p. 54) 

53 



54 Applied statistics 

1963 1963 1963-64 1964 

s 21 Sept. 14.10 hr T 12 Nov. 7.45 hr Su 15 Dec. 1.15 hr s 25 Jan. 13.55 hr 
M 23 Sept. 19.15 F 15 Nov. 15.20 M 16 Dec. 1.45 W 29 Jan. 21.00 
T 24 Sept. 14.05·1 18.40 T 17 Dec. 18.00 Th 30 Jan. 7.45 

22.40 19.50 F 20 Dec. 14.15 F 31 Jan. 22.30 
F 27 Sept. 9.30 s 16 Nov. 23.55 15.15 w 5 Feb. 16.40 
s 28 Sept. 17.30 Su 17 Nov. 1.45 s 21 Dec. 16.15 23.10 
T I Oct. 12.30 M 18 Nov. 10.50 Su 22 Dec. 10.20 Th 6 Feb. 19.15 
w 2 Oct. 17.30 T 19 Nov. 7.50 M 23 Dec. 13.35 F 7 Feb. 11.00 
Th 3 Oct. 14.30 F 22 Nov. 15.30 17.15 T II Feb. 0.15 

16.00 s 23 Nov. 18.00 T 24 Dec. 19.50 14.40 
Su 6 Oct. 14.10 23.05 22.45 W 12 Feb. 15.45 
T 8 Oct. 14.00 Su 24 Nov. 19.30 W 25 Dec. 7.25 M 17 Feb. 12.45 
s 12 Oct. 15.30 T 26 Nov. 19.00 17.00 T 18.Feb. 17.00 
Su 13' Oct. 4.30 W 27 Nov. 16.10 s 28 Dec. 12.30 18.00 
s 19 Oct. 11.50 F 29 Nov. 10.00 T 31 Dec. 23.15 21.45 
Su 20 Oct. 11.55 s 30 Nov. 2.30 Th 2 Jan. 10.30 W 19 Feb. 16.00 

15.20 22.00 F 3 Jan. 13.45 Th20 Feb. 12.00 
15.40 Su I Dec. 21.50 Su 5 Jan. 2.30 Su 23 Feb. 2.30 

T 22 Oct. 11.15 M 2 Dec. 19.10 M 6 Jan. 12.00 M 24 Feb. 12.55 
w 23 Oct. 2.15 Tu 3 Dec. 11.45 T 7 Jan. 15.45 T 25 Feb. 20.20 
s 26 Oct. 11.15 15.45 17.00 W 26 Feb. 10.30 
w 30 Oct. 21.30 16.30 17.00 M 2 Mar. 15.50 
Th 31 Oct. 3.00 18.30 F 10 Jan. 1.30 w 4 Mar. 17.30 
F I Nov. 0.40 Th 5 Dec. 10.05 20.15 F 6 Mar. 20.00 

10.00 20.00 s 11 Jan. 12.30 T 10 Mar. 2.00 
M 4 Nov. 9.45 s 7 Dec. 13.35 Su 12 Jan. 15.40 W 11 Mar: 1.45 

23.45 16.45 T 14 Jan. 3.30 W 18 Mar. 1.45 
T 5 Nov. 10.00 Su 8 Dec. 2.15 18.35 2.05 
w 6 Nov. 7.50 M 9 Dec. 20.30 W 15 Jan. 13.30 
Th 7 Nov. 13.30 W 11 Dec. 14.00 F 17 Jan. 16.40 
F 8 Nov. 12.30 Th 12 Dec. 21.15 Su 19 Jan. 18.00 
s 9 Nov. 13.45 F 13 Dec. 18.45 M 20 Jan. 20.00 

19.30 s 14 Dec. 14.05 T 21 Jan. 11.15 
M II Nov. 0.15 14.15 F 24 Jan. 16.40 

periods are statistically independent. Such a mod_el in a sense shows total lack 
of systematic structure. Among its properties are that the number of arrivals ' 
in a particular time length I has a Poisson distribution with variance equal to 
its mean, pi; also the intervals between successive arrivals have an exponential 
distribution. More complex models allow for nonexponential distributions, 
dependence between successive intervals, etc. 

Now in the present example it is unlikely that the Poisson process will be 
adequate; in particular, variations in rate with day of week and time of day 
are likely to be present and will be of interest in, for example, planning 
studies. The simple Poisson process is nevertheless valuable in judging the 
precision of comparisons, e.g. between different days of the week. Systematic 
variations in rate could be studied by formal explicit fitting of.models in 
which p is not constant, but it is more direct to proceed by elementary 
descriptive methods. Thus we calculate separate rates for Sunday, Mon-
day, ... , and similarly separate rates for each two-hourly period 00.00-, 
2.00-, .... For the latter, when we pool over days of the week, there is an 
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implicit assumption that any time-of-day pattern is similar for the different 
days. The Poisson distribution provides a standard against which the 
statistical significance of the observed variation can be judged. 

The analysis. Variations of rate with time of day and day of week, and also 
longer-term variations, are examined in Tables A.2-A.4 by forming total 

, numbers of occurrences in relevant groupings. Two-way tables, not given 
here, show no strong suggestion that, for example, any time-of-day variation 
is different on different days of the week. 

Table A.2. Time-of-day variation 

No. of Rate per No. of Rate per 
arrivals 24 hr arrivals 24 hr 

0.00- 14 0.411 12.00- 31 0.910 
2.00- 17 0.499 14.00- 30 0.880 
4.00- 5 0.147 16.00- 36 1.056 
6.00- 8 0.235 18.00- 29 0.851 
8.00- 5 0.147 20.00- 31 0.910 

10.00- 25 0.733 22.00- 23 0.675 

Table A.3. Day-of-week variation 

No. of No. of Fitted Rate per 
weeks arrivals freq. day 

Mon. 59 37 36.64 0.627 
Tue. 59 53 36.64 0.898 
Wed. 59 35 36.64 0.593 
Tim. 58 27 36.02 0.466 
Fri. 58 30 36.02 0.517 
Sat. 58 44 36.02 0.759 
Sun. 58 28 36.02 0.483 

X~ = 14.20: omitting Tue., xg = 6.12. 

Table A.4. Long-term variation 

Days No. of Fitted Rate Days No. of Fitted 
arrivals freq. .Per day arrivals freq. 

Feb. 63 25 13 15.52 0.520 Sept. 63 30 17 18.63 
Mar.63 31 16 19.25 0.516 Oct. 63 31 17 19.25 
Apr. 63 30 12 18.63 0.400 Nov. 63 30 28 18.63 
May63 31. 18 19.25 0.581 Dec. 63 31 32 19.25 
June 63 30 23 18.63 0.767 Jan. 64 31 23 19.25 
July 63 31 16 19.25 0.516 Feb. 64 29 17 18.01 
Aug.63 31 15 19.25 0.484 Mar. 64 18 7 11.18 

x:. = 21.82. 

Rate 
'per day 

0.567 
0.548 
0.933 
1.032 
0.742 
0.586 
0.389 
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Fig. A.l. Patienl arrival rate versus time of day. 

Significance of variation above that to be expected from a Poisson distribu
tion is tested by dispersion tests, i.e. in effect by comparison with fitted 
frequencies assuming constant rate. The time-of-day variation is over
whelmingly significant; the pattern of variation is best seen from Fig. A.l; 
the rate.is highest between 12.00 and 22.00 hr and lowest between 4.00 and 
lO.OO hr. Va.riation between days of the week is just significant at 5 per cent; 
if Tuesdays, which have a high rate, are omitted, x2 drops to 6.12, with 5 
degrees of freedom. Slower fluctuations, shown in Table A.4, are not quite 
significant at 5 ·per cent and show no very smooth pattern; the data do not 
really allow investigation of possible seasonal variation. 

There are other features of the data that might be of interest in particular · 
contexts. One such is the occurrence of short intervals between successive 
arrivals, which might be of special interest in an operational research study. 
Table A.5 gives the frequency of the shorter intervals. The mean interval is 
(24 x 409)/254 = 38.6 hr and an exponential distribution with this mean gives 

Table A.5. Short intervals bel ween successive arrivals 

0 hr-
2 hr-
4 hr-6 hr 

Observed 
freq. 

20 
17 
5 

Fitted 
freq. 
(exptl) 

12.8 
12.2 
11.6 

Fitted 
freq. 
(exptl x 1.25) 

16.0 
15.2 
14.5 
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the frequencies in the second column. The exponential distribution corre
sponds, however, to a Poisson process of constant rate and the effect of 
variations in rate, such as those associated with time of day, is to increase the 
ordinate of the probability distribution at the origin by a factor approximately 

l+c~, (A.l) 

where c~ is the coefficient of variation of rate. For the time-of-day variation 
cp "" t. and this leads to the modified frequencies shown. There is at least 
rough agreement with the approximate theory. 

Further points and exercises 
(i) Derive Equation (A.l). Calculate the whole frequency distribution of 

intervals betwe,en successive arrivals under a plausible model and compare 
with the empirical distribution. 

(ii) Suppose that the data were grouped into 1 hr intervals and the number 
of arrivals in each such interval regarded as a discrete-time time series and a 
periodogram calculated. What form would it take? What would be the result 
if the time-of-day variation were sinusoidal but of different amplitude and 
phase on different days of the week? 

(iii) Why would an analysis of the frequency distribution of intervals 
between successive arrivals not be adequate as the sole analysis of the data? 

Related references. Armitage (1971, §7.7), Davies and Goldsmith (1972, 
§9.42), Snedecor and Cochran (1967, §§9.3, 9.4) and Wetherill (1967, §8.8) 
describe the dispersion test for Poisson variables. Cox and Lewis (1966) deal 
with the statistical analysis of data in the form of point events in time. 



Example B Intervals between 
adjacent· births 

Description of data. The data in Table B.l were obtained by Greenberg and 
White (1963) from the records of a Genealogical Society in Salt Lake City. 
The distribution of intervals between successive births ·in a particular serial 
position is approximately log normal and hence geometric means are given. 
For example, the entry 39.9 in the· bottom right-hand corner means that for 
families of 6 children, in which the fifth and sixth children are both girls, the 
geometric mean interval between the births of these two children is 39.9 
months. 

Table B.1. Mean intervals in months between adjacent 
births by family size and sequence of sex at specified 
adjacent births 

Family Births Sequence of sex 
size 

MM MF FM FF 

'2 1-2 39.8 39.5 39.4 39.3 

3 1-2 31.0 31.5 31.4 31.1 
3 2-3 42.8 43.7 43.3 43.4 

4 1-2 28.4 28.1 27.5 27.8 
4 2-3 34.2 34.4 34.3 35.0 
4 3-4 43.1 44.3 43.3 42.8 

5 1-2 25.3 25.6 25.6 25.5 
5 2-3 30.3 30.1 29.9 30.0 
5 3-4 33.7 34.0 33.7 34.7 
5 4-5 41.6 42.1 41.9 41.3 

6 1-2 24.2 24.4 24.0 24.5 
6 2-3 27.6 27.7 27.5 27.6 
6 3-4 29.8 30.2 30.3 30.8 
6 4-5 34.2 34.2 34.1 33.4 
6 5-6 40.3 41.0 40.6 39.9 
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General considerations. This example illustrates a fairly common situation in 
which the data available for analysis are a substantial reduction of the 
originating data. One would really like access to further information. 

The variation involved here is natural variation. The full data would 
consist at one level of a set of frequency distributions, one distribution for 
each combination of sequence number and sex pairing. In more detail one 
.would have for each family a set of intervals and sexes. All that can be done 
with the available data is to describe as concisely as possible any systematic 
structure. This comes down in essence to studying and describing three things: 

• (i) systematic differences between the sex pairings MM, MF, FM, FF; 
(ii) the variation with sequence number; 
(iii) any simple patterns of interaction between (i) and (ii). 

While these comparisons can and should be done at a descriptive level, i.e. 
by simple plotting and tabulation, it is certainly worth while also attaching 
an approximate measure of precision to important derived quantities. 

Of course if the further data mentioned above were available, many 
possibilities for further analysis and interpretation become available. A com
parison solely in terms of the values presented here will be complete only if 

40 

"' 30 
-E 
c 
0 

:2 

20 

~-===== 

MM MF FM FF . 

Sequence of sex 

Fig. B. I. Mean interval versus sequence of sex. Each line represents one row of Table B.l, 
i.e. one family size, birth sequence combination. 
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the other features of the data, e.g. the shapes and dispersions of the distribu
tions, are constant. 

The analysis. There are three factors of interest: family size, birth order and 
sequence of sex. The sequence of sex (MM, MF, PM, FF) across each row of 
Table B.l shows little variation and a simple plot (Fig. B.l) confirms the 
absence of any major such effect. Hence we can average over this factor. Also 
the four observations across each line of Table B.l can be used to provide 

·:some indication of variability. 
Since the distribution of intervals between births is approximately log 

normal, we calculate the average of log (months), although in the present 
circumstances taking logarithms is something of a refinement; throughout 
natural logs are used. The averages for each family size and birth interval are 
given in Table B.2. In all cases, the final interval is approximately e3•7 ""' 40 
months, earlier intervals being decreasingly shorter. The data of Table B.2 are 

Table B.2. Average values of log months and 
corresponding antilogs 

Family size Births Log months Months 

2 1-2 3.676 39.5 

3 l-2 3.442 31.2 
2-3 3.768 43.3 

4 l-2 3.330 27.9 
2-3 3.540 34.5 
3-4 3.770 43.4 

5 1-2 3.239 25.5 
2-3 3.404 30.1 
3-4 3.527 34.0 
4-5 3.731 41.7 

6 l-2 3.189 24.3 
2-3 ~.318 27.6 
3-4 3.410 30.3 
tt-:5 3.526 34.0 
5-6 3.700 40.4 

plotted in Fig. B.2, aligned according to final interval, and show how the 
intervals 2-3, 3-4, ... lie roughly on a common curve, with the interval l-2 
for each family size displaced below it. 

A sufficiently accurate estimate of variation is provided by the range across 
MM, MF, PM, FF. Across the first row of Table B.l, the range is log(39.8) -
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Fig. B.2. Mean oflog birth interval versus order in family: 0, final interval; -1, previous 
interval; ... 

0 intervals (1-2) 
X intervals (2-3), ... 

log(39.3) = 0.0126. The average range over all 15 rows of data is 0.0216, 
giving an estimated standard deviation (Pearson and Hartley, 1972, Table 9) 
a = 0.0216 x 0.4857 = 0.0105; the range does not vary systematically. 

The greatest scatter about the trend in Fig. B.2 lies in the final interval. 
Excluding that for family size 2, since the interval1-2lies below the common 
curve, the values of log(mo~ths) for the final interval are 3.768, 3.770, 3.731, 
3.700, having a mean square of 0.001 11 on 3 degrees of freedom. This is 
much greater than fi2/4 = 0.000 028. 

There is little point in fitting a mathematical model to represent the 'trend. 
Instead we summarize the results by averaging the appropriate observed 
values; antilogs of these averages are given in Table B.3. 

To attach an approximate standard error to the results is difficult. We 
notice from Table B.2 that the final interval for family sizes 5 and 6 is system
atically shorter than 42.2 months, the result quoted Table in B.3, and for 
family sizes 3 and 4 it is correspondingly longer but the difference is small 
compared with variation in the overall pattern. None of the observed values 
differs from the pattern in Table B.3 by more than about 5 per cent. 
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Table B.3. Birth interval pattern 

Interval between births 1-2 

Family size 

2 
3 
4 
5 
6 

Log months 

3.676 
3.442 
3.330 
3.239 
3.189 

Months 

39.5 
31.2 
27.9, 
25.5 
24.3 

Intervals between subsequent births (families 
size 3 or more, intervals 1-2 excluded) 

Interval Log months Months· 

Final interval 3.742 42.2 
1 before final 3.531 34.2 
2 before final 3.407 30.2 
3 before final 3.318 27.6 

Applied statistics 



Example C Statistical aspects of 
literary style 

Description of data. As part of an investigation of the authorship of works 
attributed to St Paul, Morton (1965) found the numbers of sentences having 
zero, one, two, ... occurrences of 'kai' ( = and) in some of the Pauline works. 
Table C.l gives a slightly condensed form of the resulting frequency 
distributions. J 

Table C.l. Frequency of occurrences of 'kai' in 10 Pauline works 

Number of Romans 1st 2nd Galat. Philip. 
sentences with (1-15) Corinth. Corinth. 

0 kai 386 424 192 128 42 
1 kai 141 152 86 48 29 
2 kai's 34 35 28 5 19 
3 or more kai's 17 16 13 6 12 

No. of sentences 578 627 319 187 102 
Total number of kai's 282 281 185 82 107 

Number of Colas. 1st 1st 2nd Hebrews 
sentences with Thessal. Timothy Timothy 

0 kai 23 34 49 45 155 
1 kai 32 23 38 28 94 
2 kai's 17 8 9 11 37 
3 or more kai's 9 16 10 4 24 

I 

No. o~ sentences 81 81 106 88 310 
Total number of kai's 99 99 91 68 253 

General considerations. The raw data for each work form a frequency distribu
tion, and in fact in the source paper a number of such distributions are given 
corresponding to various properties. Discussion is much ·simplified by re
placing each distribution by a single number, a derived response variable. 
This might be obtained via a theoretical model for the distribution. In the 
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present case, however, the mean seems the obvious candidate. We could use 
the ordinary mean number of kai's per sentence, e.g. 282/578 = 0.4879 for 
work I, or a modified mean in which 3 or more kais count as 3, 0.4498 for 
work I. In fact it makes little difference, although the second, which is used 
in the following analysis, has the advantage of being insensitive to the 
occurrence of a small number of sentences each with a large number of kais. 
The modified mean can be assigned a notional standard error in the usual 
way. 
·' It is natural to see whether the works can reasonably be put into a small 
number of groups, all the works in the same group having effectively the 
same mean. To a large extent this is satisfactorily done in an informal way. A 
more elaborate procedure is to examine, at least in principle, all possible 
groupings of 2 works, of 3 works, ... , testing the means in each possible 
grouping for consistency. The set of all groupings not 'rejected' at, say, the 
5 per cent level constitutes a 95 per cent confidence set of possible groupings. 
Note especially that even though a large number of tests is involved, no adjust
ment of the significance level is required; the argument is simply that any 
'correct' grouping will appear in the final list, except for the specified 
probability. 

Any conclusion that the different groups were written by different authors 
involves a major further assumption. 

To check whether useful information has been sacrificed by considering 
only the mean, it is worth examining another aspect of the distribution, and 
the standard deviation is the most amenable. To help interpret the relation 
between standard deviation and mean, it is a good idea to consider 
a very idealized stochastic model in which, within a work, each word 
has a constant probability, independently from word to word, of being 
'kai'. 

Finally, note that the consideration of any probabilistic aspects in this 
problem raises conceptual issues. The data available are not samples but · 
complete enumerations and the works are unique, so that direct consideration 
of 'repetitions' of the data is not possible. The use of probabilistic ideas, like 
standard errors, depends on the tentative working hypothesis that for certain 
purposes the number ofkai's per sentence behaves as if it were generated by a 
probabilistic mechanism. Put alternatively, we use the variation that would 
occur in random sampling as a reference standard to judge the observed 
variation. It is especially important in this problem that the final conclusion 
should' make sense from a descriptive viewpoint and should not rely too 
heavily on the .probabilistic analysis. 

Some methodological details. If we consider k works with means Y1, ••• , Y~c 
with standard errors yv1, ••• , yv~c, then the consistency of the k means is 
tested by the x2 statistic with k- 1 degrees of freedom 
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x2 = ~ (Y.1- Y.)2/v.1 
= ~ Y]/Vj-(~ YJ/Vj)2(~ 1/Vj)-1, (C.l) 

where 
Y. = (~ Yj/VJ)(~ 1/Vj)-1. 

Because of the quite large numbers of observations involved we ignore errors 
of estimation of the VJ. 

To help understand the values taken by the standard deviation of the 
distribution, suppose that sentences contain m words, and that the probability 
of any word being kai is fJ, independently for different words. Then Y, the 
number of kai's in a sentence, has a binomial distribution with 

E(Y) = mfJ, var(Y) = mfJ(1-fJ). (C.2) 

Now suppose'that sentence length is randomly distributed, i.e. that m is the 
value of a random variable M having mean and variance P-In and a;.. Then 
Equation (C.2) specifies the conditional mean and variance given M = m. It 
follows that unconditionally 

E( Y) = /J-lnO, var( Y) = !J-1n0(1- fJ) + a;.oz. (C.3) 

Even without direct information about the values of P.n1 and a7~1 it follows on 
putting a range of plausible values into Equation (C.3) that the ratio of the 
variance to the mean is thus expected to be rather greater than I and is 
unlikely to be much less than 1. The use of modified means and standard 
deviations will tend to reduce the ratio a bit. 

The analysis. Table C.2 gives for each work the mean, the modified mean, used 
in all the later analysis, the modified standard deviation, the ratio of variance 

Table C.Z. Summary statistics from 10 works 

Mean Mod if. Modif. s3{Y s.e.(f) 
mean st.dev. 
y s 

I Rom. 0.4879 0.4498 0.7366 1.21 0.0306 
II 1st Co. 0.4482 0.4306 0.7147 1.19 0.0285 
ill 2nd Co. 0.5799 0.5674 0.8171 1.18 0.0457 
IV Galat. 0.4385 0.4064 0.6999 1.21 0.0512 
V Phil. 1.0490 1.0098 1.0388 1.07 0.1029 

VI Colos. 1.2222 1.1481 0.9632 0.81 0.1070 
VII 1st Th. 1.2222 1.0741 1.1487 1.23 0.1276 

VIII 1st Tim. 0.8585 0.8113 0.9473 1.11 0.0920 
IX 2ndTim. 0.7727 0.7045 0.8598 1.05 0.0917 
X Heb. 0.8161 0.7742 0.9386 1.14 0.0533 
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II X 
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Mean number of )(sf's per sentence -

Fig. ·c.l. Mean number of kai's per sentence for 10 works. Arrows indicate plus and minus 
one standard error. I, Romans; II, 1st Corinth.; ill, 2nd Corinth.; IV, Galat.; V, Philip.; 
VI, Colos.; VII, 1st Thessal.; Vill, 1st Timothy; IX, 2nd Timothy; X, Hebrews. 

to mean, and the standard error of the mean. Figure C.l shows the means 
and standard errors in convenient form. 

The works fall into three groups, I-IV, V-VII and VIII-X, with some doubt 
about the consistency of III within the first group; otherwise the variations 
within groups are roughly in accord with the standard errors. The ratios of 
variance to mean are in agreement with the theoretical prediction, with the 
possible exception of work VI. Inspection of the frequency distriqution for 
that work suggests that it would be unwise to put any strong interpretation 

Table C.3. Some possible groupings of the works 

Proposed Degrees of x• Consistency Consistency 
grouping freedom at 5% level at 1% level 

I, II, ill, IV 3 7.71 borderline yes 
I, II, IV 2 0.57 yes yes 
I, ill, IV 2 6.51 - no yes 
I, II, ill 2 6.69 no yes 
II, ill, IV 2 7.66 no yes 
I, ill 1 4.56 no yes 

Vill,IX,X 2 0.72 yes yes 
ill, Vill,IX,X 3 11.28 no borderline 
V, Vill,IX,X 3 5.49 yes yes 
VI, Vill,IX,X 3 11.73 no no 
VII, Vill, IX, X 3 5.94 yes yes 
V, VII, Vill, IX, X 4 9.69 borderline yes 
VI, VII, Vill, IX, X 4 15.46 no no 
V, VI, Vill, IX, X 4 14.82 no no 

V, VI, VII 2 0.87 yes yes 
V, VI, VII, Vill 3 6.43 no yes 
V, VI, VII, IX 3 11.88 no no 
V, VI, VII, X 3 13.94 no no 



Example C 67 

on the anomalous dispersion. The rough agreement with a simple theory is 
some indirect confirmation of the use of probabilistic ideas. 
· To implement a more formal procedure, the x2 statistic (C. I) is found for 

some of the groups of potential interest. Table C.3 summarizes these 
calculations. 

The simplest grouping consistent with the data is {I, II, IV}, {VIII, IX, X}, 
{V, VI, VII}, with III as an anomalous individual between the first two groups, 
if the calculations of precision are to be relied on. There are, however, alter
native explanations, which, while not fitting so well, cannot definitely be 
excluded. Thus the anomalous work in the first group could be II or IV rather 
than III; alternatively, III could just conceivably be attached to the group 
{I, II, IV} or the the group {VIII, IX, X}. Or there are alternative possibilities 
for the last two groups; VI or VII or just possibly both could be attached to 
the second group, or VIII could be placed with {V, VI, VII}. 

Further points and exercises 
(i) Suggest a convenient parametric form for the distribution of M in 

Equation (C.3) and obtain the resulting distribution of Y. How would the 
data be analysed in the light of that distribution? 

(ii) How would analysis be aided if P.m and a,~, were available for each 
work? 

(ii) If one made the working assumption that an arrangement in three 
groups is to be obtained, how could the analysis be adapted so that the true 
combined split into three groups is included in the 'confidence set' with 
specified probability 95 or 99 per cent. 



ExampleD Temperature distribution 
in a chemical reactor 

Description of data.* A chemical reactor has 1250 sections and it is possible to 
calculate a theoretical temperature for each section. These have a distribu
tion across sections with mean 452 °C and standard deviation 22 °C; the 
distribution is closely approximated by a normal distribution in the range 
390-520 °C. For a variety of reasons, measured temperatures depart from 
the theoretical ones, the discrepancies being partly random and partly 
systematic. The temperature is measured in 20 sections and Table D.l gives 
the measurements and the corresponding theoretical values. It is known 
further that the measured temperature in a section deviates from tl}e 'true' 
temperature by a completely random error of measurement of zero mean and 
standard deviation 3 °C. Special interest attaches to the number of channels 
in the reactor with 'true' temperature above 490 °C. 

Table D.I. Measured and theoretical temperatures in 20 
sections of reactor 

Measured Theoretical Measured Theoretical 
temp c•c) temp ("C) temp c·q temp ("C) 

431 432 472 498 
450 470 465 451 
431 442 421 409 
453 439 452 462 
481 502 451 491 
449 445 430 416 
441 455 458 481 
476 464 446 421 
460 458 466 470 
483 511 476 477 

General considerations. The theoretical temperatures tTH are in principle 
known for the whole population and are the result of solving the appropriate 
partial differential equations for an idealized model of the reactor. They are 

• Fictitious data based on a real investigation. 
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not random. The 'true' temperatures T depart from the theoretical tempera
tures for a variety of reasons, partly random, partly systematic. A simple 
working assumption is that over the whole reactor, treated as an effectively 
infinite population, we can treat the true and measured temperatures T and 
TME as random with 

T = a:+,B(tTH-t)+e, 
(D.l) 

where t is the mean theoretical temperature in the measured channels, e is a 
random term, normally distributed with z.ero mean and variance a 2, and e' 
is a measurement error of zero mean and variance 9, independent ofT. The 
model has three unknown parameters a:, ,8 and a2• 

Note that it is not assumed that the measured channels are a random 
sample from the population. It is, however, assumed that the linear model 
(D.l) holds over the whole range of !TH and that the measured channels 
have e's drawn from the appropriate distribution. There is no way of checking 
this latter point: to a limited extent linearity, constancy of variance and 
normality can be checked in the usual way. 

Standard linear regression methods can be used to estimate the parameters 
and the variances of estimators. From the known distribution of ITH it 
follows that over the reactor, treated as an infinite population, the distribu
tion of TME is normal with mean and variance respectively 

estimated by 
g' = a:+ ,8(452- i), 

#' = &+PC452-i), (D.2) 

Note the subtraction of 9 because we are ultimately interested in T, not in 
TME·· 

The proportion of values ofT above 490 oc is thus Ill(-!;), where 

(D.3) 

say. Rough confidence limits for the proportion, and hence for the number, 
are derived via a large-sample standard error for '· supplemented by a 'finite 
population adjustment'. ' 

Methodological details. The parameters a:, {1 and a2 are independently estim
ated by standard techniques and large-sample variances can be found: in 
particular, var(a2) = 2a4/(n-I) ~ 2&4/(n-1), where n = 20 is the number 
of observations. Both # and 0 have negligible chance of being negative and it 
is thus convenient to consider 
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(1 ~) var( ci) + ( 452- i)2 var(P) 
var og ~ ~ ~a , 

·· (l f! 1 ~) 2P x 484 x (452- t) varCP) 
cov og~. og71 ~ - ~.;; , 

leading to 
var(log ') = var(log ~-!log~) 

~ var(log ~)- cov(log ~, log q) +! var(log ~). (D.4) 

From this, confidence limits for log '· and hence for '· and hence for 
<I>(-,), follow. This gives approximate confidence limits for the proportion 
that would occur in a very large population: in 1250 channels, even if' were 
known and all other assumptions were satisfied, the number of affected 
channels would have a Poisson distribution of mean p. = 1250\1>(- 0, so 
that a further error, one of prediction rather than estimation, has to be 
considered. 

A relatively elaborate method for solving this prediction problem is out
lined in Exercise (iii). A simple rough method uses the result that the variance 
of y'N, where N has a Poisson distribution· of mean p., is 1/4. Also, 

var(,a) ~ (1250)2{rp(- ,)}2 var{,), 
~ (1250)3{<,6(- {)}2 var(log C)'3 

and 
. var( y #) ~ t.U-1 var(,a). (D.5) 

Here rp(.) is the density of the standardized normal distribution. The effect of ' 
prediction error is thus to add t to the right-hand side of Equation (D.5), 
leading to limits for y'N and hence for N. 

The analysis. Standard linear regression of measured temperature on theo
retical temperature leads to an estimated slope 0.5101, with estimated 
standard error 0.0865, to an estimated standard deviation about the re
gression line of 10.82 oc and to a sample mean measured temperature of 
454.6 °C, with estimated standard error 2.42 °C. Given the population distri
bution of theoretical temperature, and the variance of measurement error, 
the distribution of true temperature is estimated to have mean 

454.6t0.5101(452-459.7) = 450.67 oc 
and standard deviation 
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Thus the standardized deviate for determining the proportion of channels 
above 490 oc in true temperature is 

r = 490-450.67 = 571 
... 15.30 2" 

and an estimate of the infinite population rate per 1250 channels is 

1250q,(-2.571) = 6.3. 

If a 97.5 per cent upper confidence limit ~s calculated via the large-sample 
standard error of log t, leading to normal confidence limits for log '· with 
derived limits for q,(- ~), the upper limit is 28.3; if the calculation is done 
via yq,(- '); the limit is 23.5. In fact, the large-sample variance of yP, = 
yl250yq,(- e) is 1.42 and if this is inflated to allow for prediction error in 
the finite population this becomes 1.67, and the corresponding upper limit is 
raised from 23.5 to 25.5. The lower limits are less than 1. 

Of course a very considerable extrapolation is involved in these calcula
tions. The most it is reasonable to conclude is that, provided a reasonably 
stable linear relation holds over the whole temperature range, there are likely 
to be some channels with temperature above 490 °C, there are unlikely to 
be more than 30, and that a 'point estimate' of the number is 6. 

Further points and exercises 
(i) Outline how a full list of values of fTH might be used to obtain a more 

refined estimate. Note that the 20 measured channels have negligible chance 
of their Tbeing above 500 oc. For the remaining 1230 channels compute an 
estimated probability of the event of interest. How could precision be 
assessed? 

(ii) Investigate the use of the noncentral Student t distribution to avoid 
the approximations involved in calculating confidence limits for q,(- Q. 

(iii) Develop a Bayesian approach to the calculation of prediction limits 
for the finite population problem via a gamma posterior distribution for the 
infinite population probability, leading to limits based on the negative 
binomial distribution. ' 



Example. E A ebefore and after' study 
of blood pressure 

Description of data. Table E.'l gives, for 15 ·patients with moderate essential 
hypertension, supine systolic and diastolic blood pressures immediately 
before and two hours after taking 25 mg of the drug captopril. The data were 
provided by Dr G. A. MacGregor, Charing Cross Hospital Medical School; 
for a report on the investigation and appreciable further summary data, see 
MacGregor, Markandu, Roulston and Jones (1979). 

Table B.l. Blood pressures (mm Hg) before and after captopril 

Patient Systolic Diastolic 
no. 

before after difference before after difference 

1 210 201 -9 130 125 -5 
2 169 165 -4 122 121 -I 
3 187 166 -21 124 121 -3 
4 160 157 -3 104 106 2 
5 167 147 -20 112 101 -11 

·6 . 176 145 -31 101 85 -16 
7 185 168 -17 -121 98 -23 
8 206 180 -26 124 105 -19 
9 173 147 -26 115 103 -12 

10 146 136 -10 102 98 -4 
11 174 151 -23 98 90 -8 
12 201 168 -33 119 98 -21 
13 198 179 -19 106: 110 4 
14 148 129 -19 107 103 -4 
'15 154 131 -23 100 82 -18 

General considerations. This example illustrates in skeleton form a number of 
points arising in the analysis of 'before and after' studies, i.e. investigations 
in which some property is measured on each individual before 'treatment', a 
treatment then applied and then the same property re-measured. The object 
is to assess the effect of treatment on the property in question. 

It is common in such studies to have a control group receiving a placebo or 
dummy treatment, choice between treatment and placebo being rarldomlzed 
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with due.concealment. Where, as in the present instance, there is no control 
group, a comparison 'after' versus 'before' can still be made, but the inter
pretation of any difference as attaching specifically to the treatment is to be 
made with some reserve. When a control is omitted, it will be important to 
look for other information ·on the stability of the measured response; 
MacGregor et a!. (1979) reported that mean blood pressure was stable both 
before and after .treatment, and that these stable levels were different; this 
makes it less likely, although not impossible, that the difference reported 
below is a placebo effect. 

Consider now the measurement of response, taking first, say, the systolic 
blood pressure. The simplest approach, and· one commonly used, is to define 
as the derived response of interest the difference 'after'· minus 'before' for 
each individl!al and then to analyse these differences, in particularcomparing 
their mean with zero; it might be desirable to transform, e.g. logarithmically, 
first. In this the individual measurements beforeailcl-after are illscaraed. 

This is certainly legitimate: in the present instance the change in a patient's 
blood pressure is of immediate relevance both as a basis for analysing the full 
set of data and as an index of 'success' for that individual. Nevertheless, some 
information may be lost by concentrating on differences. First, if measure
ments before and after are almost independent, and we have encountered 
this in applications, there is th~ibiiity either that substantial random 
variability of measurement of response is present or that ways of describing 
the data other than by differences would be preferable: for instance, if treat-

~ ment reduced a very variable initial measurement to a practically fixed final 
level, an analys"fs solely in terms of differences would be seriously incomplete. 

More generally, there is the possibility that the 'treatment' effect is different 
at different levels of initial measurement. This can be studied by plotting or 

"regressing the difference 'after' minus 'before' versus the 'before' measure
ment. If, however, there are appreciable random vaiiations in the measure
ments of response within an individual, caution is needed and the above 
simple procedure could be misleading. 

To see this, suppose that for the ith individual the 'true' initial measure
ment is g,, distributed across individuals with mean p. and variance u~, and 
that the initial measurement is ' 

(E.l) 

here el is a random term of zero mean and variance u;. Suppose that the 
effect of treatment is to add to the 'true' measurement 

(E.2) 

where 7Jt is a random term of zero mean and variance u~ and that the final 
measurement Yt is subject to an error ej' having the same distribution as el. 
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Then 

Yt = ~~+~+,B(~t-J.tH"'t+el' 
and the difference Zt, 'after' minus 'before', is 

Applied statistics 

(E.3) 

(E.4) 

Assuming that all random terms are independent, it follows in particular 
that the regression coefficient of Zt on Xt is 

cov(Zt, Xt) ,Ba~- a; 
var(Xt) = a~+ a! · (E.S) 

Thus the suggested regression analysis of Zt on Xt needs modification 
unless a; « a~. 

The interpretation of a~ is best seen via the variance of 2a~ between two 
measurements on the same individual spaced in time as are the data values 
but with no intervening treatment: pure measurement error, thought to be 
negligible in the present instance, is only one component. 

The representation outlined here has six parameters, namely }-t, ~. ,B, a~, 
a~, a:, whereas the first and second moments of the joint distribution of Xt 
and Yt give only five estimates. This points to the desirability in such studies 
of obtaining an independent estimate of ai: in the analysis that follows we 
have assumed a~ to be negligible. Of course, the representation could be made 
more complicated in various ways. 

The final general point illustrated by the example concerns the availability 
of both systolic and diastolic measurements. With just two types of response, 
formal multivariate techniques for reducing dimensionality are uncalled for, 
although with many types of measurement such techniques could be con
sidered. It is, however, sensible to look at the strength of relationships' 
between the systolic and diastolic responses and this we do just by plotting the· 
systolic difference versus the diastolic difference. 

Table B.2. Analysis of difference in blood 
pressure (mm Hg) 2 hr after taking captopril 
minus value before ' 

Systolic Diastolic 

Mean -18.93 -9.27 
St. deviation 9.03 8.61 
St. error of mean 2.33 2.22 

Regr. of diff. on 
'before' -0.1233 -0.1196 
St. error 0.117 0.226 
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The analysis. Table E.2 summarizes the analysis of the 15 differences 'after' 
minus 'before', taken separately for systolic and diastolic blood pressure. 
Negative values correspond to a lowering of blood pressure after taldng 
captopril. Clearly there is overwhelming evidence that the mean blood 
pressures. are .lower after treatment: in the absence of a concurrent control 
group, interpretation is open to some ambiguity. 
· The regression coefficients of difference on initial value, or the correspond
ing plots, show no evidence that the apparent treatment effect varies with 
initial value, assuming that the random component of the measurements is 
negligibly small. It is interesting, however, that both estimated regression 
coefficients are negative, in line with Equation· (E.5) with f3 = 0. 
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Fig. E. I. Systolic difference ('after' minus 'before') versus diastolic difference. 

Figure E.l shows the systolic difference plotted against the diastolic 
difference, therefore also showing implicitly the marginal distributions of the 
two separate differences. Two patients, namely 7 and 13, have average systolic 
differences but respectively large and small diastolic differences; otherwise 
there is quite a strong relationship. It is not known whether there is anything 
anomalous about the two patients or, for example, whether one of the 
component measurements has a gross error. 

Further points and exercises. 
(i) It is suggested that instead of analysing differences, 'after' minus 

'before', ratios 'after' divided by 'before' should be calculated and in particular 



76 Applied statistics 

the null hypothesis that the mean ratio is I should be tested. Criticize 
the proposal and suggest an alternative method of analysis for use when 
ratios are judged relevant. 

(ii) Plot the 'after' values against the 'before' values with systolic and 
diastolic measurements on the same graph. What can be concluded? What 
further plots might elucidate connections between the treatment effects for 
the two types of· blood pressure 7 

. , .(iii) Estimate the parameters in the model (E.l)-(E.4) assuming known 
·values, e.g. 0, !, I, 2 for the ratio a./a0• Estimate them also assuming that 

{J = 0. 
'(iv) What considerations enter in choosing between differences and other 

measures for comparing blood pressures after and before treatment? 

t~Related reference. Anderson eta!. (1980, Chapter 12) discuss the analysis of 
pre- and post-treatment data in comparative studies involving treatment and 
control groups. 



Example F Comparison. of industrial 
processes in the presence of trend 

Description of data.* In a plant-scale experiment on the production of a 
certain chemical, a batch of intermediate product was divided into six equal 
portions which were then processed on successive days by two different 
methods, P 1 an~ P 2• The order of treatment and the yields are given in Table 
F.l. It was expected that superposed on any process effect there would be a 
smooth, roughly parabolic trend. Experience of similar experiments showed 
that-the standard deviation of a single observation was about 0.1. 

Table F.l. Treatment and yields in plant-scale experiment 

Day 
Process 
Yield 

pl 
5.84 

2 
P. 
5.73 

3 
Po 
7.30 

4 
pl 
10.46 

5 
pl 
9.71 

6 
Pa 
5.91 

General considerations. This example illustrates in rather extreme form the 
fitting of a small number of observations by a model containing nearly as 
many parameters as there are observations. Normally this is to be avoided, 
exceptions being when the data are of high quality and the model fitted has 
fairly firm justification in previous experience or theory. 

In the present instance with clear curvature and process difference to be 
represented, at least four parameters are inevitable. Two degrees of freedom 
remain. An estimate of error based on two degrees of freedom is for several 
reasons virtually useless on its own: the mean square associated with these 
t,;,o degrees of freedom is, however, important in providing a general check 
on the adequacy of the model, by comparison with the measure of error 
externally available. More broadly, in many investigations there is at least 
some external knowledge of the variability to be expected. Even if the in
vestigation has a viable estimate of error on its own, as is certainly desirable, 
at least informal comparison with the external estimate of error is a good 
idea, as a check on technique. 

A final general point concerns parameterization. If the calculations are 
done on a pocket calculator, or if some theoretical study of the analysis is 

• Fictitious data based on a real investigation. 
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undertaken, parameterization to achieve near orthogonality is desirable and 
this is illustrated below. 

The analysis:. The data are plotted in Fig. F.l. Interpreted in conjunction with 
the external value of standard deviation the data show a clear difference 
between processes and, for each process, a curved trend with time. It would 
be possible to fit separate parabolas for each process. this involving six para
meters for six observations. 

II 

10 

X 

6 
0 X 

X 

Day-

Fig.- F.l. Yield in plant-scale experiment. Standard deviation for an observation equals 0.1. : 
0 Process P; 
X Process P, 

It seems, however, preferable to assume a common trend, i.e. parallel 
curves for the two processes. Equivalently, if Yc repeats the yield at time 
t (t = 1, ... , 6), we are led to the model 

E(Yc) = mean+process effect+trend, 

where the trend is quadratic. This can be parameterized in various ways, in 
the end equivalent. Discussion is much simplified, however, by achieving near 
orthogonality and there are two aspects to this: 

(a) the process means (ignoring trend) should be written as, say, p.+T and 
p.-T, rather than as, say, v and v+6.; 

(b) orthogonal polynomials should be used for the trend. 
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Thus we take the model in the form 

ip.+r+ f:11g11 + f:12g21 
E(Yt) = 

p.-r+ f:11g11 + f:12g21 

79 

for Process 1, 
(F.1) 

for Process 2, 

where g11 and g2 t represent linear and quadratic orthogonal polynomials for 
, which the values at t = 1, ... , 6 are g11 = -5, -3, -1, 1, 3, 5 and g21 = 
5, -1, -4, -4, -1, 5 (Pearson and Hartley, 1966, Table 47). 

The least-squares equations are 

'(~ 
0 0 ")C) ( ~-") 6 -2 0 ,. 7.07. 

-2 70 o P1 = 15.45 

0 0 84 Pz -27.73 

(F.2) 

with solution 
A= 44.95/6 = 7.4917, 

(F.3) 
P2 = -27.73/84 = -0.3301 

and 

(-?) ( 6 -2)-1
( 7.07) (1.2639) 

pl = -2 70 15.45 = 0.2568 . 

The residual sum of squares is 0.0436. Note that if tllis is found by the usual 
method of subtracting the sum of squares due to regression from the sum of 
squares of the original observations, care is needed to avoid serious rounding 
errors. Thus the residual mean square is 0.0218, which, with 2 degrees of 
freedom, is in entirely satisfactory agreement with the external variance of 
0.01; a formal test based on xi = 0.0436/0.01 is unnecessary in this case. Thus 
there is no indication that a more complex model is called for. 

Residuals and fitted values could be calculated and tl1e fitted parabolas 
drawn on Fig. F.l. This is largely superfluous, however. Because the sum of 
squares of 6 residuals is 0.0436, no single residual can much exceed 0.2; also 
because four parameters have been fitted to six observations the residuals are 
highly dependent. 

Variances of the fitted parameters are obtained from the inverse of the 
matrix in Equation (F.2), i.e. 

where a = 0.1. 

var(P,) = a 2/6, 
var(P1) = 6a2/416, 

var(.r) = 70a2/416, 
var(P2) = a2/84, 

The estimated process effect is 2.;: = 2.528 with standard error 0.082. 
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To determine the position of maximum yield we need the explicit forms 
of the linear and quadratic trends in Equation (F.l). These can be obtained 
either from first principles or from Pearson and Hartley (1966, Table 47). 
Thus, the fitte.d model is 

ft = ,J,±:r+/Jl(2t-7)+/J2(28-21t+3t2)/2 

and the estimated time delay l corresponding to maximum yield is given by 
a ft(ot = 0, i.e. 
., . 

•, l = 3.5-(2/Jl)/(3/12) 
= 4.02 days. 

Confidence limits for l 
approximately as follows: 

can be calculated from Fieller's theorem, or 

var(l) = ~ var(~) 
(F.4) 

Substitution of the estimated values /11 and /1 2 into Equation (F.4) ,gives the 
approximate standard error of l equal to 0.030, and approximate 95 per cent 
confidence limits for the true time delay of 3.96 to 4.08 days. 

Further points and exercises 
(i) What would it have been reasonable to conclude from the data had 

the external value of standard deviation not been available? 
(ii) Discuss the partition of the two degrees of freedom for residual into 

parts1 in particular to assess any difference in curvature between processes, 
i.e. process x curvature interaction. _ 

(iii) Comment on the particular arrangement of treatments used. What ' 
general principle is involved in the choice of this arrangement? 

(iv) Verify that ifthe residual sum of squares is computed in the usual way 
but using least-squares estimates correct to only three decimal places, there 
results a rounding error of approximately a factor of two. Discuss the general 
implications. 



Example G Cost of construction 
of nuclear power plants 

Description of data. Table G.l gives data, reproduced by permission of the 
Rand Corporation, from a report (Mooz, 1978) on 32 light water reactor 
(L WR) power ,plants constructed in the USA. It is required to predict the 
capital cost involved in the construction of further LWR power plants. The 
notation used in Table G.l is explained in Table G .2. The final six lines of data 
in Table G.l relate to power plants for which there were partial turnkey 
guarantees and for which it is possible that some manufacturers' subsidies 
might be hidden in the quoted capital costs. 

General considerations. One of the most common problems in advanced applied 
statistics is the study of the relation between a single continuous response 
varia tie and a number of explanatory variables. When the expected response 
can be represented as a linear combination of unknown parameters, with co
efficients determined by the explanatory variables, and when the error struc
ture is suitably simple, the techniques of multiple regression based on the 
method of least squares are applicable. The formal theory of multiple re
gression, and the associated significance tests and confidence regions, have 
been extensively developed and are described in numerous textbooks; see, for 
example, Draper and Smith (1981) and Seber (1977). Further, computer 
programs for implementing the methods are widely available. 

Nevertheless, there can be difficulties, partly of technique but more impor
tantly of interpretation, in applying the methods, especially to observational 
data with fairly large numbers of explanatory variables. We now mention 
briefly some commonly occurring points. Of course, in any particular appli
cation many of the potential difficulties may be absent and indeed the present 
example seems relatively well behaved. 

Some issues that arise fairly commonly are the following: 

(i) What is the right general form.ofmodel to fit? 
(ii) Are there aspects of error structure that seriously affect the analysis? 
(iii) Are there outliers or anomalous observations that need to be isolated? 
(iv) What can be done if a subset of observations is isolated, possibly not 

following the same model as the main body of data? 
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Table G.l. Data on thirty-two LWR power plants in the USA 

c D T, T, s PR NE cr BW N PT 

460.05 68.58 14 46 687 0 1 0 0 14 0 
452.99 67.33 10 73 1065 0 0 l 0 J 0 
443.22 67.33 JO 85 1065 I 0 I ·o I 0 
652.32 68.00 11 67 1065 0 I I 0 12 0 
642.23 68.00 11 78 1065 J I l 0 12 0 
345.39 67.92 13 51 514 0 I I 0 3 0 
272.37 68.17 12 50 822 0 0 0 0 5 0 
317.21 68.42 14 59 457 0 0 0 0 I 0 
457.12 68.42 15 55 822 I 0 0 0 5 0 
690.19 68.33 12 71 792 0 1 •) I 2 0 
350.63 68.58 12 64 560 0 0 0 0 3 0 
402.59 68.75 13 47 790 0 l 0 0 6 0 
412.18 68.42 15 62 530 0 0 I 0 2 0 
495.58 68.92 17 52 1050 0 0 0 0 7 0 
394.36 68.92 13 65 850 0 0 0 I 16 0 
423.32 68.42 11 67 778 0 0 0 0 3 0 
712.27 69.50 18 60 845 0 I 0 0 17 0 
289.66 68.42 15 76 530 1 0 I 0 2 0 
881.24 69.17 IS 67 1090 0 0 0 0 ' 1 0 
490.88 68.92 16 59 1050 1 0 0 0 8 0 
567.79 68.75 11 70 913 0 0 I 1 15 0 
665.99 70.92 22 57 828 I I 0 0 20 0 
621.45 69.67 16 59 786 0 0 1 0 18 0 
608.80 70.08 19 58 821 1 0 0 0 3 0 
473.64 70.42 19 44 538 0 0 1 0 19 0 
697.14 71.08 20 57 !130 0 0 1 0 21 0 
207.51 67.25 13 63 745 0 0 0 0 8 I 
288.48 67.17 9 48 821 0 0 I 0 7 I 
284.88 67.83 12 63 886 0 0 0 1 11 1 
280.36 67.83 12 71 886 I 0 0 1 11 I 
217.38 67.25 13 72 745 I 0 0 0 8 1 
270.71 67.83 7 80 886 J 0 0 1 11 1 

Table G.2. Notation for data of Table G.1 

c Cost in dollars x I0-0, adjusted to 1976 base 
D Date construction permit issued 
T, Time between application for and issue of permit 
T, Time between issue of operating license and construction permit 
s. Power plant net capacity (MWe) 
PR Prior existence of an LWR on same site(= 1) 
NE Plant constructed in north-east' region of USA ( = 1) 
cr Use of cooling tower ( = 1) 
BW Nuclear steam supply system manufactured by Babcock-Wilcox(= 1) 
N Cumulative number of power plants constructed by each architect-engineer 
PT Partial turnkey plant ( = 1) 
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(v) Is it feasible to simplify the model, normally by reducing the number of 
explanatory variables? 

(vi) What are the limitations on the interpretation and application of the 
final relation achieved? 

All these points, except the key issue (vi), can to some extent be dealt with 
formally, for instance by comparing the fits of numerous competing models. 
Often, though, this would be a ponderous way to proceed. 

Consideration of point (i), choice of form of relation, involves a possible 
transformation of response variable, in the present instance cost and log cost 
being two natural variables for analysis, and a choice of the nature and form of 
the explanatory variables. For instance, should the explanatory variables, 
where quantitative, be transformed? Should derived explanatory variables be 
formed to inv~stigate interactions? Frequently in practice, any transformations 
are settled on the basis of general experience: the need for interaction terms may 
be examined graphically or, especially with large numbers of explanatory 
variables, may be checked by looking only for interactions between variables 
having large 'main effects'. In the present example, log cost has been taken as 
response variable and the explanatory variables S, T1, T8 and Nhave also been 
taken in log form, partly to lead to unit-free parameters whose values can be 
interpreted in terms of power-law relations between the original variables. It is 
plausible that random variations in cost should increase with the value of cost 
and this is another reason for the log transformation. 

Complexities of error structure, point (ii), can arise via systematic changes 
in variance, via notable non-normality of distribution and, particularly 
importantly, via correlation in errors for different individuals. All these 
effects may be of intrinsic interest, but more commonly have to be considered 
either because a modification of the method of least squares is called for or 
because, while the least-squares estimates and fit may be satisfactory, the 
precision of the least-squares estimates may be different from that indicated 
under standard assumptions. In particular, substantial presence of positive 
correlations can mean that the least-squares estimates are much less precise 
than standard formulae suggest. A special form of correlated error structure is 
that of clustering of individuals into groups, the regression relations between 
and within groups being quite different. There is no sign that any of these 
complications are important in the present instance. 

Somewhat related is point (iii), occurrence of outliers. Where interest is 
focused on particular regression coefficients, the most satisfactory approach is 
to examine informally or formally whether there is any single observation or 
small set of observations whose omission would greatly change the estimate in 
question; see also point (iv). 

In the present example there is a group of 6 observations distinct from the 
main body of 26 and there is some doubt whether the 6 should be included. 
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This is quite a common situation; the possibly anomalous group may, for 
example, have extre:.ne values of certain explanatory variables. The most 
systematic approach is to fit additional linear models to test consistency. Thus 
one extra paratneter can be fitted to allow for a constant displacement of the 
anomalous group and the significance of the resulting estimate tested. A more 
searching analysis is provided by allowing the regression coefficients also to be 
different in the anomalous group; in the present instance this has been done one 
variable at a time, because with 10 explanatory variables and only 6 obser
vations in the separate group there are insufficient observations to examine 
for anomalous slopes simultaneously. 

Point (v), the simplification of the fitted model, is particularly important 
when the number of explanatory variables is large, and even more particularly 
when there is an a priori suspicion that many of the explanatory variables are 
measuring essentially equivalent things. The need for such simplification 
arises particularly, although by no means exclusively, in observational 
studies. More explicitly, the reasons for seeking simplification are that: 

{a) estimation of parameters of clear interest can be degraded by including 
unnecessary terms in the model : 

(b) prediction of response of new individuals is less precise if unn'ecessary 
terms are included in the predictor; 

(c) it is often reasonable to expect that when many explanatory variables are 
available only a few will have a major effect on response and it may be of 
primary interest to isolate these important variables and to interpret their 
effects; 

(d) it may be desirable to simplify future work by recording only a smaller 
numb~r of explaratory variables. 

Techniques for the retention of variables are, as explained in Section 3.4 of , 
Part I, forward, backward or some mixture. Where some of the parameters 
represent effects of direct interest they should be included regardless of the 
operation of a selection procedure. It is entirely possible that forward selection 
leads to a different equation from backward selection, although this l1as not 
happened in the present example. It is therefore important, especially where 
interpretation of the particular form of equation is central to the analysis, that 
if there are several simple equations that fit almost equaiiy well, all should be 
isolated for consideration and not one chosen somewhat arbitrarily. 

Supppse now that a representation, hopefully quite a simple one, has been 
obtained for expected response as a function of certain explanatory variables. 
What are the principal aspects in using and interpreting such an equation? This 
is point (vi) of the list above. There are at least five rather different possibilities. 

Firstly, an equation such as that summarized in Table G.4, including the 
residual standard deviation, provides a concise description of the data, as 
regards the dependence of cost on the other variables. Such a description can 
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be useful in thinking about the data qualitatively and in comparing different, 
somewhat related, sets of data. 

A second descriptive use is in the study of the individual cases. The residual 
from the fitted model is an index for each power station assessing its cost 
relative to what might have been anticipated given the explanatory variables. 

Thirdly, the equation can be used for prediction. A new individual has given 
(or sometimes predicted) values of the relevant explanatory variables and the 
equation, and associated measures of variability, are used to forecast cost, 
preferably with confidence limits. In such prediction the main assumption, 
in addition to the technical adequacy of the model in the region of explanatory 
variables required for prediction, is that any unmeasured variable affecting 
response keeps the same statistical relationship with the measured explanatory 
variables as obtains in the data. Thus, in particular, if the new individual to be 
predicted differs in some way from the reference data, other than is directly or 
indirectly accounted for in the explanatory variables, a modification of the 
regression predictor is worth consideration. For example, a major technolo
gical innovation between the data analysed and the individual to be predicted 
would call for such modification of the predictor. 

Fourthly, the equation may be used to predict for a new individual, or some
times for one of the original individuals, the consequences of changes in one or 
more of the explanatory variables. For example, one might wish to predict 
not so much the cost for a new individual as the change in cost for that indivi
dual as size changes. The relevant regression coefficient predicts that change, 
provided that the other explanatory variables are held fixed and that any 
important unobserved explanatory variables change appropriately with the 
change in size. The prediction of changes in uncontrolled observational 
systems, e.g. in the social sciences, needs particularly careful specification of the 
changes in explanatory variables envisaged. 

Finally, and in some ways most importantly, one may hope to gain insight 
into the system under study by careful inspection of which explanatory vari
ables contribute appreciably to the response and of the signs and magnitudes 
of the associated regression coefficients. Thus in the present example, why do 
certain variables appear not to contribute appreciably, why is the regression 
coefficient on log size appreciably less than one, the value for proportionality, 
and so on? As indicated in the previous paragraph, the regression coefficients 
estimate changes in response under perturbations of the system whose precise 
specification needs care. 

The last two applications of regressions need considerable thought, especi
ally if there is any possibility that an important explanatory variable has been 
overlooked. 

The analysis. As explained in the preceding section, we take log C, logS, log N, 
log T1 and log T2 ; throughout natural logs are used. 
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A regression of log C on all ten explanatory variables gives a residual mean 
square of0.5680/21 = 0.0270 with 21 degrees of freedom. Elimination of non
significant variflbles successively one at a time removes BW, log T1, log T2 and 
PR (Table G.3), leaving six variables and a residual mean square of0.6337/25 
= 0.0253 with 25 degrees of freedom; the residual standard deviation is 0.159. 

Table G.3. Elimination of variables 

No. 
variables 
included 

10 
9 
8 
7 
6 

Variables 
eliminated 

BW 
log T1 
logT. 
PR 

Residual 

s.s. 

0.5680 
0.5709 
0.5730 
0.6165 
0.6337 

d.f. 

21 
22 
23 
24 
25 

None of the eliminated variables is significant if re-introduced. The estimated 
coefficients and, standard errors for the six-variable regression are 'given in 
Table G.4. The variable PT, denoting partial turnkey guarantee, has a co
efficient of -0.2261, with a standard error of 0.1135 (25 d.f.), suggesting that 
cost tends to be reduced on average by about 20 per cent for these six plants . 

• 
Table G.4. Multiple regression: full and reduced models 

Variable 

Constant 
PT 
cr 
logN, 
logS 
D 
NE 
logT1 
logT, 
PR 
BW 

Residual st. dev. 

Regression coefficient 

Reduced model 

Estimate 

-13.26 
-0.2261 

0.1404 
-0.0876 

0.7234 
0.2124 
0.2490 

0.159 
(25 d.f.) 

Standard 
error 

3.140 
0.1135 
0.0604 
0.0415 
0.1188 
0.0433 
0.0741 

Full model 

Estimate 

-14.24 
-0.2243 

0.1204 
-0.0802 

0.6937 
0.2092 
0.2581 
0.0919 
0.2855 

-0.0924 
0.0330 

0.164 
(21 d.f.) 

Standard 
error 

4.229 
0.1225 
0.0663 
0.0460 
0.1361 
0,0653 
0.0769 
0.2440 
0.2729 
0.0773 
0.1011 
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To check whether these six plants and the twenty-six others can be fitted by a 
model with common coefficients for each of the variables CT, log N, logS and 
log D, we include in turn in the regression the interaction of each variable with 
PT. This cannot be done for the variable NE since all six PT plants were con
structed in the same region. Table G.S summarizes the results. None of the 
interaction coefficients is significant. We note that the coefficients of the six 

Table G.5. Regressions including interactions with PT 

Z = CT Z =log N Z =logS Z=D 

Variable Estimate s.e. Estimate s.e. Estimate s.e. Estimate s.e. 

Constant -13.23 3.193 -13.26 3.225 -13.09 3.239. -13.22 3.231 
PT -0.2429 0.1221 -0.2293 0.8265 -2.188 5.854 -1.529 15.17 
CT O.JJll2 0.0652 0.1404 0.0629 0.1400 0.0615 0.1412 0.0624 
logN -0.0868 0.0422 -0.0876 0.0423 -0.0868 0.0423 -0.0875 0.0423 
logS 0.7229 0.1208 0.7234 0.1219 0.7176 0.1222 0.7222 0.1221 
D 0.2121 0.0440 0.2124 0.0444 0.2104 0.0444 0.2120 0.0444 
NE 0.2490 0.0754 0.2490 O.o757 0.2484 0.0755 0.2489 0.0757 
PTxZ 0.0798 0.1887 0.0014 0.3683 0.2916 0.8700 0.0193 0.2246 

common variables in Table G.S remain fairly stable, except for PT which, in 
two cases, is estimated very imprecisely. A model with common coefficients as 
given in Table G.4 seems reasonable. With this model the predicted cost in
creases with size, although less rapidly than proportionally to size, is further 
increased if a cooling tower is used or if constructed in the NE region, but 
decreases with experience of architect-engineer. 

Table G.6. Comparison of observed and fitted values based on six-variable 
regression of Table G .4 fitted to log C 

Observed Fitted Residual Observed Fitted Residual 

6.131 6.051 0.080 6.568 6.379 0.189 
6.116 6.225 -0.109 5.669 5.891 -0.222 
6.094 6.225 -0.131 6.781 6.492 0.289 
6.481 6.398 0.083 6.196 6.230 -0.034 
6.465 6.398 0.067 6.342 6.178 0.164 
5.845 5.916 -0.131 6.501 6.651 -0.150 ' 
5.607 5.934 -0.327 6.432 6.249 0.183 
5.760 5.704 0.056 6.411 6.384 0.027 
6.125 5.987 0.138 6.160 6.129 0.031 
6.537 6.411 0.126 6.547 6.797 -0.250 
5.860 5.789 0.071 5.335 5.401 -0.066 
5.998 6.262 -0.264 5.665 5.606 0.059 
6.021 5.891 0.130 5.652 5.621 0.031 
6.206 6.241 -0.035 5.636 5.621 0.015 
5.977 6.016 -0.039 5.382 5.401 -0.019 
6.048 5.992 0.056 5.601 5.621 -0.020 
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Fitted values and residuals are given in Table G.6. The residuals give no 
evidence of o,utliers or of any systematic departure from the assumed model; 
this can be c.hecked by plotting in the usual ways, against the explanatory 
variables, for example against D (Fig. G.l) and log S (Fig. G.2), against 
fitted values (Fig. G.3) and normal order statistics (Fig. G.4). 

The estimated standard error of predicted log C for a new power plant, 
provided conditions are fairly close to the average of the observed 32 plants, is 
approximately 0.159 (1 + 1/32)112 = 0.161 with 25 degrees of freedom. Thus 
there is a 95 per cent chance that the actual cost for the new plant will lie within 
about ± 39 per cent of the predicted cost. 

Related reference. Draper and Smith (1981) give a comprehensive account of 
multiple regression and discuss (Chapter 3) the examination of residuals. 



Example H Effect of process and 
purity index on fault occurrence 

Description of data.* Minor faults occur irregularly in an industrial process 
and, as an aid to their diagnosis, the following experiment was done. Batches 
of raw material were selected and each batch was divided into two equal 
sections: for each batch, one of the sections was processed by the standard 
method and the other by a slightly modified process, in which the temperature 
at one stage is reduced. Before processing, a purity index was measured for the 
whole batch of material. For the product from each section of material it was 
recorded whether the minor faults did or did not occur. Results for 22 batches 
are given in Table H. I. 

Table H.l. Occurrence of faults in 22 batches 

Purity Standard Modified Purity Standard Modified 
index process process index process process 

7.2 NF NF 6.5 NF F 
6.3 F NF 4.9 F F 
8.5 F NF 5.3 F NF 
7.1 NF F 7.1 NF F 
8.2 F NF 8.4 F NF 
4.6 F NF 8.5 NF F 
8.5 NF NF 6.6 F NF 
6.9 F F 9.1 NF NF 
8.0 NF NF 7.1 F NF 
8.0 F NF 7.5 NF F 
9.1 NF NF 8.3 NF NF 

F, Faults occur . NF, No faults occur. 

• General considerations. The data here are so limited that in practice very 
detailed analysis would hardly be justified. The unusual features of the data are 
the pairing, combined with the availability of a quantitative explanatory vari
able; the response variable is binary. 

Rather than plunge straight into the fitting of relatively complex models, it is 
wise to start by simple analysis, first ignoring the explanatory variable and then 

• Fictitious data based on a real investigation. 
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examining the effect of that variable by simple graphs or tables. Maximum
likelihood fitting of various models can then follow, with a simple basis having 
been laid fo~ understanding the answers. 

The analysis. If we ignore purity index, a standard technique for assessing 
matched-pair data with binary responses involves the 14 pairs with mixed 
response, these being split between 5 'NF, F' and 9 'F, NF'. This suggests a 

·higher chance of fault in the standard process. The null hypothesis of absence 
of process difference is tested via the binomial distribution with 14 trials and 
probability ! ; the two-sided level obtained via a normal approximation with 
continuity correction is 

( j5-7j-~ ) 
2<!> y{l4 X tXt) = 2<fJ(- 0.802) = 0.423, (H. I) 

so that the apparent process effect is entirely consistent with chance 
fluctuations. 

To examine the effect of purity index on its own, a graph, Fig. H.l, of 
grouped proportion of faults versus purity index shows that most of the faults 
occur on batches oflow purity index. 

To investigate both effects, we fit a linear logistic model by maximum 
likelihood. To fit from first principles, rather than by a package such as GLIM, 
the mpdel is taken in the approximately orthogonal form that for the ith 
batch with purityindexx,, 

exp[a:+ D.+ f'(xt -x)] 
pr(faultjstandard process) = 1 [ D. f'( ")] 

. +exp ex+ + Xt-x 

(H.2) 
. exp[a:-D.+f'(xt-.X)] 

pr(faultjmod1fied process) = 1 [ D. PC ")], +exp ex- + Xt-X 

where .X is the mean of the x,. It is provisionally assumed that responses are 
independent when purity index is in the model. 

Table H.2 compares the results of fitting the model (H.2) and of reduced 
models with D. = 0, with f' = 0 and with (3 = D. = 0. The last two models 
correspond to two and one simple binomial distributions. The results confirm 
the simpler analyses. The data are not consistent with constant probability of 
fault; x2 with 2 degrees of freedom is 

2(-26.406+29.767) = 6.72 

and is just significant at 5 per cent. The estimate of the logistic process difference 
2D. is 0.864 with a standard error of 0.672. Thus a wide range of differences, 
including D. = 0, is consistent with the data. Positive means that the standard 
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Table H.2. Fitting of linear logistic models 

Model No. of Max. log Estimates and 
parameters lik. standard errors 

Mean 3 -26.406 &. - 0.412± 0.333 
Process difference a 0.432±0.336 
Purity index p -0.604±0.284 

Mean 2 -29.010 &. -0.381 ±0.313 
Process difference a 0.381 ±0.313 

Mean 2 -27:261 &. -0.395 ± 0.461 
Purity index p -{).579 ± 0.391 

Mean ' -29.767 &. -0.368±0.307 

process has the higher probability of fault. A trend with purity index is moder
ately well established; P = -0.604, with a standard error of 0.284, the two
sided P value is less than 5 per cent and the trend is in the direction expected on 
general grounds. 

To interpret the parameters and to check the adequacy of the model, Fig. H.l, 
shows the fitted models, i.e. the curves (H.2) with a:, {3, 11 replaced by &, p, &., 
The figure also shows the observed proportions offaults based on a grouping 
into five sets with roughly constant purity index in each set. The plot exposes 
the paucity of the data, revealed of course also by very wide confidence limits 
for f3 and 11; if desired these limits, too, could be illustrated graphically. 
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Further points and exercises. 
(i) Find the exact binomial probability corresponding to Equation (H.l). 
(ii) Compare tests of f3 = 0 and of 6. = 0 from maximum-likelihood 

estimates and their standard error, with those based on maximized log likeli
hood. 

(iii) The model (H.2) assumes independence of the two responses in a pair. 
How can this be tested and, if necessary, dependence allowed for? 

(iv) An alternative to the linear logistic model is to record 1 for fault, 0 for no 
·rartlt, to fit a linear model for expected response, i.e. for the probability of a 
fault. Compare this with the results of Table H.2; under what circumstances 
wduld this approach be expected to give appreciably different answers from 
the linear logistic model? 

Related references. The comparison of binary data in matched pairs is des
cribed by Armitage (1971, §16.2) and Wetherill (1967, p. 193). Linear logistic 
models are discussed by Ar~e (1971, §12.5), Cox (1970), and Snedecor and 
Cochran (1967, §§16.8-16.12). Computer programs for their fitting by maxi
mum likelihood are fairly widely available. 



Example I Growth of bones 
from chick embryos 

Description of data. Table 1.1 gives data on the growth of bones from 
seven-day-old chick embryos after cultivation over a nutrient chemical 
medium (Biggers and Heyner, 1961). The observations are. of log dry weight 
(f.kg). Two b9nes were available from each embryo and the experiment 
was therefore set out in a {balanced) incomplete bloc;k design with two units 
per block. C denotes the complete medium with about 30 ingredients in 
carefully controlled quantities. The five other media were obtained by 
omitting a single amino acid, e.g., His- is a medium without L-histidine, 
etc. The treatment pairs were randomized, but the following results are 
given in systematic order. Interest lies in comparing the effects of omitting 
the various amino acids. ' 

Table 1.1. Log10(dry weight) of tibiotarsi from seven-day-old chick embryos 

Embryo I c 2.51: His- 2.15 9 His- 2.32: Lys- 2.53 
2 c 2.49: Atg- 2.23 10 Arg- 2.15: Thr- 2.23 
3 c 2.54: Thr- 2.26 11 Arg- 2.34: Val- 2.15 
4 c 2.58: Val- 2.15 12 Arg- 2.30: Lys- 2.49 
5 c 2.65: Lys- 2.41 13 Thr 2.20: Val- 2.18 
6 His- 2.11: Arg- 1.90 14 Thr- 2.26: Lys- 2.43 
7 His- 2.28: Thr- 2.11 15 Val- 2.28: Lys- 2.56 
8 His-: 2.15: Val- 1.70 

. I 

General considerations. This experiment forms a balanced incomplete block 
design. It would be possible to analyse it via the special formulae for such 
designs (Cochran and Cox, 1957, §1 1.5) but, partly because of the ,special 
simplicity resulting from the use of only two treatments per 'block', it is more 
instructive to proceed from first principles. 

The simplest analysis of such designs, the so-called within-block analysis, 
regards variation between pairs as arbitrary, each pair thus in effect having an 
associated parameter unique to that pair. The only way that conclusions about 
the treatments can be drawn free of these pair parameters is in effect by forming 
a single derived response for each pair, eliminating pair effects. This is most 
simply done by taking the difference between the two values for a pair as a 
derived response having,expectation the difference between the corresponding 
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true effects for the two treatments concerned. This implicitly makes the 
plausible assumption that the effect of omitting a single amino acid is to sub
tract from log weight a characteristic (unknown) amount, i.e. that weight itself 
is reduced by' some unknown fraction. This leads to a linear model for the 
derived responses and hence to the application of the method of least squares. 

For incomplete block designs like this, a second independent analysis can be 
made in which the pair parameters are regarded as random and the pair sums 
or means regarded as a second derived response variable. This leads to a new 
set ofleast-squares estimates, independent of the first set, and the final estimates 
are appropriately weighted means of the within-pair and between-pair esti
mates. It is quite common practice to omit the second analysis and this is 
sensible wherever there is substantial variation between blocks, although 
when the block size is small, and especially as here where the block size is two, 
up to half the information may be in the between-block analysis. 

The analysis. If Yu denotes the jth observation (j = 1, 2) on the ith block 
(i = 1, ... , 15), we base the analysis on the linear model 

(1.1) 

where p. represents an overall constant, fit a block parameter, Tk the effect due 
to treatment k and e11 is random error. 

For the within-block analysis we consider the differences within blocks, 
Wt = ¥t1 - Yt 9, with expected value 

(1.2) 

kH a~d k21 being the two treatments applied to block i. More conveniently, 
we can write 

8k = TC-Tk, (I.3). 

where rc denotes the effect due to the complete medium, i.e. 8" (lc = I , ... , 5) 
represents the effect of omitting the kth amino acid; the 8/C are the quantities 
directly of interest. The model is thus 

E(W) =X() (1.4) 

with WT = (W1,, •• , W15) and (JT = (81, • •• , 86) and X is a simple 15 x 5 
matrix with el~ments 1, 0 and -1. The least-squares solution is straightforward 
and the estimates 0" are given in Table I.2. The residual mean square is 0.0132 
with 10 degrees of freedom and the estimated standard error of 0 k is 0.066. 

For the between-block analysis we assume fit in Equation (1.1) to be a 
random variable with E({31) = 0 and analyse the block totals Zt = Ytt + Yt2· 

From Equation (1.1), 

(I.S) 
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Table 1.2. Estimates of parameters 0" 

Within-block estimate, 0" 
Between-block estimate, iJ" 
Pooled estimate, OZ 

Amino acid 

His Arg Thr 
k=l k=2 k=3 

0.218 0.353 0.348 
0.553 0.395 0.333 
0.286 0.361 0.345 
Est. s.e. (0k) = 0.066, I 0 d.f. 
Est. s.e. (ilk) = 0.132, 8 d.f. 
Est. s.e. (Ot) = 0.059 
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Val Lys 
k=4 k=5 

0.490 0.160 
0.420 -0.065 
0.476 0.115 

which may be reparameterized in terms of (h's, although it is simpler in this 
case to fit Equation (1.5) directly, assuming :ErA: = 0, and to obtain estimates 
ek, say, by differencing the least-squares estimates 1'c and ~k· The estimates 
ek are given in Table I.2. The residual mean square from Equation (1.5) is 
0.0348, which, as expected, is larger than that from the within-block analysis. 
The estimated variance of ek is 0.0174 with 8 degrees of freedom. 

We pool the within-block estimates 6k and the between-block estimates ek, 
weighting each inversely proportionally to its estimated variance, to obtain 
pooled estimates 0~, given in Table 1.2. These are very similar to the estimates 
from the within-block analysis. Each amino acid has a significant effect upon 
the weight. 

The data in Table I.l are log10 (dry weight). Thus after taking antilogarithms 
of 0~', the estimated percentage reductions in weight when each of the amino 
acids His, Arg, Thr, Val and Lysis individually omitted are 48, 56, 55, 67 and 
23 per cent respectively. 

Further points and exercises. 
(i) Determine confidence limits for the above estimated percentage reduc

tions in weight. This may be done using the pooled estimate of variance and 
'effective' degrees of freedom in the manner of Example S. 

(ii) It would be possible to do the above analysis with weight rather than log 
weight as the response variable, or indeed with other functions ofweigh,t. What 
considerations are involved in choosing between these different analyses? 



Examplel Factorial experiment on cycles 
to faiilure of worsted yarn 

Description of data. In an unpublished report to the Technical Committee, 
International Wool Textile Organization, A. Barella and A. Sust gave the data 
in the first four columns of Table· J.l, concerning the number of cycles to 
failure of lengths of worsted yarn under cycles of repeated loading. The three 
factors which varied over levels specified in coded form in the first three 
columns, are 

x1, length of test specimen 
x 2, amplitude of loading cycle 
x8, load 

(250, 300, 350 mm); 
{8, 9, 10 mm); 
(40, 45, 50 g). 

General considerations. There are a number of reasons why use of log cycles to 
failure is likely to be the most effective way of analysing these data. Firstly, 
relationships of the type y ex: xlhx2P•xl• are quite commonly found in the 
physica!"sciences as reasonably close approximations to empirical behaviour. 
Secondly, the resulting parameters {11, {1 2 and {13 are dimensionless and thus, 
especially if they are close to simple integers, relatively easy to interpret. 
Thirdly, provided that the signs of {11, fJ~ and {13 are appropriate, sensible limit
ing behaviour as the x's tend to zero and infinity is achieved. All these points • 
concern the form of the systematic variation. 

As for the random variation, again a log transformation is likely to be sen
sible. Cycles to failure vary over a very wide range (by a factor of 40 in fact) and 
the amount of random variation is likely to increase with the mean cycles to 
failure. More specifically, under one of the physically simplest hypotheses the 
effect of changing factor levels is to multiply the 'lifetime' of a particular 
individual by a constant. This, sometimes called the central assumption of 
accelerated life testing, implies that the coefficient of variation of cycles to 
failure, Y, is constant and thus that the standard deviation oflog Yis constant. 

While these two lines of argument suggest on general grounds taking log Y 
as response and log x1, log x 2 and log x 3 as explanatory variables, of course an 
empirical test of the suitability of this analysis is still needed. 

The balanced nature of the experimental design has two closely related con
sequences. One is that least-squares fitting of various models representing 
first-degree, second-degree, etc., regression oflog Yon log x1, log x2 and log x 3 
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Table J.l. Cycles to failure, transformed values, fitted values 
and residuals 

Cycles Log cycles 

x, x. X a obs obs fitted resid. 

-1 -I -1 674 6.51 6.52 -0,01 
-1 -I 0 370 5.91 6.11 -0.20 
-I -1 I 292 5.68 5.74 -0.06 

-I 0 -I 338 5.82 5.85 -0.03 
-1 0 0 266 5.58 5.44 0.14 
-I 0 I 210 5.35 5.07 0.28 

-I -I 170 5.14 5.26 . -0.12 
.-1 0 118 4.77 4.84 -O.o7 
-I 1 90 4.50 4.48 0.02 

0 -I -I 1414 7.25 7.42 -0.17 
0 -I 0 1198 7.09 7.01 0.08 
0 -1 1 634 6.45 6.64 -0.19 

0 0 -I 1022 6.93 6.76 0.17 
0 0 0 620 6.43 6.34 0.09 
0 0 I 438 6.08 5.97 0.11 

0 -I 442 6.09 6.16 -0.07 
0 0 332 5.81 5.75 0.06 
0 I 220 5.39 5.38 0.01 

-I -I 3636 8.20 8.18 0.02 
-I 0 3184 8.07 7.77 0.30 
-I 1 2000 7.60 7.40 0.20 

0 -I 1568 7.36 7.52 -0.16 
0 0 1070 6.98 1 7.11 -0.13 
0 I 566 6.34 I 6.74 -0.40 

-I 1140 7.04 6.92 0.12 
0 884 6.78 6.51 0.27 
I 360 5.89 6.14 -0.25 

x, length; x,, amplitude of loading cycle; x3, load. 

is computationally very simple. The other is that the general form of the system-
atic variation can be studied very easily and directly from appropriate mean 
values collected in two-way and one-way tables, as for other forms of balanced 
factorial experiment. While the final summary of conclusions is likely to be 
primarily in terms of a fitted regression equation, the explanatory variables 
being quantitative in nature, critical inspection of two-way tables is all the 
same an important intermediate step in the analysis. 



100 Applied statistics 

The analysis. Table J .2 gives two-way and marginal means of log cycles to 
failure; throughout natural logs are used. The two-way tables show little 
evidence of interaction and the marginal means show that the variation with 
factor levels is ~redominantly linear; the factor levels are not quite equally 
spaced in terms of log x. 

Table J.2. Two-way and one-way means 

Lbai:l Amplitude of loading Load Length of test specimen 
cycle 

0 + 0 + Mean 

7.32 6.70 6.09 5.82 6.76 7.53 6.70 
0 7.02 6.33 5.79 0 5.42 6.44 7.28 6.38 
+ 6.58 5.92 5.26 + 5.18 5.97 6.61 5.92 

Mean 6.97 6.32 5.71 5.47 6.39 7.14 

Amplitude Length of test specimen 
of loading 

0 + Mean cycle 

6.03 6.93 7.16 6.97 
0 5.58 6.48 6.89 6.32 

+ 4.80 5.76 6.57 5.71 

Mean 5.47 6.39 7.14 

Extraction of lfnear components of main effects, equivalent to the linear 
model -

is done either by direct least-squares fitting, or equivalently by extracting the 
linear regression. component from the marginal means. There results 

pl = 4.957, Pz = -5.651, p3 = 3.501. (J.2) 

As already noted, inspection of Table J.l shows that the model in Equation 
(J.l) is likely to account for most of the systematic variation. To examine this 
in more detail, six more degrees of freedom have been isolated, i.e. six more 
parameters added to Equation (J.l). These' are respectively linear-by-linear 
interactions, i.e. product terms such as ,B 23 logx2 logx3 and, pure quadratic 
terms such as {311 (log x1) 2, taken for convenience in a form orthogonalized 
with respect to the parameters in Equation (J.l). 
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Table J.3. Analysis of variance 

d.f. s.s. m.s. 

Length of test specimen, x1 (linear) 12.5415 
Arnpl. of loading cycle, x, (linear) 7.1595 
Load, x3 (linear) 2.7487 

Am pl. (linear) x load (linear) 0.0054 
Load (linear) x length (linear) 0.0529 
Length (linear) x amp!. (linear) 0.0211 
Length (quad.) 0.0013 
Ampl. (quad.) 0.0007 
Load (quad.) 0.0480 

~otal second-degree terms 6 0.1294 0.02157 

Residual 17 0.6368 0.03746 
Total 26 23.2159 

Table J.3 gives the analysis of variance. The total contribution of quadratic 
terms has a mean square rather less than that for residual. It is immaterial 
whether the error of the estimates (J .2) is obtained via the residual mean square 
from the linear model (J.l) or from the residual mean square of the extended 
model with quadratic terms. To be slightly cautious, the second and rather 
larger value has been taken, giving a residual standard deviation of 0.194 and 
estimated standard errors for (J.2) of 

0.271, 0.409, 0.409 

with 17 degrees of freedom. 
The near equality of P1 and - P2 suggests that the dependence on x1 and x 3 

can be expressed in terms of x 2/x1, and this is particularly appealing on dimen
sional grounds because both x 2 and x1 are lengths. The composite variable 
x 2/x1 is the fractional extension of the loading cycle. It would, however, not 
be correct to argue that by dimensional analysis any dependence can only be on 
the dimensionless variable x 2/x1, because there are other lengths implied in the 
problem, notably the mean fibre length. ' 

The data are in fact quite closely fitted by the simple relationship 

It would be instructive to compare the residual standard deviation of0.154, 
corresponding to a coefficient of variation of about 20 per cent, with any value 
that might be available for repeat tests under the same conditions. A graph of 
the residuals versus fitted values gives no evidence that the error of log cycles 
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to failure varies with the mean response: thus the data seem reasonably con
sistent with the central assumption of accelerated life testing. 

Related references. Davies (1963, Chapter 8) and Snedecor and Cochran (1967, 
§§12.5, 12.6) describe methods for the analysis of 33 factorial experiments with 
quantitative factors. Box and Cox (1964) used this example to illustrate the 
formal estimation of a transformation by maximum-likelihood methods. 



Example K Factorial experiment on 
diets for chickens 

Description of data. An experiment comparin,g 12 methods of feeding chickens 
(Duckworth and Carpenter; see John and Quenouille, 1977) was done indepen
dently in two replicates arranged in different houses. The treatments, forming 
a 3 x 2 x 2 factorial, were 'form of protein', 'level of protein', 'level of fish 
solubles'. The data are given in Table K. I. 

Table K.l. Total weights of 16 six-week-old chicks (g) 

Protein Level of Level of House 
protein fish 

solubles II 

Ground nut 0 0 6559 6292 
I 7075 6779 
0 6564 6622 
I 7528 6856 

2 0 6738 6444 
I 7333 6361 

Soya bean 0 0 7094 7053 
I 8005 7657 
0 6943 6249 
1 7359 7292 

2 0 6748 6422 
I 6764 6560 

General considerations. Because of the balanced nature of the data the conclu
sions follow directly from marginal, two-way, etc., tables of mean values. 
Calculation and inspection of these is an essential first step. 

Analysis of variance in such situations serves two purposes. One is to deter
mine an estimate of variance for assessing the precision of the contrasts of 
means. The second is to ensure that no contrast estimable from the design is 
overlooked. Usually in factorial experiments it is hoped that main effects and 
perhaps some two-factor interactions will turn out to be the only appreciable 
contrasts. However, careful inspection of the full analysis-of-variance table is 
an advisable precaution against unanticipated features, such as that the data 
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are best split into separate sections by the level of one of the factors, or that 
one particular combination of factor levels gives a response quite different 
from the remaining combinations. 

In the present case, three of the factors represent treatments and one, 
'houses', replication of the experiment and choice of an estimate of error is 
most reasonably based on the interactions with houses. This essentially hinges 
on the supposition that the treatment effects are the same in the two houses; 
even so it will be wise to check that the various component interactions with 
houses are roughly comparable. 

The analysis. Two-way means are given in Table K.2. The marginal pattern in 
the two houses is very similar, high weight being achieved for soyabean, low 

Table K.2. Means of total weights of 16 chicks (g) 

House 

II 

Protein Groundnut 6966 6559 
Soyabean 7152 6872 

Level of 0 7183 6945 
protein 1 7099 6755 

2 6896 6447 

Level of fish 0 6774 6514 
solubles I 7344 6918 

· Protein Level of protein 
0 1 - 2 Mean 

Groundnut 6676 6892 6719 6763 
Soyabean 7452 6961 6624 7012 

Mean 7064 6927 6671 6887 

Protein Level of fish 
solubles 
0 I Mean 

Groundnut 6537 6989 6763 
Soya bean 6751 7273 7012 

Mean 6644 7131 6887 

Level of fish Level of protein 
solubles 0 1 2 Mean 
0 6750 6594 6588 6644 
1 7379 7259 6755 7131 

Mean 7064 6927 6671 6887 
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Table K.3(a). Mean squares for factorial effects within houses, pooled over 
houses and interactions with houses 

d.f. rn.s. ( x IO-•) 

House I House II Main Interaction 
component with houses 

p 1 0.1038 0.2942 0.3738 0.0242 
Lp 2 0.0873 0.2531 0.3181 0.0223 
LF 1 0.9736 0.4892 1.4216 0.0412 
PXLp 2 0.2610 0.1931 0.4291 0.0250 
LpXLF 2 0.0525 0.1084 0.1544 0.0642 
PXLF 1 0.0447 0.1096 0.0072 0.1471 
PXLpXLF 2 0.0766 0.0348 0.0251 0.0864 

level of protein and high level of fish solubles. There is a suggestion of inter
action between protein and level of protein. 

Table K.3 (a) shows the mean squares for the factorial contrasts, first cal
cuiated separately within each house and then, more meaningfully, split into a 
'main component' based on a pooling of the two houses and an interaction 
with houses. The interactions with houses (last column) are broadly compar
able and provide a pooled estimate of error for the final analysis of variance in 
Table K.3(b). · 

The interaction protein x level of protein is significant at the 1 per cent level. 
Also, level of protein x level offish solubles is suggestive at the 5 per cent level. 
We cannot therefore interpret the main effects in a straightforward way. Par
titioning the contrasts associated with level of protein into linear and quadratic 
components is in this instance unenlightening. 

Table K.3(b). Mean squares for factorial 
effects with pooled error 

p 
LP 
LF 
H 
PXLp 
LpXLF 
PXLF 
PXLpXLF 
Error 

d.f. rn.s. ( x 10-0) 

1 
2 
1 
I 
2 
2 
I 
2 

11 

0.3738 
0.3181 
1.4216 
0.7083 
0.4291 
0.1544 
0.0072 
0.0251 
0.0448 

P, protein; Lp, level of protein; LF, 
level of fish solubles; H, house 
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Fig. K.l. Weight of 16 six-week-old chicks versus level of protein. 
- - - - - Ground nut; Level of fish solubles, 0 
. . . . . . . . . • . . Groundnut; Level offish solubles, 1 

Soya bean; Level of fish solubles, 0 
-.-.-.- Soyabean; Level of fish solubles, 1 

Figure K.l shows how the weight, averaged over the houses, varies with the 
3 x 2 x 2 different diets. The diet producing the highest mean weight is: Protein, 
soyabean; Level of protein, 0; Level of fish solubles, 1. The average total 
weight ,.of 16 six-week-old chicks with this diet is 7831 g; the next highest 
average is 7326 g. The estimated standard error of the difference between 
these means is 212 g with 11 degrees of freedom. 

Further points lind exercises. 
(i) In the general considerations above, two possibilities are mentioned. 

where description in terms of main effects, etc., is not appropriate for the final. 
presentation of conclusions. How could these possibilities be detected and 
analysed? 

Related reference. John and Quenouille (1977, §3.6) give an analysis of this 
example. 



Example L Binary preference data for 
detergent use 

Description of data. Table L.l (Ries and Smith, 1963) compares two detergents, 
a new product X and a standard product M. Each individual expresses a pre
ference between X and M. In the table, Yt is the number of individuals out of 
n1 in 'cell' j whci prefer X, the remaining llJ- Y1 preferring M. The individuals 
are classified by three factors, water softness at three levels, temperature at 
two levels, and a factor whose two levels correspond to previous experience and 
no previous experience with M. The object is to study how preferences for X 
vary. 

Table L.l. Number Y1 of preferences for brand X out of 
IIJ individuals 

Water softness M previous non-user M previous user 

Temperature Temperature 

Low High Low High 

Hard YJ 68 42 37 24 
II) 110 72 89 67 

Medium YJ 66 33 47 23 
II) 116 56 102 70 

Soft YJ 63 29 57 19 
/lj 116 56 106 48 

General considerations. Here preference for brand X is a binary response 
variable for each individual and the other variables are explanatory variables. 
Thus the data are in the form of a 3 x 2 x 2 factorial system, with a considerable 
number of individuals in each cell, although the unequal numbers in the 
different cells imply a lack of balance. The three levels of water softness are 
ranked and some account must be taken of tllis, even if only informally. A 
simple, somewhat arbitrary but nevertheless effective device is to treat the 
three levels as equally spaced on some notional scale of softness and to extract 
linear and quadratic components of regression. 

It is common to analyse binary data like this by a linear logistic model, i.e. 
by concentrating not so much on 0, the probability of preferring brand X in a, 
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particular cell, as on the logistic transform log{0/(1- 0)}. There are reasonably 
cogent arguments for doing this in general, most notably that the parameters so 
involved are:more likely to have a stable interpretation over a range of overall 
probability levels. The function log{0/(1- 0)} is, however, very nearly linear 
over the range of 0 from 0.2 to 0.8 and in the present data the cell proportions 
of preferences for brand X are well within that range. Thus a linear model for 
log{0/(1- 0)} and a linear model for 0 are mathematically virtually identical. 

·.'flie analysis directly in terms of 0 has the advantage of more direct interpret
ability and is thus to be preferred in this case. If, however, it were likely that 
at, some stage the data were to be compared with another similar set of data 
with much higher or much lower preference rates, then estimation on a logistic 
scale (i.e. effectively multiplication of estimates on a linear scale by an ap
propriate factor) would make sense. 

The proportions of preferences in the different cells are not of equal precision. 
For fitting a saturated model, i.e. one with as many parameters as cells, these 
changes of variance are unimportant. For fitting reduced models, i.e. for 
estimating certain contrasts assuming others to be zero, revised estimates 
would be obtained by allowing for the changes of variance, fitting by maximum 
likelihood or weighted least squares. In the present case, however, the changes 
in variance are relatively minor and it is unlikely that any change ofimportance 
would be made by introducing the extra complication. The simpler methods 
based on unweighted averages of proportions have thus been preferred. Note 
particularly that in estimating main effects in the analysis below, proportions 
in the various 'cells' are combined by unweighted averaging. 

M!lthodological details. If in a particular cell there are Yt preferences for brand . 
X in 111 individuals, the relevant probability is_estimated by Pi = Yt/llJ with an· 
unbiased estimate of variance VJ = { Yt(11J- Yt)}/{nl(nt-1 )}. In the following 
analysis the average of the vj's is used as an effective error mean square. The 

Table L.2. Observed proportions and estimated variances 

Water M previous non-user M previous user 

Temperature Temperature 

Low High Low High 

Hard 0.618 2 0.583 3 0.415 7 0.358 2 
0.002 17 0.003 42 0.002 76 0.003 48 

Medium 0.569 0 0.589 3 0.460 8 0.328 6 
0.002 13 0.004 40 0.002 46 0.003 20 

Soft 0.543 I 0.517 9 0.537 7 0.395 8 
0.002 16 0.004 54 0.002 37 0.005 09 
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main systematic difference in the variances is that the variances are greater at 
- the high temperature than at the low temperature because of the smaller 

numbers of individuals. 
The estimate of variance is based on the binomial distribution, i.e. on the as

sumed independence of individuals. Any form of 'clustering' in sampling the 
individuals would tend to inflate variance. If it had been the case that some 
individuals appeared in several cells, the effective variance would be decreased; 
so far as we know, all individuals are different. 

Table L.3. Two-way and marginal mean 

Water Temperature 

Hard 
Medium 
Soft 

Low High 

0.517 
0.515 
0.540 
0.524 

0.471 
0.459 
0.457 
0.462 

Temp. 

Low 
High 

0.494 
0.487 
0.499 
0.493 

M 

Previous 
non-user 

0.577 
0.564 
0.570 

Water 

Hard 
Medium 
Soft 

Previous 
user 

0.471 
0.361 
0.416 

M 

Previous Previous 
non-user user 

0.601 0.387 0.494 
0.579 0.395 0.487 
0.530 0.467 0.499 
0.570 0.416 

0.524 
0.462 

The analysis. Table L.2 shows the proportions of preference for brand X, cell 
by cell, and the associated variances. The average variance is 0.003 181. Table 
L.3 gives the two-way and marginal proportions obtained by unweighted 
averaging of the entries of Table L.2. 

The main descriptive conclusions stand out from Table L.3. The previous 
non-users ofM have higher proportions preferring X than the previous users of 
M.'Moreover, the changes in proportion for the previous non-users are .quite 
small and different from those for the previous users. For the latter the pro
portions preferring X are nearly all below t, are lower at the higher temperature 
and lower for hard water than for soft water. 

To investigate the precision with which these effects are established, the 
standard factorial contrasts have been calculated from the proportions. 
Standard errors could be attached to these. Alternatively, Table L.4 gives the 
analysis-of-variance decomposition into single degrees of freedom. 

The main effect of previous usage ofM is overwhelmingly significant, as to be 
expected. Of the other effects, temperature and two interactions with_previous 
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Table L.4. Analyses of variance 
(a) Full data 

d.f. rn.s. 

Previous usage of M (M) 0.071 15 
Temperature (T) O.Oll 49 
Softness (linear) (SL) 0.000 05 
Softness (quad.) (SQ) 0.000 23 
MxT 0.007 10 
MXSL O.Oll 26 
MXSQ 0.001 39 
TXSL 0.000 70 
TxSq 0.000 05 
MxTxSL 0.00111 
MxTXSQ 0.001 14 

Total II 0.009 61 
Theoretical error 00 0.003 18 

(b) Split data 

Previous Previous 
non-users users 
ofM ofM 

d.f. rn.s. m.s. 

T 0.000 26 0.018 33 
SL 0.004 94 0.006 37 
SQ 0.000 24 0.001 38 
TXSL 0.00002 0.001 78 
TXSQ 0.000 84 0.000 35 

Total 5 0.001 26 0.005 64 
Theoretical 
error 00 0.003 14 0.003 23 

usage of M are appreciably greater than error but short of significance at the 
5 per cent level. Thus interpretation beyond that of M has to be made with 
reservations. 

If, however, in view of the large main effect of previous use ofM, and of two 
suggestive interactions with it, we split the data into two halves to be analysed 
separately, the further analyses of Table L.4 are obtained. For the previous 
non-users the variations are rather less than would be expected by chance. For 
the previous users, the effect of temperature is now significant at the 2 per cent 
level, but in judging the strength of evidence for this effect some allowance for 
selection is desirable. 
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To summarize, there is clear difference in overall preference proportion for 
X as between previous non-users of M and previous users of M. Other effects 
are not definitely established but for the previous users there is a higher pro
portion at the lower temperature, 0.471 versus 0.361, and a tendency for the 
proportion to be higher with soft water. 

All conclusions about precision depend on the validity of the independence 
.assumptions underlying the calculation of error; however, the fact that the 
changes in proportion, except for the effect of previous usage, are relatively 
small may mean that the effects, even if real, are unimportant. 

Further points and exercises 
(i) Calculate the constant necessary to convert effects on a direct proportion 

scale into those on a logistic scale, in the range near 50 per cent response. 
(ii) Com par~ the analysis with those given by Bishop, Fienberg and Holland 

(1975, pp. 142-167); Cox (1970, p. 39); and by Ries and Smith (1963). 



Example.M Fertilizer experiment on 
growth of cauliflowers 

Description of data. In an experiment on the effect of nitrogen and potassium 
upon the growth of cauliflowers, four levels of nitrogen and two levels of 
potassium were tested: 

Nitrogen levels: 0, 60, 120, 180 units per acre (coded as 0, I, 2, 3); 
Potassium levels: 200, 300 units per acre (coded as A, B). 

The experiment was arranged in 4 blocks, each containing 4 plots as shown 
below. When harvested, the cauliflowers were graded according to size. Table 
M.1 shows the yield (number of cauliflowers) of different sizes: grade 12, for 
example, means that 12 cauliflowers fit into a standard size crate. The data were 
provided by Mr J.C. Gower, Rothamsted Experimental Station. 

Table M.l. Numbers of cauHflowers of each grade 

Block Treatment Grade Unmarketable 

12 16 24 30 

OA I 21 24 2 
2B 6 24 13 4 
lB 4 28 12 4 
3A 10 26 9 1 

Il 3B 4 26 14 4 
lA 5 27 13 3 
OB 12 28 8 
2A 5 35 5 3 

Ill 1B I 22 22 3 
OA I 8 33 3 
3A 6 22 17 2 
2B 3 27 14 4 

IV OB 8 30 10 
2A 7 16 22 3 
3B 2 31 11 4 
lA 13 26 9 
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General considerations. The response variable here is a frequency distribution of 
cauliflowers of various sizes. After preliminary inspection of the data, the first 
step is to form one or more derived response variables in terms of which treat
ments can be compared. 

A technical point in the analysis concerns the design used and the estimation 
of contrasts and error. The treatments form a 4 x 2 system and one might 

· therefore expect the experiment to be laid out with eight units per block. 
Because there are in fact only four units per block, not all contrasts can be 
estimated simply from within-block comparisons and some close study of the 
design employed is therefore needed. 

The analysis. The frequency distributions in Table M.l show systematic 
differences be~ween treatments; level 3 of nitrogen, for example, produces 
more high-grade cauliflowers than does level 0. To compare the treatments, 
we may form derived response variables in various ways. Two such derived 
variables are given in Equations (M.l) and (M.2). 

For each plot we may, for instance, calculate 

(M.l) 

where nr (r = 12, 16, 24, 30) denotes the observed frequency of cauliflowers of 
grade r. Then Y is the effective number of crates of marketable cauliflowers. 
It could be modified by introducing market values as weighting factors. 
Alternatively, we can take 

(M.2) 

this being the proportion of cauliflowers of grade 24 or better; the divisor 48 
corresponds to the total number of cauliflowers per plot except in those 
instances in which some plants died. 

Here we consider the analysis only of response variable (M.l). An analysis 
based upon Equation (M.2) using a logistic model is likely to lead to similar 
conclusions. 

Table M.2. Yield of cauliflowers, derived response Y 

Treatment Block Treatment Block 

III II IV 

OA 1.738 1.496 OB 1.433 1.333 
lB 1.817 1.712 lA 1.871 1.408 
2B 1.892 1.779 2A 1.938 1.838 
3A 2.092 1.858 3B 1.800 1.783 
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The values of Y for the sixteen plots are shown in Table M.2. 
The experimental design is a complete 2 x 4 factorial, confounded into two 

blocks (I, II, say) with the other two blocks (III, IV) being a replicate. In order 
to determine the system of confounding we look at the coefficients of linear 
contrasts for the 2 x 4 factorial. These are given in Table M.3 and the K. x NQ 
interaction is seen to define the confounding. 

T.a,ble. M.3. Contrasts for 2 x 4 factorial 

Potassium level A B 

Nitrogen level 0 2 3 0 2 3 

Main effects: 
Potassium (K) -1 -1 -1 -1 1 1 1 1 
Nitrogen, Linear (N L) -3 -1 1 3 -3 -1 1 3 

Quadratic (NQ) I -I -1 1 1 -1 -1 1 
Cubic (No) -1 3 -3 1 -1 3 -3 1 

Interactions: 
KXNL 3 1 -1 ~3 -3 -1 1 3 
KXNQ -1 1 1 -1 1 -1 -1 1 
KXNc 1 -3 3 -1 -1 3 .:..3 1 

In principle, an estimate of error for any treatment contrast is provided by 
its inter!j,Ction with replicates and, under the assumption of homogeneity, all 
such interactions can be pooled, giving an error mean square with 6 degrees of 
freedom, i.e. interactions with all contrasts in Table M.3 except K x NQ 
(= blocks). Also we may pool the cubic contrast Nc and its interaction with 
replicates, thus giving an error with 8 degrees of freedom. This leads to the 
analysis of variance given in Table M.4. 

The nitrogen linear contrast NL is significant at the 0.1 per cent level. No 
other contrast is statistically significant, although the mean squares for NQ and 
K are each greater than the error mean square by a factor of about three. 
Estimates of any unconfounded contrasts can be obtained directly from the 
mean values of the observations in the usual way. 

Table M.4. Analysis of variance, derived response Y 

Blocks 
Main effects: K 

NL 
NQ 

Interaction: KXNL 
Error 
Total 

d.f. 

3 
1 
I 
1 
I 
8 

·15 

s.s. 

0.1774 
0.0295 
0.3429 
0.0325 
0.0000 
0.0866 
0.6689 

m.s. 

0.0591 

0.0108 
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An analysis of residuals gives no evidence of outliers or nonnormality. 
A summary of the conclusions from the analysis is as follows: 

115 

(i) There is no evidence that increasing the level of potassium from 200 to 
300 units per acre increases the yield of cauliflowers, as measured by the 
derived variable Y. In fact, the mean is 0.086 crates lower (est. s.e. = 0.052 
with 8 d.f.) at the higher potassium level. 

(ii) Increasing the level of nitrogen increases the yield of cauliflowers. The 
estimated average yield, assuming a quadratic trend over the experimental 
levels, is given in Table M.5. Increasing nitrogen from 60 to 120 units per acre 
increases the yield significantly by 1.85-1. ~2 = 0.13 crate (est. s.e. = 0.024 
with 8 d.f.). No further significant improvement is achieved by increasing 
nitrogen to 180 units per acre. · 

Table M.S. Estimated yield, derived response Y 

Nitrogen level (units per acre) 0 
Estimated yield (no. crates) 1.49 

60 
1.72 

120 
1.85 

180 
1.89 

In the above analysis the dependence on nitrogen level has been assumed, for 
simplicity, to be locally quadratic. It would be possible to fit a more complex 
functional relationship, such as one representing growth to a limit, which would 
be more plausible on general grounds. This is likely to be worthwhile, however, 
only if careful comparison is required of these data with other data obtained 
over a different range of levels. 

Further points and exercises 
(i) Analyse the data in terms of the derived response variable (M.2). 
(ii) It is suggested that the numbers of cauliflowers of the five grades should 

be treated as a five-dimensional response variable and the techniques of formal 
multivariate analysis, in particular canonical regression analysis, used. Criticize 
this proposal, ignoring special aspects introduced by the confounding. 

Related reference. Davies (1963, Chapters 8 and 9) discusses contrasts and the 
analysis of experiments involving confounding. 



Example N Subjective preference 
data on soap pads 

Description of data. Table N.l gives data obtained during the development of a 
soap pad. The factors, amount of detergent, D, coarseness of pad, C, and 
solubility of detergent, S, were each set at two levels. There were 32 judges 
and the experiment was done on two days. Each judge attached a score 
(excellent= l, ... , poor = 5) to two differently formulated pads on each of 
two days. For the data and several different analyses, see Johnson (1967). 

General considerations. There are two important special features about these 
data. Firstly, responses are recorded on a qualitatively ordered scale on which, 
for example, there is no guarantee that the difference between, say, I and 2 is 
meaningfully comparable with the difference between 3 and 4. Secondly, a 
rather complex (and in many ways inappropriate) experimental design has 
been used. 

If the data were of simple structure it might well be feasible to use a primarily 
'distribut(on-free' approach. In the present instance, however, it is easier to 
start by an analysis of means, treating the responses as an ordinary quantitative 
variable. A rough examination of the distribution of responses can be used to 
supplement the analysis of means. 

The design used here involves a particular scheme of confounding. We shall 
discuss analysis from first principles rather than using the specialized results of 
the theory of confounded designs. A crucial point concerns the role of differ
ences between judges. If these are relatively minor, we may regard the mean 
score given by a judge to a particular treatment as a derived reponse; because 
each judge looks only at two treatments, differences between judges are rather 
poorlY. determined. A more cautious approach, however, is to eliminate differ
ences between judges by taking as derived response variable the difference in 
means between the two treatments for a particular judge. 

The analysis. Table N.2 gives combined means for the four replicates, day I and 
day 2; there are no clear patterns or major differences and for much of the 

· remainder of the analysis we do not specifically distinguish replicates and days. 
Table N.3 shows the frequency distribution of the individual responses for the 
8 treatments. The 16 values for each treatments are from 8 judges, each measur
ing twice. 

II6 



Table N.l. Subjective scores allocated to soap pads prepared in accordance with 23 factorial 
scheme. Five-point scale; 1 = excellent, 5 = poor 

Judge Treatment Day 1 Day2 Judge Treatment Day! Day2 

Replicate I Replicate II 
1 I 2 4 5 I 4 2 

17 I 2 3 21 I 3 3 
I des 4 4 5 es 3 4 

17 des 4 4 21 es 1 2 

2 d 5 4 6 d I 2 
18 d 4 4 22. d 5 4 
2 es 2 1 6 des 3 3 

18 es 1 2 22 des 4 4 

3 e 1 3 7 e 3 3 
19 e 5 5 23 e 3 ~ 
3 ds 3 2 7 s 4 4 

19 ds 4 3 23 s 5 3 

4 s 1 3 8 de 4 4 
20 s 2 3 24 de 2 3 

4 de 3 4 8 ds 3 2 
20 de 3 3 24 ds 2 3 

Replicate III Replicate IV 
9 1 3 2 13 I 3 4 

25 I 2 3 29 I 3 4 
9 ds 4 3 13 de 2 3 

25 ds 3 3 29 de 3 4 

10 d I I 14 d 4 4 
26 d 3 3 30 d 4 3 
10 s 2 I 14 e 2 2 
26 s I I 30 e 4 5 

11 e 3 3 15 s 5 5 
27 e 3 3 31 s 3 3 
11 des 3 3 15 des 4 4 
27 des 2 2 31 des I 2 

12 de 3 3 16 ds 4 3 
28 de 4 4 32 ds 4 3 
12 es I 2 16 es 3 4 
28 es 3 3 32 es I 4 
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Table N.2. Means for replicate-day combinations 

Replicate 

Day I 
Day 2 

2.875 
3.250 

2 

3.125 
3.188 

3 

2.562 
2.500 

4 

3.125 
3.562 

From Table N.3 it is apparent that there are no strildng differences between 
treatments. In terms of mean response, the combination sc does best with little 
to choose between the other combinations. If we concentrate on the scores I, 
and ppssibly 2, which in practice may well be the most interesting ones, treat
ments s and sc seem the best. 

Inspection of the results suggests there are no major differences between 
judges, except for judges I 0 and 26 in replicate 3 who have given treatments d 
and s very favourable scores. Without specific information about the nature of 
the judges, there is no reason to 'reject' these values. It is reasonable in an 
approximate analysis to interpret the mean values by an analysis of variance as 
if there were 16 separate judges in each replicate rather than 8 judges, each 
acting for two treatments. The net effect is to favour somewhat the combination 

' 
Table N.3. Frequency distributions of response versus treatment 

Treatment 

s c sc d ds de dsc -----
Score 

I 0 4 J 5 3 0 0 I 
2 5 2 2 4 J 3 2 3 
3 7 5 8 4 3 9 8 4 
4- 4 2 I 3 7 4 6 8 
5 0 3 4 0 2 - 0 0 0 

Mean 2.938 2.875 3.312 2.312 3.250 3.062 3.250 3.188 

d and sand to overestimate error. Table N.4 gives the analysis of variance. In 
the absence of identification of specific qualitative distinctions between 
replicates, treatments x replicates (m.s. = 1.811) provides a valid cautious 
estimate of the error of treatment contrasts. It is clear without formal testing 
that the treatment differences (m.s. = 1. 713) are entirely explicable as random 
variation. The split into factorial contrasts is not particularly helpful. Indeed, 
the relatively large value for the three-factor interaction is a warning of the 
inappropriateness of the factorial representation: the simplest descriptive 
comment 011 the treatment means is that the combination cs has a relatively 
good score with little variation between the other 7 treatments. 

The last two lines of the analysis of variance throw some light 011 the error 
structure. If az is the variance of pure error for one judge and uj the variance of 
systematic judge effects, we have the estimates 
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a2 = 0.367' 
i.e. fi = 0.606, 

fi2 +2BJ = 1.742, 
fiJ = 0.829. 

119 

The meaningfulness of these estimates depends strongly on the precautions 
of randomization and concealment used to ensure independence. 

The relatively large value of fh implies that it is probably worth making an 
, analysis in whichjudge effects are eliminated, the previous analysis being 'valid' 
but inefficient. In view of the remarks about judges 10 and 26, one of the main 
changes brought about by using a within-judge analysis is likely to be an 
increase in the estimated means ford and for s. 

Table N.4. Analysis or variance ignoring repetition of judges 

d.f. s.s. m.s. 

s 3.4453 
c 0.0078 
D 3.4453 
CxD 0.1953 
DxS 1.3203 
sxc 1.3203 
SxCxD 2.2578 

Treatments 7 11.9922 1.713 
Replicates 3 11.6484 3.883 
Treatments X Replicates 21 38.0394 1.811 
Days I 1.3203 1.320 
Days X Replicates 3 1.3983 0.466 
Days x Treatments 7 6.7422 0.963 
Days x Treatments X Replicates 21 10.2891 0.490 
Between judges, within treatments, 

within replicates 32 55.7500 1.742 
Days x Between judges 32 11.7500 0.367 

Total 127 

For a relatively simple within-judge analysis, a derived response is' taken 
giving the difference in total response for a particular judge. Thus, for judge 
I, 4+4.,.-2-4 is taken as a response estimating Odes, the parameter comparing 
des with I. Similarly for judge 2, 2+ 1-5-4 estimates Bc8 - Od, etc. Note that 
the O's have to be halved to give differences of mean response, and test under the 
simplest notions about error will have variance 4u2 estimated as 1.468. Table 
N.5 summarizes the results of the least-squares analysis. The Fvalue for fitting 
parameters is 2.19, which is slightly larger than the 10 per cent point. There 
is thus a sharpening of the apparent precision by the use of the within-judge 
analysis, but apparent differences still cannot be claimed as unambiguously 
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Table N.5. Within-judge analysis of derived responses 

d.f. s.s. m.s. 

'Fitting parameters 7 78.83 11.26 
Residual 25 128.17 5.13 

Between sessions 9 56.67 6.30 
Between pairs within sessions 16 71.50 4.47 

Total 32 207.00 

Estimated parameters 
1 s c sc d ds de des 

1.79 1.58 -1.38 2.62 0.42 1.46 1.50 

established by the experiment. To interpret the 6's, they have been halved and 
then adjusted to agree in overall mean with the data, giving the second row of 
Table N.6. The adjustment has enhanced the apparent superiority of cs and, as 
anticipated, worsened d and s. 

To summarize, the experiment does not clearly establish effects of the three 
factors studied. The dispersion of response (Table N.3) is considerable. The 
main difference suggested by inspection of means (Table N.6) is between cs and 
the other combinations. 

Table N.G. Comparison of means from two analyses 

Crude mean 
Adjusted mean 

2.94 
2.52 

s 

2.88 
3.42 

c 

3.31 
3.31 

se d 

2.31 - 3.25 
.1.84 3.84 

ds 

3.06 
2.73 

de 

3.25 
3.25 

des 

3.19 
3.27 



Example 0 Atomic weight of iodine 

Description of data. Table 0.1 gives ratios of reacting weight of iodine and 
silver obtained, in an accurate determination of atomic weight of iodine, using 
five batches of silver A, B, C, D, E and two of iodine, I, II (Baxter and Land
stredt, 1940; :J;Irownlee, 1965). Silver batch Cis a repurification of batch ·B, 
which in turn is a repurification of batch A. In these data 1.176 399 has been 
subtracted from all values. 

Table 0.1. Ratios of reacting weight 
with 1.176 399 subtracted X 10° 

Silver Iodine batch 
batch 

A 
B 
c 
D 
E 

I 

23,26 
42,42 
30, 21, 38 
50, 51 
56 

II 

0, 41, 19 
24, 14 

62 

General considerations. These data illustrate in very simple form some of the 
issues in analysing unbalanced data such as arise commonly, although by no 
means exclusively, in observational studies. Most of the following points apply 
broadly· to the analysis of unbalanced data with two or more factors of cross
classification. 

The questions to be considered with unbalanced data are essentially the 
same as with analogous balanced data. Is there interaction? If not, convenient 
summarization is via estimated row and column contrasts and sometimes even 
via just, .say, the row contrasts when the column effects vanish. Now for 
balanced data, simple row and column means determine estimated row and 
column contrasts which are such that: 

(i) they are descriptively appealing; 
(ii) the estimated difference, say, between two rows is unaffected if it is 

postulated that column effects are absent;' 

121 
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(iii) the row and column means are least-squares estimates under suitable 
models; 

(iv) sums of squares are simply isolated for testing relevant hypotheses and 
correspond directly to a decomposition of the data vector into orthogonal 
components. ' 

A small lack of balance can often be satisfactorily dealt with by some ad hoc 
modification of the procedures for balanced data. In general, however, and 
certainly with the present data, this is either unsatisfactory or impossible. 
·'One central difficulty is that even under a model with no interaction, i.e. 

with additive row and column effects, the row and column means do not 
estimate relevant parameters. For example, in silver batch C, the row mean has 
no contribution from the second column, iodine batch II, and hence is in 
general biased as an estimate of a row parameter. In fact, all the properties 
(i)-(iv) break down and it is necessary to proceed by more explicit fitting of a 
sequence of models. Of course the formulation of suitable models depends on 
the context, but in problems where normal-theory linear models may be 
expected to be appropriate, the following forms will be natural for a two-way 
classification. 

Let Yt:Jk be the kth observation in row i and columnj. Ifthere aren1 rows and 
n2 columns with ru observations in row i and columnj, we have i = 1, ... , 111 ; 

j = I, ... , n2 ; lc = 1, ... , ru. Natural models have Yt:Jk independently 
normally distributed with constant variance a2 and with 

MC!del I 
Model 111 

Modelll2 

Model 1112 

Model III 

E(Yt:Jk) = p.; homogeneity 
E( Ym) = 1.1.+ "'t; pure row effects 
E(Yt:Jk) = p.+f3t; pure column effects (0.1) 
E( Yt:Jk) = p. + "'' + f3:J; additivity (no interaction) 
E(Yt:Jk) = f.Lt:J ·= p.+cxt+f3t=I-'YtJ; arbitrary means. 

The fitting of these models by least squares is entirely straightforward and 
based on row and column means, except for Model 1112, where the solution of 
the least-squares equations is required, with attention to the redundancy of 
specification; see below. The residual sum of squares from Model III is the 
sum of squares within cells. When this is subtracted from the residual sum of 
squares for Model 1112, the sum of squares for testing the null hypothesis of no 
interaction (Model 1112) results. This is an adaptation to the present problem of 
the general procedure for testing subhypotheses in multiple regression. 

If the data show clear evidence of interaction, estimates and interpretation 
of main~effect parameters· will be relevant only in those rather rare circum
stances in which one is for some clear practical reason interested in effects of 
one factor, say rows, averaged over the levels of the other factor, columns. 
This is not the case in the present application. Suppose, however, that rows 
represent treatments and columns represent classification of the individuals, 
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e.g. into male and female. In some narrowly technological situations one may 
then be concerned with the average treatment effect over a population of 
individuals with specified proportions of males and females; note that these 
proportions might not be those occurring in the data, and that the proportions 
used are relevant. 

If, as in the present data, an interpretation can be based on the model with
out interaction, there is the further complication that estimated row effects 
depend on whether column effects are present in the model. This is typical of 
multiple-regression calculations in which the estimate of one regression 
coefficient depends on what other terms are in the model. The apparent 
precision of the row effects is higher if column effects are omitted, but in the 
present simple situation in which both row and column effects are presumably 
of equal interest, it seems more reasonable to present conclusions primarily 
from the anilysis of the full additive model, Model II12• 

Some methodological details. As explained above, the calculations for the 
present analysis are those of least-squares theory, i.e. multiple regression. 
There is the technical complication that the models as formulated above are 
redundant, i.e. overparameterized, so that the usual least-squares equations 
have infinitely many solutions. There are several ways ofresolvingthis difficulty. 

For example, the computer program GLIM adopts a conventional para
meterization chosen for computational generality and convenience rather 
than for statistical interpretability. When such parameterizations are used, it is 
essential that for the presentation of conclusions readily interpreted forms of 
estimate are given. 

If the analysis is done from first principles there are three broad approaches: 

(a) reparameterization without redundant parameters; 
(b) imposition of constraints; 
(c) fitting of parameters in stages, e.g. rows first, then columns. 

If the analysis is done via a general multiple-regression program, method (a) 
must be used. In both methods (a) and (b) there is a gain in simplicity in choos
ing the reparameterization or constraints to achieve a reduction in the size of 
the set of linear equations to be solved, but whether this simplicity js worth 
special effort depends very much on the size of the problem and the compu
tational resources available. 

The analysis. The residual sums of squares obtained after fitting the sequence 
of models (0.1) are given in Table 0.2(a) and in equivalent analysis-of-variance 
form in Table 0.2(b). Note that when fitting model II13 from first principles it 
is necessary to impose constraints upon the parameters, e.g. (i) ~rt.o:t = 
~r.if3i = 0, (ii) ~o:t = ~f3i = 0, or (iii) o:1 = {31 = 0. Different sets of con
straints will lead to the same residual sum of squares and to the same values of 
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Table 0.2(a). Residual sums 
of squares 

Model 

Ill 
Ilu 
II, 
II, 
I 

s.s. 

1041.7 
1533.2 
1683.1 
3782.2 
4255.4 

d.f. 

8 
10 
II 
14 
15 

Table 0.2(b). Analysis of variance 

d.f. s.s. 

Applied statistics 

Iodine (ignoring Silver) 
Silver (adjusted for Iodine) 

I 
4 

473.2 
2249.0 

149.9 Iodine (adjusted for Silver) 
2572.3 Silver (ignoring Iodine) , 

Iodine and Silver 
Iodine x Silver 

Between cells 
Within cells 

Total 

5 
2 

7 
B 

15 

2722.2 
491.5 

3213.7 
1041.7 

4255.4 

meaningful (estimable) functions of parameters, but to different least-squares 
estimates for the individual parameters. 

There'"is no evidence of any interaction between iodine and silver batches; 
the F ratio for testing this is 

'491.5/2 
1041.7/8 = 1.89_ 

with (2,8) degrees of freedom. Nor is there evidence of differences between . 
iodine batches. For differences between silver batches, the ratio 

2249.0/4 
1041.7/8 = 4'32 

with'(4,8) degrees of freed~m is significant at the. 5 per cent level. 
Estimates of silver batch means (M + &;) are given in Table 0.3(a). The esti

mates obtained fitting model II12 differ little from the observed batch means 

.Table 0.3(a). Estimated silver batch means 

Model liu (adjusted means) 
II1 (unadjusted means) 

A 

22.5 
21.8 

B 

30.5 
30.5 

c 

26.0 
29.7 

D 

53.1 
54.3 

E 

52.3 
56.0 
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Yt ... i.e. fitting Il1, as is expected in the absence of any significant iodine 
effect. Estimated standard errors of batch means, 8/y'r1• with a equal to 
y'( 1041.7 /8), are given in Table 0.3(b). Silver batches D and E give significantly 
higher results than do batches A, B and C. 

Table 0.3(b). Estimated standard 
errors of batch means (d.f. = 8) 

A B c D E 

5.1 5.1 6.6 6.6 11.4 

Further points and exercises 
(i) Check1 for fitting model II12 that: 

(a) imposing constraints :Ert.a.:t = :Er,Jf3J = 0, or :Ea.:t = :E{31 = 0 or 
0:1 = {31 = 0; 
or (b) reparameterizing to avoid redundant parameters; 

lead to identical conclusions. 

Related references. Armitage (1971, §8.7) and Snedecor and Cochran (1967, 
§16.7) discuss the analysis of unbalanced two-way tables. 



Example.P Multifactor experiment on 
a nutritive medium 

Description of data. Fedorov, Maximov and Bogorov (1968) obtained the data 
in Table P.l from an experiment on the composition of a nutritive medium for 
green sulphur bacteria ch!orobrium thiosulphatophi!um. The bacteria were 
grown under constant illumination at a temperature of 25-30 oc: the yield was 
determined during the stationary phase of growth. Each factor was at two 
levels, with each level used 8 times. Subject to tllis, the factor levels were 
randomized. 

General considerations. Although these data in fact arose from an experiment, 
the haphazard character of the design means that the analysis is in many ways 
more typical of that of unbalanced data arising in observational studies. The 
availability of an independent external estimate of standard deviation is in the 
present case very important. 

While there is no uniquely optimal way of approaching the analysis, the 
following is sensible. Fit a model containing only main effects, thus involving 
11 parameters. If this produces a residual mean square consistent with the 

. external estimate of variance, interpretation will primarily be via the estimated 
parameters in that model, supplemented possibly by examination of one or two 
two-factor interaction terms thought potentially important. If, however, as is • 
actually the case, the main-effect model leads to a residual mean square much 
too big, some consideration of at least two-factor interactions has to be made. 
With 10 factors, there are 45 two-factor interactions and with main effects and 
general mean, there are then 56 parameters, which of course cannot be esti
mated from 16 observations. 

A selection of parameters for fitting must therefore be made. Two general 
ideas' help in the choice: 

(a) it will extremely rarely be sensible to introduce a two-factor interaction 
term without at the same time introducing the corresponding main effects; 

(b) it is often the case that two factors both with substantial main effects 
show appreciable interaction. 

The approach is thus to fit a small number of main effects which the first 
analysis shows to be appreciable, plus the corresponding interaction terms. 
Various possibilities are tried and in principle all those fairly simple models 
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Table P.l. Yields of bacteria 

Factors 

x. x. x3 x. x. x. x. x. Xg x •• y 
NH.ct KHoPO. MgCI: NaCI CaCI, Na.s. Na.s.o. N'aHCO, FeCI, micro-

9H.o elements 

Levels{: 
lSOO 450 900 1500 3SO 1500 5000 sooo 125 IS Yield 
soo so 100 soo so soo 1000 1000 2S s 

+ + + - + - + - + 14.0 
2 - - + + - + + - - + 4.0 
3 + - - + + + - - - - 7.0 
4 - - + - + + - + + + 24.5 
5 + - + + + + + - - - 14.S 
6 + - + - + + + + + + 71.0 
7 - - - - - - - - - - 15.5 
8 + + - + + - - + + - 18.0 
9 - + - + - - + - - + 17.0 

10 + + + + + - - - + - 13.5 
II - + + - + - + + + + 52.0 
12 + + + - - - + + - - 48.0 
13 + + - - + - + - + - 24.0 
14 - + - - - + - - + - 12.0 
15 + - - - - - - + + + 13.S 
16 - - - + - + + + - + 63.0 

All the concentrations are given in mg(l, with the exception of factor 10, whose central level (10 ml of solution of micro-elements per I I of 
medium) corresponds to 10 times the amount of micro-element in Larsen's medium. 
The yield has a standard error of 3.8. 
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giving a residual mean square consistent with the external variance are listed, 
together with the corresponding parameter estimates. 

Of course the possibility remains that no reasonably simple model gives a 
small enough residual mean square. This would mean that either the situation 
is a very complicated one or that the external estimate of variability is too small. 
In fact, it is often the case in practice that nominal standard deviations based 
perhaps on replicate measurements over a short period omit relevant sources 
of variability and thus are too small . . , . 

The analysis. We code the high and low level of each component constituent 
x1, : • • , x10 as + 1 and -1, respectively, and fit a sequence of multiple re
gressions to the observations on yield Y, starting with a straightforward 

Table P.2. Residual sums of squares for sequence of regression 
models 

Terms included 

X11 Xz, X:h X4, Xu, Xo 1 X7 1 Xa, Xo, Xto 

x. 
X1, x 8 

X 1, X 8, X 1X 8 

X7 1 Xs, X1Xa 1 Xo 

" X7 1 Xa, X1Xa 1 Xo 1 Xn, XoXa 

Residual 
sum of 
squares 

1528.5 
4030.7 
2105.7 

652.2 
536.5 
171.9 

Degrees of 
freedom 

5 
14 
13 
12 
II 
9 

main-effects model. The results are summarized in Table P.2. The main
effects model containing 10 components gives a residual mean square of 
1528.5/5 = 305.7, with 5 degrees of freedom, which is very much higher than. 
the external estimate of variance (3.8)~ = 14.44. 

The two components which individually give the best fit to the data are x 8 and 
x 1, and are in fact orthogonal as can be seen from Table P.l. A regression on 
x 1, x 8 and the interaction (cross-product) term x 7x 8 gives a reduced residual 
mean square of 652.2/12 = 54.4 (12 d.f.), a considerable improvement over 
the main-effects model, but still an inadequate fit. We next include x 0, the most 
significant of the omitted components. This gives a residual mean square of 
536.5/11 = 48.8 (11 d.f.). Although x 0 itself is significant, its interactions with 
x 1 and .x8 are not so. None of the remaining components if introduced as a 
main effect produces any further significant improvement. If, however, we 
include also interactions with others already in the model, the addition of x6 

and x6x 8 reduces the residual mean square to 171.9/9 = 19.1 (9 d. f.) which, if 
judged against the external estimate of variance, by comparing the ratio 
171.9/14.44 = 11.9 with the tabulated x2-distribution with 9 degrees of 
freedom, suggests that the fit is reasonable. 
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The greatest reduction due to a further component and one of its interactions 
is given by x3 and x3x6, reducing the residual sum of squares to 78.9 (7 d.f.) but, 
if these are included, the estimated coefficient of x3 is negative and is not con
sistent with an increased level improving the nutritive medium. 

Thus we adopt the model 

E(Y) = f3a+f3axa+f37x?+f3axa+f3oxo+f3aaXaXa+fJ?aX?Xa. (P.l) 

The least-squares estimates and standard errors of the coefficients in Equation 
(P.l) are given in Table P.3. The covariances of the estimates are 

cov(P6,P7) = -cov(Po,Pa) = -cov(P7,P8) = .0.0694, 

Qov(P6,Po) = cov(p?,Po) = -cov(Pa,Po) = 0.2777, 

Table P.3. Estimates and standard 
errors for final regression model 

Coefficient Estimate Standard 
error 

flo 25.72 0.95 
flo 1.35 0.99 
fl, 11.78 0.99 
fla 11.47 0.99 
flo 3.26 1.05 
flo a 4.59 0.95 
fl,a 9.53 0.95 

other covariances being negligible. Fitted values based on Equation (P.I) 
and residuals are given in Table P.4. Figure P.l shows the residuals plotted 
against expected normal order statistics; the curvature towards the extremes 
possibly reflects the effect of fitting many parameters to a small amount of data. 

Table P.4. Observed and fitted values 

Observed Fitted Residual Observed Fitted Residual 

1 14.0 18.6 -4.6 9 17.0 16.5 0.5 
2 4.0 10.0 -6.0 10 13.5 18.5 -5.0 
3 7.0 5.5 1.5 11 52.0 55.8 -3.8 
4 24.5 25.1 -0.6 12 48.0 49.3 -1.3 
5 14.5 10.0 4.5 13 24.0 23.0 1.0 
6 71.0 67.7 3.3 14 12.0 12.0 0.0 
7 15.5 12.0 3.5 15 13.5 13.2 0.3 
8 18.0 13.2 4.8 16 63.0 61.2 1.8 
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Fig. P.l. Residuals of yield from model (P.l) versus normal order statistics. 

The maximum predicted yield under Equation (P.l), assuming two levels for 
each component, is obtained with each of x0, x 7, x 6 and x 0 at its high level, the 
predictea yield then being 67.7 with standard error 2.6. The sixth row of Table 
P.l corresponds to an experimental point under these conditions and the 
observed yield is 71.0 in reasonably close agreement with the fitted value. 

Furtlier points and exercises 
(i) What design would be more suitable for investigating 10 two-level factors • 

in 16 observations? 
(ii) Consider the computational problem of searching more systematically 

for all simple models consistent with the external estimate of variability. 
(iii) How might the analysis have proceeded had the external estimate of 

variability not been available? 
(iv) Might it have been better to study the dependence of log yield on log 

concentrations? 



Example Q Strength of cotton ya:rn 

Description of data. An experiment was done with the objects of estimating: 
(i) the difference in mean strength of two worsted yarns produced by slightly 
different processes, and (ii) the variation of strength between and within 
bobbins for yarns of this type. For each yarn a considerable number of bob
bins were produced and 6 bobbins selected at random. From each of these, 
4 short lengths were chosen at random for strength testing. The breaking 
loads are given in Table Q.l. 

Table Q.l. Breaking loads (oz) 

Bobbin 2 3 4 5 6 

Yarn A 15.0 J5.7 14.8 14.9 JJ.O 15.9 
17.0 15.6 15.8 14.2 16.2 15.6 
13.8 17.6 18.2 15.0 16.4 15.0 
15.5 17.1 16.0 12.8 14.8 15.5 

YarnB 18.2 17.2 15.2 15.6 19.2 16.2 
16.8 18.5 15.9 16.0 18.0 15.9 
18.1 15.0 14.5 15.2 17.0 14.9 
17.0 16.2 14.2 14.9 16.9 15.5 

General considerations. This problem illustrates in fairly simple form the 
analysis of data in which the pattern of random variation has some nontrivial 
structure. Because of the nature of the response variable, it is reasonable to 
concentrate on means and variances, this being totally appropriate if the 
variation is normal. It would be possible to use broadly similar, although more 
complicated, techniques based on detailed models involving particular non
normal distributions, Poisson, binomial, exponential, etc., were that ap
propriate. 

The numbering of bobbins within each yarn is random, as too is the number
ing oftest lengths within bobbins. Thus the analysis-of-variance table has the 
doubly nested form shown in Table Q.4. Note that the form of the table is 
settled by the way the data were obtained. It would be possible to examine 
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differences between individual bobbins, although this would normally be 
fruitful only if more information were available to characterize the bobbins as 
individuals. Because the bobbins are chosen from a large population, it is 
helpful to regard between-bobbin variation as a form of random variation, 
described by a component of variance between bobbins, i.e. the variance over 
the population of the 'true' bobbin means. 

That is, we characterize the random variation for each yarn by two com
ponents of variance, one between lengths within bobbins and the other between 
boboins. These are estimated from the analysis-of-variance table, either 
separately for each yarn or pooled over yarns. 

More broadly, there are four possibilities that could have arisen: 

(i) the bobbins are identifiable individuals; 
(ii) only the variance of the 'true' means, calculated over the bobbins 

individually observed, is of interest; 
(iii) the bobbins are a sample from a finite population of known size and 

only the variance of the 'true' means, calculated over the finite population, is of 
interest, 

(iv) the population of bobbins is eiTectively infinite and again the variance 
of the 'true' means is required. ' 
The analysis-of-variance table is the same in all cases; it is the interpretation 
of the bobbin means that is different. More than one of (i)-(iv) might be 
relevant for different purposes, alth¢ugh in fact (iv) is the most useful here. 

The components of variance have at least three uses. Firstly, they provide 
summary descriptions of important aspects of the problem under study and so 
may be regarded as primary parameters. Next, they clarify the fact that to 
compare the means of the two yarns, the mean square between bobbins within 
yarns provides an appropriate estimate of error. Finally, via a process of • 
synthesis of variance, it is possible to estimate the consequences of some 
different scheme of sampling in which the number of repeat observations per 
bobbin is changed. 

To see that the analysis of variance does not overlook some major aspect of 
importance, it is desirable to check that: 

(a) ·no single observation or small number of 'wild' observations has 
inflated the mean square within bobbins; 

(b) no single bobbin has inflated the mean square between bobbins; 
(c) there is no relation between the bobbin means and standard deviations 

that might suggest a transformation; 
(d) the between-bobbin variation is approximately normal. 

It is possible also to examine for each yarn the variation from bobbin to 
bobbin in the mean square within bobbins. Because the bobbins are randomly 
numbered, excessive variation in these mean squares would imply either 
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some non-independence in sampling or a long-tailed distribution within 
bobbins. 

In principle it would be possible to make similar analyses of higher 
cumulants. 

The analysis. Mean breaking loads for each bobbin and yarn are summarized 
in Table Q.2. The overall mean for yarn B is0.86 ozhigherthan thatforyarn A. 

Table Q.2. Mean breaking loads (oz) 

Bobbin 

Yarn A 15.32 
B 17.52 

2 

16.50 
16.72 

3 

16.20 
14.95 

4 

14.22 
15.42 

5 6 

15.10 15.50 
17.78' 15.62 

Mean 

15.47 
16.33 

Table Q.3 gives the mean squares within bobbins. There is no evidence of 
any systematic relationship between these and the bobbin means, nor is there 
evidence of heterogeneity between the mean squares within either yarn. 
Approximate normality of the variation between bobbins is confirmed by 
plotting bobbin means against expected normal order statistics (Pearson and 
Hartley, 1966, Table 28). 

Table Q.3. Mean squares within bobbins (3 d.f.) 

Bobbin 

Yarn A 
B 

1.76 
0.53 

2 

1.01 
2.21 

3 

2.05 
0.58 

4 

1.03 
0.23 

5 

2.47 
1.15 

6 

0.14 
0.32 

The analysis of variance is given in Table Q.4. There is no significant 
difference in variation according to yarn, either within bobbins (F = 1.41/ 
0.83 = 1.69 with (18, 18) d.f.) or between bobbins (F = 5.51/2.64 = 2.09 with 
(5, 5) d.f.). It is convenient to pool mean squares within yarns. 

Table Q.4. Analysis of variance 

d.f. s.s. m.s. E(m.s.) 

Between yarns 1 8.927 
Between bobbins: within yarn A 5 13.210 2.64 

within yarn B 5 27.569 5.51 

Between bobbins within yarns 10 40.779 4.08 a~+4a~ 

Within bobbins: within yarn A 18 25.355 1.41 
within yarn B 18 15.027 0.83 

Within bobbins 36 40.382 1.12 a~ 
Total 47 90.088 



134 Applied statistics 

Now the standard error of the observed difference of 0.86 oz between yarns 
is equal to y{(ag+4ai)/12}, and can be estimated directly from the mean 
square between bobbins asy(4.08/12) = 0.58 oz with 10 degrees of freedom. 
Thus no evidence of any systematic difference in strength between yarns A and 
B can be established. Confidence limits at any desired level are readily found. 

Estimates of the components of variation a~, within bobbins, and ai, 
between bobbins, are required if, for example, recommendations are to be 
made for further experimentation. Suppose m bobbins are to be selected for 
eacli yarn, with /lengths per bobbin tested and that it takes k, a known value, 
times as long to sample a bobbin as it does to perform a single test. The total 
time taken is proportional to 

T = m(k+l) 

and the variance of the observed difference in mean strength will be propor
tional to 

a2 a2 
v = --..'!.+ -2. 

ml m 

The recommended optimum choice of /is obtained by minimizing V, subject to 
given T (or minimizing T subject to given V), i.e. ' 

/opt = k 11 ao/al• 

Equating observed mean squares in Table Q.4 to their expected values gives 
estimates for the components of varian.ce, a~ = 1.12 and a~ == (4.08 -1.12)/4 
= 0.74. Thus if, say, k = 4 the estimated value of lopt is 2.46; we would take 
I= 3. 

Further points and exercises _ 
(i) Show that for the normal-theory estimates of variance, s2 say, based on • 

n observations, var(log s2) ~ 2/(n-1). Use this result to check the homo
geneity within yarns of the mean squares given in Table Q.3. 

(ii) Show that the expected value of the mean square between bobbins is 
a~+4ai. 

(iii) Determine a confidence interval for a1/a2 and hence a confidence 
interval for I opt. 



Example R Biochemical experiment 
on the blood of mice 

Description of data.* In an experiment on the effect of treatments A and B on 
the amount of substance S in mice's blood; it was not practicable to use more 
than 4mice on any one day. The treatments formed a 2 x 2 system: 

A0 : A absent, 80 : B absent, 
A1 : A present, 8 1 : B present. 

The mice used on one day were all of the same sex. The data are given in Table 
R.l (Cox, 1958, §7.4). 

Table R.I. Amount of substanceS 

Day 1 Male AnB1 4.8 A,B, 6.8 AoBo 4.4 A1B0 2.8 
2 Male AoBo 5.3 A1B0 3.3 A0B1 1.9 A,B1 8.7 
3 Female A1B1 7.2 A0B1 4.3 AoB0 5.3 A1B0 7.0 
4 Male AoBo 1.8 A1B1 4.8 A1B0 2.6 A0B1 3.1 
5 Female A1B1 5.1 AoBo 3.7 A1B0 5.9 A0B1 6.2 
6 Female A1B0 5.4 A,B1 5.7 A1B1 6.7 AoBo 6.5 
7 Male A,B, 6.2 A1B1 9.3 AoBo 5.4 A1B0 6.9 
8 Female A,B, 5.2 A1B1 7.9 A1B0 6.8 A0B1 7.9 

General considerations. The experimental layout in Table R.l is that of a split
plot design. The advantages of such a design are that the effects of subplot 
treatments, A and B, and their interaction with the whole-plot treatment, sex, 
can be estimated more precisely than can the main effect of sex, which is 
assumed to be of no major direct interest in the experiment. The design 
necessitates two different estimates of error. 

The key first step in the interpretation offactorial systems such as this is the 
calculation and inspection of mean responses corresponding to the various 
combinations. Further analysis is concerned partly with assigning standard 
errors to the resulting contrasts and partly with finding simple summaries of 
the many comparisons possible. 

Comparisons of treatments within males, or within females, are independent 
of systematic effects between days. By contrast, comparison of a particular 

'' Fictitious data based on a real investigation. 
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treatment across the sexes compares observations on days 1, 2, 4 and 7 with 
those on days 3, 5, 6 and 8, and the precision will be determined by the variation 
between days. The precision of comparison across the sexes has been sacrificed 
in the design of, the experiment in favour of greater precision of comparison 
between treatments A and B. 

In interpreting the contrasts, a distinction should be drawn between A and 
B, which are treatments imposed by the experimenter, and sex, which re
presents a natural classification of the experimental units. If there is evidence of 
interaction between sex and the other factors, it will be natural to look at the 
treatment effects separately for males and fo1· females. It would, however, not 
normally be helpful to divide the data into two portions by the level of factor A 
and to interpret the B-sex combinations separately for the two portions. 

A further general question concerns the testing of interactions for signifi
cance. Interpretation is, of course, much simpler in the absence of interactions; 
only marginal means need to be thought about. For the reason outlined above, 
distinctive attention needs to be given to the interaction with sex, this having 
three single degree of freedom components, Ax sex, B x sex, Ax B x sex. Now 
it turns out in the present case, that while all three components have mean 
squares exceeding the error mean square, only one, the last, would on,its own 
be regarded as evidence of interaction, being significant at about the 2 per cent 
level. Because there has been in a sense a selection of this contrast as the most 
significant out of (at least) three, there is a danger of over-interpretation; the 
combined treatment x sex interaction with (3, 18) degrees of freedom is sig
nificant only at about the 7 per cent level. 

In presenting conclusions, the reasonably cautious procedure in such cases 
is to give two summary conclusions. Existence of sex x treatment interactions 
is not firmly established and in the absence of such interaction, average effects 
over males and females are relevant. Nevertheless, the interaction with sex is 
suggestive, and if real likely to be important, so that summary conclusions 
separately for males and females are needed too. Of course, it might happen 
that external knowledge not now available to us would indicate the interactions 
as plausible or implausible on general grounds and this would point to the 
preferred interpretation. Nevertheless, the procedure we recommend would 
make it clear that the data are indecisive on the question of interaction. 

It is ~ise to have some check that the conclusions are not unduly influenced 
by one or two extreme observations and that the conclusions would not be 
better ex;pressed on a transformed scale. Because there are fairly large yet 
uninteresting differences between days, the simplest check is probably careful 
inspection of a table of day means and partial residuals eliminating day 
effects, i.e. differences from the day means. 

The analysis. Table R.2 shows the data rearranged according to subplot treat
ments (A, B) and sex. For males the mean response increases only if both A and 
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Table R.2. Data rearranged according to treatments 

Sex Day A,B0 A1B, A,B1 A,Bt 

Male I 4.4 2.8 4.8 6.8 
2 5.3 3.3 1.9 8.7 
4 1.8 2.6 3.1 4.8 
7 5.4 6.9 6.2 9.3 
Mean 4.22 3.90 4.00 7.40 

Female 3 5.3 7.0 4.3 7.2 
5 3.7 5.9 6.2 5.1 
6 6.5 .5.4 5.7 6.7 
8 5.2 6.8 7.9 7.9 
Mean 5.18 6.28 6.02 6.72 

Overall mean 4.70 5.09 5.01 7.06 

Estimated s.e. for difference of two overall treatment 
means 0.82 (18 d.f.). 

B are present, whereas for females it increases in the presence of either A 
or B. 

An analysis of variance of the data is given in Table R.3. The high variation 
between days within sex (m.s. = 6.06 with 6 d.f.) compared with the variation 
within days (m.s. = 1.33 with 18 d.f.) emphasizes the advantage of the experi
mental design. The combined treatments x sex interaction is only suggestive 
(F = 3.76/1.33 = 2.83 with (3, 18) d.f.) but the significance of the Ax B x sex 
interaction (F = 8.51/1.33 = 6.40 with (1, 18) d.f.) is confirmed. 

Table R.3. Analysis of variance 

d.f. 

Between sexes I 
Between days within sex 6 

Between days 7 
A I 
B 1 
AxB I 

Treatments 3 
Ax Sex 1 
BxSex I 
AxBxSex I 

Treatments x Sex 3 
Residual 18 

Total 31 

s.s. 

10.93 
36.33 

47.26 
11.88 
10.47 
5.53 

27.88 
0.81 
1.95 
8.51 

11.27 
24.02 

110.43 

m.s. 

6.06 

9.29 

3.76 
1.33 
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If the treatments x sex interaction is assumed in reality to be nonexistent, 
and we average over the sexes, the A x B interaction is significant at a level 
slightly above 5 per cent (F = 5.53/1.33 = 4.16 with (I, 18) d.f.). Our con
clusions are thei'l summarized by the mean responses given in the bottom row 
of Table R.2 and the estimated standard error for the difference between any 
two of these means is given by 80/2 = 0.578 with 18 degrees of freedom, where 
{f~ = 1.33 is the estimated variance of an observation within a particular day. 

If the treatments x sex interaction is assumed to be real, we consider con
trasts within the sexes. For males the A X B interaction is estimated by (4.22-
3.90-4.00+ 7.40)/2 = 1.86, with estimated standard error 0.578 with 18 
degrees of freedom, and is significant at 0.5 per cent level. Conclusions are 
summarized by the mean responses for males given in Table R.2. In particular, 
if both A and B are present, the average amount of substance S for males is 
increased by 7.40-4.22 = 3.18 (est. s.e. 0.817 with 18 d.f.). For females the 
data are consistent with the absence of any Ax B interaction. The estimated 
increase for females due to the presence of A is 0.90 and ofB is 0.64 (each with 
est. s.e. 0.817 with 18 d.f.). Thus neither A nor B separately produces a sig
nificant increase. Confidence limits follow from the standard errors. 

Further points and exercises 
(i) Estimate a standard error for the comparison of treatment combination 

A1B1 across the sexes. 

Related references. Snedecor and Cochran (1967, §12.12) and Armitage (1971, 
§8.5) discuss and give examples on the analysis of split-plot designs. Cox (1958, 
§17.4) discusses the design of the example. 



ExampleS Voltage 
regulator performance 

Description of data. Voltage regulators fitted to private motor cars were 
required to operate within the range of 15.8 to 16.4 volts, and the following 
investigation (Desmond, 1954) was conducted to estimate the pattern of vari
ability encountered in production. Normal procedure was for a regulator from 
the production line to be passed to one of a number of setting stations, where 
the regulator was adjusted on a test rig. These regulators then passed to one of 
four testing stations, where the regulator was tested, and if found to be unsatis
factory, it was passed down the production line to be reset. For the data of 
Table 8.1, a random sample of four setting stations took part, and a number 
of regulators from each setting station were passed through each testing station. 
One special aspect ofinterest concerned the percentage of regulators that would 
be unsatisfactory were the mean kept constant at 16.1. 

General considerations. These data have a fairly highly balanced structure with 
a number of explanatory variables (factors) and a quantitative response 
varying over quite a narrow range. The powerful techniques of analysis of 
variance are thus available, but careful inspection for heterogeneity, outliers, 
etc., is wise. 

The primary objective is to isolate that part of the observed variation that is 
'real' variation between regulators, as contrasted with testing or measurement 
error. For this the technique of analysis of variance, in the literal sense of 
breaking variance into components, is natural, followed by synthesis of vari
ance, i.e. the reconstruction of the variance associated with the part of the 
variation that is of concern. The analysis of variance does not require 
normality; on the other hand, the specific question posed does require the 
approximate normality of the relevant portions of the variability. This can be 
checked to a limited extent, and with very extensive data more elaborate 
methods might be used, involving, for example, the estimation of third and 
fourth cuumlants. 

The role of the analysis-of-variance table is: 

(i) as a concise summary of the data; 
(ii) as an indicator of which sources of variation, especially interaction, may 

be assumed absent; 
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Table S.l. Regulator voltages 

Setting Regulator Testing station Setting Regulator Testing station 
station number I 2 3 4 station number I 2 3 4 

A I ' 16.5 16.5 t6.6 16.6 F I 16.1 16.0 16.0 16.2 
2 15.8 16.7 16.2 16.3 2 16.5 16.1 16.5 16.7 
3 16.2 16.5 15.8 16.1 3 16.2 17.0 16.4 16.7 
4 16.3 16.5 16.3 16.6 4 15.8 16.1 16.2 16.2 
5 16.2 16.1 16.3 16.5 5 16.2 16.1 16.4 16.2 
6 16.9 17.0 17.0 17.0 6 16.0 16.2 16.2 16.1 
7 16.0 16.2 16.0 16.0 II 16.0 16.0 16.1 16.0 

II 16.0 16.0 16.1 16.0 
G I 15.5 15.5 15.3 15.6 

2 16.0 15.6 15.7 16.2 
B I 16.0 16.1 16.0 16.1 3 16.0 16.4 16.2 16.2 

2 15.4 16.4 16.8 16.7 4 15.8 16.5 16.2 16.2 
3 16.1 16.4 16.3 16.3 5 15.9 16.1 15.9 16.0 
4 15.9 16.1 16.0 16.0 6 15.9 16.1 15.8 15.7 

7 16.0 16.4 16.0 16.0 
12 16.1 16.2 16.2 16.1 

c I 16.0 16.0 15.9 16.3 
2 15.8 16.0 16.3 16.0 H I 15.5 15.6 15.4 15.8 
3 15.7 16.2 15.3 15.8 2 15.8 16.2 16.0 16.2 
4 16.2 16.4 16.4 16.6 3 16.2 15.4 16.1 16.3 
5 16.0 16.1 16.0 15.9 4 16.1 16.2 16.0 16.1 
6 16.1 16.1 16.1 16.1 5 16.1 16.2 16.3 16.2 

10 16.1 16.0 16.1 16.0 10 16.1 16.1 16.0 16.1 

I 16.2 16.1 15.8 16.0 
D I 16.1 16.0 16.0 16.1 2 16.2 15.3 17.8 16.3 

2 16.0 15.9 16.2 16.0 3 16.4 16.7 16.5 16.5 
3 15.7 15.8 15.7 15.7 4 16.2 16.5 16.1 16.1 
4 15.6 16.4 16.1 16.2 5 16.1 16.4 16.1 16.3 
5" 16.0 16.2 16.1 16.1 10 16.4 16.3 16.4 16.4 
6 15.7 15.7 15.7 15.7 

II 16.1 16.1 16.1 16.0 K I 15.9 16.0 15.8 16.1 
2 15.8 15.7 16.7 16.0 
3 16.2 16.2 16.2 16.3 

E I IS.9 16.0 16.0 16.5 4 16.2 16.3 15.9 16.3 
2 16.1 16.3 16.0 16.0 5 16.0 16.0 16.0 16.0 
3 16.0 16.2 16.0 16.1 6 16.0 16.4 16.2 !6.2 . 
4 16.3 16.5 16.4 16.4 II 16.0 16.1 16.0 16.1 

(iii) as a basis for sighificance tests making (ii) more precise; 
(iv) as a basis for the estimation of components of variance. 

The a~alysis. Inspection across the rows of TableS. I show~ for most regulators 
close consistency in the four readings. Exceptions are regulators B2 (15.4, I 6.4, 
16.8, 16.7) and J 2 (16.2, 15.3, 17.8, 16.3). Examination of residuals from the 
two-waY. tables, regulators x testing stations, within each setting station, con-
firms the high variation across J 2 ; regulators, B2, D4 , F 2, H3, and 1< 2 also have 
less consistent observations than the majority, although not to the extent of J 2 • 

To check on the influence of J 2 on the final conclusions, two parallel analyses 
have been done, one with and one without J 2 • Of course, had we been in a 
position to look into any special circumstances connected with this regulator, 
we would have done so. 
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Table S.2. Residual mean squares 
within setting stations 

Setting station d.f. m.s. 

A 21 0.0319 
B 9 0.0869 
c 18 0.0363 
D 18 0.0209 
E 9 0.0245 
F 18 0.0357 
G 21 0.0306 
H 15 0.0423 
J (full data) 15 0.2227 

(J, omitted) 12 0.0160 
K 18 0.0445 

It aids in examining homogeneity to begin with a separate two-way analysis 
of variance for each of the 10 setting stations. Table 8.2 gives the residual 
mean squares. The high value for setting station J is attributable to regulator 
J 2 ; the omission ofJ 2 reduces the mean square from 0.2227 to 0.0160, in reason
able accord with the other setting stations. 

Pooling the ten analyses leads to the analysis of variance in Table 8.3, shown 
in two versions with and without J 2• An initial conclusion is that the interaction 
term, setting stations x testing stations, is accountable by random error. We 
can thus regard each observation as deviating from a notional 'true' value for 
that regulator, holding if setting-station effects were eliminated, by the sum of a 
testing-station contribution, a setting-station contribution and a random term. 
The former is irreievant for the present purpose. If we denote by a; the compo
nent of variance for setting station effects, a~ the variance between regulators 
of the 'true' values and a~ the error variance, the expected mean squares are as 
shown in Table 8.3. 

Table S.3. Analysis of variance 

Full data J, omitted E(m.s.) 

d.f. m.s. d.f. m.s. 

Setting stations (SS) 9 0.4910 9 0.4625 4( ~~~~·) • a5+4a~+- L 1111--1 a, 
9 ~/llj 

Testing stations (TS) 3 0.2615 3 0.2985 
SSxTS 27 0.0335 27 0.0267 
Regulators within SS 54 0.1756 53 0.1779 ag+4a$ 
Residual 162 0.0541 159 0.0353 ag 

1m is the number of regulators from setting station i 
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Now as produced on a particular setting-station, regulator 'true' voltage has 
standard deviation y'(a +a ). This can be estimated via Table 8.3 and the 
relevant estim~tes an! given in Table 8.4. Exclusion of J 2 reduces iJ~ but has 
little effect upon a~ or a~ .. Thus if J 2 is included, we estimate the standard 
deviation asy(iJl+a,.) = 0.207; if J 2 is excluded this becomes 0.217. 

Graphical plots confirm the assumption of normality of the between
regulator and between-setting station variation. Thus with the mean fixed at 
I 6.1, the estimated percentage falling outside 15.8-16.4 volts is, assuming a 
non~al distribution, 14.7 per cent with J 2 included, and 16.6 per cent if J 2 is 
excluded. While these estimates are based on the normal distribution, the 
use bf moderately non-normal distributions would not change the values 
appreciably (Pearson and Hartley, 1972, Table 32). 

Assuming normality of the between-regulator and between-setting station 
variation, approximate confidence intervals for the percentage outside the 
tolerance limits are calculated by taking (a~+ a,.) to be approximately pro
portional to x2, with 'effective' degrees of freedom determined by adjusting the 

Table S.4. Estimntcd components 
of vnrim1cc 

Full dnta J • omitted 

-· a a 0.0541 0.0353 

ii~ 0.0304 0.0357 

iii 0.0124 0.0114 

mean and variance. If J 2 is included this gives 'effective' degrees of freedom 
approximately 27, and approximate 95 per cent confidence limits for y( a:+ 
a~) of0.163 to 0.281 with corresponding limits for the percentage of regulators • 
outside the tolerance limits of 6.6 to 28.6 per cent. If J 2 is excluded these limits 
become 8.7 to 29.0 per cent. The effect of omitting J3 is unimportant in the 
light of the precision of the analysis. 

Further ]JOints and exercises 
(i) Write down an appropriate model for the observations and check the 

expected mean squares quoted in Table 8.3. 
(ii) Using the suggested x2 approximation, check that (a~+ a;) has 'effec

tive' degrees of freedom approximately 27 and thence confirm the stated 
confidence limits for y( a;+ a~). 

Related reference. 8nedecor and Cochran (1967, §l2.1l) describe the use of 
'effective' degrees of freedom in components-of-variance problems. 



Example T Intervals between 
the failure of air-conditioning 

equipment in aircraft 

Description of data. The data in Table T.l, reported by Proschan (1963), are 
the intervals in service-hours between failures of the air-conditioning equip
ment in 10 Boeing 720 jet aircraft. It is required to describe concisely the 
variation within and between aircraft, with emphasis on the forms of the 
frequency distributions involved. 

General considerations. The data are a special form of time series. A wide 
variety of aspects may be explored and it is necessary therefore to be guided 
to some extent by the practical object in mind. The following are amo:~g the 
matters that could be considered: 

(i) Do failures depend on the time of year, or more generally on external 
explanatory variables? The information to tackle this is not available in the 
present instance. 

(ii) Do failure intervals on a particular aircraft vary randomly, or is there 
a trend or serial correlation in their values? 

(iii) Assuming stationarity and independence, is the frequency distribution 
of intervals for any one aircraft essentially exponential, corresponding to a 
Poisson process or completely random set of point occurrences? If not, is 
there a simple qualitative or quantitative description of the departure from 
exponential form, for example via the fitting of a gamma or Weibull 
distribution? 

(iv) Are the distributions for the different aircraft the same, and if not how 
can the differences between aircraft be described concisely? 

All these questions can be tackled by methods ranging from the informal 
and graphical to the fitting by maximum likelihood of plausible parametric 
models. We concentrate on (iii) and (iv), regarding absence of trends and serial 
correlation as secondary issues adequately checked by simple graphical 
techniques. 

Some methodological details. There arc many ways of checking agreement with 
exponential form. The most useful graphical technique is probably to plot 
the ordered times 
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Table T.l. Intervals between failures (operating hours) 

Aircraft.number 

2 3 4 5 6 7 8 9 10 

413 90 74 55 23 97 50 359 487 102 
14 10 57 320 261 51 44 9 18 209 
58 60 48 56 87 II 102 12 100 14 
37 186 29 104 7 4 72 270 7 57 

100 61 502 220 120 141 22 603 98 54 
65 49 12 239 14 18 39 3 5 32 
9 14 70 47 62 142 3 104 85 67 

169 24 21 246 47 68 15 2 91 59 
447 56 29 176 225 77 197 438 43 134 
184 20 386 182 71 80 188 230 152 
36 79 59 33 246 I 79 3 27 

201 84 27 15 21 16 88 130 14 
I 18 44 153 104 42 106 46 230 
34 59 26 35 20 206 5 66 
31 29 326 5 82 5 61 
18 118 12 54 36 34 
18 25 120 31 22 
67 !56 II 216 139 
57 310 3 46 210 
62 76 14 Ill 97 
7 26 71 39 30 

22 44 ·11 63 23 
34 23 14 18 13 

62 II 191 14 
130 16 18 
208 90 163 

70 I 24 
101 16 
208 52 

95 

Y(ln) :::;; Y(znJ :::;; ••• :::;; y(lll!) 

against the expected order statistics in sampling the exponential distribution 
of unit mean, namely 

('(HI) < <?(271) < • · • < <?(1!71), 

where.e(l1•l = 1/n, e(z11) = 1/n+ 1/(n-1), ... , e(nn) = 1/n+ 1/(n-1)+ ... +I. 
Departure from an exponential distribution is shown by systematic non-
linearity. 

If the intervals on each aircraft are assumed to be exponentially distributed, 
a comparison between aircraft is a comparison of sample means. One test of 
equality of means in a version of Bartlett's test for homogeneity of variance. 
i.e. uses twice a difference of maximized log likelihoods. The test statistic is 



Example T 

- 2N log( Y/ N) + 2 :E n; log( Y;fn;), 
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(T.I) 

where n; is the number of observations for aircraft i (i = 1, ... , /c), Y; = 
:E1 Y;J, Y = :E; Yt, N = :E;n;. The distribution under the null hypothesis is 
approximately x2 with k -1 degrees of freedom. 

A more formal procedure is to fit a gamma distribution, 

({3/ f.k)(f3yf p.)f1-le-f3YII' 

r(f3) 
(T.2) 

to the results for each aircraft. A rather systematic procedure is to fit by 
maximum likelihood the following models: 

(i) separate ;gamma distributions to all aircraft, with 20 parameters; 
(ii) separate gamma distributions with a common {3, with 11 parameters; 
(ii) common gamma distribution to all aircraft, with 2 parameters; 
(iv) separate exponential distributions to all aircraft ({3 = I, separate f.k), 

with 10 parameters ; 
(v) common exponential distribution to all aircraft (/3 = 1), witl1 1 

parameter. 

All the fittings are essentially straightforward and comparison of the 
maximized log likelihoods allows various approximate significance tests to be 
made. 

The analysis. Fitting separate gamma distributions to each aircraft leads to 
the estimated values of f.k and {3 given in Table T.2. If we test the hypothesis 
of a common value of {3, direct comparison of the maximum log likelihoods 
achieved gives a value of x2 of 31.50 with 9 degrees of freedom, i.e. differences 
are highly significant. 

Unfortunately, the interpretation is not straightforward. One aircraft, 
namely no. 8, has a very low value of p, i.e. very high variability. This is not 
accounted for by one or two possibly anomalous observations. Next, if the 
data from this aircraft are omitted and the remaining aircraft analysed there 
is still appreciable dispersion in the individual P's, the value of xa bein'g now 
19.55 with 8 degrees of freedom. 

Table T.2. Maximum-likelihood estimates of mean f.k and index {3 

Aircraft 

2 3 4 5 6 7 8 9 10 

p, 95.7 83.5 121.3 130.9 59.6 76.8 64.1 200.0 108.1 82.0 
p 0.97 1.67 0.83 1.61 0.81 1.13 1.06 0.46 0.71 1.75 
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Now the use of the chi-squared distribution for assessing differences of 
maximized log likelihoods is based on a mathematical approximation and 
usually tends 1to overestimate the evidence against the null hypothesis. In the 
present case a: more refined calculation changes I9.55 to I6.84; the tabulated 
5 per cent and I per cent points are respectively I5.5I and 20.09. Thus, even 
after modification, there is too much variation among the P's to be reasonably 
accounted for by random fluctuations. If, nevertheless, a common value of f3 
is assumed, its maximum-likelihood estimate is 1.07, very close to the value I 
for 'an exponential distribution. 
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Fig. T.l. Intervals between successive failures versus exponential order statistics. 
0 Aircraft 8 
X Aircraft 9 

Figure T.l shows the data, for the two aircraft (numbers 8 and 9) with the 
smallest ~·s, plotted against exponential order statistics. Both aircraft show a 
high proportion of small values but otherwise suggest irregular variation, 
rather than any systematic departure from an exponential distribution. 

This illustrates a fairly common dilemma in applications. There is a very 
simple 'representation of the data, here based on exponential distributions, 
that would make interpretation vivid. In some average sense the fit is reason
able, but there are certainly unexplained deviations. First one should try to 
explain the discrepancies, i.e. the variation in p. There is no suggestion that P 
is related to the mean and we do not have other information about the 
individual aircraft on which to base an explanation. It is possible that the 
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variation is in some sense unreal, a fairly extreme random fluctuation, con
ceivably amplified by any positive correlation between intervals within air
craft. Whether, nevertheless, the exponential distribution should be the basis 
of future applications depends on the purpose. If occurrences of very short 
or very long intervals are of concern, it would probably be unwise to use 
exponential distributions: if main interest lies in means, their standard errors 
and in rough extrapolation into the tails of the distribution, use of exponential 
distributions is likely to be sensible. Of course, any report on the conclusions 
must include a statement about the unexplained discrepancies. 

Subject to these reservations, we can assume exponential distributions and 
test for a common failure rate using the test statistic (T.1). This gives x2 = 
19.7 with 9 degrees of freedom, which is significant at about the 2~ per cent 
level. If aircraft 8 is excluded, this becomes x2 = 11.7 witli 8 degrees of free
dom and is nbt significant, confirming that aircraft 8, with a mean of 200.0 
hours, has a significantly low failure rate. 

Related reference. Cox and Lewis ( 1966) discuss analysis of these data, except 
that here we have excluded three aircraft with very few observations. 



Example U Survival times of 
leukemia patients 

Description of data. The data in Table U. 1 from Feigl and Zelen (1965) are 
time to death, Y, in weeks from diagnosis and log10 (initial white blood cell 
count), x, for 17 patients suffering from leukemia. The relation between Y 
and x is the main aspect of interest. 

Tabla U.1. Survival time Y in weeks nod log10 

(initial white blood cell count) for 17 leukemia 
patlen(s 

,\' }' X y X y 

3.36 65 4.00 121 4.54 22 
2.88 156 4.23 4 5.00 l 
3.63 100 3.73 39 5.00 l 
3.41 134 3.85 143 4.72 5 
3.78 16 3.97 56 5.00 65 
4.02 108 4.51 26 

General considerations. A plot of survival time, Y, versus log (white blood 
cell count), x, shows substantial random variation together with a tendency 
for Y to decrease with increasing x (see Fig. U.l). Elaborate model fitting 
would be unnecessary for the analysis of these data in isolation. In particular, 
many different parametric representations of the systematic variations are 
consistent with the data. 

We use the data to illustrate two main points. One is the usc of general 
considerations to choose between alternative parametric regression relations. 
The other is the examination of the form of the random variation about such 
a relation. 

Three main aspects are involved in setting up a parametric description: 

(i) a specification of the form of systematic variation, for example by giving 
the relation between the expected value£( Yt) and Xt for the ith individual; 

(ii) a specification of the general form of the random variation; 
(iii) a specification of the way in which systematic and random variation 

'combine', e.g. by multiplication or by addition. 
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It is preferable for (i) to choose where possible a relation that gives positive 
values for E(Y) for all possible parameter values and values of x. From this 
point of view, the relation 

where x = 2: xtfn, is preferable to, for example, a linear relation 

If the random contribution to the ith observation is et, simplicity of inter
pretation and fitting, and inspection of the. data, suggest a multiplicative 
combination; that is, we consider an interpretation in which the proportional 
variation around the mean has the same form for all x. If is then of interest 
to compare that distribution with the exponential distribution, partly because 
that is about the simplest very dispersed distribution for a positive quantity, 
partly because of the interpretation of the exponential distribution in terms 
of the properties of a completely random process, the Poisson process, and 
partly because use of the exponential distribution much simplifies more 
detailed analysis and consistency with exponential form is of general interest. 

These considerations lead to the model 

(U.l) 

where et is a random term of unit mean and, conceivably, exponentially 
distributed. 

Some methodological details. To fit the model (U.l), assuming an exponential 
distribution for the random components, iterative solution of the maximum
likelihood equations is the most effective procedure, leading to estimates Po 
and P1• We can then define residuals which are in effect 'estimates' of the 
corresponding errors. For the ith observation we put 

(U.2) 

the ratio of the observed to fitted survival time. The Rt can be examined for 
distributional form, by plotting against expected exponential order statistics; 
see Example T. Departure from a multiplicative relation would be shown by 
a relation between Rt and x1• 

The analysis. For the model (U.l), in which e1 has a unit exponential distribu
tion, the equations satisfied by the maximum-likelihood estimates Po and P1 

can be written as 

nPo = 2: Yt exp{ -P1(Xt-x)}, 

0 = 2: Yt(Xt-x) exp{ -P1(xt-x)}, 

(U.3) 

(U.4) 
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with 11 = 17. Iterative solution of Equation (U.4) leads to P1 = -1.109 and 
substitution into Equation (U.3) gives Po = 51.109. The fitted model is shown 
superimfJosed in Fig. U.l. 

Asymptotic standard errors are estimated to be as follows: 

est. s.e. <Po) ~ Pofv'n = 12.396, 
· est. s.e. CP1) ~ { ~ (xt-;t)2}-! = 0.400, 

and cov(p0, P1) = 0. 

The adequacy of the fitted model is confirmed if the residuals Rt as defined 
by Equation (U.2) are plotted against exponential order statistics as in 
Example T. 

Further points and exercises 
(i) ·Consider the determination of a confidence interval for the expected 

value of Yfor a given value x. 
(ii) Consider the detennination of a prediction interval for the survival 

time of a new individual with a given value of x. 
(iii) Discuss some methods of fitting alternative to maximum likelihood. 



Example V A retrospective study 
with binary data 

Description of data. In a retrospective study of the possible effect of blood 
group on the incidence of peptic ulcers, Woolf (1955) obtained data from 
three cities. Table V.l gives for each city data for blood groups 0 and A only. 
In each city,J blood group is recorded for peptic-ulcer subjects and for a 
control series of individuals not having peptic ulcer. 

Table V.I. Blood groups for peptic ulcer and control subjects 

Peptic ulcer Control 

Group 0 Group A Group 0 Group A 

London 911 579 4578 4219 
Manchester 361 246 4532 3775 
Newcastle 396 219 6598 5261 

General considerations. This is an example of a type of retrospective in
vestigation widely used, in particular in epidemiology under the name case
control study. We want really to study how the probability of peptic ulcer 
depends on blood group, i.e. to use occurrence of peptic ulcer as a response 
and blood group as an explanatory variable. For fairly obvious reasons, it is 
convenient to collect data in an inverse fashion, taking a set of peptic-ulcer 
patients and a set chosen from non-peptic ulcer individuals and then observ
ing blood group for each individual. The possibility of using data of this type 
to answer the question of interest depends on the identity 

/::,. = og x "------I { pr (ulceriA) pr (no ulceriO)} 
pr (ulceriO) pr (no ulceriA) 

(V.l) 

I { pr (Aiulcer) pr (Oino ulcer)} 
= og x . 

pr (Oiulcer) pr (Aino ulcer) 
(V.2) 

The second of these can be estimated from each city by replacing probabili
ties by proportions. We use large-sample theory, thus obtaining an estimate of 
/::,., with a standard error. The three estimates can be tested for consistency 
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with a common ~ and, if they are reasonably consistent, a weighted mean 
and confidence limits are calculated. 

Finally, note that if in the population the probability of having an ulcer is 
fairly small, thi:m (V.l) is e!Tectivcly 

log{pr (ulcer!A)}• 
pr (ulcerjO) 

(V.3) 

so: that exp(A) gives the ratio of occurrence probabilities in groups A and 0. 

Some methodological details. Suppose that in city}, samples of sizes 1111 and 
llaJ f~om control and ulcer groups give 

A 

0 

Total 

Then an estimate of AJ, the parameter (V.l) for city j, is 

- ( RaJ ) ( Rtl ) ~J = log - log ---'--
ll2J- R2J lltJ- RtJ 

and this has large-sample variance 

1 1 1 I 
Vj = -+ +-+---::-

Rat lla1-R21 Rtt lltJ-Rtt' 

assuming the R's to be independently binomially distributed. 
Thus a x.2 statistic for conformity with constant 6.1 is 

X2 = "E. (!:.t-l:.Y/vi 
= "E.l:.jjv,-( "£. ?l,fvt)2( "£. lfvJ)-1 , 

where 

is the weighted mean with large-sample variance 

(V.4) 

(V.5) 

(V.6) 

(V.7) 

(V.8) 

If in fact all 6.1 are equal, the large-sample distribution of (V.6) is x2 with 
degrees of freedom the number of cities minus one. 

The analysis. Table V.2 shows the estimates 6.1, their standard errors yv, 
and the estimated ratios exp(l:.,). For example, for the London data, j = I, 
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579 4219 
31 = log 9Ti-log 4578 = -0.3716, 

r)l = l/579+ 1/911 + l/4219+ l/4578, 

etc. The x2 statistic (V.6) is 2.98, with two degrees of freedom; this has 
p ~ 0.2. 

Table V.2. Estimated logistic differences K1 and standard 
errors .Jvl 

j XI ".Jvl cxp(3J) 

London -0.3716 0.05727 0.700 
' Manchester 2 -0.2008 0.08556 0.818 

Newcastle -0.3659 0.08622 0.694 
Pooled -0.3298 0.04167 0.719 

Thus all three cities show a lower peptic ulcer rate for group A than for 
group 0 and the variation in the ratios between cities, while a little greater 
than would be expected on the average by chance, is well within the limits to 
be expected in random sampling. The pooled estimate, the weighted mean 
il., is -0.330, with standard error 0.042, the corresponding ratio of probabili
ties being estimated as 0.719; a 95 per cent confidence interval for the ratio is 
(0.663, 0. 780). 

The main assumption limiting the conclusions is that the control series 
can be treated as effectively randomly chosen from that part of the target 
population without peptic ulcer. Obviously, for example, if the control in- J..t 

dividuals all suffered from some disease itself associated with blood group, 
then a bias would be introduced. The calculations of precision assume inde
pendent individuals with constant chance of 'success', leading to binomial 
variation. Effective matching between ulcer and control groups might increase 
precision and any form of 'cluster' sampling could decrease precision, i.e. 
increase variance. It seems most unlikely in the present instance that the 
qualitative conclusions could be affected by such changes in precision. 

Further points and exercises 
(i) Prove the identity of (V.l) and (V.2). 
(ii) Prove the formula (V.5) for the variance, using the variance of the 

binomial distribution for the random variables R11 and Rai· 
(iii) How would the analysis have proceeded had the £l1 for the three cities 

differed significantly? 
(iv) Suppose that it is required to estimate pr(ulceriA)- pr(ulcer!O). 

What further information is needed to do this from the current data? 
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(v) Consider the advantages and disadvantages of the retrospective study 
illustrated here as compared with alternative schemes of investigation. 

Related referentes. Armitage (1971, §§6.3, 16.2) describes the use and analysis 
of retrospective studies, especially in epidemiology, including the test of 
homogeneity. Snedecor and Cochran (1967, §16.11) explain the use of the 
empiricallogit transform, and Cox (1970, Chapter 3) gives a more detailed 
discussion . .. . 



Example W Housing and 
associated factors 

Description of data. The data in Table W.l (Madsen, 1976) relate to an in
vestigation into satisfaction with housing coni:litions in Copenhagen. A total 
of 1681 residents from selected areas living in rented homes built between 
1960 and 19681 were questioned on their satisfaction, the degree of contact 
with other residents and their feeling of influence on apartment management. 
The purpose of the investigation was to study association between these three 
factors and the type of housing. 

Taqle W.l. 1681 persons classified according to satisfaction, contact, influence and type of 
housing 

Contact Low High 

Satisfaction Low Medium High Low Medium High 

Ho,using Influence 
Tower blocks Low 21 21 28 14 19 37 

Medium 34 22 36 17 23 40 
High 10 II 36 3 5 23 

Apartments Low 61 23 17 78 46 43 
Medium 43 35 40 48 45 86 
High 26 18 54 15 25 62 

Atrium houses Low 13 9 10 20 23 20 
Medium 8 8 12 10 22 24 
High 6 7 9 7 10 21 

Terraced houses Low 18 6 7 57 23 ' 13 
Medium 15 13 13 31 21 13 
High 7 5 11 5 6 13 

Some general considerations. In observational studies such as this the distinc-
tion between response and explanatory variables is not so clear as in con-
trolled experiments. It is reasonable at a descriptive level to take type of 
housing as an explanatory variable, although even here care is needed in 
ultimate interpretation, in that we do not know 'why' individuals live in one 
type of housing rather than another, and differences in response between 
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different types of housing may well reflect some deeper explanatory 
variable. 

For some purposes it might be reasonable to take satisfaction as the single 
response variable to be 'explained' in terms of the other variables: influence 
and contact would then be intermediate variables. We shall, however, here 
concentrate on an analysis in which satisfaction, influence and contact are 
treated symmetrically as three response variables whose variation is to be 
described in as simple a way as possible. That is, we treat the investigation as 
liaving three response variables and one explanatory variable. 

As in multivariate problems generally, it is sensible to begin with the 
response variables one at a time. For this we examine for each type of housing 
the marginal frequencies of the various categories of response, examining 
each response variable separately. Then we turn to the association between 
the response variables. The simplest, but unlikely, possibility is that for each 
type of housing the three types of response are independent of one another. 
This is not the case here. Next it might happen that one of the response 
variables is independent of the other two, possibly with the pattern of 
association between the last two variables being similar for the different 
types of housing. 

The fitting of log linear models is one powerful tool for exploring such 
matters. They are computationally more difficult to handle than the corre
sponding linear models for approximately normally distributed data, but this 
is unimportant provided a suitable computer program such as GLIM is 
available. A more serious difficulty with models lies in its sometimes being 
hard to interpret the model or models ultimately chosen as best representing 
the data. One important aspect is that forming, say, two-way tables of satis
faction versus contact, for a particular type of housing, involves addition of 
frequencies over the third variable influence. :Yet the log linear models arc 
specified multiplicatively, essentially because independence implies multi
plication of marginal probabilities. Thus a parameter fitted to represent, say, 
a portion of the above two-factor interaction, allowing for the possible 
presence of two-factor interactions between the other variables, refers to the 
supposed relation between satisfaction and contact, for a fixed level of in
flueJ:\ce, and not, directly at least, to the two-way table of satisfaction
contact frequencies. 

In practice, the most important use of the models is likely to be to indicate 
the lev.el of complexity needed to represent the data: having settled this, it 
will be important to present the conclusions in as direct a form as possible 
and this will often be via tables of fitted frequencies implied by the model 
rather than by the estimated parameters themselves. 

As with analysis of relatively complex data in general, some choice is 
needed between starting with fits to the whole data, attempting to achieve 
reasonable simplification of the most general model, and between separate 
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fits to rational sections of the data, in this case the sections being the different 
types of housing. The choice depends partly on the analyst's experience with 
the material. Here we have put some emphasis on the second approach of 
starting with sections. It is important in doing this, however, to aim as far as 
possible at broadly similar representations of the different sections. 

, The analysis. Table W.2 shows for each type of housing the distribution of 
residents according to their responses on satisfaction, degree of contact and 
feeling of influence. There are marked differences in distribution between 
types of housing. Satisfaction is highest in tower blocks (50% responding 
'high') and lowest in terraced houses (25% responding 'high'), contact is 
highest in atrium (66% 'high') and terraced houses (66% 'high'), influence is 
lowest in terraced houses (45% 'low'). 

Such margiftal tables have to be interpreted carefully. That for satisfaction, 
for instance, describes the distribution of that variable on its own for each 

Table W.2. Distribution of respondents according to satisfaction, 
contact and influence for each type of housing 

Type of housing Satisfaction 

Low Medium High Total no. 
(%) (%) (%) respondents 

Tower blocks 24.8 25.2 50.0 400 
Apartments 35.4 25.1 39.5 765 
Atrium houses 26.8 33.1 40.2 239 
Terraced houses 48.0 26.7 25.3 277 

Contact 

Low High 
(%) (%) 

Tower blocks 54.8 45.2 400 
Apartments 41.4 58.6 765 
Atrium houses 34.3 65.7 239 
Terraced houses 34.3 65.7 277 

Influence 

Low Medium High 
(%) (%) (%) 

Tower blocks 35.0 43.0 22.0 400 
Apartments 35.0 38.8 26.1 765 
Atrium houses 39.7 35.1 25.1 239 
Terraced houses 44.8 38.3 17.0 277 
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Table W.3. Approximate x• for log linear models fitted to each type of housing 

Housing Tower Apartments Atrium Terraced 
blocks houses houses 

Model d.f. Approximate x• 
(a) Main effects 12 28.8 98.0 11.6 40.4 
(b) Main effects plus C X S 10 22.1 90.2 9.1 36.2 

CXI 10 23.8 91.4 11.4 30.2 
SXI 8 14.3 22.4 3.9 14.2 

Approximate x• is twice the difference of maximized log likelihood for full model (perfect 
fit) and model indicated. In GLIM it is called deviance. 

' . 

type of housing and as such is of direct interest, at least descriptively. Yet 
when the response variables are associated it could happen that for any parti
cular level of influence the conditional distribution of satisfaction is the same 
for all types of housing and yet the marginal distribution may differ. 

The results of fitting log linear models to the three response variables, 
separately for each type of housing, are summarized in Table W.3, giving an 
approximate x2 as twice the difference of log maximized likelihood between 
the fitted model and the full model giving a perfect fit. In GLIM this is called 
deviance. Tower blocks, atrium houses and terraced houses need only one 
interaction S x I (satisfaction x influence) to explain the data; the corre
sponding values of x2, each with 8 degrees of freedom, are 14.3, 3.9 and 14.2, 

Table W.4. Residuals from model containing interaction S X I, within type of housing 

Contact Low High 

Satisfaction L M tl L M H 

Housing Influence 
Tower blocks 

L 0.4 -0.2 -1.3 -0.5 0.2 1.4 
M 1.2 -0.5 -0.9 -1.3 0.6 1.0 
H 1.1 0.8 0.7 -1.2 -0.8 -0.7 

Apartments 
L 0.4 -1.0 -1.6 -0.4 0.9 1.3 
M 0.9 0.3 -1.7 -0.7 -0.3 1.4 
H 2.2 0.0 0.9 -1.8 0.0 -0.7 

Atrium houses 
L 0.5 -0.6 -0.1 -0.4 0.4 0.1 
M 0.7 -0.7 -0.1 -0.5 0.5 0.1 
H 0.7 0.5 -0.4 -0.5 -0.3 0.3 

Terraced houses 
L -1.5 -1.3 0.1 1.1 0.9 0.0 
M -0.2 0.4 1.4 0.1 -0.3 -1.0 
H 1.4 0.6 1.0 -1.0 -0.5 -0.7 



Table W.5. Observed and fitted frequencies 

Contact Low High 
Satisfaction L M H L M H 

Housing Influence 0 f 0 f 0 f 0 f 0 f 0 f 

Tower blocks 
L 21 19.2 21 21.9 28 35.6 14 15.8 19 18.1 37 29.4 

19.0 19.4 38.3 ·- 15.7 16.0 31.7 
M 34 27.9 22 24.6 36 41.6 17 23.1 23 20.4 40 34.4 

23.3 23.8 47.1 19.3 19.7 38.9 
H 10 7.1 II 8.8 36 32.3 3 5.9 5 7.2 23 26.7 

11.9 12.2 24.1 9.9 10.1 19.9 
Apartments 

L 61 57.6 23 28.6 17 24.9 78 81.4 46 40.4 43 35.1 
39.3 27.9 43.8 55.6 39.4 62.0 

M 43 37.7 35 33.2 40 52.2 48 53.3 45 46.9 86 73.8 
43.6 30.9 48.6 61.6 43.7 68.7 

H 26 17.0 18 17.8 54 48.1 15 24.0 25 25.2 62 67.9 
29.4 20.8 32.7 41.5 29.4 46.2 

Atrium houses 
L 13 11.3 9 11.0 10 10.3 20 21:7 23 21.0 20 19.7 

8.7 10.8 13.1 16.7 20.6 25.1 
M 8 6.2 8 10.3 12 12.4 10 11.8 22 19.7 24 23.7 

7.7 9.5 11.6 14.8 18.2 22.2 
H 6 4.5 7 5.8 9 10.3 7 8.5 10 11.2 21 19.7 

5.5 6.8 8.3 10.6 13.0 15.8 
Terraced houses 

L 18 25.7 6 9.9 7 6.9 57 49.3 23 19.1 13 13.1 
20.4 11.4 10.8 39.1 21.8 20.6 

M 15 15.8 13 11.7 13 8.9 31 30.2 21 22.3 13 17.1 
17.5 9.7 9.2 33.4 18.6 17.6 

H 7 4.1 5 3.8 11 8.2 5 7.9 6 7.2 13 15.8 
7.7 4.3 4.1 14.8 8.3 7.8 

o: observed frequency. 
f: fitted frequency (upper figure based on model containing S X I, lower figure on indep~ndence model). 
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none of which is significant when referred to the tabulated x2-distribution. 
Atrium houses can in fact be fitted adequately by the independence model 
(x2 = I 1.6 with 12 d.f.), but show a suggested pattern of interaction similar 
to that in the other types of housing. 

Apartments appear to require a model containing all two-factor inter
actions, although if only S x I as above is included the fit is considerably 
improved as compared with the main effects model. The remaining dis
crepancies can be judged in Table W.4 from the residuals, defined as 

(observed frequency - fitted frequency)/y(fitted frequency). 

The largest residuals, 2.2 and - 1.8, occur in apartments in compensating 
cells, i.e. the two cells corresponding to low and high contact within the same 
combination of low satisfaction/high influence; the fitted model gives a 
perfect fit within any particular satisfaction/influence combination. Thus, 
with the e?'ception of this combination within apartments, each type of hous
ing can be fitted by the same form of log linear model, i.e. one containing 
S x I but no other two-factor interaction. 

Fitted frequencies under the model containing S x I are given in Table 
W.S. They agree closely with the observed frequencies apart from ti}e instance 
already noted in apartments. Table W.S gives also the fitted freqJ.!encies under 

Table W.6. Ratios of frequencies under model containing 
S X I to frequencies under independence model 

Satisfaction Low Medium High 

Housing Influence 

Tower blocks 
L 1.01· 1.13 0.93 
M 1.20 1.04 0.88 
H 0.60 0.72 1.34 

Apartments 
L 1.46 1.03 0.57 
M 0.86 1.07 1.07 
H 0.58 0.86 1.47 

Atrium houses 
L 1.30 1.02 0.79 
M 0.80 1.08 1.07 
H 0.81 0.86 1.24 

Terraced houses 
L 1.26 0.88 0.64 
M 0.90 1.20 0.97 
H 0.53 0.88 2.02 
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the independence model. The meaning of the interaction is summarized more 
simply in Table W.6, in terms of ratios of the fitted frequencies under the 
model containing the interaction S x I to those under the independence 
model. Within each type of housing, increased satisfaction is associated with 
increased feeling of influence upon management. This holds even in atrium 
houses, for which the S x I interaction was earlier judged to be statistically 

·nonsignificant. In particular, in the high-satisfaction/high-influence cell the 
numbers of respondents in tower blocks, apartments, atrium houses and 
terraced houses are 34, 47, 24 and 102 per cent, respectively, greater than 
would be the case under an assumed independence model. 



Example X Educational plans of 
Wisconsin schoolboys 

Description of data. Sewell and Shah (1968) have investigated for some 
Wisconsin highschool 'senior' boys and girls the relationship between 
variables: 

(i) socioeconomic status (high, upper middle, lower middle, low); 
(ii) intelligence (high, upper middle, lower middle, low); 
(iii) parental encouragement (low, high); 
(iv) plans for attending college (yes, no). 

The data for boys are given in Table X. I. 

General considerations. A first crucial step is the choice of response variable 
or variables. We have studied the dependence of 'college plans' as a response 

Table X.l. Socioeconomic status, intelligence, parental encourage-
ment and college plans for Wisconsin schoolboys 

IQ College Parental SES 

plans encouragement L LM UM H 

L Yes Low - 4 2 8 4 
High l3 27 47 39 

No Low 349 232 166 48 
High 64 84 91 57 

LM Yes Low 9 7 6 5 
High 33 64 74 123 

No Low 207 201 120 47 
High 72 95 110 90 

UM Yes Low 12 12 17 9 
High 38 93 148 224 

No Low 126 115 92 41 
High 54 ~2 100 65 

H Yes Low 10 17 6 8 
High 49 119 198 414 

No Low 67 79 42 17 
High 43 59 73 54 

162 



Example X 163 

on the other variables as explanatory variables. Fienberg (1977, §7.3) used a 
more complicated approach regarding college plans as a final response 
variable partly to be explained by an intermediate response variable, parental 
encouragement. In effect, taking different response variables amounts to 
posing different questions and it is not to be supposed that there is just one 
allowable choice. 

The first step is to calculate the proportions of boys responding 'Yes' to 
college plans for the 4 x 4 x 2 classification of the explanatory variables. 
Inspection of these proportions is an essential step in descriptive analysis of 
the data. For more formal analysis it would be possible to apply analysis of 
variance directly to these proportions, ignoring changes in precision across 
the data and measuring effects directly in terms of different;:es of proportions. 
Partly becau~e the proportions vary over a substantial range, the main 
analysis here "has used a logistic model. 

Table X.2. Proportions answering 'Yes' lo college plans: 
observed and fitted proportions 

IQ Parental SES 

encouragement L LM UM H 

L Low 0.01 0.01 0.05 0.08 
0.02 0.02 0.03 O.Q7 

High 0.17 0.24 0.34 0.41 
0.17 0.23 0.29 0.46 

LM Low 0.04 0.03 0.05 0.10 
O.Q3 0.04 0.06 0.12 

High 0.31 0.40 0.40 0.58 
0.27 0.35 0.42 0.61 

UM Low 0.09 0.09 0.16 0.18 
0.06 0.09 0.12 '0.22 

High 0.41 0.50 0.60 0.78 
0.44 0.53 0.60 0.76 

H Low 0.13 0.18 0.12 0.32 
0.11 0.15 0.20 0.34 

High 0.53 0.67 0.73 0.88 
0.60 0.68 0.74 0.86 

Upper figure in each pair is observed proportion, lower figure 
is fitted proportion in linear logistic model with only main 
effects. 
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The analysis. For the response variable college plans, Table X.2 gives the 
proportions answering 'Yes'. The proportions increase consistently with ea:::h 
of the explaq.atory variables. 

The data are fitted adequately by a linear logistic model containing the 
three main effects, with no interactions; the difference in 2 log (maximized 
likelihood) between this and the full model giving perfect fit is 25.24 with 
24 degrees of freedom. Each of the main effects is significant. 
.. The estimated parameters.and asymptotic standard errors for each of the 
main effects, calculated with GLIM, are given in Table X.3. Note that GLIM 

Table X.3. Estimated parameters and standard 
errors 

Parameter Estimate , Standard 
error 

SES L 0 
LM 0.36 0.12 
UM 0.66 0.12 
H 1.41 0.12 

IQ L 0 
LM 0.59 0.12 
UM 1.33 0.12 
H 1.97 0.12 

PE L' 0 
H 2.46 0.10 

GLIM sets the first parameter of each group to 
zero. 

sets the first pa~ter in any group to zero. _Thus for socioeconomic status 
~ --the estimated parameters are • 

L : 0, LM : 0.36, UM : 0.66, H : 1.41, 
i.e. the higher the socioeconomic status, the higher the proportion answering 
'Yes' to college plans. The trend is even more marked across the levels of 
intelligence. For parep.tal encourageinent the estimated parameters are 

L : 0, H : 2.46. 
Thus high parental encouragement increases the ratio 'Yes'/'No' by an 
estimated factor of exp(2.46) = 11.7, with 95 per cent confidence limits 
9.6 and 14.3. · ' . 

The fitted proportions responding 'Yes' to college plans, based on the 
main-effects model, are shown in Table X.2 and are in·close agreement with 
the observed proportions. 

Related reference. Fienberg (1977, Chapters 6 and 7) gives a detailed dis
cussion of the application oflogistic models to cross-classified categorical data. 



Summary of examples 

We summarize below the sets of data analysed in Part II and give also the 
main techniques used in the analysis. 

Example A. Admissions to intensive care unit 
Comparison "with Poisson distribution via dispersion test. Intervals com
pared with exponential distribution. Simple time series analysis by forming 
subtotals. 

Example B. Intervals between adjacent births 
Simple analysis of three-way table. 

Example C. Statistical aspects of literary style 
Reduction of frequency distributions to summarizing statistics. Grouping of 
means into sets. 

Example D. Temperature distribution in a chemical reactor 
Regression. Prediction of proportion outside tolerance limit. Decomposition 
of variance. 

Example E. A 'before and after' study of blood pressure 
Detailed analysis of differences 'after' minus 'before\ 

Example F. Comparison of industrial processes in the presence of trend 
Formulation and fitting of linear model. Estimation of position of maximum. 

Example·G. Cost of construction of nuclear power plants . 
Multiple regression. Testing model adequacy. Model simplification. 

Example H. Effect of process and purity index on fault occurrence 
Binary data. Logistic models. Paired data. Comparison of maximized log 
likelihoods. 

Example I. Growth of bones from chick embryos 
Linear model for derived response. Recovery of between-block information. 
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Example J. Factorial experiment on cycles to failure of worsted yarn 
Transformations. Analysis of variance. Partition of degrees of freedom. 

Example K. Factorial experiment on diets for chickens 
Analysis of variance. Main effects and interactions. 

Example L. Binary preference data for detergent use 
Factorial contrasts for unbalanced binary data. Analysis of variance. 

Example M. Fertilizer experiment on growth of cauliftowers 
Analysis of variance. Partition of degrees of freedom. Confounding. 

Example N. Subjective preference data on soap pads 
Ordinally scored data. Factorial experiment. Between- and within-block 
analyses. 

Example 0. Atomic weight of iodine 
Unbalanced two-way analysis of variance. 

Example P. Multifactor experiment on a nutritive medium 
Unbalanced data. Choice of model out of many possible models. Multiple 
regression. 

Example Q. Strength of cotton yarn 
Components of variance. Allocation of observations. 

Example R. Biochemical experiment on the blood of mice 
Split-plot experiment. Factorial experiment. -

Example S. Voltage regulator performance 
Components of variance. Synthesis of variance. Prediction of proportion 
outside tolerance limit. 

Example T. Intervals between failures of air-conditioning equipment in aircraft 
Tests of exponential form. Fitting of sets of gamma distributions and associ
ated maximized log likelihood tests. Adequacy of model. 

Example U. Survival times of leukemia patients 
Regression model for exponential distributions. Residuals. 

Example v. A retrospective study with binary data 
Estimation of effects from retrospective binary data. Examination of 
homogeneity. 
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Example W. Housing and associated factors 
Comparisons involving three qualitative response variables. Log linear 
models. 

Example X. Educational plans of Wisconsin schoolboys 
Relation between binary response variable and several qualitative explanatory 
variables. Linear logistic model. 



Further sets of data 

Set-! 
Gordon and Foss (1966) investigated the effect of rocking on the crying of 
very young babies; see also Cox (1970, p. 4). On each of 18 days, one baby 
in a hospital ward was selected at random and rocked. The other babies 
served as controls. At the end of a specified time the number of babies not 
crying were counted, with the results given in Table 1. Conditions, for example 
temperature, were appreciably different on different days. 
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Table 1. Numbers of control babies and experimental babies 

Day No. of 
control 
babies 

1 8 
2 6 
3 5 
4· 6 
5 5 

6 9 
7 8 
8 8 
9 5 

10 9 

11 6 
12 9 
13 8 
14 5 
15 6 

16 8 
17 6 
18 8 

No. not 
crying 

3 
2 
1 
I 
4 

4 
5 
4 
3 
8 

5 
8 
5 
4 
4 

7 
4 
5 

No. of No. not 
experimental crying 
babies 

I 
1 
1 
0 
I 

I 
1 
1 
I 
0 

1 
0 
I 
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Set 2 
Table 2 (Bissell, 1972) gives the numbers of faults in rolls of textile fabric. The 
distribution of number of faults is of interest, especially in its relation to that 
expected if faults occur at random at a fixed rate per metre. 

Table 2. Numbers of faults in rolls of textile fabric 

Roll No. Roll No. of Roll No. Roll No. of 
length faults length faults 
(metres) (metres) 

I 551 6 17 . 543 8 
2 651 4 18 842 9 
3 832 17 19 905 23 
4 375 9 20 542 9 
5 715 14 21 522 6 
6 868 8 22 122 I 
7 271 5 23 657 9 
8 630 7 24 170 4 
9 491 7 25 738 9 

10 372 7 26 371 14 
11 645 6 27 735 17 
12 441 8 28 749 10 
13 895 28 29 495 7 
14 458 4 30 716 3 
15 642 10 31 952 9 
16 492 4 32 417 2 

Set 3 
Table 3 (J. S. Maritz, personal communication) gives data from an experi
ment on carcinogenesis in rats. Eighty rats were divided at random into 4 
groups of 20 rats each, and treated as follows: 

Group I D, no/, no P; 
II D, !, no P; 
III D, no/, P; 
IV D, I, P; 

where Dis thought to produce cancer, I is thought to act as an inhibitor and 
Pis thought to accelerate the appearance of cancer. The data in Table 3 are 
survival times in days; after 192 days the experiment was ended, and a post 
mortem was conducted on every sur~iving 'rat to assess the presence or 
absence of cancer. In the table, 192- means that the rat survived 192 days but 
was found to have cancer. The superscript + means death from a cause un
related to cancer; in particular, 192+ means that on post mortem the rat did 
not have cancer. 
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Table J. Survival times in days for four groups of rats 

Group I; D Group II; DI Group Ill; DP Group IV; DIP 

18; lOG 2+ 192+ 37 51 18' 127 
57 108 2+ 192+ 38 51 19' 134 
63+ 133 2' 192+ 42 55 40+ 148 
67+ 159 2' 192+ 43+ 57 56 186 
69 166 5·1· 192+ 43 59 64 192+ 
73 171 . 55+ 192+ 43 62 78 192+ 
80 188 78 192+ 43 66 106 192+ 
87 192- 78 192- 43 69 106 192+ 
87+ 192- 96 192- 48 86 106 192+ 
94 192- 152 192- 49 177 127 192+ 

Set4 
The data in Table 4(a) relate to 47 states of the USA (Vandaele, 1978). The 
dependence of crime rate in 1960 (variable R) upon the other variables listed 
is of interest. The variables are defined in Table 4(b). 

Table 4(a). Data on forty-seven states of the USA 

R Age s Ed Exo Ex, LF M N NW u. u. w X 

791 151 I 91 58 56 510 950 33 301 108 41 394 261 
1635 143 0 113 103 95 583 1012 13 102 96 36 557 194 
578 I~ I 89 45 44 533 969 18 219 94 33 318 250 

1969 136 0 121 149 141 577 994 157 80 102 39 673 167 
1234 141 0 121 109 101 591 985 18 30 91 20 578 174 
682 121 0 110 118 115 547 964 25 44 84 29 689 126 
963 127 I Ill 82 79 519 982 4 139 97 38 620 168 

1555 131 I 109 115 109 542 969 50 179 79 35 472 206 
856 157 I 90 65 62 553 955 39 286 81 28 421 239 
705 140 0 118 71 68 632 1029 7 15 100 24 526 174 • 

1674 124 0 105 121 116 580 966 101 106 77 35 657 170 
849 134 0 108 75 71 595 972 47 59 83 31 580 172 
511 128 0 113 67 60 624 972 28 10 77 25 507 206 
664 135 0 117 62 61 595 986 22 46 77 27 529 190 
798 152 I 87 57 53 530 986 30 72 92 43 405 264 
946 142 I 88 81 77 497 956 33 321 116 47 427 247 
539 143 0 110 66 63 537 977 10 6 114 35 487 166 
929 135 I 104 123 115 537 978 31 170 89 34 631 165 
750 130 0 116 128 128 536 934 51 24 78 34 627 135 

1225 125 0 108 113 105 567 985 78 94 130 58 626 166 

742 126 0 108 74 67 602 984 34 12 102 33 551 195 
439 H7 I 89 47 44 512 962 22 423 97 34 288 276 

1216 132 0 96 87 83 564 953 43 92 83 32 513 227 
968 131 0 116 78 73 574 . 1038 7 36 142 42 540 176 
523 130 0 116 63 51 641 984 14 26 70 21 486 196 

1993 131 0 121 160 143 631 1071 3 77 102 41 674 152 
342 135 0 109 69 71 540 965 6 4 80 22 564 139 

1216 152 0 112 82 76 571 1018 10 79 103 28 537 215 
1043 119 .0 107 166 157 521 938 168 89 92 36 637 154 
696 166 I 89 58 54 521 973 46 254 72 26 396 237 
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Table (4n) contd. 

373 140 0 93 55 54 535 1045 6 20 135 40 453 200 
754 125 0 109 90 81 586 964 97 82 105 43 617 163 

1072 147 1 104 63 64 560 972 23 95 76 24 462 233 
923 126 0 118 97 97 542 990 18 21 102 35 589 166 
653 123 0 102 97 87 526 948 113 76 124 50 572 158 

1272 150 0 100 109 98 531 964 9 24 87 38 559 153 
831 177 I 87 58 56 638 974 24 349 76 28 382 254 
566 133 0 104 51 47 599 1024 7 40 99 27 425 225 
826 149 I 88 61 54 515 953 36 165 86 35 395 251 

1151 145 I !Of 82 74 560 981 96 126 88 31 488 228 

880 148 0 122 72 66 601 998 9 19 84 20 590 144 
542 141 0 109 56 54 523 968 4 2 107 37 489 170 
823 162 I 99 75 70 522 99,6 40 208 73 27 496 224 

1030 136 0 121 95 96 574 1012 29 36 Ill 37 622 162 
455 139 I 88 46 41 480 968 19 49 135 53 457 249 
508 126 0 104 106 97 599 989 40 24 78 25 593 171 
849 130 0 121 90 91 623 1049 3 22 113 40 588 160 

Table 4(b). Variables listed in Table 4(a) 

The source is the Uniform Crime Report of the Federal Bureau of Investigation. 
All the data relate to calendar year 1960 except when explicitly stated otherwise. 

R: Crime rate: the number of offences known to the police per 1000 000 population. 

Age: Age distribution: the number of males aged 14-24 per 1000 of total state 
population. 

S: Dummy variable distinguishing place of occurrence of the crime (south = 1). 
The southern states are: Alabama, Arkansas, Delaware, Florida, Georgia, 
Kentucky, Louisiana, Maryland, Mississippi, North Carolina, Oklahoma, South 
Carolina, Tennessee, Texas, Virginia, and West Virginia. 

Ed: Educational level: the mean number of years of schooling X 10 of the population, 
25 years old and over. 

Ex0, Ex1 : Police expenditure: the per capita expenditure on police protection by state and 
local government in 1960 and 1959, respectively. Sources used are Governmelltal 
Finances ill 1960 and Govemmental Finances ill 1959, published by the US 
Bureau of the Census. 

LF: Labour force participation rate per 1000 of civilian urban males in the age-
group 14-24. 

M: The number of males per 1000 females. 

N: State population size in hundred thousands. 

NW: Nonwhites: the number of nonwhites per 1000. 

U1 : Unemployment rate of urban males per 1000 in the age-group 14-24, as measured 
by census estimate. 

u.: Unemployment rate of urban males per 1000 in the age-group 35-39. 

W: Wealth as measured by the median value of transferable goods and assets or 
family income (unit 10 dollars). 

X: Income inequality: the number of families per 1000 earning below one-half of 
the median income. 
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Table 5 (Patterson and Silvey, 1980) gives the yield of six varieties of wheat 
in 1977 at ten testing centres in three regions of Scotland (N: North of Scot
land, E: East of Scotland, W: West of Scotland). Not all six varieties were 
grown at each of the testing centres. The data were collected as part of a 
development and testing programme aimed at recommending new varieties. 
Patterson and Silvey estimated precision by detailed analysis of more ex
tensive data: for the present purpose treat the standard error for one variety 
iri 'one centre as known to be 0.19 (t grain/ha). 

Table· 5. Yield (t grain/ha) of winter wheat at ten centres 

Centre 

Variety El E2 N3 N4 N5 N6 W7 E8 E9 N10 

H,untsman 5.79 6.12 5.12 4.50 5.49 5.86 6.55 7.33 6.37 4.21 
Atou 5.96 6.64 4.65 5.07 5.59 6.53 6.91 7.31 6.99 4.62 
Armada 5.97 6.92 5.04 4.99 5.59 6.57 7.60 7.75 7.19 
Mardler 6.56 7.55 5.13 4.60 5.83 6.14 7.91 8.93 8.33 
Sentry 7.34 8.68 7.~1 3.99 
Stuart 7.17 8.72 8.04 4.70 

Set6 
Healy et ,a/. (1970) discuss an experiment in which each of 68 dental patients 

1'9 was given the anxiety-reducing drug diazepam immediately prior to a local 
anaesthetic and dental treatment. The patients formed two groups of equal 
size, a study group and a control group. The study group (S) were patients 
(with a high level of anxiety) who would not normally be willing to undergo 
a local anaesthetic and the control group (C) were patients (with a normal • 

Table 6. Average number or tasks completed in a set time by sixty-eight 
dental patients 

Test Group Before drug After drug 

GO mins* 90 mins 1 week 

c 64.8 50.2 64.6 66.7 
s 68.8 54.7 69.7 75.9 

II c 70.7 54.7 70.2 72.7 
s 65.7 45.7 66.2 68.7 

III c 78.5 58.5 81.8 83.3 
s 84.3 66.4 83.8 85.2 

*Based on 20 patients. 
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anxiety level) who would normally be willing to do so. The drug enabled ail 
the patients to accept a local anaesthetic. In order to· examine the effect of the 
drug on motor co-ordination and dexterity, each patient performed three 
tests, I, II and III, (a) immediately before, (b) 60 minutes after, (c) 90 minutes 
after, and (d) one week after administration of the drug. Each test consisted 
of completing a simple task as many times as possible in a set time, the three 
tests involving different tasks. Each response in Table 6 is the average value, 
for all patients in the relevant group, of the number of tasks completed in the 
set time. 

Set 7 
Table 7, based on a survey in Fiji organized by World Fertility Survey (Little, 
1978), gives the mean number of children born per woman, the women being 
classified by place, education and years since first marriage. Any systematic 
variation in number of children per woman is of interest. 

Table 1. Mean number of children born to women in Fiji of Indian race, by marital dura-
tion, type of place and education. Observed mean values and sample sizes 

Years Type of place 
since 
first Urban Rural 

marriage 
Education* Education• 
(1) (2) (3) (4) (1) (2) (3) (4) 

< 5 1.17 0.85 1.05 0.69 0.97 0.96 0.97 0.74 
12 27 39 51 62 102 107 47 

5-9 2.54 2.65 2.68 2.29 2.44 2.71 2.47 2.24 
13 37 44 21 70 117 81 21 

10-14 4.17 3.33 3.62 3.33 4.14 4.14 3.94 3.33 
18 43 29 15 88 132 50 9 

15-19 4.70 5.36 4.60 3.80 5.06 5.59 4.~0 2.00 
23 42 20 5 114 86 30 1 

20-24 5.36 5.88 5.00 5.33 6.46 6.34 5.74 2.50 
22 25 13 3 117 68 23 2 

25+ 6.52 7.51 7.54 7.48 7.81 5.80 
46 45 13 0 195 59 10 0 

*Categories of Education Level are: 
(1) non, (2) lower primary, (3) upper primary, (4) secondary or higher. 
Lower figures give the number of women involved. 



Table 8. Mean annual malformation rateS (per 1000 total singleton births), 1964-66 

Area All CNS Malformations Anencephalus Spina bifida Water 
without hardness 
anencephalus (p.p.m.) 

Non-manual Manual Non- Manual Non- Manual 
manual manual 

Cardiff 4.62 (4110) 8.21 (9 502) 1.22 3.26 2.19 3.47 110 
Newport 5.25 (1 523) 5:18 (4 634) 0.66 0.65 4.60 3.24 100 
Swansea 5.81 (2 408) 9.50 (5 579) 3.74 3.41 2.08 5.38 95 
Glamorgan East Valleys 8.15 (3 189) 10.85 (13 362) 2.82 4.12 4.39 5.31 42 
Glamorgan West Valleys 8.02 (1 :J95) 10.15 (8 279) 2.51 3.62 5.01 5.31 39 
Rest of Glamorgan 5.14 (4 863) 8.26 (7 868) 2.26 3.18 2.47 3.56 161 
Monmouthshire Valleys 7.56 (2 380) 8.56 (10 048) 2.52 3.58 3.36 3.68 83 
Rest of Monmouthshire 5.58 (1 613) 7.50 (3 201) 1.86 2.50 3.72 4.06 122 
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Set 8 

175 

Lowe eta!. (1971) investigated the association between hardness.of the water 
supply and the incidence of births with malformation of the central nervous 
system (CNS), mainly anencephalus and spina bifida. Table 8 gives the mean 
annual malformation rates subdivided by social class (non-manual, manual) 
over the three years 1964-66 for eight areas in Wales; the total number of 
singleton births is shown in brackets. Births in which both anencephalus and 
spina bifida are present are counted under anencephalus, this being by far the 
more serious malformation. 

Set9 
Tl1e data* in Table 9 relate to the comparison of 4 individual chemical pro
cesses carried out in a 4 x 4 Latin square arranged to eliminate variation 
between days and between times of the day. After a considerable time the 
experiment was repeated using a rerandomized form of the same design. 

Table 9. Data on the yield from four chemical processes 

Replicate 1 1 B: 3.44 D: 6.58 A: 8.21 C: 4.56 

Day 
2 C: 4.53 A: 8.83 B: 8.38 D: 8.11 
3 A: 7.38 C: 5.32 D: 8.52 B: 7.20 
4 D: 11.00 B: 11.78 C: 10.18 A: 13.61 

Replicate 2 I C: 3.60 A: 7.57 D: 10.22 B: 7.36 

Day 2 B: 5.64 D: 7.46 C: 5.59 A: 10.63 
3 D: 9.30 B: 6.21 A: 11.55 C: 9.06 
4 A: 5.62 C: 5.72 B: 7.47 D: 11.13 

•Fictitious data based on a real problem. 

Set 10 
Coleman (1964) describes a study in which 3398 US schoolboys were inter
viewed on two successive occasions. On each occasion it was recorded 
whether they were or were not members of the 'leading crowd' and their 
attitude to membership ( +, -) was also noted, association between member
ship and attitude being of interest. The data are given in Table 10. 
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Table 10. Frequency of response according to membership and attitude to 
membership 

First interview 
Membership Attitude 
+ + 

.+ 
+ 

Setll 

Membership 
Attitude 

Second interview 
+ + 
+ + 

458 
171 
184 
85 

140 110 49 
182 56 87 
75 531 281 
97 338 554 

The data in Table II (Ashford and Sowden, 1970) were collected as part of 
an investigation into the incidence of pneumoconiosis among coalminers. A 
sample of 18 282 coalminers who were known to be smokers but who showed 
no radiological abnormality were grouped by age and classified according to 
whether or not they showed signs of two symptoms, breathlessness and wheeze. 

Table 11. Numbers of subjects responding to breathlessness and wheeze according 
to age group 

Breathlessness Yes No Total 

Wheeza Yes No Yes No 

20-24 9 7 95 I 841 1 952 

J. 25-29 23 9 105 1 654 1 791 
30-34 54 19 177 I 863 2 113 
35-39 121 48 257 2 357 2 783 

Q, 
40-44 169 54 273 I 778 2 274 :I 

0 
45-49 269 88 324 1 712 2 393 tb 

~ 50-54 404 117 245 I 324 2 090 
< 55-59 406 152 225 967 1 750 

60-64 372 106 132 526 I 136 

Total 1 827 600 1 833 14 022 18 282 

Set 12 
In an attempt to assess the effect of attitude towards capital punishment on 
the voting behaviour of jurors in criminal cases, 464 jurors who had voted in 
split ballots were interviewed (Zeisel, 1968). The three key questions asked 
were: 

(i) Do you have any conscientious scruples against the death penalty? 
(ii) How did you vote on the first ballot after the jury started to deliberate? 
(iii) How did the entire jury vote on this first ballot? 
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The data in Table 12 give, for each possible split of the jury, the numbers of 
jurors with and without scruples against the death penalty who voted (a) 
Guilty, (b) Undecided, and (c) Not Guilty, on the first ballot. Interest lies in 
whether jurors without scruples against the death penalty are more likely to 
vote Guilty on the first ballot than jurors who have such scruples. 

Table 12. Votes of 464 jurors 

Jury split No. of jurors voting 

Guilty/Not Guilty Scruples Not Guilty Undecided Guilty 

1/11 without 2 0 1 
with 5 0 2 

2/10 without 24 2 1 
with 10 3 5 

3/9 without 14 1 6 
with 14 0 2 

4/8 without 6 1 6 
with 16 2 9 

5/7 without 1 0 3 
with 4 0 1 

6/6 without 9 8 10 
with 6 2 5 

7/5 without 7 n 
with 4 3 

8/4 without 9 0 26 
with 7 1 18 

9/3 without 3 24 
with 7 22 

10/2 without 3 2 36 
with 4 I 29 

11/1 without 0 0 29 
with 3 I 29 

Set 13 
The data in Table 13 are taken from a report on a cohort study into radiation 
upon mortality among survivors of the Hiroshima atom bomb (Otake, 1979). 
Of particular interest is the incidence of death from leukemia. 
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Tahle 13. Number of individuals alive in 1950 and deaths during the period 1950-59 

Age at Radiation dose in rads 

1950 Total 0 1-9 10-'49 50-99 100-199 200+ 

5-14 Leukemia 14 3 1 0 I 3 6 
All other cancers 2 1 0 0 0 0 I 
Other causes 141 48 41 28 11 6 7 

Alive 1950 15 286 6 675 4 084 2 998 700 423 406 
15-24 Leukemia 15 0 2 3 I 3 6 

All other cancers 13 6 4 2 0 0 I 
Other causes 392 195 101 46 10 22 18 

Alive 1950 17 109 7 099 4 716 2 668 835 898 893 
25-34 Leukemia 10 2 2 0 0 1 5 

All other cancers 27 9 9 4 2 I 2 
Other causes 290 122 80 52 15 10 11 

Alive 1950 10 424 4 425 2 646 I 828 573 459 493 
35-44 Leukemia 8 0 0 1 1 I 5 

All other cancers 114 55 30 17 2 2 8 
Other causes 418 179 99 76 20 22 22 

Alive 1950 II 571 5 122 2 806 2 205 594 430 414 
45-54 Leukemia 20 9 3 2 0 I 5 

All other cancers 328 127 81 73 21 11 15 
Other causes 990 452 229 197 48 35 29 

Alive 1950 12 472 5 499 3 004 2 392 664 496 417 
55-64 Leukemia 10 2 0 2 2 1 3 

All other cancers 371 187 80 57 22 17 ' 8 
Other causes I 403 635 362 256 53 53 44 

Alive 1950 8 012 3 578 2 Oil I 494 434 283 212 
65+ Leukemia 3 1 1 0 0 0 I 

All other cancers 256 119 59 48 13 10 7 
Other causes 2 264 I 039 604 4!8 99 63 41 

Alive 1950 4 862 2 245 I 235 935 232 123 92 

Set 14 
Ten nominally similar perfumes for use in a disinfectant were assessed as 
follows. Ten small measured samples of the disinfectant, differing only in 
respect of the perfume, were placed in ten identical containers. A panel of 30 • 
judges were each asked to smell the samples and to group them according to 
whether or not any difference in smell could be detected; the number of 
groups could be any number from one (no detectable difference) to ten (all 
different). Each panel member was also asked to classify each group of samples 
according to acceptability of perfume into 'like', 'indifferent' or 'dislike'. 

The data are given in Table 14. Samples judged to smell alike are bracketed 
together; thus, the first judge allocated the 10 samples into 4 groups, the 
second into 8 groups, etc. The identification of any groups in which the 
perfum~s appear to be indistinguishable is of importance, and also the 
acceptability of the perfume in these groups. 

Set 15 
In an experiment carried out in four sections on the assessment of meat 
tenderness (Bouton eta/., 1975), subjective and objective measurements were 
obtained on samples of beef. The sections of the experiment were done under 
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Table 14. Allocation by thirty judges of ten perfumes into groups 

Acceptability 

Judge Like Indifferent Dislike 

1 (2, 5, 8) (1, 4, 6, 9, 10) (3) (7) 
2 (1) (6) (7) (3) (2, 4, 5) (8) (9) (1 0) 

·3 (1, 2, 4, 5, 6, 9, 10) (8) (3) (7) 
4 (3, 7, 10) (5, 6, 8) (1, 2, 4, 9) 
5 (5) (6) (9) (1) (2} (4) (7) (8) (3) (10) 
6 (1, 4, 7, 8) (5) (6) (9) (10) (2) (3) 
7 (7) (5) (4, 8, 9, 10) (3) (1, 2, 6) 
8 (1) (4) (5) (6) (10) (2, 3, 9) (7, 8) 
9 (1, 4, 5, 7, 8, 10) (2, 6, 9) (3) 

10 (1, 2, 5, 6) (7, 8, 9, 10) (3, 4) 
11 (1, 4, 8, 9", 10) (2, 5, 6, 7) (3) 
12 (8) (4, 6) (9, 10) (5) (7) (1, 2) (3) 
13 (2, 7, 9) (5, 8, 10) (1) (4, 6) (3) 
14 (2) (5) (7) (9) (1, 4, 8, 10) (3, 6) 
15 (1, 4, 9) (2, 5, 6, 7, 8, 10) (3) 
16 (1, 4, 10) (2) (5) (6) (7) (8} (9) (3) 
17 (5, 6, 8) (1, 2, 7, 9, 10) (3, 4) 
18 (1, 4, 7, 9) (2, 5, 6, 8, 10) (3) 
19 (2, 3, 8) (5, 6, 10) (1, 4, 7, 9) 
20 (1) (2) (4) (5) (6) (7) (8) (3) 

(9) (10) 
21 (2, 4, 6, 9) (8, 1 0) (5, 7) (1) (3) 
22' (2, 6, 8, 10) (1, 4, 5, 9) (3) (7) 
23 (4, 9) (6, 10) (3, 7) (1, 2, 5, 8) 
24 (1, 9, 10) (2, 5) (4, 6, 8) (3, 7) 
25 (7) (1, 2, 5) (4, 6, 8, 9, 10) (3) 
26 (5, 10) (1, 2, 6, 9) (3, 7) (4, 8) 
27 (1, 4, 7, 9) (2, 5, 6, 8, 10) (3) 
28 (1, 2, 6) (5, 9, 10) (3, 4, 7, 8) 
29 (2) (3, 5, 6, 1 0) (1, 4, 7, 8, 9) 
30 (1, 4) (3, 5) (2, 7) (6, 8) (9, 10) 

different cooking conditions and with varied cuts of beef with the objective 
of producing appreciable differences in tenderness. A twe1ve-member•taste 
panel subjectively assessed the tenderness and juiciness on a scale 0-15 
(0 = extremely tender or juicy, 15 = very tough or very dry). Objective 
measurements were made of (i) force required to compress a sample to 80 
per cent of its thickness, (ii) force required to pull a sample apart, (iii) shear 
force and (iv) percentage weight lost in cooking. The data are summarized in 
Table 15. The objective measurements given are averages of 6-10 observa
tions, the standard errors being.based on the variation within groups. The aim 
is to examine the extent to which the variation in tenderness and juiciness can 
be accounted for by the variations in the objective measurements. 



Table 15. Mean values of objective measurements obtained for each treatment and mean panel scores for _samples bitten -across the fibres (A) and between the fibres (B) 00 
0 

Objective 
' 

Subjective 

Compression* Adhesion* Shear* Cooking Tenderness Juiciness 
loss% (A) (B) (A) (B) 

Section Sample 
I 2.29 0.74 7.42 39.0 12.0 9.4 7.3 7.3 
2 1.44 0.38 6.74 41.7 9.6 7.4 8.9 8.5 
3 1.14 0.24 6.13 42.7 8.0 5.9 9.2 9.3 
4 0.81 0.14 5.29 43.1 8.2 4.1 9.4 9.8 

Standard error 0.09 0.05 0.74 0.4 0.7 0.7 0.3 0.3 

5 2.69 1.32 6.65 39.8 11.8 9.8 8.2 8.9 

2 6 2.49 0.96 7.31 36.3 9.5 9.0 6.9 7.2 
7 1.99 0.49 8.22 36.9 9.4 7.8 7.7 7.3 
8 1.26 0.17 4.36 32.1 4.7 3.1 5.5 5.9 

Standard error 0.09 0.09 0.46 0.5 0.4 0.4 0.3 0.3 

9 1.92 0.63 6.36 20.3 7.3 6.5 4.2 3.4 

3 
10 2.59 0.97 7.13 27.3 9.5 9.1 6.4 4.6 
11 2.41 1.01 7.35 36.6 !0.8 8.8 9.6 8.7 
12 2.02 0.79 7.83 41.0 9.6 7.3 11.2 !0.3 
Standard error 0.14 O.Q7 0.52 0.5 0.3 0.3 0.3 0.3 

13 1.93 0.63 13.28 35.8 12.1 9.6 8.4 7.5 
~ 
'1;:1 

4 14 1.82 0.68 7.79 36.0 8.0 7.5 8.9 8.5 ~ 
15 1.78 0.64 8.22 - 13.7 7.8 5.5 2.4 2.2 ~ 

c., 
16 1.57 0.64 5.45 17.1 4.5 3.7 3.3 2.7 ~ 
Standard error 0.05 0.04 0.35 0.8 0.2 0.2 0.4 0.3 .... 

~-

*All values in kg 
.... 
~a 
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examples 

Stochastic model, 21, 31, 64, 65 
Structure of data, 5, 6, 22 
Synthesis of variance, 132 
Systematic 

effect, 29, 32, 33 
error, 4, 11 

Tolerance limit, 13, 41, 69, 142 
Transformation, 26, 31, 36, 45-47, 49, 60, 

83, 98, 102, 130, 132 
see also Logistic transform 

Unbalanced data, 121-126 

Variance, see Analysis of variance; Com
ponent of variance; Synthesis of 
variance 

Weibull distribution, 143 
Weighted estimate, 64, 65, 97, 152, 153 
Weighted least squares, 26, 64, 65, 83, 108 

see also Maximum likelihood 
Within-block analysis, 95-97 


