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Preface

Various phenomena arising in physics, biology, finance, and other fields of study are in-
trinsically affected by random noise, (white or colored noise). One thus models any such
phenomenon by an appropriate stochastic process or a stochastic equation. An analysis of
the resulting process or equation falls in the realm of the so-called stochastic analysis. The
applicatory value of stochastic analysis is therefore undeniable. In this handbook we present
an overview of the analysis of some basic stochastic processes and stochastic equations along
with some selective applications. The handbook is already voluminous even with this limited
choice of topics, and therefore we hope that the reader will forgive us for omissions.

This handbook on stochastic analysis and applications contains 12 chapters. The first
six chapters of the handbook may be considered the theoretical half (though they contain
several illustrative applications) and the remaining six chapters the applied half. Markov
processes and semimartingales are two predominant processes at the foundation of a stochas-
tic analysis. The first two chapters present a clear exposition of these two basic processes.
These chapters include material on Ito's stochastic calculus. To these we also add Chapter
3 presenting the important white noise theory of Hida. Stochastic differential equations
(SDEs) are extensively used to model various phenomena that are subject to random per-
turbations. Chapter 4 details this topic. As in the case of deterministic equations, one needs
numerical methods to analyze SDEs. The numerical analysis of SDEs is a fast-developing
area that is not as rich in theory as its deterministic counterpart is. Chapter 5 presents an
up-to-date account of the numerical analysis of SDEs. One can say without reservation that
the study of large deviations is currently the most active area of research in probability,
finding applications in a vast number of fields. Chapter 6 gives a thorough survey of this
topic. The rest of the handbook is on applications. Stochastic control methods are needed
or alluded to in some of these applications. We start the set of applied chapters with meth-
ods of control theory and the stabilization of control, Chapter 7. Game theoretic methods
applied to economics helped at least one to earn a Nobel prize for economics. Chapter 8
presents a survey of stochastic game theory. We follow this with Chapter 9 on stochastic
manufacturing systems where hierarchical control methods are used. Chapter 10 presents
stochastic algorithms with several applications. Chapter 11 applies stochastic methods to
optimization problems (as opposed to stochastic optimization methods). The final chapter
is on stochastic optimization methods applied to (stochastic) financial mathematics. The
introductory section of each chapter will provide details on the topics covered and the rel-
evance of that chapter, so we refrain from summarizing them in detail here. Nevertheless,
we will mention below a few simple facts just to introduce those chapters.

Markov chains and processes are, informally, randomized dynamical systems. These
processes are used as models in a wide range of applications. Also, the theory of Markov
processes is well developed. The handbook opens with an expository survey of some of the
main topics in Markov process theory and applications. Professor Rabi Bhattacharya, who
has published numerous research articles in this area and also has co-authored a popular
first-year graduate level textbook on stochastic processes writes this chapter.

111
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It would hardly be an exaggeration to say that semimartingale theory is central in any
stochastic analysis. These processes form the most general integrators known in stochastic
calculus. Chapter 2 presents an extensive survey of the theory of this important process.
Professor Jia-an Yan, the author of Chapter 2, has co-authored an excellent book on this
subject. Both Chapter 1 and Chapter 2 include several aspects of stochastic calculus that
form a basis for understanding the remaining chapters.

Professor H.H. Kuo has researched extensively the white noise calculus of Hida, and also
has written a substantial monograph on this subject. He authors Chapter 3.

Chapter 4 completes a cycle of stochastic calculus by presenting a well-rounded survey of
the theory of stochastic differential equations (SDEs) and is written by Professor Bo Zhang,
who specializes in the stability analysis of stochastic equations. This chapter reviews the
theory of SDEs, which is fundamental in a vast number of applications in a variety of fields
of study, and so forms a basis for what follows in the rest of the handbook (except for the
chapter on large deviations).

The longest chapter (Chapter 5) in the handbook is on the numerical analysis of stochas-
tic differential equations. The importance of the numerical analysis of deterministic systems
is well known. Compared to the deterministic case, the study of the numerical methods for
stochastic equations is still at a developing stage (and a fast one at that). This chapter is
important due to its multidisciplinary character, the wide range of potential applications of
stochastic differential equations, and the limitations of analytical methods for SDEs caused
by their high complexity and partial intractability. Professor Henri Schurz, who wrote this
chapter, has co-authored a textbook on the numerical analysis of SDEs and developed an
accompanying program diskette. He presents an extensive list of references on this subject
here.

One may say without much hesitation that the large deviation theory is currently the
most active subject of research in probability. Professors Dembo and Zeitouni have not only
done extensive research in this area but also co-authored a popular monograph on this topic.
Chapter 6 is an up-to-date survey of this theory, which found applications in many areas
including statistical physics, queuing systems, information theory, risk-sensitive control,
stochastic algorithms, and communication networks. This chapter includes applications to
hypothesis testing in statistics and the Gibbs conditioning principle in statistical mechanics.

The remaining half of the handbook is on applications; regrettably a lot of important
applications are not included due to space constraints. Control theory and stabilization of
controls is the subject matter of Chapter 7 written by Professor Pavel Pakshin. The dynamic
programming and maximum principle methods are detailed in the chapter. The separation
principle is used for the solution of the standard linear-quadratic Gaussian (LQG) control
problem. Chapters 9 and 12 extensively use the control theory methods in applications to
stochastic manufacturing systems and asset pricing, respectively.

Chapter 8, written by Professor K.M. Ramachandran, discusses stochastic game theory.
Recently, three prominent researchers in game theory won the Nobel prize for economics.
This vouches for the importance of game theory, both deterministic and stochastic. The
chapter includes both the two-person zero-sum games and N-person non-cooperative games.
Emphasis is placed on solution methods, old and new. Applications to defense, finances,
economics, institutional investor speculation, etc, are presented.

Stochastic control theory enriched the analysis of manufacturing systems. Professor
Qing Zhang who wrote Chapter 9 has also co-authored the first authoritative monograph on
stochastic manufacturing systems. Chapter 9 includes the theory and applications developed
since the appearance of that monograph. Manufacturing systems are usually large and
complex, and are subject to various discrete events such as purchasing new equipment and
machine failures and repairs. Due to the large size of these systems and the presence of these
events, obtaining exact optimal feedback policies to run these systems is nearly impossible
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both theoretically and computationally. Only small-sized problems are addressed even in
approximation of solutions. Therefore, these systems are managed in a hierarchical fashion.
The reduction in complexity is achieved by decomposing the problem into problems of
the smaller subsystems with a proper coordinating mechanism, aggregating products and
subsequently disaggregating them, and replacing random processes with their averages. This
chapter adopts the latter method.

Professor George Yin reviews stochastic approximations and their applications in Chap-
ter 10. He presents various forms of stochastic approximation algorithms, projections and
truncation procedures, algorithms with soft constraints, and global stochastic approxima-
tion algorithms, among other methods. The utility of stochastic approximation methods is
demonstrated with applications to adaptive filtering, system identification, stopping time
rules for least squares algorithm, adaptive step-size tracking algorithms, approximation of
threshold control policies, GI/G/1 queues, distributed algorithms for supervised learning,
etc. George Yin has co-authored a book on this topic and this chapter includes recent
results.

Chapter 11, written by Professor Ron Shonkwiler, is on stochastic methods for global
optimization. Until the stochastic methods came along, there were no good general methods
addressing global optimization. Stochastic methods are simple to implement, versatile, and
robust, and they parallelize effectively. These methods often mimic some natural process
such as temperature-based annealing or biological recombination. The theory behind these
methods is built on the theory of Markov chains and renewal theory, and it provides a
framework for illuminating their strengths and weaknesses. Detailed descriptions of the
basic algorithms are provided along with comparisons and contrasts.

Professor Thaleia Zariphopoulou wrote the final chapter (Chapter 12), which is on
stochastic control methods in asset pricing, and she is an active researcher in this area. Most
of the valuation models lead to stochastic optimization problems. This chapter presents an
exposition of stochastic optimization methods used in financial mathematics along with a
quick summary of results on the Hamilton-Jacobi-Bellman (HKB) equation. In addition
to optimization models of expected utility in complete markets as well as markets with
frictions, this chapter provides models of derivative pricing.
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Chapter 1

Markov Processes and Their
Applications

RABI BHATTACHARYA
Department of Mathematics

Indiana University
Bloomington, Indiana

1.1 Introduction

For the most part in this chapter we will confine ourselves to time-homogeneous Markov
processes. In discrete time, such a Markov process on a (measurable) state space (S,S)
is defined by a (one-step) transition probability p(x,dy), x 6 S, where (i) for each x e
S, p(x,dy) is a probability measure on (S,S) and (ii) for each B € S,x — > p(x,B) is a
measurable function on (5,5) into ([0, 1],6([0, 1]). Here B(X] denotes the Bore] a-field on
atopological space X. Let QQ = S°° be the space of all sequences x = ( X Q , X I , • • • ,xn, • • • ) in
S, fio being endowed with the product cr-field J^o = <5®°° generated by the class of all finite-
dimensional measurable cylinders of the form A = B x 5°° = {x G 5°° : Xj € B3 ; , 0 < j < n}
with Bj £ S for j = 0, 1, • • • , n and n arbitrary. For any given probability measure /j, on
(5, S) one can construct a unique probability measure P^ on (Q, F) by assigning to cylinder
sets A of the above form the probability

P»(A)= f I ••• I I p(zn_i,Bn)p(a;n-2,da;n_i)
J BO J BI J Bn — % J Bn — \

. (1-1-1)

evaluated by iterated integration. In the case S is a Polish space, i.e., 5 is homeomorphic to
a complete separable metric space, and S = B(S), such a construction of a PM is provided
by Kolmogorov's Existence Theorem (See Billingsley [1], pp. 486-490). For general state
spaces (S,S) this construction is due to Tulcea [2] (Also see Nevue [3], pp. 161-166).

The coordinate process {Xn : n = 0, 1, • • • } denned on (S°°,S®°°) by Xn(x) = xn (x =
(XQ, X i , • • • , xn, • • • )) is a Markov process with transition probability p(x, dy) and initial dis-
tribution fj,. In other words, the conditional distribution of the process X+ := (Xn, Xn+\, • • • )
on (S°°, S®00) given Fn := cr{Xj : 0 < j < n}, namely the cr-field of past and present events
up to time n, is Pxn, where Py is written for PM with ^ = Sy, i.e., n({y}) = 1. Often one
needs a larger probability space than this canonical model (S°° , S®°° , P^) e.g., to accom-
modate a family of random variables independent of the process {Xn : n = 0, 1,2, • • • } .
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Hence we will consider a general probability space (O, F, P) on which is defined a sequence
(Xo, Xi, • • • , Xn, • • •) whose distribution is P^ given by (10.7.65).

Sometimes a Markov process, or its transition probability p(x, dy), may admit an invari-
ant probability ir(dy), i.e.,

/ p(x, B)Tt(dx) = 7r(J5) VB e S. (1.1.2)
Js

In this case if one takes fj, = TT as the initial distribution, then the Markov process {Xn : n =
0, l,-2, • • • } is stationary in the sense that X+ = (Xn,Xn+i, • • •) has the same distribution
as (XQ,XI, • • • ) , namely Pff, for every n > 0. In particular, Xn has distribution TT for all
n > 0. We will often be concerned with the derivation of criteria for the existence of a
unique invariant probability TT, and then {Xn : n = 0,1,2, • • •} is ergodic in the sense of
ergodic theory, i.e., the cr-field Fj of shift-invariant events is trivial; that is P(B) = 0 or 1
for B e Fj.

To describe an important strengthening of the Markov property described above, let
{Fn '• n = 0,1,2, • • • } be an increasing sequence of sub-cr-fields of F such that Xn is Fn-
measurable for every n, and the conditional distribution of X+, given Fn, is Pxn(n > 0).
Such a family {Fn : n = 0,1,2, • • • } is called a filtration. For example, one may take
Fn — a{Xj '• 0 < j < n}(n > 0), or Fn may be the u-field generated by {Xj : 0 < j < n}
and a family of random variables independent of {Xj : j > 0}. A random variable r : fi —>
{0,1,2, • • • } U {00} is said to be a {Fn}-stopping time if {T < n} e Fn for every n. Define
the pre-r o-field FT by FT := {A £ F : A D {T < n} e FnVn}. It is not difficult to check
that if r is a stopping time then the conditional distribution of X+ '•= (XT, XT+i, • • •) given
FT is PXT on the set {T < 00}. This property is called the strong Markov property and it
is extremely useful in deriving various distributions and expectations of random variables
related to the Markov process.

We now turn to the case of continuous parameter Markov processes. Suppose one is given
a family of transition probabilities p(t; x, dy)(t > 0, x 6 S) on a state space (S, S), satisfying
(i) p(t;x,dy) is a probability measure on (S,S) for all t > Q,x e S, (ii) x —> p(t;x,B) is
measurable on (S, S) for all t > 0, B 6 <5, and (iii) the following Chapman-Kolmogorov
equation holds

?(*• ;x,B)= I p(s; z, B)p(t; x, dz) (t > 0, s > 0, x 6 S, B e <S) (1-1-3)
Js

Given any initial distribution ju, one can then construct a probability measure PM on (Qo =
Sl°<°°\F0 = S®[°.°°)) as follows. Note that S^°^ is the set of all functions on [0,oo) into
S, and 5®!°'°°) is the product cr-field on S^0'00) generated by the coordinate projections
Xt((jj) = uj(t),u> e fio- Define P^ on measurable cylinders of the form A = {u 6 QQ : u^ 6
Bi,i = 0 , l , - - - ,n},Bi£S (0<i<n),Q<ti<t2<--- <tn,by

P,,(A) = I I ' • • I I X*n -tn-i;xn-i,Bn}p(tn-i - tn_2 ;xn_2 ,dxn_i)
J BQ J BI J B-n — 2 ^ Bn — i

(1-1-4)

obtained by iterated integration. In the case of a metric space (S, p) it is generally ad-
vantageous to define such a Markov process to have some path regularity. The following
results are due to Dynkin [4], pp. 91-97, and Snell [5]. First, on a metric space S define
the transition probability p(t;x,dy), or a Markov process with this transition probability,
to have the Feller property if x — * p(t; x, dy) is weakly continuous, i.e., for every t > 0

(T t/)(x):= [ f(y)p(t;x,dy) (1.1.5)
Js
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is a continuous function of x for every bounded continuous /.

Theorem 1.1.1 (Dynkin-Snell) Let (S,p) be a metric space, and p ( t ; x , d y ) a transition
probability on ( S , B ( S ) ) . (a) if

\im-lsupp(t;x,BI(x))} = 0 Ve > 0 (BE(x) := {y : p ( y , x ) < s}, (1.1.6)
t|0 t

then, for every initial distribution /j,, there exists a probability space ( f l , f , P ^ ) on which
is defined a Markov process {Xt : t > 0} with continuous sample paths and transition
probability p(t; x, dy) so that (1.4) holds for A — {Xti € Bi for i = 0, 1, • • • , n}, 0 < t\ <
ti < • • • < tn, Bi 6 S = B(S}(i = 0, 1, • • • , n). (b) If, instead of (1.6), one has

lim{supp(t; x, B*(x))} = 0 Ve >0, (1.1.7)
no x£s

then one may find a probability space (fi,^-", PM) on which is defined a Markov process
{Xt : t > 0} which has right-continuous sample paths with left limits, having the transi-
tion probability p(t; x, dy) and initial distribution \JL.

For right-continuous Markov processes with the Feller property, the strong Markov prop-
erty holds. To be precise, let {ft '• t > 0} be a family of increasing sub-<j-fields of T such
that Xt is ^-(-measurable, and the conditional distribution of Xf := {Xt+s : s > 0} given
Ti is Pxt(t > 0). Let T : £1 — > [0, oo] be a {.Ft}- stopping time, i.e., {r < t} e ft for every
t > 0, and define the pre^r cr-field fT:={A&f:Ar\{T<t}eftVt> 0}. Then the
strong Markov property requires that the conditional distribution of X^~ '•= {XT+S : s > 0}
given fT is PXT, on the set {T < oo}.

It may be noted that, unlike the discrete parameter case, the transition probability
p(t; x, dy) needed to construct a continuous parameter Markov process must be given for
all t at least in a small time interval (0, < J ] , < 5 > 0. One may then construct p ( t ; x , d y ) for
all t > 0, by the Chapman-Kolmogorov equation (3.1.3). Thus, except in special cases
such as for processes with independent increments, continuous parameter transition prob-
abilities and corresponding Markov processes are constructed from infinitesimal character-
istics. For jump Markov chains these characteristics are the infinitesimal transition rates
qij := limtjo \p(t'-, i , j ) ( i ^ j)- More generally, one specifies the infinitesimal generator

(1.1.8)
t J.U Ti

for a suitable class of functions /. In the case of diffusion on Kfe, A is a second order elliptic
operator of the form

= 1 £ ^(x)^^+£br(x)^, (1.1.9)
r,r' = l r=l

where b(x) is the so-called drift velocity, and a(x) the diffusion matrix, of the process
{Xt:t> 0}.

Finally, for a continuous parameter Markov process {Xt : t > 0} an invariant (initial)
distribution TT, if it exists, satisfies

p(t; x, B)w(dx) = 7r(B), Vt > 0, B € S.

Under such an initial distribution TT, the process {Xt : t > 0} is stationary, i.e., the distri-
bution of X+ := {Xi+s : s > 0} is the same as that of {Xs : s > 0}, namely Pn, for all
t > 0.
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1.2 Markov Chains
We will refer to a Markov process on a state space (5, S) as a Markov chain if S is countable
and S is the class of all subsets of S. Consider a time-homogeneous Markov chain Xn(n =
0,1,2, • • • ) on a (countable) state space 5. Its transition probabilities are specified by the
matrix p = ((pij)) where pij = p(i, {j}) = P(Xn+i = j\Xn = i), for i,j e 5. Denote by
Pn — ((Pij )) tne n-step transition probability matrix where p\™' = P(Xm+n = j\Xm = i).
Write i —> j if p^ > 0 for some n > 1. If i —» j and j —> i one says i and j communicate.
A state i is essential if for every j such that i —> j one has j —> z. All other states are
inessential. On the class £ of all essential states, the relation —» is an equivalence relation,
which therefore decomposes £ into disjoint subsets of communicating states. For each i £ £,
define the period of z as the greatest common divisor rfj of the set {n > 1 : p™ > 0}. It
may be shown that d = di depends only on the communicating class to which i belongs.
For d > 1, each such class is divided into d subsets Co, C*i, • • • , Cd-i such that the process
{Xn} moves cyclically among them: Co —* C\ —> C^ — > • • • — > Cd-i —»• CQ. In other words,
if the chain is in Cr at time n, then it will move to CV+i(mod d) at time n + 1. A Markov
chain is said to be irreducible if it comprises a single equivalence class of essential states.

A state i is said to be recurrent if

P(Xn = i for infinitely many n\X$ — i) = 1, (1.2.10)

and i is transient if

P(Xn = i for infinitely many n\X0 = i) = 0. (1.2.11)

All inessential states are transient. However, an essential state may not be recurrent. Also,
recurrence is a class property, i.e., if i 6 £ is recurrent then so are all states belonging to
the equivalence class (of communicating states) to which i belongs. For further analysis
of (12.2.1), (12.2.2), consider the first passage time to the state j, namely, TJ := inf{n >
1 : Xn = j}, as well as the time for the rth passage to j defined for all r recursively by
rjr+1) := inf{n > r.Jr) : Xn = j}(r = 0 , 1 , 2 , - • • ) . Here rj0) := 0, and rf} = TJ. Let
p^ = P(JJ < oo\X0 = i) = P(Xn = j for some n > l\X0 = i). It follows from the
strong Markov property that P(T^T+I' < oo\X0 = i) — pijpr^(r = 0,1, • • • ) . In particular,
P(TI < OQ\XQ = i) = pli(r = 1,2, • • • ) . Letting r —» oo one obtains the probability of the
event in parenthesis in (2.1) or (2.2) as limr_>00 p^, which is 1 iff pn = 1, and 0 iff pn < I.
This criterion for transience and recurrence also establishes a dichotomy of S into recurrent
and transient states.

Another useful criterion for transience and recurrence may be expressed in terms of the
so-called Green's function G(i,j), which is the expected number of visits to j by the process,
starting at XQ = i:

00 00

/"I/ • '"I T^f \ ~* 1 I V „' 1 \ "* „(") /I O 1 ̂(jr(2,Jj = -CM J i!Xn=j\ 1-^-0 = ^ ) = / Pii i (1.4.16)
n=0 n=0

where pff = 1 or 0 according asi=joii^j. Denoting by N ( j ) the number of visits to
j, one has

00

G(i,j) = E(N(j)\X(Q) =i) = ̂ P(N(j) > r\X(0) = i)
r=0

00 00

y ^ P(TJ < oo\X(0) = i) = 2_jpijpjj — _t3—, (1.2.13)
r=0 r=0 "M
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if PJJ < 1. If pjj = 1, and pij > 0, then G(i,j) = Y^LoPvPjj = °°- *n Particmari
G(i, i) < oo iff i is transient (and G(i, i) = oo iff i is recurrent).

A (recurrent) state is said to be positive recurrent if E(TI\XQ = i) < oo. A recurrent
state i is null recurrent if E(ri\X0 = i) = oo. Positive recurrence is a class property, i.e., if
i is positive recurrent then so is every state in the equivalence class to which i belongs.

It follows from the strong Markov property that if i is a recurrent state then the blocks
Br := {Xj : j e [TiT\T^r+1^)}, r = 1,2, • • • , are independent and identically distributed
(i.i.d.), no matter what the initial state X0 is. Denoting r^ by r^, this means that
the events {r(r+1) - r^ = k, XT(r)+l = i i , - - - ,XT(r)+k_l = ik-i}(r = 1,2, • • • ) are
independent and have the same probability, for every given k > 1 and every given fc-triple
(IQ, ii, • • • , ifc-i)- Assume now that i is positive recurrent and let £i denote the (equivalence)
class of states communicating with i. Write TJr) = #{n 6 [rfr),r{r+1)) : Xn = j}(r > 1). If
X0 6 Si, then for every j e Si the long-run proportion of times Xn = j exists almost surely
and is given by the strong law of large numbers (SLLN) as

TTj = lim
, 71(2) , , T(r) T(l) , , T(r)

r; - T,
= ̂ -, say, (1.2.14)

where 6j = ET^ , nij = E(T^ — r- ), which do not depend on the particular initial state
XQ in £i- It may now be checked that {TTJ : j £ £i} is an invariant probability function for
the Markov chain. When the process is restricted to Si then IT (A) := ^JZA^J defines a
unique invariant probability for the chain with state space Si. If there is only one equivalence
class (i.e., £ = Si for i 6 £), then the Markov chain has the unique invariant probability
•K as described. If, on the other hand, there are TV different positive recurrent equivalence
classes, S^,S^, • • • ,S^(N > 1), and ^l\-n^2\ • • • ,-ir^ are the invariant probabilities
on £^, £(2), • • • , £ ( N } , respectively, then any convex combination ̂ u aun^ is an invariant
probability.

1.2.1 Simple Random Walk
One may apply the criterion for recurrence described above in terms of G(i,i) to simple
symmetric random walks Xn = Sn = x+Yi + - • -+Yn(n > 1), So = x, where Yn(n = 1, 2, • • • )
are i.i.d. with values in the lattice Zfc : P(Yn = ±eu) = l/2fc(u = ! , - • • , fc), where eu has one
in the uth coordinate and zeros elsewhere. In the case k = I,pg0 = 0 Vn = 0,1,2, • • • ,
and POO = P(S-2n — 0|So = 0) = (^j^r ~ T^H' ̂  Stirling's formula. Here the relation
~ means that the ratio of its two sides goes to one as n —> oo. Since J^^Li I/\/T™ = 00, it
follows that G(0,0) = oo so that 0 is a recurrent state; since all states communicate with
each other, all states are recurrent. Of course, one can apply the other criterion in terms
of poo also, for the case k = 1, showing directly that /OQO — 1- For the simple symmetric
random walk on Z2, one may similarly show that p(2n)(0,0) > c/n for some positive constant
c. Hence 0 is a recurrent state and, therefore, all states are recurrent. For k > 3, one shows
that PQQ < c/nk/2, so that G(0,0) < oc if k > 3. Thus 0 is transient, as are all states in
Zfc. We have arrived at

Theorem 1.2.1 (Polya). The simple symmetric random walk on Zfc is recurrent for k =
1, 2 and transient for k > 3.

If a simple random walk on Zfc is asymmetric, i.e., P(Yn = eu) =£ l/2k for some u
(u = 1, 2, • • • , k), then by the strong law of large numbers S^/n converges almost surely to
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a nonzero constant, where S% denotes the uth coordinate of Sn- It follows that all states
are transient. In the case k = 1, one may compute pij. Suppose p = P(Y\ = +1) > |, q =
1 - p > 0. Then

if i < j,

Pv = {2q t_j if i=j> (L2-15)
if i > j(q-w

1.2.2 Birth-Death Chains and the Ehrenfest Model
Like a simple random walk, a birth-death chain moves one step at a time — either one unit
to the right or one unit to the left. Unlike a simple random walk, the probabilities of moving
to the right or to the left, say, Pi and <& depend on the present state of i of the process. Let
5 = Z be the set of all integers, and let positive numbers Pi,qi(i 6 Z) be given satisfying
Pi + 1i < 1- Write Ti = I - pi — qi. Then a (birth-death) Markov chain Xn(n > 0) with a
given initial state XQ is defined by transition probabilities

piti+i = P(Xn+i = i + l\Xn = i) = pi, pi,i-i = P(Xn+i = i-
Pi,i = P(Xn+1 = i\Xn =i)= n, PiJ = P(Xn+1 = j\X0 = i}=0 for \j -i\>l. (1.2.16)

Note that all states communicate with each other and £ = Z comprises a single equivalence
class. If Ti = 0 for every i then the chain is periodic with period 2. An effective method
of determining transience, recurrence, etc. is by means of the following recursive equations
governing the probability ip(i) = ipc,d(i) — P({Xn} reaches c before d\X0 = i), where
c < i < d are integers:

ip(i) = ri^(i) + Pit/j(i + 1) + qitf>(i -1), c < i < d,
^(c) = l, V(«0 = 0. (1.2.17)

The first equation is arrived at by considering the three disjoint and exhaustive possibilities,
X\ =i,Xi= i + l, Xi — i-l, and conditioning on each of them. By casting this equation in
the form Pi(^(i + 1) - V'W) = %(V)(0 ~ ^(* ~ 1)) an(i proceeding recursively until one of the
boundaries c or d is reached, and then using the boundary conditions tp(c) = l,ip(d) = 0,
one can prove that

/ / • \ 1—1X=1 Pzpx-l- '-Pc+l i l ^ ^ J I /1 O 10\^y^j = ————-7—j—————————, c + l ^ y S " — J- (i.z.io)

Letting d —> CXD in (12.2.9) one obtains the probability /9jc that the process (ever) reaches c,
starting at state i. In particular, for alii > c

Q —— t 2^X=l PIP2--P:

Similarly, one has for all i < d,

".,-_-,x, r,~^' "","r= °°'pid =
Hence all states are recurrent if both sums (in (12.2.10) and (12.2.11)) diverge, and they
are all transient otherwise. The criterion p •£ \ for transience, and p = \ for recurence, for
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simple random walks on Z follows as a special case of this. Also, (12.2.6) may be derived
from (12.2.9), after letting d | oo, or c I — oo.

One may also consider birth-death chains on a finite state space of N + 1 consecutive
integers, 5 = {a, a + 1, • • • , a + TV}, with transition probabilities (12.2.7) if a < i < N, and
with reflecting and/or absorbing boundary conditions at i = a and i = a + N. Reflecting
boundary conditions at a and a + N are given by

Pa,a+l = Pa > 0, Pa+JV,a+JV-l = <?a+JV > 0, (1.2.21)

while the absorbing boundary conditions are

Pa,a = ra = l, pa+N,a+N = ra+N = 1. (1.2.22)

If both boundaries are reflecting, as in (12.2.12), then it is not difficult to check that all
states are positive recurrent, with the unique invariant probability function ?r; given as the
normalized solution of n'p = TT', where IT' = (?ra, 7ra+i, • • • , 7ra+jv). This solution is obtained
recursively as

/ N \ -1

(-, o r,n\(1.2.23)

An important example of such a birth-death chain is provided by the Ehrenfest model for
heat exchange, with S = {—d, — d + 1, • • • , 0, 1, 2, • • • , d}, with p^ = 1 - 4jt» ancj ^ = £h»
for — d < i < d, and with p_^ = 1 = gd. From (12.2.14) it follows that the unique invariant
probability function is given by the binomial

(1.2.24)

, • ^ , A T \ i ,TTa(a<i<a + N),na= 1+

This model was used by the husband-wife team of physicists P. and T. Ehrenfest in 1907,
and later by Smoluchowski in 1916, to resolve an apparent contradiction with well accepted
laws of thermodynamics that threatened to wreck Boltzmann's kinetic theory at the turn
of the century. One may think of d + i as the temperature in body A when the state is
i, and d - i the corresponding temperature in an equal body B in contact with A. The
mean temperature of each body under equilibrium is d (corresponding to i = 0). The
thermodynamic equilibrium would be achieved when the temperatures of the two bodies
are approximately, i.e., macroscopically, equal. By the second law of thermodynamics,
the progression towards equilibrium is orderly and irreversible. On the other hand, heat
exchange is a random process according to the kinetic theory, and it was pointed out by
Poincare and Zermelo that this meant that the process starting at a macroscopic equilibrium,
i.e., from a state near i = 0, will sooner or later reach the state of i = —d or i = d thus
reverting to a state of extreme disequilibrium. The Ehrenfests showed that the time to reach
states ±d from 0 is so enormously large compared to the time to reach 0 from ±rf as to be
far beyond the reach of physical time.

1.2.3 Galton— Watson Branching Process
Particles such as neutrons or organisms such as bacteria can produce new particles or or-
ganisms of the same type. Suppose that the number of particles which a single particle can
produce is a random variable with a probability mass function (p.m.f.) /. Assume also that
if there are i particles in the nth generation then the numbers of offspring produced by them
are i independent random variables each with p.m.f. /. Let Xn denote the size of the nth
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generation. Then Xn(n = 0, 1, 2, • • • ) is a Markov chain with state space S = {0, 1, 2, • • • }
and transition probabilities

Pij = f(j) ( i = l , 2 , . . - ; j = 0 , l , 2 , . . . )
Poo = 1. (1.2.25)

Here /** is the i-fold convolution of /:

r1 = /,
From (12.2.16) it follows that 0 is an absorbing state. Let pi denote the probability of
extinction, or eventual absorption at 0, when XQ — i. Note that pi = pl where p := p\. Of
course, if /(O) = 0 then p\ — 0 = pi for all i > 1, and if /(O) = 1 then p\ = 1 = pi for all i.
We assume henceforth that

0 < /(O) < 1. (1.2.27)

To compute Pl let <t>(z) := £!*L0 /0V = /(°) + ££=1 /C?V'(N < 1) be the generating
function of /. Then

oo oo

- 2)^~2 (M < !)• (1-2-28)

If the mean /z = Y^Li Jf(j) of the offspring distribution is finite, then

M = </>'(!). (1.2.29)

Since ^'(2) > 0 for 0 < z < 1,0 is strictly increasing on [0,1]. Let us now assume, in
addition to (1.2.27), that

/(O) + /(!)<!. (1.2.30)

Then 4>"(z) > 0 for 0 < z < 1, so that ef>' is strictly increasing. Thus ^ is a strictly increasing
and 'strictly convex function on [0, 1], and max0'('z) = n = 0'(1). Hence, if ̂  < 1, then the
graph of y = </>(z) lies strictly above the line y — z on [0, 1). Thus the only fixed point of </>
on [0, 1] in this case is z = 1, since (/)(!) = 1. If, on the other hand, /u > 1, then the graph
of y = (j)(z) must intersect the line y = z at another point ZQ € (0, 1), in addition to z — 1.
Thus in this case <f> has two fixed points Now note that p = pi is a fixed point of p. For,
writing po = 1,

j=o
It is not difficult to check that p = z0 in case n > 1. Thus if yu > 1 then there is a positive
chance 1 — p = 1 — ZQ of survival if XQ = 1; if XQ = i > 1 then the chance of survival is

1.2.4 Markov Chains in Continuous Time
Letpij(t) := Prob(Xj+t = j\Xs = i) denote the transition probabilities of a time-homogeneous
right-continuous Markov process {Xt : t > 0} on a countable state space (5, S). The Markov
property leads to the Chapman-Kolmogorov equation

j(S)pjk(t) (i,j€S). (1.2.32)



1.2. MARKOV CHAINS

Denoting by g^ the transition rates or infinitesimal parameters,

(5tj = l if i = j;6ij = 0 if i?j) (1.2.33)

one arrives at Kolmogorov's backward equations

) (* , f ceS) . (1.2.34)

by differentiating (1.2.32) with respect to s and setting s = 0. Similarly, differentiating
(1.2.32) with respect to t and setting t = 0, one gets Kolmogorov's forward equations

-(*)<fcfc MeS). (1-2-35)

Note that <?i,- > 0 for all i ^ j,qu = -A; < 0 for all i. Since Y^jPijW = 1 f°r au *
for all i > 0, under appropriate conditions on QJJ'S (e.g., sup{|g,j : i € 5} < oo) one may
differentiate ^ • pij (t) term-by-term to get

gij =0 ) or gy = A; = -<?ij(i 6 5).
J {j:J7«}

(g« > 0 Vz ^ j) (1.2.36)

Conversely, given a matrix ((<?y ))i,jes satisfying g^ > 0 for all i ^ j, qu = —\i < 0, one may
solve Kolmogorov's equations (1.2.34), or (1.2.35), iteratively, to construct the transition
probabilities Pij(t). Under suitable conditions on the qij (e.g., sup{|gji : i € S} < oo)
the solution is unique, and one has unique transition probabilities Pij(t). Therefore, under
such conditions, given any initial state (or initial distribution), one may construct a unique
Markov process with right-continuous sample paths having the transition rates q^. If no
growth conditions are attached to q^ satisfying (1.2.36), then one may have more than one
set of solutions to (1.2.34) (or, (1.2.35). One still has a unique minimal solution p°j(t)(i,j €
5) satisfying (i) p°j(t) > 0 for all i, j, and for t > 0, (ii) Chapman-Kolmogorov equations
(1.2.32), and (iii) Ej^W < l for a11 « e 5. In the case ^jPijW < 1 for some *> one maY
introduce a new absorbing state AOQ, say, and define p°Aoo (t) = 1— SjPijW) PAOOAOO(^) = 1)
for all t > 0, to have a transition probability of a Markov process on 5 U {Aoo}. Such a
process, say {X^ . t > 0} starting from a state i £ S, may again be constructed to
have right-continuous paths up to a random time £, an explosion time, at which time
the process is absorbed into A^. Apart from this minimal process, there are in general
other Markov processes, with the given transition rates q^, which may be constructed by
essentially specifying an appropriate behavior after explosion. For example, the process may
jump back to S according to a specified jump distribution every time an explosion occurs,
successive jumps back to 5* being independent of each other.

A convenient method of analyzing continuous parameter Markov chains {Xt : t > 0} is
to consider first the successive holding times TO , Ti , • • • , defined by

To = inf{t > 0 : Xt ± X0}, n = T0,
rn = mf{t > rn_i : Xi ^ XTn_t}, Tn_i = rn - rn_i
(n > 2), TO = 0. (1.2.37)
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By the strong Markov property, the process Yn := XTn (n = 0, 1, 2, • • • ) is a discrete parame-
ter Markov process on (S, S). The one-step transition probabilities of this process are given
by

= ( fe_,0) (L2.38)

Also, conditionally given {Yn = in(n = 0,1,2, • • • ) } , the holding times T 0 , T i , - - - are in-
dependent and exponentially distributed with means — l/qinin (n = 0,1,2, • • • ) , assuming
\n = —qinin > 0 for all n. If qinin = 0 for some n = m, say, then of course, by (2.2.3), the
Markov chain is absorbed in state im after m transitions of {Yn : n — 0,1,2, • • • }, so that
Tm = oo a.s.

A Poisson process {Nt : t > 0} with mean parameter A > 0 is the most familiar example
of a continuous parameter chain, for which Pij(t) = e~xt(\t)i~l/(j - i)\ if j > i, Pij(t] = 0
if j < i (i,j £ S = {0,1,2, • • • } ) . In this case the transition rates are q^i+i = A, qu =
—\,qij = 0 for all other pairs ( i , j ) . This is an example of a pure birth process in which
the embedded discrete time process {Yn : n = 0,1,2, • • • } is deterministic, given YQ, i.e.,
Yn —n + Yo (n > 0). Hence, given Y0 = IQ, the holding times are independent exponential
random variables with means E(Tn\Y0 = IQ) = l/\i0+n = — l/qi0+riii0+n(n = 0,1,2, • • • ) .
A general pure birth process is specified by specifying —qu = \i > 0 for all i e S =
{0,1,2, • • • }. It is not difficult to show that for a pure birth process explosion occurs if and
only if E0°° A"1 = Eo°° E(Tn\X0 = 0) < oo.

For another example consider a model for chemical reaction kinetics. Suppose the total
number of molecules of chemicals A and B together in a solution is N. Let Xt denote the
number of molecules of A at time t. In the presence of a catalyst C elementary reactions
A —> B, signifying a transformation of a molecule of A into a molecule of -B, or vice versa
(B —v A) may take place. The transition rates are given by

' (N - i)rB for j = i + l, 0<i<N-l,
irA for j = i - 1, 1 < i < N,
-\. = -{irA + (N -i)rB} f o r j = i,0<i<N,
0 otherwise

Here rA > 0, TB > 0. The unique equilibrium, or invariant probability TT — (TTO, TTI, • • • , TTJV)'
satisfies -KJ = ̂ fc KkPkj(t)(t > 0), so that on differentiation with respect to t (at t = 0) one
gets the equation Efc KkQkj = 0 j = 0,1, • • • ,N. That is,

7Tj_i(Ar - j + l)rB ~ Kj{jrA + (N - j)rB} + TTJ+I(J + l)rA

= 0 ( j = l , 2 , - . . , J V - l )
- ir0NrB + TTirA = 0, TTjv-irs - TTNNrA = 0. (1.2.40)

The solution is given by the binomial distribution

(1.2.41)
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1.2.5 References
For detailed proofs of results of this section and for more comprehensive accounts of random
walks and Markov chains, one may refer to Bhattacharya and Waymire [6], Chung [7], Feller
[8], Karlin and Taylor [9], Spitzer [10]. For branching processes, see Harris [11] and Athreya
and Ney [12].

1.3 Discrete Parameter Markov Processes on General
State Spaces

[Discrete Parameter Markov Process]
This section is devoted to time-homogeneous Markov processes on general state spaces

(S,S), and especially to their ergodic properties. A theory analogous to that for Markov
chains (on countable state spaces) exists for (^-irreducible Harris processes introduced by
Doeblin [13], [14], Harris [15] and Orey [16]. These processes are denned below. Subsection
provides certain criteria for ergodicity of such processes due largely to Doeblin [13], Tweedie
[17], Athreya and Ney [18] and Nummelin [19].

A Markov process is said to be p-irreducible with respect to a nontrivial (i.e., nonzero)
sigma finite measure (/? on (S, S) if for every A such that <f(A) > 0 one has

L(x, A) := Prob(rA < oo\X0 = x)>OVxeS. (1.3.42)

Here TA is the first return time to A:

TA = inf {n > 1 : Xn € A}, (A 6 S). (1.3.43)

Write

Q(x, A) = Piob(Xn 6 A for infinitely many n\X0 = x ) , (x e S, A 6 S). (1.3.44)

A set A is said to be inessential if Q(x, A) = 0 for every x € S, otherwise A is essential.
For a ^-irreducible Markov process there exists sets Ci, C^, • • • , Cd, D, in S which form a
partition of S such that

(i) p(x, Ci+l) = 1 Vz € d (i = 1,2, • • • , d - 1), p(x, Ci) = 1 Vx e Cd,
(ii) tp(D) = 0 and D is (at most) a countable union of inessential sets,

and (iii) if there is any other cycle of sets C'j(j = 1,2, • • • , d') satisfying (i) then d' divides
d. This maximal d is called the period of the Markov process. If d = 1 then the Markov
process is said to be aperiodic.

A Markov process is said to be (^-recurrent, or Harris recurrent, with respect to a
(nonzero) sigma finite measure <p if Q(x, A) = 1 for x £ S whenever <p(A) > 0. In particular,
a ^-recurrent process is ^-irreducible.

A Markov process is said to be ergodic if it has a unique invariant probability, say, ir.

1.3.1 Ergodicity of Harris Recurrent Processes
A basic result of Doeblin [13] sets the stage for the general results in this subsection. Let
p(x, dy) be the transition probability of a Markov process {Xn : n = 0,1, 2, • • • } on (S, S),
and p(n^(x,dy) the n-step transition probability. The following condition is called the
Doeblin minorization: There exists TV > 1,6 > 0 and a probability measure v on (S, S) such
that

p(N)(x,B)>5v(B) VxeS,BeS. (1.3.45)
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Theorem 1.3.1 (Doeblin). Under the Doeblin minorization (12.3.20) there exists a unique
invariant probability ir, and one has

\p(n'>(x,B)-ir(B)\<(l-6)WVx€S,BeS, (1.3.46)

where [jf] denotes the integer part of j j .

To give an idea of the proof, let T*n denote the linear operator on the space P(S) of all
probability measures on (5, S) denned by

= [ pW(x,B)n(dx), BeS. (1.3.47)
Js

In other words, T*nn is the distribution of Xn when XQ has distribution fj,. Let rfry (^11/^2)
denote the total variation distance on P(S) denned by

= \\H-V\\TV = sup \m(B) - »2(B)\, (^i,//2 6P(S)). (1.3.48)
BeS

Condition (12.3.20) implies that T*N is a strict contraction:

drvCT V, T*NM) < (1 - <J)djv(/*i, A*2). (1-3.49)

Since (P(S), dxv) is a complete metric space, (1.3.49) implies the existence of a unique fixed
point TT of T*N, and

drv(T*fe V TT) < (1 - 6)kdrv(n, TT) < (1 - <5) fc, (k = 1, 2, - • - ). (1.3.50)

Since dTV(T*(kN+j) >I,TT) = dTV (T*kN (T*^) , TT) < (1 - 5)fc for all j = 0,1,
• • • ,AT-1, (12.3.21) follows.

It is known that Doeblin minorization is in fact necessary as well as sufficient for uniform
(in x) exponential convergence in total variation distance to a unique invariant probability
TT (see Nummelin [20], Theorem 6.15).

We next consider a local minorization condition on a set AQ e <S given by

p(N}(x,B)>6v(B)Vx£ A0,B£ A0nS (1.3.51)

for some N > 1, 6 > 0, and a probability measure v on (5, S) such that ^(A0) = 1. A set A0
satisfying (12.3.24) is sometimes called a (y— ) small set. If, in addition, AQ is a recurrent
set, i.e.,

L(x,AQ) = l Vxe5, . (1.3.52)

and

sup ExTAo < oo, (1.3.53)

where Ex denotes expectation when XQ = x, there exists a unique invariant probability.
The following result is due to Athreya and Ney [18] , Nummelin [19] .

Theorem 1.3.2 If the local minorization (12.3.24) holds on a recurrent set A0, and (12.3.26)
holds, then there exists a unique invariant probability TT and, for all x 6 5,



1 . 3. DISCRETE PARAMETER MARKOV PROCESSES ON GENERAL STATE SPACESI3

Oc, •) - 7r||Ty -> 0 as n -* oo. (1.3.54)

To understand the main ideas behind the proof, consider the Markov process {XT(n) :
n = 0, 1, • • • } on (Ao, A0 n<S) observed at successive return times T^ to A0 : r1-0"1 = 0, T^ =
TAO,T^ = inf{j > r^™"1) : Xj € A0}(n > I). Its transition probability pA0(x,dy) has the
Doeblin minorization property (12.3.20) with N = 1; therefore, by Theorem 3.1, it has a
unique invariant probability TTO on (A0,A0 n S). Given any B € S the proportion of time
spent in B during the time period {0, 1, • • • ,n}, namely, n~l YJJ=I ^-{XJ^B}, can now De

shown to converge (a.s. TTQ) to

PA0(x,B)ir0(dx), (1.3.55)

where .£„.„ denotes expectation under TTQ as the initial distribution (on AQ) and, for general

pAo(x,B) := ^Prob(Xn € B,Xk € AC
0 for 1 < fc < n). (1.3.56)

n=l

Note that (12.3.29) is consistent with the notation pA0(x,dy) as the transition probability
of {XT(n) : n = 0, ! , - • • } on A0. Viewed as a measure on (S,S) (for each x € A0), the
total mass of PAQ(X,-) is pA0(x,S) = EXTAO. The probability TT in (12.3.28) is the unique
invariant probability for p(x,dy) on (S, S).

It is known that if S is countably generated, then the local minorization condition
(12.3.24) on a recurrent set AQ is equivalent to Harris recurrence (i.e., ^-recurrence) of

In order to apply Theorem 3.2 one needs to find a set A0 satisfying (12.3.24), (12.3.25),
(12.3.26). The following result provides an effective criterion for a set A0 to satisfy (12.3.25),
(12.3.26).

Theorem 1.3.3 (Foster-Tweedie Drift Criterion). Suppose A0 e S is such that a local
minorization condition (12.3.24) holds. Assume that, in addition, there exists a nonnegative
measurable function V on S such that

(t) / V(y)p(x, dy) < V(x) - 1 Vx E AC
0,Js

(ii) sup / V(y)p(x,dy) < oo. (1.3.57)
xeA0JS

Then there exists a unique invariant probability TT and (12.3.27) holds. If, in addition, the
Markov process is strongly aperiodic in the sense that (12.3.24) holds with N = 1, then

\\p(n)(x, -)-TT\\TV ->0 asn-^oo (x £ S). (1.3.58)

One proves this by showing that (12.3.30) implies (Meyn and Tweedie [21], p. 265)

so that (12.3.25) and (12.3.26) both hold under (12.3.30).



14 CHAPTER 1. MARKOV PROCESSES AND THEIR APPLICATIONS

By strengthening (12.3.30)(i) to: there exists 9 < 1 such that

I V(y)p(x,dy)<OV(x) Vx 6 AC
0, (1.3.60)

Js
One obtains geometric ergodicity, namely,

Theorem 1.3.4 (Geometric Ergodicity). Suppose (12.3.24), (12.3.30)(ii) and
(12.3.33) holds (for some Q < I) for a measurable function V having values, in [l,oo).
Then there exists p £ (0,1) and a function C(x) with values in (0, oo) such that

^ > ( X , - ) - T T \ \ T V <C(x)pn Vx€S,n>l. (1.3.61)

If, in addition (12.3.24) holds with N — I , then one has

\ \ p ( n } ( x , - ) - i r ( - ) \ [ T V <C(x)pn VxeS,n>l. (1.3.62)

For a proof of this see Meyn and Tweedie [21], Chapter 15.

1.3.2 Iteration of I.I.D. Random Maps
Many Markov processes, if not a majority, that arise in applications are specified as stochas-
tic, or randomly perturbed, dynamical systems. In continuous time there may be given by,
e.g., stochastic differential equations, and in discrete time by stochastic difference equations
or recursions. Among examples of the latter type are the autoregressive models. In general,
these discrete time processes are represented as actions of random iteration of i.i.d. random
maps on S.

Since such representations often arise from, and display, physical dynamical considera-
tions, they also in many instances suggest special methods of analysis of large time behavior.
Additionally, the present topic gains significance from the fact that most Markov processes
may be represented as actions of iterated i.i.d. random maps, as the following proposition
shows.

To be precise, let 5 be a Borel subset of a Polish space X. Recall that a Polish space
A' is a topological space which is metrizable as a complete separable metric space. For
example, S may be a Borel subset of a euclidean space. Let S be the Borel sigma field of 5.
For random maps an(n > 1) on S into itself we will write ct\x := a\(x), o.na.n-\ • • • OL\X :=
an o an_i o • • • o i

Proposition 1.3.5 Let p(x,dy) be a transition probability on (S,S), where S is a Borel
subset of a Polish Space and S is the Borel sigma field on S. There exists (i) a probability
space (fl,J-,P) and (ii) a sequence of i.i.d. random maps {an : n = 1,2, • • •} on S into
itself such that anx has distribution p ( x , d y ) . In particular, the recursion

X0 = x0, Xn = anXn_i (n > 1), (1.3.63)

or, Xn = anan_i • • • otix§(n > l),^o = XQ, defines a Markov process {Xn : n > 0} with
initial state XQ and transition probability p.

Conversely, given a sequence of i.i.d. random maps {an : n > 1} on any measurable
state space (S,S) (not necessarily a Borel subset of a Polish space), one may define the
Markov process {Xn : n = 0,1,2, • • • } having the transition probability

p(x, B) := Prob(a1x 6 B), x 6 S, B 6 S. (1.3.64)
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Note that one requires the event {w e fi : ai(u;)x € B} to belong to the sigma field f (of the
underlying probability spaces (Q, .F, P)), and also x —» p(x, B) must be measurable on (S, S).
These two requirements are satisfied if (u>, x) —> ai(w)x is measurable on (fi x 5, J-® S) into
(S,S). A random map is defined to be a map satisfying the last measurability property.

Example 1 (Random Walk). Here 5 = 1k or R fc, and

Xn+i = Xn + en+\ (n > 0), XQ = XQ, (1.3.65)

where {en} are i.i.d. One may take an(u)x :— x + £n(w) (x € 5), n > 1.
Example 2 (Linear Models). Here 5 = Rfc, and given a k x fc matrix ^4 and an i.i.d.

sequence of mean zero random vectors {sn : n > 1} one defines

= AXn (n > 0), X0 = (1.3.66)

Take an(w) to be the map an(uj)x = Ax + en(u))(n > 1).
Example 3 (Autoregressive Models). Let p > 1, /?o,/?i, • • • ,0p-i real constants,

n > p} an i.i.d. sequence of mean zero real-valued random variables, and let yoi YL, • • • ,
be independent of [r]n : n >p}. Define

0-1

Yn+p = r,n+P (n > 0) . (1.3.67)
i=Q

Then {Yn : n > 0} is said to be an autoregressive process of order p or, in brief, an AR(p)
process. Now let

= (Yn, Yn+i, (n > 0).

Then one may write

(1.3.68)

(1.3.69)

where A is the p x p matrix

A =

0
0

0
A)

0 0

0
0

0
03

0
0

0
/?p-2

0
0

1
0P-1.

(1.3.70)

and

L ) ' (" > 1)- (1.3.71)

Thus one may treat this example as a special case of Example 1. If A is a stable matrix,
i.e., the eigenvalues of A are all of modulus less than one (thus lying inside the unit circle
in the complex plane), then the series

1+1 (1.3.72)
n=0

converges to a random vector Z, say, and it follows that the Markov process {Xra : n > 0}
has a unique invariant probability, say TT, and Xn converges-in distribution to TT as n —> oo,
no matter what the initial distribution is. The eigenvalues of A are the (generally complex
valued) solutions of the equation (in A)

0 = det(A - Al) = (-l

The following result is now immediate.

1 - Ap). (1.3.73)
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Proposition 1.3.6 // the roots of the polynomial equation (1.3.73) all lie inside the unit
circle, namely in {z 6 C : z\ < 1}, then (a) the Markov process {Xn : n > 0} defined
by (12.3.43) has a unique invariant probability TT and Xn converges in distribution to -K as
n —> oo; and (b) the AR(p) process {Yn : n > 0} is asymptotically stationary, with Yn
converging in distribution to the (marginal) distribution K\ of Z\ where Z = (Z\, • • • , Zp)
has distribution TT.

In the statement above the term asymptotic stationarity may be formally defined as
follows. Let Yn(n > 1) be a sequence of random variables with values in a Polish spaces S
with Borel sigma field S. The sequence {Yn : n > 1} is said to be asymptotically stationary
if the distribution Qm of Ym := (Ym, Ym+i, • • • ) on (S100^®00) converges weakly to the
distribution <3oo, of a stationary process, say, U = ( U i , U z , - - - ) , as m —» oo. It may be
checked that weak convergence in the space P(S°°) of all probability measures on (S°°, 5®°°)
is equivalent to weak convergence of all finite-dimensional distributions.

Example 4 (ARMA Models). To define an autoregressive moving-average process of
order (p, q), briefly ARMA(p, q), let /?Q, /?i, • • • , Pp-i and #1, #2, • • • ,&q be p + q real numbers
(constants), {??„ : n > p} an i.i.d. sequence of real-valued mean-zero random variables,
and (Y0, YI, • • • , Vp-i) a given p-tuple of real-valued random variables. The ARMA (p, q)
process {Yn : n > 0} is then given, recursively, by

p-l

Yn+p = ̂  /3iYn+i +
i=0

-j + (n > 0).

As in Example 3, this admits a Markovian representation

Xn+i = Bxn + en+l (n > 0),

where Xn, en are (p + g)-dimensional random vectors,

£ n : = ( 0 , 0 , . - - ,0,TM+P-i ,0,0,- p-i)', (n > 0)

(1.3.74)

(1.3.75)

(1.3.76)

with only the pth and (p + q)th coordinates of en as r/n+p_i and the others are zero. The
(P + </) x (P + <?) matrix B in (3.34) is given by

C = B,

where A is the matrix (3.29) and

C =

"0
0
0
0

Oq
0
0

0
0

0
0
0
0

0q-l
1
0

0
0

0
0
0
0

0
1
0
0

0
0

0
0

0
0
0

02
0
0

1
0

0"
0
0
0

01
0
0

0
0

(1.3.77)

The eigenvalues of B are the p eigenvalues of A and q zeros. Therefore, B is stable if and
only if A is stable. Thus we arrive at
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Proposition 1.3.7 If the roots of (1.3.73) all lie inside the unit circle in the complex plane
then (a) the Markov process {Xn : n > 0} defined by (12.3.47), (12.3.49), has a unique
invariant probability TT, and (b) the ARMA (p, q) process {Yn : n > 0} is asymptotically
stationary with Yn converging in distribution to the (marginal) distribution TTI of Z\ where
Z — (Zi, • • • , Zp+q) has distribution TT.

Example 5 (Nonlinear Autoregressive Models). Let p > 1. Consider the real-valued
process defined recursively by

Yn+p = h(Yn,Yn+l, • • • , Yn+p-i) + en+P (n > 0) (1.3.78)

where (i) {en : n > p} is an i.i.d. sequence of mean-zero random variables with a common
density which is positive on R, (ii) h is a real-valued measurable function on Rp which
is bounded on compacts, (iii) ( Y o , Y i , - - - ,Yp-i) is a given p-tuple of random variables
independent of {en : n > p}. By applying the Foster-Tweedie drift criterion for geometric
ergodicity (Theorem 3.4) on may prove the following result.

Proposition 1.3.8 In addition to assumptions (i)-(iii) above, assume that there exist a, >
0, (i = 1, • • • ,p) with Y% o-i < 1, and R > 0 such that

ilfc f°r \y\>R- (1-3.79)
i=l

Then the Markov process

x n :=(y n ) y n + i , - . - ,y n + p _i) , ( n > o ) (i.s.so)
has a unique invariant probability •n and is geometrically ergodic. In particular, {Yn : n > 0}
is asymptotically stationary and Yn converges in distribution to a probability KI on R, the
convergence being exponentially fast in total variation distance.

1.3.3 Ergodicity of Non— Harris Processes
The general criteria for ergodicity, or the existence of a unique invariant probability, pre-
sented in Section 1.3.1 apply only to processes which are Harris, i.e., ̂ -irreducible with
respect to a non-trivial sigma finite measure <p. We now consider certain classes of Markov
processes for which no such (p may exist. These often arise as actions of iterations of i.i.d.
random maps on a state space (S,S).

Theorem 1.3.9 below applies to Markov processes on a complete separable metric space
(S, p), with a Borel sigma field <S, on which are denned an i.i.d. sequence of random Lipschitz
maps {an : n > 1}: Xn := anan-i • • • aiX0(n > l),X0 independent of {an : n > 1}. Lips-
chitz constant of a function /, i.e., I// is the smallest constant M such that p(f(x), f(y)} <
Mp(x, y) for all x, y. The following result due to Diaconis and Preedman [22] says, roughly
speaking, that if the (harmonic) average of Lai is less than one and if, for some x0 G S,

remains bounded on the average, then Xn has a unique invariant probability.

Theorem 1.3.9 Let (S,p) be a complete separable metric space such that the i.i.d. maps
&n(n > 1) satisfy

ElogLai<0. (1.3.81)
//, in addition, for some XQ 6 S one has

Ep(aix0,x0) < oo, (1.3.82)

then (a) there exists a unique invariant probability and the Markov process {Xn : n > 0} is
asymptotically stationary and ergodic, no matter what the initial distribution is.



18 CHAPTER 1. MARKOV PROCESSES AND THEIR APPLICATIONS

To understand the main idea behind the proof, note that for the processes Xn(x) and
Xn(y) corresponding to X0 = x and X0 = y, respectively,

p(Xn(x),Xn(y))<Lanp(Xn-l(x),Xn_1(y)) <•••<

Taking logarithms, and using the strong law of large numbers and (12.3.55), one shows that
supX£B p(Xn(x),Xn(y)) — » 0 a.s. as n —> oo for every bounded B C S. In particular, if
there exists an invariant probability, say, 7T,p^(x,dz) converges weakly to it as n — » oo,
for every x. Therefore, there can not be more than one invariant probability. Now the
condition (1.3.82), in conjunction with (12.3.55), implies tightness of {p^(xo,dz) : n =
1, 2, • • • }, proving (a). Asymptotic stationarity follows from this (See the remark following
the statement of Proposition 3.6).

It may be noted that for (3.40) one allows the possibility E\ogLai — — oo, and even
that of Prob(Lai = 0) > 0.

One may also relax (12.3.55), (1.3.82) by requiring the inequalities to hold for the Af— fold
composition ON • • -0.20.1, for some N > 1. Prom this extension of Theorem 3.8 one may
device the ergodicity of Xn in the AR(p) model of Example 3, Section 1.3.1.

Among many applications we mention the construction of fractal images by iteration of
i.i.d. an(n > 1), where an takes values in a given finite set of affine maps. The affine maps
themselves are chosen using some features of the target image (Diaconis and Freedman [22],
Diaconis and Shahshahami [23], Barnsley and Elton [24], Barnsley [25]).

The next result is a generalization of a theorem of Dubins and Freedman [26] on monotone
maps on an interval. Following an earlier generalization by Bhattacharya and Lee [27] to
closed subsets of Rfe, and open or semi open rectangles, the theorem below is derived in
Bhattacharya and Majumdar [28].

Theorem 1.3.10 Let {an : n > 1} be a sequence of i.i.d. maps on a measurable space
(S,S) with the following properties: There exists a class of sets A C S such that (i) a^lA €
A a.s. VA 6 A, (ii) there exists N > 1 and 6 > 0 such that Prob((ctN • • • a2ai)~1A = 'S
or (/)) > 5 > VA 6 A, and (Hi) Under d(n,v] := sup{|^(,4) - v(A}\ : A & A}, (P(S),d)
is a complete metric space, where P(S) is the set of all probability measures on (S,S).
Then there exists a unique invariant probability TT for the Markov process generated by the
iterations of {an : n > 1}, and one has

sup \p(n>(x,A)-ir(A)\<(l-6)W,n>l, (1.3.83)

where [n/N] is the integer part ofn/N.

For a proof note that for arbitrary //, v £ P(S),

d(T*Nn,T*Nv) = sup \T'Nn(A)-T*Nv(A)\
AeX

<(l-6)d(n,v), (1.3.84)

by assumptions (i) and (ii). Thus T*N is a strict contraction on (P(S),d). By the as-
sumption (iii) of completeness it now follows that T*N has a unique fixed point TT and
that d(T*kN/j,Tt) < (1 - 8)kd(n, -K), for all k = I , 2, • • • . From this (3.42) follows on setting
H = p(n)(x,dz).

As a first consequence of Theorem 1.3.9, one obtains the following result of Dubins and
Freedman [26].
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Corollary 1.3.11 Let {an : n > 1} be i.i.d. monotone random maps on an interval S = J.
If there exist N >l, XQ € J and 5 > 0 such that

Prob(a.N • • • ctix < xoVx or ajv • • • a\x > XQ^X) > 6, (1.3.85)

then there exists a unique invariant probability TT and one has

sup \Piob(Xn(x) <c}- TT({X £ J : x < c})\ < (1 - J)[H (1.3.86)
x,c

To derive this from Theorem 1.3.9, one takes A to be the class of all intervals of the
form A = {x 6 J : x < c}, A = {x € J : x < c}, and their complements. Assumption (i) of
Theorem 1.3.9 is immediate due to monotonicity, while (ii) follows from (12.3.61). Finally,
the distance d in this case is just the supremum distance between cumulative distribution
functions, and therefore (P(S),d) is complete.

The above result for monotone maps has many applications. Among theoretical con-
sequences, it provides criteria for ergodicity for processes generated by iterations of i.i.d.
random quadratic maps (see Bhattacharya and Rao [29], Bhattacharya and Waymire [30]).
For applications to economics see Bhattacharya and Waymire [6], pp. 178-180, and Bhat-
tacharya and Majumdar [31].

It is possible to generalize (12.3.24) to i.i.d. monotone maps on arbitrary partially
ordered spaces. See, e.g., Bhattacharya and Lee [27] and Hopenhayn and Prescott [32]. A
particular application to the Ising model of mathematical physics due to Propp and Wilson
[33] is derived in detail in Diaconis and Freedman [22].

1.3.4 References

Orey [16], Nummelin [20] and Meyn and Tweedie [21] are standard references for yj-
irreducible and Harris recurrent processes. Doeblin's pioneering work on geometric ergodic-
ity is contained in Doeblin [13], [14]. Theorem 3.2, obtained independently by Athreya and
Ney [18] and Nummelin [19], has its roots in the notion of C-sets in Orey [16]. Theorems
3.3, 3.4 on drift criteria for ergodicity and geometric ergodicity were obtained by Tweedie
[17], [34].

Proofs of Proposition 3.5 on representation by iteration of i.i.d. random maps may be
found in Kifer [35], pp. 7-9, and Bhattacharya and Waymire [6], p. 228. The result is due
to Blumenthal and Carson [36], at least under the condition of continuity. The treatment
of AR(p) and ARMA(p, q) models given here follows Bhattacharya and Waymire [6], pp.
166-173.

Theorem 3.8 for ergodicity under (harmonic) average contraction is due to Diaconis and
Freedman [22]. This generalizes earlier work by Dubins and Freedman [26], Bhattacharya
and Lee [37], Barnsley and Elton [24] and others. The basic work for ergodicity under
iteration of i.i.d. monotone maps is due to Dubins and Freedman [26], who obtained Corol-
lary 3.10 for compact intervals and continuous maps. An extension to measurable maps
on intervals was given by Yahav [38]. Bhattacharya and Lee [27] generalized the results to
measurable monotone maps on closed subsets of Kfe and other sets, and derive functional
CLTs for appropriate classes of functions on the state space. Hopenhayn and Prescott [32]
provide an extension to general partially ordered spaces. Theorem 3.10, which includes
these results on ergodicity, is derived in Bhattacharya and Majumdar [28].
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1.4 Continuous Time Markov Processes on
General State Spaces

It is not difficult to extend the notions of <?Hrreducibility, Harris recurrence, Doeblin mi-
norization, etc. to continuous parameter Markov processes {Xt : t > 0} on general state
spaces (S, S), and one can derive analogues of Theorems 3.1-3.4 in this case. Our aim in
this section is, however, to briefly introduce jump processes and processes with independent
increments.

1.4.1 Processes with Independent Increments
A process {Xt : t > 0} with values in K is said to have independent increments if Xti+1 —
Xtt,i = 0, 1, • • • ,n — I are independent random variables for every finite set of time points
0 = to < t\ < • • • < tn. This is equivalent to requiring that, for all 0 < s < t, Xt — Xs is
independent of Qs ~ o{Xu : 0 < u < s}. Such a process is said to be homogeneous if the
distribution of Xt - Xs depends only on t — s for all 0 < s < t, i.e. , Xi+h — Xs+h has the same
distribution as Xt — Xs for all 0 < s < t, and all h > 0. For processes with homogeneous
independent increments, the distribution of Xt - Xs is infinitely divisible (i.d.), since for
each n > 1, Xt — Xs may be expressed as the sum of n i.i.d. random variables. Conversely,
given any infinitely divisible law 7, there exists a homogeneous process with independent
increments {Xt : t > 0} such that Xt+i — Xt has distribution 7, for all t > 0. For a fixed
initial value, say, XQ = 0 (or XQ = XQ), all finite-dimensional distributions of a process with
homogeneous independent increments are determined by this i.d. law 7 of X\ — XQ. We
will choose a version of such a process which has right-continuous sample paths with finite
left limits. This is always possible (See Doob [39]).

Crucial to the sample path analysis of such processes is the following result of Paul Levy
[40]-[42].

Theorem 1.4.1 Let {Xt : t > 0} be a homogeneous process with independent increments.
(a) If the process has continuous sample paths almost surely, then it is Gaussian, i.e., a
Brownian motion, (b) Ift^Xt is an increasing step function with jumps of size one only,
almost surely, then the process is a Poisson process.

This theorem may be proved by expressing Xt — Xs as a sum of n i.i.d. random variables
(n = 2, 3, • • • ) and computing the limit of the characteristic function of the sum as n — > oo.
For a detailed proof see Ito [43], Section 1.4.

Consider now an arbitrary process {Xt : t > 0} with homogeneous independent incre-
ments. Let Be denote the Borel sigma field of {x £ R : \x\ > s} = Re. Let vt(B) denote
the number of jumps of {Xu : 0 < u < t} in B 6 Be. Then {ft(-B) : t > 0} is a process
with independent increments, whose sample paths are nondecreasing step functions with
jumps of size one only. Hence, by Theorem 4.1(b), {vt(B) : t > 0} is a Poisson process, for
each B & Be . We now use another remarkable result of Levy, which says that two processes
with independent increments are independent if they do not have any common points of
discontinuity (a.s.). This implies that if Bi,B2,--- ,Bn are disjoint sets in B£, then the
Poisson processes {vt(Bi) : t > 0}, i = 1, 2. • • • , n, are independent. Hence vt(dx) is a ran-
dom measure on (R£,Se), and defines a Poisson random field. The contribution to Xt of
all jumps of size greater than e is then given by

(L4'87)

,-xs--x for some se[o,t]}
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Write ^t(B) := Evt(B),B e Be. Then \J>( = t^>l is a measure on (Re,Bs). One may now
think of letting s J. 0 in (4.1) to get Xtto+, say, as the limit so that Xt —Xt,o+ is continuous.
This limit, indeed, exists in probability provided

At := limEft(Re) < oo. (1.4.88)
ej.0

In that case At = t\ for some A > 0, in view of homogeneity, and the process {Jf t,o+ : t > 0}
has at most finitely many (jump) discontinuities in any finite interval of time. Such a process
is called a compound Poisson process with the Poisson parameter A and jump distribution
fj,(dx), where n(B) = E(i/i(B))/\ for B a Borel subset of {x e R : x j^ 0}. Compound
Poisson processes arise, for example as models of net receipts of insurance (i.e., premium
receipts minus payoffs of claims). When the limit (12.4.76) is infinite, the limit (12.4.75) as
e I 0 may not exist. However, if EXf < oo, one may center XttS to get a representation

Xt = Xl°} + lim x[vt(dx)-Vt(dx)]+ xvt(dx], (1.4.89)
n^°°J{x:i<\x\<l} J{x:\x\>l}

where {JQ : t > 0} is a process with continuous sample paths (a.s.) and, therefore, is a
Brownian motion (possibly with a drift). Also, ^t(dx] = t^i(dx). More generally, without
assuming EX% < oo, one has the representation

Xt = Xl0) + I {xvt(dx} - — ?L-yt(dx)}. (1.4.90)
J{x:\x\>0} l + X2

these representations one can derive the Levy-Khinchin representation of characteristic
functions of infinitely divisible laws, recalling the characteristic functions of normal and
Poisson random variables: There exist constants TO, cr2 > 0 such that

/"
J{

(eit*_i_\y1(dx\\ (1.4.91)
x?o} l + x2

As a special case, suppose fixM\ j^2^i(dx} = 0, say, exists. By centering the process
so that m + 9 = 0 and assuming a2 = 0 (i.e., the continuous part does not exist), one arrives
at a pure jump process. If, in addition, \&i is finite the process is a compound Poisson
process.

The stable process of index a, 0 < a < 2, also arises as special cases (a = 2 corresponds
to *i = 0).

1.4.2 Jump Processes
Jump processes may be thought of as generalizations of continuous parameter Markov chains
considered in Section 1.2.4. As in the case of such chains, a jump process {Xt : t > 0} may
be represented by means of (a) an embedded discrete parameter Markov process {Yn : n =
0, 1, 2, • • • } with an arbitrary (one-step) transition probability p(x, dy) on a general state
space (5,5), with the restriction p(x, {x}) = 0 for all x, and (b) for each specification of
{Yn : n = 0, 1, 2, • • • } a sequence of holding times T0, TI, • • • whose conditional distribution
given cr{Yn : n > 0} is that of an independent sequence of exponential random variables
with parameters \(Yo), A(Yi), • • • . Here A(-) is a nonnegative measurable function on (S, 5).
The process Xt := Yn for rn :— T0 + TI + • • • + Tn <t< rn+i, n > 0, is then a jump Markov
process. The infinitesimal transition rates are

q(x, B) = \(x)p(x, B) for x 0 B,
q(x,{x}) = -X(x), (1.4.92)

if A(x) > 0. If A(x) = 0, then the state x is absorbing, and one takes q(x, B) = 0 VB € 5.
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1.4.3 References
Theorem 4.1 is due to Levy [40], [41]. After the subject was introduced by de Finetti [44]
and Kolmogorov [45], the general case was fully developed by Levy [40] (Also see Levy
[42]). The elegant representation (4.4) of Levy was made precise by Ito [46]. The so-called
Levy-Khinchin representation (4.5) of infinitely divisible laws is due essentially to Levy [40],
following the derivation of the case of finite variances by Kolmogorov [45]. Khinchin [47]
was the first to give an analytic derivation of (4.5).

Jump processes, sometimes called the pure jump processes, have been studied by Pospisil
[48], Feller [49], [50], Doeblin [51], and Doob [52]. For complete treatments see Doob [39]
and Gikhman and Skorokhod [53].

1.5 Markov Processes and Semingroup Theory
Let (S,S) be a measurable space and p(t;x,dy)(t > 0,x 6 S] a transition probability on
it. That is, (i) for every t > 0 and every x 6 S, B -» p(t; x, B) is a probability measure on
(S,S), (ii) for every t > 0 and every B e S, x —> p(t; x,B) is measurable on (S,S), and (iii)
the Chapman-Kolmogorov equation holds:

p(t + s;x,B)= f p(t;z,B)p(s;x,dz). (1.5.93)
Js

Let B(5) denote the Banach space of all real-valued bounded measurable functions / on 5,
with the sup norm \\f\\ := sup{|/(x)| : x g S}. Define the transition operator Tt ; B(S') —>
B(S) by

(Ttf)(x) = f f(y)p(t; x, dy), (t > 0). (1.5.94)
Js

By the Chapman-Kolmogorov equation, {Tt : t > 0} is a one-parameter semigroup of
(commuting) linear operators on the Banach space B(S):

Tt+af = Tt(T.f) = T , ( T t f ) . (1.5.95)

Also, each Tt is a contraction, namely, \\Tt\\ -.= sup{||Tt/|| : / e B(S), ||/|| <!}<!. For

\\Ttf\\ = sup \(Ttf)(x)\ < sup \f(y)\ = \\f\\. * (1.5.96)
x y

One-parameter semigroups arise in other contents also. For example, if X is an arbitrary
Banach space and A is a bounded linear operator on X, then

00 j.n
Tth~etAh=Y^~Anh(heX-t>Q), (1.5.97)

n=0 H'

defines a one-parameter semigroup of operators on X'. One of our objectives in the present
section is to identify semigroups on B(5) (or on supspaces of B(S')) which yield transi-
tion probabilities and, therefore, Markov processes. One of the most useful applications of
semigroup theory to Markov processes is Feller's construction (Feller [54]-[56]) of all one-
dimensional diffusions. This is briefly presented in Section 1.5.2. Semigroup theory also
provides a basic connection between second order linear parabolic equations and diffusions,
discussed in Section 1.6.
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1.5.1 The Hille-Yosida Theorem
We consider Banach spaces X which are either real or complex. We will denote the scalar
field by F (i.e., F = K or C), and the norm by || • ||. Let A be a linear operator defined on
a linear supspace DA into X. A is closed if its graph {(/, A/} : / 6 D^} is a closed subset
of X x A" in the product topology. The closed graph theorem implies that if A is a closed
operator and DA is closed, then A is bounded (see Folland [57], p. 155).

Given a linear operator A defined on a linear subspace DA C X, the resolvent set of A
is

p(^4) := {A e F : A - A = XI — A : DA —* X is one-to-one and onto,
(A - A)~l is bounded on X}. (1.5.98)

Note that if p(A) ^ 0 then A is closed, since A-A is closed for A e p(A). For A € /o(-A), #A :=
(A — A)"1 is called the resolvent operator.

Let {Tt : t > 0} be a one-parameter contraction semigroup on <¥, i.e., (i) Tt is a
bounded linear operator on X, for each t > 0, (ii) Tt+s = TtTs Vt > 0, s > 0, and (iii)
||7*/|| < H / l l V/ e #(* > 0). Let X0 := {/ e X : \\Ttf - f\\ -» 0 as t | 0} be the center of
the semigroup. Then XQ is a closed subset of X and is, therefore, a Banach space with the
norm || • ||. In the case X0 = X, the semigroup {Tt : t > 0} is said to be strongly continuous.

The infinitesimal generator A of a one-parameter semigroup {Tt : t > 0} is defined by

Af = \im^—^- (1.5.99)
HO t v '

for all / G X for which the limit exists (in norm). The set of all such / is called the domain
of the infinitesimal generator and denoted DA • Clearly, DA C XQ . Some basic properties of
{7t : t > 0} are as follows.

Proposition 1.5.1 Let {Tt : t > 0} be a strongly continuous one-parameter contraction
semigroup on X. Then

(a) t —> Ttf is continuous on [0, oo), with T0 as the identity for all f e X;
(b) DA is dense in X;
(c) for every f £ DA and all t > 0, one has

(i) Ttf e DA,
(H) ATtf = TtAf,

ft
Ttf - f = f TsAfds; (1.5.100)

Jo
(d) A is closed;
(e) ifReX > 0, then X 6 p(A), \\RX\\ < 1/ReX, and

Rxf = I e~xtTtfdt, V/ e X. (1.5.101)
Jo

The proof of (a) follows from continuity at t = 0, and the semigroup property. The proof
of (c) is also simple. For the rest one shows that, for A > 0, the operator S\, defined on
X by Sxf := /0°° e~xtTtfdt, satisfies (1) \\SX\\ < I/A, (2) (ThSxf - Sxf)/h -> XSxf - f
as h I 0. This implies ASxf = XSxf - f, so that (A - A)Sxf = /,V/ e X. Hence
S\ = (A — A)~l = R\. In particular, A e p(A). Relations (d), (e) follow from this, (b)
follows from the fact that the distribution with the exponential p.d.f. Xe~xt converges
weakly to the Dirac measure So as A —» oo, so that XRxf —>/asA—>oo,V/eA'. Note
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that the range of XR\ = A(A - A)~l is the domain of A] hence, for any / 6 X, XR\f(X > 0)
are elements in DA which converge to / as A —> oo.

The next result is the centerpiece of the theory of one-parameter contraction semigroups.

Theorem 1.5.2 (Hille-Yosida). A linear operator A is the infinitesimal generator of a
strongly continuous one-parameter contraction semigroup on X if and only if the following
conditions hold: (1) A is densely defined, i.e., DA — X, (2) VA > 0, A e p(A) and \\R\\\ <
I/A.

For a proof and for applications to Markov processes, see Dynkin [4], or Ethier and Kurtz
[58].

Consider now the special case of the real Banach space X = C(S) of real-valued con-
tinuous functions on a locally compact separable metric space S which vanish at infinity.
Endow C(S) with the sup norm ||/|| := sup{|/(z)| : x & S}. Note that C(S) satisfies the
hypothesis of the Hille-Yosida theorem and, in addition, satisfies the "maximum principle"

A f ( x 0 ) < 0 if /(z0) = sup f(x) > 0 (/ e DA). (1.5.102)
x£S

Then the contraction semigroup {Tt : t > 0} generated by A are, by the Riesz Representation
Theorem (see, e.g., Folland [57], p. 216), given by

( T t f ) ( x ) = f f ( y ) p ( t - x , d y ) f e C(S), (1.5.103)
Js

where p(t; x, dy) are nonnegative measures on (S, S) (with S as the Borel sigma field) satis-
fying the Chapman-Kolmogorov equation (5.1). In general, however, one only knows that
p(t;x,S) < l(t > 0,x e S). Additional ("boundary") conditions may be required to ensure
that p(t;x,S) = l(i > 0,x e S). But even in the defective case p(t;x,S) < 1 (for some
t > 0,x 6 S) one may introduce a state AQO, the so-called state at infinity, and assign
p(t\ x, {Aoo}) = 1 - p(t; x, 5),p(t; A^, {A^}) = 1 for all t > 0. Then, with this augmented
p(t;x,dy), one has a transition probability of a Markov process on (S U {Aoo},<S), where
S = <SU{.Au{A00} : A 6 S}. The state A^ is then an absorbing state. On the other hand,
the transition operators Tt, say, corresponding to this augmented p have an infinitesimal
generator, say, A which satisfies, of course, the hypothesis of the Hille-Yosida theorem as
well as the "maximum principle" (12.5.127). In general, in case of defective p, there are
other extensions to Markov transition probabilities. In the next section we will consider
these extensions for Feller's construction of all one-dimensional diffusions.

The simplest example of an infinitesimal generator for a Markov process is the matrix
operator Q = ((ftj)) on a finite state space S, as described in Section 1.2.4 (See (1.2.33)-
(1.2,36)), satisfying q^ > 0 Vi ^ j-,^jesqij — 0 Vz e S. With the discrete topology, S is
compact metric, and C(S) is the set of all functions on S. The semigroup Tt is then given
by

oo n oo^ ,n

Tt = etQ, (Ttf)(x) = £ ^ j ( Q n f ) ( x ) , P(t;i,j) = E ri^' (L5-104)

n=0 ' n=0

where Qn is the matrix product Q • • • Q, and Qn = ((?|™ ))i,jes- Such a construction also
holds if S is denumerable, provided sup{-qu = Z^i lij • i & S} < oo.

Before concluding this subsection let us point out that an abstract formulation of Kol-
mogorov's backward equation is given by the relation

^-Ttf = ATtf ( f € D A ) , (1.5.105)at
which is obtained on differentiating the first and third expressions in (5.3) with respect to
s and setting s = 0.
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1.5.2 Semigroups and One-Dimensional Diffusions
In a series of classic papers Feller [54]-[56] adapted and extended the Hille-Yosida theory of
semigroups to construct the class of all nonsingular one-dimensional Markov processes whose
sample paths are continuous up to a killing time £ or the time to reach a boundary, whichever
is smaller. Nonsingularity in this context means that from any point in the interior of the
state space the process can move to the left as well as to the right with positive probability.
We will only consider the so-called Feller processes for which the transition probability
p(t; x, dy) is weakly continuous: that is x —> p(t; x, dy) is weakly continuous. One also refers
to this property as the Feller property of the transition probability.

Consider an interval (a, 6) with —oo < a < b < oo. The compactification of a (or, 6)
is finite; this has the usual meaning of adding a (or, 6) to the open interval. If a (or, 6) is
infinite, one still includes this infinite point —oo (or, oo) and gives [a, b] the topology under
which [a, b] is homeomorphic to a compact interval. Without loss of generality we assume
a < 0 < b.

Assume for simplicity that there is no killing, i.e., the process does not terminate at
a point in the interior (a, b). Such a process is characterized by (1) a strictly increasing
and continuous scale function s(x) on (a, b) and a strictly increasing and right-continuous
function m(x) on (a, 6) called the speed function, and (3) boundary conditions, in case the
boundary can be reached in finite time from the interior with positive probability. The scale
function is determined up to an additive constant from the requirement that

equals the probability that the process sarting at x G [c, d] C (a, 6) reaches c before d. The
speed function is determined up to the addition of an affine linear function of s by the
requirement

I T-^TT TTT ) M(z) = "I c<x<d, M(c) = 0 = M(d), (1.5.107)\am(x) ds(x)J

where M(x) is the expected time to reach c ox d starting at x G [c,d]. Without loss of
generality, assume s(0) = 0,m(0) = 0. Given s(-) and m(-) a unique Markov process is
determined up to the time one of the boundary points a or b is reached. In the case the
boundary point a is inaccessible, i.e.,

i
m(x)ds(x) = -oo, (1.5.108)

the point a cannot be reached in finite time and no boundary condition needs to be prescribed
at a. Similarly, if b is inaccessible, i.e.,

/Jo

b
m(x)ds(x) = oo, (1.5.109)

the point b cannot be reached in finite time, and no boundary condition is necessary at
b. In the case both boundary points are inaccessible, the operator dm

rf,, j^- = A, say,
is the infinitesimal generator of a semigroup of transition operators {Tt : t > 0} on the
Banach space C[a,6] of all real-valued continuous functions on [a, 6], with the "sup norm":
H / l l = max{|/(z)| : x e [a,6]}. The corresponding transition probability p(t;x,dy) (t >
0, x e (a, 6)) then defines a conservative strong Markov process on the state space S = (a, b),
which may be constructed to have continuous sample paths.
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If the boundary point, say b is accessible, i.e., the integral (5.17) is finite, but

Lb
s(x)dm(x) = oo, (1.5.110)

then b is called an exit boundary. If, on the other hand, b is inaccessible but the integral in
(5.18) is finite, then b is called an entrance boundary. In the case of an exit boundary, say b,
starting from x 6 (a, b) the process reaches b with positive probability; but it cannot reenter
(a, b) in a continuous trajectory. If b is an entrance boundary, starting from x e (a, b)
the process cannot reach b; but if it starts from b it reenters (a, 6) instantaneously in a
continuous trajectory. If the boundary point a is accessible, but

,o
/ s(x)dm(x) = -oo, (1.5.111)

J a

then it is said to be an exit boundary. On the other hand, if a is inaccessible, but the
integral in (5.19) is finite, then a is said to be an entrance boundary. If a is inaccessible and
(5.19) holds then it is a natural boundary. Similarly, if b is inaccessible and (5.18) holds
then b is a natural boundary.

Next suppose a boundary point, say 6, is accessible and the integral (5.18) is finite, then
b is a regular boundary. In this case the process starting at x e (a, 6) reaches b with positive
probability, and a boundary condition needs to be specified at b. The most general boundary
condition at b is then given by

•= (d/dm(x)(d/ds(x))), (1.5.112)
[a,b] ~

for all / belonging to the domain D^ of the generator, say, AI of the diffusion. Here
# > 0 , 7 > 0 , g i s a finite measure on [a, 6], and si is a continuous nondecreasing function on
[a, b] which equals the scale function s in a neighborhood of b. Also, one must have

either 7 > 0, or / g(cte) = ̂  (1.5.113)
(a,b]

The integrand in (5.20) equals (df(x)/ds(x))x=b at x = b. Thus one may write (5.20) as

(1.5.114)
x=b

where 6 = q({b}) and qi(dx) = q ( x ) / ( s i ( V ) — Si(x)) on [a, b). In particular, if <?i is a finite
measure then

5 + 7 >0. (1.5.115)

Similarly, if a is a regular boundary, then for / 6 -D/^

)3i(dz)+7W)(a)=0, (1.5.116)

for some nonnegative constants d',S',j', and a measure q[(dx). If ?i is a finite measure then

<5' + 7 / >0 . (1.5.117)

We may now state Feller's characterization of all one-dimensional diffusions in Theorems
5.3, 5.4 below. We will say that a Markov process on a state space (S,S) with a transition
probability p(t; x, dy) is conservative if p(t; x,S) = 1 for all / > 0, x e S.



1.5. MARKOV PROCESSES AND SEMINGROUP THEORY 27

Theorem 1.5.3 Let A = (d/dm(x))(d/ds(x)) be defined on the Banach space C[a,b]. Let
DA denote the set of all f 6 C[a,b] such that Af 6 C[a,b]. Then A with domain DA
is the infinitesimal generator of a Markov semigroup {Tt : t > 0} if and only if a and b
are both inaccessible, i.e., iff (5.16) and (5.17) hold. The corresponding Markov process is
conservative and may be constructed to have continuous sample paths and the strong Markov
property.

The continuity of the sample paths may be ensured by verifying the Dynkin-Snell cri-
terion (See Theorem 1.1). By virtue of the construction of the semigroup on C[a, b],Ttf G
C[a,b] if / € C[a,b], i.e., x —> p ( t ; x , d y ) is weakly continuous. Therefore, the Markov pro-
cess has the strong Markov property. For the processes characterized by the next theorem,
the sample paths may be continuous only up to the time of reaching one of the boundaries;
but in any case the sample paths can be taken to be right-continuous, and this together
with the Feller property implies the strong Markov property.

We continue to use the notation of Theorem 5.3 to denote DA the set of all / 6 C[a, b]
such that (d/dm(x))(d/ds(x))f(x) 6 C[a,b}. For a linear operator AI on C[a,b], write
AI C A if DAl C DA and Aif = Af for / e DAl.

Theorem 1.5.4 Let a be a regular boundary point, i.e., both integrals in (5.16) and (5.19)
are finite. Ifp(t;x,dy) is the Feller transition probability, possibly defective, corresponding
to a semigroup {Tj : t > 0} generated by an infinitesimal generator AI C A then, for every
f £ DAl, (5.24) holds along with (5.25) if q{ is finite. If b is a regular boundary point,
i.e., both integrals in (5.17) and (5.18) are finite, then for AI C A to be an infinitesimal
generator of a Markov semigroup on C[a,b], (5.22) must hold, along with (5.23) if q\ is
finite for every f e DAl.

For self-contained proofs of Theorems 5.3, 5.4 see Mandl [59], or ltd and McKean [60].
The transition probability under the conditions of Theorem 5.4 is conservative if and

only if 0' is zero (in (5.24)) in the case of a is a regular boundary, and 6 is zero (in (5.22))
in the case of b is a regular boundary point.

Suppose b is a regular boundary, and 0 = 0 = 7, and qi is the zero measure, i.e., (5.22)
reduces to

/ jt/ ™\ \
= 0, f£DAl (1.5.118)

then the diffusion is said to have a (pure) reflection at b. In this case on reaching b the
process instantaneously returns to (a, b) continuously. If all the terms in (5.22) vanish except
the last term, i.e.,

-0- ff-DA- <L5-119)

then the diffusion is absorbing at b. In this case once the process reaches 6 it stays there
ever after. If all the terms in (5.22) are zero except 0, i.e.,

/ ( fc )=0 , feDAl, (1.5.120)

then the process is nonconservative and is not denned for times t > n, := inf{i > 0 : ui(t) =
b}, w e C([0, oo) — > [a, b}). If all terms in (5.22) vanish except for the integral term and 7,
and qi is finite, then on reaching 6 the process remains there for an exponentially distributed
holding time and then jumps into [a, b) according to the (normalized) q\ distribution, and
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continues in a continuous trajectory until a boundary is reached again, etc. If (5.22) reduces
to

0 (L!U21)

with S > 0, 7 > 0, the process has continuous trajectories and on reaching 6 immediately
enters (a, b) continuously, but its motion is slower than in the case (5.26). Such a boundary
is sometimes called a sticky boundary. Entirely analogous descriptions apply, of course, to
boundary behavior at a.

For examples, consider first the standard one-dimensional Brownian motion {Bf : t >
0}, starting at x(x € M). Its transition probability density p(t; x,y) satisfies Kolmogorov's
backward equation

(t > 0; -oo < x < oo, -co < y < oo). (1.5.122)

Here a = — oo, b = oo are inaccessible boundaries. More generally, consider a diffusion on
(—00. oo) with drift velocity ^(x) and diffusion coefficient cr2(x) > 0, where p,(x) and &2(x)
are locally Lipschitzian. Its transition probability density satisfies the backward equation

dpfos.P) _ u( x]dp(t\x,y) 1 2 &p(t;x,y)
dt ~ M ' dx +.ia(X) 9x2 (t>0,x,yEK)

= Ap(t;x,y) (1.5.123)

Here a = -oo, b — oo, and a, b are inaccessible boundaries. One may take

s(x)= fX e-I(0'z)dz, m(x)= (* ^4rre/(°'2)^ (1.5.124)
Jo Jo

with the usual convention Jc = — fd , and with

When, as above, the state space is taken to be (—00,00), a boundary point, say b, being
accessible means that the process escapes to infinity from the state space in finite time with
positive probability. This phenomenon is also known as explosion. In other words, one has
explosion (i.e., accessibility of -oo and/or +00) if and only if (see (5.16), (5.17)) at least
one of the following conditions holds:

f° / f° 1 \
/ [ / c l f - 0 ' z ) d z } e~I(-°^dx < oo,

/•oo / /"x 1 \
/ ( / 2 eI(0'z)dz} e-I(0^dx < oo. (1.5.126)

Jo \Jo 2cr (z) )

Assume now that the diffusion governed by (5.31) is nonexplosive, i.e., conservative on
(—00, oo), so that both integrals in (5.34) diverge. As in the case of Markov chains, one may
define a diffusion {Xt : t > 0} to be recurrent if

Prob(rc < oo\X(0) = x) = 1 Vx,c, (1.5.127)

where

TC := inf{t > 0 : Xt = c}. (1.5.128)



1.5. MARKOV PROCESSES AND SEMINGROUP THEORY 29

Sometimes (5.35) is referred to as point recurrence, which is special to one-dimensional
diffusions. This probability of reaching a point c, starting from a point x ^ c, is zero for all
nonsingular diffusions in multidimension.

If (5.35) does not hold, the diffusion on (—00,00) (governed by (5.31)) is said to be
transient. One may show that this is equivalent to

Prob(|Xt| -> oo as t -> oo\X0 = x) = I Vx. (1.5.129)

A (recurrent) diffusion is said to be positive recurrent if

E(TC\X0 =x)<oo Vx, c. (1.5.130)

A recurrent diffusion which is not positive recurrent is said to be null recurrent.

Theorem 1.5.5 Consider the diffusion on (— 00,00) governed by (5.31) with JJL(X) , <r2 (x)
locally Lipschitzian, cr2(x) > 0 for all x. (a) The diffusion is recurrent if and only if both
integrals in (5.34) diverge and

= 1° e'^dz = oo, f°° e'^dz = oo. (1.5.131)
J— oo ^0

(b) The diffusion is positive recurrent if and only if both integrals in (5.34) diverge and
i '(°")<fe<°°- <IJUM>C

.
// the diffusion is positive recurrent then it has a unique invariant probability whose density
is given by

c being the normalizing constant.

Part (a) may be proved by letting c j — oo, or d | oo, in (5.14) and showing that the
limits converge to 1 if s(x) — * — oo as x — > — oo, and s(x) — > +00 as x — > +00. Part (b) is
similarly proved by solving (5.15) for M(x) and letting c J, — oo, or d f oo. The computation
of the unique invariant probability may be checked by showing that TT(X) is the unique
normalized solution of the adjoint equation A*n(x) = 0, where

(A*g)(x) = -^(n(x)g(x)) + I^(a2(x)5(x)). (1.5.134)

Next we consider some examples, following Karlin and Taylor [61], of diffusions which
model stochastic changes over time of gene frequencies in a large biological population.
Consider a biological population of size N comprising two genetic types A and a.

The limiting form, as the size N — > oo, of the proportion Xt of type A genes at time
t in the absence of mutation and selection may be represented as a diffusion on [0, 1] with
n(x) = 0 and cr2(x) = a2x(l — x),cr2 > 0. The boundaries 0 and 1 are easily seen to be
regular, and one assigns absorbing boundary conditions at 0 and 1.

More generally, allowing mutations from type A to type a to occur at a rate 71 and that
from type a to type A to occur at a rate 72, -X"t is modeled as a diffusion on [0, 1] with

72(1 - x), cr2(x) = cr2x(l - x). (1.5.135)
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Since 0 does not belong to the interior of the state space here, one may define the scale
function by

271

s(x) = I e~I(^dy ~ (1/ci) /" y-^^'dy (as x | 0). (1.5.136)
" 2 •'i

Here ~ indicates that the ratio of the two sides goes to one. Thus, as x [ 0,

f (l/Cl)(-272/cr2 + iJ-i^-a^/^+i _ (i)-272/^+1]

s(a ; )~<-*-oo if 72/<r2 > i, (1.5.137)
[— > a finite constant if 72/cr2 < |.

Similarly,

J z

— > a finite constant as a; | 0 N/72 > 0. (1.5.138)

It follows that there exists a constant d > 0 such that

Hence the boundary 0 is inaccessible if 72/cr2 > |, and accessible if 72/cr2 < 1/2. On the
other hand, for some c' > 0

s(z)dm(z) ~ c',

converges to a finite constant at x [ 0, for all 72 > 0. Therefore, if 72/cr2 > i then 0 is an
entrance boundary; and for 0 < 72/cr2 < |, 0 is a regular boundary point and in the latter
case one prescribes an absorbing condition at 0. Similar conditions apply to boundary 1 to
show that it is an entrance boundary if 7i/2cr2 > 1/2 and a regular boundary if 7i/2<r2 < |.

As a final example, consider a diffusion on [0, 1] modeling the evolution of the fraction
of type A genes without mutation, but with selection favoring A:

H(x) = 73(1 - x), cr2(i) = <72z(l - x) (7 > 0, a2 > 0). (1.5.139)

Here

s(x) =

m(x) = —— - —— ̂ e~^ • e ^ / ' d z . (1.5.140)(x) = I"*
Ji (72
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It is simple to check that 0 is inaccessible and is a natural boundary. On the other hand, 1
is accessible and is an exit boundary.

Finally, given a diffusion {Xt : t > 0} one can introduce a killing at an exponential rate
fc(-) as follows. Conditionally, given a path {Xt(u) : t > 0}, the probability that the process
is not killed up to time t is exp{- /„* k ( X s ( w ) ) d s } ; t > 0. If {Xt : t > 0} is governed by
(5.31) with infinitesimal generator A = ^a2(x)d?/dx2 + /j,(x}d/dx, then the new process
{Yt : t > 0} observed up to the time of killing, has the generator AI := A — fc(- ) , i.e.,

A1f(x) = A f ( x ) - k ( x ) f ( x ) VfeDAl. (1.5.141)

For applications to genetics, see Karlin and Taylor [61], pp. 272-284.

1.5.3 References
Comprehensive treatments of connections between semigroup theory and Markov processes
may be found in Dynkin [4] and Ethier and Kurtz [58]. Feller's derivation of all semigroups
of transition operators of one-dimensional (Fellerian) Markov processes with continuous
trajectories up to the boundary (and all possible boundary conditions for such processes)
is contained in [54]-[56], with a correction due to Wentzell [62]. A detailed exposition of
Feller's theory is given in Mandl [59].

Ito-McKean [60] contains a complete account of one-dimensional Fellerian diffusions,
including singular cases, and gives a construction using Brownian local time. These local
times and their many fascinating properties were found by Levy [42]. A mathematically
regorous derivation of the existence of a continuous Brownian local time is due to Trotter [63].
A very readable treatment of conservative one-dimensional diffusions and their construction
by the use of local times may be found in Freedman [64].

1.6 Stochastic Differential Equations
In the last section Feller's construction of all one—dimensional diffusions by the use of Hille-
Yosida theory of semigroups has been reviewed, and their properties discussed. There are
two other general methods for constructing diffusions. One of them is to use the theory of
partial differential equations (PDE) for second order linear parabolic equations to construct
the transition probability densities p(t; x, y) as fundamental solutions of the initial value
problems for such equations. See, e.g., Dynkin [4] and Friedman [64] for this. Once these
are constructed and their smoothness established, Markov processes with continuous trajec-
tories, and having the strong Markov property, may be constructed by standard probabilistic
methods. The PDE method is also the most effective in providing proofs of smoothness of
the solutions of initial value problems (for parabolic equations) as well as boundary value
problems (for parabolic and elliptic equations). In addition, in multidimension the theory
of semigroups, without the intervention of PDE or probabilistic methods, has proved to be
difficult to use to construct transition probabilities of diffusions.

The third method of constructing diffusions using the fascinating theory of stochastic
differential equations (SDE), principally due to K. ltd [66], is the most attractive of all
from the probabilistic point of view. Among its advantages are (1) the ease with which one
can construct diffusions in multidimension with arbitrary locally Lipschitzian coefficients
and without the requirement of ellipticity or nonsingularity, (2) analysis in function space
C([0, T] : K/0) of such quantities as density of one diffusion with respect to another having the
same nonsingular diffusion matrix but different drift velocities (Cameron-Martin-Girsanov
Theorem), (3) relatively simple derivations of asymptotic properties, and (4) elegant exten-
sions to manifolds. We will only briefly survey some basic facts in this section. For complete
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treatments one may look up a number of texts, e.g., McKean [67], Ikeda and Watanabe [68],
Friedman [69], Karatzas and Shreve [70], and Rogers and Williams [71].

1.6.1 Stochastic Integrals, SDE, Ito's Lemma
Consider the stochastic differential equation

dXt = b(Xt)dt + a(Xt)dBt (t > 0), (1.6.142)

where {Xt : t > 0} is a fc-dimensional process, &(•) a locally Lipschitzian vector field in
Mfc(6(;r) = (bi(x)b2(x), • • • ,bk(x) with each bi(x) real-valued), cr(x) a locally Lipschitzian
(A; x k) matrix-valued function, and {Bt : t > 0} a fc-dimensional standard Brownian motion
independent of the initial value XQ. The equation (6.1) is to be interpreted in its integral
version

Xt = X0 + I b(Xs)ds + I a(Xs)dBs, (t > 0)
Jo Jo

ll] = X® + I bi(Xs)ds + I ai.(Xs} -dBs (i = 1, • • • , fc)) . (1.6.143)

Here ai.(x) denotes the iih row vector of cr(x), and ai(Xs) • dBs = ]Cj=1 tfrj
(Xs)dB^(s), so that the stochastic integral f0 <Ji.(Xs) • dBs is really a sum of k stochastic
integrals, each with respect to a one-dimensional standard Brownian motion. Thus one
needs to define the stochastic integral

say, where {Bs : s > 0} is one of the standard one-dimensional Brownian motions B^(-)
and {/(s, uj) : s > 0} is a nonanticipative right-continuous real-valued square-integrable
stochastic process. Nonanticipativity means /(s, •) is .^-measurable for every s > 0, where
{Fs : s > 0} is an increasing family of sigma-nelds on a probability space (fi, J-", P),J~S C F,
such that Bs is ̂ -measurable and {Bt - Bs : t > s} is independent of fs. First let /(s,w)
be a nonanticipative step functional (n.a.s.f.) on an interval [0, T], i.e., there exist 0 =
to < ti < ' • • < tm = T constants, and J~ti -measurable square integrable random variables
f i ( i = 0, 1, • • • ,m) such that ./(s) = fi for U < s < ti+i(i = 0, 1, • • • ,m - 1), f ( T ) = fm.
Then define, for s e [ii0, <i0+i](io = 0, 1, • • • , m — 1), the stochastic integral

Lt ,fi0(Bt-B0)fortio<t<tio + l
f(u)dBu = «j ECio /i (£t,+1 - Bt<) + fi (Bt ~ Bti) for t e (*,-, tj-+i], (1.6.144)

In view of the fact that Bt-Bs is orthogonal to all square-integrable ̂ -measurable random
variables (0 < s < t), it is simple to see that J0* f(s)dBs(Q < t < T) is a continuous, additive,
square-integrable ^-martingale (0 < t < T):

I f(u)dBu - / f(u)dBu + I f(u)dBu,
JO Jo Js

E( ( f(u)dBu FB] = I f(u)dBu (0<s<t<T). (1.6.145)
^•Jo ' Jo
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and

E f(u)dBu jr = E f(u)duL V J o ' J l J o

E\ I f(u)dBu]2 = E I f2(u)du = I Ef2(u)du, (0 < s < T). (1.6.146)
Uo J Jo Jo v '

Using (3.6.4), (3.6.5), one may now extend the definition of the stochastic integral to all
square integrable right-continuous nonanticipative processes f(s)(s > 0), and derive (3.6.4),
(3.6.5) for the latter.

Having denned the stochastic integral, also called the ltd integral, for all square inte-
grable nonanticipative stochastic processes, we may solve the stochastic differential equations
(SDE), or ltd equations, (3.6.2) by the method of successive approximations with the Oth
approximation given by X^ = XQ for all t > 0. The successive approximation scheme is
given by

f* /"*
b(X^)ds +

Jo Jo
X(

t
n+l)=X0 + b(X^)ds + <r(XW)dBa,t>Q, (1.6.147)

Using Doob's maximal inequality for square integrable martingales (See, e.g., Bhattacharya
and Waymire [6], p. 52), one shows that for Lipschitzian coefficients & ( - ) , < r ( - ) , for every
r > 0, {JQ(n) : 0 < t < T} converges (in probability in the sup-norm on [0,T]) to a
continuous nonanticipative square integrable stochastic process {Xt : t > 0} which satisfies
(3.6.2). In the same manner, one shows that such a solution is unique up to a P-null set.
This process {Xt : t > 0} is the desired solution to the SDE (3.6.2). This is then shown to
be a Markov process, which has the strong Markov property since it has continuous sample
paths and the Feller property:

Theorem 1.6.1 // &(•) and <r(-) are Lipschitzian then, for any given XQ independent of
the Brownian motion {Bt : t > 0} there exists a unique (up to a P-null Set) continuous
nonanticipative solution to (6. 1) having the strong Markov property.

By allowing 6(- ) ,<r( - ) to be only locally Lipschitz, one may construct unique solutions
to (3.6.1) up to stopping times rn : {t > 0 : \Xt — n}, starting from XQ = x, with n > \x\,
and piecing them together construct Xt up to an explosion time £ = limn|oo rn- A sufficient
conditon for nonexplosion (i.e., for £ = oo a.s. for all initial x) and one for explosion have
been given by Khas'minskii [72] (Also see Bhattacharya and Waymire [6], pp. 615-616).

One of the most distinctive and important features of the Ito calculus is fto's Lemma,
which when applied to functions of Xt says the following:

Theorem 1.6.2 (Ito's Lemma). Let (f)(t, x) be a bounded real-valued function on [0, oo) xRfc

such that(f>0(t,x) := d(/>(t,x)/dt, 4>r(t,x) := d(j>(t,x)/dx^, 4>rr>(t,x) := d2(f>(t,x)/dx
are bounded and continuous, 1 < r, r' < fc. Then

t) = {<h(t,Xt) + L<j>(t,Xt}}dt + grad </>.(t,Xt) • a(Xt}dBt (1.6.148)

where grad (f>(t,x) = (<j>i(t,x),- •• ,(j>k(t,x))' and L is the generator of the diffusion {Xt :
t > 0}, namely,

(a(x) := a(x)<r'(x)}. (1.6.149)
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In particular, it follows from Theorem 6.2 that

Zt := </>(t, Xt) - / {<t>o(u, Xu) + L(/>(u, Xu)}du (t > 0) (1.6.150)
Jo

is a martingale, so that EZt = EZQ, i.e.,

E<t>(t, Xt) - E f {«fo(u, Xu) + I4(u, Xu)}du = E(/>(0, X0), V* > 0. (1.6.151)
Jo

The extra second order terms involving 4>rr> in (6.8) arise due to the fact that the Taylor
expression has to be carried up to second order derivatives to take into account Brownian
squared variation (dBt)2 ~ dt.

Among diverse applications of Ito's Lemma let us mention the derivation of criteria for
different types of asymptotic behavior of { X t - : t > 0}. First, let {Xt : t > 0} be a one-
dimensional diffusion with cr2(x) > 0 for all x. Consider the solution <f>(x) of the two-point
boundary value problem

L(j>(x) = 0, c < x < d, <t>(c) = 1, (f>(d) = 0. (1.6.152)

One can explicitly solve for (f> and show that it can be extended to all of R so as to be
bounded and have bounded and continuous first and second order derivatives. Applying the
martingale property of (6.9) and the optional stopping rule one has (6.10) with t replaced
by T := TC A T& where ry := inf{£ > 0 : Xt = y}, so that

E<t>(XT) = cf>(x), c<x <d, (1.6.153)

where XQ — x. The left side is just the probability P(rc < T^\XQ = x). Letting d j oo, one
obtains P(rc < oo|Xo = x), for all x > c. Similarly, letting c j — oo in <j)(x) one obtains
P(T,I < ool^o = x) for all x < d. If both these limiting probabilities are one, then the
diffusion is recurrent, otherwise it is transient. In this way one obtains a simple derivation
of the criteria of transience and recurrence of Section 1.5 for the case of diffusions with drift
&(•) and diffusion coefficient cr2(x) > 0 (See Theorem 5.5(a)). Next consider the two-point
boundary value problem

c<x<d, V(c) = 0 = V(d)- (1.6.154)

Then, by Ito's Lemma one gets (instead of (6.12)) the relation

(T\X0=x) = ̂ (x), c<x<d, (1.6.155)

where T = TC A Td as before. Since one may explicitly solve (6.13) by successive integrations
to obtain i/>(x), on letting d t oo one gets E(rc\Xo = x), for all x > c. Similarly one
obtains E(rd\Xo = x) for all x < d by letting c [ — oo in if'(x). If both these limits
are finite then one has positive recurrence. Otherwise (assuming recurrence) one has null
recurrence. This yields the criteria in Theorem 5.5(b). These considerations can be extended
to multidimension. For example, let {Xt = Bt : t > 0} be a fc-dimensional standard
Brownian motion, k > 2. In this case L = |A, where A is the Laplacian. The solution to
the Dirichlet problem

&<t>(x) =0, c < \x\ < d, <p(x] = 1 for \x = c, <j>(x) = 0 for x\ = d, (1.6.156)

can be computed explicitly, since in this <j> must be radial <f>(x) = ff(\x\) for some g. Hence
(6.15) reduces to a one-dimensional equation of the form (6.11) (but with g(r] in place of
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<j>(x) in (6.11)). Indeed, the solution is

{ logd-logH •£ 7 _ 2

'

Xt =

- forlor

Using Ito's Lemma to 4>(Xt) one shows, exactly as before, that 4>(x) = P(X(-) reaches the
set {\y\ = c} before {\y\ = d}\XQ = x). Once again letting d f oo one obtains the probability
that Brownian motion reaches the set {\y\ = c} starting at a point x with x\ > c. If this
limiting probability is one the process is recurrent, otherwise transient. In this manner it
turns out from (6.16) that two-dimensional Brownian motion (as well as the one-dimensional
B.M.) is recurrent, while higher dimensional Brownian motions are transient. One may apply
this method to derive criteria for transience and recurrence for general multidimensional
diffusions. Although one cannot in general solve explicitly the Dirichlet problem (1.6.156)
for a general elliptic operator L (in place of the Laplacian A), one may derive appropriate
inequalities by finding (/> such that L(/>(x) < 0 for c < x\ < d. Similarly, one may obtain
criteria for null and positive recurrence for multidimensional diffusions generated by elliptic
operators L with nonsingular matrix-valued function a(x) := a(x)cr'(x), by solving L<f>(x) =
— l(c < x\ < d) with </>(x) = I if \x = c and </>(x) = 0 for \x = d, or at least by finding
a </> satisfying an inequality L<j>(x) < — 1. For such criteria for transience, null recurrence
and positive recurrence for multidimensional diffusions, see Khas'minskii [72], Friedman
[69], pp. 196-201, Bhattacharya [73]. Positive recurrent diffusions Xt have unique invariant
probabilities and approach the equilibrium in total variation distance as 1 1 oo.

Theorems 6.1, 6.2 both easily extend to the case of noniiomogeneous diffusions on Kfe

governed by the Ito equation

+ I b(u, Xu)du + f v(u, Xu}dBu (t > 0), (1.6.158)
Jo Jo

where there exists a constant M > 0 such that for all s,t € [0, oo), and x, y 6 Kfc,

\b(s,x)-b(t,y)\<M(\t-8\ + \x-y\),
\\a(s, x) - a(t, y)\\ < M(\t -s\ + \x- y \ ) , (1.6.159)

with || • || denoting the matrix norm. The solution of (6.17) is a Markov process; but it is
nonhomogeneous in time with a transition probability p(s, x; t, dy) denoting the conditional
distribution of Xt, given Xs = x, which is not just a function of t — s (and x), 0 < s < t.
The form of Ito's Lemma remains unchanged, with b(t,x),a(t,x) := a(t,x)a-'(t,x) in place
of b(x),a(x), respectively.

1.6.2 Cameron— Martin— Girsanov Theorem and
the Martingale Problem

The distribution on a finite time interval [0,t] of a Brownian motion with only a time-
dependent drift, namely, {Xs := Bs — f0 ^(u)du, 0 < s < t} with a nonrandom function
7(-), was shown by Cameron and Martin [74] to be absolutely continuous with respect to
the distribution of {Bs, 0 < s < t}. The density was represented as exp{JQ 7(11) • dBu —
I/O \7(u)\2du}. This was made use of in computing distributions of various functionals
of the process Xt (See [75]). A far reaching generalization of this was given by Girsanov
[76]. Crucial in this development is the fact that for a bounded nonanticipative functional
/(£), t > 0, with value in Rfc,

Mt := exp( f f ( s ) -dBs-\ f \f(s)\2ds\ ,t > 0, (1.6.160)
{Jo / Jo )
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is a martingale. In particular, EMt = EM0 = 1 for all t > 0. This is relatively simple to
establish for bounded nonanticipative step functionals (see (6.3)), and the general assertion
follows by approximation. Note that for nonrandom /(•), as in the Cameron-Martin density,
the result follows from (1) independence of Brownian increments and (2) £'[exp{(c • Bs)2 -
| c2s}] = l for ceR f c .

Let (n,jF, P) denote the original probability space on which the standard Brownian
motion {Bt : t > 0} on Rk is denned, with respect to a filtration {ft : t > 0} (i.e., Bt is
.^-measurable and {Bt — Bs : t > s} is independent of Fs). Using the martingale property
of (6.19) one may now define a new probability measure QT on (fi,.Fr), T > 0 arbitrary
finite, by

QT(A) = I MTdP (A e TT}. (1.6.161)
J A

Note that if A e Ft, t < T, then by the martingale property of Mt (t > 0), one has Qr(A) =
Qt(A). In the case of the Cameron-Martin nonrandom 7(-), one may show without much
difficulty that under QT (i.e., on (ft, TT, QT)) the process {Bt := Bt-/0* 7(u)c?M : 0 < t < T}
is a standard fc-dimensional Brownian motion on [0,T]. This last fact remains true for
arbitrary bounded nonanticipative functionals f ( s ) , s > 0, in place of j ( - ) . The essential
tools for the proof of this are (1) Ito's Lemma and (2) a result of Levy [42], which says that
a process {Zt = (Z\ , • • • , Z\ ) : t > 0} is a fc-dimensional standard Brownian motion with
respect to a filtration {Ft : t > 0} if (a) t —> Zt is a.s. continuous, (b) Zj' - Zfr',t > 0, is
a {.Fj-martingale for each i,l<i<k, and (c) (Zf1 - Z^])(zlj) - Z(j}) = Sijt,t > 0 is a
{Jrt}-martingale for every pair i,j. Here ̂  is Kronecker's delta.

In the case 7(-) is nonrandom, it follows from the above that under QT, {Bt = Bt +
/0 7(ii)doi, 0 < t < T} is a standard Brownian motion with a drift 7(-), since {Bt : 0 < t < T}
is a standard Brownian motion on [0, T]. But under P,{Bt : 0 < t < T} is a standard
Brownian motion on [0,T]. The Cameron-Martin formula follows from this. Girsanov's
generalization is given by

Theorem 1.6.3 (Cameron-Martin-Girsanov Theorem). Let b(t,x),j(t,x) be Lipschitzian
vector fields (t>Q,x& Rfe) and cr(t,x) a nonsingular Lipschitzian matrix-valued function
such that cr~1(t,x) is bounded on [0,T] x Rfc for every T > 0. Consider two diffusions
defined on (17, J-, P) governed by

Yt
x =x • / (b(u,Yx) + j(u,Y2)}du + I a(u,YZ)dBu,t > 0, (1.6.162)

Jo Jo
where {Bt :t>Q}isa standard k-dimensional Brownian motion with respect to a filtration
{Ft • t > 0}. Then the distribution P2,T, say, ofY^ := {Yt

x : 0 < t < T} is absolutely
continuous with respect to the distribution P1>T of X^ := {Xf : 0 < t < T}, and for every
real-valued bounded continuous function f on C([0,T] —» M) one has

EfoY(T^=E(foX(T})MT, (1.6.163)

where'

o
(0 < t < T). (1.6.164)
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To prove this define QT as in (6.20) but with MT defined by (6.23). Then {Bt :=
Bt — f^(T~l(u,X^)'j(u,X^)du : 0 < t < T} is a standard fc-dimensional Brownian motion
on [0,T] under QT- Now one may write

Xfx + I {&(«, XI) + 7(«, Xu)}du + f a(u, X£)dBu, (1.6.165)
Jo Jo

so that the distribution of X ̂  under QT is the same as the distribution of Y^ under P.
Therefore writing E for expectation under P, and EQT that under QT,

E(f o y(T>) = EQT(f o ̂ T)) = £•((/ o X(T))MT). (1.6.166)

In particular, writing h(X^) = E[MT\X^], one has

?£ = h(X^}. (1.6.167)

It has been shown by Novikov [77] that the martingale property of MT(t > 0) in (6.19)
holds if

rt
(s)|2ds}<oo Vt>0 . (1.6.168)

Therefore, one may define the probability measure QT on FT f°r all T > 0 under the Novikov
condition (6.27). This allows one to construct diffusions with nonsmooth coefficients, by
extending the Cameron-Martin Girsanov theorem. But even broader classes of diffusions
were constructed by Stroock and Varadhan [78], [79] by means of their martingale problem
formulation. For simplicity let us only consider the case of time-homogeneous diffusions
on Rfc. Note that for Lipschitzian coefficients £>(•) and cr(-), for every twice continuously
differentiable function </> with compact support, Zt := (/>(Xt~) - /0 L^(Xu)du, t > 0, is a
martingale (see (6.9)). Conversely, let 6(-) ,cr(-) be measurable and bounded, and consider
the space (ft = C([0, oo) —» R fe), T = Borel sigma field of ft). If there exists for each x E Rd

a unique probability measure Px such that on (ft,^7, Px), with {Xt : t > 0} denoting the
coordinate process Xt(u>) = w(t),

<f>(Xt) - f L0(Xu)du, t > 0, (1.6.169)
Jo

is a martingale for every infinitely differentiable <j> with compact support, then the margin-
gale problem is said to be well posed. In this case the coordinate process {Xt : t > 0} is
a Markov process with the strong Markov property, for each initial state x. A sufficient
condition for well posedness due to Stroock and Varadhan [79] is that (1) &(•) is bounded
measurable and (2) cr(-) is nonsingular continuous, cr(-) and <r~1(-) are bounded. The main
results of the Ito calculus, such as Theorems 6.2, 6.3 extend in this case, although the path-
wise unique solutions of the SDE (3.6.1), required for the validity of Theorem 6.1, may not
exist. One may also relax the boundedness conditions on &(•) and cr(-) and the boundedness
of cr~1(-) by requiring them to hold on compacts. Then one may define a diffusion up to
an explosion time £. Khas'minskii's test for nonexplosion may be extended in this case
(See Stroock and Varadhan [79], Section 10.2, pp. 254-259). Similarly, the Khas'minskii
criteria for transience, null recurrence and positive recurrence may also be extended (See
Bhattacharya [73]).

Apart from extending the construction of diffusions to broader classes of coefficients,
the martingale problem formulation leads to broad, simple and verifiable conditions for a
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sequence of discrete parameter Markov processes, with decreasing step sizes and increasing
number of transitions per unit time, to converge in distribution to a diffusion. Similarly,
broad conditions on convergence in distribution of a sequence of diffusions to a limiting
diffusion may also be derived. For this see Stroock and Varadhan [79], Chapter 11.

1.6.3 Probabilistic Representation of Solutions to Elliptic and
Parabolic Partial Differential Equations

It has been already pointed out in Section 1.6.1 that Ito's Lemma and the optional stopping
theorem of martingale theory lead to the probabilistic representation of the solutions to
certain boundary value problems. More generally, let L be an elliptic operator

where a(x) := ( ( a r r ' ( x ) ) ) is symmetric and positive definite, and b(x) and a(x) are locally
Lipschitzian. In particular, a(x] is uniformly elliptic in bounded domains G, i.e., the smallest
eigenvalue of a(x) is bounded away from zero for x 6 G. An elliptic boundary value problem

L4>(x) = f ( x ) , x£G,
(/>(x) = g(x), xGdG, (1.6.171)

is said to be well posed if, for given bounded continuous / on G and continuous g on dG,
there exists a unique </> satisfying (6.30) which is continuous on G = G U dG. A well known
sufficient condition for well posedness for a uniformly elliptic operator L in a bounded open
set G is that every point x 6 dG be a Poincare point, i.e., there exists a truncated cone Cx
with vertex at x such that Cx\{x} is contained in the complement of G.

Theorem 1.6.4 Let G be a bounded open subset of Rfe with all its boundary points as
Poincare points. Assume that L is uniformly elliptic in G and that b(-) and a(-) are Lips-
chitzian in G. Then for every given continuous function f in G and every given continuous
g on dG, the elliptic boundary value problem (6.30) has a unique solution 4>, and <ji> has the
representation

4>(x) = E(g(X*)} + E T f(X*)ds, xeG. (1.6.172)
Jo

Here {Xf : t > 0} is the diffusion on Kfc, starting at x, generated by L, and T = mf{t > 0 :
X- 6 8G}.

To derive the representation (1.6.172) one uses Ito's Lemma (Theorem 6.2) to rf> (or to
a smooth extension of </> to Mfc having compact support), and optional stopping, to get (see
(6.10) with T in place of t, and </>o = 0)

E(j>(X*} -E I L<j)(Xx
s)ds = </>(x), xeG. (1.6.173)

Jo
Since <t>(X*) = g(X?) and L<j>(Xf) = f(Xf) for s < T, (6.32) is the same as (6.31).

We next turn to the initial value problem

\imu(t,x) = f ( x ) ( x6M f c ) . (1.6.174)
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where / is a given (initial) function. Under suitable conditions on L, the fundamental
solution to the initial value (or Cauchy-) problem (6.33) is a function p(t] x, y)(t > 0; x, y 6
Rfe) satisfying

''y) =Lp(t;x,y) (t>Q,x,yeRk),

limp(t;x,y)dy = 5x(dy). (1.6.175)

Here the limit is in the topology of weak convergence of probability measures, and 5X is the
Dirac measure at x. This fundamental solution is also the transition probability density of
the diffusion {Xt : t > 0}. Thus (6.33) is just Kolmogorov's backward equation, and one
has

u(t, x) = (Ttf)(x) = Ef(Xf), (1.6.176)

provided / is continuous and bounded. A more general result is the following. We will write
cr(x) for the positive square root of the matrix a(x).

Theorem 1.6.5 (Feynman-Kac Formula). L e t b ( - ) and <?(•) be Lipschitzian, cr(-) non sin-
gular, f a bounded continuous function and V a continuous function which is bounded above.
(a) Suppose u(t, x) is a solution of

at
\imu(t,x) = f ( x ) (ze!fc), (1.6.177)

such that (i) u(t, x) is bounded on (0, c] x Mfc for every c > 0, (ii) u(t, x) and Lu(t, x) are
continuous on (0, oo) x Kfe and bounded on [c, d] x Efc for all 0 < c < d. Then

V(X*)ds\\ ( i > 0 , x 6 R f c ) . (1.6.178)
•* -1

(b) In particular, the solution to (6.36) is unique, and (6.37) holds, if b ( - ) , a ( - ) , cr^1(-) are
all bounded and Lipschitzian.

The Feynman-Kac representation (6.37) follows from an application of Ito's Lemma to
</>(s,y( s )) for the function <f>(s,y) := u(t - s, j/(1))exp{y(2)} for 0 < s < t,y = (y (1 ),y (2 )) e
Kfc xE1 , and with

For the existence and uniqueness of the solution to (6.36), see Friedman [69].
The Feynman-Kac Formula is important in quantum mechanics. It is also a very useful

result for the derivation of distributions of many important functional of diffusions {Xf :
t > 0} (See Feynman [80] and Kac [81], [82]).

1.6.4 References
The Gaussian process with independent increments, now universally referrred to as Brownian
motion, made its appearance as early as 1900 in an article by Bachelier [82] on financial
mathematics. The name Brownian motion gained a permanent place in mathematics and
science following Einstein's pioneering work [84] on the kinetic theory of the transport of a
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solute of dilute concentration through a liquid medium. In particular, this work provided
an explanation of experimental observations by the English botanist Robert Brown on the
movement of large colloidal molecules in a solution. The first rigorous construction of
Brownian motion with continuous sample paths was given by Wiener [85].

An early occurrence of a stochastic differential equation may be found in Langevin [86].
The first rigorous introduction of stochastic integration with respect to Brownian incre-
ments seems to be due to Paley, Wiener and Zygmund [87] who considered only nonrandom
integrands. The fundamental work on stochastic integration and stochastic differential equa-
tions outlined in this section is due to Ito [88], [89], [66]. Somewhat later, and independently
of Ito, Gikhman [90], [91] derived many of the same results. A generalization to stochastic
integration with respect to martingales was introduced by Doob [39], and this was extended
much further to a complete theory of stochastic integration with respect to semi-martingales
by the French school led by Meyer [92], [93].

For comprehensive modern treatments of the theory of stochastic differential equations
we refer to the books by Ikeda and Watanabe [68], Karatzas and Shreve [70], Rogers and
Williams [71], and Revuz and Yor [94]. Less comprehensive but readable accounts and
applications may be found in Arnold [95], Friedman [65], McKean [67], Lipsler and Shiryaev
[96], and Bhattacharya and Waymire [6].

Other Topics

Among the most notable omissions in the present survey is the theory of large deviations
for Markov processes, developed largely by Donsker and Varadhan [97], [98], Varadhan [99],
and Freidlin and Wentzell [100].

Another important topic omitted from our discussion is the precise estimation of the
speed of convergence of the n-step transition probability p^ (x, dy) of an ergodic Markov
process to its unique equilibrium TT. For Markov chains, including random walks on groups,
with finite but large state spaces, the pioneering work is that of Diaconis [101], [102], who
discovered the fascinating cutoff phenomena for certain important classes of chains. If n lies
just a little to the left of the cutoff point then \p^(x,dy) — n(dy)\\TV is close to one, i.e.,
the approximation is almost as bad as it can be. But if n lies just a little to the right of the
cutoff point then the above total variation distance is close to zero. For sharp bounds on
the error of approximation for more general chains see Diaconis and Stroock [103], Diaconis
and Saloff-Coste [104] and Fill [105]. For diffusions on compact Riemannian manifolds,
Chen and Wang [106] have recently developed coupling methods to estimate the speed of
convergence to equilibrium of the transition probability p(t;x,dy), as t —>• oo, and used
this to improve upon some of the best known estimates of the spectral gap of the Laplace-
Beltrami operator which had been obtained by differential geometers and global analysts.
Also see Holly, Kusuoka and Stroock [107] for a different method. The precise estimation
of the speed of convergence is also important in the analysis of certain classes of multiscale
phenomena arising in geosciences. See Bhattacharya and Gotze [108] and Bhattacharya
[109] for this analysis.
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Chapter 2

Semimartingale Theory and
Stochastic Calculus
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K. Ito invented his famous stochastic calculus on Brownian motion in 40's. In the
same period, J.L. Doob developed a martingale theory and related stochastic processes
to an increasing family of u-algebras ( f t ) of events, where Ft expresses the information
avilable until time t. Prom 60's to 70's the "Strasbourg school", headed by P.A. Meyer,
developed a modern theory of martingales, the general theory of stochastic processes, and
stochastic caluculs on semimartingales. It turned out soon that semimartingales constitute
the largest class of right-continuous adapted integrators with respect to which stochastic
integrals of simple predictable integrands satisfy the theorem of dominated convergence in
probability. Stochastic calculus on semimartingales not only became an important tool for
modern probability theory and stochastic processes, but also has broad applications to many
branches of mathematics (e.g. partial differential equations, differential geometry, stochastic
control), physics, engineering, mathematical finance and all other domains in which random
dynamic structures are involved.

This chapter offers a concise and detailed overview of semimartingale theory and stochas-
tic calculus. In Section 1, we present main results about the martingale theory and the gen-
eral theory of stochastic processes. In Section 2 we introduce systematically the stochastic
integrals of real-valued and vector-valued local martingales and semimartingales, for both
predictable and progressive integrands. We present Ito's formula, the Doleans exponential
formula, Tanaka-Meyer's formula for local times of semimartingales, the Fisk-Stratonovich
integral, and the Ito stochastic differential equation. A general result about the existence
and uniqueness of solutions of a stochastic differential equation driven by a semimartingale
is also presented in Section 2. Finally, in Section 3, we present main ingredients of stochas-
tic calculus on semimartingales, which are: stochastic integration w.r.t. random measures,
charateristics of semimartingales, calculus on Levy processes, Girsanov's theorems, martin-
gale representation theorems. The characterization theorem for semimartingales and some
sufficient conditions for the uniform integrability of exponential martingales are also included
in this section.

The author wishes to express his sincere thanks to Professor Kannan and Professor
Lakshmikantham, the editors of the handbook, for inviting him to write this chapter on

47



48 CHAPTER 2. SEMTMARTINGALE THEORY AM) STOCHASTIC CALCULUS

semimartingale theory and stochastic calculus. The financial support from the National
Natural Science Foundation of China (grant 79790130) and the Ministry of Science and
Technology (the 973 project on mathematics) is acknowledged by the author.

2.1 General Theory of Stochastic Processes and Mar-
tingale Theory

In this section we will introduce the general theory of stochastic processes and martingale
theory. Both theories are not only important basis for semimartingale theory and stochastic
calculus based on semimartingales, but also indispensable tools for studying Markov pro-
cesses and random point processes. For the sake of completeness, we include a short review
on the classical theory of martingales. Most of results presented in this section can be found
in He et al. (1992) [Ref. 1]. For those results not included in Ref. 1, we will indicate their
references.

2.1.1 Classical Theory of Martingales
Discrete Time Martingales

Let (Q, F, P) be a probability space and (J-n,n > 0) an increasing sequence of sub-u-fields
of F. We call (Fn] a filtration. Put ^oo^dJn^7™) an(^ -^-1 = ^o- A sequence of r.v.'s
(Xn,n > 0) is said to be (Fn)-adapted (resp.predictable), if each Xn is ^-(resp.^-i)-
measurable. _

We denote 3N0 = {0,1, 2, • • • , oo}. Let T be an INo-valued r.v.. If Vn e IN0, [T = n] e fn,
T is called an (Fn)-stopping time. For a stopping time T we put

FT = {A € ^oo : A n [T = n] 6 Tn , Vn > 0} ,

then FT is a cr-field. Let (Xn) be an adapted sequence of r.v.'s and T a stopping time. Then
.XT![T<OO\ is -Fr-measurable.

Definition 2.1.1 An (Fn)-adapted sequence of r.v.'s (Xn,n > 0) is called a martingale
(supermartingale, submartingale) if each Xn is integrable and

E[Xn+1 | Fn] = Xn(< Xn, > Xn) a.S. .

It is called a local martingale, if there exists an increasing sequence (Tn) of stopping times
with limn Tn = oo such that for each k (XnKTkI[Tk>o],n >0) is a martingale.

A martingales (or supermartingales) (Xn,n € 3N0) is called right-closable, if there exists
an 0. Xoo_6 .Foo, such that for all n 6 1N0, E^ool^,] = Xn(< Xn) a.s.. In this case,
(Xn,n € IN0) is called a right-closed martingale (or supermartingale).

It is obvious that if (Xn) and (Yn) are (super)martingales, then (Xn + Yn) is a (su-
per) martingale and (Xn A Yn) is a supermartingale. If (Xn) is a (sub)martingale and
/ : R —> R is a (non-decreasing) convex function on R, such that each f ( X n ) is inte-
grable, then by Jensen's inequality, (f(Xn)) is a submartingale.

The main results presented below about discrete martingales are due to J. L. Doob
(1953) [Ref. 2].

Theorem 2.1.2 (maximal inequalities) If N > I , (Xn)n<N is a submartingale, then for
A > 0 ,

AP(sup Xn > A) < / XNdP ,
n<N J[supn<NXn>\]
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AP(sup | Xn >\)<2IE [X+] - E[X0] .
n<N

Theorem 2.1.3 (Doob's inequalities) Let N > 1, (Xn)n<N be a martingale or a non-
negative submartingale. Put X*N = supn<jv \Xn\. Then for A > 0, p > 1 and q > I , we
have

P(X*N > A) < A-"E[| XN H ,

q — i

< - - ( 1 + sup E[|Xn log+ \Xn\]) -
e — i n<N

Let (Xn) be an (Jr
n)-adapted sequence and [a, 6] a finite closed interval. Put

T0 = inf{n > 0 : Xn < a} , Tl = inf{n > T0 : Xn > b} ,
T2j = M{n > T2j-i : Xn < a} , T2j+1 = inf{n > T2j : Xn>b} .

(Tn) is an increasing sequence of stopping times. We denote by Ub[X, N] the number of
upcrossing of [a, b] by sequence (Xo, • • • , XN). Then

[Ub
a(X, k] = j] = [T2j-_i < N < T2j+i] 6 TN ,

so that U^[X,N] is an J-jv-measurable r.v. .

Theorem 2.1.4 (upcrossing inequality) Let N > I , (Xn)n<N be a supermartingale.
Then

CL

As an application of this inequality one obtains the following martingale convergence
theorem.

Theorem 2.1.5 Let (Xn) be a supermartingale (resp. martingale).
1) If sup n E[X~] < oo (or equivalently , supnE[\Xn\] < oo), then Xn a.s. converges to

an integrable r.v. X^ as n — -*• oo. // (Xn) is a non-negative supermartingale, then for each
n>0,

| fn] < Xn a.s. .

2) If (Xn) is uniformly integrable, then Xn a.s. and Ll-converges to an integrable r.v.
XOQ, and Vn > 0,

E[^oo I Fu\ < Xn (resp. = Xn) a.s. .

In particular, if Xn = E[^ | J"n] w«^ ^ being an integrable r.v., then Xn a.s. and L1-
converges to

As an application of Theorem 3.1.5, we obtain the following result which shows that
martingales with bounded increments either converge or oscillate between +00 and -oo.

Theorem 2.1.6 (Ref. 2) Let (Xn) be a martingale with X0 = 0 and \Xn+i-Xn < M <
oo, where M is a constant. Put

C = { lim Xn exists and finite}, D = {limsup = +00, and liminf = — oo}.
n-»oo n^oo n^oo

Then? (CUD) = 1.
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Using Theorem 2.1.6 we can prove the following generalization of the Borel-Cantelli
Lemma [Ref. 2]: Let (7n) be a filtration with FQ = {0,fi} and (An) a sequence of events
with An e fn. Then {Ani.o.} = [^n=ip(An\^n-i} = oo}. (Hints: Let X0 = Q,Xn =

We now turn to the convergence of "reverse" supermartingales with the index set -N0 =
{• • • , -2, -1,0}. Let OTvOne-No be a sequence of sub-cr-fields of 7 such that for all n e
-No, .Fn-i C 7n- An (/"n)-adapted stochastic sequence (Xn}n&^-^0 is called a martingale
(supermartingale), if for each n e -No, -X"n is integrable and

a.s. .

Theorem 2.1.7 Let pCn)ne_No be o supermartingale. Then lira. Xn exists a.s. Ij
n — > — oo

lim EfXJ < +00, a.s., then (Xn) is uniformly integrable, Xn a.s. and Ll-converges
— —n— >— oo

to X-

Corollary 2.1.8 Let £ be an integrable r.v. and (Qn)n&jff be a decreasing sequence of
sub-cr-fields of 7. Put £„ = E[£ | Qn\, then £„ a.s. and L1-converges to E[f \ f|n Qn] •

The following are Doob's stopping theorems for right-closed (super)martingales and gen-
eral (super)martingales.

Theorem 2.1.9 Let (Xn,n £ -CVo) be a martingale (resp. supermartingale), S and T two
stopping times. Then Xs and XT are integrable and

E[XT | ?s] = XSAT (resp. < XS^T) a.s. .

Theorem 2.1.10 1) Let (Xn,n € -CVo) be. a martingale, S and T two finite stopping times.
If XT is integrable, then

E(XT | ̂ s] = XS^T, a.s. , (10.1)

if and only if
lim E[XnI[T>n] fs] = 0, a.s. . .n— too i — j

In particular, i/liminfn_00E[)Xn|/[T>n]] = 0, (10.1) holds.
2) Let (Xn,n 6 WQ) be a supermartingale, . S and T two finite stopping times. If XT is

integrable and
limsupE[Xn/[T>n] | 7s] > 0, a.s. ,

n— >oo

then we have
a.s. . (10.2)

In particular, «/liminfra_oo E[X~I[T>n]] = 0, (10.2) holds.

As a consequence of Theorem 2.1.10 we have

Corollary 2.1.11 Let (Xn,n € WQ) be a martingale (resp. supermartingale) and T a
stopping time with E[T] < oo. If there exists a constant C such that for all n

n^ -Xn\ Fn}<C a.s. on [T > n + 1],

then E[|XT|] < oo, and
E[XT] = E[X0] (resp. < £[*„])•
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Let (Mn,n > 0) be a martingale and (Hn) a predictable sequence. We denote AMn =
Mn - Mn-i and put

X0 = H0M0, Xn = H0MQ + Hi&Mi, n > 1

The sequence (Xn) is called the martingale transform of M by H and denoted by H.M.

Theorem 2.1.12 (Ref. 3) Let X = (Xn,n > 0) be an adapted sequence. The following
properties are equivalent:

1) X is a local martingale;
2) For every n, Xn+\ is a-integrable w.r.t. T~n and IE [Xn+\ \ Fn] = Xn, a.s.;
3) X is a martingale transform.

The following theorem solves an optimal stopping problem.

Theorem 2.1.13 (Ref. 3, 4) (Snell envelope)] Let (Zn)0<n<N be an adapted sequence
of integrable r.v. We define by backward induction a sequence (Un) as follows: let UN = ZN,
and

Un = Max(Zn, E[Un+i Fn}), n < N - 1,
Then (Un) is a supermartingale, and is the smallest supermartingale dominating (Zn) (i.e.
Un > Zn for alln). Moreover, if we denote by Tn^ the set of stopping times taking values
in {n, • • • ,7V} and let Tn = inf{j > n : Uj — Z j } , where inf 0 := N, then each Tn is a
stopping time, (U^°) is a martingale, and we have for all 0 < n < N,

Un = E[ZTn\Fn] = esssup{E[ZT|^r] : T e Tn,N}.

Moreover, the maximum of expected values E[ZT] on Tn^ is attended at Tn, and the optimal
value is equal to E[Un], namely,

E[E7n] = E[ZrJ = sup{E[ZT] : T e Tn,N}.

We call (Un) the Snell envelope of (Zn).

Continuous Time Martingales

Let (fi,^, P) be a probability space and F = (ft)t>o an increasing sequence of sub-cr-
fields of F. Put JFoo = a(\JtFt)- If for all t > 0, T~i+ = n«>t-^ = ^t, F is said to be
right-continuous.

An R_j_-valued r.v. T is called an F-stopping time, if for each t > 0, [T < t] e Ft. For
any F-stopping time T, put

FT = {AeF00:Vte IR+, A[T < t] e ft} .

FT is a cr-field.
Let X, Y be two processes. If for each t e H+, Xt = Yt, a.s., then we call Y a version

of X. If for almost all u>, two paths X.(w) and Y.(u>) are the same, we say that X and Y
are indistinguishable from each other. Here and hereafter we don't distinguish between two
indistinguishable processes. In particular, by a right-continuous process we mean a process
with almost all paths being right-continuous functions on R+.

A process X is called F-adapted, if for each t > 0, Xt is ^-measurable. An F-adapted
process X = (Xt)t>o is called an F-martingale (supermartingale, submartingale), if each Xt
is integrable and for 0 < s < t,

E[Xt \ ft] = Xs(< Xs, >XS) a.s..
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Theorem 2.1.14 Assume F is right- continuous. An ~F- supermartingale (Xt) has a right-
continuous version if and only if t H+ IE [Xt] is a right- continuous function on R+. In
particular, any F-martingale has a right-continuous version.

The following five theorems are direct consequence of the corresponding results for dis-
crete time case.

Theorem 2.1.15 (Doob's Inequalities) Let (Xt) be a right- continuous martingale or
nonnegative submartingale. Put X* = supt>0 \Xt\. For any A > 0 p > 1 and q > 1,

> A) < A-p sup IE [\Xt\p] .
t

< -!_sup(E[|Xt ^f" .q - 1 *>o

Theorem 2.1.16 // (Xt) is a right-continuous supermartingale such that supt IE [\X^~\] <
oo (or equivalently, suptIE [\Xt\] < oo), then as t — > oo, Xt a.s converges to an integrable
r.v. X<x. If (Xt) is nonnegative, then (Xt,t G IR+) is a (right-closed) supermartingale.

Theorem 2.1.17 If(Xt) is a uniformly integrable right- continuous martingale (supermartin-
gale), then as t — * oo, Xt a.s. and Ll-converges to an integrable r.v. X^. Moreover,
( X t , t £ -K+) is a martingale (supermartingale).

Theorem 2.1.18 Let (Xt)t>o be a right- continuous supermartingale w.r.t. (ft)t>o- Put
3~0 = (~}s>o3~s- If supi>0 E[Xt] < oo, then as t J. 0, Xt a.s. and Ll -converges to an
J-Q-measurable r.v. XQ, and (Xt)t>o is a (ft) -supermartingale.

Theorem 2.1.19 Let (Xt,t e IR+) be a right- continuous martingale (supermartingale). If
S and T are two stopping times with S <T, then XS,XT are integrable and

E[X a.s..

Theorem 2.1.20 Let X be a non-negative right- continuous supermartingale. Put T =
inf{t > 0 : Xt = 0 01 Xt- = 0}, then for a.e. uj and all t 6 [T(w), oo), Xt(u) = 0.

Theorem 2.1.21 Let X1 < X2 < ••• be a sequence of right- continuous supermartingales
with supn IE [XQ] < 0. Then Xt = supn X", t > 0, is a right- continuous supermartingale.

2.1.2 General Theory of Stochastic Processes
Let (0, J-} be a measurable space. A process on (fi, J-') is simply a collection of measurable
functions {Xt,t G A}, defined on (tf.^), where A is a time parameter set. If A is an
interval of R = (—00,00), (Xt) is called a process in continuous time. If A is a subset of
N = {0, 1, 2, • • • }, (Xt) is called a process in discrete time. For a fixed a; G fi, the function
t (-> Xt(u) defined on A is called a sample path of the process (Xt). A process in continuous
time having continuous paths is called a continuous process.

In the sequel we assume the time parameter set A is R+. We call an increasing family
(ft) of sub-<7-algebras of J7 a filtration.

The general theory of stochastic processes contains four parts: 1) the measurable struc-
ture of stochastic processes; 2) the section theorem, which provides an approach of studying
trajectory properties of a stochastic process through values of the process taken at stop-
ping times; 3) the projection theory of measurable processes, which is a generalization of
the conditional expectation in probability theory; 4) the dual projections of finite variation
processes, which are denned via projections of random measures.
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Optional and Predictable Processes

Let (ft, f) be a measurable space equipped with a filtration F = (Ft)t>o- Set Fx = Vt>
and

s>t

Ft- = /\fs=a(\Jfs) ,t>0.
s<t s<t

By convention, we put FQ- = FQ, FOO- = Fao- The filtration F is called right-continuous,
if for each t>Q,Ft = Ft+. Obviously, F+ = (Ft+)t>v is right-continuous.

For an F-stopping time T, we put

FT+ = {Ae^oo: Vteft
FT = {A 6 .F^: VteTR+,A[T<t] & Ft} ,

FT- = F0 V a{A[t <T}: A e Ft, t £ IR+}.

Then FT+,FT,FT- are all cr-fields and it holds that FT- C FT C FT+- For each natural
number n > 1, put

~ jfcr« = Z, ̂ r/[^i<T<^] + (+oo)/[T=+cx>] ./c=i
Then Tn are stopping times and Tn I T.

Let A 6 ^"T. Put

then TA is a stopping time. We call TA the restriction of T on A.

Definition 2.1.22 Lei [/, V be R+ -valued function on ft tmt/i U <V. Put

[[/, V] = {((j,t) € ft x IR+ : U(w) < t < V(u)} ,

[U, V[= {(w, t) e ft x m+ : U(u) < t < V(u)} .

Similarly, we can define }U, V] and ] U , V [ . They are called random intervals. [[7, C/] iwi
6e denoted by [f/J and called the graph o f U .

A random set B is called a iftm sei, if it can be expressed as a countable union of graphs
of stopping times.

Definition 2.1.23 1) A process is called cadlag process, if its sample paths are right-
continuous with left-limits, "cadlag" is an acronym from the French "continu a droit, limite
a gauche." Similarly we can define "caglad" process.

2) A process is called an increasing process, if it is a cadlag process with nonnegative
initial values and its paths are increasing functions.

3) A process is called a finite variation (FV) process or process of finite variation, if it
is cadlag and its paths are of finite variation on each compact interval o/R_|_.

4) Let X = (Xt)t>o be a stochastic process. If Xt(u>}, as a function of (u>,t), is F x
B(R+)-measurable, X is said to be measurable; if for each t € fft+, the restriction of X on
ft x [0, t] is Ft x B([Q, t]) -measurable, X is said to be progressively measurable (or simply,
progressive).

5) The smallest a-field on ft x IR+ such that all cadlag (resp. left-continuous) adapted
processes are measurable is called the optional (resp. predictable) a-field and denoted by O
(resp. P). A random set or stochastic process is called an optional (resp. predictable) set
or process if it is O (resp. T1) -measurable.
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Theorem 2.1.24 1) Every progressive process is measurable and adapted.
2) Every right-continuous (or left-continuous) process is progressive.
3) If (Xt) is a progressive process and T is a stopping time, then XT![T«X>] *s FT-

measurable.
4) Every optional process is progressive.

Theorem 2.1.25 1) We denote by T the collection of all stopping times. Then

O = a{lS, oo [: S 6 T}.

2) Put

Ci = {Ax{Q}:A€F0}\j{Ax}s,t}:0<s<t,s,t£Q+,A£\jFr},
r<s

C2 = {Ax{0}:AeFo}u{Ax[s,t[:Q<s<t,s,t€Q+,A<=\jFr},
r<s

C3 = {Ax{0}:Ae?0}U{]S,oo[:SeT},

where Q+ denotes the set of all positive rational numbers. Then cr(Ci) = ^{C^} = o~(Ca) = P.
In particular, T* C O.

Corollary 2.1.26 Let (Xt) be a predictable processes and T a stopping time. Then XT is
a predictable process and ^T^[T<OO] € FT- • Here and henceforth, XT stands for the process
X stopped at T, namely,

Theorem 2.1.27 // (Xt)t>o is an adapted cadlag process, then there exists a sequence of
strictly positive stopping times (Tn) such that

[AJf^O] :={(u,t) :0<t<+oc,Xt(u) ^ Xt-(w)} = \J [Tn] .
n

Definition 2.1.28 An R+-valued function Tonflis called a predictable time, if |T, oof is
a predictable set. A stopping time T is called an accessible time, if there exists a sequence
of predictable times (Tn) such that fT] C UnIT"I-

The following theorem characterizes predictable processes within cadlag adapted pro-
cesses.

Theorem 2.1.29 Let X = (Xt) be a cadlag adapted process. Then X is a predictable
process if and only if X satisfies the following conditions:

1) there exists a sequence of strictly positive predictable times (Tn~) such that [AX 7^ 0] C

2) for each predictable time T, XT![T<OO] € FT--
Let A = (At)t>o be an FV process. For eachu € fl, the function of finite variation A.(ai)

on R+ can be uniquely decomposed as A.(UJ) = Ac(u) + Ad(w), where Ac(u) is a continuous
function of finite variation, Ad(u>) is a purely discontinuous function of finite variation:

0<s<t

We call Ac the continuous part of A and Ad the purely discontinuous part of A. An FV
process A is said to be purely discontinuous if Ac = 0.
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The Stieltjes integral of a measurable process H w.r.t. an FV process A is denned path
by path:

= / H,(u)dA,(u) = H0A0 + I Hs(u)dAs(u) .
JQ,t Jo[Q,t]

We denote (Bt) by H^A or simply H.A. We denote by LS(A) the set of all measurable
processes which are Stieltjes integrable w.r.t. A.

Theorem 2.1.30 Let A = (At) be an FV process and H € LS(A).
1) If H is progressive and A is adapted, then H.A is adapted.
2) if H and A are predictable, then so is H.A .

Let (ft) be an increasing process. If for each t 6 R+ rt is an (Ft)-stopping time, we call
(rt) a random time-change. Put Qt = Fn. We call (Qt) the filtration induced by T.

Theorem 2.1.31 Assume that (.Ft) is right- continuous.
1) Let (Qt) be the filtration induced by a random time-change (ft). Then (Qt) is right-

continuous.
2) Let (At) be an adapted increasing process with A^ = oo. Put

rt = in f{ S >0: A, > t}, £ t=FV t .

Then (rt) is a random time-change, called the one associated to A. If (At) is continuous,
then for any ( f t ) -stopping time a, Aa is a (Qt)-stopping time, and we have fa C QA,- If
(At) is further strictly increasing, then fa — QAO-

Section Theorem and Its Applications

Let (fi, F", P) be a probability space equipped with a filtration F = (Ft). F = (.Ft) is said
to be complete, if (fi, F, P) is complete and Fb contains all P-null sets. If F is complete
and right-continuous, we say that F satisfies the usual conditions.

A probability space (fi, F, P) equipped with a right-continuous filtration F = (Ft) is
called a filtered probability space or stochastic basis and denoted by (fi, F, F, P). If (Q, F, P)
is complete and F satisfies the usual conditions, we call (fi, F", F, P) a complete stochastic
basis. Any stochastic basis (17,F", F,P) can be completed as follows: First we complete the
probability space (fi, F, F, P) and then let F'/' be the tr-field generated by Ft and all P-null
sets.

A subset A of fi x ]R+ is called an evanescent set (w.r.t. P), if the projection of A on fi is
a P-null set. Two processes X = (Xt) and Y = (Yt) are said to be indistinguishable (denoted
by X = Y), if {(w,t) : Xt(u) ^ Yt(w)} is an evanescent set. If {(w,t) : Xt(u) > Yt(u)} is
an evanescent set, we write X < Y.

The following theorem is called the section theorem. It is one of the most important
results in the general theory of stochastic processes.

Theorem 2.1.32 Let A be an optional (resp. accessible, predictable) set. Then for any
e > 0 there exists a stopping time (resp. accessible time, predictable time) T such that

1) IT] CA;
2) P(T < oo) > P(7r(A)) - e.

Here IT (A) = {w : 3t £ R+ such that (w, t) e A} is the projection of A on £1.

We give below some applications of the section theorem.
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Theorem 2.1.33 Let X = (Xt) and Y = (Yt) be two optional (resp. predictable) processes.
If for each bounded stopping time (resp, predictable time) T we have XT < YT a.s., then
X <Y . In particular, if for each bounded stopping time (resp. predictable time) T we have
XT = YT a.s., then X = Y.

Definition 2.1.34 1) A stopping time T is said to be (a.s.) foretellable, if there exists a
sequence of stopping times (Tn) such that on [T > 0] we have Tn <T (a.s.), for all n, and
\imnTn = T(a.s.).

2) A stopping time T is called a totally inaccessible time, if for each predictable time S
we have P(T = S < oo) = 0.

Theorem 2.1.35 For each stopping time there exists A c [T < oo], A € FT- such that TA
is an accessible time and TA? is a totally inaccessible time.

TA and TA^ are called the accessible and totally inaccessible part ofT and denoted by Ta

andT1, respectively.

Theorem 2.1.36 Let X — (Xt) be a cadlag adapted process. Then there exists a sequence
(Tn) of strictly positive stopping times satisfying the following conditions:

ii) each Tn is predictable or totally inaccessible,
ni) {Tnl n [Tm\ = 0, for n^m.

The following theorem describes the structure of an adapted or predictable FV process.

Theorem 2.1.37 // A is an adapted (resp. predictable) FV process, then so is Ad and
there exists a sequence (Sn) of strictly positive stopping times (resp. predictable times) with
disjoint graphs such that

Moreover, any adapted FV process A admits the following unique decomposition:

A = Ac + Ada + Adi,

where A° is a continuous adapted FV process, Ada and Adi are purely discontinuous adapted
FV processes, Ada has only accessible jumps, Adl has only totally inaccessible jumps.

Definition 2.1.38 Let A C ft x IR+. Put

DA(u) = inf{< E IR+ : (w,t) € A}, u> € ft,

DA is called the debut of A. Here and henceforth, we follow the convention that inf 0 = +00.

Theorem 2.1.39 1) If (ft) satisfies the usual conditions, the debut of any progressive set
is a stopping time.

2) All predictable times are a.s. foretellable. If (Ft) is complete, all predictable times
are foretellable.

3) If (Ft) is complete, any evanescent measurable process is a predictable process and
any right- continuous adapted process is an optional process.

4) If (Ft) is complete, any right- continuous supermartingale is indistinguishable to a
cadlag process.

5) If (Ft) satisfies the usual conditions, any martingale has a cadlag version.
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Theorem 2.1.40 Assume that (ft) is complete. If X is a cadlag adapted process, then X
is predictable if and only if it satisfies the following conditions:

i) For any totally inaccessible time S, on [S < 00} we have Xs = X$- a.s.,
ii) For any predictable time T, XT![T<OO] is FT --measurable.

The following theorem is the predictable form of Doob's stopping theorem. It is the
basis for defining predictable projections of measurable processes.

Theorem 2.1.41 Assume that (ft) satisfies the usual conditions. If (Xt,t £ R+) is a
cadlag supermartingale (resp. martingale), then for any predictable time T and stopping
time U with U > T, Xu and XT- are integrable and we have

\ FT-} < XT-(resp. = XT-) a.s. .

In particular, if ^ is an integrable r.v. and S,T are two predictable times, then we have

Corollary 2.1.42 Assume that (ft) satisfies the usual conditions.
1) Any right- continuous predictable martingale is continuous.
2) Let T be. a stopping time. Then T is a predictable time, if and only if for any bounded

cadlag martingale M one has E[AMy] = 0, where AMo = AMoo = 0 by convention.

Definition 2.1.43 1) Let F = (Ft) be a complete filtration. F is said to be quasi-left-
continuous, if FT == FT- for any predictable time T .

2) An adapted cadlag process X is said to be quasi-left-continuous, if for each predictable
time T we have XT = XT-, a.s. on [T < ooj.

Theorem 2.1.44 The following conditions are equivalent:
1) F is quasi-left-continuous,
2) Every accessible time is a predictable time,
3) Every cadlag F-martingale is quasi-left-continuous.

Projections of Measurable Processes

We assume that (fi, F, P) is a complete probability space and F = (Ft) is a filtration satisfy-
ing the usual conditions. We shall define projections of processes via conditional expectations
of random variables. For convenience we use the generalized conditional expectations.

Definition 2.1.45 Let (fl,F, P) be a probability space and Q a sub-a-field of F. A r.v.
£ is said to be a-integrable w.r.t Q, if there exist £ln € Q, £ln | ^ such that each £.fon
is integrable, or equivalently, there exists a ^-measurable real r.v. ry > 0 such that £77 is
integrable.

Theorem 2.1.46 Let £ be a r.v., a-integrable w.r.t. Q. Put

C = {A€Q: EK 1 1 A] < +00}.

Then there exists uniquely a Q -measurable real r.v. rj such that for all A 6 C we have

EK/A] = E(rjIA].

We call rj is the conditional expectation of £ w.r.t. Q, and denote it by
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It is easy to prove that the above generalized conditional expectation posses all properties
of the ordinary conditional expectation.

Theorem 2.1.47 Let (Xt) be a measurable process such that for every stopping time T,
XT![T<OO] ig cr -integrable w.r.t. FT- Then there, exists a unique optional process, denoted
by °X , such that for every stopping time T we have

E[XTI[T<ao] FT] = °Xr7[T<00j a.s.

In this case, we say that X has the optional projection °X .

Obviously, every progressive process X has the optional projection and °X is an optional
version of X.

Theorem 2.1.48 Let X = (Xt) be a measurable process such that for every predictable
time T, XT![T<OO] is a-integrable w.r.t. FT- • Then there exists a unique predictable process,
denoted by PX, such that for every predictable time T we have

E[.XT/[T<OO] FT-} — pXrI[T<oc} a.s. .

In this case, we say that X has the predictable projection PX .

Let X be a cadlag martingale. Then by Theorem 1.1.41, X- is the predictable projection
of X. Here by convention, XQ- = X0.

The following theorem shows that the projection has a property, similar to the smoothing
property of conditional expectation.

Theorem 2.1.49 Let X be a measurable process and Y an optional (resp. predictable)
process. If the optional (resp. predictable) projection of X exists, then so does XY and

Dual Projections of FV Processes

First of all we define the measure on F x B(R+) generated by an increasing process.

Definition 2.1.50 Let A be an increasing process. We define a set-function HA as follows:

= E\ f IH(;s)dAs(-)\,
L70,oo J[0,oo

Then p. A is a measure on f x B(R+). We call it the measure generated by A.
Put

Tn(w) = inf{t > 0 : A t(w) > n} .
Then Tn is a r.v., [0,T[e T x 5(R+), \Jn{0,Tn[= SI x JR+, and ̂ ([0,T|[) < n. Conse-
quently, HA is a a-finite measure on f x B(R+). Obviously, HA doesn't charge evanescent
sets and for all t > 0, F 6 f ' , we have

Theorem 2.1.51 A measure H on f x B(R+) is generated by certain increasing process if
and only if for each t > 0 the set-function Gt on (fi,.F), defined by

is a a-finite measure and absolutely continuous w.r.t. P. The increasing process generating
ju is unique.
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Definition 2.1.52 Let H be a measure on T x 0(R+) not charging evanescent sets. \JL is
called an optional (resp. predictable) measure, if for any bounded measurable process X, we
have

H(X) = H°(X) ( resp.

where

Below we define the projections of measures. They are the basis for studying the dual
predictable projection of an increasing process.

Theorem 2.1.53 Let H be a a-finite measure on f x B(R+) not charging evanescent sets.
For any positive bounded measurable process X , set

H°(X) = H(°X] , HP(X) = /*("*) •

Then H° (resp. HP) is an optional (resp. predictable) measure on F x B(R+) not charging
evanescent sets. We call JJL° (resp. p,p) the optional (resp. predictable) projections of H-

Obviously, H and HP coincide on the optional a-field O, H and HP coincide on the pre-
dictable a -field "P. Besides, in order for H be an optional (resp. predictable) measure on
f x B(R+) it is necessary and sufficient that H = H° (resp. H = HP)-

Theorem 2.1.54 Let HA be the measure on f x fi(R+) generated by an increasing process
A. Then HA is optional (resp. predictable), if and only if A is adapted (resp. predictable).

Theorem 2.1.55 Let A and B be two adapted (resp. predictable) increasing processes. The
following statements are equivalent:

1) For almost alluj, dB.(a>) « dA.(uj),
2) HB « HA onfx B(R+),
3) HB « HA on O (resp. P,
4) There exists a non-negative optional (resp. predictable) process H, denoted by 42,

such that B = H.A, a.s. .

Let A be an increasing process. If Ax = lim^-,,^ An is integrable, A is called an
integrable increasing process. If AQ is cr-integrable w.r.t. JF0 and there exist stopping times
Tn | oo a.s. such that Axn—Ao are integrable, A is said to be locally integrable. If there exist
Tn I oo a.s. such that each ATn-I[Tn>o] is integrable, A is said to be prelocally integrable.
An FV process is called a process of integrable variation, if its total variation is integrable.
Similarly, we can define processes of prelocally (resp. locally) integrable variation.

Obviously, any adapted FV process is of prelocally integrable variation, any predictable
FV process is of locally integrable variation.

Theorem 2.1.56 Let H be a measure on T x B(R+) generated by an increasing process A,
and H° (resp. p,p) be the optional (resp. predictable) projection of H- Then H° (resp. HP) is
generated by an adapted (resp. predictable) increasing process if and only if A is prelocally
(resp. locally) integrable.

Theorem 1.1.56 hints us to give the following definition.

Definition 2.1.57 Let A be a prelocally (resp. locally) integrable increasing process. We
denote by A° (resp. Ap) the adapted (predictable) increasing process generating the measure
H°A (resp. HA) ana call A° (resp. Ap) the dual optional (resp. predictable) projection of A.
If A is adapted, we often use notation A to denote Ap and call A the compensator of A.

The above definition can be extended naturally to processes of prelocally or locally
integrable variation.
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Theorem 2.1.58 Let A be a process of prelocally (resp. locally) integrable variation and
H be an optional (resp. predictable) process. If H 6 Ls(A) and H.A is of prelocally (resp.
locally) integrable variation, then H € LS(A°) (resp. H £ LS(AP) and (H.A)° = H.A°
(resp. (H.A)P = H.AP). Moreover, for any stopping time T, we have

I Hs II dA° I T < IE \ I Hs \\dAs \] ,\]<E[[
J0[0,T] J[0,T]

and for any predictable time T, we have

Hs\\dAp\}<JE( \Hs\\dAs((
J0,[0,T] [0,T]

Theorem 2.1.59 Let A be a process of prelocally (resp. locally) integrable variation and
H be an optional (resp. predictable) process. If H € LS(A) n Ls(A°) (resp. H 6 Ls(A) n
Ls(Ap)) and H.A° (resp. H.AP) is of prelocally (resp. locally) integrable variation, then
H.A itself is a process of prelocally (resp. locally) integrable variation.

Theorem 2.1.60 Let A be an adapted (resp. predictable) FV process andH be a measurable
process having optional (resp. predictable) projection such that H G Ls(A) and H.A is of
prelocally (resp. locally) integrable variation. Then °H € Ls(A) (resp. PH £ Ls(A)) and

(resp. (H.A)P = (PH}.A) .

The following theorem gives a martingale characterization of the dual predictable pro-
jection.

Theorem 2.1.61 Let A be an adapted process of integrable variation and B a predictable
process of integrable variation. Then B is the dual predictable projection of A if and only
if A— B is a uniformly integrable martingale with initial value zero. As a consequence, we

2.1.3 Modern Martingale Theory
We assume that (f2,.7r, P) is a complete probability space and F = (J-i) is a filtration
satisfying the usual conditions. All martingales we consider will be assumed to be cadlag.
We use the following notations:

*4( .Aioc) —— the collection of all adapted processes of (locally) integrable variation.
A+ (A~i~oc) —— the collection of all adapted (locally) integrable increasing processes.
V —— the collection of all adapted FV processes.
V+ —— the collection of al} adapted increasing processes.
1 —— the collection of all stopping times.
M —— the collection of all uniformly integrable martingales.

Doob-Meyer's Decomposition

For any class Q of processes we denote by C?o the sub-class of Q consisting of all elements
of Q with null initial value. For an adapted process of integrable variation A we denote its
predictable dual projection by A instead of Ap.

A measurable process X is said to be of class (D) if {-Xy/pxoo] : T 6 T} is uniformly
integrable. From Doob's stopping theorem we know that all uniformly integrable martingales
and nonnegative right-closed submartingales are of class (D).

Let Z = (Zt) be a nonnegative supermartingale. If limt-^oc~E[Zt] = 0, we call Z a
potential.
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Theorem 2.1.62 Let A = (At) be a predictable integrable increasing process with AQ = 0
and Z = (Zt) be the optional projection of (Aoo — At). Then Z is a potential of class (D).
We call Z the potential generated by A.

Theorem 2.1.63 Let Z be a potential of class (-D). Then there exists a unique predictable
integrable increasing process A with AQ = 0 such that Z is generated by A.

As a consequence of Theorem 2.1.63 we obtain the following Doob-Meyer's decomposition
theorem for supermartingales of class (D), due to Meyer (1962) [Ref. 5].

Theorem 2.1.64 Let X be a supermartingale of class (D). Then X can be decomposed
uniquely as

X = M -A,

where M is a uniformly integrable martingale, A is a predictable integrable increasing process
with AQ = 0. (1.6) is called the Doob-Meyer's decomposition of X.

Martingales with Integrable Variation and Uniformly Square Integrable Mar-
tingales

A martingale is called a martingale with integrable variation, if it is also an FV process
of integrable variation. We denote by W the collection of all martingales with integrable
variation.

Theorem 2.1.65 If M £ W, then for any bounded martingale N we have

Nnc}=E\
s>0

Moreover, (Lt) = (MtNt — J3s<t AM5AA/s) is a uniformly integrable martingale.

The following theorem shows the special role of predictable processes in the theory of
stochastic integration.

Theorem 2.1.66 If M € W and H is a predictable process such that

E 7[o. I dMs < oo,

then H.M e W.

A martingale M is called a uniformly square integrable martingale, if sup^lE [M2] < oo.
We denote by A42 the collection of all uniformly square integrable martingales and denote
by M2'0 the collection of all continuous uniformly square integrable martingales.

Let M e M. Then M 6 M2 if and only if E[M£J < oo. In fact we have

E[M^]=supIE[Mt
2].

t

Moreover, M2 is a Hilbert space with inner product given by (M, N) = ~E[M00N00], and it
is isomorphic to L2(fi, f, P) through the mapping M i-» M^.

Theorem 2.1.67 // (Mra)ra>i converges to M in M2, then there exists a subsequence
(M™ f c) f c>1 such that for almost all u>, M"fc(w) converges to Mt(uj) uniformly in t & JR+.
Consequently, M2'c is a closed subspace of M2.
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Definition 2.1.68 Let M2>d denote the orthogonal complement of M2'c in M2. We call
elements of M2'd purely discontinuous uniformly square integrable martingales.

Let M 6 M2'd. Obviously, we have M0 = 0, a.s. . Let M e M2. Then M admits the
following unique decomposition:

M = Mo + Mc + Md ,

where Mc 6 MQ'C, Md e M2'd. We call M° the continuous martingale part of M and Md

the purely discontinuous martingale part of M.
Let M 6 M2 and T be a stopping time. Then

(MT)C = (MC)T, (MT)d = (Mdf .

Theorem 2.1.69 1) Let M 6 M2. Then

E[M0
2] + E[£(AMS)2] < IE [M£],

s>0

and the equality holds if and only if M — MQ € M2'd.
2)IfM,NeM2, then

s>0

3) If M 6 .M2'd, i/ien /or ant/ AT e .M2 we

AMSA7VS

In addition, (Lt) = (MtNt — Y^s<t AAfjAA^) is a uniformly integrable martingale.
4) M%nWcM2'd.

Definition 2.1.70 Let M e M2. M2 is a submartingale of class (D), since by Doob's
inequality we have M^ = sup^ |Mj| 6 L2. Thus according to Doob-Meyer's decomposition
theorem there exists a unique predictable integrable increasing process, denoted by (M), such
that M2 — (M) 6 .Mo. (M) is called the predictable quadratic variation or the sharp bracket
process of M. For M, N e M2 , put

(M, N) is called the predictable quadratic covariation or the sharp bracket process of M and
N.

Definition 2.1.71 For M, N e M2, put

, t>0.
0<s<t

[M, N] is an adapted process of integrable variation, called the quadratic covariation of M
and N. The process [M, M] (or simply, [M}) is an adapted integrable increasing process,
called the quadratic variation or bracket process of M.
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Theorem 2.1.72 Let M, N e M2.
1) [M, N] is the unique adapted process of integrable variation such that MN — [M, N] £

Mo and A[M, N} = AMAJV.
2) (M, N} is the dual predictable projection of [M, N].

The following theorem is a basis for the definition of stochastic integrals.

Theorem 2.1.73 (Kunita-Watanabe inequality) Let M, N G M2, and H, K be two
measurable processes. Then

J[0,oo[
\HsKs}\d(M,N)s

K
[0,oo[

d ( N ) s )
'

1/2
a.s.,

E
J[0,oo[

HsKs\[d(M,N)s

J f H*d(M)s
V -'[0,oo[

J f K*d(N}s
V J[o,°°[

where p,q is a pair of conjugate indices,
and[N}.

a.s.,

is the Lp-norm. A similar result holds for

Local Martingales and Semimartingales

Definition 2.1.74 Let M be a cadlag adapted process. If there exist stopping times Tn f
+00 such that each MTn — MQ is uniformly integrable martingale (resp. martingale of
integrable variation). Then M is called a local martingale (resp. local martingale of locally
integrable variation). We call (Tn) the localizing sequence for M.

We denote by M\oc (resp. Wioc) the collection of all local martingales (resp. local
martingales of locally integrable variation). We set M\oc,o = {M 6 M\oc : MQ — 0}.

Lemma 2.1.75 Let M be a local martingale and e > 0. Put

then A e ^4ioc .

The following is the fundamental theorem for local martingales.

Theorem 2.1.76 Let M be a local martingale. Then for any e > 0, M admits the following
decomposition:

where U e M\oc,o with |A[/| < e and V e WiOCi0.

Corollary 2.1.77 1) If M e M\oc, then for all t > 0, Es<t(AMs)2 < °° a-s- •
2) Mice n V = Wioc •
3) Let A & V. Then A 6 A\oc if and only if there exists a predictable FV process B such

that A — B is a local martingale.
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If M 6 Moc.o nas a decomposition M = U + V with U 6 Afj^ and V € Wioc, we call
M a purely discontinuous local martingale. We denote by -Mf^ (resp.-Mj^,) the collection
of all continuous (resp. purely discontinuous) local martingales.

We denote by M\£c (resp. Md*c) the set of all purely discontinuous local martingales
with accessible (resp. totally inaccessible) jumps.

Theorem 2.1.78 Any local martingale M admits the following unique decomposition:

M = M0^Mc + Md = M0 + Mc + Mda + Mdi,

where Mc e A4fOC)0, Md e M?oc, Mda e Affo°c, and Mdi e M^. We call Mc the continu-
ous martingale part of M and Md the purely discontinuous martingale part of M.

Definition 2.1.79 Let M and N be two local martingales. Put

[M, N]t = M0N0 + (Mc, Nc)t + ̂  AMSANS .
0<s<t

Then [M,N] is an adapted FV process, called quadratic covariation of M and N. [M,M]
(or simply, [M]) is an adapted increasing process, called the quadratic variation or bracket
process of M.

If [M,N] 6 -Aioc; we denote by (M, N) the dual predictable projection of [M, N}. If
M, TV e .M?oc> then [M, N] e Aloc.

Theorem 2.1.80 1) Let M e M\oc. Then M = 0 iff [M] = 0;M € Mfoc iff [M] is
continuous; M € Md

oc iff [M] is purely discontinuous.
2) If M G M.\0ci then \J\M\ is a locally integrable increasing process.
3) If M, N 6 Mioci then [M,N] is the unique adapted FV process such that MN -

[M,N] £ Mioc,0 and A[M,N] = AM AN.

The following theorem shows that martingale transforms can be considered as stochastic
integrals of simple integrands w.r.t. a local martingale.

Theorem 2.1.81 Let M be a local martingale, S and T two stopping times with S < T,
and £ an J- "s -measurable real r.v.. Put H = £/],S,T]- Then L = £,(MT — Ms) is a local
martingale, and for any local martingale N we have

[L,N\ =£([M,N}T -[M,N}S) = H.[M,N\.

The following theorem gives a characterization for jump processes of local martingales.
It plays an important role in the definition of stochastic integrals w.r.t. local martingales.

Theorem 2.1.82 Let H be an optional process such that [H ̂  0] is a thin set. Then H is
a jump process of a local martingale, if and only if

i)pH = 0,
ii)

Definition 2.1.83 Let X = (Xt) be a cadlag adapted process. If X can be expressed as the
sum of a local martingale M and an adapted FV process A:

X = M + A,

we call X a semimartingale. The continuous martingale part of M in the above decompo-
sition is uniquely determined by X . We call it the continuous martingale part of X and
denote it by Xc.
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We denote by S the collection of all semimartingales.
Let X, Y be two semimartingales. Put

[X, Y}t = X0Y0 + ( X c , Yc)t + AXSAYS , t > 0,
s<t

Then [X,Y] is called the quadratic covariation of X and Y. [X, X] (or simply, [X]) is
an adapted increasing process, called the quadratic variation or bracket process of X. If
[X,Y] e Aioc, we denote by (X,Y) the dual predictable projection of[X,Y}.

Definition 2.1.84 Let X e <S. If X can be expressed as X = M + A, where M is a local
martingale and A is a process of locally integrable variation, we call X a special semimartin-
gale.

We denote by Sp the collection of all special semimartingales.

Theorem 2.1.85 Let X 6 <SP. Then X admits the following unique decomposition:

X = M + A ,

where M is a local martingale, A is a predictable FV process with A$ = 0. We call this
decomposition the canonical decomposition of X.

The following theorem gives some useful characterizations of special semimartingales.

Theorem 2.1.86 Let X be a semimartingale. The following statements are equivalent:
1) X is a special semimartingale,
2) •\f\X\ is a locally integrable increasing process,
3) X* = (X*) is a locally integrable increasing process.

Definition 2.1.87 Let X be an adapted cadlag process. If for each t € IR+, Xt is integrable,
and

n

Var(X) = sup^jE [|Xti - E[Xtl+1 ^ti]|] < +00,
T i=0

where the supremum is taken over the set of all finite partitions T of [0, oo] of the form
0 = to < h < • • • < tn < tn+i = oo, and Xx = 0 by convention, then X is called a
quasi-martingale.

Theorem 2.1.88 Let X be an adapted cadlag process. Then X is a quasi-martingale if
and only if X is the difference of two nonnegative cadlag supermartingales. In particular,
any quasi-martingale is a special semi-martingale, and any special semimartingale is a local
quasi-martingale. Moreover, if X is a quasi-martingale, then X can be uniquely decomposed
as the difference of two nonnegative cadlag supermartingales V and V" such that Var(X) =
E[VQ' + VQ']. This decomposition is called Rao's decomposition.

From Theorem 1.1.88 it is easy to see that the quasi-martingale property is preserved
under random time-changes or reductions of the filtration.

Martingale Spaces TL^BMO and Up

The contents of this subsection belong to the fine parts of modern martingale theory. The
terminology BMO, an acronym of bounded mean oscillation, is borrowed from modern
analysis.
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Definition 2.1.89 We denote by Hl the set of all local martingales M such that

\\M\\W := EK/[M] J < oo.

Each element of Ti1 is called an Ti1 -martingale.
Obviously, Ti.1 is a vector space. \\ • ||^i is a norm on Ti1.

Theorem 2.1.90 1) Mloc = H]oc.
2 ) I f M & M2, then M 6 Ti1 and ||M||W~ < ||M||^2.
3)IfM&W, thenM &nl and ||M||wi < ||M|U := E[/[0oo[|dM.|].
4) The collection of all bounded martingale (denoted by M.°° ) is dense in Ti1. For

M £ M°° we have

Definition 2.1.91 We denote by BA4O the set of all uniformly square integrable martin-
gales M such that

I I M\\ X ^ >\\M\\BMO •= SUp J ————— —— — - —— ——— i— < 00,
"" < °°)

where T is the collection of all stopping times and |j = 0 by convention. Each element of
BMO is called a B MO -martingale.

It is easy to check that BMO is a linear space, \\ • \\BMO is a norm on BMO.

Theorem 2.1.92 Let M be a local martingale. The following statements are equivalent:
1) M e BMO,
2) There exist constants Ci,c2 > 0 such that |M0 < Ci a.s., and for any stopping time

T |AMT < ci a.s. and

3) There exists constants ci ,C2 > 0 such that |Mg| < c\ a.s., |AM| < c\ and for all
t>0,

In particular, BMO-martingales are locally bounded martingales.

The following theorem is a fundamental result about TiJ-and #.MC>-martingales.

Theorem 2.1.93 (Fefferman's inequality) Let M and N be two local martingales and
U a progressive process. Then

E[ / |!7s||d[Af,JV]s|] < \/2E[( I U*d[M]sY 2]||^V||B^o.

In particular, when U — 1, we have

E [ / \ d [ M , N ] s ] <
LJ[0,oo[ J

Theorem 2.1.94 Let M 6 Ti1. Then M is a uniformly integrable martingale, and

The following theorem gives a useful characterization for ,B.M0-martingales.
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Theorem 2.1.95 Let N 6 M2. Then N 6 BAtO if and only if there is a constant c > 0
such that for all M G M2 for equivalently, for all bounded martingale M),

|E[M,Ar]J<c||M||wl.

7n tfus case, ||JV||Bjvio < \/5c.

The following theorem shows that BMO can be considered as the dual space of Hl.

Theorem 2.1.96 Let (Ti1)* be the Banach space formed by all bounded linear functionals
on Hl (i.e., (H1)* is the dual space ofH1). Let N e BMO. Put

Then N t-» <px is a one to one linear mapping from BMO onto (W1)* and

-\\VN\\< \\N\\BMO <

where \\<p\\ denotes the norm of bounded linear function ip. In particular, BMO with norm
II • HBA-IO is a Banach space.

Theorem 2.1.97 (Davis' inequalities) Let M be a local martingale. We have

As an important consequence of Davis' inequalities, we have

Theorem 2.1.98 Let M be a local martingale. Then M £ T~il if and only i/E[M^] < oo.
Furthermore, ||M||-^i and HM^I^i are two equivalent norms onTi.1. In particular, H1 with
norm || • ||^i is a Banach space.

Definition 2.1.99 Let3>(t) be a nonnegative monotone increasing convex function R+ with
3>(0) = 0. <&(t) is called a moderate convex function if there is a constant c > 0 such that
forallt>0, $(2i) < c$(£).

Let $(i) be a moderate convex function and <p be its right derivative. We define a constant
P by:

uip(u)

The following is the celebrated Burkholder-Davis-Gundy inequality.

Theorem 2.1.100 (B-D-G inequality) Let M be a local martingale and $ be a moderate
increasing convex function on R_|_ such that $(M^) and <£(y/'[M]^) are integrable. Then

where p is defined in Definition 1.1.99.

Remark Let <J?(i) = tp(p > 1). The corresponding B-D-G inequality is called Burkholder's
inequality.
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The next theorem gives a John-Nirenberg type inequality for BMO martingales.

Theorem 2.1.101 Let M € BMO and \\M\\BMo = m.

1 - 8mA '
2) If A < ^2 , then for any stopping time T,

Definition 2.1.102 Let M be a local martingale, 1 < p < oo. Put

\\M\\HP =
W = {M e Mioc : ||M||Wp < oo}.

Each element ofW is catted an Ti.p -martingale. Obviously, 'Hp is a linear space and \\ • \\-HP
is a norm on Ti.p.

Theorem 2.1.103 1) Let I < p < oo. Put

Mp = {M e M : \\MOO\\LP < oo}.

Then W = Mp, ||M||^P, H-M^H^ and \\MOO\\LP are equivalent norms.
2) Let (p, q) be a pair of conjugate indexes. Then the dual space of Hp is Hq . Moreover,

i f M € H P and N € W , then K = MN - [M, N] € Hl .

2.2 Stochastic Integrals

The stochastic integral is of the form f,ot,HsdXs, where both the integrand (Ht) and
the integrator (Xt) are stochastic processes. In 1944, K. Ito first denned the stochastic
integrals of adapted measurable processes w.r.t. a Brownian motion (cf [Ref. 6, 7]). The
key character of the stochastic integrals is that the resulting processes are martingales.
In 1967, H. Kunita and S. Watanabe [Ref. 8] defined stochastic integrals of progressive
processes w.r.t. square integrable martingales. In 1970, C. Doleans-Dade and P. A. Meyer
[Ref. 9] denned the stochastic integrals of locally bounded predictable processes w.r.t. local
martingales and semimartingales. In 1976, P. A. Meyer [Ref. 10] introduced the stochastic
integrals of optional processes w.r.t. local martingales. In 1979, J. Jacod [Ref. 11] defined
the stochastic integrals of unbounded predictable processes w.r.t. semimartingales (see also
Ref. 12, 13). In this section we present the definition and properties of stochastic integrals,
the change of variables formula (Ito's formula), Doleans-Dade exponential formula, the local
times of semimartingales, and stochastic differential equations driven by semimartingales.
As in Section 1, most of results in this section can be found in Ref. 1. We only indicate the
references for those results which are not included in Ref. 1 .

2.2.1 Stochastic Integrals w.r.t. Local Martingales
Predictable Integrands

We begin with the one-dimensional case. Let M be a real local martingale with the decompo-
sition M = M0+Mc+Md and H be a predictable process. We want to define the "stochastic
integral" of H w.r.t. M, denoted by H.M. If H = £/]S,T]> where S < T are two stopping
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times and £ is jFs-measurable, then H.M should naturally denned as H.M = £,(MT — Ms).
Then by Theorem 1.1.81, for any local martingale N, we have [H.M,N] = H.[M,N]. This
property characterizes uniquely an element H.M of M.\oc- If we want that H.M satisfies
this property for general integrands H, then by Theorem 1.1.80, a necessary condition for
H is that H2 6 Lg([M}) and ^H2.[M] e A^oc. Fortunately, under this condition we can
effectively define a local martingale H.M to meet that property. First, by using the Kunita-
Watanabe inequality (Theorem 1.1.73) we can define a continuous local martingale L' such
that [L',N] = H.[MC,N] for any local martingale N. Second, by using the characteriza-
tion for jump processes of local martingales (Theorem 1.1.82) we can define uniquely an
L" E Mfoc such that AX" = HAM. Finally, we put H.M = L' + L". Then for any local
martingale N, we have

[H.M,N] = H.(M,N].
We call H.M the stochastic integral of H w.r.t. M. Sometimes we denote also this integral
by H^M to insist that the obtained process is required to be a local martingale.

Let M be a local martingale. We denote by Lm(M) the set of all predictable processes
H such that H2 e XS([M]) and ^H*.[M] € Afoc.

In the sequel, we also use the following notations to denote stochastic integrals: for t > 0

/ HsdMs = (H.M)t,
J[0,t]

I HsdMs = I HsdMs = ((H/]0>oo[).M)t.
Jo J(o,t]

The concept of stochastic integral will be generalized below, but we always use the same
notations for stochastic integrals.

The following theorem characterizes the stochastic integrals.

Theorem 2.2.1 Let M be a local martingale and H 6 Xm(M). Then H.M is the unique
local martingale such that [H.M,N] = H.[M,N] holds for every local martingale N.

The following theorem summarizes the fundamental properties of stochastic integrals.

Theorem 2.2.2 Let M be a local martingale, H,K 6 Lm(M).
1) Lm(M) = Lm(Mc) n Lm(Md), (H.MY = H.MC, (H.M}d = H.Md .
2) (H.M)0 = HQM0, A(H.M) = HAM .
3) H + K 6 Lm(M], and (H + K).M = H.M + KM .
4) If H' is a predictable process, then H' e Lm(H.M) if and only if HH' 6 Lm(M). If

it is the case, we have
H'.(H.M) = (H'H).M.

5)IfT is a stopping time, then

(H.Mf = H.MT = (#I[0iT1).M.

Theorem 2.2.3 Let M be a local martingale.
1) If A is a predictable FV process, then AA € Lm(M) and

(AA).M= [M,A]-M0A0.

S)I/T>0 is a predictable time, then 7[yj € Lm (M) and

7[T].M = AMT/jTj00|.
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The following theorem shows that the stochastic integrals coincides with the Stieltjes
integral when the integrator is a local martingale of finite variation and both integrals exist.

Theorem 2.2.4 If M £ Wioc and H <= Lm(M) n LS(M), then H^M = H^M.

Theorem 2.2.5 Let M 6 Wioc.
1) !fEs<. \HSAMS\ € A+c, then H e Lm(M) n LS(M).
2 ) I f H & Lm(M) and ]Ts<. HSAMS e V+ , then H e LS(M).

Theorem 2.2.6 (Ref. 11 (Kunita-Watanabe Decomposition)) If M,N e M$oc,
then N has the following decomposition:

N = N0 + H.M + L,

where H = ̂ ^~^-,H.M, L E Mfoc, and L0 = 0, LM is a local martingale.

Now we turn to the vector stochastic integrals (cf. Ref. 12). Let M = (Ml)i<n be an
Revalued local martingale and H = (Hl)i<n an R™-valued predictable process, iffor each
i, H1 6 Lm(Ml), then we define naturally the componentwise stochastic integral as

In order for the stochastic integral to have good properties, such as representing a real local
martingale as a stochastic integral w.r.t. a vector local martingales, we need to consider
a larger class of integrands. To this end, we take an adapted increasing process P (e.g.,
r = E"=i[Mi' M*]) such that diMi, MJ] « dr.v«J < "> and let

ti
7 dr

We denote by Lm (M) the set of all Rn-valued predictable processes H such that

\
It is easy to see that the space Lm(M) doesn't depend on the choice of F. Similar to the
real local martingale case, for H G Lm(M) we can define uniquely a real local martingale,
denoted by H.M, such that for any real local martingale N,

where ^lN = *• dr'—-. We call H.M the (vector) stochastic integral of H w.r.t. M. Some-
times we denote also this integral by HmM. If H, K € Lm(M), then

n

(H.M, KM] =

The properties of vector stochastic integrals are similar to that of the scalar case.

Theorem 2.2.7 (Ref. 12) Let M = (AP)^ be a vector local martingale. If [M^M^] =
0,Vi ^ j, then Lm(M) = {H = (.#*)»<„ : /P S ̂ (M*), Vz < n}, one! iAe sector stochastic
integral coincides with the componentwise stochastic integral.
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Progressive and Adapted Integrands

Let M be a continuous local martingale and H a progressive process. Then there exists
L 6 Mioc such that [L,N] = H.[M,N] holds for all N e Mioc iff H2 E LS([M}). In this
case, there exists a predictable process K e Lm(M) such that K.M = L. We say that H is
integrable w.r.t. M, and L is called the stochastic integral of H" w.r.t. M, denoted by H.M.

Let M be a purely discontinuous local martingale and H a progressive process. If HAM
has predictable projection and there exists a purely discontinuous local martingale L such
that AL = HAM — P(HAM), we call L the compensated stochastic integral of ff w.r.t. M,
and denote L = HCM.

The above observation leads to the following

Definition 2.2.8 Let M be a local martingale and H a progressive process. If H2 6
LS((MC\), P(HAM) exists and

-p(HAM)s)2 E .4+c,s^-
then we put

H6M = H0M0 + H.M° + HdMd.

Hf.M is called the compensated stochastic integral of H w.r.t. M. We often write H.M
instead of HcM.

Example 2.2.9 1) Let M be a purely discontinuous local martingale. Put H = /JAM^O]-
Then the compensated stochastic integral of H w.r.t. M exists and H^M = M.

2) Let M be a local martingale and X a semimartingale. Then AX<.M exists if and only
if (X, M] e A\oc. If it is the case then AXtM = (X, M] - (X, M).

The compensated stochastic integral is a generalization of the predictable stochastic
integral. However, the conditions for the existence of compensated stochastic integrals are
hard to verify, and we have no characterization for compensated stochastic integrals. The
following theorem gives a sufficient condition for the existence of compensated stochastic
integrals, originally proposed by P. A. Meyer [Ref. 10].

Theorem 2.2.10 Let M be a local martingale and H a progressive process. If ^/H2. [M] €
•A~ioC> then H^M exists, and it is the unique local martingale L such that for any bounded
martingale N, [L,N] — H.[M,N] 6 MIOC>Q. Besides, if we assume already H2 E Lg([M]),
then the condition ^fH2\\M\ E A\oc is also necessary for the existence of H^M.

The following theorem generalizes Ito's stochastic integrals of adapted measurable pro-
cesses w.r.t. a Brownian motion.

Theorem 2.2.11 Let M be a continuous local martingale with MQ = 0. Assume that there
exists a deterministic continuous increasing function a = (a^) such that for almost all uj
d\M}((jj) <C da. Let H be an adapted measurable process. Then there exists L e M.IOC such
that [L,N] = H.[M,N] holds for all N 6 Mioc if and only if H'2 e LS([M]). In this case,
there exists a predictable process K such that K S Lm(M) and K.M = L. L is called the
stochastic integral of H w.r.t. M, and denoted by H.M.
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2.2.2 Stochastic Integrals w.r.t. Semimartingales
Predictable Integrands

We begin with the real-valued semimartingale case.

Lemma 2.2.12 Let X be a semimartingale and H a predictable process. Let X = M + A
and X = N -\- B be two decompositions of X, where M,N G M.[0c and A, B G VQ. If
H G Lm(M] n LS(A) and H G Lm(N) D LS(B), then

HrnM + HiA = H^N + HiB.

Based on Lemma 1.2.12 we propose the following definition.

Definition 2.2.13 Let X be a semimartingale and H a predictable process. If there exists
a decomposition X = M + A, where M G MIOC and A G Vo, such that H G Lm(M) nLs(A),
we say that H is integrable w.r.t. X (or simply H is X -integrable) , and call X = M + A
an H- decomposition of X. In this case we put

H.X = H^M + HiA.

H.X is independent of H -decompositions of X , and is called the stochastic integral of H
w.r.t. X . We denote by L(X~) the collection of all predictable processes which are integrable
w.r.t. semimartingale X .

Remark 1) Let X be a semimartingale and X = M + A be a decomposition of X, where
M G Mioc and A G VQ. Then any locally bounded predictable process H is X -integrable,
and X = M + A is an H- decomposition of X.

2) Let M be a local martingale. Then Lm(M) C L(M) and for H G Lm(M) two
definitions of stochastic integrals coincide. In general, H G L(M) does not imply that H.M
is a local martingale, unless we know H.M is a special semimartingale (see below Corollary
1.2.16) or H.M is bounded below by a constant (see below Theorem 1.2.20).

3) Let X be an adapted FV process. If H £ L(X) n LS(X), then H.X = H^X. In
general, H G L(X) does not imply that H G Ls(X), unless H.X G V (see below Theorem
1.2.17 ) or X is predictable (see below Theorem 1.2.33 ).

The next theorem summarizes the fundamental properties of stochastic integrals of pre-
dictable processes w.r.t. semimartingales.

Theorem 2.2.14 Let X be a semimartingale, and H G L(X).
1) (H.X)C = H.XC, A(tf.X) = H&X, (H.X)0 = H0X0.
2) For any stopping time T

(H.X)T = H.XT = (HI[0,Ti)-X, (H.Xf- = H.XT~.

3) For any semimartingale Y, [H.X,Y] — H.[X,Y].
4) If Y is a semimartingale and H G L(Y),' then H G L(X + Y) and H.(X + Y) =

H.X + H.Y.
5) If K is a predictable process and \K\ < \H\, then K G L ( X ) .

Theorem 2.2.15 Let X be a special semimartingale and H G L(X). Then H.X is a special
semimartingale if and only if the canonical decomposition of X is an H -decomposition of
X.
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Corollary 2.2.16 1) If M is a local martingale, H € L(M) and H.M is a special semi-
martingale, then H G Lm(M) and H.M is a local martingale. In particular, for any con-
tinuous local martingale M, we have Lm(M) = L(M).

2)IfXeVandH£ L(X) with H.X G V, then H G LS(X).

The next theorem is an important consequence of Theorem 1.2.16.

Theorem 2.2.17 Let X be a semimartingale and H G L(X). Let U be an optional set
such that U D [|.ffA.X"| > 1 or |AX| > 1] and for almost all a, for each t > 0, {s : (w, s) G
U} n [0, t] contains at most a finite number of points. Put

At = AXs/{(.,8)€[7}, Zt = Xt- At, t > 0.
s<t

Then H e L(Z), and the canonical decomposition Z = N + B of the special semimartingale
Z is an H- decomposition of Z.

In Theorem 1.2.17, if we put U = [\H&X\ > 1 or |AX| > 1], then X = N + (B + A) is
an //-decomposition of X , where N G M.IOC- Moreover, we have | A./V| < 2 (since | A£?| < 1),
so JV is a locally bounded martingale. Using this fact and Theorem 1.2.17 we can prove the
following important properties of stochastic integrals.

Theorem 2.2.18 Let X be a semimartingale.
1) H,K £ L(X) ==> H + K e L ( X ) .
2) Let H G L(X) and K be a predictable process. Then K G L(H.X) if and only if

KH G L(X). In this case, we have K. (H.X) = (KH).X.
3) Let H be a predictable process. If there exist stopping times Tn | oo such that H G

L(XT™} for each n, then H G L(X).

Let T = (rt) be a random time-change and X be an adapted cadlag process. We say
that T is X-continuous, if for any t G R-|_, X is constant on [rt-,Tt], a.s. , where rt_ = 0 by
convention.

The following theorem shows how semimartingales, covariation processes and stochastic
integrals are transformed by a random time-change.

Theorem 2.2.19 Let X be an F-local martingale (resp. semimartingale) and let T — (ri)
be a random time-change with induced filtration G = (Qt) such that T is X -continuous. Then
X o T is a G-local martingale (resp. semimartingale) and we have [X o T] = [X] o T, a.s. .
Furthermore, if H G Lm(X) (resp. G L ( X ) ) , then H or e Lm(X o r) (resp. G L(X o T)),
and (H o T).(X OT) = (H.X) o T.

Now we turn to the vector stochastic integrals of semimartingales. Let X = (Xl)i<n be
an R™ -valued semimartingale and H = (Hl)i<n an Rn-valued predictable process. If for
each i, H1 G L(Xl), then we define naturally the componentwise stochastic integral as

H.X =
t=i

Like the martingale case, we can extend this componentwise integral to a vector integral
allowing a larger class of integrands. To this end, we need to define the vector Stieltjes
integral. Let A = (Al)i<n be an Revalued adapted FV process. We take an adapted
increasing process T (e.g., Tt = £)i=i L t] \dAa\) such that |cL4*| « dT, Vi < n, and let

i o^_7 ~ "
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We denote by Ls(A) the set of all R^-valued measurable processes H — (H*)i<n such that

1=1

The space Ls(A) doesn't depend on the choice of F. If H = (Ht)i<n £ Ls(A), put

1=1

We call HgA the vector Stieltjes integral of H w.r.t. A.
For vector semimartingales we have a similar result as Lemma 1.2.12. So we can define

the vector semimartingale integral in the same manner as in Definition 1.2.13. Its properties
are similar to that in the one-dimensional case.

As pointed out before, the stochastic integral of a predictable process w.r.t. a local
martingale is not necessarily a local martingale. However, we have the following two results:
the first one is due to Emery (1980), the second one is due to Ansel-Stricker (1994).

Theorem 2.2.20 (Ref. 14, 15) 1) Let M <E M\oc. If H e L(M) and #AM > 0, then
H.M € M. In particular, if AM > 0, then Lm(M) = L(M).

2) Let M = (M1, • • • , M") be a vector-valued local martingale and H e L(M). Then
H.M is a local martingale if and only if there exist a sequence of stopping tomes Tn tending
to oo and a sequence of integrable r.v. 's 9n taking negative values such that H • AMTn > dn.
In particular, if H.M is bounded below by a constant, then H.X is a local martingale.

The following is the so-called optional decomposition theorem for vector-valued semi-
martingales. This theorem has important applications in mathematical finance.

Theorem 2.2.21 (Ref. 16, 17) Let S be an Hd-valued semimartingale. We denote by P
the set of all probability measures Q such that Q is equivalent to P and S is a local martingale
under Q. Assume that P ^ 0. If X is a local supermartingale under each Q G P, then
there exist an adapted increasing process with CQ = 0 and an Rd -valued predictable process
H such that H is S-integrable under each Q EP and X = XQ + H.S — C.

Note that in contrast to the standard Doob-Meyer decomposition, the process C is in
general not predictable and not uniquely determined.

The following result is a direct consequence of Theorem 1.2.20 and 1.2.21.

Theorem 2.2.22 (Ref. 16) Let S be an Rd -valued semimartingale and P be the set of all
probability measures Q such that Q is equivalent to P and S is a local martingale under
Q. Assume that P ^ 0. If X is a local martingale under each Q S P, then there exists
an Rd -valued predictable process H such that H is S-integrable under each Q G P and
X = X0 + H.S.

Progressive Integrands

Now we extend stochastic integrals of predictable processes w.r.t. semimartingales to pro-
gressive integrands such that they include stochastic Stieltjies integrals (cf. Ref. 18).

We denote by A^foc (resp. V9) the set of all quasi-continuous local martingales (resp.
adapted FV processes). We put

& = Mq
loc + Vq , Sda = Mf0

a
c + Vda .
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Then we have
S = Sda e Sq direct sum,

where S is the set of all semimartingales.
Let X 6 S. We denote by X = Xda + Xq the decomposition of X following Sda ®

Sq direct sum. It is obvious that we have

L(X) = L(Xda) H L ( X q ) , H.X = H.Xda + H.Xq, VH £ L(X).

For a progressive process H we will define its integrals w.r.t. Xda and Xq separately and
then make a summation.

Let X G Sda and If be a predictable process. It is easy to prove that H 6 L(X) if only
if there exists a (unique) Y e Sda such that AY = Ht\X. This suggests the following

Definition 2.2.23 (Ref. 18) Let X e Sda. A progressive process H is said to be X-
integrable, denoted by H & I ( X ) , if there exists a (unique) Y G Sda such that AY = HA.X.
In this case we put H.X = Y and call H.X the stochastic integral of H w.r.t. X.

Lemma 2.2.24 (Ref. 18) Let M € Mfoc. Let H be a progressive process and K be a
predictable process such that [°H ^ K] is a thin set, where °H is the optional projection
of H. Assume that K 6 Lm(M] and £s<. \HS - KS\\A.MS\ € V. Then any predictable
process K' such that [°H ^ K] is a thin set verifies the above condition. Moreover, we have
K.M = K'.M and

"Iff.-.

In this case we say H is M-integrable in the local martingale sense and denote H € Im(M).
Its integral w.r.t. M is defined by

H.M = K.M + Y^(HS - KSAMS}.

Lemma 2.2.25 (Ref. 18) Let X € Sq and H be a progressive process. Assume there
exists a so-called H-decomposition X = M + A with M 6 -M-\oc and A 6 Vq such that
H € /m(M) n Ls(A). Then the sum H.M + H.A doesn't depend on the choice of the H-
decomposition. In this case, H is said to be X-integrable, denoted by H 6 I ( X ) , and its
integral w.r.t. M is defined by

H.X = H.M + H.A.

Finally, we can give the following

Definition 2.2.26 (Ref. 18) Let X 6 S. A progressive process H is said to be X-
integrable, denoted by H € I ( X ) , if H is separately Xda-integrable and Xq-integrable. If
H € I ( X ) , the integral of H w.r.t. X is defined by H.X = H.Xda + H.Xq.

Remark This integral extends that of predictable processes w.r.t. semimartingales and
includes the stochastic Stieltjes integral of progressive processes w.r.t. adapted FV processes.

2.2.3 Convergence Theorems for Stochastic Integrals
The following theorem, due to Lenglart [Ref. 19] is the key for the study of convergence of
stochastic integrals.
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Theorem 2.2.27 (Lenglart's Inequality) Let X be an adapted cadlag process and A an
adapted increasing process such that for any bounded (or, equivalently, finite) stopping time
T,

Then for any constants c> 0, d > 0, stopping time T and measurable set H, we have

P(Hn[XT >c}) < -E[AT/\(d + sup&At)] + P(Hn[AT >d])).
C t<T

If furthermore A is predictable, we have

P(H H [XI > c]) < -E[AT Ad} + P(H n [AT > d})).

From Theorem 2.2.27 we can prove easily the following

Theorem 2.2.28 Let M 6 MIOC, T be a stopping time and B a measurable set. Assume
H, tfW 6 Lm(M), n>l, and (H - #<n>).M e Mfoc, n > I . If

IB
/[0,T]

then
IBsup\(H.M)s-

s<T

The next theorem is a convergence theorem for stochastic integrals.

Theorem 2.2.29 Let X be a semimartingale, T a finite stopping time, B a measurable
set, and let H, H^n\n >l, be locally bounded predictable processes. If for almost all LJ 6 B

)„>! is uniformly bounded and convergent to H.(w) on [0,T(o;)], then

t<T

Definition 2.2.30 Let T be a finite stopping time and (Tn)n>o an increasing sequence of
stopping times with TQ = 0 and supn Tn = T. We say that T : 0 = T0 < T\ < • • • is a
stochastic partition of interval [0, T], if for almost all u>, the sequence (Tn(u>)) is stationary
(i.e., there exists a natural number n(u>) such that Tn(iJ) = T(w) when n > n(oj)); in other
words, for almost all uj (Tn(uj)} forms a finite partition of interval [0, T(w)]. Let

i
5(r) is a finite r.v., and is called the mesh of partition r.

The following theorem shows that the stochastic integrals of left-continuous processes
w.r.t. semimartingales are of Riemann-Stieltjes type.

Theorem 2.2.31 Let X be a semimartingale, H an adapted cadlag or left- continuous pro-
cess, and T a finite stopping time. If

r(n) : 0 = T0
(n) <T(n) < ••• , n > 1,

be a sequence of stochastic partitions of [0, T] such that limn <5(r^) = 0 a.s. , then

psup
t<T

•0, n —> CXD.
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The following is the dominated convergence theorem for stochastic integrals.

Theorem 2.2.32 Let X be a semimartingale, H 6 L ( X ) , K^ and K be predictable pro-
cesses such that \K^\ < \H\, \K\ < \H\. Let B e T and T be a finite stopping time. If for
almost allu £. B we have limn_00 K\ (ui) = Kt(u) for all t € [0, T(w)], then

IB sup
t<T

•0, n —> oo.

In particular, if we put H^ = HI[\H\<n], then for all t > 0,

sup •0, n —»oo.

From Theorems 1.2.32 and Corollary 1.2.16 we can prove the following result.

Theorem 2.2.33 If A is a predictable FV process and H e L(A), then H e Ls(A), and
H.A = HsA.

The following theorem is an easy consequence of Theorem 1.2.32.

Theorem 2.2.34 Let X be a semimartingale and H e L ( X ) with [H ̂  0] being a thin set.
If for each t e 1R, J2s<t \Hs\\&xs < oo, a.s., then

(H.X)t = H0X0
s<t

The following theorem justifies the terminologies "quadratic variation" and "quadratic
covariation."

Theorem 2.2.35 Let X andY be two semimartingales. IfT is a finite stopping time, and
rn : 0 = TQ < TI < • • • is a sequence of stochastic partitions of [0, T] with S(rn) tending to
zero, then

sup
t<T

XOYQ - [x,Y]t • 0.

Lemma 2.2.36 Let M be a local martingale, and H be a progressive process such that
H. M e Ul and

E < oo,

Then for any N € BMO, [H. M, TV] — H. [M, N] is a martingale with integrable variation.
In particular, E[H. M, N]^ = E f /[Q ̂  Hsd[M, N ] s ] .

The following theorem is an extension of the first Davis inequality (see Theorem 1.1.97).

Theorem 2.2.37 Let M be a local martingale, H be a progressive process such that ^/H2. [M]
is locally integrable. Then for any stopping time T we have

H l/2d ( M } s ) } .
' J

As an application of Theorem 1.2.37, we obtain the following convergence theorem for
progressive stochastic integrals.
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Theorem 2.2.38 Let M be a local martingale. We denote by L°(M) the set of all progres-
sive processes H suck that ^/H2.[M] e Afoc. Let (#<")) C I/°(M), H 6 L°(M) and T be a
stopping time.

1) //E[(/[0iT](Jffs
(n) - Hs}2d[M]s)1/2] - 0, then

Efsup |(tf(n).M)( - (H. M)J1 -» 0.
L*<T I I'J

sup|(tf(n) .M)t - (tf. M),
t^-T

3, tAen

—> 0. a.s..

We end this section with a result about stochastic integrals of processes depending on a
parameter.

Theorem 2.2.39 (Ref. 20) Let (S,S) be a measurable space and X be a continuous semi-
martingale. Let (Ht(s))t>Q, s 6 S be a family of processes which are progressive on S x R+
in the sense that for every t > 0, the mapping (s,t,u) H-> Ht(s,w) is S x B([0,t]) x ft-
measurable. If for every s £ S, H(s) G L ( X ) , then the family Yt(s) = (H(s).X)t has a
version that is progressive on S x R+, and continuous for each s G S.

2.2.4 Ito's Formula and Doleans Exponential Formula
In this section we present the change of variables formula for semimartingales (Ito's formula),
the most powerful tool in stochastic calculus.

To begin with, from Theorem 1.2.31 and 1.2.35 we can deduce the following

Theorem 2.2.40 If X and Y are two semimartingales, then we have the following formula
of integration by parts:

XtYt = f Xs_dYs + f Ys_dXs + [X,Y]t, t > 0.
Jo Jo

From the formula of integration by parts one can prove easily the following

Theorem 2.2.41 (Ito's Formula) Let X1, • • • ,Xd be semimartingales, and F be a C2-
function on Rd (i.e. F has continuous partial derivatives of the first and the second order).
Put Xi = (Xj , - • • ,Xf) ((Xt) is also called an n-dimensional semimartingale). Then

F(Xt) - F(X0) = V f DjF(Xs_)dXi
J=t ̂

where
d

= F(XS) - F(XS.) -

i , j = i o

, , and the series Y^o<s<trls(F) is absolutely convergent.
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Remark 1) We have the following refinement of Theorem 1.2.41- Let d = n + TO, and
X1 , • • • , Xn be semimartingales, and Xn+l , • • • , X n+m be adapted FV processes. Let F be a
continuous function on Rn+m, of class C2 w.r.t. the first n variables and of class Cl w.r.t.
the last m variables (it may be n = 0 or m = 0). Put Xt = (Xf, • • • , X"+m). Then

F(Xt) - F(X0) = £^r Jo DjF(X,.)dXi + Eo<s<t r,t(F)

+1 E",=i Jo
2) ltd 's formula can be applied to a function defined on an open domain of R™ . For

example, if X and Y are two semimartingales with [Y = 0 or YL = 0] being evanescent,
then by using Ito's formula we can prove that X/Y is a semimartingale.

3) One can apply Ito's formula to complex valued semimartingales. As an example, let
X, Y be continuous semimartingales, and put Zt = Xt+iYt. Then for any analytic function
f we have

f ( Z t ) = f ( Z 0 ) + f /'(Z8)dZ, + J /' f"(Z,)d[Z,Z]8.
Jo z Jo

As an application of Ito's formula, we obtain the Levy 's characterization of Brownian
motion.

Theorem 2.2.42 Let Bt = (B], • • • ,Bf) be a d-dimensional (Ft)- adapted continuous pro-
cess. Then (Bt) is an F-Brownian motion if and only if each (SJ) is an (F^-local martingale
and for 1 < i,j < d, Bl

tB}
t — Sijt is an (J~t)-local martingale (i.e. (Bl,B:>)t = Sijt).

Lemma 2.2.43 Let M be a continuous local martingale. Then for almost allw M.(u>) and
(M).(w) have the same constancy intervals, i.e., for any a < b if M (cu) is constant on [a, b],
so is (M).((jj) and vice versa.

By Theorem 1.2.42 and Lemma 1.2.43 we obtain the following result, due to Knight
(1971) [Ref. 21].

Theorem 2.2.44 Let M = (M1, • • • ,Md) be a d-dimensional continuous local martingale
with M0 = 0 such that (M1, MJ') = 0 for i / j and (M1}^ = oo for each i. Put

Tl
t = inf{s : (M4)s > t}, B\ = Ml

Tt, Qt = J>t, t > 0, 1 < i < d.

Then B = (B1, • • • , Bd) is a standard d-dimensional Brownian motion.

Theorem 2.2.45 Let X be a semimartingale. Put

Vt= (1 + AXs)e~*x« (V0 = 1).
0<s<t

Then for almost all uj the above infinite product is absolutely convergent for all t > 0, and
V = (V^) is an adapted purely discontinuous process of finite variation.

Theorem 2.2.46 Let

e-A^. (46.1)
0<s<t

Then Z = (Zt) is the unique semimartingale satisfying the stochastic integral equation

We call Z the Doleans (stochastic) exponential of X, and denote it by £ ( X ) . (46.1) is called
the Doleans exponential formula, due to Doleans-Dade [Ref. 22].
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By using the Doleans exponential formula, we obtain the following result on multiplica-
tive decompositions of nonnegative submartingales.

Theorem 2.2.47 Let X be a strictly positive submartingale with canonical decomposition
X = M + A, where M e M\oc, A € A+ with A0 = 0 and A is predictable. Then X can be
uniquely expressed as X = BN, where B is an increasing predictable process with BQ — I,
and N is a martingale. Moreover, we have

More generally, we have

Theorem 2.2.48 (Ref. 11) Let X be a strictly positive special semimartingale with
X- > 0 and XQ = 1. Then X admits a unique multiplicative decomposition X = MA,
where M is a positive local martingale and A is a positive predictable FV process with
AQ = 1. If furthermore X is a supermartingale, then A is decreasing.

Theorem 2.2.49 LetX,YeS. Then £(X)£(Y) = £(X+ Y+[X,Y}).

As an application of Theorem 1.2.49 we obtain a multiplicative decomposition of an
exponential semimartingale.

Theorem 2.2.50 (Ref. 23) Let X be a special semimartingale with the canonical de-
composition X = N + A, where N is a local martingale and A is a predictable FV process.
Assume that XQ = 0 and [AA = -1] is evanescent. Then 1+

1
AA is locally bounded, and we

have
£(X) = £(M)£(A),

where M = 1+}±A-N.

In fact, by Theorem 1.2.49 we have £(M}£(A) = £(M+[M, A]+A). However, M+[M, A]
is a local martingale and has the same continuous martingale part and same jumps as N
has, so we have M + [M, A] — N.

Theorem 2.2.51 (Ref. 24) Let Z be a semimartingale with [AZ = —1] being evanescent
and let H be an adapted cadlag process (not necessarily a semimartingale). Then the unique
solution of the equation

Xt=Ht+ ( Xs-dZs, t > 0
Jo

is given by

o o

If H is a semimartingale, Xt has another expression:

Xt=£(Z)t\H0+ I £(Z)-^dHs- I £(Z)-ld[H,Z}s\.
^ Jo Jo }



2.2. STOCHASTIC INTEGRALS 81

2.2.5 Local Times of Semimartingales
Let X be a semimartingale, / be a continuous convex function on R, and /' be its left
derivative. Approximating / by C°°-functions and using Ito's formula we can prove that
f ( X ) is a semimartingale and

f ( X t ) = f ( X 0 ) + f f'(X.-)dX, (2.2.1)
Jo

+ \ ^ r -f / v *\ f f v \ fffv *\ A \^ i _L /° / o o o \} ^ [J(A.S) — /(AS_J — / (AS_)/AASJ + Ct, (Z.Z.Z)

0<s<t

where C = (Ct) is a continuous adapted increasing process with Co = 0. In particular, if
we take f ( x ) = (x — a)+ or f ( x ) = (x — o)~ we obtain

Theorem 2.2.52 Let X be a semimartingale and a € R. Then

f* ^f v \~r (~v ^T i I T ,3 v i \ r 7"(At - a,) — (A.Q — a) + i i[Xe->a]aA-s T / _ [J[xs_:
•'° o<s<t

(Xt - a)~ = (X0 - a)- - f I[xs_^dXs + £ [
J° 0<s<t

where Lf(X) is a continuous adapted increasing process with L$(X) = 0. For almost all
u> the measure dLa(X)(uj) does not charge the set {t : Xt-(i*j) ^ a} and the interior of
{t:X4_(W) = a}.

Lf(X) is called the local time of X at a. The above two equalities are called Tanaka-
Meyer formulas.

Integrating I[X_=a] and -T[x_<a] w.r.t. the two sides of the first Tanaka-Meyer formula,
we obtain the following two formulas for local times.

Corollary 2.2.53 Let X be a semimartingale and a € R. Then

La
t(X) = 2\ f Ilx._=a]d(X. - o)+ -

1JO

L*t(X) = l I[x,_<a}d(X8 - a)+ -
0 0<s<t

Expressing (Ct) in (2.2.1) by means of local times, we obtain a generalization of Ito's
formula as follows.

Theorem 2.2.54 Let X be a semimartingale and let f be a continuous convex function on
R and f its left derivative. Then

f ( X t ) = f ( X 0 ) + f f(Xs
Jo

+ E [/(*') - /(*-) - f(X.-)*X. | + ± / L*t(X)p(da),
0<s<t
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where p is the second order derivative of fin the sense of generalized functions (p is a Radon
measure).

Corollary 2.2.55 Let X be a semimartingale and g be a nonnegative or bounded Borel
function. Then

/

t poo
g(Xs)d(Xc}s = I La

t(X}g(a)da.
J-OG

Theorem 2.2.56 Let X € S and f be the difference of two continuous convex functions on
R. For any a 6 R we set A(a) = {x : f ( x = a)} andB(a) = [x : f ( x ) = a, \f^.(x)\ + \f[(x')\ >
0}, where f'r(resp. //) stands for the right (resp. left) derivative of f. Then B(a) is at most
countable and we have

WPO) = v [/;<

2.2.6 Fisk-Stratonovich Integrals
The content of this section is taken from Protter (1990) [Ref. 24]. Let X and Y be two
continuous semimartingales. Let t > 0 and

rn : 0 = tj < t" < • • • < t£j(n) = t

be a sequence of finite partitions of [0, t] with S(TH) tending to zero. According to Theorem
2.26, as n —> oo,

f
Jo

YsdXs + i([A-, Y]t - X0Y0).

We denote this limit by /0 Ys o dXs. It is easy to verify that this integral obeys the rules
of ordinary calculus. Namely, for any continuous semimartingale X in Rd and function
/ e C3(Rd), we have

f ( X t ) = f ( X 0 ) + Y.J fi(Xs) o dXl, a.s, t > 0.

More generally, we pose the following

Definition 2.2.57 (Ref. 24) Let X and Y be two semimartingales. We put
ft ,t 1
/ YsodXs= Ys-dXs + -(XC,YC).

Jo Jo ^
We call this integral the Fisk-Stratonovich integral (F-S integral, for short) ofY w.r.t. X.
In the literature, it is often called the Stratonovich integral.

Theorem 2.2.58 (Ref. 24) Let X = (X1, • • • ,Xd) be an d-dimensional semimartingale,
and F be a C3-function on Rd. Then

F(Xt) - F(X0

d ,t
= "£ Dj

j=i Jo

0<s<t
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Now we extend the F-S integral to non-semimartingale integrands. To this end we need
a general notion of quadratic covariation of stochastic processes.

Definition 2.2.59 (Ref. 24) Let X and Y be adapted cadlag processes. The quadratic
covariation of X andY, if it exists, is defined to be an FV process, denoted by [X,Y], such
that

sup
t<T

w , Y]t > 0 , n —» oo,

where rn : 0 = TQ < T" < • • • is any sequence of stochastic partitions of [0, +00) with
linin-^oo supm T^ = oo and 5(rn) tending to zero.

If [X, X] exists, we say X has finite quadratic variation. If [X, X] and [Y, Y] exist then
[X + Y, X + y] and [X, Y] exist and the polarization identity holds:

[x, y] = \([x + Y,X + Y}~ [x, x] - [y, y]).

Lemma 2.2.60 (Ref. 24) Let X = ( X 1 , - - - ,Xd) be an d-dimensional semimartingale,
and f be a Cl -function on Rd. Then f(X) has finite quadratic variation.

Definition 2.2.61 (Ref. 24) Let H be an adapted cadlag process and X a semimartingale.
If [H, X] exists, we put

f HS o dxs = f Hsdxs + i([x, y]c - XOYO).
Jo Jo ^

We call this integral the Fisk-Stratonovich integral (F-S integral, for short) of H w.r.t. X.

Theorem 2.2.62 (Ref. 24) Let X = (X1, • • • , Xd) be an d-dimensional semimartingale,
and F be a C2 -function on Rd. Then

F(Xt)-F(X0] =
~ - )

0<s<t

Theorem 2.2.63 (Ref. 24) Let X be a semimartingale with XQ = 0. Then the unique
solution of the stochastic integral equation

Zt = Z0 + I Zs- O dXs.
Jo

is given by

0<s<t

and it is called the Fisk-Stratonovich exponential.
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2.2.7 Stochastic Differential Equations
In this subsection we mainly present some basic results about the Ito stochastic differential
equation (in short: SDE). We refer the reader to Karatzas and Shreve (1991) [Ref. 25].
A general result about the existence and uniqueness of solutions of stochastic differential
equations driven by semimartingales is also mentioned.

Definition 2.2.64 Let (Bt)t>o be a d-dimensional (Ft)- Brownian motion and 0 <to <T.
Let b : [t0,T] x JRm -> Mm and a : [t0,T] x JRm -> Mm'd be Borel measurable maps, where
Mm'd is the set of all m x d-matrices. An IRm -valued continuous (.Ft) -adapted process X is
said to be a solution of the following ltd stochastic differential equation

dXt = b(t,Xt)dt + a(t,Xt)dBt, t e \t0,T}, Xto = £, (64.1)

with £ — (£1, • • • , £m) being FIO -measurable, if X satisfies the stochastic integral equation

ft d .t
XI =e+ b*(s, Xs)ds + Y] / a}(a, Xa)dBj

s, l<i<m,te [t0, T\. (64.2)
Jto j = i JO

Such a solution of (64 -1) is called a strong solution meaning that it is based on the path
of the underlying Brownian motion (Bt). In particular, a strong solution is adapted to the
natural filtration of the Brownian motion (Bt). If such a strong solution doesn't exists, we
have to find a Brownian motion (Bt) on a suitable stochastic basis and an adapted process
(Xt) such that XQ has the given distribution and (64-2) holds. Such a process (Xt) is known
as a weak solution of (64-1).

In the sequel we denote

i=\ j=l i=l

for x € IRm and 7 6 Mm'd. For notational simplicity, we take t0 = 0.

Theorem 2.2.65 If b and a are Lipschitz in x:

\b(t,x)-b(t,y)\ + \<T(t,x)-(r(t,y)\<K\x-y\ (65.1)

and satisfy the linear growth condition in x:

\b(t,x)\ + \o-(t,x)\<K(l + x\), (65.2)

where K is a constant, then (64-1) has a unique solution X . Moreover, if on [0,T] b and CT
satisfies the polynomial growth condition in x :

sup \b(t,x)\ + a(t,x)\<C(l + \x\2"), x 6 IRm, (65.3)
0<t<T

for some constant C > 0, /u > 1 and IE [|£|2M] < oo, then we have

TE[ sup \Xt\^}<Kl + K2lE{\^}.
0<t<T

Remark // b and a are only locally Lipschitz in the sense that for each positive constant
L there is a constant K such that (65.1) is satisfied for x and y with \x\ < L, \y\ < L, then
(64-1) still has a unique solution. If b and a are continuous w.r.t. t, then one can prove
that the unique solution to (64-1) is a diffusion process, usually called an ltd diffusion. Its
drift vector is b and the diffusion matrix is a = aaT .
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If in (64.1) b and a are linear functions in x:

b(t,x) = G(t)x + g(t)- <r(t,x) = (Hi(t)x + hi(t), ••• ,Hd(t)x + hd(t)),

where G and Hi(t) are m x m matrices, g(t) and /i$(t) are JRm-valued functions, we call
(64.1) a linear SDE.

The following theorem gives an explicit expression for the solution of a linear SDE.

Theorem 2.2.66 Assume that G, g, Hi, hi are measurable locally bounded functions. Then
the unique solution of linear SDE (64 • 1) with XQ = c is given by

where
d

dYt = ^(t) -

and <E>t is the solution of the homogeneous SDE
d

with initial value $Q = /. In particular, if c is a constant or a normal r.v., the solution of
a linear SDE is a Gaussian process.

Remark If G(t) = G and Hi(t) — Hi, 1 < i < d, do not depend on t and G, HI, • • • , Hd
commute:

. GHi = HiG, HiHj = Hj Hi , Vi, j,
then

i=0

Example 2.2.67 Consider the following SDE:

dXt = —cXfdt + crdBt, XQ = £.
Its unique solution is

Jo
It is called the Ornstein-Uhlenbeck process. The SDE is called the Langevin equation, because
it was originally introduced by Langevin (1908) to model the velocity of a physical Brownian
particle. If £ is a constant or a normal r.v., then (Xt) is a Gaussian process.

For a one-dimensional SDE (i.e. m = d = I ) , the following result due to Yamada
and Watanabe (1971) [Ref. 26] relaxes considerably the conditions on the existence and
uniqueness of the solutions to (64.1).

Theorem 2.2.68 (Ref. 26) Assume m = d = I. In order for (64-1) to have a unique
solution it suffices that b is continuous and Lipschitz in x and a is continuous with the
property

\o-(t,x)-a(t,y)\ < p(\x - y\),
{or all x and y and t, where p : M+ —> M+ is a strictly increasing function with p(0) = 0
and for any e > 0,

r
p~2(x)dx = oo.
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The following theorem states the Feynman-Kac formula, which provides a probabilistic
representation for the solution of a parabolic differential equation.

Theorem 2.2.69 Let u be a continuous, real valued function on [0, T] x fftd, of class C1'2
on [0, T) x IR , which is the solution of the Cauchy problem

-— + ku = Atu + g, (t, x) E [0, T) x ffid (69.1)
Pt

subject to the terminal condition

«(T,z) =/(z), x&IRd. (69.2)

Here f : IRd — ^ J R , k : IRd — > IR+, and g : [0,T] x IRd are continuous functions. Assume
that u, f and g satisfy the polynomial growth condition in x:

\f(x)\ + \g(x)\ + sup \u(t,x)\<C(l+ z|2"), xeIRd,
0<t<T

for some constant C > 0, /u > 1. Then u admits the representation

u(t, x) = IE *'* [f(XT) exp { - Jf k(e, X9)de]
+ £ g(s, Xs) exp - // k(6,

where {Pt'x,t > 0,x 6 JRd} is the family of probability measures associated with the Markov
process (Xt). In particular, such a solution to (69.1) and (69.2) is unique.

If k does not depend on t, then

u(t,x) =

+ /„* g(t - s, X.) exp { - J0
S k(X0)de}ds]

is the unique solution of the Cauchy problem

-
at

subject to the initial condition

Now we consider the following stochastic differential equation driven by an n-dimensional
semimartingale:

1=1
where Z = ( Z 1 , - - - ,Zn) is an n-dimensional semimartingale where ZQ = 0,
H = ( H 1 , - - - ,Hm) is an m-dimensional cadlag adapted process (i.e., each component
.£P is a cadlag adapted process) and Fi,l < i < n, are mappings from the set of all
m-dimensional cadlag adapted processes to the set of all n-dimensional locally bounded
predictable processes such that for each stopping time T, Fi(XT~) coincides with FiX on
JO, T]. X = (X1 • • • , Xm) is the unknown process. For instance, let fi(u>, s, xi, • • • , xm) be
an n-dimensional measurable function on J7 x R+ x R7™ such that 1) for fixed xi, • • • xm
and s, /i(-,s,xi, - • • ,xm) is J-"s-measurable; 2) for almost all w and for fixed x j , - - - , xm,
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/i(w, •, xi, • • • , xm) is left-continuous with right limits; 3) for almost all ui and all s /j(w, s, •)
is continuous. Put (FjX)t = /»(w, t, Xj_, • • • , X£_). Then Fj meets the above requirements.

The equation (*) was first introduced and studied independently by Doleans-Dade (1976)
[Ref. 27] and Protter (1997) [Ref. 28]. For further studies see Emery (1978) [Ref. 29],
Metivier (1982) [Ref. 30] and Protter (1990) [Ref. 24].

The following theorem gives a sufficient condition for the existence and uniqueness of
the solution of equation (*).

Theorem 2.2.70 If each Fj satisfies the following Lipsckitz condition
rn

F«r)£] < CE { £(*' - Yi )
i=l

where C is a constant, then equation (*) has a unique solution.

2.3 Stochastic Calculus on Semimartingales
In this section we present main results about stochastic calculus on semimartingales, which
are: stochastic integration w.r.t. random measures, characteristics of semimartingales, cal-
culus on Levy processes, Girsanov's theorems, martingale representation theorems. The
profound characterization theorem for semimartingales and some sufficient conditions for
the uniform integrability of exponential martingales are also included. As in the previous
sections, for those results which can be found in He et al. (1992) [Ref. 1] we omit the
citations of the reference.

2.3.1 Stochastic Integration w.r.t. Random Measures

Let (17, T , ( f t ) , P ) be a stochastic basis, O and P be optional and predictable a-algebras
on n x R+. Let E = Rd \ {0} and B(E) be its Borel cr-field. We put

= (fi x R+ x E, F

P = PxB(E).

O (resp. P) is called optional (resp. predictable) a-field in J7. An O (resp. 'P)-measurable
function defined on fj is called an optional (resp. predictable) function on fL

In the sequel, for a cr-field Q on an abstract set G, we denote by Q+ (resp. Qb) the set
of all nonnegative (resp. bounded) ^-measurable functions on G.

Definition 2.3.1 An extended real function /j, defined on f2 x (B(R+) x B(E)) is called a
random measure on R+ x E, if

i) for each fixed w (E fl, /i(w, •) is a u-finite measure on B(R+) x B(E) with n(u>, {0} x
E) = °'

ii) for each B e B(R+) x B(E), p ( - , B ) is a r.v. on (0,7").
For a random measure JJL, we define

Mp (B) = E [ / IB (u>, t, x)n(u, dt, dx)}, B 6 f.
Jn XE ^

i^ is a measure on (17, f), called the measure generated by p,. A random measure p, is
said to be integrable if M^ is a finite measure: MM(J7) < oo. p, is said to be optionally (resp.
predictably) o~-integrable, if the restriction o/MM on O (resp. P) is a a-finite measure.
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The concept of random measure is a generalization of the concept of measure generated
by an increasing process. In fact, let A = (At(w)) be an increasing process. Take E = {x0},
a set of one point, and B(E) = {0, E}, then

IJL(W, dt, dx) = dAt(uj)oXo(dx)

is a random measure, and

0,t, F & T

where 6Xo denotes the Dirac measure at XQ and ̂  is the measure on f x B(R+) generated
by A (see Definition 1.1.50).

If W 6 JP+, then

= f W(w,t,x)n(u,dt,dx), B e B(R+) x B(E),
JB

is a random measure. We denote it by v = W.fi or dv = Wd/j,. If W - e F is such that for
every t>0, f,Q t,xE \W\dfj, < oo. we define a FV process W * fj, by

W * fit = ( Wd[i, t > 0.
J[0,t]xE

Definition 2.3.2 A random measure (j, is called optional (resp. predictable), if for any
W e O+ (resp. P+), W * /j, is an optional (resp. predictable) process.

Theorem 2.3.3 1) If y is a random measure such that for every t > 0, 1 * /j,t < oo, then /j,
is optional (resp. predictable) if and only if for every B 6 B(E), IB * fJ> = (M[0, t\ x -B))t>o
is optional (resp. predictable).

2) ///K, is an optional (resp. predictable) random measure and W 6 O+ (resp. P+), then
so is v = W./j.

3) Let ^ and v be two optionally (resp. predictably) a-integrable optional (resp. pre-
dictable) random measures. If the restrictions of M^ and Mv on O (resp. P) are identical,
then JJL = v .

Theorem 2.3.4 Let m be a measure on (fl,^) such that its restriction on O (resp. P) is
(j-finite. There exists an optional (resp. predictable) random measure n such that m = MM

if and only if
i) for any evanescent set N C f2 x R+, m(N x E) = 0.
ii) for any A & O (resp. P) with m(A) < oo and bounded measurable process X,

m(XIA) = m(°XIA) (resp. m(XIA) =

In this case, such a random measure /J, is uniquely determined by m.

Corollary 2.3.5 Let n be a predictably cr -integrable random measure. Then there exists a
unique predictable random measure v such that the restrictions of M^ and M.v coincide on
P.

We call v the predictable projection or compensator of n, and denote it by np or fi.

Theorem 2.3.6 Let ^ be a predictably cr -integrable random measure. If W e J-+ is such
that v = W./j, is a predictably cr -integrable random measure, then

v = U.p.,

where U is the Radon- Nikodym derivative of ^- on P. We denote U =
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Corollary 2.3.7 Let p, be a predictably a -integrable random measure. If ' W £ f is such
that X = W * n is a process with locally integrable variation, then X has the dual predictable
projection: X = U * \i, where U = M^[W\P].

Theorem 2.3.8 Let JJL be a predictably a -integrable random measure. IfW& P+ and T is
a predictable time, then

f
J

W(T, x)»({T}, dx)I[T<oo] = E W(T, x)[i({T}, dx)I[T<oo]
E

_ a.s. .

Definition 2.3.9 A random measure (j, is called an integer-valued random measure if n
takes values in {0,1,2, • • • ,+oo}; for all t > 0 fi({t} x E) < 1, and fj, is optional and
optionally a -integrable.

An integer-valued random measure p on R+ x E is called an extended Poisson measure
relative to the filtration (Ft), if

(i) the measure m defined by m(A) = E[/z(A)] is a-finite;
(ii) for every s € R and every A 6 B(R+) x B(E) such that A C (s, oo) x E and that

m(A) < oo, the variable fj,(-,A) is independent oj fs.
We call m the intensity measure of fj,.
If m satisfies m({t} x E) = 0 for each t £ IR+, then fi is called a Poisson measure. If

m has the form m(dt, dx) = dt x F(dx), where F is a a-finite measure on (E, B(E)), then
^ is called a homogeneous Poisson measure.

Theorem 2.3.10 A random measure JJL is an integer-valued random measure if and only if

(j.(u,dt,dx) =

where D is a thin set, /3 = (fit) is an optional process.

Definition 2.3.11 Let X = (Xt) be a d-dimensional adapted cadlag process. Put

fj,(u,dt,dx) =
s>0

Then fj, is a predictably cr-integrable integer-valued random measure, called the jump measure
ofX.

We now turn to define the stochastic integral of a predictable function W w.r.t. the
compensated random measure (j, — V, where /u is a predictably cr-integrable integer-valued
random measure and v is its compensator. If W * // G A\oc, then W * v € A\oc and we can
define the stochastic integral of W w.r.t. fj, — v by

which is a local martingale. If W satisfies JE \W(t,x)\i>({t}, dx) < oo for all t > 0, we put

Wt = f W(t,x)v({t},dx), t>0,
JE

Wt = [ W(t,x)(i({t},dx)-Wt, t>0.
JE

Clearly, W = (Wt) and W = (Wt) are all thin processes, and W is predictable. By Theorem
1.3.8, we have P(W) = 0. Put

>0 f \W(t,x)\v({t},dx)<ocand /^(W^s)2 6 Ate}-
JE \
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Then by Theorem 1.1.82, for every W E^Q(yi) there exists a unique purely discontinuous
local martingale M such that AM = W. We call M the stochastic integral of W w.r.t.
H — v, and denoted by W * (fj, — is), or symbolically,

f
Mt= I W(s,x)(fj,(ds,dx)-i/(ds,dx)), t > 0.

7 0 , t x B

It is worth mentioning that the single integral W * n or W * ̂  may be not defined.

Theorem 2.3.12 Let W € G(tu), M = W * (fj, — z/), and H be a predictable process. Then
H is integrable w.r.t M if and only if HW e <?(/«)• ^n this case, we have

H.M =

2.3.2 Characteristics of a Semimartingale
In this subsection, for any semimartingale we give its canonical representation based on its
jump measure and introduce its characteristics. The latter is an important tool for studying
semimartingales .

Lemma 2.3.13 Let X be a d-dimensional special semimartingale, and X — XQ + M + A
be its canonical decomposition. Let n be the jump measure of X and v be its compensator.
Then Wl(u>,t,x) = xl belongs to G(n), and the purely discontinuous martingale part of M
is given by

Md = x * (/z - v).

Theorem 2.3.14 Let X be a d-dimensional semimartingale, fj, be its jump measure, and v
be the compensator of fj,. Then

X = X0 + a + Xc + (z/[|x|<i]) * (^ - v] + (z/[M>1])) * M- (14-1)

where Xc is the continuous martingale part of X , a is a d-dimensional predictable FV
process with ao = 0. Moreover, we have

i/({0} x.E) = i/(R+ x {0}) = 0, (14.2)

(jx|2 A 1) * v € ^+oc, . (14.3)

xv({t},dx). (14.4)
\x\<l

(14.1) is called the canonical representation of semimaringale X.
Let X be a d-dimensional semimartingale. Denote (3 = (/%), where

The triple (a, /?, f) is called the local characteristics (or simply, characteristics) of semi-
martingale X, associated with the truncation function h(x) = x/[|K|<i].

Corollary 2.3.15 Let X = ( X 1 , - - - ,Xd) be a d-dimensional semimartingale with jump
measure fj, and Levy measure v . Then X is a special semimartingale if and only if

(\X\I(\x\>l]) *H = £)(|AX"S|7[|AXS|>1]) £ Aoc-
»<•

If X is a special semimartingale, its canonical decomposition is

X = (X0 + Xc + x * (/* - i/)) + (a + (xJ[|x|>i]) * v).
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Theorem 2.3.16 Let X be a d-dimensional semimartingale having canonical representa-
tion (14-1), and f be a bounded C2 -function on Rd. Then the canonical decomposition of
special semimartingale f ( X ) is given by f ( X ) — M + A, where

M =

A =

* v.

In particular, the special semimartingale Y = eluTX(u 6 Rd) has the following canonical
decomposition:

Y = Y0 + (Y-).N + (Y-).H,

where
N = iuTXc + (eiuTx - 1) * (p - i/),

H = iura - ~-/3 + (elu x - 1 - iurxl[\x]<l]) * v.

Theorem 2.3.17 Let M be a real locally square integrable martingale with characteristics
(a,/3,i/) and M0 = 0. Then

(M) = (3 + x2 * v.

2.3.3 Processes with Independent Increments and Levy Processes
In this subsection, we present some results about processes with independent increments
in terms of characteristic of semimartingales. In particular, we collect main results about
processes with independent increments which are also semimartingales. As an application,
we obtain the classical Levy-Ito decomposition of a Levy process.

A d-dimensional stochastic process (Xt) is said to be stochastically continuous (or con-
tinuous in probability) if for all f > 0 and e > 0,

limP(|Xs-X t >e ) =0.
s—>t

The following theorem characterizes stochastic continuous semimartingales in terms of
their characteristics.

Theorem 2.3.18 Let X be a d-dimensional semimartingale with characteristics (a,/3, v).
Then X is stochastically continuous if and only if for every t > 0 v({t} x E) = 0, a.s.. In
this case, a. is also stochastically continuous.

A d-dimensional process with independent increments (in short: PII) on a stochastic
basis (ft, .T7, (ft),P) is an adapted cadalag Revalued process X such that X0 = 0 and for
all 0 < s < t the variable Xt — Xs is independent of Ts. If the distribution of Xt - Xs only
depends on the difference t — s, the PII X is called a process with stationary independent
increments (in short: PSII) or Levy process. Remark that the stationarity of the increments
excludes the possibility of fixed jumps. So every Levy process is stochastically continuous.

A Poisson process and a Wiener process are Levy processes.
A stochastically continuous PII has no fixed jumps (i.e. Xt = Xt-, a.s., for all t).

Theorem 2.3.19 Let (Xt) be a d-dimensional PII. Then X is also a semimartingale if and
only if for each u 6 Rd, the function t H-> E[emTj!f*] has finite variation over finite intervals.
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Theorem 2.3.20 Let (Xt) be a d- dimensional semimartingale with XQ = 0. Then it is a
PII if and only if its characteristic (m, /3, v) is deterministic. In this case, the set of all fixed
times of discontinuity is J — {t : v({t} x Rd) > 0}, and for all s < t, u E Rd, we have:

= exp|mT(mt-ms)- -ur(/3t-

>,t]xE

X

s<r<t,r£J

J J

Corollary 2.3.21 A d-dimensional process X is a Levy process if and only if it is a semi-
martingale whose characteristics has the form

mt = bt, /3t(u>) = Ct, v(u; dt, dx) = dtF(dx),

where b E Rd, C is a symmetric nonnegative d x d matrix, F is a positive measure on Rd

with F({0}) = 0 and f ( \ x 2 A l)F(dx) < oo. We call F the Levy measure of X. In this
case, for all t E R+ , u E Md we have

E[eiuTXt] = exp {t(iurb - ^uTCu + I (^x - 1 - iuTxI[^

In particular, we have

where

Theorem 2.3.22 Let (Xt) be a d-dimensional PII without fixed jumps.. Put

Then for each u E Rd, <f>t(u) is continuous, and

eiuTXt

Zt(u) = ———, t > 0

is a martingale.

Theorem 2.3.23 Let X be a d-dimensional PII without fixed jumps. Then there exists
an Rd -valued continuous deterministic function f such that X — f is a semimartingale.
If X itself is a semimartingale, then for all u E Rd, <£t(u) ig a function of finite varia-
tion. Conversely, if for some u ^ 0, <ft(u) is a function of finite variation, then X is a
semimartingale.

Theorem 2.3.24 Let X be a d-dimensional semimartingale without fixed jumps. Then X
is a PII if and only if its local characteristics (a, /?, f) is deterministic.

The following theorem gives a description of PII without fixed jumps.
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Theorem 2.3.25 Let X be a d- dimensional PII without fixed jumps. Then

I xd[i + xd(n-v), (25.1)
J[0,t]x[\x\>l] J[0,t]x(\x\<l]

where
1) rat is a deterministic continuous function in Rd with mo = 0, and G is a centered

d-dimensional continuous Gaussian PII with GO = 0 (hence, G is a martingale);
2) IJL is the jump measure of X which has the following properties:

i) For any B £ $(R+) x B(E) with v(B) < oo, p(B) obeys a Poisson law with
parameter v(B}. If B c]s,oo[x.E for some s > 0, then fJ,(B) is independent of J-s,

ii) Vn > 1 and disjoint sets B I , - - - ,Bn 6 B(R+) x B(E), /j,(Bi), • • • , [i(Bn) are
independent;

3) v, the compensator of p,, equals E[/LJ] and is a a-finite measure on 6(R+) x B(E), and
for each t > 0, i/(R+ x {0}) = v({t} x E) = 0, f[0:t]xE(x2 A \)dv < oo;

4) XQ , G and JJL are independent;
5) X is quasi-left continuous.
In addition, we have

<pt(u) = Gxp{iuTmt - \urptu + I (eiuT* - 1 - iur xl^^dv} (25.2)
1 ^ J[0,t]xE '

where (3t is the covariance matrix ofGt, which is equal to the d x d-matrix ({G'l,G:')t}.

(25.1) is the famous Levy-Ito decomposition of a PII without fixed jumps. We also call
(m, /3, v} in (25.2) the characteristics of X . The law of the process X is uniquely determined
by its initial law and its characteristics.

Theorem 2.3.26 Let X^,--- ,X^ be PH-semimartingales without fixed jumps. Then
• • , X^ are mutually independent if and only if

Theorem 2.3.27 Let X be a d-dimensional PII without fixed jumps with XQ = 0.
1) If X is a semimartingale and E[|Xt|] < oo, t > 0, then X is a special semimartingale.
2) If X is a special semimartingale, then ~Ei]\Xt\\ < oo, t > 0.
3) If X is a local martingale, then X is a martingale.
4) If AX is bounded, then for all p > 0 and 0 < s < i, E[\Xt - Xs\p] < oo.

Theorem 2.3.28 Let X be a d-dimensional PII without fixed jumps. Then X is a Levy
process if and only if (25.1) holds with mt = bt, Gt = aBt, and dv = dt x F(dx), where b e
IRd , a is a dx d-matrix, F is a a- finite measure on E = Rd\{0} with f(\x\2/\l)F(dx) < oo,
and (Bt) is a d-dimensional Brownian motion independent with ^t. In this case we have

F(A) = E[v([0,l]xA), AeB(E).

Theorem 2.3.29 Let X be a d-dimensional Levy process with jump measure fj, and Levy
measure F. Let g be a Borel function on R+ x E.

1) If /R xEg+dsdF < oo, then

E exp dsdF
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°°> then

E exp < / g(s, x)[[j,(ds, dx) — F(dx)ds
[ J [ Q , t ] x E

— exp U -j
(e9 -l-g}dsdF\

),t]xS V ' }

The following theorem generalizes the Levy theorem on the martingale characterization
of Brownian motion.

Theorem 2.3.30 Let X be a process with X0 = 0. Then X is a Gaussian PII without fixed
jumps if and only if the following conditions are satisfied:

i) There is a continuous deterministic function f such that Y = X — f is a continuous
local martingale,

ii) The process (Y) is deterministic.

The following theorem gives a martingale characterization of Poisson process (due to S.
Watanable).

Theorem 2.3.31 Let X be an adapted point process, i.e.,

71=1

where (Tn) is an increasing sequence of stopping times such that Tn f oo and for each n > 0
Tn < oo => Tn < Tn+i(To = 0). Then the following two statements are equivalent:

1) X is a (inhomogeneous) Poisson process (i.e. VO < s < t, Xt — Xs has a Poisson
distribution).

2) There is a continuous increasing function At such that X — A is a local martingale
with initial value zero.

As a corollary of Theorem 1.3.31 we obtain a counterpart of Theorem 1.2.44.

Theorem 2.3.32 Let X be an adapted point process with XQ = 0 and a predictable increas-
ing process A be its compensator. Let (74) be the random time-change associated with A.
Then (XTt) is a standard Poisson process.

2.3.4 Absolutely Continuous Changes of Probability
In this subsection we present Girsanov's theorems which describe how to transform the
compensator of a random measure and the canonical representation of a semimartingale
under absolutely continuous changes of probability. Some basic results on the uniform inte-
grability of Doleans exponential martingales are presented as well. Finally, we present the
characterization theorem for semimartingales which shows that semimartingales constitute
the largest class of integrators w.r.t. which stochastic integrals of predictable processes can
be reasonably defined.

Girsanov's Theorems

Let Q be a probability measure on (£l,foo)- If Vt € IR.+ the restriction of Q on Ft is
absolutely continuous w.r.t. P, we denote Q <gCioc P, and put Zt = -^ (If on f^Ft
we have Q <C P, then Zt = E[^§ JFtj). We always take the cadlag version of (Zt). If
Q ^loc P) then under Q almost all trajectories of Z are strictly positive functions.
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Let Q -Cioc P- Then for any stopping time T, we have dQ = ZTI{T<<x\dP on TT n [T <
oo]. Moreover, for any bounded stopping time T, ZT is a uniformly integrable martingale.
Let ( X t ) be an (.Ft)-adapted cadlag process and T a finite stopping time. Then by the Bayes
rule for conditional expectation it is easy to prove that (ZX)T is a uniformly integrable
martingale under P if and only if XT is a uniformly integrable martingale under Q.

In this subsection we always assume that Q <Ci0c P and denote Zt = -jp
The following lemma is essential for studying the changes of probability.

Lemma 2.3.33 Let (Xt) be an (Ft)-adapted cadlag process. Then (Xt) is a Q-local mar-
tingale if and only if there exist finite stopping times Tn f +00, Q- a.s., such that (ZX)Tn is
a P-local martingale. In particular, ifQ and P are equivalent on F^, then X is a Q-local
martingale if and only if ZX is a P-local martingale.

The following theorem shows that the semimartingale property is reserved under locally
absolutely continuous changes of the probability.

Theorem 2.3.34 If X is a P-semimartingale, then X is a Q-semimartingale and the
quadratic variation [X](Q) of X under Q is equal to the quadratic variation [X}(P) of
X under P, Q-a.s..

The following theorem is a Girsanov's theorem for local martingales.

Theorem 2.3.35 Let X be a P-local martingale. Put

T(UJ) = inf{t : Zt(u) = 0} , U = AXT/[Ti00[.

Under Q we define

-t- f z-ld[x,z}s
Jo

Y, = X, -
Jo

where U is the dual predictable projection ofU under P. Then Y is a Q-local martingale.

Corollary 2.3.36 Let (Xt) be a continuous P-local martingale. If there exists a P-local
martingale L such that Z = £(L), then Yj = Xt — [X,L]t is a Q-local martingale.

The following corollary is the classic form of Girsanov's theorem. If (Ht) is a deterministic
function, the corresponding result is the Cameron-Martin theorem.

Corollary 2.3.37 Let (Bt,0 < t < T) be an (Ft)-Brownian motion and (Ht) an adapted
measurable process such that /Q H^ds < oo, a.s.. For 0 < t < T, Put

Zt = exp{ I HsdBs -\ f
Jo z Jo

B't = Bt- f Hsds.
Jo

Assume E[ZT] = 1, i.e. (Zt,0 < t < T) is a martingale. We define a new probability
measure Q by dQ = ZxdP. Then under Q process (B't,0 < t < T) is an (^-Brownian
motion.

Remark Let (Ht) be an adapted measurable process such that Vi e R+, J0 H^ds < oo
a.s., and that (Zt) is a martingale. Put dQt = ZidP, then it can be proved that there exists
a unique probability measure Q on (Q, Fx) such that'Ql^ = Qt, Vt € IR+. Thus under Q,
(B't) is an (ft)-Brownian motion.
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Definition 2.3.38 Let A be an adapted FV process. If there exist stopping times Sn | +00
Q-a.s. such that for each n , ASn is of locally P-integrable variation, we say that the dual
predictable projection of A under P exists Q-a.s. . We denote still by A the Q-a.s. defined
process such that ASn = (As™ ) .

Theorem 2.3.39 Let X be a P-local martingale. Then X is a special Q-semimartingle,
if and only if the dual predictable projection of [X, Z\ under P exists Q-a.s. , (denoted by
(X, Z)). If it is the case, then

X' = X--±-.(X,Z)

is a Q-local martingale.

Corollary 2.3.40 If X is a P semimartingale and Xc is the continuous martingale part
of X under P, then (Xc)' = Xc — -£-. < Xc, Z > is the continuous martingale part of X
under Q.

Theorem 2.3.41 Suppose X e Mi0c,o(P) and [X, Z] e Aioc(P). Let H be a predictable
process such that H e Lm(X) under P (i.e., ^/H2.[X] € Aioc(P)) and [H.X, Z] € Aioc(P).
Set X' = X - ^.{X, Z). Then under Q, H e Lm(X'), and

H.X' = H.X - -^-.(H.X, Z) .£ _

Theorem 2.3.42 If X is a P -semimartingale and H is a predictable process such that
under P, H.X exists (denoted by HpX). Then under Q, H.X exists (denoted by H^X),
and HfrX is (^-indistinguishable from HpX .

• As an application of Theorem 1.3.42, we obtain the following property of the stochastic
integral.

Theorem 2.3.43 LetX andY be two semimartingales, H and K two predictable processes
such that H.X and KY exist. If A € f is such that on A, X and Y are indistinguishable,
H and K are indistinguishable, then on A, H.X and KY are indistinguishable as well.

The following theorem is the Girsanov's theorem for random measures.

Theorem 2.3.44 Let ^ be a predictably a-integrable integer-valued random measure and v
its compensator. Let M'^ (resp. M'v) be the measure generated by n (resp. v) on f under
Q. Then

1) Under Q, M^ and Ml are a -finite on P and M'^ -C M'v on P.
2) We denote by Y the Radon-Nikodym derivative of M'^ w.r.t. M'v on P, then

and the predictable projection v' of ^ under Q is given by Y.v.

The following theorem is the Girsanov's theorem for semimartingales.

Theorem 2.3.45 Let X be a P -semimartingale and

X = X0 + a + Xc + (xl[lxl>1]) * n + (xl[\x\<i]) *((j,-v)
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be its canonical representation under P, where JJL is the jump measure of X and v is its
compensator under P . Then under Q the canonical representation of X is

X = X0 + a' + (XC)' + (I/[|Z|>1]) * /i + (z/[|x|<l]) * (M - "')>

where

a' = a + - ( X c , Z) + ((Y -

and v1 = Y.v is the compensator of /i under Q, Y being the Radon-Nikodym derivative of
M'^ w.r.t. M'v on P.

Uniform Integrability of Exponential Martingales

Let M be a local martingale null at zero such that AM > — 1. Then its Doleans stochas-
tic exponential £(M) is a nonnegative local martingale. In applications of the Girsanov
theorem, it is important to know when £(M) is a uniformly integrable martingale. For
continuous martingale M , the following results are well known, due to Novikov (1972) [Ref.
31] and Kazamaki (1977) [Ref. 32], respectively.

Theorem 2.3.46 (Ref. 3) Let M be a continuous local martingale with MO = 0. //

E[exp{-{M,M)00}] <oo

or
sup IE exp{-Mt} < oo,

t L 2 J

then £(M) is a uniformly integrable martingale.

Remark We always have suptIE [exp{|Mt}] < (E[exp{|(M, M)t}])1/2, so that the
Kazamaki 's condition is weaker than the Novikov 's condition. If (M) is a uniformly inte-
grable martingale, then the Kazamaki' s condition becomes Efexp-^Moo}] < oo.

Using Theorem 1.2.50 it is easy to prove the following

Theorem 2.3.47 (Ref. 23) 1) If M is a square integrable martingale and its oblique
variation process (M, M) is bounded, then £(M) is a square integrable martingale.

2) If M is a maringale of integrable variation and the compensator of the process
J^s<t |AMS| is bounded, then £(M) is a martingale of integrable variation.

The following result, due to Lepingle and Memin (1978), generalizes Theorem 1.3.46 to
the noncontinuous martingale case.

Theorem 2.3.48 (Ref. 23) Let M be a local martingale with M0 = 0 and AM > — 1. Let
H be the jump measure and of M and v its compensator. Put

T = inf{< : AMt = -1} = inf{t : £(M)t = 0}.

1)1!

<oo,



98 CHAPTER 2. SEMIMARTINGALE THEORY AND STOCHASTIC CALCULUS

then £(M) is a uniformly integrable martingale and [^(M)^ > 0] = [T = oo], a.s. .
2) 7/AM> -1 and

E < oo,

then £(M) is a uniformly integrable martingale and £(M)ca > 0, a.s. .
3) If M is uniformly integrable and AM > -1 + 5 with 0 < 5 < 1, and if

<oo,

then £(M) is a uniformly integrable martingale.

For further extensions see Yan (1982) [Ref. 33].

The Characterization Theorem for Semimartingales

We denote by Ll and L°° the spaces of all integrable r.v. and all bounded r.v. , respectively.
If G and H are subsets of Ll , we denote G-H = {x — y:x£G,ye H}, and denote by G
the closure of G in L1.

The following theorem is due to Yan (1980) [Ref. 34].

Theorem 2.3.49 Let K be a convex set in L1 and 0 € K . Then the following three state-
ments are equivalent: _______

1) For all r/ € (Ll)+ \ {0}; there exists c> 0 such that cr? ^ K - (L°°)+ ,
For allA^f with P(A) > 0 there exists c> 0 such that cIA g K - (L°°)+,

3) There exists a ( e L°° such that C > 0 a.s. and sup^eK E[££] < oo, where (L1)+ and
(L°°)+ are the sets of all nonnegative elements of L1 and L°° respectively.

Denote by 7i the collection of all bounded predictable processes of the following form:
n-l

where 0 = t0 < t\ < • • • < tn < oo, & <E Fti, |&l < 1> i = 0,1, • • • ,n —1. Let X be a process.
For every H £ Ti. define a process J ( X , H ) as follows:

Tt-l

7Y y o"v _ \ ^ f I v _ v . \ + •-> n•J\^itl)t — 2_^ ?ilA*i+iAt ^-t iAtj; t ^ U.
i=0

Obviously, for every t the mapping (X,H) i—> J(X,H)t is bilinear. Moreover, if JsT is a
semimartingale, then J(.X", fl") = /f.X.

Based on Theorem 1.3.49 one can prove the characterization theorem for semimartin-
gales.

Theorem 2.3.50 Let X be an adapted cadlag process. In order for X to be a semi-
martingale it is necessary and sufficient that for every sequence (H^n') C H and all t > 0

Corollary 2.3.51 Let G = (Qt) be a filtration satisfying the usual conditions such that
for all t > 0 Qt C ft. Suppose X is an F-semimartingale and G-adapted. Then X is a
G-semimartingale, [X}(F) and [X}(G) are indistinguishable.
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Theorem 2.3.52 Let G = (<3t) be a filtration satisfying the usual conditions such that for
all t > 0 Qt c Ff Suppose X is an Y-semimartingale and G-adapted. Let H be a G-
predictable process such that H is integrable w.r.t. X and G (the integral is denoted by
H^X), then HpX and H^X are indistinguishable.

2.3.5 Martingale Representation Theorems

Let ($l,F,P,Ft) be a stochastic basis. Let M be a d-dimensional local martingale with
MO = 0. We denote by /J. the jump measure of M and by v the compensator of /j,. If
every real local (Jr

t)-martingale can be represented as a stochastic integral of an Revalued
predictable process w.r.t. M, we say that M has the predictable representability.

For a d-dimensional semimartingale we will define its predictable representability in the
weak sense in Definition 1.3.66.

Predictable Representability for Local Martingales

Let M be a d-dimensional local martingale with MO = 0. Recall that Lm(M) is the collection
of all Revalued predictable processes which are integrable w.r.t. M in the sense of local
martingales. Put

£(M) = {H. M : H 6 Lm(M)}, £l(M} = £(M) n H1.

Saying that M has the predictable representability means that £(M) = M\oc,o- It is easy to
see that M has the predictable representability if and only if A4 foc = £(MC), Mfoc = £(Md)
and £(M) = £(MC) + C(Md).

Let X be a stochastic process on a complete probability space (fi, J-, P). Put

s>t

is called the natural filtration of X. We denote by f^ = Ft(X) V A/", where A/ is the
a-field generated be all F-null sets. Then ( f ^ ( X ) ) satisfies the usual conditions. We call
it the completed natural filtration of X.

Theorem 2.3.53 A Brownian motion (Bt) has the predictable representability w.r.t. its
completed natural a-filtration ( F f ( B ) ) . In particular, any (^(B}) -local martingale are
continuous.

The following theorem is essential for characterization of the predictable representability
of local martingales.

Theorem 2.3.54 Let M be a d-dimensional local martingale with MO = 0. Then the
following statements are equivalent:

1) £(M) = .Mioc.o,
2) M%> c £(M),
3) For all L e Xioc,o, LM & Xioc,0 => L = 0,
4) For all N e M^ , NM 6 Moc,o =*• N = 0.

Here Ai°° is the collection of all bounded martingales.

Theorem 2.3.55 Let M be a d-dimensional continuous local martingale with M0 = 0.
Then the following statements are equivalent:

1) £(M) = MfOCi0,
2) M°°'c C £(M) (M.°°'c is the space of all bounded continuous martingales),
3) For all L 6 A4foc „, LM e M[oc,0 =» L = 0,
4) For all N e M°°''c, NM e Aiioc,0 =» N = 0.
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Lemma 2.3.56 Let M be a d-dimensional local martingale with MQ =0 . If M has the
predictable representability, then for any stopping time T, MT has the predictable repre-
sentability w.r.t. (J-t/\T)t>o-

The following theorem is due to Jacod and Yor (1977) [Ref. 35] (see also Ref. 11).

Theorem 2.3.57 Let M be a d-dimensional local martingale with MQ = 0. Put

P _ Jp, Pis a probability measure on J-',
~ V : p/ = pk and M 6 Mioc,o(P')

Then the following statements are equivalent:
1) M has the predictable representability,
2)P 'e r ,P '« l o c P=»p '=p ,
3)P'er,P'^P=^P' = P,
4) P' e r ,P '~p=>p ' = p,
5) P' e r, P' ~ P, ̂  e L°° ^ P' = P.
Let M be a d-dimensional local martingale with M0 = 0. Put

F(M) = {P' : P' is a probability measure on F and M £ Moc(P')}-

Denote by Te(M) the set of extreme points of T(M), i.e., P' e Te(M) <==» P' 6 r(Af) and
if P' = oPi + (1 - a)P2,Pi,P2 e T(M),0 < a < 1, then P' = PI = P2. However, in
general we do not know whether T(M) is a convex set or not.

Theorem 2.3.58 Let M be a d-dimensional local martingale with MQ = 0. Then the
following statements are equivalent:

1) M has the predictable representability, and FQ is the trivial a-field M (i.e., the a-field
generated by all P-null sets),

2)P€ Te(M).

Theorem 2.3.59 Let M be a d-dimensional local P-martingale with MO = 0. Assume
Q ^loc P, [M,Z] e (Aioc(P))B and under P M has the predictable representability. Then
under Q, M' = M — -£-.(M,Z) € -Mioc,o(Q) has the predictable representability as well.

Definition 2.3.60 Let v be a predictable random measure with f({0} x E) = 0. //

v(uj,dt,dx)'= G(w,t,dx)dBt(u>">, (60.1)

where i) B is a predictable increasing process with BO = 0, ii) for fixed (w,t),G(w,t, •) is a
measure on (E, B(E)), Hi) for fixed K G B(E),G(-, •, E) is a predictable process, then (60.1)
is called a predictable decomposition of v. Moreover, if

IA.B = 0, A = {(u>,t):G(w,t,E)=0}, (60.2)

the predictable decomposition (60.1) is said to be canonical.

Lemma 2.3.61 If p, is the jump measure of an adapted cadlag process, then its compensator
v has the canonical predictable decomposition.

Theorem 2.3.62 Let M e M\oc,o and (a, (3, v) be its characteristics. If the canonical
predictable decomposition of v is given by (61.1), then M has the predictable representability
if and only if Mc

locfl = £(Mc),Mfoc = £(Md) and P(d/3t±dBt) = 1.
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Corollary 2.3.63 Assume M e A4 fO C ) 0 . Then M has the predictable representability if and
only if

MfOCi0 = £(MC),.M?OC = C(Md) and P(d(Mc}t±d(Md)t) = 1.

Theorem 2.3.64 Let X be a step process and F = (Ft) be the complete natural filtration
of X. Assume X is quasi-left-continuous and X G A\QC- Then the following statements are
equivalent:

1) M = X — X has the predictable representability,
2) For any stopping time T, we have FT = FT- ,
3) The compensators of the jump measure of X has the form: v(dt,dx) = 5Ht(dx)A.(dt),

where H is a predictable process and A(dt) = v(dt,E).

Corollary 2.3.65 Assume X is a point process and F = (Ft) is the complete natural
filtration of X. Then M = X — X has the predictable representability.

Predictable Representability for Semimartingales

Definition 2.3.66 Let X be a d-dimensional semimartingale, n,X° and (a, 0, v) be its
jump measure, continuous martingale part and local characteristics respectively. Write

If .MfOC]0 = C(XC) and Mfoc = /C(^), or equivalently

OC.O = C(XC)

(the right side is the linear sum of two vector spaces), we say that X has the predictable
representability in weak sense.

Theorem 2.3.67 Assume X € A^ioc.o and X has the predictable representability. Then
X has the predictable representability in weak sense as well.

Theorem 2.3.68 Let X be a d-dimensional semimartingale. Then the following statements
are equivalent:

1) Mfoc =
2) O = P
3) For all M e Xfoc, MM[AM|P] = 0 => M = 0,
4) For all M e M°°'d, MM[AM|P] = 0 => M = 0,
5) For any totally inaccessible time T, [T] C [AX ^ 0] ; For any stopping time T, FT =

The following theorem is a consequence of Theorem 1.3.68 and 1.3.55.

Theorem 2.3.69 Let X be a d-dimensional semimartingale. Then the following statements
are equivalent:

1) X has the predictable representability in weak sense,
2) For all M e Moc.o, (Mc, Xc) = 0 and MM[AM|P] = 0 => M = 0,
3) For all N e A4g°, (NC,XC) = 0 and MM[AJV|-p] = 0 => N = 0.

Theorem 2.3.70 Let X be a d-dimensional semimartingale and (a,j3,v} be its local char-
acteristics. Put

P' is a probability measure on F^P' = P|;FO,
T = •{ P' : X e S(P') and (a, /?, v) is still the predictable

characteristics of X under P'
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Then the following statements are equivalent:
1) X has the predictable representability in weak sense,
2) P' e T, P' «loc P => P' = P,
3)P' e r , p«p=^p ' = p,
^ ) p ' e r , p ' ~ p = ^ p ' = p;
5) P' 6 r, P' ~ P, !j£ e L°° => P' = P.
From Theorem 1.3.70 we obtain immediately the next result about the predictable rep-

resentability in weak sense for step processes.

Theorem 2.3.71 Assume X is a step process and F = (J-i) is the complete natural filtration
of X: F = FP(X). Then X has the predictable representability in weak sense. In particular,
each F-local martingale is purely discontinuous.

The following theorem, due to Jacod (1977) [Ref. 36], is a general result about the
predictable representability in weak sense for semimartingales.

Theorem 2.3.72 Let X be a d-dimensional semimartingale and (a, f3, v) lie its local char-
acteristics. Put

_ Jp/ P' is a probability on F, X 6 S(P') and (a,/?, v)
~ \ ' is still the local characteristics of X under P'

Then the following statements are equivalent:
1) X has the predictable representability in weak sense and J-Q is the trivial a-field.
2) P is an extreme point o f T .

Theorem 2.3.73 Assume X G S has the predictable representability in weak sense. If
Q ^loc P) then under Q X has the predictable representability in weak sense as well.

Now we present some results on the predictable represent abilty in weak sense for PII.

Theorem 2.3.74 Let X be a d-dimensional PII-semimartingale. Let F = FP(X^). Then
X has the predictable representability in weak sense.

The following result, due to Xue (1992) [Ref. 37], is more convenient for applications.

Theorem 2.3.75 (Ref. 37) Let X be ad-dimensional PII-semimartingale. LetF = FP(X).
Let X° denote the continuous martingale part of X and Xd denote the purely discontinuous
local martingale x * (^ — v), where p, is the jump measure of X and v is the compensator
of p. If X has no fixed jumps, or equivalently, if X is quasi-left-continuous, then the Id-
dimensional local martingale (Xc,Xd) has the predictable representability w.r.t. F.

Theorem 2.3.76 Let X be a Levy process and F = FP(X). Assume X is a martingale.
Then X has the predictable representability w.r.t. F if and only if X is a standard Wiener
process or a compensated Poisson process, up to a constant factor.

Theorem 2.3.77 Let p, be an integer-valued random measure on R+ x E such that for all
uj en , t e JR+,fj,(uj,[o,t] x E) <oo. Put

J* = <7(/*([0,r] x B) : r<s,Be B(E)), ?t = f| ?*•
s>t

Then all Fp -local martingales have the form

where v is the compensator of p, and W is aP- measurable function such that \W\ * p. is
locally integrable.
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Chapter 3

White Noise Theory

HUI-HSIUNG KUO

Department of Mathematics
Louisiana State University
Baton Rouge, LA 70803

3.1 Introduction

3.1.1 What is white noise?
White noise is a sound with equal intensity at all frequencies within a broad band. Rock
music, the roar of a jet engine, and the noise at a stock market are just a few examples of
white noise. We use the word "white" to describe this kind of noise because of its similarity
to "white light" which is made up of all different colors (frequencies) of light combined
together.

In applied science white noise is often taken as an idealization of phenomena involving
sudden and extremely large fluctuations. Mathematically, one can think of white noise as a
stochastic process z ( t ) such that z(t)'s are independent and for each t, z ( t ) has mean 0 and
variance oo in the sense that

E(z(t)z(s))=6(t-s), (3.1.1)

where 5 is the Dirac delta function. Thus it seems to be reasonable to claim that we can
define an integral fa f ( t ) z ( t ) dt such that

f(t)z(f) dt] = f" f" f ( t ) f ( s ) E ( z ( t ) z ( s ) ) dtds = I' /(t)2 dt.
J Ja Ja Ja

But what is the definition of the integral f f ( t ) z ( t ) dtl

3.1.2 White noise as the derivative of a Brownian motion
White noise can be regarded as the derivative of a Brownian motion. But what is a Brownian
motion? As is well-known, Robert Brown made microscopic observations in 1827 that small
particles contained in the pollen of plants, when immersed in a liquid, exhibit highly irregular
motions. This highly irregular motion is called a Brownian motion. Mathematically, a

107
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Brownian motion is a continuous stochastic process B(t) with independent increments and
for t < s, J3(s) — B(t) is a Gaussian random variable with mean 0 and variance s — t. Thus
E(B(s) — B(i)) = s — t and so it is plausible to say that

|B(s) - B(t)\ « (s - £)1/2, for small s-t.

But then this means that the derivative of B(t), or the white noise B(t), does not exist.
Hence the integral fa f(t)B(t) dt does not seem to be defined at all.

When f ( t ) is a function of bounded variation, we can use the integration by parts formula
to define the integral £ f ( t ) B ( t ) dt by

/
Ja

- B ( t ) d f ( t ) ,

where the integral in the right-hand side is a Riemann-Stieltjes integral. However, we cannot
use this definition for general / € I/2 (a, b).

If we combine the white noise B(t) and dt together to get B(t) dt = dB(t) as an integra-
tor, then the integral fa f ( t ) dB(t) can be defined for all / 6 L2(a, b). This integral, called
a Wiener integral, is a Gaussian random variable with mean 0 and variance ||/||2.

But still the white noise, as the derivative of a Brownian motion, does not exist. Is it
possible to give a mathematically sound definition of white noise B(t)l Is it possible to
define the integral fa f(t)B(i) dt directly without rewriting B(t) dt as dB(t)l Before we
pursue these questions further we give a simple example in the next section to show how
white noise can be used.

3.1.3 The use of white noise — a simple example
Consider the following second-order differential equation

This differential equation describes the motion of an undamped harmonic oscillator with
external force F(t). It has fundamental solutions s'mt and cost. A particular solution is
informally given by

ft rt
I F(s)smsds + sin£ / F(s)cossds. (3.1.2)

Jo Jo
What are the integrals in the right-hand side of this equation? The answer depends on what
the function F(t) is. Let us consider some special cases.
1. F(t) = B(t).

We can use the integration by parts formula to derive

/

t
B(s) sin s ds = B(t) sin t — fQ B(s) cos s ds

.
/t

B(s) cos sds = B(t) cos t + JQ B(s) sin s ds.
_

.

_

Thus the particular solution in Equation (3.1.2) for F(t) = B(t) is given by

/•*
xp(0 = / -^(s) cos(t - s) ds.

Jo
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One can easily check that xp(t) is a Gaussian random variable with mean 0 and variance

2. F(t) =B (t) (the second derivative of B(t)).
Again we can informally apply the integration by parts formula to Equation (3.1.2) with

F(t) =B (t) to get

* B(s) sin(s - t) ds.r/
Jo

This time xp(t) contains a bad term B(0) smt. Fortunately, we can drop it because sini is
a fundamental solution. Hence a particular solution is given by

ft
cp(t) = B(t) 4- / B(s) sin(s - t) ds.

Jo

But is the term £?(0)sint really that bad? Can we give a mathematically sound meaning
for B(0)?
3. F(t) = a positive colored noise.

Consider a positive colored noise C(t) such that C(t)'s are independent and for each t,
C(t) is positive and has infinite fluctuations. One may think that \B(t)\ is such a noise. As
it turns out \B(t)\ has no renormalization. However, the following renormalization of
is such a noise:

where EeB^ is the informal expectation and A/" denotes a renormalization. We will explain
what A/e6W js in 3.1.5 and 12.2.3.

If we take the external force F(t) = J\feB^\ then xp(t) is given by

MeBWcossds.
ft rt

I MeB(t)smsds + smt I
Jo Jo

3.1.4 White noise as a generalized stochastic process
We now have an informal understanding of white noise and its use in a simple example. But
then, what is a mathematically sound definition of white noise? In order to motivate the
concept,'we make a comparison between functions and stochastic processes. An (ordinary)
function on R is a function f ( t ) for t 6 R. A generalized function is a function /(£)
depending linearly on test functions £. For example, the Dirac delta function 6 is the
generalized function such that

<5(£) = £(0)) £: test function.

On the other hand, an (ordinary) stochastic process is a function X(t) such that for
each t, X(t) is a random variable. Therefore, by a generalized stochastic process, we mean a
function X(£) depending linearly on test functions £ such that for each £, X(£) is a random
variable.

So here is a mathematically sound definition of white noise, namely, a white noise is a
generalized stochastic process X ( £ ) such that for each test function £, the random variable

is Gaussian with mean 0 and variance /R£(i)2 ̂ -
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What is the relationship between this definition of white noise and the informal one in
10.7.65? Note that X(£ + 77) = X ( £ ) + X(rj) for any test functions £ and 77. Square both
sides of the equality, take expectation, and then simplify to get

)= £(t)r,(t)dt. (3.1.3)
JR

Suppose X ( £ ) = fR£(t)z(t)dt. Then it follows informally from Equation (3.1.3) that

$(t)ri(s)E(z(t')z(s))dtda= £(t)ri(t)dt, V£,r].
R2 JR

Hence we must have E(z(t)z(s)} = S(t — s), which is exactly Equation (3.1.1).
Does white noise as such a generalized stochastic process X(£) exist? Take two indepen-

dent Brownian motions B\(t) and B2(t) for i > 0 and define

UlW, i f * > 0 ;
[ B2(-t), ift<0.

Then the Wiener integral X(£) = /R £(t) dB(t) defines a white noise B(t) as a generalized
process. How about the second derivative B (t) of B(t)l We can regard it as a generalized
stochastic process defined by

= - f ?(t)dB(t).
JR

How about the colored noise MeB^ in 3.1.3? It is much more complicated to define
as a generalized stochastic process.

3.1.5 White noise as an infinite dimensional generalized function

In the previous section we defined the white noise B(t) and its derivative B (t) are gen-
eralized stochastic processes. In order to see how to define the colored noise NeB(-^ as a
generalized stochastic process, let us consider the product B(t)B(s). It is a generalized
stochastic process defined by

= t £(t)ri(s)dB(t')dB(s)+ [ t(t)Tj(t) dt,
JRZ JR

where the first integral in the right-hand side is a Wiener integral of order 2. Thus X acts on
test functions of two variables. It is plausible that this is also the case for the renormalization
of B(t)2. Similarly, the renormalization of B(t)n is some kind of generalized stochastic
process X(<p) acting on test functions (p of n variables. Therefore, it is reasonable to say
that J\feB^ is some kind of generalized stochastic process X((p) acting on test functions <p
of infinitely many variables!

Thus in order to study the white noise B(t) and functions of B(t) such as Me3^, it is
necessary to define test functions of infinitely many variables. This is the motivation for T.
Hida to introduce the theory of white noise in 1975 [18].

When white noise is defined as a generalized stochastic process, it is regarded as a whole
B and for each t, the quantity B(t) still has no meaning. However, in Hida's theory of white
noise, each B(t) is meaningful as a generalized function on an infinite dimensional space.
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The functions MeB<-^ and the renormalization of B(i)n are also generalized functions on the
same space.

The collection {£(£); t e R} of generalized functions is taken as a continuum coordinate
system. With this system, we can take time propagation explicitly into account in many
applications.

Nowadays Hida's theory of white noise is regarded as an infinite dimensional distribution
theory. In this chapter we will give a brief survey of this theory and describe some applica-
tions. For details and more information, see [40]. Other excellent sources of the white noise
theory and applications can be found in [21] [22] [27] [48].

3.2 White noise as a distribution theory

3.2.1 Finite dimensional Schwartz distribution theory
A complex- valued function £ on R is called rapidly decreasing if it is a smooth function and
for any nonnegative integers j and k,

lim \xj£(k\x)\ = 0.
I^Hoo1 S "

Let A be the operator A = —d^/dx2 + x2 + 1. Obviously, if £ is rapidly decreasing, then
A£ is also rapidly decreasing.

Let 5(R) denote the space of all rapidly decreasing functions on R. It is easy to see
that S(R) C L2(R). For each integer p > 0, define an inner product norm by

|£|P = l^lo, £ 6 5(R),

where | • |0 is the L2(R)-norm. Then we have a sequence {| • |P}£10 °f norms on <S(R). This
sequence of norms generates a topology on <S'(R). Thus 5(R) is a topological vector space.
It is called the Schwartz space of test functions on R. Its dual space £'(R) is called the
space of generalized functions (or tempered distributions) on R.

The one dimensional Schwartz distribution theory is the study of test functions in <S(R)
and generalized functions in <S'(R) and continuous linear operators acting on these spaces.

On the space <S(R) of test functions, there are continuous linear operators such as differ-
ential operator, Laplacian operator, translation operator, scaling operator, multiplication,
convolution, Fourier transform. These operators can be extended by continuity to con-
tinuous operators on the space <S'(R) of tempered distributions. The extensions use the
translation invariance of the Lebesgue measure.

In general, a complex- valued function £ on R™ is called rapidly decreasing if it is smooth
and for any multi-indices j = (j\,J2, • • • ,jn) and k = (fc1; fc2, • • • ,kn),

lim
\x\ — »oo

where x* = x\lx% • • • x£> and £>k = dkl+k'2+-+k"/dxk
L

ldxk
2

2 • • • dx1^ .
Let <S(R") denote the space of all rapidly decreasing functions on Rn. Then «S(R") C

L2(Rn). For each integer p > 0, define an inner product norm by

where | • |o is the L2(R™)-norm. This sequence of norms generates a topology on <S(Rn). The
resulting topological vector space S(Rn) is called the Schwartz space of test functions on Rra.
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Its dual space £'(Rn) is called the space of generalized functions (or tempered distributions)
onR".

We also have those continuous linear operators mentioned above on the space S(Rn) and
their extensions to the space S'(Rn). Again the extensions use the translation invariance of
the Lebesgue measure.

White noise distribution theory is a generalization of the Schwartz distribution theory
to infinite dimensional spaces. It is well-known that the Lebesgue measure does not exist
in infinite dimensional spaces. A natural measure to use for infinite dimensional analysis is
the standard Gaussian measure.

3.2.2 White noise space
When T. Hida introduced the theory of white noise in 1975, he used the infinite dimensional
space «S'(R) of tempered distributions as a base space. As is well-known that finite dimen-
sional theory is built with the Lebesgue measure. But the Lebesgue measure does not exist
in infinite dimensional spaces. Therefore, we need to look for another measure on <S'(R).

In the Schwartz space <S(R) we have a sequence of norms {| • p}p*Lo- Let <SP(R) be the
completion of <S(R) with respect to the norm • |p. The topological vector space <S(R) is
a nuclear space, which means that for any q > 0 there exists some p > q such that the
inclusion mapping <Sp(R) '—> <Sq(R) is a Hilbert-Schmidt operator. This assertion follows
from the fact that the operator A has eigenvalues 2n, n = 1, 2 , . . . , (see page 17 in [40]).

Since 5(R) is a nuclear space, we can apply the Minlos theorem to obtain a probability
measure \j, on its dual space <S'(R) such that

'(R)

The probability space (5'(R),ju) is called a white noise space. The measure ju is called
the white noise measure on 5'(R). It is also called the standard Gaussian measure on <S'(R).

The reason that <S'(-R-) is called a white noise space is because elements in <S'(R) can be
regarded as the "sample paths" of white noise. To see this, define

~V I f \ { \ _ / ^V £ /—' O^T5\ **- O' f"O \J L { q ) { x ) = \X,q), q 6 o^rtj, x (E. o (ti).

Then X ( - ) is a generalized stochastic process and for each £ G »S(R), the random variable
X(£) defined on <5'(R) is Gaussian with mean 0 and variance |£|Q. Hence X ( - ) defines a
white noise. In informal notation, we have

On the other hand, since B(t) is regarded as white noise, we also have

x($(-) = jt(i)B(t)dt.

It follows from the last two equations above that x = B and so elements in 5'(R) can be
regarded as B, i.e., sample paths of white noise.

3.2.3 Hida's original idea
Recall from 12.2.1 that we have the following triple for the Schwartz distribution theory on
Rr

c Z,2(Rr) C <S'(Rr).
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We can follow the same idea to extend Schwartz distribution theory to infinite dimen-
sional spaces. The space Rr is replaced by <S'(R) and the Lebesgue measure is replaced
by the white noise measure /j,. Then the space L2(Rr) is replaced by the space L2(«S'(R)),
denoted by (L2) for simplicity. Thus we need to find a nuclear space V such that

V C (L2) C V*,

where the inclusion mappings are continuous and V is dense in (L2). The space V is a space
of test functions and its dual space V* is a space of generalized functions. Such a triple is
often called a Gel 'J "and triple.

Note that for each £ £ <S(R), {•, £} is denned everywhere on <S'(R) and has the Gaussian
distribution with mean 0 and variance |£|Q. If h 6 I/2(R), then (-,h) is denned almost
everywhere on <S'(R) and has the Gaussian distribution with mean 0 and variance |/i|§.

For a > b, we let l[a,b) = ~l[b,a) by convention. For each t e R, define

Then B(t),t > 0 is a Brownian motion. Moreover, we can define multiple Wiener integrals
/„(/) with respect to B(t) for any / e L2(Rn).

One way to construct V and V* is to utilize the Wiener-Ito decomposition theorem for
the space (L2). The theorem says that every <p 6 (I/2) can be represented by

«(/«)> /" e 2(Rn), (3.2-4)
n=0

where L2 denotes the symmetric L2-functions. The (L2)-norm of (p is given by

Here we have used the same notation • |0 to denote the norm on L2(R") for any n.
Question: What is B(f) for each t & R?

Whatever the definition B(t) is, we must have

B(t) =

Let <^A = (•, A~1l[ t ] t+A)). Observe that A~1l[ t i t+A) does not converge in L2(R) as A — > 0.
Hence (p& does not converge in (Z/2) as A — > 0. Thus in order to answer the above question,
we need to find a weaker norm on (I/2) so that </JA would converge with respect to this
weaker norm. What weaker norm should we take? Note that A~1l[ t)(+A) converges to the
Dirac delta function 6t at t in the distribution sense as A — > 0. Actually, the convergence
can be shown to be in the dual space <Sp(R) of <SP(R) for any p > 5/12 (see page 21 of [40].)
This shows that the norms | • |_p on <S'(R) for p > 0 should be used to generate weaker
norms on the space (Z/2) in order to get a space V* of generalized functions on the white
noise space «S'(R). By this choice of topology, B(i) is a generalized function for each t € R.
Symbolically,

B(t) =

Question: What is B(t)2 for each t € R?
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We would define B(t)2 = limA-^o <f\- Note that E(p\ = A"1 —> +00 as A -> 0+. Thus
even if we consider a weaker norm on (L2), we could not expect (^>A to converge with respect
to this weaker norm. We need a renormalization. Note that

Observe that (A~1l[t]t+A)) ® (A~l^[t,t+A)) does not converge in L2(R2). However, it con-
verges to 5t ® 6t in «Sp(R) <8> <Sp(R) for any p > 5/12. Thus if we use the norms | • |_p to
generate a space of generalized functions, then the renormalization of 5(t)2, denoted by
:B(t)2:, is a generalized function for each t 6 R. Symbolically,

Question: What is eB^ for each t € R?
Consider ev*. It can be easily checked that Ee** = e1^2^. Hence

1_
nT

By the same idea as above for B(t) and B(t)2, we can use the norms • |_p to generate
a space of generalized functions. Then as A —> 0, ev*/Eev^ converges to a generalized
function, denoted by A/eB^. Symbolically,

n=0

3.2.4 Spaces of test and generalized functions
In the last section we gave an intuitive motivation as how to define generalized functions on
the white noise space <S'(R). We will be more precise in this section to define the space of
generalized functions. In fact, we will first define the space of test functions (just as in the
finite dimensional Schwartz distribution theory) and then define its dual space as the space
of generalized functions.

Let (p e (L2}. By the Wiener-Ito decomposition theorem, ip can be uniquely represented
by Equation (3.2.4). For 'each integer p > 0, define

Let (<SP) = {tp e (L2); \\ip\\p < °°}- Then (<SP) is a Hilbert space with norm || • ||p. Let
(<S) be the projective limit of the family {(Sp); p > 0}. This projective limit can be thought
of as np>o(<Sp) with the topology given by the sequence of norms {|| • ||P}P^=0-

Elements in (S) are called test functions on the white noise space 5'(R). Let (<S)* be
the dual space of (S). Elements in (<S)* are called generalized functions on <S'(R). Thus we
have the following Gel'fand triple

(S) c (L2) c (5)'.

This Gel'fand triple is one example of the triple V C (L2) C V* we mentioned in the
beginning of the previous section. It is an infinite dimensional analogue of the Gel'fand
triple .S(Rr) C L2(Rr) C <S'(Rr) for the finite dimensional Schwartz distribution' theory.
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As it turns out (S)* = Up>o(Sp)* and for each p > 0, (Sp)* is the completion of (L2)
with respect to the following norm || • ||_p:

/ ~ \ V2

|M|_P= ]>>!|(A-*rn/no •
\n=0 /

The topology on (S)* is the inductive limit topology, namely, the finest locally convex
topology such that for each p the inclusion mapping from (Sp)* into (S)* is continuous. A
sequence $„ converges in (S)f if and only if there exists some p > 0 such that <S?n G (Sp)*
for all n and $„ converges in (Sp)*.

Note that for any q > p, we have the following continuous inclusion mappings

/ ct\ / o \ / t ^ \ / r 2 \ / £? \ * / c* \ * /c*\*(5) -->• (5,) ^-» (Sp) ̂  (L-4) ^* (Sp) ^ (Sg) ^ (S) .

Each element $ in (Sp)* can be represented by

n=0

where In(Fn) can be regarded as a generalized multiple Wiener integral. Moreover,

(3.2.6)
\—o /

For any <f> represented by Equation (3.2.4), we have

n=0

where ((-, •)) is the bilinear pairing of (S)* and (5), and (•, •) denotes the bilinear pairing of
S'(R") and 5(Rn) for any n.

3.2.5 Examples of test and generalized functions
In this section we give some simple examples of test and generalized functions. More example
of generalized functions will be given later in 12.5.119.

Example 3.2.1 The white noise B(t) is a generalized function in (S}* for each t 6 R. In
fact, B(t) = Ii(6t) and

\\B(t)\\-p = \St oo

Thus B(t) e (Sp)* for any p>-&.

Example 3.2.2 The kth derivative B^(t) is a generalized Brownian motion in (S)* for
each t £ R. It is given by

where the derivative of 5t is in the distribution sense. We have

\\B(k}(t)\\_p = <5p-1} _ < oo for any p > A + ̂ 1.

Hence B^(t) 6 (5P)* for any p > ̂  + ̂ .
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Example 3.2.3 The renormalization : B(i)n : is a generalized function in (S)* given by
:B(t}n:=In(5fn] and

Hence the generalized function :B(t)n: belongs to the space (Sp)* for any p >

Example 3.2.4 The renormalization J\feB^ is given by

n=0

Hence by Equation (3.2.6), we have

1/2

Therefore, HeB^> is a generalized function in the space (Sp)* for any p > ̂ .

Example 3.2.5 (Donsker's delta function) The Dirac delta function 6a at a has the fol-
lowing expansion in the distribution sense (page 357 in [40])

1 1
2-7TC7 n=0

where :xn :az is the Hermite polynomial of order n with parameter defined by

For more information on : xn :ai, see page 354 *n J40]- Put x = B(t) and a2 = t to get
Donsker's delta function oa(B(t)) represented by

See pages 64 and 357 in [40]. Thus Donsker's delta function is a generalized function in
(S)*. Actually, we can use the following facts to show that5a(B(t}) € (Sp)* for anyp > ^4^:

(1) (page 353 in [40]) Let en be the Hermite function of order n > 0 defined by

, \ -»- ,.,- I \ __ rr?- In

where Hn(x] = (-l)nex D"e~x . Then the set {en; n > 0} is an orthonormal basis
forL2(R). '

(2) (page 354 in [40]) Aen = (2n + 2)en, n > 0. (A = -d2/dx2 + x2 + I ) .

-j '

(3) (page 355 in [40]) sup
o->0,a:f=R
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Example 3.2.6 Let £ e <S(R). The renormalized exponential function : e ^ ' ' ^ ' : is defined by

71=0

For any integer p > 0, by Equation (3.2.5),

•^ l

n=0 ^ ''

5mce £ e «S(R), |£|p < oo /or aZZ p > 0. /fence ||: e<"'^ : ||p < oo /or a// p > 0. Therefore,
:e^''^ : is a test function in (<S) for any £ €E 5(R).

3.3 General spaces of test and generalized functions

3.3.1 Abstract white noise space
As we mentioned In 12.2.2, T. Hida used the white noise space (<S'(R), fj.) when he introduced
the theory of white noise in 1975. Later on in 1980,1. Kubo and S. Takenaka [33] constructed
the spaces of test and generalized functions denned on a general base space. We now describe
this base space.

Let £ be a real topological vector space with topology generated by a sequence of inner
product norms {| • p}p1Lo- Assume that £ is complete with respect to the metric denned by

p=0 '^ nv

Let £p be the completion of £ with respect to the norm | • |p. Then £p is a Hilbert space
with norm • p.

We impose the following conditions on the sequence of norms {|

(a) There exists a constant 0 < p < 1 such that for any p > 0,

(b) For any p > 0, there exists some q > p such that the inclusion mapping ig?p : £q *-^ £p
is a Hilbert-Schmidt operator.

Conditions (a) and (b) imply that lim^oo ||igip||jjs = 0. Condition (b) says that £ is a
nuclear space. By identifying £0 with its dual space we get a Gel'fand triple

£ C £0 C £',

where £' is the dual space of £.
By the Minlos theorem there exists a unique probability measure p, on £' such that

/
J£'IE'

The probability space (£', /if) is called an abstract white noise space.
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Example 3.3.1 Take £ = 5(R) and \£\p = \A^\Q. Here A = -d2/dx2 + x2 + 1 and \ • |0
is the L2(R)-norm. Then £ satisfies the above conditions (a) and (b) with p — 1/2. The
white noise space £' is <S'(R) given in 12.2.2.

Example 3.3.2 Take a real Hilbert space H with norm | • |o- Let {en- n > 1} be an or-
thonormal basis for H. Define a linear operator T on H by Aen = \nen with eigenvalues
satisfying the conditions:

(1) K A! < A2 < • • • < An < • • •

(2) X/nLi ^n" <• °° for some positive constant a.

For an integer p > 0, let H.p be the domain of the operator T. Then Ti.p is a Hilbert
space with norm \u\p = |Tu[o- Let Ji = np>oWp with topology generated by the sequence of
norms {\ • |p}^0- Then H satisfies the above conditions (a) and (b) with p = 1/Ai. The
resulting white noise space Ti! is used in [40].

3.3.2 Wick tensors
Let (£', ̂ ) be an abstract white noise space and £ C £Q C £' the associated Gel'fand triple.
We will use the subindex c to denote the complexification of a real vector space. The same
notation (x, £) will be used to denote the bilinear pairing of x G £' and £ £ £c.

The Wick tensor : x®n : of an element x in £' is defined by

[«/2]

:*»": =

where r is the trace operator, i.e., (T, £ & r?) = (£,77} for £, 77 e £c.
The definition of Wick tensor is motivated by the following well-known formula for

Hermite polynomials with parameter a2:

[n/2]

k=0

Let / 6 £®", (£0,c denotes the complexification of £0.) The bilinear pairing (:a;®Tl:, /} is
defined for /z-a.e. on £' and the equality (: -®n: , /) = /„(/) holds (see Theorem 5.4 in [40].)

For simplicity, we will use (L2) to denote the space L2(£',fj,). Let if e (L2). The
Wiener-Ito decomposition of tp can be written in terms of Wick tensors as

:x®n:Jn), fn € £0c
n. (3.3.7)

n=0

Moreover, the (L2)-norm of f is given by

V2

The use of Wick tensors (rather than multiple Wiener integrals) in Equation (3.3.7) has
some advantages. The dependence of x € £' in the expansion is very precise. The calculation
involving the expansion can be easily manipulated.
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Let £ 6 £Q,C- We define the renormalized exponential function :e^x'^ : by

To find the Wiener-Ito decomposition of : e^'^ :, note that the generating function of
the Hermite polynomials is given by

[ 1 1 °° tn

tu--a2t2 = - :un:^ .
n=0 -

(See page 354 in [40].) Put t = I , u = (x, h), a2 = \h\l (h e £0) to get

r i i °° 1
exp \(x,h}--\h\l =E^[ ••(x^n'-\h\l-

L -I n=0

But :{x,h)n:W2 = (:x®n:,h®n) (see Theorem 5.4 in [40].) Hence

r i i °° i
evr, \ tv h\ \h\2 — V^ /. ~®". A®"\exp \\x,n) - -\n\0 — > — ̂ .i .,n ;.

Now, we can replace h by £ € £Q,C and |h|g by {£, ̂ } in this equation to get the Wiener-Ito
decomposition of :e^x^ :,

2—•' n!
n=0

From this equality we can easily find the (L2)-norm of :e^'^ :

3.3.3 Hida-Kubo-Takenaka space
Let ip e (L2) be represented by Equation (3.3.7). For each integer p > 0, define

= 5>!Unlp • (3.3-9)
\n=0 /

Let (£p) = {(f> e (I/2); ||<^||p < oo}. Then (£p) is a Hilbert space with norm || • ||p. Let
(£) be the projective limit of the family {(£p)', p > 0}. Note that (£Q) = (L2). Let (£)* be
the dual space of (£). By identifying (L2) with its dual space, we get the following Gel'fand
triple

(£) c (L2) c (£)*.
This Gel'fand triple is often referred to as the Hida-Kubo-Takenaka space.

Let (£PY be the dual space of (£p). Then we have continuous inclusion mappings for
any q > p,

(£) ^ (£q) ^ (£p) ^ (L2) ^ (£PY <-* (£qr -> (f )*.
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Note that (£)* = Up>o(£P)* and for each p > 0, (£p)* is the completion of (L2) with
respect to the norm || • ||_p

!|/«|_p , (3.3.10)

where we use the same notation | • |_p to denote the norm on £piC and its nth symmetric
tensor product space for any n.

Example 3.3.3 Let ^ 6 £c and consider the renormalized exponential function

n nn=0

can use Equation (3.3.9) to check that for any p > 0,

< - < « > = 2:e<- '«: | |p=exp -|̂  . (3.3.11)
LZ J

It follows that :e(''® : 6 (£) for any £ € £c.

Example 3.3.4 Let y 6 £'c. Being motivated by the equality in Equation (3.3.8), we define
the renormalized exponential function :e^''y^: by

_ V^ l

n=0

Since £'c = Up>o£p c, there exists some p > 0 such that y £ £'p c and so \y\-p < oo. We
can use Equation (3.3.10) to find that

| | :e<-'«>:| |_p=exp[£|j, |?J. (3.3.12)
L z J

is shows that -.e^'^ : £ (£)* for any y 6 £'c.

3.3.4 Kondratiev-Streit space
Let 0 < /3 < 1 be a fixed number. For (p 6 (L2) being represented by Equation (3.3.7) and
an integer p > 0, define

Let (£p)/3 = {(p e (i2); Hvl lp ,^ < °°}- Then (£p)/? is a Hilbert space with norm || • HP ] Jg.
Let (£)Jg be the projective limit of the family {(£p)p\ p > 0}. Note that (£o)0 ^= (L2) unless
/3 = 0. But we do have (£0)/3 C (L2). Let (£)£ be the dual space of (£)0. Then we have the
following Gel'fand triple

(£)^ c (L2) c (£);.
This triple was introduced in [30] [31] and is called the Kondratiev-Streit space.
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Let (£PYp be the dual space of (£p)p. Then we have continuous inclusion mappings for
any q > p,

(£)0 ^-> (£g)/3 ^-» (£p)0 c~> (L2)'—* (£p)/3 '~* (£qY0 ""* (.£)*&•
When (3 = 0, we have (£)o = (£). Moreover, for any 0 < (3 < 1,

(£),} c (£) c (L2) c (£)* c (£)£.

Note that (£)^ = Up>o(£p)^ and for each p > 0, (£p)*p is the completion of (I/2) with
respect to the norm || • H-p^^

/oo \ l / 2

J . (3.3.14)

Example 3.3.5 The renormalized exponential function : e^''^ : is a test function in (£)/g
for any £ e £c. By Equation (3.3.13), we have

oo \ V2

Vn=0

Example 3.3.6 TTie function -.e^''^ : is a generalized function in (S)'p for any y £ £'c. By
Equation (3.3.14) we have

Vn=0

(3.3.16)

The next example shows that (£)* is a proper subspace of (£)^ for 0 < /3 < 1. Later
on we will give a more interesting example to show the need to study the Kondratiev-Streit
space.

Example 3.3.7 Let 0 < J3 < 1. Take a nonzero x e £' and define the function

Tl=0

: is easy to check that ||$||_p = oo for all p > 0. Hence $ ^ (£)*. On the other hand,
6 (£)«. In fact, $ e (£p)« if x & £'.

3.3.5 Cochran-Kuo-Sengupta space
Let {a(n)}£L0 be a sequence of real numbers satisfying the conditions:

(Al) a(0) = 1 and infra>o a(n)an > 0 for some a > 1.

(A2) limn^0

In [14] a stronger condition infn>o a(n) > 0 is assumed. But the weaker condition
infre>0 a(n)<7™ > 0 for some a > 1 is good enough to get a Gel'fand triple. This condition
was introduced in [7].
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Let ip E (L2) be represented by Equation (3.3.7) and p > 0 an integer, define

/ oo X 1/2

• (3-3.17)
\n=0

Let [£p]a = {¥> G (£2); IMUa < °o}- Then [£p]a is a Hilbert space with norm || • ||P)Q.
Let [£]a be the projective limit of the family {[£P]Q; P > 0}.

Note that by condition (a) in 12.3.17 and condition (Al),

n=0

> infn >0

Choose large p so that p > (—2 log/?) l log a. Then we have a lp 2p > 1 and so
oo oo

2_^ n.a(n)\fn p _ n^ (a(n)cr ) ̂  n.\Jn 0.
n=0 ~ n=0

This implies that [£p]a C (L2) for all p > (-2 log p)"1 logo-. Hence [£]« C (L2). Let [£]*
be the dual space of [£}a- Then we have a Gel'fand triple

[£}a C (L2) c [££.

This triple was introduced in [14] and is called the Cochran-Kuo-Sengupta space.
Let [£p]^ be the dual space of [£P]Q. For p > (—2logp)~l log CT, [£p]a is the completion

of (L2) with respect to the norm || • |_p,i/a defined by

/ ~ ni \1/2

IMI-P,i/a = E ~M '^"'-P ' (3.3.18)
\«=o a^n' )

When a(n) = 1 for all n, the associated triple is the Hida-Kubo-Takenaka space. When
a(ri) = (n\)@, the associated triple is the Kondratiev-Streit space. Moreover, we have

[£]a C (£) C (L2) C (£)* C [£];. (3.3.19)

Example 3.3.8 The renormalized exponential function :e^''^ : is a test function in [£]a for
any £ & £c. By Equation (3.3.17), we have

/ oo , . \ 1/2

\n=0 /

JVoie t/ioi condition (A2) implies that the series converges.

Example 3.3.9 For any y 6 £'c, the renormalized exponential function -.e^'^ : is a gener-
alized function in [£]*. By Equation (3.3.18) we have

It can be easily checked from condition (A 1) that the series converges.
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Example 3.3.10 Consider the following sequence

v n , n > 0 . (3.3.22)„(log( n

Conditions (Al) and (A2) can be easily checked. Take a nonzero x € 8' and define the
function

n=0

This function defines a generalized function in [£}*a for the sequence in Equation (3.3.22).
However, it does not belong to any of the Kondratiev-Streit spaces (£)*p.

Example 3.3.11 (Bell numbers and Bell number spaces,)
Let expfc be the kth iteration of the exponential function, i.e.,

expk(x) = exp(exp • • • (exp(x))).
fc— times

This function has the Taylor series expansion

n=0

The Bell numbers of order k are the numbers defined by

n>-°- (3-3-23>

The Bell numbers {b2(ri)}'%>-0 °f order 2 are usually called the Bell numbers. The first
few of them are 1, 1,2, 5, 15, 52, 203.

The Bell numbers of any order obviously satisfy conditions (Al) and (A2). The associ-
ated Gel'fand triple

[£}bk c (L2) c [£}*bk

is called the Bell number space of order k. It can be easily checked that for any k > 2 and
0 < / ? < ! ,

3.4 Continuous versions and analytic extensions

3.4.1 Continuous versions
In this section we study test functions in the Hida-Kubo-Takenaka space

(£) C (L2) C (£)*.

Since (£) is defined as the projective limit of {(£p); p > 0}, a test function in (£) is defined
only yu-a.e.
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A fundamental fact due to Kubo and Yokoi [37] says that every test function in (£) has
a unique continuous version. We give an intuitive explanation of this fact. For the complete
proof, see the book [40]. Let ip & (£). Then (f e (L2) and by Equation (3.3.7)

71=0

Note that \\(p\\p < oo for all p > 0. Hence for each n, |/n p < oo for all p > 0 and so
fn £ £®n. Therefore, the pairing (: x®n :, fn) is denned for all x 6 £. For each x e £', define

n=0

By Proposition 6.1 in [40] this series converges absolutely for each x € £'. Moreover, by
Theorem 6.4 in [40], £> is a continuous function on £'. The function </? is a version of <p.
Thus we have the next theorem.

Theorem 3.4.1 Every test function in (£) has a unique continuous version.

From now on a test function in (£) is understood to be its continuous version. Hence it
can be represented pointwise for x € £' as

oo

¥>(*) - £>*":,/„>, fn 6 €fn. (3.4.24)
n=0

Now, let x e £' be fixed. Define a linear functional T on (£) by

T(<p)=<p(x), ¥ > € ( £ ) . (3-4.25)

It follows from Equation (3.4.24) that

n=0

Write |/n|p :x®":|_p as (Vni'l/nlp) (| :a;®" :l-p/v^!) and then apply the Schwarz inequal-
ity to get

By Lemma 7.10 in [40], we have the inequality

•r®"- < -v /n ' f l 3 - | +\.X . _p ^ V «• ^|X|_p -|- |

where r is the trace operator (see 12.3.18.) Therefore,

\n=0

Note that limp-,^ \x _p = 0 and limp^oo \T\-P = 0. Hence we can choose large p such
that \x\-p + \r\^p < I. Then the series in Equation (3.4.26) is convergent. Thus T is a
continuous linear functional on (£) .
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The continuous linear functional T denned by Equation (3.4.25) is called Kubo-Yokoi
delta functional at x. This functional, denoted by 6X, is a generalized function in the space
(£)".

Suppose the Wiener-Ito decomposition of 5X is given by

oo

Sx = (:•*" :,Fn). (3.4.27)
«=o

From Equations (3.4.24) and (3.4.27),

OO

(Fm /„)• (3.4.28)
n=0

Upon comparing Equations (3.4.24) and (3.4.28) we see that Fn is given by

I
n\ '' ~

Thus we have proved the following theorem.

Theorem 3.4.2 The Kubo-Yokoi delta function 5X at x & £' is a generalized function in
(£)*. It has the Wiener-Ito decomposition

Sx = £^(:-*n:,:x*n:).
n=0

By Theorem 7.9 in [40] there is some constant Kp independent of x such that

\\8x\\-P<Kpe^-P.

Moreover, by Theorem 7.18 in [40] the function

c
X I——> Ox

is continuous from £' into (£)* with the inductive limit topology for both spaces.
We have a similar result for Donsker's delta function 5a(B(t)) in Example 3.2.5. By

Theorem 7.15 in [40] the function

a i—> Sa(B(t))

is continuous from R into (<S)* with the inductive limit topology for (<S)*.

3.4.2 Analytic extensions
Define a linear operator 0 from (£) into itself such that

Since the linear span of the set {&('&; £ € £c} is dense in (£), a linear operator on (£) is
uniquely determined by its action on this set. By Theorem 6.2 in [40] the linear operator 0
is continuous from (£) into itself. Hence its adjoint 0* is a continuous linear operator from
(£)* into itself.
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\

Let x 6 £' and £ E £c be fixed. Note that
PO ^ OC

.„<• ,*}._ \^ jL/. .®n. &m (.,0 . _ V^• e - -2^ n ! <- - > x > ' -e --2_,
7i=0 71=0

Therefore,

e< z-«>. (3.4.29)
71=0

Now, let x e £' be fixed. Then by the definition of © and Equation (3.4.29),

On the other hand, we have ((6X, e^'1^}} = e^x^ . Hence we have shown that

{{e*( :e<- ' I >: ) ) e<- ' € >» = «5 !E)e<-'«)> ) V? e fc.

This implies that for any a; € £',

e*( :e<- ' I >: )=3 r
z .

By using this equality we see that

Hence we conclude that for any test function <p in (£),

xe£'. (3.4.30)

This representation of test functions is very useful. Observe that the variable x in if
goes over to the renormalized exponential function :e^'^ :. Obviously, the function :e^ ' 'x^ :
has nice regularity and growth properties, which can automatically be transferred to test
functions.

Recall from Example 3.3.4 that the renormalized exponential function :e^''y^ : is defined
for any y E £'c. Therefore, Equation (3.4.30) shows that a test function <p (defined on £')
can be extended to a function defined on £'c. We use the same notation <p to denote this
extension, i.e.,

y € £'.

A complex-valued function defined on a complex Hilbert space is called analytic if it is
locally bounded and Prechet differentiate. The next theorem (see Theorem 6.13 in [40])
says that every test function has a unique analytic extension.

Theorem 3.4.3 Every test function <p in (£) has a unique extension to a function <p(y), y G
£'c, such that <p is analytic on £'ptC for any p > 0.

3.4.3 Integrable functions
An interesting consequence of the representation of test functions in Equation (3.4.30) is
the following inclusion:

(£)C p| Lr(rf,
l<r<oo
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where n is the white noise measure on £' . This fact is due to Obata [48] (see also Section
8.5 of [40].) Below we give a different and very simple proof.

First note that by condition (b) in 12.3.17 there exists some p > 0 such that the inclusion
mapping ip$ : £p °-> £Q is a Hilbert-Schmidt operator. This implies that (£Q,£-P) is an
abstract Wiener space. Hence the white noise measure JJL is supported on £-p.

Next we state a theorem which can be easily proved by direct calculations.

Theorem 3.4.4 Suppose the inclusion mapping ip$ : £p
 t-» £Q is a Hilbert-Schmidt opera-

tor. Then for any r < j|ip,o||/fs>

/ e%\x\-"
J£'

Now, let (f € (£) and 1 < r < oo be fixed. By Equations (3.4.30) and (3.3.12) we have
the inequality for any p > 0,

Recall from 12.3.17 that limp_+00 ||ip)o]|.ffs = 0. Hence, for the given fixed number r, we
can choose p such that ||ip,o||.ffs < Vv^- Then apply Theorem 3.4.4 to get

f \v(x)\rdn(x) < ||ey||; / e*N-
J £' J £.'

Hence for any r > 0 and p such that H£P,O||HS < I./\/T, we have

IMU-O,) < lie^llpeil"".""^, VV € (£). (3.4.31)

This inequality proves the next theorem.

Theorem 3.4.5 The inclusion (£) C <~\i<r<00Lr(n) holds and for each 1 < r < oo, the
inclusion mapping (£) <—+ Lr(/j.) is continuous.

Let / € Ls([i), 1 < s < oo. Define a linear functional $/ on (£) by

*/M= / v ( x ) f ( x ) d n ( x ) . (3.4.32)
J£'

Let r be given by r"1 + s"1 = 1. Then 1 < r < oo. Choose p > 0 such that ||iplo||«s <
- Then by Equation (3.4.31),

M L-W

This shows that $/ is continuous. Hence it induces a generalized function in (£)* . We state
this fact as the next theorem.

Theorem 3.4.6 The inclusion Ui<s<00Z,s(/^) C (£)* holds and for each 1 < s < oo, the
inclusion mapping Ls(p) <— > (£)* is continuous.
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3.4.4 Generalized functions induced by measures
In the previous section we see that functions in Ls (//) with 1 < s < oo induce generalized
functions in the space (£)*. Let $^ be the linear functional given by / as in Equation
(3.4.32). Observe that if </? is a nonnegative test function, then $/(y) > 0. This leads to
the concept of positive generalized functions.

A generalized function $ is called positive if {{<&, <^)} > 0 for all nonnegative test functions
(f.

The following theorem is due independently to Kondratiev [28] and Yokoi [58]. For the
proof, see Theorem 15.3 in [40].

Theorem 3.4.7 A generalized function $ 6 (£)* is positive if and only if there exists a
finite measure v on £' such that (€) c Ll(v) and

Being motivated by this theorem, we say that a measure v on £' is a Hida measure if
(£) C Ll(v) and the linear functional

if i—> I (p(x)dv(x), (f € (£),
J£>

is continuous. Thus v induces a generalized function u 6 (£) * such that

«?.¥>» = I <f(x)dv(x), <pe (£).
Js1

We can replace (£) by (£)p and [£]«. In that case, v induces a generalized function in
(£)0 and [£]„, respectively.

Note that the Kubo-Yokoi delta function at x 6 £' (see 12.4.75) is the generalized
function induced by the Dirac measure 6X at x on £' .

The next theorem gives a characterization of Hida measures. For the proof, see Theorem
15.17 in [40]. The case 0 = 0 is due to Lee [43].

Theorem 3.4.8 A measure v on £' is a Hida measure with V 6 (£}*@ tf and omV tf v is

supported in £'p for some p > 0 such that

f [1 -^l/ exp -(1 + fl)\x\l_y dv(x) < oo.
J£'^p

Recently, Asai et al. [8] have extended this characterization theorem to Hida measures
which induce positive generalized functions in the Cochran-Kuo-Sengupta space. Here we
briefly describe their result.

Let C+ti/2 denote the set of positive continuous functions u on [0, oo) satisfying the
condition

logu(r)lim ——7=-^- = oo.
r—.00 yY

We assume that u 6 ^+,1/2 satisfies the following conditions:

(Ul) u is increasing and u(0) = 1-

(U2) limr^oo r"1 logu(r) < oo.
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(U3) logu(o;2) is a convex function on [0, oo).

Define the Legendre transform of u by

£tt(t) = inf^, t>0.
r>0 rl

For more information about the Legendre transform, see [6]. With the function u, we
associate a sequence of real numbers defined by a(n) = (lu(n)n\)~l, n > 0.

Now, let [£}u C (L2) c [£]* denote the CKS-space given by the sequence

* < n > = ' n-°- (3A33)

For more information about this Gel'fand triple, see [7] [8].

Theorem 3.4.9 Let u £ C+ti/2 satisfy conditions (Ul) (U2) (US). Then a measure v on
£' is a Hida measure with v 6 [£]* if and only if v is supported in £'p for some p > 0 such
that

ti(|^|?_p) dv(x) < oo.

Note that Theorem 3.4.8 is a special case of Theorem 3.4.9 with the function

u(r) = exp \(I + /?) r 1+0] .

An important class of Hida measures is given by the distribution laws of the solution of
an £'-valued stochastic integral equation

/

t ^
F(s,X(s))ds + I G(s,X(s)}dW(s).

Jo

Under certain assumptions on F and G, it is proved in Theorem 3.1 in [42] that the distri-
bution laws of X ( t ) are Hida measures inducing generalized functions in the space (£)*.

3.4.5 Generalized Radon-Nikodym derivative
Suppose a measure v on £' is absolutely continuous with respect to the white noise measure
H and its Radon-Nikodym derivative dv/d/j, belongs to Ls(/j,) for some 1 < s < oo. Then by
Theorem 3.4.6, the measure v induces a generalized function v in (£)* such that

_ f dv
J£> d/j,

Thus v is a Hida measure and we can interpret H as the Radon-Nikodym derivative dv/dp,.
On the other hand, suppose v is a Hida measure. Then it induces a generalized function

v such that

((^iV)) = / <p(x)dv(x).

Symbolically, this equation can be rewritten as

/ v(x)<f(x) dp,(x] = I if(x)dv(x).
Js> Js>
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Thus we can interpret v as the generalized Radon- Nikodym derivative dv/d[i. If v is given
by a function in Ls(fj) for some 1 < s < oo, then v is absolutely continuous with respect to
/j, and v is the ordinary Radon-Nikodym derivative dv/d/j,.

Next we examine Gaussian measures on £' to explore the idea of generalized Radon-
Nikodym derivative a little bit further. For t > 0 and y 6 £' , let (j,y^ be the Gaussian
measure denned by nVtt(C) — n(t~l^(C — j/)), C 6 B(£'). The well-known dichotomy
theorem (e.g., see [38]) says that nyj is either equivalent or singular to p., and they are
equivalent if and only if t = 1 and y £ So- Moreover, for h e £0, the Radon-Nikodym
derivative of fj,h,i with respect to /j, is given by

*€£ ' . (3.4.34)

First consider the measure My(0 = /•*(• ~ J/) with y £ £'. Recall from Example 3.3.3 that
'}^ : € (£) for any ^ G £c. On the one hand, it is easy to check that

:e<x>$: dny(x)=e<v'>, V£ £ £c. (3.4.35)

On the other hand, :e<' '"> : 6 (£)* and by Equation (3.4.29) we have

((:e{-'v> :, :e('^ :}) = e(y& , V£ € £c. (3.4.36)

Since the linear span of the set {: e^''^ : ; £ 6 £c} is dense in (£), we can conclude
from Equations (3.4.35) and (3.4.36) that /j,y is a Hida measure and its generalized Radon-
Nikodym derivative with respect to p. is given by

Observe that if y — h e £Q, then : e^'^ : = exp [{•, h} — ||/I|Q] and so the above formula
becomes the one in Equation (3.4.34).

Now, let t > 0 and consider the measure ̂ (-) = /^(t~1/ /2(-))- We can easily check that

f
J£

1'« : d^\x) = exp (t - l)(^o , V^ 6 £c. (3.4.37)
£'

Define a function $t by

n=0

where r is the trace operator. This function defines a generalized function in (£)* and for
all £ 6 £c,

' (3-4-39)

By comparing Equations (3.4.37) and (3.4.39) we conclude right away that /u(t) is a
Hida measure and its generalized Radon-Nikodym derivative with respect to fj, is given by
Equation (3.4.38), i.e.,

, ®"}. (3.4.40)
^ n=0



3.5. CHARACTERIZATION THEOREMS 131

In fact, for any y 6 £' and t > 0, the measure n y j ( - ) = ̂ (t~l^2(f ~ 2/)) is a Hida measure
and

The expression for the Wiener-Ito decomposition ofjlytt(-) is very complicated. But, without
knowing this decomposition, how can we tell that fj,y^ is really a Hida measure? One way
is to apply Theorem 3.4.8. The other way is to use the 5-transform which we will discuss
in 12.5.118 and 12.5.119.

3.5 Characterization theorems

3.5.1 The S-transform
In 12.4.6 we saw that a generalized function can be identified by its action on test functions
: e^''^ : for £ 6 £c. This way of identifying a generalized function $ is quite useful, in
particular, when it is very hard or impossible to find the explicit form for the Wiener-Ito
decomposition of $.

Recall that for any £ € £c, the function : e^'1^ : is a test function in all of the spaces (£) (
ref3.3), (£}0 with 0 < jl (12.3.20), and [£}a (12.3.21).

The S-transform of a generalized function <I> is defined to be the function

( (<E>, :e<- '«>:}) , £ 6 £c.

This concept of 5-transform is due to Kubo and Takenaka [33] . When Hida introduced
the theory of white noise in 1975 [18], he used the T-transform

Obviously, we can also regard (T<3>)(£) as defined for £ & £c. The relationship between
S- and T-transforms is given by

The restriction of the 5-transform to the Hilbert space (L2) is known as the Segal-
Bargmann transform [9].

Since the linear span of the set {: e^'^ : ; £ € £c} is dense in each of the three spaces of
test functions, a generalized function is uniquely determined by its 5-transform. Of course,
the linear span of the set {: e^''^ : ; £ 6 £} is also dense and we could have defined £$(£)
for £ e £. However, we use the space £c instead of £ in the definition of the 5-transform
because of its convenience for the characterization theorems in 12.5.119 and 12.5.121.

Suppose a generalized function $ is represented by

00

W-®"- F \/ ^ \ - -,-Tn/-
n=0

Then its 5-transform is given by

n=0
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Now, observe that if <p is a test function, then its /S-transform can be written as

({ :e<- ' € >: ) ¥>)), £ 6 £c.

Note that : e*> ''x"> : is a generalized function for any x e calE' . Thus we can restrict the
^-transform to the space of test functions and define

= ((:e<-'x>:,<p)), x £ £' .

Then in view of Equation (3.4.30) we have the S0<p = (p for all <f> e (£). Thus 5 = 9"1.
Hence S is the continuous linear operator from (£) into itself such that

3.5.2 Characterization of generalized functions
The S'-transform of a generalized function is a function on £c, In order to specify a gen-
eralized function by its 5-transform, we must have a precise description of those functions
on 8C which are S- transforms of generalized functions. This precise description is known as
the characterization of generalized functions.

Let $ be a generalized function and F — S3>. For any fixed £, TI € £c, we have

It is almost obvious that the function F(£ + zrj] is an entire function of z 6 C. For a
proof, see Lemma 8.1 in [40]. This analyticity condition does not depend on what kind of
generalized function $ is.

The other condition which F must satisfy is the growth condition. The growth condition
plays the most crucial role in the characterization. It depends on the spaces of generalized
functions, namely, (£)*, (£)£, [£]*, [£]{;.

A. Hida-Kubo-Takenaka space (generalized functions)

Let $ 6 (£)* and F = S3>. Then there exists some p > 0 such that $ 6 (£p)*. Hence by
Equation (3.3.11),

= _P exp

This is a growth condition for F = 5$ with $ 6 (£)*.
The next theorem is due to Potthoff and Streit [50]. For the proof see [22] or [40].

Actually we have proved the trivial part, i.e., necessity part, of this theorem.

Theorem 3.5.1 A function F: £c — > C is the S-transform of a generalized function in (£)*
if and only if it satisfies the conditions:

(1) For any £, rj e £c, the function F(z£ + n) is an entire function of z e C.

(2) There exist constants K, a,p > 0 such that

\ £ \ ] , € e £c.
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The growth condition (2) is equivalent to the condition: there exist constants K, p > 0
such that

The equivalence can be checked by using the inequality |£|p < pq p\£,\q for any q > p,
which follows from condition (a) in 12.3.17. Having the constant a in the inequality is
just for convenience to check the growth condition. This remark also applies to the growth
conditions for other spaces.

Example 3.5.2 In Example 3.2.5 we defined Donsker's delta function o(B(t) — a). Here
we give another definition. In the distribution sense we have the equality

_ 1 f iu(x-a)
27r JR

Put x = B(t) to get
1 f • < i -

Apply the S-transform and interchange it with the integral to derive the equality

I 1 / /"*-«i U- / e(«)
^ V Jo

Obviously, this function satisfies conditions (1) and (2) of Theorem 3.5.1. Hence Donsker's
delta function is a generalized function in the space (S)* (see 12.2.4)-

Example 3.5.3 Consider the function -F(£) = sin{£,£), £ 6 £c. We can easily check that
this function satisfies conditions (1) and (2) in Theorem 3.5.1. Hence it is the S-transform
of a generalized function in (£)*. Similarly, the functions cos{£,£), sinh {£,£), cosh (£,£), are
all S -transforms of generalized functions in (£)* .

B. Kondratiev-Streit space (generalized functions)

Let $ e (£)*p and F = 5$. Then there exists some p > 0 such that $ 6 (£P)*p- Hence
by Equation (3.3.15),

p,-/3 : e ' :P,0=

where the function G^ is defined by

We can use the function G^ as a growth condition. However, this is not so good
because the series for G^ cannot be summed up in a closed form unless /3 = 0 (the Hida-
Kubo-Takenaka case.) Thus the growth condition using G^ as a growth function is almost
impossible to check when 0 < {3 < 1.

Fortunately we have the inequalities from page 358 in [40] and Lemma 7.1 in [14]:

exp f(l -/3)ri^l <G(/3)(r) < 2^ exp ["(1 -/3)2Ar^l , r > 0.

Hence we can replace G^(r) by exp [r1^] as a growth function.
The next theorem is due to Kondratiev and Streit [30] [31]. For the proof, see the book

[40].
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Theorem 3.5.4 A function F : £c — >• C is the S-transform of a generalized function in
(£)0 if and only if it satisfies the conditions:

(1) For any £, r/ € £c, the function F(z£ + rf) is an entire function of z e C.

(2) There exist constants K, a,p > 0 such that

Example 3.5.5 The grey noise measure was introduced in [73] (see also [40].) It is the
measure v\, 0 < A < 1, on £' with characteristic function given by

£'

where L\(t) is the Mittag-Leffler function with parameter \, i.e.,

Here T is the gamma function. It is shown in Example 8.5 in [40] that v\ is a Hida measure.
The generalized function v\ induced by v\ has S-transform given by

Therefore, Sv\ satisfies the inequality

where C\ is a constant depending only on A. Hence by the above theorem, v\ is a generalized
function in the space (£)]__ \-

C. Cochran-Kuo-Sengupta space (generalized functions)

Let $ e [£]* and F = S$. Then there exists some p > 0 such that $ e [£p]a- Hence by
Equation (3.3.20),

where Ga is the exponential generating function of the sequence {a(n)}%L0, i.e.,

n=0

We state two conditions on the sequence {a(n)}^=0:

. (Bl) limsup f-^r inf ^M) " < oo.
«^oo \a(n) r>o rn )

(B2) The sequence 7(71) = a(ri)/n\, n > 0, is log-concave, i.e.,

7(n)7(n+2) <7(n-f l ) 2 , Vn > 0.



3.5. CHARACTERIZATION THEOREMS 135

It follows from Theorem 4.3 in [14] that condition (B2) implies condition (Bl). Obviously,
the sequence a(n) = I for all n (for the Hida-Kubo-Takenaka space) satisfies conditions (Bl)
and (B2). The sequence a(n) = (n\)@ (for the Kondratiev-Streit space) satisfies condition
(B2), hence also (Bl). In [14] the Bell numbers (see Example 3.3.11) are shown to satisfy
condition (Bl). But it is proved in [4] that the Bell numbers actually satisfy condition (B2).

The next theorem is due to Cochran et al. [14].

Theorem 3.5.6 If F is the S -transform o/$ 6 [£]*, then F satisfies the conditions:

(1) For any £, r? € £c, the function F(z£, + ry) is an entire function of z £ C.

(2) There exist constants K,a,p>0 such that

Conversely, suppose condition (Bl) holds and let F : £c — > C be a function satisfying
conditions (1) and (2). Then F is the S-transform of a generalized function in [£]£.

Observe that under condition (Bl) or the stronger condition (B2), a complex-valued
function F on £c is the 5-transform of a generalized function in [£]* if and only if it satisfies
the above conditions (1) and (2).

Example 3.5.7 The Poisson noise measure on <S'(R) is the measure <p having the charac-
teristic function

= exp
AS'(R)

It follows from this equality that

- l dt
R

] ,
J

S(R).

JS'(R)
:e<*-«> : x) = exp 17 (e*W - 1 - ^(t)2} d t ] , £ € SC(R).

I/RV 2 / J

Therefore,

/ :e<* '«> : dp(x) < exp U|€|§ + / e«*> - 1 dt]
./S'(R) L^ v/R J/5'(R)

From this inequality we can check by elementary calculations that there exist constants
K,a,p > 0 such that

f :
JS'(R)(R)

where Gb2 is the exponential generating function of the Bell numbers {62(n)}^L0 of order 1,
i.e., from Equation (3.3.23),

n\

Hence by the above theorem, the Poisson noise measure p induces a generalized function
in the Bell number space [<S]£ (see Example 3.3.11.)
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D. CKS-space associated with a growth function (generalized functions)

Let u be a growth function in C+>i/2 satisfying the conditions (Ul) (U2) (U3) in 3.4.4.
Define the dual Legendre transform of u by

w*(r) = sup— —— , r e [0,oo).
s>o ix(s)

Let [£\u C (L2) C [5]* be the CKS-space associated with u as defined in 3.4.4. The
following theorem is due to Asai et al. [7] [8].

Theorem 3.5.8 Let u 6 C+ii/2 safe/y conditions (Ul) (U2) (US). Then a function F :
£c — » C is the S-transform of a generalized function in [£}*u if and only if it satisfies the
conditions:

(1) For any £, 77 <E £c, the function F(z^ + n) is an entire function of z e C.

("2) TTiere exist constants K,a,p>0 such that

3.5.3 Convergence of generalized functions
We have several spaces of test functions, namely, (£), (£)p, [£}a, [£]«• They are all nuclear
spaces. Hence the strong topology and the inductive limit topology on each of the dual
spaces are the same.

Since a generalized function can be understood by its 5-transform as shown in the
previous section, we need to express the convergence of generalized functions in terms of
their S-transforms. The next theorem is due to Potthoff and Streit [50] for the case {3 = 0.
See [40] for the proof.

Theorem 3.5.9 Let $„ 6 (£)£ and Fn = S$n. Then $„ converges strongly in (£)£ if and
only if the following conditions are satisfied:

(1) linin^oo Fn(£) exists for each £ e £c-

(2) There exist constants K,a,p > 0, independent ofn, such that

\Fn(t)\<Kexp\a\t\?*], Vn > 1, £ € £c.

This theorem can be extended to the space [£]* by replacing condition (2) with the
condition: There exist constants K,a,p > 0, independent of n, such that

Similarly, for the space [£]* associated with a growth function u satisfying the conditions
(Ul) (U2) (U3), we simply replace the above condition (2) with the condition: There exist
constants K, a,p > 0, independent of n, such that

a |C | 1 / 2 , Vn > 1, f G £c.
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3.5.4 Characterization of test functions
Suppose <f is a test function. Obviously, the S-transform S<p of <p must satisfy the same
analyticity condition for generalized functions. However, the growth condition is different.

A. Hida-Kubo-Takenaka space (test functions)

Let (p 6 (£} and F = S<p. In order to find the growth condition, write F as

For any q > p > 0, use Equation (3.3.12) and condition (a) in 12.3.17 to get

|F(OI < || : e < - ' < > : ||_, |M|, < \\<p\\q exp |̂ |1,] < |M|,exp ^p2(g~p)\

Hence for any a,p > 0, we can choose q > p such that 2~1p2^g~p^ < a. Then

This gives the growth condition for the ^-transform of a test function in (£). The next
theorem is due to Kuo et al. [41]. For the proof see [22] or [40].

Theorem 3.5.10 A function F : £c — > C is the S -transform of a test function in (£) if and
only if it satisfies the conditions:

(1) For any £,rj € £c, the function F(z£, + rj) is an entire function of ziC.

(2) For any a,p > 0, there exists a constant K > 0 such that

B. Kondratiev-Streit space (test functions)

Let (f> € (£)p and F = S(fl. For any q > p > 0, use Equation (3.3.16) and condition (a)
in 12.3.17 to get

where the function G^"^ is defined by

It is not practical to use the growth function G(~® as for the case of generalized functions
in (£}*p. But we have the inequalities for r > 0

2"^exp [(1 + /?)2-TT?rir7jJ < G(~^(r) < exp [(1 +/?jr^l . (3.5.41)

Therefore, we get



138 CHAPTERS. WHITE NOISE THEORY

Hence for any a,p > 0, we can choose q > p such that 2~1(1 + 0)p l+/3 < a. Then

This is the growth condition for the .^-transform of a test function in (£ )p.
The next theorem is due to Kondratiev and Streit [30] [31] . For the proof, see the book

[40].

Theorem 3.5.11 A function F : £c — > C is the S-transform of a test function in (£)p if
and only if it satisfies the conditions:

(1) For any £,77 6 £c, the function F(z£, + rj) is an entire function of z 6 C.

(2) For any a,p>0, there exists a constant K > 0 such that

C. Cochran-Kuo-Sengupta space (test functions)

Let (p 6 (£)a and F = S<p. For any q > p > 0, use Equation (3.3.21) and condition (a)
in 12.3.17 to get

where G\/a is the exponential generating function of {l/a(n)}£!0, i.e.,

00 _]_
n=0 n!a^'

Hence for any a, p > 0, we can choose q > p such that p2(-q~P^ < a. Then

This is the growth condition for the S-transform of a test function in (£)a-
We state two conditions on the sequence

~ / G (r}\1^n

• (-Bl) limsup I n\a(n) inf— -^—J <

— — ̂ -r > isnla(n) J(52) The sequence < — — ̂ -r > is log-concave.

Similar to the conditions (Bl) and (B2), condition (B2) implies condition (Bl). More-
over, it is shown in [4] that the Bell numbers satisfy condition (B2).

The next theorem is due to Asai et al. [5].

Theorem 3.5.12 // F is the S-transform of a test function in [£]a, then F satisfies the
conditions:
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(1) For any £, 77 6 £c, t/ie function F(z£, + n) is an entire function of z G. C.

(2) For any a,p > 0, there exists a constant K > 0 such that

Conversely, suppose condition (B\) holds and let F : £c — > C be a function satisfying
conditions (1) and (2). Then F is the S -transform of a test function in [£]a.

D. CKS-space associated with a growth function (test functions)

Recall from 3.4.4 that we have a Gel'fand triple [£]u C (L2) C [£]* associated with a
growth function u 6 C+ii/2. The next theorem is due to Asai et al. [7] [8].

Theorem 3.5.13 Let u e C+,i/2 satisfy conditions (Ul) (U2) (US) in 8.4.4. Then a
function F : £c — > C is the S-transform of a test function in [£]„ if and only if it satisfies
the conditions:

(1) For any £,77 e £c, tfte function F(z£ + TJ) is an entire function of z € C.

(2j For any a,p > 0, there exists a constant K > 0 suc/i that

3.5.5 Intrinsic topology for the space of test functions
In the finite dimensional Schwartz distribution theory, a test function is infinitely differ-
entiable and rapidly decreasing. In the white noise distribution theory, this property is
replaced by the analyticity and growth conditions. This idea is due to Y.-J. Lee [43] for the
test functions in (£). The extension to the space (£)p involves only delicate computations.
However, the extension to the space [£]Q and [£]u requires new concepts and techniques.

Recall from Example 3.3.4 that : e^'^ : is a generalized function for any x G £'c. Thus
Equation (3.4.30) for a test function (p G (£) can be extended to x £ £'c,

x G £'c,

where 0 is a continuous linear operator from (£) into itself defined in 12.4.76. Prom the
above equality, we get

\(p(x)\ < \ \ : e ( - ' x ) :\\-

Being motivated by this inequality, we define a norm || • ||_4 on the space (£) by

IMUP = sup-IP ~~.f i r \w / i ~--JT f\
*€£p,c I 2

p

1

The next theorem is due to Y.-J. Lee [43]. See Theorem 4.60 in [22].

Theorem 3.5.14 The topology on (£) generated by {|| • H^; p > 0} is the same as the one
generated by {|| • \\p; p>0}.
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Next, consider test functions in (£)/?. We can derive from Equations (3.3.16) and (3.5.41)
the following inequality

where 9: (£)p —+ (£)p is continuous by Theorem 6.2 in [40]. In view of this inequality we
define the following norm for each p > 0,

The next theorem is from Theorem 15.14 in [40].

Theorem 3.5.15 The topology on (£}p generated by {|| • ||^ip^; p > 0} is the same as the
one generated by {|| • ||PI/J; p > 0}.

Now, we consider the test functions in the space [£]u- Let u € C+,i/2 be a growth
function satisfying conditions (Ul) (U2) (U3) in 3.4.4. Recall that the space [£]u of test
functions is [£ ]a associated with the sequence

where lu is the Legendre transform of u. Thus the norms on [£]u are given by

oo

Being motivated by the growth condition in Theorem 3.5.13, we define another family
of norms {|| • |UP,U} on [£]u by

IMUP,U = sup |<^(x)|u(|x|%)~1/2.
Xe£P,c

The next theorem is due to Asai et al. [6] [8].

Theorem 3.5.16 Let u e C+,1/2 satisfy conditions (Ul) (U2) (US) in 3.4-4- The topology
on [£]u generated by {\\ • \\^p u; p > 0} is the same as the one generated by {\\ • ||pjU; p > 0}.

3.6 Continuous operators and adjoints
In 3.6.1 to 3.6.5 we will discuss various continuous linear operators acting on the Kondratiev-
Streit space (£)@ C (L2) c (£)/}• In 1.6.147 we will extend these results to the CKS-spaces
(£}a C (L2) C [£\*a and [£}u c (£2) C [fjj.

3.6.1 Differential operators
Let (p 6 (£) and y € £' . The directional derivative of <f> in y is defined by
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Let <f be represented by (p(x) = Y^-0('--®n'-, In}- Then Dyip is represented by

n=l

where (y, fn) is the bilinear pairing of y and one variable of fn. Since fn is assumed to be
symmetric, this is well-defined. Note that after the pairing of y and fn, (y, f n ) is a function
of n — 1 variables.

For the proof of the next theorem, see Theorem 9.1 in [40]

Theorem 3.6.1 For any y € £', the differential operator Dy is continuous from (£)0 into
itself.

Thus for any y e £', the adjoint operator D* is continuous from (£)£ into itself. If
<S> S (£)/3 is represented by

u=0

then (9*$ is represented by

n=0

where y®Fn denotes the symmetric tensor product of y and Fn.
We have the following properties for the operators Dy and D*:

(1) For any fixed if £ (£)/?, the linear mapping y i-> -D^ is continuous from £.' into (£ )/g
(Theorem 9.3 in [40]).

(2) For any fixed (p 6 (£)p and a; € ^', the linear functional y H-» Dyip(x) is continuous on
£' (Corollary 9.4 in [40]).

(3) For any fixed $ € (£)£, tne "near mapping y t— > D*$ is continuous from £' into (£)£
(Theorem 9.12(b) in [40]).

(4) Let 77 6 £. The differential operator D^ from (£)p into itself has a unique extension
by continuity to a continuous linear operator D^ from (£)g into itself (Theorem 9.10
in [40]).

(5) For any <p € (£)/? and y € £', the S'-transform of Dy<f is given by

d ^SDy<p(£~) = -j^Sip(t; + \y) , ^ £ £c.
dA A=0

(Theorem 9.7 in [40])

(6) For any $ € (£)£ and y € £', the 5-transform of D*$ is given by

(Theorem 9.13 in [40])
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The operators Dy and .D* are also called annihilation and creation operators, respectively.
We have the following commutation identities for these operators from Theorem 9.15 in [40].
The commutator [A, B] is defined by [A, B] = AB - BA.

(1) [Dx, Dy] = 0 on (£)j3 for all x,y€£r.

(2) [£>*, DJ] = 0 on (£)* for all x,y€£'.

(3) [Z>€, 5,,] = 0 on (£)£ for all € , i j ( = £ .

(4) [5,,, D;] = (y,n)I on (£)£ for all 77 e 5 and t/ e £'.

(5) [D^ £>;] = (j/, 77}! on (E)f, for all y e £' and r? 6 5.

Now, let £ be the Schwartz space <S(R). The differential operator D$t with y = 6± is
denoted by dt. The operator dt is often referred to as the white noise differential operator
(or Hida differential operator.) It is a continuous linear operator from (S)p into itself. The
adjoint <9t* is a continuous linear operator from (<S)~ into itself. We have the following facts.

(1) If tp is represented by <p = X^^Lo (•' •8m : > /«)> tnen t̂1° is represented by

Tl=l

(2) If <E> is represented by $ = X^o(: •lg'n :, Fra), then 9t*$ is represented by

n=0

(3) For any y> G (<5)^, the function 1 1— > 9t</j is continuous from R into

(4) For any $ £ («5)^j the function t >-* 9t*$ is continuous from R into

(5) [a,,ft] = o, [d*s,d;] = o, ps,0;] = sa(t)L
Now, let (7f, B) be an abstract Wiener space [38]. The Gross Laplacian &-G<p of a twice

J?-differentiable function <f> on B is denned by

As pointed out in the beginning of 12.4.77 that there exists some p > 0 such that (£0, £-P)
is an abstract Wiener space. Hence we can define the Gross Laplacian for functions on £'
by

For the proof of the next theorem, see Theorems 10.11 and 10.12 in [40].

Theorem 3.6.2 The Gross Laplacian AQ is a continuous linear operator from (£)p into
itself. If (p € (£)p is represented by p = X^LoC'®™^/")

+ 2)(n + 1)<: .®" :, (r, .
n=0
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Another infinite dimensional Laplacian is the number operator N. Let if 6 (£)/? be
represented by tf> = Y^=o('- '®n : > /«)• Then we define Nif by

n=l

For the proof of the next theorem, see Theorems 9.23 and 9.25 in [40]

Theorem 3.6.3 The number operator N is a continuous linear operator from (£)# into
itself and also from (£)£ into itself. Moreover, for any <& e (£)£ and y? 6 (£)/3, we /ioue

The Gross Laplacian and number operator are related by the lambda operator A. For
tf € (£)0 being represented by </? = Sr=o(: -®n : > /«)> ^V is defined by

n=l

By Theorem 10.18 in [40], the lambda operator A is continuous from (£)p into itself and
A = AG + 7V.

When £ is the Schwartz space <S(R), we can express the Gross Laplacian AG, its adjoint
A* , and the number operator ./V in terms of the operators dt and d% by

AG = I dt dt, A* = / (d;)2 dt, N= ( dl
JR JR JR

dt dt.

3.6.2 Translation and scaling operators
Let if 6 (£)p and y € £' . The translation Ty<p of (p by y is defined by

Ty<f(x) = p(x + y), xe£'.

Note that the Wick tensor :x®n: defined in 12.3.18 satisfies the identity

x®tn-V:®y®k. (3.6.42)
fe=o s

See Lemma 7.16 in [40] for the proof.
The identity in Equation (3.6.42) can be used to prove the next theorem. For details,

see Theorem 10.21 in [40].

Theorem 3.6.4 Lety £ £' . The translation operator Ty by y is continuous from (£)p into
itself.

The adjoint T* is a continuous linear operator from (£)£ into itself. For any $ 6 (£)a>
the 5-transform of T*$> is given by

^ 6 £c.

Moreover, we have the following two facts from Theorems 10.22 and 10.26 in [40]
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(1) Let r? 6 £ . The translation operator T^ extends by continuity to a continuous linear
operator TJ, from (£)£ into itself.

(2) For any y G £', the equality holds

Next we discuss the scaling operator. Let y> E (£)p. The scaling of <£> by a complex
number A is denned by

The Wick tensor :x®": denned in 12.3.18 satisfies the identity

[n/2]n , v

:(Aa;)®n:= V ( " )(2fc - l)!!A"-2fc(A2 - l)k :x^n

fc=o ^2/c'
(3.6.43)

See Lemma 11.17 in [40] for the proof.
The identity in Equation (3.6.43) can be used to prove the next theorem. For details,

see Theorem 11.18 in [40].

Theorem 3.6.5 Let A G C. The scaling operator S\ by A is continuous from (£)p into
itself.

The adjoint 3% is a continuous linear operator from (£)£ into itself. Moreover, we can
easily check the following facts:

(1) For any tf> & (£)p and A ̂  0, the S-transform of S\<f> is given by

where for a complex number A, the function ^t^A ) is the generalized function defined
by Equation (3.4.40).

(2) For any <I> e (£)£ and A € C, the S-transform of S\Q is given by

(3) For any <p e (£)/g and A G C, the equality holds

3.6.3 Multiplication and Wick product
An important property of the space (£)/? of test functions is the fact that (£)/? is an algebra,
i.e., tpt/} G (£)^ for any <p,i/j G (£)/3- From Theorem 8.18 in [40] we have the next theorem.

Theorem 3.6.6 The pointwise product ftp of two test functions <p and t^> in (£)@ is also a
test function in (£)p. Moreover, the mapping (y>, -0) >— > <f^ is continuous from (£)p x (£)p
into ( £ ) p .
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Let M0 denote the multiplication operator by i/j G (£)p, i-e-;

We have the following facts about the multiplication operator M^ :

(1) For any tp €. (£)/?, the operator M^ is continuous from (£)/? into itself.

(2) For any ip 6 (£)/3, the operator M0 extends by continuity to a continuous linear
operator M0 from (£)£ into itself. Moreover, we have M^ = M^.

In particular, for r? e £, let Q,, denote the multiplication by (•,/?}, i.e., Q^ = M^.^. We
have the following properties:

(1) For any 77 6 £, Q^ is a continuous linear operator from (£)@ into itself.

(2) For any ij 6 £, <5r; has a unique extension by continuity to a continuous linear operator
QT, from (£)£ into itself and Q,, = Q*.

(3) For any 77 e £, Q,, = A, + £>* as continuous operators from (£)p into itself.

(4) For any ri £ £, Q^ — D^ + D^ as continuous operators from (£)/?• into itself.

(5) For any y 6 £', Qj, = Z)j, + D* as continuous linear operators from (£)@ into (£)^-

For the proofs of (3) (4) (5), see Theorems 9.18 and 9.20 in [40].
For a special case of the above property (5), take £ = S(R) and y = 8t. Recall that

elements in the white noise space 5'(R) can be denoted by B. Thus (B, 6t) = B(t) and so
Qst is the multiplication by B(t). The operator Qst is called white noise multiplication and
is simply denoted by B(t). Hence we have

B(t)=dt + d* (3.6.44)

as continuous linear operators from (£)Jg into (£}*p-
Next, we discuss the Wick product of two generalized functions. Let Q,ty e (£)a- By

Theorem 3.5.4 the product (5$)(5*) is the 5-transform of a unique generalized function
in (£)£. This unique generalized function is denned to be the Wick product $ o * of $ and
*. Hence we have

Note that the pointwise product of two generalized functions cannot be defined. But the
Wick product is always defined for any two generalized functions.

Example 3.6.7 Note that S{:-®" :, /„) = ( f n , £ ® n } - Hence we have

('•• m', fm) O {:• ™ : ; / ra} = {:' m n'-,fm®fn)-

In fact, we can use this equality to define the Wick product of two generalized functions in
terms of their Wiener-Ito expansions.

Example 3.6.8 Note that 5(:e<''x> :)(£) = e< x ' f >. Hence for any x, y e B'c,

From Theorem 8.12 and its remarks in [40] we have the next theorem.
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Theorem 3.6.9 (1) The mapping ($, *) i-> $o# is continuous from (£)£ x (£)£ into (£)*0.
(2) We have (poip S (£)p for any </?, ̂  G (£)/9 and t/ie mapping ((p,ij>) >-*• tpoij) is continuous
from (£)p x (£)0 into (£),g.

There is a relationship between the pointwise and Wick products from Theorem 8.17 in
[40]. R>r any ¥>, i& e (£)/s,

<piJ> = S((Q<p)o (&!>)), <poil> = e((§<p)($i},)), (3.6.45)

where S and Q are defined in 12.5.118 and 12.4.76, respectively.
Even though there is no Lebesgue measure on the space £', we can define the convolution

of two generalized functions. Let $, \I> 6 (£)/?• Define the convolution of <£ and $ by

where <?_2 is the generalized function with 5-transform given by

Obviously, the mapping (<&, \f) i— > $ * * is continuous from (£)£ x (£)£ into
The convolution of two finite measures 1/1 and ^2 is defined by

/
J£'

The convolution ^i * v-2 of two Hida measures (see 3.4.4) v\ and v-i is also a Hida measure.
Moreover, we have

(y\ *V2)~ =vi *V2-

3.6.4 Fourier-Gauss transform
In this section we briefly discuss the Fourier-Gauss transform from Chapter 11 of [40].

There are several infinite dimensional Fourier type transforms. In 1947 Cameron and
Martin introduced the Fourier-Wiener transform acting on the L2-space of the Wiener mea-
sure. In 1956 Segal [54] introduced the Fourier-Wiener transform for the normal distribution
on a Hilbert space. In 1961 Bargman [9] defined a transform which is nowadays called the
Segal-Bargman transform. In 1967 Gross [17] used the /u-convolution on an abstract Wiener
space. In 1975 Hida [18] used the T-transform to develop the white noise theory. Later in
1980 Kubo and Takenaka [33] introduced the 5-transform to study white noise functionals.
In 1982 Kuo [39] defined Fourier transform on the space of generalized functions. In 1987
Lee [43] introduced the Fourier-Gauss transform which includes all the previous Fourier type
transforms.

Let a, b 6 C. The Fourier-Gauss transform Qa,bV of a function <p is defined by

a,bV(y] = I V(ax + by] dfj,(x).
J£'

We have several special cases:

(1) 0i,i is the operator S in 12.5.118.

(2) &,! is the operator 6 in 12.4.76.
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(3) g^ i is tne Fourier-Wiener transform.

(4) Qji } is the convolution with the measure p,^ in 12.4.6.

(5) Q^, -i is the second quantization T(—iI) of the operator — il.

(6) g$ _i is the Fourier transform acting on the space of generalized functions.

For the proof of the next theorem, see Theorem 11.28 in [40]

Theorem 3.6.10 Let <p € (£)p be represented by <f = E~=o<: -®" : ' /«)- Then for

a,b € C, ga,bf belongs to (£)p and

n=0

where hn is given by

= *>n E ̂
k=0

Here are some properties of the Fourier-Gauss transform:

(1) For any a,b e C, the operator Qa,b is continuous from (£}@ into itself. (See Theorem
11.29 in [40].)

(2) ^0,1 = /•

(3) g,,t o Ga,b = gjbVaa+b^a.tt- (See Theorem 11.30 in [40].)

(4) If 6 ^ 0, then £aj6 is invertible and £~£ = G±ia/b i/b- (This follows from properties
(2) and (3).)

(5) If a2 + b2 = 1 and |fc| = 1, then Qa^ is a unitary operator of (£p)p for any p > 0.
Conversely, if Qa$ is a unitary operator of (£p)0 for some p > 0, then a2 + b2 = 1 and
|6| = 1. (See Theorem 11.34 in [40].)

The adjoint Q*a b is a continuous linear operator from (£)*p into itself. Moreover, if 6 ̂  0,
then G*^b is invertible.

Now, we consider a special Fourier-Gauss transform given by a = 1 and b = —i. For
convenience, let Q denote Gi,-i and let J7 = Q* . The operators Q and f are called the
Gauss and Fourier transforms, respectively.

The next theorem on the Gauss transform Q is from Theorem 11.33 in [40].

Theorem 3.6.11 The operator Q: (£)p — > (£)p satisfies the following equalities:

g* =/,
gQn =-iD*G, ne£,
go* =-iQr,g, n e s ,
QDX =iDxg, a; 6]'.

On the other hand, we have a corresponding theorem for the Fourier transform J7 from
Theorems 11.7 and 11.11 in [40].
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Theorem 3.6.12 The operator f: (£)£ — > (£)p satisfies the following equalities:

T? €

r, e

The next two theorems are from Theorems 11.36 and 11.38 in [40]. They are the char-
acterization theorems for the Gauss transform Q and Fourier transform J- in terms of dif-
ferential and multiplication operators.

Theorem 3.6.13 The Gauss transform Q = Qi,-i is the unique (up to a constant) contin-
uous linear operator T from (€)p into itself satisfying the equalities:

TQC = -iD%T, TZ)| = -iQtT, V£ e £.

Theorem 3.6.14 The Fourier transform J- = Q± _i is the unique (up to a constant) con-
tinuous linear operator T from (£)£ into itself satisfying the equalities:

V£ e £.

Finally, we consider an important special case of the Fourier-Gauss transform. For a
real number 0, let

a = ±(l-e i9cos0)1/2, b = eie. (3.6.46)

We use Qe to denote the Fourier-Gauss transform Qa,b, i-e.. Qe = Ga,b with a and 6 given by
Equation (3.6.46). Note that QQ does not depend on the choice of plus and minus signs for
a.

The adjoint f g — Q$ is called the Fourier- Mehler transform. The next two theorems are
from Theorems 11.39 and 11.40 in [40].

Theorem 3.6.15 The family {Qe', & € R} is a strongly continuous one-parameter group
acting on (£)() with infinitesimal generator iN + |AG.

Theorem 3.6.16 The family {Fg; 9 € R} is a strongly continuous one-parameter group
acting on (£)J with infinitesimal generator iN + |A^.

The transform Qe and Fourier- Mehler transform J-$ can also be characterized in similar
ways as in Theorems 3.6.13 and 3.6.14, respectively. For the proofs and further information
on the Fourier-Mehler transform, see [40].

3.6.5 Extensions to CKS-spaces
In this section we will study continuous linear operators and their adjoints on a CKS-space
[£]a C (L2) C [£]* associated with a sequence {a(n)}^=0 of positive numbers satisfying
conditions (Al) and (A2) in 12.3.21. For this purpose we need to impose the following
conditions on the sequence {a(n)}%L0:

• (Cl) There exists a constant c\ such that for all n < m,

ot(ri) < c™a(m).
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(C2) There exists a constant 0% such that for all n and m,

a(n + m) < c^+ma(n)a(m).

(C3) There exists a constant 03 such that for all n and m,

a(n)oi(m) < c%+ma(n + m).

These conditions were introduced by Kubo et al. in [60]. Note that condition (Cl) is
satisfied if the sequence {a(n)} is increasing. It can be easily checked that condition (C3)
implies condition (Cl). Moreover, the Bell numbers satisfy conditions (C2) and (C3) (for
the proof, see [60].)

1. Differential operators

For the proof of the next theorem, see Theorem 3.1 in [60].

Theorem 3.6.17 Assume that a(n) < c"+1a(n + 1) for all n > 0. In particular, let
condition (Cl) be satisfied. Then for any y € £', the differential operator Dy is continuous
from [£}a into itself.

In fact, the condition a(n) < c™+1a(n+l) for all n > 0 is also necessary for the continuity
of a differential operator Dy with y ^ 0.

Those properties concerning the operators Dy and D* in 3.6.1 are all true under the
condition a(n) < c"+la(n + 1) for all n > 0, in particular, under condition (Cl). This is
also the case for the Gross Laplacian, i.e., under this condition, the Gross Laplacian AG is
continuous from [£]a into itself. Hence its adjoint A* is continuous from [£\*a into itself.

However, for the number operator N, we do not need to assume any (7-condition. For any
sequence (a(n)} satisfying conditions (Al) and (A2), the number operator TV is continuous
from [£}a into itself and also from (£}*a into itself.

2. Translation and scaling; operators

From Equation (3.3.19) we have [£]Q C (£) and so every <p € [£]a has a unique continuous
version and has a unique analytic extension (see 12.4.75 and 12.4.76.) Thus we can define
translation and scaling operators acting on the space [£\a as in 3.6.2.

The next theorem is from section 3.2 in [60]

Theorem 3.6.18 Assume that condition (Cl) is satisfied. Then for any y 6 £' and X € C,
the translation operator Ty and scaling operator S\ are continuous from [£]Q into itself.

We can easily see that those properties and identities in 3.6.2 concerning the adjoints
T* and S\, and the extension T^ are all valid for the CKS-space under condition (Cl).

3. Multiplication and Wick product

From Theorems 3.4 and 3.5 in [60] we have the next two theorems concerning the Wick
product.

Theorem 3.6.19 Assume that condition (C2) is satisfied. Then [£}a is closed under the
Wick multiplication and the mapping (if, i/j) >—> ip o ip is continuous from [£\a x [£}a into
[£]«.

Theorem 3.6.20 Assume that condition (C3) is satisfied. Then [£]* is closed under the
Wick multiplication and the mapping ($, \P) i—> $ o ̂  is continuous from [£]^ x [£]£, into
(£}*•
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As for the pointwise multiplication of two test functions, recall the first identity from
Equation (3.6.45)

We can check that under condition (Cl) the operators 6 and 5 are continuous from [£]a

into itself (this fact also follows from the continuity of the Fourier-Gauss transform below.)
Hence we have the next theorem.

Theorem 3.6.21 Assume that conditions (Cl) and (C2) are satisfied. Then [£]a is dosed
under pointwise multiplication and the mapping (<f,t^) >— > y4> is continuous from [£]a x [£]a
into [£]a.

4. Fourier-Gauss transform

The next theorem is from Theorem 3.3 in [60].

Theorem 3.6.22 Assume that condition (Cl) is satisfied. Then for any a,b € C, the
Fourier-Gauss transform Qa^ is continuous from [£]a into itself.

In particular, the operators S, Q, Q, and the Fourier- Wiener transform are all continuous
from [£]a into itself.

The properties of Qaj, and Q* b and the characterization theorems in 3.6.4 are all valid
under the condition (Cl).

As for the CKS-space [£]„ C (I/2) c [£]* given by a growth function u, we need to
assume that u satisfies conditions (Ul) (U2) (U3) in 3.4.4. It is shown in [7] that for such a
function u, the associated sequence {a(n)}^L0 in Equation (3.4.33) satisfies condition (C2)
and (C3) (hence also (Cl) since (C3) implies (Cl).) Thus the results for the CKS-space
[£]a C (L2) c [£]* can be automatically carried over to the CKS-space [£]u C (L2) c [£]*.

3.7 Comments on other topics and applications
At the end of this survey article, we mention some other topics and applications of white
noise theory.

1. Levy and Volterra Laplacians

In 3.6.1 we discussed the Gross Laplacian and number operator. There are two more
Laplacian operators: the Levy and Volterra Laplacians.

Let / be a function defined on a Hilbert space H. The Levy Laplacian AL/ of /, as
originally proposed by P. Levy, is defined to be the function

(ar)= lim - f] f"(x)(ek, ek),
k=l

where {en} is an orthonormal basis for H. Obviously, if /"(x) is a trace class operator of
H, then AL/(X) = 0. Thus if the Gross Laplacian AG/ exists, then AL/ = 0. On the other
hand, when AG/ does not exist, the Levy Laplacian AL/ may be defined. For example,
consider the function /(x) = x 2 (\ • is the norm on H.) We have f"(x) = I and so AG/
does not exist. However, A^/(x) = 1.

One of the original motivations for Hida to introduce white noise theory was to under-
stand the Levy Laplacian from the white noise viewpoint. The above function /, when
written in white noise language, is the function F(£) = /R£(£)2 dt. This function is the S-
transform of the generalized function $ = /R : B(t)2 : dt in (S)*. The Gross Laplacian AQ$
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is not defined. However, AL$ = 1. In general, the Gross Laplacian acts on ordinary func-
tions, while the Levy Laplacian acts on generalized functions. Thus AL$ is defined through
the S-transform F = S$ of $ and expressed in terms of the second functional derivative
F"(£) of F. However, the Levy Laplacian picks up only the singular part of F"(£). The
regular part of F"(£) gives another Laplacian, called the Volterra Laplacian A^ of 4>. In
the absence of the singular part, the regular part would give the Gross Laplacian.

For the precise definitions and a comprehensive discussion of the Levy and Volterra
Laplacian in terms of the S'-transform, see [40] and the references therein. For the recent
development about the Levy Laplacian, see [51] [52].

We remark that Accardi [1] has discovered a very important relationship between the
Levy Laplacian and Yang-Mills equations.

2. Integral kernel operators and quantum probability

Integral kernel operators were introduced by Hida et al. in [23]. They are operators of
the form

• • • d* d t l - - - dtk d S l - - - dsjdti • • • dtk,

where T C R is an interval and 9 e (,5/)®(J+fc). The integral kernel operator 5^(0) is a
continuous linear operator from (S)p into (5)J. In fact, it is also continuous from [S]a into
[<S]* if the sequence {a(n)} satisfies condition (Cl) in 3.6.5. Integral kernel operators with
9 6 L2(RJ"+fe) had already been studied in quantum probability before Hida et al. [23]. The
case with 0 being a tempered distribution is a significant progress in quantum probability.

For more information on integral kernel operators, see [40] (chapter 10) and [48]. For
more recent development related to integral kernel operators and the application to quantum
probability, see [12] [13] [49].

One of the most important applications of white noise theory is to quantum probability.
The noncommutative Ito lemma can be formulated in a very natural way by using the white
noise theory. For an excellent account of the white noise approach to quantum stochastic
calculus, see [2] which is part of a forthcoming book by Accardi et al.

3. Stochastic integration

An Ito integral is an integral of the form fa f ( t ) dB(t) with the integrand / being
nonanticipating and almost all sample paths of / are square integrable. Thus the integral
J0 .B(l) dB(t) is not an Ito integral, even though intuitively we would have JQ B(l) dB(i) =
B(l) J0 dB(t) = B(l)2. This simple example served as a motivation for Ito himself in 1976
to extend Ito's integral for integrands which may be anticipating.

In fact, being motivated by the problem to extend Ito's lemma for functions of the form
g(B(t), -B(l)), 0 < t < 1, Hitsuda already defined stochastic integrals for anticipating inte-
grands in 1972 during the Japan-USSR joint probability conference. Skorokhod, influenced
by Hitsuda's lecture in the conference, published a paper in 1975 to extend the Ito integral
without assuming the nonanticipating property for the integrand. Both Hitsuda and Sko-
rokhod used the Wiener-Ito decomposition of the integrand to define this new stochastic
integral, which is nowadays called the Hitsuda-Skorokhod integral.

From the white noise viewpoint we can write the Ito integral Ja f ( t ) dB(t) as Ja /(t)B(t) dt
(cf. 10.7.66.) But if we regard f(t)B(t) as multiplication by B(t), then the class of functions
/ that we can integrate is small. A better idea is to write the integral as fa B(t)f(t)dt
and regard B(t) as a multiplication operator B(t) = dt + <9t* (see Equation (3.6.44).) This
leads to the integral fa(9t + d ^ ) f ( t ) d t . On the one hand, for nonanticipating /, we have
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/a #t7(*)* = la /(*) ̂ W as Pointed out by Kubo and Takenaka in [35]. Thus the inte-
gral Ja d t f ( t ) dt is an extension of the Ito integral. It turns out that this integral is the
Hitsuda-Skorokhod integral. On the other hand, the integral Ja dtf(t] dt is not well-defined
and gives rise to the integrals / d t + f ( t ) dt and / dt- f ( t ) dt.

See chapter 13 of [40] for more information on the above discussion and applications
such as intersection local times, Donsker's delta function, and Tanaka formula, among other
things. Recently, de Faria et al. have proved the Clark-Ocone formula for certain generalized
functions in [15].

4. Infinite dimensional harmonic analysis

The finite dimensional Fourier transform, depending on which properties one wants to
keep, has several infinite dimensional analogues. In 3.6.4 we gave some of these analogues in
white noise theory: the ^-transform, Fourier-Wiener transform, second quantization opera-
tor, and Fourier transform. Recently, Lee and Stan [73] have used the second quantization
operator to obtain a white noise generalization of the Heisenberg uncertainty principle. On
the other hand, the S-transform is used by Stan [56] to generalize the Paley-Wiener theorem
to a white noise space.

An important motivation for Hida to introduce white noise theory is to study infinite
dimensional rotation groups. Let £ c So C £' be an abstract white noise space in 12.3.17
with £ understood to be infinite dimensional. The set O(£;£Q) of linear homeomorphisms
g from £ onto itself such that |#(£)|o = l£lo *s referred to as an infinite dimensional rotation
group.

The infinite dimensional rotation group O(£; £$) contains many subgroups. The trivial
ones are rotations on any fixed finite dimensional subspace of €. preserving the £o-norm.
An important subgroup is the Levy group. Let PL denote the set of permutations CT of N
(natural numbers) such that

Let {en}^=l C £ be an orthonormal basis for £Q. For each a e PL, let ga be the linear
operator on £ defined by

n=l

The set QL = {ga; CT € PL} is called the Levy group. It is a subgroup of O(£ ; £0). Obviously,
no (jo- in QL can be approximated by finite dimensional rotations. The Levy group is closely
related to the Levy Laplacian (see the papers by Hida [20] and Obata [46] [47].)

In the special case when £0 = Z/2(Rd), i.e., £ is a nuclear subspace of L2(Rd), we can
use the structure of L2(Rd) to get fascinating subgroups of O(£\ L2(Rd)). These subgroups
are one- parameter groups called whiskers in [18]. Some examples of whiskers are shifts,
isotropic dilations, special conformal transformations, and special orthogonal groups.

For a full account of infinite dimensional rotation groups, see the forthcoming book by
Hida [21].

5. Mathematical physics
White noise theory provides a very natural approach to define and study Feynman

integrals as initiated by Hida and Streit [72]. Consider the Schrodinger equation

i^ = -~
tit 2m
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where h is the Planck constant and S0 is the Dirac delta function at 0. It is shown in Section
14.2 of [40] that the white noise formulation of the.solution is given by

f i x Vd ]}Jo W u\)

x exp [ - £ f*V(x - B(u)) du]*x(B(t))d/i(B), (3.7.47)

where 5x(B(t)) is Donsker's delta function in Example 3.2.5 and A A e x p f - - - ] denotes the
renormalization of exp[- • • ]. What we need to show is, for a given potential function V, the
integrand <&t,x in Equation (3.7.47) is a generalized function in some space of generalized
functions. Then the Feynman integral, given as the expectation of $t,x in Equation (3.7.47),
can be defined by ip(t, x) = {{<J>t,z, !}}•

In chapter 14 of [40], the integrand $t,x is shown to be a generalized function in the space
(S)* for the cases V(x) = 0 (free particle), — ax (constant external force), \gx2 (harmonic
oscillator). When V is the Fourier transform of a finite measure m (given by Albeverio and
H0egh-Krohn in [3]), it is wrongly stated in [40] (page 316) that the corresponding integrand
$t>z is a generalized function in (S)*• Actually, the integrand $tiX should be a generalized
function in a Bell number space [S]lk (see Example 3.3.11 in 12.3.21) of some order k, which
depends on the growth order of the finite measure m.

There are other important applications of white noise theory to mathematical physics
such as Dirichlet forms and quantum field theory. See Chapters 10 and 11 of [22] and the
references therein.

6. Random fields and stochastic variational calculus

A rich area for applications of white noise theory is stochastic variational calculus for
random fields. Let C be a class of smooth manifolds diffeomorphic to the sphere Sd~1 in
Rd. For each C € C, let X(C) be a generalized function in the space (£)* (in general, it
can be (S)^, [5]*, or [£]*.) In [20] Hida describes a stochastic variational equation for a
random field {X(C); C 6 C} as

6X(C) = $(X(C'), (C') C (C), Y(s), s € C, 5C,C), (3.7.48)

where (C) denotes the domain enclosed by C, Y(s) is the innovation for X(C). The for-
mulation in Equation (3.7.48) is motivated by an attempt to understand the Tomonaga
equation in quantum mechanics.

Important results for special cases of Equation (3.7.48) have been obtained by Hida and
Si Si [24] and Si Si [55]. For further information see the forthcoming book by Hida [21].

7. Stochastic partial differential equations

Earlier applications of white noise theory to study stochastic partial differential equation
was done by Chow [11] and Lindstr0m et al. [45]. Later 0ksendal and his colleagues devel-
oped the techniques much further. In particular, we mention the Burgers equation driven
by a non-Gaussian noise

ut + \u-ux = vuxx + F(t,x,uj). (3.7.49)

In [25] [26], Holden et al. regarded this equation as an equation taking values in a space
of generalized functions. In order to do so, they replaced the multiplication by the Wick
product. Thus Equation (3.7.49) is replace by the following equation

$t + A5> o <&x = v§xx + F(t, x, ui}.
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The 5-transform provides a very useful tool to study this kind of stochastic partial differ-
ential equations. For a comprehensive account of the progress in this area, see [27] and the
reference therein.

Recently Kondratiev et al. [10] have also made a rather significant progress about Burgers
equations with random noises such as the Poisson and gamma noises [29].



Bibliography

[I] Accardi, L.: Yang-Mills equations and Levy Laplacian; in: Dirichlet Forms and Stochas-
tic Processes, Z. M. Ma et al. (eds.) (1995) 1-24, Walter de Gruyter, Berlin.

[2] Accardi, L., Lu, Y. G., and Volovich, I. V.: White noise approach to classical and
quantum stochastic calculi; Centre V. Volterra, Universita di Roma "Tor Vergata"
Preprint #375 (1999).

[3] Albeverio, S. and H0egh-Krohn, R.: Mathematical Theory ofFeynman Path Integrals.
Lecture Notes in Math. 523, Springer-Verlag, 1976.

[4] Asai, N., Kubo, L, and Kuo, H.-H.: Bell numbers, log-concavity, and log-convexity;
in: Classical and Quantum White Noise, L. Accardi et al. (eds.) Kluwer Academic
Publishers (1999).

[5] Asai, N., Kubo, L, and Kuo, H.-H.: Characterization of test functions in CKS-space;
in: Proc. International Conference on Mathematical Physics and Stochastic Processes,
A. Albeverio et al. (eds.) World Scientific (1999).

[6] Asai, N., Kubo, I., and Kuo, H.-H.: Log-concavity, log-convexity, and growth order in
white noise analysis; Preprint (1999).

[7] Asai, N., Kubo, I., and Kuo, H.-H.: CKS-space in terms of growth functions; Preprint
(1999).

[8] Asai, N., Kubo, I., and Kuo, H.-H.: General characterization theorems and intrinsic
topologies in white noise analysis; Preprint (1999).

[9] Bargmann, V.: On a Hilbert space of analytic functions and an associated integral
transform, I; Comm. Pure Appl. Math. 14 (1961) 187-214.

[10] Benth, F. E. and Streit, L.: The Burgers equation with a non-Gaussian random force;
Preprint (1995).

[II] Chow, P. L.: Generalized solution of some parabolic equations with a random drift;
J. Appl Math. Optim. 20 (1989) 81-96.

[12] Chung, D. M. and Ji, U. C.: Transformation groups on white noise functionals and
their applications; J. Appl Math. Optim. 37 (1998) 205-223.

[13] Chung, D. M., Ji, U. C., and Obata, N.: Transformations on white noise functions
associated with second order differential operators of diagonal type; Nagoya Math. J.
149 (1998) 173-192.

155



156 BIBLIOGRAPHY

[14] Cochran, W. G., Kuo, H.-H., and Sengupta, A.: A new class of white noise generalized
functions; Infinite Dimensional Analysis, Quantum Probability and Related Topics 1
(1998) 43-67.

[15] de Faria, M., Oliveira, M. J., and Streit, L.: A generalized Clark-Ocone formula;
Preprint (1998).

[16] Gannoun, R., Hachaichi, R., Ouerdiane, H., and Rezgui, A.: Un Thoreme de Dualite
Entre Espaces de Fonctions Holomorphes a Croissance Exponentiele; J. Funct. Anal.
(to appear).

[17] Gross, L.: Potential theory on Hilbert space; J. Funct. Anal. 1 (1967) 123-181.

[18] Hida, T.: Analysis of Brownian Functionals. Carleton Mathematical Lecture Notes 13,
1975.

[19] Hida, T.: Infinite-dimensional rotation group and unitary group; Lecture Notes in
Math. 1379 (1989) 125-134, Springer-Verlag.

[20] Hida, T.: White noise analysis: An overview and some future directions; HAS Reports
1995-001 (1995).

[21] Hida, T.: White Noise and Functional Analysis, (to appear).

[22] Hida, T., Kuo, H.-H., Potthoff, J., and Streit, L.: White Noise: An Infinite Dimensional
Calculus. Kluwer Academic Publishers, 1993.

[23] Hida, T., Obata, N., and Saito: Infinite dimensional rotations and Laplacians in terms
of white noise calculus; Nagoya Math. J. 128 (1992) 65-93.

[24] Hida, T. and Si Si: Innovations for random fields; Infinite Dimensional Analysis, Quan-
tum Probability and Related Topics 1 (1998) 499-509.

[25] Holden, H., Lindstr0m, T., 0kendal, B., Ub0e, J., and Zhang, T. S.: The Burgers
equation with a noisy force and the stochastic heat equation; Comm PDE 19 (1994).

[26] Holden, H., Lindstr0m, T., 0kendal, B., Ub0e, J., and Zhang, T. S.: The stochastic
Wick-type Burgers equation; Preprint (1994).

[27] Holden, H., 0kendal, B., Ub0e, J., and Zhang, T. S.: Stochastic Partial Differentia]
Equations. Birkhauser, 1996.

[28] Kondratiev, Yu. G.: Nuclear spaces of entire functions in problems of infinite-
dimensional analysis; Soviet Math. Dokl. 22 (1980) 588-592.

[29] Kondratiev, Yu. G., da Silva, J. L., Streit, L., and Us, G. F.: Analysis on Poisson
and gamma spaces; Infinite Dimensional Analysis, Quantum Probability and Related
Topics 1 (1998) 91-117.

[30] Kondratiev, Yu. G. and Streit, L.: A remark about a norm estimate for white noise
distributions; Ukrainian Math. J. 44 (1992) 832-835.

[31] Kondratiev, Yu. G. and Streit, L.: Spaces of white noise distributions: Constructions,
Descriptions, Applications. I; Reports on Math. Phys. 33 (1993) 341-366.

[32] Kubo, L, Kuo, H.-H., and Sengupta, A.: White noise analysis on a new space of Hida
distributions; Infinite Dimensional Analysis, Quantum Probability and Related Topics
(in press).



BIBLIOGRAPHY 157

[33] Kubo, I. and Takenaka, S.: Calculus on Gaussian white noise I; Proc. Japan Academy
56A (1980) 376-380.

[34] Kubo, I. and Takenaka, S.: Calculus on Gaussian white noise II; Proc. Japan Academy
56A (1980) 411-416.

[35] Kubo, I. and Takenaka, S.: Calculus on Gaussian white noise III; Proc. Japan Academy
57A (1981) 433-437.

[36] Kubo, I. and Takenaka, S.: Calculus on Gaussian white noise IV; Proc. Japan Academy
58A (1982) 186-189.

[37] Kubo, I. and Yokoi, Y.: A remark on the space of testing random variables in the white
noise calculus; Nagoya Math. J. 115 (1989) 139-149.

[38] Kuo, H.-H.: Gaussian Measures in Banach Spaces. Lecture Notes in Math. 463,
Springer-Verlag, 1975.

[39] Kuo, H.-H.: On Fourier transform of generalized Brownian functionals; J. Multivariate
Analysis 12 (1982) 415-431.

[40] Kuo, H.-H.: White Noise Distribution Theory. CRC Press, Boca Raton, 1996.

[41] Kuo, H.-H., Potthoff, J., and Streit, L.: A characterization of white noise test func-
tionals; JVagoya Math. J. 121 (1991) 185-194.

[42] Kuo, H.-H. and Xiong, J.: Stochastic differential equations in white noise space; Infinite
Dimensional Analysis, Quantum Probability, and Related Topics 1 (1998) 611-632.

[43] Lee, Y.-J.: Analytic version of test functionals, Fourier transform and a characterization
of measures in white noise calculus; J. Funct. Anal. 100 (1991) 359-380.

[44] Lee, Y.-J. and Stan, A.: An infinite-dimensional Heisenberg uncertainty principle; Tai-
wanese J. Math. (1999) (to appear).

[45] Lindstr0m, T., 0ksendal, B., and Ub0e, J.: Stochastic differential equations involving
positive noise; Stochastic Analysis, M. Barlow and N. Bingham (eds.) (1991) 261-303,
Cambridge University Press.

[46] Obata, N.: Analysis of the Levy Laplacian; Soochow J. Math. 14 (1988) 105-109.

[47] Obata, N.: A characterization of the Levy Laplacian in terms of infinite dimensional
rotation groups; Nagoya Math. J. 118 (1990) 111-132.

[48] Obata, N.: White Noise Calculus and Fock Space. Lecture Notes in Math. 1577,
Springer-Verlag, 1994.

[49] Obata, N.: Wick product of white noise operators and quantum stochastic differential
equations; J. Math. Soc. Japan 51 (1999) 613-641.

[50] Potthoff, J. and Streit, L.: A characterization of Hida distributions; J. Funct. Anal.
101 (1991) 212-229.

[51] Saito, K.: A (Co)-group generated by the Levy Laplacian; J. Stochastic Analysis and
Appl. 16 (1998) 567-584.

[52] Saito, K.: A (Co)-group generated by the Levy Laplacian II; Infinite Dimensional
Analysis, Quantum Probability and Related Topics 1 (1998) 425-437.



158 BIBLIOGRAPHY

[53] Schneider, W. R.: Grey noise; Stochastic Processes, Physics and Geometry, S. Albeverio
et al. (eds.) (1990) 676-681, World Scientific.

[54] Segal, I. E.: Tensor algebras over Hilbert spaces, I; Trails. Amer. Math. Soc. 81 (1956)
106-134.

[55] Si Si: A variational formula for some random fields; an analogue of Ito's formula; Infinite
Dimensional Analysis, Quantum Probability and Related Topics 2 (1999) 305-313.

[56] Stan, A.: Paley-Wiener theorem for white noise analysis; J. Funct. Anal, (to appear).

[57] Streit, L. and Hida T.: Generalized Brownian functionals and the Feynman integral;
Stochastic Processes and Their Applications 16 (1983) 55-69.

[58] Yokoi, Y.: Positive generalized white noise functionals; Hiroshima Math. J. 20 (1990)
137-157.



Chapter 4

Stochastic Differential
Equations and Their
Applications

Bo ZHANG
Department of Statistics

People's University of China, Beijing, China

Introduction

The concept of stochastic differential equations was introduced in 1902 for the first time by
Gibbs [21] in which the integral of Hamilton-Jacobi differential equations for conservation
systems in statistical mechanics with random initial states was studied. However stochastic
differential equations was not rigorously described in terms of mathematical language until
1951, when the famous article — on stochastic differential equations — was published by
Ito [40]. Since then, stochastic differential equations have been well known and are widely
used outside of mathematics. There are many fruitful connections to other mathematical
disciplines, such as measure theory, partial differential equation, differential geometry and
potential theory. The subject has also rapidly developed its own life as a fascinating research
field with many interesting unanswered questions.

General speaking, the basic theoretical problems concerned with stochastic differential
equations are the same as those in the case of deterministic differential equatioins, namely:
existence and uniqueness of a solution, analytical properties of the solutions, and dependence
on the solutions on the initial values.

In the first part of this chapter, we will deal with Ito type stochastic differential equations
with respect to the Brownian motion process, and its applications in which stochastic differ-
ential equations on manifold and backward stochastic differential equations and application
are also discussed. The second part discusses some generalizations, which include stochastic
differential equation with respect to Poisson point processes, stochastic differential equa-
tion governed by C-valued Levy process, stochastic differential equations with respect to
semimartingale and stochastic differential equations with respect to nonlinear integrators.
Thirdly, we will discuss functional stochastic differential equations. At last, we will give a
short review of stochastic differential equation in abstract spaces.
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4.1 SDEs with respect to Brownian motion

4.1.1 Ito type SDEs
Let us begin this part with some definitions. Let Rd be the d-dimentional Euclidean space
and let Wd = C([0, oo) — > Rd) be the space of all continuous functions w defined on [0, oo)
with values in Rd. For wj_,w^ € Wd, let

p(wi, w2) = ( max \wi(t) - w2(t)\ A 1)
fe=i - ~

where | • | denotes the Euclidean metric in Rd. Wd is a complete separable metric space
under metric p. Let B(Wd) be the topological a field on Wd and Bt(Wd) be the sub-cr-field
of B(Wd} generated by w(s), 0 < s < t. In other words, Bt(Wd) is the inverse <7-field
Ptl[B(Wd)} of B(Wd) under the mapping pt : Wd -> Wd defined by (ptw)(s) = w(t A s).
We define Rd (g> Rr as the set of all real d x r matrices; B(Rd <g> RT) is the topological a field
on Rd (g> Rr obtained by identifying Rd ® Rr with dr dimensional Euclidean space.

We denote by Ad'r the set of all functions a(t, w) : [0, oo) x Wd —> Rd ® Rr such that
(i) it is B([Q, oo)) x B(Wd)/B(Rd ® #r)-rneasurable, and
(ii) for each t e [0, oo), Wd 9 w i — > (t, w) e fld <g> Rr is B(Wd)/B(fld ® tfr)-measurable.
Let (£l,Jr,{J-'t}t>o,P) be a complete probability space which satisfies the usual condi-

tions, i.e. {Jt}t>o is an increasing and right continuous family of sub-a-algebras of F and
FQ containing all P-null sets.

A stochastic process X = (Xt(u>))t>o is said to be continuous (or left continuous or right
continuous ) if for almost all w € fi, the function Xt(u}) is continuous on t € R+ (or left
continuous or right continuous). It is said to be cadlag (right continuous and left limit) if it
is right continuous and for almost all w e Q the left limit Xt_(uj) = lims|t Xs(u}) exists and
is finite for all t > 0. It is said to be adapted (to {Ft}) if for every t, Xt(w) is .Ft-measurable
in <jj.

Consider the following d-dimensional stochastic differential equation:

dX(t) = b(t,X)dt + a(t,X)dB(t) (4.1.1)

where b(t,x) = (b\(t,x), • • • ,bd(t,x))T is Borel measurable function (t,x) 6 [0, oo) x Rd — >
Rd, and a(t, x) = (a,ij(t, x))dxr is a d x r-matrix Borel measurable function (t, x) G [0, oo) x
Rd — > Rd <g> Rr, and B(t) is an r-dimensional standard Browian motion process.

Definition 4.1.1 Let a = (ai:j(t,w)) € Ad'r and b = (bi(t,w)) 6 Ad'1 be given. By a
solution of the equation (4-1-1), we mean a d- dimensional continuous stochastic process
X = (X(t))t>o defined on a probability space (fi, F, P) with a reference family (ft)t>o such
that

• there exists an r-dimensional (J~t)~ Brownian motion process B(t) = (B(t))t>o with
B(0) = 0 a.s.;

• X = (X(t)) is a d- dimensional continuous process adapted to (J-t)t>o, ">••£• for each
t 6 [0,oo), X is a mapping: uj i — > X ( t , u j ) e Wd which is Fi/Bt(Wd) -measurable;

• the family of adapted processes a^- (i, X(t, uj}) and b(t, X(t, a;)) belong to the spaces tig0

and Cl°c respectively, where Cl-£c = {* = (*(t))t>o|* is measurable (ft) -adapted pro-
cess andVt > 0,/0* \^(s,u)\ds < oo,a.s.}, and C^c = {* = (*(<))t>o|* is measurable
(^-adapted process and Vt > 0, /0 ^2(s, u)ds < oo, a.s.};
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• X = ( X i ( t ) , - - - ,Xr(t)) andB=(B1(t),--- ,Br(t)) satisfy

Xi(t)-Xi(0) = ! bl(s,X(s))ds + Y" I aij(s,X(s))dBj(s),i=l,2,---,d, (4.1.2)
./o j=Q Jo

with probability one, where the integral by dBj(t) is ltd integral.

The stochastic differential equations which are most important and which are mainly
studied are of the following type.

Definition 4.1.2 Let a(t,x] be a Borel measurable function (t,x) e [0,oo) x Rd — » Rd <g> Rr

and b(t,x) be a Borel measurable function (t,x) 6 [0, oo) x Rd — > Rd. Then a(t,w) and
b(t,w) defined by a(t,w) = a(t,w(t}) and b(t}w) = b(t,w(t)) clearly satisfy a 6 Ad'r , and
b G Ad'1 . In such a case, the stochastic differential equation (4-1-1) is said to be of the
Markovian type. The equation then has the following form:

dX(t) = b(t, X(t))dt + a(t, X(t))dB(t) (4.1.3)

Furthermore, if a and b do not depend on t and are functions of x £ Rd alone, then the
equation (4-1-1) is said to be of the time-independent (or time homogeneous) Markovian
type.

Note that an equation of Markovian type reduces to a system of ordinary differential
equations (a dynamical system) X = b(t,Xt) when a = 0. Thus a stochastic differential
equation generalizes the notion of an ordinary differential equation by adding the effect of
random fluctuation.

Suppose that at least one solution of (4.1.1) exists. We will present several definitions
concerning the uniqueness of solutions.

Definition 4.1.3 We say that the uniqueness of solutions for (4-1-1) holds if whenever X
and X' are two solutions whose initial laws on Rd coincide, then the laws of the processes
X and X' on the space Wd coincide.

This is so-called "the uniequeness in the sense of probability law." On the other hand
if we consider stochastic differential equations as a tool for defining sample paths of a
random process as functional of Brownian paths, then the following definition might be
more natural.

Definition 4.1.4 We say that the pathwise uniqueness of solution for (4-1-1) holds if when-
ever X and X' are any two solutions defined on the same probability space (fi,^7, P) with
the same reference family (.Ft) and the same r- dimensional (.Ft) -Brownian motion such that
X(0) = X'(Q)a.s., then X(t) = X'(t) for allt>0 a.s.

Definition 4.1.5 (strong solution) A solution X = (X(t)) of (4-1-1) is called a strong
solution if there exists a function F(x, w) : Rd x WQ — > Wd which is C(Rd x WQ) -measurable,
that means for any Borel probability measure n on Rd there exists a function F : Rd x

_____________ U _
> Wd which is (Rd x W£) /B(Wd)-meaurable and for almost all x(p) it holds

F(x,w) = F/J.(x,w),a.s.w(Pw), here Pw is the Wiener measure on WQ. For each x €
Rd,w i — > F(x,w) is Bt(W£)pW /Bt(Wd) -measurable for every t > 0 and it holds

X = F(X(0),B)a.s. . . (4.1.4)
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Definition 4.1.6 We say that the equation (4-1-1) has a unique strong solution if there
exists a function F(x,w) : Rd x WQ — > Wd with the same properties as in Definition 1.2
such that the following is ture

(i) for any r -dimensional (J-t)-Brownian motion process B = (B(t)) (-B(O) =0) on a
probability space with a reference family (J-"t) and any Rd -valued random variable £ which
is Fo-measurable, the continuous process X = F(£,B) is a solution of (4-1-1) on this space
with X(0) = £ a. s.;

(ii) for any solution (X, B) of (4-1-1), X = F(X,(0),B) holds a.s.

Theorem 4.1.7 Given a G Ad'r and b € Ad'1, the equation (4-1-1) has a unique strong
solution if and only if for any Borel probability measure (j, on Rd, a solution X of (4-1-1)
exists such that the law of initial value X(0) coincides with y and the pathwise uniqueness
of solutioins holds.

Theorem 4.1.8 (Existence) Suppose that a € Ad'r and b £ Ad'1 are bounded and contin-
uous. Then, for any given probability /n on (Rd, B(Rd)) with compact support, there exists
a solution (X,B) of the equation (4-1-1) such that the law of X(0) coincides with p,i.e.,
P{X(0) £A} = fj,(A) for any A 6 B(Rd).

Remark The boundedness assumption on a and b can be weakened, but some kind of
restriction on the growth order of a and b is necessary in order to guarantee the existence of
a global solution, (see e.g. [94]) The condition that n has compact support can be removed.
(see. [39]) If we remove this condition of boundedness, then a solution does exist locally but,
in general, explodes in finite time. Let Rd = Rd U {A} be the one-point compactification of
Rd and Wd = {w; [0,oo) 3 t •-» w(t) 6 C(Rd),w(t') = AVi' > t, ifw(t) = A}. Let B(Wd)
be the o~-field generated by Borel cylinder sets. For w € Wd, we say e(w) = inf{t; w(t) = A}
the explosion time of the trajectory w. We now can modify the notion of a solution as
follows.

Let a(x) = KJ(Z)) • Rd -^ Rd ® Rr and b(x) = (bi(x)) : Rd -> Rd be continuous.
Consider the following stochastic differential equation

dX(f) = b(X(t))dt + a(X(t))dB(t) (4.1.5)

Definition 4.1.9 We say that a (Wd,B(Wd))-valued continuous stochastic process X =
(X(t))t>o defined on a probability space (fi,^7, P) with a reference family (J-t)t>o is fl solu-
tion of (4-'l-5) if

(i) there exists an r-dimensional (ft)-Brownian motion process B(t) = (B(t))t>o with
B(0) = 0 a.s.;

(ii) X = (X(t)) is adapted to (^i)t>0) i-e. for each t,u i — > X(t,w) € Rd is Ft-
measurable and

(Hi) if e(w) = e(X(uj)) is the explosion time of X(u>} e Wd, then for almost all w,

f 6i(A-(s))d* + y aij(X(8))dBj(S),i = l , 2 , - - - , d , (4.1.6)
Jo

for allte [0, e(w)).

Theorem 4.1.10 (Existence) Suppose a(t,x) and b(t,x) are locally Lipschitz continuous
uniformly, i.e., for every N > 0 there exists a constant KN > 0 such that

\\a(t,x) - a(t,y)\\2 + \b(t,x) - b(t,y)\2 < KN\x - y\2Vx,y &BN,t> 0, (4.1.7)

where ||a(t,x)||2 = trace(aaT),BN = {x € Rd; \x\ < N}. Then the pathwise uniqueness of
solutions of (4-1-1) holds and hence it has a unique strong solution.
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If we consider the case of equation of the Markovian type and d = 1, the condition (4.1.7)
for the pathwise uniqueness of solutions of the equation:

dX(t) = b(x)dt + a(x)dB(t) (4.1.8)

can be weakened in the following theorem.

Theorem 4.1.11 Let d = r = 1 and suppose that b(x) and a(x) are bounded. Assume
further that the following conditions are satisfied

(i) there exists an strictly increasing function p(t) on [0, oo) such that p(0) = 0,
J0+ p~'2(t')dt = oo and a(x) — a(y]\ < p(\x — y\) for all x,y € K1;

(ii) there exists an increasing and concave function K,(t) on [0,oo) such that «;(0) =
0, /0+ K~l(t)dt = oo and b(x) — b(y)\ < K(\X - y\) for all x,y e R1 .

Then the pathwise uniqueness of solution holds for the equation (4-1-8) and hence it has
the unique strong solution.

Besides pathwise uniqueness, we have the beautiful and important result on uniqueness
of solutions in the sense of probability law in the following theorem. For the general case,
refer to [88] and [49].

Theorem 4.1.12 Consider the equation of the time homogeneous Markovian case (4-1-8).
If a(x)a(x) is uniformly positive definite, bounded and continuous andb(x) is bounded and
Borel measurable, then the uniqueness of solutions holds.

4.1.2 Properties of solutions
First let us summarize the basic properties of the solution below. Before this we would
like to consider the Ito equations (4.1.1) in the following form which the initial condition

Xt = V + I b(r, Xr) + I a(r, Xr}dBr. (4.1.9)
J s Js

We assume that the coefficients are Lipschitz continuous with respect to x £ Rd uniformly
in t 6 [0, T]. The solution of (4.1.9) will be dnoted as X s j ( y ) , X S t t ( y , u } ) or Xsj simply.
Then we have the following theorem. For the proof, see [51] and related papers.

Theorem 4.1.13 We can choose a modification of the solution in the following way. For
almost all u>,

(i) XStt(y,u}) is continuous in (s,t,y);
(ii) for each s 6 [0, T), and Vy, y' e L2(ft, JFt, P; Rd),

E[ sup \X,,t(y) - Xs<t(y')\2} < C\y - y'\2 ,
te[s,r]

and for each p > 2,

\P] < Cp\y\p,Vy

where C and Cp are constants which depend on the coefficients of (4-1-9) and Lipschitz
constant, also Cp depends on p.

(Hi) Xtitt:j(y,ui) = Xt2,t3(Xtl,t2(y,u>'),LLi) holds for any ti <t2 < t3 and y.
(iv)the map Xs,t(-,u;) : Rd — > Rd is homeomorphism for any s < t;
Futhermore if the coefficients of (4-1-9) are of ck -class in x. Then
( v ) X S i t ( - , u j ) : Rd — » Rd is a ck~l -diffeomorphism for any s < t almost surely.
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We know that it is a Markov diffusion solution X(t) of (4.1.3) if the coefficients are
continuous with respect to (t, x). We can ask: when is it a stationary process? The following
theorem holds, for the proof refer to Khasminskii's book [43].

Theorem 4.1.14 Assume that coefficients of (4-1-5) do not depend on time and satisfy the
Lipschitz condition (4-1-7), growth condition:

|6(x)| + | |a(x)||<^(l + |x|) (4.1.10)

for some constant K > 0 in domain UM = {y '• \y\ < M} for each M > 0, and X(Q) = X0
is a random variable independent of B(t); let, additionally, exist a positive definite function
V(y) e C2(Rd) such that:

where

sup LV (y) = —AM — * — oo, asM — > oo
\y\>M

+ 5 M ^ n . , ; (4.1.")

then, there exists a solution of (4-1-5) being a stationary Markov process.

In the following, we mention some asymptotic behaviour of solutions. One of asymptotic
property of solutions is associated with the existence of an ergodic distribution for the
process X(t). The next theorem holds [23].

Theorem 4.1.15 Assume that the coefficients of equation (4-1-8) fulfill the conditions
(i) a(x),b(x) and a'(x) the derivative of a(x) satisfy the Lipschitz condition;
(ii)a(x > 0 and lim|x|_(00 a(x) = j- > 0 exists;
/ • • • ) r°° b(x) j __p.

Then

Dfx(t) x , _ . . i r u2
lim ± \—~p.— <c — j — —~^— / ^^-P\ — — f C t u

Another important class of asymptotic problem in the theory of stochastic differential
equations is associated with stability of stochastic dynamic systems. The stability of a
dynamic system is usually understood as the insensitivity of the state of the system within
an unbounded time interval [0, oo) to small changes in the initial state or in the parameter
of the system. In contrast with the deterministic case, in the stochastic case the number
of different stability notions is greater due to the larger variety of concepts of stochastic
convergence. The concepts of stochastic stability which are studied most often are the
stability in probability, stability with probability one, and stability of moments.

In the past decades the problem of stability of stochastic systems has generated a great
deal of interest. Both the stability in the Lyapunov sense and the non-Lyapunov sense have
been well studied. See [43], [57],[65],[66], [42], [47], [58], and [97] in which stabilities of
various kinds are discussed in detail. Let us end this section with some notions of stability
in the Lypunov sense in the following definition. Let Xt(xo) be a global solution on [0, oo)
of (4.1.1) with initial value x0. Without loss of generality the trivial solution Xt = 0 can be
studied.

Definition 4.1.16 A trivial solution of (4-1-1) is said to be:
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1 . stable in probability, if for every e > 0,

lim P\ sup |Xt(io)| > e] = 0;
zo-»0 t0<t<oo

2. asymptotically stable in probability, if it is stable in probability and

ocXtixo) = 0] = 1;

3. asymptotically stable in large in probability, if it is stable in probability and

P[Kmt_+00Xt(i0) = 0] = 1, for all x0 € Rd;

4- p-stable, if for every e > 0, there exists a 8 > 0 such that

sup E\Xt(x0)\p < e, for\x0\ < 6;
t0<t<00

5. asymptotically p-stable,if it is p-stable and if

lirnt^00E\Xt(x0)\p = 0, for alkcQ in a neighborhood o/O;

6. exponentially p-stable, if there exist positive constants c\ and c? such that, for all
sufficiently small 6 > 0

E\Xt(xQ)\p < ci|ar0|pexp{-C2(t - t0)},/or|a;o| < 6.

7. weak exponentially stable in mean, if there exists a wedge function X(s) and positive
constants c\ > 0, 02 > 0 such that for 6 > 0 small enough, and XQ 6 Us = {x E Rd :
\x\ < 6}, implies

E[\(\Xt(x0)\)] < ciA(|a:ol)exP{-c2i} t > 0

where a wedge function means that a continuous function X(s) defined on [0, h) satis-
fying A(0) = 0 and A(s) > 0 for s > 0.

4.1.3 Equations depending on a parameter
Let A(t, x), F(t,x) be a random d- vector and nxn matrix respectively, defined for (t, x) €
[s, oo ) x Rd for some s > 0

(i) A(t, x),F(t, x) are continuous in (t, x), for each uj e fi;
(ii) A(t,x), F(t,x) are measurable in (t, x,ui)\
(iii) A(t, x), F(t,x) are J-t meaurable for each (t,x), where Tt is an increasing family of

cr-fields such that B(t) is ft measurable and a(B(t + A) — B(t),\ > 0) is independent of
\calFt for all t > 0;

(iv) there is a constant K such that

)\<(l + \x\) a.s., (4.1.12)
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and

\A(t,x)-A(t,x')\ <K(\x-x'\)t\F((t,x)-F(t,x')\ <K\x-x'\ a.s. (4.1.13)

Denote by M^[a, /?](! < p < oo) the class of all nonanticipative functions f ( t ) satisfying

E( \f(t)\pdt]<oo,(E[ess sup \ f ( t ) \ ] < o o , i f p = oo).
•J ex. c^^^^/-* '

Let <f>(t) be a functioin in M£°[s,T] . Consider the equation

/

t i-t
A(u,X(u))du + \ F(u,X(u))dB(u). (4.1.14)

J s

This equation is so-called stochastic differential equations with random coefficients.

Theorem 4.1.17 // (i)-(iv) hold and <j> € M£?[s,T], then there exists a unique solution
X(t) in M*[s,T}; further, X(t) belongs to M™[s,T}.

Theorem 4.1.18 Let Aa(t,x),Fa(t,x),4>a(t) satisfy the assumptions of Theorem 4-1-17.
for any 0 < a < 1 , with the constant K (in (4-1-12), (4-1-13)) independent of a, and with

SUP E 0Q.(t) f^ C •,

S<t<T ~~

where c is a constant independent of a. Suppose that for any N > 0,t G [s,!1]^ > 0,

limP{sup|:r| < N\Aa(t,x) - A0(t,x)\ > c} = 0

limP{sup|x| < N\Fa(t,x) - F0(t,x)\ > e} = 0
aj.0

Suppose also that

limsup|x| < NE\4>a(t) - ^o(t)\2 = 0

Consider the solutions Xa(t) of the equations

/

t rt
Aa(u,Xa(u))du+ \ Fa(u,Xa(u))dB(u)

J s

Then,

sup E\XQ(t) - X0(t)\2 -> 0 \mbox{if} a I 0.
s<t<T

Now we can study the behavior of the solution -X"x,s(t) in the parameters s, x via Theorem
4.1.17 and 4.1.18. Recall that

Xx,,(t) = x+ f b(u,Xx,s(u))du+ f a(u,Xx,s(u))dB(u). (4.1.15)
J s J s

We need the following condition: —-, -j^ exist and are continous (1 < i < d] in the following
sense.
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Definition 4.1.19 Let g ( x ) = g(xi,x2, • • • , £<*)> f ( x ) — f(xi,x2, • • • ,Xd) be random func-
tions for x in some open set. If

1 T[g(xi,x2,--- ,Xi + h,xi+i,--- ,xd) - g ( x i , - - - , x d ) ] - f ( x i , - - - ,xd)\2dp-+ 0n

as h — > 0, then we say that g(x) has a derivative with respect to Xi in the L2(£l) sense, and
the derivative is equal to f ( x ) . We write (d/dxi)g(x) = f ( x ) . Similarly one defines the
derivative Dag(x) in the L2(fl) sense, for any a = («i, • • • , ay).

Theorem 4.1.20 // the coefficients of (4-1-15) are Lispchitz in the sense that they are
continous, of linear growth, and J^-, *jr- exist continously (1 < i < d), then the derivatives
dXXtS(t)/dxi exist in the L2(£l) sense and the functions £i(t) = 8XXtS(t)/dxi satisfy the
stochastic differential equation with random coefficients

Ci(*) = ei + / (i(u)-bx(u,Xx,s(u))du + I (,l(u)-ax(u,Xx<s(u))dB(u)
J s J s

where &i is the vector with components 5ij .

Theorem 4.1.21 If the conditions in Theorem 1.3.3 hold and assume that D"b(t, x), D"o"(t, x)
exist and are continuous if a\ < 2, and

\D«b(t,x)\ + \D%<T(t,x)\ < K0(l + \ x f ) (\x\ < 2)

where -Koi/3 are positive constants. Then the second derivatives 9x "̂  ' exist in the L2(£l)
sense, and they satisfy the stochastic differential equations with random coefficients obtained
by applying formally d2/dxkdxj to (4-1.15).

4.1.4 Stratonovich Stochastic Differential Equations
We shall consider SDEs written with Stratonovich integrals

dXt = X0 + b(s, Xt)dt + a(t, Xt) o dB(t). (4.1.16)

where b(t,x) = (bi(t,x), • • • ,bd(t,x))T is Borel measurable function (t,x) € [0, oo) x Rd — >
Rd, and a(t,x) = (aij(t,x))dXr is a d x r-matrix Borel measurable function (t,x) 6 [0, oo) x
Rd — > Rd ig) Rr , and B(t) is an r-dimensional Brownian motion process, and odB(t) denotes
the Stratonovich integral. Further we assume that bi(t, x)(i = 1, 2, • • • , d) are continuous in
(t, x) , continuously derivatiable in t, twice continuously differentiable in x and their first
dervatives in x are bounded. Then (4.1.16) can be writen as a Ito type SDEs:

dXt = b(t,Xt) + a(t,Xt)dB(t), (4.1.17)

where

k = bi(t,x) + ̂
Z 3=1 k=i

Hence the existence and uniqueness of the Stratonovich equation (4.1.16) can be proceed
via Ito equation (4.1.17). For detail, please refer to
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4.1.5 Stochastic Differential Equations on Manifolds
Let M be a d-dimensional C^-manifold i.e., M is a Hausdorff topological space with an
open covering {Ua}a^\ of M, each Ua provided with a homeomorphism (/>a with an open
subset 4>a(Ua) of Rd such that, if Ua n Up /=4> the function <J)p o <j)a from 4>a(Ua n Up)
in to </>p(Ua C\ Up) is a C°° -function. Ua is called a coordinate nerghborhood and for
x e Ua,(t>a(x) — ( x 1 , - - - ,xd) 6 Rd is called a local coordinate of x. For the sake of
simplicity, we assume that M is connected and a-compact throughout this section. It is
then well known that M is paracompact and has a countable open base.

A function f ( x ) defined on an open subset D of M is called C°° if it is (7°° as a function
of the local coordinate, i.e.,fo(f>a is C°° on (j>a(Uar\D) for every a. Let F(M) be the totality
of all real valued C^-functions on M and Fo(M) be the subclass of F(M) consisting of all
functions in F(M) with compact support. F(M) and Fo(M) are algebras over the field of
real numbers R with the usual rules of / + g, fg and \ f ( f , g 6 F(M)) or Fo(M), A € R).
Let x G M. By a tangent vector at a; we mean a linear mapping V of F(M) into /? such
that

Denote by T X ( M ) , the set of all tangent vectors at x which is a linear space, it is called the
tangent space at x, with the rules

(V + V')(f) = V(f) + V ' ( f ) , a n d ( X V ) ( f ) = \V(f).

Let ( x 1 , - - - ,Xd) be a local coordinate in a coordinate neighborhood U of x. Every
/ e F(M) is expressed on U as a C°°-function f ( x 1 , - - - ,xd). Then / ^ (•jjr)(x) is a
tangent vector at x for every i = 1, 2, • • • , d. This is denoted by (gfr)^- It is easy to see that
{(gfr)a;}i=i,2."-,d forms a base for TZ(M). By a vector field we mean a mapping V : x 3
M i-> V(x) 'e'r^(M). F is called a C°°-vector field if for every / e F ( M ) , ( V f ) ( x ) := V ( x ) f
is a <7°°-function. Thus V is a C^-vector field if and only if V is a linear mappping of F(M)
into F(M)( or F0(M) into F0(M)) such that F(/#) = V(/)5 + f V ( g ) . In the following
we only consider a (7°°-vetor field, X(M} denoting the totality of C°°-vector fields. Let
AQ, AI, • • • , Ar e X(M). Consider the following stochastic differential equation

r

= A0(X(t))dt+^Ak(X(t))dBk(t). (4.1.18)
fe=i

Let M = M or M U {A} (= the one-point compactification of M) accordingly as M is
compact or noncompact. Let W(M) be the path space defined by

W(M) = {w; wis a continuous mapping [0, oo) — > M such that
w(0) e M and if w(t) = A thenVK(i') = AVt' > t}

and let B(W(M)) be the cr-field generated by the Borel cylinder sets. The explosion time
e(u>) is defined by e(w) = mf{t;w(t) — A}.

Definition 4.1.22 A solution X = (X(t)) of (4.1.18) is any (Ft)-adapted W(M)-valued
random variable (i.e., a continuous process on M with A as o trap) defined on a probability
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space with a reference family (ft) and an r-dimensional (Ft}-Brownian motion B = (B(t))
with -B(O) = 0 such that the following is satisfied: for every f £ Fo(M),

r* f* T
f ( X ( t ) ) - f ( X ( 0 ) ) = I (A0f)(X(s))ds + I ^(Akf}(X(s}}odBk(s}, (4.1.19)

Jo Jo fc=1

where the second term on the right-hand side is understood in the sense of Fisk-Stratonovich
integral (cf. [39] Chapter III). We have the following theorem.

Theorem 4.1.23 There exists a function F : M x WQ —> W(M} which is

/Bt(W(M}}

measurable for every t > 0 , here jj, runs over all probabilities on (M, B(M)), such that
(i) for every solution X = (X(t)) with respect to the Brownian motion B = ( B ( t ) ) , it holds
that

X = F ( X ( Q ) , B ) a.s.,

and
(ii) for every r-dimensional (J-t)-Brownian motion B(B(t)) with B(0) = 0 defined on a
probability space with a reference family (J-j) and an M-valued (.Fo) -measurable random
variable £, X = F(£,B) is a solution of (4.1.18) with X(ft) = £ a.s.

Given vector fields Aa £ X(M),a = 0,1,2, • • • ,r, we construct a mapping X =
(X(t,x,w)) : M x WQ 3 (x,w) i—> X(-,x,w) € W(M). This may also be regarded as a
mapping: [0,oo) x M x WQ 3 (t,xw) i—> X(t,x,w) € M. Smilary to the flat space, we can
show that the mapping M 9 x >—> X(t,x,w) & M is a local diffeomorphism of M for each
fixed t > 0 and for almost all w such that X(t, x, w) € M. We have the following theorem:

Theorem 4.1.24 Assume that M is a compact manifold. X(t,x,w) has a modification,
which is denoted by X(t,x,w) again, such that the mapping Xt(w) : x >-+ X(t,x,w) is C°°
in the sense that x i-> f ( X ( t , x , w ) ) is C°° for every f e F(M) and all fixed t £ [0, oo),a.s.
Furthermore, for each x 6 M and t € [0, oo), the differential X(t,x,w) of the mapping
x i—> X(t, x, w)*

X(t,x,w)f : TX(M) ^ Tx(ttXtW)(M)

is an isomorphism a.s. on the set {w,X(t,x,w) e M}.

4.2 Applications

4.2.1 Diffusions
In a stochastic differential equation of the form

dXt = b(t, Xt)dt + a(t, Xt)dBt, t>s,Xs=x (4.2.20)

where Xt e Rd,b(t,x) e Rd,a(t,x) € Rdxr and Bt is a r -dimensional Brownian motion,
we will call b the drift coefficient and a or sometimes ~aaT the diffusion coefficient. We
assume the the coefficients of (4.2.20) satisfy the Lipschtz condition and hence there exists
a unique solution. Denote by Xt = X^x the unique solution of (4.2.20) and Xt = X*
simply if s = 0. The solution of a SDE may be considered as the mathematical description
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of the motion of a small particle in a moving fluid. Therefore such stochastic processes
are called Ito diffusions. Further if we assume that the coefficients do not depend on t but
on x only, the resulting process Xt(uf) will have the property of being time-homogeneous,
in the sense that {X*£h}h>o and {X^'x}h>o have the same P°-distributions, i.e.{^(}(>o
is time- homogeneous. We inroduce the probability laws Qx of {Xt}t>o, for x € Rn. Let
M = a(u -> Xt = X%, t>0,y£Rn) and define Qx on the members of M by

Qx[Xtl e El} • • • , Xtk e Ek] = P°[XZ 6 £?!, - • - , Xfk 6 Ek] (4.2.21)

where Ei C Rn are Borel sets; 1 < i < k. If denote Mt = °~(Xr; r < t), then Mt c JFt due
to Xt is measuable with respect to ft. Denote by fr = a(Xs^T; s > 0), here r is a stopping
time.

Markov property

We can give the following theorem on the important Markov property and strong Markov
property :

Theorem 4.2.1 Let f be a bounded Borel function from Rn to R. Then, for t, h > 0

Ex[f(Xt+h)\ft](u) = Ex^[f(Xh)}, (4.2.22)

where Ex denotes the expectation w.r.t the probability measure Qx . Thus Ey[f(Xh)] means
E[f(X^)}, where E denotes the expectation w.r.t.P0 . The right hand side is the function
Ey[f(Xh)] evaluated at y = Xt(u).

Remark It is easy to see that

Ex[f(Xt+h)\Mt]=Ex<[f(Xh)}

due to Mt C ft.

Theorem 4.2.2 (The strong Markov property for Ito diffusion) Let f be a bounded Borel
function on Rn , r a stopping time w.r.t. ft, T < co a.s. Then

Ex[f(XT+h)\FT] = Ex'[f(Xh)],Vh > 0. (4.2.23)

The generator of an Ito diffusion

It is fundamental for many applications that we can associate a second order partial differ-
ential operator A to an Ito diffusion Xt. The basic connection between A and Xt is that A
is the generator of the process Xt:

Definition 4.2.3 Let {Xt} be a time homogeneous Ito diffusion in Rn. The infinitesimal
generator A of Xt is defined by

tj.o t

The set of functions f : R5 — * R such that the limit exists for all x e Rn is denoted by T>A-

In the following, we will find out the relation between A and the coefficients b, a in the
stochastic differential equation:

t>s,X3=x. (4.2.24)
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Theorem 4.2.4 Let Xt be the Ito diffusion (4-2.24), if f & C$(Rn), i.e. f is twice differ-
entiable and has compact support, then F S DA and

i l i,j l °

Example 4.2.5 The n-dimensional Brownian motion is the solution of the stochastic dif-
ferential equation

dXt = dBt,

i.e. we have 6 = 0 and a = In the n-dimensional identity matrix. So the generator of Bt is

i.e. A = | A, where A is the Laplace operator.

By using the generator A, we now have the Dynkin formula:

Theorem 4.2.6 Let f € C^R"1), T be a stopping time, EX[T] < oo. Then

E*[f(XT)} = f ( x ) + E*[ [TAf(Xs)ds] (4.2.25)
Jo

We now introcuce an operator which is related to the generator A and is used in the
solution of the Dirichlet problem.

Definition 4.2.7 Let {Xt} be an Ito diffusion. The characteristic operator A = Ax of
{X-t} is defined by

^(xHlim^Vl-^ (4.2.26)J^ ' ui* EX{TU] ^ '
where the U's are open sets Uk decreasing to the point x, in the sense that Uk+i C Uk and
p)fc Uk = {x}, and r\j = inf{£ > 0; Xt ^ U} is the first exit time from U for Xt.

Kolmogorov's backward equation

If we choose / e CQ(RU) and T = t in the Dynkin's formula (4.2.25), we know that

u(t,x)=Ex(f(Xt)} (4.2.27)

is differentiable with respect to t and

?£ = E*[Af(Xt)}.

We can get the following Kolmogorov's backward equation:

Theorem 4.2.8 Let f e C%(Rn). Then u(t,:) e T>A for each t and

^ = Au, t > 0, x & Rn (4.2.28)
C/t

u(0,x) = f(x);xeRn. (4.2.29)

Moreover, ifw(t,x) 6 Cl'2(R x Rn) is bounded function satisfying (4-2.28) and (4-2.29)
then w(t,x) = u(t,x), given by (4-2.27).
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We can obtain the following useful generalization of Kolmogorov's backward equation:

Theorem 4.2.9 (The Feynman-Kac formula) Let f € Cl(Rn) and q 6 C(Rn). Assume
that q is lower bounded.

(i) Put

ft
v(t,x)=Ex[exp(- q ( X s ) d s ) f ( X t ) } . (4.2.30)

Jo
Then

v(t,x) = Av-qv;t>0,xeRn (4.2.31)

v(0, x) = f ( x ) ; x € Rn. (4.2.32)

Moreover, ifw(t,x) 6 Cl'2(R x Rn) is bounded on K x Rn for each compact K c R and w
solves (4-2.31), (4.2.32), thenw(t,x) =v(t,x) given by (4.2.30).

The Girsanov theorem.

Before we give the Girsanov theorem, we introduce a definition.

Definition 4.2.10 Let V = V[5,T] be the class of functions f(t,u) : [0, oo) x Q — > R such
that

(i)(t,uj) — > f ( t , L t j ) is B x f -measurable., where IB denotes the Borel a -algebra on [0, oo).
(ii) f ( t , u i ) is Ft- adapted.

f ( t , u ) 2 d t ] < oo.

Theorem 4.2.11 (The Girsanov theorem I)
Let Y(t) e Rn be an Ito process of the form

dY(f) = a(t, uj}dt + dB(t); t < T, Y0 = 0,

where T < oo is a given constant and B(t) is n- dimensional Brownian motion. Put

/

t 1 /"*
a(s,w)dBs - - I a ? ( s , ( J j ) d s ) ] t < T . (4.2.33)

2 J0

Assume that a(s,u>) satisfies Novikov's condition

I (T

E[exp(- a2(s,uds)}«x> (4.2.34)
^ Jo

where E = Ep is the expectation w.r.t. P° . Define the measure Q on (SI, FT) by

dQ(w] = MT(u)dP°(u}) (4.2.35)

Then Y(t) is an n-dimesional Brownian motion w.r.t. the probability law Q, for t < T.

Theorem 4.2.12 (The Girsanov theorem II) Let Y(t) € Rn be an Ito process of the
form

dY(t) = P(t,w)dt + 0(t,
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where /3(t,u) 6 Rn,Q(t,u) e Rnxm and B(t) € Rm. Suppose there exist V[0,T]-process
u(t, w) e Rm and a(t, w) 6 Rn such that

0(t, u)u(t, LO) = /3(t, w) - a(t, w)

and assume that u(t,uj) satisfies Novikov's condition

1 /"T
£[exp(- / w2(s,a;ds)] <oo (4.2.36)2 7o

Put

Mt = exp(- / u(s,u)dBs -~ f M2(s,w)ds);t < T. (4.2.37)
Jo 2 J0

and

dQ(w) = Mr(a;)dP0(a;) on TT. (4.2.38)

T/ien

B(t) -.= / u(a,w)da + B(t);t < T (4.2.39)
7o

«s a Brownian motion w.r.t. the probability law Q and in terms of B(t) the process Y(t) has
the stochastic integral repesentation

dY(t) = a(t, u)dt + 0(t, uj)dB(t).

Theorem 4.2.13 (The Girsanov theorem III) Let X(t) = Xx(t) £ Rn and Y(t) e Rn

be an Ito diffusion and an Ito process, respectively, of the forms

dX(t) = b(X(t)}dt + a(X(t))dB(t); t < T, X(0) = x (4.2.40)
dY(t) = [i(t,u) + b(Y(t})}dt + a(Y(t'))dB(t)\t<T,Y(Q) = x

where the functions b : Rn —> Rn and a : Rn —» f^™x m satisfy the Lipschitz condition
and linear growth condition and 7(t,w) e V[0,T],x G Rn. Suppose there exists a V[0,T]-
process u(t,uj) satisfying Novikov's condition (4-2.36). Define Mt, Q and B(t) as in (4-2.37)
(4.2,38) and (4-2.39). Then

dY(t) = b(Y(t))dt + a(Y(t))dB(t).

Therefore the Q-law o f Y ( t ) is the same as the P°-law of Xx(t}; t <T.

Remark The Girsanov theorem says that if we change the drift coefficient of a given Ito
process, then the law of process will not change dramatically. In fact, the law of the new
process will be absolutely continuous w.r.t. the law of the original process and we can compute
explicitly the Randon-Nikodym derivative.

4.2.2 Boundary value problem
The Dirichlet problem

We now use diffusion type SDE to solve the following generalization of the Dirichlet problem:
Given a domain D in Rn and a continuous function $ on 3D the boundary of D. Find a
function </> continuous on the closure D of D such that

L0 = 0 in D, (4.2.41)
lim <j>(x) = <Hj/)> /or all (regular) y e 3D.

=
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where L is a semi-elliptic partial differential operator on C2(Rn) of the form

( * ) : (4.2.42)
j i=l

L is called semi-elliptic (elliptic) when all the eigenvalues of the symmetric matrix (o.^) are
nonnegative (positive), for all x. A point y € dD is called regular for D ( w.r.t. Xt) if

Qy(rD = 0] = 1.

Otherwise the point y is called irregular.
The idea to solve this problem is simple. First we find an Ito diffusion (Xt) whose

generator A coincides with L on CQ (Rn). Let Xt be the solution of

dXt = b(Xt) + a(Xt)dBt, (4.2.43)

where Bt is an n-dimiensional Brownian motion, \oaT = (a,j). Then the candidate for the
solution <j) is

4(x) = Ex[<t>(XTD)}.

Unfortunately, some examples show that this problem is not solvable in general (we
refer to [74]). However, it is possible to formulate a weak, stochastic version of the problem.
This stochastic version will always have a solution, which coincides with the solution of the
original problem in case such a solution exists.

Definition 4.2.14 Let f be a locally bounded, measurable function on D. Then f is called
X-harmonic in D if

f ( x ) = E*[f(XTU)}

for all x £ D and all bounded open sets U with U C D.

We now can give the stochastic version of Dirichlet problem as following: Given a
bounded measurable function </) on dD, find a function 0 on D such that

( i ) s </> is X-harmonic (4.2.44)
(ii)s lim 4>(Xt) = <I>(XTD) a.s.Qx, x e D. (4.2.45)

We have the following theorem:

Theorem 4.2.15 Let $ be a bounded measurable function on dD. Define

4>(x) = EX[<I>(XTD)], (4.2.46)

then 4> solves the stochastic Dirichlet problem (4-2-44)- On the other hand suppose g is a
bounded function on D such that

(1)g is X-harmonic,
(2)\imnTD g(Xt) = 0(XTD)a.s.Qx,x e D,

theng(x) = Ex[<p(XTD)],x 6 D.

We now can ask that under what conditions the solution <j> of the stochastic Dirichlet
problem (4.2.44) will also be a solution of the original Dirichlet problem (4.2.41). The
following theorem answers this problem partially.
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Theorem 4.2.16 Suppose L is uniformly elliptic in D, i.e. the eigenvalues of (a^-) are
bounded away from 0 in D, and the coefficients b and a satisfy the Lipschitz condition and
the linear growth condition. Let <p be a bounded continuous function on 3D. Put

Then <j> G C2+a(D) for all a < 1 and (j> solves the Dirichlet problem (4-2-41)-

The Poisson problem

Consider the Poisson problem: Given a continuous function g on D find a C2 function / in
D such that

Lf = -g in D, (4.2.47)
lim f ( x ) — 0, for all ( regular)^ £ 3D.

where L is a semi-elliptic partial differential operator on a domain D C Rn as before. Let
Xt be an associated Ito diffusion described by (4.2.43). Similar to the discussion in the
Dirichlet problem we have the following theorems.

Theorem 4.2.17 (Solution of the stochastic Poisson problem) Assume that

Ex[fTD \g(Xs)\ds}<oo,\/x&D. (4.2.48)
Jo

Define

g(x) = Ex( I'" g(Xs]ds\. (4.2.49)
Jo

Then

Ag = —g in D,

and

lim g(Xt) = 0, a.s.Qx, Vz € D.

Theorem 4.2.18 (Solution of the combined stochastic Dirichlet and Poisson equation) Let
4> 6 C(dD) be bounded and let g 6 C(D) satisfy (4.2.48), define

[•TD
h(x)=Ex[ g(Xs)ds] + Ex[4>(XTD)],x & D. (4.2.50)

Jo
a) Then

Ah = -g in D (4.2.51)

and

lim^(Xt)=4>(XTo)},a.s.Qx,Vx€D. (4.2.52)

Moreover, it there exists a function hi G C2(D) and a constant C such that
/*T£>

|fti(x)| <C(l+),x &D,EX[ \g(Xa)\ds]
Jo

and hi satisfies (4-2.51) and (4.2.52), then hi — h.
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Remark We have the similar result that if L is unifomly elliptic in D and g € Ca(D] (for
some a > 0) is bounded, then the function h given by (4-2.50) solves the Dirichlet-Poisson
problem,i.e.

(i) Lh = —g in D,
y h(x) = <j>(y) for all regular y e 3D.

4.2.3 Optimal stopping
The time homogeneous case

Let us consider the optimal stopping problem in the section. Let Xt be an Ito diffusion on
Rn and let g (the reward function) be a given function on Rn, satisfying

a
6) g is continuous.

The problem is to find a stopping time r* = T*(X,OJ) for (Xt) such that

Ex(g(XT,)} = snpEx(g(XT)},Vx e Rn, (4.2.53)

the supremum being taken over all stopping times T for all (Xt), Ex denotes the expectation
with respect to the probability law Qx of the process (Xt)t>Q. We also want to find the
corresponding optimal expected reward

gf = Ex\g(XT.)]. (4.2.54)

We can regard Xt as the state of a game at time t, each u> corresponds to one sample
of the game. For each time t we have to take an option to either stop the game, thereby
obtaining the reward g(Xt), or continue the game in the hope that stopping it at a later
time will give a bigger reward. The problem of course is that we do not know what state
the game is in at future times, except the probability distribution of the future. Hence it
is really a stopping time problem. So, among all possible stopping times, we are seeking
for the optimal one, r* which gives the best result, i.e. the biggest expected reward in the
sense of (4.2.53) .

We now can discuss the problem. We need the following concepts.

Definition 4.2.19 A measurable function f : Rn — > [0, oo] is called supermeanvalued (w.r.t.
Xt)if

f ( x ) > E * [ f ( X T ) } (4.2.55)

for all stopping times T and all x G Rn; it is called superharmonic (w.r.t. Xt) if, in addition,
it is also lower semicontinuous.

Definition 4.2.20 Let h be a measurable function on Rn. If f is a superharmonic (su-
permeanvalued) function and f > h we say that f is a superharmonic (supermeanvalued)
majorant of h (w.r.t. Xt). The function

h(x) = inf f ( x ) ; x e Rn, (4.2.56)

the infimum being taken over all supermeanvalued majorant f of h. It is easy to show that it
is supermeanvalued and therefore h is the least supermeanvalued majorant of h. Similarly,
if function h is a superharmonic majorant of h and for any other superharmonic majorant
f of h we have h < /. Then h is called the least superharmonic majorant of h.
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We are now ready for the existence and uniqueness result on the optimal stopping prob-
lem.

Theorem 4.2.21 (Existence theorem for optimal stopping)
Let g* denote the optimal reward and g the least superharmonic majorant of a continuous
reward function g > 0 .

a) Then

g*(x) = g(x). (4.2.57)

b) Fore>0 let

De = {x;g(x)<g(x)-e}. (4.2.58)

suppose g is bounded. Then stopping at the first time T£ of exit from De is close to being
optimal, in the sense that

(4.2.59)

for all x.
c) For arbitrary continuous g > 0, let

D = { x ; g ( x ) < g*(x)}(the continuation region). (4.2.60)

For N = 1,2, • • • define gN = g A N, DN = { x ; g N ( x ) < (<?AT)A(Z)} and &N = TDN- Then
DN C DN+i,DN C Dpls"1^. ̂ 0),D = \JNDN. IfaN < oo a.s. Qx for all N then.

g*(x)= \^E*[g(XaN-)]. (4.2.61)

d) In particular, if TD < oo a.s. Qx and the family {g(XTN)}ff is uniformly integrable
w.r.t. Qx , then

)}. (4.2.62)

and T* = TO is an optimal stopping time.

Remark This theorem gives a sufficient condition for the existence of an optimal stopping
time T* . Unfortunately, T* need not exist in general. For example, if Xt = t, for t > 0

.̂2

(deterministic) and g(£) = ̂ ^ ', £ € R, then g*(x) = 1, but there is no stopping time T such
that Ex[g(XT)\ = 1. However, we can prove that if an optimal stopping time T* exists, then
the stopping time given in the last theorem is optimal:

Theorem 4.2.22 (Uniqueness theorem for optimal stopping)
Define as before

D={x;g(x)<g*(x)}cRn.

Suppose there exists an optimal stopping time T* = T*(X, u) for the problem (4-2.53) for all
x. Then

T* >TD Vx e D (4.2.63)
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and

g*(x)=Ex(g(XTD)}, VxeRn. (4.2.64)

Hence TD is an optimal stopping time for the problem (4-2.53).

Remark Let A be the characteristic operator of X. Assume g G C2(Rn). Define

U = (x\Ag(x) > 0}.

Then U c D. Consequently, from (4-2.63) we conclude that it is never optimal to stop the
process before it exits from U. But there may be cases when U ̂  D, so that it is optimal to
proceed beyond U before stopping.

The time inhomogeneous case

Let ust now consider the case when the reward function g depends on both time and space,
i.e.

g = g(t,x) : R x Rn — > [0,oo), <? is continuous. (4.2.65)

Then the problem is to find go(x) and T* such that

go(x) = supE*[g(T,XT)} = Ex[g(r* ,XT.)]. (4.2.66)
T

To reduce this case to the time homogeneous case, we proceed as follows:
Suppose the Ito diffusion Xt = Xf has the form

dXt = b(Xt}dt + o-(Xt)dBt; t>0,X0 = x
where b : Rn — > Rn and a : Rn -^ Rnxm are given functions satisfying the Lipschtz condition
and linear growth condition, Bt is m -dimensional Brownian motion. Define the Ito diffusion
Yt = Y('<*) in Rn+l by

Then

" < * + [ °[ cr^AtJ

where
0b(n)(t) = &(t,0 = e JR<n+1)xm,

with r, = (t, ^) € R x Rn. So Yt is an Ito diffusion starting at y = (s,x). Let Qy = Q(S'X)
denote the probability law of {Yt} and let Ey = E^s'x^ denote the expectation w.r.t. Qy . In
terms of Yt the problem (4.2.66) can be writen

go(x) = g*(0,x) = supE^(g(YT)} = E^(g(YT,)} (4.2.67)
T

which is a special case of the problem

g*(s,x) = sup£(s'x)[c/(FT)] = E(s'x)[g(YT.)} (4.2.68)
T

which is of the form (4.2.53) and (4.2.54) with Xt replaced by Yt.
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Remark The characteristic operator AofYtis given by

Ag(s,x) = ̂ (s,x) + Ag(s,x);g 6 C2(R x Rn)as
where A is the characteristic operator of Xt •

Example 4.2.23 (When is the right time to sell the stocks?)
Suppose the price Xt at time t of a person's assets varies according to a stochastic differential
equation of the form:

dXt = rXtdt + aXtdBt,X0 = x > 0,

where Bt is 1- dimensional Brownian motion and r, a are known constants. Suppose that
connected to the sale of the assets there is a fixed fee/tax or transaction cost a > 0. Then if
the person decides to sell at time t, the discounted net of the sale is

where p > 0 is the given discounting factor. The problem is to find a stopping time T that
maximizes

where

The characteristic operator A of the process Yt = (s + t, Xt) is given by

Hence Ag(s, x) — —pe~ps(x — a) + rxe~ps = e~ps((r — p)x + pa). So

U:={(s,x);Ag(s,x)>0} = ,, , fU ; yv ; ; {(s,x);x < -^} : if r < p

Therefore ifr > p we have U = D = Rx R+, hence T* does not exist. Ifr > p then g* = oo,
while i f r = p, then

g*(s,x) = xe'ps.

For the case r < p. We can conclude that D is invariant w.r.t.t in the sense that

And the D has only the connected component which contains U with the from D(XQ) =
{(t, x); 0 < x < XQ} for some x > -^ . Put r(x0) = TD(XO) and ^

We know that f = g is the solution of the boundary value problem

=0 0<x<x0 (4.2.69)as dx 2
f ( s , x Q ) = e~ps(x0 -a).
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If we try a solution of (4-2.69) of the form

f ( s , x ) = e-pscj>(x)

we have the following I- dimensional problem

-p<j> + rx4>'(x) + -a2xV'(z) = 0 for s < x < x0 (4.2.70)
£

4>(xQ) = x0 - a

The general solution cj> of (4-2.70) is

where C\ , GI are arbitrary constants and

2)2 + 2pa2], (i = 1, 2),72 < 0 < 7l.

since <p(x) is bounded as x — *• 0 we have C% = 0 and the boundary requirement <J>(XQ) = XQ — a
gives C\ = x~'jl(xo — a). So the bounded solution f of (4-2.69) is

~gxo(s,x) = f ( s , x ) = e-ps(xQ - a)(-)^ .
XQ

If we fix ( s , x ) then the value of XQ which maximizes g(s,x) is easily seen to be given by

- .,71-1

Hence we have that

g * ( 8 , x ) =

The conclusion is therefore that one should sell the assets the first time the price of them
reaches the value xmax = -^j. The expected discounted profit obtained from this strategy
is

71

4.2.4 Stochastic control
We consider stochastic controlled system of the type:

dXt = dX? = b(t,Xt,ut)dt + o-(t,Xt,ut)dBt, (4.2.71)

where Xt 6 Rn, b : R x Rn x U -> Rn , a : R x Rn x U -> RnXm and Bt is m-dimensional
Brownian motion. Here ut & U C Rk is a parameter whose value we can choose in the
given Borel set U at any instant t in order to control the process Xt. Thus ut = u(t, u) is a
stochastic process. Since our decision at time t must be based upon what has happened up
to time t, the function u> — > u(t, u>) must be measurable w.r.t. F, i.e. the process ut must
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be ^"-adapted. Thus the right hand side of (4.2.71) is well denned as a stochastic integral,
under suitable assumptions on the functions b and CT.

Let {Xs
h'x}h>s be the solution of (4.2.71) such that Xs

s>x = x, i.e.

Xs
h
s'x=x + f b(r,X^,ur)dr + f a(r,X^ ,ur)dBr;h> s

J s J s

and let the probability law of Xt starting at x for t = s be denoted by Qs>x, so that

Q''*[Xtl €F1,--.,Xth€Fk]= P°[X%X e F!, • - • , X*x & Fk]

for s < ti, Fi C Rn; 1 < i < fc, k = 1, 2, • • • .
Let F : R x Rn x [7 -»• R (the "utility rate" function) and K : R x Rn -> # (the

"bequest" function) be ginven continuous functions, let G be a given domain in -R x Rn and
let T be the first exit time after s from G for the process {X°'x}r>s, i.e.

f = f ''*(<*>) = inf{r > s- (r.X^M) <£ G}.

Suppose

E'-x(f \F"r(r,Xr)\dT+\K(f,Xt)\x{t<oo}]«x>,V*,x,u
J s

where Fu(r, z) = F(r, z, u). Then we define the perfomance function Ju(s, x) by

Let

Yt = (8 + t,X£t), for t>Q,Y0 = ( S , x ) ,

and substitute this in (4.2.71), we have

dYt = dYt
u = b(Yt,ut)dt + a(Yt,ut)dBt. (4.2.72)

The probability law of Yt starting at y = (s, x) for t = 0 is also denoted by Qs'x = Qy. Let

T := inf {* > 0; Yt $ G} = f - s,

and

then the performance function may be written in terms of Y as follows, wtih y = (s, x),

fT

Jo °°

So the problem is — for each y e G — to find the number <3>(y) and a control u* = u* (t, u>) =
u*(y, t, iij) such that

:= sup J"(y) = J"*(y)
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where the supremum is taken over all ^-adapted processes {ut} with values in U. Such a
control U* — if it exists — is called an optimal control and $ is called optimal perfomance
or the valued function. For the sake of simplicity, we consider the control functions u(t, u>)
of the form u(t,u>) = Uo(t,Xt(u>)) for some function UQ : Rn+l — > U C Rk . In this case we
assume that u does not depend on the starting point y = (s,x), i.e., the value we choose
at time t only depends on the state of the system at this time. These are called Markov
controls, because with such u the corresponding process Xt becomes an Ito diffusion, in
particular a Markov process. In the following we will not distinguish between u and UQ.
Thus we will identify a function u : Rn+l — > U with the Markov contol u(Y) = u(t, Xt) and
simply call such functions Markov controls. In such a case the system (4.2.72) becomes

(4.2.73)

For v e U and / e C%(R x Rn) define

(*V)(v) = |£(v) + $>(*«> j£ + EM"«>^ (4.2.74)
i=l i,j=l

where Ojj = |(cr<rT)jj,2/ = (s,x) and x = (xi, • • • ,xn). Then for each choice of the function
h the solution Yt = Y^ is an Ito diffusion with generator A given by:

(Af)(y) = (Lu<

for / <E C$(R x Rn}. ForveU define

Then we have the following Hamilton-Jacobi-Bellman (HJB) equation.

Theorem 4.2.24 Define

= sup{Ju(y); u = u(Y) Markov control}.

Suppose that 3> e C2(G) n C(G) is bounded, T < oo a.s. Qy for all y £ G and that an
optimal Markov control u* exists. Suppose dG is regular for Y™ . Then

sup{Fv(y) + (Lv$)(y)} = 0,Vt/ 6 G (4.2.75)
v€U

and

dG. (4.2.76)

The supremum in (4-2.75) is obtained if v = U*(y) where u* is optimal. In other words,

0,VyeG. . (4.2.77)

Remark This theorem states that if an optimal control u* exists then we know that its
value v at the point y is a point v where the function

attains its maximum. This is a necessary condition for the optimal control. The next
theorem states that if at each point y we have found v = u0(y) such that Fv(y) + (Lv

is maximal, then UQ(V) be an optimal control.
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Theorem 4.2.25 Let 0 be a function in C2(G} fl C(G) such that, for all v € U

with boundary values

lim

and such that {(j>(YT)}T<T is uniformly Qy -integrable for all Markov control u and all y € G.
Then <j>(y) > J (y) for all Markov controls u and all y € G. Moreover, if for each y & G
we have found uo(y) such that

then UQ = uo(y) is a Markov control such that

and hence UQ must be an optimal control and </>(y) =

Remark These two theorems provide a very nice solution to the stochastic control problem
in the case where only Markov controls are considered. It seems that considering only Markov
controls is too restrictive, but fortunately one can always obtain as good a performance with
a Markov control as with an arbitrary J~t- adapted control (under some conditions). We have
the following theorem.

Theorem 4.2.26 Let

^M(V) = sup{Ju(y);u = u(Y) Markov control}

and

$a(y) — sup{Ju(y);u = 14(^,0;)^ — adapted control}

Suppose there exists an optimal Markov control UQ = uo(Y) for the Markov control problem
such that all the boundary points of G are regular w.r.t. Y™° and that <&M is a bounded
function in C2(G) n C(G). Then

Example 4.2.27 (An optimal portfolio selection problem)
Let Xt denote the wealth of a person at time t. Suppose that the person has the choice of
two different investments. The price p\ (t) at time t of one of the assets is assumed to satisfy
the equation

~=Pi(a + aWt) (4.2.78)at

where Wt denotes white noise and a, a > 0 are constants measuring the average relative rate
of change of p and the size of the noise respectively. As we have known we can interpret
(4-2.78) as the Ito stochastic differential equation

dpi = piadt + piadBt. (4.2.79)
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This investment is called risky, since a > 0. We assume that the price p2 of the other asset
satisfies a similar equation, but without noise:

dp2 = P2bdt. (4.2.80)

This investment is called safe. So it is natural to assume b < a. At each instant the person
can choose how big of a fraction of u of his wealth he will invest in the risky asset, thereby
investing the fraction 1 — u in the safe one. This gives the following stochastic differential
equation for the wealth Xt = X™ :

dXt = uXtadt + uXtadBt + (1 - u)Xtbdt
Bt. (4.2.81)

Suppose that, starting with the wealth Xt = x > 0 at time t, the person wants to maximize
the expected utility of the wealth at some future time to > t. If we allow no borrowing (i.e.
require X > 0) and are given a utility function N : [0, oo) — > [0, oo),7V(0) = 0 (usually
assumed to be increasing and concave) the problem is to find $(s, x) and a Markov control
u* = u*(t,Xt),Q < u* < 1 such that

3>(s, x) = SMp{Ju(s,x);u Markov control, 0 < u < 1} = Jw (s,x),

where Ju(s,x) = Es'x[N(X.p)] and T is the first exit time from the region G = {(r,z);r <
tg,z > 0}. This is a performance criterion of the form (4-2.72) '/ '(4-2.73) with F = 0 and
K = N . The differential operator Lv has the form

(L"/)(*. x) = + x(av + b(t ~v)) +

The HJB equation becomes

sup{(Lv3>)(t,x)} = 0, for (t,x)&G;
V

and

3>(t,x) = N ( x ) , fort = to,$(t,Q) = N(0), fort < t0.

Therefore, for each (t,x) we try to find the value v = u(t,x) which maximizes the function

3<f>
r,(v) = Lv3> = — + x(b + (a - b)v) (4.2.82)

If &x := |̂  > 0 and $xx := §̂ f < 0, the solution is

If we substitute this into the HJB equation (4-2.82) we obtain the following nonlinear bound-
ary value problem for <&:

+ bx$>x - ~2 = 0, fort < to, x > 0 (4.2.85)

) = N(x), fort = t0, orx = 0.
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The problem (4-2.85) is hard to solve for general N. Important examples of increasing and
concave functions are the power functions

N(x) = xr where 0 < r < 1.

// we choose such a utility function N, we try to find a solution of (4-2.84) of the form

Substituting we obtain

(f>(t, x) = e ° x ,

where A = br + 2a^~<i-r) • Using (4-2.84) we obtain the optimal control

u*(t,x)= °~b ..

is the solution to the problem.

4.2.5 Backward SDE and applications
The adapted solution for a linear backward stochastic differential equations was first in-
vestigated by Bismut(1973) and in 1978 [5], then by Bensoussan (1982), and others. The
first result for the existence of an adapted solution to a continuous nonlinear BSDE with
Lipschitzian coefficient was obtained by Pardoux and Peng(1990). Later Peng and Pardoux
developed the theory and applications of such BSDEs in a series of papers (1991, 1992, 1993,
1994). We would like to introduce some basic resulst on BSDEs in Peng's survey papers.

Backwards Stochastic Differential Equations

First, let us recall backward intergrals. Let [0, T] be a fixed time intval, Bt,t € [0, T]
be a standard Brownian motion defined on a complete probability space ( f l , J - , P ) . Let
0 < s < t < T. We denote by f\ the least complete cr-field for which all random variables
Bu— Bv : s <v <u <t are measurable. Denote J^ — Ft. Let t be a fixed time in [0, T], let
f ( r ) , r e [0,t] be a continuous stochastic process which is J* -measurable for each r. The
stochastic integrals can be defined for the backward direction. The Ito backward integral is
defined as

/'J s

n-l

f(r)dBr = lim Yl f(tk+i)(Btk+1 - Btk). (4.2.86)
' '~* fc=o

where A denotes the partition {s = tQ < t\ < • • • < t + n = t} and |A| = maxfe |tfe+1 — t k \ -
Precisely speaking, the limit of the right hand side exists in probability and it does not
depend on the choice of a sequence of partitions. It has these properties:

= 0E[ I f(r)dBr] =
•/s

E[\ /"' f(r)dBr\2} = E[ f f ( r ) 2 d r } .
s Js
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Consider backward stochastic differential equation

Yt=t+ [ g(s,Ys,Zs)ds- f ZsdBs, (4.2.87)
Jt Jt

where

g(w, t,y,z):Slx [0, T] x Rm x Rmxd -* Rm

N
is such that g ( - , y , z ) is a #m-valued ^-adapted process for each ( y , z ) <E -Rm x Rmxd.
satisfying

/•T
/ |5(-,0,0)ds€ L2(fi,JTT)p ;H). (4.2.88)

./o

and

t, y, z) - g(t, y', z')\ < C(\y - y'\ + \z- z'\). (4.2.89)

The problem is to find out a pair of processes (Yt, Zt) 6 M(0, T; Rm x Rmxd) which are Tt-
adapted satisfying equation (4.2.87), where M(Q,T;Rm) is the space of a all (J-i)-adapted
Rm -valued processes that satisfies

E I vt
 2dt < oo.I

Jo

Remark Here the uniqueness of a pair of processes means uniqueness in the space .M(0, T;
Rm x Rmxd). That means if there are two processes (Y1,/?1) and (Y2,Z2) satisfying
(4-2.87), then we have

[ f \Z\ -
Jo

We have the following existence and uniqueness theorem.

\Yt
i-Y?f} = 0, and E Z - Z* 2 = 0.

o

Theorem 4.2.28 Let g(u,t,y,z) : fl x [0,T] x Rm x Rmy<d -»• Rm be given as above and
satisfying conditions (4-2.88) and (4-2.89). Then for any given £ e L?(£l, FT, P; Rm), the
stochastic differential equation (4-2.87) has a unique solution, i.e. there exists a unique Ft
-adapted process (Y,Z) e M(0,T-Rm x R™*™) satisfying (4.2.87).

Also we have the continuous dependence of initial parameters. In fact we have the
following theorem.

Theorem 4.2.29 Let conditions in Theorem 4-2.28 hold and assume that ^1, £2 € L2(£l, FT> P'i
</>1,02 € M(0,T;Rm). Then the solutions (Yl,Zl), and (Y2,Z2) of

Yt
l =?+ f [d(s, Ys\ Zl

s) + 4>l]ds - I Zl
sdB(s)

Jt Jt

and

- [
Jt
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satisfy the following estimation

2e/3(T-t) t [T |̂ 1 _

Jt

where /3=W(1

For one dimensional case, i.e., m = I . We have the following compression theorem which
will be used in the later discussion.

Theorem 4.2.30 If g(uj, t, y, z) and a cadlag process Vt e M(0, T; R) satisfy in addition to
(4.2.88) and (4.2.89) the condition:

supE\V\2 <oo, (4.2.90)
t<T

(Y, Z) be the solution of BSDE:

Y = £ + t 9s + VT-Vt- I ZsdBs, (4.2.91)
Jt Jt

where (gt)(Vt) £ L^(Q,T;R) and ̂  ^ L2(£l,f,P;R) are given and satisfy

£ > C> g(t, Yt, Zt] > g~t, a.s., a.e.,

and such that V — V is an increasing process. Then

Yt > Yt,a.e., a.s.

Hence we now have

Y0 = Y0 <=* e = S,g(s,Ya,Zs) = gs,Vs = Vs.

Example 4.2.31 We often meet the case of comparing BSDEs

Yt1 = t1 + t \9(s, Y,1, Z]) + cl}ds - f Zl
sdBs, (4.2.92)

Jt Jt

and

T [ g ( s , Ys
2, Z2

S) + cl]ds - T Z2dBs, (4.2.93)

where c1(-),c2(-) € J\4(0,T, R). If we assume that C] > c^, a.e., a.s., and £ > £a.s., then
by Theorem 2.4-2, we have Yt > Yt, a.s., a.e.. In financial markets (say in the Merton
model), c(-) denotes the rate of consumption of an investor, Y(t) denotes one's wealth at
time t, while Z ( t ) denote one's potfolio selection strategy. In this case, we can explain the
compression theorem as follows: if an investor wants to get a higher financial return at a
time in the future, then either one put more money in the financial market or reduce one 's
consumption before time T.
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Example 4.2.32 We consider a special case of (4-2.92) when g(s, 0,0) = 0. It is easy to
see that if cj = 0 and £2 = 0, then (4-2.93) has a unique solution (Y^,Z^) EE 0. However
if both £ and c l ( - ) are nonnegtive, then the solution of (4-2.92) Y1 is also nonnegative.
Moreover we have:

We can explain this result in finance. Such a financial market is non arbitrage: If an
investor wants to get an oportunity riskless in the future time T (i.e. £* > 0 and E£l > 0),
then one's investment y$ > 0 at the moment t = 0.

We have seen that the solution of BSDE is always discribed by a pair of processes
(y, Z), however, the main part is the first term Y. We will see that the process Y satisfies
a backwards semigroup property. Now given ti <T and 77 e L2(tt,fti,P',R)> consider the
following BSDE on [0,^]:

/

*! /•*!

g(s,ys,zs)ds- zsdBs,r e [0, *i]. (4.2.94)
Jr

Define

Gr,tM := Vr : L*(tt,Ftl,P;R) -> L2(tt,fr, P; R). (4.2.95)

From the uniqueness of solution of BSDE, we know that for t < r < ti,

Furthermore, we have the following properties.
(i) GtlM = G t l i t a[G t a , t[»7]],VO < ̂  < *2 < «;
(ii) limrTTGr,t[77] = n,Vr, e L2(fl,?,P;R);
(iii) hm^oo ElGrtfa] - Gr,t[r,}\2, if E\^ ~ ̂  ~> °5
(iv) r/i > 772, a.s.^> Gr,t[77i] > Grj[n2},&-s.

A generalized dynamic programming principle

In this subsection, we formulate a stochastic optimal contol problem where the cost function
is determined by a backward stochastic differential equation of the form (4.2.87). We get
the dynamic programming principle, known as Bellman's principle, in this situation.

Suppose that given M(Q,T;Rh) and a Borel set U in Rk , we denote by U the class of
admissible controls, i.e. all processes for which are valued in U. For simplicity, we assume
that U is compact set.

For a given admissible control a(t),t > 0 valued in U , and a given initial data x G Rn,
consider the following stochastic control problem

dy(s) = b ( y ( s ) , a ( s ) ) d s + a(y(s),a(s))dB(s),s€[t,T}, (4.2.96)
1/(0) = x.

where b(x,a),a(x,at) are ^"-valued and C(Rd,Rn) valued functions defined on Rn x Rk .
Further we asumme that

Assumption 4.2.97 b and a are continuous in (x,a), and continuously differentiable in
x, their derivatives bx,ax are bounded.
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Obviously, the corresponding solution y(-) = yx'a(-) is well defined and

E\yx>a(s)\2<C\x2,

where C is independent of x,a, and s.
We now introduce the following backward stochastic differential equation: let f ( p , q j x a )

be a real function defined on R x Rd x Rn x Rd. For any given continuous function g ( x ) :
Rn —» R satisfying

\g(x)\<C(l + \x\],

p(s) = g(y(t)) + I /(p(r), q ( r ) , y ( r ) , a(r))dr - f q(r)dB(r),s € [0, t]. (4.2.98)
Js Js

We assume that

Assumption 4.2.99 / is continous in (p, q, x, a) and continuously differentiate in (p, q, x),
the derivatives f p , f q , f x Q^e. bounded.

It is easy to see thatp(s) is J-s-adapted andp(0) = Ep(Q). We can introduce the following
generalized cost function

J(x, t- <?(•), a(-)) = P(0)(= EP(0)),Vt e (0,T).

Since for given <?(•), J(x,t\ g(-),a(-)) is uniformly bounded in A. Thus we can define the
value function

V((x,t;g(.» = inf J(x, t ; g ( - ) , <*(•)).
a(-)€A

If we assume that

Assumption 4.2.100 g(x) is a uniform Lipschitz function.

Then we have the following generalized dynamic programming principle.

Theorem 4.2.33 Let Assumptions 4.2.97, 4.2.99 and 4.2.100 hold. Then we have

V(x,t + h - g ( - ) ) = V(x,t;V(-,h,g)),Vx,Vt + h<T. (4.2.101)

Example 4.2.34 A trivial situation of the above optimal control problem is when f depends
only on (p, q, a) and g = 0:

inf p(0)= inf {[ /(p(r),g(r),a(r))dr- f q(r)dB(r)},
a(-)eA a(-)eA J0 J0

where, for given a ( - ) G A, (p(-), q(-}) solves

ft ,t
P(s)= /(/(p(r),9(r),a(r))dr- / q(r)dB(r),0 < s < t.

Js Js

In this case it is easily seen that

inf p(0) = inf E f /(p(r),g(r),a(r))dr
a(-)eA a(-)eA JQ

= inf E f /(pi(r),0,a(r))dr,
a(-)€A Jo
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where Ao = (a(-) e I/2(0, T); a(s) e I/, a.e.} andpi(s),0 < s < t, solves

ft
Pi(*)= / /(/(p(r),0 )a(r))dr )a(.)eA).

./s

From the dynamic programming principle, we can derive Hamilton-Jacobi-Bellraan equation.
For a fixed g ( x ) , define value function:

u(x,t) = V(x,T-t,g(-)-),(x,t}eRnx(0,T}.

The dynamic programming principle (4.2.101) now can be written in the form

u(x,t)= inf {[ f(p(r),q(r),y(r),a(r})dr- f q(r}dB(r) + u(y(h),t
a(-)€A JQ J0

(4.2.102)

where y(-) is the trajectory corresponding to a ( - ) with initial data y(0) = x, (p(-), q(-)) solves
the following backward equation

/

h i-h
f(p(r),q(r),y(r),a(r))dr- \ q(r)dB(r), 0 < s < h.

J s

Similar to the classical optimal control, function u can be solved by a nonlinear partial
differential equation: this is the following generalized Hamilton-Jacobi-Bellman equation.

H(D2u,Du,u,x,t) = 0, (4.2.103)
u(x,T) = g(x),

where Du and D2u denote respectively the gradient and the Hessian of u and

= inf l£(x, a)u + f(u, crT(or, a)Du,x, a)},

L(x,a)u = -trace(cr(x, a)crT(x, a)D2u) + (Du, b(x, a)).

Definition 4.2.35 Let u be a continuous function on Rx (0,T); u is said to be a viscosity
subsolution (resp. super solution) of (4-2.103), if for all </> e C2'l(Rn x [0, T]) the following
inequality holds, at each minimum (resp. maximum) point (x,t) of (f> — u

dtftx, t) + H(D2<f>(x, t), D^(x, t}, 0(x, t), x) > 0,

(resp. dt(l>(x,t) + H(D2(f)(x,t),D4>(x,t),(t>(x,t),x) < 0);

u is said to be a viscosity solution of (4.2.103) if u is both a viscosity subsolution and a
viscosity supersolution of (4-2.103).

We now end this section with the folowing theorem.

Theorem 4.2.36 // assumptions 2.5.1, 2.5.2, and 2.5.3 hold, then the value function u(x , t)
is the viscosity solution of (4-2.103).
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4.3 Some generalizations of SDEs
So far we have only considered stochastic differential equations with respect to Brownian
motion. For such equations, the solutions are always continuous processes. Now in this
section, we discuss more general stochastic differential equations which include Poisson
point processes as well as Brwonian motions; stochastic differential equation with respect
to semimartaingale; stochastic differential equation with respect to nonlinear integrators.

4.3.1 SDEs of the jump type
Forward SDE with jumps

Let {U, BU} be a measurable space and n(du) be a cr-finite measure on it. Let UQ be a set
in BU such that n(U\Uo) < oo. Let 6(s, x) be a Borel measurable function [0, oo) x Rd — >
Rd, a(s,x) be a Borel measurable function [0, oo) x Rd — > Rd ® Rr, and f(t,x,u) be a
B(R+) x B(Rd) x BU measurable function [0, oo) x Rd x U — > Rd such that for some positive
constant K,

\\f(t,x,u)\\2n(du)<K(l + x\2,x £ Rd,t < 0; (4.3.104)
u0

and

\\a(t,x) - a(t,y)\\2 + \b(t,x) - b(t,y)\2 (4.3.105)

+ / \\f(t,x,u)-f(t,y,u)\\2n(du)<K\x-y\2, t>0,x,y£Rd.
JU0

Consider the SDEs
,t ,t

X ( t ) = X ( 0 ) + b ( s , X ( s ) ) d s + a ( s , X ( s ) ) d B ( s )
Jo Jo

/•*+ f
+ / / f(s-,X(s-),u)lUo(u)Np(dsdu) (4.3.106)

Jo Ju

+ f f f(s-,X(s-),u)lu\Uo(u)Np(dsdu)
JO JU

where B(t) is an r-dimensional standard Brownian motion process, p(-) is a stationary Pois-
son point process taking values in a measurable space (U,B(U)), with characteristic mea-
sure n(-) and Nk(ds,dz) is the Poisson counting measure defined by p(-) with compensator
n(du)ds, Nk(ds, dz) is the martingale measure such that

Nk(ds,du) = Nk(ds,du) — n(du)ds.

By a solution of the equation (4.3.106), we mean a right continuous process X = ( X ( t ) )
with left hand limits on Rd defined on a probability space (fi, f, P) with a reference family
(Ft} such that X is J^-adapted and there exists an r-dimensional J^-Borwnian motion B(t)
and an (^r

t)-stationary Poisson point process p on U with characteristic measure n such that
the equation (4.3.106) holds a.s. We have the following existence theorem; for the proof,
the reader may refer to [39].

Theorem 4.3.1 If b(s,x),a(t,x) and f ( t , x,u) satisfy (4-3.104) and (4-3.105), then for
any given R-dimensionial (J-t)- Brownian motion B = ( B ( t } } , any (J~t) -stationary Poisson
point process p with characteristic measure n and any Rd-valued F0 -measurable random
variable £ defined on a probability space with a reference family ( f t ) , there exists a unique d-
dimensional (Ft) -adapted right- continuous process X(t) with left-hand limits which satisfies
equation (4-3.106) and such that X(0) = £ a.s.
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Backward SDE with jump

The adapted solution for a backward stochastic differential equation with respect to Brow-
nian motion have been discussed in last section. Tang and Li (1994) applied Peng's idea to
get the first result on the existence of an adapted solution to a BSDE with Poisson jumps
for a fixed terminal time and with Lipschitzian coefficients. We state here a new result by
Situ Rong (1997) on the existence and uniqueness of an adapted solution of BSDE with
jumps and with non-Lipschitzian coefficient.

Consider a BSDE in Rd

X(t) = X0+ f b(s,X(s),g(s),h(s),w)ds
Jt/\T

-f g(s)dB(s)- I I h(s,u)(Np(ds,du),t>Q, (4.3.107)
Jtf\r Jtf\T JU

where B(t) is an r-dimensional standard Brownian motion process, p(-) is a Poisson point
process taking values in a measurable space (U, B(U)), Np(ds,du) is the Poisson counting
measure defined by p(-) with compensator n(dz)ds,N(ds,du) is the martingale measure
such that

Np(ds,du] = Np(ds,du) — n(du)ds,

n(-) is a cr-finite measure on B(U),r is a bounded 7t-stopping time, and XQ is a 7^-measurable
and .Revalued random variable, where Tt is the cr-algebra generated (and completed) by all
B(s), s <t, and Np((0, s ] , s <t,U e B(U}. We also use the following notation P% (g t)([0, T] :

is the set of Revalued 7t-predictable processes f ( t , u , u } ) such that

E I I \f(t,u,uj)\2n(du)dt < oo;
Jo Ju

L2,Tt-.([0, T] : Rd} is the set of f ( t , u j ) , which is 7^-adapted, jointly measurable and Revalued
such that

E T I \f(t,uj}\2dt«X;
Jo Ju

and L2
Tt}([0,T] : Rd®r) is defined similarly. Denote by I^(.)(Rd) the set of Revalued

functions f(z),u G U, which is B(U) measurable such that |||/||| = (fv \f(u)\2n(ds))1/2 <
oo. Denote by < a, b >= a • b the inner product of a,b & Rd; \\g\\ the norm of the matrix
g € Rd®r.

Definition 4.3.2 (X(t),g(t),h(t)) is said to be a solution of (4-3.107), iff it satisfies (4.3,107)
and (X(t),g(t),h(t)) e T t ( [0 ,T] : Rd) x i T t ( [0 , r ] : R^r) x Pfc

2,(Tt([0, r] : Rd).

Theorem 4.3.3 Assume that T <T and
(i). b = b1+b2,bi =bi(t,x,g,h,w) : [0,T] x Rd x Rd®r x L?l(.)(Rd) x f t - > R d , ( i = 1,2)

are Tt-adapted and measurable processes such that P-a.s.

\b1(t,x,g,h,u)\<c(t)(l + \X\ + \\g\\ + \ \ \ h \ \ \ ) ,
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where c(t) >0 is real and nonrandom such that

I c(t)2dt < oo;
Jo

(ii). for all t e [Q,T\;x,Xi £ Rd;g,gi € Rdxr;Pi 6 L2
n(.](Rd),i = 1,2,

(xi — x2, b(t, X i , gi,hi) — bi(t, x2, g2, h2, uj)
< c(t)(p(\xi - x2\2) + \xi —x2\(\\g\ -

bi(t,x,g,hi,u) - bi(t,x,g,h2,u)\
<

< c(t)(\Xl ~X2 + \\9l -92\\ + H l / l l

where c(t) has the same property in (i), and p(u) is a real function which is increasing,
concave and continous such that p(0) =0 and p(u) > 0 if u > 0 and

/
du/ p(u) = +00,

_ +

(in). b(t,x,g,h,u) is continuous in (x,g,h) e Rd x Rd®r x L2
n(^(Rd};

(iv). XQ is TT -measurable, and E\X0\2 < oo.

Then (4.3.107) has a unique solution ( X ( t ) , g ( t ) , h ( t ) } .

Remark Here the "uniqueness" means that i/(JsQ(t),g,(t),h, i(t)),t = 1,2 are two solutions
of (4-3.107), thenEf^ \Xl(t)-X2(t2dt = 0,-E /J" ||si(*)-<fc(*)||2dt = 0, and E f^ |||fti(t)-

Here is an example to show that under conditions of Theorem 4.3.3 coefficient b can be
non-Lipschitzian in x.

Example 4.3.4 Let b = bi + b2, where b2 satisfies conditions of Theorem 4-3-13 and we
assume that 0 < Vi(t,(jd),i = 1,2,3, are Tl-progressive processes on [0, T] and uniformly
bounded. Let

t=l

where

bu(t,x,g,h,u) = -x r°~2x •

bi2(t,x,g,h,uj) = -\x\ri~2x-v2(t,u})l{

b13(t, x,g, h,u) = ~\x\r2-2x • v3(t,Lo}l{x

and ki > 0,i = 0, l , ; ry 6 ( l ,2) , j = 0,1,2; which are all constants. Then 61 satisfies all
conditions in (i), (ii) and (Hi), but it is not Lipschitzian continuous.

There are still some existence theorems, examples and some convergence theorems and
applications in Situ's paper, with various type conditions. For the detail, we refer to his
paper [86].
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SDEs Governed by C-valued Levy processalJJi/s Governed by C-valued Levy process

Let C = C(Rd,Rd) be the Prechet space of all continuous maps from Rd into Rd equipped
the compact uniform topology determined by the metric

2N I -

A C-valued stochastic process Yt = Yt(w},t > 0, is called a Levy process if it is continuous in
probability, is right continuous with finite limit on the left in ^-topology, and has independent
increments. In particular, if almost all paths of Xt are continuous in t, then Xt is called a
Brownian motion. A C-valued Levy process Yt is said to be stationary if the law of Yt — Ys

depends only on t — s, and that YQ = 0.
Given a C-valued stationary Levy process rjt, we define a point process associated with

it. Define

and

Dp := {s>t0: Ar/, /=<>}.

Let pt be a C-valued point process defined by pt '•= Aijt, and let Np((0,t],A) be the
counting measure of pt, that is

Np((0, t], A) := #{s e Dp f|(0, t] : Ps € A},

where A 6 B(C), the Borel cr-algebra of C, and #{B} denotes the cardinality of the set B.
It is a stationary Poisson random measure. The intensity measure defined by

i>((t0,t}xA):=E[Np((t0,t},A)}

is of the form v(A)t. The measure v satisfies the following property.
Condition I

"{/ = / = 0} = 0.

We assume the existence of an open neighborhood U of 0 € C such that v(Uc} < oo and
/[/ \f(x)\2v(df) < oo holds for any x.

Let Xt(x) denote the restriction of the C-valued Levy process Xt at the point x G
Rd. Then for any xi, #2, • • • > xn G Rd, the n-point process (A"t(xi), • • • , Xt(xn)) is an nd-
dimensional Levy process. Hence the characteristic function admits the Levey-Khinchin's
formula:

k=l

f (eiES(a*,/(»/,))._ 1 _ i V(afc, f ( x k ) ) ) v ( d f )
Ju k

f (giEfcC^,/^))-!)^/)} (4.3.108)
Ju<=

+
u
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where,
Condition II b(x) is an Rd-valued function,
Condition III a(x,y) is a d x d-matrix valued function such that ak'l(x,y) = al<k(y,x)

for and k, I = 1, 2, • • • , n and x, y € #d, and Y,i,j ^i^Xi, XJ}Q>J > 0 for any z*, a* e Kd, i =
l , 2 , - - - , n .

Note that the law of Xt(ui} is uniquely determined by the system (a,b,i/,U) which is
called the characteristics of Xt. We need the following conditions on it.

(A.I) a(x,y) is bi-Lipschitz continuous in the sense that

\\a(x,x)-2a(x,y)+a(y,y)\\<L\x~y\'2, Vx,y e Rd,

where ||a|| = £3jO«
(A. 2) b(x) is a Lipschitz continuous, i.e.,

(A. 3) There is a positive constant L such that

and

r \f(x)\L
holds for any p e [2,p], where p > d.

Under these assumptions as above, we have the following theorem on the C-valued Levy
process.

Theorem 4.3.5 Let (a,b,i/,U) be a system satisfying Conditions I,II,III, and (A.I),(A.2)
and (A.3) for some p > d. Then there is a C-valued Levy process with the characteristics

Let Xt(x), x G Rd, t G {0, T] be a C-valued Levy process with characteristics (a, 6, z/, U)
saisfying (A.I),(A.2) and (A.3) for some p > d . Let s < t and fatt be the least sub
<7-field of JF for which Xu — Xv;s < u < v < t are measurable. Then for each s and
x,Xt(x) — Xs(x),t € [s, T] is an ,FS ^-adapted semimartingale. Xt(x) is decomposed to the
sum of the process of bounded varation

" f(x)Np((0,t],<tf)

and an L2-martingale Yt(x) = Xt(x) — Vt(x). Let < Y*(x),Yl(y) > be the continuous
process of bounded variation such that

>t - < Yx^

is an Fs^-martingale. Then it holds < Y*(x),Yi(y) >t= At:>(x,y), where
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Let s > 0 be a fixed number and let <fo(u>) be an .T-^t-adapted Rd-va\\ied process, right
continuous with the left limits. The Ito integral of </>t by dYt is denned by

/t
Js k=0

where 6 are partitions {s = t0 < t\ < • • • < tn — T}. The limit exists in probability and is
a local martingale. Let V't(a;) be an PStt adapted process having the same property as <j)f
Then it holds

Now the stochastic integral by C-valued Levy process Xt is defined by

/ dXr(4>r_) + I b(<t>r-)dr + I I f(<j>r_)Np(dr,(tf).
Js Js Jt JUC

Now we can consider the following stochastic differential equation defined by the C-valued
Levy process X^:

d£t = dXt(&-) (4.3.109)

Definition 4.3.6 Given a time s and a state x, an Rd -valued FStt-adapted process £t right
continuous with the left limit is called a solution of the equatioin (4-3.109) if it satisfies

JX r(f r_). (4.3.110)

Firstly, we have the following existence and uniqueness theorem and continuity theorems.

Theorem 4.3.7 For each s,x, the equation (4-3.110) has a unique solution.

Theorem 4.3.8 Let X t ( x ) be a C-valued Levy process with characteristics (a,b,v,U) sat-
isfying (A.I),(A.2) and (A.3) for some p > d . Then the solution of equation (4-3.110) has
a modification £sj with the following properties.

(i) For each s,£S;t,£ £ [s,T] is a right continuous C -valued process with the left limits.
(ii) For any 0 <to < ti < • • • < £«, £t;,ti+1 ,i = 0,1, • • • n — 1 are mutually independent.
(in) For each s, it holds that £<,_„ = £t,u ° £s,t o-s., for any s < t < u.

Secondly, if we make the following assumptions, we can obtain the regularity of the
solution with respect to the initial data.

(B.I) a(x,y) = (a l j(x,j/)) are m-times continuously differentiable in both x and y.
Further, Dk

sDk
Ja(x,y) is bi-Lipschitz continuous for any k with \k\ < m.

(B.2)6(x) = (6*(x)) is a C"™-function and Dkb(x) is Lipschitz continuous for any k with
\k\leqm.

(B.3) The measure v is supported by Cm. There is a positive constant L such that

I \ D k f ( x } - D k f ( y ) f v ( d f ) < L\x-yf,\/x,y e Rd

Ju
and

f \Dkf(x)fv(df)<L,VxeRd
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hold for any k with 1 < |fc| < m and

L
fo r7 /e [2 ,p] .

Let us define the product of two elements /, g of C(Rd; Rd) by the composition f o g of the
maps. Then C(Rd, Rd] becomes a topological semigroup by the topology p. We denote the
semigroup by G+. From Theorem 3.1.5 we know the solution £,s,t(x] of equation (4.3.110)
defines a Levy process in the semigroup G+. The associated C- valued Levy process Xt is
called the infinitesimal generator of £s,t and £Sjt is said to be generated by the C-valued
Levy process Xt. Denote by G+ the sub-semigroup of G+ consisting of Cm-maps. It is a
topological semigroup by the metric

Pm(f,g) =
\k\<m

The Levy process with values in G™ is defined similarly as that with values in G+.

Theorem 4.3.9 Suppose the characteristics of a C-valued Levy process satisfy (B.1),(B.2)
and (B.3) for some p > (m + l)2d. Then the solution £,s,t(x) of (4-3.110) has a modification
such that it is a C™ -valued Levy process. Futhermore, in case U = C, there is a constant
M such that

and

E[ sup Dk£s,r(x) - Dk^,r(y)\p} < M(t - s)\x - y\p ,Vx, y 6 Rd,
s<r<t

E[ sup \Dk(£StT(x) -x)\p}< M(t - s),Vx € Rd

s<r<t

hold for any k with 1 < \k\ < m and p' 6 [2,p/(m + I)2].

Finally, we discuss the homeomorphic property of the solution. Denote by G the totality
of homeoporphisms of Rd. It is a subgroup of G+, and is a topological group by the metric

However, we use the metic p instead of this d. The definition of the. G- valued Levy process
is similar to that of G+-valued Levy process. For the case that the intesity measure v of
the Poisson point process is finite measure, we have

Theorem 4.3.10 Let Xt(x) be a C-valued Levy process satisfying (A.I), (A. 2) and (A. 3)
for some p > d. Suppose the following

(A.4J The intensity measure v is finite and is supported by f such that 4>f = f + id & G.
Then the solution of equation (4-3.110) defines a G -valued Levy process.

For the case that the intensity measure v is cr-finite, we need the following assumptions.
(A. 5) 4>f = f + id are homeomorphisms a.s. v. v satisfies

L oo,

where

x^y X-y\
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Theorem 4.3.11 Assume (A.I),(A.2) and (A.5) hold. The solution of equation (4-3.110)
defines a G-valued Levy process.

4.3.2 SDE with respect to semimartingale
Ito's stochastic differential equation

Let us begin with introducing some notation. Let D be a domain in Rd and Re be another
Euclidean space. Let m be a nonnegative integer. Denote by Cm(D,Re) or Cm the set of
all maps / : D —> Re which are m-times continuously differentiable. In case m = 0, it is
often denoted by C(D,Re). For multi-index of nonnegative integers a = (ai, • • • , ay), we
define the differential operator

where \a\ = ]P o^. Let K be a subset of D. We set

Then C(D, Re) is a Frechet space under the family of seminorms {|| \\m-.K '• K are compacts
in D}. When K = D, we write || \\m:K as || ||m. Denote by C^(D,Re) or Cg1 the set
{/ e Cm : \\f\\m < oo}- Then it is a Banach space with the norm || ||m. Now let 6 be a
positive number less than or equal to 1. Denote by Cm'S(D,Re) or simply by Cm'S the set
of all / of Cm such that Daf, \a = m are 5-Holder continuous. By the seminorms

l l f l l l l f l l -u V" \Daf(x)~Daf(y}\\\f\\m+S:K = \\f\\m:K + > SUp ————— : ————— r^ ————— ,
x

it is a Frechet space. When K = D we write || ||m+,5:m as | \\m+s- Denote by C™'S(D, Re)
or C™<& the set of {/ e Cm'S : \\f\\m+s < oo}.

A continuous function f(x,t),x e D,t e [0,T] is said to belong to the class Cm'S if for
every t, f ( t ) = /(•, t) belong to Cm'S and \\f(t)\\m+S:K is integrable on [0, T] with respect to
t for any compact subset K. If the set K is replaced by D, / is said to belong to the class
C™'6 . We define the set Cm of all .Revalued functions g(x,y),x,y e D which are m-times
continuously differentiable with respect to each variable x and y . For g e Cm, define

and for 0 < 5 < 1,

where

\ n t i" ? / i _ n (T* 11 ] — ft (T 1 / 1 I n \ IT 11 \ \n i l i/v*'* y) i/v^ •> y) i/v j '» */ / ^ " \ ' y / i
IHl5-= - - S U P -K———————Ix-x ' l ' l i , - ^———————•
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The function g is said to belong to the space Cm'5 if ||#||m+,5:K < oo for any compact set
K in D. We denote || }\m.D and || \\m+s,D by || ||m and || \\m+s, respectively. We set
CT - (9 '• \\9\\m < 00} and C?'S = {g : \\3\\m+s < oo}.

A continuous function g(x, y, t), x, y e D, t e [0, T] is said to belong to the class Cm'S if
for every t,g(t) = g ( - , - , t ) belongs to the space Cm<5 and ||<7(*) !],$.#• is integrable on [0, T]
with respect to t for any compact subset K. The classes C™' is denned similarly.

Let F(x, t) = (F1 (x, t), • • • , Fd(x, t ) ) , x & Rd be a continuous semimartingale with values
in C = C(Rd,Rd). We will discuss the following stochastic differential equation

dfa = F ( f a , d t ) . (4.3.111)

We shall first introduce assumptions for a continuous semimartingale F so that equation
(4.3.111) is well defined. Let F^x.t) = M^x.t] + Bl(x,t) be the decomposition such that
Ml(x,t) is a contimuous local martingale and J3l(z,t)is a continuous process of bounded
varation. Set Aij(x,y,t) =< Mi(x,t),M:i(y,t) >. Let (a(x,y,i),b(x,t),At) be the local
characteristic of the semimartingale F, i.e. At is a continuous strictly increasing process
such that both A^(x,y,t) and B*(x,t) are absolutely continuous with respect to At a.s.
for any x,y G Rd. Hence there exist predictable processes a*i(x,y,t) and bl(x,t) with
parameters x, y such that

/•* . . . /•*
= / cF(x,y,s)dAa, B*(x,t) = /

Jo Jo
.

b*(x,s)dAs

Let b(x,t) = (bl(x,t), • • • , bd(x,t)) and a(x,y,t) = (ai:! (x,y,t)),i,j = 1 , - - - , d . Then
a(x,y,t) is a d x ^-matrix valued function with the following properties.

(a) symetric: a l j ' (z ,y,t) = ail(y,x,t) holds a.e. /it for and x,y and i,j.
(b) nonnegative definite: £\ • qal^(xp,xq,t)^l

p^q > 0 holds a.e./j, for any xp,
\ CTJ i " * ' ) CT) / ) P — -L ) " ' " ; fit*

Now let us classify the family of semimartingales F(x,t),x 6 D according to the regu-
larity of its local characteristic. The local characteristic (a, A) is said to belong to the class
gm,s jj a(x,y,t) is a predictable process with values in Cm'S(D, R) and for any compact
subset K of D, \\a(t)\\m+s.K € Ll(A). In particular if ||o(f)||m+(S e Ll(A) holds, (a, At) is
said to belong to the class B™' . The local characteristic (b, At) is said to belong to the class
Bm's if b(x, t) is a predictable process with values in Cm's(D, R) and for any compact subset
K of D \\b(t)\\m+s:K € ^(A). In particular if ||6(f)||m+(j 6 Ll(A) holds, (b,At) is said to
belong to the class Bm'&. The triple (a,b,At) is then said to be the class (Bm's,Bm''s') if
(a, At) belong to the class Bm>s and (b, At) belong to the class Bm'>s'. When m = m' and
5 = 5', the triple is simply said to belong to the class Bm'S.

Now if F is a contniuous C-semimartingale with the local characteristic belonging to the
class B°'s; that is for every i, the local characteristic of Fl = M*(x,t) + Bl(x,t) belonging to
the class B°'S, then Ito's stochastic integral fQ F(<ps,ds) is well defined for any continuous
-Rd-valued predictable process fa . We will give the definition of the solution of the stochastic
differential equation.

Definition 4.3.12 Let to £ [0,T] and XQ £ Rd. A continuous Rd-valued process f a , to <
t < T adapted to ft is called a solution of Ito's stochastic differential equation based on
F(x,t) starting at XQ at time to if it satisfies

f*fa = x0+ F(<f>s,ds). (4.3.112)
•/to
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Also fa is said to be governed by Ito's stochastic differetial equation based on F(x,t~).

We have the existence and uniqueness theorem of the solution of the above equation.

Theorem 4.3.13 Let F(x, t) be a continuous semimartingale with values in C(Rd, Rd) with
local characteristic belonging to the class B®'1. Then for each t0 and x0, equation (4-3,112)
has a unique solution.

For proof of this theorem and the following theorems in this section we refer to Kunita's
book [54]. This is the development of Ito's stochastic differential equation to general pro-
cesses. This is not without difficulties because of the presence of the jumps. In any case,
the integrator is to be viewed as a process in the usual sense indexed by an extra parameter
which will be eventually replaced by the integrand. The stochastic intgral in the right hand
side of (4.3.112) is denned in Fujiwara-Kunita as a limit of Ito-Riemann sums.

If we do not assume the uniform Lipschitz condition for the local characteristic, then,
the explosion may occur at a finite time. So we shall define a local solution of a stochastic
differential equation and give the existence theorem.

Let <j)t,t £ [^OjCToo) be a continuous local process with values in Rd adapted to (Ft)- It
is called a local solution of equation (4.3.112) if

/

£A<7jV

F((f>sAcrN,ds)
-.1I to

is satisfied for any N where {<TAT} is a sequence of stopping times such that CTJV < CTOO and
ON t CToo- Furthermore if limt|CToo (f>t = oo is satisfied when cr^ < T, it is called a maximal
solution and a^ is called the explosion time. If the explosion time is equal to T a.s., the
solution </> t , i £ [to,T) is called a global solution. Further if equation (4.3.112) has a global
solution for any initial condition, equation (4.3.112) or the corresponding (7-semimartingale
F is called complete (to the forward).

Theorem 4.3.14 Let F(x, t) be a continuous semimartingale with values in C(Rd, Rd) with
local characteristic belonging to the class B0'1. Then for each to and XQ the stochastic
differential equation (4-3.112) has a unique maximal solution.

Up to the global solution, we have the following theorem.

Theorem 4.3.15 Assume that the local characteristic (a,b,At) of a continuous C
-semimartingale F belongs to the class B0'1 and is of linear growth, i.e. there exists a
positive predictable process Kt with J0 KtdAt < oo such that

\\a(x,x,t)\\ <Kt(l + z|)2, (4.3.113)

]b(x,t)\<Kt(t+\x\). (4.3.114)

Then for each to and XQ equation (4-3.112) has a unique global solution. Furthermore, if
the process Kt satisfies

£[exp{A / KwdAu}\ < oo,VA > 0 (4.3.115)
Jo

the global solution has finite monents of any order.
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Next is a theorem about the homeomorphic property of solutions of SDE. That means
that a system of solutions of a stochastic differential equation defines a stochastic flow of
homeomorphisms provided that the local characteristic of F(x, t) governing the stochastic
differential equation belongs to Bb' .

Let F(x,t) = ( F l ( x , t ) , - - - ,Fd(x,t)),x 6 Rd be a continuous C(Rd,Rd)-valued semi-
martingale with local characteristic belonging to B°'1. Consider an Ito stochastic differential
equation

' F(0r,dr). (4.3.116)

We have seen in Theorem 3.2.1 that equation (4.3.116) has a unique global solution for any
s, x. We denote its solution by <j>s,t(x), t> s. Then we have the folowing theorem about the
homoeomorphic property of solution of SDE.

Theorem 4.3.16 (i) Assume that the local characteristic of F(x,t) belongs to the class
B®'1. Then there exists a modification of the system of solutions denoted by 0 s>t,0 < s <
t < T such that it is a forward stochastic flow of homeomorphisms. Further for every
s,4>s,t,t G [s,T] is a C°^-semimartingale flow for any 7 < 1.

(ii) Assume that F(x,t) is a Brownian motion with values in C"0'7 with mean vector
/0 b(x, r)dr and covariance fQ a(x, y, r)dr where a belongs to the class Cu'h Then the asso-
ciated flow is a Brownian flow with infinitesimal mean b and infinitesimal covariance a.

Now let's see the diffeomorphic property of solutions of SDE.
Let G(A,r, t), (A, T) 6 Re x [0, T] be a family of continuous 7?d-semimartingales with

parameter (A, r) with local characteristic (a(A,r, A',r',i), b(X,r, t ) , t ) . Let 0 < 6 < 1,0 <
7 < | and p > 1. We assume both a and b are continuous random fields and continuously
differentiable with respect to A and A'. Let a' = D"D%,a,b' = D"b for |ct < 1. Set

, , , , fr,t-

These are called Lp-bounded if E[\L"' '7|p] are bounded with respect to (A, T, A',r',t). Now
the local characteristic (a, b) is said to belong to the class B^'5^ if a, b, I/°'1>7 and L"'6'"' for
\a = 1 are all //-bounded.

Now let Gi(A, T, i), (Ar) & D x [0, T] be a family of continuous fid-valued semimartin-
gales with parameter (Ar) and let 6^2 (A, r, t) be a family of continuous Rd <3> Rd-va\ued
semimartingales with parameter (A, r). Let Gs(y,t) be a continuous C(Rd : Jid)-valued
semimartingale. We need the following assumption:

Condition 4.3.1 (i) The local characteristic (ai,bi,.t) of G\ belongs to the class B^'5''1 for
any p > 1 .
(ii) The local characteristic (05,62,^) o/Gj belongs to the class B^''1 for anyp > 1. Further,
02,62 are uniformly bounded.
(in) The local characteristic (a3,b3,t) of GS belongs to the class B^f .

Define

G(y, A, r, t) = Gi (A, r, t) + G2 (A, T, t) + G3 (y, t) .
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It is a family of continuous C(Rd : Rd)-valued semimartingales with parameter (A, r). Con-
sider stochastic differential equation with parameter (A, r):

f)t = f G ( r j u , X , T , d u ) . (4.3.117)
Js

For each y, A, r and s it has a unique solution denoted by by rjs>t(y, X,T). Given a C°°-
function q(\) with values in Rd, we set

We will study its continuity with respect to (s, t, A) and its differentiability with respect to
A. We have the following theorems.

Theorem 4.3.17 Assume that G(y,X,r,t) satisfies Condition 4-3.1 for some S, 7 > 0. Let
r;sj(y, A, r) be the solution of equation (4-3.117). Set rjsj(X) = r)Sit(q(X),X,s). for q(X)
a smooth function. Then rjSit(X) has modification which is continuous in ( s , t , X ) . Any
continuous modification is differentiable with respect to X for any s,t and the dervatives are
continuous in (s, t, A) a.s. Futher if q and its first derivatives are bounded and the latter is
uniformly 8-Holder continuous, then for every p > 1 there exists a positive constant c such
that the modification ?7S)i(A) satisfies

< c{ A - \'\2pd + \s-s' -*r + |t -
|_ L//\ t//\ J

and

for any s, t, s', t' , A,- A'. Furthermore, for every s it is a contimuous Cl'c-semimartingale for
any e < 5.

Theorem 4.3.18 Assume that the local characteristic of the contnuous C-semimartingale
F(x,t) belongs to the class Bb' for some k > 1 and 6 > 0. Then the solution of stochastic
differential equation based on F has a modification <f>s,t,Q < s < t < T such that it is a
forward stochastic flow of Ck-diffeomorphisms. Further it is a Ck'e-semimartingale for any

Stratonovich's stochastic differential equation

Next we shall consider stochastic differential equations described in terms of Stratonovich
integrals. As we will soon see, Stratonovich's stochastic differential equation ca,n be rewritten
as an Ito's equation. Hence most problems involving a Stratonovich's stochastic differential
equation can be reduced to a problem involving an Ito's equation.

Let F(x,t) be a continuous C'-semimartingale with local characteristic belonging to the
class (B2'5,Bl'°) for some S > 0. A continuous .Revalued local semimartingale <j>t,t €
[*o3 ^oo) is called a local solution of Stratonovich's stochastic differential equation based on
F(z, t) starting at XQ at time t0 if it satisfies

' /-tACTjv

<t>t^N=x0+ F(<J>sAcTN,odS) (4.3.118)
Jto
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for any N where {CTN} is a sequence of stopping times such that <TJV < <TOO and &N T CTOO-
Also 4>t is said to be governed by the Stratonovich's stochastic differential equation based
on F(x, t). Furthermore if limfc^ 4>t = oo is satisfied when a^ < T, it is called a maximal
solution and CTOO is called the explosion time. We have the similar theorem with previous
section.

Theorem 4.3.19 Let F(x,t} be a continuous C^--semimartingale with local characteristic
(a,b,At] belonging to the class (S2'5,^1'0) for some 5 > 0. Then for each t0 and x0,
the Stratonovich's equation (4-3.118) has a unique maximal solution. Further the solution
satisfies ltd1 s equation based on F(x,t) + C(x,t) where

C(x,t)= i {Y^(x,y,s)L=x}dAs (4.3.119)

Conversely let F(x,t),x 6 Rd be a continuous C1 -semimartingale with local characteristic
(a,b,At) belonging to the class (B2>S,B1>0) for some 6 > 0. Then the solution of the ltd
equation based on F satisfies the Stratonovich's equation based on F(x,t) — C(x,t). The
term C(x,t) here is often called the correction term of the semimartingale F or F.

Backward equation

In this section, we shall give the definition of the solution of the backward stochastic dif-
ferential equations. The arguments are completely parallel to those of (forward) stochastic
differential equations. The only difference is that these are defined to the backward direc-
tion. We would like to start with the definition on backward stochastic integral with respect
to semimartingale.

Let {Fs,t : 0 < s < t < T } b e a family of sub-cr-field of T which contain all null sets
and satisfy Fa^ C Fs',t' if s' < s <t <t', Hffgj+f — Fs>t and r\eFs-.ej — Fsj. It is called
a nitration (with two parameters) of sub <j-field of F. A continuous process Mt is called a
backward martingale adapted to (Fa,t) if it is integrable, Mt — Ms is J^^-measurable and
satisfies E[Mr — Mt\^s,t] — Ms - Mt for any r < s < t. A backward localmartingale is
defined similarly to the (forward) localmartingale. Let Xt be a continuous process such that
Xt — Xs is (^r

S)t)-adapted. It is called a backward semimartingale if it can be written as the
sum of a continuous backward localmartingale and a process of bounded variation.

Now let F(-,t) be a continuous backward semimartingale with values in C with local
characteristic belonging to the class B°'°. Fix the time t for the moment. Let Fs, s € [0, t] be
a continuous (Jr

s,t)-adapted process. Then the backward Ito integral of fs based on F(-,t)
is defined by

n-l

n /V,dr )= l im V{F(/4fc+lVs,ife+1 U s) - F(ftk+lVs,tk V s)}, (4.3.120)
|AH°fe=0

where A = {0 = to < ti < • • • < tn = t}, t V s = max{t, s} if the right hand side converges
in probability. It is a continuous backward semimartingale with respect to s.

Suppose that F(-,t) is a continuous backward C'-semimartingale with local character-
istic belonging to the class (B2'5,!?1'0) for some <5 > 0, and fa is a continuous backward
semimartingale. The backward Stratonovich integral is well defined.
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/

t n-l .

F(fr,odr) = Hmo^-{F(/ t f c+ lVs,tfe+i V s )

+F(ftkVs,tk+1 V s) - F(ftk+,Vs,tk V a)}
-F(ftkVs,tkVs), (4.3.121)

since the right hand side converges in probability. These two integrals are related by

/ F(fr,odr)= I F(fr,dr)--^2< I —-(fr, dr), ft >, (4.3.122)
Js Js ^ . Js ®x

where <, > denote the joint quadratic variation.
Now a continuous (^r

S)t0)-adapted process (j>s,s e [0, to] with values in Rd is called the
solution of the backward Ito stochastic differential equation based on F(x, t) starting at XQ
at time to if it satisfies

fto
<t>s=x0- / F(<j)r,dr). (4.3.123)

Js

We can define the solution of the backward Stratonovich's SDE similarly.

4.3.3 SDE driven by nonlinear integrator
Introduction

We have discussed the stochastic differtial equations driven by semimartingale in the pre-
vious section. In this section, we will present the stochastic differtial equations driven by
nonlinear integrators. Since this is a totally different way from which we familiar with, we
would like to begin with the definition of nonlinear integrator and stochastic calculs, and
then discuss stochastic differential equation driven by nonlinear integrator. The reader is
refered to the book of Carmona and Nualart for the details on the concepts and results.

Nonlinear Integrators and Integrals

Let X denote a separable Banach space endowed with its Borel cr-field Bx and T>(X] (resp.
C.(X) denote the space of cadlag i.e. right contniuous with left limits, (resp. cadlag, i.e. left
continuous with right limits,) functions from [0, oo) into X. We endow these spaces with
the topology of the uniform convergence in probability on compact sets (UCP topology for
short) given by the distance:

ducp(X,Y) = E{d^loc(X ( • ) , ¥ ( • ) ) } (4.3.124)

where

Z 2" 1 + sup0<t<n \ \ X ( t ) - Y(t)\\ '

For simplicity, the discussion is most of the time limited to these processes which are
bounded. So for each X e T>(X ) we set

= l l** l l P , - (4-3.125)
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where X* = supt>0 ||X(t)|| and we denote by S^ the space of cadlag adapted processes X
for which the quantity (4.3.125) is finite. We will also use the standard notation:

X*(s) =X(sAt),s,t> 0

X*=sup||X(t)|| and X* = (X*)* = sup ||X(s)||
t>0 0<s<t

whenever X is an ^-valued function denned on [0, oo).
The notion of simple predictable process is crucial to the stochastic integral. We will

need the follwoing definition.

Definition 4.3.20 An X -valued process X is said to be simple predictable if it has repre-
sentation of the form:

X ( t ) = X_!l{0}(i) +]TXJ1(^T.+1](*), (4.3.126)
j=0

where 0 = TO < TI < • • • < rn+i < rn+2 = +00 is finite sequence of stopping times
and where X_i is bounded and f, -measurable and where Xj is for each j = 0, 1, • • • ,n a
bounded X-valued Jr

rj measurable random variable (denote by Xj € Frj from now on). We
also assume that the stopping times TJ 's and the random variables Xj 's take only finitely
many values. Denote by S(X) (or S if no confusion is possible) the collection of X -valued
simple predictable processes.

Let us assume that, for each h e £(X),{Zt(h);t > 0} is a .Revalued cadlag adapted
process such that Z0(h) = Z0(h°) and such that, for all £ > 0 and h, h' e £(X ) we have :

Zt(h) = Zt(fc'), (4.3.127)

outside a P-null set (possibly depending upon /i, h' and t) whenever:

h(s) = /i'(s),Vs < t,and h h(t+) = ti(t+).

In the sequel, we will say that a family of random variables

{Zt(h);t>0,he£(X)}

satisfies condition (4.3.127) if the above holds.
We define mapping Iz from S into L°(£l,Rd) by:

IZ(X) = Z0(X°) + (ZTi+1 (Xr>+) - ZTi (X^+)) (4.3.128)

whenever X is a simple predictable process admitting the representation (4.3.126) and where
we used YT+ to denote the process Y stopped after time r, i.e. the process defined by:

Y(t), : if t<r;
(r+}, : if t>r.

It is easy to see that for any simple predictable process X possessing the representation
(4.3.126), we have

A-^(TJ) = Xr'(Tj+) = Xj-i,XTi+(Tj) = Aj-_i, and XT> + (TJ+) = Xj. (4.3.129)
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Definition 4.3.21 Z is said to be a (nonlinear) integrator if, for each t > 0 and each
stopping time r taking finitely many values less than t, the mapping /ZT defined by (4-3.128)
for Zz is locally uniformly continuous when S is equipped with the topology of uniform
convergence in (t, u>). This continuity is also uniform in T restricted to the set Tt of stopping
times taking finitely many values bounded by t. This means that we have :

lim sup ||/z,(Jr)-/z,(y)||o = 0, (4.3.130)e^°r6rt,||A-'||00<K:,||y||00<A:,||(x-y)-||00<e

for any K > 0 and t > 0 where \\f — g\\o denotes the distance between f and g in L°
(the space of all equivalence classes of random variables endowed with the topology of the
convergence in probability).

A nonlinear integrator in the sense of the above definition will be called an L° -integrator
because of the use of the cconvergence in probability. In fact the above definition means that
the mapping Iz* has uniformly continuous extension from the space of bounded processes
which are uniform limits of simple predictable processes to the space L°. More generally, we
will say that Z is a (nonlinear) Lp -integrator when the map J^r has a uniformly continuous
extension into the space Lp . In other words, Z is a (nonlinear) Lp -integrator if (4-3.130)
is satisfied with \\ • \\p instead of \\ • \\Q.

Before further discussion of the notion of the nonlinear integrator, we will give an example
to show that this definition is appropriate.

Example 4.3.22 Let z = {z(t);t > 0} be a real valued adapted cadlag process such that
z(0) = 0 and for each h € L ( X ) we set:

Zt(h) = h(t+)z(t). (4.3.131)

If X is a simple predictable process with the decomposition (4-3.126) we have

n+l

I Z ( X ) = ^Zri+1(X^)-ZTj(X^)
j=0

^ + (rj+l+)z(rj+1) - A^ + fo+Jzfo)

jMTj+J-zfa)), (4.3.132)

where we used the definition of Iz(X) (4-3.128), the Definition (4-3.131) of Z and relation
(4-3.129).

Next we list some simple properties of integrators in the sense of Definition 4.3.21.
Properties:
(i) The set of integrators is a vector space;
(ii) An integrator remains so after an absolutely continuous change of probability;
(iii) If {Pk', k > 1} is a sequence of probabilities such that Z is a Pfc-integrator for each

fc > 1, then Z is also a P-integrator where P is defined by.P + 52fcLi \kPk for some sequence
{Afc; k > 1} of nonnegative numbers such that J^fcLi = 1-

(iv) Let Z be an integrator for the filtration {Ft\t > 0} and let {Gt',t > 0} be a
subfiltration such that Z(h) is still adapted to {Qt\t > 0} for all h 6 C(X). Then, Z is also
an integrator for the filtration {Qt',t ^ 0}.
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(v) For any given Z, if there exists a sequence {rn; n > 1} of nonnegative finite random
variables increasing to +00 and a sequence {Zn;n > 1} of integrators such that ZTn~ —
(ZnYn~ , then Z is an integrator.

(vi) If Z(h) is adapted and cadlag for every h e £(•*") and if there exists a sequence
{rn;n > 1} of stopping times increasing to +00 such that ZTn is an integrator for each
n > 1, then Z is also an integrator.

Let us give the most common example of a nonlinear integrator. It corresponds to the
integration of processes that do not depend on the entire past but merely on the present.
Assume that, for each x e X,{Zt(x);t > 0} is an fld-valued cadlag adapted process and
we will assume (temporarily) that each process Z. (x) is denned at oo. Also we assume that
{Zt(x); x 6 X } is measurable for each t > 0, and we define for each h e L(X) the Rd valued
stochastic process {Zt(ti);t > 0} by Z0(ti) = Z0(/i(0)),Z00(/i) — ̂ (^(oo-)) and

Zt(h] = Zt(h(t+}}. (4.3.133)

for finite t > 0.

Definition 4.3.23 We will say (simply) that Z is a (nonlinear) integrator whenever Z
defined by (4-3.133) is an integrator in the sense of Definition 4-3.21

In such a case we use the same notation for the integral of simple predictable processes.
In particular, if a process X in S has a decomposition of the form (4.3.128) we have

n+l

IZ(X) = Z0(X0) + Y,(Zrt^(Xi) ~ ZTi(Xt)).
1=0

As in the classical theory, we will consider stochastic integrals as processes rather than
random variables or random vectors. We proceed in the usual way. If {Zt(h);t > 0,h £
£ ( X ) } is a nonlinear integrator then the formula:

Iz(X)t = IZt(X) (4.3.134)

can be used to define the stochastic integral of X with respect to the integrator Z as a
stochastic process. This process is cadlag, and consequently, formula (4.3.134) defines a
mapping from <S(X) into V(Rd). Note that

Iz(X)t = Zo(X-i) + Y,[ZTj+lM(X^ + ) - ZTiM(XT> + )\, (4.3.135)
3=0

for all the processes X = { X ( t ) ; t > 0} having a decomposition of the form (4.3.126).
Finally, we also note that the above integrals use the integrators Z* which is always defined
at oo. In other words, we will not require the definition of Z^. The notion X • Z is standard
for the integral Iz(X), which it is convenient to use.

Now we have the following result which is the strict analog of the corresponding one in
the classical case:

Proposition 4.3.24 If Z is an integrator, the mapping Iz • S — »• T>(Rd) is locally uniformly
contmuotios for the UCP topology, and consequently, it can be extended by uniform continuity
to the subspace Cf,(X) of C(X} formed by the bounded processes.

We list some simple properties of the nonlinear integrals. In the following X is always
an element of £, and Z is an integrator in the sense of Definition 4.3.21 or Definition 4.3.23.

Property (1) If T is any stopping time, then Iz(X}r = I



208 CHAPTER 4. SDES AND THEIR APPLICATIONS

Remark This peroperty makes possible the definition of the nonlinear integral Iz (X) not
only for bounded left continuous processes but also for all left coninuous processes by a simple
localization argument.

Property (2) If X is simple predictable, then the jump process A/Z(A") is indistingushable
from the process {Zt(X*) - Zi-(Xt)~t > 0} (or {Zt(X(i)) - Zt-X(t])\ t > 0} when Z is an
integrator in the sense of Definition 3.3.2').

Property (3) Let P and Q be any given probability measures and let us assume that
Z is an integrator for both P and Q. Then, there exists a stochastic process Iz(X) which
is a version of both Iz(X) and I^(X).

Property (4) Let {Qt',t > 0} be another nitration and let us assume that X is also
{Qt]t > 0}-adapted and that Z is also a {<?*;£ > 0}-nonlinear integrator. Then

Definition 4.3.25 A family {Zt(h);t > Q,h e L(X)} (resp. {Zt(x);t > 0,x € X } ) is said
to be a strong (nonlinear) integrator if the corresponding family {Zt((y, h));t > 0, (y, h) €
L(R x X ) } (resp. {Zt((y, x));t > 0, (y, x) 6 R x X}) is a (nonlinear) integrator in the sense
of Definitioin 4.3.21(resp. 4-3.23)

Property (5) If Z. (h) is a martingale for each h € £>(X) then so is Iz(X] for each
X e S(X).

Remark Zt(h) is a strong nonlinear integrator if for each t > 0 and any K > 0 one has

limsup\\Izt(Y,X)-I2t(Y',X')\\0 = Q
e-tO

where the supremum is taken over all the X,X',Y,Y' satisfying \\X*\\oo < AT, ||y*||00 <
/ f . lKXOIloo <^,| |(y')*llco < K and such that \\(X-X'Y Hcc < e and ||(F-y')1loo < e.
The reason why we do not have to consider stopping times T taking finitely many values and
bounded by t is that for such a stopping time r one has

Next, let us look at the change of variables formula in the spirit of the famous Ito's
formula.

Theorem 4.3.26 Let Z = {Zt(x);t > 0,x G Rd} be a R-valued strong nonlinear L1-
integrator satisfying the following properties.

(i) Z = {Zt;t > 0} is a C^(R2;R) -valued cadlag process.
(ii) The partial derivatives dZt(x)/dxi are also strong nonlinear Ll -integrators. Then

for every Rd-valued continuous semimartingale X = {Xt\ t > 0} the following formula holds:

d ,-t 0,7

zt(xt) =
d

,-

z0(x0) + J2̂Jo

(4.3.136)
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Notice that the fact that X1 is a continuous semimartingale implies that we have identity of
the two types of brackets, i. e.

rt7c Ft 7<r,—(!,) >=[*<,_

and that this process is a strong nonlinear integrator. This theorem can be extended to the
case that Z is Rd-valued.

Stochastic Differential Equations

We have seen that Lipschitz hypothesis is crucial to the classical stochastic differential equa-
tions driven by semimartingale. No surprisingly, that the Lipschitz hypothesis will be used
in the discussion of existence and the uniqueness of the solutions of SDEs driven by non-
linear integrator. However since the notions of integrand and integrator are confounded in
the present (nonlinear) theory, the Lipschitz assumptions have to be reformulated appro-
priately. We will begin with the following definition, then discuss the theory of SDEs, some
existence and uniquedess of solution, dependency of initial condition, differentiability and
homeomorphic property of the solution are given without proof. The reader may refer to
the text of Carmona and Nualart. For the sake of simplicity, assume that X = Rd from now
on. Let us recall that a cadlag adapted process { X ( t ) ; t > 0} is said to be a semimartingale
if it possesses a decomposition of the form

X(t) = X ( 0 ) + M(t) + V(t), t > 0, (4.3.137)

where the process V = {V(t); t > 0} is adapted and cadlag and has sample paths locally of
bounded variation which is called the Stieljes process, and where the process M = {M(t); t >
0} is a local martingale such that V^(0) = M(0) = 0. If in the decomposition (4.3.137),
Stieljes process V is predictable, then the semimartingale is called special semimartingale. In
this case, the decomposition is called the canonical decomposition of special semimartingale,
the decomposition is unique.

Definition 4.3.27 A family {Zt(h);t > 0, h € L(Rd)} of Rd -valued special semimartingales
is said to have a canonical decomposition uniformly controlled by the nondecreasing right-
continuous process {At; t > 0} (with A0 = 0) if for each h e L(Rd) and i = 1, • • • , d, the
canonical decomposition

Zl(h) = Z*0(h) + Mi(h) + V?(h), (4.3.138)

of the ith coordinate process {Zl(h);t > 0} is that:
i) The processes Ml(h) and V(t) satisfy condition (4-3.127) Z0(h) = Z0(h°), and :

\Z0(h) - Z0(ti)\ < B\h(0) - h'(Q)\ (4.3.139)

for some positive random variable B and all h and h' in L(Rd).
ii) For each h € L(Rd), {Ml(h)\ t > 0} is a locally square integrable martingale such that

MQ(/J) = 0 and for all h and h' in L(Rd) one has:

\hu-tiu\2dAu (4.3.140)
(*,t]

for all 0 < s < t < oo and all h, h' e L(Rd) .
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0 and
Hi) For each h £ L(Rd], {Vt

l(h); t > 0} is a predictable Stieltjes process such that V^(h) =
nd:

Vi(h)-V?(h')\var((8,t}')< I \hu-tiu\dAu (4.3.141)
J(s,t]

for all 0 < s < t < oo and all h, h' e L(Rd).

We can now give the existence and uniqueness theorem of the SDE driven by nonlinear
integrator.

First let us recall the stochastic measure associated with the jumps of the C^°
adapted cadlag process Z = {Zt; t > 0}, namely:

, dt).
s>0

The dual predictable projection of ̂ z is the unique predictable random measure v satisfying:

W(f, s)v(df, da) \ = E | ̂  I{AZ.*O} W(AZS, s) \ ,

for allt > 0 and for all the nonnegative BC(0) x-p-measurable functions (/, s, u>) — > W ( f , s, uj}.

Theorem 4.3.28 Let {Zt(h)\t > 0, h 6 L(Rd)} be a family of Rd valued special semi-
martingales with canonical decompositioin uniformly controlled by the nondecreasing pre-
dictable process {At;t > 0} and let J = {J(t);t > 0} be a Rd valued cadlag process. Then,
there exists a unique (up to indistinguishable) solution {X(t);t > 0} of the system of equa-
tioins:

/"
Joo

and the solution is a semimartingale whenever J is, where

* •dZl
s(X-)i = ! , - • • ,d (4.3.142)

The following theorems are devoted to the investigation of the properties of the solution
of the stochastic differential equation

Xt=x+ I dZs(Xs-) (4.3.143)
./o

whose existence and uniqueness was given in Theorem 4.3.28 The next theorem shows the
dependence of the solution upon the initial conditions of XQ = x. Since the equation
(4.3.143) is parametrized by the space X = Rd, the notion of control of an integrator by an
increasing process needs to be reformulated as following definition.

Definition 4.3.29 A family { X t ( x ) ; t > 0.x e Rd} of Rd -valued special semimartingales is
said to have a canonical decomposition controlled by the nondecreasing predictable process
{At; t > 0} (with A0 = 0) if for each x 6 Rd and each i € {i, • • • ,d}, the ith coordinate
process Z'L(x) — {Zl(x);t > 0} satisfies ZQ(X) = 0 and has a canonical decomposition
Z\(x) = Ml(x) + Vt(x) such that the predictable Stieltjes process Zl(x) + {V^(x);t > 0}
satisfies

, t})\ < \x - y\(At - A,),
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and the martingale part Ml(x) = {M^(x);t > 0} is a locally square integrable martingale
satisfying

< Ml(x) - M^y) > ((s, *]) < x - y\2(At - A.)

for all nonnegative numbers s and t satisfying s < t and all x and y in Rd.

Definition 4.3.30 If A = {At;t > 0} is a nondecreasing predictable process, we denote by
Sspe(A) the set of families {Zt(x);t > 0, x 6 Rd} of special semimartingales such that

(i) { Z t ( - ) ; t >)} is a C^ (Rd, Rd)-valued cadlag adapted process.
(ii) its canonical decomposition is controlled by A.

Theorem 4.3.31 Let {Zt(x);t > 0, x e Rd} be a family in Sspe(A) which satisfies:

s,t})<\x-y\r(At-A-s} (4.3.144)
JRd

for some p > d A 2, all s < t and all x,y £ Rd. Then, for each x 6 Rd one can choose
a version { X t ( x ) ; t > 0} of the solution of the stochastic differential equation (4-3.143) in
such a way that the mapping x —* X. (x) is continuous from Rd into D(Rd).

We used the symbol vz f°r the dual predictable projection of the jump measure
IJLZ = Ss>o l{As^o}<5(As,s) mentioned at the begining this section. In order to give the
differentiability of the solution of (4.3.143), we need the following definition and hypotheses

Definition 4.3.32 A symmetric function a : Rd x Rd —»• Rk is said to be bi-Lipschitz
continuous if there exists a positive constant L such that

a(x,x)-2a(x,y) + a(y,y)\< x-y2, (4.3.145)

for allx,y & Rd.
Hypotheses:
(Hyl) For each fixed t > 0, the functions x —> V t

l(x),l < i < d, are continuously
differentiate, and their differentials satisfy

\D^V^(x] - D«V*(y) - D%V}(x) + D*V;(y)| <(A-t-A- s)\x - y\, (4.3.146)

where D^ = -^^ denotes the first-order dervative with respect to the kth coordinate of x,
(Hy2) For each fixed t > 0 and for each 1 < i < d the function (x, y) —>< Ml(x], Ml(y) >t

is twice continuously differentiate and for each k G {1, • • • , d} and 0 < s < t the function

( x , y ) ^ Dk
xDk

y{< M*(x),M*(y) > ( { s , t } ) }

is bi-Lipschitz function with constant At — As.
(HyS) The measure v when viewed as a measure on function space is concentrated on

the space of continuously differentiable functions C^ = C^(Rd; Rd) and satisfies

L , (s, t}) < (At - As)\x - y\r, (4.3.147)
cm

for some p > d + 1 and all x, y € Rd and 0 < s < t.

We now can state the theorem.
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Theorem 4.3.33 Suppose that the hypotheses (Hyl), (Hy2) and (HyS) above hold for a
family. {Z.(x);x 6 Rd} of special semimartingales for some number p > 2(d + 1) and also
for p/2. Then there exists a version Xt(x] of the solution of equation (4-3.143) such that
{Xt',t > 0} is a cadlag C^ -valued process whose derivative is the unique solution of the
linear stochastic differential equation:

d
DkXl(x} = 61 + ^[DkX^(x)1 • IDlzi(X-(x))]t (4.3.148)

1=1

where ol
k denotes the usual Kronecker delta which is 1 when i = k and 0 otherwise.

Under suitable conditions, one can obtain the homeomorphic property of the continuous
mapping x — > Xt(x) in Theorem 4.3.31.

Theorem 4.3.34 Let us assume that {Zt(x);t >0,xQ. Rd} is an element of Sspe(A) such
that condition (4-3.144) *s satisfied for some p > 6d. Further we assume that the mappings
x — > 4>t(x) = x + Z(x)t — Z(x)t- are one-to-one for any fixed (t, u;) G [0, oo) x fi and also
that either one of the following two condition holds:

I \tf\x -V + tr^vz.w-z.wW, (s, t}) < (At - As)\x - y\~P
JRd

or

\Zt(x) - Zt-(x) - Zt(y) + Zt-(y)\ < x- y\ABt

for some increasing and adapted process {Bt;t > 0} satisfying BQ = 0. Then, there exists a
version Xt(x] for the solution of the stochastic differential equation (4-3,143) such that, for
P -almost allw 6 £7 the mapping x — » Xt(x,u) is one-to-one for every t > 0, and x — > X . ( x )
is continuous from Rd to D(Rd).

4.4 Stochastic Functional Differential Equations

4.4.1 Existence and Uniqueness of Solution
Let r > 0, J = [—r, 0] and C(J, Rn) be the Banach space of all continuous paths 7 : J — > Rn

with the sup- norm \^\c = sups£j |7(s)| where | • | denotes the Euclidean norm on Rn(n > 1).
As a metric space we associate with C(J,Rn) its Borel a-field Borel (C(J,Rn)) .

Denote by £2(fi, C(J, Rn)) the space of all ^"-measurable stochastic processes: 9 : J7 — >
C(J, Rn) such that the function ft 9 w ̂  \\0(u)\\c e -R is of class £2, i.e. Jn ||0(w)||
oo. Then £2(f2, C) is complete when endowed with the semi-norm

1/2

For any a > 0, denote by C([0, a], £2(tt, C(J, Rn))) the space of all £2-continuous C(J, Rn)-
valued processes y : [0, a] — > £2(fi, C(J, Rn)); again this is complete under the semi-norm:

IMIc([o,a],£2(n,c) = sup ||y(t)||£2(n,c)
te[o,a]

Denote by CA([0, a], £2(J7, C(J, -R"))) the set of all processes y e C([0, a], C(J, Rn))) which
are adapted to (J^)o<t<a- It is easy to prove that CA([0, a], £2(f2, C(J, R71))) is closed in
C([0, a], £2(f
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We consider stochastic functional differential equations

dX(t) = g(t,Xt)dz(t) (4.4.149)
X0 = 0(w)(t),

in the sense of the following stochastic functional integral equation

/off(tt,*u)<fc(-)(«) , 0<t<a
, i6 J,a.a.wen,

where g : [0,a] x £2(n,C(J, Rn)) -» £2(tt,L(Rm,Rn)), 9 € £2(fi, C(J,Rn)) is a given
initial process, and the "noise process" z : J7 — > C([0, o], J?m) which is m-dimensional and has
continuous sample paths. The stochastic integral in (4.4.149) is a McShange belated integral
[70]; and for each u 6 [0,a],Xu 6 £2(ft, C(J,Rn)) is defined by ^u(w)(s) = X(u)(u +
s),a.a.u 6 fi, for all s £ J. £2(f2,C(J, -Rn)) will be our basic configuration space of initial
processes for the stochastic FDE (4.4.149). Obviously this space entails that the initial data
as well as the solution process of the SFDE will necessarily have almost all their sample paths
continuous. The trajectory [0,o] 3 t H-> Xt 6 £2(fi, C(J, Rn)) will be sought in the space
CA([0,a},C2(n,C(J,Rn))). In order to solve the SFDE (4.4.149), we impose the following
conditions of existence (cf. Gihman and Skorohod [23], McShane [70]):

Conditions (E)
(i) The noise process z : f2 — » (7([0, a], Rm) is expressible in the form

z(w)(t) = \(t) + zm(u)(t) Vi 6 [0, a], a.a.w e fi (4.4.150)

where A : [0, a] — > ^?m is a Lipschitz function and zm : £1 — > C([0, a],.Rm) is a martingale
adapted to (jF)o<t<a and is such that there \s & K > 0 with

I^MOfo) - ^m(-)(*i)l^)l < K(t2 - t{] (4.4.151)

E(\zm(-)(t2) - zm(-)(t1)\^tl) < K(h - h) (4.4.152)

a.s. whenever ii ,<2 6 [0, a] and ii < ^2-
(ii) The coefficient process g is continuous and is also uniformly Lipschitz in the second
varibale with respect to the first i.e. there exists L > 0 such that

\\g(t, *0 - g(t, *2)||£» < i||*i - *2||^(n,c) (4.4.153)

for all t 6 [0, a], and all $1( $2 e £2(ft, C( J, «")).
(iii) For each process j/ e (7,4 ([0, a], £2(fi, C( J, /?")) the process

[0, a]3t~ g(t, y(t)) e £2(

is also adapted to
Here is the existence and uniqueness theorem for solutions of the stochastic functional

differential equations (4.4.149):

Theorem 4.4.1 Suppose Conditions (E) are satisfied, and let 9 e £2(fJ, C(J, Rn)) be f0-
measurable. Then the stochastic functional differential equations (4-4-149) has a solution
X 6 £2(£l, C([— r, a],Rn)) adapted to (J-)o<t<a and with initial process 9. Furthermore,
(i) X is unique up to equivalence (of stochastic processes) among all solutions of (4-4-149) be-
longing to £2(£l,C([-r,a\,Rn)) and adapted to (F)Q<t<a, i.e. if X £ £2(£l,C([-r,a],Rn))
is a solution of (4-4-149) adapted to (J-)o<t<a and with initial process 0, then

X ( - ) ( t ) ft a .8 . )Vt€[0,o];
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(ii) the trajectory [0, a] 9 1 1— > Xt e £2(£}, C( J, Rn)) is a C(J, Rn)-valued process adapted to
(F}a<t<a with a.a. sample paths continuous (It belongs to CU([0, a], £2(£l,C(J, Rn))).

Remark Let 0 < t\ < t < a. Then one can solve the following stochastic FDE for any
process * 6 £2(fi,C(J, fln);.Ftl) at time tI:

where the (unique) solution X e £2(fi, C^fti — r, £1], Rn)). This gives a family of maps

with * i — > Xt. When t: = 0, we define Tt,t>0, to be

The following theorem on continuation of trajectories of a stochastic FDE is consequence of
Theorem 4-4-1-

Theorem 4.4.2 Assume Conditions (E) are satisfied. IfO<ti<t2<a, then

We can prove the following theorems of solutions dependence on the initial process.

Theorem 4.4.3 Suppose the conditions of Theorem 4-4-1 are satisfied by g and z in stochas-
tic FDE (4.4.149). Then each map

n);ft), t € [ 0 , a ] ,

is Lipschitz; indeed for all t e [0,a],#i,#2 6 £2(n,C(J, Rn); .

where L is the Lipschitz constant of g and M is a constant which doesn't depend on the
coefficient process g but only on the noise z.

With suitable Frechet differentiability hypotheses on the coefficient process g, one can
prove that Tt is (71.

Condition (D):
The coefficient process g has continuous partial derivatives with respect to the second vari-
able i.e. the mapping

[0,o] x£2(

is continuous, where -D(2)S'(i, *) is the partial derivative of g in the second variable at (i, ^").

Theorem 4.4.4 Suppose the stochastic FDE (4-4-149) satisfies conditions (E) and (D).
Then for each t € [0, a],

Tt : C2(

is Cl.
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4.4.2 Markov property
In this subsection we consider the following stochastic functional differential equations

dX(t) = H(t, Xt)dt + G(t, Xt)dW(t), t > ti > 0 (4.4.154)
Xtl = V&C(J,Rn)

which is the symbolization by differential notation of the following equations

(w)(t-ti), ti -r <t <ti.o.o.w 6 ft.

Compared with SFDE(4.4.149) in the last subsection, here the coefficient process g factors
through a drift H : [Q,a]xC(J,Rn) -> Rn and a diffusion G : [Q,a}xC(J,Rn) -> L(Rm,Rn),
while the noise process takes the form {t + W(t) : t 6 [0, a]} with W an m-dimensional
Brownian motion on a filtered probability space (Cl,J-, (Ft)o<t<a,D). In order to establish
Markov behavior for the trajectory {Xt : t > 0} of the Stochastic FDE (4.4.154). We need
the following conditions.

Condition (M):
(i) Let (Ft)o<t<a be the Brownian filtration ft = a{W(u) : 0 < u < t}, fa = F. Assume
without loss of any generality that each ft contains all P-null sets in T .
(ii) The coefficients H, G are globally Lipschitz, i.e. there is an L > 0 such that

\\G(t^1) -G(t,rj2)\\ < l\tf -T^lc.lffM1) -H(t,rj2)\ < L\\r,1 -r,2\\c,

for all t e [0,a] and all T?1,??2 6 C(J,Rn).
(iii) H and G are continuous.

Since the above Condition (M) imply the conditions of existence (E) in last subsection,
we know that the stochastic FDE (4.4.154) will have a unique solution. We can obtain the
Lipschitz maps

*H^ Xt

When ti = 0,

Hence the trajectory of the stochastic FDE (4.4.154) can be viewed as a Markov process

[0, a] x J7 — > C(J, Rn)

taking values in C(J,Rn). We have the theorem on Markov property.

Theorem 4.4.5 (The Markov Property) Suppose Condition (M) is satisfied by the stochas-
tic FDE (4.4.154). Then its trajectories

{X?:t&[0,a},r,&C(J,Rn)}
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describe a Markov process on C(J, Rn) with transition probabilities p ( t i , r j , t2, •) given by

p(ti,t?,t2,B) = P{(j : w € n,T£(n)(u) e B} (4.4.155)

/or 0 < ti < tz < a, 77 € C(J,Rn) and B € Borel - C(J,Rn). Indeed for any 6 e
£2(fi, C( J, Rn)\ ^0) tfte Markov property

l) =p(t1)T t l (»)(•), *a,B) = P(Tt2(0)

a.s. on Q.

If we consider the time-homogenious case, i.e., if the coefficients H : C(J, Rn) — > Rn, G :
C(J, Rn) -> L(Rm,Rn). In this case, the SFDE(4.4.154) becomes

dX(t) = .H(Xt)dt + G(Xt)dW(t),t>Q (4.4.156)
Xo = 6£C(J,Rn)

And the condition (M) becomes
Conditions (A):

(i) For each t e [0, a], (ft) is the a-algebra generated by {W(-)(s) : 0 < s < t}, together
with all sets of P-measure zero in T = Fa.
(ii) There is an L > 0 such that

1} - H(r,2)\ <

for all T1
l,r]2 <EC(J,Rn).

We have the following therorem.

Theorem 4.4.6 (Time-homogeneity) Suppose that the autonomous stochastic
FDE (4.4.156) satisfies Conditions (A). ForO < ti < t2 < a,rj € C(J, Rn) Ietp(ti,rj,t2, •) be
the associated transition probabilites of trajectories of (4-4-156). Then the trajectory Markov
process {X^ : 0 < t < 0,77 e C(J, Rn)} is time-homogeneous, i.e.

p(ti,ri,t2,-) =p(0,77,t2 - *i , - ) .0 < h < t2 < a,r, e C(J,Rn).

Denote by Cb the Banach space of all bounded uniformly continuous functions
C(J, Rn) — > R furnished with the supremum norm

\\</>\\Cb=Bup{\<l>(r,)\:T,GC(J,Rn)}.

Let 0 < ti < t2 < a,,r] e C(J,Rn) and define T^(rj) & C?(Sl,C(J,Rn};Ft2) as above by

the trajectory of the stochastic FDE(4-4-154)- For each <p 6 Cb define the function P^1

C( J, Rn) -> R by setting

= IJc

where p(ti, T/,t2, •) are *^e transition probabilities of (4. 4-154)- Since (f> is bounded, it is clear
that Pll (</>) is also bounded. Furthermore, each P^ (<j>) is uniformly continuous on C(J, Rn).
We end the subsection with the following theorem.
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Theorem 4.4.7 For the stochastic functional differential equation (4-4-154) suppose Con-
ditions (M) are satisfied. Then the family {P^ :0<ti<t2<a}isa contraction semigroup
on Cf, i.e.
(i) Each P^ : Cf, — > C& is a continous linear operator

with I I P ^ I I < 1 for all 0 < <i < t2 < a;
(«; P£ o p£ = p£ , o < ^ < t2 < t3 < a.

In particular, for the autonomous stochastic FDE (4-4-156), the family {Pj = Pt° : 0 <
t < a} is a one-parameter contraction semigroup on Cb i.e.

Ptl ° Pt, = Ptl+t, if t1,t2,t1+t2e[0,a}.

For topological properties of such semigroups, the reader may refer to [71].

4.4.3 Regularity of the trajectory field
This subsection concerns various regularity properties of the trajectory field {X^ : t €
[0,a],77 € C(J,Rn)} generated by the autonomous stochastic FDE:

dX(t) = H(Xt)dt + G(Xt)dW(t), 0 < t < a (4.4.157)
X0 = rteC

with coefficients H : C — » Rn,G : C — » L(Rm,Rn) and m-dimensional Brownian motion
W.

The following condition on the diffusion coefficient g will be required in the discussion
of the regularity property of the trajectory field.

The Frobenius Condition (F): A map g : Rn — > L(Rm,Rn) is said to be satisfy the
Frobenius condition if it is C1 with Dg : Rn -> L(Rm,Rn)) globally bounded, locally
Lipschitz and such that

{ D g ( X ) [ g ( x ) ( V l ) } } ( v 2 } = {Dg(x)\g(x)(v2)}}(v1)^x e Rn,v,,v2 e R

Consider the stochastic FDE with ordinary diffusion coefficient:

dX(t) = H(Xt)dt + g(X(t))dW(t),0<t<a (4.4.158)
X0 = rj£C = C(J,Rn),J=[-r,0}.

The coefficients H : C -> Rn,g : C -^ L(Rm,Rn) are Lipschitz maps and W is m-
dimensional Brownian motion adapted to the filtered probability space (^^(f^o^t^a, P)-
For such a stochastic FDE, we have the following theorem.

Theorem 4.4.8 In the stochastic FDE (4-4-158), suppose H is Lipschitz and g is a C2 map
satisfying the Frobenius condition. Then the trajectory field {X? : t e [0, O],TJ 6 C(J, Rn)}
has a version X : fl x [0, a] x C( J, Rn) — > C( J, Rn) having the following properties. For any
0 < a < |, there is a set J7a C fi of full P -measure such that, for every u? G 17Q,
(i) the map X(u>, -, •) : [0,a] x C(J,Rn] -+ C(J,Rn) is continuous;
(ii) for every t e [r,a] and 77 € C(J, Rn), X(u, t, n) £ Ca(J,Rn); where Ca(J,Rn) is the
Banach space of all a-Holder continuous paths 77 : J — * Rn with the a-Holder norm:

: Sl,S2 e j,
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(iii)X(u, -, •) : [r, a] x C( J, Rn) -> Ca(J, Rn) is continuous;
(iv) for each t 6 [r,a],X(u>,t, •) : C(J,Rn) — » Ca(J,Rn) is Lipschitz on every bounded set
in C(J, Rn), with a Lipschitz constant independet o f t 6 [r, a]. In particular each X(u>,t, •) :
C(J,Rn) — > C(J,Rn) is a compact map.

But if the diffusion coefficient G in (4-4-157) depends on the past, we have an example
in which all versions of the trajectory field are almost surely highly irregular. For the detail,
we refer to Mohammed's book [71]. Now we can investigate regularity in probability of the
trajectory field for the SFDE(4-4.157).

Theorem 4.4.9 Let E be a real Banach space and y : Q x [0, o] — > E an (.Fig) Borel [0, a],
Borel E) measurable process with almost all sample paths continuous. Suppose that for each
t € [0, a ] , y ( - , t ) 6 £2fc(fi, E; .F) in the Bochner sense and there is a number c = c(a,k) > 0
such that

E\y(.,t1)-y(;t2)lf<c\t1-t2\k

for all ti,t2 G [0, a]. Then for every 0 < a < | ( l — |) and any real N > 0, one has

] \ti-t2\ a
2mfc(l-2a) l

- la) - 1] 7V2fc '

Theorem 4.4.10 Suppose H : ttxC -+ Rn,G : Q x C1 — >• L(Rm, Rn) satisfy the conditions:
(i) For each rj € C,H(-,ri) and G(-,r]) are .Fo -measurable;
(ii) There is a constant K > 0 such that

\H(u, r,)\leqK(l + \\r,\\c), \\G(u>, n)\\ < K (I + \\r,\\c)

for a. a. w e fi, all 77 e C;
(Hi) For each N > 0, there exists LN > 0 such that

and

for a.a. w e J7, all 771, r/2 e C wzi/t Hml lc < ̂  IM(c < -/V.
T"/ien /or eac/i rj 6 C1 i/ie stochastic FDE

dX(t] = H(-,Xt)+G(-,Xt)dW(t),0<t<a (4.4.159)
X0 = ri e C

has a (pathwise) unique solution X*1 in the sense of Theorem ??. Furthermore,
XV e /^(tyC'Q-r.aj.fl")), X? e £2k(Sl,C) for every integer k > 0, and each t e [0,a].
Indeed there is a constant c\ > 0 depending only on K, k,a such that

for all r] e C, t € [0, a], fc = 1, 2, -
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Theorem 4.4.11 Let r] e C and 0 < a < |. Then the solution X1' of (4-4^57) satisfies

P{u : w 6 n,A'T'(w)|[0)o] e Ca([G,a],Rn)} = I

and

P{u : w 6 ft, A't'V) £ C"* for all r < t < a} = 1

Corollary If 17 £ C, then for any 0 < a < \ the trajectory {X? : t € [r, a]} is a process
fi x [r, a] — > C with almost all sample paths being a- Holder continuous.

For further results on stochastic functional differential equations, we refer to Mohammed
book [71] and Gikhman and Skorohod's book [25].

4.5 Stochastic Differential Equations in Abstract Spaces
In this section we summarize some basic results on stochastic evolution equation on infinite
dimensional spaces. For the existence of a regular solution to a class of evolution equations
with Lipschitz or locally Lipschitz drift and diffusion coefficients, the dissipative systems
and the regular dependence of solutions on initial data are given. For the details of proof
and discussion, we refer to Da Prato and Zabczyk [13] and [14].

4.5.1 Stochastic evolution equations
Consider stochastic differential equations of the form:

dX = (AX + F(X))dt + B(X)dW(t), (4.5.160)

where £ is a random variable on a given pobability space (£l,F,P}. W(t),t > 0 is a
cylindrical Weiner process on a Hilbert space U . F and B are nonlinear transformations
and A the infinitesimal generator of a strongly continuous semigroup S(t), t > 0.

We assume that U and H are separable Hilbert spaces, A is the infinitesimal generator
of a Co-semigroup S(t), t > 0, on H and B is a bounded linear operator from U into H . Let
W(i),t > 0, be a cylindrical Wiener process on U, given by a formal expansion

n=l

where en,n G N, is an orthonormal basis on U. £ is an H -valued J-b-rneasurable random
variable. Denote by [|/?||HS or \\R\\2 the Hilbert-Schmidt norm of the opreator R e L(U, H).
The space of all Hilbert-Schmidt operators from U into H (endowed with the Hilbert-
Schmidt norm) will be denoted by L-z(U, H). This is again a separable Hilbert space.

Definition 4.5.1 An H-valued J-t-adapted stochastic process Z(t),t > 0, is said to be a
weak solution to the equation

r(0) = ?, (4.5.161)

if for arbitrary h 6 D(A*) and all t > 0,P-a.s.

< h, Z(€) >=< h,£> + { <A*h, Z(s] > ds+ < B*h, W(t) > . (4.5.162)
Jo
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One can show that there exists a solution to (4-5.161) if and only if the operators

Qt = j S(t)BB*S*(r)dr, t > 0
Jo

are of trace class. In this case the solution is given by the formula

Z(t) = S(t}£, + I S(t - s)BdW(s), t > 0.
Jo

Example 4.5.2 Let H = £ 2 (0 ,1) = U,B = I,

Then the stochastic convolution

--WA(t) = I S(t-s)IDW(s),t>0
Jo

is a weak solution of the equation

dZ(t) = AZ(t)dt + dW(t)

In order to investigate the existence and uniqueness results on the stochastic evolutioin
equations (4-5.160) on a separable Hilbert space H. We need to make some assumptions.

Hypothesis 5.1
(i) A is the infinitesimal generator of a strongly continuous semigroup S(t),t > 0 on H.
(ii) F is a mapping from H into H and there exists a constant CQ > 0 such that

\F(x)\<C)(\ + \x\), xeH,\F(x)-F(y)\<co\x-y\, x,y£H.

(\\i) B is a strongly continuous mapping from H into L(U; H) such that for any t > 0 and
x S H, S(t)B(x) belong to L^(U\ H), and there exists a locally square integrable mapping

K: [0,+oc)^ [0,+oo), t

such that

\\S(t)B(x)\\HS < K(t)(l + \x\},t> 0,

\\S(t)B(x) - S(t)B(y)\\HS < K(t}\x - y ,t > 0,x,y e H.

Definition 4.5.3 An ^-adapted process X(t),t > 0, is said to be a mild solution of
(4-5.160) if it satisfies the folowing integral equation,

ft
X ( t ) = S(t)£+ / S(t-s)F(X(s))ds

Jo
ft

+ S(t-s)B(X(s))dW(s),t&[0,T}. (4.5.163)
Jo

Denote by H.PIT the Banach space of all equivalence classes of predictable //-valued
processes Y(t),t > 0, such that

\\Y\\piT= sup
t€[o,r]

We have the following theorem.
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Theorem 4.5.4 Assume Hypothesis 5.1 andletp > 2. Then for an arbitrary FQ-measurable
initial condition £ such that E\£\p < oo there exists a unique mild solution X of (4-5.160)
in Ti.p,T and there exists a constant CT, independent of £, such that

sup
t£[0,T]

Finally, if there exists a E (0,1/2) such that

S-2aK2(s)ds > +00,IJo

where K is the function from Hypothesis 5.1- (Hi), then the solution X ( - ) (Denoted by X ( - , £,))
is continuous P-a.s.

If we assume that the coefficients F and B of equation (4.5.160) are smooth then the
solution to the equation are also smooth in a proper sense. We have the following result.

Theorem 4.5.5 Assume that the mappings A, F and B satisfy Hypothesis 5.1.
(i) If F and B have first Frechet derivatives bounded and continuous, then the solution

X(-,x) to problem (4-5.160) is continuously differentiable in x as a mapping from H into
7i2,T- Moreover, for any h 6 H , the process £h(t) = Xx(t,x)h,t 6 [0, T], is a mild solution
of the following equation,

d(,h = (AC,h + Fx(X)-(,h)dt + Bx(X}-C,hdW(t}, (4.5.164)
C'XO) = h. (4.5.165)

In additioin there exists a constant C\tT, independent of h, such that

sup E\Xx(t,x)h\2<Cl!T\h\2.
t€[0,T]

(ii) Assume in addition that F and B have bounded and continuous Frechet derivatives
and that for any t > 0, x, y, z € H, S(t)Bxx(x)(y, z~) belongs to L,2(U; H) and there exists a
locally square integrable mapping

Ki : [0, +00) ->• [0, +00), t v-» K^t),

such that

\\S(t)Bxx(x)(y,z)u\\HS < tfi(t) |0IMM,V*,3/,* e H,u e U.

Then the solution X(-,x) to problem (4-5.160) is twice continuously differentiable, and for
any h,g e H, the process rih'g(t) = Xxx(t,x)(h,g), t e [0,T], is a mild solution of the
following equation,

dnh's = (Arih>9 + FX(X) • r,h>9)dt + B X ( X ) • nh'9dW(t]
+FXX(X) • (C", <;9))dt + BXX(X] • (C,\C,9)dW(t), (4.5.166)

7/^(0) = 0.

Corollary 4.5.6 Assume that all conditions in Theorem 4-5.5 are satisfied, then for any
x 6 H, X(t, x), t > 0, is a Markov process. The corresponding transition semigroup Pt,t > 0
is defined by

= E(<l>(X(t, x ) ) } , x € H, 0 € Bb(H).



222 CHAPTER 4. SDES AND THEIR APPLICATIONS

From above theorem we can also get an important result about the Kolmogorov backward
equation associated to (4.5.160) with £ = x:

^v(t,x) = ^Tr[B*(x)vxx(t,x)B(x)}

+ <Ax + F(x),vx(t,x) >,t > 0 , x 6 D(A), (4.5.167)
i>(0,x) = <p(x);x € H.

Definition 4.5.7 A strict solution of problem (4-5.167) is a continuous function v : [0, +00) x
H — -> R having continuous first and second partial derivatives with respect to x, such that
v ( - , x ) is continuously differentiable in t for all x €. D(A), and fulfilling equation (4-5.167)
for all x £ D(A) and t > 0.

We need the following stronger conditions (than Hypothesis 5.1):
Hypothesis 5.2 (i) Hypothesis 5.1 -(i)-(ii) holds.
(ii) B is a mapping from H into L2(U; H), and there exists a constant c\ > 0 such that

and

\\B(x} - B(y}\\HS <cl\x- y\, x, y e H.

Theorem 4.5.8 Assume that the mappings F and B satisfy Hypothesis 5.2. If in addition
the first and the second derivatives of F and B are bounded and continuous and cf> G C% (H)
then equation (4-5.167) has a unique strict solution v and it is given by the formula

v(t,x) = E(<f>(X(t,x))) = Pt4>(x),t> 0,z 6 tf.

4.5.2 Dissipative stochastic systems
In this section we present some methods which imply existence and uniqueness of stochastic
equations in Hilbert spaces and Banach spaces.

First let us recall some properties of the subdifferential of the norm on a Banach space
E. The subdifferential d\\x\\ of || • || at x is defined as follows,

0||a:|| = {x* eE* : \\x + y\\- \\x\\ ><y,x* >,Vy 6 E},

where E* is the dual of E. One can show that the set d\\x\\ is convex, closed, nonempty
and given by

_ / K e E" :< x,x* >= \\x\\, HZ* 1 1 = 1} , if x /=Q,
1 1 " ~ \ {x* € E* : \\x*\\ <!} , i f z = 0.

A mapping / : D ( f ) C E — > E is said to be dissipative if and only if for any x, y € D ( f )
there exists z* & d\\x — y\\ such that

A dissipative mapping / is called m-dissipative if the range of XI — f is the whole space
E for some A > 0 (and then for any A > 0).

Now we can discuss the following problem

dX = (AX + F(X))dt + BdW(t), (4.5.168)
X(0) = x,
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where A, F satisfy some dissipativity assumptions on appropriate spaces and B is a bounded
operator. Let H be a Hilbert space and let K be a reflexive Banach space included in H.
We assume that K is a dense Borel subset of H and such that the embedding of K in H is
continuous. We need the following conditions on A and F.

Hypothesis 5.3 (i) There exists r? e R such that the operator A — rj and F — r/ are
m-dissipative on H.

(ii) The parts on K of A — 77 and F — 77 are m-dissipative on K.
(iii) .D(-F) D K and F maps bounded sets in K into bounded sets of H.
Denote by AK and FK the parts of A and F respectively, that is

D(AK] = {xt D(A) n K : AKx e K}, AKx = Ax, x e D(AK ),

and

*) = {x 6 D(F) H X : FKx e #}, **(*) = F(x),x

S(t),t > 0, is the semigroup generated by A in #.
Hypothesis 5.4 The process WA(t), t > 0, is continuous on H, takes values in the domain

D(FK) of the part of F in K, and for any T > 0 we have

sup
te[o,T]

Where

WA(t)= I S(t-s)BdW(s),t>0
Jo

is the solution to the linear equation

dZ = AZdt + BdW(t), Z(0) = 0.

Definition 4.5.9 An H-continuous, adapted process X(t),t > 0, is said to be a mild solu-
tion to (4-5.168) if it satisfies P-a.s. the integral equation

If, for an H -valued process X , there exists a sequence {Xn} of mild solutions of (4-5.168)
such that P-a.s., Xn(-} —>• X ( - ) uniformly on any interval [0,T], then X is said to be a
generalized solution to (4-5.168).

Theorem 4.5.10 Assume that Hypothesis 5.3 and 5.4 <we fulfilled. Then for arbitrary
x 6 K there exists a unique mild solution of (4-5.168) and for arbitrary x € H there exists
a unique generalized solution of (4-5.168).

Remark The generalized solutions X(t,x),t e [0,T],x € H, of (4-5.168) are all Markov
processes in H with a Feller transition semigroup Pt,t>Q, given by

t, x))}, xeH,<pe Bb(H),

where Bb(H) is the set of all bounded Borel functions on H .
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Next we consider the problem

dX = (AX + F(X))dt + dW(t), (4.5.169)
X(Q) = x£E,

on a Banach space E c H . We assume
Hypothesis 5.5 (i) A : D(A) c E — > E generates a semigroup S(t),t > 0, on E that is

strongly continous in (0, +00).
(ii) There exists uj G R such that

(iii) F : E —> E is continuous.
(iv) There exists r\ e -R such that A + F — 77 is dissipative.
(v) W(-) is a cylindrical Wiener process on H such that the stochastic convolution

WA(t), t > 0, belongs to C([0, T]; E) for arbitrary T > 0.
If we define the mild solution of (4.5.169) X e (7([0, T]; E) by

/
Jo

We have the following theorem.

Theorem 4.5.11 Assume that Hypothesis 5.5 holds. Then for any x 6 E problem
(4-5.169) has a unique solution.

4.6 Anticipating Stochastic Differential Equation
Stochastic calculus have been developed to allow non-adapted, or anticipating integrands,
which makes it possible to study various classes of equations where the coefficients and
solutions are nonadapted processes. The simplest such equation is the following

Xt = X0 + f f(Xs)ds + f g(xs)dBsJo Jo

where the given initial condition XQ at time zero is not independent of the driving Brownian
motion process {Bt}. The second type of equation of interest is a stochastic equation with a
"boundary condition" of the type h(Xo, Xi) = h, instead of an initial condition at time zero.
The third type of stochastic differential equation with anticipating coefficients is given by a
stochastic Voltrrra equation where the coefficents anticipate the driving Brownian motion
process. In this section, we will view some basic results on stochastic differential equations
with anticipating initial condition and coefficients. For more details and the "boundary
condition" problem please refer to Huang [33], [73] and [77].

4.6.1 Volterra equations with anticipating kernel
Let fi = C(R+- Rk), equipped with the topology of uniform convergence on compact subsets
of R+, f be the Borel cr-field over fi, P is standard Wiener measure,
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If h 6 L2(R+), we denote by 5j(k) the Wiener integral:

/

oo h(t)dwi
Let <S denote the dense subset of Z/2(fi, .T7, P) consisting of those random variables F which
take the form

F = f(6il(h1),---,6in(hn}) (4.6.170)

w h e r e n e N J e C n t f ™ ) , ^ , - - - ,hn e L2(R+),i1,- • • ,in e {! , - • • ,fc}. If F has the form
(4.6.170), we define its derivative in the direction i as the process {D\F, t > 0} denned by

More generally, we define the pth order derivative of F

Dil'"ip F = Dl" • • • Dl1 FL\ • "l.p Lp l\

DF will stand for the fc-dimensional process

We know that for i = 1, • • • , k, D* is an unbounded closable operator from L2(£2) into
L2(H x -R+). We identify Z?1 with its closed extension, and denote by P*'2 its domain. Dl is
a local operator in the sense that if F 6 2?^'2, then D\F = 0, dP x dta.e. on {F = 0} x R+.

D1'2 = n£=1'Dj1'2 is the domain of the closed unbounded operator D from L2(Q) into
Z,2(fi x R+- Rk~). More generally the spaces T>l'p and P1* = nf=1P^ for p > 2. 2?}'" is the
closure of S with respect to the norm:

where || • ||p denotes the norm in
Furthermore let I?2'p and I?2'p are the closures of S with respect to respectively the

norms:

and

Define

£f = Lp(R+,dt; &f),j = ! , - • • ,k;l= lor 2

and

£('p = Lp(R+,dt;T>l'p),l = 1 or 2.

,£j '̂  will denote the set of those elements u of C.i ' p which satisfy
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(i) For any T > 0, the set of functions {s — » Dl
tus\ s £ [0, T] — {t}}te[o,T] is equicontinuous

with values in Lp(fi).
(ii) esssup(M)e[0ir]2 E(\Diut\p) < oo,VT > 0.
Moreover, C]f = njLj/^'g and £^p = £^p n £2'p. If u e £j;£, we define

(Vu)t will denote the fc-dimensional vector ((V1u)t, • • • , (Vfcu)()T.
Denote by "D^ the set of all random variables F which are such that there exists a

sequence {(fln,Fn),n € N} c J~ x £>lip with the following two properties Qn t & a-s-; as
n — > oo and for each n, F = Fn a.s. on Cln. We then say that the sequence {Fn} localizes
F in T>l'p, and Z?t.F is denned without ambiguity by

DtF = DtFn on £ln x R+, n € N

T>i foc is defined analogously. We define L^ as the set of measurable processes u which are
such that for any T > 0, there exists a sequence {(fi£,u£);n € N} C F x £1>p such that
fJ^ | ^ a.s. and u = u^dP x dt a.e, on fi^ x [o, T], n 6 N. In that case , {u^,n 6 N} will
be said to localize u in £1>p on the time interval [0, T]. £j^c,£c^oc anc^ ^I'c loc are defined
similarly.

Denote by C,1'100 the set of all measurable processes u such that for any T > 0 there
exists a sequence {/3^,n € N} C np>2X>1>p satisfying

(i) {/£ = 1} T O a.s.,
(ii) 7r/3jw 6 np>2£1'p for every n,
(iii) #f £>•«• G np>2Lp(n; L2([0, T]2)) for every n,

where 7T(i) = l[o,T](*)-
£^'oc is defined similarly with np>2£llP in (ii) replaced by np>2.£^p. The set of sequences

{0n}T will be called localizer. Note that

Cl'loc C £% and CV°C C £^oc, Vp > 2.

Consider the stochastic differential equation in Rd

(4.6.171)
o

] I
=1 Jo

where the coefficients F, G\ , • • • ,Gk are random functions of (t, s, x). and are Ft measurable
for each t. Unfortunately, we cannot treat such a situation in general. Rather, we shall
assume that Gi is of the form

Gi(t,s,x) = d(Ht,t,s,x)

where Gi(h, t,s,x) is Fs measurable, and {Ht} is J^-prpgressively measurable. For the sake
of simplify the notation, we shall assume from now on that -F and Gi do not depend on
(t, x,w), and we consider the Volterra equation of the type

•t k ft .
F(Xs)ds + V / Gt(Ht, Xs)dWi (4.6.172)

/•
/

Jo
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where Xt takes values in Rd, and {Ht} is a given p- dimensional progressively measurable
process. We shall assume that d e Cl'°, 1 < i < k, and first postulate the following set of
hypotheses.

There exists q > p, bounded set B C Rp and K > 0 s.t.

Ht£Ba.s.,Vt>0
H e (£1'2)p; \DaHt\ < Ka.s., 0<s<t

k fc

fe
\F(x) - F(y)\ + £ \Gi(h, x) - Gi(h, y}\

t=i
v—^ C'Cjj f/Cjrj

for 0 < s < t, h £ B, x, y G fid. We have the following theorem.

Theorem 4.6.1 Under the above conditions, there exists a unique element ofCi,
(0,t)) which solves equation (4-6.172).

Further if we assume that
(i) XQ is jFo measurable;
(ii) H 6 (£;1Qc)p) is progressively measurable and can be localized in (£1>2)p by progres-

sively measurable processes;
(iii) \Ht\ + 5Zi=i l-^s-^tl — Uta.s.,0 < s < t where Ut is increasing.
(iv) Same growth and Lipschitz conditions as above on F, Gi, and ^jjf-, but with K

replaced by increasing processes {Vt
N, t > 0}, the inequality with Vt

N being satisfied V/i 6 Rp

with \h\ <N.
Then equation (4.6.172) has a unique solution which is progressively measurable and

belonging a.s. to nt>oLq(Q, t).
Moreover if,
(v) t —> Dl

sHt is a.s. continuous on [s, +00);
(vi) h —> ^jjf- (h, x) is continuous, MX;

then the solution {Xt} of equation (4.6.172) is a.s. continuous.
Finally, if Ht is a semi-martingale with appropriate properties, and h —> Gj(h,x) is

of class C2,Vx, the second derivative being Lipschitz in /i, then the solution {Xt} is a
semi-martingale.

4.6.2 SDEs with anticipating drift and initial condition
We consider the stochastic differential equation

rt k fi

=X0+ / b(Xs)ds + Y* \ o-*(X s)odWJ (4.6.173)
Jo ^J°

Xt

where
(i) X0 6 r\p>2VlP

c, with l{|jf<|<n}sups<T|D.X5| e rv>2L"(n), VT > 0,n € N and
1 < i < d.



228 CHAPTER 4. SDES AND THEIR APPLICATIONS

(ii) b : fi x Rd -> Rd is a measurable mapping s.t. b € C2(Rd;Rd); b , b ' X i , - - - Ad £
jCi'2(L2(Rd- n)d) where /j, = N(0,7), and D^b, Dtb'x^, • • • , Dtb'Xd € C(Rd',Rd), (i, w) a.e. and
moreover

and 3p, CP,T such that

A6(x)| + \b'x(x)\ + \b"xx(x)\+Dtb'x(x)\ < Cp,r(l + x|p,Vt e [0,T],x 6 Rd

(iii)<T* 6 C°°(Rd, Rd)\ 1 < i < fc, all its derivatives are bounded, as well as those of

we associate to (4.6.173) with the equation

rlV,

?o = X0 (4.6.174)

where (j>^~lb(x) = [^•(x)\^lb(4>t(x)} and {^> t(x);< > 0} is the flow associated to equation
(4.6.173) with b = 0, i.e.:

= x+ f
•A) i=l

then we have the follwoing theorem.

Theorem 4.6.2 Under the above assumptions, equation (4-6.174) possesses a unique non
exploding solution {Yt,t > 0}. If Xt = (j>t(Yt),t > 0, then X is the unique a.s. continuous
element of C]JP which solves (4-6.173).
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Chapter 5

Numerical Analysis of
Stochastic Differential
Equations Without Tears

H. SCHURZ1

School of Mathematics
Institute of Technology
University of Minnesota

127 Vincent Hall
Minneapolis, Minnesota, MN 55455

5.1 Introduction

Noise plays a significant role in many physical situations, in particular when the corre-
sponding dynamical system (differential or difference equations) undergoes bifurcations (i.e.
changes in its qualitative behavior). How the noise occurring in the observed dynamics
should best be modeled remains a challenging problem. However, by mathematical tools
like rescaling and limit theorems, we know that the Gaussian white noise case plays a central
role. It is desirable to study the qualitative behavior of the arising systems of stochastic
differential equations (SDEs) as approximations of real natural phenomena. Unfortunately,
most of their explicit solutions are not known. Thus, one has to resort to numerical methods.
The challenge consists of constructing sequences of approximations by difference equations
which replicate the qualitative behavior of the original dynamics of stochastic differential
equations. This is where modern numerical analysis starts and where the topic of our survey
is placed.

The survey is organized as follows. Section 2 describes the main setting for ordinary
stochastic differential equations. Thereafter, in Section 3 we develop the idea of Taylor
expansions of their solutions. By truncation of these expansions one systematically arrives at
schemes for numerical methods. We present a comprehensive toolbox of numerical schemes
by Section 4. In Section 5 the basic concepts of the following presentation are combined
by the main principle of numerical analysis: namely consistency (i.e. local approximation),
stability (control on global growth behavior of solution), contractivity (control on global
error propagation) under geometric invariances (like positivity or ID-invariance). How these

1 Research partially supported by the University of Minnesota, School of Mathematics and IMA in Min-
neapolis and Weierstrass Institute in Berlin. Current version is from December 15, 1999.
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four requirements imply global convergence is shown there. The importance of that principle
is manifested by the following sections. Section 6 summarizes the most general convergence
results which form, together with the stochastic Taylor expansions, the backbone of any
theoretical convergence analysis. We will exhibit pth mean, strong pth mean, double Lp

and weak convergence concepts for numerical approximations. In the Sections 7 and 8
we exhibit the issues of numerical stability, stationarity, boundedness and contractivity.
The family of stochastic Theta methods is examined in this respect in a fairly thorough
presentation. Section 9 discusses some problems related to implementation, simulation,
variable step size algorithms, random number generation and illustrative examples. Finally,
Section 10 concludes this survey by some final comments, further developments and outlook.

All in all, the results are presented in a general, but not the most general, form. As it
is natural for surveys, we shall concentrate on the main ideas rather than on all details, all
facets or all cross relations.

5.2 The Standard Setting For (O)SDEs
Assume that the physical process is described by an ordinary stochastic differential system
((O)SDE) with Gaussian white noise, integrated in, the sense of Ito (without loss of gen-
erality) on a given, fixed, deterministic time-interval [0, T\. A system of such stochastic
differential equations (SDEs) can be written in terms of differentials as

dXt = a(t,Xt)dt + V(t,Xt)dWl (5.2.1)

where a, b> : [0, T] x Rd — > Rd are the drift and diffusion parts, and { W/ : 0 < t <
T} represent m mutually independent Wiener processes on the complete probability space
(fi, .T7, (Ft)t€[o,T\i1P )• To ensure the meaningfulness of systems (5.2.1), throughout the
survey we impose the uniform Lipschitz-continuity of coefficients a, V , i.e.

(ULC) 3A" i e]RVi ) i ,e ]R d Vt6[0 1 T] \\f(t,x)-f(t,y)\\<KL\\x-y\\

and the linear-polynomial boundedness on a, 6^, i.e. we have

(UBC) V x 6 K d V t 6 [0,T] \ \ f ( t , x ) \ \ < KB(l + \\x\\)

where function / : [0,T] x IRd — > TR.d is either a or V , and KL,KB are appropriate real
constants. These requirements together with

(IMC) E||X0 |r<+oo

(for a suitable p € H, p > 1), where || • || denotes the Euclidean vector norm in IRrf,
guarantee the existence and uniqueness of (strong) solutions of system (5.2.1) with finite
and uniformly bounded absolute moments IE ||^t||p for all admissible times t. In fact, one
may relax the conditions for existence and uniqueness of solutions to (5.2.1) to (uniform)
one sided Lipschitz continuity of the coefficient system (a, f'), i.e.

(OLC] 3KOL € H Vx, y € Hd Vt € [0, T]

_ -. m^

<a(t,x)-a(t,y),x-y>d+^—^r\\V(t,x)-V(t,y)\\2 < KOL\\x - yf
1 3=1
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and to (uniform) one sided linear-polynomial boundedness of coefficient system (a, b>),
i.e. we have

(OBC) 3KOB, K'OB , K%B e 1R Vx e lRd Vt 6 [0, T]
TO

)\\2 < K^B + KgB\\x\\2 < KOB(l + \\x\\2)

where < x,y >d= ^Zi-ixiVi is identified with the d-dimensional Euclidean scalar product
of ]Rd, and KoL,KoBiKoBiKoB are appropriate real constants throughout this survey.
For sake of simplicity of this work, we shall carry out our studies here only for the case of
non-time-dependent constants K in the conditions above. However, one may generalize all
the presented ideas to the case K = K(i] where K(t) is Lebesgue-integrable (i.e. where
K G ^([O,T], 8([0, T]), n) with cr-algebra B([0,T]) of Borel-measurable subsets of [0,T] and
Lebesgue-measure n).

Throughout our survey let X S t X ( t ) denote the solution of system (5.2.1), started at value
x G IRd at time s with 0 < s < t < T. (Therefore one may identify XotX(t) = -X"s,x(s)W f°r

all 0 < s < t < T.). Moreover, any stochastic process X, Y occurring here will be considered
and viewed in that form Y(t) = K,,Y(s)(0 to indicate the functional dependence which will
be exploited at several places.

The following lemma performs an important part of the "analytical backbone" for the
course of numerical analysis of (O)SDEs, stating under which main conditions and properties
of exact solutions of (O)SDEs (5.2.1) all numerical analysis is carried out here.

Lemma 5.2.1 (Schurz (1996)): Assume p > 2 and KQB,KQB > 0. Let X = (Xt)0<t<T
satisfy (5.2.1) on [0,T] with IE \\X0\\P < +00.
If(OLC) is valid, then for all ̂ -measurable X(s),Y(s) G JRd with the property IE \\X(s)\\p <
+00, IE \\X(s) - Y(s)\\v < +00 we have

JE \ \ X , t X ( s ) ( t ) - Xs,Y(s)(t)\\p < IE \\X(s) ~ y(s)f exp (PKOL(t - s)) (5.2.2) .
\ /

where x,y are independent of all J-3
T, for all 0 < s < t < T.

If (OBC) is satisfied then Vz G IRd

IE \\X,,x(a)(t)[\p (5.2.3)

< \JE \\X(s}\\p +2KnR——————,—————f^B———,?B ———'-\-
~ L " wn OB (p-2)Kt)B+pK%n J

• exp ({(P - 2)K^B+pKgB](t - s)

IE \\X(s)\\p + ——————————-———————— exp I 2(p — l)Kr>B(t —o — l J V

for all 0 < s < t < T (If K1
OB < 0 or KQB < 0, then similar estimates also hold, but only

up to the stopping time t* when v(t*) = 0. From then onwards only the inhomogeneous part
of the inequalities contributes to the estimates considered, and hence v(t) = 0 for all t with
t* <t< T.).

The proof is an immediate consequence of the constants-of-variation inequality from Schurz
(1997). It is worth noting that these estimates are sharp (e.g. take stationary Ornstein Uh-
lenbeck process and Geometric Brownian Motion). To the author's current knowledge the



240 CHAPTER 5. NUMERICAL ANALYSIS OF SDE WITHOUT TEARS

assumptions (OBC) and (OLC) are the most general ones under which one has carried out
rigorous mathematical analysis of numerical methods applied to general classes of (O)SDEs
with respect to convergence, stability and perturbation concepts. A similar statement as
in Lemma 2.1 can be formulated for the case 1 < p < 2. Due to the sharpness of the
estimates obtained in Lemma 2.1, one could not expect more general statements within a
consistent numerical Lp approach for (O)SDEs. See forthcoming papers of Schurz (1999). It
is interesting as well that under the stronger assumptions (ULC) and (UBC) the estimates
of Lemma 5.2.1 simplify to those with constants KQB = pKs and KQL = pf^L- When as-
sumptions (OBC) are not met, explosions in the solutions may occur (numerically confirmed
by exploding numerical approximations), whereas when (OLC) is not met, nonuniqueness
can lead to serious branching effects of different numerical approximations, since they might
follow different solution paths then. Condition (OBC) can be relaxed by Lyapunov-type
techniques which we will not follow in this presentation due to lack of space. Of course,
the uniformity in estimates above could be relaxed as well towards Z/1-integrable kernels
KoB(t),KoL(t)- These generalizations will not be touched by this survey because of the
character imposed naturally on a lesser technical presentation. Roughly speaking, condition
(OBC) ensures the control on stability, and (OLC) the control on the propagation of initial
errors. Thus, these conditions are very crucial for adequate numerical analysis, cf. the main
principle of numerics below.

We assume enough smoothness (e.g. V & C^p([0,T\ x IRd)). Thus, the restriction to Ito
equations (5.2.1) is not so essential at this point, since one may use a well-known transfor-
mation formula between different stochastic calculi to convert the results in an equivalent
way under some mild smoothness assumptions (V G C^p([Q,T] x Kd), see Arnold (1974).
However, for practical reasons, such as modeling issues and the implementation of numerical
algorithm, it could be important. For the important special case of Stratonovich calculus,
see Stratonovich (1966). Note also in the Stratonovich case the additional assumption that
the coefficient system (a + \c, bl,..., bm), with

m d
. > ^r—"\ K"—^ j -i /c(t,x) := y ^ y ^ l r k ( t , z

j = l k=l

satisfies conditions (OBC), and (OLC) is generally needed in order to ensure existence
and uniqueness, unless one can apply a stochastic Lyapunov-type technique under local
Lipschitz continuities of a,c,V. More details can be found in Dynkin (1965), Gikhman
and Skorochod (1971), Arnold (1974), Khas'minskii (1980), Gard (1988), Protter (1990),
Karatzas and Shreve (1991), Krylov (1995), 0ksendal (1998) among many others. We also
suppose that XQ is independent of all natural filtrations J-j? = {WI : 0 < s < t}. For
example, one often assumes that XQ is deterministic. A system of the form

dXt = a(t,Xt)dt +V(t)dWi (5.2.4)

is said to be a system with additive noise, otherwise one with multiplicative noise. It is worth
stressing that the stochastic calculi coincide for systems with additive noise. If systems
(5.2.1) or (5.2.4) have coefficients a, V which do not depend on time t then they are called
autonomous, otherwise nonautonomous. In passing we note that systems (5.2.1) also arise
as finite-dimensional approximations of stochastic partial differential equations (SPDEs) in
engineering, e.g. after application of method of lines to parabolic SPDEs, or as diffusion
limits of stochastic interacting particle systems in Mathematical Biology. Throughout this
exposition we presume that the readership is familiar with basic facts on probability theory,
stochastic processes and deterministic differential equations.
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Now, it is natural to ask for the construction of accurate approximations of systems
of (O)SDEs (5.2.1) and their justification. As in deterministic analysis, the main tool for
providing them and their local convergence analysis is given by Taylor-type expansions.

5.3 Stochastic Taylor Expansions
Let us sketch the main idea of Taylor expansions. For this purpose, we recite the famous
Ito formula in abbreviated operator form, originating from Ito (1951). Define

v =(-L AX \ f~i 1 O ) * ' * >\ctei 0x2

as the d-dimensional gradient in the ^-direction.

5.3.1 The Ito Formula (Ito's Lemma)
Define linear partial differential operators

fftft i
° = -+ < a(t,x),Vx >d +-m t

and & =< V(t,x),Vx >d where j = 1,2, ...,m. Then, thanks to the fundamental contri-
bution of Ito (1951), we have the following lemma.

Lemma 5.3.1 (Stopped ltd Formula in Integral Form). Assume that the given deterministic
mappingV e C1>2([0,T]x Md, Mk). Letr withO < t < T < T be a finite Ft- adapted stopping
time.
Then, we have

V(T, XT) - V(t,

m ,T

Y.
3=0 Jt

(5.3.1)

5.3.2 The main, idea of stochastic Ito-Taylor expansions
By iterative application of Ito formula we gain the family of stochastic Taylor expansions.
This idea is due to Wagner and Platen (1978). Suppose we have enough smoothness of V
and of coefficients a, V of the Ito SDE. Remember, thanks to Ito's formula, for t > to

/

t m »t

£°V(s,Xs)
-J

s
-J j=l ^ *o

Now, take V(t,x) = x at the first step, and set b°(t,x) = a(t,x), Wf = t. Then one derives

ISo(*
Jtr,

V =
'to

fJt0

dWl

= i t°Jtn

m ,s•£ / •k=QJt°

ds

Cka(u, dWl
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6° = a
ft *n i-t ,-

dWi+Y, \ \
*° to ^*j,k=0 to

Euler Increment Remainder Term RE

V = LkV
t ,-s

j=0

ft ,-s
V(t0,Xto) I

*° *°

Increment of Mil'shtein Method

j,k=l,l=0

m ft fS

k=1 Jt0 Jt0

ft fS fU

Remainder Term R
V =

ft rs

j=0 •" c° i.fc=n Jto Jto
/ fsdw^

J tr> J tn

Increment of 2nd order Taylor Method
ft f>S t>U

C.l
° ° °l=Q ° ° °

Remainder Term
= crckb>

t-s.t t-s
/ /

^*° ^to
__ ' u""r s

I , ^~-^~ I . I .
j=0____________________________________________

Increment of 3rd order Taylor Method
fTL n't t*s pll

+ £ LrC,kV(t0,Xto} I I dWr
vdWkdW>

i k r=^0 ^° ^° ^°

Increment of 3rd order Taylor Method

•i /-s /*w /-i;771 r>t i>S ru rv

Y, \ I I I £l£r£k
j^^rj—Q Jto Jt0 Jt0 Jto

Remainder Term RT

This process can be continued under appropriate assumptions of smoothness and bounded-
ness of the involved expressions. Thus, this is the place from which all numerical methods
systematically originate, and where the main tool for consistency analysis is coming from.
One has to expand, the functionals in a hierarchical way, otherwise one would lose impor-
tant order terms, and the implementation would be inefficient. Of course, for qualitative,
smoothness and efficiency reasons we do not have to expand all terms in the Taylor expan-
sions at the same time (e.g. cf. Mil'shtein increment versus 2nd order Taylor increments).
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The Taylor method can be read down straightforwardly by truncation of stochastic Tay-
lor expansion. Explicit and implicit methods, Runge-Kutta methods, linear-implicit or par-
tially implicit methods are considered as modifications of Taylor methods by substitution of
derivatives by corresponding difference quotients, explicit expressions by implicit ones, re-
spectively. However, it necessitates finding a more efficient form for representing stochastic
Taylor expansions and hence Taylor methods.

5.3.3 Hierarchical sets, coefficient functions, multiple integrals
Kloeden and Platen (1991) based on Wagner and Platen (1978) introduced a more compact
and hence a very efficient formulation of stochastic Taylor expansions. For its statement,
we have to formulate what is meant by multiple indices, hierarchical sets, remainder sets,
coefficient functions and multiple integrals in the Ito sense.

Definition 5.3.2 A multiple index has the form a = (a\,a^, ...,aj(Q)) where l(a) £ IN is
called the length of the multiple index a, and n(a) is the total number of zero entries of
a. The symbol v denotes the empty multiple index with l(v) = 0. The operations a— =
(QI, ..., c*i(Q)_i) and —a = (02,..., cti(aj) are called right- and left-subtraction, respectively
(in particular, (ai) — = — (c*i) = v). The set of all multiple indices is defined to be

Mk,m = |a = (ai,a2,...,a,(a)) : a* e {k,k+ l,...,m},i = 1,2, ...,l(a),l(a) € WJ.

A hierarchical set Q C Mo,m is any set of multiple indices a G Mo,m such that v € Q
and a 6 Q implies —a G Q. The hierarchical set Qk denotes the set of all multiple indices
a 6 .Mo,m with length smaller than k & IN, i.e.

The set

Qk = {a e M0,m : l(a) < k}.

R(Q) = [a 6 Mo,m \ <5 : a- e

is called the remainder set R(Q) of the hierarchical set Q. A multiple (Ito) integral Ia,s,t [V(., • )
is defined to be

^ if
ia,s,t[V(.,.)\- otherwise

for a given process V(t,Xt) where V e C°'° and fixed a e A^o.m \ {^}- A multiple (ltd)
coefficient function Va e C°'° for a given mapping V = V(t,x) € C1^'21^ is defined to be

V(tx\-a{ ' }~ V(t,x) otherwise

Similar notions can be introduced with respect to Stratonovich calculus (in fact, in gen-
eral with respect to any stochastic calculus), see Kloeden and Platen (1991) for Ito and
Stratonovich calculus.

5.3.4 A more compact formulation
Now we are able to state a general form of ltd- Taylor expansions. Stochastic Taylor expan-
sions for Ito diffusion processes have been introduced and studied by Wagner and Platen
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(1978), Sussmann (1988), Arous (1989), and Hu (1992). Stratonovich Taylor expansions
can be found in Kloeden and Platen (1991). We will follow the main idea of Wagner and
Platen (1978).

An Ito- Taylor expansion for an Ito SDE (5.2.1) is of the form

V(t,Xt) = ^FQ(s,Xs)7a,s>t + Yl Ja,s,t[K,(.,.)] (5.3.2)
<x£Q a€R(Q)

for a given mapping V — V(t, x) : [0, T] x Kd — > Hfc which is smooth enough, where 7QiSit
without the argument [•] is understood to be 7aiS)t = Ia,s,t[i]- Sometimes this formula is also
referred to as Wagner-Platen expansion. Now, for completeness, let us restate the Theorem
5.1 of Kloeden and Platen (1991).

Theorem 5.3.3 (Wagner- Platen Expansion).
Let p and r be two J-~t-adapted stopping times with to<p<r<T< +00 (a.s.). Assume

V : [0,T] x IRd — > IRk. Take any hierarchical set Q £ M0,m-
Then, each ltd SDE with coefficients a,b^ possesses a Ito-Taylor expansion (5.3.2) with
respect to the hierarchical set Q, provided that all derivatives of V, a, & (related to Q) exist.

The proof is carried out in Kloeden and Platen (1991) using the Ito formula and induction
on the maximum length supa€g l(a) e IN. A similar expansion holds for Stratonovich SDEs.

5.3.5 The example of Geometric Brownian Motion
Consider the well-known equation of Geometric Brownian motion which is sometimes also
called the lognormal model in IR,1 . It is governed by

dXt = aXtdt + aXtdWt

where a, CT are real constants. Now, let us apply deterministic (since we know an explicit
solution expression) and stochastic Taylor expansions (see above) to this equation. This
leads to

= Xto 1 + a(t - to)

where the coefficient functions are

V(t,x) = x,Va(t,x) = an(a)cri(Q)-"(a)x

with n(a) as the total number of zeros of a € A4o,i , and v as the empty index. Consequently,
the stochastic Taylor expansion can generate a kind of Geometric Wiener Chaos expansion.
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5.3.6 Key relations between multiple integrals

The following lemma connects different multiple integrals. In particular, its formula can
be used to express multiple integrals by other ones and to reduce the computational effort
of their generation. The following lemma is a slightly generalized version of an auxiliary
lemma taken from Kloeden and Platen (1995), see proposition 5.2.3, p. 170.

Lemma 5.3.4 Let a = (ji,J2, •••,.?'; (a)} £ A^o,m \ {v} with l(a) £ M.
Then, V/fc 6 {0, 1, ..., m} Vt, s : 0 < s < t < T we have

(Wt
k-Ws

k)Ia,s,t =
i=0

i=0

K")

where X{.} denotes the characteristic function of the subscribed set. Hence, it obviously
suffices to generate basis sets of multiple integrals. See also Games and Lyons (1994) in
respect to minimal sets of multiple Stratonovich integrals which need to be generated. In
order to get a more complete picture on the structure of multiple integrals, we note the
following assertion.

Lemma 5.3.5 (Hermite Polynomial Recursion Formula). Suppose that the multiple index
a = ( j i , J 2 , - , J i ( a ) ) 6 Mo,m withji = j2 = ... =Ji(a) = j € 0, l,...,m and l(a) > 2.
Then, for all t with t > s > 0 we have

j = o
(5.3.4)

This lemma corresponds to a slightly generalized version of Corollary 5.2.4 (p.171) of Kloe-
den and Platen (1995). It is also interesting to note that this recursion formula for multiple
Ito integrals coincides with the recursion formula for hermite polynomials. Let us conclude
with a list of relations between multiple integrals which exhibit some consequences of Lem-
mas 3.2 and 3.3. For more details, see Kloeden and Platen (1995). Take j, fc € {0,1, ...,m}



246 CHAPTER 5. NUMERICAL ANALYSIS OF SDE WITHOUT TEARS

andO<s<t<T.

(t —

(t — s)I(jtk),s,t =

The efficient approximation of multiple stochastic integrals still remains a challenge to be
tackled. First approaches in this respect are found in Kloeden, Platen and Wright (1992)
using the Karhunen-Loeve expansion (Fourier series of the Wiener process) for Ito and
Stratonovich integrals, and Lyons and Gaines (1994) using Box counting methods to treat
Stratonovich integrals by looking at Levy areas. In particular, Gaines (1994, 1995) has
analyzed the algebra of iterated integrals and could establish some basis sets of intergals
which need to be generated to approximate the entire set of multiple integrals.

5.4 A Toolbox of Numerical Methods
By truncation of Taylor expansions and locally implicit or explicit substitutions of the
results of differential operators for the coefficient functions, one arrives at an infinite set
of possibilities to form stochastic approximation techniques. We will exhibit just a few of
them. In the following, and later, let (^n)ne]N denote the sequence of approximation values
for the solution at time tn along the time-discretization

0 = t0<tl<t2< ... <tnT=T

(for simplicity, we suppose that io = 0 and tnr — T). The time-discretization is said to be
equidistant if there is a number A e H+ (called the step size) such that A = tj+i — U for
all i = 0,1,..., HT — I- In general, we define

A = max \ti+\ — ti\
i—0,l,...,riT — 1

as the step size, and A» = ti+i — U as the local step size. Consider AW£ = W^n+1 — W/n as
the current increment of the Wiener process component W^.

5.4.1 The explicit and fully drift-implicit Euler method
The most well-known numerical method is given by the explicit Euler method. It was firstly
studied by Maruyama (1955). That is why it is sometimes called Euler-Maruyama method.
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The scheme of the explicit Euler method is defined by

m

Yn+I = Yn + a(tn,Yn)^n + ̂ (tn,Yn)^W^. (5.4.1)

Its convergence has been proved by Gikhman and Skorochod (1971). It represents the most-
studied, best-understood and simplest-implementable numerical method. Nowadays, it is
even used to understand existence and uniqueness proofs of solutions of SDEs, see Krylov
(1990, 1995). A drawback of method (5.4.1) can be seen in the lack of numerical stability (in
fact "substable" behavior), the low convergence order, incorrect stationary laws and some
problems with the geometrical invariance properties (e.g. nonsimplectic integrator). Despite
these facts it is a very popular and very easily implemented, hence practical, method. It is
natural to ask for a counterpart to the deterministic implicit Euler method. Its drift-implicit
scheme is given by

Yn+1 = yn + a(tn+i,yn+i)An + V(tn,^n)AW^. (5.4.2)

The use of the drift-implicit Euler method can be seen to control numerical stability of cer-
tain moments, boundary value replication and to reduce variance effects. However, there are
the drawbacks of superstability, asymptotic nonexactness of stationary laws to be replicated,
and more computational effort due to additional practical implementation of resolution al-
gorithms of nonlinear algebraic equations.

5.4.2 The family of stochastic Theta methods
A first natural generalization of explicit and implicit Euler methods is presented by stochastic
Theta methods. They are convex linear combinations of explicit and implicit Euler imcre-
ment functions of the drift part, whereas the diffusion part is explicitly treated due to the
problem of adequate integration within one and the same stochastic calculus. The scheme
of a stochastic Theta method is written as

m

(5.4.3)

where / represents the d x d real unit matrix, and Qn is a uniformly bounded parameter
matrix in 1R x , which is also called the matrix of implicitness parameters. This family has
been introduced by Ryashko and Schurz (1997) as a generalization of deterministic Theta
methods. If d = 0 then its scheme reduces to classical (forward) Euler method, if 9 = I
to the backward Euler or often called implicit Euler method, and if 6 = 0.5 to the implicit
trapezoidal Method. Originally they were invented by Talay (1982), who proposed Qn = OQ!
with scalar OQ £ [0, 1]. A study of the qualitative behavior of these methods can be found in
Stewart and Peplow (1991) in deter ministics, and in Schurz (1997) in stochastics. Another
generalization is given by the drift explicit-implicit Euler method following

Yn+l = Yn + a(tn + en&n,&nYn+1 + (I-en)Yn)&n + V(tn,Yn)&WZ (5.4.4)
j=i

where 9n € IR, Qn € Hdxd such that local algebraic resolution can be guaranteed.
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5.4.3 Trapezoidal and midpoint methods
For the integration of conservation laws and Hamiltonian systems, it is recommended to
take derivates of the implicit midpoint method

Yn+l = yn + o ( , " + " ) A T > + ^(tn .yn)AW>. (5.4.5)

This method seems to be very promising for the control of numerical stability, area-preservat-
ion and boundary laws in stochastics as well. The drawback can be the local resolution of
nonlinear algebraic equations, which can be circumvented by predictor-corrector methods
(PCMs), see below. A natural extension of trapezoidal integration techniques is represented
by the implicit trapezoidal method governed by

Yn+1 = Yn + -(a(tn+1,Yn+1) + a(tn,Yn))An+V(tn,Yn)AWi. (5-4.6)

Both the trapezoidal and midpoint method have an improved local mean consistency behav-
ior (they are of mean convergence order 2, locally considered of mean order 3, under enough
smoothness of a 6 Cb' ([0,T] x IR )), compared to the explicit and implicit Euler methods.
The trapezoidal method has problems when one integrates high-dimensional systems with
boundary conditions, as reported by numerous deterministic numerical analysts. However,
it is the only numerical method from the class of Theta methods with 6n = 01,0 £ H1

which asymptotically integrates linear stochastic systems without bias (i.e. asymptotically
exact method with respect to stationary laws), see below or Schurz (1996, 1997, 1999).

5.4.4 Rosenbrock methods (RTMs)
In the methods before it appears that one needs algebraic resolution of implicit equations
at each integration step. This can be circumvented by the use of linear-implicit methods.
A specific form of a linear-implicit method which exploits the information of the Jacobian
matrices is given by stochastic Rosenbrock methods. The idea of linear implicitness traces
back to Rosenbrock's fundamental work in deterministic numerical analysis and the idea
to treat at least linear systems asymptotically more adequately. In stochastic analysis
these methods have been studied in particular by the school of Artemiev, see Averina and
Artemiev (1997) for a more detailed overview. An r-stage Rosenbrock method (RTM) can
be written as

r m

Yn+l = rn + ££>?^ (5.4.7)
i=l j=0

8 -i
= AW^(/-AnCj~(tn,yn)) V

1=1

where Cj, 0>
il are appropriate real constants, described by m + 1 Butcher tableaus. If

da,
sup

dxd
< Kj < +00
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with the Euclidean vector norm and a compatible matrix norm ||.| |dxd) the Jacobian is
uniform Lipschitz continuous and some natural step size restriction

is satisfied, one can show mean square convergence, depending on the choice of k\ and
For example, a converging two stage RTM (i.e. r = 2) is given by

The big advantage of these methods can be seen in the significant improvement of the linear
stability behavior and better integration of linear systems of SDEs. They are also quite useful
in certain nonlinear situations, when the linear part controls the behavior of underlying
nonlinear dynamic. These methods are preferable when one is integrating in the moment
sense, and where the deterministic part plays the most significant role in the course of
dynamics. Their drawback is apparent with the additional computation of Jacobian matrices
(sometimes even at each step) and algebraic resolution of high-dimensional systems. These
methods do not incorporate the stochastic pathwise influence of random integration (not
appropriate for the computation of almost sure characteristics like almost sure Lyapunov
exponents!).

5.4.5 Balanced implicit methods (BIMs)
For the control on almost sure path-behavior, for the incremental growth and error propa-
gation, Mil'shtein, Platen and Schurz (1998) have introduced the class of Balanced implicit
methods determined by

Yn+l = Yn+a(tn,Yn)An
j = l ' j=0

(5.4.8)

with appropriate weight matrices & (t, x) such that the inverse of d x d matrix

exists and is uniformly bounded for all values dj 6 IR+, 0 < #o < #o < +00 and (i, a;) 6
[0, T] x Md. This class has been studied in Schurz (1996, 1997) and Fischer and Platen
(1999). It represents a linear-implicit integration technique, and hence local resolution can
be guaranteed and made very simple as well. However, the choice of the matrix weights
CJ (t, x) is still a challenge for future research and exhibits a very problematic and practically
oriented question (basically C^ has to be chosen according to the desired qualitative prop-
erties of discussed discretization, and thanks to Schurz (1996, 1997, 1999) it is proved that
the coefficients C-> with j = 1,2, ...,m are not really needed to have asymptotically exact
control on the first and second moments of approximation Y. However, these coefficients
are needed in context of pathwise control, see Schurz (1996, 1997, 1999)).

5.4.6 Predictor-corrector methods (PCMs)
A simple, but computationally efficient, idea to circumvent the computational problem of
implicit algebraic equations is provided by the predictor-corrector techniques. The predictor
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scheme is used to forecast the future solution value and plugged into the corrector scheme
to have the final approximation values. This procedure leads to an improvement of the
numerical stability behavior almost to that of fully implicit schemes, but without the trouble
of solving implicit equations at each integration step. Let us manifest this by the example
of explicit midpoint and explicit trapezoidal methods introduced and tested by Peterson
(1994) in stochastic numerics. The explicit midpoint method satisfies

Yn+l = Yn + a(n n , "+*2 " ) An + y(tn, yn) AW-( (5.4.9)
3 = 1

using the explicit Euler method Y^^ as its predictor. The explicit trapezoidal method is
governed by the scheme

Yn+1 = Yn + -(a(tn+l,Y*+l) + a(tn,Yn))An + ,b1(tn,Yn)AWi (5.4.10)
3=1

using the explicit Euler method Yj^+1 as its predictor scheme. More generally, one could
think of explicit Theta methods following

Yn+l = Yn+(Qna(tn+l,Y^+1) + (I~Qn)a(tn,Yn})An + iV(tn,Yn)AW^ (5.4.11)
3 = 1

where the parameter matrix &n is as in the Theta methods before. Of course, more compli-
cated predictor-corrector methods can be constructed from Taylor or Runge-Kutta methods
through the substitution of implicit .expressions by predicting values of other schemes as
well. However, care needs to be taken to do it in an efficient way (maximum convergence
order should be kept along with substantial improvements of qualitative properties). As this
procedure would sprinkle our brief survey goal, it is left to the taste of the readership. The
art of appropriate combinations heavily depends on the qualitative goal what one wants to
achieve by these new "hybrid" methods.

5.4.7 Explicit Runge-Kutta methods (RKMs)
Stochastic Runge-Kutta methods have been studied by many authors, for example Rumelin
(1982), Burrage and Platen (1994), Averina and Artemiev (1997), or more recently by
Burrage and Burrage (1996, 1997, 1998). Let us follow the presentation of Burrage and
Burrage. They devote their studies to Stratonovich equations

dXt = a ( X t ) d t + Y^V(X^odWt (5.4.12)
3=1

since the nature of Stratonovich integration appears to be closer to the deterministic case,
and in fact the Stratonovich- Taylor expansions exhibit slightly simpler structures. An r-
stage Runge-Kutta method is given by

i ) ) i = l )2, . . . )r (5.4.13)
j=0 1 = 1
m r

Yn+l = Yn + ̂ ^
j=o 1=1



5.4. A TOOLBOX OF NUMERICAL METHODS 251

where J ( f ) , t n , t n + l = AW^ and CJ represent suitable r xr real matrices and 7-? appropriate r-
dimensional real vectors. Riimelin (1982) has shown the order restriction of these methods.
The maximum attainable strong and mean square convergence orders are 0.5 for the entire
class of multidimensional (i.e. d > 1) Stratonovich SDEs (5.4.12) with noncommutative
noise even under C°° smoothness of a, V , c. The situation dramatically changes when com-
mutative noise is met. Then one may attain any order of convergence under C°° conditions,
as it is with the case d — 1. For systems with noncommutative noise, the meaningfulness
of methods (5.4.13) is still questioned, since we may obtain the same order of convergence
by much simpler numerical methods. All in all, by Burrage and Burrage (1998), it is clear
that classical deterministic Runge-Kutta techniques using only multiple products of J(j)q
with different components j do not really help to increase the order of convergence. From
Kloeden, Platen and Wright (1992) it becomes apparent that new random variables are
needed to increase the order of convergence - a fact originating from the series expansions
of stochastic processes. In Burrage, Burrage and Belward (1997) it is pointed out that, if
one incorporates all multiple Stratonovich integrals up to order p e N. then the order of
strong convergence cannot exceed minj2^, r^} when p > 2, r > 3 (and 1 when p — 1)
for an r-stage stochastic Runge-Kutta method. For more details on maximum attainable
order bounds, see Clark and Cameron (1980), Riimelin (1982), Burrage and Burrage (1997,
1998), Schurz (1999) and Roman (2000).

5.4.8 Newton's method

A very important task consists of minimizing the leading error coefficients of numerical
approximations. For this purpose, N. Newton (1986, 1991) has introduced the concept of
asymptotically efficient, .Tj^-measurable numerical methods. Consider

. (5.4.14)

along a discretization 0 = t0 < t\ < . . . < t^ = T for a fixed time interval [0, T] .

Definition 5.4.1 An f^-measurable numerical method (Vr
ra)7l6{0jl]...jjV} is said to be pth

mean asymptotically efficient iff either IE [\\XT — Y]M\\P\^] = 0 or, for any other F£-
measurable numerical approximation (^n)n6{o,i,...,JV}) we have

> 1. (5.4.15)
E\\\XT--ZN\

liminf -
N—> + OO 7771 I M V"i& \\AT — N

It is clear, in the case p = 2 — the mean square case, the "best" approximation is achieved
by the conditional expectation IE [XT\f^] which has the minimum mean square error
distance to the exact solution X. However, it is very hard to compute that expression
analytically. Newton (1991) has given a partial answer of how to construct asymptotically
efficient ^Y-measurable methods for both autonomous Ito and autnomous Stratonovich
SDEs with one-dimensional Wiener process (Wt)o<«<T as driving noise (i.e. when m = 1).
Set XQ = YQ. The efficient Euler-Runge-Kutta method.t<x Ito SDEs with m = 1 follows the
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scheme

k°0 = a(Yn), kl
0 = b(Yn)

fc? = o(Yn

(5.4.16)

Yn+l =

for all n = 0, 1, ..., n^ — 1. This scheme possesses a mean square convergence order 7 = 1.0,
hence it already represents a method of higher order in case m = 1. A similar method for
Stratonovich equations with m = 1 is found in Newton (1991), as well as the proofs of their
asymptotic efficiency under the main conditions a, 6 e C^ (Kd) n Cp(Hd) and b € Cp(TRd).
In principle, that concept of efficiency can be extended to enlarged discretized nitrations
FT where more information of higher order multiple integrals is incorporated (however, the
computations for asymptotically efficient approximations turns out to be very laborious and
hardly feasible by hand).

5.4.9 The explicit and implicit Mil'shtein methods
The simplest higher order method is due to Mil'shtein (1974). It has the scheme

m

Yn+1 = yn + a(*B,yn)An + £V(*B,yn)AW2 (5.4.17)
3 = 1

j,k=l

/•*-+> r
L L

This method has limited use when numerical stability is an important issue and multidimen-
sional Wiener processes (m > 1) drive the dynamics (except for certain noise commutativity
conditions). The generation of multiple integrals 1^) — / / dWkdW^ is described in Kloe-
den, Platen and Wright (1992) by using Karhunen-Loeve expansion. There is an idea to
make the Mil'shtein method implicit (see Kloeden and Platen) . Then the family of implicit
Mil'shtein methods follows the scheme

Yn+l = Yn + (da(tn+1,Yri+l) + (l~e)a(tn,Yn})An+^V(tn,Yn)AW^ (5.4.18)
3 = 1

where 9 e [0, 1] is an implicitness parameter to be chosen. The convergence orders are as
that of explicit Mil'shtein method. However, the numerical stability behavior cannot be
improved compared to corresponding Theta methods with © = 61. For more details in
this respect, see below or Schurz (1996, 1997). Thus, the balance between convergence and
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stability requirements is already a problem here with growing order of convergence. More
generally, one might think of the usage of implicit Theta-Mil 'shtein methods governed by

Yn+l = yn + (ena(tn+1,yn+1) + (/-e>(in,Fn))Ara + &^niyn)AW^ (5.4.19)

m /-in+i f t

£^«">«/ /
: I__1 -̂  trr Jtnj,fc=l

where 6n e Hdx<i is a certain matrix of implicitness parameters, and the usage of drift
explicit-implicit Mil'shtein methods

m

+ E/
where Qn, as before, is small enough that the local resolution of implicit algebraic equations
can be guaranteed. But the meaningfulness of the last two methods (5.4.19) and (5.4.20) is
still in question.

5.4.10 Gaines's representation of Mil'shtein method
By algebraic rearrangement of multiple integrals and using the fundamental relations be-
tween them in the explicit Mil'shtein method one gains the representation of Gaines, which
clearly exhibits the role of efficient generation of stochastic area integrals (in particular, of
Levy integrals).

- An) (5.4.21)
j=i

, m

n, Yn) + &bk(tn, Yn)}

where A^k = I(j,k),tn,tn+1 ~ I(k,j),tn,tn+1 represent the Levy areas. The advantage of this
representation may be seen in the significant simplification under noise commutativity of
CkV (i.e. when CkV = £J&fc, which is obviously fulfilled in the case d = m = 1) and
which results in a more efficient implementation of Mil'shtein methods. On the other hand,
this representation clearly shows that the art of applying Mil'shtein methods consists of the
efficient generation of Levy area integrals and hence of multiple integrals. The highlighted
influence of commutativity conditions is made visible by Gaines representation. The efficient
generation of Levy integrals Ay still seems to be a problem. The problem of generation of
Levy areas and multiple integrals is described and studied in Gaines (1994, 1995). In order
to approximate these Levy areas there is a kind of box-counting algorithm, see Gaines and
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Lyons (1994), that is an alternative to truncation of Fourier series approximating stochastic
multiple integrals. The Gaines representation can also be exploited to receive more effi-
cient implementations of the implicit Theta-Mil'shtein methods and drift explicit-implicit
Mil'shtein methods. Also the development of balanced implicit Mil'shtein methods using
Gaines representation could be useful.

5.4.11 Generalized Theta— Platen methods

The natural substitution of the differential quotients arising from the differential operators
in the Mil'shtein 's methods lead to the generalized Theta-Platen's method governed by

Yn+l =

(5.4.22)

where we remember that /(j,fc),tn,tn+1 = /t"+1 J* dW^dWl and Qn € Mdxd is a certain
matrix of implicitness parameters. Platen (1987) suggested a similar variant to this method
in the case m = 1 and Qn = 0. A practical advantage becomes clear, since it is a derivative
free method belonging to the class of implicit Runge-Kutta methods with strong order 1.0.
However, to our knowledge, a qualitative study of this method has not been carried out so
far, except for convergence statements. Of course, one could immediately apply this idea to
arrive at drift explicit-implicit Runge-Kutta methods of strong order 1.0 following

Yn+1 = Yn+a(tn+0nAr, n, Yn) (5.4.23)

where Gn G n^dx<i js a certain matrix of implicitness parameters and 9n 6 [—1,1] such that
the local algebraic resolution can be ensured. Furthermore, the idea of making the variants
of explicit and implicit Mil'shtein-type methods into derivative free ones can be applied
in conjunction with the Gaines's representation. Predictor-corrector implementations of
Theta-Platen's techniques are useful to arrive at easily implementable numerical procedures
as well. However, one does not get rid of the problem of efficient generation of Levy areas
or stochastic multiple integrals by none of these algorithms (unless complete commutativity
of (a, #) holds!).

5.4.12 Talay-Tubaro extrapolation technique and linear PDEs
A very efficient method for the computation of characteristics of probability distributions
is presented by the Talay-Tubaro extrapolation method based on the well-known Euler
methods and deterministic extrapolation idea. More precisely speaking, it is when one
wants to compute IE [ f ( X T ) \ X 0 = x\ for a given deterministic function / : lRd — > R (f
smooth enough or a.V e C°°) and fixed terminal times T (nonvarying deterministic terminal
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times) using equidistant approximations exclusively. Define A := ^-j^- as the equidistant
step size of numerical approximation to be constructed.

m

(5.4.24)

(5.4.25)

where AH7^ and AV!̂  can be chosen as independent Wiener process increments or more

efficiently taken as AW^ = AW^ + ^^2fc-i> with independent random variables AW^
substituting the Wiener process increments by some discrete random variables satisfying
certain moment relations (see Talay (1995) or MiPshtein (1995)). Now, set

)} - IE (g(Y^)}. (5.4.26)

Then, based on error expansions by Talay- Tubaro (1990) in analogy of deterministic numer-
ical analysis, it has been shown that v£T approximates

where u(t,x) solves the initial value problem (IVF) of the linear PDE (Drift-Diffusion equa-
tion)

d '

j = l i,k % k=l

where u : [0,T] x ID — » M' and u(Q,x) = g ( x ) , Q < t < T. The striking advantage is the
increased order of weak convergence of approximations v£T to IE u(0, XT). Moreover, this
approach seems to be very appropriate within approximation of Feynman-Kac representa-
tions of solutions of deterministic linear PDEs. Possible simplifications of random number
generation can be applied to approximations aiming at weak convergence, see Section 9
dealing with implementation issues and the original works of MiPshtein and Talay. There
is a general opinion among Monte Carlo specialists that the approximation of systems of
deterministic PDEs with very "complex" domains or whenever one needs only approxima-
tions at very specific points of the underlying domain is the field of potential applications
where the Monte Carlo techniques as exhibited by Talay-Tubaro extrapolations are superior
compared to standard deterministic techniques. Anyway, we should not forget that the new
problem of reliable statistical estimation of mean values occurs in the stochastic approach
now (which causes new errors). The drawback which is currently seen is that these ex-
trapolation techniques have been suggested only for equidistant approximations with fixed
deterministic terminal times T. It is also not quite clear how more complicated boundary
conditions on <9ID can be incorporated in the stochastic approach. One should not forget
that many smoothness assumptions on system ingredients must be made as well. An open
problem arises with the applicability towards pth mean and pathwise integration. The idea
of Talay and Tubaro (1990) has been continued to the case of Taylor approximations as
basis methods by Kloeden, Platen and Hofmann (1995).

5.4.13 Denk-Hersch method for highly oscillating systems
To integrate highly oscillating systems, like that of electronic circuits, it is advisable to use
a method due to Denk (1993) using an idea of Hersch (1958). The principal ^-dimensional
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equation describing the behavior of electronic circuits is given by

x + Ax = a(t,x) (5.4.28)

where A is a d x d matrix, and a is a highly oscillating function which might be noisy
due to thermal noise. Then it is advisable to apply Adams-type methods based on the
principle of coherence due to Hersch (1958). This has been worked out by Denk (1993) in
the deterministic setting, using step size depending coefficients in the corresponding Adams
methods. The principle of coherence roughly says that the numerical results in "two succes-
sive approximation steps should not contradict each other." Let us illustrate this principle
in the linear case (i.e. linear coherence principle). Starting from the homogeneous problem
z + Az = 0 related to system (5.4.28), identifying xn+i = &(An)xn as the description of
related numerical method applied to the linear homogeneous IVF problem with A = t l~*°,
we get

using step size A : z(ti) = $(A)z(i0 + A) = $(A)$(A)z(t0) =
using step size A : z(t\) =

Thus, for a coherent numerical method, it must hold that $2(A) = $(2 A). Of course,
this would naturally be satisfied for the matrix exponential of the continuous time linear
homogeneous system for z. However, only coherent numerical methods preserve the same
semigroup property under discretization. Therefore, a coherent integration scheme for x
must satisfy the condition <£>(/z) = exp(— hA) for all h > 0. Denk (1993) has combined
Hersch's idea of coherence with the standard multistep approach applied to the fully inho-
mogeneous equation (5.4.28). This gives the Denk-Hersch method

k
Yn+k - exp(-AA)Yn+k-l = A ̂  fl'a(<n+,_i, rn+,_i) (5.4.29)

1=0

with certain matrix coefficients Bl = £?'(A) 6 Hdxd. For example, the Denk-Hersch method
with k = 1 is established with

1 = -(/-[/-exp(-AA)](AA)-1)(AA)-1,

B° = [/-exp(-AA)](Ayl)-1-B1.

It turns out that this scheme is consistent with order k, A(0)-stable and therefore convergent
(see Lax-Richtmeyer equivalence theorem in deterministics). Note that these facts do not
contradict the famous Dahlquist's order barriers for linear multistep methods since the
coefficients Bl always depend on the step size A. Practical implementations are realized by
predictor-corrector techniques. Even the problem of phase lags can be circumvented by the
use of this numerical method due to Denk. This method has been further developed and
applied to SDEs (5.2.3) with additive noise in circuit modeling and simulation (in fact it
leads to the numerical treatment of (Ordinary) Stochastic Differential- Algebraic Equations
((O)SDAEs by stochastic Adams techniques). For more details, see Denk and Schaffler
(1997) and Denk, Penski and Schaffler (1998), by using the concept of weak coherence
(i.e. coherence for the nonnoisy system equation is guaranteed). Unfortunately, during the
writing this survey, the author did not have access to any work which extends this idea to
the fully multiplicative noise case (moment or almost sure stochastic coherence should be of
interest) leading to coherence with stochastic fundamental matrix solution <i>. For example,
in the almost sure sense, when complete commutativity [B* , Bk] = B1 Bk — BkB3 = 0 with
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B° - -A for all j, k € {0,1,..., TO} is met, then

-[A +

for autonomous SDEs, where 9(u>)n denotes the random shift operator on sample space fi
to render the random dynamics to be a stochastic flow. This implies our idea of the new
fully stochastic Denk-Hersch method (DHS) following the scheme

k

Hfc, 0(w)|n+fc)Vn+fe-i = 5ZC l(A,)a(tn+i-i,y,,+i-i)Az (5.4.30)
(=0

k

1=0

for splitted Ito SDEs

dXt = (-AXt + a(t, Xt)) dt + ̂  (BjXt + V(t)) dW} (5.4.31)

with additive noise coefficients c^(t) and multiplicative noise coefficients b*(t,x) =
where (7'(A) are suitable matrix- valued Adams coefficients. Moreover, in the noncommu-
tative situation one has to incorporate Lie brackets, as presented by the stochastic Magnus
formula due to Magnus (1954). But the resulting procedure is fairly complex, and this
should be of future interest. Basically, one could generally think of a generalization to a
construction of a numerically exact integrator at given time instants at least for linear sys-
tems as indicated above (cf. approach of Mickens (1994) to numerically exact integrators in
deterministic numerical analysis, and consult its standard references).

5.4.14 Stochastic Adams-type methods
In Denk and Schaffler (1997) and Brugnano, Burrage and Burrage (1999) stochastic analogs
to well-known Adams-type methods which belong to the class of linear multi-step methods
were developed. For example, following Brugnano et al (1999), the simplest Adams method
applied to Stratonovich systems (5.4.12) is given by

fc -. TO

Yn+k = yn+fc_! + An ̂ &g°n+i + ̂  Y, J(J),t^-^k(9n+k + fli+fc-i) (5-4-32)
i=0 j = l

where gjj = ^(Y;),^ = 0, 1, ...,m, I — 0, 1, ..., k. The coefficients (3i are those of the deter-
ministic Adams-Moulton method of order k + 1 . This scheme can be rewritten as

fc .. m

. Yn+l = Yn + An £&-i9£+i-i + ^ H -/(,') ,tn,tB+1(5i+i + 9J,) (5-4.33)
i=0 j=l

where J(j),tn,tn+i = AW^. Method (5.4.32) can be combined with predictor-corrector im-
plementations as well, which we omit here.
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5.4.15 The two step Mil'shtein method of Horvath-Bokor
Horvath-Bokor (1997) has suggested the following equidistant two step Mil'shtein scheme
applied to Ito SDEs (5.2.1) with m — \ and componentwise governed by

Yn)A + V* (5.4.34)

+7fc [((1 - ak)ak(tn, yn) + a f ca f c(tn_i, Kn_i)) A + V^_J

with

where Y0 = X0 and Y\ is chosen by one explicit Mil'shtein step (k = 1,2, ...,d), and
parameters ak,jk € [0, 1], based on equidistant discretizations of time-intervals [0, T]. The
strong convergence order 1.0 is also proven in that paper. In addition she proves the same
convergence order for a new multistep method

yn
fc

+1 - (i-Toyn
fc + 7fc^n-i + «^n,^n)A + ̂ (;n,yn)Awn (5.4.35)

+ -

^ Y^) A

where yo, Yi, 7fc, ak are as in scheme (5.4.34) above. Finally, she reports about some numer-
ical evidence that this new scheme "behaves better" than Mil'shtein methods.

5.4.16 Higher order Taylor methods
After substituting in the Taylor expansions Xt by Yn or Yn+i, respectively, and neglecting
the remainder parts, one arrives at the following explicit and implicit Taylor method.

n - / /u l(a) + n(a) < 27 or 1
yn+1 = Yn + £ xa(tn,yn)JQ,tn+1>C'y ~ r : *(<*) = "(a) = 7 + | J

«e^ <?£ = {a G Mm : l(a) < /?}; 27, /? e IN

where xa is the Ito coefficient function which one gets by applying to V(t, x) = x. The
advantages are the obtained higher order of convergence (i.e. larger step sizes could be used)
and approximating dynamics can have better geometric properties in accordance with those
of underlying continuous time dynamics (e.g. during visualization of stochastic flows, see
Kloeden, Platen and Schurz (1991) or, in filtering, see Kloeden, Platen and Schurz (1993)).
On the other hand, there are serious problems with numerical instabilities, a large complexity
for practical implementation, many smoothness assumptions on a, & , and in particular the
problem of efficient generation of stochastic multiple integrals which has to be clarified. The
efficient use of Taylor methods is limited in general, because of their growing complexity
caused by very complex random number generation for involved multiple integrals, and
accompanied loss of stability properties. However, for specific dynamics, the situation may
change dramatically, and hence one should always check whether there are considerable
simplifications (like those with commutative noise or one-dimensional situations) and if one
meets limitations on the use of very small step sizes.

5.4.17 Splitting methods of Petersen-Schurz
Petersen (1998) and Schurz (1996, 1997, 1999) use the idea of splitting of the drift and diffu-
sion parts, and treat the obtained split parts by different numerical procedures/techniques.
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There are two basic cases of splittings: additive and multiplicative. An example for addi-
tively split dynamics is provided by the stochastic Duffing oscillator, see Schurz (1996, 1997)
and Yannios and Kloeden (1996). For example, additive splitting is given when

Then it is tempting to apply different numerical techniques to the separated parts since one
may or one has to control only one part of the dynamics. The same is true for the more
general multiplicative splitting when

V>(t,x) = V(t,x,x).

Ah example for multiplicatively splitted dynamics is provided by the modified Van der Pol
oscillator with drift a(t, x, y, z) = —u^x + j2 (1 — c2x2 — d2y2)z with z = y. Under the usual
smoothness and boundedness assumptions Petersen (1998) and Schurz (1996, 1997, 1998)
have proven corresponding convergence orders, i.e. Petersen in the weak convergence sense
and Schurz in pth mean sense. For more details, see their papers. The simplest example
would be the linear-implicit Theta-Euler methods

Yn+l = Yn + enA(tn^}Yn+i + (I - Qn)A(tn}Yn + a(*n ,yu)An (5.4.36)

or

Yn+l = Yn+ [A(tn + o°n An) (enrn+1 + (i - en)yn) + a(*n + 0° , yn)] An (5.4.37)

with appropriate implicitness matrices Qn € Kdx<i and scalars Q3
n, #° e [— 1, 1], suggested by

Schurz (1996). So far the linear part has been implicitly treated. Sometimes it is even more
advantageous to treat the nonlinear part of coefficients V by implicit numerical techniques,
since only that part controls the qualitative behavior. This idea was originally suggested
by Ottinger (1996) for problems of polymeric fluids (however, without any mathematical
proof). A nonlinear- implicitly splitted Theta-Euler method follows

Yn+1 = rn+ena(tn+ i ,y r
n + i ) + (j-en)o(tn,rn) + a ( t n ) r n )A n (5.4.38)

and in particular the nonlinear- implicitly splitted trapezoidal method is governed by

Yn+i = Yn + (-[a(tn+i, Yn+a) + o(tn,yn)] + o(tn,yn))An (5.4.39)

and nonlinear-implicitly splitted midpoint method by

n+1+tn= Yn+ (a(-n+1
2

+tn, |[yn+1 + Yn}) + o(tn(yn))An (5.4.40)
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We have noticed that an introduction of implicitness in the diffusion parts W , j = 1, 2, ..., m
has not been observed in the splitting methods within the Ito calculus so far. This fact is
due to the a priori convention of Ito integration to take only the left-hand side values in the
course of Ito-Riemann sum approximations. This can be done partially in the Stratonovich
calculus (however, with a lot of care, since explosions may occur in certain dynamics). For
this purpose, one can exploit the technique of suitable truncation of random variables (i.e.
with the care of not destroying convergence orders) or using the sign of random variables
(such as by the balanced implicit methods case (see BIMs above)). The practical value of
random variable substitutions can be seen best in the case of weak approximation techniques,
see later or Mil'shtein (1995) and Talay (1995).

Thus, Petersen (1998) has introduced the following 2nd order weakly converging 2nd
order drift-splitted explicit-implicit method

n+ (5.4.41)
1 rn A A)

+ 2 £ [* (y« + if (aW + ̂ )) +
j=i fc=i

A /O m m
+ ^(a(Yn) + a(Yn))-^^bk(Yn)£j)}en'j+ £

^ z fc=i J j,k=i
for autonomous SDEs (5.2.1) with drift b°(x) = a(x) + a(x) and diffusion coefficients l>>(x),
where

m

Y* = Yn + (a(Yn) + a(yn))An

and £°'J', ̂ , ̂  , Ifr k are appropriate random variables satisfying certain moment relations
(see Petersen (1998) for more details). This method can be rendered to a derivative free
one - an approach which leads to the Ottinger-Petersen method (see Ottinger (1996) and
Petersen (1998)).

The question of optimal splitting represents a quite complex problem. There is only
one rough rule in general: the part of the dynamics of V which is responsible for the
stabilizing branch in the continuous time system should be treated implicitly and the other
instable branch should be treated explicitly. In general, one has to deal with partial-implicit
methods, i.e. one splits the dynamics of b>(t,x) = V(t,t,x,x) by the partial treatment
V(tn,tn+i,Yn+i,Y^ ) with implicit methods Y1 and explicit methods YE. Only some care
is needed to keep the finiteness, boundedness, desired order of convergence and some other
qualitative properties of discrete time dynamics. For more details, see Schurz (1998). All in
all, the adequate introduction of implicitness and splitting forms turns out to be a very case-
sensitive problem. Thus, there are no fully generalizable conclusions, except for the additive
splitting case when there is one study with respect to asymptotic mean square behavior and
numerical characteristic exponents already available, see Schurz (1999) and/or Sections 6 -
8 below.

5.4.18 The ODE method with commutative noise
It is promising to use deterministic algorithms under certain circumstances. For example,
under commutative noise one can exploit the Doss representation of diffusions, see Doss
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(1977). The resulting splitting idea was pursued by Talay (1983), Bensoussan et al. (1989),
and picked up by Castell and Gaines (1994), Roman (2000), see also Schurz (1999). The idea
goes as follows. The entire ODE approach is based on the key assumption of commutative
noise stated by Vfe, j e {1, ...,m} V(i,x) € [0,7*] x IRd

i=l ^ i=\

Then Doss (1977) has given an explicit representation Xt = h(D(t),Wt) of the solution of
SDEs. For example, in case d = m = 1, 6 = b(x) the deterministic function h satisfies the
PDE

dh(u,v) . u— j-^- =b(h(u,v})av
with initial condition h(u,0) = u, provided that b € (72(IRd) fulfills the Lipschitz condition
(ULC), and where D(t) satisfies the random initial value problem for randomized differential
equation

/ fwt \
D'(t) = exp I - / b'(h(D(t),v)}dv 1 b(h(D(t),Wt)

V ^ /
started at D0 = X0. Thanks to a conjecture of E. Pardoux, Talay (1983) has made use of
this idea in the fully multidimensional case

Xt = h(D1(t),D2(t),...,Dd(t),Wt
1,W?,...,Wln).

With these contributions in hand, one obtains the procedure to approximate the composed
solution X = h(D(t), Wi) by solving the deterministic PDE for h first (e.g. by determinis-
tic analytical or numerical methods), and then one may numerically integrate the related
ODE for D(t) for each random path of the underlying Wiener process Wt by deterministic
methods started at DO = XQ. Under appropriate commutativity conditions for all a, b>
one may even show that the increments of Taylor methods for certain functionals V(t,Xt)
can only locally depend on the Wiener process increments AS)tWJ" = Wl — W% and time-
increments A = t — s, see Schurz (1999). This is useful to approximate certain conditional
expectations IE [V(t, Xt)\J-s] and the algebra of iterated multiple integrals, where V(t, Xt)
is an appropriate JVmeasurable functional of X and J-s represents the cr-field of underlying
natural filtration at time s < t. Of course, one can now successfully apply deterministic
numerical methods like that of higher order Runge-Kutta methods to approximate the in-
volved random differential equations with high accuracy and sophisticated knowledge on
deterministic numerical analysis based on deterministic Taylor expansions. Thus, "path-
wise" approximations of SDEs are possible, exploiting the full knowledge of deterministic
numerical analysis. However, the user may be warned that this cannot be done in general
(i.e. when commutativity does not hold)! For further reading, we recommend to consult
the paper of Talay (1983) where he proves the convergence of numerical methods using the
Doss representation, but without calculating D, h explicitly. In Roman (2000) one finds a
discussion on convergence orders in conjunction with Runge-Kutta techniques applied to
Stratonovich SDEs without drift part under the additional condition of noise commutativ-
ity (i.e. then even the calculation of D is not needed to establish approximations using the
Doss approach, since then D(t) = D(0) = XQ). Under appropriate smoothness conditions
of a, fr7, V with some very restrictive commutativity conditions (i.e. F-commutativity of
order 27) involving a, V , V, an alternative is given by Schurz (1999) without using the Doss
approach, but resulting into the achievement of any desired convergence order for Taylor
approximations of V(t, Xt] (i.e. even infinite Taylor series can be obtained, which of course
need to be truncated for the practical implementation).
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5.4.19 Random local linearization methods (LLMs)
In Mechanical Engineering a localization technique has widely been used for a long time.
This technique basically says one should linearize the dynamics locally at each step, and
then approximate the original nonlinear dynamics by the linearized dynamics. For example,
see lyengar (1988). This method can be applied with some care to (O)SDEs as well. To
our current knowledge, as one of the first, Ozaki (1985) recognized the power of this tech-
nique in stochastic hydrology. The mathematics of stochastic linearization was later treated
independently by Jimenez et al (1996), Roy and Schurz (1996), Ozaki and Shoji (1998),
Shoji (1998) among others. Let us follow somehow their ideas in conjunction with the
method of removing multiplicative noise terms in the original dynamics. The key assump-
tions (connected to the more general and challenging problem of when a stochastic dynamics
is qualitatively represented by its corresponding linearization in an adequate manner) are
that the drift a(t, x ) and diffusion parts W(t,x) are smooth enough (e.g. continuously dif-
ferentiable with respect to time, at least twice continuously differentiable with respect to
the space coordinate and sufficiently smooth such that the corresponding function / from
below is in C l > 3 ( [ 0 , T ] x ID)), the dynamics for the stochastic process X lives on a compact
bounded set ID of Rd (a.s.), the diffusion part '^(t,x)£[o,T]xTD lib3(t,x)\\ > 0 is uniformly
bounded away from zero (such diffusions are called nondegenerate) and the information
on the Wiener process is given at all discrete time-instants. For simplicity of illustration,
we shall confine ourselves to one-dimensional Ito SDEs

dXt = a(t, Xt)dt + b(t, Xt)dWt.

It is convenient to transform this equation to an SDE with additive noise

dZt = a(t, Xt dz
[b(t,Xt

dz2 a(t)dWt

provided that an invertible 4>(x) as solution of

exists. This equation for Z is an equation with random drift coefficients

, (b(t,Xt)}2 d2<j>(z)
dz z=Zt

dz = Zt
dz2

dz2

z=Zt/

z=Zt

= f(t,zt).

Since g(t,<f>-l(Zt),Zt) = f(t,Zt), this yields the equivalent Ito SDE

dZt = f ( t , Zt)dt + cr(t)dWt

with additive noise and deterministic drift function f ( t , z ) = g(t,(p~1(z),z). Now we may
apply the Ito formula to / in order to linearize the dynamics. Therefore it locally follows
that

dz2 at (t-s)
9 f ( t , z )

dz (Zt - Z,),
z=Zs
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where

d f ( s , Z s ) _ < T 2 ( s ) d 2 f ( s , Z s ) d f ( s , Z s )

ns =

dz ' s ~
Zs} df(s,Zs

Consequently, on each subinterval [s, s + h] we have to solve the linear SDE

dZt = (lsZt + mst + ns)dt + cr(t)dWt.

This SDE has the explicit solution

/

s+h rs+h
(msu + ns)exp(-isti)du+ / exp(-Zsu)cr(u) dWu

J s

which one can obtain by local application of Ito's formula to exp(— lst)Zt on [s, s + h]. Now,
this equation can be solved by

7js+h = Zs + ——j—— ( exp(lsh — 1J + -yrr ( exp(lsh) — 1 — lshj +
L.tt \ 's

(s + h - u))cr(u) dWu (5.4.42)

= Zs + J v"' "sl ( exp(lsh - l} + ̂  (exp(/s/i) - 1 - lsh] + (5.4.43)

/:
/

s+h
exp(ls(s + h- u ) ) ( l s ( s + h- u)a(u) + ai(u)}Wudu

+ h)Ws+h-a(s)Ws.

The generation of the random integral in (5.4.42) is easy to manipulate since it follows a
Gaussian distribution with mean zero and variance

s+h
exp(2Z5(s + h — u))(72(-u) du

provided that it is square-integrable with respect to Lebesgue measure. For example, when
CT = ao is constant, then the local variance is equal to

2exp(2lsh)-l

As an alternative, we may exploit the second identity (5.4.43) gained by the formula the of
partial integration for Brownian motions to generate the local increments Zt — Zs by optimal
quadrature formulas for the integral expressions (see e.g. Egorov et al). Consequently,
we have a local random linearization technique available for approximation of solutions of
SDEs through composition of the local increment formulas we have received before. Shoji
(1998) provides some experimental results which show the slightly improved error behavior
of LLMs compared to numerical results using the classical Euler methods for generation of
both the exact solution and numerical approximation. He also gives a proof of global pth
mean convergence rates ^g = 1.0 of the obtained LLMs for SDEs with additive noise on
compact real domains based on the almost sure continuity of the related diffusion process
with additive noise for p > 2 (thus the same convergence order as classical Euler methods
applied to additive noise dynamics). It remains a question how efficient the presented
approach really is in the fully multidimensional framework.
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5.4.20 Simultaneous time and chance discretizations
Gelbrich (1995) has found a new approach to "weak approximations" of SDEs. He presents a
combination of time-discretization methods of Euler and Mil'shtein methods with a "chance-
discretization" based on well-known invariance principles. The grid is constructed to tune
the discretization. The convergence of the approximate solutions is shown using (IE ||. •
Hc[t0,r])1^P norms f°r P S [2,+00). The obtained convergence rates can be interpreted as
rates for the Lp Wasserstein metrics (p e [l,+oo)) between the distributions of exact and
approximate solutions.

5.4.21 Stochastic waveform relaxation methods
Schneider and Schurz (1998) have recently developed a stochastic version of deterministically
well-known waveform iteration methods on pth mean Banach spaces of solutions of SDEs.
These methods are designed particularly for high-dimensional systems of SDEs as obtained
after discretizing stochastic partial differential equations (SPDEs) by the common space
discretization. Stochastic waveform relaxation algorithms (Jacobi, Gauss-Seidel, SOR, etc.)
are easily parallelizable iteration methods for SDEs with no functional delay effects (i.e. for
Markov processes), hence their efficiency is seen in application to high-dimensional systems
of SDEs. The construction and proof of pth mean convergence is heavily based on the fixed
point principles and the efficient estimates of related contractivity constants, and depends on
finding appropriate splittings of the original system into subsystems to introduce windowing
techniques for local iterations with global exchange of data for the global iteration. For more
details, see Schneider and Schurz (1998).

5.4.22 Comments on numerical analysis of SPDEs
Stochastic partial differential equations (SPDEs) have been studied for a fairly long time.
For example, Benssousan and Temam (1972, 1973), Krylov and Rozovskii (1977- 1986), Par-
doux (1979), Gyongy and Krylov (1980, 1982, 1996), Schmalfuss (1986), Rozovskii (1990),
Da Prato and Zabczyk (1992, 1996), Flandoli and Crauel (1994, 1998), Greksch and Tudor
(1995), Krylov (1996), Kuo (1996), Crauel, Debussche and Flandoli (1997), Holden et al
(1997) and Krylov and Lototsky (1999). Stochastic Navier-Stokes equations are treated in
Bensoussan and Temam (1971, 1972), Greksch and Schmalfuss (1996). Stochastic evolution
equations are studied by Rosovski (1990) and Greksch and Tudor (1995). Da Prato and
Zabczyk (1992, 1996) follow the classical deterministic semigroup approach to treat linear
SPDEs which leads to many direct computations. A systematic Lp-theory has been de-
veloped by Krylov (1995, 1996). Holden, 0ksendahl, Ub0e and Zhang (1996) report on a
systematic approach to SPDEs based on Wick-type white noise calculus. There are already
a few papers on numerical analysis of stochastic partial differential equations (SPDEs) avail-
able. As one of the first, Gyongy (1989) and Gaines (1995) outlined the role of stochastic nu-
merical methods for the solution of SPDEs. Gyongy (1991, 1998) introduces stochastic lat-
tice methods, Gyongy and Nualart (1995, 1997) provide with an implicit numerical scheme,
and Gaines (1995) basically makes use of a stochastic generalization of well-known method
of lines, leading to finite-dimensional approximations of SPDEs by (O)SDEs. Grecksch and
Kloeden (1996), Grecksch and Wadewitz (1996) study stochastic Galerkin approximation
and derive space - time step size convergence orders for evolutionary systems. Convergence
proofs are also given in Gyongy (1998), Davie and Gaines (1999). Hoo (1998, 1999) has
recently carried out a work where he exploits techniques of discrete Sobolev spaces and
the analytical Lp-theory due to Krylov (1996). All in all, we can confirm that this area
is rapidly growing and has a very promising future. Stochastic finite element techniques
must be further developed (first approaches, mainly motivated by Mechanical Engineering
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(Crack Growth), are found in Dey (1979), Contreras (1980), Wong (1984), Skurt (1986),
Faravelli (1988), Germani and Piccioni (1988), Ghanem and Spanos (1990, 1991, 1997), Hien
and Kleiber (1990), Skurt and Michel (1990, 1992), Kleiber and Hien (1992), Araujo and
Awruch (1994), Elishakoff, Ren and Shinozuka (1995), Papadrakakis and V. Papadopou-
los (1996), Ren, Elishakoff and Shinozuka (1997), Alien, Novosel and Zhang (1998), Benth
and Gjerde (1998), Peng (1998), Ghanem (1999), Matthias and Bucher (1999)). It would
be advantageous to know when a difference method can be preferred to a finite element
one. However, one does need a very profound knowledge of basics of numerical analysis for
systems of (O)SDEs to understand the numerics of SPDEs.

5.4.23 General concluding comment on numerical methods
Although it is very daring to make any statement about the preferences of numerical meth-
ods, the author's current opinion is as follows. In general, splitting techniques together with
ODE techniques (Doss splittings), BIMs, RTMs, PCMs, Newtons method, Talay-Tubaro ex-
trapolations, Denk's method, the Burrage-Butcher school of stochastic Runge-Kutta meth-
ods and the local linearization approach to approximate probability densities and to phase
plane analysis represent the most advanced and efficient numerical methods which are cur-
rently available in the market of academic literature for general systems of (O)SDEs, as of
1999. However, in specific situations the classical Taylor methods do perform very well, see
Kloeden, Platen and Schurz (1991, 1993) with respect to qualitative dynamical pattern be-
havior, in filtering and Schurz (1999) under K-commutativity. Also in general it is advisable
to form a test set of different numerical procedures, to apply to one and the same continuous
time dynamics, and then, if the results qualitatively coincide one should accept the received
joint approximation as the approximation result (similar to the general philosophy of sta-
tistical estimations). There is still a lack of knowledge on efficient numerical integration of
high-dimensional systems of SDEs, how to perform very reliable variable step size and order
techniques and how to control dynamics with non-Lipschitz continuous coefficients. The
entire analysis can consist only of a careful study of both the qualitative behavior of con-
tinuous and discrete time dynamics, exploiting the specific structure of underlying systems
and taking into account the following main principles of (stochastic) numerical analysis.

5.5 On the Main Principles of Numerics
The key to understanding the analysis and mathematically justified construction of numeri-
cal methods (and above all their behavior more profoundly) in the pth mean sense, inspired
by Schurz (1999), can be illustrated as follows. Fix p > 1. Let Xt,x(t + h),YttX(t + h) denote
the one-step integral representations of exact and approximate process started at x at time
t and evaluated at time t + h.

5.5.1 ID-invariance
An important fact which is neglected by many authors is that, for a fair comparison between
exact solution and numerical approximation, we need to find a common (random) normed
space where one could and should do numerical analysis. Since this problem seems to be
very difficult on bounded domains in stochastic numerical analysis, most of the authors
in stochastics circumvent it by treating the numerical approximation procedures on the
whole vector space like that of Hd. This embedding is always possible, but surely not
always necessary and not the most desirable procedure. For example, one may consider the
simple logistic equation or the innovation diffusion due to Schurz (1996,1997) where a closed
manifold is a geometrically invariant region for both the exact and approximate dynamics
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embedded in the entire vector space for the exact solution. For simplicity, let ID be an open
or a closed subdomain of JRd \ {—oo, +00}. Thus we ask for

Definition 5.5.1 The numerical sequence Y = (Xn)ng.CV leaves the domain ID invariant
( a.s.) (or in short Y is ID-invariant^ iff

P {Yn 6 1D|F0 e ID} - 1.

The construction of such sequences can be a very tough task in stochastic analysis. In this
respect the class of BIMs (as shown in Sections 6,7 and Schurz (1997)) is very promising.
Another problem which arises is how to study and guarantee stochastic boundary conditions.
The latter question is not touched here, unfortunately, due to its complexity. For the special
case of a.s. nonnegativity, see Section 7.

5.5.2 Numerical pth mean consistency
Next, we want to have at least locally accurate behavior of our approximations to be con-
structed, representing an obvious requirement. Therefore we ask for

Definition 5.2. The numerical sequence Y = (Fn)nejSf is said to be pth mean consistent
with order 7 e IR+ with respect to X solving SDE (5.2.1) on [0,T] iff there is a real
constant K^ > 0 such that

IE \\Xt>x(t + h)-YtiX(t + h)\\p < (K^"(l+\\x\\")h^'

for all sufficiently small h < min{l,T — t} and all t € [0, T — h]. Y is said to be mean
consistent with order 70 G IR+ if there is a real constant KQ such that

for all sufficiently small h < min{l,r - t} and all t e [0,T - h}.

Consistency always says how good a numerical method locally approximates the underly-
ing exact dynamics (i.e. consistency = local approximation of corresponding vector fields
(a, ft1, ..., bm)). The consistency behavior and order of a method can be found by comparison
with Taylor expansion on the same local subinterval. For example, the Euler method has
mean square consistency order 1.0, and the Mil'shtein method has mean square consistency
order 1.5 under enough smoothness of the SDE coefficients. The Euler method possesses
a mean consistency rate 2.0, the same as that for the Mil'shtein method, provided there is
enough smoothness in the system (5.2.1) to guarantee a comparison of this kind. Unfor-
tunately, it is not well worked out for all methods in the literature (i.e. there is still some
demand to do it very carefully in the future). We will see that the interplay of mean and
pth mean consistency rates will be essential for the global convergence rate on [0,T], see the
following main theorems with respect to stochastic Lp-numerics.

5.5.3 Numerical pth mean stability
The next very important requirement is the control on the evolution of the state process Yn
of the numerical methods. To guarantee nonexploding behavior, and in analogy to that of
the continuous time solution, one naturally asks for
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Definition 5.5.2 The numerical sequence Y = (Yn)nej^f is said to be numerically pth
mean stable on [0, T] for a stochastic process X = (Xt}o<t<T governed by SDE (5.2.1) iff
it satisfies the estimates

for all x £ ID, allO<t<t + h<T, with appropriate real constants K^ > 0,K^. The
numerical sequence Y = (Yn)nej^f is said to be asymptotically numerically pth mean
stable on [0, T] for a stochastic process X = (Xt)o<t<r governed by SDE (5.2.1) iff it is
numerically pth mean stable with constant Klf2 < 0.

This definition is slightly different from the classical definitions of stability of dynamical
systems. At a first glance, we need rather the property of uniform boundedness of pth
moments and linear boundedness with respect to the initial moments. The more strict
requirements of classical stability notions are a little bit too restrictive for a fairly general
qualitative convergence analysis. They are "better" covered by the notion of contractivity
in our opinion, see below. In short, we consider here only exponential-type stability. One
might also think of polynomial stability.

5.5.4 Numerical pth mean contractivity
It is always desirable to have a control on the error growth behavior (propagation of initial
errors) as integration time advances. The optimal situation is when small initial errors
produce no significant effect on the total accuracy of numerical approximations. Sometimes
this property is also called perturbation stability, but here it is referred to as contractivity,
originating from the well-known concept of 5-stability in deterministic numerical analysis.
Then we ask for

Definition 5.5.3 The numerical sequence Y = (Yn)n^jj\i is said to be numerically pth
mean contractive on [0,T] for a stochastic process X = (Xt)0<t<T governed by SDE
(5.2.1) iff it satisfies the estimates

IE [\\Yt,x(t + h)- Yt,y(t)\\*\Yt,x(t) = x,Yt,y(t) = y] < eXp(PK%h)\\x - y\\"

for all x e ID, allO<t<t + h<T, with appropriate real constant K^.. The numerical
sequence Y = (Yn)n€jj^ is said to be asymptotically numerically pth mean contrac-
tive on [0, T] for a stochastic process X — (Xt)0<t<T governed by SDE (5.2.1) iff it is
numerically pth mean contractive with constant K^ < 0.

Of course, the growth of perturbations can also be controlled somehow by numerical stability
(use Minkowski's inequality to realize that fact), however only up to a certain extent. In fact,
there are many more systems which have asymptotically contractive, but not asymptotically
stable, behavior (take e.g. pth mean dissipative systems with additive noise, since we switch
off the influence of inhomogeneities by the requirement of contractivity.)

5.5.5 Numerical pth mean convergence
Last but not least, we need to talk about pth mean convergence of numerical approximations.
As we always assume, the processes X and Y are constructed on one and the same probability
space (fl,.F,(.Ft)o<t<T,]P).
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Definition 5.5.4 Fix p > 1 and time-interval [0,T]. Assume that

<+oo.

A numerical sequence Y = (Yn)n€j^ (method, scheme, etc.) constructed along time-
discretizations 0 = to < h < ... < tn < ... < tnr = T with maximum step size A > 0
is said to be numerically pth mean converging to a stochastic process X = (Xt)o<t<T
iff

lim _sup IE\\Xtn -Yn\\p = 0.

A numerically pth mean converging sequence Y = (Yn)n^j]\i (method, scheme, etc.)

0 = to < ti < ... < tn < ... <tnT=T

with maximum step size A > 0 is said to be numerically pth mean converging with
order ^g € IR+ to a stochastic process X = (Xt)o<t<T iff there is a deterministic constant
K = Kip,T,JE^Y0\p,IE\\Xo\\p) > 0 such that

SnT := n=(j
suPn (jE\\Xtn-Yn\\^~P < K(p,T,lE\\Y0\\p,IE\\X0\\p).&r*

for all sufficiently small step sizes A.

There are many interesting cross relations between the concepts of mean, pth mean consis-
tency, stability, contractivity and pth mean convergence. For some more details, see below.
Roughly speaking, consistency refers to the property of local approximation of correspond-
ing vector fields (a, V) and its accuracy, whereas convergence relates to the property of
global approximation of the entire dynamics on fixed time intervals [0, T] . Contractivity de-
scribes how initial perturbations grow in the course of dynamics, and stability controls that
no undesired explosions occur. This leads to the following main principles of (numerical)
approximation theory.

5.5.6 The main principle: combining all concepts from 5.1-5.5
Finally we are able to combine the main four concepts we have presented under the a.s.
invariance of domain ID C Kd for both the exact solution and numerical methods. Let
p > 1 and g > 1 be conjugate exponents, i.e. - + i = 1. We find

Proposition 5.5.5 Assume that SDE (5.2.1) satisfies (OLC), (OBC) and (IMC), and
we have a locally mean consistent with order 70 G 1R+, and pth mean consistent
with order jp £ IR+, numerical approximation Y = {Yn)n^j^ for the diffusion process
X = ( X t ) K [ 0 t T ] satisfying SDE (5.2.1). Let

/7o . 7P 7o . 1P\ , . n— + — , — + — ) - 1 > 0.
\ J

:= max
p q q p

Then the following main principle of stochastic-numerical analysis for SDEs holds,
namely

[1 J consistency of Y + contractivity of X + stability of Y
=> pth mean convergence with worst case order 7 > 7ff and / or

[2 ] consistency of Y + stability of X + contractivity of Y
=£• pth mean convergence with worst case order 7 > 7g.
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under the D-invariance of X, Y, and more precisely, the order of pth mean convergence
is at least jg. Moreover, if the assumptions (OLC) and (OBC) on the given SDE and the
consistency requirements are uniformly satisfied with respect to all finite time-intervals [0, T]
with finite uniform constants KOL, KOB, KQ and K^, either KOL < 0 and Y = (Yn)n^]ff
is asymptotically pth mean stable or KOB < 0 and Y = (Yn)n^j](f is asymptotically pth mean
contractive, then the pth mean error tends to zero as the terminal time T tends to +00 as
well. The numerical pth mean error process (£n)n€ffi on [0,T] satisfies

_ ._ I jp \) y v IIP i p <" OUT-, I nr i i Y v I I P i p
£n •— \ J& ll-^tn — *n|| ) — SUP I -^ ll-*tn ~ -*«lr J

nefff

-^1 (5.5.1)
KOL

with
+\\y\\)\

fY is pth mean stable with stability constants K^,Kg^ on [0, T1], and

f Y ^ 1-exp (-KoL(T-t
sup£n < exP([^]+(T-t0))£o + ^1A^ ———— ̂ — ——————— '- (5.5.2)
nelN ^ ' KOL

with
K, = max^f, K°) [1 + exp ([K$]+(T ~ *„))(! + \\y\\)}

ifY is pth mean contractive with contractivity constant Kg on [Q,T], where p > 2 and

Remark One can even show the convergence orders 7S = 72 — | with consistency orders
'Jp — 72 — - and 70 > 7P 4- - forp > 2, using the almost sure sample continuity of stochastic
process X governed by SDE (5.2.1).

Further Comments on Main Principles. Thus, with some care, we can exchange
contractivity and stability assumptions between the exact solution X and the numerical
approximation Y as it is more convenient to deduce some convergence statements or as it
is more apparent to verify the corresponding properties by X, Y. This general principle
has been proved for stochastic processes on randomized Banach spaces by Schurz (1999).
Moreover, it can be shown that contractivity of X, contractivity of y and consistency of
Y may already imply stability of Y due to stability of X, and also stability of X and
consistency of Y may imply convergence of Y by help of well-posedness of the SDE (5.2.1)
(see theorems below for the case p = 2). These latter statements are not so trivial, since one
can construct counterexamples where these implications between contractivity and stability
can not be concluded for all stochastic dynamical systems (see Schurz (1999), in asymptotic
sense as time T tends to infinity.) They turn out to be true implications on fixed, finite
intervals under the assumptions of Proposition 5.1 for SDEs (5.2.1). Another interesting
observation is the interplay between mean and pth mean consistency. This really becomes
apparent when p > 2. Then we do need to ask for the additional assumption of higher order
of mean consistency with order 75 +1 for very efficient error estimates (this comes from the
supplement with the conjugate exponent q belonging to p > 1 by the conjugacy requirement
i + ~ = 1 during application of the Holder inequality to squeeze out the suitable local order
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of convergence for the total error estimation; we do not have the space here to explain it
in more detail, see Schurz (1999) for a more general explanation of numerical principles on
Banach spaces). This proposition is a stochastic counterpart of the forward direction of the
Lax-Richtmeyer equivalence principle in deterministic numerical analysis, supported by a
conjecture of P. Lax (1956). In fact, we believe that this idea originates from a more general
construct of L.V. Kantorovich (1948). It can be split into the two directions mentioned by
Proposition 12.5.2, depending on whether we have the property of numerical stability or
numerical contractivity available during the error estimation process (see splitting below in
the estimation process). The interesting interplay between mean and pth mean consistency
of numerical approximations in achieving a suitable order of convergence, which originates
from the main principles, can be illustrated, for the improvement of general understanding,
as follows. Define the pth mean global error

e(t] = (IE (\\X0,x(t) - Y0,y(t)\\P\X0>x(0) = x,Y0,y = y])p

along the time-discretization 0 = £Q < ti < ... < tnx = T. Under the commonly met
assumptions on smoothness and linear-polynomial boundedness of coefficients a, & it suffices
to control this error at instants in+i only. Identify en = e(tn) for n = 0, 1, ..., HT and fixed p.
For simplicity (to avoid further technical and laborious computations), take p = 1. Define

Now we have reached a point where the global error estimation process is split into two
directions depending whether we will make use of numerical stability or numerical contrac-
tivity of approximation Y (depending which knowledge is available on Y, but note that one
property out of contractivity of Y, the stability of Y that has to be fulfilled to have control
on error propagation). Let us assume numerical stability of the approximation Y. Then one
arrives at

||Zi + Z*|| (5.5.3)

\\Xtn,X0i:c(tn)(tn+l) - Xtn,Y0, y(tn) fa + l)l

controlled by contractivity of X and en

+ IE \\Xtn,Y0,v(tn)(tn+l) - Yn,Y0,y(tn)(tn+l)\\

controlled by consistency of Y / stability of Y

< exp(X0LAn)E ||Jf0,*(tn) -yo,tf(*n)||

exp [K%2]+(T - t0) (1 + ||y||) A^« An

where [.]+ denotes the nonnegative part of the inscribed expression (i.e. z = [z}+ + [~z]+ =
[z}+ — [ z ] - ) . This estimation can only be done if X,Y leave the same domain TD invari-
ant! (i.e. the need of D-invariance, which is not a big issue for approximations with efficient
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estimates and constructions on the entire space Md.) Using the following elementary nonau-
tonomous discrete time version of Bellman-Gronwall inequality (linear variation-of-constants
inequality in Schurz (1996, 1997), proof by induction)

Lemma 5.5.6 (Schurz (1996)). Assume the sequence v = (fn)ne_BV satisfies

or
0 < vvn+i

with appropriate finite, real constants CH, cj for all n 6 IN.
Then v must satisfy the linear discrete time constants-of- variation inequality, i.e.

vn < wo exp
i=0

for all n e IN.

c H ( l ) J

Now

en <
z=0

< exp
z=0

exp - KOL t -

1 -exp ( - K0L(tn -to)}
————— ̂ — ——————— '-

uniformly for n = 0, 1, ...,HT — 1, using the elementary fact that ~ex^.~ — — is a positive,
monotonically increasing function at x, where

exp t - t0)

and
exp

with appropriate finite, real constants CH, ci for all n € M.
Thus, if the initial error e is controlled by

£o < init

with some appropriate real constant Kinn > 0, one finds

where

Kg init exp ( [KOL} + (T - t0) , }.
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Consequently, the total error is uniformly bounded in terms of A79 - a fact which justifies
speaking of a global convergence rate jg of the related numerical method on the interval
[0, T]. Moreover, the total error continuously depends on the initial values x, y of exact solu-
tion X and approximation Y, respectively, and also on the numerical consistency constants
K^Kf of Y, the numerical stability constants Kg^K^ of Y, and on the length of the
integration interval T — to-

Now let us return to the splitting (5.5.3) and assume that numerical contractivity of Y
with contractivity constant Kg is available instead of stability estimates for Y. Define

(5.5.4)

controlled by consistency of Y / stability of X

+ E \\Ytn,Xo,,(tn)(tn+i] I - y tn,yo.H(tn)(*n+i)||
controlled by contractivity of Y and en

+exp

l-exp(-tf£(T-t0))
o+^iA^ ————— y —————— '- (5.5.5)

for n = 0, 1, ...,HT — 1, using Lemma 5.2 as before, where

+exp

with appropriate stability constants -K^ , which can be extracted from statements such as
Lemma 2.1. Thus we get a similar uniform estimate for the global error en as above. An
analogous estimation process, but more technical and laborious with the use of Holder's and
Minkowski's inequalities, can be carried out for general p > I. In particular, for the case
p = 2, see also the general convergence theorem of Mil'shtein-Schurz.

A general warning is sent out to all who are tempted to neglect the interplay of key con-
cepts in this basic principle combining the concepts of ID-invariance, pth mean consistency,
and stability or contractivity to achieve global uniform error estimates for the class of SDEs
satisfying (OBC), (OLC), (IMC) with Caratheodory drift a and drift V functions. The
proofs can even be made to show some sharp estimates for the subclass of mentioned SDEs
(5.2.1). There are also plenty of deterministic examples which might illustrate undesirable
effects in numerical approximations compared to those of underlying continuous time dy-
namics (for example, take the logistic equation or other chaotic systems) to manifest the
danger of its neglect. It can be argued that a consistent approach to numerical analysis and
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mathematically meaningful maximum of step size A for well-posed equations (5.2.1) should
be selected according to criterion

A < 1, max(^0
c,Xp

c)A^-1 < 1, max(

as argued by theorems below with local pth mean convergence order
(Jo . TP 7o . 7P\ ^ ,jl := max — + — , — + — } > 1.\p q q p J

It is not surprising that there is a corresponding relation for the minimum step size as well.
However, these estimates would go beyond the goal of this survey. For more details, see the
forthcoming papers of the author.

5.5.7 On fundamental crossrelations
The above mentioned main principle may be simplified in case of SDEs with (OBC) and
(IMC) under some circumstances. We have already seen that (OBC) and (IMC) imply
the stability of X , thanks to Lemma 5.2.1. Furthermore, the stability of Y can be concluded
by the consistency of Y with local convergence order

72 := max /7o + 7p )7o + 7p
\p q q p

and the stability of X with stability constants KQB — Q,Kj$ = 2(p — I)KQB, using the
well-known Minkowski's inequality for Lp-spaces. Assume D-invariance of both X and Y
with respect to one and the same domain ID C Hd, and sufficiently small discretization
meshes such that 0 < max.(Kp , K Q ) ( & ) ' I I ~ I < 1. Consider the estimate

v(t) := (E||y0,y(o) (t)||p)' =

= (E|| „ „ _ , „ , . , „ , , ,
/ \~ /

< (to ||ys>y(a)(t) - *.,y(s)(t)ir) " + (E

By application of linear variation-of-constants inequality from Lemma 5.2 due to Schurz
(1996), we gain

v(t) < v

1 - exp ( - max(ArJF, K<? , K^)(t - s))
————— —————

therefore sup0< t< rw(t) < +00 if E ||lo||p < +00. In other words, we know that Y is pth
mean numerically stable with suitable constants

KY
SI =

hence uniformly bounded on the fixed interval [0, T] .
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Theorem 5.5.7 Letp > 1. Assume that Y = (Xn)n€j^ with maximum step size A governed
by

represents a pth mean consistent numerical method with order 7P > 1 for stochastic process
X = (Xt)0<t<T satisfying SDE (5.2.1) with (IMC), (OBC] and (OLC). Let its stability
constants satisfy KQB = 0,K* = 2(p - l)K§B. Assume X and Y are ̂ -invariant with
respect to the same domain ED C IRd .
Then the stochastic process Y is numerically pth mean stable, and hence has uniformly
bounded pth moments, provided that IE \\Y0\\P < +00 and Y0 e ID.

Let us now describe the relation between convergence, consistency, stability and contrac-
tivity once more. For this purpose, we have to say a few words on contractivity. Contrac-
tivity is in general a weaker requirement than stability. This could be seen in Schurz (1996,
1997, 1999), since the concept of contractivity does not take into account any influence
which might originate from the inhomogeneous parts of the dynamics (i.e. loosely speaking,
the concept of contractivity represents the concept of stability of the homogeneous part of
underlying dynamics, and in a certain sense it can be viewed as the stability property of the
associated linearized nonautonomous flow.). Moreover, with the help of stability properties
of underlying exact solution X, one can conclude stability of Y by contractivity of Y using
Minkowski's inequality for Lp-spaces. Assume ID-invariance of both X and Y with respect
to one and the same domain ID C lRd, and sufficiently small discretization meshes such that

< p, A < 1 with Kj = (p - 2)KI
OB +pK§B. Consider the estimate

v(t) := (to \\Y0,Y(0)(t)\\py = (E||ys>y(s)(t)

= E \\YStY(s)(t) ~ n>Jf

controlled by contractivity of Y controlled by consistency of Y

controlled by stability of X

\\Y0,Y(0)(s) -

controlled by convergence

) sup IE (1 + ||XQ,x(o)(g)llP)^ A^' + exp(2(p ~ + A)v(s)
0<t<T P

t exp(2(p- l)KOBA) - /
p-l P
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where we set t = tn+i and s = tn. Using the linear variation-of-constants inequality
(see Schurz (1996,1997)), we easily see that there is a real constant K > 0 such that
suPo<t<T v(t) < K < +00. Thus, the Theorem 5.4 is established.

Theorem 5.5.8 Letp > 1. Assume that Y = (Yn)n&jj^ with maximum step size A governed
by

represents a pth mean contractive numerical method with contractivity constant
KC(P) and pth mean converging with order jg > 0 to stochastic process X = (Xt)o<t<T
satisfying SDE (5.2.1) with (IMC}, (OBC) and (OLC). Assume X andY are 3D -invariant
with respect to the same domain ID C 1R .
Then the stochastic process Y is numerically pth mean stable, and hence has uniformly
bounded pth moments, provided that IE \\Yo\\p < +00 and YQ e ID.

Furthermore, consistency and contractivity may already imply convergence in the pth
mean sense. In a similar way as before we conclude this assertion.

Theorem 5.5.9 Let p > 1. Assume that the numerical method Y = (Yn)n^jpf with max-
imum step size [K^]+A < I is pth mean contractive with contractivity constant K^ =
Kg(p), mean consistent with order 7o = 7g + 1 and pth mean consistent with order jp =
7g + ^j > 0 io stochastic process X = (Xt)0<t<T satisfying SDE (5.2.1) with (IMC}, (OBC)
and (OLC). Let X and Y be ̂ -invariant with respect to the same domain ID C fftd'.
Then the stochastic process Y is numerically pth mean converging with order 7^ 6 1R+ on
the fixed time-interval [0,T], provided that IE \\Y0\\P < +00, F0 e ID and IE \\XQ - Y0\\p <

Moreover, the error process (£n)rae^v satisfies the estimate

sup (IE \\X0tX
0<t<T

As a consequence of presented analysis, we arrive at a stochastic Kantorovich-Lax-
Richtmeyer equivalence principle for (O)SDEs. The proof is just a fancy, but trivial,
combination of our previous results.

Proposition 5.5.10 Fix p > 1. Assume the numerical sequence Y — (Yn)nejN with
IE \\Y0\\P < +00 and maximum step size A restricted by [K^]+A < 1 and

is TD-invariant, pth mean contractive with contractivity constant K^. = K^(p) and mean
consistent with order 70 for the ID-invariant stochastic process X = (^t)o<t<r satisfying
SDE (5.2.1) with (IMC}, (OBC} and (OLC}.
Then it holds

Y is numerically pth mean stable
and pth mean consistent with iff Y is numerically pth mean converging.
some order 7P such that 7; > 1

with local pth mean convergence order 7^ = max (^2- + —,^B- + ^£-}.
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One can also show that, from pth mean convergence with order 7ff > 0, it follows the
property of local contractivity of Y on any bounded domain K) which is left invariant by X
and Y. However, this would sprinkle the scope of our survey. The noticed convergence orders
are only "worst case estimates." There are some refinements for special cases p = 2 in the
literature (almost all only for equidistant approximations), see Mil'shtein (1995) or also in
Section 6 below. For a variable step size selective algorithm, one still has to take care of "too
small step size"; thus a ratio between maximum and minimum step size is reasonable, see also
Schurz (1996, 1997, 1999). Also one should never apply step sizes larger than 1 as seen before
in our argument (unless one treats dissipative dynamics by appropriate implicit techniques),
and, in particular, the maximum admissible step size should be restricted by [K^Cj + A < 1.
For more general principles for numerical approximations of stochastic processes with values
on randomized Banach spaces, see Schurz (1999).

Let us summarize the main principles of numerical analysis for stochastic differential
equations by the following more generally valid Diagram:

Approximative
Well-posedness:
Stability of X
Contractivity of Y

Consistency of (X, Y)

Approximative
Well-posedness:
Stability of Y
Contractivity of X

Convergence of (X, Y)

which describes the main crossrelations and the fundamental equivalence principle in the
context of stochastic approximations as well, which is the point where we arrived at the
heart of the sophisticated numerical approximation theory for stochastic processes. Our
remaining goal is just to make it come alive in conjunction with SDEs (5.2.1) and their
numerical analysis in a concise course.

5.6 Results on Convergence Analysis
There is a variety of possible different convergence notions. We shall only collect the most
frequent ones. Recall the numerical convergence notions from Section 5.

5.6.1 Continuous time convergence concepts
One of the weakest notions one could think of is that of weak convergence. One of the
essential contributions of Mil'shtein relies on the following concepts of weak and mean
square approximations, generalized by stepping down from pth mean to weak convergence.
We shall pursue convergence analysis up to the strongest notion which is given by that of
strong pth mean convergence. In the statements below, let 1 1 • 1 1 be a vector norm of Md

and K0, Kp(p e [1, +00]) be deterministic, real constants which may depend on smoothness
and boundedness parameters of the explicit solution, as well as initial values, the length of
time interval [0, T], the dimensions d, m and some parameter of the corresponding numerical
method. Remember

A = sup{|tn+i -tn\ : n = 0,1,2, ...,nT - 1}.

Fix the finite deterministic start instant i0 G [0,T] with fixed terminal time T > t0 where
T € M1. Let Y = (Yt)o<t<T denote a right-continuous time approximation of process
X = (X
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Definition 5.6.1 A stochastic process Y = (5^A)o<t<T (method, scheme, etc.) is called a
pth mean approximation of X = (-X"t)te[to,r] with order (rate) 7 > 0 if

sup (IE \\Xt - Ft
A |r)Vp < Kp • A\ (5.6.1)

0<t<T

a mean square approximation of X = (Xt)t£[to,T} with order (rate) 7 > 0 if

sup (IE ||X t-y t
A||2)1/2 < Kt- A7, (5.6.2)

0<t<T

a strong approximation of X = (^t)te[t0,T] with order (rate) 7 > 0 if

sup JB \\Xt-Y*\\ < KI-& (5.6.3)
o<t<r

a strong mean square approximation of X = (Xt)t€[tQtT] with order (rate) 7 > 0 if

/ \ 1/2
( I B sup \\Xt- Yt

A\\2) <K2-Ai, (5.6.4)
\ 0<t<T /

a strong pth mean approximation of X = (-X't)te[t0,T] with order (rate) 7P > 0 if

\ I / P
E sup \\Xt- Y f \ \ p ) < Kp-At, (5.6.5)

0<t<T

a double Z/p-approximation of (Xt}te[t0,T] w^ith order (rate) 7 > 0 if

( fT \ I/P
[ml K(t)\\Xt-Yt

A\\P»(dt)\ <KP-A\ (5.6.6)
V J° • )

with a positive, p-integrable kernel K(t) where /j, is an appropriate positive, finite measure
on ([0,T],S([0,T])) (B([Q,T]) denotes the a-field of Borel sets of[Q,T]), a weak approxi-
mation of X = (Xt)t£[t0,T\ with order (rate) 0 > 0 if

sup sup \\IE g (Xt) - IE g ( Y f ) \\ < K0 • A0 (5.6.7)

and a weak r-convergent approximation of X = pQ)te[t0 T] with order (rate) /3 > 0
*/

sup sup \\IE g (XT) - IE <7(yT
A) || < KQ • A13 (5.6.8)

for all time-discretizations of [to, T] with A < <5o < +00, where the supremum is taken over
all finite stopping times T and F is an appropriate class of real-valued functions.

Remark One also speaks of pth mean, mean square, strong, strong pth mean,
double Lp, and weak orders (rates) 7, /? € IR+ of convergence. The function class is
frequently chosen to be

Fr = {f:lRd —— MkJ 6 C

where r e IR, r > 1, and d, k e IN are fixed, but there are also attempts to relax conditions
in F to certain classes of Lebesgue-measurable functions (see e.g. Bally and Talay (1996)
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under further conditions on the differential dynamics for X). The weak r--convergence is
introduced for the delicate problem of convergence and convergence rates for functionals in-
volving random stopping times instead of deterministic terminal times, something of great
use and very reasonable in optimal stochastic control problems related to diffusions X. Note
also that, for pth mean convergence, it suffices to evaluate the error expressions at dis-
cretization points tn under the commonly met assumptions on SDE coefficients and on ap-
proximating integrands arising by the related numerical method. This becomes clear from
looking at the continuous time behavior of remainder terms of stochastic Taylor expansions,
pth mean convergence analysis has enormous importance for estimation of noncontinuously
differentiate or path-dependent functionals of SDEs. The main tools for stochastic-
numerical analysis are the Ito Formula, Dynkin Formula, Wagner-Platen Expan-
sion, Variation-of-Constants Inequalities, Burkholder-Davis-Gundy Inequalities,
Semimartingale Decompositions and Stochastic Integration Theory, Stochastic
Equivalence Principles like Stochastic Kantorovich-Lax-Richtmeyer Theorems
(see for some variants, the main principle of numerics before) in conjunction with the
fundamental convergence theorems presented below. These tools explain the construction
and behavior of one-step approximations, local convergence (consistency), error
propagation control (contractivity, stability) and global convergence, and other
qualitative features at which one might look.

5.6.2 On key relations between convergence concepts
As a consequence of the Lyapunov inequality and fast ip-convergence (Borel-Cantelli The-
orem) we may notice

Proposition 5.6.2 Assume that F = C^ip(IRd,lRk'), sup0< t<TJE \\Xt\\ < +00, and fix
p>l.
Then the following implications hold

Strong pth mean =>• pth mean =>• strong conv. =>• weak conv.
Strong pth mean =>• double Lp

Strong pth mean => a. s. conv.
Weak r-convergence =>• weak conv.
where the related convergence orders are carried over one to one (at least when p> 2).

How the convergence rates for noncontinuously differentiable functions / are transferred
in this diagram is a fairly complex and partially open question. For a partial answer,
compare with Subsection 6.4. If F is the class of Holder continuous functions with exponent
an 6 (0,1), then the orders are reduced by an (i.e. (3 = a#7P are the related weak
convergence orders, cf. Theorem 6.12). The weak r-convergence orders are transferred to
weak orders one to one (but not necessarily vice versa in all cases). In the nonsmooth
situation of class F we also suggest to take the standard mollifying procedures and then to
apply a favorite numerical method to the mollified problem (however, also here it has to be
clarified how the convergence rates are carried over).

5.6.3 Fundamental theorems of mean square convergence
A refinement of the main principle of numerical analysis restricted to the concept of mean
square convergence could be found by Mil'shtein (1988, 1995) who exclusively proved the
statement for equidistant discretizations under usual conditions (ULC), (UBC) and (IMC)
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at first. Schurz (1996) generalized that theorem to the case of variable step sizes under one-
sided Lipschitz continuity and one-sided boundedness conditions as stated below, which
considerably relax the original conditions and proof steps of Mil'shtein in a maximally
possible way within mean square convergence framework. A corresponding variant for the
general pth mean convergence case is in progress, see Schurz (1999). The following theorem
can be considered as a fundamental theorem on the relation of mean square convergence rates
and a very good starting point to understand pth mean convergence analysis in stochastic
settings.

Theorem 5.6.3 (Mil'shtein 1995, Schurz 1996): Assume a, V are Caratheodory functions,
and

(o) ^o,x0(0) = %o e ID independent oj fj = <r(WJ,s > 0)

(i) IE z0||2 < +00

(ii) (one sided) mean square boundedness condition: BKo Vt G [0, T] Vx G ID

O i l < KQ(l + \\x 2)

(in) (one sided) mean square Lipschitz condition: BKC Vt e [0, T] \ f x , y & ID

j=i

(iv) X0tXg(t), F0jXo(t) regular on domain ID c IRd

(v) one-step mean accuracy: 3Ki \/t e [0, T] Wi : 0 < h < A Vz e ID

||ffi [Xt,z(t + h) - yt,z(t + h)] || < Ki(l + \\z{\)hi°

(vi) one-step mean square accuracy: 1K2 Vt 6 [0, T] V/i : 0 < h < A Vz e K)

^MJ 7o > 72 + |, 72 > |

T/ien

________Fundamental Mean Square Convergence Relation

e2(T) = sup (lE \ \ X 0 t X o ( t ) - Y0,xo(t)\\2] < K3(l + \\xo\\
0<t<T \ /

where KQ, ..., K%, Kc are real constants, maximum step size A < 1, and 75(2) = 72 — \-

The constants Ki can be determined very precisely by means of the same analysis as in
Section 5. Under (UBC), (ULC), (IMC] (which are the most reasonable conditions under
strong pth mean convergence analysis) and with p = 2 Mil'shtein (1995) has sharpened the
convergence assertion on mean square rates to those of strong mean square convergence with
equidistant step sizes.
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Theorem 5.6.4 (Mil'shtein, 1995). Assume that SDE (5.2.1) satisfies the conditions (IMC],
(UBC), (ULC), IE \\Xo\\4 < +00, and all conditions [i] - [vii] from Theorem 6.2 are fulfilled.
Furthermore, assume that

(viii) one-step 4th mean accuracy: 3K4 W e [0, T] Wi: 0 < h < A Vz e ID

IE Xtzt + h-YtZt + h* < K l +

with 72 > |.
Then

Fundamental 4th Mean Convergence Relation

= sup

where K0, ...,K5,KC are real constants, and A < 1, i.e. 7S(4) = 72 — \.

This theorem can be generalized to the case of pth mean convergence when p > 2. As we
know from Section 5, the maximum step size should be restricted to a sufficiently small one
(at least smaller than 1), depending on contractivity, stability and consistency constants of
(X, y). As an application, one easily verifies the pth mean convergence of the Euler methods
towards the explicit solution of SDEs with H61der-(0.5) time-continuous and Lipschitz space-
continuous coefficient functions a, V with order 75 — 0.5 for all p > 2. Corresponding proofs
can be worked out for other numerical methods.

5.6.4 Strong mean square convergence theorem
Mil'shtein (1988,1995) proved the "strengthened convergence theorem" concerning numer-
ical strong mean square convergence. This is generalized by the author to the following
continuous time variant (trivially covering the numerical convergence issues as originally
defined by Mil'shtein (1988)).

Theorem 5.6.5 Assume that the conditions of Theorem 6.3 are satisfied with 72 > f and
7o > 72 + \ •
Then

Fundamental Strong Mean Square Convergence Relation

£2 en = / \ 1/2

IE sup ||A"0lo(t) -F0xo(i)|| < #6(1 + 1 1
\ 0<t<T /

2-114x1/4^72-5

where K0,..., K4, K6, Kc are real constants, and A < 1, i.e. 7*(2) = 72 — \.

5.6.5 The Clark-Cameron mean square order bound in IR1

Clark and Cameron (1980) could prove the following very remarkable result on maximum
order bounds of partition jF^-measurable approximations.
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Definition 5.6.6 The stochastic process Y = (lt)o<t<T is called partition .T^-measurable
iff all values Ytn (tn 6 [0,T],0 < n < N) are f '^-measurable with

for all n = 0, 1, ..., N , along a given f£ -measurable discretization 0 = to < ii < • • • < IN = T
for the fixed deterministic time-interval [0,T].

Remark The conditional expectations IE [Xtn+l \F^] provide the partition F% -measurable
stochastic approximations with the minimal mean square error due to their inherent pro-
jection property in Hubert spaces L2(Q,Jr, P ). Thus it is natural to study their error and
practical implementation at first.

Theorem 5.6.7 Suppose X = (Xt)o<t<T satisfies a one-dimensional autonomous SDE

dXt = a(Xt) dt + dWt (5.6.9)

with a e C3(IR) and all derivatives of a are uniformly bounded. Then

••" L^J I" T \l J ^y2 ' v JV"2 '

where

c = ^- f IE e x P ( 2 f a'(Xu)du} [a'(Xs)}<
iZ Jo \ Js I

ds.

Thus, for systems with additive noise, we obtain the general mean square order bound 1.0
for numerical approximations using only the increments of underlying Wiener process. A
similar result holds also for diffusions with variable diffusion coefficients b(x) when

c(x) := a(x) - ^b(x)b'(x) ^ Kb(x)

for any real constant K, see Clark and Cameron (1980). They also provide a constructive
example with multiplicative noise. Consider the two-dimensional SDE

driven by two independent scalar Wiener processes Wl , W2 . This system obviously has the
solutions Xj: = Wl and

= C
Jo

(in fact it is a one-dimensional example with multidimensional "Wiener process differen-
tials" (i.e. m = 2)). Then they compute the slow best convergence rate 72 = 0.5 (in mean
square sense) for partition T™-measurable approximations using any set of N equidistant,
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./•"^-measurable time-instants tn = n-^, and the mean square minimally attainable approx-
imation error

tO~l \ o rr

v(2) IP r v-(2)i-c-Mit ' * J
J\.rp —— IPj I_A/T1 \J~

It is worth noting that X^ represents the simplest nontrivial multiple integral with length
/(a) > 1. Liske (1982) has studied its joint distribution with (W/, W2). In this case the error
order bound for .Fjf-measurable approximations of Xj, is already attained with 0.5, since
X2 cannot be expanded in a linear combination of W1, W2. This system also exhibits an
interesting test equation for the qualitative behavior of numerical methods (e.g. compare the
numerically estimated distribution with that of the exact solution derived by Liske (1982)).
Since in the L2 sense one cannot provide better partition ./^-measurable approximations
than that of the projection done by conditional expectations, there are natural (convergence)
order restrictions for ./^-measurable approximations. Thus we cannot exceed the order 1 in
Z/2-sense for ./jf-measurable approximations. On the other hand, if one wants higher order of
convergence in general, one has to enlarge the condition cr-field substantially (actually done
by higher order multiple integrals and Levy areas). Note also this is not always necessary
for approximations of functionals V(t, Xt) of diffusion processes X with F-commutativity,
see Schurz (1999). In fact, for example for pure one-dimensional diffusions X (i.e. when
drift a is zero), the rr-commutativity condition (i.e. V(x) — x), is then identical with the
condition of commutative noise (in short: noise-commutativity) under the absence of drift
terms

,„, ^ v_, ^

for all j, k — 0,1, 2,..., m. This requirement, together with & £ C^IR), effects that W (x) =
Kjtkbk(x) with some deterministic real constants Kj^. In this trivial case one could even
obtain any order of pth mean convergence (p < 1). (This is no surprise after one has
carefully analyzed the observation of Clark and Cameron which implies the approximation
error 0 by the projection operator of conditional expectation under a'(x) = 0 and the
noise-commutativity assumption in the situation d — 1). Unfortunately, the situation in
view of convergence order bounds is much more complicated in the fully multidimensional
framework and needs more care in the near future.

5.6.6 Exact mean square order bounds of Cambanis and Hu
Cambanis and Hu (1996) noticed the following result concerning exact mean square conver-
gence error bounds (i.e. for the asymptotic behavior of leading error coefficients of numerical
schemes with respect to mean square convergence criteria). For the statement, we introduce
the following definition of partition density.

Definition 5.6.8 A strictly positive, differentiable function h 6 C°([0,T]2, -K+) with uni-
formly bounded derivatives is said to be a regular partition density of the time-interval
[0,T}iff

/; t, s)ds =

for n = 0,1,..., N(i) — 1, to = 0, where N = N(t) denotes the number of subintervals
[tn ,tn+i] for a toto-l time interval [0,t] with terminal times t <T.
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Regular partition densities possess the property that

Therefore they describe the distribution of time-instants in discretizations of intervals [0, T]
in a fancy manner. Since the conditional approximation provides the mean square FN-
measurable approximation (with N = N(t)) with minimal mean square error, one arrives
at

Theorem 5.6.9 Assume that X satisfies a one-dimensional SDE (5.2.1) with coefficients
a, b £ C3(IR,IR) possessing bounded derivatives up to third order, IE \Xo 2 < +00, and all
time-discretizations are exclusively done along a given regular partition density h on [0,T]2.
Then, there exists a Gaussian process r\ = (?7t)o<t<r on (£l,J~', (^"t)o<t<r)lP ) such that

]im+ooN(t)(xt - IE [Xt\F?W]) =

with mean 0 and covariance matrix C(t) =
2 *f [(£ a - £ &) (•*«)] e^ / j /2a/(Xj _ \i,ffxu)]2)du + 2 [ bi(X,,}dW,, } ds

Jo 6[h(s)]2 \JS Js
which is the unique solution of

dC(t) = ((2at(Xt) + [bf(Xt)]2)C(t) + K^a-g&X**)]2^ +

with r?o = 0 and has the property

r i 2 /
lim N(t)IE \Xt-lE [XAF?^] = JEr,t= I

JV(t)-.+oo L J J0 h(t,s)

where H(t, s) =

£}a - £°b)(Xs)}2 exp ( f (2at(Xu) - [b/(Xu)]2)du + 2 f
\J s J s

The optimal double mean square approximation error satisfies a similar relation. For more
details, see Cambanis and Hu (1996). Also their results can be generalized to multidimen-
sional diffusions with some care. This result is fundamental with respect to asymptotically
optimal mean square discretizations. This fact can be seen from the fact that the function
h* e C0([0,T],IR+) established by

minimizes the functional fg rfe,^f|2 ds where H(t, s) > 0 among all regular partition densities
h with h(t, s) > 0 and /0 h(t, s)ds = 1. Therefore, any asymptotically mean square optimal
approximation has to use a discretization following that optimal partition law. However,
the practical value is still in doubt, since it will be hard to evaluate those expressions in the
fully multidimensional framework or has any reader another suggestion in the case m, d > 1?
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5.6.7 A theorem on double L2-convergence with adaptive An

Consider nondegenerate SDEs (5.2.3) with additive noise coefficient 6 = b(t) on a fixed time
interval [0,T]. Define the double ^-approximation error as

/ \ 1/2 / rT „ \ 1/2
i „ 7 V>~ T'\ /TIT II V A^A||2 \ / TT71 I II V A^A"° . . . \, a,o, A o , J ) = ( J E | | A — J 11^2 I = I Jti / ||A< — rt

with respect to Lebesgue measure /j,. Introduce adaptive step size strategy

A • / * ** i-n . -i N-*n>1) (5-6-10)

for a basic step size h > 0, tending later to zero. Let N = N(h, b, T) denote the total
number of steps necessary to integrate, i.e. N = N(h,b,T) = sup{n : tn < T}. Let
Cul = <#!([0, T], Md) be denned by

3 constants Kl,K2,K2\/x e IRd, Vs, t[0, T]

Theorem 5.6.10 Assume that X satisfies SDE (5.2.3) with drift a 6 CjJL, additive noise
,T]),ri, E\\X0\\2 < +00 and

inf
0<t<T

Then the Euler method (5.4-1) applied to (5.2.3) with constant step size A = ^ generates
double L?-approximation errors with

lim vN e2(YA,a,b,Xo,T) = K2\\b\\L2

with K2 an appropriate constant (e.g. K2 = -j= if d = l,T = I ) , whereas the Euler method
(5-4-1) applied to (5.2.3) with adaptive step size strategy (5.6.10) and basic step size h yields

lim ^N(h,b,T) e2(Y*,a,b,X0,T) = K2\\b\\L1
h — >0

with a suitable positive real constant K2 (e.g. K2 = -4= ifd = I,T = l).

Hofmann, Miiller-Gronbach and Ritter (1999) have noticed a similar result in one dimension
(i.e. d = m = 1), for continuously differentiable b and T = 1. Under their conditions
they prove that the estimates in Theorem 6.7 are the lower bounds for all jFt^-measurable
approximations YA for SDEs in 1R with additive noise, i.e.

Jim /IV inf e2(Y*,a,b,X0,T) = K2\\b\\^

with K2 = 4=, T = 1, hence the Euler method with the mentioned adaptive strategy
of step size selection (5.6.10) already produces asymptotically mean square optimal -T7^-
measurable numerical approximations. However, one can carry it over to d-dimensional
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SDEs with additive noise and Lp-integrable b as well (i.e. p > 1), as indicated by Theorem
6.7. It is worth noting that that step size selection suggested originally by Hofmann, Miiller-
Gronbach and Ritter (1999) is only designed to control large diffusion fluctuations, and it
seems not to be very appropriate as one takes the limit as b goes to zero (i.e. incomplete
adaptability is obtained in the presence of significant drift parts - an approach which leads
to inconsistent results in view of deterministic limit equations, however which might be
appropriate for pure diffusions with large diffusion coefficients b(t) > 1). We stress again by
our main principles of numerics that the step size selection should be adapted rather to the
consistency, contractivity and stability constants of the considered SDEs and according to
the goal of achieving the requirements of ID-invariances in view of the behavior of dynamics
of SDE to be discretized. However, all in all, it is clear that the asymptotics of the leading
error coefficients of the related numerical method, which one wishes to squeeze out by those
limiting procedures, heavily depends on the choice of possible step sizes. Thus, one should
further study the (asymptotic) behavior of leading error coefficients (e.g. as done above
with #2 1 H UP).

5.6.8 The fundamental theorem of weak convergence
The key contribution in this direction starts with fundamental works of Mil'shtein (1978),
Platen (1980) and Talay (1982). Compare also with Kushner and Dupuis (1992) who give
an alternative by Markov chain constructions. In Mil'shtein (1995) one can find the most
general theorem on weak convergence. For this purpose, define

r, t t(+ \ T u ui ,£lR+V(t,x) € fO.Tl x TR s.t.P= / = /(*,*) Lebesgue-measurable :

and a one-step representation of approximation Y by

3=0

Furthermore, set

*£(* + V ~ Xt,*(t + h)-x, 8%v(t + h) := Yt,v(t + h)-y,

where Xt,x(t + h) denotes the solution of SDE (5.2.1) started at x at time t, evaluated at
time t + h.

Theorem 5.6.11 (Mil'shtein, 1995). Assume that X satisfies SDE (5.2.1) with drift and
diffusion vector functions

a = a(t,x},V = b>(t,x) e Cp+1'2p+2([0,T] x IRd)

under the conditions (IMC), (UBC), (ULC), IE \\X0\\2p> < +00 for sufficiently large
Pi >2. Furthermore, let

(i) a(t, x), V(t,x) together with all their partial derivatives belong to class "P ,

(ii) f = f ( x ) together with all their partial derivatives up to order 2(p/ + 1) belong to class
V,

(Hi) Y have uniformly bounded moments

sup 2El|Y0ix0l|2p ' <+oo,
k=0,l,...,nT
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(iv) Y fulfills the moment consistency conditions with a real K(x) & "P such that for all

2p+2

^ K(x)h?+l

< K(x)hp+1.

(5.6.11)

(5.6.12)

Then Y is weakly converging towards X on the time interval [0,T] with order p, i.e. there
is a constant Kw = Kw(T,a, &,p, d,pi,pf,X0) such that

Ap. (5.6.13)sup sup
f£-P(r,K) 0<t fc<

Ef(XQ,Xo(tk}}-IEf(Y0,Xo(tk))\\ <

Of course, these are worst case estimates as well. For some specific classes of SDEs (5.2.1)
the considered numerical methods may perform even better. For more details on weak
convergence, it is recommended to consult Talay (1995) for a report on original results
related to equidistant discretizations.

5.6.9 Approximation of some functionals
An interesting question is how the pih mean convergence orders can be carried over to the
weak convergence order during the approximation of functionals of SDE solutions. This
question was answered for the case of nonsmooth and path-dependent functionals by Schurz
(1995). One important aim is to approximate

F(t,X) = f(t,Xt,mf\\Xs\lsup\\Xs\\) (5.6.14)
*<* s<t

where / = f(t,x,y,z) is Lebesgue-measurable at t,x,y,z. At first consider

F0(t,X) = T E f ( T , X t ) = E/rCXt) (t € [0,T},T fixed) (5.6.15)

where / : [0,T] x ID — >• 1R is convex at x with its second space derivative p^. Let Ynt be
a right-continuous approximation as step function, .T^— adapted numerical approximation of
Xt, based on a numerical method generating random values Yn and rat = sup{n : tn < t}.
The expression px — Px(t,x) denotes the probability density of process X = (Xt)o<t<T at
point x E ID at time t, with support supp(px(t,x)). Let rA([0, T]) denote the collection of
^"t-adapted time instants belonging to time discretization of [0, T] with maximum step size
A.

Theorem 5.6.12 (Schurz (1995)). Letl= [0,T] or 1 = rA([0,T]). Assume that

(0)
(i]
(ii)

(Hi)
(iv)

(v)
([0,T])

ED is an open, deterministic subset of IR
/ = f ( t , x ) is convex at x e ID with second (weak) derivative ̂ T — f"

fsu pp(px(tiX»nv a\vT(da) < +00
/• \ P / \ P3P > i(p e JR) vt e i (IE }xt\pj + (IE \Ynt \pj <KO<+OC

F {LJ e n : Vt e IXt(u) e ID) = F [uj e ft : Vt e 1 Ynt(u) e ID} = 1
fQ supter lE \Xt - Ynt

supp(px = Px(t, x ) ) n ID is compact
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Then there is a real constant K = K(p,T) > 0 such that

JEf(T,Xt)-lEf(T,Ynt)\ < K-^ (5.6.16)e := sup
tex

Remark This result is not so surprising since convex functions are quasi-linearizable and,
on compact sets, even Lipschitz-continuous. However, it possesses an interesting proof. For
any Lipschitz-continuous function f the pth mean convergence rates 7fl carry over one to one
to weak convergence rates /? = 7a. With this result in hand, one can justify using numerical
approximation with the highest possible accuracy, depending on regularity of price process
X, to estimate European call and put options.

Corollary 5.6.13 (Schurz (1995)). Assume conditions (0) - (v) of Theorem 6.9, that

supp(p\\X-c\\ =p\\x-c\\(^z))r\^is compact

and consider functionals of the form

Fi(t) = f ( t , \\Xt - c||), c = const, t e 1 (5.6.17)

where. f ( t , z) is convex with respect to the space coordinate z € J?1.
Then, there is a real constant K — K(p, T) such that for all t 6 [0, T]

e(t) = \ I E f ( t , \\Xt-c\\)-IE f(t,\\Ynt-c\\)\ < K-^. • (5.6.18)

Remark For concave functionals, similar results hold. The latter result can be verified
for some path-dependent functionals as well.

Corollary 5.6.14 (Schurz (1995)). Assume conditions (0) - (v) of Theorem 6.9, that

supp(psup \\x\\ =PSup0< s< t | |x s | |(<, z)) DID is compact

and Xt — Ynt be a right-continuous submartingale with respect to the natural filtration Ft =
cr{Wi : 0 < s < t, j = 1, 2,..., m}. Consider functionals of the form

F2(T,i) = /T(sup \\X.\\) (5.6.19)
0<s<t

or F3(T,t) = fT( sup Xl)(i e 1,2,.. . ,d fixed) (5.6.20)
0<s<t

where /T(Z) is convex with respect to the space coordinate z € Rl.
Then, error estimate (5.6.16) is also valid for F2,Fs (with a constant K > 0 which may
differ from that constant above, see (5.6.16)).

Thus, for path-dependent convex functionals and problems of optimal stochastic control,
clarification of the problem of practical construction of approximations with a .Ft-submartingale
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error process remains to be done. The latter problem seems to be solvable for the class of
X-subharmonic functionals / (but in general it is an open question) .
Remark for Application to Mathematical Finance. Asset- and option price processes
X for Randomly Exercised Exotic Options (American Lookback Call Option) may
cause the following payoff functionals

r /
, X)=exp(~ r ( s ) d s ) ( sup

^ JT ' \0<t<0<t<r

for calls of the «th component of true observable price- process X (for puts respectively),
where KI (T, T) represents the strike price at randomly stopped moment T which is J>-
adapted. Now, for example, there is the task of finding the optimal stopping strategy
0 < T < T < +00 (i.e. random exercise time T of the call option with bounded deterministic
maximal terminal time) such that the expected discounted loss caused by the payoff at
time T is minimal under the amount of information Ft at current time t and discounted
by .^-adapted random short interest rate r(s), i.e. one wishes to approximate the optimal
solution of the stochastic control problem

C(T*) := inf IE
0<r<T

e x p - r s s s u p
V0<t<r

/

)ds)(
'

where c = C(T*) = IE [Fi(r*, X)\Fr*}. This represents a composition of convex functionals,
and with our results before we have to construct a pth mean converging numerical approx-
imation which is right-continuous and which has a .Ft-submartingale as its error process
Xt — Ynt. Then the convergence rate will be J3 = 7ff, and numerical approaches reported
in the Mathematical Finance literature can be justified by our convergence approach, even
for convex, path-dependent functionals of X which can be noncontinuously differentiate at
some countable points. The practical construction is still a problem since the construction
procedure which guarantees the submartingale error process may strongly depend on the
structure of the price process X governed by some SDE.

For Holder-continuous functionals one encounters the following result. Let ID denote an
open, deterministic domain of IRd. Fix d, k £ IN+. Define

:= |/: ID G E T — > Rfc : ||/(x) - f ( y ) \ \ k < KH\\x - ;

with Holder constant KH and Holder exponent a G [0,1]. One arrives at

I I T¥? f ( V \ TCT f /V^MI ^ TT7 II •£/ Y" A •£ / V^MI <^ W "IP I I V V^ II0
It; y (,A£ ) — ill; j ( Y )\\k _ -^ LT \-^*-t/ — / V n / l l ^ — /YjyJUtj |[-Ai — -*n |[^

< jy' /TTTi II V" yA ||P\Oi/P ^- TX" f IS(n~. rTl\}Ql A aT'_ lt/f(lE ||At - yt ||^) '^ < AH • [K(P, 1 }\ & •
Taking the supremum leads to the following uniform convergence order estimation deter-
mined by the Holder exponent a, uniformly with respect to the class of Holder-continuous
mappings, exhibiting a natural loss of convergence speed with decreasing Holder exponent
a. Now, fix real constants a e [0,1] and KH > 0.

Theorem 5.6.15 (Schurz (1995)). Assume f € C$I(K[ita-), X = (Xt)0<t<T and Y =
(Y^)o<t<T are two ID-invariant, ^-adapted stochastic processes with respect to the same
stochastic basis (fl, f, (^t)o<t<T, IP ) satisfying

I/P ...
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with some 7 €. IR+.
Then, we have

sup sup\\Ef(Xt) -Ef(Y£)\\k < Kw(p,T,KH,a)Aa~<
c°H(K^ tez

with appropriate deterministic constant Kw(p, T, KH, ct) = KH • [K(p, T)]a.

5.6.10 The pathwise error process for explicit Euler methods
Jacod and Protter (1998), motivated from Rootzen (1980) and Kurtz and Protter (1991),
have statistically analyzed the pathwise error process of discrete time and continuous time
explicit Euler methods using equidistant time-discretizations and applied to stochastic dif-
ferential equations driven by more general semimartingales than assumed by SDE (5.2.1).
For the statement of the fundamental result (Theorem 3.1, p. 275, in Jacod and Protter
(1998)), let us define

e?:=Xt-Yt
N,te[0,T]

and only state the application of their result to the case of SDEs (5.2.1).

Theorem 5.6.16 Assume that the SDE (5.2.1) has locally Lipschitz continuous coefficients
a, W with at most linear growth.
Then the continuous time error processes e^,£^Nt] tends to 0 in probability as N goes to

I t * *
+00.

They also establish rates of stable convergence. In fact, they arrive at a certain stochastic
differential equation for the limit of related normalized error processes U^ = VlNe^ and
U^ = •y/JVg-^t] as N tends to 0. See their paper for more details. In principle, this procedure
can be continued for other and higher order methods under corresponding assumptions.

5.6.11 Almost sure convergence
It is clear from I/p-convergence that there exists a subsequence of (Yn)n€]^ which almost
surely converges to the exact solution Xt. The only works (to our knowledge) available at
the time of writing this survey are that of O. Faure (1992), which is not accessible to the
author at the moment, that of Talay (1983), and Pardoux and Talay (1985), who use the
Doss representation (cf. the ODE method above) to obtain almost surely converging approx-
imations. However, it is an open problem as to how in general an almost sure convergence
order is transmitted when commutativity conditions are not met (and Doss representation
could not be used to verify convergence orders so far. Remember that Talay (1983) makes
use of commutative noise conditions for Doss representation in the fully multidimensional
situation). Also, what happens when we have variable step sizes? This is an open problem
to be left to the future. As a supplement, let us start with a trial of a definition of numerical
almost sure convergence.

Definition 5.6.17 Let X, YA be two ft-adapted stochastic processes with respect to one
and the same stochastic basis (£l,F, (^rt)o<t<T! B3 ). Assume YA uses a sufficiently small
maximum step size A < 1 for all time-discretizations of fixed time-interval [0, T}.
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Then the stochastic process YA is called numerically a.s. converging to process X on
[0,T] iff

lim sup \\Xtn-Y£\\=0(a.s.),

continuous time a.s. converging to process X on [0, T] iff

lim sup

numerically a.s. converging with order 7 G 1R+ to process X on [0, T] iff

lim -J^ sup \\Xtn-Y£\\=0(a.s.),
A—O A^ E 0<tn<T

for all e with 0 < e < 7, and continuous time a.s. converging with order 7 G IR+ to
process X on [0, T] iff

l im— sup | |X t-F t
A | |=0(a.S .),

E

/or all e with 0 < £ < 7, wztt respect to a class of admissible time- discretizations of [0, T]
wito sufficiently small maximum step sizes A.

This definition is based on the concept of an admissible time-discretization.

Definition 5.6.18 A time-discretization (£n)ng./v € [0, T] of a fixed time-interval [0,T] is
called uniformly admissible z/f aZ/ £„ are Jrtn-adapted and there exist a minimum step
size Am,n and maximum step size Amax with

0 < Amin = inf \tn+i -tn < An < sup |in+i -tn\ = Amarc < +00.
"

Remark T/izs latter definition corresponds very well to the experience of practical numeri-
cal computations, where mostly the variable step size implementations possess an upper and
lower bound for minimum and maximum step sizes. A corresponding work by the author is
in progress in order to explain the (optimal) discretization problem in more details in the
case of converging stochastic approximations and step size selection.

For equidistant approximations one finds the following one-dimensional results in the
literature. We shall extract the versions from Talay's review paper (1995), p. 66.

Theorem 5.6.19 (Faure (1992)). Assume that a,W e C°Lip(IRl).

(1). If for some positive even integer p = 2k the initial condition (IMC) is satisfied,
then the interpolated Euler method Y^(t) applied to autonomous SDE (5.2.1) with
equidistant step size A = -^ continuously time a.s. converges to the exact solution of
(5.2.1) as the number N of equidistant subintervals tends to +00.

(2). If all initial moments exist, then the order of its continuous time a.s. convergence is
7 = 0.5.
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Theorem 5.6.20 (Talay (1983)). Assume that a,b> e Clip(lRl) with bounded derivatives
up to third order, and the deterministic real-valued function u = u(t) approximates the
given trajectory of the underlying Wiener process W = (Wt)o<t<T in the sense of uniform
convergence topology on the space C°([Q,T]) of continuous functions on fixed time interval
[0,T]. Let u have a zero 3-variation on [0,T], i.e.

N
lim V t n - « * n - i ) | 3 = 0

for any partitions of [0, T] .
Then the right-continuous, piecewise constant approximation generated by the Euler method
applied to autonomous SDE (5.2.1) continuous time a.s. converges to the exact solution of
(5.2.1) as the number N of equidistant subintervals tends to +00, provided that the following
noise commutativity condition holds:

5.7 Numerical Stability, Stationarity, Boundedness and
Invariance

After treating the concept of convergence (convergence on fixed, deterministic, finite time
intervals T), we now devote our attention to the other important column of the main prin-
ciple of numerical analysis: namely, that of numerical stability. The more one is interested
in a control on nonexploding state processes and also nonexploding error propagation, the
more necessary this is, whereas it is a must for adequate numerical integration on infinite
time intervals (i.e. when one takes, the limit as terminal times T tend to +00).

For simplicity of consideration, we start with the treatment of linear systems (It is not
possible here to discuss the full extent of the problem of stochastic test equations in a math-
ematically rigorous way.). In view of stochastic terms, it is necessary to distinguish between
the three main classes: linear systems with additive noise, linear systems with multiplicative
noise, and of fully nonlinear systems. The case of multiplicative noise is the closest to the
deterministic situation, since we could use the deterministic trivial equilibrium X = 0 as
the unique reference solution. Therefore it represents the best understood case from the
three main cases. The case of additive noise really needs a stochastic approach to tackle
the problem of numerical stability. See also Section 8 for an alternative by contractivity
concept.'

We shall also examine the problem of almost sure boundedness which is obviously con-
nected with stability and invariance issues. For motivation, remember the main principles
of stochastic numerical analysis in Section 5.

For the sake of simplicity, at first let us confine ourselves to the concept of mean square
stability.

5.7.1 Stability of linear systems with multiplicative noise
Consider (for simplicity, autonomous) linear system of Ito SDEs

m

dXt = AXtdt+ Y,Bj XtdW? (5.7.1)
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Assume that a unique stationary solution -X^, = 0 of (5.7.1) exists. Then the necessary
condition

Ve = l ,2 , . . . ,d : Re(\i(A)) < 0 (5.7.2)

with \i(A) as the rth eigenvalue of matrix A must be satisfied, at least for any moment
stability with p > 1. (Note that condition (5.7.2) implies the stability of first moments
IE Xt since we obtain a kind of direct projection to the deterministic case, which can be
easily seen in the linear systems case. However, in the nonlinear case we would observe the
problem of closure of moment equations.) For the sake of simple illustration, let us confine
ourselves to the case of mean square stability (i.e. p — 2 in moment stability).

Definition 5.7.1 Assume X = 0 is an equilibrium for (5.2.1). The equilibrium solution
X = 0 is called globally (asymptotically) mean square stable for the stochastic process
X = (Xt)t>0 if

VX0 : IE \\X0\\2 < +00 =» lim IE \\Xtf = 0. (5.7.3)
t—»+oo

Assume that Y ~ 0 is an equilibrium for the numerical approximation Y = (Yn)n&jN for

system (5.2.1). The equilibrium solution Y = 0 is called globally (asymptotically) nu-
merically mean square stable for the numerical approximation Y = (Yn)n€flf */

VJT0 : IE ||y0||2 < +00 =» lim IE \\Yn\\2 = 0. (5.7.4)
-

As a first illustrative result, consider the family of drift-implicit Euler methods (see
Kloeden, Platen and Schurz (1994)), of the form

Yn+l = Yn + (aAYn+1 + (l-a}AYn-)^n + ̂ BjYn^Wl, (5.7.5)

applied to equation (5.7.1), where a € IR,1 is the implicitness parameter, and the step size is
sufficiently small such that the local algebraic resolution of (5.7.5) can be guaranteed (the
latter requirement would be irrelevant when a > 0 under condition (5.7.2)).

Theorem 5.7.2 (Schurz (1996)). For all equidistant approximations ^a = (5^f)ne£V 9en~
erated by method (5.7.5) with fixed step size A > 0, it holds that

X = 0 mean square stable •£=> Ya = 0 mean square stable with a = 0.5,
X = 0 mean square stable and a > 0.5 => Ya = 0 mean square stable,

Yai = 0 mean square stable with ai < a^ =>• K"2 = 0 mean square stable .

The proof can be seen in Schurz (1996, 1997) using the study of a stochastic version of
Lyapunov equation

m
AM + MAT + ̂  BjMB] T = -C

.7=1
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and basic facts from spectral theory of monotone operators. In fact, Schurz (1996, 1997) has
developed the concept of mean square operators which describe the mean square evolution
and stability behavior of related numerical method on a systems level. The family of
mean square operators related to approximation sequence Y = (Yn)ne^ is defined by
the sequence of ,Ftri-adapted operators (£n)n€]N mapping from the set SJ~xd of positive
semi-definite d x d matrices into itself by

E rv" ~vT i _ itr r f v v^\ _ TPT r r r fv ~vT\[yn+l.rn+1J — Jti Ln(Ynin ) — tEi L,nL,n-\...LQ(1 QIO ).

Thus the asymptotic behavior of the related numerical method is connected to the study of
the limit

lim IE
n—> + 00

L V=o
along the mentioned operator family on the space of positive semi-definite matrices. In the
equidistant case this study can be carried out by standard fixed point analysis and the tool
of the spectral radius of related operator £. However the concept of mean square operators
even works for nonautonomous systems (5.7.1) and variable step size implementations using
monotonicity argumentations. Thanks to that representation, Schurz (1996, 1997) could
establish a systematic stability analysis of systems of discrete random mappings, the concept
of stochastic A-stability on a systems level, the principle of monotonic nesting of stability
domains for monotone systems. More generally, it is possible to develop a corresponding
theory of pth mean stability operators for nonlinear stochastic dissipative systems, see Schurz
(1997, 1999). This has been suggested and constructed with the family of drift-implicit
Euler methods (5.7.5) therein. The study of that operator family still needs to be continued
for other numerical methods. An interesting, illustrative and simple complex-valued test
equation is given by the stochastic Kubo oscillator perturbed by multiplicative white
noise in the Stratonovich sense

dXt = iXtdt + ipXto dWt

where p e 1R ,i2 = — 1. This equation describes rotations on the circle with radius ||Xo||.
Schurz (1994, 1996) has studied this example and shown that the corresponding discretiza-
tion of implicit Mil'shtein methods explodes for any step size selection, whereas the lower
order trapezoidal method or appropriately balanced implicit methods (BIMs) could stay
close to the circle of the exact solution even for large integration times! This is a test
equation which manifests that stochastically coherent (i.e. asymptotically exact) numerical
methods are needed and the search for efficient higher order convergent methods is somehow
restricted even under linear boundedness and infinitely smooth assumptions on drift and
diffusion coefficients.
The illustrative example of one-dimensional complex-valued test SDE. Many au-
thors (e.g. Mitsui and Saito (1996), Schurz (1996)) have studied the SDE

dXt = XXtdt + jXtdWt, (5.7.6)

with XQ = XQ € (D1, representing a test equation for the class of completely commutative
systems of SDEs with multiplicative white noise. This stochastic process has the unique
exact solution Xt = ' XQ • exp((A — 72/2)t + jWt) with second moment

= e\Xt
 2 = eexp(2(A - 7

2/2)ri + 2<yrWt) • |x0|2

272i) = |x0|2 • exp((2Ar

where XQ € C is nonrandom (zr is the real part, Zj the imaginary part of z € C1) and *
denotes the complex conjugate value. The trivial solution X = 0 of (5.7.6) is mean square
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stable for the process {Xt : t > 0} iff 2Ar + |7|2 < 0. Now, let us compare the numer-
ical approximations of families of (drift-) implicit Theta and MiTshtem methods. Applied
to equation (5.7.6), the drift-implicit Mil'shtein (5.4.18) and drift-implicit Theta methods
(5.4.3) are given by

£2 - l)A/2 (M)

' (5J-7)

and

n+l

respectively. Their second moments

p(M)
rn+l

provided that

/ 1 + (1-0)AA
\C 1 - 0A

(M) (\I + (!-&)>0 V
(E) /|l + ( l -0)A
0 A |i - e

p(M) eV(M)v(M)*
^o — ejo Jo

D(M) n(E) ( \1

1-0AA

p(B/M) V(B/M)V(B/M)*
* n — t-i n -t n

+ Ten\/A2 |7
2(^-1)12

A ' ' C 1 - 0AA '

'

satisfy

•A 2 /4

A|2 + |7|2A + |7|4A2/2\n+1

| i -0AA|2 y
A|2 + |7|2A\"+1

 (E)
AA|2 y . n+ 1

i F^l^ /" K1"! / f7l^
> eF0

(£;)yo
(£) = P0

(E) , and

+ (1-0)AA|2 + |7|2A + |7|

(n(n

4A 2 /2N

n+l n+l

n+l

(1-0)AA|2

n+l

while assuming identical initial values P0 = P0 . Hence, if the drift-implicit Mil'shtein
method (5.7.7) possesses a mean square stable null solution then the corresponding drift-
implicit Theta method (5.7.8) possesses it too. The mean square stability domain of (5.7.7)
is smaller than that of (5.7.8) for any implicitness 0 e [0, 1]. Besides, the drift-implicit Theta
method (5.7.8) has a mean square stable null solution if 0 > \ and 2Ar + |7|2 < 0. The latter
condition coincides with the necessary and sufficient condition for the mean square stability
of the null solution of SDE (5.7.6). Thus, the drift-implicit Theta method (5.7.8) with
implicitness 9 = 0.5 is useful to indicate mean square stability of the equilibrium solution of
(5.7.6). More general theorems concerning the latter observations can be found in Schurz
(1996, 1997).

5.7.2 Stationarity of linear systems with additive noise
Consider (for brevity, autonomous) linear system of SDEs

dXt = AXt dt + dW} (5.7.9)

Assume that there is a stationary solution Xoo of (5.7.9). Then, for Stationarity of au-
tonomous systems (5.7.9) with additive white noise, it is a necessary and sufficient require-
ment that (5.7.2) is fulfilled.
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Definition 5.7.3 The random sequence (Yn}neJN is said to be asymptotically pth mean
preserving if

lim IE \\Yn\\r = JE\\X00\\",
n — >+oo

(asymptotically) mean preserving if

lim IEYn = IEX00,

(asymptotically) equilibrium preserving if

Caw(Y00) = £,aw(X00)

with respect to systems (5.7.9).

This definition has been originally introduced by Schurz (1994). For an extension to systems
(5.2.1), see the concept of asymptotically exact methods below.

Now, consider the family of drift-implicit Euler methods (see Kloeden, Platen and
Schurz (1994)) with implicitness parameter a & [0, 1] C 1R1, governed by

yn+1 = Yn + (aAYn+l + (1 - a)AYn) An + ̂ V AW> (5.7.10)

with independently Gaussian distributed increments AW^ = W%n t — W^n.

Theorem 5.7.4 (Schurz (1997,1999)). Assume that

(i) VX(eigenvalue(A)) Re(X(A)) < 0

(ii) (XQ,YQ) independent of J-^ = <j{Wi : 0 < s < +00}

(in) IE \\XQ\\v + IE \\Y0\\P <+ooforp>2

(iv) A e _ZRd x d , f r? e ]Rd deterministic

Then, the trapezoidal method (i.e. (5.7.5) with a = 0.5) applied to system (5.7.9)
with any equidistant step size A = An is asymptotically mean, pth mean and equilibrium
preserving. Moreover, it is the only method from the entire family of implicit Euler
methods with that behavior (i.e., =>• asymptotic equivalence for systems with additive
noise).

Under diagonalizability of drift matrix A (real eigenvalues for simplicity) and condition
(5.7.2) the conclusion of Theorem 7.2 can be seen very easily. First, the limit distribution
of Yn exists (for all implicitness parameters a > 0.5). Second, the limit is Gaussian for all
a 6 [0.5, +00). Third, E Yn — > 0 as n tends to +00 (as in deterministics if a > 0.5).
Fourth, due to uniqueness of Gaussian laws, it remains for one to look at second moments
for all constant step sizes A > 0. We notice
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and

Then
i r n E [YnYn

T] = E [Xoo*£] 4=. a = 0.5.

Thus the stationarity with exact stationary Gaussian probability law is obvious. More
general argumentations use fixed point principles. For more details, see Schurz (1996, 1997,
1999).

5.7.3 Asymptotically exact methods for linear systems
There do exist numerical methods which possess the same asymptotic probability law as the
exact solution, for example those we have seen before. Schurz (1996, 1997, 1999) could con-
structively prove that fact for general linear systems of SDEs with additive and multiplicative
noise. There the trapezoidal and midpoint method which coincide for linear autonomous
systems of SDEs provide an asymptotically exact numerical method. Let (<n)n€]N e IP> +°°)
be a sequence of Ptn -adapted stopping times with limrt^+oo tn — +00 (a.s.).

Definition 5.7.5 Suppose that limt^+00 IE \\Xt\\p = IE \\Xoo\\p < +00 for the stochastic
process X = (Xt)t>o on stochastic basis (fi, F, (ft)t>Q, IP )• Then the random sequence Y =
(^n)neJ5V on ^ie same stochastic basis (fi,^", (^r

tn)4ri>o,IP ) is said to be asymptotically
pth mean exact with respect to X iff

lim E\\Yn\\? = IE \\Xn\\*
n — >+oo

and, in particular, ifp = 2 then Y is called asymptocially mean square exact.

Theorem 5.7.6 Assume that the stochastic process X = (Xt)t>o on the stochastic basis
(fi, J7, (Ft)t>o,TP ) satisfies SDE (5.7.1) discretized by the trapezoidal method (5.7.3) (i.e.
a = 0.5J or SDE (5.7.9) discretized by the trapezoidal method (5.7.10) (i.e. a = 0.5,) on the
same (SI, F, (^)t>o,IP )• Suppose IE\\X0\\P = JE \\YQ\\P for all p > 0.
Then the random sequence Y = (Yn)nejj^f with equidistant step sizes is asymptotically pth
mean exact for all p > 0.

Theorem 5.7.6, in its full extent, exhibits an unproved conjecture in the case of SDEs with
multiplicative noise. For additive noise, it is an immediate consequence of results due to
Schurz (1996, 1997, 1999). The proof for p > 2 can be carried out more easily. See forth-
coming works of the author. It remains an open question whether one can construct other
numerical methods which possess the properties of exactness and asymptotic exactness. In
its full extent, this is a really challenging task for mathematics in the 21st century. A partial
answer can be given for systems of linear SDEs with Gaussian white noise. Since we have
no bias in the moments and due to linearity of the problem, it is clear that the trapezoidal
method must approximate the conditional expectation asymptotically exactly. Since the
conditional expectation is almost surely unique, we have the striking result that there is
only one numerical method for well-posed linear systems which integrates linear systems of
autonomous SDEs with Gaussian white noises asymptotically exactly, out of the class of
all numerical methods (5.4.1) - (5.4.6) with 0n = al e JRd*d,9n = a(l, 1,..., l)T 6 IRd
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(a = [0, 1]) using any form of .Ftn -adapted discretizations with lower order pth mean con-
vergence. That method must be connected to the trapezoidal and midpoint methods in
asymptotic sense.

5.7.4 Almost sure nonnegativity of numerical methods
A general problem of interest is the a.s. preservation of natural boundary conditions by
discretization methods under the presence of random noise. The simplest form of an alge-
braic side condition which might arise in practice is the (a.s.) nonnegativity of numerical
approximations. To give some illustration and a first solution consider the autonomous Ito
SDEs

dXt = a(Xt}dt+V(Xt)dWi (5.7.11)

where a and V are such that a (strong) solution Xt on M.,. exists (define b°(x) = a(x)).
Now, consider the family of Balanced Implicit Methods (BIMs), see Mil'shtein, Platen
and Schurz (1992, 1994, 1998), governed by

= ys + a ( y s ) A n + > ^(Kf)AW^ (5.7.12)

yB YB \1n rn+lJ

where Co, C\ are bounded matrices depending on Y^ such that

always exists and is uniformly bounded.

Theorem 5.7.7 (Schurz (1996)). Assume that there are bounded, real d x d matrices
CQ,...,Cm with nonnegative entries and positive constants K$ and K± such that for all
real-valued vectors x with nonnegative components

(i) [a(x) + C0(x)x]i > 0 for all i = 1,2,..., d,

(ii) [Cj(x)x]i > |[t^(x)]i| for alii = l,2,...,d;j = 1,2, ..,m,

and such that for all real-valued vectors x e IRd

(in) y^"L IIC-(xW (a;) I I 2 < -ftT2(l + l l x l l 2 )

(iv) V(a.,- > Q)j=o,i,...tm, cto < a
3M'1 = M - I ( X ] with M(x) = /+ YJj=Qaici(x] and ll^"1^)!! < K* and

(v) M~l = M~1(x) has only nonnegative entries for nonnegative vectors x.

Then, for any step sizes (An > 0)ri6^y, the BIMs (5.7.12) with weight matrices Cj are pos-
itively invariant on JR+, and provide strongly and mean square converging numerical
approximations towards the exact solution of (5.7.11) with order 7 = 0.5.
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This result can be verified constructively. For this purpose, consider BIMs generated by the
scheme (5.7.12) with weight— matrices C j ( . ) . Suppose these matrices satisfy the conditions
(i) — (v). The numerical approximations provided by BIMs converge strongly towards the
SDE (5.7.11), with order 7 = 0.5. This can be immediately concluded from the exposition
Mil'shtein, Platen and Schurz (1992, 1994, 1998). Under condition (iv) of Theorem 5.7.7
the scheme of BIM (5.7.12) is rewritten as

Yn+l = M-\Yn) Yn + Y, v(Yn)AWi + C^)Fn|A^| (5.7.13)

where AW° = An and Mn(x) = 1 + £J10 Cj(x)\^W^\. Suppose that [Yn]i > 0. We notice
that the weight matrix M~l preserves nonnegativity because of requirement (v). Thereby,
we have to check only whether the random vector-valued function </)(x) with

m

<j)(x) = x + ]T (VOr)AW^ + Cj(x)x\£iW^ (5.7.14)
j=0

takes nonnegative values for nonnegative vectors x 6 IR, . Now, one arrives at the compo-
nentwise estimate

j=o

Each component of this random sum is nonnegative under assumptions (i) — (ii). Hence,
function <p takes nonnegative values for any random input AW-j. Therefore, the new vector
Yn+i only possesses nonnegative components. Consequently, Theorem 5.7.7 can be under-
stood easily.

Further Remarks. Positive semi-definite Cj or nonnegative diagonal matrices Cj trivially
fulfill (iv). Condition (5) is more restrictive, but it is satisfied by nonnegative diagonal
matrices. The following conclusion for one-step approximations of some multidimensional
SDEs is verified.

Theorem 5.7.8 (Schurz (1996)). Assume that there are nonnegative constants K® and Kj
(j = 0, 1, ...,m) such that

\[b>(x)]i\ < (K° + K^Xl\) Vt = 1,2,. . . , < * .
Then there exist numerical approximations (Yn)n&j^f generated by BIMs (5.7.12) which
strongly converge with order 7 = 0.5 and maximize the one-step e -probabilities of positivity,
i.e. P {Yn+i > 0|[Vn]j > e,i = 1,2, ...,d} = 1 for fixed, small values e > 0.

In a constructive way one realizes the verification of Theorem 5.7.8. For this purpose, take
the BIMs with diagonal matrices Cj(x) = (c}'1) an<i elements

cf(x)= J + K] , x=(Xl,...,xd)T; j=0 , l , . . . ,m; t =
~~
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Thus, these functions are bounded and satisfy the conditions for strong convergence as
stated in Mil'shtein, Platen and Schurz (1992, 1994, 1998). Therefore strong and mean
square convergence of BIMs with order 0.5 is established. Nonnegativity of the one-step
approximation (a.s.) is recognized as above as well.

Remark A local one-step control in a reasonable distance to boundaries is possible without
space discretization and with deterministic step sizes for random problems. However, in the
vicinity of boundaries, one possibly needs to switch to careful random step size selection, pth
mean convergence of BIMs can also be proved.

5.7.5 Numerical invariance of intervals [0, M]
A problem of practical interest (e.g. in population dynamics, genetics and polymer physics)
is that of getting numerically reasonable values in a given deterministic interval [0, M }
(a.s.). Since convergence statements are more of an asymptotic nature as step sizes are
innnitesimally small, this question is not coverd by most of the authors. However, the
main principle of numerical analysis in Section 5 has already shown the importance of the
incorporation of geometric invariances (otherwise proofs have to be embedded in enlarged,
nonnatural spaces, which can be a very laborious task to do or even infeasible if one is not
aware of these geometric invariance properties). Schurz (1996) presents a way in context of
innovation diffusions governed by one-dimensional SDEs

dXt = [(p + ~Xt}(M - Xt)} dt + aX?(M - Xtf dWt (5.7.15)

driven by a given standard Wiener process Wt, started at XQ e ID = [0, M] c M1, where
p,q,M,a are positive and a, (3 > 0.5 are real parameters. Here p can be understood as
the coefficient of innovation, q as the coefficient of imitation and M as the total adoption
size. However, in view of marketing issues, model (5.7.15) only makes sense within deter-
ministic algebraic constraints. This fact generally leads to Stochastic Differential Algebraic
Equations (SDAEs) with nonanticipating boundary conditions. One can prove the [0, M]-
invariance of SDE (5.7.15) whenever a, f3 > 0.5 and p, q, M > 0. The natural question arises
as to what happens then with the standard numerical approximation. Unfortunately, the
classical (most-known and most-used) approximations such as explicit Euler and Mil'shtein
method fail to preserve that [0, M] invariance property with positive probability - a fact
which can easily be seen by numerical experiments. However, some appropriate BIMs do
have the [0, M] property (a.s.). Consider the BIMs generated by

Yn+l =Yn + (p+ Yn)(M - yn)An + aY£(M - Yn)0AWn + (5.7.16)

where K = K(M) is an appropriate positive constant and Y0 6 ID = [0, M] (a.s.). Then it
holds the following theorem.

Theorem 5.7.9 (Schurz (1995, 1996)). The numerical approximation (^n)nejf/v governed
by (5.7.16) for SDE (5.7.15) is ID-invariant (a.s.) with E> = [0, M], strongly and mean
square convergent with order 7 = 0.5 on any interval [0, T] if

Yo e [0, M](a.s.), Kd = Kd(M~) > M > 0, a > I , (3 > 1, 0 < An < — *— (n e IN).
p + q
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More recently, we extended this idea to approximate interacting particle dynamics stan-
dardized on the interval [0,1]. Again the BIMs with adapted weighted coefficients, which
take into account the current distance of approximations to the boundary, provide promising
results without using projection methods and with keeping the same convergence order as
Euler methods would have on the entire space Hd. For more details, see the forthcoming
paper of Schurz (1999). The simplest example is provided by one-dimensional Ito diffusion

dXt = (5.7.17)

where fj.i > 0,^2 6 R,ctj > 0.5, ft > 0.5, CTJ 6 .R. Then one can show the almost sure
ID-invariance property of SDE (5.7.17) with respect to domain ID = [0,1] for any finite
terminal time T > 0. This fact also seems to be a very natural requirement when one
discusses genetic compositions and their asymptotic behavior in Mathematical Biology or
stochastic innovation diffusions in Marketing Sciences, as seen before. In contrast to that
property, numerical experiments easily show that the classical Euler and Mil'shtein methods
may exit the domain [0,1] at finite random times r with positive probability. The problem
of appropriate stopping rules for numerical approximations which do not destroy the order
of convergence arises here, compared to the orders obtained for unstopped problems. In
such cases we prefer a method from the family of BIMs once again instead of the simpler
Euler method applied to SDE (5.7.17). For example, take [0, l]-boundary-adapted weights
cj with

C0(x) = [/z2]_(l-x) (5.7.18)

Cj(x) = Nx^CL -xf~\ x e [0,1] if a,-, ft > 1

where [.]_ represents the negative part of the inscribed expression (thus n = \fj]+ — [/u]-),
and in the case of 0.5 < ct,- < 1 or 0.5 < f3j < 1 take

0 if x = 0 or x = I

Cj(x)= ' ( / Qj___ -n±\\a3 ( ^ " q/ _ n \^~l ' (5-7.19)

if OLJ > 0.5 and 0.5 < ft < 1, x e ( ~i, ̂

if aj = j3j = 0.5,:

Then the following result can be concluded.

Theorem 5.7.10 (Schurz (1999)). The BIMs (Y^}n€jpj applied to (5.7.17) with scheme
(5.7.12) using weights Cj specified by (5.7.18), (5.7.19) and with maximum step size A
satisfying (pi + [//2J+)A < 1 possess the invariance property with respect to interval ID =
[0,1], i.e.

P{y n
B € ' [0 , l ] :VneAr |Yb B e[0, l ]}

for all Fa-measurable Yf 6 ID = [0,1]. Therefore, they provide strongly converging, pth
mean and strongly pth mean converging, double LP-converging approximations on any finite
time interval [0, T] with order 7 = 0.5 to the exact solution of SDEs (5.7.17) forp > 2.0.
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Remark More precisely, the result of [Q,l]-invariance holds for all their paths by our
specific deterministically boundary- adapted construction.

5.7.6 Preservation of boundaries for Brownian Bridges
For simple illustration, consider Brownian Bridges (pinned Brownian motion) . They can
be generated by the one-dimensional SDE

(5.7.20)

started at X0 = a, pinned to XT = b and denned on t £ [0, T], where a and b are some fixed
real numbers. According to the Corollary 6.10 of Karatzas and Shreve (1991), the process

Xt= a - - if
if t = T

is the pathwise unique solution of (5.7.20) with the properties of having Gaussian distribu-
tion, continuous paths (a.s.) and expectation function

m(t) = mXt = a(l-|) + &| on[0,T] (5.7.22)

Here problems are caused by unboundedness of drift

What happens now with approximations when we are taking the limit toward terminal time
T? Can we achieve a preservation of the boundary condition XT = b in approximations Y
under nonboundedness of the drift part of the underlying SDE at all?
A partial answer is given as follows. Consider the behavior of numerical solutions by the
family of implicit Euler methods

Yn+l

where a 6 1R+ = [0, +00), YQ = a and n = 0, 1, ..., UT — 1. Obviously, in the case a = 0, it
holds that

=Yn+ a ~ r + + (1 - a) An + AWn (5.7.23)

Y°(T) := YnT = lim Yn = & + AWn r_i. (5.7.24)
n — >TIT

Thus, the explicit Euler method ends in random terminal values, which is a contradiction
to the behavior of exact solution (5.7.21)! Otherwise, in the case a > 0, rewrite (5.7.23) as
Yn+l =

T - tn+l (l-a)(T-*n+i)An T -

implies

. (i-a)(r
(y _ tn)(T —

ya(T)

t \ /T"1 4-
y f l l l - i —— t^-j-l

— tn+i)An

*n+i + aAra;

._ y _
• — i UT

+ aAn) T" — £n+i + ft A.

, , c*Ara- 6+ ———————— — b) T - tn+1 + aAra

lim Yn = b.

(5.7.25)

(5.7.26)

Thus, the implicit Euler methods can preserve (a.s.) the right terminal conditions*.
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Theorem 5.7.11 (Schurz (1996)). For any choice of step sizes An > 0, n = 0,1, ...,nT -1,
it holds that

[1]. IEYnT = b if a > 0
[2]. JE(YnT-b)2 = AnT_i if a = 0
[3]. JP(YnT=b) = 0 if a = Q
[4]. P(F n r =6) = 1 i/ a > 0

where the random sequence (Yn)n=o,i,...,nT *5 generated by implicit Euler method (5.7.23)
with step size AWra 6 -A/"(0, An) where A/"(0, An) denotes the Gaussian distribution with
mean 0 and variance An (supposing deterministic step size).

Remark Discontinuities in drift part may destroy convergence orders. A guarantee of
algebraic constraints through implicit stochastic numerical methods can be observed. The
example of Brownian Bridges supports the preference of implicit techniques, not only in
so-called stiff problems as often cited.

5.7.7 Nonlinear stability of implicit Euler methods
On nonlinear stability of stochastic numerical methods we could not find any treatments,
except for that of Schurz (1996, 1997, 1999). In general one might think of nonlinear
asymptotic pth mean stability. Let p £ (0, +00).

Definition 5.7.12 Assume X = 0 is an equilibrium, for system (5.2.1). The equilibrium
solution X = 0 is called globally (asymptotically) pth mean stable for the stochastic
process X = (^Q)t>o satisfying SDE (5.2.1) if

VX0 : IE \\X0\\P < +00 =» lim IE \\Xt\\2 = 0. (5.7.27)
t — > + oo

The equilibrium solution X = 0 is called (globally) exponentially pth mean stable for
the stochastic process X = (Xt)t>o satisfying SDE (5.2.1) if

3K0, K^ > 0 V*i > t0 V^t0 : IE \\Xto \\p < +00

E\\Xtl\\p <^0exp(-^1(t1 -t0))lE\\Xto\\P. (5.7.28)

Assume that Y = 0 is an equilibrium for the numerical approximation Y = (Yn)ne]N applied
to SDE (5.2.1). The equilibrium solution Y = 0 is called globally (asymptotically)
numerically pth mean stable for the numerical approximation Y = (Yn)n^jj\[ if

VY0: 1E\\Y0\\P <+oo ==» lim IE\\Yn\\p = 0. (5.7.29)
n — >-(-oo

The equilibrium solution Y = 0 is called (globally) exponentially numerically pth
mean stable for the numerical approximation Y = {Yn)n&j^f if

! > OVm > n0 VFno : JE \\Yno\\P < +00 =>•

IE \\Yni\\" < KoexpC-Jf^t,,, - tno))IE ||rnof . (5.7.30)
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This definition leads to the following first result. Unfortunately, other results concerning
nonlinear stability of stochastic numerical methods for SDEs are not known to the author
at this writing.

Theorem 7.9. (Schurz (1996, 1997, 1999)). Assume that the SDE (5.2.1) has an exponen-
tially mean square stable equilibrium solution X = 0 with some constants KQB < 0, KQB <
0 (i.e. p = 2).
Then the drift-implicit Euler method applied to that SDE (5.2.1) possesses an exponentially
mean square stable equilibrium solution Y = 0 provided that

0 < An < sup Afc < +00.
fceIN

5.7.8 Linear and nonlinear A-stability
A-stability is one of the most desired properties of numerical algorithms. We should distin-
guish between the linear A-stability and nonlinear A-stability concepts, depending on the
corresponding linear and nonlinear test classes of dissipative SDEs. However, one may find
a unified treatment of the classical A-stability concept. Following Schurz (1996, 1997, 1999)
we have these definitions, motivated by the fundamental works of Dahlquist in deterministic
numerical analysis. Fix p G [1, +co).

Definition 5.7.13 The numerical sequence Y = (^n)n6j/v (method, approximation, etc.)
is called pth mean A-stable if it has an asymptotically numerically pth mean stable equi-
librium solution Y = 0 for all autonomous SDEs (5.2.1) having an asymptotically pth mean
stable equilibrium solution X = 0 with any constants KQB < O,KQB < 0, using any admis-
sible step size sequence An with supnSj^An < +00. The numerical sequence Y = (^n)n6^\r
(method, approximation, etc.) is said to be pth mean AN-stable if it has an asymptoti-
cally numerically pth mean stable equilibrium solution Y = 0 for all SDEs (5.2.1) having an
asymptotically pth mean stable equilibrium solution X = 0 with some constants KQB < 0;

< 0; using any admissible step size sequence An with supn6^yAn < +00.

Definition 5.7.14 (Schurz (1996, 1997, 1999)). The drift-implicit Euler method applied to
SDEs (5.2.1) provides mean square A- and AN-stable numerical approximations (i.e. when

Therefore, the implicit Euler methods are on the "sure numerically stable" side. However,
we must notice that they provide "superstable" numerical approximations - a property
which may lead to undesired stabilization effects of numerical dynamics, and then it would
be better to make use of asymptotically exact numerical methods. In passing we note that
linear ^4-stability of stochastic algorithms has been discussed by Artemiev (1994), Mitsui and
Saito (1996) and Schurz (1993 - 1999), where Mitsui and Saito (1996) have only discussed
the case of one-dimensional SDEs using the traditional stability function approach from
deterministic numerical analysis, whereas Artemiev (1994) and Schurz (1993, 1996, 1997)
have already treated the fully multidimensional setting. Nonlinear A-stability investigations
could only be found in Schurz (1996, 1997, 1999) so far, according to our current knowledge.
There is also an approach using the concept of weak A-stability, i.e. the A-stability of
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related deterministic numerical dynamics discretizing linear SDEs. However, this concept
does not lead to new insights into the effects of stochasticity with respect to stability. For
such attempts leading to recitation of known facts from deterministic numerical analysis,
see Mil'shtein (1988, 1995), Kloeden and Platen (1992, 1995) or Platen (1999).

5.7.9 Stability exponents of explicit-implicit methods
The art of stability-adequate methods consists of construction of appropriate explicit-impli-
cit methods which replicate some reasonable estimates for exponential growth rates or which
even show evident coincidence with the corresponding growth rates of underlying continu-
ous time dynamics. For this purpose, we introduce the following a?-dimensional explicit-
implicit splitting methods

Xn+1 = Xn + $I
0(Xi:i<n + l)An + $>$(Xt : i < n)An

J(X1:i<n)&v^ (5.7.31)
j=l

where An = in+i ~~ tn is interpreted as a sequence of step sizes with monotonically increasing
time-instants (*i)ieIN and linii-*+oo ti = +00; &Q,3>Q,$j where j = 1,2, ...,m represent
deterministic mappings from all currently generated values into IRd (They may admit past--
path-dependence in general!), and ££ are real-valued, independent random variables on
(fi, F, W ) with moments

Let rA([0, T]) = {ti e [0,T] : ^ < ti+i,i € IN}; Then we want to classify these additive
splitting techniques by their exponential growth or decay exponents.

Definition 5.7.15 Let I = [0,+oo) or I = rA([0,+oo)). Then the upper (forward pth
moment) stability exponent of a given stochastic process {X{f})(t^x) i™ domain ID is
defined to be

Ap := limsup-lnIE\\X(t)\\p (5.7.32)
t-»+oo t

for X(t0) 6 ID (a.s.), provided that this limit exists. The lower (forward pth moment)
stability exponent of a given stochastic process (X(t))(t^) in domain ID is defined to be

AD := \immf-lnIE\\X(t)\\p (5.7.33)F

for X(to) e ID (a.s.), provided that this limit exists.

To save space we have stated this definition for the case of discrete and continuous time
stochastic processes using time scales X\ then one only has to substitute the related con-
tinuous and discrete time scales, where the discrete elements tn € T = TA([0, +00) are also
identified by integers n 6 IN.
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Theorem 5.7.16 (Schurz (1999)). Let process ( X n ) n € j f q satisfy the stochastic difference
equation (5.7.31) under the above mentioned conditions for all n 6 IN, whereas all ££ are
independent of XQ as well. Assume that Vn 6 M Vx^ € IRd(l = 0, l,...,n + l) Vj =

n)||s
(5.7.34)

: i < n)f < /c

2fc/(n)An < l + fco(n)A2

where k f ( n ) , k E ( n ) , k 0 ( n ) , k Q ( n ) , k j ( n ) are finite, deterministic, real numbers. Then

E
i=0

A2 < lim sup ——
n—>-f oo

Furthermore, if Vn e

,-rE TI(.I tc S o ] — Ic ( -J

-/,

6 ffid(/ = 0, 1, ...,n + 1) Vj = l,2, . . . ,m :

- . (5.7.35)

(5.7.36)

where kj(n), k_E(n), k^n), kjj(n), k_j(n) are finite, deterministic, real numbers, then

\

A2

n

E
i=0

2^(0 + 2&W + (fe (i) - fc0(?))A, + ̂ (of ) &,-(<)

J- |" ^n/g ( t ) ZA^ "T~ "'Q \ */ ^"^7 "T~ / \ 7 / ^-Jx^ 1 / ^^tV j=i ~ /
Ai

n^+oo i , i
(5.7.37)

Remark This theorem provides a uniform estimate of the "spectrum" of (forward) mean
square stability exponents for the class of stochastic difference equations satisfying (5.7.34)
and (5.7.36). Of course these estimates are "worst case estimates," but they are sharp
ones (see linear systems where equality is satisfied). Since the analysis of nonlinear, nonau-
tonomous, discrete time stochastic mappings turns out to be very difficult, we restrict our
attention only to the feasible case of mean square calculus. All in all, the art consists in
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finding the right splittings to guarantee the conditions of this theorem. Loosely speaking, as
the main result, one has to apply explicit techniques to follow the unstable branches of the
underlying continuous time stochastic dynamics, and one should apply implicit techniques
to follow the stable branches of underlying continuous time stochastic dynamics of SDEs
through numerical methods. Sometimes one even needs multiplicative splitting techniques to
follow that rule of thumb precisely. The critical case of conservative systems (like during
integration of stochastic Hamiltonian systems) is the most interesting case. Then numerical
approximations should only be realized by exact (coherent) and asymptotically exact numer-
ical techniques (e.g. by implicit midpoint rules). In this respect there is still plenty of work
to do - a challenge for the new millennium. Some initial illustrative examples can be found
in Schurz (1999).

5.7.10 Hofmann-Platen's M-stability concept in C1

Here we refer to a specific test equation and a stability concept introduced originally by
Hofmann and Platen (1994, 1996), whereas its meaningfulness still has to be discussed.
Consider the one-dimensional complex- valued Stratonovich SDE

dXt = (1 - p)\Xt dt + a^fpXt o dWt (5.7.38)

which is equivalent to the complex-valued Ito SDE

dXt = (1- -p)\Xtdt + ^fp\XtdWt (5.7.39)

with A = Re(X) + Hm(A),o~ = Re(o~) + ilm(a) 6 (D where a2 = A, i2 = —1, where
W — (Wt)t>o represents a one-dimensional, real-valued Wiener process. The real-valued
parameter p 6 [0, 2] describes the degree of stochasticity in test equation (5.7.38). For p = 0
one has a purely deterministic equation, for p = I a pure Stratonovich SDE with no drift,
while for p = 2 we have an Ito SDE with no drift term. Numerical methods applied to test
equation (5.7.38) can be written as

Yn+1 = G(\An,p)Yn = r G ( A A f c , p ) \Y0 (5.7.40)

in recursive form with complex-valued stability transfer function G related to the cor-
responding numerical method applied to SDE (5.7.38) such that G : <D x [0, 2] — > <D does
not depend on the sequence Y = (^n

Definition 5.7.17 The Hofmann-Platen M-stability set of a numerical method Y =
(Yn)n€lN applied to test SDE (5.7.38) is defined to be P = (T p : 0 < p < 2} with HPM-
stability regions

Tp = {AA e 1/7 : Re(\) < 0, essu sup |G(AA, p)\ < 1}

where esswsup denotes the essential supremum with respect to all uj e fL

Thus the concept of HPM-stability refers to the worst case scenario which might arise by
numerical dynamics. Regions of HPM-stability of some numerical methods, like that of the
explicit Euler method and drift-implicit Euler method; are depicted in Hofmann and Platen
(1994, 1995) and Platen (1999). For example, when p = 0, then the HPM-stability region is
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presented by the common circle region Fp of linear deterministic A-stability. With increasing
p e [0, 2] and Re(\) the HPM-stability region may monotonically shrink for the explicit Euler
method (as it happens for linear, real-valued test SDEs (5.7.38) anyway) - a fact which
does not surprise us much due to the specifically inherent structure of test equation (5.7.38)
and simultaneously growing noise intensities (For example, compare with the qualitative
behavior of equivalent Ito dynamics (5.7.39), where the increase of real parameter p e [0, 2]
yields destabilization effects on the moments under the condition Re(\) < 0 and p > 2!).
The drift-implicit Euler method has a larger HPM-stability region than the explicit Euler
method, however the HPM-stability regions for both methods do not contain the entire p-
axis due to the test equation (5.7.38). This fact implies step size restrictions leading to the
natural choice of maximum and minimum step sizes - an experience which is incorporated in
any sophisticated deterministic variable step size algorithm anyway. The concept of HPM-
stability seems to be designed especially for dealing with stability issues of weakly converging
numerical methods using equidistant step sizes, for which more degrees of freedom while
simulating involved random variables are observed in general. For strong, pth mean and
almost sure converging numerical methods, the concept of HPM-stability does not seem to
be very appropriate. It even is too impractical, due to the very erratic behavior of random
noise terms. However, the choice of test equation (5.7.38) together with the concept of
HPM-stability represent one of the strongest criteria of numerical stability one might ask
for and exhibit an interesting combination of effects of different stochastic calculi on the
qualitative asymptotic behavior of numerical dynamics.
Our alternative suggestion: Take the complex-valued one-dimensional test equation

dXt = \Xt dt + viXt * dWl + cr2Xt * dW? (5.7.41)
("1)

interpreted in the stochastic (1/1, f2)-calculus sense with deterministic parameters v\,V2 €
[0, 1] (i.e. i/k = 0 corresponds to Ito calculus, v^ = 0.5 to Stratonovich calculus), which is
equivalent to the complex- valued Ito SDE

dXt = (A + 1/1 CT? + wl) Xt dt + <TI Xt dW} + c72 Xt dW? (5.7.42)

with A = Re(X)+iIm(X), c?k = Re(ffk) + ilm(ak) G C, where Wk = (Wf)t>o represent two
independent, one-dimensional, real-valued Wiener processes. The real-valued parameters
Vk G [0,1] describe the influence of changes of stochastic calculus in the test equation
(5.7.41). Such a test equation would be representative for at least the class of SDEs with
varying stochastic integration calculus and with some commutativity (between drift and
diffusion terms, which is trivially fulfilled in the one-dimensional real-valued situation under
the absence of drift terms). Moreover, the essential stability region for equidistant
numerical approximations with stability transfer function GVl „., should rather be defined
by

_ ~ ;, o
-1/1,1/2 * /» — ./ /\ — . . / / » I /- II

for numerical methods with Yn+i = GVltV2(\&n,<Ti\f&, ^VA) Yn to test the influence of
stochastic integration calculus. Certainly, for stability investigations of variable step size
algorithms or with multidimensional test equations, more care is needed, and the theory of
monotone operators could be exploited. Note that, for linear, one-dimensional test equa-
tions, one does not need any numerical method at all to generate its solution since one
knows the explicit solution expression due to the naturally induced commutativity property
in one dimension (Note the immense complexity of the stochastic test equation problem
which continues to be a worthwhile and open discussion.).
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5.7.11 Asymptotic stability with probability one
A very subile question is represented by the problem of asymptotic stability of numerical
approximations with probability one. This question can be studied for equidistant approx-
imations applied to linear SDEs as follows. For an approach, let us recall the concept of
numerical asymptotic stability with probability one.

Definition 5.7.18 The numerical sequence Y = (Yn)n^ff^ is called numerically asymp-
totically stable with probability one if

lim \\Yn\\ = 0
n—>+oo

with probability one.

An application of the well-known strong Law of Large Numbers (SLLN) and the law of
iterated logarithm provides the following crucial tool to verify asymptotic stability with
probability one.

Theorem 5.7.19 Assume that a discrete time stochastic process Z = (Zn)n€JN w^h non-
negative real values (a.s.) has a independently and identically distributed positive stability
transfer function G(k) satisfying

and IE [ln(G(k))}2 < +00 for all k e IN.
Then Z = (Zn)n€j^ converges to zero with probability one iff IE [ln(G(k))] < 0.

To establish asymptotic stability with probability one for an originally given numerical
method Y = (Yn)n€^ one may consider the pathwise quadratic evolution Zn = ||5^n||2 by
taking the squared Euclidean norm of Yn. Then one can identify the nonnegative random
variables G(n) such that Zn+i = G(n}Zn for linear or linearly dominated problems, and
it remains to check the equivalence criterion stated by Theorem 5.7.19. For example, the
drift-implicit Theta methods applied to bilinear SDE with equidistant step sizes may fail
to produce asymptotically stable approximations with probability one, even though they
possess mean square A-stable numerical approximations for 0 > 0.5. However, the fully
implicit weakly converging Euler methods (see Kloeden and Platen (1995), p. 337)) and the
balanced implicit methods (BIMs) with any equidistant step size produce asymptotically
stable approximations with probability one. For example, consider the one-dimensional Ito
diffusion equation

dXt = aXtdWt,
as suggested by Mil'shtein, Platen and Schurz (1992, 1994, 1998). Take BIMs with scalar
weights c° = 0 and c1 = \a\. Then asymptotic stability with probability one is established
by application of Theorem 5.7.19 with

E \ln < 0

with independently identically Gaussian distributed increments AW^ € A/"(0, A), provided
that one has the nontrivial situation |cr| > 0.
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5.8 Numerical Contract ivity
To study the numerical stability behavior which corresponds to the often-cited property of
control on error propagation, one has to introduce the concept of numerical contractivity.
This concept replicates the needs of a numerical approximation algorithm better than that
of numerical stability in respect to control of error propagation in the course of numerical
integration. Unfortunately, a lot is not known about this. The only contribution in this
respect in stochastic analysis could be found in Schurz (1997). In that monograph one
basically exploits the monotonicity of coefficient systems (a,b^) of the related test class
of SDEs. It is also worth noting that, for linear systems with multiplicative noise, the
concepts of stability and contractivity coincide. However, for general nonlinear systems or
systems with additive noise they do not. For systems with additive noise, the concept of
contractivity is apparently much more appropriate than that of stability in describing the
initial error propagation in numerical algorithms and in stochastic processes for controlling
their convergence.

5.8.1 Contractivity of SDEs with monotone coefficients
Since a lot is not known about contractivity of continuous time SDE according to our
knowledge until 1999 (please, feel free to check the literature), we feel a necessity to report
about one specific result in the case of SDEs with monotone coefficients. This is taken
from Schurz (1996, 1997). Suppose that [ti,t2] C [0, +00) with .Ftl-adapted instants t\,t2
and ti < t% (e.g. ti,tz deterministic) only contains .Ftl-adapted times s,t. Let x,y be
deterministic or any J-"s-adapted values in the statement of the following definition.

Definition 5.8.1 A stochastic process X = (Xt)t>0 with basis (ft, F , (Ft)o<t<T, IP ) is said
to be strictly uniformly pth mean contractive on [£1,^2] with respect to domain E> iff

6 IRVt,s e «i,t2] V z , 2 / e E >

Bs[\lX.,x(t)-Xs,v(t)\\>>ra]=eXp(pK$\t-s\)\\x-y\\* (5.8.1)

with strictly uniform pth mean contractivity constant K£ .

In general K* , ED could be random, but then some necessary extra assumptions on X, K£ , E>
must be made to ensure the meaningfulness of the introduced concept. In particular, local
and global contractivity can be discussed within the same definition as well. One can also
discuss concepts with forward and backward contractivity, but this is omitted here due to
lack of space. Now, we confine ourselves to SDEs.

Definition 5.8.2 A SDE (5.2.1) is said to have a strictly uniformly pth monotone
coefficient system (a, &) on [ti,t2} with respect to open domain ID iff
3KUC 6 IR Vt[ti, t2] Vx, y 6 ID

^ m

< a(t, x) - a(t, y),x-y >d +- ̂  \\V(t, x) - V (t, y)\\2

* «c * -
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Theorem 5.8.3 (Schurz (1996, 1997)). X satisfies SDE (5.2.1) with pth mean monotone
coefficient system (a, b>}.
Then X is pth mean contractive for all p > 2. The "worst case" pth mean contractivity
constant K* can be estimated by

KG S KUC < KOL-

Thus the propagation of initial perturbations is under control in the case of SDEs with
pth mean contractive coefficient systems (a, V). For nonautonoumous variants, see Schurz
(1996, 1997, 1999).

5.8.2 Contractivity of implicit Euler methods

The only class of numerical methods which is known so far and provides pth mean contractive
approximations for SDEs with monotone coefficient systems (a, b3) is the drift-implicit Euler
method.

Theorem 5.8.4 (Schurz (1996, 1997)). Assume the SDE (5.2.1) has a mean square mono-
tone coefficient system (a,V).
Then the drift-implicit Euler method applied to (5.2.1) performs a mean square contractive
numerical approximation for all uniformly admissible step sizes (An

For an elementary proof, see Schurz (1996, 1997, 1999).

5.8.3 pth mean B- and BN-stability
It is natural to ask to transfer the deterministic concept of .B-stability to the stochastic case.
This can be done in the pth mean moment sense fairly straightforwardly, and it has been
studied by Schurz (1996, 1997, 1999) in the case of SDEs at first. From those references we
recall the definition

Definition 5.8.5 A numerical sequence Y = (Yn)ne]N (method, scheme, approximation,
etc.) is called pth mean B-stable if it is pth mean contractive for all autonomous SDEs
(5.2.1) with pth mean monotone coefficient systems (a, ft-7) and for all admissible step sizes.
It is said to be pth mean BN-stable if it is pth mean contractive for all nonautonomous
SDEs (5.2.1) with pth mean monotone coefficient systems (a, V) for all admissible step sizes.

Theorem 5.8.6 (Schurz (1996, 1997)). The drift-implicit Euler method applied to ltd
SDEs (5.2.1) performs a mean square BN-stable and B-stable numerical approximation.

The proof is an immediate consequence of the proof of Theorem 8.2. See Schurz (1996, 1997,
1999) for more details.
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5.8.4 Contractivity exponents of explicit-implicit methods
In general, one is aiming at implementation of methods which have the controlled error prop-
agation and stabilized numerical evolutions toward some invariant manifolds. In particular,
the exponential growth behavior of errors in discretized dynamics is of special interest. More
generally, consider stochastic dynamical systems X(t, z) on (fi, f, (^-"t)(g]j^,P ) started
at X(0, z) = z & ID C IRd at time t = s. Again, for brevity, we shall state the following very
general definition, referring to continuous and discrete time scales simultaneously.

Definition 8.4. The upper (forward pth moment) contractivity exponent of a
stochastic dynamical system X(t, z) on K) is defined to be

KP := l imsup-ln(]E| |A'(t , i)-X(t,3/) | |p) (5.8.3)
t— > + oo t

for X(to,x) = x,X(to,y) = y 6 D (a.s.). The lower (forward pth moment) contrac-
tivity exponent of X(t, z) on ID is defined to be

KV := l iminfi /n ( T E \ \ X ( t , x ) - X(t,y)\\p) (5.8.4)
^ t-» + oo t

for X(t0,x) = x,X(t0,y) = y <E ID.

Let us now look at uniform estimates of those contractivity exponents in the case of a
class of nonlinear stochastic difference equations with monotone coefficients. Fix a deter-
ministic domain ID C TR,d. Now consider again the d-dimensional iterative mappings

Xn+1(z) = Xn(z) + *g(Xi(z) :i<n + l)An + ^(X^z) : i < n)An

(^(3) : i < n)^^K~n (5.8.5)
.3=1

on the fixed deterministic domain D (a.s.), started at any z £ ID, where deterministic
An = tn+i — tn is a sequence of step sizes with monotonically increasing time-instants
(^XelN and limi^+oo U — +00, and £^ are real-valued, independent random variables on
probability space (£1, f, P ) with moments

ECi = 0 and E|^|2 = K) 2<+oo.

For convenience of statement, define Sn(x,y) := x^ - y^. Since the analysis of nonlinear,
nonautonomous, discrete time stochastic mappings turns out to be very difficult, we restrict
our attention to the case of mean square calculus, as before.

Theorem 5.8.7 (Schurz (1999)). Let process (^n(^))ne£V sa^sfy the stochastic difference
equation (5.8.5) started at value z e ID under the above-mentioned conditions for all n 6 IN,
where all ££ are independent of X0(z) as well. Assume that Vn 6 J7VVx^,7/W e IRd(l =
0,l,... ,n + l )Vj = l,2, . . . ,m : < $£(z« : I < n + 1) - $£(y« : I < n + 1), 6n+1(x,y) >
< ci(n)\\6n+1(x,y)\\*

(x,y)> < cE(n)\\8n(x,y)\\2

n+l)\\2 > c^(n)||5n+1(x, y)||2 (5.8.6)
l<n)\\2 < c0

B(n)||5n(x, y)||2

l<n)\\2 < c3(n)\\5n(x , y)||2
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w/iere c/(n),CE(n),Co(n),cf(n),Cj(n) are finite, deterministic, real numbers.
Then

E
i=0

2cE(i)

< lim sup
n—>-f-oo

Furthermore, if Vn 6 Rd(l = 0, 1, ...,n + 1) Vj = l,2,.. . ,m : < $£

(5.8.8)

< n) -
> <g(n)\\6n(x,y)f

-2cE(n)A

where c/(n),c_g(n), CQ(H), Cg'(n), c - (n) are finite, deterministic, real numbers, then

E
i=0

2cB(i) + 2c7(i)

lim inf
n—>+oo i+l

Remark TTws theorem provides a uniform estimate of the "spectrum" of (forward) pth
moment contractivity exponents for the class of stochastic difference equations satisfying
monotonicity conditions (5.8.6) and (5.8.8). Of course, these estimates are again "worst
case estimates" (but sharp ones, consider linear equations). The obtained result is useful
in controlling the propagation of initial errors by explicit-implicit numerical methods. The
splitting into an explicit part ̂  and implicit part $Q should be realized such that Theorem
8.4 can be applied, and uniform boundedness of contractivity exponents of discrete dynamic
from below and above can be achieved in accordance with the estimates of contractivity
exponents of the underlying continuous time system. This estimation procedure can be used
to prove convergence of nonlinear numerical methods as in deterministic analysis, built upon
the role of contractivity in the interplay of main principles of numerical analysis.

5.8.5 General V-asymptotics of discrete time iterations
Now we are interested to estimate the exponential growth behavior of discrete time stochastic
processes along certain functionals rather than for the process itself. More generally, we
may consider stochastic dynamical systems X(t,z) on ($7, .F, (ft)tex, B3 ) started at
X(0, z] = z & K) C IRd at time t = s. The time scale t 6 T C IR could be discrete or
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continous. Again, for brevity, we shall state the following very general definition, referring
to continuous and discrete time scales simultaneously.

Definition 5.8.8 The upper (forward moment) ^-exponent of a stochastic dynamical
system X(t,z] onTD is defined to be

\v := ]imsup-ln(JEV(ttX(t,z))) (5.8.10)
t-»+oo t

for X(to,z) = z € ID (a.s.). The lower (forward moment) V-exponent of X(t, z) on
ID is defined to be

Xv := l iminf-Zn (IE V(t,-*•(*, z))) (5.8.11)
t—>+oo t

forX(t0,z) = z

This definition and related concept of V-exponents have been introduced by Schurz (1999).
By enlargement of dimension one may relate to both properties: contractivity and stability
along functionals V(X) of the dynamics of X. We are particularly interested in estimation
of these V-exponents belonging to stochastic numerical methods. Then, in analogy to
deterministic analysis, the following discrete time inequality turns out to be very useful.
Take An = tn+i —tn as the current step size. Let (tn)n6JXf be a monotonically nondecreasing
sequence of deterministic time- instants with tn diverging to +00 as n tends to +00, and
define

AE K := IE V(n + I , Xn+l) - E V(n, Xn)
for a discrete time ID-valued stochastic process X = (^n)nejsf on the probability space
(ft,.F, (•7rn)n€iN.IP )• Suppose that AE Vn < fcnE V(n,Xn) (for all n e IN). Making use
of elementary splitting

z(n + 1) = z(n) + z(n + 1) - z(n)
with z(n + 1) := IE V(n + 1, Xn+i), one concludes

_ " _ / ™ _ \
z(n + 1) < z(n)(l + kn) < z(0) JJ(1 + kt)+ < z(0) exp ^ kA .

i=0 \i=0 /

On the other hand, when AE Vn < fcnE V(n,Xn) and 1 + kn > 0 (for all n £ IN), one
recognizes the validity of

which implies

z(n + 1) > z(n) exp (~^) > ^(0) exp fj^ j^ ) '

using elementary inequality
1 ^ . x——— < exp( — ——— } .

1 + x ~ ^ l + x'
Taking the exponential logarithm and limit when integration time tn advances implies the
following fairly general assertion.
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Theorem 5.8.9 (Schurz (1999)). Assume that JE V(0, X0) < +00 for a function V :
INxTD — > IR with

knJE V(n, Xn)<&IEVn< knIE V(n, Xn)

for all n G IN, where kj_,ki are deterministic, real constants along the dynamics of process
(Xn)n^fl], and for all n & IN

k>0.n

Then, for all n G IN, we have

EV(Q,X0)
\i=0 )

and, if the limits exist, then
n—1 , n—1

lim inf —————— < Xv < V < lim sup
-

Remark Theorem 5.8.9 can be used to prove some useful results concerning the estimation
of moment stability and contractivity exponents of discrete time random iterations with V(x]
where V is an appropriate nonnegative function or functional for random iterations as they
occur while applying numerical methods to SDEs. An example is given by V(x) = \\x\\2

with Euclidean vector norm \ \ - \ \ , as used for the mean square criterion (both stability and
contractivity). But, often other functionals are more appropriate. For an example in this
respect, see the next subsection. Under the existence of Riemann-integrals ft K(s)ds with
ki = K(ti)£±i one can also derive corresponding continuous time versions by taking the limit
of arising Riemann sums in corresponding discrete time inequalities. It is always possible
to find k_i such that 1 + k_i > 0. // only one k_iif with k_itf = — 1 exists, then our estimate of
sequence z(n) from below reduces to the trivial one, i.e. z(ri) > 0 at least for all n > i*.
Thus, this latter case would not be very meaningful in the estimation process anyway. The
expectation operation in the Theorem 8.5 can be dropped even, and the result would still be
valid.

5.8.6 An example for discrete time 1/-asymptotics
For the sake of simplicity and illustration, we shall consider the stochastic oscillator with
multiplicative white noise

x + 2^x + cu2x = crx£t (5.8.12)

where £, uo > 0 and the stochastic integration is understood in the sense of Ito. Due to
linearity with multiplicative noise, the stability and contractivity issues coincide with each
other for the system (5.8.12). Then the corresponding deterministic equation has an asymp-
totically stable zero solution if 0 < £ < 1, and does not exponentially grow if 0 < C <• 1-
Thanks to Theorem 8.5, we know about the stochastic version that the upper F-exponent
characterizing the maximally attainable exponential growth of trajectories of the stochastic
dynamics along V(x,y) = y2 -f- u>2x2 is not larger than zero if 0 < a2 < 4(^uj. Let us now
look at the discretization of such a equation by numerical methods. Define

V(n + 1, x, y) := w^x2 + (1 + 2<>An)y2
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where An = tn+i — tn is current step size, and vn+\ := E V(n + l,Xn+i,Yn+i). For
illustration purposes, the stochastic oscillator (5.8.12) is discretized by the fully drift-
implicit Euler method given by

Xn+i = Xn+Yn+l&n (5.8.13)

+i

where AWn = W(tn+i) — W(tn) along a time-discretization (*n)ne]Ni

E [X0
2 + Y2] < +00.

Now, let us look at the growth behavior of discretized oscillator (5.8.13). First, we
equivalently rearrange the scheme (5.8.13) to an explicit one. Thus, one arrives at

X.n+l = Xn •Yn (5.8.14)

Yn+l = —. Xn
AWn

After some calculations this relation implies

hence

IE 1 +

(a2 -

Yn.

+ a;2 A2 Y2\1 n >

AE Vn = -E

+E

^ A2

- u;2A2 -
J- irt

J +

Now, we may choose kn:kn as indicated below in Theorem 5.8.10, and apply Theorem 5.8.9
to our situation with those kn,lcn. Thus, the assertions of Theorem 5.8.10 follow straight
forward by elementary analysis of the obtained exponential expressions.

Theorem 5.8.10 (Schurz (1999). Assume that the stochastic oscillator (5.8.12) is dis-
cretized by the fully drift-implicit Euler method (5.8.13) along a time discretization (tn
and

IE [X2 + yo
2] < +00.

Then, for all n 6 IN, all I G -CV with 1 < I < n, we have

iexp < vn+1=IEV(n+l,Xn+l,Yn+l) < v,exp
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for the fully drift- implicit Euler method (5.8.13), where

-r = ~^2Af (1 + 2Cu;A<_1) + [(a2 -
' (1 + 2CwA i_1)(l

and
, = ~^2A2(1 + 2C^Ai-i) - [(a2 -
- ~

Furthermore, if (AT7,)n€^y- zs a deterministic sequence then the V -exponents of numerical
method (5.8.13) can be estimated by

1 n~1 k — 1
liminf — V^ — :=1— < \v < \v < limsup —
n^+oo tn ̂  1 + kt n-*+oo tn

Additionally, in the following assume that

3Aa, Afc e ffi+ : Vn e W 0 < Ab < An < Aa < +c» . (5.8.15)

(o-2-2Cw)An-2<Wln_1(l+2CwAn) < Q (5.8.16)

for all n G W then

V < -T-

( (72-2Cw)An-2CwAn_1(l+2Ca;An) > 0 (5.8.17)

for all n G IN then

AA

Remark Most of the clever variable step size algorithms have implemented conditions on
the step size selection like that of (5.8.15). We can conclude from our assertion that the
fully drift-implicit Euler method (5.8.13) applied to stochastic oscillator (5.8.12) produces
overdamped approximations compared to the asymptotics of the exact solution. This can be
seen particularly in the critical case (the energy-conservative case) when a = 4£w under the
condition (5.8.15). However, the observed effect of numerical stabilization also explains that
the requirement (5.8.15) is meaningful in variable step size algorithms in order to achieve
asymptotically stable approximations (i.e. with "sure side argumentation"). Asymptotically
considered, when maximum step size A0 tends to zero, the V-exponents of the continuous
time dynamics (5.8.12) are correctly replicated by the discretization method (5.8.13), which is
what we would naturally expect, and with a convergence order in terms o/Aa. Unfortunately,
at this writing, the author does not know any other stochastic numerical method which has
been examined with respect to "nonstandard" stability and contractivity behavior, as exhibited
by the concept of V-exponents and applied to SDEs here.
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5.8.7 Asymptotic contractivity with probability one
Adapting Theorem 5.7.19 to the case of stochastic numerical contractivity, we may verify
the contractivity of numerical approximations with probability one, applied to SDEs with
Lipschitz continuous coefficient systems (a,l>>). Since, for linear systems with multiplicative
noise, the concepts of contractivity and stability coincide, the major interest lies only in
application to the case of nonlinear SDEs. Thus one can prove the asymptotic contractivity
of balanced implicit methods (BIMs) with probability one, applied to nonlinear SDEs with
strictly dissipative drift a and Lipschitz continuous coefficient systems (a, V) using any
equidistant step size A and appropriate uniform estimates of one sided Lipschitz constant
KQLC < 0 and Lipschitz constants Kj* > 0 of the linearly dominated coefficients (a, V] as
their scalar weights Co = ~KOLC!> ^i ~ KL I- Other with probability one asymptotically
contractive numerical methods are not known to the author during at this writing, and the
interesting question arises as to whether one can construct probability one asymptotically
contractive numerical methods other than certain classes of BIMs?

5.9 On Practical Implementation
Although the theory of numerical algorithms is understood fairly well nowadays, there are
plenty of interesting questions left to be discussed for the efficient implementation of stochas-
tic numerical methods, such as the questions of parallelization, efficient generation of mul-
tiple integrals, variance reduction, preservation of algebraic boundary conditions, approxi-
mation of stopping times and nonsmooth, path-dependent functionals, optimal control, the
role of random and quasi-random number generation, and the influence of statistical and
roundoff errors for nonidentically distributed random variables.

5.9.1 Implementation issues: some challenging examples
In general it is advisable to study the underlying continuous time dynamics as much as one
can before implementing numerical routines. Often, by this procedure the computational
effort can be reduced significantly, as manifested in the following.
Stochastic Duffing Van der Pol Oscillator with White Noised Velocity. Oscillations
of a magnetic pendulum can be described by Duffing Van der Pol oscillators to some
extent. If the velocity component X\ := x ( t ) is only multiplicative!/ perturbed by white
noise, then one arrives at the SDE

dX(
t
l} = Xf}dt (5.9.1)

where W is a standard Wiener process, and a > 0 and a are real parameters determining
the displacement X\1' := x(t), velocity X^' = x(t), location of asymptotically stable rest
points (—v'a, 0), (\/a, 0) and noise intensity, respectively. First, we note that Stratonovich
and Ito interpretations of arising stochastic integrals coincide here. This results in Euler
methods being identical with Mil'shtein methods, Taylor methods with strong order 1.5
being identical, with Taylor methods with strong order 2.0, and so on. For example, the
explicit Mil'shtein method applied to (5.9.1) is implemented by linear-implicit, explicit-
implicit Euler or explicit Euler method

(5.9.2)

An
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thus no higher order multiple integrals need to be generated. However, the explicit Taylor
1.5 (= Taylor 2.0 here) method needs the generation of /(o,i),tn,tn+i and I(i,o,i),tn,tn+1 which
can be done by truncation of Karhunen-Loeve expansions up to some desired accuracy, see
Kloeden and Platen (1992). This example shows that higher order methods are imple-
mentable with lesser computational effort than theoretically predicted, and these methods
preserve the stochastic flow properties (e.g. "neighbors stay neighbors" ) a longer time than
lower order methods, caused by the specific smooth structure of SDE system (5.9.1). For
simulation results, see Kloeden, Platen and Schurz (1991).
A Stochastic Flow on the Unit Circle. Carverhill, Chappel and Elworthy (1986)
discussed the gradient stochastic flow generated by the SDE

dXt(x) = sin(Xt(x}) o dW} + cos(Xt(x)) o dW2 (5.9.3)

driven by two scalar, independent, real- valued Wiener processes Wl,W2, and interpreted
modulo 2-7T, started at initial angle x & [0, 2?r). We also note that the Stratonovich and Ito
versions coincide here. The flow belonging to equation (5.9.3) can be implemented by the
Mil'shtein scheme

Yn+l = Yn + sm(Yn)AW* + cos(Yn)AW2 + sin(2Yn)((AW^2 - (AW2)2} +

+ [coS(Yn)}2AW^AW2 - J(2ll), tn,tn+1 (5-9.4)

where Yn = Yn(x) mod 2?r, exploiting the elementary relation that

(i,2),tn,tn+1 (2,i), tn,tn+1

which can be concluded from Lemma 3.2. This is an example of noncommutative noise.
We need only to generate the multiple integral 1(2, i) (or alternatively I (1,2)) to achieve a
pth mean convergent numerical approximation of order 1.0. For first simulation results, see
Kloeden, Platen and Schurz (1991)
A Stochastic Flow on the Torus S2 = [0,27r) x [0, 2?r). Baxendale (1986) has dealt
with the calculation of Lyapunov exponents (i.e. characteristic numbers to describe the
exponential growth or decrease of trajectories in the phase plane) of the two-dimensional
angular stochastic flow generated by

dXt(a,x) = 2^V(Xt(a:x}}°dWl (5.9.5)
j=i

driven by four scalar, independent, real-valued Wiener processes W^ with diffusion coeffi-
cients

/ . . / . \ \ / _ . - / • - \ \
cos(x-i), (5.9.6)

/ I ~ nf ™ \ I£ O *7\,'.. I A'miX'2 I , O l X i , X ' 2 l = 1 / \ CO5(X2J, ( O . y . ( )cos(a) y y cos(ct) /

started at initial angle x = (XQ,XQ). Here a represents a bifurcation parameter, and Bax-
endale (1986) has calculated the bifurcation point 0.8 < a* < 0.9 when the system (5.9.5)
switches from the asymptotically stable mode (i.e. a Brownian motion remains as stable
mode) to an asymptotically instable one (i.e. no strict contraction can be observed to a
stable mode). Contractivity of that flow in the wide and strict senses can be observed
in terms of clusters of its trajectories in the phase plane. This flow can be generated by
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Mil'shtein methods as well. However, the full Taylor expansion is needed, and the gener-
ation of multiple integrals is more laborious, but desirable due to geometric properties of
the stochastic flow to be visualized. Numerical evidence of the bifurcation point «* can be
obtained by higher order numerical methods too. For simulations, see Kloeden, Platen and
Schurz (1991).
A Stochastic Planar Brusselators. For modeling unforced periodic oscillations in certain
chemical reactions it is common to use the Brusselator equations. After neglecting spatial
diffusion and centering at an equilibrium point, the following planar Brusselator occurs:

dt
dx2

~dT

= a — + ax\ + (1 + xi)2a

Xi) - (1 + Xi)2X2 (5.9.

where positive parameter a e 1R+ represents a Hopf bifurcation point for that system. A
stochastic version of planar Brusselator given by the Stratonovich interpreted system (the
model is motivated by Ehrhardt (1983) who investigated the existence of related invariant
measures.)

dX™ = ((a -

dX(
t
2} = (l +

o dWt

(5.9.9)

has been studied numerically by linearization in Schurz (1994, 1996, 1997). We recommend
using the class of balanced implicit methods with appropriate weights, since multiplicative
noise is essential for the modeling process here. However, care must be taken while choosing
adequate weights in order to not to destroy the property of linear asymptotic exactness.
A Generalized Stochastic KPP Equation. Elworthy, Truman, Zhao and Gaines (1994)
have studied approximate traveling waves for the generalized stochastic KPP equation.
The related SPDE in IR1 is given by

J_

M2

where Ax is the Laplace operator and

(5.9.10)

if
mild noise
strong noise
weak noise

with x, k, fj, £ IR . They have been particularly interested in studying the behavior of wM(t, x)
as n tends to zero - a situation which represents a real challenge for adequate numerical
integration. For simplicity, consider the mild noise case only. As commonly practiced for
parabolic PDEs, they discretize the space variable x on the subinterval [xi,x,j] with space
step size h — Xd~d

Xl- at first and arrive at the d-dimensional system of SDEs

dXt = (AXt ~a(Xt)) dt + -Xt dWt (5.9.11)

with multiplicative (diagonal) white noise, tridiagonal drift matrix

A =
2

2h"

/ -1
1

0
r\

1
-2

r\

0
1

0
0

. . 0

. . 0

0 1 - 2
. 0 1

0 \
0

(5.9.12)
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and drift vector components ai(xi, x2, ..., z<j) = (1 — £»)£». They suggested using the drift-
implicit Mil'shtein method (5.4.18) with 9 = 0.5 for numerical integration of system (5.9.11).
Since system (5.9.11) exhibits diagonal noise (hence commutative noise), the linearly drift-
implicit Mil'shtein method simplifies to resolution of

2 - An

(5.9.13)

where Yn = (^,1)1=1, 2,.. .,d denotes the linearly drift-implicit Crank-Nicholson-
Mil'shtein approximation of wM(i, x ) at position (tn, Xi) for fixed parameters k, /j*. Note,
in case of an explicit numerical method one would have to require the Courant-Friedrichs-
Levy-type condition 2/^A < h2. Then, using sufficiently small space step sizes h and initial
conditions as step functions or point mass (e.g. (f>(x) = 1 if x = 0 and 0 otherwise), the
numerical approximations (5.9.13) replicate the correct speed of wave propagation (even
with k=0), as Elworthy et al (1994) report. Note the theoretically predicted speed of propa-
gation, when starting with a 5-function, is proved to be \f2 — k2 due to Elworthy and Zhao.
They also used that numerical method to visualize the related stochastic flow. We might
also use balanced implicit Mil'shtein methods with diagonal implicit weights to control the
asymptotic stability with probability one or stochastic waveform relaxation methods as in-
troduced in Schneider and Schurz (1998) to exploit the computational efficiency of parallel
computers. However, future research is still needed to understand those complex numerical
dynamics better.
A Stochastic Heat Equation with Space-Time White Noise. A version of the
stochastic heat equation driven by space-time white noise W(t, x) is given by

du(t,x] 9d2u(t,x) . . M-.i,., x ,_ _ .<2 L « ) (5.9.14)

with initial conditions tt(0, x) = UQ(X), boundary conditions u(t, 0) = u(t, 1) on the domain
[0,1], where /z, a are certain real parameters. The nonlinearity parameter K e [0.5,2] in
diffusion controls the long time behavior, invariant measures and possible blowups for the
stochastic heat equation (5-9.14). Mueller (1991, 1993), Mueller and Perkins (1992), Mueller
and Sowers (1993) have studied the qualitative behavior of one-dimensional SPDE (5.9.14).
The space-time discretization of this quasilinear parabolic SPDE is not so trivial as it was
with the KPP equation (due to presence of nonlinearities and space-time white noise).
Luckily, the resulting SDE

dXt = A Xt dt + -= V (Xt) dWl (5.9.15)
Vh j=l

with b>(x) = (5i,jX*)i=it2,...,d (where Sij represents the Kronecker symbol), space step size
h = ^, and tridiagonal drift matrix A fulfills the commutative noise condition

I - 2 1 0 0 . . 0 1 \
1 - 2 1 0 . . 0 0

\
0 . . . 0 1 -2 1
1 0 . . . 0 1 -2 )

(5.9.16)

(due to diagonal noise structure) and again one might apply the linearly drift-implicit Mil'-
shtein methods as before, but now with multidimensional white noise. Under commutative
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noise the generation of multiple integrals simplifies to trivial products of noise and time
increments, cf. Gaines representation of MiPshtein methods in Section 4. However, for
pathwise simulation, as needed for investigating the flow structure, one has to take care of
appropriately adding discretized Wiener paths (one may appreciate using Levy's construc-
tion of Brownian paths). See Gaines (1995) for some details. We recommend to apply the
technique of balanced implicit methods to (5.9.15) to control convergence, boundedness and
stability.
A "So Simple Looking" Nonlinear Test Equation From Quantum Mechanics.
Several authors report serious problems such as suddenly-occurring, unnatural spikes during
simulation of the complex- valued intensity of the cavity mode to describe the photon number
while using positive ^representation in Quantum Mechanics. For example, see Smith and
Gardiner (1989) and Gilchrist, Gardiner and Drummond (1993) for details. The simplest
model of a cavity mode oscillator damped by one and two photon absorption is
governed by ltd SDE

dNt = -(l\ + Nt)Ntdt + iNtdWt (5.9.17)
z

where Nt € C! describes the intensity of cavity mode with parameter A G (C. We are still
searching for a stable numerical method to apply to SDE (5.9.17). Who does know an
asymptotically exact and stable numerical method or the solution of that puzzle for all
meaningful parameters of complex system (5.9.17)?
Nonlinear Test Equations From Polymer Physics. Ottinger (1996) has investigated
the polymerization process of polymeric fluids. In particular, motivated by the model of
Hookean dumbbells, one may arrive at models similar to the system of SDEs

dWt (5.9.18)i _
describing the length Xt e H^ of polymer chains in a polymeric fluid, where b € IR,^,
a 6 Md and B 6 !Rdx<i are appropriate parameters. This model can serve as an excellent
nonlinear test system for the qualitative behavior of stochastic numerical algorithms, which
offers plenty of challenging features concerning variance reduction, boundedness and stability
issues due to its inherent nonlinearity in the drift part with some mean field interaction.
Certain partial-implicit methods seem to perform best from all methods known up to now.
See Ottinger (1996) for a first approach and some numerical experiments for similar models.

Numerous further applications of stochastic numerical methods can be found in the
Physics and Chemistry literature, see Section 9.8. All in all, the role of practical implemen-
tation should not be underestimated, and we could only indicate a little bit of what may
specifically happen and which issues seem to be important ones.

5.9.2 Generation of pseudorandom numbers
In order to implement the presented numerical techniques one needs to talk about how to
generate the resulting random variables (Wiener process increments, in general increments
of multiple integrals). To date, the most commonly accepted way is that of replacing ran-
domness by pseudorandomness of those variables. Of course this is done with care and
with the knowledge of introducing new errors whose propagation can be controlled by the
concepts of numerical stability and contractivity as presented in sections before. Note that
the resulting errors must be consistent with the convergence order to be achieved (i.e. only
errors which are locally of higher order of convergence) . How to replace random by pseudo-
random variables is an entire industry nowadays. For a recent survey on pseudorandomness,
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see Goldreich (1999). We will suppose for our survey that the reader is familiar with the
concepts of pseudorandomness, Kolmorgorov's complexity approach, Shannon's information
theory and computational indistinguishability (in fact we are already pleased to be able to
generate random variables by pseudorandom ones with some desired error order which does
not destroy the order of numerical convergence).

Let us restate the most-used random number generators based on sequences of uniformly
f/[0, l]-distributed, independent pseudorandom numbers (Un, Vn).
The Inverse Transform Method. An invertible distribution Fx = FX(X] of random
variable X can be generated from uniformly distributed random numbers U by taking

x(U) =inf{x: U <Fx(x)},

so x(U) = Fx
l(U) if F~l exists.

Box-Muller Method. A more efficient method to generate independent, standard Gaus-
sian distributed pseudorandom numbers is given by the Box-Muller method. This method
takes the transform

Gl
n = x/-21n([/n) cos(2irVn),G^ = >/-21ix(C/n) sin(27r\/ra)

to obtain two independent Gaussian distributed numbers (G^,G^). Correlated random
variables can be generated from those independent pairs by algebraic multiplication with
corresponding matrices arising from Cholesky factorization of given correlation matrix, e.g.
the factorization of correlation matrix

o
CCT = A3/2 A3/2

\ 2 2>/3

to generate the pair of multiple integrals

Polar Marsaglia Method. The Polar Marsaglia method also generates independent,
standard Gaussian distributed pseudorandom numbers, which exhibits a slightly more com-
putationally efficient generator than that of Box-Muller. This method avoids the time-
consuming generation of trigonometric functions by the following procedure. At first, trans-
form Un = 2Un — 1, Vn = 2Vn — 1 in order to achieve uniformly [—1, l]-distributed random
numbers. Next, check whether

Wn:=U* + Vn<l

or repeat until acceptance of pair (Un, Vn). Then, using the transform Wn < 1, we get

r<1 — 77 /O-r, — un V

which represent a pair of independent Gaussian distributed pseudorandom numbers (since
cos(arctan(£/n/Vn)) = Un/\/Wn and sin(arctan(£7n/Vn)) = Vn/VWn, this follows from the
Box-Muller method by noting that arctan([/n/Vra) is uniformly (0,27r)-distributed.). The
probability of acceptance of the numbers (Un,Vn) is calculated to be Tr/4 w 0.7864816.
Despite the possible nonacceptance, the Polar Marsaglia method is more efficient when
generating large quantities as needed for statistical estimations related to the stochastic
numerical algorithms (like multiple integrals at each integration step).

There are the commonly used methods of linear and nonlinear congruential generators
(see Niederreiter (1988, 1992, 1995), Eichenhauer and Lehn (1986)) and the Fibonacci gener-
ator (for practical usage on supercomputers, see Petersen (1994)) to produce pseudorandom
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numbers (Un,Vn) needed for the Box-Muller and Polar Marsaglia methods. See the cita-
tions for more details. We believe that it is important to be aware of the properties of
the pseudorandom number generator which one uses for the simulation procedures during
implementation of stochastic algorithms on computers. In particular, the measure of de-
parting from independence of the used pseudo- or quasi random sequence might affect the
quality of simulation results. Unbiased long range "random" number generators are needed
for reliable simulations. In this respect, the Fibonacci generators seem to be very promising.

5.9.3 Substitutions of randomness under weak convergence
A substitution of random variables representing the algebra of multiple integrals is possible
with some care. Mil'shtein (1988) and Talay (1995) suggest some "simplifications" of ran-
dom variables by multipoint distributed ones instead of Gaussian increments of the Wiener
processes. For example, the resulting simplified Euler method (5.4.1) uses independent,
two-point distributed variables AWn satisfying

F

In fact they conclude general moment conditions for the random number substitution with-
out destroying the original convergence order. A simplified weak order 2.0 convergent Taylor
method would use any variables AWn with

IE A W I + IE {Wn}3} + IE [ A W ] S | + IE

where Km is some real constant. For example, the three-point distribution with

P [AWJ
n = ±v/3A7} = -,P {AW3

n = 0} = -

satisfies this relation. In passing we note that these substitutions are justified when one con-
structs and investigates weak approximations of smooth, nonpath-dependent functionals of
solutions of SDEs. Practical experience shows that substitutions by continuous distributions
(like appropriate sawtooth distributions or uniform distributions fulfilling the mentioned re-
quirements of moments) perform better than the multipoint distributed random variables
in the numerical simulation of weak approximations. For strong and pth mean approxima-
tions one might also think of possible random number substitutions, but certainly much
more care should be taken in order to keep the convergence orders. For contractive numer-
ical dynamics, the influence of errors caused by "approximate random numbers" instead of
perfectly distributed ones is controlled by the magnitudes of the local convergence errors.
Roughly speaking, then pth mean errors in the probability distribution of the random num-
bers should not exceed the magnitudes of local pth mean convergence errors controlled by
the consistency property related to the used contractive numerical method. To date, we do
not know what happens in the case of noncontractive numerical dynamics. From all our
model assumptions, we believe that the property of being independently distributed is the
most essential one, since we have dealt with approximations of stochastic processes with
independent increments. Thus, the role of deviation from independence and Markovian
character should be studied in the near future (one needs appropriate measures describing
the deviation from independence of random number sequences). It is interesting to note that
truly multistep schemes for ordinary SDEs with deterministic nonpathdependent coefficients
(a,^) may already generate discrete time stochastic processes with dependent increments
(however, in the limit as maximum step size tends to zero, they approximate processes with
independent increments).
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5.9.4 Are quasi random numbers useful for (O)SDEs?
First of all, we can not completely answer this question at present. Certainly, within the
framework of weak convergence one has to discuss their use to approximate

= f f(x)px(T,x)dx= I f(Fx*(z)dz,
./Ex Jo

by sums jjj

with appropriate random numbers Zi according to Monte Carlo theory, where FX denotes
the distribution function of XT- These random numbers can be replaced by members of
low-discrepancy sequences (i.e. quasi random number sequences), see Niederreiter (1992),
in view of numerical approximation of the integrals by (quasi) Monte Carlo methods. The
main notion here is the notion of discrepancy of a point set in some r-dimensional unit
cube, where r represents a positive real number. For any a e (0, l]r with a = (0,1,02, ..., ar),
define the cube

[0, a) := {x = (zi, z2, ..., zr) e [0, ljr : z, < a,, i = 1, 2, ..., r}.

Then the *-discrepancy D*M(Zi)i<i<M of a given sequence (Zi)i<»<M with values Zi 6
[0, l)r is defined to be the quantity

#M,r(^)l<><M = sup Tn-,.-.^.-;.^.^-, _-Q
a€(0,l]" M

 i = l

as a measure of uniformity of generated empirical r-dimensional distribution belonging to
sequence (Zi)i<i<M and depending on the sampling size M & 1N+. An advantage of using
quasi random numbers is that sampling errors controlled by *-discrepancy are proportional
to 1/M compared to l/\/M achieved by standard Monte Carlo methods, where M denotes
the used sampling size. However, care should be taken while using quasi random numbers.
It is not quite clear to which advantages this leads in the case of approximating functionals
of diffusion processes, although the quasi-random numbers exhibit a smaller deviation from
uniformity compared to the uniformity of so-called uniformly distributed pseudorandom
numbers. The reason of a rather negative answer to the usage of quasi-random numbers
for numerical integration of SDEs is that we have to generate independent random num-
bers. Exactly this independence property of increments of involved Markov processes works
against the property of having the lowest possible discrepancy, as it is generally aimed with
quasi-random numbers; more precisely, independence and low discrepancy are contradic-
tory requirements. The central questions are whether the use of quasi-random numbers
leads to faster convergence of related approximations, to really more efficient integration
techniques and to which class of SDEs we observe an advantage compared to the pseudo
random number generators which are implemented in most modern computers. A first ap-
proach to the numerical treatment of a one-dimensional SDE with additive noise by the
use of quasi-random numbers is found in the paper of Hofmann and Mathe (1997). They
make use of the Koksma-Hlawka inequality for any function of bounded variation on [0,1]7"
as integrand - an inequality which provides an error estimate for the quadrature formulas
in terms of the discrepancy of the (Zi) and of the q-variation of / in the sense of Vitali
(q = 0,1, ...,r — 1). By this fundamental tool they prove that low discrepancy sequences of
quasi-random numbers must not be used for simulation of one-dimensional Langevin equa-
tions (i.e. linear test SDE with additive noise). Low discrepancy sequences can destroy
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the (mean square) consistency property of the constructed approximation for the Langevin
equation. This is demonstrated by the quasi random sequences of Kronecker-Weyl and van
der Corput by Hofmann and Mathe (1997). However, restricting to sequences of completely
uniformly distributed numbers yields sequences which may serve as quasi-random numbers,
since these sequences have discrepancy bounded from below as necessary for (mean square)
consistency. For more details, see their paper.

5.9.5 Variable step size algorithms
As one of the first implementations, stochastic variable step size algorithms could be found by
the school of Artemiev since 1985. For example, Averina, Artemiev and Schurz (1994) have
suggested adapting the deterministic procedures to construct variable step size algorithms.
A variable step size technique based on the comparison of deterministically 2nd order and 3rd
order embedded Runge-Kutta-Fehlberg methods applied to ltd SDEs on finite, fixed time-
intervals [0,T] works as follows (For Stratonovich systems one has a similar procedure.).
[1]. At first, fix a tolerance level e > 0 for the local error and choose the initial step size AQ
with 0 < A0 < min(l, T - t Q ) .
[2]. Second, evaluate the schemes

1 m

£

i ™
Yn+i = Yn + -(ki+k2 + k3) + V V(tn, Yn) AW£ (5.9.20)

^ ^i

where
KI = Ana(in, .in), K2 = Ana(cn + An, Yn -(- k\j

and
fc3 = Ana(in + -~, Yn + -(ki + fc2)).

[3]. Third, calculate the locally scaled error prediction

n-t-l,i
"n •— \

[4]. Fourth, accept the step size Ara if Sn < 5e, and otherwise choose the new step size

A new ^~n /- f. ~.. \
„ = ———————————————————c———;—————— (5.9.21)

( f ( f / On \~\ /"^ f f \\ ^ '

with fac = 0.9 as suitable adjustment factor and repeat this procedure with the second step.
The factors faci =0.1 and /ac2 = 5 control the ratio between maximum and minimum
acceptable step size, i.e. faci is understood as the coefficient for maximum increasing step
size, and /ac2 as the coefficient for minimum decreasing step size.
Obviously, this algorithm circumvents the time-consuming statistical estimation for pathwise
step size control. However, this technique seems to be appropriate especially for systems with
"small noises," since one suppresses the influence of noise terms and large noise intensities
in statistical decision making. This adaptive variable step size technique has been tested by
Averina, Artemiev and Schurz (1994) with great success. This algorithm can also be realized
with other numerical methods as basis methods (5.9.19) and (5.9.20) (e.g. Mil'shtein meth-
ods for treatment of the diffusion part, explicit-implicit or midpoint-trapezoidal methods
for the treatment of the drift part).
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Other contributions to step size and order selection for numerical approximations have
been carried out by the dissertations of Hofmann (1995) for weak approximations (using
extrapolation ideas) and recently by Mauthner (1999). The concept of variable and adaptive
step size and order selective numerical algorithm needs to be studied further, due to their
widely practical importance.

5.9.6 Variance reduction techniques
An important practical problem is that of reduction of occurring variances in the com-
putational estimation process. Significant contributions in this respect have been made
by Wagner (1987-1989) and Newton (1994). They develop the standard methods of im-
portance sampling and control variates, see Hammersley and Handscomb (1964) for a
general description. In both cases the Clark-Funke-Shevlyakov-Haussmann integral
representation theorem for functional of Ito diffusion processes provides the perfect
variate in the sense that it is unbiased and has zero variance, in order to reduce the variance
of functional of simulated diffusions. However, a balance between variance reducing effects
and computational efficiency has to be taken into account during practical implementation,
due to resulting computational complexity of stochastic algorithms.

Recall that the criterion of weak convergence involves the problem of approximating the
quantities E / ( X T ) - Two errors arise during approximation of these quantities, namely the
discretization error and the error of statistical estimation of expectations motivated by the
trivial observation

1 M

--
1=1

controlled by the discretization error controlled by statistical error

Kstat' M

with appropriate constants KW(T,a, f r 3 ' , X Q , Y Q ) and Kstat, maximum step size A > 0, weak
convergence rate (3 € IR+ and sample size M e EST. Thus, the main problem for weakly
converging approximations is the balanced control on the discretization and statistical er-
rors, and these errors should not be considered separately to achieve a desired accuracy in
weak approximation procedures. Moreover, the statistical error is increasing with growing
variance

VM(f) = I

where TE f(Ynr) is the substitution of TE f(Ynr) by statistical sampling procedures, e.g.
like TE f(YnT) = -^ 5^=1 f{YnT,i}- Now, it is natural to ask for methods to reduce that
statistical error by variance reducing techniques. The following basic techniques originating
from Monte Carlo integration theory are suggested.
Method of Control Variates. Roughly speaking, a control variate is a secondary vari-
ate which is simulated along the primary variate of the Monte Carlo method for f ( X ) .
This secondary (control) variate has. known mean, it should be a square-integrable random
variable, and it is positively correlated with;the primary variate. The control variate f can
be constructed by the Clark-Funke-Shevlyakpv-Haussmann integral representation theorem,
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involving certain Frechet derivatives of f ( X } and the linearized dynamics of the underlying
SDE. Newton (1994) then suggests then to use projection methods on certain Hilbert spaces
of random variables to calculate control variates. By subtraction of the secondary from the
primary variate f ( X ) one obtaines a lower variance than f ( X ) , and whose mean differs from
that of f ( X ) by a certain known amount. For more details, see Newton (1994). As a simple
example of the method of control variates, an unbiased estimate would be given by

where the parameter
=

P

is chosen such that the variance

Var(f(X)) +

is minimized. The latter procedure could be done for both variables X and YnT.
Method of Importance Sampling. Roughly speaking, the technique of importance
sampling involves the transformation of the underlying probability measure according to
the Radon-Nikodym Theorem before averaging. Thus one has

f(x) dp (x] = L< f(x]
where IP is the new probability measure. If X is drawn according to that new measure
F , then f(X)dTP fdJP (X) is an unbiased estimator for E f ( X ) . The theoretical way to
construct such a new measure is given by the Girsanov transformation under the validity of
Novikov criterion. Then X must be chosen from

m m

dXt = (a(t, Xt)-^U (t, Xt)i4) dt + Y. V (t, Xt) dWl

by discretization with Wiener process WJ = WJ + f0 u3
s ds such that

var(fiTf(X)) := W ^ ( n T f ( X } f - (E ^/(X))2 = ]E(p,Tf(X))2 - (E f ( X ) ) 2

is "small" - as an optimal control problem with Radon-Nikodym derivative

originating from the Girsanov transformation. The optimal u = (u-7') is given by the Clark-
Funke-Shevlyakov-Haussmann integral representation theorem.
Method of Antithetic Variates. The simplest version of this very general method uses
symmetries of already generated random variables compensating heavy contributions with
more variance for the estimator. For example, centered Gaussian distributed random pairs
(Gi,Gz) can be multiplied by the factor — 1, and one would save computational time and get
more symmetry in the random number generation - a technique which may lead to smaller
variances of simulated estimators In the spirit of this method is also the idea to take the
average ([/ +V)/2 of two already simulated random numbers (U, V) as a further realization.
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Method of Variance Reduction by Conditioning. It can also b<3 convenient to use the
conditional expectation IE [/(X)|j^j with some appropriate cr-field f as variance reducing
estimator. The variance is reduced according to inequality

Var(TE [f(X)\7]) < . V a r ( f ( X ) ) .

It could be a problem, however, to find that cr-field. It is interesting to note that some
implicit numerical methods like trapezoidal, midpoint or some balanced implicit methods
(and asymptotically exact integrators) reduce the occurring variances through their inherent
property of preconditioning in an almost optimal way.

All in all, the variance reduction problem exhibits a very challenging problem from the
practical point of view. This problem arises in particular when very small quantities f ( X )
must be estimated, as often is met in reliability investigation of structures in Mechani-
cal Engineering, and efficiently practically implementable and mathematically justified new
methods are urgently needed (cf. problems of reliability analysis in Earthquake Engineer-
ing).

5.9.7 How to estimate pth mean errors
An important practical question is how to estimate the resulting errors by statistical methods
- often pointed out by potential applicants. This question can be answered under the
existence of corresponding moments IE ||.||2p,p £ (0, +00). For example,

M

fe=i

where X^ , Yj denotes the kih sample of stochastic process values X, Y at time t-i € [0, T] .
This procedure is justified by the Laws of Large Numbers (LLN). More precisely, it can be
proved that there is a finite real constant Kstat > 0 such that

F IE \\Xt - M
k=l

for all e > 0, thanks to Chebyshev inequality. Moreover, there is a Gaussian distributed
random variable C such that

. \C\

thanks to the Central Limit Theorem (CLT). Corresponding confidence intervals are con-
structed by standard statistical procedures. It is worth noting that the rapidity of con-
vergence in the Central Limit Theorem (CLT) is usually estimated by the Berry-Esseen
Theorem which provides estimates of the convergence of probability distribution of given
the estimator in the form

M

sup IP/
•

<KBE

with appropriate real constant K BE > 0 satisfying (2-Tr)"1/2 < K BE < 0.8, where <3> =
represents the standard Gaussian probability distribution function, and provided that

\r-m \\Xi-Yi\\"
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are i.i.d. random variables with IE \rji 3 < +00 for fixed index i. (Recall that Var(.) denotes
the variance of inscribed random variable.). Besides, for reliable statistical estimation when
the moments IE ||.||2p do not exist, we advise consulting sophisticated literature on math-
ematical statistics. Mostly, one does not know the exact solution X. Then, for heuristic
comparison studies, one could substitute the values of X with the values of another very
accurate approximation process Z, e.g. with using "very small" step sizes compared to those
of Y, in order to get some rough picture about the error process at least. Of course, the
error process might also be depicted by the simulation of the corresponding error differen-
tial equation. For stochastic error process equations in case of Euler method, see Kurtz and
Protter (1991), and Jacod and Protter (1998).

5.9.8 On software and programmed packages
To our current knowledge, there are the following programmed systems mentioned in liter-
ature or known to us:

(i) Fortran programs built in PRESTO by D. Talay (1994)

(ii) Fortran programs built in DYNAMICS & CONTROL by S. Artemiev et al.

(iii) TURBO-PASCAL programs on Diskette of Kloeden, Platen, Schurz (1994)

(iv) C programs built in GNANS on UNIX platforms by B. Martensen

(v) OSCIL - a C simulation code on UNIX platforms for our private use

Furthermore, there are MAPLE codes written by Cyganovski (1995, 1996), and MAPLE
scripts by Kloeden and Scott available (1993). The latter codes are important in the sense
that the messy differential operator products resulting from the stochastic Taylor expansions
can be evaluated by symbolic manipulation routines as MAPLE fairly easily, compared to
classical handworks. Thus, using symbolic manipulation higher order Taylor methods could
be implemented much more easily than in the early days of stochastic numerics (remember
the problem of efficient generation of multiple integrals remains a problem, at least up to
the time of writing this paper at the end of 1999).

All in all, it seems to be still recommendable to develop corresponding software for
stochastic numerical analysis and simulations. Which package should be preferred (like
MATHEMATICA, REDUCE, MAPLE, MATLAB, etc.) is an fairly open question, too.
Personally, we recommend to write your own specific codes, since an optimal implementa-
tion surely depends on the specific nature of a given problem, after you have gained some
experience with'an available standard package (e.g. as mentioned above). However, there
is no hope of finding a universal, platform-independent toolbox for stochastic numerical
methods, since the field itself seems to be too complex and too rapidly expanding into new
directions.

5.9.9 Comments on applications of numerics for (O)SDEs
There is no need to emphasize the huge potential range of applications of stochastic algo-
rithms and their numerical analysis. To name a few applications which are already treated in
literature, see in Catchment Modeling by Unny (1984), in Stochastic Water Storage Models
by Ozaki (1985), in Random Vibrations by lyengar (1988), Quantum Physics by Smith and
Gardiner (1989), for the approximation of Lyapunov exponents by Talay (1991), Grorud and
Talay (1996), in Stochastic Hydrology by Karmeshu and Schurz (1993), in Markov Chain Fil-
tering by Kloeden, Platen and Schurz (1993), in Seismology by Karmeshu and Schurz (1995),
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in Polymer Chemistry by Ottinger (1996), in Mechanical Engineering by Roy and Schurz
(1996), in Stochastic Marketing by Schurz (1996), in Mathematical Finance by Rogers and
Talay (1997), in Nonlinear Filtering by Kannan and Zhang (1998), to Schrodinger equations
by Schurz (1999), among many others. We personally see that the most challenging field
is in the adequate numerical treatment of stochastic infinite dimensional systems, such as
stochastic partial differential equations (SPDEs).

5.10 Comments, Outlook, Further Developments
By no means can we claim any completeness of this survey. It should be understood only
as a tentative, first course introduction to the theory and applications of numerical analysis
of (ordinary) stochastic differential equations - nothing more. However, we hope that we
have given some more insight into the theory and related problems of stochastic numerical
analysis as well. There are a few of recommendable survey papers in the literature which
all readers are cordially invited to look at and compare. Just to mention few of them, see
Mil'shtein (1988, 1995), Kloeden and Platen (1989), Kloeden, Platen and Schurz (1991),
Talay (1995), Newton (1996), Platen (1999).

5.10.1 Recent and further developments
The recent research is currently concentrated on numerical analysis for jump diffusions (e.g.
see Liu and Li), Levy processes (e.g. see Protter and Talay), stochastic delay (functional)
equations (e.g. see Tudor), reflected diffusions (Lepingle, Slominski), forward-backward
equations (e.g. Ma, Protter and Yong), stochastic particle approximations (e.g. see Kurtz
and Xiong, Bossy and Talay), stochastic partial differential equations (SPDEs), the latter
area as its own field of development (e.g. see Hoo, Wong, Grecksch, Gyoengy, Davie and
Gaines, Alien, Novosel and Zhang, Matthies and Bucher, etc.) to name a few of those
"hot topics." Most of these contributions try to exploit purely deterministic ideas in this
rapidly growing field of research (such as Galerkin approximation, the method of lines, finite
elements techniques, discrete Sobolev space techniques and/or spectral methods for PDEs).

Fairly new fields of research are given by the numerical treatment of stochastic functional-
differential equations, stochastic singularly perturbed systems, stochastic differential-algeb-
raic equations, stochastic integro-differential equations or stochastic difference-differential
equations and their combinations. Promising results in those fields require an immense
preknowledge of several mathematical disciplines, and hence they represent a real mathe-
matical challenge for the 21st century. For example, the field of systems of nonautonomous
stochastic difference equations should be studied to understand the adequate construction
of numerical methods with variable step sizes and error control better, or, last but not least,
the convergence rates of approximations for stopping times rather than deterministic, fixed
terminal times.

5.10.2 General comments
The attached reference list is comprehensive, but not complete. We have only concentrated
on citing the key references, and we are sure that more ideas can be read from the physics
literature (e.g. from Gardiner (1997) or Ottinger (1996)).

All in all, it only remains to warn everybody not to go deeper into new fields of numerics
without studying the analytical theory before hand. Otherwise, they will one day have to
recognize that their numerical algorithms do not replicate the behavior of natural phenom-
ena. We also recommend understanding the so called "simpler case" of numerical analysis
of systems of (O)SDE at first. Explosions or "strange numerical behavior" are mostly due
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to ill-posedness, a lack of understanding, or too fast approaches to generalizing or putting
the learned things into practice. One should return to the theoretical studies and check the
presuming conditions of mathematical statements very carefully. In this respect the study
of qualitative behavior of related stochastic dynamical systems will gain more and more
importance in the challenging interface of deterministic and stochastic analysis.
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5.10.4 New trends - 10 challenging problem areas
• Randomized fractal calculus, stochastic-fractal Taylor and integral expansions

• Stochastic weak derivatives, numerics for stochastic distributions (on stochastic Schwarz-
spaces, stochastic Sobolev spaces)

• Numerics for p-variation stochastic integration calculus

• SPDEs, Stochastic Functional-Difference-Differential-Equations (SFDDEs)

• Stochastic Lyapunov-type numerical techniques, Numerical orbital stability

• Efficient statistical methods for all of that areas, Numerical computational complexity

• Numerics for optimal random stopping time problems, stochastic control, stochastic
resonance, stochastically coherent (adequate) methods

• Numerics for interacting particle systems in Mathematical Biology

• Efficient generation of random variables and (fractal) multiple integrals

• Numerics for the Schrodinger equation and serious real-world applications
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6.1 Introduction

This chapter of the handbook is intended to give a review of the theory of large deviations
and its applications. Here, "large deviations" are understood as the evaluation, for a family
of probability measures parameterized by a real valued variable, of the probabilities of events
which decay exponentially in the parameter. Except when stated otherwise, the proof of
statements in the text can be found in the book [DeZ98], and we will not repeat this fact
throughout the chapter.

We followed here largely the logical structure of [DeZ98]. That is, Section 6.2 describes
the definition of the large deviation principle (LDP) and some of its equivalent formulations
and basic properties. Section 6.3 provides an overview of large deviation theorems in 1R .
Moving to a more abstract setup where the underlying variables take values in a topological
space, Section 6.4 presents, after a short discussion on properties of the LDP, a collection
of methods aimed at establishing the LDP. These methods include transformations of the
LDP (i.e., how the LDP behaves under maps between spaces), relations between the LDP
and Laplace's method for the evaluation for exponential integrals, properties of the LDP in
topological vector spaces, and the behavior of the LDP under projective limits. Section 6.5
deals with LDPs for the sample paths of certain stochastic processes and the application of
such LDPto the problem of the exit of randomly perturbed solutions of differential equations
from the domain of attraction of stable equilibria. Section 6.6 deals with LDPs for the
empirical measure of (discrete time) random processes: Sanov's theorem for the empirical
measure of an i.i.d. sample and its extensions to Markov processes and mixing sequences are
discussed. The section ends with two particular applications of the LDP: one to hypothesis
testing problems in statistics, the other to the Gibbs conditioning principle in statistical
mechanics.
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We have not made an attempt here to give proper credit to all theorems and statements
in the text. The historical notes in the book [DeZ98] should be consulted for the history of
the subject and of particular theorems. In what follows, we describe only the major steps in
the development of the theory up to the mid 80s, referring the reader again to [DeZ98] for
details and extensive references. We conclude by mentioning topics which are not covered
in this chapter and references to them.

While much of the credit for the modern theory of large deviations and its various
applications goes to Donsker and Varadhan (in the West) and to Freidlin and Wentzell (in
the East), the topic is much older and may be traced back to the early 1900s and in particular
to the work of statisticians like Cramer, Chernoff, and Khinchine, culminating in the work
of Bahadur [BahTl] on the power of statistical tests. In a slightly different direction, Sanov
[San57] obtained his theorem in the mid-fifties, for real valued random variables.

The abstract framework for the LDP was proposed by Varadhan [Var66]. At that time,
the only "modern" large deviation principles available were the theorems of Schilder and
Sanov. At the same time sample path results began to be available in Russia through the
work of Borovkov [Bor67], and a few years later, through the seminal work of Freidlin and
Wentzell [VF70], [VF72], who introduced also an abstract foundation to the LDP.

The next crucial step forward was achieved through a series of papers of Donsker and
Varadhan [DV75a], [DV75b], [DV76], [DV83], starting in the mid-seventies, where they
developed systematically the large deviations theory for empirical measures in the i.i.d. and
Markov cases, and later showed its relevance to problems arising in statistical mechanics.
Related ideas were also introduced by Gartner.

Essential tools in the theory of large deviations also emerged around that time: sub-
additivity, which was used by Ruelle [Rue67] and Lanford [Lan73] in the context of ther-
modynamics, was introduced into large deviations theory proper by Bahadur and Zabell
[BaZ79]. Contraction principles which were introduced by Varadhan in his seminal paper
[Var66], were greatly expanded by Azencott [AzeSO], who systematized the use of exponen-
tial approximations. The use of convexity considerations was greatly advanced through the
work of Gartner [Gar77] and later refined by Ellis [E1184]. The systematic use of projective
limits was introduced by Dawson and Gartner in [DaG87].

Since the mid-eighties, there has been an exponential explosion in the quantity of work
devoted to large deviations theory and its applications. We refer the reader to [DeZ98]
for an overview of this work. Other treatments in book form, of Large Deviations Theory
may be found in [Var84], [FW84] (with emphasis on sample path results and the problem
of exit from a domain), [E1185] (with special emphasis on statistical mechanics), [DeuS89],
[Buc90] (with special emphasis on engineering applications), [SW95] (with special emphasis
on queuing problems), and [DuE97].

We conclude this introduction by noting topics which were completely left out from this
chapter: we barely discuss refinements of large deviation principles (in the form of precise
asymptotics occurring mainly in statistics and statistical mechanics), or subexponential
probabilities of large deviations (see [Nag79] for an account of the latter). In our discussion
of concentration inequalities via martingale differences, we do not discuss the beautiful
recent work of Talagrand [Tal95], [Tal96]. We have not discussed the intimate relation
between large deviations and equilibrium statistical mechanics, referring instead the reader
to [E1185]. Similarly, we have omitted a discussion of the relation between large deviations
estimates for Markov chains and analytic properties of their generators, referring the reader
to [DeuS89], [Sal97] and [Mar98]. We have completely omitted the discussion of hydro-
dynamic limits, an updated account of which can be found in [KL99]. When dealing with
empirical measures, we do not consider at all continuous time processes, referring instead
the reader to [DeuS89] for the required modifications. We do not cover at all the important
topics of large deviations in Banach spaces (see [DeuS89] for an account), large deviations
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for abstract gaussian processes (see [BeLd93] for a particularly transparent derivation of
sample path results and [DV87] for the empirical process results), the relations between
large deviations and information theory and engineering (see [CsKSl]), or the application of
large deviations and refinements to the study of heat-kernels (see [As81] for early results and
[BeLa91], [KuS91], [KuS94] for more recent work). Our treatment of large deviations for the
empirical measure of Markov chains does not cover the beautiful approach via regenerations,
developed by Ney and Nummelin [INN85], [NN87a], [NN87b]. Finally, we have not discussed
large deviations in the context of dynamical systems, and refer instead the reader to [KifQO],
[Kif92].

6.2 The Large Deviation Principle
The large deviation principle (LDP) characterizes the limiting behavior, as e —> 0, of a family
of probability measures {/ie} on ( X , B ) in terms of a rate function. This characterization
is via asymptotic upper and lower exponential bounds on the values that pte assigns to
measurable subsets of X. Throughout, X is & topological space so that open and closed
subsets of X are well-defined, and the simplest situation is when elements of BX, the Borel
u-field on X, are of interest. To reduce possible measurability questions, all probability
spaces are assumed to have been completed, and, with some abuse of notations, BX always
denotes the thus completed Borel cr-field.
Definitions A rate function I is a lower semicontinuous mapping I : X —> [0, oo] (such
that for all a e [0, oo), the level set \I//(a)={:r : I ( x ) < a} is a closed subset of X). A good
rate function is a rate function for which all the level sets ^i(a) are compact subsets of
X. The effective domain of I, denoted T>j, is the set of points in X of finite rate, namely,
T>j={x : I(x) < 00}. When no confusion occurs, we refer to T>j as the domain of I.
Note that if A" is a metric space, the lower semicontinuity property may be checked on
sequences, i.e., / is lower semicontinuous if and only if riminfXn_»x I(xn) > I(x) for all
x e X. A consequence of a rate function being good is that its infimum is achieved over
closed sets.

The following standard notation is used throughout. For any set F, F denotes the closure
of F, F° the interior of F, and Fc the complement of F. The infimum of a function over an
empty set is interpreted as oo.
Definition {/ie} satisfies the large deviation principle with a rate function I if, for all F € B,

- inf I(x) < liminf elog/ue(F) < limsup elog^e(F) < - inf I(x) . (6.2.1)°

The right- and left-hand sides of (6.2.1) are referred to as the upper and lower bounds,
respectively.
Remark: Note that in (6.2.1), B need not necessarily be the Borel cr-field. Thus, there can
be a separation between the sets on which probability may be assigned and the values of
the bounds. In particular, (6.2.1) makes sense even if some open sets are not measurable.
Except for this section, we always assume that BX ^ B unless explicitly stated otherwise.
The sentence "//e satisfies the LDP" is used as shorthand for "{/ie} satisfies the large devi-
ation principle with rate function 7." It is obvious that if /tze satisfies the LDP and F € B is
such that

inf I(x) = inf I(x)=IT, (6.2.2)
°
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then

lim elog/ze(F) = -7r . (6.2.3)

A set F that satisfies (6.2.2) is called an / continuity set. In general, the LDP implies a
precise limit in (6.2.3) only for / continuity sets. Finer results may well be derived on a
case- by-case basis for specific families of measures {//e} and particular sets. While such
results do not fall within our definition of the LDP, a few illustrative examples are included.
(See Sections 6.3.1 and 6.3.5.)

Some remarks on the definition now seem in order. Note first that in any situation
involving nonatomic measures, fj,f({x}) = 0 for every x in X. Thus, if the lower bound of
(6.2.1) was to hold with the infimum over F instead of F°, it would have to be concluded
that I(x) = oo, contradicting the upper bound of (6.2.1) because (J,e(X) = 1 for all e.
Therefore, some topological restrictions are necessary, and the definition of the LDP codifies
a particularly convenient way of stating asymptotic results that, on the one hand, are
accurate enough to be useful and, on the other hand, are loose enough to be correct.

Since /J,e(X) = 1 for all e, it is necessary that infxe^ I ( x ) = 0 for the upper bound to
hold. When / is a good rate function, this means that there exists at least one point x
for which I(x) = 0. Next, the upper bound trivially holds whenever infxep/(x) = 0, while
the lower bound trivially holds whenever inf.,;€r« I(x) = oo. This leads to an alternative
formulation of the LDP which is actually more useful when proving it. Suppose / is a rate
function and ^i(a) its level set. Then (6.2.1) is equivalent to the following bounds.
(a) (Upper bound) For every a < oo and every measurable set F with F C */(a)c,

lim sup elog/i<,(r) < —a. (6.2.4)
e^O

(b) (Lower bound) For any x 6 T>i and any measurable F with x & F°,

liminf elog^e(r) > -I(x) . (6.2.5)
e— >0

Inequality (6.2.5) emphasizes the local nature of the lower bound.
When BX C B, the LDP is also equivalent to the following bounds:

(a) (Upper bound) For any closed set PCX,

lim sup elogHt(F) < - inf I(x). (6.2.6)

(b) (Lower bound) For any open set G C

liminf elog^e(G) > - inf I(x). (6.2.7)
e— *0 x€G

In many cases, a countable family of measures p,n is considered (for example, when pn is
the law governing the empirical mean of n random variables) . Then the LDP corresponds
to the statement

- inf I(x) < liminf an\ogfJ,n(T) < lim sup aralog/un(F)
x€r° n— *oo n^oo

<- in f_ i ( z ) ' (6.2.8)
xer

for some sequence an — * 0. Note that here an replaces e of (6.2.1) and similarly, the
statements (6.2.4)-(6.2.7) are appropriately modified. For consistency, the convention an =
1/n is used throughout and p,n is renamed accordingly to mean /ua-i(i/n)) where a"1 denotes
the inverse of n H-> an.
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Often, a natural approach to proving the large deviations upper bound is to prove it first
for compact sets. This motivates the following, where in the sequel all topological spaces
are assumed to be Hausdorff.
Definition Suppose that all the compact subsets of X belong to B. A family of probability
measures {/ue} is said to satisfy the weak LDP with the rate function I if the upper bound
(6.2-4) holds for every a < oo and all compact subsets of 4 fj(a)c , and the lower bound
(6.2.5) holds for all measurable sets.

It is important to realize that there are families of probability measures that satisfy the
weak LDP with a good rate function but do not satisfy the full LDP. For example, let ^€ be
the probability measures degenerate at 1/e. This family satisfies the weak LDP in IR with
the good rate function I ( x ) = oo. On the other hand, /j,e can not satisfy the LDP with this
or any other rate function.

In view of the preceding example, strengthening the weak LDP to a full LDP requires
a way of showing that most of the probability mass (at least on an exponential scale) is
concentrated on compact sets. The tool for doing that is the following:
Definition Suppose that all the compact subsets of X belong to B. A family of probability
measures {fj,e} on X is exponentially tight if for every a < oo, there exists a compact set
Ka c X such that

limsup elog/j,€(^) < -a. (6.2.9)
e^O

Remarks:
(a) Beware of the logical mistake that consists of identifying exponential tightness and the
goodness of the rate function: The measures {/ue} need not be exponentially tight in order
to satisfy a LDP with a good rate function. In some situations, however, and in particular
whenever X is locally compact or, alternatively, Polish, exponential tightness is implied by
the goodness of the rate function. For details, c.f. Lemma 6.4.5.
(b) Whenever it is stated that fj,e satisfies the weak LDP or /j,e is exponentially tight, it will
be implicitly assumed that all the compact subsets of X belong to B.
(c) Obviously, for {/xe} to be exponentially tight, it suffices to have pre-compact Ka for
which (6.2.9) holds.

In the following lemma, exponential tightness is applied to strengthen a weak LDP.

Lemma 6.2.1 Let {fJ,e} be an exponentially tight family.
(a) If the upper bound (6.2.4) holds for some a < oo and all compact subsets of $>j(oi)°,
then it also holds for all measurable sets F with P C ^>/(a)c. In particular, if BX Q B and
the upper bound (6.2.6) holds for all compact sets, then it also holds for all closed sets.

(b) If the lower bound (6.2.5) (the lower bound (6.2.7) in case BX C B) holds for all
measurable sets (all open sets), then /(•) is a good rate function.
Thus, when an exponentially tight family of probability measures satisfies the weak LDP
with a rate function /(•), then I is a good rate function and the LDP holds.

6.3 Large Deviation Principles for Finite Dimensional
Spaces

This section is devoted to the study of the LDP in finite dimensional spaces. We start with
the empirical measure of i.i.d. random variables taking values in a finite set, moving on to the
empirical mean of i.i.d. IR -valued variables, then relaxing the independence assumption.
We conclude with a brief introduction to concentration inequalities and various refinements
of the LDP . The material in this section is taken from Sections 2.1.1, 2.2, 2.3, 2.4,1 and 3.7
of [DeZ98], and the reader is referred there for more details, historical notes, and proofs.
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6.3.1 The Method of Types
Throughout Section 6.3.1, all random variables assume values in a finite set
E = {01,02, . . . - , ajv}; E, which is also called the underlying alphabet, satisfies |E| = N,
where for any set A, |A| denotes its cardinality, or size. Combinatorial methods are then
applicable for deriving LDPs for the empirical measures of S-valued processes and for the
corresponding empirical means. While the scope of these methods is limited to finite alpha-
bets, they illustrate the results one can hope to obtain for more abstract alphabets. Unlike
other approaches, this method for deriving the LDP is based on point estimates and thus
yields more information than the LDP statement. Throughout, Afi(E) denotes the space
of all probability measures on the alphabet E. Here Mi(E) is identified with the standard
probability simplex in K,'E', i.e., the set of all |S [-dimensional real vectors with nonnegative
components that sum to 1. Open sets in Mi(S) are obviously induced by the open sets in

Let YI , Y2 , . . . , Yn be a sequence of random variables that are independent and identically
distributed according to the law fj, <5 Afi(E). Let EM denote the support of the law //, i.e.,
EM = {di : fJ,(ai) > 0}. In general, EM could be a strict subset of E; When considering a
single measure p., it may be assumed, without loss of generality, that E^ = E by ignoring
those symbols that appear with zero probability.

Definition 6.3.1 The type L% of a finite sequence y = (y\, . . . , yn) € En is the empirical
measure (law) induced by this sequence. Explicitly, L% = (i£(oi),... ,L*(a^\)) is the
element of MI(£) where

) = ~ XXfo), i = l , . . . ) | S | ,
J=i

i.e., L^UI) is the fraction of occurrences of ai in the sequence 2/1, . . . , yn.

Let £„ denote the set of all possible types of sequences of length n. Thus, C,n={u : v =
L^ for some y} c H'E', and the empirical measure L% associated with the sequence
Y=(Yi,. .. ,Yn) is a random element of the set £n. These concepts are useful for finite
alphabets because of the following volume and approximation distance estimates.

Lemma 6.3.2 (a) \Cn\ < (n+
(b) For any probability vector v e Mi(E),

dv(",£n)= inf dv ( i / , i / ' )< P, (6-3.10)
^ ^.C'ri &TI

where dy(v, ^')=supj4cS[^(A) - v'(A)] is the variational distance between the measures v
and v' .

Proof. Note that every component of the vector L% belongs to the set {^ ,^ , . . . ,^},
whose cardinality is (n + 1). Part (a) of the lemma follows, since the vector L^ is specified
by at most |E| such quantities.

To prove part (b), observe that £„ contains all probability vectors composed of |E|
coordinates from the set {£, ~, . . . ,-}. Thus, for any v € Mi(E), there exists a v' e C.n
with \v(di) — v'(ai)\ < l/n for i = 1, . . . , |E|. The bound of (6.3.10) now follows, since for
finite E,
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Definition 6.3.3 The type class Tn(v) of a probability law v e Cn is the set Tn(v] = {y 6
Sn : L* = «/}.

Note that a type class consists of all permutations of a given vector in this set. In the
definitions to follow, 0 log 0=0 and 01og(0/0)iO.

Definition 6.3.4 (a) The entropy of a probability vector v is

is)
H(v) = ~ X] l'(a^ lo& v^ '

j=i

(b) The relative entropy of a probability vector v with respect to another probability vector
j, is

Remark: By applying Jensen's inequality to the convex function x log x, it follows that the
function H (-|/j,) is nonnegative. Note that H (-\n) is finite and continuous on the compact set
{i/ 6 Mj(S) : £„ C SM}, because a; log x is continuous for 0 < x < 1. Moreover, H(-\fj,) = co
outside this set, and hence H(-\/J,) is a good rate function.

The probabilities of the events {L% = v}, v £ Ln, are estimated in the following two
lemmas. First, it is shown that outcomes belonging to the same type class are equally likely,
and then the exponential growth rate of each type class is estimated.

Let Prob^ denote the probability law fj,z+ associated with an infinite sequence of i.i.d.
random variables {Yj} distributed following yu e Mi(S).

Lemma 6.3.5 J/y e Tn(i>) for v e Cn, then

Prob^Yi, . . . , Yn) = y) = e-n[#(")+ff("lM)] .

Proof. The random empirical measure L% concentrates on types v e Cn for which Sy C EM

i.e., H(v\ti) < oo. Therefore, assume without loss of generality that L^ = v and £„ C EM.
Then

where the last equality follows by the identity

|S|

H(v) + ^(j/|/z) = - i/(oi) log/z(oi) . D

In particular, since # (/u|/Li) = 0, it follows that for all /z € £„ and y e Tn(/j,),

ProbM((y!, . . . ,yn) = y) = e~nHM . (6.3.11)

Elementary combinatorics also yield that for every v g Ln,

(n + i)-!Ele
nfl» < |Tn(i/)| < enH(ly) . (6.3.12)

By Lemma 6.3.5,

Hence, by (6.3.12), we have that
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Lemma 6.3.6 (Large deviations probabilities) For any v e Cn>

= v) < e~nH^ .

Combining Lemmas 6.3.2 and 6.3.6, one obtains Sanov's theorem in the finite alphabet
context. See Section 6.6.2 for the general case.

Theorem 6.3.7 (Sanov) For every set F of probability vectors in MI(£),

- inf H(v\n} < liminf -logProbJL^ G F) (6.3.13)v^r° n— >oo n

< lira sup - logProb^L? € F) < - inf H(i/\n) ,
n—>oo n "er

where F° is the interior o/F considered as a subset o/]R's'.

6.3.2 Cramer's Theorem in IRd

Consider the empirical means Sn=^ S?=i -^j : > f°r i-i-d., d-dimensional random vectors
Xi, . . . , Xn, . . . , with Xi distributed according to the probability law fj, G Mi(JR ). The
logarithmic moment generating function associated with the law n is defined as

A(A)=logM(A)=logjB[e (A '^>] , (6.3.14)

where (A, x)=53.=1 AJ'o5J' is the usual scalar product in Md, and x-7' the jth coordinate of
x. Another common name for A(-) is the cumulant generating function. In what follows,
|x]=i/{x,x), is the usual Euclidean norm. Note that A(0) = 0, and while A(A) > — oo for
all A, it is possible to have A(A) = oo. Let [in denote the law of Sn and x=E[Xi\. When x
exists and is finite, and -E'fl^i — x2] < oo, then Sn -^-»- x, by an application of Markov's

n — >oo
inequality. Hence, in this situation, fJ.n(F) ?^x ® ^or any c^osed set F such that x £ F.
Cramer's theorem characterizes the logarithmic rate of this convergence by the following
(rate) function.

Definition 6.3.8 The Fenchel-Legendre transform o/A(A) is

A*(x)= sup{(A,x) -A(A)} .

Theorem 6.3.9 (Cramer) The sequence of measures {/J,n} satisfies the weak LDP on Rd

with the convex rate function A*(-); Moreover, for every open convex A c IR ,

lim — \ogfj,n(A) = — inf A*(x) .
n— »oo n x€.A

If d = 1 the full LDP holds, and for any d < oo the assumption that A(A) < oo for all |A]
small enough implies the full LDP and that A*(-) is a good rate function.

Remarks:
(a) The definition of the Fenchel-Legendre transform for (topological) vector spaces and
some of its properties are presented in Section 6.4.4. It is also shown there that the Fenchel-
Legendre transform is a natural candidate for the rate function, since the LDP upper bound
holds for compact sets in a general setup.
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(b) When d = 1, for all n, and any closed set F C 3R, one has the nonasymptotic upper
bound

We close this section by indicating the basic steps in the proof of Cramer's theorem. The
upper bound is deduced from the case of a half-space, that is, an interval [x, oo) for d = 1.
The latter is a rewrite of Chebycheff s inequality: for A > 0, and x > x,

where optimizing Xx — A(A) over A > 0 yields for x > x the value of A* (a;), hence the stated
upper bound.

The lower bound requires a more sophisticated idea, based on an "exponential change
of measure." We present the sketch for the case d = I :

Define the measure

dp,
where 77 is such that Eft(Xi) = x (we assume that such an 77 exists, otherwise one needs
to approximate). Then, 772; — A(?j) = A*(x), and by the law of large numbers, Sn —> x in
probability under the law £tn. Now,

> fin [x -8,x

and the lower bound follows by considering first n — > oo and then 6 — > 0.

6.3.3 The Gartner-Ellis Theorem
Consider a sequence of random vectors Zn 6 Md, where Zn possesses the law /j,n and
logarithmic moment generating function

An(A)= log E [e^'z">] . (6.3.15)

The existence of a limit of properly scaled logarithmic moment generating functions
indicates that //„ may satisfy the LDP. Specifically, the following assumption is imposed
throughout Section 6.3.3.

Assumption 6.3.16 For each A 6 1R , the logarithmic moment generating function, de-
fined as the limit

> A(A)= lim - An(nA)
n— oo n

exists as an extended real number. Further, the origin belongs to the interior ofT>^={\ 6
Hd: A(A) <oo}.

In particular, if \j,n is the law governing the empirical mean Sn of i.i.d. random vectors
Xi 6 Hd, then for every n € ^+,

- An(n\)
it

and Assumption 6.3.16 holds whenever 0 G T>°^.
Let A*(-) be the Fenchel-Legendre transform of A(-), with Z?A* = {x e Rd : A*(x) <

oo}. Motivated by Theorem 6.3.9, it is our goal to state conditions under which the sequence
Hn satisfies the LDP with the rate function A*.
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Definition 6.3.10 y e IRd is an exposed point of A.* if for some A G IRd and all x ^ y,

(X,y}-A*(y)> (\,x}-A"(x). (6.3.17)

A in (6.3.17) is called an exposing hyperplane.

Definition 6.3.11 A convex function A : Md —»• (—00,00] is essentially smooth if:
(a) T>°^ is non-empty.
(b) A(-) is differentiate throughout T>^.
(c) A(-) is steep, namely, limn_+oo |VA(An)| = oo whenever {An} is a sequence in T>0^ con-
verging to a boundary point of T>°^.

The following theorem is the main result of Section 6.3.3.

Theorem 6.3.12 (Gartner-Ellis) Let Assumption 6.3.16 hold.
(a) For any closed set F,

limsup - log fj,n(F) < - inf A*(x). (6.3.18)
n^oo U x£F

(b) For any open set G,

liminf - log fj.n(G) > - inf A*(x), (6.3.19)
n—too n x&Gnf

where J- is the set of exposed points of A.* whose exposing hyperplane belongs to Z>^.
(c) If A is an essentially smooth, lower semicontinuous function, then the LDP holds with
the good rate function A*(-).
Remarks:
(a) Theorem 6.3.12 is valid, as in the statement (6.2.8) of the LDP, when 1/n is replaced
by a sequence of constants an —> 0, or even when a continuous parameter family {/ue} is
considered, with Assumption 6.3.16 properly modified.
(b) Although the Gartner-Ellis theorem is quite general in its scope, it does not cover all IRrf

cases in which an LDP exists. As an illustrative example, consider Zn ~ Exponential (n).
Assumption 6.3.16 then holds with A(A) = 0 for A < 1 and A(A) = oo otherwise. Moreover,
the law of Zn possesses the density ne~nzl^0t00^(z), and consequently the LDP holds with
the good rate function I(x) = x for x > 0 and I(x) = oo otherwise. A direct computation
reveals that /(•) = A*(-). Hence, T = {0} while T>^* = [0, oo), and therefore the Gartner-
Ellis theorem yields a trivial lower bound for sets that do not contain the origin.
(c) Assumption 6.3.16 implies that A*(o;) < liminfn^<x> A£ ( x ) for Aj^(x) = sup^{(A, x) —
n~1Are(nA)}. However, pointwise convergence of A*(x) to A*(x) is not guaranteed. For
example, when P(Zn = n~l) = 1, we have An(A) = A/n —> 0 = A (A), while A*(0) = oo
and A*(0) = 0. This phenomenon is relevant when trying to go beyond the Gartner-Ellis
theorem, as for example in [Zab92, DeZ95].

Two auxiliary lemmas which play a crucial role in the proof are next stated. Lemma
6.3.13 presents the elementary properties of A and A*, which are needed for proving parts
(a) and (b) of the theorem, and moreover highlights the relation between exposed points
and differentiability properties.
Lemma 6.3.13 Let Assumption 6.3.16 hold.
(a) A(A) is a convex function, A(A) > —oo everywhere, and A* (x) is a convex good rate
function.
(b) Suppose that y = VA(/7) for some r/ e T>°^. Then

A*(y) = (n,y)-A(r,). (6.3.20)

Moreover y G f, with r] being the exposing hyperplane for y.
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The essential ingredients for the proof of parts (a) and (b) of the Gartner-Ellis theorem
are those presented in the course of proving Cramer's theorem in ]Rd; namely, Chebycheff's
inequality is applied for deriving the upper bound and an exponential change of measure
is used for deriving the lower bound. However, since the law of large numbers is no longer
available a priori, the large deviations upper bound for exponentially tilted measures is used
in order to prove the lower bound.

The proof of part (c) of the Gartner-Ellis theorem depends on rather intricate convex
analysis considerations that are summarized in the following lemma. Here, riD^ is the
relative interior of the set {x : A*(x) < 00}. For the case of Z?A = IR-d, one may instead
use a regularization of the random variables Zn by adding asymptotically negligible Normal
random variables.

Lemma 6.3.14 (Rockafellar) I/A : Hd —> (—00, oo] is an essentially smooth, lower semi-
continuous, convex function, then ri DA* C T.

6.3.4 Inequalities for Bounded Martingale Differences
The precise large deviations estimates presented so far are all related to rather simple
functional of an independent sequence of random variables, namely to empirical means of
such a sequence. We digress here from this theme by, while still keeping the independence
structure, allowing for more complicated functionals. In such a situation, it is often hopeless
to have a LDP, and one is content with the rough concentration properties of the random
variables under investigation.

We next present concentration inequalities for discrete time martingales of bounded
differences and show how these may apply for certain functionals of independent variables.

Our starting point is a bound on the moment generating function of a random variable
in terms of its maximal possible value and first two moments.

Lemma 6.3.15 (Bennett) Suppose X < b is a real-valued random variable withHc = E(X)
and E[(X — x)2] < a2 for some a > 0. Then, for any A > 0,

(6.3.21)2 ,. 2}2 + a2 (b — x)2 + az

Corollary 6.3.16 Fix a < b. Suppose that a < X < b is a real-valued random variable with
x = E(X). Then, for any A e IR,

E(exx} < |l^eA6 + ^lIeAa (6 3 22)
b — a b — a

Once uniform bounds on the log moment generating function are available, one may apply
Chebycheff's upper bound to deduce concentration inequalities. One uses successive condi-
tioning and the martingale property to control the mean of the random variables involved,
with boundedness of the increments allowing to use Lemma 6.3.15 or Corollary 6.3.16.

Corollary 6.3.17 Suppose v > 0 and the real valued random variables {Yn : n = 1, 2, . . . }
are such that both Yn < I almost surely, and E\Yn\Sn-\] = 0, E[Y£\Sn-i] < v for
Sn= E"=i Yj,S0 = 0. Then, for any A > 0,
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Moreover, for all x > 0,

Prob(n-lSn >x)< exp-nff( ; ) > (6.3.24)

where H(p\p0)=plog(p/p0} + (1 - p) log((l - p)/(l - p0)) for p 6 [0, 1] and H(p\p0) = oo
otherwise. Finally, for all y > 0,

> ?/) < e - 2 1 + . (6.3.25)

A typical application of Corollary 6.3.17 is as follows, where in order not to be distracted
by rneasurability concerns, assume that £ is a Polish space, that is, a complete separable
metric space. In applications, £ is often either a finite set or a subset of M.

Corollary 6.3.18 Let Zn = gn(Xi, . . . ,Xn) for independent ^-valued random variables
{Xi} and real-valued, measurable gn(-). Let {Xi} be an independent copy of {Xi}. Suppose
that for k = 1, . . . ,n,

\gn(Xi,... ,Xn)-gn(Xl}... ,X f c_i ,Xfc,JT f c + i , . . . ,Xn)\ < 1 , (6.3.26)

almost surely. Then, for all x > 0,

Prob(n-\Zn - EZn) > x) < exp(-nff (^±ll 1)) , (6.3.27)

and for all y > 0,

-l^(Zn - EZn) >y)< e~* * / 2 . (6.3.28)

6.3.5 Moderate Deviations and Exact Asymptotics
Cramer's theorem deals with the tails of the empirical mean Sn of i.i.d. random variables.
On a finer scale, the random variables \/nSn possess a limiting Normal distribution by
the central limit theorem. In this situation, for /? 6 (0, 1/2), the renormalized empirical
mean n/3 Sn satisfies an LDP but always with a quadratic (Normal-like) rate function. This
statement is made precise in the following theorem. (Choose an = n/2^"1-* in the theorem
to obtain Zn = n^Sn.)

Theorem 6.3.19 (Moderate Deviations) Let Xi,... ,Xn be a sequence ofTR,d-valued
i.i.d. random vectors such that A.x(X)=^ogE[e^x'Xi^} < oo in some ball around the origin,
E(Xi) = 0, and C, the covariance matrix of X\, is invertible. Fix an — > 0 such that
nan — » oo as n — > oo, and let Zn= x/OnT™ X^™=i ̂  = \/nanSn- Then, for every measurable
set T,

-- inf (^.C-1^) < liminfanlogP(Zn eT)2 xer° n— .00
< lim sup an log P(Zn € F)

n — .00

< -- inf (x,C~lx). (6.3.29)
2 x^r

The proof combines an application of the Gartner-Ellis theorem with a Taylor expansion of
logarithmic moment generation functions around A = 0.
Remarks:
(a) A similar result may be obtained in the context of Markov additive processes.
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(b) Theorem 6.3.19 is representative of the so-called Moderate Deviation Principle (MDP),
in which for some j ( - ) and a whole range of an —> 0, the sequences {7(an)l^} satisfy the
LDP with the same rate function. Here, Yn — \fnSn and j(a) = a1/2 (as in other situations
in which Yn obeys the central limit theorem).

Another refinement of Cramer's theorem involves a more accurate estimate of the law /j,n
of Sn- Specifically, for a "nice" set A, one seeks an estimate J~l of fj,n(A) in the sense that
limn^oo Jnnn(A) — 1. Such an estimate is an improvement over the normalized logarithmic
limit implied by the LDP. The following theorem, a representative of the so-called exact
asymptotics, deals with the estimate Jn for certain half intervals A = [g, oo) C IR.

Theorem 6.3.20 (Bahadur and Rao) Let /j,n denote the law of Sn = ^ 5Z"=1 Xi, where
Xi are i.i.d. real valued random variables with logarithmic moment generating function
A(A) = \ogE[eXXl]. Consider the set A = [<?,oo), where q = A'(77) /or some positive
nel>°A.
(a) If the law of Xi is nonlattice, then

Km JnVn(A) = I , (6.3.30)
n—*oo

where Jn = T?,/A" (77)2™ enA'^.
(b) Suppose Xi has a lattice law, i.e., for some x0, d, the random variable d~l(Xi — XQ) is
(a.s.) an integer number, and d is the largest number with this property. Assume further
that 1 > Prob(Xi = q) > 0. (In particular, this implies that d~~l(q — XQ) is an integer and
that A"(77) > OJ Then

lim Jn»n(A) = r^^ • (6.3.31)
n—>oo I — e Va

Remarks:
(a) It can be shown that A*(Q) = 775 — A(T/), A(-) is C°° in some open neighborhood of 77,
77 = A*'(g) and A*"(9) = I/A"(77). Hence, Jn = A*'(q)^2Trn/A*"(q)enA"^.
(b) Theorem 6.3.20 holds even when A is a small interval of size of order O(logn/n).

The proof of Theorem 6.3.20 is based on an exponential translation of a local CLT. This
approach is applicable for the dependent case of Section 6.3.3 and to a certain extent applies
also in Md, d>l.

6.4 General Properties
We focus our attention now on the abstract statement of the LDP as presented in Section
6.2 and give conditions for the existence of such a principle and various approaches for the
identification of the resulting rate function. Section 6.4.1 explores the relations between
the topological structure of the space, the existence of certain limits, and the existence and
uniqueness of the LDP. Section 6.4.2 describes how to move around the LDP from one
space to another. Thus, under appropriate conditions, the LDP can be proved in a simple
situation and then effortlessly transferred to a more complex one. Section 6.4.3 is about the
relation between the LDP and the computation of exponential integrals. Although in some
applications the computation of the exponential integrals is a goal in itself, it is more often
the case that such computations are an intermediate step in deriving the LDP. Section 6.4.4
exploits convexity, in the case of topological vector spaces, either to derive the LDP or to
identify its rate function. Section 6.4.5 shows that the LDP is preserved under projective
limits. This approach is quite general and may lead from finite dimensional computations
to the LDP in abstract spaces.

The material for this section is taken from Chapter 4 of [DeZ98] to which the reader is
referred for additional details, bibliography, and proofs.
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6.4.1 Existence of an LDP and Related
Properties

If a set X is given the coarse topology {0, #}, the only information implied by the LDP is that
infX£X I(x) = 0, and many rate functions satisfy this requirement. To avoid such trivialities,
we must put some constraint on the topology of the set X. Recall that a topological space
is Hausdorff if, for every pair of distinct points x and y, there exist disjoint neighborhoods
of x and y. The natural condition that prevails throughout this chapter is that, in addition
to being Hausdorff, X is a regular space as defined next.

Definition 6.4.1 A Hausdorff topological space X is regular if, for any closed set F C X
and any point x ^ F, there exist disjoint open subsets G\ and G'z such that F C GI and
x e G2.

In the rest of the chapter, the term regular will mean Hausdorff and regular. We recall that
every metric space is regular. Moreover, if a real topological vector space is Hausdorff, then
it is regular. All examples of an LDP considered in this chapter are either for metric spaces,
or for Hausdorff real topological vector spaces.

We collect below some simple consequences of the definition of the LDP and our topo-
logical assumptions. The first desirable consequence of the assumption that X is a regular
topological space is the uniqueness of the rate function associated with the LDP.

Lemma 6.4.2 A family of probability measures {/u€} on a regular topological space can have
at most one rate function associated with its LDP.

Remarks:
(a) If A' is a locally compact space, or a Polish space, the rate function is unique as soon as
a weak LDP holds.
(b) The uniqueness of the rate function does not depend on the Hausdorff part of the defini-
tion of regular spaces. However, the rate function assigns the same value to any two points
of X that are not separated. Thus, in terms of the LDP, such points are indistinguishable.

As shown in the next lemma, the LDP is preserved under suitable inclusions. Hence, in
applications, one may first prove an LDP in a space that possesses additional structure (for
example, a topological vector space), and then use this lemma to deduce the LDP in the
subspace of interest. It is then often convenient that Lemma 6.4.3 holds even when BX C B.

Lemma 6.4.3 Let £ be a measurable subset of X such that ne(£) = 1 for all e > 0. Suppose
that £ is equipped with the topology induced by X.
(a) If £ is a closed subset of X and, {//e} satisfies the LDP in £ with rate function I, then
{H€} satisfies the LDP in X with rate function I' such that I' = I on £ and I' = oo on £c.
(b) If {He} satisfies the LDP in X with rate function I and T>i C £, then the same LDP
holds in £. In particular, if £ is a closed subset of X, then T>i C £ and hence the LDP holds
in £.

Lemma 6.4.3 also holds for the weak LDP, since compact subsets of £ are just the
compact subsets of X contained in £. Similarly, under the assumptions of the lemma, / is
a good rate function on X iff it is a good rate function when restricted to £.

The following is an important property of good rate functions.

Lemma 6.4.4 Let I be a good rate function.
(a) Let {Fg}s>o be a nested family of closed sets, i.e., Fs C Fg> if 5 < 8'. Define F0 =
r}s>0Fs. Then

inf I ( y ) = lira inf I ( y ] .
W ^'
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(b) Suppose (X, d) is a metric space. Then, for any set A,

inf_/(j/) = lim inf I ( y ) , (6.4.32)
y&A <5^0 y<=A6

where

As={y : d ( y , A) = inf d ( y , z ) < 6} (6.4.33)
26^1

denotes the closed blowup of A.

The next lemma is a partial converse of Lemma 6.2.1.

Lemma 6.4.5 Let {fJ,n} be a sequence of probability measures on a Polish space X that sat-
isfies the large deviations upper bound with a good rate function. Then {i^n} is exponentially
tight.

When a non-countable family of measures {/^e, e > 0} satisfies the large deviations upper
bound in a Polish space with a good rate function, Lemma 6.4.5 yields the exponential
tightness of every sequence {/-ifn}, where en —•> 0 as n —> oo. As far as large deviations results
are concerned, this is indistinguishable from exponential tightness of the whole family.

The following theorem introduces a general, indirect approach for establishing the exis-
tence of a weak LDP.
Theorem 6.4.6 Let A be a base of the topology of X. For every A € A, define

= - lim inf elog^(A) (6.4.34)
e—»0

I(x)= sup LA • (6.4.35)
{A<EA: x

and

Suppose that for all x e X,

I(x}= sup -Iimsupelog/^(j4) . (6.4.36)
{A€A:x<BA} I e^O J

Then /J,f satisfies the weak LDP with the rate function I(x).

Remarks:
(a) Observe that condition (6.4.36) holds when the limits lime^o elog//e(.A) exist for all
A € A (with — oo as a possible value).
(b) When X is a locally convex, Hausdorff topological vector space, the base A is often
chosen to be the collection of open, convex sets. This is done for example when proving
Cramer's Theorem 6.6.1.
(c) It is easy to extend Theorem' 6.4.6 to the context of a family of probability measures
{Me.cr} that is indexed by an additional parameter a. For example, cr may be the initial
state of a Markov chain.

It is aesthetically pleasing to know that the following partial converse of Theorem 6.4.6
holds.

Theorem 6.4.7 Suppose that {fj,f} satisfies the LDP in a regular topological space X with
rate function I. Then, for any base A of the topology of X , and for any x 6 X,

I(x) = sup \ — lim inf e log fj,e (A) \
{A^A: x£A} ^ e~>0 >

sup < — lim sup e log pte (A) > . (6.4.37)
{A€A:xeA}
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Remark: For a Polish space X suffices to assume in Theorem 6.4.7 that {/ue} satisfies the
weak LDP. Consequently, by Theorem 6.4.6, in this context (6.4.37) is equivalent to the
weak LDP.

The characterization of the rate function in Theorem 6.4.6 involves the supremum over a
large collection of sets. Hence, it does not yield a convenient explicit formula. As shown in
Section 6.4.4, if X is a Hausdorff topological vector space, this rate function can sometimes be
identified with the Fenchel-Legendre transform of a limiting logarithmic moment generating
function. This approach requires an a "priori proof that the rate function is convex. The
following lemma improves on Theorem 6.4.6 by giving a sufficient condition for the convexity
of the rate function. Throughout, for any sets Ai,A% e X,

-^— — - = { X : x = (xi +x2)/2, xi G Ai,x2 e A2} .

Lemma 6.4.8 Let A be a base for a Hausdorff topological vector space X , such that in
addition to condition (6.4-36), for every Ai,A% 6 A,

limsupelogMe > - (CA, + CA,) . (6.4.38)
s^Q \ 2, J 2

Then the rate function I of (6.4-35), which governs the weak LDP. associated with {ne} , is
convex.

When combined with exponential tightness, Theorem 6.4.6 implies the following large
deviations analog of Prohorov's theorem.

Lemma 6.4.9 Suppose the topological space X has a countable base. For any family of
probability measures {/ue}, there exists a sequence e/c — > 0 such that {^k} satisfies the weak
LDP in X. If {fJ.f} is an exponentially tight family of probability measures, then {/J-ek} also
satisfies the LDP with a good rate function.

The next lemma applies for tight Borel probability measures [t€ on metric spaces. In
this context, it allows replacement of the assumed LDP in either Lemma 6.4.2 or Theorem
6.4.7 by a weak LDP.

Lemma 6.4.10 Suppose {^te} is a family of tight (Borel) probability measures on a metric
space ( X , d ) , such that the upper bound (6.2.6) holds for all compact sets and some rate
function /(•). Then, for any base A of the topology of X, and for any x e X ,

I(x) < sup l-limsup elog/i£(A) i . (6.4.39)
{AeA:x€A} I f^O )

6.4.2 Contraction Principles and Exponential Approximation
Section 6.4.2 is devoted to transformations that preserve the LDP, although, possibly, chang-
ing the rate function. Once the LDP with a good rate function is established for /j,e, the
basic contraction principle yields the LDP for /ze o f~l, where / is any continuous map.
The inverse contraction principle deals with / which is the inverse of a continuous bijection,
and this is a useful tool for strengthening the topology under which the LDP holds. The
remainder of the section is devoted to exponentially good approximations and their impli-
cations; for example, it is shown that when two families of measures denned on the same
probability space are exponentially equivalent, then one can infer the LDP for one family
from the other. A direct consequence is Theorem 6.4.19, which extends the contraction
principle to "approximately continuous" maps.

The LDP is preserved under continuous mappings, as the following elementary theorem
shows.
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Theorem 6.4.11 (Contraction principle) Let X and y be Hausdorff
topological spaces and f : X — -> y a continuous function. Consider a good rate function
I:X-> [0,oo].
(a) For each y G y, define

I'(y)= inf {/(z) : x 6 X, y = /(*)} . (6.4.40)

Then I' is a good rate function on y, where as usual the infimum over the empty set is
taken as oo.
(b) If I controls the LDP associated with a family of probability measures {jite} on X, then
I' controls the LDP associated with the family of probability measures {/j,f o f~1} on y.

Proof, (a) Clearly, /' is nonnegative. Since / is a good rate function, for all y G f ( X ) the
infimum in the definition of /' is obtained at some point of X . Thus, the level sets of /',
V r a ± : I'y <a, a re

where ^i(a) are the corresponding level sets of /. As ^>i(a) C X are compact, so are the
sets */'(a) C y.
(b) The definition of /' implies that for any A C y,

inf I'(y) = inf I(x) . (6.4.41)vy ' - V ' V '

Since / is continuous, the set f~1(A) is an open (closed) subset of X for any open (closed)
A C y. Therefore, the LDP for /j,e o f~* follows as a consequence of the LDP for fj,f and
(6.4.41). D
Remarks:
(a) This theorem holds even when BX C B, since for any (measurable) set A C y, both
f-i(A) C f-\A) and f~\A°) C (/-1(^))°.
(b) Note that the upper and lower bounds implied by part (b) of Theorem 6.4.11 hold even
when / is not a good rate function. However, if / is not a good rate function, it may happen
that /' is not a rate function, as the example X = y = M, I(x) = 0, and f ( x ) = ex

demonstrates.
(c) Theorem 6.4.11 holds as long as / is continuous at every x £ T>i\ namely, for every
x E T>i and every neighborhood G of f ( x ) G y, there exists a neighborhood A of x such
that A C /-1(G). This suggests that the contraction principle may be further extended to
cover a certain class of "approximately continuous" maps. Such an extension is pursued in
Theorem 6.4.19.

We remind the reader that in what follows, it is always assumed that BX C B, and
therefore open sets are always measurable. The following theorem shows that in the pres-
ence of exponential tightness, the contraction principle can be made to work in the reverse
direction. This property is extremely useful for strengthening large deviations results from
a coarse topology to a finer one, as in Corollary 6.4.13.

Theorem 6.4.12 (Inverse contraction principle) Let X andy be Hausdorff topological
spaces. Suppose that g : y — »• X is a continuous injection, and that {v€} is an exponentially
tight family of probability measures ony. If{ve°g~1} satisfies the LDP with the rate function
I : X — > [0,oo], then {z^} satisfies the LDP with the good rate function /'(•)=!(#(•)).

Corollary 6.4.13 Let {ne} be an exponentially tight family of probability measures on X
equipped with the topology T\ . If {fJ.e} satisfies an LDP with respect to a Hausdorff topology
T2 on X that is coarser than T\, then the same LDP holds with respect to the topology T±.
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In order to extend the contraction principle beyond the continuous case, it is obvious
that one should consider approximations by continuous functions. It is beneficial to consider
a somewhat wider question, namely, when the LDP for a family of laws {jle} can be deduced
from the LDP for a family {/J-e}- The application to approximate contractions follows from
these general results.

Definition 6.4.14 Let (y,d) be a metric space. The probability measures {/J.e} and {/ie}
on y are called exponentially equivalent if there exist probability spaces {(f2, Be, Pe)} and two
families of y-valued random variables {Z^} and {Ze} with joint laws {Pe} and marginals
{^e} and {fie}, respectively, such that the following condition is satisfied:
For each 6 > 0, the set {u> : (Z6, Zf) € T$} is B,, measurable, and

limsupelog Pe(r5) =-oo, (6.4.42)

where

r5={(y, y) • d(y, y) > 6} c y x y . (6.4.43)

Remarks:
(a) The random variables {Ze} and {Ze} in Definition 6.4.14 are called exponentially equiv-
alent.
(b) The measurability requirement is satisfied whenever y is a separable space, or when-
ever the laws {Pe} are induced by separable real-valued stochastic processes and d is the
supremum norm.

As far as the LDP is concerned, exponentially equivalent measures are indistinguishable,
as the following theorem attests.

Theorem 6.4.15 If an LDP with a good rate function I ( • ) holds for the probability measures
{fi€}, which are exponentially equivalent to {jue}, then the same LDP holds for {J2e}.

As pointed out in the beginning of this section, an important goal in considering exponen-
tial equivalence is the treatment of approximations. To this end, the notion of exponential
equivalence is replaced by the notion of exponential approximation, as follows.

Definition 6.4.16 Let y and Tg be as in Definition 6.4-14- F°r each e > 0 and all m € 2Z+,
let (fi,Be,Pe)in) be a probability space, and let the y-valued random variables Ze and Z€<m
be distributed according to the joint law Pe,m, with marginals fte and /J.ftm, respectively.
{Z€tm} are called exponentially good approximations of {Ze} if, for every 6 > 0, the set
{LJ : (Ze, Ze^m) G Tg} is Bt measurable and

lim limsupelog Pe,m(r^) = — oo . (6.4.44)

Similarly, the measures {^e,m} are exponentially good approximations of {fle} if one can
construct probability spaces {(17, Bf, P£]Tn)} as above.

It should be obvious that Definition 6.4.16 reduces to Definition 6.4.14 if the laws P£im

do not depend on m. It can be shown that when (y, d) is a Polish space, {/j,eim} are
exponentially good approximations of {/}£} if and only if for any 5 > 0

lim lim sup e log sup-3 ̂ e m(-A) — jJ.e(As) : AeBy\=— oo .
m—>oo e_>Q I )

The main but somewhat technical consequence of Definition 6.4.16 is the following rela-
tion between the LDPs of exponentially good approximations.
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Theorem 6.4.17 Suppose that for every m, the family of measures {/ue,m} satisfies the
LDP with rate function 7m(-) and that {/ie,™} are exponentially good approximations of
{/ue}. Then
(a) {/&e} satisfies a weak LDP with the rate function

7(y)=supliminf inf 7ro(z) , (6.4.45)
<5>0 ™~>°° z€-Bj,,j

where By^ denotes the ball {z : d ( y , z ) < <5}.
(b) ///(•) is a good rate function and for every closed set F,

inf l(y) < limsup inf Im(y) , (6.4.46)

then the full LDP holds for {/u£} with rate function I.
Remarks:
(a) The sets Yg may be replaced by sets fs,m such that the sets {w : (Ze, Ze^m} € Ts,m} differ
from B<: measurable sets by P£jTO null sets, and I\m satisfy both (6.4.44) and r<$ C I\TO.
(b) If the rate functions Im(-) are independent of m, and are good rate functions, then by
Theorem 6.4.17, {p,^} satisfies the LDP with /(•) = 7m(-). In particular, Theorem 6.4.15 is
a direct consequence of Theorem 6.4.17.
(c) In the context of part (a) of Theorem 6.4.17, if (y, d) is a Polish space and 7m(-) are good
rate functions, then {fie} satisfies the full LDP with the good rate function /(•) of (6.4.45).
However, for general ( y , d ) one cannot dispense with condition (6.4.46) in Theorem 6.4.17.

It should be obvious that the results on exponential approximations imply results on
approximate contractions. We now present two such results. The first is related to Theorem
6.4.15 and considers approximations that are e dependent. The second allows one to consider
approximations that depend on an auxiliary parameter.

Corollary 6.4.18 Suppose f : X — > y is a continuous map from a Hausdorff topological
space X to the metric space (y, d) and that {/j.e} satisfy the LDP with the good rate function
I : X — * [0,oo]. Suppose further that for all e > Q, fc : X — > y are measurable maps such
that for all 6 > 0, the set r£i<5={:e e X : d(f(x), fe(x)) > 6} is measurable, and

limsupelog /ue(Fe 5) = — oo . (6.4.47)
e^O

Then the LDP with the good rate function /'(•) of (6-4-40) holds for the measures ^f_ o f~l

on y.
Proof. The contraction principle (Theorem 6.4.11) yields the desired LDP for {/j,e o f~1}.
By (6.4.47), these measures are exponentially equivalent to {fj,f.° /iT1}, and the corollary
follows from Theorem 6.4.15. D

A special case of Theorem 6.4.17 is the following extension of the contraction principle
to maps that are not continuous, but that can be approximated well by continuous maps.

Theorem 6.4.19 Let {fJ.e} be a family of probability measures that satisfies the LDP with a
good rate function I on a Hausdorff topological space X , and for m = 1, 2, . . . , let fm : X — >
y be continuous junctions, with (y,d) a metric space. Assume there exists a measurable
map f : X —> y such that for every a < oo,

limsup sup d ( f m ( x ) , f ( x ) ) =0 . (6.4.48)
m-^oo {x:I(x)<a}

Then any family of probability measures {fif} for which {/i€ o f^1} are exponentially good
approximations satisfies the LDP in y with the good rate function I ' ( y ] = inf{/(o;) : y =
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The condition (6.4.48) implies that for every a < oo, the function / is continuous on the
level set */(Q) = {x : I(x) < a}. Suppose that in addition,

lim inf I(x) = oo . (6.4.49)
m—too xe*;(m)c

Then the LDP for /ue o/-1 follows as a direct consequence of Theorem 6.4.19 by considering
a sequence fm of continuous extensions of / from $/(m) to X. (Such a sequence exists
whenever X is a, completely regular space.) That (6.4.49) need not hold true, even when
X = IR, may be seen by considering the following example. It is easy to check that ^e =
(<5{0} + £{e})/2 satisfies the LDP on IR with the good rate function 7(0) = 0 and I ( x ) =
oo, x ^ 0. On the other hand, the closure of the complement of any level set is the whole real
line. If one now considers the function / : IR —> IR such that /(O) = 0 and f ( x ) = I , x / 0,
then f i e o f ~ l does not satisfy the LDP with the rate function /'(y) = inf{/(x) : x e IR, y =
f ( x ) } , i.e., /'(O) = 0 and I'(y) = oo,y ̂  0.

6.4.3 Varadhan's Lemma and its Converse
Throughout Section 6.4.3, {Ze} is a family of random variables taking values in the regular
topological space X, and {^e} denotes the probability measures associated with {Ze}. The
next theorem could actually be used as a starting point for developing the large deviations
paradigm. It is a very useful tool in many applications of large deviations. For example,
the asymptotics of the partition function in statistical mechanics can be derived using this
theorem.

Theorem 6.4.20 (Varadhan) Suppose that {^if} satisfies the LDP with a good rate func-
tion I : X —» [0, oo], and let (f>: X —> IR be any continuous function. Assume further either
the tail condition

Jim^limsup elog-E1 ^(Ze)/f l{0(Ze)>M}J = -oo , (6.4.50)

or the following moment condition for some y > 1,

limsupelogS j"e7<*(Ze)/el < oo . (6.4.51)

Then

lim elog£ je^^l = sup {4>(x} - I ( x ) } .

Theorem 6.4.20, often referred to as "Varadhan's lemma" in the literature, is a direct
consequence of the following three lemmas. For bounded $(•) the main Lemma 6.4.22 is
proved by covering the compact level sets of /(•) by small neighborhoods using the lower
semicontinuity of /(•) and the upper semicontinuity of $(•).

Lemma 6.4.21 If</> : X —> IR is lower semicontinuous and the large deviations lower bound
holds with I: X —-> [0, oo], then

lim inf tlogE [e^^H > sup {4>(x) - I(x)} . (6.4.52)
e—>0 L J x^X

Lemma 6.4.22 // <f> : X —> TR is,an upper semicontinuous function for which the tail
condition (6-4-50) holds, and the large deviations upper bound holds with the good rate
function I : X —> [0, oo], then

lim sup elogE [e<*(z')/'e] < sup {<f>(x) - I(x)} . (6.4.53)
e^O L -I x£X
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Lemma 6.4.23 Condition (6-4-51) implies the tail condition (6-4-50).

We next state a partial converse to Varadhan's lemma, due to Bryc [Bry90]. For each
Borel measurable function / : X —> R, define

A/=limelog / ef(xVe/j,e(dx) , (6.4.54)e-*° Jx

provided the limit exists. The main result of this section is that the LDP is a consequence of
exponential tightness and the existence of the limits (6.4.54) for every / G <?, for appropriate
families of functions Q.

To this end it is assumed in the rest of the section that X is a completely regular
topological space, i.e., X is Hausdorff, and for any closed set F C X and any point x ^ F ,
there exists a continuous function / : X — > [0, 1] such that /(re) = 1 and f(y) = 0 for all
y e F. Recall that Hausdorff topological vector spaces are completely regular.

The class of all bounded, real valued continuous functions on X is denoted throughout
by Cb(X).

Theorem 6.4.24 (Bryc) Suppose that the family {^e} is exponentially tight and that the
limit A.J in (6-4-54) exists for every f € Ct,(X}. Then {ne} satisfies the LDP with the good
rate function

I ( x ) = sup {/(re) -A/}. (6.4.55)
f€Cb(X)

Furthermore, for every f e Cb(X),

A/ = sup {/(x) - I(x)} . (6.4.56)
x€X

Remark: In the case where X is a topological vector space, it is tempting to compare
(6.4.55) and (6.4.56) with the Fenchel-Legendre transform pair A(-) and A*(-) of Section
6.4.4. Note, however, that here the rate function I ( x ) need not be convex.
Sketch of Proof: Since AQ = 0, it follows that /(•) > 0. Moreover, J(x) is lower semicon-
tinuous, since it is the supremum of continuous functions. Due to the exponential tightness
of {/^e}, the LDP asserted follows once the weak LDP (with rate function /(•)) is proved.
Moreover, by an application of Varadhan's lemma (Theorem 6.4.20), the identity (6.4.56)
then holds. It remains, therefore, only to prove the weak LDP, which is a consequence of
the following two lemmas.

Lemma 6.4.25 (Upper bound) //A/ exists for each f & Cb(X), then, for every compact
re x,

lira sup e log fj,f (F) < — inf I ( x ) .

Lemma 6.4.26 (Lower bound) / /A/ exists for each f e Cb(X), then, for every open
G C X and each x £ G,

liminf elog/ue(G) > —I(x) .

This proof works because indicators on open sets are approximated well enough by
bounded continuous functions. It is clear, however, that not all of Cb(X) is needed for that
purpose. The following definition is the tool for relaxing the assumptions of Theorem 6.4.24.
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Definition 6.4.27 A class Q of continuous, real valued functions on a topological space X
is said to be well-separating if:
(1) Q contains the constant functions.
(2) Q is closed under finite pointwise minima, i.e., 31,52 € Q => g\ A 52 G Q-
(3) Q separates points of X, i.e., given two points x,y G X with x ^ y, and a, b G 1R, there
exists a function g £ Q such that g(x) = a and g(y) = b.

Remark: It is easy to check that if Q is well-separating, so is Q+ , the class of all bounded
above functions in Q.

When X is a vector space, a particularly useful class of well-separating functions exists.

Lemma 6.4.28 Let X be a locally convex, Hausdorff topological vector space. Then the
class Q of all continuous, bounded above, concave functions on X is well- separating.

The following lemma, states the specific approximation property of well-separating classes
of functions that allows their use instead of Cb(X). It is the key to the proof of Theorem
6.4.30.

Lemma 6.4.29 Let Q be a well- separating class of functions on X . Then for any compact
set F c X , any f G Cb(r), and any 5 > 0, there exists an integer d < oo and functions
gi, • • • , Qd G Q such that

sup \f(x) — max<7i(o;)| < S
zer »=i

and

sup <?j(x) < sup/(x) < oo .

Theorem 6.4.30 (Bryc) Let {^e} be an exponentially tight family of probability measures
on a completely regular topological space X , and suppose Q is a well- separating class of func-
tions on X . If Kg exists for each g & Q, then A/ exists for each f G Cb(X}. Consequently,
all the conclusions of Theorem 6.4-24 hold.

The following variant of Theorem 6.4.24 dispenses with the exponential tightness of {[J,e},
assuming instead that (6.4.56) holds for some good rate function /(•).

Theorem 6.4.31 Let /(•) be a good rate function. A family of probability measures {jue}
satisfies the LDP in X with the rate function /(•) if and only if the limit A/ in (6.4-54)
exists for every f G Cb(X) and satisfies (6.4-56).

6.4.4 Convexity Considerations
In Section 6.3.3, it was shown that when a limiting logarithmic moment generating function
exists for a family of IRd-valued random variables, then its Fenchel-Legendre transform is
the natural candidate rate function for the LDP associated with these variables. The goal of
Section 6.4.4 is to extend this result to topological vector spaces. As will be seen, convexity
plays a major role as soon as the linear structure is introduced. For this reason, after
the upper bound is established for all compact sets, some generalities involving the convex
duality of A and A* are presented. These convexity considerations play an essential role in
applications. Finally, Theorem 6.4.36 is a (weak) version of the Gartner-Ellis theorem in
an abstract setup.

Throughout Section 6.4.4 X is a HausdorfF (real) topological vector space. Recall that
such spaces are completely regular, so the results of Sections 6.4.1 and 6.4.3 apply. The
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dual space of X, namely, the space of all continuous linear functional on X , is denoted
throughout by X* . Let Ze be a family of random variables taking values in X, and let
fj,e E Mi(X~) denote the probability measure associated with Ze. By analogy with the Hd

case presented in Section 6.3.3, the logarithmic moment generating function A/ie : X* — »
(—00, oo] is defined to be

Ape (A) = log E [e<A'Z'->l = log / eA(l V(dz) , A e X* ,1 J Jx

where for x € X and A e X*, (A, x) denotes the value of A(x) e 1R.
Let

A(A)=limsup eA« ( - ) , (6.4.57)
e->o V e /

using the notation A(A) whenever the limit exists. In many cases, when eA jJ.e(-/e) converges
pointwise to A(-) for X = IRd and an LDP holds for {/Jie}, the rate function associated with
this LDP is the Fenehel-Legendre transform of A(-). In the current setup, the Fenchel-
Legendre transform of a function / : X* — » [—00, oo] is defined as

f*(x)= sup {(A, x) - /(A)} , xeX. (6.4.58)

Thus, A* denotes the Fenchel-Legendre transform of A, and A* denotes that of A when the
latter exists for all A E X* .

The following upper bound is a consequence of Chebycheff's inequality and the covering
of the compact set F by an appropriate half-space.

Theorem 6.4.32
(a) A(-) of (6.4-57) is convex on X* and A*(-) is a convex rate function.
(b) For any compact set F C X ,

limsup£log^e(F) < - inf A*(z) . (6.4.59)
e_0 x<=r

Remarks:
(a) In Theorem 6.3.12, which corresponds to X = IRd, it was assumed, for the purpose of
establishing exponential tightness, that 0 € T>°^. In the abstract setup considered here, the
exponential tightness does not follow from this assumption, and therefore must be handled
on a case-by-case basis.
(b) Note that any bound of the form A(A) < K(\) for all A € X* implies that the Fenchel-
Legendre transform K*(-) may be substituted for A*(-) in (6.4.59). This is useful in situa-
tions in which A(A) is easy to bound but hard to compute.
(c) The inequality (6.4.59) may serve as the upper bound related to a weak LDP. Thus,
when {/ze} is an exponentially tight family of measures, (6.4.59) extends to all closed sets.
If in addition, the large deviations lower bound is also satisfied with A*(-) , then this is a
good rate function that controls the large deviations of the family {^€}.

The implications of the existence of an LDP with a convex rate function to the structure
of A and A* are next explored. Building on Varadhan's lemma and Theorem 6.4.32, it
follows that when the quantities eA^e (A/e) are uniformly bounded (in e) and an LDP holds
with a good convex rate function, then eA^^/e) converges pointwise to A(-) and the rate
function equals A*(-). Consequently, the assumptions of Lemma 6.4.8 together with the
exponential tightness of {^6} and the uniform boundedness mentioned earlier, suffice to
establish the LDP with rate function A*(-}.
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Before proceeding with the identification of the rate function of the LDP as A*(-), note
that while A*(-) is always convex by Theorem 6.4.32, the rate function may well be noncon-
vex. For example, such a situation may occur when contractions using nonconvex functions
are considered. However, it may be expected that /(•) is identical to A*(-) when /(•) is
convex.

An instrumental tool in the identification of / as A* is the following duality property of
the Fenchel-Legendre transform, which is a consequence of the Hahn-Banach theorem.

Lemma 6.4.33 (Duality lemma) Let X be a locally convex Hausdorff topological vector
space. Let f : X — •> (-co, oo] be a lower semicontinuous, convex function, and define

9(A) = sup {{A, *}-/(*)}.
xex

Then /(•) is the Fenchel-Legendre transform of g(-), i.e.,

f(x)= sup {(\,x) - g(\)} . (6.4.60)
ASA"

This lemma has the following geometric interpretation. For every hyperplane defined by A,
#(A) is the largest amount one may push up the tangent before it hits /(•) and becomes a
tangent hyperplane. The duality lemma states the "obvious result" that to reconstruct /(•),
one only needs to find the tangent at x and "push it down" by g (A).

The first application of the duality lemma is in the following theorem, where convex rate
functions are identified as A*(-).

Theorem 6.4.34 Let X be a locally convex Hausdorff topological vector space. Assume that
Hf satisfies the LDP with a good rate function I . Suppose in addition that

A(A)=limsup eAMe(A/e) < oo, VA e X" . (6.4.61)
e-^O

(a) For each A € X* , the limit A(A) = lim eAM e(A/e) exists, is finite, and satisfies

A(A) = sup {(A, x) - I(x)} . (6.4.62)
x<=X

(b) If I is convex, then it is the Fenchel-Legendre transform of A, namely,

*

(c) If I is not convex, then A* is the affine regularization of I, i.e., A*(-) < !(•), and for
any convex rate function f , /(•) < /(•) implies /(•) < A*(-).

Remark: The weak* topology on X* makes the functions (A,x) — I(x) continuous in
A for all x 6 X. By part (a), A(-) is lower semicontinuous with respect to this topology,
which explains why lower semicontinuity of A(-) is necessary in Rockafellar's lemma (Lemma
6.3.14).

Corollary 6.4.35 Suppose that both condition (6.4-61) and the assumptions of Lemma
6.4-8 hold for the family {n£}, which is exponentially tight. Then {/Us} satisfies in X the
LDP with the convex, good rate function A*.
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Theorem 6.4.34 is not applicable when A(-) exists but is infinite at some A e X*, and
moreover, it requires the full LDP with a convex, good rate function. As seen in the case of
Cramer's theorem in H, these conditions are not necessary. Of course, there is a price to
pay: The resulting A* may not be a good rate function and only the weak LDP is proved.

Having seen a general upper bound in Theorem 6.4.32 we turn next to sufficient condi-
tions for the existence of. a complementary lower bound. To this end, recall that a point
x G X is called an exposed point of A* if there exists an exposing hyperplane A € X* such
that

An exposed point of A* is, in convex analysis parlance, an exposed point of the epigraph of
A*. The following is an infinite-dimensional extension of the Gartner-Ellis theorem. Note
however that its assumption (6.4.63) is stronger, while part (c) is weaker than the finite
dimensional counterpart because there is no explicit criterion for checking (6.4.64).

Theorem 6.4.36 (Baldi) Suppose that {/J.f} are exponentially tight probability measures
on X.
(a) For every closed set F c X,

lim sup elog ^(F] < — inf A*(x).

(b) Let T be the set of exposed points of A* with an exposing hyperplane A for which

A(A) = lim eAMe I — I exists and A(7A) < oo for some 7 > 1. (6.4.63)

Then, for every open set G C X,

lim inf elog ne(G) >- jnf_A*(z) .

(c) If for every open set G,

inf A*(cc) = inf A*(z) , (6.4.64)

then {//6} satisfies the LDP with the good rate function A*.

6.4.5 Large Deviations for Projective Limits
In Section 6.4.5, we develop a method of lifting a collection of LDPs in "small" spaces into
the LDP in the "large" space X, which is their projective limit. (See definition below.)
The motivation for such an approach is as follows. Suppose we are interested in proving
the LDP associated with a sequence of random variables Xi, X2, • • • in some abstract space
X. The identification of X* (if X is a topological vector space) and the computation of the
Fenchel-Legendre transform of the moment generating function may involve the solution
of variational problems in an infinite dimensional setting. Moreover, proving exponential
tightness in X, the main tool of getting at the upper bound, may be a difficult task. On the
other hand, the evaluation of the limiting logarithmic moment generating function involves
probabilistic computations at the level of real-valued random variables, albeit an infinite
number of such computations. It is often relatively easy to derive the LDP for every finite
collection of these real-valued random variables. Hence, it is reasonable to inquire if this
implies that the laws of the original, X-valued random variables satisfy the LDP.
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An affirmative result is presented shortly in a somewhat abstract setting. The idea is to
identify X with the projective limit of a family of spaces {3^}jej with the hope that the
LDP for any given family {fxf} of probability measures on X follows as the consequence of
the fact that the LDP holds for any of the projections of yue to {3^}jeJ-

To make the program described precise, we first review a few standard topological defi-
nitions. Let (J, <) be a partially ordered, right-filtering set. (The latter notion means that
for any i,j in J, there exists k <E J such that both i < k and j < fc.) Note that J need not
be countable. A projective system (3j,Pij)i<jeJ consists of Hausdorff topological spaces
{yj}j€J and continuous maps pij : 3 -̂ —> 3^ such that pik = Pij ° Pjk whenever i < j < k
({pjj}jeJ are the appropriate identity maps). The projective limit of this system, denoted
by X — |im3j, is the subset of the topological product space y = Fljej^j' consisting of all
the elements x = (yj)j^j for which y^ = Pij(yj) whenever i < j, equipped with the topology
induced by y. Projective limits of closed subsets Fj C y^ are defined analogously and
denoted F — hrnFj. The canonical projections of X, which are the restrictions PJ : X —» 3-j-
of the coordinate maps from y to J^, are continuous.

The following theorem yields the LDP in X as a consequence of the LDPs associated
with {/j,t °P^1, £ > 0}. In order to have a specific example in mind, think of X as the space
of all maps / : [0,1] —> M such that /(O) = 0, equipped with the topology of pointwise
convergence. Then PJ : X —* Hd is the projection of functions onto their values at the
time instances 0 < t\ < t% < • • • < td < 1, with the partial ordering induced on the set
J = \J°£=l{(ti,... ,td) '• 0 < ti < t2 < • • • < id < 1} by inclusions. For details of this
construction, see Section 6.5.1.

Theorem 6.4.37 (Dawson—Gartner) Let {/j,e} be a family of probability measures on X,
such that for any j 6 J the Borel probability measures /j,e °pjx on y>j satisfy the LDP with
the good rate function I j ( - ) . Then {fJ-£} satisfies the LDP with the good rate function

/(x) = sup { I, (P] (x)) } , xeX. (6.4.65)
J£J

Remark: Throughout Section 6.4.5, we drop the blanket assumption that BX C B. This
is natural in view of the fact that the set J need not be countable. It is worthwhile to note
that B is required to contain all sets pJ1(Bj), where Bj 6 By^.

The following lemma is often useful for simplifying the formula (6.4.65) of the Dawson-
Gartner rate function.

Lemma 6.4.38 If !(•) is a good rate function on X such that

Ij (y) = inf {/(x) : x € X, y = P} (x)} , (6.4.66)

for any y € yj, j € J, then the identity (6.4-65) holds.

The preceding theorem is particularly suitable for situations involving topological vector
spaces that satisfy the following assumptions.

Assumption 6.4.67 Let W be an infinite dimensional real vector space, and W its alge-
braic dual, i.e., the space of all linear functionals A i—> (A,x) : W —> K. The topological
(vector) space X consists o/W' equipped with the W-topology, i.e., the weakest topology such
that for each A 6 W, the linear functional x i—> (A, x) : X —> M is continuous.

Remark: The VV-topology of W makes W into the topological dual of X, i.e., W = X*.
For any d € %+ and A I , . . . ,A d e W, define the projection p^,...,xd '• X —> JRd by
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Assumption 6.4.68 Let (X,B,/jLf) be probability spaces such that:
(a) X satisfies Assumption 6-4-67.
(b) For any A 6 W and any Borel set B in R, P^l(-B) € B.
Remark: Note that if {/xe} are Borel measures, then Assumption 6.4.68 reduces to As-
sumption 6.4.67.

Theorem 6.4.39 Let Assumption 6-4-68 hold. Further assume that for every d 6 Z+ and
every A I , . . . , \d e W, the measures {fj,e o p~^ X d , e > 0} satisfy the LDP with the good
rate function /AI,... ,\d('^- Then {fj,e} satisfies the LDP in X , with the good rate function

/(x)= sup sup I X l ! . . . , X d ( ( ( \ 1 , x ) , ( X 2 , x ) , . . . , ( X d , x ) ) ' ) . (6.4.69)

Remark: In most applications, one is interested in obtaining an LDP on £ that is a non-
closed subset of X . Hence, the relatively effortless projective limit approach is then followed
by an application specific check that "Dj C £, as needed for Lemma 6.4.3. For example, in
the study of empirical measures on a Polish space E, it is known a priori that /ue(Mi (£)) = 1
for all e > 0, where MI(£) is the space of Borel probability measures on S, equipped with
the -B(£)-topology, and B(£) = {/ : £ — > IR, / bounded, Borel measurable}. Identifying
each z/ e MI(£) with the linear functional / H- > /s fdv, V/ e -B(S), it follows that Mi(S] is
homeomorphic to £ C X, where here X denotes the algebraic dual of -B(S) equipped with
the -B(£)-topology. Thus, X satisfies Assumption 6.4.67, and E is not a closed subset of X ' .
It is worthwhile to note that in this setup, ne is not necessarily a Borel probability measure.

When using Theorem 6.4.39, either the convexity of I\1,...,\d(-) or the existence and
smoothness of the limiting logarithmic moment generating function A(-) are relied upon in
order to identify the good rate function of (6.4.69) with A*(-), in a manner similar to that
encountered in Theorem 6.4.34. This is spelled out in the following corollary.

Corollary 6.4.40 Let Assumption 6.4-68 hold.
(a) Suppose that for each A G W, the limit

A(A) = lime log / e^(x^^(dx} • (6.4.70)e-*° Jx
exists as an extended real number, and moreover that for any d e Z,+ and any \i, . . . , \d €
W, the function

d

g ( ( t l y . . . , td))iA(^ tiAi) : TR.d -> (-00, oo]
i=l

is essentially smooth, lower semicontinuous, and finite in some neighborhood of 0.
Then {/^e} satisfies the LDP in (X ,K) with the convex, good rate function

A*(z) = sup {(A,x) -A(A)}. (6.4.71)

(b) Alternatively, if for any AI , . . . , Ad 6 W, there exists a compact set K C lRd such that
fj,e ° p^ \d(K) ~ 1; and "moreover {/ie o p^ A r f , e > 0} satisfies the LDP with a convex
rate function, then A : W — > TR exists, is finite everywhere, and {/ue} satisfies the LDP in
(X,B) with the convex, good rate function A*(-) as defined in (6.4-71).

Remark: Since X satisfies Assumption 6.4.67, the only continuous linear functionals on
X are of the form x i— > (A, a;}, where A e W. Consequently, X* may be identified with W,
and A*(-) is the Fenchel-Legendre transform of A(-) as defined in Section 6.4.4.

Recall that a function / : < % ' * — > TR, is Gateaux differentiate if, for every A , ^ e X* , the
function f(X + W) is differentiate with respect to t at t = 0. In the next corollary, Gateaux
differentiability of A(-) results with the LDP, dispensing with Assumption 6.4.68.
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Corollary 6.4.41 Let {p,e} be an exponentially tight family of Borel probability measures
on the locally convex Hausdorff topological vector space £. Suppose A(-) = lim£_o eA^ (-/e)
is finite valued and Gateaux differentiate. Then {/^e} satisfies the LDP in £ with the convex,
good rate function A* .

6.5 Sample Path LDPs
The finite dimensional LDPs considered in Section 6.3 allow computations of the tail behav-
ior of rare events associated with various sorts of empirical means. In many problems, the
interest is actually in rare events that depend on a collection of random variables, or, more
generally, on a random process. Whereas some of these questions may be cast in terms of
empirical measures, this is not always the most fruitful approach. Interest often lies in the
probability that a path of a random process hits a particular set. Questions of this nature
are addressed here. We start with the case of a random walk, the simplest example of all.
The Brownian motion counterpart is then an easy application of exponential equivalence,
and the diffusion case follows by suitable approximate contractions.

The material for this section is taken from Sections 5.1/5.2, 5.6 and 5.7 of [DeZ98] to
which the reader is referred for additional details, bibliography, and proofs.

6.5.1 Sample Path Large Deviations for Random Walk and for
Brownian Motion

Let Xi,Xz,... be a sequence of i.i.d. random vectors taking values in IRd, with
A(A)=log.E(e<A 'Xl>) < oo for all A e Hd. drainer's theorem (Theorem 6.3.9) allows the
analysis of the large deviations of ^ X^Li -^»- Similarly, the large deviations behavior of
the pair of random variables i ̂ "=1 %-i and ^ £)[=i ^ can De obtained, where [c] as usual
denotes the integer part of c. In Section 6.5.1, the large deviations joint behavior of a family
of random variables indexed by t is considered.

Define
in*]

Zn(t] = - Y, Xi, 0<t<l, (6.5.72)
z=l

and let fj,n be the law of Zn(-) in L00([0, 1]). Throughout, \x\=-\/(x,x) denotes the Euclidean
norm on Hd, || / || denotes the supremum norm on I/po([0, 1]), and A* (z)= supA€]Rd [(A, x) —
A(A)] denotes the Fenchel-Legendre transform of A(-).

The following theorem is the first result of this section.

Theorem 6.5.1 (Mogulskii) The measures p,n satisfy in I/oo([0, 1]) the LDP with the good
rate function

(6.5.73)
oo otherwise ,

where AC denotes the space of absolutely continuous functions, i.e.,

C([0, 1]) :
fc

«-s* | ->0 , s € <te <se+1 <te+l =4>
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Remarks:
(a) Recall that $ : [0,1] —> Rd absolutely continuous implies that $ is differentiable almost
everywhere; in particular, that it is the integral of an £i([0,1]) function.
(b) Since {/J,n} are supported on the space of functions continuous from the right and having
left limits, of which X>/ is a subset, the preceding LDP holds in this space when equipped
with the supremum norm topology. In fact, all steps of the proof would have been the same
had we been working in that space, instead of Loo([0,1]), throughout.
(c) Theorem 6.5.1 possesses extensions to stochastic processes with jumps at random times;
To avoid measurability problems, one usually works in the space of functions continuous
from the right and having left limits, equipped with a topology which renders the latter
Polish (the Skorohod topology). Results may then be strengthened to the supremum norm
topology by using exponential tightness.

The proof of Theorem 6.5.1 is based on the following three lemmas.

Lemma 6.5.2 Let fin denote the law of Zn(-) in L00([0,1]), where

Zn(t)=Zn(t) +(t- [^-} X[ni]+l (6.5.74)
V n /

is the polygonal approximation of Zn(t). Then the probability measures /j,n and fin are
exponentially equivalent in I/oo([0,1]).

Lemma 6.5.3 Let X consist of all the maps from [0,1] to TRd such that t = 0 is mapped
to the origin, and equip X with the topology of pointwise convergence on [0,1]. Then the
probability measures fin of Lemma 6.5.2 (defined on X by the natural embedding) satisfy the
LDP in this Hausdorff topological space with the good rate function /(•) of (6.5.73).

Lemma 6.5.4 The probability measures jj,n are exponentially tight in the space Co([0,l])
of all continuous functions f : [0,1] —> K such that /(O) = 0, equipped with the supremum
norm topology.

Proof of Theorem 6.5.1: By Lemma 6.5.3, {/!„} satisfies the LDP in X. Note that
T>i C C0([0,1]), and by (6.5.72) and (6.5.74), fJ,n(C0([0,1])) = 1 for all n. Thus, by Lemma
6.4.3, the LDP for {fj,n} also holds in the space Co([0,1]) when equipped with the relative
(Hausdorff) topology induced by X. The latter is the pointwise convergence topology, which
is generated by the sets Vt,x,s={g e Co([0,1]) : \g(t) - x < 6} with t € (0,1], x e IRd and
5 > 0. Since each Vt,x,S is an open set under the supremum norm, the latter topology is
finer (stronger) than the pointwise convergence topology. Hence, the exponential tightness
of {fin} as established in Lemma 6.5.4 allows, by Corollary 6.4.13, for the strengthening of
the LDP to the supremum norm topology on Co([0,1]). Since Co([0,1]) is a closed subset
of Zfoo([0,1]), the same LDP holds in ^^([0,1]) by again using Lemma 6.4.3, now in the
opposite direction. Finally, in view of Lemma 6.5.2, the LDP of {/un} in the metric space
LOO([O, 1]) follows from that of {/&„} by an application of Theorem 6.4.15. D

The projective limit approach, which is the key to Lemma 6.5.3 hinges upon the following
finite dimensional result. This in turn is a consequence of Cramer's Theorem 6.3.9.

Lemma 6.5.5 Let J denote the collection of all ordered finite subsets of (0,1]. For any
j = {0 < ti < t-2 < • • • < t|j| < 1} G J and any f : [0,1] —> IRd, let Pj(f) denote the vector
(/(*i)> /fe), • • • , f ( t \ j \ ) ) £ (IRd)'J '- Then the sequence of laws {fj,n o p ~ 1 } satisfies the LDP
in (1R )'J 'I with the good rate function

til , _ •.
IJ.(z) = £(t,-t/_1)A*(f?-^) , (6.5.75)*—' V tf — t/_i /ft __ -\ \ <- *. J- /
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where z = (z±, . . . , z^\) and to = Q, ZQ = 0.

We next turn to the diffusion counterpart of Theorem 6.5.1. Let wt, t e [0, 1] denote a
standard Brownian motion in IRd. Consider the process

and let i/e be the probability measure induced by w £ ( - ) on Co([0, 1]), the space of all con-
tinuous functions <j> : [0, 1] — > IRd such that 0(0) = 0, equipped with the supremum norm
topology. Note that || we \\ j^g 0 in probability (actually, almost surely) and exponen-
tially fast in 1/e as implied by the following useful (though elementary) consequence of the
reflection principle.

Lemma 6.5.6 For any integer d and any r, e, S > 0,

Probl sup \wf(t)\ >S) <4de-5*/2dT* . (6.5.76)
\0<t<T )

The LDP for w e ( - ) is stated in the following theorem. Let #i={/0* f ( s ) d s : f e £2([0, 1])}
denote the space of all absolutely continuous functions with square integrable derivative
equipped with the norm | | < 7 !!.#!= [/0 |

Theorem 6.5.7 (Schilder) {v€} satisfies, in Co([0, 1]), an LDP with good rate function

oo otherwise.

Proof. Observe that the process

wf(t)=wf (el-

is for en
 = n merely the process Zn(-) of (6.5.72), for the particular choice of Xi, which

are standard Normal random variables in K (namely, of zero mean and of the identity
covariance matrix). Combining Theorem 6.5.1 with exponential equivalence leads first to
the LDP for u> e( ' ) , and then using Lemma 6.5.6 to the LDP for u»e(-). D

6.5.2 The Freidlin-Wentzell Theory
The results of Section 6.5.1 are extended here to the case of strong solutions of stochastic
differential equations. Note that these, in general, do not possess independent increments.
However, some underlying independence exists in the process via the Brownian motion,
which generates the diffusion. This is exploited in Section 6.5.2, where large deviations
principles are derived by applying various contraction principles.

First consider the following relatively simple situation. Let {x^} be the diffusion process
that is the unique solution of the stochastic differential equation

dxe
t = b(xl)dt + Vedwt 0<t<l, 4 = 0, (6.5.77)

where b : IR —> IR is a uniformly Lipschitz continuous function (namely, \b(x) — b(y)\ < B\x —
y\). The existence and uniqueness of the strong solution {xf} of (6.5.77) is standard. Let p.£
denote the probability measure induced by {xe

t} on Cb([0,1]). Then jie = /ze o F"1, where
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jue is the measure induced by {^/ewt}, and the deterministic map F : Co([0, 1]) — > Co([0, 1])
is denned by / = F ( g ) , where / is the unique continuous solution of

/(*) = / b(f(s))ds + g(t) , t € [0, 1] . (6.5.78)
Jo

The LDP associated with x\ is therefore a direct application of the contraction principle
with respect to the map F.

Theorem 6.5.8 {x|} satisfies the LDP in CQ([O, 1]) with the good rate function

/(/)*( f /o !/(*)- K/(*))l2d* , / e f f i (6.5.79)
\ oo , f & HI .

Now, let {x|} be the diffusion process that is the unique solution of the stochastic
differential equation

dx\ = b(xl)dt + ̂ /ecr(xe
t)dwt, 0<t<T, xe

0 = x , (6.5.80)

where x G TRd is deterministic, b : ~\Rd — > IRd is a uniformly Lipschitz continuous function,
all the elements of the diffusion matrix cr are bounded, uniformly Lipschitz continuous
functions, and w. is a standard Brownian motion in Hd. The existence and uniqueness of
the strong solution {x^} of (6.5.80) is standard.

The map defined by the process xe on C([0, T]) is measurable but need not be continuous,
and thus the proof of Theorem 6.5.8 does not apply directly. Indeed, this noncontinuity is
strikingly demonstrated by the fact that the solution to (6.5.80), when w± is replaced by its
polygonal approximation, differs in the limit from xe by a nonzero (Wong-Zakai) correction
term. On the other hand, this correction term is of the order of e, so it is not expected
to influence the large deviations results. Such an argument leads to the guess that the
appropriate rate function for (6.5.80) is

inf - / \g(t)\2dt, (6.5.81)
0,T]):/(t)=x+/0* fc(/0))ds+/o < ^ ( f ( s ) ) g ( s ) d s } 2 J0

where the infimum over an empty set is taken as +00, and • | denotes both the usual
Euclidean norm on IRd and the corresponding operator norm of matrices. The spaces HI,
and L2([0, T]) for 1R -valued functions are defined using this norm.

Theorem 6.5.9 If all the entries of b and a are bounded, uniformly Lipschitz continuous
functions, then {xf}, the solution of (6.5.80), satisfies the LDP in C([0,T]) with the good
rate function IX,T(-) of (6.5.81).

Remark: For cr(-) , a square matrix, and nonsingular diffusions, namely, solutions of (6.5.80)
with a(-)=<r(-)cr '(-) which is uniformly positive definite, the preceding formula for the rate
function simplifies considerably to

oo , f ,

where H?±{f : f ( t ) = x + /„* ^(s)ds, 0 e £2([0,T])}.
The proof is based on approximating the process xe in the sense of Theorem 6.4.19 by

the solution of the stochastic differential equations

dxl'm = b(x^)dt + ̂ /~eo-(x^)dwt, 0<t<T, 4'm = 0. (6.5.82)

Indeed, {xe'm}, m = 1 ,2 , . . . , are shown, by martingale inequalities, to be exponentially
good approximations of {x£}. This is achieved by means of the following lemma:
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Lemma 6.5.10 Let bt, at be progressively measurable processes, and let

dzt — btdt + T/6atdwt , (6.5.83)

where ZQ is deterministic. Let TI 6 [0, T] be a stopping time with respect to the filtration
of {wt,t G [0,T]}. Suppose that the coefficients of the diffusion matrix a are uniformly
bounded, and for some constants Af, B, p and any t 6 [0, TI],

\<rt\ < M(p2+ z t
2)1/2

\bt\ < B(p2 + \zt\2)1/2 . (6.5.84)

Then for any 6 > 0 and any e < 1,

elogProb I sup \zt\ > 6 J < K + log I —^— I ,

where K = IB + M2(2 + d).

The following theorem strengthens Theorem 6.5.9 by allowing for e dependent initial
conditions.

Theorem 6.5.11 Assume the conditions of Theorem 6.5.9. Let {Xl'y} denote the solution
of (6.5.80) for the initial condition XQ = y. Then:
(a) For any closed F C C^O.T]),

'» £ F) < - inf IXtT((f>). (6.5.85)

(b) For any open G C C([0,T]);

liminf elogProb(Xf'y € G) > - inf Ix T((f>) • (6.5.86)
f^O ' <#>€Gy-tx

The following immediate corollary of Theorem 6.5.11 is used in Section 6.5.3.

Corollary 6.5.12 Assume the conditions of Theorem 6.5.9. Then for any compact K C IR
and any closed F C C([0,T]),

limsupelog sup Prob(Xe'v 6 F) < - inf Iy,T(4>) • (6.5.87)

Similarly, for any open G C C([0, T]),

liminf e log inf Prob(Xf'y e G) > - sup inf IyT(<t>} • (6.5.88)

6.5.3 Application: The Problem of Diffusion Exit from a Domain
Consider the system

dxf
t = b(xl)dt + J~ecr(xl)dwt, x\ € Rd, x\ = x , (6.5.89)

in the open, bounded domain G, where &(•) and cr(-) are uniformly Lipschitz continuous
functions of appropriate dimensions and w. is a standard Brownian motion. The following
assumption prevails throughout Section 6.5.3.



6.5. SAMPLE PATH LDPS 393

Assumption (A-l) The unique stable equilibrium point in G of the d-dimensional ordinary
differential equation

4>t = &(&) (6-5-9°)
is at 0 G G, and

</>o 6 G =>• Vt > Q, d>t € G and lim </>t = 0 .
t—>00

When e is small, it is reasonable to guess that the system (6.5.89) tends to stay inside
G. Indeed, suppose that the boundary of G is smooth enough for

r£= inf{t > 0 : x\ G dG}

to be a well-defined stopping time. Under mild conditions, P(re < T) ^g 0 for any T < oo.
(This fact follows for example from Theorem 6.5.13.) From an engineering point of view,
(6.5.89) models a tracking loop in which some parasitic noise exists. The parasitic noise may
exist because of atmospheric noise (e.g., in radar and astronomy), or because of a stochastic
element in the signal model (e.g., in a phase lock loop). From that point of view, exiting the
domain at dG is an undesirable event, for it means the loss of lock. An important question
(both in the analysis of a given system and in the design of new systems) would be how
probable is the loss of lock.

In many interesting systems, the time to lose lock is measured in terms of a large multiple
of the natural time constant of the system. For example, in modern communication systems,
where the natural time constant is a bit duration, the error probabilities are in the order
of 10~7 or 10~9. In such situations, asymptotic computations of the exit time become
meaningful.

Another important consideration in designing such systems is the question of where the
exit occurs on dG, for it may allow design of modified loops, error detectors, etc.

Throughout, Ex denotes expectations with respect to the diffusion process (6.5.89),
where XQ = x. The following classical theorem characterizes such expectations, for any e, in
terms of the solutions of appropriate partial differential equations.

Theorem 6.5.13 Assume that for anyy 6 dG, there exists a ball B(y) such thatGC\B(y) =
{y}, and for some r\ > 0 and all x € G, the matrices a(x)a'(x) — r/I are positive definite.
Then for any Holder continuous function g (on G) and any continuous function f (on dG),
the function

u(x)=Ex g(xl)dt

has continuous second derivatives on G, is continuous on G, and is the unique solution of
the partial differential equation

Leu = —g in G,
u = f on dG,

where the differential operator Z/e is defined via
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The following corollary, obtained by substituting / = 0 and g = I or g = 0, is of particular
interest.

Corollary 6.5.14 Assume the conditions of Theorem 6.5.13. Let u\(x) = Ex(re). Then
u\ is the unique solution of

Le
Ui = -l, in G ; t i i = 0 , on dG. (6.5.91)

Further, let U2(x) = Ex(f(xe
Tf)). Then for any f continuous, u? is the unique solution of

L£u2 = 0, in G ; u2 = f , on dG. - (6.5.92)

In principle, Corollary 6.5.14 enables the computation of the quantities of interest for
any e. However, in general for d > 2, neither (6.5.91) nor (6.5.92) can be solved explicitly.
Moreover, the numerical effort required in solving these equations is considerable, in par-
ticular when the solution over a range of values of € is of interest. In view of that, the exit
behavior analysis from an asymptotic standpoint is crucial.

Since large deviations estimates are for neighborhoods rather than for points, it is con-
venient to extend the definition of (6.5.89) to JRd. From here on, it is assumed that the
original domain G is smooth enough to allow for such an extension preserving the uniform
Lipschitz continuity of &(•) , cr(-).

Motivated by Theorem 6.5.9, define the cost function

V(y,z,t) = inf /„<(<£) (6.5.93)
V' ^' "• '

1 /•*
inf - / \us

 2ds ,
2 Jo{u.eL2([o,t]):<f>t=z where <t>a=y+J° b(<t>g)dd+$* cr(4,e)ui

where I y , t ( - ) is the good rate function of (6.5.81), which controls the LDP associated with
(6.5.89). This function is also denoted as I y ( - ) , I t ( - ) or /(•) if no confusion may arise.
Heuristically, V(y, z,t] is the cost of forcing the system (6.5.89) to be at the point z at time
t when starting at y. Define

V(y,z)=MV(y,z,t) .

The function V(0, z) is called the quasi-potential. The treatment to follow is guided by
the heuristics that as e —> 0, the system (6.5.89) wanders around the stable point x = 0
for an exponentially long time, during which its chances of hitting any closed set N C dG
are determined by infzejy V^O, z). The rationale here is that any excursion off the stable
point x = 0 has an overwhelmingly high probability of being pulled back there, and it is
not the time spent near any part of dG that matters but the a priori chance for a direct,
fast exit due to a rare segment in the Brownian motion's path. Caution, however, should
be exercised, as there are examples where this rationale fails.

For use below, we introduce the following basic assumptions.
Assumption (A-2) All the trajectories of the deterministic system (6.5.90) starting at
(f>o E dG converge to 0 as t —> oo.
Assumption (A-3) V=m£z<=dG V(0, z) < oo.
Assumption (A-4) There exists an M < oo such that, for all p > 0 small enough and
all x, y with \x — z\ + \y — z\ < p for some z 6 dG U {0}, there is a function u satisfying that
\\u\\ < M and 4>T(p) — V> where

I b(4>s}ds + I
Jo Jo
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andT(p) -> 0 as p -> 0.
Assumption (A-2) prevents consideration of situations in which dG is the characteristic

boundary of the domain of attraction of 0. Such boundaries arise as the separating curves of
several isolated minima, and are of meaningful engineering and physical relevance. Some of
the results that follow hold for characteristic boundaries. However, caution is needed in that
case. Assumption (A-3) is natural, for otherwise all points on dG are equally unlikely on
the large deviations scale. Assumption (A-4) is related to the controllability of the system
(6.5.89) (where a smooth control replaces the Brownian motion). Note, however, that this
is a relatively mild assumption. In particular, if the matrices a(x)cr'(x) are positive definite
for x = 0, and uniformly positive definite on dG, then Assumption (A-4) is satisfied.

The following theorem, provides the precise exponential growth rate of r% as well as
valuable estimates on the exit measure.

Theorem 6.5.15
(a) Assume (A-l), (A.3), ( A-4). For all x 6 G and all 6 > 0,

lim Px(e(V+6)/f >re> e(V-5]/e) = I. (6.5.94)
e—tO

Moreover, for all x £ G,

limelog EX(TC) = V . (6.5.95)
e^O V

(b) Assume (A-l)-(A-4). If N C dG is a closed set and inf^gjv V(0, z) > V, then for any
x e G,

l imP x(xl e e JV) = 0 . (6.5.96)
e—*0

In particular, if there exists z* & dG such that V(0,z*) < V(0,z) for all z ^ z*, z £ dG,
then

V c 5 > 0 , V z e G , limP^K. - z* < 6) = I. (6.5.97)

Remarks:
(a) When the quasi-potential V(Q, •) has multiple minima on dG, then the question arises
as to where the exit occurs. In symmetrical cases, it is easy to see that each minimum point
of V(0, •) is equally likely. In general, by part (b) of Theorem 6.5.15, the exit occurs from
a neighborhood of the set of minima of the quasi-potential. However, refinements of the
underlying large deviations estimates are needed for determining the exact weight among
the minima.
(b) The results of Section 6.5.3 can be, and were indeed, extended in various ways to cover
general Levy processes, dynamical systems perturbed by wide-band noise, queuing systems,
partial differential equations, etc.
(c) Often, there is interest in the characteristic boundaries for which Assumption (A-2) is
violated. This is the case when there are multiple stable points of the dynamical system
(6.5.90), and G is just the attraction region of one of them. The exit measure analysis
used for proving part (b) of the preceding theorem could in principle be incorrect. That is
because the sample path that spends increasingly large times inside G, while avoiding the
neighborhood of the stable point x = 0, could contribute a nonnegligible probability.
(d) The heuristics behind the proof of Theorem 6.5.15 are as follows: on a fixed time interval
T, with T large enough, the exit from the domain is extremely unlikely (of probability
roughly pe := e~~v^e), and if exit occurs it must follow, with overwhelming probability,
the minimizing paths in (6.5.93) which end on the boundary of G at time T. If exit did
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not occur, again with overwhelming probability, the path returns to a neighborhood of the
origin. Since the large deviation estimates are uniform in the initial condition, and since
V(y, z) is continuous in both variables, the situation is well approximated by independent
Bernoulli trials with probability of success pe. Thus, the number of trials before success
occurs is of the order of p~l, and the time before first success is of the same (exponential)
order.

6.6 LDPs for Empirical Measures
We start this section by providing the general statement of Cramer's and Sanov's theorems,
as well as the outline of proof. A new ingredient makes its appearance in this outline;
namely, subadditivity is exploited. We then turn to the LDP for the empirical measures
of Markov processes and of mixing sequences, concluding with applications to the Gibbs
conditioning principle in statistical mechanics and to hypothesis testing in statistics.

The material for this section is mostly taken from Chapter 6 and Sections 3.4 and 7.3 of
[DeZ98] to which the reader is refered for details, proofs, and bibliography.

6.6.1 Cramer's Theorem in Polish Spaces
A general version of Cramer's theorem for i.i.d. random variables is presented here. Sanov's
theorem is derived in Section 6.6.2 as a consequence of this general formulation. The core
new idea in the derivation presented here, namely, the use of subadditivity as a tool for
proving the LDP, is applicable beyond the i.i.d. case.

Let /j, be a Borel probability measure on a locally convex, Hausdorff, topological real vec-
tor space X. On the space X* of continuous linear functional on X, define the logarithmic
moment generating function

A(A)=log / e{x'x}dp, (6.6.98)
Jx

and let A*(-) denote the Fenchel-Legendre transform of A.
For every integer n, suppose that Xi,... ,Xn are i.i.d. random variables on X, each

distributed according to the law fj,; namely, their joint distribution nn is the product measure
on the space (Xn, (Bx}n)- We would like to consider the partial averages

n — m *-*'e=m+i

with Sn=Sn being the empirical mean. Note that S1™ are always measurable with respect to
the a-field BX™ , because the addition and scalar multiplication are continuous operations on
Xn. In general, however, (Bx)n C BX™ and S™ may be nonmeasurable with respect to the
product u-field (Bx)n- When X is separable, BX^ = (Bx)n, and there is no need to further
address this measurability issue. In most of the applications we have in mind, the measure
p is supported on a convex subset of X that is made into a Polish (and hence, separable)
space in the topology induced by X. Consequently, in this setup, for every m,n 6 ^+, 5™
is measurable with respect to (Bx)n•

Let /j,n denote the law induced by Sn on X. In view of the preceding discussion, nn is
a Borel measure as soon as the convex hull of the support of // is separable. The following
(technical) assumption formalizes the conditions required for our approach to Cramer's
theorem.
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Assumption 6.6.99 (a) X is a locally convex, Hausdorff, topological real vector space. £
is a closed, convex subset of X such that n(£) = 1 and £ can be made into a Polish space
with respect to the topology induced by X .
(b) The closed convex hull of each compact K C £ is compact.

The following is the extension of Cramer's theorem (Theorem 6.3.9).

Theorem 6.6.1 Let Assumption 6.6.99 hold. Then {nn} satisfies in X (and £) a weak
LDP with rate function A* . Moreover, for every open, convex subset A C X ,

lira - log^n(A) = - inf A*(z) . (6.6.100)
n— »oo n

Remarks:
(a) If, instead of part (b) of Assumption 6.6.99, both the exponential tightness of {/un}
and the finiteness of A(-) are assumed, then the LDP for {p,n} is a direct consequence of
Corollary 6.4.41.
(b) By Mazur's theorem, part (b) of Assumption 6.6.99 follows from part (a) as soon as the
metric d(-, •) of £ satisfies, for all a € [0, 1], Xi,x2, 2/1,2/2 6 £, the convexity condition

d(axi + (1 - a)x2,ayi + (1 - a)j/2) < max{d(xl,yl), d(x2, y2)} . (6.6.101)

This condition is motivated by the two applications we have in mind, namely, either X = £
is a separable Banach space, or X — M(S),£ = Mi(S) as in Section 6.6.2. It is straight
forward to verify that (6.6.101) holds true in both cases.
(c) Observe that S™ are convex combinations of {Xe}™_m, and hence with probability one
belong to £. Consider the sample space fi = £^+ of semi-infinite sequences of points in
£ with the product topology inherited from the topology of £. Since £ is separable, the
Borel cr-fleld on £1 is Bn = (Bs)z+, allowing the semi-infinite sequence Xi, . . . ,Xt,. . . to
be viewed as a random point in fi, where the latter is equipped with the Borel product
measure p?+ , and with Sn being measurable maps from (fi,Bn) to (£,Bs). This viewpoint
turns out to be particularly useful when dealing with Markov extensions of Theorem 6.6.1.
(d) Cramer's Theorem in lRd is a direct corollary of Theorem 6.6.1 for X = £ = IR^.

The proof of Theorem 6.6.1 combines the following key lemmas with a variant of Theo-
rem 6.4.34

Lemma 6.6.2 Let part (a) of Assumption 6.6.99 hold true. Then, the sequence {/Ltn} sat-
isfies the weak LDP in X with a convex rate function /(•).

Lemma 6.6.3 Let Assumption 6.6.99 hold true. Then, for every open, convex subset A C
X,

lim - logfj,n(A) = - inf I ( x ) ,
—

where /(•) is the convex rate function of Lemma 6.6.2.

We bring below the proof of Lemma 6.6.2, as it exhibits the use of subadditivity in large
deviation proofs.

Definition 6.6.4 A function f : ZS+ — > [0, oo] is called subadditive if f(n + m) < f ( n ) +
f(m) for all n,m € ZZ+.

Lemma 6.6.5 (Subadditivity) // / : Z+ — > [0, oo] is a subadditive function such that
f(ri) < oo for all n > N and some N < oo, then

,. /(") • , /(«)hm ^-^- = inf :L±—!- < oo .
ra— »oo n n>N n
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The following observation is key to our application of subadditivity.

Lemma 6.6.6 Let part (a) of Assumption 6.6.99 hold true. Then, for every convex A 6 BX,
the function f ( n ) = — lognn(A) is subadditive.

Proof. Without loss of generality, it may be assumed that A C £ . Now,

m + n m + n

Therefore, Sm+n is a convex combination (with deterministic coefficients) of the independent
random variables Sm and S™+n. Thus, by the convexity of A,

{w : S™+n(u] E A} H {W : Sm(w) 6 A} C {u : Sm+n(iu) e A} .

Since, evidently,

^n+m({u : S™+n(w) e A}) = »n({u : Sn(u) e A}) ,

it follows that

(6.6.102)

or alternatively, f ( n ] = — logjiin(A) is subadditive. D
The last tool needed for the proof of Lemma 6.6.2 is the following lemma.

Lemma 6.6.7 Let part (a) of Assumption 6.6.99 hold true. If A C. £ is (relatively) open
and fj,m(A) > 0 for some m, then there exists an N < oo such that p,n(A) > 0 for all n > N.

Proof of Lemma 6.6.2: Fix an open, convex subset A C X. Since /un(A) = /j.n(A n £)
for all n, either ^n(A) = 0 for all n, in which case HA = — linira_+oo ^ logPn(A) = oo, or
else the limit

CA = - lim -\ogf4n (A)
n—too n

exists by Lemmas 6.6.5, 6.6.6, and 6.6.7.
Let C° denote the collection of all open, convex subsets of X. Define

I(x)=sup{£A :zeA,AeC°}.

Applying Theorem 6.4.6 for the base C° of the topology of X, it follows that /j,n satisfies
the weak LDP with this rate function. To prove that /(•) is convex, we shall apply Lemma
6.4.8. To this end, fix Ai,A2& C° and let A=(Ai + A2)/2. Then since (Sn + S%n)/2 = S2n ,
it follows that

Mri(A1)Mn(A2) = M
2"({w : Sn e A!> n {w : S%n 6 A2}) < M2n(A) .

Thus, by taking n-limits, the convexity condition (6.4.38) is verified, namely,

Km sup -log /«„, (A) > limsup — log^2n(A) > --(£^1 + £-A2) •
n-*oo n n^oo in Z

With (6.4.38) established, Lemma 6.4.8 yields the convexity of / and the proof is complete.
n
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6.6.2 Sanov's Theorem
This section is about the large deviations of the empirical law of a sequence of i.i.d. random
variables; namely, let E be a Polish space and let YX, ... , Yn be a sequence of independent,
S-valued random variables, identically distributed according to ju € JVfi(E), where MI(£)
denotes the space of (Borel) probability measures on E. With 8y denoting the probability
measure degenerate at y E E, the empirical law of Yi, . . . , Yn is

I%=- ^T6Yi e Mi (2) . (6.6.103)
n i=i

Sanov's theorem about the large deviations of L% is proved in Theorem 6.3.7 for a finite set
E. Here, the general case is considered. First, the LDP with respect to the weak topology is
deduced, based on drainer's theorem (Theorem 6.6.1). The LDP with respect to a somewhat
stronger topology (the r-topology) is then presented. The latter result may be derived by
the projective limit approach of Section 6.4.5.

To set up the framework for applying the results of Section 6.6.1, let Xi = 5yi and
observe that Xi, . . . ,Xn are i.i.d. random variables taking values in the real vector space
M(E) of finite (signed) measures on E. Moreover, the empirical mean of X±, . . . , Xn is L%
and belongs to MI(£), which is a convex subset of M(E). Hence, our program is to equip
X = M(E) with an appropriate topology and Mi(E) = £ with the relative topology induced
by X, so that all the assumptions of Cramer's theorem (Theorem 6.6.1) hold and a weak
LDP for L% (in £) follows. A full LDP is then deduced by proving that the laws of L% are
exponentially tight in £, and an explicit formula for the rate function in terms of relative
entropy is derived by an auxiliary argument.

To this end, let Cb(E) denote the collection of bounded continuous functions (f> : E — > M,
equipped with the supremum norm, i.e., ||<^|| = supx€2 |^(^)|- Equip M(E) with the weak
topology generated by the sets [U^,tX^ , <j> e Cb(E), x € M, 6 > 0}, where

U4,,x,s={v € M(E) : |(<£, v) - x\ < 6} , (6.6.104)

and throughout, (</>, ̂ )=/s <j>dv for any </> € Q,(£) and any v 6 M(E). The Borel a-field
generated by the weak topology is denoted Bw .

Define the relative entropy of the probability measure v with respect to /j, 6 MI(£) as

F(H }A f Js/log/dA* if /^exists
\ oo otherwise ,

where dv/dp, stands for the Radon-Nikodym derivative of v with respect to // when it exists.
Remark: The function H(y\\i) is also referred to as Kullback-Leibler distance or divergence
in the literature. It is worth noting that although H(i/\/4) is called a distance, it is not a
metric, for H(v\fi) ^ H(p\v). Moreover, even the symmetric sum (H(i'\^i) + H(/j,\i'))/2 does
not satisfy the triangle inequality.

We have the following alternative formula for H(-\fj,).

Lemma 6.6.8 Let A(<£) = log/se*d^. Then, for any v € MI(£)

H(V\n)= sup {(0,z,)

Theorem 6.6.9 (Sanov) The empirical measures L% satisfy the LDP in Mi(E) equipped
with the weak topology, with the convex, good rate function H(-\/j).
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We present below a sketch of the proof of Sanov's theorem:
Since the collection of linear functional {v H- > ( < / > , v) : <p G C(,(E)} is separating in M(E),

this topology makes M (E) into a locally convex, Hausdorff topological vector space, whose
topological dual is the preceding collection, hereafter identified with Cj,(E). Moreover,
Mi(E) is a closed subset of M(E), and Mi(E) is a Polish space when endowed with the
relative topology and the Levy metric. Note that the topology thus induced on Mi(E)
corresponds to the weak convergence of probability measures, and that the Levy metric
satisfies the convexity condition (6.6.101).

The preceding discussion leads to the following immediate corollary of Theorem 6.6.1.

Corollary 6.6.10 The empirical measures L% satisfy a weak LDP in Mj(E) (equipped with
the weak topology and B = Bw) with the convex rate function

A*(i/) = sup {{</>, i/} -A(<£)}, z / eMi (E) . (6.6.105)

The strengthening of this corollary to a full LDP with a good rate function H(-\/j,) is ac-
complished by combining Lemma 6.6.8 and

Lemma 6.6.11 The laws of L% of (6.6.103) are exponentially tight.

Proof. There exist compact sets Tf c E, I = 1, 2, . . . such that

/i(rj) < e-2'V - 1) . (6.6.106)

Then, for any I, the set of measures

is closed. For L = 1 ,2, . . . define the compact set
oo

KL= ft Ke c M^Z) .
e=L

Chebycheff 's bound implies then that

Prob(Lj g Ke) < e~ne .

Hence, using the union of events bound,

limsup- logProb(I^ &KC
L)<-L.

n — >oo n

Thus, the laws of L% are exponentially tight. D
Next, we present a generalized version of Sanov's theorem, due to de Acosta [deA94],

with minimal topological assumptions.
Let (E, S) be a measurable space and let -B(E) be the space of bounded real-valued

5-measurable functions denned on E. The r-topology on the space Mi(E) of probability
measures on (E,5) is the smallest topology such that for each / £ -B(E), the map / >->
/ /dz/ : Mi(E) — > IR is continuous. For A c Mi(E), we denote by clr(A) (resp., intT(A))
the closure (resp., interior) of A in the r-topology. The cr-algebra B on Mi(E) is denned to
be the smallest u-algebra such that for each / G -B(E), the map f t—> f f di/ : Mi(E) — > IR
is measurable. Let YI, . . . ,Yn denote i.i.d., S- valued random variables of law fj,. Note that
S is not required to be a topological space.
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Theorem 6.6.12 For every set A e B

lira sup - logP(L% eA)<- inf tf (Z/|M) ,
n-»00 n v£C\r(A)

lira inf - \ogP(L? € A) > - inf #(i/|/i) •
n-*oo n i/eintT(yl)

Proof. See [deA94].

6.6.3 LDP for Empirical Measures of Markov Chains
Let E be a Polish space, and let Mi(E) denote the space of Borel probability measures on E
equipped with the Levy metric, making it into a Polish space with convergence compatible
with the weak convergence. Let 7r(a, •) be a transition probability measure (also called
Markov or transition kernel), i.e., for all a 6 E, IT (a,-) G Mi(E) and a i-> n(a,A) is
measurable for each A € B-s-

Let Q = E^+ be the space of semi-infinite sequences with values in E, equipped with the
product topology, and denote by Yn the coordinates in the sequence, i.e., Yn(ui, . . . , o>n, . . . )
= un. fi is a Polish space and its Borel u-field is precisely (B^)2Z+. Let Tn denote the cr-field
generated by {Ym, 1 < m < n}. Fixing the initial measure PI € Mi(E), a measure P on fi
can be uniquely constructed by the relations P(Yn+i € r|.Fn) = 7r(yn,r), a.s. P for every
r e BE and every n e ^+. That is, let the marginals Pn 6 Mi(En) be such that for any
n > 1 and any T e Ssn ,

n-l

= /
./r

Define the (random) probability measure

i=l

and denote by /j,n the probability distribution of the Mj(E)-valued random variable L%.
We derive the LDP for /zn, which, obviously, may also lead by contraction to the LDP for
the empirical mean.

The following uniformity assumption, due to de Acosta [deA90] is sufficient for the LDP
to hold (for any fixed initial measure PI).
Assumption (DU) TT(- , •) is an irreducible Feller kernel, such that for some I > 1 the
collection {ne((r, •) : <r 6 E} is tight and there exists an irreducibility measure <j> (that is,
4> e Mi(E) such that <j>(A) > 0 implies Y^=i """(^ A) > ° for a11 CT 6 E), such that </>(?) = 0
implies that for all a € E, 7rm(<j, F) = 0 for some m = m(cr) > 1.

Theorem 6.6.13 Assume (DU). Then {fj,n} satisfies a full LDP in Mi(E) with the convex,
good rate function

f r ~\
h(v)= sup j - / l o g f — } d v \ . (6.6.107)

u€B(E),u>l I JS \ U / J
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Moreover,

where for any f £

Il(v)= sup {(/ ) t,)-A(/)}, (6.6.108)
/eC6(E)

1
= limsup-log sup £exp(V /(y^)) . (6.6.109)

'

Proof. See [deA90].
The LDP of Theorem 6.6.13 may easily be extended to the empirical measure of fc-tuples,

i.e.,

1=1

where hereafter k > 2. The starting point for the derivation of the LDP for L%k lies in the
observation that if the sequence {Yn} is a Markov chain with state space S and transition
kernel ir(x,dy), then the sequence {(Yn,... ,Yn+k_i)} is a Markov chain with state space
S^ and transition kernel

fc-i
7Tfc(x, dy) — 7r(xfc, dyk) JJ 6Xi+1 fa) ,

where y = ( j / i , . . . , yk), x = (x\,... , Xfc) £ Efc. Moreover, if TT satisfies Assumption (DU),
then so does nk (see [deA90] for details). The following corollary is thus obtained by applying
Theorem 6.6.13 to L^k.

Corollary 6.6.14 Assume TT satisfies Assumption (DU). Then L%k satisfies (in the weak
topology of Mi(Ek)) the LDP with the good rate function

T , , A / f /TTfcUN 1Ik(v)= sup <- I log — — } d v ) .
u€B(S f c),«>l I Jsk \ U / )

To further identify / fc(- ) i the following definitions and notations are introduced.

Definition 6.6.15 A measure v € Mi(Efc) is called shift invariant if, for any T e

z . ({aeS f c : ( a i , . . . ,a f c_1)6r}) = ! y({aeS f c : ( a 2 , . . . ,a f e )er}) .

Next, for any [i € Mi(E/c~1), define the probability measure JJL ®k K G Mi(Sfc) by

^ ® f c 7 r ( r ) = / fj.(dx) I Tr(xk-i,dy)l^Xty)€ry , VF e
7sfc-J JE -- •

Theorem 6.6.16 ^or am/ transition kernel TT, and any k.> 2,

, , _ ( H(v\i>k-i ®k TT) ) " s/ii/t invariant
k^ \ oo , otherwise,

where Vk-\ denotes the marginal of v on the first (k — 1) coordinates.
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The LDP of Corollary 6.6.14 and Theorem 6.6.16 enables the deviant behavior of em-
pirical means of fixed length sequences to be dealt with as the number of terms n in the
empirical sum grows. Often, however, some information is needed on the behavior of se-
quences whose length is not bounded with n. It then becomes useful to consider-sequences
of infinite length. Formally, one could form the empirical measure

i n
Y A 1 TT-> -

where Y = (Yj, Y2,.. .)• and TZY = (Yi+i, Yi+2^ • • • ) , and inquire about-;the LDP- of the
random variable I^fi00 in the space of probability measures on E^+. Since such measures
may be identified with probability measures on processes, this LDP is referred to as process
level LDP.

A natural point of view is to consider the infinite sequences;,Y as limits ofifinite sequences,
and to use a projective limit approach. Therefore,, the discussion oh the process level LDP
begins with some topological preliminaries and an exact definition of the probability spaces
involved. Since the projective limit approach necessarily involves weak topology, only the
weak topologies of'Mi(S) and Mi(Ez+) will be considered.

As in the beginning of this section, let E be a Polish space, equipped with the metric
d and the Borel cr-field B-s associated with it, and let Efc denote its fcth-fold product,
whose topology is compatible with the metric dk(o-,cr') = X^=i ^(^'"l)- The sequence,of
spaces Efc with the obvious projections pm,k '• Em —> Efc, defined by pm,k(°'\i • • • i&m) =
( < T I , . . . ,<7fc) for k < m, form a projective system with projective limit that is denoted
E^, and canonical projections pk '• E^+ —> Efe. Since Efc are separable spaces and EZH"
is countably generated, it follows that E^+ is separable, and the Borel cr-field on E^+ is
the product of the appropriate Borel cr-fields. Finally, the projective topology on E^+ is
compatible with the metric

dk(pko-,pko-')

which makes E^+ into a Polish space. Consider now the spaces M1(Efc), equipped with
the weak topology and the projections pm>k :Mi(Em)— >Mi(E f c), k < m, such that pm,kv is
the marginal of v e Mi(£m) with respect to its first k coordinates. The projective limit of
this projective system is merely Mi(Ex+) as stated in the following lemma.

Lemma 6.6.17 The projective limit of (Mi(Ek),pmtk) is homeomorphic to the space Mi(S2

when the latter is equipped with the weak topology.

Returning to the empirical process, observe that for each k,
following is therefore an immediate consequence of Lemma 6.6.17, the Dawson-Gartner
theorem (Theorem 6.4.37), and the LDP of Corollary 6.6.14 and Theorem 6.6.16.

Corollary 6.6.18 Assume that (DU) holds. Then the sequence {L^x} satisfies the LDP
in Mi(E-^+) (equipped with the weak topology) with the good rate function

j / \ _ f suPfc>2 H(pkV\pk-iv ®k TT) , v shift invariant
00 \ oo , otherwise

where v 6 Mi(E-^+) is called shift invariant if, for all k 6 .ZT+, pkis is shift invariant in
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Our goal now is to derive an explicit expression for /<»(•)• For i = 0,l, let Zi = ZSH (-00, i]
and let S^ be constructed similarly to £^+ via projective limits. For any /z 6 Mi(E^+)
shift invariant, consider the measures //* e Mi(£Zi) such that for every k > 1 and every
B-£k measurable set F,

Hi ({(... ,c7 i + i_ /c , . . . ,<Ti) : (cr i + 1_ f c , . . . ,o-i) € F}) = pkfj,(T} .

Such a measure exists and is unique by the consistency condition satisfied by /j, and Kol-
mogorov's extension theorem. Next, for any /z$ 6 MI(£^°), define the Markov extension of
it, denoted /^ <8> TT G M^S^1). such that for any 0 € B(Efc+1), fc > 1,

, <T0,

/
7s/s

In these notations, for any shift invariant v G 1

where for any p G Mi(E^1), and any F 6 B^fc,

PfcA*(F) = ^( {(ffc-2, • • • , 0"o, en) G F }) .

The characterization of Ioo(-) is a direct consequence of the following classical lemma.

Lemma 6.6.19 (Pinsker) Let E be Polish and v,p,£ MI(£ZI). Then

Hipk^Pk^} / ff(i/\n) as k —> oo.

Combining Corollary 6.6.18, Lemma 6.6.19 and the preceding discussion, the following
identification of /oo(0 is obtained.

Corollary 6.6.20

) TT) , v shift invariant
, otherwise.

6.6.4 Mixing Conditions and LDP
The goal of Section 6.6.4 is to establish the LDP for stationary processes satisfying a certain
mixing condition. Bryc's theorem (Theorem 6.4.30) is first applied to establish the LDP of
the empirical mean for a class of stationary processes taking values in a convex compact
subset of TRd. This result is then combined with the projective limit approach to yield the
LDP for the empirical measures of a class of stationary processes taking values in Polish
spaces.

Let Xi,... ,Xn,... be a stationary process taking values in a convex, compact set
K c Bd. Let

om
&„ — ——————n -m .i=m+l

with Sn = <5° and fj,n denoting the law of Sn. The following mixing assumption implies the
LDP for fjLn-
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Assumption 6.6.110 For any continuous f : K — > [0, 1], there exist /3(l) > 1, 7(£) > 0
and 6 > 0 such that

lim ~f(f) = 0 , lim sup (J3(t) - l}l(logl)1+s < oo , (6.6.111)€—00 e^oo

and when i and n + m are large enough,

f 1
{E[f(Sn)n}E[f(Smr}} (6.6.112)

Indeed, an application of subadditivity and Theorem 6.4.30 yields

Theorem 6.6.21 Let Assumption 6.6.110 hold. Then {/j,n} satisfies the LDP in IR/1 with
the good convex rate function A*(-), which is the Fenchel-Legendre transform of

A(A) = lim - log£[en<A '^>] . (6.6.113)
n— too n

In particular, the limit (6.6.113) exists.
Remark: Assumption 6.6.110, and hence Theorem 6.6.21, hold when Xi, . . . , Xn, . . . is
a bounded, t/j-mixmg process. Other strong mixing conditions that suffice for Theorems
6.6.21 and 6.6.23 to hold are provided in [BryD96].

The main ingredient needed for the application of (approximate) subadditivity is

Lemma 6.6.22 (Hammersley) Assume f : %+ — > IR is such that for all n,m>l,

f(n + m) < f ( n ) + f(m) + e(n + m) , (6.6.114)

where e(n) is non-decreasing such that

<oo . (6.6.115)v

Then f = limn^oo [f(n)/n] exists.

Remark: Hammersley in [Ham62] shows that (6.6.115) is necessary for the existence of
/ < oo, and provides explicit upper bounds on / — f(m)/m for every m > 1.

The previous theorem coupled with Corollary 6.4.40 allow one to deduce the LDP for
quite a general class of processes. Let £ be a Polish space, and B(£) the space of all
bounded, measurable real-valued functions on E, equipped with the supremum norm.

Let J7 = E^+, let P be a stationary and ergodic measure on fi, and let YI, . . . , Yn,...
denote its realization. Throughout, Pn denotes the nth marginal of P, i.e., the measure on
S" whose realization is YI, ... , Yn. As in Section 6.6.2, L% = ± £"=1 SYi & MI(£), and /in
denotes the probability measure induced on Mi(S) by L%.

For any given integers r >k>1, I > 1, a family of functions {/i}^=1 € -B(£r) is called
l-separated if there exist k disjoint intervals {a,, a« + 1,... , bi} with a^ < fej S {1,... , r}
such that fa(a\,... ,ar) is actually a bounded measurable function of {crai,... , cr^ } and for
alH 7^ j either o^ — bj > I or aj —bi>i.
Assumption (H-l) There exist I, a < oo such that, for all k,r < oo, and any l-separated
functions fi 6 B(Sr),

k

..., Y r ) \ ) < J] EpdfM,..., Yr)\a)V" . (6.6.116)
1=1



406 CHAPTER 6. LARGE DEVIATIONS AND APPLICATIONS

Assumption (H-2) There exist a constant 10 and functions J3(l) > I , j(l) > 0 such that,
for all £: > £Q, all r < oo, and any two l-separated functions f , g & 'B(T,r),

\EP(f(Yl, ..., Yr))EP(g(Yt, . . . , Yr)) - EP(f(Y1, ..., Yr)g(Yl, ..., Yr)-)\

!• — ••(}> lim-.s.up£_<00'(/5(^) *̂  l':)£(lbg:£[) *5 Ooo for some 5 >-0.
•Remarks:

(&) 'Conditi6\is of the type '(H-l) and (HS2) are referred to as hypermixing conditions. Hy-
permixing is'ti^d to -analytical properties-of .the- semigroup in Markov processes: For details",
•consult-'the-excellent exposition :in [DeuS89]. Note, however, that in (H-2)" of the;latter, ,a.
.less-stringent condition is-put,.on /?.(% whereas in (H-r'1) there,, d(t)-converges to biie-." --'•
•(b') The ;particular case of fi(K) = 1 in Assumption (Hf2) corresponds;to:^-rriixing [BraSB],
with 7(^) = Tpft").

Assuinptions (H-l) and (H-'2); lead^ to'.the •followjjig LDP'fo"r:Ljf..

•'.3?:hepreriî 6'.,6'.23. -jLe^Ji,,.. , Y^,,.. . be'iihe-stationary-process-defined :befo're. -Assume (H-
'!')', {H-2)::^Th'en--':lj^''Saiisfies^n:Mi(Sj -ihe'LDP'iiiUh'the convex good'fate function

A»= sup. t(f,v) - A(/)) ,
f.£Z'R^-V!"i ^ • '

•where /or- any f g $$

In particular, the preceding limit exists.

6.6.5 Application: The Gibbs Conditioning Principle
Let £ be a Polish space and Yi, Y%,... ,Yn a sequence of S-valued i.i.d. random variables,
each distributed according to the law // 6 MI(£). Let L% e Mi(S) denote the empirical
measure associated with these variables. Given a functional $ : Afi(S) —> 1R (the energy
functional), we are interested in computing the law of YI under the constraint $(L%) £
D, where D is some measurable set in IR and {$(L^) e D} is of positive probability.
This situation occurs naturally in statistical mechanics, where Yi denote some attribute of
independent particles (e.g., their velocity), $ is some constraint on the ensemble of particles
(e.g., an average energy per particle constraint), and one is interested in making predictions
on individual particles based on the existence of the constraint. The distribution of YI under
the energy conditioning alluded to before is then called the micro-canonical distribution of
the system.

For every measurable set A C Mi(E) such that {L% 6 A} is of positive probability, and
every bounded measurable function / : £ —> IR, due to the exchangeability of the Yj-s,

E(f(Y1)\L^ €A) = E((f,'lZ)\lZ e A). (6.6.117)

Thus, for A={v : $(^) G D}, computing the conditional law of YI under the conditioning
) € D} = {L% £ A} is equivalent to the computation of the conditional expectation
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of L^f under the same constraint. It is this last problem that is treated hi the rest of this
section, in a slightly more general framework.

Throughout this section, Mi(S) is equipped with the r-topology and the corresponding
a-field B. (For the definitions see end of Section 6.6.2.)

For any p, e MI(£), let /j,n 6 M1(ETl) denote the induced product measure on S™ and
let Qn be the measure induced by fj.n in Mi(S) through L% . Let AS, 5 > 0 be nested
measurable sets, i.e., AS C A$> if 6 < 5' . Let Fg be nested closed sets such that AS C Fg.
Define FQ = r\s>oF$ and Ao = r\$>oAs (so that AQC.FQ). The following assumption prevails
in this section.
Assumption (A-l) There exists a z/»eA0 (not necessarily unique) satisfying

H(v*\n) = inf H(v\fj)=IF < oo ,
"€F0

and for all 6 > 0,

l. (6.6.118)

Think of the following situation as representative: AS = {v : \<&(v)\ < 5}, where
$ : Mi(S) — > [—00,00] is only lower semicontinuous, and thus A$ is neither open nor
closed. (For example, the energy functional $(v) = /s(|| x ||2 —l}v(dx) when S is a
separable Banach space.) The nested, closed sets F$ are then chosen as Fg = {v : 3>(f) < 5}
with FQ = {^ : $(z/) < 0}, while AQ = {v : $(i/) = 0}. We are then interested in the
conditional distribution of Y\ under a constraint of the form &(L%) = 0 (for example, a
specified average energy). The following is a direct consequence of Theorem 6.6.12.

Theorem 6.6.24 Assume (A-l). Then M.={v € FQ : H(v\^i) = IF} is a nonempty,
compact set. Further, for any measurable F with M. C T° ,

lim sup lim sup - logfj,n(L% £ F| L% e AS) < 0 .
^^o u^oo n

The following corollary shows that if i/# of (A-l) is unique, then ^k\^ > the law of
Yfc = (YI , . . . ,Yfc) conditional upon the event {L% £ AS}, is approximately a product
measure.

Corollary 6.6.25 If M = {v*} then ̂ k,As — > (^*)fe weakly in Mi(Sfe) forn —> oo followed
• by 5-^0,

Proof. Assume M = {^*} and fix <pj € (7^(2), j = 1, . . . , k. By the invariance of lQ*\A

with respect to permutations of {Yi, . . . , Yn},

Since,

and 0j are bounded functions, it follows that
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For M = { f t } , Theorem 6.6.24 implies that for any 77 > 0,

/*n(K&, £«> - (&,"*>l > •n i% e AS) -+ o
as 7i — v oo followed by 5 — > 0. Since ((j)j,L%) are bounded,

so that
fc

, / i f c - (^*)fe) =0.
S — >0 n — >oo . _ -

Recall that Cb(£)fc is convergence determining for Mi(Sfc), hence it follows that
(i/.)* weakly in Mi(Sfe). D

Having stated a general conditioning result, it is worthwhile checking Assumption (A-
1) and the resulting set of measures M. for some particular choices of the functional $.
Two options are considered in detail in the sequel. Noninteracting particles, in which case
n~l £)™=i U(Yi) is specified, and interacting particles, in which case n~2 Y^j=i U(Yi,Yj)
is specified.

Let U : £ — > [0, oo) be a Borel measurable function. Define the functional $ : MI (E) — >
[-l,oo] by

and consider the constraint

€ ̂

Let Zp = /E e ^u^^(dx), /3oo=inf{/3 : Zp < oo}, and define the Gibbs measures 73,
(3 > /3oo where

P-pv(x)
dfj, Zp

The following lemma is obtained by elementary analysis.

Lemma 6.6.26 Assume that n({x : U(x) > 1}) > 0, n({x : U(x) < 1}) > 0, and either
(3oo = -oo or

lim {t/,7/3} > 1. (6.6.119)

TTien </iere exists a unique /3* € (/3oo,oo) swc/i that (U, 7/g«) = 1.

One now checks the following:

Theorem 6.6.27 Let U,p, and ft* be as in the preceding lemma. If either U is bounded or
(3* > 0, then Theorem 6.6.24 applies, with M. consisting of a unique Gibbs measure 7/3..

In particular, Theorem 6.6.27 states that the conditional law of Yj. converges, as n — > oo, to
the Gibbs measure 7/3. .
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We next move to the case where interaction is present, which is even more interesting
from a physical point of view. To build a model of such a situation, let M > 1 be given,
let U : S2 — > [0, M] be a continuous, symmetric, bounded function, and define $(i/) =
(Uv,v) - 1 and AS = {v '• |$(^)| < S} for 5 > 0. Throughout, Uv denotes the bounded,
continuous function

Uv(x)= f U(x,y)v(dy) .
Js

The reason for choosing U continuous is that then, the functional v H- > (Uv, f) is continuous
with respect to the -r-topology on MI(£).

With Z/3 = fse-0u^(x)n(dx), let ̂  = e~^M
 and make the following additional

assumptions.
Assumption (A-2) For any Vi such that H(vi\n) < oo, i — 1,2,

-

Assumption (A-3) /S2 U(x,y)p(dx)fj,(dy) > 1.
Assumption (A-4) There exists a probability measure v with H(v\p,) < oo and (Uv, J/) <
1.

Note that, unlike the noninteracting case, here even the existence of Gibbs measures
needs to be proved.

Theorem 6.6.28 Assume (A-2)-(A-4). Then Theorem 6.6.24 applies, with M. consisting
of a unique Gibbs measure 73* , where

/T ==inf{ /3>0: {t/7/3,7/3}<!}.

We now return to the general setup of Theorem 6.6.24. Our goal is to explore the
structure of the conditional law fJ^-k\A (the law of FL, • • • , YJt conditional on L% £ AS)
when k = k(n) — >n_»oo oo. The motivation is clear: we wish to consider the effect of Gibbs
conditioning on subsets of the system whose size increases with the size of the system.

To this end we make the following simplifying assumption.
Assumption (A-5) Fg = AS = A is a closed, measurable convex set of probability measures
on a compact metric space (S, d) such that

IF= inf H(V\(J:) = inf H(v\p) < oo .
vdA v&A"

With H(-\fj,) strictly convex on the compact convex sets {y : H(V\JJL) < a}, there exists a
unique vf 6 A such that H(vf\n) = IF- Relying upon the convexity of A and using various
properties of H(-\-) leads to the following refinement of Corollary 6.6.25.

Theorem 6.6.29 Assume (A-5), and further that

Hn(L^ 6 A)enlF >gn>0. (6.6.120)

Then, for any k = k(n),

. (6.6.121)
Lfc(n) J

Thus, refinements of Sanov's theorem as in (6.6.120) allow for the extension of the Gibbs
conditioning principle to blocks of size k(n). A particular concrete application is the follow-
ing:
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Corollary 6.6.30 Let A = {v £ MI [0,1] : (U,v) < 1} for a bounded nonnegative Borel
function U(-}, such that n o U~l is a non-lattice law, /0 U(x)d^(x) > 1 and (i({x : U(x) <
1}) > 0. Then (A-5) holds with v* = 7/3* of Theorem 6.6.27 and for n~1k(n) log n —»n—>oo 0,

In particular,
—»0.

>oo

6.6.6 Application: The Hypothesis Testing Problem
For S a Polish space, let Y\ , . . . , Yn be distributed either according to the law /J,Q (hypothesis
HQ ) or according to /i™ (hypothesis #1), where /u" denotes the product measure of ^i £
M!(£).

Definition 6.6.31 A decision testS is a sequence of measurable (with respect to the product
a-field) maps Sn : S™ — > {0, 1}, wzi/i i/ie interpretation that when YI = j/i, . . . , Yn = j/n zs
observed, then HQ is accepted (H\ rejected) if<Sn(y\, . . . ,yn) = 0, while HI is accepted (HQ
rejected) if Sn(yi, . . . , yn) = 1.

The performance of a decision test «S is determined by the error probabilities

an=ProbMo(<Sn rejects H0), /3n=ProbMl(«S™ rejects ^i).

The aim is to minimize /3n. If no constraint is put on an, one may obtain j3n = 0 using
the test Sn(yi, . . . ,yn) = 1 at the cost of an = 1. Thus, a sensible criterion for optimality,
originally suggested by Neyman and Pearson, is to seek a test that minimizes /3n subject to
a constraint on an. Suppose now that the probability measures po,Mi are known a priori
and that they are equivalent measures, so the likelihood ratios L0||i(2/) = d^o/dfj,i(y) and
Li\\o(y) = djj,\ I 'd/j,o(y) exist. In order to avoid trivialities, it is further assumed that //o and
Hi are distinguishable, i.e., they differ on a set whose probability is positive.

Let Xj=\ogLi\\0(Yj} = — logZ/oiliO'j) be the observed log-likelihood ratios. These are
i.i.d. real valued random variables that are nonzero with positive probability. Moreover, let

Definition 6.6.32 A Neyman-Pearson test is a test in which for any n £ Z+, the normal-
ized observed log-likelihood ratio

is compared to a threshold *yn and HI is accepted (rejected) when Sn > 7« (respectively,
Sn < 7j-

Neyman-Pearson tests are optimal in the sense that there are neither tests with the
same value of an and a smaller value of /3n nor tests with the same value of /3n and a smaller
value of an.

The exponential rates of an and j3n for Neyman-Pearson tests with constant thresholds
7 £ (XQ,XI) are thus of particular interest. These may be cast in terms of the large deviations
of Sn. In particular, since Xj are i.i.d. real valued random variables, the following theorem
is a direct application of Theorem 6.3.9.
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Theorem 6.6.33 The Neyman-Pearson test with the constant threshold 7 € (XQ,XI) sat-
isfies

lim -logan = -A.*M <0 (6.6.123)
n^oo n

and

lim - log (3n = 7 - AS (7) < 0 , (6.6. 124)
n^oo n

where AQ(-) is the Fenchel-Legendre transform of A0(A)= log£^0 [eXXl].
A corollary of the preceding theorem is Chernoff 's asymptotic bound on the best achiev-

able Bayes probability of error,

Corollary 6.6.34 (Chernoff 's bound) I/O < Prob(H0) < I , then

where the infimum is over all decision tests.
Remarks:
(a) Note that by Jensen's inequality, XQ < log E^0 [eXl } = 0 and Xj > — \ogE^1 [e~Xl] = 0,
and these inequalities are strict, since X\ is nonzero with positive probability. Theorem
6.6.33 and Corollary 6.6.34 thus imply that the best Bayes exponential error rate is achieved
by a Neyman-Pearson test with zero threshold.
(b) AQ(O) is called Chernoff's information of the measures /J,Q and /zi. Proof. It suffices
to consider only Neyman-Pearson tests. Let a*n and /?£ be the error probabilities for the
zero threshold Neyman-Pearson test. For any other Neyman-Pearson test, either an > a*
(when 7n < 0) or f3n > /3* (when jn > 0). Thus, for any test,

- logpW > - log [min{Prob(ff0) , Prob(F1)}] + min{- loga^ , - log^} .n n n n
Hence, as 0 < Prob(#0) < 1,

inf lim inf — log P^ > lim inf min{ - log a* , — log B* } .
S n^oo n n^oo n n

By (6.6.123) and (6.6.124),

Consequently,

lim -log<= lim -
n— >oo n n— >oo n

lim inf- logPjW > -AS(0) ,
n^oo n

with equality for the zero threshold Neyman-Pearson test. D
Another related result is the following lemma, which determines the best exponential

rate for j3n when an are bounded away from 1.

Lemma 6.6.35 (Stein's lemma) Let (3^ be the infimum of j3n among all tests with an <
e. Then, for any e < 1,

lim - log fa = XQ .
n— >oo n
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Stability and Stabilizing Control
of Stochastic Systems

P. V. PAKSHIN
Department of Applied Mathematics

Nizhny Novgorod State Technical University at Arzamas
19, Kalinina Sir.,
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List of frequently used symbols and notations
X the system state

U the system input (control)

A the state matrix

B the input (control) matrix

K the linear feedback control matrix

W the Wiener process

Y the homogeneous Markov chain with discrete set of states

H positive definite or at least positive semidefinite
solution of Lyapunov matrix equation or Riccati matrix equation

X the expected value of the current system state

x' (A1) transpose of the vector x (of the matrix A)

In the n x n identity (unit) matrix

/ identity (unit) matrix

(| A |) the Euclidean norm of the vector x (of the matrix A)

P the probability

£ the expectation operator

A. the differential generator of a Markov process

417
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C the weak infinitesimal operator of a homogeneous
Markov process

V the Lyapunov or Lyapunov-Bellman function

Rn n-dimensional Euclidean space

J time interval: J = [t0, T], T < oo, or J = [t0, oo)

y the set of states of the Markov chain Y

M the finite set of states of the Markov chain Y:J\f = {1,... , v}

U the set of admissible controls

Bn the Borel set in Rn

C the class of functions /(<), continuous on [0, T] with values in Rn

a.a.,a.s., w.p.l. almost all, almost surely, with probability one
u.h.c., (a), u.l.c. uniformly Holder continuous (exponent a), uniformly Lipschitz contin-
uous

Introduction
Stochastic control theory is a very important direction in modern stochastic analysis and
applications. For the solution of stochastic control problems one needs to obtain systems
state information. From this point of view the stochastic control systems are separated into
the two classes: systems with complete state information and systems with partial state in-
formation (partially observed systems), i.e. only a function of the state, possibly corrupted
by noise, is observable. Usually the control synthesis problem is formulated as an optimal
control problem: obtaining such a control that minimizes an integral cost functional over
the set of admissible controls. For a system with complete state information two approaches
for the optimal control problem are used: dynamic programming leading to the Hamilton-
Jacobi-Bellman (HJB) equation and the maximum principle. For systems with incomplete
state information one needs to estimate the state first, but in the general nonlinear case
the estimation and control problems are not separated. One a way to solve these problems
jointly is based on the use of the Dunkan-Mortensen-Zakai (DMZ) equation, often called
shortly the Zakai equation [21, 17, 70, 103]. The DMZ equation of nonlinear filtering of
stochastic processes is a linear, stochastic, partial differential equation which describes in
a recursive manner the evolution of the unnormalized conditional distribution of the state
process,{x(t), t > 0}, given the observation { y ( t ) , t > 0}. To solve the stochastic control
problem of partially observed systems it is possible to reformulate this problem as one of
complete information in which the control is a functional of an information state. It turns
out that the information state satisfies a controlled version of the DMZ equation [17, 70].
For a stochastic linear dynamic system observed via a linear channel corrupted by noise
the joint problem of optimal control and estimation (filtering) can be reduced to two inde-
pendent problems of control and filtering. This structural property of the optimal system
depends on whether or not the cost functional is quadratic, and whether or not the optimal
feedback control happens to be linear in the system state or its expectation. A special result
of this type for the standard linear-guadratic Gaussian (LQG) control problem is called the
"separation theorem" or the "separation principle." The separation principle allows using
well-known Kalman-Bucy filtering results for estimation of the systems state. As a rule the
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control law must guarantee stability of the stochastic system in the suitable sense. In most
cases the systems with random inputs but with nonrandom operator are considered. Here it
is possible to use the results of the deterministic stability theory. In the meantime often we
also have a random disturbance of parameters and in general the operator of the system will
be random too. To study dynamic properties of this class of systems the stochastic stability
concept is used. The concept of stochastic stability and stabilization was introduced in pio-
neering works by Kats and Krasovskii [42], Bertram and Sarachik [7], Krasovskii and Lidskii
[51]. The stochastic stability and stabilization theory has been well-established mainly for
the Ito stochastic differential equations. A systematic exposition of this theory is presented
in the well known monographs by Khasminskii [45] and by Kushner [54]. These fundamental
books, addressed first and foremost to pure matematicians, contain, basically, results of a
general nature and hardly reflect the applied side of the problem. This is one of the reasons
why the ideas and methods of stochastic stability and stabilization theory have not been
wide spread in practice. In applications the. task of stochastic stability and stabilization the-
ory is to obtain criteria and algorithms suitable for the direct implementation in the design
of stochastic dynamic systems (the system with random operator). It so happens that the
publications of applied nature in the area of stochastic stability and stabilization are highly
scattered in periodicals. This is the second cause which impedes the development of the
applied theory. In this connection the purpose of this survey paper is to present stochas-
tic stabilizing control results for both categories of readers: theoreticiarys and practicians.
This style was stimulated to a large degree by the Wonham's paper [96] and, especially,
by the book by Kats [41]. We consider only the systems described by ordinary stochastic
differential equations. The reader is referred to monographs by Meyn and Tweedie [65], and
Pakshin [72] to study stochastic stability and stabilization problems for discrete systems;
see also the papers [34, 35] and references therein. The stochastic systems with time delay
are studied in books by Kolmanovskii and Myshkis [46], Kolmanovskii and Shaikhet [47],
by Korenevskii [48]; see also the references therein.

7.1 Stochastic mathematical models of systems

7.1.1 Models of differential systems corrupted by noise
A wide variety of problems in the study of dynamic systems leads to stochastic differential
equations of Ito type

dXt = a(t, X(t))dt + b ( t , X ( t ) ) d W ( t ) , t e I, (7.1.1)

where X ( t ) is the n-dimensional state vector, W(t) is the m-dimensional standard Wiener
process, a(t, x) is n-dimensional vector function and b(t, x) is n x m matrix function, J =
[t0,T},T < oo, or J = [to,oo). The equation (7.1.1) means that X(t) is the stochastic
process, satisfying the following stochastic integral equation

t t
X ( t ) = X(t0) + j a((s), X(s))ds + j b(s, X(s))dW(s). (7.1.2)

The third term in the right hand side of (7.1.2) is so called Ito stochastic integral, see
[19, 20, 38, 71]. It is supposed that both a(t,x) and b(t,x) are measurable functions for all
t € I, x G Rn and satisfy the growth condition

\x\),t£l, xeRn, (7.1.3)
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for some constant K, and the uniform Lipschitz condition

a(t, x) - a(t, y)\ + \b(t, x) - b(t, y}\ < k\x - y\, t e X, x, y e Rn, (7.1.4)

for some constant k. If these conditions are valid and X(to) is an arbitrary finite random
variable, which is independent on the increments of the Wiener process, then the equation
(7.1.2) uniquelly defines the stochastic process X(t), t e T with the following properties:

1) The process X(t) has continuous paths with probability one (w.p.l.).

2) If €[\X(to 2] < oo, then

£[ max \X(t)\2} < oo, ii 6 J, (7.1.5)

where £ denotes the expectation operator.

3) For every t the random variable X(t) is independent on the increments of the Wiener
process (W(ti) - W(s)),t <s <ti.

4) The stochastic process X(t),t €l is the Markov process.

The model (7.1.1) can be motivated in the following way. Consider the ordinary differential
equation

^=«(W (7-1.6)

In many practical situations, for example in engineering, the right hand side of (7.1.6) may
be corrupted by a noise process, such that

= a(t, X(*)) + b(t, X(t))V(t), (7.1.7)

where V(t) is m-dimensional Gaussian "physical" white noise, i.e., the m-dimensional vector
whose components are scalar Gaussian processes with a correlation time much smaller than
the time response of the considered system. Such a nonrigorous mode is often refered to
as the Langevin equation, see [2, 56, 95, 100]. It is natural that under the noise action the
distribution of ^ ' will only depend on t and X(t), and the question is to construct a
reasonable mathematical model of noise term b(t, Xt)V(t) in this equation. It is clear that
the process V(t) will have (at least approximately) these properties:

(i) if ti ^= t-2 then V(t\) and V(t%) are independent;

(ii) the process V(t) is stationary, i.e. the joint distribution of {V(t\ +t), . . . , V(tk + t ) }
does not depend on t;

(iii) £[Vt] = 0 for all t.

However, it turns out, there does not exist any reasonable stochastic process, satisfying (i)
and (ii). Such a V(t) cannot have continuous paths. Nevertheless it is possible to use the
theory of generalized stochastic processes, see [33]. In this case the process Vt is represented
as a generalized stochastic process called the white noise process. The other way is to avoid
the construction of the generalized stochastic process and rather try to rewrite equation
(7.1.7) in a form that suggests a replacement of Vt by a proper stochastic process. Let
t0 < ti < . . . < ts = t and consider a discrete version of (7.1.7):

X(tk+1) - X(tk) = a(tk,X(tk))Atk + b(tk,X(tk))V(tk)Atk. (7.1.8)
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Now, we replace V(tfc)Aife by AW(ifc) = W(tk+i) - W(tk), where W(t) is some suitable
stochastic process. The assumptions (i), (ii) and (iii) on Vt suggest that Wt should have
stationary independent increments with zero mean. It turns out, that the only such process
with continuous paths is the Wiener process, or in other terms the Brownian motion process,
see [52]. Thus we obtain from (7.1.7):

fc-i fc-i
X(tk) = X(t0) + Y a(^> X(ti))Ati + Y b(ti, X(ti))t\W(ti), (7.1.9)

i=0 i=0

where A£i = ti+i — tj Under the regularity properties (7.1.3),(7.1.4) there exists the limit of
the right hand side of (7.1.9) in the mean square sense and by applying the usual integration
notation we obtain (7.1.2). The stochastic process X(€) defined by (7.1.2) has continuous
paths. It is adopted as a convention that (7.1.7) really means that X(t) is a stochastic process
satisfying (7.1.2). The reader is refered to [1, 19, 20, 29, 71] for more exact formulations
and detailed proofs. It is very important that there exist other interpretations of (7.1.7).
Let us consider the following discrete version of (7.1.7)

fc-i fc-i
X(tk} = X(t0) + Y a(ti, X*)b.ti + ]T b(ti, X*)AW(ti), (7.1.10)

i=0 i=0

where X* — (X(ti+i) + X(ti))/2. When Atj —> 0 this equation converges (by the regularity
properties above) to the stochastic integral equation

t t
X(t)=X(t0)+ f a ( ( s ) , X ( s ) ) d s + fb(s,X(s))odW(s). (7.1.11)

<J J
to to

The last term in the right hand side of (7.1.11) is known as the Stratonovich stochastic
integral [81]. In general this integral is different from the Ito integral and this implies that
the stochastic processes defined by (7.1.2) and (7.1.11) are different too. The Stratonovich
interpretation in some situations may be most appropriate. The argument that indicates it
is in following [94, 95]. Choose ^-continuously differentiable processes W(k\t,uj) such that
for almost all (a.a.) ioW^k\t) —> W(t,u) as k —> oo uniformly in t in bounded intervals. For
each u> let X^k> (t, ui) be the solution of the corresponding deterministic differential equation

Then X(k\t,u) converges to some function X(t,w) in the same sence: for a.a. LJ we have
that X^k\t,w] —> X(t,ui) as k —> oo uniformly in t in bounded intervals. It turns out, see
[94, 82, 95] that this solution X(t) coincides with the solution of (7.1.11) obtained by using

.the Stratonovich integral. Therefore, from this point of view it seems reasonable to use
(7.1.11) and not the Ito interpretation (7.1.2) as the model for the original noise corrupted
system (7.1.7). It is shown that the solution X(t) of the Stratonovich equation (7.1.11)
satisfies the following modified Ito equation

t t
X(t) = X(tQ) + f a ( ( s ) , X ( s ) ) d s + f b(s, X(s))dW(s), (7.1.12)

J J
to

where

a(t,x) = a(t,x) + -d(t,x)
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For a more detailed study of the general theory of stochastic differential equations and their
applications the reader is referred to [1, 2, 27, 28, 29, 71, 77]

7.1.2 Models of differential systems with random jumps
Many dynamical systems, especially the systems with a certain switching mechanism or
(and) jumping disturbances, cannot be adequately represented by (7.1.1) This class of sys-
tems is described by the differential equation [41, 64, 96]

dXt = a(t, X(t), Y(t))dt + b(t, X(t), Y(t))dW(t), t E J. (7.1.13)

In general Y(t) in (7.1.13) is the r-dimensional random vector, such that Y(t) e y C Rr

for all t e 2. The components of Y(i) are independent Markov processes whose transition
probabilities Pi(r,r);t,Bl) (/ = !,... , r), B1 is a Borel set in Rl , having these properties:

P[Yt(t + A*) < p Yi(t + At) + r?, YL(t) = r,} = qt(t, T?, /?)Ai + o(At),

o(At), (7.1.14)

where qi(t,r),f3),qi(t,ri) are given functions, so that qi(t,rj,/3) — > qi(t,rj), as f3 — > +00. By
the corresponding regularity properties almost all the paths of YI (t) are piecewise constant
and right continuous functions [29]. In many cases it is supposed that Y(t) is homogenious
scalar Markov chain with finite set of states y = A/" = {1,2, . . . ,v} and with transition
probabilities

P[Y(t + At) = j Y(t) = i^j} = qijAt + o(At),

P[Y(r) = i,t<r<t + At Y(i) = i] = I - qiAt + o(At), (7.1.15)

Let [T - h, T) be a random interval such that Y(t) = i 6 N for all t £ [T — h, T). Then the
system (7.1.13) will be described by

dXt = a(t,X(t), i)dt + b(t, X(t), i)dW(t), t&[T-h,r), (7.1.16)
X(t-h)=Xh,Y(t-h) = i. (7.1.17)

for every such interval. If r > to is the transition (jump) time from Y(r — 0) = i to
Y(r) = j ^ i then in the next interval [T, r + 9), where Y(t) = j the system will be
described by (7.1.16) with the replacement i to j, but we cannot correct to define the initial
condition XT without additional assumptions regarding the considered system. As a rule
the following types of systems are considered, see [41]:

1) The state vector X(t) is changed continuously for all jump moments of Y(t). This
means that if r is a transition time of Y(t), then

X(T-0) = X ( T ) . (7.1.18)

2) The value of the state vector X(t) after the jump moment of Y(t) uniquelly depends
on the value of this vector before the jump moment, so that if Y(T — 0) = i and
Y(r)=j^i then

-0)), i^j, (7.1.19)
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where (f>ij (x) is the continuous n-dimensional vector function, satisfying the condition
(j)ij(Q) = 0. In the particular case <j>ij(x) is a linear function, then there exists an n x n
matrix <f>ij such that

X(r) = $ijX(r - 0). (7.1.20)

3) The conditional distribution of the state vector X(T) after the jump moment is given:

P{X(r) £

where Pij(r, z x} is the conditional density of the distribution.

(7.1.21)

So, for correct mathematical description of the dynamical system with random jumps the
'following elements are necessary:

1) The differential equation (7.1.13) with initial conditions

- Y0. (7.1.22)

2) The probabilistic description-of the Markov process Y(t) in the form given by (7.1.14)
or (7.1.15).

3) The conditional distribution of the state vector after the jump moment (7.1.21) or
particular conditions (7.1.18)-(7.1.20).

This description uniquelly defines the Markov process [ X ( t ) , Y ( i ) ] , Almost all the paths
[X(t,(jj),Y(t,u)] are continuous on the right functions. Note that the component X(t) is
not the Markov one.

7.1.3 Differential generator
Consider a scalar function V(t, x, y) defined in the domain

x e Rn, y e y, t > t0 (7.1.23)

and continuously differentiable in all the variables in this domain as often as is required in
the process of solution of a stated problem. Roughly speaking the differental generator is
average value of the derivative of V(t, x, y) along all the paths of Markov process [X(t), Y(t)]
defined by (7.1.13) and by additional conditions below, starting from the point (x, y) at the
moment s. In this connection, in the classic work by Kats and Krasovskii [42] and also in
the book by Kats [41] this operator is called the average derivative.

Definition 7.1.1 The operator

AV(s, x,y) = ^ ]anQ-l-{£[V(t, X(t),Y(t)) X ( s ) = x, Y(s) = y] - V(s, x, y ) } (7.1.24)

is called the differential generator (the average derivative) by virtue of the system (7.1.13)
at the point (s, x, y).

The differential generator is defined by the weak infinitesimal operator of the Markov pro-
cess [ X ( t ) , Y ( t ) ] , if this process is homogeneous and function V does not depend on t,
and by analogous operator in the inhomogeneous case. To explain it in more detail, let
P(s,x,y; t,Bn,Br) (s < t, x 6 Rn,y <E y,Bn and BT are Borel sets of Rn and Rr} be the
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transition probabilty of the Markov process [ X ( t ) , Y ( t ) ] . This function defines the family of
linear operators

TtV(s,x,y) = I P(s,x,y; t,du,dz)V(t,u,z) =

£[V(t,X(t),Y(t))X(s) = x, Y(s) = y]

and the differential generator CV at the point (s, x, y) is denned by

AV(s,x,y)= lira Wfrx^-Vfrx.y^
t-»s+0 t — S

In the particular case, if the Markov process [X(t),Y(t)] is homogeneous and V does not
depend on t, i.e. V = V(x,y) we have

The operator £V(x,y) is called the weak infinitesimal operator [20, 54] of the homogeneous
Markov process.

Formulae for the differential generator

Consider the system (7.1.13) in domain (7.1.23). Suppose that Y(t) is a scalar Markov chain
with finite state space y = M = {1,2,... , f } and with the transition probabilities given
by (7.1.15). At the moment T of transition of the Markov chain Y(t) from Y(r — 0) = i
to Y(T) = j the state vector X(t) have a jump from X(r — 0) = x to X(T) = z with a
conditional density of distribution Pij(r,z) x) given by (7.1.21). It is supposed that this
density is continuous in T and has compact support, such that

h\\x\ < \z\ < h,2\x\,Q < hi < h2,pij(r,z 0) = S(z).

These conditions do not allow the process X(t) to be zero as a result of the jump. Under
their validity the differential generator by virtue of the system (7.1.13) at the point (s,x,i)
is given by the following formula

dV-

1 r £j2f/" ~\ ^ r

o t r \^-2b(s,x,i}b'(s,x,i)\ +^[ I V(s,x,j)pi:j(s,z x)dz - V (s , x , i)]qij , (7.1.26)
L J J

where ' denotes the transpose symbol. If at the moment of the jump the vector X(t) is
changed by the deterministic law (7.1.19), then from the previous formula it follows that

., dv \dv\ .
; ,a;,z) = — — + —- a(s,x,t) +

|tr \^b(8,x,i)ll(8,x+\y(8,<t>ii(x-),j)-V(8,x,i)}qii. (7.1.27)
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In the particular case, when at the moment of the jump the vector X(t) is changed contin-
uously by the formula (7.1.18) we have

., dV \dVV .
2 np ? \ —— ____ _1_ ___ f~i I c 0™ i ) I> j X. I) — Q _ A U^O, J/, 4^ ~r

~ x^ _ 1/Yc T i'M/7- - (7 ] 9R}•*->') J I V \" J "^J / J^*J * V '&OJ

If the Markov process [X(i),y(i)] is homogeneous and V does not depend on t, i.e. V^ =
V(x, y), these formulae are valid for calculaton of the weak infinitesimal operator AV(s, x, i ) .
In this case the term —Q^ = 0- For more details and proofs see for instance [41, 45, 54].
A very important role in the proofs of many stability and control results plays the so called
Ito-Dynkin formula [20, 45]:

£[V(t,X(t),Y(t)) X ( s ) = x, Y(s) = y} = V(s,x,y) +

£[ I [A[V(u, X ( u ] , Y(u)}]du X(s) = x, Y(s) = y}. (7.1.29)
J s

This formula is a stochastic analogue of the well-known Newton-Leibnitz formula

F(t,X(t))=F(8,X(s))+ f dF(u,X(u)).

7.2 Stochastic control problem

7.2.1 Preliminaries
Consider a system described by the differential equation

dX(t) = a(t, X(t), U(t),Y(t))dt + b(t, X(t), Y(t))dW(t), t e I, (7.2.1)

where all the notations are the same as in (7.1.13), the difference is that now function
a depends on A;-dimensional control vector U. Generally speaking the stochastic control
problem is to obtain a stochastic process U(i) from the given set U C Rk of admissible
controls such that the stochastic process X(i) described by (7.2.1) will have some prescribed
properties. As a rule the problem is formalized in such a way that the desired properties
are achieved, when the control law minimizes a functional (in the other words performance
function or objective function) along the paths of the considered system. This functional
may be written as follows

T
J(s, x, y, U} = £[J L(t, X(t), Y(t), U(t)dt + V(X(T), Y(T)) X(s) = x], (7.2.2)

s

such that it should be well defined for all admissible controls U(t} 6 U. So, the original
problem is reduced to the optimal control problem: to find a function U = U*(t,w) from
the set of admissible controls such that

V°(s, x, y) = min J(s, x, y, U)
U £M

Such a control, if it exists, is called an optimal control and scalar V°(s,x) is called the
optimal performance. The types of control functions that may be considered are:
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1) Functions of the form U(t,uj) = u(t), i.e. not depending on u. These controls are
sometimes called deterministic, program or open loop controls.

2) Functions of the form U(t,w) = u(t,X(t,u),Y(t,tjj) for some function u : IxRnxy K->
U. In this case it is assumed that U does not depend on the starting point {s,x,y}:
the value at the time t is chosen only depends on the state of the system at this time.
'These are called Markov controls, because with such U the corresponding process
{X(t,(jj),Y(t-M)} becomes a Markov process. Markov control is the particular form
of more general case of closed loop or feedback control, In the following we will not.
.consider this; general case and we will not distinguish between Markov and feedback
•controls.

.3)" Only a partially observed state of-the system possibly corrupted by noise is available
•for the control purpose. In this situation the stochastic control problem is linked to
the filtering problem. In fact, if the equation (7:2.1) is linear, its right hand side
is not dependent on Y(t) and the performance function is integral quadratic (i.e.
the -functions L and -\E in (7.':2.;2) are quadratic in X and ,17); then the stochastic

•control problem splits into a linear filtering problem- and a corresppding;-esimaj^d
.statefeedback, control problem. This fact, known as, the separation principle, will: be
^considered below in more details.

It 'is-more natural to obtain program control using deterministic models. From this
point of view, control' law can be conceptually split into two parts: the program part and
the feedback (stabilizing) part. The program part is more often obtained in an open-loop
fashion for a more general design objective, such as maximum throughput of a manufactur-
ing system or minimal heating along a spacecraft re-entry path. Optimal trajectories are
generated assumming that the environment and initial conditions are fixed. This serves as
an ideal reference but it cannot be expected that the plant will actually follow the optimized
trajectory. For various reasons, including modeling errors, changes in the environment, etc.,
deviation from the reference can occur and should be compensated. This is achieved in a
closed-loop fashion with the stabilization term: by feeding back some measure of the de-
viation, it is posssible to stabilize the actual trajectory around the reference, so that the
desired behavior is obtained.

In this connection the primary focus in stochastic control is more on the closed-loop part
of control law, assuming that a certain reference trajectory has been obtained. Here linear
stochastic models play a very important role, such as linearized approximations around the
desired trajectory of the original nonlinear plant state dynamics.

As a rule the stabilizing control problem means a feedback control with the infinite time
horizon. Often this problem approximates the practical case, when the time of control is
sufficiently long in comparison with the time response of the controlled system. In this case
the stability properties of the system under study play an important role.

So, in this section we consider some approaches to the solution of stochastic optimal
feedback control problems for both systems with complete state information and for partially
observed systems. In the next sections the stochastic stability concept will be introduced
and the stabilizing control problems will be considered.

7.2.2 Stochastic dynamic programming
A heuristic derivation

We consider for simplicity the case of the system (7.2.1) without jumps:

dX(t] = a(t,X(t), U(t))dt + b(t, X(t))dW(t), t e T, (7.2.3)



7.2. STOCHASTIC CONTROL PROBLEM 427

Generally speaking we use only the fact that there exists a Markov process X(t) with
differential generator A. The control U(t) is said to be feedback control if it is a function
u : I x Rn i-> U, such that for every U(t) = u(t,X(t)) £ U C Rk and given nonrandom
initial condition X(s) = x there exists the unique solution X f x of (7.2,3) in the sense of Ito
and functional

J(s,x,u) = £[ f L(t,X(t),u(t, X(s}-x], (7.2,4)

is well defined. The optimization problem is to minimize (7.2.4) along the paths of (7.2:3)
and over the set U. We denote Au the differential generator vfith a — a(t,,x, u), where u 6 Rk

is arbitrary and £u the same differential generator with formal substitution u = u(t,x).
Assuming the existence of an optimal solution, noted u* , we consider the optimal expected
performance as a function of the initial data s and x and -we introduce the -cost function
V°(s, a;) as the optimal performance for the problem with initial data s and- x [24]:

V°(s, x) = min J(s, x, u) (7.2,5).

For the optimal feedback control u* we have V°(s, x) = J(s, x, u*) for all s,-x: To write the
equation for V° we fix a control u and use Ito-Dynkin formula (7.1.29)

V°(a,x) = -£( I [AuV0(r,X(T))}dr X(s) = x] +
J s

£ [ V ° ( t , X ( t ) ) X ( s ) = x}, s<t<T,. (7.2.6)

Now assume that we use the optimal control u* for T > t and u for T < t. In other words,
let

• , N f U(T, x) if T < t,UI(T, x) = 4 » / ; -r ~ ,v ' ; \ u*(r,x) if r > t.

Then using conditional expectation properties from (7.2.4)-(7.2.6) we have

J(s, x, m) =£[[ [L(r, X(r), U(r)]dr X(s) = x} +
Js

£[J(t,X(t),u*) X ( s ) = x], s<t<T,

and hence

V°(a,x) < J(s,x,ul), V°(t,X(t)) = J(t,X(t),u*),

V°(s, x)<£(f [L(r, X ( T ) , U(r)]dr X ( s ] = x] +
Js

S[V°(t,X(t))X(s)=x]. (7.2.7)

We have equality in (7.2.7) if u = u* on [s, t] or in other words we can write

V°(s, x) = mm£[ f [L(r, X(r), U(r))}dr X ( s ) =x} +
U£U J s

£[V°(t,X(t)) X ( s ) = x}, s < T < t. (7.2.8)
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The equation (7.2.8) formally expresses the well known "intuitively obvious" Bellman's
optimality principle [5] for the considered class of stochastic systems.

Subtract (7.2.6) from (7.2.7) and divide by t — s. Then taking into account that x = X(s)
and moving to limit as t — » s+ we obtain

AuV°(s,x) + L(s,x,u)>0, (7.2.9)

where u = u(s,x). We have equality in (7.2.9) if u = u*(s,x). So, the function V° satisfies
the equation

mm[jCuV°(s, x) + L(s, x, u)} = 0. (7.2.10)
u£U

The boundary condition

F°(T,x) = *(x) (7.2.11)

immediately follows from the definition of the cost function (7.2.5). In stochastic control
theory the equation (7.2.10) is called the dynamic programming equation with continuous
time or Hamilton-Jacobi-Bellman equation. It is easy to see from (7.2.7) that

£[V°(t,X(t)) t < T.

This means that the process V°(t,X(t)) is submartingale with respect to the family of a-
algebras generated by process X ( T ) , T <t. An interesting viewpoint is to observe that for
the optimal control u* and corresponding process. X*(t) the optimal cost function satisfies
the martingale property

£ [V°(t,X*(t)) )> s < ti < t < T,

so that the process V°(t,X*(t)) is the martingale with respect to the same family of a-
algebras.The reader is refered to [21] for more detail on martingale applications to stochastic
control.

An exact derivation

Here we formulate rigorous conditions for stochastic dynamic programming approach, see
[96, 24]. First we define the class U0 of admissible controls. Let $ be the class of functions

(?: [tQ,T] x Rn ̂  Rk

with the following properties: <p(t, x) is piecewise continuous in t for every fixed x, satisfying
the growth condition

)\ <K9(l+\x\),-(t,x) e [t0,T\ xRn

and the uniform Lipschitz condition

\<p(t,x)-<p(t,£)\<KL\x-£\, te [t0,T], x,£eRn,

where Kg, KL are positive constants. We can write u € UQ if

u = u(t,x) = tp(t,x), te [t0,T],

for a certain function if S $. Under these conditions the equation (7.2.3) with U(t) —
(f>(t,X(t)) is well defined as an Ito equation and has a unique solution. We also assume
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that the functions L and * in (7.2.4) are continuous and satisfy the polynomial growth
conditions:

\L(t,x,u)\ <CL(l + \x\+ u\)p,

for some positive CL and Cy and integer p. These conditions guarantee that functional
(7.2.4) is finite for any admissible control u 6 UQ. We say that the admissible control
u = u* is optimal if it minimizes functional (7.2.4) with s = £0.

Theorem 7.2.1 Let the function V(s, x) be a solution of the dynamic programming equa-
tion

miu[AuV(s, x) + L(s, x, u)} = 0, s, x € [t0, T) x Rn (7.2.12)

with the boundary condition

Y(T r\ — vlrfT r\ r F Rn
V I -L ; tO ) —— :K I J. f Ju I ) JLJ d -IL

and this function has the following properties:

(i) V(t, x) is continuous in [to, T] x Rn, has continuous first and second partial deriva-
tives in this domain and satisfies the condition of the polynomial growth;

(ii) V(s,x) < J(s,x, u) for any admissible state feedback control u G Z//o and s,x €
[t0,T}xRn;

(Hi) If u* 6 UQ is admissible control, such that

mm[AuV(s,x) + L ( s , x , u ) ] , s, x e [to,T) x Rn,

then

i.e. control u* is optimal.

In general, solving the Bellman equation (7.2.12) is very complicated. In the following
section we consider a linear case, when it is possible to obtain the solution in analytic form.

Linear regulator problem

The regulation objective is to stabilize deviations around the nominal level using a feedback
control action, so that the plant will stay near a nominal trajectory, determined by optimal
program law. As explained above, the linear models play a very important role. Consider the
system (7.2.3) in the special linear case [96], when it is described by the following equation

mi

dX(t) = (A(t)X(t) + B(t)U(t)]dt + £ Ai(t)X(t}dWu(t] +
1=1

rri2

^B a ( t )U( t )dWv a ( t ) + C(t)dW3(t), t0<t<T, (7.2.13)
s=l

where Wi,W^ and W3 are mi,m2 and m3-dimensional independent standard Wiener pro-
cesses. In this case the vector X(t) can be considered as a small deviation from the nominal
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value and the regulator task is to stabilize this vector around zero. A possible approach is
to compute this regulator so as to minimize the expected value of an integral of a quadratic
function of X(t) and U(t).

T
J(t0, x, u) = £{ l ( X ' ( t } M ( t ) X ( t ) + U'(t)R(t)U(t))dt +

to

X'(T)DX(T) X(t0) = x ] , (7.2.14)

where M(t) = M'(t) and R(t) = R'(t) are piecewise continous in [t0, T] positive semidefinite
and positive definite matrix functions, D is symmetric positive definite constant matrix. It
is supposed that the control is unbounded (K = Rk). To apply Theorem 7.2.1 we will find
a solution of dynamic .programming equation (7.2.12) in the form

V(t>,:.x) .— -h(t) + x'H(t)x, t0<t<T, (7.2.15)

where h(t) is a scalar function, H(t) is a symmetric nonnegative definite matrix function.
As a result we obtain the following theorem.

Theorem 7.2.2 Let function V(t, x) be given by (7.2.15), the matrix H(t) be the solution
of differential equation

H(t) + A'(t)H(t) + H(f)A(i) = H(t)B(t)[T(t, H(t)} + R(t)]-lB'(t)H(t) +
&(t,H(t)) + M(t), t0 <t<T (7.2.16)

with the boundary condition
H(T) = D,

where
mi

T(t,H(t)) = ̂
1=1 s=l

and the function h(t) is denned by the formula

T

h(t)= I 'tl[C'(T)H(T)C(T)]dT.

t

Then the optimal control is given by

U*(t) = v*(t,X(t) = -K(t)X(t), (7.2.17)

where

and V(to,x)-is the minimal value of functional (7.2.14) (the optimal performance).

7.2.3 Stochastic maximum principle
There have been many efforts to extend Pontryagin's maximum principle [76] to the op-
timization of stochastic systems, see [53, 83, 23, 84, 4, 87, 43, 21] and references therein.
Correspondingly there exist different versions of this result. We consider a special linear
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case [83, 84] to show the idea of approach. Assume that the system to be controlled is
described by the differential equation

X(t) = A(Y(t))X(t) + B(Y(t})U(t), t € [t0,T], (7.2.18)
X(t0) - x0, Y(t0) - y0,

where all the notations are the same as earlier. At time t the controller observes both con-
tinuous variable X(t) and discrete variable Y(t). Based upon this observation the controller
selects a control action U(t), i.e.,

U(t)=u(t,X(t),Y(t)) (7.2.19)

Define the set of admissible controls U as the set of all functions on [to, T] x Rn x y i—> Rk

such that with probability one the equation

X ( t ) = A(Y(t)}X(t) + B(Y(t))u(t,X(t),Y(t)), t 6 [0,T], (7.2.20)
X(t0) = x0, Y(t0) = ya

has a unique solution, which is continuous in the pair (to, XQ), continuable to all of [0, T], and
for fixed (t,to) satisfies a Lipschitz condition with respect to x$ in every bounded region of
Rn. Denote the solution to (7.2.20) by Xu(t; to, XQ, y0). The problem is to find that element
u = u* of U which minimizes the functional

J[u;t0,x0,y0)} =
[T
\ L[T,.

Jt0

(7.2.21)

where L(t,x,u,y) is nonnegative and continuously differentiable with respect to x and u.
To formulate necessary conditions we suppose that there exists such an element u* that for
every t0 e [0,T], every x0 e Rn, and every y0 e y

J(u*;t0 ,x0 ,yo) = minJ(u;t0 ,x0 ,yo). (7.2.22)
ugW

Let u £ 1A. Define the stochastic Hamiltonian at the point (s,£) as

H(s, 6, u) = t f ( s , $[A(Y(s))t + B(Y(s))u(s, ?, Y(s))} -
L[s^,u(s^,Y(s^,Y(s)}, (7.2.23)

where i/}(s,£) is the so called co-state or adjoint vector satisfying the following differential
equation, integrated backward in time

O-TJ

) = Q for all x (7.2.24), ,

Calculating the right hand side of (7.2.24) with u = u* we have

4(t, X"* (t; t0, x0, y0)) = ~[A(Y(t) + B(Y(t))u*x(t, Xu* (t; t0, x0, y0),
F(t))]>(t, Xu* (t; t0; x0, 2/o)) + [Lx + Lttu* (t, ̂ u* (t; t0, x0, y0),

Y ( t ) ) ] ' , t 6 [to,T], 4>(T,x) = 0 for all x. (7.2.25)

Suppose that the partial derivative u* exists everywhere except perhaps in some Borel set
in [0, T] x Rn of Lebesgue measure zero, and that u* satisfies a Lipschitz condition with
respect to x. Then for fixed t0 it can be shown that a unique solution to (7.2.25) exists a.s.
for almost all x0 6 Rn. Under the assumptions above the following result is established.
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Theorem 7.2.3 Let u 6 F be an admissible control. Then

£[H(t, X ( t ) , u*) t, X ( t ) , Y ( t ) } > £[H(t, X(t), u) t, X ( t ) , Y(t)}

a.s.

Let
L(t, x, u, y) = x'M(y}x + u'R(y)u,

where M(y) and R(y) y £ y are symmetric nonnegative definite and positive definite
matrices, and control is unbounded. In this case the stochastic Hamiltonian (7.2.23) has
the form

H(t, X(t), U(t)) = <//(*, X ( t ) ) [ A ( Y ( t ) ) X ( t ) + B(Y(t))u(t, X(t),
X'(t)M(Y(t))X(t)-u'(t,X(t),Y(t))R(Y(t))u(t,X(t),Y(t)), (7.2.26)

Applying Theorem 7.2.3 with Hamiltonian (7.2.26) and taking into account that there are
no constraints we obtain directly

X(t),Y(t)]

To determine the solution, assume that the co-state takes the form

where H (t) is a random symmetric matrix conditionally independent on X and differentiable
everywhere. Then

u* = -R-l(Y(t})B'(Y(t)}£[H(t) Y ( t ) ] X ( t ) . (7.2.27)

With the notation Hi(t) = £[H(t}\Y(t) = i] yields the optimal control as

u* = -R-l(i)B'(i)Hi(t)X(t), when Y(t) = i

The matrix Hi(t) (i E A/") satisfies the set of coupled matrix Riccati differential equations,
integrated backward in time

,-(#,-(*) - Hi(t)), t0<t<T (7.2.28)
J¥=i

with boundary condition
Hi(T) = 0

for all i & A/*. The reader is refered to [21, 23, 53, 87] for more detail regarding to Ito
differential equation (7.1.1). The various versions of the stochastic matrix principle for
systems with jumps are presented in [21, 43, 83, 84, 150] and references therein.

7.2.4 Separation principle
General formulation

As it was formulated at the beginning the separation principle is usually used to convert
a partially observed system to a "completely" observed system, so we can use to obtain
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optimal control of partially observed systems the same methods used as in case of systems
with completely state information. It typically works for linear or almost linear systems. The
purpose of this section is to show that the problem of optimal control for a stochastic linear
dynamic system, observed via a noise linear channel, can be reduced to two independent
problems of the control and filtering respectively. Under suitable conditions, solution of the
latter problems are shown to exist [18, 24, 101] and references therein. Consider the system
described by linear stochastic differential equations

dX(t] = [A(t)X(t) + b(t, U(t))}dt + C(t)dWi(t), 0<t<T, (7.2.29)
X(Q) = x0,

dZ(t) = F(t)X(t)dt + G(t)dW2(t), 0<t<T, (7.2.30)
Z(0) = 0,

where the control vector U takes values in a convex compact subset U C Rk\ Z(t) 6 Rn

is channel output; Wi,W? are independent standard Wiener processes in Rdl,Rd2. The
problem is to control X ( - ) in such a way as to minimize functional

J(U] = £
i
f L(t,X(t),U(t))dt

.0
(7.2.31)

The control is based on the a priori distribution of XQ and on the information provided by
the channel output Z ( - ) . Since the controller is not clairvoyant, U(t) must be assumed to
depend only on the Z(s) for 0 < s < T. To express this nonanticipative dependence we
introduce, following [26, 101] a suitable class of control functionals. Let C denote the class
of functions /(£), continuous on [0, T\ with values in Rn and write for the past of f at time
t,

fo t<s<T •<•

and U(t) = u(t, irtZ) Clearly 7rt/ € C if / 6 C. Let

•<l> : [0, T] x C ̂  U,

be a mapping with the properties: i[i(t, f) is Holder continuous in t for each / 6 C and
satisfies a uniform Lipschitz condition

\il>(t,f)-ii>(t,g)\<Cl\\f-g\\, (7.2.33)

where t 6 [0, T] , /, g € C and \\-\\ denote sup norm in C. Let * denote the class of functionals
ijj. We call the control u(-, •) admissible and write u G Ua if

U(t) = u(t,ntZ) = 4>(t,irtZ), 0<t<T,

for some i/j € *. The problem is to find u° e Ua such that

J[u°] = min{ J[u] : u 6 Ua}.

The corresponding functional ^° is optimal. It is shown [101] that «7[u] is well defined. The
separation theorem states that an optimal control exists in a subclass Ua of controls which
depend only on the expected value of the current state given the past of Z. More precisely,
let

Zt = a{Z(s),Q<s<t},

X = £[X(t) Zt}.
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Write ty for the class of functions

$ : [0, T] x Rn ̂  K,

such that

|^(t, 0 - ^(s, 01 + $(t, C) - ^(«, »7) I < £2 (R)\t- s a + c3|£ - n\ (7.2.34)

in every domain 0 < s,t < T, |£| < R, \rj\ < R, where c3 and a e (0, |) are independent on
.R. We write u e Z?a if

= u(t, 7rtZ) = [t, X(i)], < € [0, T],

for some ^ e $. It is shown in [101] that W0 C Wa. The following additional assumptions
will be made. We write u.h.c. (a) for "uniformly Holder continuous (exponent a)," and
u.l.c. for "uniformly Lipschitz continuous," where the uniformity is to hold over the whole
range of the relevant arguments, unless otherwise stated:

(A.I) The matrices A, C are u.h.c. (a) in t and F, G are continuously differentiate in [0, T].

(A.2) G(t)G'(t)>cI, t £ [0,T\.

(A.3) |det[F(t)]| >c , t e [0,T].

(A.4) b, bu, buu are continuous on [0, T] x U (a subscript denotes partial differentiation) and
6, 6M are u.h.c. (a) in t.

(A.5) L and Lu are bounded, u.h.c. (a) in i and u.l.c. in x. Luu is bounded and continuous
on [0, T] x Rn x W.

(A.6) [& /(t,w)p + L(t ,x,u)ju u > C6/foral l ( t ,z ,u ,p) e [0,T]x Rn xU x {p : \p\ < TT}, where
TT is an a priori upper bound of the space derivative V£(i, £) of the solution V(t, ̂ ) of
Bellman's equation below.

(A. 7) XQ is a Gaussian random variable independent of the processes Wi(t), W%(€) and with
positive definite covariance matrix SQ.

The foregoing restrictions are mainly technical. Assumption (A.3) would rarely be met
in practice, where typically dimF < dimJ^; this condition is needed to guarantee that a
certain elliptic operator will be nondegenerate. A square nonsingular matrix F could be
constructed artificially, if necessary, by adjoining to the channel equation (7.2.30) a suitable
term of form

dZ(t) = eFX(t)dt + GdW2(t).

If e > 0 is sufficiently small, then from a practical viewpoint the components Z(t) of the
observation vector contribute negligible information to the controller. However, details of
such an approximation have yet to be worked out. The number TT in (A.6) is an a priori
bound on the space derivative of the solution of Bellman's equation. In the special, but very
important case, where b(t, u) is linear in u, the estimate ?r is not required, and (A.6) can be
replaced by

(A.6)' Luu(t, x, u) > d, t,x,ue [0, T] x Rn x U.
The crucial assumptions for the separation theorem below are the following: (i) the basic
equations have the form (7.2.29), (7.2.30); (ii) the (formal) perturbations ^p-, i = 1,2 are
"white Gaussian noise"; (iii) XQ is Gaussian and independent on the Wt; (iv) J[U] is a
functional additive in t.
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Theorem 7.2.4 (Separation theorem). Subject to the assumptions stated, an admissible
optimal control exists in the form of

for some 1/)0 G *•

Stochastic differential equation for the expected value of the current state

Let [/(•) be admissible and write

/?(*) = b(t,U(t)} = 6M(t,7r,Z)]. (7.2.35)

It is shown in [101] that the random variable (3(t) is Zt measurable. Next let

X(t) = X(t)+X*(t),

where X(t) is the process determined by the stochastic differential equation

dX(t) = A(t)X(t) + C(t)dW!(t), 1(0) = X0, t e [0,T], (7.2.36)

and X* is defined by

= A(t)X*(t)+P(t), X'(0) = 0, * € [0,Tj. (7.2.37)

Since X*(t) is ^-measurable there follows

X ( t ) = {£X(t) Zt} + X*(t). (7.2.38)

Now define a process Z(f) according to

dZ(t] = dZ(t) - F(t)X*(t)dt =
F(t)X(t)dt + G(t)dW2(t), Z(0) = 0, t e [0, T], (7.2.39)

and let
Z(t) = <r{Z(s), 0 < s < t}.

By (7.2.37) X*(t) is 2t-measurable. then by (7.2.39), Z(t) is Zj-measurable. It is proved in
[101] that Z(t) is Z( -measurable and thus that Zt = Zt. Now we have from (7.2.38)

X(t)=X(t)+X*(t), (7.2.40)

where

To compute X(t) we note that the equations (7.2.36), (7.2.39) have the form (7.2.29), (7.2.30)
with 6 = 0 and well-known Kalman-Bucy filtering results can be applied [18. 24, 39, 40, 96].
Introduce the conditional covariance matrix

S(t) = £{[X(t) - X(t)][X(t) - X(t)\ Zt} = £{[X(f) - X(t)][X(t) -

where the second equality holds because X(i) = X(t) + X*(t) and Zt = Zt. By the result of
Kalman-Bucy filtering, applied to (7.2.36)-(7.2.39), S(t) is the unique solution of the Riccati
equation

= AS + SA' + CC' - SF'(GGT1FS, t e [0, T], 5(0) = S0. (7.2.41)
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Then X is determined by

dX(i) = AX(t)dt + SF'(GG'Yl(dZ - FXdt), t e [0, T\, (7.2.42)

with the initial condition

X(0) = £{X(0) Z0] = £[X(0)] = £[X0}.

Combining (7.2.36)-(7.2.39) and (7.2.40) and (7.2.42) we obtain

dX(t) = AX(t)dt + (3(t)dt + SF'(GG')-^(dZ - FXdt), t e [0,T], X ( 0 ) = £[X0}. (7.2.43)

Equation (7.2.43) exhibits the process X(i) as the solution of an equation "forced" by the
channel output increments dZ and by the control term /?. It is very important that it is
possible to replace the differential dZ — FXdt by the suitable scaled differential of a Wiener
process. This can be justified by the observation that linear least square estimation is
equivalent to an orthogonal projection of the estimated variable on the data, see [96, 101]
for more detail. As a result we have finally

dX(t) = AX(t)dt + b [ t , ( t , X ) ] d t + SF'(GG')-dW, X(0) = £[X0}. (7.2.44)

Under the regularity conditions (7.2.34) and (A.4) the equation (7.2.44) determines a diffu-
sion process on [O,!1]. Let £ e Rn denotes a value of X and let V : [0, T] x Rn t-^ Rl have
continuous^derivatives up to second order. The differential generator of the process X is the
operator A(tp) given by

, 0 = tr[C'V«(t, £)C] + (At + b(t, (t, Q]]'Vt(t, 0 + Vt(t, 0, (7-2.45)

where C = SF'(GG')~i and Vt, Vg (V^) denotes the vector (matrix) of first (second) partial
derivatives of V. It is also shown [101, 96] that the conditional distribution of X(i) given
Zt is Gaussian one and that, if 0 < t\ < t% < t3 < T, the increments W(t3) — Wfo) are
independent on Ztl. The reader is refered to [21, 61, 62] for more general consideration of
the discussed problems.

Optimality criterion and application to linear regulator problem

Let Q(x, t, £) be the Gaussian probability density in Rn with mean £ and covariance matrix
5(t):

Q = (27T)-* [det $(*)]-* exp[-i(x - ®'S-l(t)(x - £)]•

By the results of previous section if u is a fixed vector of U, then

L(t,x,u)g(x,t,t)dx.
R™

It is verified in [96, 101] that L satisfies the conditions imposed on L in (A. 5). On this
assumption the following sufficient optimality conditions are established

Theorem 7.2.5 (Optimality criterion). Suppose that there exist an element ^>° € $ and
a function V : [0, T] x Rn i-> Rl such that

(i) V, Vt , Vj , Vj£ are continuous and

\v\ + \vt\ + \s\\Ve\
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L[t, £, &>(t, 0] = 0, (7.2.46)
) + L(t,t,u)>0 (7.2.47)

for all (t, f , u) e [0, T] x Rn x [7, and

0, £€Rn. (7.2.48)

Then the control U(t) = $°(t,X(t)) is optimal in Ua.
Observe that (7.2.46), (7.2.47) are formally equivalent to Bellman's functional equation

mm[£(u)V (t, £) + L(t, £, u)} = 0, (t, 0 € [0, T] x Rn (7.2.49)
•

with boundary condition (7.2.48). If Bellman's equation can be solved explicily for functions
V and ij)°, which satisfies the hypothesis of Theorem 7.2.5, then of course, many of the
restrictive conditions, imposed in general discussion become irrelevant. A well known result
is the mentioned above LQG problem i.e. the linear regulator problem using a linear channel
output information corrupted by Gaussian noise [2, 18, 36, 96]. Consider this problem in
more detail. In (7.2.29) let

b[t,u] = B(t)u,
let u range over Rk and let

L(t, x, u) = x'M(t)x + u'R(t)u,

where M(t) and R(t) are respectively positive semidefinite and positive definite, with R~1(t)
bounded on [0, T] . In this case

L(t, £, u) = ?M(t)S + u'R(t)u + tr[M(t)5(t)],

and Bellman's equation has the following form

Vt + t

£'M£ + tr(MS) = 0. (7.2.50)
The equation (7.2.50) has a quadratic solution

where H(i] is the unique solution of the matrix differential Riccati equation

^ + A'H + HA- HBR~1B'H + M = 0, t e [0, T], H(T) = 0 (7.2.51)
Ctt

and h(i) is given by

^ + ir(C'HC) + tr(M5), t 6 [0,T\, h(T) = 0.
du

The optimal control is then

U(t) = $(t,X) = -R-\t}B'(t)V^X) = -R-l(t}B'(t)H(t)X.

Here H(t) and hence U(t) are actually independent of the channel coefficient matrices F, G.
Moreover the optimal control is the same function of X as in the case of complete state
information. For this solution of (7.2.50) to exist it is sufficient with the stated conditions
on M and R that all parameter matrices will be piecewise continuous and that (A. 2) holds.
The reader is refered to [2, 18, 96] for more detail of the LQG problem.
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7.3 Definition of stochastic stability and stochastic Lya-
punov function

7.3.1 Classic stability concept

The stability theory of stochastic systems follows in general the classic Lyapunov stability
concept, see [41, 45, 54]. An important application of this theory is the stochastic stabilizing
control problem. The stabilizing control law should guarantee stochatic stability of the
system in an appropriate sense. Consder the system (7.1.13). Suppose that the initial
conditions (7.1.22) are deterministic and let X(t) be the solution of (7.1.13), satisfying
these initial conditions. Roughly speaking the solution X(t) is stable if for bounded changes
of initial conditions the solution X ( t ) has bounded changes too. The process X(t) is called
an undisturbed motion with respect to given initial condition and the changes of the initial
conditions are called disturbances. For more uniform mathematical definitions note that
without a loss of generality we can suppose X(t) = 0. In this case it is necessary that

a(t,Q,y)=0, b(t,0,y)=0. (7.3.1)

Under the conditions (7.3.1) the equation (7.1.13) has the solution X(t) = 0. This solution
is called the trivial solution. As a rule it is supposed that the undisturbed motion is the
trivial solution of (7.1.13). The set X> = {0,[V} is the invariant set for the Markov process
[X(t),Y(t)] [45] in the sense that

P { [ X ( t ) , Y ( t ) ] e T>\X(t0) = x0&V, Y(t0) = j/0 6 T>} = 1.

From this point of view the stability of the trivial solution X(t) = 0 means the stability
of the corresponding invariant set of the Markov process [ X ( t ) , Y ( t } ] . We follow [41] and
partially [45] in definitions of stability below.

7.3.2 Weak Lyapunov stability
Definition 7.3.1 (Weak stability in probability.) The trivial solution X(t) = 0 of the
system (7.1.13) (the invariant set T> = {0,y} of the Markov process [ X ( t ) , Y ( t ) ] ) is called
weakly stable in probability if for any numbers e > 0,p > 0 sufficiently small there exists a
number 5 > 0 such that if

\x0\ < 6, y0 e y, t0 > 0 (7.3.2)

then for every t > to

P [ \ X ( t ) \ < e X(t0) = i0) r (t0) = yo] > 1 - P. (7-3.3)

Definition 7.3.2 (Weak asymptotic stability in probability.) If the trivial solution
X(t) = 0 is weakly stable in probability and for any number 7 > 0 and initial condition
from the domain \XQ < ho, the following equality holds

lim P [ \ X ( t ) \ < 7 X(to) = x0,Y(t0) = yo] = 1, (7.3.4)
t—>00

then this solution is called weakly asymptotically stable in probability. The constant ho
defines the domain of attraction of the trivial solution (the undisturbed motion).
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7.3.3 Strong Lyapunov stability
The definitions of weak stability do not characterize the behavior of the paths of process
X(t). The trivial solution (the undisturbed motion) can be weakly stable, but almost all
the paths can leave the domain |-X"(t)| < e in different moments. In this connection more
often the strong stability concept is used.

Definition 7.3.3 (Stability in probability.) The trivial solution X(t) = 0 of the system
(7.1.13) is called (strongly) stable in probability if for any numbers e > 0,p > 0 sufficiently
small there exists a number 6 > 0 such that from condition (7.3.2) it follows that

P[sup \X(t)\ < e X(t0) = XQ, Y(to) = yQ}>l-p. (7.3.5)
t>t0

This definition means that the path of X(t) with the initial disturbance sufficiently small
does not leave an arbitrary small neighborhood of trivial solution with probability tending
to one.

Definition 7.3.4 (Asymptotic stability in probability.) If the trivial solution X(t) =
0 is stable in probability and for any number 7 > 0 and the initial conditions from the
domain \XQ < ho, the following equality holds

lim P[ sup \X(t)\ < 7 X(to) = x0,Y(t0) = y0] = 1, (7.3.6)
T-foo t>t0+T

then this solution is called (strongly) asymptotically stable in probability. The constant ho
defines the domain of attraction of the trivial solution (the undisturbed motion).

The case is interesting in many applications when the domain of attraction covers the entire
state space.

Definition 7.3.5 (Asymptotic stability in probability in large.) The trivial solution
X(t) =0 is said to be asymptotically stable in probability in large if for any bounded domain
XQ\ < ho and for numbers 7 > 0 , p > 0, q > 0 there exists a bounded domain x\ < h\ and

a number T > 0, such that

P[sup \X(t) | < fti X(t0) = x0, Y(t0) = y0}>l-p,
t>t0

P[ sup \X(t)\<iX(tQ')=xo,Y(to)=yo}>l-q-p. (7-3.7)
t>t0+T

7.3.4 Mean square and p-stability
Sometimes it is more convenient to restrict attention to the stochastic moments of the
solution. In this case we define the stochastic stability as stability in the pth mean, p-th
mean stability or pstability [45] in particular, when p = 2, as stability in the mean square or
mean square stability

Definition 7.3.6 (p-stability.) The trivial solution X(i) = 0 of the system (7.1.13) is
called p-stable (stable in the pth mean) if for any e > 0 there exists 5 > 0 such that for any
solution with the initial conditions satisfying (7.3.2), the following inequality holds

£[\X(t)\p X(t0) = xQ,Y(t0) =y0]<£,t> tQ. (7.3.8)
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Definition 7.3.7 (Asymptotic p-stability.) The trivial solution X ( t ) = 0 of the system
(7.1.13) is called asymptotically p-stable (asymptotically stable in the pth mean) if it is
p-stable and for all the solutions, with XQ\ < ho, yo & y

lim £[\X(t)\P X(t0) = x0,Y(t0) = y0] = 0. (7.3.9)
t — >oo

We say in this case that domain \XQ\ < ho belongs to the domain of attraction of the solution
X(t) = 0.

Definition 7.3.8 (Exponential p-stability.) The trivial solution X(t) = 0 of the system
(7.1.13) is called exponentially p-stable (exponentially stable in the pth mean) if for any
XQ e Rn, yo & y and t>t0>0 there exists a > 0 and (3 > 0 constant such that

£[\X(t)\P X(t0) = x0,Y(t0) = y0] < f3\X(t0)\Pe-^t-t°l (7.3.10)

All these definitions do not require p to be an integer. When only the p positive integers
are considered the following definition is widely used [10, 89, 45].

Definition 7.3.9 The pth moment of the solution of the system (7.1.13) is called asymp-
totically stable (with p a positive integer) if for all nonnegative integers p\,p2, • • • ,Pn such
that pi + p2 + . . . + pn = p we have:

(i) for any positive e > 0 there exists 6 > 0 such that (7.3.2) implies

\£[X?X? ...XI- X(t0) = x0, Y(t0) = yo]\ < e,

(ii) for all the solutions with \x0 < h0, y0 e y

..XI- X(t0) = x0, Y(to) = yo} = 0,

where Xi denotes ith component of X.

lim
t — >oo

For even integers p the properties expressed by Definitions 7.3.7 and 7.3.9 are equivalent.
For odd integers p the property of Definition 7.3.7 is equivalent or stronger than the property
of Definition 7.3.9.

7.3.5 Recurrence and positivity
An alternative "weak" counterpart to classic Lyapunov stability is the property that X(t)
will be recurrent or, more strongly, that X(t) will be positive [45, 97, 98]. Roughly speaking,
X(t) is recurrent if for every initial state, any ball in the state space is hit eventually w.p.l;
X(t) is positive if, in addition, the hitting time has finite expectation. Under additional
restrictions, the positivity of X is equivalent to the existence of a unique invariant probability
measure /j,: that is if the distribution of X(t0) is /u then so is that of X(t) for all t > 0. So,
consider the homogeneous version of the system (7.1.1).

dX(t) = a(X(t))dt + B(X(t))dW(t), t e J, (7.3.11)

where B(x) is the n x n nonsingular matrix and W(t) is the n-dimensional Wiener process.
The following assumptions are made with respect to (7.3.11):

(i) X (t0) is a random variable independent on the increment of the Wiener process,
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(ii) for some constant fci

\a(x) - a(z)\ + \B(x) - B(z)\ < k^x - z , x,z eRn, (7.3.12)

(iii) for some constant k-z

z'B(x}B'(x}z > k2z'z, x,ze Rn. (7.3.13)

Definition 7.3.10 The process X(t) defined by (7.3.11) is said to be recurrent if there
exists a compact subset K, C Rn such that for every x G Rn

P[X(t) e K.\X(to) = x} = l.

Definition 7.3.11 Let Q be a nonempty open set in Rn and let TC be the first time the
boundary ofQ is reached. The process X(t) denned by (7.3.11) is said to be positive if it is
recurrent and if

£[TG\X(t0) =x] <oo

for arbitrary Q C Rn and x e Rn \ Q.

7.3.6 Stochastic Lyapunov function
The stochastic Lyapunov function plays the same role in the study of stochastic stability as
the Lyapunov function does for deterministic stability analysis. It turns out that, roughly
speaking, the key step is to prove that a candidate positive function of the system variables
possesses the supermartingale property, see [45, 54], but it is important that Kats and
Krasovskii, Bertram and Sarachik in their pioneering works [42, 7] originally proved stability
results by Lyapunov function methods without reference to martingale theory. Consider a
scalar function V(t, x,y) defined in the domain (7.1.23) and continuously differentiable in
all the variables in this domain as often as required in the process of solution of a stability
problem and V(t, 0, y) = 0. This leads to original definitions by Kats and Krasovskii [42, 41].

Definition 7.3.12 The function V(t,x,y) is positive definite (negative definite) if

inf V(t,x,y) = W(x),

sup
y€y,t>t0

where W(x) is the positive definite function in Lyapunov's sense, i.e. W(0) = 0 and W(x) >
0 ifx ^ 0.

Definition 7.3.13 The function V(t, x, y) admits an infinitesimal lower limit if there exists
a continuous function W(x), W(0) = 0, such that

\V(t,x,y)\<W(x).

This means that V(t, x, y) — > 0, as x — > 0 uniformly in t > to, y 6 y.

Definition 7.3.14 The function V(t,x,y) admits an infinite upper limit in the domain
given by (7.1.23) if

\V(t,x,y)\>W(x)
and W(x) — > 00 as x — > oo (or as \x\ —> h if equation (7.1.13) is defined in bounded domain
given by \x\ < h, y 6 y, t > t0).
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Definition 7.3.15 The function V(t,x,y) is said to be positive (negative) semidefinite in
the domain (7.1.23) if it cannot he negative (positive) in this domain.

Generally speaking the positive definite function V(t, x, y ) is called the stochastic Lyapunov
function if the value of its differential generator (average derivative) AV(t,x, y) along the
paths of the considered system is at least negative semidefinite. More exact formulation
depends on the type (definition) of stochastic stability and will be given in stability theorems
below.

7.4 General stability and stabilization theorems

7.4.1 Stability in probability theorems
As in the deterministic case using the stochastic Lyapunov function we obtain in general
only sufficient conditions of stability, and the main difficulty is to find a suitable Lyapunov
function. The following theorems were originally presented by Kats and Krasovskii [41, 42].

Theorem 7.4.1 Let for the system described by the equations (7.1.13), (7.1.15) with
the jump conditions (7.1.21) there exist a positive definite function V(t,x,y), such that
AV(t,x,y) is a semidefinite function in the domain (7.1.23). Then the trivial solution of
this system is stable in probability.

Theorem 7.4.2 Let for the system described by the equations (7.1.13), (7.1.15) with the
jump conditions (7.1.21) there exist a positive definite function V(t,x,y), which admits
infinitesimal lower limit and such that AV(t, x, y) is negative definite in the domain (7.1.23).
Then the trivial solution of this system is asymptotically stable in probability.

Theorem 7.4.3 If the function V(t,x,y) satisfies all the conditions of Theorem 7.4.2 and
has infinite lower limit, then the trivial solution of this system is asymptotically stable in
probability in large.

All the proofs of these theorems are based on the supermartingale property of V(t,x,y)
[41, 45, 54] and effectively use the Ito-Dynkin formula (7.1.29).

7.4.2 Recurrence and positivity theorems

Consider system (7.3.11) and fomulate theorems like the Lyapunov ones for it, which give
a sufficient recurrence and positivity conditions [97, 98], see also [45, 102].

Theorem 7.4.4 If there exists a function V(x] with properties

(i) V(x) is defined for x € Dy, where Dy = {x : x > R} (0 < R < oo is arbitrary);

(ii) V(x) is continuous in Dy and is twice continuously differentia We in Dy;

(Hi) V(x) > 0 x e Dy and V(x) —> +00 as |x| —> oo

and if along the paths of the system (7.3.11)

£V(x) < 0, x & Dv,

then the process X(t) defined by (7.3.11) is recurrent.
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Theorem 7.4.5 If there exists a function V(x) with the same properties (i)-(iii) as in
Theorem 7.4.4 and if along the paths of the system (7.3.11)

CV(x) < -1, x e Dv,

then the process X ( t ) defined by (7.3.11) is positive.

Under the conditions of positivity there exists a unique probability invariant measure p
denned on the Borel sets Bn C Rn: that is, if P denotes probability measure on the paths
o f X ( t ) and if

P [ X ( t 0 ) e Bn] = v(Bn),
then

P[X(t) e Bn] = p(Bn), t > to.
Let L(x) > 0 be Holder continuous on the compact subsets of Rn. The problem is to obtain
a condition that

£»[L(x}\ = I L(x)^(dx)
JR™

will be finite. Sufficient conditions in terms of Lyapunov like functions are given by the
following theorems.

Theorem 7.4.6 Let the process X(t) denned by (7.3.11) be positive. If there exists a
function V(x) with the same properties (i)-(iii) as in Theorem 7.4.4 and if along the paths
of the system (7.3.11)

CV(x] < -L(x), x 6 Dv,
then

£^[L(x)} < oo.
The next theorem allows, in addition, to estimate £fJj[L(x}].

Theorem 7.4.7 Let process X ( t ) denned by (7.3.11) be positive. If there exist a function
V(x) such that the properties (i)-(iii) of Theorem 7.4.4 are valid with DV — Rn and a
positive constant k such that along the paths of the system (7.3.11)

CV(x) < k-L(x), ze /T ,
then

£»[L(x)\ < k.

7.4.3 pth mean stability theorems and their inversion
Stability in the mean square is studied in many works. It is clear that on the one hand
the mean square analysis is more simple than direct calculation or estimation of some
probabilistic measures. On the other hand it turns out, that exponential stability in the
mean square is the sufficient condition of (strong) asymptotic stability in probability in large.
Consider the system (7.1.13) with the jump condition (7.1.19) and suppose that there exists
a constant 0 < h\ < h%, such that

hi\x\ < \</>ij(x)\ < fi2\x\, ij 6 M. (7.4.1)

Theorem 7.4.8 Let for the system described by the equations (7.1.13), (7.1.15) with the
jump conditions (7.1.19) there exists a positive definite function V(t,x,y) such that in the
domain (7.1.23)

V(t,x,y) > C i | x 2

and AV(t, x,i) is negative semidefinite function (AV(t,x,i) < 0), where c\ is positive con-
stant. Then the trivial solution of this system is stable in the mean square.
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Theorem 7.4.9 Let for the system described by the equations (7.1.13), (7.1.15) with the
jump conditions (7.1.19) there exists a positive definite function V(t,x,y) such that in the
domain (7.1.23)

ci\x2<V(t,x,y)<C2\x\\ AV(t,x,y)<-cz\x2, (7.4.2)

where cj, 02, c$ are positive constants. Then the trivial solution of this system is exponen-
tially stable in the mean square.

This theorem admits the following important converse.

Theorem 7.4.10 If the trivial solution of the system, described by equations (7.1.13),
(7.1.15) with jump conditions (7.1.19) is exponentially stable in the mean square, then in the
domain (7.1.23) there exists a function V(t,x,y) satisfying conditions
(7.4.2).

It follows that under conditions of this theorem the trivial solution of the system (7.1.13) is
asymptotically stable in probability in large. So, exponential stability in the mean square
implies asymptotic stability in probability in large. It turns out that in the case of expo-
nential stability in the mean square a more strong property holds: almost all the paths of
the process X(t) are exponentially stable according to the following theorem.

Theorem 7.4.11 If the trivial solution of the system (7.1.13) is exponentially stable in the
mean square then there exists a constant /3 > 0 such that for any XQ 6 Rn, yo £ y, to > 0
almost all the paths [X(t)Y(t)] satisfy conditions

where a random quantity C is finite w.p'.l.

The stability in the pth mean (p-stability) was studied by Nevelson and Khas'minskii [45].
Let U be some domain with closure U in the space E = I x Rn and Ue(Q) = {(t, x) : \x\ < e}.
We say that the function V(t, x) belongs to the class C§(f7) (V(t, x) £ C%(U}) if it is twice
continuously differentiable in x and once in t everywhere in U excepting (maybe) the set
x = 0 and is continuous in the closed set U \ t/e(0) for any e > 0. The main results are
contained in the following theorems.

Theorem 7.4.12 Let there exist a function V(t, x) e C°(E)), satisfying for some positive
constants GI, 02, 03 the inequalities

CI\X\P <V(t,x) <c2x\p, AV(t,x) <-c3xp. (7.4.3)

Then the trivial solution of the system (7.1.1) is exponentially p-stable.

Theorem 7.4.13 Let the trivial solution of the system (7.1.1) be exponentially p-stable
and a(t, x) and b(t, x) have continuous bounded deruivatives of both first and second orders.
Then there exists a function V(t,x) € C°(E)), satisfying the inequalities (7.4.3) and for
some €4 > 0 the inequalities

dV
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Stability theorems for linear systems

In the linear case the system (7.1.1) has the form

dX(t) = A(t}X(t)dt + ̂  Ai(t)X(i)dWi(t), (7.4.4)
(=1

where A(t) and Ai(t) (/ = !,... ,m) are n x n matrices with bounded Euclidean norms.

Theorem 7.4.14 The trivial solution X(t) = 0 of the linear system (7.4.4) is exponentially
p-stable if and only if there exists homogeneous in x pth order function V(t,x], satisfying
conditions

Cl X P < V(t; X) < C2 X\P, AV(t, X) < -C3\X

dV i <92V o__ < c LJ , \p—i ____ < c x P i j = 1 Ti

where c\, • • • ,04 are some positive constants.
If p is an even number (p = 2 , 4 , . . . ) then it turns out that V(t, x) is a form of order p and
the following theorem is true.

Theorem 7.4.15 For exponential p-stability of the even order of the trivial solution X(t) =
0 of the linear system (7.4.4) it is necessary that for any and sufficient that for some positive
definite form W(t, x) of order p, whose coefficients are continuous and bounded functions of
t, a positive definite form V(t,x) of the same order has been found, such that

AV(t,x) = -W(t,x).

The system with jumping disturbances in the linear case is described by the equation

dX(t) = A(t,Y(t))X(t)dt + Y^ Ai(t,Y(t))X(t)dWi(t). (7.4.5)
1=1

Suppose that Y(t) is the homogeneous scalar Markov chain with finite set of states y =
N = {!,... ,v} and with transition probabilities satisfying (7.1.15). The jump condition
for the vector X(t) is given by (7.1.20).
Theorem 7.4.16 Let the trivial solution X(t) = 0 of the linear system (7.4.5),
(7.1.15), (7.1.20) be exponentially stable in the mean square. Then for any positive def-
inite quadratic form W(t,x,y) of variables xi,... ,xn whose coefficients are continuous
and bounded functions oft, t > t^,y e y, there exists a positive definite quadratic form
W(t,x,y), satisfying inequalities (7.4.2), and such that

AV(t,x,y) = -W(t,x,y).

In the stationary case the equation (7.4.5) has the form
m

dX(t) = A(Y(t))X(t}dt + Ai(Y(t))X(t}dWi(t). (7.4.6)
1=1

Theorem 7.4.17 Let the trivial solution X(t) = 0 of the linear system (7.4.6),
(7.1.15), (7.1.20) be exponentially stable in the mean square. Then for any positive defi-
nite quadratic form W(x,y) of variables xi, . . . ,xn there exists a unique positive definite
quadratic form V(x,y) such that

AV(x,y) = -W(x,y). (7.4.7)

The reader is referred to [41, 45] for the proofs of the formulated theorems.
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7.4.4 Stability in the first order approximation
Consider the system with random jumps (7.1.13) and rewrite differential equation
(7.1.13) in the form

dX(t) = [A(t, Y ( t ) ) X ( t ) + a(t, X(t),Y(t))]dt +

*, Y ( t ) ) X ( t ) + A(t, X(t),Y(t))]dWi(t). (7.4.8)
1=1

The jump condition of the vector X is given by (7.1.19) and one rewrites this condition in
analogous form

X(r) = 3>i3X(r - 0) + ̂ (X^ - 0)), (7.4.9)

where r is the random moment of the jump of Y(t) fromrth to j'th state. Here A(t, y),Ai(t, y)
are n x n matrices, whose components are bounded and continuous functions for all t > to
and y e y\ a(t,x,y) and / 3 i ( t , x , y ) , are vector functions, satisfying for all t > t0, x e Rn

and y G y the growth condition (7.1.3), the Lipschitz condition (7.1.4), and such that
a(t, 0, y) = 0, /3i(t, 0,y) = 0; <3?ij are constant n x n matrices; ̂  are continuous functions,
such that ijJij(Q) = 0, Wi are independent components of standard m-dimensional Wiener
process W(t). We consider together with the system (7.4.8) the linear system

dX(t) = A(t,Y(t))X(t)dt + Y^Ai(t,Y(t))X(t)dWi(t) (7.4.10)
1=1

with linear jump condition of vector X

X(r) = ̂ X(r - 0), (7.4.11)

We say that the system (7.4. 10), (7.4. 11) is the first order approximation system. The prob-
lem is to study when from the fact of stochastic stability of the first order approximation
linear system (7.4.10), (7.4.11) it follows that the nonlinear system (7.4.8), (7.4.9) is stochas-
tically stable too.

Theorem 7.4.18 If the trivial solution X(t) = 0 of the system (7.4.10) (7.4.11) is expo-
nentially stable in the mean square and for all t >to, x e Rn, y & y and 7 > 0 sufficiently
small

|a(t ,x,j/) |<7|a: | , \Pi(t, x,y)\ < -y|x|, |V>ij(z)l < 7NI, (7.4.12)

then the solution X(t) = 0 of the system (7.4.8), (7.4.9) is asymptotically stable in proba-
bility in large and is exponentially stable in the mean square.

When all the functions in the right hand side are slowly changed in time it is possible to
use "frozen" coefficients method. For simplicity we consider the linear nonstationary system
(7.4.10) with the jump condition (7.4.11) and assume that

dA
~dt

dAl

dt < ¥>(*), (7.4-13)

where (p is the bounded continuous function for which there exists a number T > 0, such
that for all to > 0 and some 7 > 0

^ I <p(t)dt<>y (7.4.14)
to
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Consider the "frozen" linear stationary system as the first order approximation system.
The motivation is that for a stationary system it is possible to obtain more effective testable
stability conditions. The "frozen" system is described by

(7.4.15)
1=1

with the same jump condition (7.4.11). Assume that the first order approximation system
(7.4.15), (7.4.11) is exponentially stable in the mean square uniformly in fj, > t0, y0 6 y.
This means that for any solution X^ of this system for all t > to we have

= y0] < C\xQ (7.4.16)

where C > 1 and a > 0 are not dependent on a, < to, yo 6 y.

Theorem 7.4.19 If the first order approximation system (7.4.15), (7.4.11) satisfies the
condition (7.4.16) and the function if from (7.4.13) for some 7 sufficiently small satisfies
condition (7.4.14), then the trivial solution X(t) = 0 of the system (7.4.10), (7.4.11) is
exponentially stable in the mean square.

The choice of the first order approximation system depends on the properties of the original
system. The reader is refered to [41], where either a certain deterministic system or a
stochastic system without jumps is used as the first order approximation system. The reader
is refered to [45] for a more detailed study of stability in the first order approximation of
systems, descriebed by Ito differential equation (7.1.1) without jumps.

7.4.5 Stabilization problem and fundamental theorem
Consider a system described by the differential equation (7.2.1) and suppose that U(t) =
u(t, X(t), Y ( t ) ) ; as it is defined above such a particular form of the state feedback control
control is called the Markov control. We say that u = u(t,x,y) is an admissible function
if a(t,x,u(t,x),y) is continuously differentiable in the domain (7.1.23), a(t,0, 0,y) = 0 and
u(t, 0, y) = 0. Let U be a class of admissible controls. Then every u 6 K generates the
Markov process [Xu(i)y(t)] as a solution of (7.2.1) with the given initial conditions. We
suppose that

X(t0) = xo e Rn, Y(t0) = , t0> 0, (7.4.17)

the description of Y(t) is given by (7.1.14) or (7.1.15) and the jump condition of vector X(t)
is given by (7.1.21) or by their particular cases (7.1.18)-(7.1.20) The stabilization problem
is in the following: to find an admissible control such that the trivial solution X(t) = 0 of
system (7.2.1) is stochastically stable in some suitable sense e.g. asymptotically stable in
probability in large. It is obvious that the solution of this problem is nonunique and as a
rule it is supposed that the stabilizing control provides some additional condition. In many
cases this condition is to minumize a functional along the motions of the system. It is the
optimal stabilization problem [41, 45, 51, 96, 99]. Let us formulate this problem exactly: to
find an admissible control u°(t,x,y) for the system (7.2.1) such that:

1) The trivial solution X(t) = 0 with U(t) = u°(t, X(t), Y(t)) is asymptotically stable in
probability in large (or in another suitable sense).

2) The functional

fJtn
£[L(t,X(t),u(t,X(t),Y(t))Y(t)) X(t0) = x0,Y(t0) = y0]dt, (7.4.18)
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where Z/(t, x, u, y) is a nonnegative function denned in the domain (7.1.23), with u =
u°(t, x, y) converges and for all initial conditions, satisfying (7.4.17)

Juo(t0,x0,y0) = mmJu(t0,x0,y0). (7.4.19)
uSK

Theorem 7.4.20 Let for system (7.2.1) there exists a scalar function V°(t,x,y) and a
vector function u°(t,x,y) 6 Rk denned in the domain (7.1.23) such that:

1) The function V°(t,x,y) is positive definite in x in the domain (7.1.23) and admits
both infinitesimal lower limit and infinite upper limit.

2) The function L(t, x, u°(t, x, y), y) from the functional (7.4.18) is positive definite in x.

3) The differential generator (the average derivative) by virtue of the system (7.2.1) with
u = u°(t,x,y) satisfies the conditions

Av°V°(t, x, y) = -L(t, x, u°, y). (7.4.20)

4) The value AuV°(t, x, y) + W(t, x, it, y) is minimized by u = u° i.e.

AuoV°(t, x, y) + L(t, x, u°, y) = mm[AuV°(t, x, y) + L(t, x, u, y)} = 0. (7.4.21)

Then the function u°(t, x, y) is optimal stabilizing control law and the following equality is
true

V°(t0,x0,y0) =

£[L(t, X(t), u°(t,X(t), Y ( t ) ) , Y(t))\X(t0) = x0, Y(t0) = y0]dt =
O

min £[L(t,X(t),u(t,X(t),Y(t)),Y(t))X(t0) = x0,Y(t0) = y0]dt =
™£u Jto

Juo(t0,x0,2/o), (7.4.22)

where X(t) denotes the solution of (7.2.1) with the corresponding state feedback control.

It is clear that it is possible to unite the condition (7.4.20) (7.4.21) in the Bellman's functional
equation

mm[AuV°(t,x,y)+L(t,x,u,y)}=0. (7.4.23)

The solution V°(t,x,y) of this equation is called Lyapunov-Bellman function or optimal
Lyapunov function.

7.5 Instability
7.5.1 Classic stochastic instability concept
The classic stochastic instability concept is based on the generalization of the Lyapunov
instability concept to the stochastic systems. Unfortunately the study of this type of insta-
bility is more complicated than the study of stability. Roughly speaking the paths of the
stochastic system can leave the instability region as a result of random actions. The reader
is refered to [45] for examples and more details. Consider the system (7.1.1) and denote Ur



7.5. INSTABILITY 449

the set {|x < r} in Rn. To avoid the problems above the following nondegeneracy condition
will be used for this system

z'b(t,x)b'(t,x)z > m(x)\z\2, x,z& Rn,

where rn(x) is a continuous function such that m(x) > 0 if x ^ 0.

(7.5.1)

Definition 7.5.1 (Instability in probability.) The trivial solution X(t) = 0 of the
system (7.1.1) is called instable in probability if for some numbers e > 0,p > 0 does not
exist, a number 6 > 0 such that from the condition

follows that

\x0\ < <5, to > 0

P[sup \X(t)\ < e X(t0) =xo]>l-p.

Theorem 7.5.2 Let there exists a function V(t,x) e C%({t > 0} x Ur), satisfying the
conditions

AV(t,x) <0, x e Ur, x /0 ,
lim inf V(t. x) = oo
a:-»0t>0 ^ '

(7.5.2)
(7.5.3)

and nondegeneracy condition (7.5.1) holds. Then the trivial solution X(t) = 0 of system
(7.1.1) is instable in probability.

Definition 7.5.3 (p-instability) The trivial solution X(t) = 0 of the system (7.1.1) is
called exponentially p-unstable (p > 0) if for some positive C and a

£ [ \ X ( t ) \ ~ p X(t0) =x}< C\x\-pe-a(t~to} .

This definition is more strong because from exponential p-instability for some p it follows
that the system (7.1.1) is instable in probability.

Theorem 7.5.4 If there exists a function V(t,x) e C^-R") satisfying the conditions

P < V(t,x) < c2\x\~p,
AV(t,x) < -c3\x\~p,

(7.5.4)
(7.5.5)

then the trivial solution X(t) = 0 of the system (7.1.1) is exponentially p-unstable for t > 0.
Moreover there exists a constant 7 > 0 such that for any t0 > 0, X(t0) = x ^ 0

\X(t)\>Cto,xe«, t>t0

w.p.l. and the random variable Cto,x is a.s. positive.

Theorem 7.5.5 Let the trivial solution of the system (7.1.1) exponentially p-unstable and
a(t, x) and b(t, x) have continuous bounded derivatives of both first and second orders. Then
there exists a function V(t,x) e C®(Rn], satisfying the inequalities (7.5.4), (7.5.5) and for
some 04 > 0 the inequalities

9V „„C4 |
d2v < cAx i-p-2 (7.5.6)
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Now we consider the linear case, when the system is described by the equation
m

dX(t) = A(t}X(t)dt + Y^ Ai(t)X(t)dWi(t). (7.5.7)
1=1

It is assumed that \A(t)\ amd Ai(t) are the bounded functions.

Theorem 7.5.6 The trivial solution X(t) = 0 is exponentially p-unstable if and only if
there exists a uniform in x of order —p function V(t, x), satisfying for some positive constants

— 04 the conditions

dv
ci\x\~p < V(t,x) < c2\x\~p, AV(t,x) < -c3

< CA X
d2v p 2, i,j = 1,... ,n.

j

Assume that in the sufficiently small neighborhood of the point x = 0 the parameters of the
system (7.1.1) satisfy the inequality

m

\a(t,x) - Ax\ + | ̂ ^bi(t,x) - AIX\ < 7|x|, (7.5.8)

for some 7 > 0 sufficiently small, where bi(t,x), (I = 1, . . . , m) are columns of the matrix
b(t,x) in (7.1.1), A and AI are constant matrices. In this case it is possible to use (7.5.7) as
the first order approximation system for instability analysis of (7.1.1).

Theorem 7.5.7 Let the coeffecients of linear system (7.5.7) be bounded functions o f t , the
trivial solution X(t) = 0 of this system is exponentially p-unstable for some p > 0 and
for 7 > 0 sufficiently small, depending on supt>0 |^4((OI and on the constants c\ — 04 from
(7.5.4)-(7.5.6) only, the inequality (7.5.8) holds. Then the solution X(t) = 0 of the system
(7.1.1) is instable in probability.

7.5.2 Nonpositivity and nonrecurrence
In this section the sufficient conditions are given for the process X(t) described by (7.3.11)
to be nonrecurrent or at least nonpositive [97]. We say that a domain in Rn is normal
domain if it is nonempty, open and simply connected set in Rn with the smooth boundary.
We introduce function V(x) with the following properties.

(i) V(x) is defined for x 6 Dy, where Dy = {x : x > R} (0 < R < oo is arbitrary),

(ii) V(x) is continuous in Dy and is twice continuously differentiable in Dy.

(iii) V(x) is bounded above for x 6 Dy.

(iv) There is a normal domain Q with boundary F such that Dy D Rn \Q and max.{V(x) :
x <E F} < sup{V(x) : x e Rn \ Q}.

(v) CV(x) > 0, x € Dv.

Theorem 7.5.8 If there exists a function V(x) with properties (i)-(v) then the process
X(t) denned by (7.3.11) is nonrecurrent.

The following theorem is sometimes useful to identify processes which are recurrent, but not
positive. Let Vi(x), V^(x) be a pair of functions with the properties (i), (ii), and with the
additional properties:
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(1) There is a sequence {xn} in Dy such that xn — > oo and Vi(xn) '— > oo.

(2) V2(x) > 0, z e Dv.

o min{v2(x):|x|=p}-

(4) £Vi(a:) > 0, £V2(x) < +1, x € ZV-

Theorem 7.5.9 If there exists a pair of functions with properties (i), (ii) and (l)-(4) then
the process X ( t ) defined by (7.3.11) is nonpositive.

7.6 Stability criteria and testable conditions

7.6.1 General stability tests for linear systems
Consider the linear stationary system (7.4.6) with the jump conditions of vector X(t] given
by (7.1.20) and with Y(t) described by (7.1.15). Let W(x,y) = x'M(y)x be positive definite
in the domain (7.1.23). According to Theorem 7.4.17 the system (7.4.6) is exponentially
stable in the mean square if and only if there exists a unique positive definite quadratic
form V(x,y) = x'H(y)x, satisfying equation (7. 4. 7). Calculating the left hand side of (7.4.7)
by virtue of the system (7.4.6) we obtain the following system of coupled linear matrix
equations of Sylvester type [41]:

1=1

- H(i))qij = -M(i), i € A/". (7.6.1)
i¥=i

The solvability conditions of (7.6.1) give the necessary and sufficient conditions of exponen-
tial stability in the mean square of the system (7.4.6) in their parameter space. A general
way to obtain these conditions is in the following: form the long vector from the rows of the
matrices [H(l), . . . , H(v)] and rewrite the system (7.6.1) as a standard vector linear equa-
tion using Kronecker products. The solvability conditions of this equation are well known.
For more detail consider the system (7.4.6) without jumps of vector X(t), such that the
condition (7.1.18) holds. The system of equations (7.6.1) in this case has the form

1=1

)qij = -M(i), i 6 N. (7.6.2)

Determine the r?v x n^v matrix G with the block elements

1 1 m

Gu = (A(i) - -qjny ®In + In® (A(i) - -qiln) + ̂  A'i(i) ® A't(i),
1=1

dj = qijln ® In, i^j, i, j e N.

Denote by h, m vectors of length n2v, constructed from the consequtively-taken rows of the
matrices H(i) and M(t) (i e A/") which satisfy equation (7.6.2). Then the system of matrix
equations (7.6.2) can be rewritten as single vector linear algebraic equation:

Gh = -m.
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Theorem 7.6.1 Tie system (7. 4.6), (7. 1.18) is exponentially stable in the mean square if
and only if the matrix G is Hurwitz.
This approach was used for by Kleinman [49] and Willems [88] and other authors.

7.6.2 Some particular stability criteria for linear systems
The way above is connected with very complicated calculations. In some particular cases it
is possible to find more effective stability conditions. First we consider the system (7.4.6)
without jumps of vector X(t), and without the noise term in the right hand side. This
system can be described by ordinary linear differential equation with random matrix:

X(t) = A(Y(t))X(t). (7.6.3)

The case when

A(i) = A + bc'h(i) , i e M, (7.6.4)

where b, c are n-dimensional vectors and h(i} is a scalar is considered in [8]. Assume that
matrix Q can be reduced to diagonal form. We denote AI, Ag, . . . , A,, the eigenvalues and
di, d®, . . . ,dv the eigenvectors of Q and construct matrix D = [di , d2 . . . dv] . Let W(p) be
the matrix transfer function of the linear differential system

Z(t) = AZ(t) + Z(t)A' + bv'(t) +
u(t) = Z(t}c (7.6.5)

from the vector input v to the vector output u and A(p) be characteristic polynomial of
the matrix differential equation in (7.6.5) of n(n + l)/2 degree.
Theorem 7.6.2 The trivial solution of the system (7.6.3), (7.6.4) is asymptotically stable
in the mean square if and only if the polynomial

A(p - AI) . . . A(p - AI/)det[/ni/ -
di&S(W(p - Ax) . . . (W(p - Av)p'dia€[Ml) - - - h(v)}[D'}-1 ® J«]

be Hurwitz
An effective algoritm for obtaining the matrix transfer function W(p) is also presented in
[8] . Now, consider the system described by the linear stationary Ito equation

dX(t) = AX(t)dt + ̂ AiX(t)dWi(t). (7.6.6)
(=1

In this case the equations (7.6.1) are reduced to one matrix equation

-M. (7-6-7)
1=1

The system (7.6.6) was studied by many authors, see for instance [45, 49, 58, 59, 60, 88].
Suppose that

A, = q,ri, i = l , . . . ,m . (7.6.8)

Define matrix R with elements p i j ( l , j = l,...,m) given by the formula

pij = qj.ffjqj, l,j = 1,... ,m,

where matrix HI is the solution of the following Lyapunov equation

A' Hi + Hi A = -r;r', I = 1, . . . , m. (7.6.9)
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Theorem 7.6.3 The trivial solution X ( t ) = 0 of the system (7.6.6), (7.6.8) is exponentially
stable in the mean square if and only if matrix A is Hurwitz and eigenvalues of the matrix
R are smaller than one in modulus.

The reader is referred to [60] for the proof of this theorem. It can be shown that pij can be
expressed by the formula

Pij = IT I Xij(-iuJ)Xij(iu)du}, (7.6.10)
27T J-oo

Xij(p)=r'l(pI-A)-lqj, U = l , . . . ,m. (7.6.11)

The integral (7.6.10) is well known in the complex analysis and control theory [37].
In some cases, in particular, when the system is described by differential equatiion of

nth order with the random coefficients

Z(n](t) + [Cl + Vl(t)}Z^-l\t) + ... + [cn + vn(f)}Z(t) = 0, (7.6.12)

where Vi(t) (i = 1, . . . , n) are correlated white noise type processes, we have qj = q, j ; =
1, . . . ,n. It is natural that not all the coefficients can be disturbed by noise and in general

<lj =q, j = 1,... ,m<n (7.6.13)

(see [45, 88] for details of transformation of (7.6.12) into (7.6.6)).

Theorem 7.6.4 The trivial solution X(t) = 0 of the system (7.6.6), (7.6.8),
(7.6.13) is exponentially stable in the mean square if and only if matrix A is Hurwitz and
there exists a solution H, of Lyapunov matrix equation

0, (7.6.14)
1=1

satisfying the inequality

q'tfq < 1. (7.6.15)

Taking into account that matrix A is Hurwitz rewrite (7.6.15) in the form

^- f°° x'Hw)XMdu; < 1, (7.6.16)
27T J_00

where
X(P) = [Xi(p)X2(p) • • • Xm(p)}, XI(P) = rj(p/- A)-^, I

The integral in the left hand side of (7.6.16) can be represented as

°° I f 0 0

= — / bM//i(-tu>)/iM]du, (7.6.17)
27r J_00

where g(p) = 6n_1p2(™-1) + bn_2p2("-2) + . . . +&o, h(p) = pn + an^1pn~1 + . . . +alp+a0 is
the characteristic polynomial of matrix A. According to the classic formula for computing
the integral in the right hand side [37] we get

Ic = -l

&"-* if i. = l'
n+j-2i if j > 1, i,j = 1,2, . . . ,n,

and An is nth Hurwitz determinant for the polynomial h(p).



454 CHAPTER 7. STABILITY AND STABILIZING CONTROL

Theorem 7.6.5 The trivial solution X(t) = 0 of the system (7.6.6), (7.6.8),
(7.6.13) is exponentially stable in the mean square if and only if matrix A is Hurwitz and
the inequality (7.6.16) holds.

Theorem 7.6.6 The trivial solution X(t) = 0 of the system (7.6.6), (7.6.8),
(7.6.13) is exponentially stable in the mean square if and only if matrix A is Hurwitz and
Hurwitz determinant An satisfies the inequality

An > 2(-l)"+1Ab.

Simple sufficient stability and instability conditions for the system (7.6.6) are obtained in
[79, 80].

7.6.3 Stability of the pth moments of linear systems
Consider moment stability problem. For the system (7.6.6) one can obtain, in principle, the
pth moment stability conditions for an arbitrary p if one uses the special power transforma-
tion technique [10]. For this the purpose the vector X^ is introduced, whose components
are the forms (monomials) of degree p in X\, . . . , Xn , the components of X:

The dimension of vector X^ is the number of linearly independent degree p forms in n
variables and is given by

The scale factors QJ are chosen in such a way as to validate the equality

We define the np x np matrix A[pj in the following way: if X satisfies the ordinary linear
differential equations

X(t) = AX(t)

then X^ satisfies the following linear differential equations

Using the properties of this transformation [10] by virtue of (7.6.6) the differential equation
for X^ is easily expressed in terms of A\^ and A;[p] matrices:

rn
dX^(t) = A X^(t)dt + y^An ]X^(t)dwi(t}, (7.6.18)

1=1

where -, m ~ m
o- 1

1=1 1=1
Evaluating the expectation, we obtain an equation for the pth order moment:

—E[XW] = ApEiXto]. (7.6.19)
etc

Thus the pth moment stability conditions can be obtained by analyzing the stability of the
deterministic linear system (7.6.19).
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Theorem 7.6.7 Thepth moment of the solution of equation (7.6.6) is asymptotically stable
for all XQ if and only if the matrix Ap is Hurwitz.

Note that for even p this theorem simultaneously gives p-stability conditions. Simple suffi-
cient p-stability conditions for system (7.6.3) are obtained in [75]

The reader is refered to [3, 11, 12, 32, 89, 90, 91] for more details in study of this direction.

7.6.4 Absolute stochastic stability
Consider a stochastic system described by the Ito equation

dX(t] =
1=1

U(t) = f [ Z ( t ) , t ] , Z(t) = c'X(t), (7.6.20)

where U ( t ) , Z ( t } are scalar input and output variables; b,c are constant n-dimensional
vectors; f ( z , t) is a nonlinear function which satisfies the conditions

/(0,t) = 0, 0 < f ( z , t ) z < Kz2, K>0; (7.6.21)

The remaining notations correspond to those adopted earlier.

Definition 7.6.8 The system (7.6.20) is said to be absolutely stochastically stable if it
is stochastically stable in the sense of one of the adopted definitions independently of the
specific nonlinearity from the examined class.

We suppose that

Ai = bril = l,...m, (7.6.22)

where r; (I = l , . . .m) are constant n-dimensional vectors. The absolute exponential sta-
bility in the mean square (absolute ESMS) of system (7.6.20), (7.6.21) was investigated by
Levit [57] and Pakshin [73]. Applying Theorem 7.4.12 with p = 2 and with a quadratic form
Lyapunov function

V(x) = x'Hx,

where H = H' is constant positive definite matrix, and using 5-procedure (see [3, 9])
one reduces the stability problem to finding the conditions for the solvability of the Lur'ie
equations

m

A'H + HA + a^2 nr'i = -hh' - e£>,
/=!

c = hK, (7.6.23)

K2=K~l,

under the supplemental constraint

b'Hb < a, (7.6.24)

where a > 0 and K are scalars, h is n-dimensional vector, D = D' is a positive definite
matrix, and f. is an arbitrary small positive number. It is assumed that the matrix A
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is Hurwitz, the pair (A, b) is completely controllable and the pair (c', A) is completely
observable, see [55] for the definitions. We denote

c'(A->J)-1b, (7.6.25)
6(\) = det(A7 - A) = \n + ̂ A"1 + S2Xn~2 + . . . + <*„, (7.6.26)

Wi(X) = n(A - XI)b. (7.6.27)

Theorem 7.6.9 For the system (7.6.20)-(7.6.22) to be absolutely ESMS it is sufficient that
the inequalities

)\2 > 0, (7.6.28)
1=1

a-^^+R-^^-K^d-iX), (7.6.29)
Zt

be satisfied for all real valued u, where (3\ is the coefficient of the (n — l)th power term of
the numerator of the transfer function (7.6.25), K\ is the coefficient of the (n - l)th power
terra of the Hurwitz polynomial ^(A) with the highest power term coefficient K = K~? ,
which is determined uniquely from the factorization equation

Remark The conditions of this theorem are necessary and sufficient for solvability of the
system (7.6.23;, (7.6.24).

The problem of absolute stochastic stability was also studied in [3, 63, 78]. In all these
papers the problem is reduced somehow to finding the conditions for the solvability of the
Lur'ie equations under some supplemental constrains. On the other hand this problem can
be reduced to finding the conditions for the solvability of matrix equations of a more general
form than the standard Lur'ie equations. For the system (7.6.20), (7.6.21) equations of this
type are:

A'H + HA + ̂ 2 A'IHAI = ~hh/ -
1=1

(7.6.30)

This direction was developed and generalized in [14, 15, 16, 22, 86]. An algebraic approach
was developed in [48].

7.6.5 Robust stability
It is very interesting to obtain conditions of stochastic stability of system (7.1.13) inde-
pendently of the jump intensities. We consider here this problem for the particular linear
case, when the system is described by (7.4.6). For more easy formulation of the results
denote AI — aiFi; then the scalar factors <TJ (/ = 1, . . . ,m) will indicate the intensities or
disturbances. We introduce the following definitions.

Definition 7.6.10 The system (7.4.6) is said to be robustly stable against the jump inten-
sities if it is asymptotically stable in the mean square independently of g^ (i,j 6 A/0 for
given noise intensities <TJ (1 = 1,... , m).
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Definition 7.6.11 The system (7.4.6) is said to be perfectly robustly stable against the
jump intensities if it is asymptotically stable in the mean square independently of qij (i,j e
A/") for all noise intensities &i (1 = 1,... , m) .

Note that in both cases the stability region in parameter space of the system will not depend
on qij (i,j 6 A/"). According to the second definition this region is allowed to depend on
noise intensities, but it is not empty for all CT; (/ = !,... , m). Let us consider matrices

m
GH = A'(i) <S> I + I <8> A'(i) + ]T tr?A'i(i) ® A't(i), i e M, (7.6.31)

1=1

Define for some fixed k e A/" matrices M(i) according to the formula

M(t) = -(A'(i)H(k) + H(k)A(i) + Ai(#(fc)), % e M, (7.6.32)

where

1=1
Theorem 7.6.12 Let all matrices (7.6.31) be Hurwitz and let there exist at least one index
k € A/" and a positive definite matrix M(k) = M'(k) such that all matrices M(i) (i G A/") of
(7.6.32) are positive definite. Then the system (7.4.6) is robustly stable against the jump
intensities.

Remark 1 The conditions of Theorem 7.6.12 are equivalent to the existence of constant
matrix H = H1 , satisfying the following linear matrix inequalities

A'(i)H + HA(i] + A;(#) < 0 i e M. (7.6.33)

LMI theory and the LMI toolbox of MATLAB software [9] can be effectively used to solve
(7.6.33).

Now we consider the perfect robust stability problem. Suppose that for all i e A/", AI(I) =
AI (1 = 1,... , N). Let Ho(k) denote the solution of Lyapunov's equation

A'(k)H(k) + H(k)A(k) + M(k) = 0 (7.6.34)

with M ( k ) = M0(k) where M0(fc) > 0, but x'M0(k)x > 0 for all x £ ft, ft = {x :
AIX = 0, 1 = 1,... ,ra}; Hf(k) denotes the solution of the equation (7.6.34) with M(k) =
Mf(k) = M0(fc) + eMi, e > 0, MI a positive definite matrix, and Me(i) = -A'(i)He(k) -
Hc(k)A(i) (i ̂  k).

Theorem 7.6.13 Let the matrices A(i) (i e A/") be Hurwitz and let us assume further
that there exists at least one number k e M such that A(Ho(k)) = 0 and that for e > 0
sufficiently small we have

x'Me(i)x > 0, x 6 n, x'Me(i)x > x'Me(k)x, xgtt.

Then the system (7.4.6) is perfectly robustly stable against the jump intensities.

Remark 2 Since A(k) matrix is Hurwitz, the solution of Lyapunov's equation (7.6.34) is
given by the formula

o

_



458 CHAPTER 7. STABILITY AND STABILIZING CONTROL

Then, it is easy to see that the condition = 0 is equivalent to

Mo(fc)

M0(k)An-l(k)

The reader is refered to [74] for. the proofs and more detail. Some other approaches to
robustness of stochastic systems based on deterministic ideas are presented in [6, 85].

7.7 Stabilizing control of linear system

7.7.1 General linear systems
Consider the system (7.2.1) in the linear case

m

dX(t) = (7.7.1)
(=1

with the initial condition (7.4.17) and with the jump condition of vector X(t) given by
(7.1.20). Suppose that the Lyapunov-Bellman function has the form

V°(x, y) = x'H(y)x, H(y) = H1 (y) > 0 (7.7.2)

and

L(x, u, y) = x'M(y)x + u'R(y)u, M(y) = M'(y) > 0. R(y) = R'(y) > 0 (7.7.3)

Applying Theorem 7.4.20 we obtain that matrix H ( y ) , y e A/" satisfies the following system
of coupled matrix quadratic equations

1=1

Qij - H(i)]qtJ (1.7 A)

and control law, which stabilizes the system (7.7.1) in the sense that this system is expo-
nentially stable in the mean square is given by

U(t) = -K(i)X(t), if Y(t) = i, (7.7.5)

where K(i) = R~l(i)B'(i)H(i) (i e TV). Simultaneously this control law minimizes the
functional (7.4.18) along the trajectories of the system (7.7.1) with function L given by
the formula (7.7.3). It is very important to obtain the conditions of existence of stabiliz-
ing control. These conditions for the linear system (7.7.1) can be expressed as solvability
conditions of matrix equations (7.7.4). The following theorem gives a sufficient condition
of stabilizability in the case when at the moments of jumps of the Markov chain Y(t) the
vector X(t) is changed continuously.
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Theorem 7.7.1 Consider the system (7.7.1) with the continuous change of vector X(t],
satisfying the condition (7.1.18). Assume that the pairs (A(i), B(i)) (i £ JV") are stabilizable,
the pairs (^/M(i), A(i}) (i e N) are observable and the following inequality is true

GO

maxinf \q^
o

Then:

f exp(-sqi) exp[a(A(i) - B(z)^)'] exp[s(A(i) - B(i)#]dt| < 1. (7.7.6)
J

(i) there exists a unique positive definite solution H(i) (i G M) of the system of coupled
matrix quadratic equations

= 0, i e AT; (7.7.7)

(jjj tie control law (7.7.5) stabilizes the system (7.7.1) in the sense that this system is
exponentially stable in the mean square;

(Hi) matrices

are Hurwitz.

Remark 3 Under the conditions of Theorem 7.7.1 the solution Hi(t) of coupled differential
equations (7.2.28) has property Hi(t0) — > Hi i € M, as t0 — > — oo, where Hi is the solution
of (7.7.4).

The reader is referred to [100, 96] for the proofs and more detail.

7.7.2 Linear systems with parametric noise
General stabilizability conditions

Consider the important case, when the system may be described by the Ito differential
equation

mi 7712

dX(t) = [AX(t) + BU(t)]dt + Y^ AiX(t)dWu(t) + ̂  BsU(t)dW2s(t), (7.7.8)
( = 1 s=l

where W\ and W% are mi -dimensional and r7i2-dimensional independent standard Wiener
processes. For easy formulations of theorems take AI = <r/F(, I = 1, . . . mi, BL = piGi, I =
1, . . . m,2', then the scalar factors will indicate the intensities or disturbances.

Definition 7.7.2 System (7.7.8) is said to be stabilizable in the mean square sense if there
exists a matrix K such that the system

mi 7Tt2

dX(t) = [A-BK}X(t)dt + ̂ AlX(t)dWn(t) + ̂ 2BsU(t)dW2s(t), (7.7.9)
1=1 s=l

is exponentially stable in the mean square.
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The following fundamental theorem gives a necessary and sufficient condition for the mean
square stabilizability of (7.7.8). It is stated in terms of the nonlinear (quadratic) matrix
equation

A'H + HA- HB[R + T(H}]-1B'H + A(tf ) + M = 0 (7.7.10)

in the symmetric matrix H for given symmetric R and M of dimension n x n, n x n and
k x k respectively, where

mi

1 = 1 s=l

Theorem 7.7.3 A sufficient condition for mean square stabilizability of (7.7.8) is that there
exists positive definite matrices M and R, for which (7.7.10) has a positive definite solution
H. A necessary condition for mean square stabilizability of (7.7.8) is that (7.7.10) has a
positive definite solution H for any given positive definite matrices M and R.

Systems with state dependent noise only

Consider the particular case of the system (7.7.8) in which there is only state dependent
noise

mi

dX(t) = [AX(t) + BU(t)}dt + ̂ aiFiX(t)dWn(t). (7.7.11)
1=1

The matrix Riccati involved in the application of Theorem 7.7.3 correspondingly becomes

A'H + HA- HBR~1B'H + A(#) + M = 0. (7.7.12)

Consider also the algebraic matrix Riccati equation

A'H + HA - ^-HBB'H + M = 0 (7.7.13)

with (3 > 0 and M = M' > 0. It is well known [55] that if the pair (A, B) is stabilizable
and the pair (\/M, A) is observable then there exists a unique positive definite solution
H+ of (7.7.13) such that A — ̂ BB'H+ is a Hurwitz matrix. Moreover H+ is monotone
nonincreasing with decreasing p and

H0 = lim H+

(3^0

is well-defined for all fixed M and is positive semidefinite.
Let Q denote the subspace of Rn spanned by the columns of the matrices F/, I =

1, . . . ,mi, i.e.,
fZ = {x <= Rn x^N(Fi) for all I},

where N denotes the null space. Application of Theorem 7.7.3 to the case under considera-
tion leads to the following criterion for stabilizability.

Theorem 7.7.4 The system (7.7.11) is mean square stabilizable if and only if

(i) the pair (A, B) is stabilizable,

(ii) there exists a matrix M* = M'f with M* > 0, but M* > 0 on fl such that

< M», but A(-fiTo) < M* on ft.
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Stabilizability for arbitrary state dependent noise intensities It is very interesting
to have a condition on the parameter matrices A, B and FI, I = 1, . . . mi of system (7.7.11)
such that for all values of the noise intensities CT; there exists a stabilizing gain matrix. The
following result is an immediate consequense of Theorem 7.7.4.

Theorem 7.7.5 System (7.7.11) is mean square stabilizable for all noise intensities CT; if
pair (A, B) is stabilizable and if there exists a symmetric matrix M with M > 0, but M > 0
on Q such that

FlH0Fi=0, 1 = 1,... mi.

Necessary conditions for (7.7.11) to be mean square stabilizable for all CT; are that the pair
(A, B) is stabilizable and that F^H^Fi = 0, 1 = 1,... mi for some semidefinite matrix M.

Remark 4 Theorem 7.7.5 gives a necessary and sufficient condition if fl is one-dimensional.

Assume that
K = dim{7e(F!) ® . . . ® K(Fmi)} < dim{Tl(B)}

and let C be a K, x n matrix such that K(C) = Ti(Fi) ® . . . © K(Fmi), where K denotes
range space and ® is the direct sum symbol.

Corollary 7.7.6 The system (7.7.11) is mean square stabilizable for all noise intensities
(?i if there exists matrix an n x K matrix B\ such that Ti(Bi) C TZ(B) and such that the
polynomial

detC(sI-A)~lB1

det(sl - A)

has no zeroes with the positive real part.

Corollary 7.7.7 The system (7.7.11) is mean square stabilizable for all noise intensities CT;
if pair (A, B) is stabilizable and if H(F{) C K(B) for all I = 1, . . .mi.

Consider as a special case of (7.7.11) the system with a single input, a single noise term and
a matrix FI of rank one:

dX(f) = [AX(t) + bU(t)]dt + abic'iX(t)dW(t), (7.7.14)

where b, bi and GI are n-dimensional vectors, W(t) is a standard scalar Wiener process, CT
is a scalar which indicates the intensity of the disturbance. Then we have:

Corollary 7.7.8 Let the pair (ci,A) be detectable. Then the system (7.7.14) is mean
square stabilizable for all noise intensities CT if and only if

(i) the pair (A, b) is stabilizable;

(ii) the rational function

.cisl -A)b

has no poles with the positive real part, after possible cancelation of common factors.

The reader is refered to [92] and [99] for the proofs and more detailed study of the state
dependend noise case.
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Systems with control dependent noise only

Consider another important particular case of the system (7.7.8), in which there is only
control dependent noise

m2

dX(t) = (AX(t) + BU(t)}dt + ̂ PsGsU(t)dW2s(t). (7.7.15)
8 = 1

The matrix Riccati involved in the application of Theorem 7.7.3 correspondingly becomes

A'H + HA- HB[T(H) + R~l]B'H + M = 0. (7.7.16)

Consider also the algebraic matrix Riccati equation

A'H + HA-HBS~iB'H + aT = 0. (7.7.17)

with 5 = S' > 0, T — T' > 0 and a > 0. If the pair (A, B) is stabilizable then there exists
a unique positive definite solution H+ of (7.7.17) which is monotone decreasing with a and

H* = lim H+
a-»0

is well-defined for all fixed S, T > 0 and at least positive semidefinite. Application of Theo-
rem 7.7.3 to the case under consideration leads to the following criterion for stabilizability.

Theorem 7.7.9 The system (7.7.15) is mean square stabilizable if and only if

(i) the pair (A,B) is stabilizable,

(ii) there exists a matrix S — S' > 0 such that

< s.
For the special case that there is only a scalar control, i.e. for the system

dX(t) = (AX(t) + bU(t)]dt + Y]psgsU(t)dWs(t), (7.7.18)

with b and gs (s = 1, . . .m^) n-dimensional vectors, then one can carry the computation
further. Let HI = limQ^o H, where H is the unique positive definite solution of the algebraic
Riccati equation

A'H + HA - Hbb'H + aT = 0. (7.7.19)

Corollary 7.7.10 The system (7.7.18) is mean square stabilizable if and only if the pair
(A,b) is stabilizable and

Stabilizability for arbitrary control dependent noise intensities Now we present
the conditions on the parameter matrices A, B and Gs (s = 1, . . . m?} of the system (7.7.15)
such that for all values of the noise intensities ps there exists a stabilizing control.

Corollary 7.7.11 The system (7.7.18) is mean square stabilizable for all noise intensities
ps if and only if

(i) the pair (A, b) is stabilizable;
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(ii) the vectors gs (s = 1,... mi) belong to the invariant subspace of A spanned by its
(generalized) eigenvectors corresponding to eigenvalues with nonpositive real parts.

In the multivariable case this condition is only sufficient, but not necessary:

Corollary 7.7.12 The system (7.7.15) is mean square stabilizable for all noise intensities
Ps if

(i) the pair (A, B) is stabilizable;

(ii) the columns of Gs (s — 1,. . . mi) belong to the invariant subspace of A spanned by
its (generalized) eigenvectors corresponding to eigenvalues with nonpositive real parts.

The reader is refered to [92] and [31] for the proofs and more detailed study of the control
dependend noise case.

Systems with state and control dependent noise

For the case in which one wants to obtain stabilizability criteria for system (7.7.8) with both
state and control dependent noise present, it is necessary to study the full nonlinear matrix
equation (7.7.10).

Theorem 7.7.13 Let the pair (A,B) be stabilizable and
oo

| fe^mlK
o

Then the system (7.7.8) is mean square stabilizable.

Remark 5 Under the conditions of Theorem 7.7.13 the solution H ( t ) of (7.2.16) with con-
stant matrices A, B, M, R has property H(to) —> H as to —* — oo, where H is the solution
of (7.7.10).

The reader is referred to [96] and [100] for the proof. This result is very complicated for
computations. In particular cases some rather explicit criteria are needed. Consider the
system

•m-2

dX(t) = [AX(t) + bU(t)]dt + ab^dWi +^psgsU(t)dW2s(t), (7.7.20)
s=l

with b, bi,c and gs (s = I , . . .m 2 ) n-dimensional vectors. Together with this system
consider the associated algebraic Riccati equation

A'H + HA- -Hbb'H + CiC^ =0 (7.7.21)
a

where a > 0 is a parameter. If triple (^4,b,ci) is completely controllable and observable
then as it is well known there exists for each a > 0 a unique positive definite solution H (a)
of (7.7.21).

Theorem 7.7.14 Let triple (A, b, Ci) be completely controllable and observable. Then the
system (7.7.20) is mean square stabilizable if and only if

(i) there exists a solution a* > 0 of the equation

c r / f b i = 1 ;
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(ii) the inequality

holds for this a*.
s=l

The proof is presented in [92]. The reader is referred to [30, 44, 50, 64, 67, 69] and references
therein for more detailed study of this direction.

7.7.3 Robust stabilizing control
Robust stabilization of systems with state dependent noise

In this section we present conditions on the parameter matrices A, B and Fj (i = 1,. . . m)
of the system (7.7.11) for which there exists a feedback gain matrix K such that the closed
loop system

dX(t) = [A- BK]X(t)dt (7.7.22)
1=1

is asymptotically stable in the mean square for all noise intensities ai (I = 1,.. . , m). These
conditions are different from the ones obtained earlier in Section 7.7.2, because in 7.7.2 the
feedback gain matrix is allowed to be a function of CT; (I = 1,... ,m). In this section we
consider the case in which this feedback gain matrix need not be a function of the noise
intensities. So, we consider the stabilizability of (7.7.11) by means of a time invariant state
feedback law

U(t) = -KX(t). (7.7.23)

Definition 7.7.15 The system (7.7.11) is said to be perfectly robustly stabilizable if there
exists a feedback control (7.7.23) such that (7.7.22) is asymptotically stable in the mean
square for all noise intensities CT; (I = 1,... , m).

Definition 7.7.16 The system (7.7.11) is said to be robustly stabilizable for all noise inten-
sities (from the given domain) if there exists a feedback control (7.7.23) such that (7.7.22)
is asymptotically stable in the mean square for all noise intensities satisfying

&i < si, 1 = 1,... , m.

The property expressed by Definition 7.7.16 is somewhat weaker than the property expressed
by Definition 7.7.15 in that the feedback matrix K may depend on the bounds s«; some
entires of K may increase without bound as some of these bounds Si tend to infinity.

Theorem 7.7.17 The System (7.7.11) is perfectly robustly stabilizable if and only if there
exists a matrix K, such that matrix A — BK is Hurwitz and in a suitable basis the matrices
A = A — BK and Ft (I = 1,... m) take the block triangular form:

A =

An A12
0 A22

0 0

0
0

0 0

FHP
Fi2p

0

A series of formalized robustness criteria based on the geometric theory of linear multivari-
able systems was obtained by Willems and Willems [93]; the reader is referred to [93] for
more details.
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Robust stabilization of systems with random jumps

Consider the linear system (7.4.6) with the control action

dX(t) = [ A ( Y ( t ) ) X ( t ) + B(Y(t))U(t)]dt + ̂ aiFi(Y(t))X(t}dWi(t), (7.7.24)
1=1

where U(t) is a fc-dimensional control vector, and B(i) is an n x k matrix. Assume that at
the jump moments of Y(t] the vector X(t) is changed continuously, so that (7.1.18) is valid.

We obtain a state feedback control law in the form of (7.7.23), which guarantees robust
stability of the closed loop system (7.7.24) (7.7.23) against the jump intensities.

Theorem 7.7.18 If for some positive definite matrices R(i) and M(i) i 6 W there exist
the constant matrices H > 0 and K, satisfying the equations

i) - B(i)K)'H +
K'R(i}K + M(i) = 0, i £ A/", (7.7.25)

'(i)H, (7.7.26)

then the closed loop system (7.7.24), (7.7.23), (7.7.26) is robustly stable against the jump
intensities.

Denote A^ = X)r=i -^W anc^ analogously £?£ R-% and MS- The following assertion is more
effective from the point of view of computation.

Corollary 7.7.19 Let for some positive definite matrix R% and positive semidefinite matrix
MS there exist the constant matrices H > 0 and K, satisfying the relations

i) + ME = 0, (7.7.27)
i=l 1=1

K = R^-B'^(i)H, (7.7.28)
(A(i) - B(i)K)'H + H(A(i) - B(i)K) + ̂ (H) < 0, i € A/", (7.7.29)

then the closed loop system (7.7.24), (7.7.23), (7.7.28) is robustly stable against the jump
intensities.

The matrix quadratic equation (7.7.27) can be solved by using a consecutive approximation
of Riccati equations; the inequalities (7.7.29) are well known linear matrix inequalities [9].
For the systems without the state dependent noise (a; = 0, / = !,... ,m) the equation
(7.7.27) is ordinary Riccati equation. The reader is referred to [74] for more details.
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Chapter 8

Stochastic Differential Games
and Applications

K.M. RAMACHANDRAN
Department of Mathematics
University of South Florida

Tampa, FL 33620-5700
This chapter deals with stochastic differential games in a completely competitive situation.
There is considerable research in this area. We have attempted to put together some repre-
sentative works on this topic. First we consider two person zero-sum stochastic differential
games. In here, a solution is obtained using martingale techniques. Also, recent works
using the viscosity solution method are briefly explained. Additionally, a stochastic dif-
ferential game with multiple modes is presented. Next an TV-person stochastic differential
game problem in the relaxed control framework is analyzed using the method of occupation
measures. An equilibrium solution (in the sense of Nash) is derived. Later, the powerful
methods of weak convergence is adapted to study stochastic differential games where the
dynamics is driven by the wideband noise process rather than the ideal white noise process.
A game problem with imperfect information is also analyzed. Finally, we have mentioned
some applications of stochastic differential games and explained in some detail a stochastic
differential game of institutional investor speculation.

8.1 Introduction

The origins of game theory and their development could be traced to the pioneering work of
Von Neumann and Morgenstern [112]. Due to the introduction of guided interceptor missiles
in the 1950s, the questions of pursuit and evasion took center stage. The mathematical
formulation and study of differential games was initiated by Rufus Isaacs, who was then with
the Mathematics Department of the RAND Corporation, in a series of RAND Corporation
memoranda that appeared in 1954, [52, 53, 54, 55]. This work and his further research were
incorporated into a book [56] which inspired much further work and interest in this area.
The relationship between differential games and optimal control theory and the publication
of [56] at a time when interest in optimal control theory was very great served to further
stimulate interest in differential games [17]. For good coverage on the connection between
control theory and game theory, readers are referred to [67]. Earlier works on differential
games and optimal control theory appeared almost simultaneously, independently of each
other. At first, it seems natural to view a differential game as a control process where
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the controls are divided among various players who are willing to use them for objectives
which possibly conflict with each other. However a much deeper study will reveal that the
development of the two fields followed different paths. Both have the evolutionary aspect in
common, but differential games have in addition a game-theoretic aspect. As a result, the
techniques developed for the optimal control theory cannot be simply reused.

In the 1960s researchers started working on what have been called stochastic differen-
tial games. These games are stochastic in the sense that noise is added to the players'
observations of the state of the system or to the transition equation itself. A stochastic
differential game problem was solved in [50] using variational techniques where one player
controlled the state and attempted to minimize the error and confuse the other player who
could only make noisy measurements of the state and attempted to minimize his/her error
estimate. Later in [9], a problem of pursuit-evasion is considered where the pursuer has
perfect knowledge whereas the evader can only make noisy measurements of the state of the
game. In [2, 94], a definition of a stochastic differential game is given. A connection between
stochastic differential games and control theory is discussed in [78]. In the 1970s, rigorous
discussion of existence and uniqueness results for stochastic differential games using martin-
gale problem techniques and variational inequality techniques ensued, [15. 16, 14, 27, 24],
among many others. There are many aspects of differential games such as pursuit evasion
games, zero-sum games, cooperative and noncooparative games and other types of dynamic
games. Dealing with all of the aspects is beyond the scope of an article of this size. For
some survey papers on such diverse topics as pursuit-evasion games, viscosity solutions,
discounted stochastic games, numerical methods, and others, we refer to [3], which serves
as a rich source of information on these topics. In this article we will restrict ourselves to
mostly strictly noncooparative stochastic differential games.

The early works on differential games are based on the dynamic programming method
now known as Hamiltonian-Jacobi-Isaacs (HJI). Many authors worked on making the con-
cept of value of a differential game precise and providing a rigorous derivation of HJI equa-
tion, which does not have a classical solution in most cases. For the HJI equations smooth
solutions do not exist in general and nonsmooth solutions are highly non-unique. Some of
the works in this direction include [17, 26, 24, 32, 36, 60, 94, 108, 109, 110]. In the 1980s,
a new notion of generalized solutions for Hamilton-Jacobi equations, (namely, viscosity so-
lutions), [22, 33, 71, 72, 73, 79, 99], provided a means of characterizing the value function
as the unique solution of the HJI equation satisfying suitable boundary conditions. This
method also provided the tools to show the convergence of the algorithms based on Dynamic
Programming to the correct solution of the differential game and to establish the rate of
convergence. A rigorous analysis of the viscosity solution of the Hamilton-Jacobi-Bellman-
Isaacs equations in infinite dimensions is given in [105]. In the 1990s, a method based on
an occupation measure approach is introduced for stochastic differential games in a relaxed
control setting in which the differential game problem reduces to a static game problem on
the set of occupation measures, the dynamics of the game being captured in these measures
[18]. The major advantage of this method is that it enabled one to consider the dynamic
game problems in much more physically appropriate wideband noise settings and use the
powerful weak convergence methods, [84, 85, 88]. As a result, discrete games and differential
games could be considered in a single setting.

The information structure plays an important role in stochastic differential games. All
the above-referenced works assume that all the players of the game have full information
of the state. This need not be the case in many applications. The interplay of informa-
tion structure in the differential games is described in [37, 51, 82, 86, 72]. The stochastic
differential game problems with incomplete information are not as much developed as the
stochastic control problems with partial observations.

One of the earlier works on obtaining computational method for stochastic differential
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games is given in [43]. Following the work on numerical solutions for stochastic control [65]
and many references in there, currently there are some efforts in deriving numerical schemes
for stochastic differential games. For a numerical scheme for the viscosity solution of the
Isaacs' equation, we refer to [10]. Also, as a result of weak convergence analysis [84, 88], it
is easier to obtain numerical methods for stochastic differential games similar to that of [65]
and to develop new computational methods as in [65].

In this article, first we will deal with two person zero-sum stochastic differential games
for which the existence concepts will be derived using martingale methods. In this sec-
tion, we will also briefly mention the viscosity solution method and a game problem with
multiple modes. The JV-person noncooperative stochastic differential games along with the
concept of Nash equilibrium using more recent efforts with occupation measure approach
is described in the next section. Recent works using the weak convergence methods for
stochastic differential games will be the topic of Section 4. Some applications of stochastic
differential games will be mentioned at the end and a stochastic differential game of institu-
tional investor speculation will be explained in some detail. Some concluding remarks will
be given in Section 6.

8.2 Two person zero-sum differential games
The object of this section is to present the concept of solutions and strategies as well as exis-
tence and uniqueness results for the two person zero-sum stochastic differential games. First,
we will present the earlier work on stochastic differential games using martingale methods.
Almost all of the material on this subsection comes from [24]. In the next subsection, we will
briefly mention the recent results obtained on two person zero-sum stochastic differential
games using the concept of viscosity solutions, [100]. There are various other methods used
in studying stochastic differential games. In [14], two player stochastic differential games
with stopping is analyzed using the method of two sided variational inequalities. Also refer
to [15] and [16] for more results in this direction. A zero-sum Markov games with stopping
and impulsive strategies is discussed in [104].

8.2.1 Two person zero-sum games: martingale methods
The evolution of the system is described by the stochastic differential equations

dx(t) = f(t,x,ui,u2)dt + a(t,x)dB(t} (8.2.1)
x(0) =x0 6R n , i e [0,1] (8.2.2)

where B is an n-dimensional Brownian motion; m 6 Ui, i = 1, 2 are control functions.
There are two controllers, or players, I and II. Game is zero sum, player / is choosing

his control to maximize the payoff and player II is choosing his control to minimize the
payoff.

Ft = cr{x(s) : s < t} is the cr-algebra generated on C, the space of continuous functions
from [0,1] —> R", up to time t. Assume that / : [0,1] x C x U\ x Uz —> Rn and a, a
nonsingular n x n matrix, satisfy the usual measurability and growth conditions. Given an
n-dimensional Brownian motion B(i] on a probability space (f2,P), these conditions on CT
ensures the stochastic equation

t
x(t) =x0+ f a(8, x)dB(t)

Jo
has unique solution with sample path in C. Let 5t = cr{B(s) : s <t}.



476 CHAPTER 8. STOCHASTIC DIFFERENTIAL GAMES AND APPLICATIONS

Assume that the spaces U\ and U-2 are compact metric spaces and suppose that / is
continuous in variables u\ 6 U\ and u2 € %• The admissible feedback controls A\a for
the player /, over [s,t] c [0,1], are measurable functions u\ : [s,t] x C — > U\ such that
for each T, s < T < t, UI(T, .) is ft measurable and for each x e C, u\(.,x] is Lebesgue
measurable. The admissible feedback controls A\s for the player //, over [s,t] C [0,1], are
measurable functions u2 • [s,t] x C — > Ui with similar properties. Let Ai = -4]-
For Ui 6 »4*s, z = 1,2, write

r i 'U2(r,x) = /(T,x,u1(T,x),u2(T,x)).

Then conditions on / ensure that

where

0, =

For each m 6 ̂  a probability measure PUl jM2 is defined through

Then by Girsanov's theorem, [74], we have the following result.

Theorem 8.2.1 Under the measure PUl,u2 the process wui'u'2(t) is a Brownian motion on
fl, where

dwUi'U2(t)=(T-l(t,x)(dx(t)-fUl>U2(t,x)dt).

Corresponding to controls u^ e A, i = 1, 2 the expected total cost is

u^(t,x)dt] (8.2.3)

where h and g are real valued and bounded, g ( x ( l ) ) is f\ measurable and h satisfies the
same conditions as the components of /. Also EUl^U2 denotes the expectation with respect
to PU-IW For a zero sum differential game, player / wishes to choose MI so that J(ui,U2)
is maximized and player // wishes to choose u? so that J(ui,u-2) is minimized.

Now the principle of optimality will be derived. Suppose that player 17 uses the control
U2(t,x) £ Ai through out the game. Then if player / uses the control u\(t,x) & Ai, the
cost incurred from time t onwards, given Ft is independent of the controls used up to time
t and is given by

/ U\ ,U2 _

t

Because I/1(fi) is a complete lattice, the suprenum

W?2 = V V?1'112 (8-2.4)

exists, and represents the best that player I can attain from t onwards, given that player
// is using control u^. Let u\(u-i) represent the response of player / to the control U2 used
by player /I. Then we have
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Theorem 8.2.2

(a) MI(1*2) is the optimal reply to u% iff

t
Wt

U2+ f hu''U2(s)ds
0

is a martingale on ( f i , 9 f t > - F u j ( « 2 ) , u 2 ) -

(b) In general, for ui £ AI,
t

Wt
U2+ f hu»U2(s)ds

0

is a super martingale on (£7,5t, PUl)ttU2

Prom martingale representation results, one can see that u\ is the optimal reply for
player I iff there is a predictable process g"2 such that

i
, " ds < ooa.s.

b

and

i
/ |

^ + f hu^U2(s)ds = W^ + f g^dw^(u2)'u\
o
t

For any other u\ € AI the supermartingale W™2 + f hUl <U2 (s)ds has a unique Doob-Meyer
o

decomposition as

W^ + M?1 >U2 +A^'U2, (8.2.5)

where Mt"ll1i2 is a martingale on (fi, Sst,PUllU2) and A"1'"2 is a predictable decreasing pro-
cess. From the representation (8.2.5),

^ + I hu'i'U2(s)ds = W^ + f gU2a~l(dxs - f^'U2ds)
o o

t

- /[(<?U2a-1/"'(U2)'M2 +^(M2) 'U2

Again from Theorem 8.2.1, cfoo^1 >"2 = cr"1 (dxs -f^ 'U2ds) is a Brownian motion on (17, 3ft, PUl jU2)
and hence the stochastic integral is a predictable process, so by uniqueness of the Doob-
Meyer decomposition

t
Aft

Ul>U2 = f gU2dwUl'U2, (8.2.6)
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U2a-lffi(u2)'u* + hf(u2)'U2) - (gU2o-~lf^'U2 + h^(u2)'U2)]ds. (8.2.7)

Since A™1'™2 is decreasing one can obtain the following principle of optimality.

Theorem 8.2.3 / /wj(u2) is the best reply for player I then, almost surely,

gu,a-lful(uz),u, + hu>(u,),U2 > gU2(7-lf^,U2 + hu:(n2),u2 (g^g)

That is, if the optimal reply for player I exists, it is obtained by maximizing the Hamiltonian

gU2a~lf^'U2 + h^>u\ (8.2.9)

We will establish existence of optimal control ul(u2) e AI for player / in reply to any
control u-2 € AZ used by player //. Now we will make the payoff (8.2.3) into a completely
terminal payoff by introducing a new state variable xn+\ and a new Brownian motion Bn+i
on a probability space (fi',P'). Suppose xn+\ satisfies the equation

dxn+i = h(t,x,ui,u2)dt + dBn+i (8.2.10)
Zn+l(0) = 0. (8.2.11)

The (n + 1) dimensional process (x,xn+i) is defined on the product space (n+,P+) =

(n x Q',P x P'). If we write x+ = (x,xn+1), /+ = (/, h) , a+ = and wn+i = Bn+i,

then w+ = (w, wn+i) is an n + 1 dimensional Brownian motion on f2+.
Define a new probability measure P^ U2 on £l+ by putting

r/P+
"i-"^ _ p-jmCl ( f + \
dp ~ 6XP?0 (Jultv.2)

Let E^ U2 denote the expectation with respect to P^ U2 . Since wn+i is a Brownian motion
and h and g are independent of xn+i, the expected payoff corresponding to the controls ui
and W2 is

J
i

h(s,x,Ul,u2)ds}. (8.2.12)
o

Define
W+( t )= V

the supremum being in L1 (£l+): Let C+ denote the Rn+1 valued continuous function on
[0, 1] and 3+ the <T-field on C+ generated up to time t. Let $+ = {</> : [0, 1] x C+ -> Rn+1}
which satisfy:

(i) for each t G [0, 1], <£(t, .) is £sf measurable,

(ii) for each x & C+ , 4>(.,x) is Lebesgue measurable, and

(iii) (0-+)"1 (t,x)(j>(t,x) < M(l+ \ \x \ \ t ) where ||x||t = sup |ar(s)|.
0<s<t

Write T> = |exp^(0) : 0 6 $+}. Because ^> has linear growth E+ exp^o(<^) = 1 for all
0 6 $+, where E+ denotes the expectation with respect to P+. Since Z> is weakly compact,
we have the following result.
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Theorem 8.2.4 There is a function H e $+ such that (W+2(t),^,P*) is a martingale.
Here P* is defined on fl+ by

dp*
~d~P+ 3.2.13)

If there is an optimal reply it^ita) for player I, take H = f^»,u ^ u •

This result states that, even if there not an optimal control, there is always a 'drift term'
H € $+ whose corresponding measure gives the maximum value function

where £?* denotes expectation with respect to P*.
Under P*, using Girsanov's theorem, we are considering an n + 1 dimensional Brownian

motion w* on (fi+,P*) defined by

dw*
dw.n+l

r-1 OW dx- Hdt
0 l) \dxn+1 - Hn+1dtl '

where H denotes the first n coordinates of H.
Since h(t,x,u-i(t,x),U2(t,x)) is independent of xn+±, for any controls, the weak limit

Hn+i is independent of xn+i, so any control ui € U\:
1

/ ?i(s,x,M1,u2

0

1
+ I h(s,x,ui, - wn+i(t)

•xn+i(t)

}-xn+i(t)

Taking supremum to obtain W£ we see

W+2(t) = W^ + Hn+1(s)ds +
o

Therefore

Taking expectation with respect to St C Q^1" we have

Hn+l(s)ds = E*

Hence, W^2 + / Hn+i(s)ds is a martingale on (fi, 9t,P*), and so can be represented as

a stochastic integral, BU2 + J g*dw*, with respect to n-dimensional Brownian motion

defined on (fi,S t,P*) by

w

dw* = - a~lHdt. (8.2.14)
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Here BU2 = W^2 and g* is a predictable process. Under any other control u\ € Ui, as in
t

Theorem 2.2, W"2 + / h^'U2ds is a supermartingale and hence
o

+

« ' t ° (8-2-15)

s J s s n + 1

0 0

Since w"1'"2 is a Brownian motion on (fi, PUll1i2) denned by

dw"1'"2 = o~~ (dxs — /"1>U2ds),

the first integral on the right hand side of (8.2.15) is a stochastic integral and the second a
decreasing process. Hence we have almost surely

g'^H + Hn+l > 0V-1/"1'"2 + hUl'U2 (8.2.16)

If there is a process 1^(1(2) such that, almost surely,

g ' f f ^ H + Hn+l = g*<J-lr'>U2 + /i«>2

then
t t

W^ + [hf'^ds = B^ + fg*dw+,} U2 (8.2.17)
J Jo o

and so is a martingale. Therefore, u\(u-2) would be an optimal reply to u2-
For the above process g*, since / and h are continuous in the control variables ui and

u-i and the control spaces are compact, there is a measurable feedback control ul(u2) such
that almost surely

g*.ff-lf<(u^'U2 + h«I(«2).«2 > cf.o-"1/"1'"2 + hUl'U2. (8.2.18)

We will now show that such a control ul(u2) is an optimal reply for Player /.
Let

and ^ ^

and let ul(u2) is selected as in (8.2.18) so that Fs (u\,u2) > Fs (ui,u2). Then
t t t

/
[ f ~

S J Ul,U2 J

0 0 0

Taking expectations with respect to /u^ U2 at t = 1:

i i

(8.2.19)
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The left hand side of the inequality (8.2.19) is just
control uin € V\ such that

-£,1

1'"2, so f°r any n

< 1/n.

481

there is a

.0

Writing

The inequality (8.2.16) implies X is positive almost surely, and E+4>nX —> 0, where 4>n —
exp^(/+n u 2) . Let XN = min(AT,X) for N 6 Z+, so 0 < XN < X and E+4>NXN -> 0.
By weak compactness of P there is a </> 6 X> such that the <£„converge to 0 weakly, so

lim E+(/>nXN = E+(/)XN = 0.
n — KX)

Since <j> > 0 a.s., we have X^ = 0 a.s. Therefore X = 0 a.s., and hence

rs(ul(u2),u2) = Ts&.s. (8.2.20)

Therefore we conclude that an optimal reply uj(u2) exists for player / in reply to any control
«2 G f/2 used by player II.

We will now establish the existence, and obtain a characterization, of the optimal feed-
back control that player 77 should use if he chooses his control first. Assume that the player
/ will always play his best reply 14(1x2) € Ui in response to any control 1x2 G C/2- Now
the problem is how player /I, who is trying to minimize the payoff (8.2.3), should choose a
1*2 G f/2 such that

inf sup J(wi ,u 2 )= inf (8.2.21)

For any -u2 € t/2 and i 6 [0, 1], if player / plays uj(w2), the expected terminal payoff is

1

o

Since is a complete lattice the infimum

= A (8-2-22)
exists in L1^). Ft

+ in (8.2.22) is called the {textitupper value function of the differential
game, and

l/0
+= inf sup J(wi,u2) (8.2.23)

is the upper value of the game. One can obtain the following result [24].
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Theorem 8.2.5

(a) «2 E U<2 is optimal for player II if and only if

t
Vt

+ +
o

is a martingale on (ft ,A,Pu*(M*)x)-

(b) In general, for u2 E U-2,
t

+

is a subraartingale on ($l,At, Pu*(u2),u^)-

From the above martingale representation, u\ E C/2 is optimal for player II playing first
if and only if there is a predictable process g% such that

i
/ \

f\

|<7*| ds < ooa.s.
o

and
t t

"i * i« ' * fUi(u2>> ?ds = B + 9 dws.
o o

Here the w* is the Brownian motion given by

dw* =

on (17, Pu* (uj),«!). For a general u2 E U2 the submartingale

t
f *r \V+ -\- I /)M«2),-"2 /7SK, +y /i

o

has a unique Doob-Mayer decomposition B* + M"2 + A™2, where Mj"2 is a martingale on
(fi,Pu.(U2) )U2) and A™2 is a predictable increasing process. Also, if u^ E U2 is optimal for
player // playing first, then almost surely

Conversely, without a priori assuming there is an optimal control u^ E U2, one can
obtain an integral representation for Vt

+, and show that the measurable strategy, obtained
by minimizing a Hamiltonian g*.^1/™1 U2 + h^l(U2''U2, exists and is optimal.

Theorem 8.2.6 There is a predictable process g* and u^ E U-2 is optimal if and only if u^
minimizes the Hamiltonian
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= inf sup J(ui,u2)

The Isaacs condition

We have seen that

represents the best outcome that players / and 77 can ensure if player // chooses his feedback
control first. Now we will define the lower value of the game,

VQ" = sup inf J(ui,u2).

For t e [0,1], x <E C, ui 6 Ui, u2 & U2 and p e Rn write

L(t,x,p;ui,u2) = p.a~~l(t,x)f(t,x,ui,u2) + h(t,x,ui,u2). (8.2.26)

The game is said to satisfy the Isaacs condition if, for all such t, x, p,

mm max. L(t,x,p;ui,u2) = max min L(t,x,p;ui,u2). (8.2.27)

We say the game satisfies a saddle-point condition if the upper and lower values of an
'infinitesimal' game are equal, then V^ = V^~. Next result states that the game has a value
under Isaacs condition.

Theorem 8.2.7 If the game satisfies the Isaacs condition then VQ~ = Y0~.

Proof. Note that for m e Ui, i = 1, 2

Ts(ui,u2) = L(s,x,g*;ui(t,x),u2(t,x))

where g* is the predictable process introduced earlier. Also, for any w2 6 U2 we proved that
there exists a strategy u^(u2) & U\ such that

rs(ul(u2),u2) = max rs(u^(u2),u2)

and then that there is a u\ e C/2 such that

= min max FS(UI, u2)a.s.

We also had a representation

t t
, / • » , » , , ?vt + / hUi(u*>'u*ds = B* + I g*dw*sa.s.

o o

Because / and u\ are continuous in u\ and u2 and C/i and C/2 are compact, for any u\ 6 U\
there exists a strategy u2(u\) € t/2 such that

Similarly there is a u^ € C/j such that

1 ^^zi-^, ^2V^1/J ^ max 1 s(ii

= max min FS(WI, 142)0..s.
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Since the Isaacs condition (8.2.27) holds

rs(u*1,u2(u*l)) = rs(ui(u2),u2)a.s.
Now for any u2 £ U2

ra(uJ,«5(«I))<r8(«J,«2)a.a.
and for any MI e t/i

rs (lti,U2) < rs(ul(u2),U2)a.S.

hence
rs (ui,^) < rsKX) < rs(ixi,u2)a.s.

Therefore t
V+ u*^u*ds = B*+ I gfdw^a.a.

0 0

where
I U, ,tio —— 1 / 7 ^^1 >Wo T \dws

 x 2 = cr (cfos - fs
 J 2 ds)

is a Brownian motion under P«j iU«. For any other u\ € U\:

t t t
V+ +

0 0 0

Taking expectations at t = 1 with respect to PUltU*

1

hu
s
l'u*ds] = J(«i,«5) < J* = J(«J,«5).

o

Similarly one can show that
J(Ui,U2) < J(U\,U2}.

Therefore, if Isaacs condition is satisfied
j

sup inf J(ui,U2) — inf sup J(ui,U2 ) = J* ,

hence the upper and lower value of the differential game are equal. One can also show that
if the upper and lower values are equal then

max min L(t,x,g*;ui,uz) = min max L (t, x,g*; ̂ 1,^2) a.s. D

D
In this subsection, using the martingale methods we have proved the existence of value

for the game under the Isaacs condition as well as characterized the optimal strategies.

8.2.2 Two person zero-sum games and viscosity solutions
In this subsection, we present briefly some key elements of the viscosity solutions method
for the theory of two person zero-sum stochastic differential games. For more details we
refer to [35] and [34]. For s e [t,T], consider the dynamics '

dxs = f (xs,s, uis, u2s) ds + a (xs, s, Uis,u2s) dws (8.2.28)
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with initial condition

xt = x(x£'Rn), (8.2.29)

where w is a standard m-dimensional Brownian motion. The payoff is given by

T \
Ih(xs, s, uis, u2s)ds + g(xT) > , (8.2.30)
I)

Here ui and u^ are stochastic processes taking values in the given compact sets Ui C R
and t/2 C R(. Assume that / : Rn x [0,T] x f/i x C72 — > R" is uniformly continuous and
satisfies, for some constant C\ and all t, t 6 [0, T], x, x € Rn, Uj 6 C/j, z = 1, 2,

/i : R™ x [0, T] x C/i x C/2 — > R is uniformly continuous and satisfies, for some constant 62,

f | / i (x, t ,wi,u2) | ^^2, f8232 l
\ |/l(l,t )«i,U2)-/l(^*'.«l.«2)| <C2(\X-X +\t-t\). { ' ' '

and g : Rn — > R" satisfies

\g(x-)-g(x}\<C3(\x-x\). '

Also the n y. m matrix a is bounded uniformly continuous and Lipschitz continuous with
respect to x. On a probability space (fi, S, P), set

Ui(t) = [ui : [t, T] -» [/, measurable}, i = 1,2.

These are the sets of all controls for players I and //. We consider the controls that agree
a.e. are the same.

Define any mapping
a : U2(t) ^ U^t)

to be a strategy for / (beginning at time t) provided for each s € [t, T] and u?, u^ G U^t)

ifu-i. =U2 a.e. in [t, s],thena[u2\ = a[u2\a.s.in[t,s]. (8.2.34)

Similarly a mapping
0 : Utf) ^ Uz(t)

is a strategy for player // provided for each s e [t,T] and u\, u\ e t/i(£)

i/Wi = «i a.e. in [t, s], then(3[ui] = (3[ui]a.e.in[t, s}. (8.2.35)

Denote by Fi(t), i = 1, 2, the set of all strategies for players / and //, respectively, beginning
at time t. At this point we note that there are some serious measurability problems that
need to be addressed in the characterization of strategies for stochastic games. For a detailed
account on the concept of measurability in the stochastic case and how to overcome this
difficulty, we refer to [34]. Define the lower and upper values V and U by

V(i, t)= inf sup Jx,t(ul, f3[Ul}) (8.2.36)
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and

U(t,x) = sup inf Jxt(a(u2),u2) (8.2.37)

The U and V satisfy the dynamic programming principle which for simplicity is stated
with h = 0. The proof of this result rests on the results about uniqueness of viscosity
solutions to fully nonlinear second-order PDE as well as some appropriate discretization of
the game in time but not in space and we refer the reader to [34] .

Theorem 8.2.8 Let t,r & [0,T] be such that t<r. For every x e Rn

V(x,t)= inf sup Ext{V(xT,T)}, (8.2.38)

and

U(x,t) = sup inf Ex,t{U(xT,r)}. (8.2.39)

With this result, one can study the connections between U and V and the associated
Bellman-Isaacs equations which are of the form

( yt + H(D2y, Dy,x,t)=0 in R" x [0,T],
\ y = g on R" x {T}, (K^(J>

with

H(A, p, x, t) = H~ (A, p, x, t)
1 . (8.2.41)

= max min [-tr(a(x,t,ui,u2)A +/(x,t , t i iu2) .p+h,(x,t ,ui , i i2)j

and

_ . 1 (8.2.42)

where
Ta = <7(7 .

We will now give the definition of viscosity solution for (8.2.40) and a comparison principle.

Definition 8.2.9 A continuous'function y : Rn x [0,T] —> R is a viscosity solution (resp.
super solution) of (8.2.40) if

y < g on Rn x {T}, (8.2.43)

(resp.

y>gon-Rnx {T}), (8.2.44)

and

4>t(x,t) + H(D2<p(x,t),D<t>(x,t),x,t) > 0, (8.2.45)

(resp.

c/)t(x,t) + H(D24>(x,t),D4>(x,t'),x,t) <0) , (8.2.46)

for every smooth function (f> and any local maximum (resp. minimum) (x,t) of y — <j>.
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Following result is obtained in [57].

Theorem 8.2.10 Assume that the functions f , g, h, and a are bounded and Lipschitz
continuous. If z and'z (resp. y andy) are viscosity subsolution and supersolution of (8.2.40)
with H given by (8.2.41) (resp. of (8.2.40) with H given by (8.2.42)) with terminal data g
and g and if g < g on Hn x {T}, then z <z (resp., y < y) on R" x [0,T].

Following is the main result for the zero-sum stochastic differential game problem with
two players which is stated with out proof. The proof is given in [34] which is tedious and
involve several approximation procedures.

Theorem 8.2.11

(i) The lower value V is the unique viscosity solution of (8.2.40) with H as in (8.2.41).

(ii) The upper value U is the unique viscosity solution of (8.2.40) with H as in (8.2.42).

For the dynamics in (8.2.28) with initial time t = 0, and for a discounted payoff

{ oo 1

f e - X s h ( x ( s ) , U l ( s ) , u 2 ( s ) ) d s 1 , (8.2.47)
•J Io )

the existence of value function is obtained by [106] using a different approach. The so-called
sub- and super-optimality inequalities of dynamic programming are used in the proofs. In
this approach to the existence of value functions, one starts with solutions of the upper and
lower Bellman-Isaacs equations which exist by the general theory and then prove that they
must satisfy certain optimality inequalities which in turn yield solutions that are equal to
the value functions.

8.2.3 Stochastic differential games with multiple modes
In [28], two person stochastic differential games with multiple modes are studied. The state
of the system at time t is given by a pair (x(t),0(t)) e R™ x S, where S = {1,2, . . . , N}.
The discrete component 9(t) describes the various modes of the system. The continuous
component x(t) is governed by a "controlled diffusion process" with drift vector which de-
pends on the discrete component 9(t). Thus x(t) switches from one diffusion path to another
at random times as the mode 0(t) changes. The discrete component 6(t) is a "controlled
Markov chain" with transition rate matrix depending on the continuous component. The
evolution of the process ( x ( t ) , 0 ( t ) ) is given by the following equations

dx(t) = b(x(t),6(t),u1(t),u2(t))dt + <T(x(t),6(t))dw(t), (8.2.48)

P(9(t + St) = j | 9(t) = i, x ( s ) , 0 ( s ) , s<t) = \ij(x(t))5t + o(5t), i ̂  j, (8.2.49)

for t > 0, x(0) — x e Rn, #(0) = i e S, where b, CT, A are suitable functions. In a zero sum
game player / is trying to maximize and player // is trying to minimize the expected payoff

oo

J
.0

e-atr(x(t),0(t),Ul(t),u2(t))dt (8.2.50)
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over their respective admissible strategies, where a > 0 is the discount factor and r :
R™ x S x Ui x U2 — > R- is the payoff function and is defined by

r(x,i,ui,u2) = I r(x,i,vi,v2)ui(dvi)u2(dv2).
V2 Vi

Here Vi, I = 1, 2 are compact metric spaces and Ui = P(Vi) the space of probability measures
on Vi endowed with the topology of weak convergence and r : Rn x S x V\ x V2 — >• R. Also
let

b : Rn x 5 x Vi x V2 -> R"

a : Rn x 5 -» Rnxn

AT

Ay : R" -» R,l < i, j < AT, Ay > 0, i ± j , E Ay = 0.

J=l
The following assumption is made.

(A2.1)

(i) For each i & S, 6(.,i, ., .), r( . ,z, ., .) is bounded, continuous and Lipschitz in its first
argument uniformly with respect to the rest.

(ii) For each i € S, a ( . , i ] is bounded and Lipschitz with the least eigenvalue of aa'(.,i)
uniformly bounded away from zero.

(iii) For i, j e S, Ay(.) is bounded and Lipschitz continuous.

Define

bk(x,i,ui,u2)= I bk(x,i,vi,
Vi V2

and
b(x, i, MI, ^2) = [fri^j 2, MI, ^2)1 • • • j bn(x, i, Ui, 1(2)] •

If u/(.) = f((z(.) ,#(.)) for a measurable i>; : Rn x S —> I/;, then uj(.) is called a Markov
strategy for the lih player. Let MI denote the set of Markov strategies for player I. A
strategy u/(.) is called pure if ui is a Dirac measure, i.e., u/(.) = <£„,( . )> where v/(.) is a V/
valued nonanticipative process. For p > 1 define

W^ (R" x 5) = {/ : R™ x 5 -> R : /oreac/iz 6 5, /(., i) 6 Wf0'cp (Rn)}.

/ \N
Wioc (Rn x 5)is endowed with the product topology of ( W f ^ (Rn) I . For / 6 W^ (Rn x 5)

\ /

N

\ijf(x,j) (8.2.51)

where

•\ •^T^T ( • ^OJ(X,l i ̂  . o 71.x,»; .ci *) = / bj (x, i, vi, v-2)—-£—— + ^ / ^ o-jk(.x,i)—^—-7.—— • (e,.z.o2)
3=1 Xj j,fc=l J *
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Here a,jk(x,i) = ̂  &ji(x,i)crki(x,i). Define
1=1

_ f I^"f(x,*) = J J L*»f(x,i)

The Isaacs equation for this problem is given by

inf sup \LUl'U2d>(x. i
\
= sup inf

(8.2.53)

(8.2.54)

This is a quasilinear system of uniformly elliptic equations with weak coupling in the sense
that the coupling occurs only in the zeroth order term. Now we will state the following
results from [28] and for the proofs, we refer to [28].

Theorem 8.2.12 . Under (A2.1) the equation (8.2.54) has a unique solution inC2 (R™ x S)n
Cb(RnxS).

Next result characterizes the optimal Markov strategies for both players.

Theorem 8.2.13 Assume (A2.1). Let u\ 6 MI be such that

inf i, / • *f -i \ x,bj (x, i,Ul(x,i),u2) —ft-

N

.
(X, Z, Ui, U2)= sup inf

N
^——^ ir* (fr i t i \ (Q O C\ t^

/or eac/i i and a.e. x. TTien u\ is optimal for player I. Similarly, let u^ G M% be such that

n

E i f - * / -\y-7 \ X, Z. 141. lin (X. 1Jj v i ? A ' z v : /

= inf sup

N

(x,
J=l

(8.2.56)

for each i and a.e. x. Then u^ is optimal for player 11.
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This kind of game typically occurs in a pursuit-evasion problem where an interceptor tries
to destroy a specific target. Due to swift maneuvering of the evader and the corresponding
response by the interceptor the trajectories keep switching rapidly.

In [43], the problem of the numerical solution of the nonlinear partial differential equation
associated with the game is considered. In general, due to the nonlinearities and to the
nonellipticity or nonparabolicity of these equations, the available theory is not very helpful
in choosing finite difference approximations, guaranteeing the convergence of the iterative
procedures, or providing an interpretation of the approximation. For a specific problem, a
finite difference scheme is given in [43] so that the convergence of the iterative process is
guaranteed. With the development of weak convergence theory for game problems, [84], and
the numerical methods described in [65], it is possible to develop computational methods
for stochastic differential games.

8.3 TV-Person stochastic differential games
Now we will deal with the stochastic differential game problem where N players are simulta-
neously controlling the evolution of a system. The approach that we are going to use in this
section is based on occupation measures as described in [18]. In this framework the game
problem is viewed as a multidecision optimization problem on the set of canonically induced
probability measures on the trajectory space by the joint state and action processes. Each
of the payoff criteria, such as discounted on the infinite horizon, limiting average, payoff
up to an exit time etc., are associated with the concept of an occupation measure so that
the total payoff becomes the integral of some function with respect to this measure. Then
the differential game problem reduces to a static game problem on the set of occupation
measures, the dynamics of the game being captured in these measures. This set is shown
to be compact and convex. A fixed point theorem for point-to-set mapping is used to show
the existence of equilibrium in the sense of Nash.

Let Vi, i = 1 ,2 , . . . , TV be compact metric spaces and Ui = P(Vi) be the space of
probability measures on Vi with Prohorov topology. Let V = V\ x V2 x • • • x VN and
U = Ui x C/2 x • • • x UN- Let

m - = mi . . . - ,md., . : Rd x V -> R

be bounded continuous maps such that m is Lipschitz in its first argument uniformly with
respect to the rest and a is Lipschitz with the least eigenvalue of craT(.) uniformly bounded
away from zero. Define, for x 6 Rd, u = (HI,. . . , UN) e U,

( . , . ) , . . . , md(.,.)] :'RdxU->'Rd

by

mi(x,u)= ••• mi(x,yi,...,yN)ui(dyi)...uN(dyN)
VN Vi

= I Wii(x,y)u(dy)
V

where y € V. Let x(.) be an Revalued process given by the following controlled stochastic
differential equation of Ito type

7 / , \ __ / / ,\ (+\\f-}-t- _l_ .T (rr* (+ \ \ rli (/'•/•^ -f- ~~> O (R *-i ^7^

x(0) = zo, (8.3.58)
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where,

(i) XQ is a prescribed random variable,

(ii) w(.) = [wi(-), • • • ) Wd(-)]T is a standard Wiener process independent of XQ,

(in) u(.) = (ui(.), . . . , UN(-)), where ttj(.) is a ^-valued process satisfying: for ti > t2 > t3,
w ( t i ) - w (£2) is independent of u ( t ) , t < £3.

Such a process Ui(.) will be called an admissible strategy for the zth player. If m(.) = Vi(x(.}}
for a measurable ^i : Rd — > t/^, then Uj(.) is called a Markov strategy for the ith player. A
strategy Ui(.) is called pure if Ui is a Dirac measure, i.e., Ui(.) = (5yi(.) where yt(.) is a Vr
valued process. If for each i = 1, . . . , N, Uj(.) = Vj.(x(.)) for some measurable t»j : Hd — > [/,,
then (8.3.57) admits a unique strong solution which is Feller process [113]. Let Ai, Mi,
i = 1,2, ... ,N denote the set of arbitrary admissible, resp. Markov strategies for the ith
player. An TV-tuple of Markov strategies v = ( V I , . . . , V N ) & M is called stable if the
corresponding process is positive recurrent and thus has a unique invariant measure rj(v).
For any / e W,20*(Rd), p > 2, x £ Rd, u e V, let

(8.3.59)

and for any v e £7

(L«/)(i)= ( • • • f ( L f ) ( x , y ) v l ( x } ( d y l ) . , . v N ( x ) ( d y N ) . (8.3.60)
./ «/

For an TV-tuple j/ = (yi, . . -,yN), denote y* = (3/1, . . . ,yk-i,yk+i, • • -,VN) and (f ,ykj =
yi , • • • , 2/fc- 1 ,

For each k = 1, . . . , N, let r/c : Rd x V — > R be bounded continuous functions. When
the state is x and actions v € V are chosen by the players then the player k receives a payoff
rk(x, v). For x e Hd, u 6 U, let rk : Rd x U — >• R be defined by

r f c (z ,u)= / • • • / rk(x,yi,...,yn)ui(dyi)...uN(dyN) (8.3.61)
VN Vj

Each player wants to maximize his accumulated income. We will now consider two evaluation
criteria: discounted payoff on the infinite horizon, and ergodic payoff.

8.3.1 Discounted payoff on the infinite horizon
Let A > 0 be the discount factor and let u € A = AI x • • • x AN. Let x(.) be the solution of
(8.3.57) corresponding to u. The discounted payoff to player k for initial condition x € Rd

is defined by
00

k -xtRk
x[u](x) = Eu[ e-xtrk(x(t),u(t})dt | z(0) = x}. (8.3.62)

o

For an initial law TT e P(Rd) the payoff is

#*[«](*•)= / ' R*[u](x)ir(dx). (8.3.63)
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An TV-tuple of strategies u* — (uj, . . . ,u*N) e AI x • • • x AN is said to be a discounted
equilibrium (in the sense of Nash) for initial law TT if for any k = 1, . . . , N,

) (8.3.64)

for any Uk € Ak. The existence of a discounted equilibrium will be shown later.

8.3.2 Ergodic payoff
Let u e A and let x(.) be the corresponding process with initial law TT. The ergodic payoff
to player k is given by

T
Ck[u](ir) = limM^Eu[frk(x(t),u(t))dt} (8.3.65)

T-too 1 J
0

The concept of equilibrium for the ergodic criterion is defined similarly. Under a Lyapunov
stability condition (assumption (A3.1) introduced later) all v 6 M will be stable. For such
a v, (8.3.65) is equal to

Pk[v] = J rk(x,v(x))r,[v](dx) (8.3.66)
Rd

where rj[v] 6 P (Rd) is the invariant measure of the process x(.) governed by v. It will be
shown that there exists a v* € M such that for any k — 1 , . . . , N

Pk[v*} >pk[v*k,vk]

for any vk 6 Mk- Thus v* will be an ergodic equilibrium. Now we will explain the concept
of occupation measures.

Occupation measures

Let
Mfc = {v : Rd -> Uk | v measurable}, k = l,2,...,N.

For n > 1, let An be the cube of side 2n in Rd with sides parallel to the axes and center
at zero. Let Bn denote the closed unit ball of L00(A.n) with the topology obtained by
relativizing to it the weak topology of Z/2(An). Then Bn is compact and metrizable, for
example by the metric

771=1

/ femdx - I gemdx

where {em} is an orthonormal basis of L2(An). Let {/»} be a countable dense subset of the
unit ball of C(Vfc). Then {/,} separates points of Uk. For each v G Mk, define gVi : Hd —> R

9vi(x) = I fidv(x),i > 1,
vk

and gVin(.) denote the restriction of gVi(.) to An for each n. Define a pseudometric dk(.,.)
on Mfc by
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Replacing Mk by its quotient with respect to a.e. equivalence, dfc(. , .) becomes a metric.
The following is from [19]

Theorem 8.3.1 Mk is compact under the metric topology of d fe ( . , . ) . Let f 6 L2(Rd),
g 6 Cb (Rd x yfe) and vn — > u in Mk. Then

I f ( x ) I g ( x , .)dvndx -> / /(x) / g(x,.

Conversely, if above holds for all such /, g then vn — » u in Mk.

Endow M with the product topology of Mk. Let v G M and x(.) be the process governed
by v with a fixed initial law. Let L(v) denote the law of x(.).

Theorem 8.3.2 The map v — > L(v) : M — » P (C[Q, oo); Rd) is componentwise continuous,
i.e., .for each k = 1, 2, . . . , N, if v% — > f^° m M^, and Uj G Mj, i ^ k, then L (vk,vk } — »

Now we will introduce occupation measures for both discounted and ergodic payoff
criterion. First consider the discounted case. Let u € A and x(.) be the correspond-
ing process. The discounted occupation measure for initial condition x € Rd denoted by
^AX[W] e P (Rd x y) is defined by

/

oo (8.3.67)
= A~1SU[ / / • • • / e~xtf(x(t),y1,...,yN)u1(t)(dyl)...uN(t)(dyN)dt \ x0 = x]

o w Vi

for / e Cb(Rd x 7) and for an initial law ir & P (Rd), z/A7r[w] is defined by

j fdv^\u} = J *(dx) j fduXx[u] (8.3.68)
Rd R dxV

In terms of fAn-Mi (8.3.63) becomes

RX[U}(TT) = \ J rdvxx[u] (8.3.69)

Let

v^[A] = {vXv[u] \u&A} (8.3.70)

v\n [Mi , A% , . . . , AN] , V\K [Mi , . . . , MN] are defined analogously. Then from [18] we have
the following result.

Lemma 8.3.3 For any k = 1,2, . . . ,N,
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Let v e M. By Krylov's inequality it can be shown that f\-n[v] is absolutely continuous
with respect to the Lebesgue measure on Rd and hence has a density <J3\^[v}. For / 6
wioc (Rd) define

LxJ(x) = ( L v f ) ( x ) - X f ( x ) . (8.3.71)

Then 4>\v[v] is the unique solution in Z/i(Rd) of: for every / e Cfi°(Rd)

f LxJ(x)4>(x)dx = - f f ( x ) n ( d x ) -(8.3.72)
J

I 4>(x)dx =1,4>>0. (8.3.73)

Now from [18] we have following results.

Lemma 8.3.4 v\v [Mi , . . . , MN\ is componentwise convex, i.e., for any fixed k and pre-
scribed Vi & Mi , i 7^ k

,vk} : vk e Mk}

is convex.

Lemma 8.3.5 z/^ff[Mi, . . . , MN] is componentwise compact, i.e., for any fixed k and pre-
scribed Vi 6 Mi, i ^ k,

vXTt[vk,Mk] = {>A7>fc,Wfe] : vk 6 Mk}

is compact.

For the ergodic payoff criterion we will impose the following Lyapunov type stability
condition.

(A3.1) There exists a twice continuously differentiable function w : Rd — > R+ such that

(i) lim w(x) = oo uniformly in \\x\\.
-

(ii) There exist a > 0, EQ > 0 such that for \\x\\ > a,

Lw(x,u) < — eo for all u € V

\\Vw\\2 > (A)"1

where A is the ellipticity constant of ad1 '.

(iii) w(x) and ||Vw|| have polynomial growth.

For v G M, let x(.) be the corresponding process. Also, for ||a:|| > a, let

The following result is a consequence of Assumption (A3.1).

Lemma 8.3.6

(i) All v € M are stable.

(ii) Sw[ra x(0) = x] < w(x)/e0, for
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(iii) / w(x)rj[v](dx) < oo for any v.

(iv) Under any v and x € Rd

lim -Ev[w(x(t))] =0.
t—>oo t

(v) The set I = {r/[v] \ v e M} is componentwise compact in "P (Rd).

For v e M, the ergodic occupation measure, denoted by VE[V] 6 P(Hd x V] is defined
as

N

VE\V] (dx,dyi, . . . , d y N ] = r,[v] JJw4(x) (<%) (8.3.74)
i=l

Let

z/B[M] = {z/B[v] | veM}. (8.3.75)

For u 6 M, let x(.) be the process governed by v. Then

r}[v](dx) = ( p(t,y,x}ri[v\(dy) J dx
\J /

where p(., ., .) is the transition density of x(-) under v. Thus rj[v] itself has a density which
we denote by </>[«](.). Then (/>[v] is the unique solution of: for every / 6 C*Q° (R-6')

Lvf(x)<j>(x)dx = 0 (8.3.76)

4>(x)dx = 1, </> > 0. (8.3.77)

As for the discounted case, we now have following results.

Lemma 8.3.7 ve[M] is componentwise convex and compact.

/

For any fixed k € {1,2, . . . , AT}, let Vi & Mi, i ^ k and Uk & A^. Let x(.) be the
process governed by (vk,Uk\- Define 7> (Rd x Vr)-valued empirical process vt as follows:
For B c Rd, AJ C t/i, i = 1, . . . , N, Borel,

N

) uk(s) (Ak)ds. (8.3.78)

Lemma 8.3.8 The process {vt} is a.s. tight and outside a set of zero probability, each limit
point v of {i/t} as t — > oo belongs to z/e[M].

Existence of an equilibrium

We make the following assumption.
(A3. 2) TO and f are of the form

N



496 CHAPTER 8. STOCHASTIC DIFFERENTIAL GAMES AND APPLICATIONS

N

r(x, ui,..., UN) = ̂  Ti(x, Ui)
i=l

where mr : Rd x Vi — > Kd and r ; : Rd x Vi — > R and they satisfy the same conditions as m
and r.

Let v 6 M. Fix a k 6 {1, 2, . . . , TV} and TT e P (Rd) . Then by Lemma 8.3.3

sup Rk
x[vk,uk](7r) =_sup Rk

x\vk,vk](n}.

Since Mk is compact and fk is continuous, the supremum on the right hand side above can
be replaced by maximum. Then there exists a v%. G Mk such that

sup = max
vk€Mk

(8.3.79)

This optimal discounted response strategy for player fc, u£ can be chosen to be independent
of IT. Define R*[v] : Rd -v R by

Rk[v}(x) = _

Then we can obtain the following result.

Lemma 8.3.9 ̂ H(.) is the unique solution in W?^(Rd) D C6(Rd), 2<p<oo, of

\<f>(x) = sup L^,^ </>(x) + r(x, vfc(x), Vfc) (8.3.80)

in Rd. ^4 strategy v% 6 M^ zs discounted optimal response for player k given v if and only if

+r(x,vk(x),vt(x))
1=1

— sup .dR$[v](x) r(x,vk(x),vk(x))
.1=1

3.3.81)

a.e.

Next result from [18] gives the existence of discounted equilibrium in the set of Markov
strategies.

Theorem 8.3.10 There exists a discounted equilibrium v* = (v^, . . . ,t^) 6 M.

Proof. Let v e M and vk e Uk- Set

Fk(x,v*,vk) = + r (x, (8.3.82)

Let

\ v*k e Mk | Fk (x,vk(x),vl(x)} = sup Fk (x,vk,vk] a.e. 1 . (8.3.
I v ' vkeuk \ ' J

83)

Then Gfc[w] is non-empty, convex, closed and hence compact. Set G[v] = Yl Gk[v\. Then
fc=i

G[v] is non-empty convex and compact subset of M. Thus v —» G[v] defines a point-to-set
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map from M to 2M. This map is upper semicontinuous. Hence by Fan's fixed point theorem
[29], there exists a v* € M such that v* £ G[v*}. This v* is a discounted equilibrium. D
D

Next we will discuss the existence result for the ergodic payoff. Let v S M and fix a
k e {1, 2, . . . , N}. Let v*k e Mfc be such that

= nax

where pk\v\ is denned in (8.3.66). If all but player fc uses strategies vk then, by Lemma
8.3.8, player k cannot obtain a higher payoff than p*k[v\ by going beyond Mfc a.s. This vk is
said to be an ergodic optimal response for player fc given v. Consider the following

(8.3.84)k,»k</>(%) + r (x, vk(x),vk}

where p is a scalar and (f> : Rd —* R. Then we have the following result.

Lemma 8.3.11 The equation (8.3.84) has a unique solution (<j>k[v]i p'klv]) in the class of
functions Wf^(Rd) H O(w(.)), 2 < p < oo, satisfying <)>\v\ = 0. A v £ G Mfc is ergodic
optimal response for player k given v if and only if

d<t>k[v](x)

= sup (x, v~k(x), r (x, vk(x), vk(x))

(8.3.85)

a.e.

Following result from [18] gives the existence result for an ergodic equilibrium.

Theorem 8.3.12 There exists an ergodic equilibrium v* £ M.

Proof. Let v & M and vk e f/fc. Set

Jk x.tA
.i=l

; (x,v~k(x),vk(x)) d<t"°W(x) +r(x,vk(x),vk(x))

Let

Hk(v) = \vk £ Mk\ Jk (x,vk,vk(x}} = sup Jfc (x,vk,Vk) a.e.
L V ^ vk€Uk \ '

N
Set H[v] = 0 Hk(v)- Then //(?;) is a non-empty, convex, compact subset of M. As in

fc=i
the discounted case, an application of Fan's fixed point theorem yields a v* e M such that
v* € H[v*}. This v* is an ergodic equilibrium. D D

In this section we have used a non-anticipative relaxed control framework to show the
existence of an equilibrium for an ./V-person stochastc differential game. Using this approach,
one could also show the existence of value and optimal strategies for a two person strictly
competitive differential game that we have discussed in Section 2. Other payoff criteria could
also be considered. Using the approach described here, one could obtain similar results for
feedback randomized strategies.
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8.4 Weak convergence methods in differential games
In this section, we will present weak convergence and martingale techniques applied to
stochastic differential games. In [32] , the convergence problem for a deterministic game was
considered. An analogous problem for optimal stopping by two players was discussed in [21].
First we will present the weak convergence method for an iV-person stochastic differential
game. Weak convergence methods applied to two person stochastic differential games with
complete observations could be found in [84]. Later the weak convergence method will be
used for the analysis of partially observed stochastic differential games. We will begin this
section by giving some weak convergence preliminaries; for more details we refer to [62].

8.4.1 Weak convergence preliminaries
Let .D^O, oo) denote the space of Rd valued functions which are right continuous and have
left-hand limits endowed with the Skorohod topology. Following [62, 68], we define the
notion of 'p-lim' and an operator Af as follows. Let {9|} denote the minimal cr-algebra over
which {xe (s) , £€ (s) , s < t} is measurable, and let El denote the expectation conditioned on
^. Let M denote the set of real valued functions of (u>,t) that are nonzero only on a
bounded i-interval. Let

/ € M;supE |/(i)| < ooandf (t)is^ measurable
t

Let /(.), /A(.) € Me, for each A > 0. Then / = p-lim/A if and only if

supE
t,A

<

and lim E \ f ( t ) — /A(i)| = 0, for each t. /(.) is said to be in the domain of Ae, i.e.,

/ ( . )€ £>(£), and A e / = 5 i f

If /(.) e D(A*), then

f ( t ) — I Aef(u)du is a martingale,
o

and
t+s

Elf(t + s)- f ( t ) = / Ee
tAff(u)du, w.p.l.

The Ae operator plays the role of an infinitesimal operator for a non-Markov process. In
our case, it becomes a differential operator by the martingale property and the definition of p-
limit. We will use the terms such as "tight," Skorohod imbedding etc. without explanation,
reader can obtain these from [62] . The following result will be used to conclude that various
terms will go to zero in probability.
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Lemma 8.4.1 Let£(.) be a ̂ -mixing process with mixing rate $(.}, andleth(.) beafunction
of ^ which is bounded and measurable on 9£°. Then, there exist Ki, i = 1,2, 3 such that

Ift<u<v, and Eh(s) = 0 for all s, then,

;< r < v
t < T < U

where &r = <r{£(s);r < s < t}.

In order to obtain the weak convergence result, the following condition needs to be
verified:

lim lim sup P sup \xe(t)\ > n = 0
™^°° f^o \t<T /

for each T < oo. Direct verification of this is very tedious. Instead, one can utilize the
method of .^-truncation. This is as follows. For each K > 0, let

SK = {% '• x < K}betheK-l>a\\,

Let xe'K(0) = xe(0),xe'K(t) = xe(t) up until first exit from SK, and

lim lim sup P I sup xe'K (t) > n } = 0 for each T < oo.
n^oo e_^0 yt<T J

xe'K(t) is said to be the /^-truncation of x€(.). Let

( 1 forx 6 SK

K+l0 forx &Rd- S
smooth otherwise.

Define UK(X, a) = a(x,a)qK(x) and^(x,^) = g ( x , £ ) q K ( x ) . Letx€-K(.) denote the solution
of (8.4.94) corresponding to the use of truncated coefficients. Then xe'K(.) is bounded
uniformly in t and e > 0.

For proving the main weak convergence result, Theorem 8.4.5, we will use following
results from [62].

Lemma 8.4.2 Let { y e ( . ) } be tight on Dd[Q, oo). Suppose that for each /(.) 6 CQ, and each
T < oo, there exists fe(.) € D(Ae) such that

))) = 0 (8.4.86)

and

p-lim (>/%) - ^/(j/e(.))) = 0 (8.4.87)

Then ye(.) =*• y ( - ) , the solution of the martingale problem for the operator A.

Lemma 8.4.3 Let the K -truncations {ye'K} be tight for each K, and that the martingale
problem for the diffusion operator A has a unique solution y ( . ) for each initial condition.
Suppose that yK(-) is a K -truncation ofy(.) and it solves the martingale problem for operator
AK. For each K and /(.) e D, let there be /e(.) e D(Ae) such that (8.4.86) and (8.4.87)
hold with y€'K(.) and AK replacing ye and A, respectively. Then y f ( . ) => y(.).
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Now we will outline a general method one can follow to show that a sequence of solutions
to a wide bandwidth noise driven ODE converge weakly to a diffusion, and identify the limit
diffusion [62, 84]. Let ze(.) be defined by

dze = a (ze) dt + -b (z£) £ (t/e2) dt (8.4.88)

where £(.) is a second order stationary right continuous process with left hand limits and
integrable correlation function R(.), and the functions o(.) and b(.) are continuous, b(.) is

__ oo
continuously differentiate and (8.4.88) has a unique solution. Define _R0 = / E£(u)£'(Q)du

— 00

and assume that

E
t

I du [E (£(u)£'(s)/£(i), i>0)-R(u- s)] as t, s —> oo.
»

Define the infinitesimal generator A and function K = ( .K"i, . . .) by

oo

A f ( z ) = fz(z)a(z) + JE [fz(z)b(z)S(t)]'z b
n

= ̂  fzi (z)Kl(z) + l-trace {/ZiZ. (z)} {b(z)R~0b(z)} (8.4.89)
i

where K = (K\,...) are the coefficients of the first derivatives ( / Z J , . . . ) in (8.4.89). The
operator A is the generator of

dz = K(z)dt + b(z]Rl dw (8.4.90)

where w(.) is the standard Wiener process. In order to obtain that ze(.) =£• z ( . ) of (8.4.90),
by the martingale problem solution, it is enough to show that

p. lim(A£/£(.)-4f (*%))) =0. (8-4-91)

Then by Lemma 8.4.2, z(.) satisfies (8.4.90).

8.4.2 Weak convergence in TV-person stochastic differential games
Problem description

As in Section 3, let the diffusion model be given in a non-anticipative relaxed control
frame work. For convenience, we will redescribe some of the concepts from that sec-
tion. However, in this section, the entire differential game problem is discribed in the
pathwise sense, that is, there is no expected value in the payoff functionals. Let Ui,
i = 1, . . . ' , N be compact metric spaces (we can take Ui as compact subsets of Rd), and
Mi — P(Ui), the space of probability measures on Ui with Prohorov topology. Use the

~ / ^ ~\
notation mk = (mi , . . . ,m f c _i ,m f c + 1 , . . . ,mN) and I mk,mk\ =
(mi , . . . ,m f c_i ,m
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Let m = (mi , . . . , rn.iv) 6 M = MI x • • • x MN and U = Ui x • • • x UN, x(.) £ Rd be an
.Rd-valued process given by the following controlled stochastic differential equation

dx(t) = I a(x(t), a)mt(da)dt + g(x(t))dt + a(x(t))dw(t)
i ' (8.4-92)

x(0) = XQ

where we use the notation a(.,.) = (ai(., • ) , . . . , CLN(-, •)) '• Rd x U —> R, a = ( a i , . . . , a/v),
a = [[<7i;,-]], 1 < z, j < d : Rd -* #dxd, and

,/ ' 7 J a,(x,ai,..., aN) mu( «ij • • • m^t
[/ C/N £/i

The pathwise average payoff per unit time for player k is given by

T
Jfc[m] = liminf — / / rk (x(s),a)ms(da)ds (8.4.93)

T^oo 1 J J
0

Let w(.) in (8.4.92) be a Wiener process with respect to a nitration {9t} and let fij ,
i = l , 2 , . . . , J V b e a compact set in some Euclidean space. A measure valued random variable
rrii(.) is an admissible strategy for the ith player if

i ( s , a t i ) r r

is progressively measurable for each bounded continuous /$(.) and m* ([0, t] x Q$) = t, for
t > 0. If TOi(.) is admissible then there is a derivative m,jt(.) (denned for almost all t) that
is non-anticipative with respect to w(.) and

t t
fi (s, en) mi (dsdai) = ds fi (s, a;) mis

for all t with probability one (w.p.l). The results derived in this work are for the Markov
strategies. We will denote by Ai the set of admissible strategies and Mai the set of Markov
strategies for the player i. One can introduce appropriate metric topology under which Mai
is compact [18].

In the relaxed control settings, one chooses at time t a probability measure m<' on the
control set M rather than an element u(t) in U. We call the measure mt the relaxed control
at time t. Any ordinary control can be represented as a relaxed control via the definition
of the derivative mt(da) = 6u(t)(a)da. Hence, if mt is an atomic measure concentrated at
a single point m(t) & M for each t, then the relaxed control will be called ordinary control.
We will denote the ordinary control by um(t) € M.

An TV-tuple of strategies m* = (rrij, . . . ,m*N) £ AI x • • • x AN is said to be ergodic
equilibrium (in the sense of Nash) for initial law TT if for k = 1, . . . , N,

for any mk e Ak. Fix a k e {1, . . . , TV}. Let m*k € Mak be such that

Jk [m] = Jk[mk,m*k] = max J[mfe,mfc].
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If all but player k use strategies mk then player k can not get a higher payoff than J£ [m]
by going beyond Mak a.s. We say that m*k is ergodic optimal response for player k given m.
An JV-tuple of strategies ms = (mf, . . . , m^) is a 5-ergodic equilibrium for initial law TT if
for any k = I , . . . , N,

Jfe[m*](7r) > sup Jk[mk,mk}-6.

The wide band noise system considered in this section is of the following type:

dxe = j a(x^a)ml(da)dt + G(xe,^ (t)) dt + - g (xe , £e) dt (8.4.94)

and pathwise average payoff per unit time for player k is given by
. T

J f e[m £]=liminf^ f f rk ( x e ( s ) , a) m«(da)ds (8.4.95)
T^oo 1 J J

0

An admissible relaxed strategy me
k(.) for the fcth player with system (8.4.94) is a measure

t
valued random variable satisfying that ff f ( s , a)m€(dsda) is progressively measurable with

o
respect to {^}, where Qf| is the minimal cr-algebra generated by {£€ (s) , xe (s) , s < t}. Also
me([0, t] x U) = t for all t > 0. Also, there is a derivative ml, where m|(.B) are 9J
measurable for Borel B. We will use following assumptions, which are very general. For a
detailed description on these types of assumptions, we refer to [62] and [65] .

(A4.1) Oj(., .), G(., - ) , g ( . , ) , g x ( . , •) are continuous and are bounded by O(l + |a;|). Gx(.,£)
is continuous in x for each £ and is bounded. 4(0 ig bounded, right continuous, and
EG(x,£(t)) -> 0,Eg(x,£(t)) -> 0 as t ->• oo, for each x.

Q,

(A4.2) gxx(;£) is continuous for each £, and is bounded.

(A4.3) Let W(x,£) denote either eG(x,£),Gx(x,£),g(x,£) or gx(x,£). Then for compact

e sup 0
xeQ

in the mean square sense, uniformly in t.

(A4.4) Let gi denote the ith component of g. There are continuous c^(.), b(.) = { b i j ( . ) }
such that

Egi(x,t(s))gj(x,t(t))ds -^ (x),
t

as t —> oo, and the convergence is uniform in any bounded x-set.
NOTE: Let 6(0;) = {bij(x)}. For i ^ j, it is not necessary that 6^ = bji. In that case

_ i ^
define b(x) = ~[b(x) + b'(x)} as the symmetric covariance matrix, then use b for the new 6.

Zt ^^

Hence for notational simplicity, we will not distinguish between b(x) and b(x).

(A4.5) For each compact set Q and all i,j,
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(a) sup e2

(b) sup e2

oo oo
dr - Eg(x(x, t(s))g(x,

oo oo
/

square sense as e —* 0, uniformly in t.

Define a(x, a) = a(x, a) + ]j(x) and the operator Am as

•0 ;

0; in the mean

Amf(x) = A*f(x}mx(da),

where

For a fixed control a, Aa will be the operator of the process that is the weak limit of (xe(.)}.

(A4.6) The martingale problem for operator Am has a unique solution for each relaxed
admissible Markov strategy mx(.), and each initial condition. The process is a Feller process.
The solution of (8.4.94) is unique in the weak sense for each e > 0. Also b(x) = o-(x)cr'(x)
for some continuous finite dimensional matrix a(.).

For an admissible relaxed policy for (8.4.94) and (8.4.92), respectively, define the occu-
pation measure valued random variables P™'£(.) and P™(.) by, respectively,

x C) =

xC) = -

where B and C are Borel subsets in Rd and [0, t] x U, respectively.
Let (me(.)} be a given sequence of admissible relaxed controls.

(A4.7) For a fixed 6 > 0,

{xe(t), small (. > 0,t G dense set in [0, oo),me used}

is tight.

NOTE: The assumption (A4.7) implies that the set of measure valued random variables

{P™''f(.), small e > 0,T < oo}.

are tight.

(A4.8) For 8 > 0, there is an TV-tuple of Markov strategies m5 = (m\,..., ms
N) which is a

6-ergodic equilibrium for initial law n for (8.4.92) and (8.4.93), and for which the martingale
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problem has a unique solution for each initial condition. The solution is a Feller process
and there is a unique invariant measure p, (ms).

NOTE: Existence of such an invariant measure is assured if the process is positive re-
current. Also, under the conditions of Theorem 8.4.4 below, the assumption (A4.8) will
follow.

JV
(A4.9) rk(., •) is bounded and continuous. Also, r (x ,mi , . . . ,mjv) = £3 rk (x, mk) and

fe=i
JV

a(x,mi,...,mN) = ^ak(x,mk).
k=l

In Section 3, under the Lyapunov type stability condition and (A4.9), we have shown
the following result.

Theorem 8.4.4 There exists an ergodic equilibrium m* = (m1,...,m*N) € Mai x • • • x
MaN.

Weak Convergence result

The following result gives the main weak convergence and 6—optimality result for the ergodic
payoff criterion.

Theorem 8.4.5 Assume (A4.1)-(A4.9). Let (8.4.94) have a unique solution for each ad-
missible relaxed policy and eache. Then for ms of (A4.8), the following holds:

lim P{ Jk (me) > Jk (ms) - 6} = I (8.4.96)
f,T

for any sequence of admissible relaxed policies me(.).

Proof. The correct procedure of proof is to work with the truncated processes x^K (.) and to
use the piecing together idea of Lemma 8.4.3 to get convergence of the original xe(.) sequence,
unless xe(.) is bounded on each [0, T], uniformly in e. For notational simplicity, we ignore
this technicality. Simply suppose that xe(.) is bounded in the following analysis. Otherwise,
one can work with K—truncation. Let D be a measure determining set of bounded real-
valued continuous functions on Rd having continuous second partial derivatives and compact
support. Let mf (.) be the relaxed Markov policies of (A4.7). Whenever convenient, we write
xe(t) = x. For the test function /(.) € D, define the perturbed test functions (the change
of variable s/e2 —> s will be used through out the proofs)

oo

= J

OO

f { ( x , t } = l- f Elfx(x)g(x^
t

OO

= e J Eif>x(x)g(x,£(
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OO CO

(i,t) = ds dr{El[fl
x(x}g(x,^(T})}'xg(x,^ (a))

t

oo oo

From (A4.1), (A4.2), (A4.3), and (A4.5), //(.) € D (Ae) for i = 0, 1, 2. Define the perturbed
test function

i=0

The reasons for defining ff are to facilitate the averaging of the "noise" terms involving
£e terms. By the definition of the operator Ae and its domain D(A<L], we will obtain that
/ (z£(.)) and the ff (xe(.), .) are all in D (A€), and

Am''cf(x£(t))
(8.4.97)

From this we can obtain,

d*\F€ff (^{-i-\\rt(T€(f\ te(*\\v re(t}[ t J x \ V ' / y ^ v \ / 'S \ ))\x \ /

= -/i(^(i))G(xE(i),rw) (8'4'

t/e*

Note that the first term in (8.4.98) will cancel with the fx-G term of (8.4.97). The p-lim of
e

the last term in (8.4.98) is zero.

oo

(8.4.99)

-6 / dS[£tV;(xE(t))3(z€(0,^))]^eW
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The first term on the right of (8.4.99) will cancel with the J-^- term in (8.4.97). The only
component of the second term on the right of (8.4.99) whose p-lim is not zero is

This term will cancel with the first term of (8.4.100)

- E[fx(x*(t))g (x, ?(S))]'l9 (x,

osj

= - j d 8 { E t [ f x ( x c ( t ) ) g ( x e ( t ) , t ( s » } ' x 9 ( x < ( t ) , ? ( t ) )

)]'x9(x,£e(t)) x=z«(()}E[f'x (xe(t)) g (x,
[f$(x,t)]'xxf

The p-lim of the last term of the right side of (8.4.100) is zero.
€ r 2

Evaluating Am''€^(t) = Am">f \ f ( x e ( i ) } + £ // (
L i=0

cancel yield

^ r , ,A "^ >^ f^- {-t- \ — f I ff*^ ( • f - \ \ \ / n • ("7*^" (*t\ r\i ITI•**• J \ / — Jx\ \ / / / I i \ \ / J *-*•)>'—' /1=1 J

+ / E[fx

3.4.100)

and by deleting terms that

(8.4.101)

As a result, we get

p-lim ( f e ( t ) - f ( x e ( . ) ) ) =

p-lim Am'<ef(xe(f))-Am'"fe(t) = 0.

Hence, by Lemma 8.4.2,

is a zero mean martingale.
Let [i] denote the greatest integer part of t. Write

, W-i
t^:'k=0

(8.4.102)

(8.4.103)
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Using the fact that /(.) is bounded and (8.4.103), and martingale property of M^ (.), we get
\Mf(t)~\2 Mf(t) p

E —-—— —> 0 as t —> oo and e —> 0, which in turn implies that —-—— —> 0 as t —> oo

and e —» 0 in any way at all. From (8.4.103), and the fact that —-—, ———, and ——— all
t- t \j

go to zero in probability implies that as t —» oo and e —» 0,
t

- f Amef(xe(s))ds^0. (8.4.104)
^ Jo

By the definition of P™'''"(.), (8.4.104) can be written as

Aaf(x)P™e'e(dxda) 4 0 as T -> ooande -»• 0. (8.4.105)

For the policy m<5(.), choose a weakly convergent subsequence of set of random variables
, indexed by en,Tn, with limit /!(.). Let this limit P(.) be defined on

some probability space (fi ,P, 9) with generic variable u. Factor P(.) as P(dxda) =
ms

x(da)n(dx). We can suppose that mx(C) are x-measurable for each Borel C and w.
Now (8.4.105) implies that for all /(.) e 5,

A"/(x)m^(da)/x(do;) = 0 for P-almostallw. (8.4.106)

Since /(.) is measure determining, (8.4.106) implies that almost all realizations of ju are
invariant measures for (8.4.92) under the relaxed policies ms. By uniqueness of the invariant
measure, we can take p, (ms,.) — ju(.) does not depend on the chosen subsequence en,Tn.
By the definition of Pj? 'e(.),

7 / / rk(^(s), a)ms(da)ds =
0 0

t

-^ / / rk(x,a)ms
x(da)fl(dx) = Jk(ms).

Since m (.) is a (^-equilibrium policy, by the definition of ^-equilibrium, for almost all
£5 we have Jk (me) > Jk (m5) - 6. Since this is true for all the limits of the tight set
{p™S'e(.);e,TJ, (8.4.96) follows. D D

It is important to note that, as a result of Theorem 8.4.5, if one needs a (^-optimal policy
for the physical system, it is enough to compute the optimal policies for the diffusion model
and use it for the physical system. There is no need to compute optimal policies for each f.

Since relaxed control is a device with primarily a mathematical use, it is desirable to have
a chattering type result for an JV-person games. The following result captures the spirit of
such a result for the ^-optimal strategies, which states that for any near equilibrium, relaxed
strategy, there is an ordinary strategy which gives a 5-optimal value.

Corollary 8.4.6 Let the conditions of Theorem 8.4.5 hold. Then there exists an ordinary
control policy us

m (t) 6 M such that

\jrnP{Jk(me) > Jk(u5
m(t)) - 5} = 1 (8.4.107)

e,T
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Proof. Following the reasoning of Lemma 2 [31, page 153], we conclude that corresponding
to the relaxed control policy m5/2(t) of (A4.8), there exists an ordinary control policy u&

m(t]
such that

Jfc(m4/2) - Jk(us
m(t)) «5/2,a.S. (8.4.108)

Also from equation (8.4.96) (with 6 = 5/2), we have

limP{Jfc(me) > Jk(mS/2) - 6/2} = 1 (8.4.109)
e,T

Equation (8.4.107) now follows from (8.4.108) and (8.4.109), Since

limP{Jfc(me) > Jk(ms/2) - 6/2} = I <s>
e,T

limP{Jfe(me) > Jfe(m5/2) - Jk(ms(t)) + Jk(m6(t}} - 6/2} = 1 <#
e,T

limP{J(me) > -6/2 + Jk(ms(t)) - 6/2}
f,T

= limP{J(me) > Jk(ms(t)) - 6} = 1
e,T

for
-6/2 < Jfc(m*/2) - Jk(u5

m(t}) < 6/2
from (8.4.109). D D

Path-wise discounted payoffs

In place of the ergodic payoff, now consider the pathwise discounted payoffs for the player
k given by

oo

e ) = A
o

f rk(xe(s),a)ms(da)ds (8.4.110)

Now we will state the pathwise result for discounted payoff and suggest the necessary steps
needed in the proof.

Theorem 8.4.7 Let me be a sequence of 6 -optimal discounted payoffs and m& be 8 -equilibrium
policies for (8.4.92). Under the conditions of Theorem 8.4.5, the following limits hold:

Rk'e(ms) 4 Jk(m5)as\ -^Q,e^Q, (8.4.111)

e(me) > Jk(m6) + S} = 1 (8.4.112)

Proof. The proof is essentially same as of Theorem 8.4.5. We will only explain the differ-
ences needed. Define the discounted occupation measures

x C) = \je-xtI{xf(t)eB}mt(C)dt
o
oo

x C) = \ J e-xtI{x(t)eB}rnt(C)dt
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Then (8.4.110) can be written as

Rx'e(me) = Jrk(x(s),a)Pf'e(dxda).

By tightness condition (A4.7), the {P^'€(.}} and {Pm*'%)} are tight. Define

f{(f) = \extr(t).

This will be used in the place of /e(.) denned in Theorem 8.4.5. Then

Define the martingale

o
t

= AeAt/e(t) - Af (0) - I [-AVsf (s) + AeAsAme'e/e(s)] ds.
J
o

As in Theorem 8.4.5,
t

lim A /' e " X a A m f ' e f ( x e ( s ) ) d s = 0.

Thus
lim [ f Aaf(x)P™°'f(dxda) =0

(A,e)—>0 J 7

Now choose weakly convergent subsequences of the {P™ '%)} or {P™ '€(-)l and continue
as in the proof of Theorem 8.4.5 to get (8.4.111) and (8.4.112). D D

Discrete parameter (stochastic) games

The discrete parameter system is given by

N

/ Oi (^, <*) min (da<) + V?5 (^, C) (8.4.113)
^

where {££} satisfies the discrete parameter version of (A2) and min(.), i = 1, . . . , N be the
relaxed control strategies depending only on {X^ £i-i, i < n}. It should be noted that, in the
discrete case, strategies would not be relaxed, one need to interpret this in the asymptotic
sense, i.e., the limiting strategies will be relaxed. Let E^ denote the conditional expectation
with respect to {A"j,^_1(z < n}. Define xe(.) by xe(t) = X^ on [ne, ne + e) and rm(.} by

n^n^) + e(t-e[«/e])m[ t/e](B i),t = 1 , . . . , JV.
n=0

(A4.10)
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(i) For V equals either a(.,.), g or gx, and for Q compact,

L
-Esup y^ Ee

nV(x^l) ->0,

as L, n and LI —> oo, with L > n + LI and L — (n + LI) —> oo.

(ii) There are continuous functions c(i, x) and co(z, x) such that for each x

"I
e+L

C-H) 9 (x, O ̂  co(»,
n=i

as £ and L —> oo.

(iii) For each T < oo and compact Q,

T/e T/eesup E ^
xeC* j=n fe=j

T/e T/e

e sup 0,

in the mean as e —> 0 uniformly in n < T/e. Also, the limits hold when the bracketed
terms are replaced by their x-gradient/\/e.

Define

and

c(x) = c(0, x) + 2 JT c(i, a) = JT c(», a;)

With some minor modifications in the proof of Theorem 8.4.5, we can obtain the following
result (refer to [62] and [87] for convergence proofs in similar situations).

Theorem 8.4.8 Assume (A4.1) to (A4.3), (A4.6) to (A4.10). Then the conclusions of
Theorem 8.4.5 hold for model (8.4.113).

8.4.3 Partially observed stochastic differential games and weak con-
vergence

In practical differential games difficulties are often encountered in obtaining information
about the state of the system due to time lag, high cost of obtaining data, or simply asym-
metry in availability of information due to the nature of the problems in a competitive
environment. Stochastic differential games with imperfect state informations are inherently
very difficult to analyze. In the literature, there are various information structures consid-
ered such as both players will have the same information as in the form as a broadcasting
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channel, [51, 72], or the two players will have available only noise-corrupted output mea-
surements, [90, 91]. There are various other possibilities, such as one player will have full
information where as the other player will have only partial information or only a deter-
ministic information. A fixed duration stochastic two-person nonzero-sum differential game
in which one player has access to closed-loop nonanticipatory state information while the
other player makes no observation is considered in [4]. A comprehensive study on partially
observed stochastic differential games is still far from solved. In this subsection, we will
present a linear system with quadratic cost functional and imperfect state information. So-
lution to the diffusion model is given and a weak convergence method is described. We will
also deal with a form of nonlinearity.

The system under consideration is of the following type, where both players have the
same information such as from a broadcasting channel

dx = [A(t)x + B(t)u - C(t)v]dt + Ddwi(f) (8.4.114)

with observation data

dy = Hxdt + Fdw2(t) (8.4.115)

and payoff

{ T ^

x'(T)Sx(T) + I lu'Ru - v'Qv] dt \ (8.4.116)
J Io J

In here, we are concerned with a partially observed two person zero-sum stochastic differ-
ential games driven by wide band noise. The actual physical system will be more naturally
modeled by

xe = Ax€ + Bu - Cv + D£,{ (8.4.117)

with observations

y€ = Hxe+Q (8.4.118)

where £|, i = 1, 2 are wide band noise processes. Let the payoff be given in linear quadratic
form

{ T ' 1
xe'(T)Sxe(T) + I \u€'Rue - ve'Qve^ dt I (8.4.119)

o J
for some T < oo.

Typically, one decides upon a suitable model (8.4.114), (8.4.115), (8.4.116), obtains a
good or optimal policy pair, and uses this policy to the actual physical system. In this case,
the value of the determined policy for the physical system is not clear, as well as the value
of the output of the filter for making estimates of functional of the physical process xe(.)
which is approximated by x(.). The filter output will rarely be nearly optimal for use in
making such estimates, and the policies based on the filter outputs will rarely be 'nearly'
optimal. Very little attention has been devoted to the case of game problems. Under quite
broad conditions, we will obtain a very reasonable class of alternative filters and policies for
the physical system with respect to which it is nearly optimal.

For a general filtering theory, we refer to [74]. We begin with a discussion of filtering
and game problem for the ideal white noise linear model (8.4.114), (8.4.115), (8.4.116) and
use the Kalman-Bucy filter for this model to obtain an optimal strategy pair for the game
problem. Then we will describe the wide bandwidth analogue and give results on filtering
and near optimal policies. Also we will include the study on the asymptotic in the time and
bandwidth problems. Some extensions to partly nonlinear observations will also be given.
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The diffusion model

Consider the linear quadratic Gaussian (LQG) games. We have

dx = [A(t)x + B(t)u - C(t)v]dt + Ddw^t) (8.4.120)

where A,B,C,D are n x n, n x m, n x s, and n x r matrices whose elements are continuous
in [0,T]. x € Rn is the state vector with initial state XQ, which is normally distributed with
N (x0, M0). Players I and II are endowed with measurements

dy = dyi = dy2 = Hxdt + Fdw2(i) (8.4.121)

where F is of full rank with p x q, q > p matrix. The objective functional is defined with
r

J(u, v) = E{x'(T)Sx(T) + j[u'Ru - v'Qv]dt} (8.4.122)
o

where S > Q,R(t) > 0,Q(t) > 0 are n x n, m x m, and n x s symmetric matrices whose
elements are continuous on [0,T]. Let RQ = FF' be positive definite (denoted by RQ > 0).
Note that the —v'Qv term is due to the fact that v is minimizing.

The policies u and v take values in compact sets U and V, and sets Si and £2 denote the
set of U and V- valued measurable (t,u>) functions on [0, T] x C[0,T], (C[0,T] is the space
of real valued continuous functions on [0, T] with the topology of uniform convergence)
which are continuous w.p.l. relative to the Wiener measure. Let Hit and H2t denote the
subclass which depends only on the function values up to time t. Let H = HI x H2 and
St = Hit x S2t. We view functions in H as_the data dependent policies with values u ( y ( . ) , t )
and v ( y ( . ) , t ) at time t and data y(.). Let H denote the sub class of functions (u, v) £ H such
that ( u ( . , £ ) , v ( . , t ) ) € Et for all t and with the use of policies (u(y, .),v(y, .)), (8.4.120) has a
unique solution in the sense of distributions. These pairs (u(y, .), v(y, .)) are the admissible
strategies. We say that an admissible pair ( u * ( t ) , v * ( t ) ) is a saddle point for the game iff

J ( u ( t ) , v * ( t ) ) < J(u* (<),«*(*)) < J(«* (*),«(*)) (8.4.123)

where u(i) and v(t) any admissible control laws. We call (u* (t) , v* (t)) the optimal strategic
pair. Admissible strategies u and v are called 5- optimal for players / and // respectively if

sup J(u, v)-5< J(u*, v*) < inf J(u, v) + 6. (8.4.124)
u v

Let Gt = v{y(s),s < t}. Let X(T) = E{X(T)/GT;U(T),V(T)}. For (8.4.120), (8.4.121), the
classical Kalman-Bucy filter equations are

dx= (Ax + Bu-Cv)dt + L(t)(dy-Hxdt) (8.4.125)

with x0 = x0 and P(i) = E{(x(t) - x ( t ) ) ( x ( t ) - x ( t ) ) ' } is the error covariance matrix and
is the unique solution to the matrix Riccati equation:

P = FP + PF' - PN(y)P + DD' (8.4. 126)

P0 = MQ, where N(y) = H1 'R$1H, and the Riccati equation

£ = -VA-A'Z + E[BR-1B'-CQ-1C']Z (8.4.127)

with the boundary condition
= S'(T)S(T).

The following result can be obtained from [51] and [72].
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Theorem 8.4.9 The optimal strategy pair for the problem (8.4.120), (8.4.121), (8.4.122)
exists. The optimal pair at time t is

«*(*) =-R-l(t)B'(t}Y.(t)x(t) (8.4.128)
v*(t) = -Q-l(t)C'(t)X(t)x(t) (8.4.129)

Furthermore,

T
JK>*) = y TrS(s) [DD1 + (B(s)R-lB'(s) - C(s)Q-lC'(s})X(s)P(s)} ds ^

where P satisfies (8.4.126).

Finite time filtering and game, wide band noise case

Now consider the wide bandwidth analogue of the previous filtering and game problem. Let
the system be denned by

xe = Axe + Bu - Cv + D? (8.4.131)

with observations y f ( . ) , where

ye = Hxe + £ (8.4.132)

t
where f £f(s)ds = Wf(t), i = 1,2, W{(.) and W2

e(.) are mutually independent. Let
o

Wf(.} => Wi(-), standard Wiener processes. Let the corresponding objective functional
be given by

T

Je(u, v) = E{xe' (T)Sxe(T) + I [u'Ru - v'Qv] dt (8.4.133)

In practice, with physical wide band observation noise and state process are not driven by
the ideal white noise, one uses (8.4.126), (8.4.127) and the natural adjustment of (8.4.125),
that is

±e = (Ax* + Bu- Cv) + L(t) [y€ - Hxe] (8.4.134)

First of all we want to know in what way the triple (8.4.134), (8.4.126), (8.4.127) makes
sense. In general, it is not an optimal filter for the physical observation. Instead of asking
whether it is nearly optimal, we will ask, with respect to what class of alternative estimators
is it nearly optimal when estimating the specific functional of x e ( . ) f Another problem is
that if one obtains a policy (optimal or not) based on the white noise driven limit model,
the policy will be a function of the outputs of the filters. The value of applying this to the
actual wide bandwidth noise system is not clear. If one uses the model (8.4.120), (8.4.121),
(8.4.125) to get a optimal (or nearly optimal) policy pair for the value (8.4.122), and apply
this to the physical system, the question then is with respect to what class of comparison
policies is such a policy nearly optimal? In both the cases, weak convergence theory can
provide some answers. In order to obtain weak convergence of (xe (.) , ye (.)) of (8.4.117) and
(8.4.118), we need to use above method outlined for equations (8.4.88) through (8.4.91).
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In subsequent results, in order to avoid lengthy calculations, we will not give the weak
convergence proofs. The reader can obtain necessary steps from [62] and [84].

Even when W%(-} =>• W-z(.}, a non degenerate Wiener process, y 6 ( . ) might contain a
great deal more information about xe(.) than y ( . ) does about x(.). We give the following
example from [66] for an extreme case when B = 0 and C = 0. Call the corresponding
process ze(.).

Example 8.4.10 Let t\, i > 0 be a strictly increasing sequence of real numbers for each e,
such that t\ -^ oo and sup i|+1 - t\ A 0. Define Af = i|i+i ~~ *li> ana for any t > 0, let

i

E Af A- 0. Define a new observation noise £*(.) fry resetting £y(t) = 0 /or t £ [t|i!*2i+i)j

a^H. TTie integral of the £^(.) sizZZ converges weakly to the Wiener process W%(.). But H z f ( . )
is exactly known for small e.

The following result [66], shows that we never gain information on going to the limit.

Lemma 8.4.11 Let (Zn,Yn) => (Z,Y). Then

- E(Zn/Yn}}2 <E[Z- E(Z/Y)}2

A class of estimators.

By earlier assumptions, we have ( Z c ( . ) , VF|(.)) =^> ( Z ( . ) , W z ( . ) } as e — > 0. By the weak
convergence and independence of ze(.) and £!(•)> u;i(-) ^s independent of w z ( . } . The weak
limit of ye(.) is y(.), the solution of (8.4.121).

Let N denote the class of measurable functions on C[0, CXD) which are continuous w.p.l
relative to Wiener measure. Hence, they are continuous w.r.t. the measure of y(.). Let Ht

denote the sub class which depends only on the function values up to time t. For arbitrary
/(.) 6 N or in K t , f (y€(-)) will denote an alternative estimator of a functional of z f ( . ) . We
consider N and Ht as a class of data processors.

We now obtain a robustness result. Let (m\,q) be the integral of a function q(z) with
respect to the Gaussian distribution with mean J* (t) and the covariance p(f). We will assume
the following:

(A4.ll) |(mt,«)2 ,q2 (ze(t)),F2 (ye(.))| is uniformly integrable.

The following theorem states that, for a small e, the ersatz conditional distribution is
'nearly optimal' with respect to a specific class of alternative estimators.

Theorem 8.4.12 Assume (A4.ll) and that w\(.) =$> w^(-)> a standard Wiener process.
Then

Also,

\imE(q(zf(t))-F(yf(.))}2>limE{q(zf(t)-)-(mlq)}2 (8.4.135)

Proof. The weak convergence is clear from the assumptions. Since F(.) is w.p.l. continu-
ous, we also have

(q (ze(t)) , F(y'(.» , (m|, q)) => (q(z(f)), F(y(.)), (mt, q}} .
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Hence
(mt, q) = J q(z)dN ( z ( t ) , P(t), dz)

and N (z, P, .) is normal distribution with mean £ and covariance P. Hence

limE [q (z*(t)) - F(yt(.))}2 = E ( q ( z ( t ) ) - F ( y ( . ) ) } 2

and
limE[q(ze(t)) - K,g)]2 = E[q(z(t)) - E [ q ( z ( t ) ) / y ( s ) , s < t}]2.

e

Since the conditional expectation is the optimal estimator, (8.4.135) follows. D
Now we will give the 'near optimality1 result for the policies. Let Mi (respectively

M.^) denote the class of U (respectively, V) valued continuous functions u(., .) (respectively,
v ( . , . ) ) such that with the use of policy value ( u ( x ( t ) , t ) , v ( x ( t ) , t ) ) at time £, (8.4.120),
(8.4.125), has a unique (weak sense) solution. In Theorem 4.9, we have shown that there
are optimal strategy pairs (u*,v*) and a value J* for the system (8.4.120), (8.4.125) with
payoff (8.4.122). Hence, we can assume the following.

(A4.12) Let the strategy pair (u*(., .), v*(., .)) be in M. and let this strategy be unique.
Assume (u*,v*) is admissible for xe(.),xe(.) of (8.4.131), (8.4.134) for small e.

Theorem 8.4.13 Assume (A4.ll), (A4.12). Let x£(.) andx*(.) denote the process and its
estimate with (u*(., .),v* ( . , . ) ) used. Then

and the limit satisfies (8.4.120), (8.4.125). Also,

Je(u*,v*) -+ J(u*,v*) = J* (8.4.136)

In addition, let u(., .) andv(., .) be a 5-optimal strategy pair for players I and II, respectively,
with ( x ( . ) , x ( . ) ) of (8.4.120), (8.4.125). Then

and

lim

lim

sup

inf J(u(x<,.),v(yc,.))-J£(-u*,v*)

< 6 (8.4.137)

< 6 (8.4.138)

Proof. Weak convergence is straightforward. By the assumed uniqueness, the limit (x(.), x(.),
u*, v*) satisfies (8.4.120),(8.4.125). Also, by this weak convergence and the fact that T < oo,
by the bounded convergence,

limJe(u*X) = J(u*,v*\.

To show (8.4.137) and (8.4.138), repeat the procedure with admissible strategies
(u (ye,.), v (ye,.)). The limit (x(.),u(y,.) , v(y,.)) might depend on the chosen subsequence.
For any convergent subsequence {en}, we obtain

lim Jf(u(y*,.),v &,.}} = J(u,v).
e=en^0

Now by the definition of 5-optimality (8.4.124), (8.4.137) and (8.4.138) follows. D
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Large time problem

When the filtering system with wide band noise operates over a very long time interval,
there are two limits involved, since both t — > oo and e — > 0. It is then important that the
results do not depend on how t — » oo and e — > 0. We will make the following assumptions.

(A4.13) A is stable, [A, H] is observable and [A,D] is controllable.

(A4.14) &(.) ,z = 1,2 are right continuous second order stationary processes with in-
tegrable covariance function S(.). £f(i) = -& (t/e2). Also, if te — > oo as e — >• 0, then

(A4.15) If ze (te ^(O) (a random variable) as c — > 0, then ,2€ (ie + .) =» z(.) with
initial condition ^(0). Also supE \ze(t)\ < oo.

e,t

(A4.16) For each e> 0, there is a random process C € ( - ) such that {Ce(*)> * < 00} is tight
and for each strategy pair ( u ( . ) , v ( . ) ) 6 M.

{xe(.),xe(.), 2e(. ),?(.), C e ( - ) > £ i ( - ) i £!(•)} is aright continuous homogeneous Markov-Feller
process with left hand limits. We have following result for filtering from [66].

Theorem 8.4.14 Assume (A4.13)-(A4.15) and let q(.) be a bounded continuous function.
Let F(.) e N t. Define ye(s) = 0, for s < 0. Define ye(—oo,t,.) to be the 'reversed' function
with values ye(— oo, t : T) = ye(t — T) for 0 < T < oo. Then, ifte^oo as e — > 0,

{ze(te + .), 2s (tg + .) , Wf (t£ + .) - WT(te)} => («(•)» ^(-), W2(.)) (8.4.139)

where z(.) and.~z(.) are stationary. Also

2 * 2 (8.4.140)

The limit o/(m|,g) is t/ie expectation with respect to the stationary (2"(.),P(0)) system.

Now we will use an ergodic payoff functional of the form

lim E [q (*«(*)) - F (ye(-oo, t; .))]2 > lim S [q (z*(f)} - K, g)]2 .

pe(u,v) = lim sup —E

p(u,v) = li

.0
j
/ k(x(t),z(t),u(t),v(t))dt

.0

(8.4.141)

(8.4.142)

where fc( . , . , . ) is a bounded continuous function.
Ergodic optimal strategies for players / and II are defined similarly to the finite horizon

case. We will assume the following.

(A4.17) There is an optimal strategy pair (u*,v*) £ M for (8.4.114), (8.4.115), and
(8.4.142) with (8.4.114), (8.4.125) has a unique invariant measure //(u>^(.).

The assumptions are not very restrictive. For detailed discussion on these type of as-
sumptions, we refer to [62, 65].

Theorem 8.4.15 Assume (A4.13)-(A4.17). Then the conclusions of Theorem 8.4.13 hold
for the model (8.4.117), (8.4.118) with payoff (8.4.141).
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Proof. For a fixed (u,v) G .A/f, we define
T

where X f ( . ) is the process corresponding to (u (xf(. ),?(-)) ,v ( x 6 ( . ),£*(.))). By (A4.16),
{Pf(.),T > 0} is tight. Also

where X = (x,z,x,~z). Let T£ — > oc be a sequence such that it attains the limit limsup,
T

and for which Pfe(-) converges weakly to a measure Pe(.). Again by (A4.16), P€(.) is an
invariant measure for Xe(.). Also, by construction of Pe(.),

/ (« (z%), <?%)) , v (z%), ̂ (0)) = Hmsup tr(x, z, u(xtz},v(x, z)}P*(dX}.
T J

Now by a weak convergence argument and (A4.17),

pe(u(&(.),y(.)),v(x<(.),y(.)))-*p(x,z)

= r (x,z,u (x, z) , v (x, z)) fj,^u^ (dx dz dxdz)

The rest of the proof is similar (with minor modifications) to that of Theorem 8.4.12 and
hence we omit it. D D

Partly nonlinear observations

The ideas of previous subsections are useful in the case of nonlinear observations. However,
we need the limit system to be linear. Consider the observations with a normalizing term

(8.4.143)

2/e(0) = 0,
h(x) = sign(x).

We assume the following:

(A4.18) £|(£) = -£2 (*/£2)i where £a(-) is a component of a stationary Gauss-Markov
process whose correlation function goes to zero as t — > oo.

Let v% = _E(£|(t))2. Then the average of (8.4.143) over the noise f| is

2

where Se — > 0 as e — * 0, uniformly for x€(i] in any bounded set. The limit observation
system is given by

( 2 X ' idy = — 2 \ Hxdt+2T§dw2. (8.4.144)
\7I"uo/
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For (8.4.120), (8.4.144), the Kalman-Bucy filter equations are

dx = (Ax + Bu- Cv) dt + L(t) \dy - —— ) Hxdt (8.4.145)V v^o/ /

L(t) = P(t)H' (J^ 2 A-

where P(t] satisfies the Riccati equations

P = FP + PF'PH'HP f-M (-^] (8.4.146)Vr 0y \7rugy
and (8.4.127), where

oo
1 f —TO = — I sin~lK(t)dt,
K Jo

with K,(t) being the correlation function of ^(O- Define

2 \ 2
-Bu-Cv)+L(t)

Now we will give the main result of this section.

V ~ (8.4.147)

Theorem 8.4.16 Assume (A4.ll), (A4.12), and (A4.18). Then the conclusions of Theo-
rem 8.4.12 and Theorem 8.4.13 continue to hold.

Remark. All the analysis can be carried out for a 'soft' limiter of the form h(x) = sign(x)
for \x\ > c > 0, h(x) = x/c for \x\ < c.

In here, we obtained filtering and near optimality results for linear stochastic differential
games with wide band noise perturbations. It is clear from Example 8.4.10 that the limits
of {we (ye,.), v (y6,.)} would not necessarily be dependent only on the limit data y—even
when ye{.) ==£• y(.). The case of partly nonlinear observations is also considered. Using the
methods of this subsection, we can extend the results to the conditional Gaussian problem,
in which, the coefficients of x€ and £| in the observation equation (8.4.118) can depend on
the estimate xe and on Pe(.).

8.5 Applications
Stochastic differential game models are increasingly used in various fields. Military ap-
plications of differential games are well known. There is much research in the fields of
mathematical finance and economics.

In [120], stochastic differential game techniques are applied to compare the performance
of a medium-range air-to-air missile for different values of the second ignition time in a
two-pulse rocket motor. The measure of performance is the probability that it will reach a
lock-on-point with a favorable range of guidance and flight parameters, during a fixed time
interval. A similar problem is considered in [121].

In mathematical finance for example, consider two investors (players) who have avail-
able two different, but possibly correlated, investment opportunities. This could be modeled
as stochastic dynamic investment games in continuous time [20]. There is a single payoff
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function which depends on both investors' wealth processes. One player chooses a dynamic
portfolio strategy in order to maximize this expected payoff while his opponent is simul-
taneously choosing a dynamic portfolio strategy so as to minimize the same quality. This
leads to a stochastic differential game with controlled drift and variance. Consider games
with payoffs that depend on the achievement of relative performance goals and/or short-
falls. [20] provides conditions under which a game with a general payoff function has an
achievable value, and gave an explicit representation for the value and resulting equilibrium
portfolio strategies in that case. It is shown that nonperfect correlation is required to rule
out trivial solutions. This result allow a new interpretation of the market price of risk in
a Black-Scholes world. Games with discounting are also discussed as are games of fixed
duration related to utility maximization. In [6], a stochastic model of monetary policy and
inflation in continuous-time has been studied. We refer to [98] for a review of:

(i) the development of the general equilibrium option pricing model by Black and Scholes,
and the subsequent modifications of this model by Merton and others;

(ii) the empirical verification of these models; and

(iii) applications of these models to value other contigent claim assets such as the debt and
equity of a levered firm and dual purpose mutual funds.

Economists are interested in bargaining not only because many transactions are negotiated
but also because, conceptually, bargaining is precisely the opposite of the "perfect compe-
tition" among infinitely many traders, in terms of which economists often think about the
markets. With the advances in game theory, attempts were made to develop theories of
bargaining which would predict particular outcomes in the contract curve. John Nash initi-
ated work on this direction. Nash's approach of analyzing bargaining with complementary
models—abstract models which focus on outcomes, in the spirit of "cooperative" game the-
ory, and more detailed strategic models, in the spirit of 'non-cooperative" game theory—has
influenced much of the game theoretic applications in economics. We refer to [39], [92] and
[93] for more details as well as details on some new approaches based on experimental eco-
nomics. For a study on stochastic differential games in economic modeling, refer to [49]. We
will now describe the idea of Nash equilibrium applied to the study of institutional investor
speculation. The material described in the next subsection mainly comes from [123].

8.5.1 Stochastic equity investment model with institutional investor
speculation

Recent time has witnessed mounting concern and interest in the growing power of insti-
tutional investors (fund houses of various kinds) in financial markets. The shares of cor-
porations have been increasingly concentrated in the hands of institutional investors and
these investors have become the major holders of corporate stock. Since the asset prices are
mainly influenced by trading, a large volume of speculative buying and selling by institu-
tional investors often produce a profound effect on market volatility. The asset prices might
fluctuate for reasons having to do more with speculative activities than with information
about true fundamental values which lead to studying investment behavior in a strategically
interactive framework. Since the financial assets are traded continuously, it is reasonable to
assume that the price dynamics are a continuous time stochastic process.

Let R(s) be the gross revenue/earning of a firm at time s 6 [0, oo) and let m be the
corresponding outlay generating this return. The net return/earnings of the stock of the
firm at time s is then R(s) — m. The value of the firm at any time t with the discount rate
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r can be obtained as
oo

V(t) = f[R(s) - m] exp[-r(s - t)]ds. (8.5.148)
t

The value V(i), normalized with respect to the total number of shares issued, reflects actually
the price of the firm's stock and is denoted by P(t). The future gross revenues are not known
with certainty and vary over time according to the following dynamics:

dR(s) = k\R- R(s)} ds + R(s)Udw(s), (8.5.149)

where w(s) is a Wiener process. The term 15 is a scalar factor governing the magnitude
of the stochastic element. Gross revenue tends to perturb around a central tendency R,
and k is the positive parameter gauging the rate adjustment of gross revenues toward their
central tendency. Hence the net return of the firm center around R — m. Also, R(s) remains
positive if its initial value is positive. To simplify the derivation of a closed form solution,
the proportion of m to R is assumed to be equal to k/(r + k).

An issue concerning institutional investors is that they are capable of initiating large
block transactions. Since asset prices are influenced largely by trading, a large volume of
speculative buying and selling by institutional investors often produces a significant effect on
market volatility. The following model reflects the sensitivity of market price to institutional
investors actions. Let there be n institutional investors in the market. In [123], it is assumed
that n is less that three and the price dynamics is given as

dP(s) = { -a

1/3

- (fc/r) [rP(s) - (R - m)] > ds
(8.5.150)

;
+ P(s)Udw(s),

where Uj is the quantity of stock sold by institutional investor j. Negative Uj represents the
quantity of stock purchased. The parameter a gauges the sensitivity of market price to the
large traders action. The dynamics (8.5,150) show that institutional buying would create
an upward pressure on equity price and that institutional selling would exert a downward
pressure. Denoting the quantity of stock held by institutional investor i at time s by £»(«)
and the discount rate by r, the zth investor seeks to maximize the payoff

Ji(ui,P,R,x,t) =
oo

/ {P(s)ui(s) + [R(s) — m]xi(s)}exp(—rs)ds (8.5.151)
Lo

subject to the stock dynamics

dxi(s) = -Ui(s)ds, (8.5.152)

earning variation (8.5.149) and price dynamics (8.5.150). The term P(S)UJ(S) represents the
revenue/outlay from selling/buying of stocks at time s, and the dividend yield is [R(s) —
m]xi(s). Equation (8.5.152) shows that the quantity of stock held by institutional investor
i varies according to their buying and selling the stock.

Now we consider the equilibrium outcome in the equity market denned by (8.5.149),
(8.5.150), (8.5.151) and (8.5.152). The solution concept adopted is a feedback Nash equilib-
rium (FNE). The institutional investors use feedback buying and selling strategies, which
at each point of time s depend on the observed values of stock price, the firm dividend, and
the quantity of stock held by each institutional investor. Let x = (xi, .. . , xn) be the vector
of stock holdings of institutional investors.
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Definition 8.5.1 A feedback buying and selling strategy of institutional investor i is a de-
cision rule Ui(s) = &(P,R,x,s) such that <J>i is uniformly Lipschitz continuous in P, R,
and x at every instant s in the game horizon. The set of feasible feedback strategies for
institutional investor i is denoted by Ai.

These feedback strategies satisfy the property that investor actions are based on observed
market information at each time instant. The maximized payoff of the iih institutional
investor is denoted by

V^P, R, x, t) = max J; (Ui, P, R, x, t) (8.5.153)
Ui€At

By the principle of optimality, Vl(P, R,x,t) must satisfy the following HJB equations:

VI = max {V£.v,i — [Pui + (R - m)xi exp(—rt)
3

-(k/r)[rP-(R-m)}
-

VPRV2PR]} ,

i = 1,. . . ,n. Equations (8.5.154) characterizes the maximized payoffs and give conditions
from which the optimal feedback strategies of the institutional investors are derived. From
this, the following set of first order equations are obtained:

n \2

XX' , * = 1 > - • • ,"• (8.5.155)=i /
The left hand side term of (8.5.155) is the price (in present value) of a unit of the firm's
stock. The term V^ measures the change in maximized payoff due to marginal change in
the quantity of stock held by the institutional investor i. The term VP is the change in
the investor i maximized payoff brought about by a marginal change in price and can be
interpreted as the marginal value of maintaining price at P. The marginal effect on the

/n
stock price brought about by buying and selling is represented by the term 3a I ]T)

\ i
The right hand side of (8.5.155) reflects the marginal cost (gain) of selling (buying) and the
left hand side shows the marginal cost (gain) of selling (buying). In an optimal situation,
institutional investors would buy or sell up to the point where the marginal gain equals the
marginal cost of trading the stock. Since the marginal effect of one institutional investor
buying and selling on the stock price is related to the actions of other institutional investors,
the optimal strategies are interrelated. The best (optimal) response/reaction functions of
the institutional investor i to the actions of the competitors at time t can be expressed as

n

(8.5.156)

The derivation of institutional investor i's optimal strategy at any time is a decision
making process which takes into consideration three types of factors:

(i) current observed market information (P(t), R(t), x(t),r),

(ii) optimal strategies chosen by competing institutional investors, and
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(iii) marginal value of holding the stock and marginal value of maintaining price at P.

The first type of factor is available at each instant of time. The second factor is derived from
the premise that investors are rational and they choose their actions with full consideration
of their competitor's rational behavior. The third type of factor is the result of intertemporal
optimization.

Substituting HI, i = l , . . . , n obtained in (8.5.156) into the HJB equations (8.5.154),
one gets a set of parabolic partial differential equations. Now the task is to find a set of
twice differentiable functions V1 : R3 x [0, oo) —> R that is governed by this set of partial
differential equations. The smooth functions yield the optimal payoffs of the institutional
investors and solve the game. The optimal payoffs are obtained in [123] as

= { A[P - R/(r + k)}4/3 + [R/(r + k)}x^ exp(-rt),t = 1, . . . , n,

where A is a constant,
2/3

-5-157)

= j [a-1/2(l/2n - 1/6)] -r- [r + (4/3)fc - (2/9)15'

The value function V*(P,R,x,t} yields the equilibrium payoff of institutional investor i.
Following [95] it is assumed that O2 < k. This assumption guarantees that A is positive.
From (8.5.157), one can derive two marginal valuation measures. The institutional investor
i's marginal value of maintaining price at P can be derived as

V£ = (<U/3)[P - R/(r + k)}1/3 exp(-rt). (8.5.158)

The investor marginal value of holding the stock can be obtained as

V*. = [R/(r + k)} exp(-ri). (8.5.159)

The marginal value of stock holding is always positive. It is increasing in the current earnings
and reflects the fact that higher yields raise the value of holding the stock. At the same time,
it is negatively related to the discount rate and exhibits the property that the gains from
investing in the stock decline as the discount rate rises. Also from (8.5.158), the investor
marginal value of maintaining price at P is positive (negative) when P is greater (less) than
R/(r + k).

Now we can derive a feedback Nash equilibrium of the equity market with speculating
investors. Substituting VP in (8.5.158) and V£. in (8.5.159) into the optimal strategies given
in (8.5.156), the feedback Nash equilibrium buying and selling strategies of institutional
investor i is obtained as

^i(P,R,x,t} = (l/n)(l/4Aa)1/2[P-R/(r + k ) ] 1 / 3 , i = l,...,n. (8.5.160)

The set of feedback buying and selling strategies in (8.5.160) constitutes a feedback Nash
equilibrium of the equity market as characterized by (8.5.149), (8.5.150), (8.5.151), and
(8.5.152). These buying and selling strategies are decision rules contigent upon the current
values of the price and earnings.

To examine the impact of the institutional investor speculation on stock price volatility,
substitute the feedback strategies in (8.5.160) into (8.5.150) to obtain the equilibrium price
dynamics

dP(s) = -a(l/4aA)3/2[P(s) - R(s)/(r + k)} g

-(k/r) [rP(s) - rR/(r + k}] } ds + P(s)l5dw(s).
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This along with (8.5.149) characterize the joint behavior of the stock price and earnings
of the firm. In [95], for the equity market with numerous ordinary investor, the change in
stock price of the firm is modeled by

dP(a) = -(fc/r) [rP(s) - (R - m)] ds + P(s)Udw(s). (8.5.162)

A comparison between (8.5.161) and (8.5.162) shows additional movements, symbolized as
the first term in the right-hand side of (8.5.161), in the price dynamics caused by institutional
investors. In [123] an analysis is given to show that the prices tend to rise in spite of the
fact that they have been valued above their intrinsic value and prices tend to drop although
P(s) is below its intrinsic value in the presence of institutional speculation. Hence one
could conclude that the market is more volatile in the presence of institutional speculation.
Following results are proved in [123]:

(i) The greater the discrepancy between P and R/(r + fc), the higher the profit of an
institutional investor, and

(ii) The greater the degree of uncertainty in the market, the higher the speculative profits.

This implies that institutional investors are more attracted to markets with high uncertainty,
such as emerging markets.

8.6 Conclusion
In this presentation, we have attempted to explain stochastic differential games in compet-
itive situations. For the analysis of stochastic differential games, we have presented some
probability techniques such as martingale methods and weak convergence methods, and
some analytical methods such as viscosity solution techniques. We have also mentioned
some applications of stochastic differential games and presented in some detail a stochastic
differential game of institutional investor speculation. We have given a substantial, yet by
no means exhaustive, bibliography. It needs to be noted that even though there have been
some attempts made at obtaining numerical methods for stochastic differential games, it is
still a wide open area that needs the attention of investigators. There are many other solu-
tion concepts in stochastic differential games. We did not make any effort in presenting or
referring to the bibliography on stochastic differential games which are not completely com-
petitive in nature. The area of stochastic differential games with imperfect informations
needs much more work. Recently, there have been some works initiated in risk-sensitive
stochastic differential games, [5, 105]. Another direction of interest is backward equations
and stochastic differential games [44, 45].
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Chapter 9

Stochastic Manufacturing
Systems:
A Hierarchical Control
Approach

Q. ZHANG
Department of Mathematics

University of Georgia
Athens, GA 30602

Most manufacturing systems are large, complex, and subject to uncertainty. Obtaining
exact feedback policies to run these systems is nearly impossible. It is a common practice to
manage such systems in a hierarchical fashion. This chapter surveys a hierarchical control
approach for dealing with large-scale manufacturing systems. Various production models
and system configurations are discussed. Both the discounted and long-run average cost
criteria are considered.

9.1 Introduction

This chapter is concerned with decision making in manufacturing systems under uncertainty.
It focuses on an important method in dealing with the optimization of large, complex systems
- hierarchical control approach. The basic idea is to reduce the overall complex problem
into manageable approximate problems or subproblems, to solve these problems, and to
construct a solution of the original problem from the solutions of these simpler problems.

Manufacturing systems are usually large and complex, characterized by several decision
subsystems. Moreover, these systems are subject to various discrete events, such as pur-
chasing new equipment and machine failures and repairs. Management must recognize and
react to these events. Because of the large size of these systems and the presence of these
events, obtaining exact optimal feedback policies to run these systems is nearly impossible
both theoretically and computationally.

1keywords: manufacturing system, hierarchical control, Markov chains
290B30, 93A13, 93E20'
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The recognition of the difficulty in solving production planning problems in stochas-
tic manufacturing systems has resulted in various attempts to obtain suboptimal or near-
optimal controls. Even the research dealing with approximate solutions of the problem have
without exception addressed small-sized problems. In practice, therefore, these systems are
managed in a hierarchical fashion. There has been a growing interest in showing that hier-
archical decision making in the context of a goal-seeking manufacturing systems leads to a
near optimization of its objective.

There are several different, and not mutually exclusive, ways in which the reduction of
the complexity is accomplished. These include decomposing the problem into problems of
the smaller subsystems with a proper coordinating mechanism, aggregating products and
subsequently disaggregating them, and replacing random processes with their averages.

It is the last method to which our approach based on singular perturbations or time
scale separation is related. In this approach, different types of events taking place in the
system have different frequencies of their occurrence, which define the hierarchical levels.
For obtaining the decisions at each level, as suggested by Gershwin [18], quantities that vary
slowly (variables that correspond to higher levels) are treated as static. Quantities that vary
much faster (variables at lower levels) are modeled in a way that ignores the variations, thus,
replacing fast moving variables by their averages. For example, changes in demand may
occur far more slowly than breakdowns and repairs of production machines as formulated in
Sethi, Taksar, and Zhang [30]. This suggests that capital expansion decisions that respond
to demand are relatively longer term decisions than decisions regarding production. It is
then possible to base capital expansion decisions on the average existing production capacity,
and expect these decisions to be nearly optimal even though the rapid changes in machine
states are ignored. Having the longer term decisions in hand, one can then solve the simpler
problem of obtaining production rates. More specifically, it is shown in [30] that the two-level
decisions constructed in this manner are asymptotically optimal as the rate of fluctuation
in the production capacity becomes large in comparison with the rates with which other
events occur.

In this chapter, we begin with a manufacturing system which consists of machines that
are subject to breakdown and repair. More complex systems including multilevel systems
are discussed subsequently. The objective of the system is to obtain the rate of production
over time in order to meet the demands at the minimum expected discounted (or long-run
average) costs of production and inventory/shortages over the infinite horizon. We assume
that the rates of machine breakdown and repair are much larger than the rate of fluctuation
in demand and the rate of discounting [27]. The idea of hierarchical control is to derive a
limiting control problem which is simpler to solve than the given problem. This limiting
problem is obtained by replacing the stochastic machine availability process by the average
total capacity of machines and by appropriately modifying the objective function. From
its optimal control, one constructs an asymptotically optimal control of the original, more
complex, problem. The idea of hierarchical approach is closely related to that of singular
perturbations. For literature on singular perturbations, we refer the reader to the papers
Kokotovic [26], Phillips and Kokotovic [28]. For more recent references, see Zhang and Yin
[49]. This chapter focuses on hierarchical production planning in manufacturing systems.
The research in manufacturing has been an active area in the recent years. The developments
can be found in, for example, Caramanis and Liberopoulos [9], Caramanis and Sharifnia [10],
Fleming, Sethi, and Soner [14], Gershwin [18], Haurie and van Delft [20], Hu and Caramanis
[23], Jiang and Sethi [24], Kimemia and Gershwin [25], and Sharifnia [39], among others.

This chapter consists of three parts: The first part is concerned with hierarchical control
with discounted costs and the second part considers the problem with long-run average
costs. The third part presents analytical solutions to three relatively simple but illustrative
control problems. Such solutions are useful for constructing hierarchical control discussed
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in the first two parts.

PART I: CONTROL WITH DISCOUNTED COSTS

This part is divided into several sections. We start from a single machine - single part
production system, and then move to other systems with different configurations.

9.2 Single Machine System
We begin with a simple example of production system with a single machine that produces
a single part type. Let x(i) e Rl denote the surplus (state), u(t) € Rl the production rate
(control), and z G Rl is the constant demand rate. They satisfy

x(t} = u(t) - z, x(0) = x. (9.2.1)

We consider the case when the underlying machine is subject to breakdown and repair. If
the machine is operational (denoted by 1), then one can produce at the maximum unit
rate; if the machine is under repair (denoted by 0), then nothing can be produced. Let
a(t) 6 M = {0,1} denote such machine capacity process. Then the production rate u(t)
must satisfy

0 < u(t) < a(t).

Assume a(t) to be a two-state Markov chain generated by

Q =
A -A

Here A > 0 is the breakdown rate and p > 0 is the repair rate.
Given x(0) = x and a(0) = a, we consider the cost function J(x, a) defined by

J(x,a,u(-)) r= E
Jo

6(/i(a;(i))+c(w(i)))cft, (9.2.2)

where p > 0 is the discount rate and h(-) is the cost of surplus and c(-) is the cost of
production. The problem is to find a control «(•) that minimizes J(x, a, «(•)).

Let us consider a special case with 0 < z < 1, c(u) — 0, and h(x) = h+x+ + h-X~, where
x+ = max{x, 0} and x~ = max{-o;,0}. We aim at obtaining a closed-form solution.

The corresponding Hamilton-Jacobi-Bellman (HJB) equations for this problem are as
follows:

pv(x, 0) = -zvx(x, 0) + h(x) + n(v(x, 1) - v(x, 0))

pv(x, 1) = min (u - z)vx(x, 1) + h(x) + X(v(x, 0) - v(x, 1)).
0<u<l

(9.2.3)

In. order to solve these equations, we need to introduce the following matrices. Let

/ P + M
2

A
V l-z

M \
z

p + \
_L — ̂  '

/ P + A*
z

X
V I

M \
z

P+X

z •/
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and

/ I \
z

\

Let a+ > 0 and a_ < 0 denote the two eigenvalues of the matrix A\. Akella and Kumar
[2] define

x* — max I 0, —
h

Then they prove that the value functions are given as follows:

xastgQ

\-n

+A^lblh-x + A if x < 0

- V&s/i+A-1] (9.2-4)

— A^2bih+ if 0 < x < x*

-A^bzh+x - A22b2h+ if x > x*.

It can be shown that x* minimizes v(x, 1) over x 6 R. The optimal feedback control
u*(x,a) can be written as follows:

0 if a = 1, x > x* or a = 0,

z if a = 1, x — x*,
1 if a = 1, x < x*.

(9.2.5)

This kind of policy is referred to as hedging point policy. When the machine is up, produce
at maximum rate if the surplus x is below the threshold level x*, produce nothing if x is
above x*, and produce exactly as demand rate if x = x*.

For a given system with more than two machine states, i.e., a(t) G M. = {0,1,... , m}
with m > 1. In this case, the problem is more involved. As a result, a closed-form so-
lution will be difficult to obtain. In order to deal with the problem, one has to resort to
approximation schemes. One important method is that of hierarchical control approach.
It is typical for failure-prone systems that the demand rate usually fluctuates much slower
than the rate of machine breakdown and repair. Therefore, it is reasonable to consider the
capacity process a£(t) as a function of e which characterizes the relative rate of its fluctua-
tion. As e gets smaller and smaller, the process ae(-) jumps more and more rapidly in M..
We can formulate ae (•) as a Markov chain with generator Qe = Q/e where Q = (qij) is an
(m + 1) x (m + 1) matrix such that q^ > 0 for i ^ j and qa = — Z^i Qij, i,j £ M. We
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assume Q to be irreducible and let v denote the corresponding stationary distribution, i.e.,
i/ — (j/0! . . . ; i/m) is the only positive solution to

m

vQ = 0 and V^ Vj = 1.
j=0

In system (9.2.1), the production rate u(t) > 0 must satisfy p • u(t) < of(t) for some
vector p > 0, where a • b denotes the usual inner product of two vectors.

We consider a control u(-) = {u(t) : t > 0} to be admissible if u(t) > 0 is an J~t =
a{ae(s),s < t} adapted measurable process and p • u(t) < a£(t) for t > 0. We use A£ to
denote the set of all admissible controls.

We consider the cost function J£(x, a, u(-)) denned in (9.2.2). The problem is to find an
admissible control u(-) that minimizes J£(x, a,u(-)).

We consider h(x) and c(u) to be convex functions. For all x, x', there exist positive
constants C and kg such that

Q<h(x) <C(l + \x\k°) and \h(x) - h(x')\ <C(l + \x\k° + \x'\k°}\x - x'\.

Our control problem can be written as follows:

Pe :

f°°minimize J£(x, a, «(•)) = .E / e p [ h ( x ( t ) ) + c(u(t)}]dt,
Jo

subject to x(t) = u(t) - z, ar(0) = x, u(-) e As, (9.2.6)

value function v£(x,a)= inf J£(x,a,u(-)).

The value function ve(x, a) is convex in x for each a. The value function v£ satisfies (in
the sense of viscosity solutions; see Sethi and Zhang [35]) the HJB equations

DP5pv£(x,a) = min [(u - z) • vs
x(x,a) + h(x) + c(u)} + Qsv£(x, -)(a), (9.2.7)

for a £ M, where Q £ f ( - ) ( i ) — Sj^i9ij(/(j) - /OO) for a function / on M. Clearly,
these HJB equations are not easy to solve, especially when m is large. We now try to find
approximation solutions instead. As in Sethi et al. [37], we consider a control problem in
which the stochastic machine capacity process is averaged out. Let A° denote the control
space

4° — J TT(t\ — tn°(t\ ii^it\ ... iim(-t-}} • ii'i(t\ > n n i^f^ <v î. — s ty \oj — ^t* \^)"> ^ \ ^ / ) ? •* \ / / * \ / — "it' ** I'1/ _

We define the control problem P° as follows:

/•oo / y^
minimize J°(x, [/(•)) = E1 / e~pt ( h(x(t)) + Y^ Vic(u\i

Jo \ i=0
m

subject to x ( t ) = V^wXi) - z, x(0) = x, £/(•) e ^1°, (9-2-8)
i=0

value function v(x] = inf J°(x, [/(•))•
t/(-)€.4° V V ;/

Sethi and Zhang [35] construct a solution of Pe from a solution of P° and show it to be
asymptotically optimal as stated below.
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Theorem 9.2.1 ([35]) (i) There exists a constant C such that

ve(x,a)-v(x)\<C(I+ zfc ')\/I

(ii) Let {/(•) SE A° denote an optimal (or s-optimal) control for P° . Then

i=0

is asymptotically optimal, i.e.,

\Je(x,a,uE(-})-v£(x,a)\ < C(l + \x\k«}^. (9.2.9)

(iii) Assume in addition that c(u) is twice differentiate with

d2c(u)

h is differentiate, and constants C and kh > 0 exist such that

\h(x + y) - h(x) - hx(x) • y\ < C(l + x\k»)\y\2.

Then, there exists a locally Lipschitz optimal feedback control U*(x) for 7-*°. Let

m

U*(z,a)=^l{a=i}«"(z). (9.2.10)
i=0

Then, ue(t) = u*(x(t),ae(t)) is an asymptotically optimal feedback control for Pe .

Remark. Gershwin [18] constructs a solution for Pe by solving a secondary optimization
problem and conjectures his solution to be asymptotically optimal. Sethi and Zhang [35]
prove the conjecture. It should be noted, however, that the conjecture cannot be extended
to include the simple two-machine example in [18] with one flexible and another inflexible
machine. The presence of the inflexible machine requires aggregation of some products at
the level of P° and subsequent disaggregation in the construction of a solution for P£.

Remark. One may also consider the generator of of(-) with more general structure such
as

where Q can be written as a canonical form including recurrent as well as transient states. In
addition, the generator Qe can also be time-dependent. For related results on the structure
of the underlying Markov chain and application to manufacturing systems, we refer to the
book Yin and Zhang [49] for details.

9.3 Flowshops
In this section, we consider a production system with machines in tandem. To illustrate
without undue technical difficulties, we only consider a two-machine flowshop depicted in
Fig. 1:
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Fig. 1. A manufacturing system with 2-machines in tandem

As in Section 2, assume each machine is subject to breakdown and repair. Again, we
use 1 to represent the state of machine when it is up and 0 when it is down. Let M. =
{a1, a2, a3, a4} denote the state space of the capacity process G.£(-), where a? = (a{,a2)
and a1 = (0,0), a2 = (0,1), a3 = (1,0), a4 = (1,1). Let a£(t) = (af (t),a|(i)) be a
Markov chain generated by an irreducible generator Q£ = Q/e. The number of parts in the
buffer between the first and the second machine is termed work-in-process and denoted as
x\(t) > 0 and the difference of the real and planned cumulative productions is called surplus
at the second machine represented as x2(t). Let S = [0, oo) x Rl denote the state constraint
domain and let z denote the constant demand rate. Then, the system equations are given
by

= ui(t)-u2(t), x i (0 )=z i ,

— u2(t) — z, ^2(0) = x2.

A control u(t) = (ui(t),u2(t)) is admissible with respect to x = (#1,0:2) & S if: (i) u(-)
is adapted to a{as(s) :0<s<t}, (ii) 0 < Ui(t) < a;(i), (iii) x(t) e S for all t > 0. We
use Ae(x) to denote the class of admissible controls. Then, our control problem P2 can be
written as follows:

minimize

subject to

r= E
Jo

,-pt\ c(u(t))]dt,

xi(t) = ui(t) - u2(t), x i (0 )=x i ,

± 2 ( t ) = u2(t) - z, x2(0)=x2, (9.3.11)

value function ve(x,a}= inf Je(x.a. u

For x e 5, let A° denote the set of the following deterministic measurable controls

such that 0 < u{(t) < a? for alH > 0, i = 1, 2 and j = 1 , . . . , 4.
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We define the limiting problem

fc
minimize J(x, [/(•)) = /

Jo

P° : < subject to

U(-) e A°
value function v(x) = inf J(x, U ( - ) ) ,

X2(0) =X2 ,

where v = (z/j, • • • , 1/4) > 0 is the stationary distribution of Q£.
It can be shown in [33] that, for a given 6 > 0, there exist positive constants (7 and £0,

such that for all 0 < £ < e0 and x € S, we have

\v€(r a} — v(r\\ — O ( f ^ ~ g } (9 3 12"!| U \**'; - / \ / I — "̂̂  \ / * l « 7 - i > . J - ^ i /

Next, for a given x € 5, we describe the flow of constructing an asymptotic optimal
control it£(-) € A£(x) of the original problem PE beginning with any near-optimal control
C/X-) e .4° of the limiting problem P°.

Let us fix an initial state x G 5. Let Uu(-} — ( u 1 ( - ) , - - - ,i24(-)) £ .4°, where •u:;(^) =
(•u{(t), ̂ (i)) is an £5~ -optimal control for 750, i.e.,

Let

TV j- - -* -* > l-s\'Jo f ^ a i Ul s +U2S ds~£2 y
Using t*, we define another control process Uu(t) = (ul(
! , - • • ,4 ,

' ("i,o)

as follows: For j =

if t < t*,
(9.3.13)

It is easy to check that U(-) e >t°. Let

4

and let = (2/1 (0) 2/2(*)) be the corresponding trajectory defined as

/*
Jo.

f- x% + I (ui2(s) — z)ds.
Jo

(9-3'14)
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Note that E\y(t) - x(t)\2 < C(l + t2)e. However, y(t) may not be in S for some t > 0. To
obtain an admissible control for P£, we need to modify w(t) so that the state trajectory
stays in S. This is done as follows. Let

us(t) = := w(t)l{viW>0}. (9.3.15)

Then, for the control u e ( - } 6 As(x) constructed using (9.3.13)-(9.3.15) above, it is shown in
Sethi et al. [36] that

For optimal control and hierarchical control of general flowshops, we refer to the papers
Presman et al. [29] and Sethi et al. [36]; see also Sethi and Zhang [33] for complete treatment
of the subject.

9.4 Jobshops
In this section, let us discuss briefly general production systems. For more details, see Sethi
and Zhang [33].

Sethi and Zhou [38] consider hierarchical production planning in a general manufacturing
system consisting of a network of machines which generalizes both the parallel and the
tandem machine models; see also Bai and Gershwin [4]. As in the flowshop models, the
optimal control problem for the system is a state-constrained problem, since the number of
parts in any buffer between any two machines must remain non-negative.

Sethi and Zhou [38] establish a graph-theoretical framework that appropriately describes
and uniquely determines the system dynamics along with the state and control constraints.
Within their framework, one can model a large class of manufacturing systems of interest.
The concept of a "dynamic job shop" is introduced by interpreting a system with a network
of machines as a directed graph along with a "placement of machines" that reflects system
dynamics and the control constraints. To illustrate, let us consider the system given in Fig.
2.

ui „

«2

MI —K:3Xi U4 '

u$,

M3

M4

| > v l

Fig. 2. A Typical manufacturing system

Here, we have four machines MI, • • • , M^, two distinct products, and five buffers. Each
machine Mi, i = 1,2,3,4, has capacity cti(t) at time t, and each product j = 1,2 has
demand Zj. As indicated in the figure, Xi, i = 1,2, • • • , 5, known as the state variables are
associated with the buffers. More specifically, Xi denotes the inventory/backlog of part type
i, i = 1,2, • • • ,5. Control variables Ui, i = 1 , 2 - • • ,6, represent production rates. More
specifically, u\ and u2 are the rates at which raw parts coming from outside are converted
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to part types 1 and 5, respectively, and u3,u4, u5 and ue are the rates of conversion from
part types 3,1,1, and 2 to part types 4,2,4 and 3, respectively. The corresponding system
dynamics is given by

xi(t] = ui(t) - u4(t) - u5(t),

x2(t) = u4(t) -u6(t),

X3(t) = u6(t)-u3(t), (9.4.17)

X4(t) = U3(t) + U5(t) - Zi,

X5(t) = U2(t) - Z2.

and the process u(t) = (ui(t), • • • , ue(t)) must satisfy the capacity constraints

<al(t),u2(t)+u5(t) <a4(t),u3(t)+u4(t) <a3(t),u6(t) <a2(t). (9.4.18)

Moreover, part types 1,2 and 3 are intermediate items to be further processed in the
system. For i = 1, 2, 3, buffer i is between some two machines and is known as an internal
buffer. Since internal buffers provide inputs to machines, a fundamental physical fact about
them is that they must not have shortages. In other words, we must have

Xi(t) >0, i = 1,2,3. (9.4.19)

The remaining buffers 4 and 5 are called external buffers, since it is from these buffers
that we must meet the demands for final products facing the system. Since we permit
backlogging of demand, the inventories in the external buffers are allowed to be negative.
Indeed, X4 (t) and x$(i) are called surpluses with positive values meaning inventories and
negative values meaning backlogs.

State constraint domain, admissible controls, the limiting problem, and the associated
value functions can be defined similarly as in the last section. Sethi and Zhou [38] verify
the Lipschitz continuity of the value functions and show that (9.3.12) holds. They con-
struct controls for the original problem from an optimal control of the limiting problem
in a way similar to (9.3.13)-(9.3.15). Finally, they show that the constructed controls are
asymptotically optimal as in (9.3.16).

9.5 Production— Capacity Expansion Models
In practice, if a manufacturing firm faces higher demand for its product, it is natural for
the firm to increase its production to meet the demand, moreover, if necessary, to increase
investment in order to increase its production capacity. In this section, we consider the case
when some additional production capacity can be purchased at a future time 0 < T < oo,
at a cost of K.

We use the single machine model studied in Section 2. The control variable is a pair
(T, u ( - ) ) of a Markov time T > 0 and a production process u(-) over time. Consider the cost
function

Je(x, a, r, «(•)) = E ( ̂  e-ptG(x(t),u(t))dt + Ke'pr\ , (9.5.20)

where ae(0) = a is the initial capacity and p > 0 is the discount rate, and G(x^ u) = h(x) +
c(u). The problem is to find an admissible control (T, ii(-)) that minimizes Je(x, a,r, u ( - ) ) .
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Define a\(t} and af(t) as two Markov chains with state spaces MI = {0,1,... , mi} and
M2 = {0,1,... ,mi + m2}, respectively. Here, af (t) > 0 denotes the existing production
capacity process and af (t) > 0 denotes the capacity process of the system if it were to be
supplemented by the additional new capacity at time t = 0.

Let .Fi(i) = a{a£(s) : s < t} and F2(t) = a{a2(t) : s <t}. Define further a new process
a£(t) as follows: For each JFi (t)-Markov time T > 0,

if t < r i £ / \ _ £ (r\\ •— ^ f \ i /o P\ 01 \
if t > r

Here m2 denotes the maximum additional capacity resulting from investment in the new
capacity.

We assume the following conditions: af (t) e Mi and a2(t) e M2 are Markov processes
with generators e-1Qi and £~1Q2, respectively. Moreover, Qi and Q2 are both irreducible.

We say that a control (T, u(-)) is admissible if (1) T is an f\ (i)-Markov time; (2) u(£) is
J-(t] = a { o f ( t ) : s < t} adapted and p • u(t] < of(t) for t > 0. We use A£ to denote the set
of all admissible controls (T, «(•)). Then the problem is:

min J£(x,a,T,u(-)),

subject to x(t) = u(t) — z, x(0) = x.

Let v£(x, a) denote the value function of the problem. We define an auxiliary value function
Va(x,a') to be K plus the optimal cost with the capacity process a|(i) with the initial
capacity a' e M2 and no future capital expansion possibilities. Then the HJB equations
are as follows:

mini min [(u — z) • ( v £ ) x ( x , a) + G(x,u)] + e~1Qiv£(x, -)(a)
u>o,P-<a (9.5.22)

—pv£(x, a), Va(x, a + m2) — v£(x, a) j- = 0, a e MI,

min [(u-z)-(vs
a)x(x,a)+G(x,u)}

u>o,P-<a (9.5.23)

Let j/(1) = (4 ,i4 , . . . ,^mi) and !/(2) = (i/52),^2),... ,^!+m2) denote the corre-
sponding stationary distributions of Q\ and Q2, respectively.

We now proceed to develop a limiting problem. We first define the control sets for the
limiting problem. Let

U-2 = {(u°,... ,wmi+m2) : u1 >0 ,p - i / <i}.

Then

U-L c ̂ "x^i+i) and U2 C JR»x(™i+m2+1).

We use A° to denote the set of the following (admissible controls for the limiting
problem): (1) a deterministic time CT; (2) a deterministic Uu(t) such that for t < a,

(u°(t) , . . . ,umi(t)) e Wi and for t > CT, Uu(t] = (u°(t),... ,umi+m2(t)) 6 U2-
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Let

/

cr mi

/

co mi+m
p~Pt \ ~*

i=0

and let

u(t) = i=0

i=0

i f * > e r .

We can now define the following limiting optimal control problem:

min J(x,cr,Uu(-)}
(<7,Uu(-))€A° V V

subject to x(i) = u(t) - z, x(Q) = x.
(9.5.24)

Let ( v ( x ) , v a ( x ) ) denote the value functions for P°. Let (CT, [/(•)) e ^4° denote any
admissible control for the limiting problem P°, where

U(t) = ift«7,

We take

i=0
m1+m2

Z
j=0

Then the control (a, w£(-)) is admissible for
Let

S = {x: va(x) = v(x)}. (9.5.25)

Then S defines a switching set for P°. Let u*(x) denote the minimizer of the HJB equation
and let x ( t ) denote the state trajectory that satisfies

x(t) = u*(t,x(t)) - z, x(0) = x.

Then the optimal purchasing time a in P° is given as follows:

a = inf{t : x(t) € S}.

It can be shown that (a, u*(t, x ) ) is optimal for P°.
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Theorem 9.5.1 ([30]) (i) There exists a constant C such that

\v£(x,a)-v(x)\ + v£
a(x,a)-va(x)\ <

(ii) Let (CT, £/(•)) 6 A° be an s-optimal control for the limiting problem P° and let (CT, u£(-)) e
A£ be the control constructed above. Then, ( a , u e ( - ) ) is asymptotically optimal with error
bound \/e, i.e.,

\Js(x,a,a,u£(-))-v£(x,a)\ <C(l + x\k*}^.

Example. Let us consider a production system having an existing (failure-prone) machine.
When operational, it has a unit production capacity; when broken down, it has zero capacity,
i.e, mi = 1. We assume that the demand for the firm's product is higher than the average
production capacity of the existing machine. However, the firm has some initial inventory
of its product to absorb the excess demand for a few initial periods. The firm may have
to increase its production capacity at some future time r > 0. Therefore, the firm has an
option to purchase a new machine, identical to the existing machine, at a given fixed cost
of K in order to double its average production capacity.

The problem is to find the optimal time of purchase as well as the optimal production
simultaneously, which is given as follows:

r f°° i
min J£(x,a,T,u(-))=E\ e-pi\x(t)\dt + Ke~pT ,

(T,u(-))6.A'(a) [J0 J ' (9.5.26)

subject to x(t) = u(t) — z, x(0) = x.

We take 0 < z < 1, MI = {0,1}, and M.% = {0,1,2} and assume also that

Qi =
1 1 \— .L 1 \

and V2 =1 -1/
-1 1 0 '

1 - 2 1

\
In this example, the stationary distributions are

if t < CT,

if t > CT,

and the average capacities are <5i = 1/2 and «2 = 1.
The limiting problem P° is the following:

/•

J°(x, CT, «(•))= /
Jo

subject to x(t) = u(t) - z, x(Q) = x.

min
o

The value functions v(x) and va(x) can be shown to be the unique viscosity solutions to
the following HJB equations:

min < min ((u - z)vx(x) + \x\ - p v ( x ) ] , v a ( x } - v(x) \ = 0,

min [(u - z ) ( v a ) x ( x ) + x\] - p(va(x) - K] = 0.
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We solve the HJB equations by considering the following five possible cases.

Case (i): 0 < p2K < a2 — oti and cti < z.
Define x* and x as follows:

a2 — z
p

Z — Oil

log
-ai-P

2K\
P - ] < 0 ,a2 -

P ) \ \ Oi2 ~ Oil

The value functions va(x) and v(x) can be written in terms of x* and x as follows:

« L-px/, + ̂  _ J
p2 L z J

v (x) = <

(x-x)/z

- 2;

if x > 0,

-l\+K. if x < 0,

x-zt\dt + e-p(x-x)/z I
Jo

(x-x")/(z-oti)

_

(x-x*)/(z-ai)

x + («i — z)t\dt

if x > x,

if x* < x < x,

(d2 -

Case (ii): 0 < p2K < a2 — cti and QI = z.
Let

- z
K ii

log

Then,

v(x) =
-f

if x > 0,

if x* < x < 0,

a2 - z
and va(x) is as in Case (i).

Case (iii): 0 < p2K < a? — di and ai > z.
Let x*(< 0) denote the only value such that

- d2 -

Then,

zp'2 e-px/z + px/z - l

(di - z)p ~2

~^ = Kp2 - (d2 - di).

if x > 0,

- z) - l] if x* < x < 0,

(d2 - z)p-2 \ef>x/(-&2-z)-px/(a2-z)- l] + K if x < x*,
L J
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and va(x) is as in Case (i).

Case (iv): K = 0.
In this case v(x) = va(x) for all x, where va(x) is as in Case (i) with K = 0. This means

that the optimal purchase time a = 0.

Case (v): p2K > a.% — cJi. In this case, the optimal a = oo.
The value function

v(x) =
L — x)/z /•oo

,(*-*)/*/ e-p* x-(z-ai)t\dt
Jo

if x > x,

I e~pt\x-(z-ai)t\dt ifx<x,
( Jo

where

log 2

if «i > z

(z — 0.1) > 0 if ai < z.

Again, va(x) is as in Case (i).
We have now obtained the value function in each of the five cases.
In this example, the switching set is given as follows:

S =
(-00,00) \ f K = Q
(-00,0;*] if 0 < p2K < (a2 -

0 ifp2K>(a2-a1).

Let a = inf{t: x(t) e S}. If a\ < z, then let

0 if x > x

u*(t,x) =

if t < CT,

and if <5i > z, let

u*(t,x) =

«i if x < x

0 if x > 0

z if x = 0 if t > CT,

Q2 if X < 0

0 if x > 0

z if x = 0 if t < CT,

cti if x < 0

0 if x > 0

z if x = 0 if * > CT,

«2 if x < 0
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-*—| Purchase the New Machine

x" 0

Fig. 3. Machine purchase policy and production policy for t < CT

——— \u*-k2\ ———————— >•
1

u*-0 ——————— »

—————————————— b-

Fig. 4. Production policy for t > a > 0

where a is defined in (9.5.25). The optimal decision (< j ,u*( t , x ) ) in Case (i) is depicted in
Figs. 3 and 4.

Let (a, ue(t,x)) denote the scaled decision as constructed below:

ue(t,a, x) —
au*(t,x)/ai if t < a,

au*(t,x)/az if t > a.

Then we have (a, ue(t, a, x)) is asymptotically optimal for Pe.

9.6 Production-Marketing Models

In this section, we discuss the model developed in Sethi and Zhang [34], which considers
the case when both capacity and demand are finite state Markov chains constructed from
generators that depend on the production and promotional decisions, respectively. Due to
the complexity of the manufacturing systems, traditionally, marketing decision making and
other decision related areas such as productions are often treated independently. Clearly, a
marketing model with addition of production is more realistic and useful from a practical
point of view. In this connection, Abad [1] proposed a decentralized marketing-production
planning model and solved the problem by applying Pontryagin's maximum principle. Sethi
and Zhang [33] considered a marketing-production model in which the demand is assumed
to be a Markov decision process. The main focus of that paper is reduction of dimensionality
of the underlying problem via a hierarchical control approach;

In order to specify their marketing-production problem, let ae(t) e M as in Section 2
and z(6,f) 6 {z° ,z 1 , . . . ,zd}, for a given 6, denote the capacity process and the demand
process, respectively.

We say that a control (u(-),w(-)) = {(u(i),w(t)) : t > 0} is admissible if (u(-),w(-)) is
right-continuous having left-hand limit (RCLL), is a{(a£(s),z(d, s)) : s < t} adapted, and
satisfies u(f) > 0, p • (t) < a£(t) and 0 < w(t) < I for all t > 0. We use AE'S to denote the
set of all admissible controls. Then our control problem can be written as follows:
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maximize Je' ( x , a , z , u ( - ) , w ( - ) )
,.00

= E I e-ptG(x(t),z(6,t),u(t),w(t))dt,
Jo

x(t) = u(t)-z(6,t), x(Q)=x,

subject to

value function ve'5(a;,a,2) = inf J£'5(x, Q, z, w(-) ,

(9.6.27)

where by of(t) ~ e lQm(u(t)), we mean that the Markov process cf(i) has the generator

We use A°'S to denote the admissible control space

A°>s = {(U(t),w(t)) = (u0^),!*1 ( t ) , . . . ,um(t),w(t)) : u^t) ^O.p-ii^t) <i,

0 < w < 1, (C7(f), ty(t)) is a{z(6, s) : s <t} adapted and ROLL}.

The limiting problem is given as follows:

maximize J ° ' s ( x , z , U ( - ) , w ( - ) )

po,S . (

subject to

i=om
x(t) = = x,

i=0

value function v°'s(x,z)= inf J ° < s ( x , z , U ( - ) , w ( - ) ) .
(U(-),w(-))^°'s

(9.6.28)

Let ([/(•),«;(•)) e A°'S denote an optimal open-loop control for P°>s. We construct

{a'(t)=i}^(t) and = w(t).
i=0

Then (u£>(5(t), w£<<5(t)) e AS'S, and it is asymptotically optimal, i.e.,

lim | Js'5(x, a, z, u , a,z)\= 0.

Similarly, let (U(x, z), w(x, z ) ) € A0'6 denote an optimal feedback control for P°'5. Sup-
pose that (U(xiz),w(x,z)) is locally Lipschitz for each z. Let

i=0
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The feedback control ( u £ ' S ( - ) , w £ ' S ( - ) ) is asymptotically optimal for P£'S, i.e.,

lim | Je's(x, a, z, u£>s(-), w e ' 5 ( - ) ) - ve's(x, a, z)\ = 0.s — >o

We have considered only the hierarchy that arises from a fixed S and a small e. In this
case, promotional decisions are obtained under the assumption that the available production
capacity is equal to the average capacity. Subsequently, production decisions taking into
account the stochastic nature of the capacity can be constructed. Other possible hierarchies
result when both S and e are small or when e is fixed and 5 is small. The details can be
found in Sethi and Zhang [33].

9.7 Risk-Sensitive Control
In this section, we consider robust production plans with a risk sensitive cost criterion. This
consideration is motivated by the following observations. First, since most manufacturing
systems are large and complex, it is difficult to establish accurate mathematical models to
describe these systems. Modeling errors are inevitable. Second, in practice, an optimal
policy for a subdivision of a big corporation is usually not an optimal policy for the whole
corporation. Optimal solutions with the usual cost criterion may not be desirable in many
real problems. An alternative approach is to consider robust controls. In some manufactur-
ing systems, it is more desirable to consider controls that are robust enough to attenuate
uncertain disturbances, which include modeling errors, and therefore to achieve the system
stability. Robust control design is particularly important in manufacturing systems with
unfavorable disturbances. There are two kinds of system disturbances in the system under
consideration: (1) unfavorable internal disturbances — usually associated with unfavorable
machine capacity fluctuations; (2) unfavorable external disturbances such as fluctuations in
demand.

The basic idea of the risk-sensitive control is to consider a risk sensitive cost function
that penalizes heavily on costs associated with large state trajectories and controls. Related
literature on risk sensitive control and robust control can be found in Whittle [47] , Fleming
and McEneaney [13], Basar and Bernhard [5], Barren and Jensen [6], and references therein.
For details discussed in this section, see Zhang [50].

As the rate of fluctuation of the production capacity process goes to infinity, we show that
the risk sensitive control problem can be approximated by a limiting problem in which the
stochastic capacity process can be averaged out and replaced by its average. We also show
that the value function of the limiting problem satisfies the Isaacs equation of a zero-sum,
two-player differential game. Then, we use a near optimal control of the limiting problem
to construct a nearly optimal control for the original risk sensitive control problem.

The system equation is given by

x(t) = u(t) — z(t), XQ = a €: Rn (a is given).

Let J£'^(u(-)) denote the risk sensitive cost function defined by

1 r°° 1 1
-^ / e-<*\h(x(t)) + c(u(t))]dt\\. "(9.7.29)
v £ Jo ) \

The problem is to find an admissible control u(-) that minimizes J£lV^(w(-)).
We now specify the production constraints. For each i e M. = {0, 1, 2, . . . , m}, let

U(i) = {/ = (li, . . . , ln) > 0 : p • I < i} C Rn. (9.7.30)
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With this definition, the production constraint at time t is u(t) E U(a£(t)).
We assume the demand rate z ( t ) is a bounded process which is independent of ae(t).
We say that a control it(-) = {u(t) : t > 0} is admissible i f u ( t ) is a cr{a£(s), z(s) : s < t}

adapted measurable process and u(t) € U(a£(t)) for all t > 0. Then our control problem
can be written as follows:

p£

minimize

= inf
u(-)€Ae

f 1 f°° V
J^= / e-<«[h(x(t)) + c(umdt\

I v £ Jo ).
subject to x(i) = u(t) — z ( t ) , XQ = a, u(-) € Ae,

value function v

(9.7.31)

Let Zt = a{z(s] : s < t}. We consider the following control space:

A° = {[/(•) = («° ( - )X(0 , - - - ,«m(')) = «'(*) e U(i), and U(t)

is a Zt adapted measurable process}

and two control problems
and

and P°'° defined as follows:

minimize J°'° ([/(•)) = fJo i=0

subject to = a,
i=0

value function v°'° = inf J°'°(f/(-)).
^

(9.7.32)

It can be seen below that, when £ is small, p£'^ can be approximated by p°^ and p°<^
can be approximated further by P°'°. Therefore, pe^ can be approximated by P°'°. Then,
a near optimal control for P°'° will be used to construct controls for p£'^ that are nearly
optimal.

Theorem 9.7.1 ([50]) There exist constants €Q > 0 and C such that, for 0 < £ < CQ,

We show that P°'^ can be approximated by P°'° and the value function of P°'° is a
viscosity solution to the Isaacs equation of a zero-sum, two-player differential game. To
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simplify the notation, we take <5 = ,/e and consider the following control problem P°'5.

minimize JM ([/(.))

O,s .
f l f°° m 11

- / p~Pt\h(r(t\\ -4- V^ ^•r(iii(t'\\\fH- \>_ I o | / M U * l ( / M T 7 i^Clt* 1 C ) I JCA6 / t ,SJ° t=Z )\
subject to x(t) — z(t), x0 = a,

i=0

value function v°'S = inf J°'S(U(-)).
U(-)€A°

(9.7.33)

Theorem 9.7.2 ([50]) v°'5 is a monotone increasing function of 6 > 0 and

For each [/(•) & A°.

lim v°'5 = v°>°.
6-+0

J ° ' 5 ( U ( - ) ) T J°'°(U(-)) as 6 10. (9.7.34)

We write v°'°(x) as the value function of P°'° with the initial value XQ — x. Note that
|£|oo = infp(/r)=o supw€n_F |^(w)| for any random variable £. Let Fu = {U = (u°, u1,... , um) 6
pnx(m+i) suc]1 ^^^ ui 6 iY(i)} and let I\ denote a compact subset of Rn. We consider
functions z ( t ) G Fz (t > 0) that are right continuous and have left hand limits. Let Z denote
the metric space of such functions that is equipped with the Skorohod topology d(-, •).

We assume z(-) = z(-)(u>) E Fz a.s. and for each z° = z°(-) e Z and any SQ > 0,
P(d(z(u),z°) < 50) >0.

Theorem 9.7.3 ([50]) v°'°(x) is the only viscosity solution to the following Isaacs equation

T / ™
pv°'°(x) = min max I Vj ̂ ^ ~

= max mmzerz u&ru

i=0m

u* - z «2'0(i) + h(x) +
i=0

(9.7.35)

Theorem 9.7.4 ([50]) The following assertions hold.
(i)

£-»0
(9.7.36)

(ii) Let [/(•) = ( u ° ( - ) , . . . ,um(-)) e 1̂° denote a stochastic open loop e'-optimal control
forP°'°, i.e.,

Let us(t) — 53 ^-{as(t)=i}ul(t)> where IA denotes the indicator of a set A. Then, u s ( - ) € A£

and
i=0

lim sup \
£ — 0

< e1. (9.7.37)
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(iii) Let [/(•) = U ( z ( - ) , x ( - } = ( u ° ( z ( - ) , x ( - ) ) , . . . , u m ( z ( - ) , x ( - ) ) ) denote a feedback e'-
optimal control for T>°'° , i.e., 0 < J°'°(C7(-)) - v°'° < e'. Let

i=0

Assume that U(z,x) is locally Lipschitz in x, i.e., for some k§ > 0,

\U(z,x) - U(z,x')\ < C(l + x fes + \x'\k*)\x - x'

Then, u£ (•) = ue (a£ (•) , z(-) , x(-}} 6 Ae and

limsup | Je^(ue(-}} - ve'^\ < e. (9.7.38)
£-+0

PART IL CONTROL WITH LONG-RUN AVERAGE COSTS

A discounted cost weights more on recent events, while a long-run average cost focuses
on long term development. In this part we review results on problems with long-run average
costs. In this part, we only consider single machine systems discussed in Section 2. Related
literature on control with long-run average costs can be found in Bensoussan and Nagai [7] ,
Bielecki and Kumar [8] , and references therein.

9.8 Optimal Control
In this section, we consider a single product manufacturing system with stochastic produc-
tion capacity and constant demand for its production over time.

For any admissible ii(-), define

J(x, k, u(-)) = limsup ̂ E f (h(x(i)) + c(u(t))} dt. (9.8.39)
T— too T Jo

Our goal is to choose u(-) s A(k) so as to minimize the cost functional J(x, k , u ( - ) ) .
We assume the the cost functions /i(-) and c(-) to be smooth and convex functions.

Moreover, the average capacity a = Y^iLo 'iVi ^ z an<^ z & -M-
An admissible control u(-) is called stable if it satisfies the condition

^
T— too _L

The HJB equation associated with the long-run average cost optimal control problem
takes the following form:

A = F(k, Wx(x, fc)) + h(x) + QW(x, - ) ( j f e ) , (9.8.41)

where F(k, r) = inf0<u<fe{(w — z)r + c(u)}, A is a constant and W is a real- valued function
defined on R x M.

Let Q denote the family of real-valued functions W(-, •) denned on R x M. such that
(i) W(- , fc) is convex; (ii) W(- , f c ) is continuously differentiate; (iii) W(-,k) has polynomial
growth. A solution to the HJB equation (9.8.41) is a pair (A, W) with A a constant and
W & Q. The function W is called a potential function for the control problem, if A is the
minimum long-run average cost.
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Theorem 9.8.1 ([31]) (i) (A*, V) is a viscosity solution to the HJB equation (9.8.41). More-
over, the constant A* is unique.

(ii) The function V(x,k) is continuously differentiable in x, and (A*, V) is a classical
solution to the HJB equation. Moreover, V(x, fc) is convex in x and

\V(x,k)\<C(l + \x\K+l).

Theorem 9.8.2 ([31]) Let (\,W) be a solution to the HJB equation (9.8.41). Then

(i) If there is a control u*(-) <E A(k] such that

x*(t},a(t})+c(u*(t)) (9.8.42)

for a.e. t > 0 with probability 1, where £*(•) is the surplus process corresponding to
the control u* (•), and

(9.8.43)

then

X = J ( x , k , u * ( - ) ) .

(ii) For any it(-) 6 A(k), wehaveX<J(x,k,u(-)), i.e.,

limsup-E / ( h ( x ( t ) ) + c(u(t))}dt > A.
t^oo Jo

(iii) For any (stable) control policy u(-) & B(k), we have

1 /•*liminf -E \ (h(x(t)) + c(u(t))) dt > A. (9.8.44)
t^oo t JQ

We know that the function V € <7, and that it is also a solution of the HJB equation
(24). The function V is sometimes referred to as the relative value function. Let us now
define a control policy u*(-, •) via the relative function V(-, •) as follows:

u*(x,k) =

0 if Vx(x,k)>-cu(0),

(en)'1 (-Vx(x,k)) if -cu(k) < Vx(x,k) < -cu(0), (9.8.45)

fc if Vx(x,k) < -cu(k],

if the function c(-) is strictly convex, or

u*(x, fc) =
0 if Vx(x,k)>-c,

minjfe, z} if Vx(x,k) = — c,

k if Vx(x, k) < c,

(9.8.46)

if c(u) = cu. Therefore, the control policy u*(-, •) satisfies the condition (9.8.42).
Prom the convexity of the function V(-, fc), there are Xfc, y^, ~oo < y^ < Xk < oo such

that

U(x) = (xk,oo) and L(k) = (-oo,yfe).
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The control policy u*(-, •) can be written as

0
u*(x, fc) =

x > xk,
~l(-Vx(x,k)) yk<x<

x < yk.

Theorem 9.8.3 ([31]) The control policy u*(-, •), defined in (9.8.45) or (9.8.46) as the case
may be, is optimal.

When c(u) — 0, i.e., there is no production cost in the model, the optimal control policy
can be chosen to be a hedging point policy, which has the following form: There are real
numbers xk: k = 1,... , m, such that

u*(x, k) = <
0 x > xk

x < xk.

9.9 Hierarchical Control
In this section, we consider a slight variation of the model studied in Section 2. With the
production rate u(t) 6 Rn, u(t) > 0, the total surplus x ( t ) e Rn, and a constant demand
rate z e Rn, z > 0, the system dynamics satisfy the differential equation

x(t) = -ax(t) + u(t) - z, = x e Rn,

where a = (a\, ..., an) is a constant vector with ai > 0. The attrition rate a^ represents the
deterioration rate of the inventory of the finished product type i when Xi(t) > 0, and it
represents a rate of cancelation of backlogged orders when Xi(t) < 0. We assume symmetric
deterioration and cancellation rates for product i only for convenience in exposition.

Let o/(t) e M. = {0, 1, ...,m}, t > 0, denote a Markov process generated by Q/e.
A function f ( x , k) defined on Rn x M is called an admissible feedback control or simply

a feedback control, if (i) for any given initial surplus x and production capacity k, the
equation

x ( t ) = -ax(t) + f ( x ( t ) , a£(£)) - z

has a unique solution. For any admissible u ( - ) , define the expected long-run average cost

limsup l-E f (h(x(t)) + c(u(t)))dt.
r-^oo J ,/o

The problem is to obtain tt(-) e Ae(k) that minimizes J £ ( u ( - ) ) . We formally summarize our
control problem as follows:

1 fT

minimize J £ ( u ( - ) ) = limsup — E I (h(x(t)) + c(u(t)))dt,
T^oo J- JQ

subject to x(t) = —ax(t) + u(t) - z, x(0) = x, u(-) E As(k),

minimum average cost A£ = inf Js(u(-)}.w;
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The HJB equation associated with the average-cost optimal control problem in Pe , as
shown in Sethi et al. [31], takes the form

= inf | 9vf(x, fc) j fe g
<9(-ox + it - -z) J e v 'v '

where w£(x,k) is the potential function of the problem Pe, Q^'Mf^fc) denotes the direc-
tional derivative of w£(x, k) along the direction (—ax + u — z).

Theorem 9.9.1 ([32]) The minimum average cost \e of Pe is bounded in e, i.e., there
exists a constant MI > 0 such that

0 < \£ < MI for all e > 0.

In the remainder of this section, we derive the limiting control problem as e — *• 0. As in
Sethi and Zhang [34] , we consider the enlarged control space

— \U \ ) ) U \°) •) • •••) U \ ) ) ' ^i \ ) — ^5 ^^ £LH(1 J) ' U\jtj ^ /Cj t ^ U5

f/(-) is a deterministic process}.

Then we define the limiting control problem P° as follows:

I rT m

minimize J ( U ( - ) ) = limsup — / [h(x(s)) + y^^c(ttj(s))]ds,
T^oo 1 Jo j = ( j

m

subject to x(t) = -ax(t) + V" VjUj(t) - z, x(0) = x, [/(-) e ^1°,

minimum average cost A = inf J ( U ( - } } .
U(-)€A°

The average cost optimality equation associated with the limiting control problem P° is

w
tional

—. ———— ————— r + y vjc.(u>} } + h(x), (9.9.47)
d(-ax + Y^Lo viu3 ~ z) ^ I

here w(x) is a potential function of the problem P° and g,ax+^^ v.uj-z) IS ^e direc-
onal derivative of w(x) along the direction —ax + X]j=o Z/JU"? ~ z-

Theorem 9.9.2 ([32]) There, exists a constant C such that for all e > 0,

| A £ - A | <C-e5.

This implies in particular that lim£^o Ae = A.

We next consider feedback controls. We begin with an optimal feedback control U(x) =
(u° (x) , ul (x) , ...,um(x)) for the limiting control problem P°. This is obtained by minimizing
the right-hand side of (9.9.47), i.e.,

*W + E^o "jc(«J'(a:)) + h(x)
h(x).
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We then construct the control
m

{a(s,t}=^j(x), (9.9.48)
3=0

which is clearly feasible (satisfies the control constraints) for Pe . Furthermore, if each &(•)
is locally Lipschitz, then the system

x£(t) = -ax£(t) + f £ ( x £ ( t ) , ae(t)) - z, z(0) = x

has a unique solution and therefore, f £ ( x ( t ) , a e ( t ) ) , t > 0, is also an admissible feedback
control for Pe.

Theorem 9.9.3 ([32]) Assume the feedback control of the limiting problem U(-) is locally
Lipschitz. Moreover, suppose that for each e e [0,£o], the equation

m

-ax + ̂ VjUJ (x) - z = 0
j=o

has a unique solution de , called the threshold, and for x e (d£,oo),

—ax + VJ VjV? (x) — z < 0,
3=0

and for x € (—00, Oe),

—ax + VJ VjU3'(x) — z > 0.
3=0

Then the feedback control given in (9.9.48) is asymptotically optimal, i.e.,

lim 1^(^(0)-A|=0,

where ue(t) = fe(x(t),ae(t)}.

9.10 Risk-Sensitive Control
In this section we consider a manufacturing system with the objective of minimizing a risk
sensitive cost criterion over the infinite horizon. In risk sensitive control theory, typically
an exponential-of-integral cost criterion is considered.

We use the dynamic model considered in the previous section. Let L(x,u} denote a
cost function of the surplus and the production. The objective of the problem is to choose
u(-) e Ae to minimize

( T \
- I L(x(t),u(t))dt] , (9.10.49)£ Jo J

where x(-) is the surplus process corresponding to the production process u(-). Let A£ =

A motivation for choosing such an exponential cost criterion is that such criteria are
sensitive to large values of the exponent which occur with small probability, for example
rare sequences of unusually many machine failures resulting in shortages (x(t) < 0).
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We assume L(x,u) > 0 is continuous, bounded, and uniformly Lipschitz in x.
The associated HJB equations are as follows:

X£ . f w£
x(x,a)— = inf <(—ax + u-z)-

,- n^-. -*• _ I v '£ 0<u<a I £
f w£(x,a)\Q fw£(x.-}\, . L(x,u)} (9.10.50)

+ exp ——^——M-exp —^-—^\(a) + -+——'- L
V £ / £ \ £ / £ J

where tue(x, a) is the potential function, wx(x,a) denotes the partial derivative of w£(x, a)
with respect to x.

Theorem 9.10.1 ([16]) The following assertions hold.

(i) The HJB equation (9.10.50) has a viscosity solution ( X £ , w £ ( x , a ) ) .

(ii) The pair ( X £ , w £ ( x , a ) ) satisfies the following conditions:
For some constant C independent of £ > 0,
(a) 0 < A£ < Ci and
(b) w£(x,a) — ws(x,a)\ < C%\x — x\.

(iii) Assume that w£(x, a) to be Lipschitz continuous in x. Then,

X£ = inf J£(u(-}}.

This theorem implies that X6 in (A£ ,w£(x, a)) as a viscosity solution is unique.

We next give a verification theorem. In order to incorporate nondifferentiability of
the value function, we consider superdifferential of the function. Let D+ f ( x ) denote the
superdifferential of a function f ( x ) , i.e.,

= (r £ R : limsup /(" + ̂  ~f^ ~ hr < OJ .
I h->o 1^1 J

Theorem 9.10.2 ([16]) Let (Xe,we(x,a)) be a viscosity solution to the HJB equation in
(9.10.50). Assume that w£(x, a) to be Lipschitz continuous in x. Lettl>£(x, oi) = exp(we(x, a)/e)
Suppose that there are u*(-), x * ( - ) , and r*(t) such that

x*(t) = -ax*(t) + u*(t) - z, x*(0) = x,

r*(t) e D+Tjj£
x(x*(t),a£(t)) satisfying

T£x*ta£t = -ax*tu*t-z)r*(t)
O (9.10.51)

e e

a.e. in t and w.p.l. Then, Xs = J£(u*(-)).

We next discuss the asymptotic property of the HJB equation (9.10.50) as £ — > 0. First
of all, note that this HJB equation is similar to that for an ordinary long-run average cost
problem except for the term involving the exponential functions. In order to get rid of such
term, we make use of the logarithmic transformation in Fleming and Soner [15, p. 275]).
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Let V = {v = (u(0) , . . . , v(m)) € Rm+1 : v(i) > 0, i = 0 ,1 , . . . , m}. Define

Qv = (q^) such that q^ = qij -^rr for i ̂  j and q^ = — ̂  g^-.

Then, in view of the logarithmic transformation, we have, for each i e M,

( we(x,a)\ fw£(x,-)\
exp I——^—-J Q exp I ——-——1 (z)

= sup< — w'(x,-)(i)-Ql

vev I £

The supremum is obtained at v(i) = exp(—we(x,i)/e).
The logarithmic transformation suggests that the HJB equation is equivalent to an Isaacs

equation of a two-player, zero-sum dynamic stochastic game. The Isaacs equation is given
as follows:

( ~ Ov }Xe = inf sup<^ (-ax + u-z)w£
x(x,a)+L(x,u,v,a} + —w£(x,-)(a) \ (9.10.52)

0<w<c* V£V ^ £ j

where

L(x,u,v,i) = L(x,u) - Qv(\ogv(-))('i) + QVV^, (9.10.53)

for i <E M.
We consider the limit of the problem as e —> 0. In order to define a limiting problem,

we first define control sets for the limiting problem. Let

PM — {U — (u°,... ,um); 0 < M* < i, i = 0, ,m}

and

For each V e Tv, let Q := (q^) such that

v* V V (3) e • / • i V \~^ V
Qij = Qij = Qij i / - \ I°r l r 3 an(l Qii = ~ / ; Qij i

_v
and let i/v = (z/j , . . . , ̂ ) denote the stationary distribution of Q . The next lemma says
Q is irreducible. Therefore, there exists a unique positive vv for each V & Tv. Moreover,
vv depends continuously on V. It can be shown for each V &TV, Q is irreducible.

Theorem 9.10.3 ([16]) Let en —» 0 be a sequence such that Xs" —* A° and w£n(x,a} —>
w°(x:a). Then,

(i) w°(x, a) is independent of a, i.e., w°(x,a) = w°(x);
(ii) w°(x) is Lipschitz; and
(iii) (X°,w°(x)) is a viscosity solution to the following Isaacs equation:

K m ^ m
i V^ V i \ Of \ , Y^ VTI i\—ax+ > v,, u — z \wAx) + > v= L(x.u )

*—•* ) t-^i
J '-" (9.10.54)
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Let

i=0 z=0 v ' i=0

Note that L(x, U, V) < \\L\\, where || • || is the sup norm. Moreover, since L > 0, L(x, U, 1) >
0 where V = 1 means v l ( j ) = 1 for all i,j. Then, the equation in (9.10.54) is an Isaacs
equation associated with a two-player, zero-sum dynamic game with objective

1 rT

J ° ( U ( - ) , V(-)) = limsup - / L(x(t), U(t),

subject to

m
^(i-\ — _/rrlVt -I- \ ;/ '*'?/Vy^ _ 7 'rl'n^ — rJU \ L I — Uj^L I (/ / |̂  / i*; Li \ L I ^. tClLiI — JLJ .\ / ^ - / / ^ / t ^ ^ ' \ / '

where [/(•) and V(-) are Borel measurable functions and U(t) G Yu and V(t) 6 !?„ for i > 0.
One can show that

A° = inf sup />([/(•), ^(-)),
U ( - ) v ( - )

which implies the uniqueness of A° .

Finally, in order to use the solution to the limiting problem to obtain a control for the
original problem, a numerical scheme has to be used to obtain an approximate solution.
The advantage of the limiting problem is its dimensionality, which is much smaller that of
the original problem if the number of states in M is large.

Let (U* (x), V* (x)) denote a solution to the upper value problem. Suggested by the ideas
of hierarchical control, it is expected that the control

ux,a =
j=o

is nearly optimal for the original problem. For more details discussed in this section, see
Fleming and Zhang [16].

PART III: PROBLEMS WITH CLOSED-FORM SOLUTIONS

The main advantage of hierarchical control is to reduce the system dimensionality and
the computational burden. By considering a limiting problem and using its solution, one
constructs a near optimal control for the original problem. In this part, we give closed-
form solutions to three problems. The solutions of these problems can be used to construct
controls for the corresponding original problems.

9.11 Constant Product Demand
In this section, we consider finite horizon production planning of stochastic manufacturing
systems. Note that there are some distinct differences between the finite time and the
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infinite horizon formulations. For an infinite horizon formulation, such as the problems
studied in Section 2, the dynamics of the systems are essentially homogeneous, and therefore,
the hedging point (or turnpike sets) consist of constants, which completely characterize
the optimal control policies. If the system performance is evaluated over a finite time
horizon the threshold levels are no longer constants, but are "time dependent threshold
curves." Therefore, the problem becomes much more complicated. Naturally, one expects
that the essence of the turnpike sets should still work, i.e. produce at the maximum speed
if the inventory level is below the turnpike, produce nothing if the inventory level is above
the turnpike, and produce exactly as the demand if the inventory reaches the turnpike.
Nevertheless, the time inhomogeneous nature of the sets makes it very difficult to obtain
explicit optimal solutions. In order to fulfill our goal of achieving optimality, the turnpike
sets must be smooth enough and be "traceable" by the trajectory of the system.

Let x(t) 6 .R1 denote the inventory/backlog process and u(t) > 0 denote the rate of
production planning of a manufacturing system. The product demand is assumed to be a
constant and denoted by z. Then,

x(t) = u(t) - z, x(s) = x, 0<s<t<T (9.11.55)

where T is a finite horizon.
Let M = {0:1,0:2} (011 > cc2 > 0) denote the set of machine states and let a(t) e M

denote the machine capacity process. If a(t) = a\, it means the machine is in a good
condition with capacity ax. If a(t) = a2, the machine (or part of the machine) breaks
down with a remaining capacity a2. We assume that c*i > z > a2, i.e., the demand can
be satisfied if the machine is in a good condition and cannot be satisfied if the machine (or
part of the machine) breaks down.

The cost function J(s,x, a,u(-)) with a(s) = a e M is defined by

J(s,x,a,u(-}) = E e-pth(x(t))dt, (9.11.56)

where p > 0 is the discount factor. Here p is allowed to be zero, since we are now considering
a finite horizon problem. The problem is to find a production plan 0 < u(t) < a(t) as a
function of the past a(-) that minimizes J(s,x,a,u(-~)).

We make the following assumptions on the running cost function h(x) and the random
process a(t).

(Al) h(x) is a convex function such that for positive constants Ch and fc^,

0 < h(x) < Ch(i + x kh) and h(x) > h(0) = 0 for all x ^ 0.

Moreover, there exists a constant Ch > 0 such that

h~+ (XT) — h~+ (XT )
_ v ' > ch for all - |a2 - z\T < xi < 0 < x2 < a2 - z\T, (9.11.57)

where hx+(x) denotes the right-hand derivative of h(x).
Note that the convexity of h(x) implies that both the left-hand derivative hx- (x) and the

right-hand derivative hx+(x) exist a.e. and hx-(x) = hx+(x) = hx(x) a.e. In this section,
we use mostly the right-hand derivative hx+(x) to represent the derivative hx(x).

(A2) The capacity process a(t) € M. is a two-state Markov chain governed by

if i = a2.
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for any function / on M.. Here A > 0 is the machine breakdown rate.
Examples of h(x). A few examples of h(x) that satisfy Assumption (Al) can be given as
follows.

(1) h(x) = x2;
(2) h(x) = ft+rnax{0, x} + h~~ max{0, -x} where h+ > 0 and h~ > 0 are constants. This

cost function was employed in [2] .
(3) h(x) is convex and piecewise linear with /i(0) = 0, hx-(0) < 0, and hx+(0) > 0.
Assumption (A2) is a condition on the machine capacity process a(i). It indicates that

once the machine goes down it will never come up again. Such a situation occurs when the
repairing is very expensive, or no repair facilities are available. As a result, replacement is
a better alternative than repair.

Definition 9.11.1. A control u(-) = {u(t) : t > 0} is admissible if u(t) is an Ft =
o~{a(s),s < t} adapted measurable process and 0 < u(t) < a(t) for all 0 < t < T. A
will denote the set of all admissible controls in the sequel.

Let v(s, x, a) denote the value function of the problem, i.e.,

v(s,x,a) = inf J(s,x,a,u(-)), for a £ M..

We can show as in [53] that the value function v(s, x, a) is convex in x for each s 6 [0, T]
and a e M.. Moreover, v(s,x,a) €E <7([0,T], Rl) is the only viscosity solution for the
following dynamic programming equations.

0= -vs(s,x,ai)+ sup [-(u - z)vx(s, x,ai)]

— exp(—ps)h(x) — \(v(s, x, a-i) — v(s, x, ai)), (y.il.o9)

^ 0= w(T,a;,Q:i)

and

0= —vs(s,x,a?) + sup [—(u — z)vx(s,x,a^)} — exp(—ps)h(x)
r\^*-„. ̂  „. (9.11.60)

0= v(T,x,a2).

In the following, we modify the turnpike definition given in [33] to incorporate the
variation of the turnpike sets with the changes of time.

Definition 9.11.2. <j>(s) and ^(s) are said to be the turnpike sets for a = a-\_ and a = o^i
respectively, if for all s € [0, T],

and v(s, zi>(s),a2) = minv(s,x, a2), respectively.
X

Lemma 9.11.3 ([53]) Let i/j(s) be defined as follows :
T

0. (9.11.61)
f
I

Js

Then ^(s) is continuous, uniquely determined by (9.11.61) and satisfies
(a) 0 < ip(s) < |a2 -z\(T- s) for s £ \0,T) and ̂ (T) = 0;
(b) ip(s) is monotone decreasing and absolute continuous. Moreover,

ijj(s) + z > az, a.e.
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Remark. The absolute continuity of i[>(s) implies that it is differentiate almost everywhere
in s. ijj(s) + z > o:2 says that if x(t) < i/>(t) for some ti, then x(t) will stay below tp(t) for
all tl <t<T.

Let
H(s, x) = h(x) + \epsv(s, x, a2).

Then,
fT

J(s, x, ai, «(•)) = / e-^'-^e-^ff (t, i(t))dt.
•/S

Note that -ff (s, x) is convex in x for each s. We are to show that the turnpike set for a = a\
is given by the minimizer of H(s,x). i.e.,

H(s, </>(s)) = min tf (s, x). (9.11.62)
X

To proceed, we need to consider an important property possessed by <f>(s), which is described
in the following definition.

Lemma 9.11.4 ([53]) Let (f>(s) be the minimizer of H(s,x). Then <f>(s) is a single-valued
function and satisfies:

(a) 0 < 0(s) < ijj(s) for s e [0, T) and <j)(T) = 0;
(b) <j)(s) is traceable, i.e., <f>(s) is absolutely continuous on [0,T] and

0 < </>(«) + z < z, a.e. in s e [0,T].

It is easy to see that a traceable curve is always decreasing. If a function 7(5) is traceable,
then there exists a control 0 < u(s) = -y(s) + z < z < ai such that the corresponding system
trajectory x(t) may stay on the curve 7(5) after it reaches 7(3).

Let

H(a, x) = /i(i) + \eps f e~pth(x + (a2 - z)(t - s))dt. (9.11.63)
Js

Note that <j)(s) < if)(s) and

/"T
v(s, x ,a 2 )= / e p*ft,(x.+ («2 - z)(t - s))dt if x < ^(s).

Js

It follows that
[•T

mmH(s,x)=mmH(s,x) = h((j>(s)) + \eps I e-pth((f>(s) + (a2 - z)(t - s})dt. (9.11.64)
x x Js

It can also be seen that <f>(s) is the only solution to (9.11.64).

Theorem 9.11.5 ([53]) Let </>(s) and ^(s) be given as in (9.11.64) and (9.11.61), respec-
tively. Then (p(s) and tp(s) are the turnpike sets for a = a\ and a = a.^, respectively.
Moreover, the feedback control u*(t) = u*(t,x*(t),a(t)) given below is optimal:

*(t,x,a2) =

0 ifx>

<P(t) + z i f x =

ai if x < (j>(t); (9.11.65)

0 i f x > t j j ( t )

a2 ifx<^(t).
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Moreover, it is easy to see that under the control policy u*(t) — u*(t, x(t), a(t)), the ordinary
differential equation

x*(t) =u*(t,x*(t),a(t))-z, x*(s) =

has a unique solution.

Next, using the control given in (9.11.65), the value function v(s, x, ai) can be written
as follows:

v(s,x,a1) =
•TIJ s

I"J s

if x > z(T-s)

X v ( t , t(t), a2)]dt

if (f>(s) <x < z(T- s)

i:
i:

if x = <f>(s)

L 0-A(t-s)r - ,a2)}dt

if - (ai-z)(T- s) <x < (f)(s)

if x < -(ai-z)(T-s),

where si is the first time that x—z(t—s) hits </>(t) and s2 is the first time that x+(a-±— z)(t—s}
hits </)(t), respectively. Thus,

x — z(s\ — s) = 4>(si) and x + (a\ — z)(s2 — s) — ^>(s2), respectively.

Using the control (9.11.65), we can write the value function v(s, x, a2) as follows:

v(s,x,a2) =

rr
I e~pth(x-z(t-s))dt \lx>z(T-s)

J S

f ° e-pth(x - z(t - s))dt
Js _

/

i
e~pth(x - z(s0 - s) + (a2 — z)(t — $o))dt

-o
if tp(s) < x < z(T — s)

fs
T e~pth(x + (a2 - z)(t- s))dt if x < i/>(s)

where SQ is the first time that x — z(t — s) hits t/j(t). Thus, x — z(s0 — s) = ip(so
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Example 9.11.6. In this example, the cost function is given by

h(x) = h+ max{0, x} + h~ max{0, — x}.

Then, (9.11.61) becomes
,*! fT

I e~pth+dt - / e-pth~dt = 0,
J s J t\

where t\ is given by ip(s) + (a2 - z)(ti — s) = 0. This yields

i])(s) = ———log—— ———.p n~r + h~

We now identify </>(s). Recall that 0 < </>(s) < i/j(s) < \a2 — z\(T — s) and for x < i/>(s),

/

T

.

Moreover, for 0,< x < \ct2 — z\(T — s),

/

TST^TT /-T-S
e~f>th+(x + (a2 -z}t]dt- I e~pth~(x + (a2 - z}f)dt

J-r^^r

+/i-p~1[(x + (o2 - z)(T - s)e

This together with (9.11.64) yields

2 - f l , ,Q 1 1 f i , ,-——log————— — — — — i . (9.11.66)

Equivalently, (f>(s) can also be written as:

</>(s) = 0 for all s € [0,T] if \h~ - ph+ < 0;

otherwise,

\h~ - ph+

As T — > oo, it is easily seen that

|a2 - 2| . (pft+ + \h+)-—max ,

which gives the same turnpike set as in [2] provided that the repair rate vanishes.

In this example, we are able to solve (9.11.61) and (9.11.64) to obtain explicitly the
turnpike sets </>(s) and tjj(s). It should be noted that such explicit turnpike sets are not
available for general h ( - ) . However, in many applications of manufacturing systems, h(-)
appears to be piecewise linear or a linear combination of linear functions. Then (9.11.61)
and (9.11.64) are solvable.
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9.12 Constant Machine Capacity
This problem is a variation of the one with constant demand. Here the system having a
constant machine capacity aa > 0 with a random demand rate z(t), is described by the
following equation

±(t) = u(t) - z(t), x ( s ) = x, 0<s <t<T <oo (9.12.67)

with the production constraints 0 < u(f) < O.Q.
Let Z = {z\, z2} denote the set of demand rates with 0 < z\ < ao < z2.
The corresponding cost function J(s,x,z,u(-)) with z ( s ) = z € Z is denned by

J(s,x,z,u(-)) = E e-pth(x(t))dt. (9.12.68)

The problem is to find a production plan 0 < u(t) < a0 as a function of the past z ( t ) , that
minimizes J(s,x,z,u(-)}.

(Al1) Let Assumption (Al) be satisfied with (9.11.57) replaced by

^ for ̂  _ ^^ _ ̂ T < Xl < o < 2,2 < |QO - 22|T;

with Z2 given below.
(A2!) The demand process z ( t ) e Z is also a two state Markov chain governed by

0 . £> .

II I = Z2-

for any function / on Z.
Let v(s, x, z) denote the value function of the problem, i.e.,

v(s,x,z)= inf J(s,x,z,u(-)), for z e Z.

It can be shown as in [53] that the value functions v(s,x,z) are convex functions in x
for each s e [0,T] and z £ Z. Moreover, v(s,x,z) € C([0,T],1?1) are the only viscosity
solutions for the following dynamic programming equations.

0= -vs(s,x,zi}+ sup [-(u-zi}vx(s,x,zi)\

-exp(-ps)h(x)-X'(v(s,x,z2)-v(s,x,zl')), (9.12.70)

^ 0= v(T,x,Zl)

and

0= —vs(s,x,z2) + sup [—(u — z2)vx(s,x,z2)]-exp(—ps)h(x)
o<u<ao (9.12.71)

0= v(T,x,zz).

Definition 9.12.1. <f>(s) and tjj(s) are said to be turnpike sets if

v(s, <f>(s), Zi) = min.v(s,x, Zi)

and v ( s , i j j ( s ) , z 2 ) = mmv(s,x,z2).
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Let

, x) A/J s
(a0 - z2)(t - s))dt.

Then i/j(s) and </>(s) are determined by:

and

= mmH(s,x).

3.12.72)

(9.12.73)

Lemma 9.12.2 ([53]) <j>(s) andtf}(s) are single-valued absolute continuous functions. They
satisfy the following properties:

(a) 0 < ip(s) < \a0 ~z2\(T-s) for s 6 [0,T) and ̂ (T) = 0;
(b) ip(s) is monotone decreasing and ip(s~) + z% > CXQ, a.e.;
(c) 0 < 0(s) < V(«) ̂  s e [0,T) and(f)(T) = 0;
(d) <^>(s) is monotone decreasing and (j)(s) + z\ > a^ — z2 + z\, a.e.

Note that by (4) of the above lemma, a sufficient condition for 0(s) to be traceable (i.e.,
0 < 4>(s) + zi < a0) is z\ > z2 - ctQ.

Theorem 9.12.3 ([53]) Suppose that (Al'), (A2') are satisfied, and z\ > z2 — CXQ. Let
u*(t,x(t),z) be defined as follows:

U*(t,X,Z2) =

0

4>(t)-
a0

0

if x > (f>(t)

ifx = .

Q if x < ij}(t).

Then under the control u*(t) = u*(t, x ( t ] , z(t)), the equation

x*(t) = u*(t,x*(t),z(t))-z(t), x*0 = x

has a unique solution. Therefore, the control u*(t) is optimal.

Example 9.12.4. Consider the cost function

h(x) = h+ max{0, x} + h~ max{0, — x}.

Then,

(9.12.74)

+ a

4>(s) = 0 if \h~ - ph+ < 0.

If \h- - ph+ > 0, then

•K*) =<
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Note that the assumption z\ > z2 — a0 in the above theorem is a relatively conservative
one. In the previous example, this condition can be relaxed to

It can be seen that (9.12.75) is also necessary for the traceability of 4>(s) in this example. If
(9.12.75) fails, <£(s) will no longer be the turnpike of the problem since it is not traceable on
[0, T}. Let <j>(s) denote the turnpike set for a = on denned as v(s, 4>(s),zi) = minx v(s, x,zi).
Note that 0 < </>(s) < tf)(s). It can be shown that h(x) + Xv(s, x,z2) is strictly convex on
[0, V'(s)], which implies that v(s, x, zi) is also strictly convex on [0, i/j(s)} (see [33] for details).
Therefore, <j)(s) is a continuous function. Intuitively, the optimal control u*(t,x, QI) should
be given as in (9.12.74) with ij>(s) in place of </>(s) provided that <j>(s) is traceable. Let

„, , 1 . A/i- - ph+s0 = T + - log —— —— - — .
p \n

Then, 0 < (j>(s) + z\ < QQ for s > s0. This implies <j>(s) = <f>(s) for s > s0. However, if
0 > s0 > T and z2 is large enough, the traceability property of <j>(s) will not hold, which
makes the problem very complicated; an explicit optimal solution is very difficult to obtain.

9.13 Market ing- Pro duct ion with a Jump Demand
In this section, we consider a marketing-production model in which a manufacturing firm
seeks to maximize its overall profit by properly choosing the rates of production and ad-
vertising over time. Similar to Section 6, the marketing decision depends on how much the
advertising effort is needed. Such promotional activities create additional demand of the
product.

In this section, we consider a basic building-block model. We aim at obtaining analytic
solutions of various control regions involved to yield managerial insight for applications. The
demand rate is modeled as a process with a jump. The problem_is to choose the optimal
strategy so that the overall expected profit is maximized. To exploit the intrinsic properties
of the system, we examine a single-machine system in order not to involve complex notation
and excessive technical details. The model considered can be thought of as a macro model
from a higher level management point of view. The obtained results will enable us to
develop optimal strategies for more complex jobshops by considering integrated processes
as single-machine systems in computational approaches.

The demand normally changes not very frequently, its sample paths displaying piecewise
constant behavior. As a result, it is reasonable to model the demand as a controlled Markov
chain. Typically, the demand of a new product is nondecreasing. Prom a management
point of view, when the demand significantly decreases, it is probably time to terminate the
production of such a product and to create newer models. Therefore, a Poisson process is
used quite often (see [21]) to characterize the demand process. Based on such a premise, we
consider one possible Poisson-like "up jump" (one state in the increasing demand direction)
in the formulation. If the demand can increase with more than one "up jumps," we may
choose to deal with one jump at a time. The decision that the manager faces is over a
finite horizon. Although the objective function is written as a discounted infinite horizon
one, by appropriate choice of the discount factor p > 0, the underlying problem is essen-
tially "equivalent" to a finite horizon one (i.e., the future is sufficiently discounted with an
exponentially decaying rate p).

We obtain closed-form optimal control policies. An interesting feature of these results
is that the optimal market-production policy is of the hedging point type, and the hedging
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point depends on the amount of the marginal revenue. If the marginal revenue is small,
it is not worthwhile to take any advertisement action. Otherwise, whether or not to use
advertising for promotion depends on if the inventory surplus is above or below the hedging
point. The derived analytical solution yields good insight on how production planning tasks
can be carried out. In addition, it also provides guidelines for further study and development
of numerical methods for more complex systems involving more general random demand and
random machine capacity.

For t > 0, let x(t), u(i), and z ( t ) denote the inventory level, the production rate, and
the demand rate, respectively. They are governed by the dynamic equation:

x(t) = u(t) - z ( t ) , x(0) = x. (9.13.76)

For t > 0, suppose that x(t) 6 R = (—00,00), that the production system has a unit
production capacity constraint, w(t) denotes the marketing (or advertising) rate with w(t) 6
{0, wj,} for some Wd > 0. Assume the demand rate z(t) is a two-state Markov chain with
state space {z\, z2} (some 0 < z\ < Z2 < 1). The generator of this Markov chain is

/ -kw(t) kw(i) \
Q(w(i)) =\ } , (9.13.77)

V ° ° )
for a given constant k > 0. Let h(x) = c+x+ + c~x~ denote the inventory cost function
where c+ and c~ are positive constants, and

x+ = max{0, x} and x~ = max{0, — x}.

We treat (x(t), z ( t ) ) as a pair of state variables and (u(t), w(t)) as a pair of control variables
throughout.

Definition 9.13.1. A control (u(-),w(-)) = {u(t),w(t); t > 0} is admissible if u(f) 6 [0, 1]
and w(t) 6 {0,wd} and is progressively measurable with respect to the cr-algebra generated
by z(s), s <t. Denote the set of all admissible controls by A.

Our objective is to choose ( u ( - ) , w(-)) G A to maximize the total expected profit:
/•oo

J ( x , z , u ( - ) , w ( - ) ) = E e-pt{Trz(t)-h,(x(t))-w(t)]dt, (9.13.78)
Jo

where p > 0 is the discount rate and TT is the revenue per unit sale.
Note that z2 is an absorbing state. Choosing w(t) = Wd means to promote the product

at the cost of w^ and choosing w(t) = 0 means that no marketing action is taken.
Note also that the optimal marketing rate when z ( t ) = z<i should be w*(x, z-i) — 0.

When z ( t ) enters the state z2 (i.e., z(t) = £2), it will remain there. Intuitively, since the
demand rate satisfies 0 < z\ < z% < 1, when the maximum of the demand rate is reached,
no additional advertising is needed.

Denote the value function by

The associated Hamilton-Jacobi-Bellman (HJB) equations for the value function are given
as follows:

pv(x,zi)= max {(u — zi)vx(x, zi) + trzi — h(x) — w
u£[Q,l],w<E{Q,wd}

+kw(v(x, z2) - v(x, zi))} (9.13.79)

pv(x,z2) = max {(u - z2)vx(x,z2)ue[o,i]
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where fx denotes the derivative of a function / with respect to x.
For future use, denote

n+ _
<-> —

c+Q2 -zi) ir(z2 - zi) 1
——— 3 ——— ' —————— ~ 7>p2 p k

(9.13.80)

and denote by z+ > 0 and z~ < 0 the unique solutions of the following equations:

PLc (z2 _
b(l-z2)-p

-ebz +

= 0, if 6 =

Theorem 9.13.2. Define the production policy, the marketing policy, and the hedging point
by

u ( x , z ) = <
1, if x < 0,

z, if x = 0,

0, ifx> 0,

(9.13.81)

and

ifx<z*

ifx>z*

w*(x,z2) = 0,

(9.13.82)

z =

uu,

z~,

o,
z+,

00,

., p (V k < n'
ifniz -

2 +t•f P c (x
VJ j

K

if Tr(zz — -

; - k

*-•2 Zi) <

r ^ P

Jl) ~ k'
'2 — Zi)

P

^ } < P

^'~k

p '

„ P ! c~(z2 -z^
k p

( \ *• P
'*• " \ fj'2i ** 1 / <^- 7

K
c (z2 —zi)

1

).13.83)

respectively. Then the feedback control policy (u*(x, z),w*(x, z ) ) given by (9.13.81)-(9.13.83)
is optimal.

Let £ = 7r(^2 —zi). Then £ can be regarded as the marginal revenue rate. The marketing
policy can be clearly presented in the following table.

f^P c+(z2 -zi)
-- fe p

z" = oo

P c+(z2 -«i) ^,f^P
k p ^~" ~~ k

Z" = 2+ > 0

c "fe
z* = 0

P ^, ,P | C ( ^2 -Z l )
f c ^ S ^ f e ' p

z* = z~ < 0

f ^ P C (Z2 — 2l)

~" ~ k p
Z* = —00
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If the marginal revenue rate £ is small (< - — ——————), it is not worthwhile to take
rC p

marketing action. Therefore z* = oo which implies that w*(x, z\) = 0 for all x. If £ is not

very small (^-C ^2——52 < £ < M, then z* > 0, i.e., take marketing action only if x is
k p k

large than z*. If £ is "moderate," then z* gets smaller which gives better incentive to take

marketing action. Finally, if £ is so big (> - + ———————), then z* = —oo, which means to
K p

take marketing action right away no matter what inventory level x is.
Note that both the optimal production and marketing are of the hedging-point type.

Such control policies are very attractive from a practical point of view due to their structural
simplicity. We would like to mention that in general not all optimal policies are of the
hedging type; see [33, Chap. 3].

Example 9.13.3. Consider the following example. Suppose

p c^-zll< p and ̂  = 2*.
k p k

The explicit expression of z* is given by

z" = z^ = -—-log 1-

If we take in particular

c+ = c~ = 1, zi = 0.3, z2 = 0.6, k = 1, TT = 1, p = 0.6,

then z* = 1.4899.

9.14 Concluding Remarks
To conclude, we would like to point out that there are numerous applications of hierarchical
control, in addition to manufacturing, in large-scale systems including ecological systems
(Hirata [22]), computing systems (Courtois [11]), intelligent vehicle highway system (God-
bole and Lygeros [19]), spacecraft control systems (Siljak [40]), and target tracking (Zhang
[51, 52]). Many of these systems share similar structural properties with large-scale man-
ufacturing systems. For more general treatment of the hierarchical approach, we refer the
reader to Auger [3], Singh [42], Simon [41], Smith and Sage [43], Stadtler [45], Switalski
[46], and Xie [48], among others.

There have been a series of advances in large-scale manufacturing, but there is still much
to be done. We refer the reader to the book [33] for more detailed discussions of results and
of open problems.
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Chapter 10

Stochastic Approximation:
Theory and Applications

G. YIN
Department of Mathematics

Wayne State University
Detroit, MI 48202

This chapter focuses on stochastic approximation methods and applications. It presents
various forms of stochastic approximation algorithms and their variants, including the ba-
sic algorithms, the most general algorithms, projection and truncation procedures, algo-
rithms with soft constraints, global stochastic approximation algorithms, continuous-time
problems, arid infinite dimensional problems. Then the asymptotic properties of stochastic
approximation algorithms are examined by considering their convergence, rate of conver-
gence, asymptotic efficiency, and large deviations. The asymptotic analysis is followed by
the presentation of a wide range of applications to demonstrate the utility of stochastic
approximation methods.

10.1 Introduction
Half a century has passed since stochastic approximation (SA) methods were introduced
by Robbins and Monro in their pioneering work [67]. Significant progress has been made
in the study of such stochastic recursive algorithms. The original motivation stems from
the problem of finding roots of a continuous function /(•), where either the precise form of
the function is not known, or it is too complicated to compute; the experimenter is able to
take "noisy" measurements at desired values, however. A classical example is to find the
appropriate dosage level of a drug, provided only /(x)+noise is available, where x is the
level of dosage and /(x), assumed to be an increasing function, is the probability of success
(leading to the recovery of the patient) at dosage level x. The classical Kiefer-Wolfowitz
(KW) algorithm introduced by Kiefer and Wolfowitz [34] concerns the minimization of a real-
valued function using only noisy functional measurements. The interesting theoretical issues
in the analysis of iteratively defined stochastic processes and a wide variety of applications
focus on the basic paradigm of stochastic difference equations. Much of the development

1sto'chastic approximation, projection, constrained algorithm, asymptotic property, convergence, rate of
convergence, asymptotic efficiency, gradient estimate.
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started from a wide range of applications in optimization, control theory, economic systems,
signal processing, communication theory, learning, pattern classification, neural network,
and many other related fields. Owing to its importance, stochastic approximation has
had a long history and has drawn much attention in the past five decades. A number of
monographs have been written; each of them has its own distinct features. To mention just
a few, we cite the books of Albert and Gardner [2], Wasan [84], Tsypkin [80], Nevel'son
and Khasminskii [60], Kushner and Clark [43], Benveniste, Metivier, and Priouret [8], Duflo
[21], Solo and Kong [76], Chen and Zhu [12], and Kushner and Yin [53] among others.

10.1.1 Historical Development

The development of stochastic approximation methods can be naturally divided into several
periods. To put things in historical perspective, the early development around 1950s and
1960s used mainly basic probabilistic tools and traditional statistical assumptions (such as
independent and identically distributed noise) together with certain restrictions on functions
(such as assuming f ( x ) to be increasing for instance). The book of Wasan [84] summaries
much of the early development including the with probability one (w.p.l) convergence proof
for multidimensional problems of Blum, the asymptotic normality study of Sacks, and the
work of Fabian among others. Nevelson and Khasminskii's book [60] treats stochastic ap-
proximation as stochastic processes and deals with martingale difference type noise pro-
cesses. The work of Tsypkin [80] emphasizes the adaptation aspect of applications. As
time went on, many applications arising in control and optimization forced researchers to
examine the algorithm more closely and indicated that for many applications the noise en-
countered is correlated. In the middle 1970s, Ljung studied SA from a dynamic system
point of view. His idea is: In lieu of the discrete recursion, one treats a continuous-time
dynamic system given by an ordinary differential equation. Such an idea was further devel-
oped in [43]. By combining analysis and probabilistic argument, Kushner and Clark set up
a framework by considering asymptotic properties of suitably scaled sequences. The work
of Benveniste, Metivier, and Priouret [8] emphasized the close connection of stochastic ap-
proximation and adaptive systems. One of the distinct features is the use of the Markovian
setting and the treatment of the Poisson equations. Treating recursive algorithms, the book
[21] emphasizes identification, estimation, and tracking. Solo and Kong's book is concerned
with the stochastic approximation type of algorithms with applications to adaptive signal
processing; it exploits the idea of stochastic averaging in details. The book of Chen and Zhu
[12] summarizes their work of using random varying truncation bounds and applications to
parameter estimation and adaptive filtering. The work of Kushner and Yin [53] presents a
comprehensive development of the modern theory of stochastic approximation, or recursive
stochastic algorithms, for both constrained and unconstrained problems, with step sizes that
either go to zero or are constant and small (and perhaps random).

To summarize, stochastic approximation methods have been the subject of an enormous
literature, both theoretical and applied, for five decades. Due to the vast amount of literature
accumulated, it is very difficult or virtually impossible to provide an exhaustive list of
references on stochastic approximation. Our hope is that with the references provided at
the end of this article, the reader will be able to pick out suitable references of his/her
needs. Moreover, it is likewise very difficult to give an extensive account on the technical
development in a survey paper of this scale. As a result, we choose the road of discussing
the main ideas and leaving most of the technical details aside. Appropriate references are
provided however.
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10.1.2 Basic Issues
In recent years, algorithms of the stochastic approximation type have found many new appli-
cations in diverse areas. New techniques have been developed for proofs of convergence and
rates of convergence. Whether or not they are called stochastic approximation algorithms,
many procedures frequently used in practical systems are for the purposes of locating the
roots of a function and/or for function optimization. Owing to the recent extensive devel-
opment of methods such as infinitesimal perturbation analysis [32] for the estimation of the
pathwise derivatives of complex discrete event systems, the possibilities for the recursive
on-line optimization of many such systems that arise in communications or manufacturing
have been widely recognized.

Treating stochastic approximation type recursive algorithms, the main idea is to show
that asymptotically the noise effects average out so that the asymptotic behavior is deter-
mined effectively by that of a "mean" ODE. Since the algorithms are recursive and iterative,
the basic issues in the study of stochastic approximation methods include convergence of the
algorithms, the rates of convergence, the efficiency of the procedures, and related methods
in stochastic optimization.

10.1.3 Outline of the Chapter
The rest of the chapter is arranged as follows. Section 2 presents various algorithms and their
variants. Section 3 deals with convergence of stochastic approximation type algorithms, and
Section 4 presents rates of convergence of the corresponding algorithms. Large deviations
principle is then discussed in Section 5, and asymptotic efficiency is treated in Section 6.
Several recent applications of stochastic approximation algorithms are presented in Section
7. Finally, we close this chapter with a few more remarks in Section 8.

10.2 Algorithms and Variants
This section is divided into several parts. We begin with the basic algorithm in its simplest
form, and then generalize it to include various variations.

10.2.1 Basic Algorithm
We begin with the simplest algorithms known as RM algorithms aiming at finding the zeros
of a nonlinear function. This is then extended to function optimization problems with the
use of KW algorithm.

RM Algorithm

Let / : Rr H-> R7" be a continuous function. Suppose that we want to find f ( x ) — 0, but
only noisy measurements

yn = f(xn) + £n
are available, where {£ra} denotes a sequence of random noise. Note that n is a positive
integer representing the number of observations up to the current moment (the current
iterate). For convenience, it is often thought as a "discrete time." The basic setup of the
stochastic approximation algorithms proposed by Robbins and Mohro takes the form

xn+i = xn + anyn, (10.2.1)

where {an} is a sequence of nonnegative real numbers satisfying ̂ n an = oo and an —> 0 as
n —» oo. The sequence {an} is usually referred to as a sequence of step sizes or gains. The
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conditions on the step sizes indicate that they cannot be too small. If they are too small
(i.e., ^2n an < oo), then the iterates produced may not ever converge to the desired value.
To see this, take the noise-free case £„ = 0 and suppose that /(•) is a bounded function.
Then

.7=0 j=0

[Here and throughout the paper, K > 0 is used as a generic constant; its value may change
for different usage. Thus by our convention, K + K = K and KK — K.] The above argument
indicates that X^(xj+i ~ x j ) converges absolutely. Nevertheless, by telescoping

— xj = xn+l - Xp.
j=0

Thus, xn /» x*, the true parameter we are approximating unless x0 is sufficiently close to
x*.

KW Algorithm

The RM algorithm in the previous subsection concerns root findings. In 1952, Kiefer and
Wolfowitz proposed another type of stochastic approximation algorithm to locate the optima
of a real- valued function. Suppose that we want to minimize a function /(x), but only noise
observations F(x,£) are available. Suppose that EF(x,<^) = f ( x ) , but we know neither the
form of .F(-) nor that of /(•). To approximate/estimate the optimizer, we use the finite
difference approximation to the gradient of f ( x } . Denote the finite difference interval by
{cn} (with cn —> 0 as n — > oo). Use xn to denote the nth estimate of the minimum. Suppose
that for each i and each n, we can observe

_ F(xn + cnej, C+) ~ F(xn - c^ Cn )
- 2cn

where C-̂  are random noise. Denote yn = ( y n , i - , - - - ,l/n,r)- Then the approximation algo-
rithm is again given by xn+\ = xn + anyn, which is the same form as that of (10.2.1). By
introducing

with

. — f /Yr -\-rp-\- F(r -\-CP- f^ }] — \ f(r — r ?•} — Fir —T-)i — U V K "̂  ^n^i/ -1 V n ' uncz? S>n ? / J [J v ^ cncz/ x V^n

f ( T 1 /^ P • 1 —— f (T —— C* f • i_ r /-„ \ J Vx™ ' °nei/ J Vxn (-nCi;

where fx(-) denotes the derivative (gradient) of /(•) w.r.t. x. Now the above algorithm can
be rewritten as

xn+i =xn- anfx(xn} + an—^ + an/3n. (10.2.2)
2cn

In the above, £„ represents the noise, and /?„ denotes the bias. We have used two-sided finite
difference. One-sided finite difference can also be used. However, in practice, the two-sided
finite difference method appears to be more preferable since it has smaller bias. This is
easily seen by taking a Taylor expansion of the finite difference quotient in /?„.
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10.2.2 More General Algorithms
We first present algorithms with nonadditive noise. Then we treat stochastic approximation
of the most general form, in which not only the noisy appears in nonadditive form, but also
the functions involved are varying with respect to time.

Algorithms with Nonadditive Noise

In various applications such as those arising in signal processing and adaptive controls, one
often needs to treat stochastic approximation algorithms with nonadditive noise of the form

xn+i = xn + anf(xn,£>n). (10.2.3)

It is clear that (10.2.3) includes both (10.2.1) and (10.2.2) as special cases. Such an algorithm
arises, for example, in the use of "equalization" filters in communication channels, adaptive
antenna array processing etc.

Algorithms Involving Time-varying Functions

Similar to the previous case, we treat problems with the general nonadditive noise case. In
addition, /(•) also depends on the discrete time n. The underlying algorithm is:

gen - sa - vfxn+i = xn + anfn(xn,£n). (10.2.4)

To be able to track slight parameter variation, one often uses an algorithm with constant
step size of the form

Xn+i = Xn + Efn(xn,£n), (10.2.5)

where e > 0 is a small parameter. Such constant step-size algorithms are used frequently in
tracking parameter variations in a time- varying system.

Passive Stochastic Approximation

Suppose that one wants to solve the equation f ( x ) = 0 on the basis of measurements
Un = f(xn)+f,n, where {£n} is a sequence of random noise. Unlike the traditional stochastic
approximation problem, the sequence {xn} emerges in a random manner and is not at one's
disposal. How can one solve such a problem?

In [30] , Hardle and Nixdorf suggested an interesting approach and termed it as passive
stochastic approximation. The origin of such an approach can be traced back to an early
work of Revesz [66]. Its essence is to combine the stochastic approximation methods with
nonparametric kernel estimation procedures and to approximate the root of equation f ( x ) =
0 by another sequence {zn} according to

, n Tr I n n, f-tr\ n r-\zn+1 = zn + —K — - —— yn, (10.2.6)
nn \ hn J

where K(-) is a kernel function, an is the step size, and hn represents the window width.
This procedure is a generalization of the conventional Robbins-Monro methods. One of the
crucial points here is the utilization of the real- valued kernel function K(-), which is often a
concave curve. If zn and xn are far apart, K((xn — zn)/hn) will be very small. As a result,
only a small proportion of the measurement yn is added to the iteration. In Yin and Yin
[101], we treated the measurements of the form yn = /(£„,£„). Considering the fact that
algorithms with constant step size are capable of tracking small parameter variation and
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are numerically robust, we considered an algorithm with constant step size and constant
window width

~ (arn,£n), forn > 0. (10.2.7)
5

The asymptotic analysis of such algorithms is provided under the framework of weak con-
vergence (see also the related work [94] for with probability one convergence); applications
to chemical processes are also dealt with.

10.2.3 Projection and Truncation Algorithms
An important issue in applications of stochastic approximation concerns the boundedness of
the recursive iterates. In practice, one often modifies the algorithms in one way or another.
Although there are no "rules of thumb," one confines the attention of the iterates to some
compact set by using physical or economical constraints from the actual problems. As
argued in [53], well-defined problems in applications always have either explicit bounds or
implicit bounds. "For example, instability can be caused by values of an that are too large
or values of finite difference intervals that are too small. The path must be checked for
undesirable behavior, whether or not there are hard constraints. If the algorithm appears to
be unstable, then one could reduce the step size and restart at an appropriate point or even
reduce the size of the constraint set. The path behavior might suggest a better algorithm."
Based on such a consideration, much of the book [53] is devoted to projection or truncation
algorithms.

To proceed, we use (10.2.3) to describe the projection algorithms. Both fixed-projection
regions and random truncation bounds will be discussed.

Projection Algorithms as Constraints

Suppose that H is a constraint set. We demand the iterate to be in the set. To do so, write
the recursive algorithm as

xn+l = HH (xn + anf(xn, &0) , (10.2.8)

where Tiff denotes the projection onto the constraint set H. Basically, if the iterate is within
the projection region, we simply keep the recursion running; if it is outside the region, we
project it back. Define a "reflection" or correction term zn as

^n^n = ^n+1 %n Q"nJ (.^m £,n)i

i.e., it is the vector of shortest Euclidean length needed to take xn + anf(xn,£n) back to
the constraint set H if it is not in H. Using this notation, (10.2.8) can be rewritten as

xn+i = xn + anf(xn,£n) + anzn. (10.2.9)

What kind of constraint sets can be included? In fact, a wide range of constraints can
be considered; see [53, pp. 77-79] for several choices given in (A4.3.1)-(A4.3.3). One of
the widely used such sets is a hyper cube. In this case, the iterates are confined to a cube
with appropriate dimensions. Based on nonlinear programing type consideration, a more
general region with boundaries given by differentiable functions may also be considered.
Suppose x € Rr. Another possible candidate is an even more general set with H being an
Hr-1 -dimensional connected surface with continuously differentiable outer normal.
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Soft Constraints

The projection or truncation algorithms discussed so far may be considered as "hard con-
straints." The iterates are required to be in the constraint set H at all the time (for all ri).
Sometimes, we may wish to relax these "hard constraints," and allow them to be violated
slightly from time to time. Roughly, such constraints are "soft constraints." In various ap-
plications, one often wants to use the hard constraints and the soft constraints in a combined
manner.

The following example is taken from [53, Section 5.5]. The soft constraint is taken as
the sphere

So = {x; \x\ < R0}.

Define

Then,

q(x) =

Its gradient is

The algorithm is

[ml \x-y\r
3/6 So

for |x| > R0

otherwise.

2x(l - Ro/\x\) for x > RQ

0 otherwise.

- anyn - anK0qx(xn) (10.2.10)

for sufficiently large positive KQ. In view of (10.2.10), the iterates are allowed to be outside
the sphere, and the constraint on the sphere can be violated. However, by adding a a penalty
term Koqx(-), we make sure that the iterates do not wander too far from the sphere, and
the violation of the constraint set is in a tolerable range.

Random Truncation Bounds

With the motivation of building a truncation region without prior knowledge of the trun-
cation set, Chen and Zhu suggested a randomly varying truncation algorithm in 1986; see
[12] and the references therein.

To proceed, we let {M(ri)} be a sequence of positive real numbers, such that M(n) -^->
co. Define a sequence of integer-valued random variables an recursively as

o-0=0 (10.2.11)
(10.2.12)

Now define the stochastic approximation algorithm with randomly varying truncations as

Xn+l =
(10.2.13)
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The rationale is that at each iteration, one should check if the iterate obtained is within
the randomly generated bound. If it is, do nothing; otherwise, return the iterate to a fixed
point. Since an is monotone increasing, either an —> CT a finite limit, or an —> oo. The
effort is then to show that a finite a exists. When a finite CT exists, then there exists a
n(n), such that for all n > n(n), an is sufficiently close to CT and xn + anyn\ < M(CT).
Therefore, for any n > n(n), we have \xn\ < M(a), i.e., after finitely many steps, xn will
be bounded uniformly for almost all sample points uj. Thus eventually (for large n) the
algorithm becomes a standard one with bounded iterates.

10.2.4 Global Stochastic Approximation

An important task in control, optimization and related fields is to locate the global min-
imum of /(•) : Kr H-> [0,oo), a smooth function, which has multiple local minima. The
situation of interest is: We cannot calculate the gradient of /(•) explicitly and only noise
corrupted gradient estimates or measurements, V/(x)+noise, are available. Consequently
standard deterministic algorithms are not able to produce desirable results. One needs to
rely on stochastic approximation type of algorithms. Nevertheless, a stochastic approxima-
tion algorithm of the form

xn+i=xn-an(Vf(xn)+£n), (10.2.14)

may lead to the convergence to a local minimum. Let Si denote the collection of all the
minima of f ( x ) . Under broad conditions (see for example, Kushner and Clark [43] or the
more up-to-date treatment of Kushner and Yin [53]), xn —» Si w.p.l. Very often the iterates
will be trapped at a local minimum and will miss the global one. To overcome the difficulties,
much effort has been made to design suitable procedures for the global optimization task. In
the 1980s, one such global optimization methods, simulated annealing, started attracting the
attentions of researchers and practitioners. In [36], Kirkpatrick, Gelatt and Vecchi proposed
a method of solution by running the Metropolis algorithm [58] while gradually lowering the
temperature. Further analysis on the methods via Monte Carlo techniques are contained in
Kushner [41], and Gelfand and Mitter [28] among others (see also Dippon and Fabian [18]
for a different treatment). The rate of convergence is analyzed in Yin [95]. Algorithms with
restarting devices are considered in Yin [96]; see also the applications to image estimation
problems in [98] and the references therein. To proceed, consider

xn+i =xn- ^(V/(in) + 60 + -^——^====Wn, for 0 < 7 < 1, (10.2.15)

and/or

xn+l = xn- -(Vf(xn) + £„) + B ==Wn, (10.2.16)
n i/nlnln(n + AO)

where A, AQ and B are some positive constants. Notice that there are two noise sequences,
of which {£,n} is a sequence of measurement noise, and {Wn} is a sequence of added random
perturbations. Following the basic premise of the annealing scheme, the purpose of the use
of {Wn} is to give the iterates enough excitation and to force xn jumping around so that
the iterates will not be trapped at one of the local minima. This idea can also be used in
conjunction with KW type algorithms. In such a case, V/(x) +£n is replaced by its gradient
estimate using only values of functions at design points.
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10.2.5 Continuous-time Stochastic Approximation Algorithms
Until now, we have only mentioned stochastic approximation in discrete-time. There are
continuous-time version stochastic approximation algorithms. In addition to the mathe-
matical interest, the reason for considering the continuous version algorithm stems from the
fact that the continuous-time algorithms are good approximations to discrete-time problems
when the sampling speed is high. It is important to establish that no problems arise should
the sampling rate become very high. This point was well taken in [59] for least squares type
estimation schemes.

Consider the following stochastic approximation algorithms in continuous-time:

(10.2.17)

where a(t) > 0 is the step size satisfying
/•CO

a(t) -> 0, / a(t)dt = oo,
Jo

represents the noise. In [43], continuous-time stochastic approximation problems were
treated extensively in addition to the discrete-time problems. Some of the recent work
include [97] among others. Because in various applications, discrete- version of the problems
is more frequently encountered, in this chapter we will mainly concentrate on discrete-time
algorithms.

10.2.6 Stochastic Approximation in Function Spaces
The setting of stochastic approximation can be carried over to infinite dimensional spaces,
e.g., Banach spaces and/or Hilbert spaces. In addition to the pure mathematical interest, the
motivation of the study stems from the fact in various optimization problems, the solutions
of the problems involve finding the root or the optimum for points not living in Euclidean
spaces, but in function spaces. For example, consider a system with transfer function K(-),
input z ( - ) , sampling interval A, and output (at sampling time nA)

(
=

Jo

where {if}n} is a stationary sequence of observation noise with zero mean that is independent
of z ( - ) . To estimate K(-), one can use the following recursive algorithm

Kn+i(u) = Kn(u) -£2(nA-u) / Kn(s)z(n& - s)ds - yn

where e > 0 is a constant step size. Working with, for example, K(-) € L2[0,T], the space
of square integrable functions on [0,T], the problem becomes a stochastic approximation
type procedure in a Hilbert space. For a detailed account on the treatment of this problem,
see [47]. Stochastic approximation methods in function spaces have been studied by a host
of researchers. To mention just a few, see [5, 37, 70, 82, 103] among others.

10.3 Convergence
This section is concerned with convergence of stochastic approximation algorithms. To
avoid the complex technical details and to bring out the salient features of the problems,
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we shall consider stochastic approximation algorithms with the simplest form. As a result,
much of the subsequent development focuses on algorithms with additive noise. We do not

" attempt to present the weakest conditions here, but rather aim to present the results in their
simple form. It should be mentioned that much more general systems with time-varying
functions, nonadditive noise, state dependent noise, and complex projection regions can be
dealt with. We refer the reader to [53] for various detailed treatments. Here, in this paper,
we concentrate on the ordinary differential equation approach (ODE), which establishes
connections of the discrete iteration and the continuous-time dynamic systems.

10.3.1 ODE Methods
The ODE method combines probability ideas and analysis techniques. Instead of working
with the discrete iteration directly, we take a continuous-time interpolation. To get some
insight on how the method works, we first give some heuristic argument.

Consider (10.2.1). Suppose that the function /(•) is continuous. Also for simplicity,
assume the measurement or observation error is a sequence of independent and identically
distributed random variables. Choose a small A > 0 such that

E
j=n

A or equivalently (10.3.18)

m% = max { m; }] a,j < A } . (10.3.19)

Then iterating on (10.2.1) yields
. A_-, » A_i

aj£r (10.3.20)
]=n

For A small enough and for continuous /(•), for n < j < n + mn, f ( x j ) is "close" to f(xn)
by the continuity. As a result

3=n j=n

and

xn+mA - xn sa A/(xn) + error . (10.3.21)

How big is the error? Let us compute its variance:

(n+m£-l \ /n+m*-l \

Y^ a^\ =O I Y, a1 I = °(Aa«)-
j=« / \ i = n /

Therefore
m"——— K, f(xn) + error with diminishing variance.

Therefore, over small a interval, the mean change of the values of the parameter is much
more important than that of the noise. The noise is averaged out in the limit, and the
asymptotic behavior can be approximated by the differential equation

i = /(x). (10.3.22)
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To prepare us for the study of the desired asymptotic properties, let us recall the notion
of equicontinuity. Let { f n } denote a sequence of Revalued functions on [0, oo). The set is
said to be equicontinuous in C""[0, oo) (the set of Revalued continuous functions denned on
[0, oo)) if {/n(0)} is bounded and for each T and s > 0, there is a S > 0 such that for all n

sup \fn(t) - fn(s)\ < e. (10.3.23)
\t-s\<6, \t\<T

The well-known Arzela-Ascoli Theorem states:

Theorem 10.3.1 Let { f n } be a sequence of functions in Cr[0, oo), and let the sequence
be equicontinuous. Then there is a subsequence that converges to some continuous limit,
uniformly on each bounded interval.

Remark In fact, it is more convenient to work with a sequence of functions that are
piecewise constant interpolation of the iterates. However, in this case, the equicontinuity
and Theorem 10.3.1 need to be modified. In [53, Chapter 4], we denned the notion of
equicontinuity in the extended sense and used it to study the stochastic approximation
problems. In what follows, for simplicity, we use piecewise linear interpolation and use
Theorem 10.3.1 to avoid the technical details.

To formulate the problem, we take piecewise linear interpolations and work on sequences
of continuous functions. To do so, define

n-l

tn = Y^aj (10.3.24)
j=o

x°(tn)=xn (10.3.25)

(10.3.26)

That is, the interpolation interval is (tn,tn+i). Next, to bring the asymptotic behavior of
the process to the foreground, define a shifted sequence by

Under suitable conditions, it can be shown that {xn(-)} is uniformly bounded and equicon-
tinuous. By Ascoli-Arzela Theorem, we can extract a convergent subsequence xnk(-) such
that xnk(-) —> x ( - ) . Then we characterize the limit x(-) and prove that it is nothing but the
solution of the ODE (10.3.22). Why is such an ordinary differential equation important?
The reason is clear. The stationary points of (10.3.22) are exactly the roots of /(•) that we
are searching for. To proceed, we state a convergence result.

First let us recall the definition of "asymptotic rate of change is zero with probability
one (w.p.l)." Denote

{ m

m; 2_\aj ^ t
3=0

and

M°(t) = Y^ a £ - ,
3=0

where {£„} is the noise sequence. We say the rates of change of M°(-) go to zero with
probability one as t —* oo, if for some T > 0,

lim sup max M°(jT + £) - M°(jT) = 0 w.p.l (10.3.27)
nj"oo -i > 7^ 0 < £ < T"
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If this holds for some positive T, then it holds for all T > 0. Note that the w.p.l convergence
of ]T\ aj£j implies (10.3.27), but not the other way around. For example, the function
Y^=Q~l(l/(3 + !)) for t > 0 satisfies (10.3.27) but ^.(l/Q' + 1)) does not converge. To
proceed, we state a convergence result.

Theorem 10.3.2 Suppose the following conditions are satisfied.

- /(•) is continuous.

- The asymptotic rate of change of M°(t) is zero w.p.l.

- The iterates {xn} are bounded w.p.l.

- Denote
Z = {xe Rr- f ( x ) = 0}.

There is a twice continuously differentiable function V(-) satisfying

V^(x)f(x) < 0 for all x £ Z,

where Vx(-) denotes the derivative o f V ( - ) .

Then
limd(xn,Z) = liminf{|xn — y\; y 6 Z} = 0 w.p.l.
n n

If Z = {x*}, a singleton set, then xn —> x* w.p.l.

Remark . The function V(-) used above is simply a Liapunov function for the differential
equation (10.3.22). The requirement indicates that we need the stationary points of the
ordinary differential equation to be asymptotically stable.

In the above, for simplicity, we have assumed the iterates {xn} to be bounded w.p.l.
This can be realized by use of truncation algorithms mentioned previously. Even without
using projections or truncations the boundedness may also be proved in certain cases and
sufficient conditions guaranteeing this boundedness can be obtained. For more detailed
discussion on this matter, we refer to [53, Chapters 5 and 6].

10.3.2 Weak Convergence Method
First, let us recall the definition of weak convergence. Let Xn and X be ]Rr-valued random
variables. We say that Xn converges weakly to X iff for any bounded and continuous
function <?(•) ,

Eg(Xn) -> Eg(X).

{Xn} is said to be tight iff for each r) > 0, there is a compact set Kn such that

P(Xn eKr,)>l-r] for all n.

The definitions of weak convergence and tightness extend to random variables in a metric
space. The notion of weak convergence is a substantial generalization of convergence in
distribution. It implies much more than just convergence in distribution since #(•) can
be chosen in many interesting ways. On a complete separable metric space, the notion of
tightness is equivalent to sequential compactness. This is known as the Prohorov's Theorem.
Due to this theorem, we are able to extract convergent subsequences once tightness is
verified. Let Dr [0, oo) denote the space of Revalued functions that are right continuous
and have left-hand limits, endowed with the Skorohod topology. For various notations
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and terms in weak convergence theory such as Skorohod topology, Skorohod representation
etc. and many others, we refer to [22, 40] and the references therein. To carry out the
weak convergence analysis, one often uses a martingale problem formulation, which to some
extent is a weak sense solution of a stochastic differential equation. Consider a stochastic
differential equation

dx(t) = b(x(t))dt + a(x(t))dw(t}.

The differential generator for the diffusion process x(-) given above is

= h'x(x}b(x) + - h X i X i ( x ) a i j ( x ) ,

where
d2

hXiXj(x) = -—-—h(x) and a(x] = a(x)cr'(x}.

Define

Mfc(t) = h(x(t)) - /i(x(0)) - / £h(x(s))ds.
Jo

If Mfe(-) is a martingale for each /i(-) 6 CQ (C2 function with compact support), then x(-)
is said to solve a martingale problem with operator £. The problem of identifying the weak
limit of a sequence can be recast as the characterization of a solution of an appropriate
martingale problem.

In studying stochastic approximation algorithms, the techniques of weak convergence
have been found to be very useful. The application of weak convergence methods usually
requires first tightness be proved and then the limit process be characterized. First, when
treating constant-step size algorithms, the pertinent notion of convergence is in the sense of
weak convergence. Second, to deal with rate of convergence issues and/or to design stopping
rules for the iterates always involve the distributional convergence of sequences of suitably
scaled random processes. To study the asymptotics in such a distributional setting, weak
convergence is the most useful method in our tool box.

Now let us state a result in regard to the constant-step size algorithm. Take a piecewise
constant interpolation as

(
XQ, when t = 0,

xn, when t 6 [ne, ne + e).

The sample paths of the process x£(-) are in Dr[0,oo).

Theorem 10.3.3 Consider algorithm (10.2.1) with the deceasing step size replaced by a
constant step size e > 0. Suppose:

- /(•) is continuous.

- The initial condition satisfies XQ => XQ •

- For each x,
.. n+m

— y , Em^j —> Q in probability as n —> oo,
Ti —"^

j=m
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where Em denotes the conditional expectation with respect to the a-algebra Fm — CT{XO, £,j, j <
TO}. Then {xs(-)} is tight in Dr[0, oo), and any weakly convergent subsequence has a limit
x ( - ) which is a solution of the ordinary differential equation (10.3.22). Moreover, if {xn} is
tight, /(•) has a unique stable point x*, and if te —» oo as £ —> 0, then xs(- + te) converges
weakly to x*.

Remark Note that sufficient conditions for the tightness of {xn} can often be obtained
with the help of the perturbed test function method that is developed by Kushner and
co-workers. To prove the first result of the theorem (the convergence to the mean ODE), a
truncation device [40, p. 83] or [53, Section 8.5] can be used.

The condition on the noise above is of the law of large number type. The required
convergence is in the sense of weak convergence. The insertion of the conditional expectation
Em makes the condition weaker than without it (e.g., it is automatically satisfied for a
sequence of i.i.d. noise with zero mean). The weak convergence to the solution of the
ordinary differential equation gives us a result on t belonging to a large but still bounded
interval, whereas the convergence of x£(- + te) illustrates the behavior of the iterates for
small e and large n (as e —> 0 and n —> oo simultaneously).

One of the effective ways of analyzing stochastic approximation algorithms with state-
dependent noise is the invariant measure approach of Kushner and Shwartz [46]. Not only
can we treat complex noise processes, but also we can deal with discontinuity in the under-
lying function. A more refined argument is in [53].

10.4 Rates of Convergence
Once the convergence of a stochastic approximation algorithm is established, the next task
is to ascertain the convergence rate. To begin, the first question is: For stochastic approxi-
mation, what do we mean by "rate of convergence?" To answer the question, consider, for
instance, Eq. (10.2.1). Suppose that xn —> x* (the true parameter) w.p.l as n —> oo. To
study the convergence rate, we take a suitably scaled sequence

un = (xn-x*)/a%,

for some a > 0 [In case of constant-step size algorithm, this is changed to (xn — x*)/ea.]
The idea is to choose a such that un converges (in distribution) to a nontrivial limit. The
scaling factor a together with the asymptotic covariance of the scaled sequence gives us the
rate of convergence. That is, the scaling a tells us the dependence of the estimation error
xn — x* on the step size, and the asymptotic covariance is a mean of assessing "goodness" of
the approximation. For general references on rate of convergence, we refer the reader to [24,
43, 44, 48, 53]. For related work on convergence rate of variants of stochastic approximation,
see [55, 95].

As mentioned above, by using the definition of the rate of convergence, we are effectively
dealing with convergence in the distributional sense. Since the randomness is attached, as
in the investigation of convergence, the rate of convergence study is very different from any
purely deterministic, root-finding and/or optimization algorithms. In lieu of examining the
discrete iteration directly, we are again taking continuous-time interpolations.

10.4.1 Scaling Factor a
What are the suitable scalings for the stochastic approximation algorithms? For decreasing
step size algorithms, the suitable scaling is ^/a^. and for constant step size algorithms, the
scaling is \fe. In both cases, the factor a = 1/2 is used. To some extent, this is dictated by
the well-known central limit theorem.
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10.4.2 Tightness of the Scaled Estimation Error
To validate our claim of the scaling factors, we need to show that {(xn — x*)/^/a^} (resp.
{(xn - x*)/^/e}) is tight. Such a proof can be carried out by means of a perturbed Lia-
punov function approach (see [40, 53]). The approach is as follows: we examine the sequence
V(xn), where V(-) is a Liapunov function of (10.3.22), and xn is obtained from a stochastic
approximation algorithm. In proving the desired bound of V(xn), there will be some un-
wanted terms showing up. To get rid of them, we introduce a perturbation to the Liapunov
function. The perturbation is small in magnitude, and results in appropriate cancelation
in the iterate. Then we establish the bound of V(xn) via the perturbation. For a detailed
account, see [53, Chapter 10].

For simplicity, consider again the simple algorithm (10.2.1) with an — e, constant step
size. We proceed to provide sufficient conditions guaranteeing the tightness of the scaled
sequence.

Theorem 10.4.1 Suppose that the following conditions are satisfied:

- There is a unique asymptotically stable point x* of the ODE (10.3.22) .

- There is a twice continuously differentiable Liapunov function V(-) such that

— V(x) — > oo as \x\ — > oo, and Vxx(x] is bounded for each x.

- \f(x)\2 < K(! + V(x)) for each x.
- Vx(x)f(x) < — XV(x) for some A > 0 and each x ^ x* .

- The noise {£„} is a sequence of stationary random variables satisfying E£n = 0 and
E\£\2 < oo such that

E
j=m

oo

E^
j-m

< K

< K.

(10.4.28)

(10.4.29)

Then there is an N£ such that for all n> Ne, EV(xn] = O(e). If in addition,

V(x) = (x- x*)'Q(x - z*) + o(\x - x" |2),

(i.e., V(x) is locally quadratic), then {(xn — x*)/^/e; n > N£} is tight.

We will not provide the proof. However, we will discuss the idea of perturbed Liapunov
function briefly. To begin, it can be seen that by using the assumption on /(•) and V(-),

EnV(xn+l) - V(xn)

= eVx(xn)f(xn) +

< eVx(xn)f(xn} +

< -\V(xn) + eVx(

(10.4.30)
tn + O(e2)(l + V(xn)

0(e2)(l + V(xn) + E

2)
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where :r+ is on the line segment joining xn and xn+\. The second line in (10.4.30) follows
from the growth condition on /•. Define a perturbation

j=n

Note that

\V^\ = 0(e)(l + V(Xn)). (10.4.31)

Define
K == V(xn} + V*.

We then proceed to calculate EnVn+i — Vn. The defined perturbation will allow us to cancel
the noise term in (10.4.30). Iterating on the recursion, taking expectation, and using the
order of magnitude estimate (10.4.31), we can then obtain

EVn+i < (1 - e\0)EVn + 0(e2) (10.4.32)
n

< (1 - eXo)nEV0 + 530- - £\0)n~jO(e2) (10.4.33)
3=0

= O(e), (10.4.34)

where 0 < AQ < A. Now using (10.4.31) again, we also have EV(xn+i) = O(e). The desired
estimate follows.

10.4.3 Local Analysis
To obtain further results on rate of convergence, we linearize f ( x ) about x* , and carry
out local analysis. Let us consider (10.2.1) with constant step size e > 0. Taking Taylor
expansion about x* leads to

'I*.
£n+1 = Xn + £fx(x*)(xn -X*)+££n + -s(xn - X*)' fxx CO fan -£*),

where x*n is on the line segment joining xn and x*. Define un = (xn — x*)/-^/e. Using this
in the above equation yields

«„+! = Un + £fx(x*)Un + ̂ n + O(e3/2\Un\2 |/**«) I ) - (10.4.35)

If f x x ( ' ) is bounded uniformly, and the conditions of Theorem 10.4.1 are satisfied, then
the expectation of the norm of the last term in (10.4.35) is of the order O(e2) and is thus
negligible. Iterating on (10.4.35) gives us

& + °(1)' (10.4.36)
j=Ne j=Ne

where o(l) — > 0 in probability. To proceed, define a piecewise constant interpolation ue(-)
as ue(t) = un for t e [e(n - N£),e(n - Ns + 1)). In view of (10.4.36),

(t+s)/e (t+a)/s

Uc(t + s) = u£(t)+e 53 fx(x*)Uj + Vt ^ &+°(l) ,
3=t/£ 3=t/e

where o(l) — > 0 in probability uniformly in t. Then the following theorem can be established.
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Theorem 10.4.2 Assume the following conditions are satisfied.

- All the conditions of Theorem 10.4.1 hold.

- fxx(') is bounded uniformly.

- The process
t/e

\/£y~^£j converges weakly to w(t) a Brownian motion with covariance Rt,
3=0

where R is symmetric and positive definite.
Then ue- is tight in Dr{0, oo), and any weakly convergent subsequence has a limit u(-) that
is a solution of

du = fx(x*}udt + Rl/2dw (10.4.37)

where R1/2 is the "square root" of R (i.e., R = Rl/2(R1/2)'), and w(-) is a standard Brow-
nian motion.

Note that in the above, we used the notation t/e. Eq. (10.4.37) has a unique solution for
each initial condition. This is understood to be its integral part. One of the main assump-
tions is the weak convergence of a scaled sequence of the noise to a Brownian motion. This
is not a restriction at all. If {£n} is a sequence of independent and identically distributed
random variables with zero mean and second moments (or a sequence of martingale differ-
ence noise), then this assumption is just the well-known Donsker's functional central limit
theorem. Suppose that {£n} is a sequence of stationary </?- mixing noise with E\^n

 2+s < oo
for some S > 0. Denote p = (2 + <5)/(l + 5), use the mixing measure <pp(-) defined in (3.1)
on [22, p. 350], and suppose

Then by Theorem 7.3.1 in [22], \/£/L)J=;V C? converges weakly to a Brownian motion w(-
with covariance Rt, where

R = E&& + £ E^'j
3 = 1 3 = 1

Theorem 10.4.2 concentrates on constant step size algorithms. There is also a decreasing
step size counterpart. In the decreasing step-size case, replace e and \fe by an and ^/d^,
respectively. Then we can show that (xn — x*)/ ^/a^ is tight for n > N. Define tn =
H"=o Oj and take a piecewise constant interpolation un(-) with the interpolation interval
[tn — tjv, tn+i — iff). We then proceed as in the previous case. The traditional central limit
result can be obtained from Theorem 10.4.2. For instance, for the decreasing step-size case,
suppose fx(x*) is a stable matrix (i.e., all of its eigenvalues have negative real parts). Then
the stationary covariance of the diffusion given in (10.4.37) is

y*OO

R= exp(/z(x*)t)JR[exp(/x(z*)t)]'d*.
Jo

Alternatively, it is a solution of the algebraic Liapunov equation

Consequently, wejiave (xn — x*)/^fa^l converges in distribution to a normal random variable
with covariance R as n — -> oo.
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10.4.4 Random Directions
One of the most important matters is to improve the performance of stochastic approxi-
mation algorithms. Let us consider KW algorithms. Each step of the KW algorithm uses
2r observations (if two-sided finite difference is used). Thus 2r steps are needed to get a
derivative estimate. An alternative method is to update only one direction at each iteration
using a finite difference estimate and to choose the direction randomly at each step. This
results in using only two observations at each step. Such an idea appeared in Kushner and
Clark [43] together with the associated convergence and rate of convergence results. At that
time, it was noted that if the random directions are chosen at the unit sphere, then there is
a little advantage as compared to the KW method. The recent work of Spall [77] indicated
that if the random directions are chosen on the unit cube, then the performance is better
than the KW algorithms. [Note that the length of the random direction vectors chosen in
[77] is ,/r.] Further discussion is in [53, Chapter 10]. It is demonstrated in [53] that the
crucial point is the choice of the random directions vector. In fact, if the random directions
are chosen to be on the sphere of radius i/f then the random directions methods can be
advantageous. Such an approach is particularly efficient for large dimensional problems.
However, to apply the methods, care must be taken; see the discussion in [53, Chapter 10].

Introduce a sequence of random directions vectors by {dn}. Then the random directions
KW algorithm can be written as

andn
Vn ~Vn , (10.4.38)2cn

where
Vn =

and F ( - ) and {cn} were defined as in Section 2.2. For convergence and rate of convergence
analysis results on random directions stochastic approximation algorithms, see [53, Chapter
10] and the references therein. It is conceivable such random directions methods will be
very useful for a wide range of applications, especially for large-scale optimization tasks.

10.4.5 Stopping Rules
One topic that has not been discussed thus far is the design of stopping rules. In various
applications, one needs to terminate the calculations if the desired precision is reached. To
develop good stopping rules is an important matter. In regard to the work along this line,
we mention the papers [75, 78, 61, 91]. In these references, stopping rules were proposed
based on the construction of various confidence intervals. Roughly speaking, the procedure
is as follows. Choose a, such that 0 < a < 1 and 1 — a is the desired confidence coefficient.
Given e > 0. let ve = v(e, a) denote the stopping rule, and Ellip^ be the ellipsoidal region
about the true parameter x* , and ^(Ellip^) be the volume of the ellipsoid. As the volume
shrinks, i.e.. £ — > 0,

P{x* e Ellip^ and F(Ellip^) < er} -> 1 - a.

To analyze such problems, a main task is to treat a stopped process of a suitably scaled esti-
mation errors. In [91], this was done by means of weak convergence method and martingale
averaging.

10.5 Large Deviations
This section is concerned with the large deviations approach to stochastic approximation
methods. We first give the motivation of the study on the large deviations approach, and
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then present certain results for stochastic approximation problems.

10.5.1 Motivation
To give motivation, we first recall the notion of large deviations. Let us begin with a simple
example. Let {£n} be a sequence of i.i.d. random variables with E(,n — 0 and EC^ = cr2. For
simplicity, assume the underlying distribution is Gaussian [The Gaussian assumption allows
us to get an explicit representation of the logarithm of the moment generating function.]

Define Sn to be the sequence of partial sums, i.e., Sn = X^=i Cj- Suppose for a > 0,
we are interested in the probability of the event Ha = {Sn/n > a}. The well-known law of
large numbers indicates

~Sn -> 0n
either w.p.l or in probability depending on if the strong law or the weak law is used. The
central limit theorem implies

p — >
V n

So Ha is a rare event. Nevertheless, neither the law of large numbers nor the central limit
theorem tells us how rare the event is and how small the associated probability is.

To undertake the study, we need to have detailed description beyond the normal devi-
ation range. The large deviations approach is very useful in this regard. Use the Cramer
transformation or Legendre transformation

H(t) = log.Eexp(iC) = log moment generating function of £ (10.5.39)
2

L(a) = inf[H(t) - to] = -—^. (10.5.40)

Note that in the last line above, we used the fact that C is normally distributed. The
Chernoff's bound reads

l im-Iogpf — > o | =L(a).n n \ n J

It certainly gives the description on the probability of the event Ha. What has been obtained
is P((l/n)Sn > a) is "exponentially equivalent to" exp(L(a)n) = exp(-a2/(2a2)).

10.5.2 Large Deviations for Stochastic Approximation
Now, let us consider (10.2.1) with an = 1/n7 (for some 0 < 7 < 1), for simplicity. Suppose
that O is a bounded open set that is in the domain of attraction (DA(0)) of the ODE
(10.3.22). Define the first exit time of the trajectories of xn(-) from O as

rg =min{i; xn(t)

Then under suitable conditions, for some An,

limAnlogP(rS <T) = -v,
n

for some v > 0. What is An? It turns out An is precisely A^ = 1/n7. This indicates that the
probability of the trajectories exit from the bounded domain O is exponentially small, and

P(TG < T) ~ exp(-OT^).
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There is an analogue result for an = 1/n.
Use P™ to denote the probability under the condition that xn(0) = xn = x. Suppose

Bx C (7[0, T], the space of continuous functions denned on [0,T] with initial value x. Then

- inf S(T,<j>) <\immfanlogP^{xn(-)&Bx}
06 B° n

< lim sup an log P™ {*"(•) 6 Bx}
n

< - inf

where Sx is the closure of Bx , and

if <£(•) is absolutely continuous and takes the value oo otherwise. The function S(T, <£) is
the usual action functional of the theory of large deviations. In the above, L(-) plays the
role of a cost function-penalty for the path to depart from the mean trajectory. For various
developments of the large deviations approach to stochastic approximation, we refer to the
paper of Dupuis and Kushner [20] and the references therein.

10.6 Asymptotic Efficiency
It has been a longtime effort to improve the performance of stochastic approximation type
algorithms. In view of the discussion in the section on rate of convergence, what one wants is
to have the largest a and smallest covariance possible. The exploration on the improvement
of efficiency can be traced back to Chung [17].

To obtain asymptotically more efficient algorithms, one considers the following type of
algorithms (see [17, 81, 54, 85] and the references therein)

xn+1 = xn + - ( f ( x n ) + £„) , (10.6.41)
n

where F is a matrix to be determined. Suppose

f ( x ) = H(x-x*)+g(x),

where g(x) = O(\x — x*\2) and H is a stable matrix having all of its eigenvalues living in
the left half of the complex plan. Under suitable conditions (for example, those in the next
section), it can be shown that for {xn} given by (10.6.41)

\fn(xn — x*) — > N(0, S) in distribution as n — > oo,

where JV(0, S) denotes a normal distribution with 0 mean and covariance S, and £ = S(F).
It can be shown that S(F) satisfies the following Liapunov equation

(1/2 + rff)s + s(//2 + rny = -rs0r',
where SQ is the error covariance matrix. By means of algebraic comparisons, it can be shown
(see Wei [85, Theorem 1]) that by choosing T = —H~l, the optimal covariance matrix E*
can be obtained and is given by:

s* = H-1s0H~1.
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Since H'1 is very unlikely to be known, various approximation procedures have been
sought. Instead of using (10.6.41), the following algorithm is employed

p
xn+i = xn + -^ (f(xn) + £„) ,

where {Fn} is a sequence of estimates of F. For multidimensional problems, no matter
what kind of procedures are taken for estimating F (i.e., estimating every entry of F), the
computation task involved is very intensive. As a consequence, the results in adaptive
stochastic approximation are largely of theoretical nature and have not been used widely in
various applications. Instead, the standard stochastic approximation algorithms have been
employed extensively in a wide range of problems. In the rest of this section, we discuss two
classes of algorithms. The first one uses iterate averaging, and the second one uses averaging
in both the iterates and the observations. These algorithms give us asymptotic optimality
without the sacrifice of using complex estimation schemes.

10.6.1 Iterate Averaging
In the late 80's Polyak [63] and Ruppert [69] independently proposed and analyzed a very
interesting model for recursive algorithms of stochastic approximation type. The main idea
of their approach is the use of averaging of iterates obtained from a classical stochastic
approximation algorithm with slowly varying gains. Consider the following algorithm:

xn+i = xn + — ( f ( x n )

Xn+l -Xn-

(10.6.42)

where 1/2 < 7 < 1. They concluded that such algorithms are asymptotically optimal in
that they have the best scaling a and the smallest variance.

Uncorrelated noise processes were treated in [63]. Extension to tp-mixing type processes
was carried out in [93], and further generalization is in [49]. We can first prove the conver-
gence of the algorithm via the ODE approach. Then as in the classical SA problem, it can
be shown that EV(xn) = O(n7). Define

n = j.

Choose v = v(n) such that as n — > oo, v(n) — *• oo but 0. Then

xn+l = ^-Anjg(x3)-
j=v j=v

and

v-\

k̂=v

k=v j—

1 n 1 1^f E E ̂ k39(x3) + -^==
v fc=i/ j=v
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We then show under appropriate conditions

v-\
-iw.p.l

1 v^ n= / Ak v-ixv—>0 in probability
i + l^ '

in probability.

In addition,

where o(l)-^->0 in probability.
Next, define

[nt]

[nt]

Bn(t) = — —

(10.6.43)

(10.6.44)

where [z] denotes the largest integral part of z. Under suitable conditions, we can show
Bn(-) converges weakly to a Brownian motion £?(•) with covariance matrix SQ, where SQ is
given by

oo oo

S0 = £(6£i) + E^(^) + E E^&-
k=2 k=2

In addition, by the Slutsky theorem, Bn(-) converges weakly to a Brownian motion B(-)
with covariance matrix

As a result, the desired asymptotic optimality is established. For further approaches, see
[49] (see also [53, Chapter 11]) among others.

10.6.2 Smoothed Algorithms
With the motivation of improving the transient performance, we study another class of
stochastic approximation/optimization algorithm. The essence of this algorithm is the uti-
lization of averaging in both iterates (or states according to systems theory terminology, or
design points according to statistical terms) x's and noisy observations. It will be shown
that the algorithm also possesses asymptotic optimality. The origin of the algorithm can be
traced back to Bather [3]. In that reference, a scalar problem was considered, applications
of stochastic approximation to the sequential estimation of LD^o were dealt with and some
heuristic arguments were presented. Additional discussion of a scalar linear problem with
i.i.d. random noise was provided in [71] by decomposing the underlying difference equations
into deterministic and random parts, and deriving a representation formula.
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For 1/2 < 7 < 1, consider the following algorithm: Choose an initial value xi, and let
{xn} be given by

Define
1 ™

yn ~ n 2-^yj ~ n *-^*~ " "' "" ' n

Equation (10.6.45) then can be rewritten as

_ _ 1
x-n+i — xn + n—yn.

The essential feature of this algorithm is the use of averaging in both iterates and ob-
servations. By means of averaging, the fluctuation is smoothed out. The idea is as follows.
By using larger step size, the iterates are forced to get to a neighborhood of the true pa-
rameter x* faster, and by taking averages of both iterates and observations, rough iterates
are smoothed out and modified. We shall refer to this algorithm as the smoothed stochastic
approximation algorithm. Rigorous proofs and justifications for multivariate cases were pro-
vided in Yin and Yin [100]. Multidimensional systems are treated and much more general
noise is considered there, which is indeed needed for many applications arising in systems
theory, control and optimization problems.

Let us assume:

A. There exists a unique x* such that /(x*) = 0. The function /(•) is Lipschitz continuous
and satisfies the following conditions:

|/(x)|2 < «(1 + |x|2) for some K > 0, (10.6.46)
f ( x ) = H(x-x*)+g(x), (10.6.47)

where \g(x)\ = O(\x — x*|2), H is a stable matrix such that all of its eigenvalues have
negative real parts.

B. There is a twice continuously differentiable Liapunov function V(-) : Hr —> II such
that, V(x) >0, |14(x)| <«(l + y1/2(x)), \Vxx(-)\ is bounded, V(x) -> oo as x| -> oo,
and for some A > 0 and all x ^ x*, Vx'(x)/(x) < -AV(x).

C- {£n} is a stationary sequence satisfying:

(1) E£n = 0, E\£n\2+i < oo for some <5 > 0.
(2) H"=i Jt£j converges w.p.l.
(3) Define Rk = E£i£'k+l. Suppose that ]Tfe \Rk < oo.
(4) Define r(i,j) = E^i+j where Et denotes the conditional expectation with respect

to the er-algebra fi = c{£j\j < i}. For each i, the following condition is satisfied:

Without loss of generality, assume the true parameter is x* = 0 henceforth. Rewrite the
algorithm for xn as

Xn + l =Xn+ ——f(Xn) + ——fn + —— ̂ n
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such that 7rn — > 0 as n — > oo w.p.l, supn£ ?[•„ 2 < oo and .E|7rn|2 — > 0 as n — > oo, where
{7^} is the "left over" term defined in an obvious manner. Then we can show {#„} and
{xn} are both bounded with probability one (w.p.l). Furthermore, xn — » 0 and xn — > 0
w.p.l as n — > oo.

Next, define
[nt]

where [z] denotes the largest integral part of z, Then Bn(-) converges weakly to B(-), a
Brownian motion with covariance 'Sot, where

oo

Rk + '^,R'k. (10.6.48)
k=l k=l

Let
Bn(t) = ̂ XM+I,

\ Tc/

be a scaled sequence of the iterates. Then it can shown that for t 6 [0, 1],

H-i [«*1
Bn(t) = —— •= Y,b + °(!) = -H''Bn(t) + o ( l ) ,

vn
 k=i

where o(l) — > 0 (as n — * oo) in probability uniformly in t. Finally, we arrive at:

Theorem 10.6.1 Under assumptions A-C, Bn(-) converges weakly to a Brownian motion
B(-) with covariance S*t where S* = H~1Y,0(H~1)' and E0 is given by (10.6.48).

10.6.3 Some Numerical Data
We consider a couple of simple examples in this section. These examples are for illustrative
purposes and are taken from [100]. Two-dimensional systems, both linear and nonlinear, are
considered. Autoregressive moving average (ARMA) noise processes are used throughout.

Example 10.6.2 We are interested in maximizing a real-valued function

f(xl, x2) = -0.605x1 ~ 0.78xi - 1.665o;| + 2.92x2.

The gradient of this function is given by

-0.78

-3.33a:2 + 2.92

Suppose that observations V/(xi,x2)+ noise can be obtained, and the noise is an ARMA
(1,1) process given by:

\

where {wn} is a sequence of zero mean "white" noise.
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The performance of the algorithms is measured by the trace of the second sample mo-
ments, henceforth referred to as trace (SSM). Since it has been proven that the iterate
averaging algorithm (Algorithm A) and the smoothed algorithm (Algorithm S) are asymp-
totically optimal, comparisons are made through performance of these algorithms. A sum-
mary of results for the iteration with final values at n = 1000 is given in Table 1.

Note that the true value of the vector is 9 = (—0.6446,0.8769)'. Our approximations are
£1000 = (-0.6181,0.8612) for Algorithm A, and xwoo = (-0.6249,0.8646) for Algorithm
S, respectively. It appears that although initial conditions do not affect the approximating
sequences too much, they do have an impact on the results of the second sample moments.
The table above was constructed from initial condition x\ = (6,6)'. If the initial condition
is changed to x\ = (3,3)', the traces of the second moments are reduced to 0.027392, and
0.027804 for Algorithms A, and Algorithm S, respectively.

Algorithm

Iterate Averaging

Smoothed Algorithm

Trace of SSM

0.100133

0.095412

TABLE 1. Comparison of algorithms (linear case)

Example 10.6.3 Consider the problem of finding zeros of a nonlinear function when only
noise corrupted observations are available. The function is of the form:

/
-(0.3xi -0.75)3 -8

v - (0.8^2+ 0.60)3-!

f(x)+noise is observed with the same noise as before.

Algorithm

Iterate Averaging

Smoothed Algorithm

Trace of SSM

0.065153

0.061951

TABLE 2. Comparison of algorithms (nonlinear case)

Similar comparisons are made. Summary of computation results is provided in Table 2.
In fact, the function grows faster than linear so the condition in the theorem is violated. To
overcome the difficulties, a projection algorithm with projection region [—10,5] x [-10,5]
was used. From the tables, it is easily seen that the performance of the Algorithm A and
Algorithm S are comparable. To some extent, the algorithms with averaging stabilize the
recursive computation.

10.7 Applications
The development of stochastic approximation methods has been closely related to a wide
range of applications in stochastic control, identification and adaptive control, estimation
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and detection, signal processing, Monte Carlo optimization, management sciences, and many
other related fields. In this section, we present a number of applications of stochastic
approximation methods in various areas. These are only a handful of examples from diverse
fields. It can be seen that many control and optimization tasks can be recast into a form
that results in the use of stochastic approximation procedures.

10.7.1 Adaptive Filtering
Adaptive filtering algorithms have been used quite frequently in various applications such as
estimation, adaptive control, signal processing and related fields. The underlying problem
can be stated as follows. Let xn,yn 6 Rr, if>n 6 R, where {yn} and {ipn} are sequences
of measured input and reference signals, respectively, and {xn} is a sequence of system
parameters. We adjust the system parameter xn so that the weighted output x'nyn best
matches the reference signal ipn in the mean square sense, i.e., E\x'nyn — i^n\2 is minimized.
The calculations are done without knowing the statistics of y and <p. On the basis of a
stationary sequence of observations {(j/m '4>n)}i assume

where R is a symmetric positive definite matrix. It is easily seen that x* , the minimizer of
E\x'nyn — tpn

 2, is the unique solution of the Wiener-Hopf equation Rx* — q. Many algo-
rithms for adaptive filtering, adaptive array processing, adaptive antenna systems, adaptive
equalization, adaptive noise cancelation. pattern recognition, and learning etc. have been
or can be recast into the same form, with only signal, training sequence and/or reference
signals varying from applications to applications. The algorithm is of the form

xn+i =xn + anyn(^n - y'nxn), (10.7.49)

where {an} is a sequence of step sizes. The step size can be either decreasing or a constant.
For the asymptotic study of such algorithms, we refer the reader to [8, 39, 43, 53, 76, 86, 90]
among others.

10.7.2 Adaptive Beam Forming
Adaptive beam forming algorithms can be viewed as adaptive filters with constraints. Sup-
pose

Xk e R rxm,F fc e R rx / ,^ fe e RmxJ.
The problem is concerned with the determination of the azimuth of a target by using a
matrix composed of sensors. The outputs of sensors Yfc are weighted by a matrix X, so that
X'Yk become the best approximation of the target in the mean square sense subject to the
constraint

X'C = &, C7eR r X i , $6Rm x ' . (10.7.50)

The motivation for choosing this constraint comes from an application to the adaptive beam
formers for tracking systems.

We wish to construct a recursive procedure which converges to X*, the minimizer of

E(X'Yk - if>k)(X'Yk - 1/JkY

subject to (10.7.50). It is clear that a necessary and sufficient condition for (10.7.50) to
hold is &C*C = $, where z^ denotes the pseudo-inverse of z. By using Gauss-Markov
estimations, it can be shown that the minimizer X* not depending on k, is given by

X* = Cf''$'
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with
A = EYkYk, Q = EYki/>'k, and P = I - C&.

Although the above equation gives us a closed-form solution, it is evidently not infor-
mative. Since A, Q are unknown, to obtain X* directly is impossible. Even if A, Q can be
estimated sequentially, it is rather time consuming to compute the pseudo-inverse for large
dimensional systems at each iteration. Therefore, we shall approximate X* by a matrix Xk
at each time fc, such that Xk can be corrected based on the measurement Yk. This leads to
the following algorithm:

Xk+1 = &-'& + P[Xk + ak(Ykip'k - YkYkXk)\, (10.7.51)
X0 = &>'&. (10.7.52)

For the asymptotic study of such algorithms, see [90] and the references therein.

10.7.3 System Identification and Adaptive Control
Stochastic Gradient Algorithms

Let

A(q~l) = 1 + aiq~l + ••• + anq~~n

where q~l denotes the unit delay operator. Consider a single input single output ARMA
(autoregressive moving average) system given by

A(q~l)yk = q~d B(q'l)u(t) + C(q~l)wk, k>l,
where uk and yk are input and output, respectively, wk denotes the random noise, and

(ai, • • • ,an, bo, • • • ,bm, c\, • • • ,c /) = 9*

is an unknown parameter. Our objective is to find an algorithm converging to 9* and design
a feedback control law to make both {uk} and {yk} be sample mean bounded and

-. Jv

be minimized, where {yk} is a sequence of bounded reference signals. This problem was
first considered by Goodwin, Ramadge and Caines [29]. An algorithm of stochastic approx-
imation type was constructed. The algorithm reads:

rk =rk-i

Asymptotic properties were obtained through the applications of martingale convergence
theorem. Since early 80s, this problem has attracted much attention. Identification and
adaptive controls under the influence of random noise have been studied by many people.
For an extensive account on the problem and recent literature citations, see Ljung [57], Chen
and Guo [11] and the references therein.
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Least Squares Algorithms: Stopping Rules

Suppose that {un}, {yn}, and {f,n} are sequences of scalar input, output, and random
disturbance, respectively. Consider a single input, single output linear system given by

yn = #i_i0 + Zn, (10.7.53)

where

9' = (a,b) = ( a i , - - - , a p , 6 i , - - - ,fo,),

fin = (yn,yn-i,--- ,yn-p+i,un,--- ,un-q+i) (/>-i arbitrary,

di, bj € R, and p, q are known positive integers representing the order of the system. It is
well known that the least squares estimate of 0 is given by

fc=0 fe=0

An on-line identification procedure of the system (10.7.53) is given by

Pn+l =Pn~ enPn^n<P'nPn
(10.7.54)

fc=o

Due to its recursive nature, in implementing the least squares algorithm, more often than
not one would like to be able to stop the procedure if a certain degree of accuracy is reached.
Therefore, to design feasible stopping criteria becomes an important matter.

To proceed, let B(-, •) denote a bilinear form, such that B(x, A) = x'Ax, (where x is a
vector and A is a symmetric positive definite matrix with compatible dimensions). Let

Ellip = {x;B(x -IL,XT1) < c,c> 0},

where E is symmetric positive definite matrix. The volume of this ellipsoid is given by

P + g P + 9 / -i , r-,\ ITT 2 c 2 (det L) 2

If (X}fc=o 4>k<i>'k)^(Qn — G) is asymptotically normal, in the sense of

n

^ (6n -6) -> N(Q,a2I) in distribution,
fc=o

then we can define an ellipsoidal confidence region for 9 as

Ellipn =O;B[(On- d),a-2C£
V V fc=o
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where <r2 — > <r2 (the variance of the noise) w.p.l. Consequently,

B (On - 0), a-2( <M'fc) - B (0n - 9), a-2( <^'fc) -» 0 in probability.
V fc=0 / V fc=0 /

If we choose c = CQ, such that P(Xp+q > ca) = a, where Xp+q denotes the Chi-square
distribution with p + q degree of freedom, then

/ \
P(9 6 EllipJ = P B((0n - 6»), <2(^ ̂ k)} < ca ^ P(x2

p+q <ca) = l-a.
\ fc=o /

Therefore, Ellipn is a confidence ellipsoid having limit confidence coefficient I — a. Note
that

WFllin ^ ^7r^v(EiLPn) =
Suppose that there exists a non-random matrix Tn such that TnT^ is symmetric positive
definite, and T~l(Y^,=0 </>fc</4)5 — » / in probability. For any e > 0, define

(Ti}-^
n - —————— r(2±2+1) —————— (10.7.55)

me = inf{n; Fn < ep+q}. (10.7.56)

The stopping rule is given by

re = infjn; F(Ellipn) < ep+q}. (10.7.57)

The design of the stopping rule is based on the following fact:
fr

—— — > 1 in probability as £ — > 0, and (10.7.58)
777-g

lim P{6»; 6> 6 ElliprE and F(EllipTJ < ep+"} = l-a. (10.7.59)

To establish the second assertion above, we study the asymptotic properties of a stopped pro-
cess (X^lLT)1 '/'fc^'fc)"1^2 Zl^Jo1 4>kXk+i, which in turn can be treated by considering MTe (t) =
Tre

l Sfcio 4>kXk+i', see Yin [89] for more details.

10.7.4 Adaptive Step-size Tracking Algorithms
Similar to adaptive filtering, many problems occur in communication theory, adaptive equal-
izers, time-varying channels, adaptive noise cancellation or signal enhancement systems,
adaptive quantizers, and other applications, one must unavoidably deal with time-varying
signals and/or parameters. Thus on-line tracking algorithms are very important to handle
such applications.

Suppose that the observation at time n is given by

yn = <j)'n0n + vn,

and 9n is the value of the slowly time- varying physical parameter at n. The values of
Vii 4>ii i < n are available at time n. To track the variation of the parameter, we use
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where 0£ is the estimate of 6n. It is clear that the choice of the step size e above is of
foremost importance. Thus, one really has two estimation problems to contend with. One
is the estimation of 9n and the other is the estimate of the optimal choice of the step size e.

An "adaptive" approach was suggested in Benveniste, Metivier, and Priouret [8, p. 160],
and explored in Drossier [9] with extensive simulation study. The rigorous approach of
the asymptotic analysis is in Kushner and Yang [50]. The algorithms suggested is of the
following form. Use en to denote the estimate of the optimal step size at n. Then

0n+i = 6n + en(t>n [yn - cf>'ndn}. (10.7.60)

Define en(s) — yn — 4>'n^n- Find e that minimizes the stationary value of

E[yn - «]2/2 = Ee2
n(e)/2, (10.7.61)

Use V£ to denote the "derivative" (d/de)9e
n (in the mean squares sense). The stochastic

gradient w.r.t. (10.7.61) at n is —en(e)(f)'nV^. Choose a constant step size 6 > 0. Then the
algorithm is given by

0n+i = en + sn(j)nen, (10.7.62)
£n+1 = n[£_ ,£+] [£n + 6en(/)'nVn}, (10.7.63)

Vn+i = Vn-en<t>n</>'nVn + </>n[yn-<l>'nOn], V0 = 0, (10.7.64)

where II[e_i£.+] denotes the projection onto the interval [e_,e+] for some 0 < 6 <IC £_ < e+.
It has been shown by Krishnamurthy and Yin [38] that similar algorithms can also be
applied to code-aided suppression of multiple access interference (MAI) and narrow-band
interference (NBI) in DS/CDMA systems.

10.7.5 Approximation of Threshold Control Policies
The concept of hedging policy was developed by Kimemia and Gershwin in their pioneer
work [35]. They showed that for a manufacturing system with unreliable machines, the
optimal control that minimizes both WIP (work-in-process) and backlog is a feedback control
that is determined by the current system state, e.g., machine states and inventory levels,
which is characterized by some threshold values (termed hedging point in their paper).
If the inventory level of certain part type is lower than its corresponding threshold, the
optimal control policy is to produce at a full speed in order to reach the threshold. If the
inventory level is higher than its threshold, the production of this part type should stop.
The one-machine one-part-type problem was completely solved by Akella and Kumar [1] for
discounted cost function under the assumption that the machine up and down times form a
finite state Markov chain. They took a dynamic programming approach, and obtained the
closed form solution characterized by a single threshold value represented by the solution of
the corresponding Hamilton-Jacobi-Bellman equation. The problem with an average cost per
unit time was dealt with in Bielecki and Kumar [6]. For further work on stochastic control
based production planning problems, see Sethi and Zhang [74]. Since the hedging policies are
easily implementable, they are widely used in practice. Surplus control and Kanban system
are some noted representatives. To implement such a model, a threshold (the surplus level
or total number of Kanbans) is set for each production stage. Although the optimality of
the threshold policy has substantially eased the passage towards the optimal control, the
derivation of the optimal threshold values remain to be difficult for most problems.

In [88], we devoted our attention to threshold control type policies. In lieu of solving
an optimal control problem, we turned the problem around and treated an optimization
problem. That is, we focused our attention on the class of threshold type controls, and
aimed at obtaining the optimal threshold values.
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Figure 10.1: A Two-machine System

Consider a tandem two-machine system producing a single product; see Figure 10.1.
The two machines are unreliable, each having two states, up and down. The up and down
times are sequences of random variables. Denote the inventory levels of the machines by
Xi(t] and the machine capacity (a random process) by a(t). The production rates of the
two machines Ui(t),i = 1,2, and the demand rate of this product is d(t).

To get the gradient estimates of the objective function, we used the methods of infinites-
imal perturbation analysis developed in [32]. Define a combined process £(£) = ( x ( t ) , a ( t ) ) ;
denote the optimal threshold by 9* . Our task is to construct a sequence of estimates of 0* .
Consider the following stochastic optimization algorithm:

n+i =

if a continuous-time model is used and/or

\_
'Tf

nTc+Te

6((
iTe

nTe+Te-l

(10.7.65)

(10.7.66)

if a discrete-time model is used, where

nTe+Tf

.Te

and/or

are gradient estimators and b(-) is an appropriate function. In (10.7.66), Te is understood
to be an integer. Different forms of the gradient estimators are available; see for example
[55] and the references mentioned there. In Yan, Yin, and Lou [88], we applied the method
of infinitesimal perturbation analysis. It appears that another systematic approach is the
use of the finite difference approach and its variant with the use of the random direction
methods.

10.7.6 GI/G/1 Queue
Consider the optimization problem of the performance of a single server queue. Customers
arrive in accordance with a renewal process. The service time distribution is controlled by
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a real- valued parameter 9, which is chosen to minimize the sum of the average waiting time
per customer and a cost associated with the use of 6. The cost function J(0) is given by

J(9) = lim - £ EXi(0) + C(9) = J(9) + C(9),
i=l

where Xi(9) is the time that the ith customer spends in the system, and C(9) is a known
bounded real- valued (deterministic) function with a continuous and bounded gradient. The
parameter values are confined to a finite interval [a, 6]. Our interest is to minimize J(9) over
the finite interval [a, b}. Generally, the values of J(9) are very hard to compute. A viable
alternative is to use stochastic approximation methods. We can observe the queue over
a longtime period, and incorporate the observed data (that are the arrival and departure
times and the service time for each customer) in the estimation procedure. The observed
data will then be used to obtain the gradient estimate of the cost function with respect to
9 at the current value of 9, yielding a stochastic approximation algorithm.

This problem, which has attracted much attention (see [16, 48] among others), is typical
for many applications in queueing networks and manufacturing systems and networks.

where Y£ denotes the gradient estimate of the cost J(6). Much of the recent interest on this
problem lies on the use of the infinitesimal perturbation analysis method [32] to find Y£.

10.7.7 Distributed Algorithms for Supervised Learning
In supervised learning and pattern recognition problems, the learning systems' environment
presents it with a sequence of vectors (patterns), together with a class label for each vector
that indicates how the vector ought to be classified. A sequence of patterns together with
the class lables are normally referred to as a "training sequence." The environment is
often termed a "supervisor." The learning system adaptively adjusts its decision in order
to minimize the probability of misclassification. Suppose for simplicity there are only two
classes C\ and Cz to be selected. At each step, the environment determines a training
sequence by first selecting C\ or C% in accordance with the a priori probability P{Ci}, and
then choosing a pattern vector according to the conditional probability P{y\d}. Associated
with each y, there is a class label z, such that if class C\ is selected, then z = 1; and if
class C-2 is selected, then z = 2. Now, the training sequence consists of a sequence of pairs
of the form {(yn,zn)}. Consequently, the decision rule which minimizes the probability of
misclassification can be found by means of Bayesian a posteriori probabilities:

j / G d , X P(d\y) - P(C2\y) > 0; (10.7.67)
y € C-2, if P(Ci\y) - P(C2\y) < 0. (10.7.68)

The decision rule depends on P{d\y}, i = 1,2, which are not available. To circumvent this
difficulty, the following alternative approach is devised [19]. Find a vector-valued parameter
6, such that O'y approximates P(Ci\y) — P(Cf

2|j/) as well as possible in the mean square
sense, and use the decision rule

y 6 Ci, if e'y > 0 and y e C2, if O'y < 0. (10.7.69)

It can be shown that the objective will be achieved if the functional J(6) given by J(9) =
E(9'y — z)2 is minimized. The functional J(d) is usually unavailable, but at each n, yn and
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e2
.°]

Figure 10.2: Asynchronous Random Computation Times

zn can be observed. A sequence of approximations {#„} can be constructed, which has the
same form as the adaptive filtering algorithms. If the dimensionality of the learning task is
large, it makes sense to reduce its complexity by using parallel processors.

Let

I /=( i /V" ,2/ r)'eITp and (10.7.70)
0 = (0V- ,0 r)'eR rp, (10.7.71)

where y% € Hp and 9l G Rp. Suppose that rp is a very large number. To carry out
computations for such problems in digital computers, large memory storage is needed. In
our approach, we utilize r processors. The vector 9 is decomposed into r blocks first. Each
block consisting of p components of the vector 9, is handled by one of the parallel processors.
Then, a learning algorithm is implemented in this block. These parallel processors compute
and communicate with each other asynchronously and at random times. Let each processor
have its own clock and the iteration on each block is carried out at renewal type of random
times. To be more specific, for each i = 1,2, . . . r , let t^ be the nth iteration time for
processor i, i.e., processor i takes t*n units of time to complete its nth iteration. Define s^
by

4 = 0, and *i, =

For each i, the sequence {tjj is an interarrival time and {sjj is the corresponding "renewal"
time. Figure 10.2 provides an illustration of the random computation times of a simplified
model with three processors.

Let 00 = (#0) • • • > 05)' be the initial condition. For small e > 0, and each i = 1 < r, the
distributed learning algorithm is given by:

For simplicity, the estimated values 0^ are communicated to all the processors as soon as
they are available. In fact, the results still hold if bounded delays incur in data transmissions.
For each i, let

AT>) = sup{j; aj < n}, Aj, = n - s^i(n}. (10.7.73)

The sequence {7Vl(n)} enumerates the number of computations (iterations) up to time n for
processor i, and A^ represents the time elapsed since the last iteration. Since each process
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has its own running clock and takes a random time to complete each iteration. The usual
notion of "time," i.e., the iteration number can no longer be used as a common indicator
for all the processors. To proceed, we define

#n = <?4> yn = Vi'k, Zn,i = Z^ for n € [4,4+l)-

The algorithm can then be written as

At time n+ 1, if no computation takes place, then the iterate #^+1 is equal to 0z
n, otherwise,

we incorporate the changes in the update. In the above, the dependence of i is emphasized
for zn. This is due to the fact that zs« will generally be different from z , for i ^ j. Such

k Sk

algorithms can analyzed by the methods of weak convergence as in Kushner and Yin [51, 52].

10.7.8 A Heat Exchanger
Owing to the increasing needs for safe and optimal operation, parameter estimation, learn-
ing, and fault detection have received growing attention in process industries. To monitor
the process performance and to effectively control it require the knowledge of certain system
variables. Because of the presence of random disturbance and gross errors in the process
data, however, the measurements often contain some degree of error. Due to possible in-
strument failure and the presence of process and measurement noise and due to technical
difficulty and cost consideration, information of some of the states/properties of the system
has to be deduced from certain estimation techniques.

Consider a countercurrent shell-tube lube-oil heat exchanger, a piece of equipment needed
in many industrial processes. The underlying process is represented in Figure 3. The
manipulated variable is the flow rate of cooling water on the shell side; and the controlled
variable (output) is the lube oil temperature exiting the exchanger on the tube side. With
feedback control, the oil temperature is measured and the measurement is used to adjust
the cooling water flow rate. Since we are interested in estimation and learning, we have
simplified the process to consider an open-loop system only. To simulate disturbance to this
nonlinear process, the inlet oil is separated into two parts, a hot stream having constant flow
rate and a warm stream having variable flow rate. We want to estimate the input variable,
the inlet warm oil flow rate, using the noise-corrupted output yn (exiting oil temperature)
and noisy input xn. A sequence of estimates {#„} is obtained, in which the nominal value
x* is the normal operating condition and is known in practice.

To describe the algorithms, let {xn} be a sequence of Rr-valued random variables that
represent the measured states or inputs, {yn} a sequence of Revalued random variables
that are measured outputs, with

yn = f(xn^u), (10.7.74)

where f (•,•)'• Rr x R,r H-> IT", {£„} is a stationary sequence of Rr- valued random dis-
turbances. The learning/estimation task of interest can be formulated as a root searching
problem for a nonlinear function /(•), i.e.,

find the solutions of f ( x ) = Ef(x,f>n) = 0.

One may wish to resort to the classical stochastic approximation method for solution. Un-
fortunately, such a procedure is not applicable here since {xn} is a sequence of random
variables not depending on our choice.
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On the premise that in many chemical engineering applications, nominal values of certain
states are often available and therefore can be used as references for comparison, we herein
propose and examine an algorithm of the form

where

K(x) =
0,

-K0(On - x*)K

0.75(1- |x|2), |x| < 1;
~

(10.7.75)

(10.7.76)
x\ > 1,

KQ(x) =
RQ — X2 + CQ, if \X\ <

(10.7.77)
c0, if x >

with RQ > 0 and CQ > 0 chosen based on the knowledge of the physical system, x* is the
nominal or reference value of the state of interest, e is the step size and 5 is the window width.
Under suitable conditions, it can be shown that the limit ordinary differential equation is
of the form

where (roughly speaking) / is the average of the observation and TT(-) is the limit of the
conditional distribution of x given the past data J-n. The detailed analysis of this algorithm
is in [102].

In fact, the proposed algorithm is an estimation procedure. However, its actual perfor-
mance shows that it also has the capability of tracking slightly time-varying parameters.
This is highly desirable in real applications since in many industrial processes the operating
conditions deviate from their nominal values slightly but frequently.

Alternatively, one may use a soft constraint algorithm. To be more specific, let us use a
spherical soft constraint S = {0; \0\ < po}. Define

d(0) =
(\0\ -Po)2, if

0,

The algorithm becomes

where

if |0| < PO-

•£pode(9n-x*),

de(0) =
0, otherwise.

The asymptotic properties of the algorithm then can be obtained via the use of the associated
limit ordinary differential equation

0 = n(0)J(0) - podgtf - x*).

It is clear that the soft constraints prevent the iterates to be far away from the nominal
value. Convergence and rate of convergence can be obtained via weak convergence methods.
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10.7.9 Evolutionary Algorithms

Based upon collective processes with a population of individuals, which are search points for
a given problem, the evolutionary algorithms carry out desired computing tasks by use of
randomized selection, mutation and recombination. These algorithms have been applied to
many problems in parameter optimization and related fields with great success. Significant
progress has been made in the study of evolutionary algorithms for almost thirty years.

The evolution strategies were first introduced by Rechenberg and Schwefel in the mid-60s
[65, 72]. At that time, applications in hydrodynamics such as optimizing the shape of a bent
pipe and a flashing nozzle were dealt with. Different versions of the strategy were simulated
[72]. The research in this subject has become a rapidly growing one ever since. Nowadays,
the (/x, A) evolution strategies, introduced in [73] are commonly used in evolution strategy
research.

We consider a problem with (1,A) strategy. Our objective is to minimize a function
/ : 1R i— » ]R. The plan is to employ the (1,A) evolution strategy, for A > 2. Loosely, the
strategy can be described as follows. In each generation, one parent produces A offspring.
Among the offspring, choose the best one with respect to the evaluation of the objective
function to form the next estimate.

To be more specific, generate sequences of random vectors {zn(i)}, for 1 < i < A that
are independent and identically distributed (i.i.d.) Gaussian random variables with mean
zero and covariance a2 Id, where Id denotes the d x d identity matrix such that for each
n, zn(l), . . . ,zn(\) are independent. To carry out the minimization task, choose an initial
estimate XQ € Rd. At iteration n, add the random vector zn(i) to the current content, i.e.,
x-n + zn(i), for i = 1, . . . , A. We evaluate the corresponding values f(xn + zn(i)). Next,
choose the smallest among the A values of /(•). That is,

f(xn + z n ( j ) } = min f(xn + y), where
y€A" (10.7.78)

An = {zn(i),i = 1,... ,A}.

Then assign xn + zn(j) to in+i. In short

xn+l = aigmm{f(xn + *„(!)), . . . , /(*„ + z n ( X ) ) } . (10.7.79)

Our task now is to convert (10.7.79) to a recursive algorithm of stochastic approximation
type so that the techniques in analyzing stochastic approximation type algorithms can be
applied.

It is well known that the standard deviation CT is a scale factor in the problem. Since
zn(i) are i.i.d. random vectors and zn(i) ~ N(0,crld), we can rescale the sequence zn(i} or
equivalently, define another sequence {zn(i}} by setting zn(i) = azn(i) such that zn(i) ~
JV(0, /d). That is, zn(i) follows the standard normal distribution. Now (10.7.79) can be
rewritten as

Xn+i = Xn + (T ̂  Zn(f)I[f(Xn+Zrl(i)=miIly£Ari f(xn+y)}, (10.7.80)

t=l

where I is an indicator function. In evolution strategy, one often chooses a so that it is
proportional to ( l / d ) H ( f x ( x n ) ) , where fx(-) denotes the gradient of /(•), d is the dimension
of the problem and H (•) : Hd >— > [0, oo) is an appropriate real-valued function such that
H(0) = 0 and the only root of H(-) is 0. With e denoting the proportional constant
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multiplied by 1/d, the recursive formula can be written as

A
xn+l = xn + eH(fx(xn))^zn(i)I{f(Xn+Zn(i))=miny£An f(Xn+y)}- (10.7.81)

Eq. (10.7.81) in fact, is a constant-step-size stochastic approximation algorithm with step
size e. Since normally the problems we consider are large dimensional ones, e is relatively
small. Our interest lies in obtaining convergence and rate of convergence results for the limit
as e — > 0. We wish to emphasize that in the actual computation, we neither change the
evolution algorithm nor modify it in any way. The equivalent expression (10.7.81) is simply
a convenient form that allows us to analyze the algorithm by using methods of stochastic
approximation. For a detailed account on the development via stochastic approximation
approach, see the recent work of Yin, Rudolph, and Schwefel [99].

10.7.10 Digital Diffusion Machines
In a recent work [87] , Wong suggested a diffusion-network model, which is based on modifi-
cations of the Langevin algorithm and the Hopfield network. The motivation stems from the
applications in image segmentation problems and many other optimization and estimation
problems. The underlying problem can be stated as follows. Let £ : [0, l]r i— > 1R be an
"energy" function defined on the hypercube [0, l]r = [0, 1] x • • • x [0,1]. Find the global
minimizer of £(•) by use of a neural network. Suppose that for all t > 0, va(t) G [0, 1] are
the state at node a at time t and v = (vi,... ,vr)T G [0, l]r is an r-dimensional column
vector (zr denotes the transpose of z in this section only). By injecting noise into a Hopfield
network, the dynamics of the ath node are given by

va(t) = g(ua(t))
Q _ (10.7.82)

dua(t) = — -T — £(v(i]}dt + aa(u(t))dwa(t),ova

where for a < r, {wa(-)} are independent (standard and real-valued) Brownian motions,
and aa(-) and g(-) are appropriate functions. It is shown in [87], by choosing OQ(-) to be
aQ(u(t)) = [(2T)/5i'(uQ(t))]1/2 (where g' denotes the derivative of g in this section only),
v(-) is a stationary Markov process with stationary density

where Z is an appropriate normalizing factor so that / Poo(v)dv = 1. Furthermore, by
selecting f ( x ) = g ' ( g ~ l ( x ) } (for each x G R), for each a <r,

dva(t) = -f(Va(t))~£(v(t))dt + Tf'(va(t)}dt + ^2Tf(va(t))dwa(t), (10.7.83)

where T goes to zero sufficiently slowly. In view of the equation above, it is worth noting
that -^2Tf(va(t)) depends only on the ath node. Therefore, the noise of the system under
consideration is "de-coupled" among different processors. This is an important feature that
allows us to use parallel processing method efficiently and simplifies many computational
tasks significantly. To take advantages of Wong's diffusion network and to overcome the
difficulties of the analog implementation, in [14], Cai, Kelly, and Gong proposed a digital
version of the network. The basic idea lies in the discretization of the stochastic differential
equations. A number of numerical experiments are conducted for image segmentation prob-
lems. The results are rather encouraging. The heart of the approach is an approximation of
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the diffusion machine by a digital diffusion network [98]; much of the theoretical justification
is to prove the convergence of the digitized system to that of the continuous counterpart.

To proceed, we present a recursive algorithm. The idea is to partially reset the gain
sequence once a while. For each i > 0, and each a < r,

~ ain+k f (va.(.n+k) ^. —— £(vm+k)
(10.7.84)

Va,in+k) + &m+fc \J f(va,m+k

where for some A0 > 1 and some 1/2 < 7 < 1, the step-size sequences are given by

Om+fe = l/(tn + fc)7, bin+k = V2am_|_fc/am_|_fc, cm+fe = am+k/ain+k,

with
am+k = ln((m + A;)1"7 - (m)1"7 + A0).

The main task then is to prove the convergence of the digitized version of the algorithm to
its continuous-time counterpart. The main tool is the method of weak convergence.

10.8 Further Remarks
This chapter delineates the methods of stochastic approximation. In addition to giving
certain asymptotic results, our effort has been devoted to describe to where the methods
can be applied. A diverse range of applications are given. We choose to ignore most of the
technical details. In addition, the results are often mentioned in the simplest setting so as
to make the main ideas clear. It should be emphasized that much of the development can
be put in far more general settings to incorporate various applications.

10.8.1 Convergence
For the convergence of stochastic approximation algorithms, this chapter mainly concerns
the ODE approach. There are other methods of proof available in the literature. Typically,
one establishes the boundedness of the iterates first and then proves the desired convergence.

Chain Recurrence

In the recent study, there is an interesting approach that explores much of the connection of
the discrete iteration with that of the continuous dynamic systems. In [4], Benaim develops
the ideas of chain recurrence. Without needed information, sometimes the best one can
do is to prove that xn or the interpolated and shifted process xn(-) converges w.p.l to an
invariant (or limit set) of the ODE (10.3.22). Sometimes, these limit sets turn out to be
rather large. For example, consider x = x(l — x), and the set we are interested in is [0,1].
Then the entire interval [0,1] is an invariant set for the ODE. The idea of chain recurrence
can simplify the analysis. As in this example, the only chain recurrent points are 0 and 1.
For further discussion on this matter, we refer the reader to [4] and [53, Chapters 5 and 6].

Differential Inclusion •

Suppose that we wish to carry out an optimization task. The function under consideration
is convex and continuous, but is not every where differentiable. Then the gradient of /(•)
will be replaced by the subgradient of /(•). Now in lieu of (10.2.2), we have

4- J=_^n ^rdn ~r Q>n c\ >2cn
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where the 7n is defined by

7n = ( 7 n , l , . . . ,-yn.r)' With (10.8.85)

7n f = f(Xn + C"ei) ~ f(Xn ~ CnCi) , and (10.8.86)
2cn

& = ( & » , ! , • • • ,W) With (10.8.87)

&,i = [/K + cne;) - F(xn + cne;, C+J] - [/(zn - cn6l) - F(xn - cnez, Qp.8.88)

Note that 7n is a subgradient. Carrying out the analysis similar to the ideas presented
previously, we will get a limit result. The mean differential equation is replaced by a
differential inclusion

x <= -SG(x),
however. In the above, SG(x) denotes the set of subgradients at x (see [53]).

10.8.2 Rate of Convergence
The rate of convergence issue can be addressed in conjunction with the computational budget
and the noise and bias effect. One possible road along this line is the development given in
L'Ecuyer and Yin [55]. Assuming that a gradient estimator is available and that both the
bias and the variance of the noise of the estimator are functions of the budget devoted to its
computation, the gradient estimator is used in conjunction with a stochastic approximation
algorithm. Detailed analysis allows us to figure out how to allocate the total available
computational budget to the successive iterations. The convergence rate is given first as
a function of the number of iterations, and then as a function of the total computational
effort.

Treating projection or constrained stochastic approximation algorithms, the rate of con-
vergence is often obtained by assuming the optimizer is in the interior of the projection
region. The problem of handling the rate of convergence when the optimizer is on the
boundary is very difficult. One approach is to use large deviation [20]. Recently, an in-
teresting approach was provided in Buche and Kushner [10]. The rationale is to use a
reflected diffusion and consider the corresponding Skorohod problem. The authors, develop
the techniques and show that the associated stationary Gaussian diffusion is replaced by an
appropriate stationary reflected linear diffusion.

10.8.3 Law of Iterated Logarithms
In the study of convergence rate, we have chosen the approach of weak convergence. It
should be mentioned that there are also almost sure (or w.p.l) convergence rate results.
One of the noted representatives is the law of the iterated logarithm. Consider (10.2.1). For
simplicity, assume r = 1. Suppose that the noise variance is <j2,

lim nan = A, and a = fx(x*)A > 1/2.
n — >oo

Then under suitable conditions, it was proved in Gaposhkin and Krasulina [26] that w.p.l,

1/2

21oglogn

The almost sure convergence rate has been investigated further by Heunis [31], in which he
developed interesting functional laws of iterated logarithms.
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10.8.4 Robustness

One of the questions not studied in detail in this chapter is robustness for stochastic approxi-
mation problems. Roughly speaking, robustness refers to the allowable tolerance and errors.
In applications, one may know little about the actual dynamics or even about the statistics
of the driving noise at large parameter values. It may be undesirable for single observations
to have large effects on the iterates. Taking such a view point into consideration, the fol-
lowing algorithm was considered in Polyak and Tsypkin [64]. Let ipi(-),i < r, be bounded
real-valued functions on the real line, and define tp(x) = (^(a;1),... ,^r(xr)). Let tpi(-) be
monotonically nondecreasing and satisfy V'i(O) = 0, i/Ji(u) = —ipi(—u) and ij}i(u)/u —» 0 as
u —> oo. One commonly used function is tpi(u) = iniii{u,Ki} for u > 0, where KI is a given
constant. The algorithm of interest takes the form xn+i = xn + ant/j(yn), where {yn} is
the sequence of noisy observations as obtained in (10.2.1). In the aforementioned paper,
Polyak and Tsypkin examined the optimal choice of the function i/>(-) through minimax
formulation.

In a related work, Chen, Guo, and Gao [13] studied the problem of robustness for
stochastic approximations from another angle. It is a common practice to use the Liapunov
function in the analysis of stochastic recursive algorithms. The following questions are
particularly interesting. What kind of measurement errors can be tolerated? What kind
of deviations can be allowed for the corresponding Liapunov function? It seems that the
analysis of robustness plays an important role in organizing information about the behavior
of the algorithms to a manageable form. The problem with the regression function evaluated
at the true parameter being nonzero was considered and some simultaneous robustness
analysis was given. In a broad informal sense, such a robustness analysis gives an account
on the allowable tolerance and relates deviations from idealized assumptions. There are also
related works in obtaining necessary and sufficient conditions on the measurement noise etc.
and effort in exploring various equivalences in regard to the noise [83].

10.8.5 Parallel Stochastic Approximation

Due to rapid technological progress parallel processing methods have attracted much at-
tention lately. Recursive algorithms of the stochastic approximation type, with distributed
processors and asynchronous communications was first proposed and analyzed in Tsitsiklis,
Bertsekas, and Athans [79]. Some asymptotic results were obtained and various potential ap-
plications in stochastic control and system identifications were discussed. Such decentralized
algorithms have been attracting growing interest. The aforementioned model was studied
further in Kushner and Yin [51]. Utilizing the weak convergence and martingale averaging
techniques, convergence properties as well as rate of convergence were established under
weaker conditions. Moreover, state dependent noise was treated, communication through
noisy channels was dealt with and projection procedures were considered. Later, another
class of parallel S.A. algorithms was suggested in Kushner and Yin [52]. Such algorithms
utilize parallel processing and distributed computations in a natural way. Instead of using a
single processor as in the classical setting, a collection of processors is used. Each processor
operates on only part of the system vector. These processors compute and communicate
with each other interactively and at generalized renewal times. Some interesting asymptotic
theorems were obtained. Further work in this area can be found in the survey paper of Yin
[93] (see also Kushner and Vazquez-Abad [48] and [53, Chapter 12]). Since the algorithms
using parallel processors all have rather complex forms and are quite technical, we decide
not to include the details in this chapter. However, appropriate references are provided.
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10.8.6 Open Questions
Although stochastic approximation has been around for about 50 years, there are still many
questions that need to be addressed. One of the difficult problems concerns the so-called
singularly perturbed stochastic approximation. It is motivated by the ideas of singular
perturbations for stochastic systems. The underlying system displays two-time behavior.
Some related references for stochastic systems can be found in Kushner [42], and Yin and
Zhang [105] among others. Due to the interface of the discrete time and continuous time,
the asymptotic analysis is rather complex. The limit of the step size (assumed to be small,
i.e., an —» 0 as n —* oo for decreasing step size or e —> 0 for constant step size) and the
(singular perturbation) small parameter are not interchangeable, which makes the analysis
very difficult.

Another difficult task is the design of efficient global stochastic approximation algo-
rithms. Although the simulated annealing type procedures give us the desired convergence
to the global optima, the convergence rate is very slow [95]. The expected time of getting
to the global optima is very long. A related question deals with the optimization of a real-
valued function that is very flat near the optimum. It is clear that there are increasing
demands and pressing needs to design more feasible algorithms for such optimization tasks.

10.8.7 Conclusion
As a rapidly expanding and growing discipline, stochastic approximation involves a wide
spectrum of techniques that go far beyond the traditional approaches. It has given impetus,
not only to the applications of applied probability and stochastic processes, but also to
other areas of science and engineering. Applications of stochastic methods are growing at
an increasing rate. To inherit the past and to usher in the future, we perceive unprecedented
challenges and opportunities for the development of stochastic approximation methods and
applications in the new millennium.
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11.1 Nature of the problem
11.1.1 Introduction
This chapter is about searching for the extremal values of an objective / defined on a
domain fl, possibly a large finite set, and equally important, for where these values occur.
The methods used for this problem can be analyzed as finite Markov Chains which are either
homogeneous or non-homogeneous, or as renewal processes. By an optimal value we mean
globally optimal, for example /„ is the minimal value and xf € fi a minimizer if

/(x.)=/*. and /*</(*)> *eQ.

Although we strive for the optimal value, this enterprise brings forth methods which rapidly
find acceptably good values. Moreover, often knowing whether a value is the optimum or
not cannot be answered with certainty. More generally, one might establish a goal for the
search. It could of course be finding a global optimizer or it might be finding an x for which
/(x) is within a certain fraction of the optimum or it could be based on other criteria.

In this chapter we discuss stochastic methods to treat this problem. We assume the
objective function / is deterministic and returns the same value for f ( x ) every time. Thus
this chapter is not about stochastic optimization, even though methods discussed here can
be used with probabilistic objectives. Nevertheless we assume deterministic function evalu-
ations throughout.

Difficult optimization problems arise all the time in such fields as science, engineering,
business, industry, mathematics and computer science. Specialized methods such as gradient
descent methods, linear and quadratic programming and others apply very well to certain
well behaved problems. For a great many problems these specialized methods will not work
and more robust techniques are called for.

By a difficult problem we mean, for example, one for which there is no natural topology,
or for which there are a large number of local optima (multi-modal), or for which the solution
space has high cardinality. The class of NP-complete problems of Computer Science, such
as the Traveling Salesman Problem are examples of such problems.

625
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One aspect of the search problem is knowing when the optimum value has been reached;
at that point the search may stop. More generally, one may wish to stop the search under
a variety of circumstances such as when a fixed time has expired, when a sufficiently good
value has been found, or when the incremental cost of one more iteration becomes too great.
This aspect of the problem is known as the stopping time problem and is beyond the scope
of the present chapter.

Instead, throughout we assume that either the optimal value can be recognized if dis-
covered or that one will settle for the best value found over the course of the search. Thus
the second aspect of the search problem is knowing how to conduct the search as well as
possible and how to analyze the search process itself dealing with such questions as how
good is the best value obtained so far. how fast does the method converge, or is the method
sure to find the optimum in finite time.

Some strengths of stochastic search methods are that: they are often effective, they are
robust, they are easy to implement requiring minimal programming, and they are simply
and effectively parallelized. Some weakness are that: they are computationally intensive
and they engender probabilistic convergence assertions.

Heuristics are used extensively in global optimization. Arguments for introducing heuris-
tics are presented in [75]; we quote from their paper:

The need for good heuristics in both academia and business will continue increasingly
fast. When confronted with real world problems, a researcher in academia experiences
at least once the painful disappointment of seeing his product, a theoretically sound
and mathematically 'respectable' procedure not used by its ultimate user. This has
encouraged researchers to develop new improved heuristics and rigorously evaluate
their performance, thus spreading further their usage in practice, where heuristics
have been advocated for a long time.

In specialized applications a heuristic can embody insight or particular information about the
problem. Heuristics can often be invoked to modify a given solution into a better solution,
thereby playing the role of an improvement operator. And on a grand scale, heuristics
derived from natural phenomena have given rise to entire search strategies.

11.1.2 No Free Lunch
There has long been evidence that a truly universal optimization algorithm is not really
possible; you cannot have an algorithm that will perform equally well on all possible prob-
lems. However, there seemed to be little or no attention paid to this in the optimization
literature until the seminal work of Wolpert and McReady [74]. The idea introduced in this
paper is the so-called "No Free Lunch" idea. Simply put, this idea states that if you are
interested in the average performance of an algorithm, averaged over the set of all possible
objective functions, then any two algorithms have the same average performance. Thus,
there is no way to distinguish between them. NFL type results point out the clear need to
carefully match an algorithm type to problem type, since there is no universally effective
optimization algorithm.

We now discuss the NFL Theorem as presented in [74]. Let X and Y be finite sets, X
will be the domain space and Y the range space. Let dm = {(xi,yi)}'^L0 be the domain-
range pairs seen by the algorithm up until time m. Then an algorithm is a function a
from the set of all such histories to X \ { x's in history }. Notice that this means that we
assume that the algorithm does not revisit any previously seen domain points. Let c be a
histogram of Y values seen in some history dm. From c, one can derive various measures of
the "performance" of the algorithm, for example the minimum value seen so far. Finally,
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let P(c | /, m, a) denotes the conditional probability that histogram c will be seen after m
iterations of algorithm a on the function /.

Theorem 11.1.1 (NFL) For any pair of algorithms a: and a^,

'P(c v^P(c /,m, a2).

One way to understand this theorem is to consider optimization against an adver-
sary which randomly generates the objective function as the algorithm proceeds (see [14]).
Clearly the next objective function value seen by the algorithm is an independent sequence
so the expected histogram generated by two different histories (algorithms) are equal. Thus,
if we restrict ourselves to algorithms which do not revisit states, all algorithms, on average,
perform as well as systematically stepping through the domain space in some pre-defined
order.

In many instances it is clearly impractical to ensure that an algorithm only visits new
states. Many of the algorithms we discuss in this chapter allow the possibility of visiting
the same state multiple times. In fact, one of the main issues in the area is the problem of
how to deal with long runs of repeating the same state. How important is the condition of
no-retrace to the conclusion of the NFL Theorem?

In this chapter we will use, among other measures, the expected time to find the optimum
value as a measure of the performance of an algorithm. Using such measures of performance,
does the No Free Lunch Theorem hold for stochastic algorithms? The answer is no, not
exactly in the stated form. As an example, suppose we have two algorithms driven by the
following Markov transition matrices both on the state space {a, b, c},

A =

0 1 0

0 0 1

0

B =

I \
1/3 1/3 1/3

1/3 1/3 1/3

1/3 1/3 1/3

Then the expected time to reach the goal, averaged over all possible functions, is 2 for
algorithm A and 3 for algorithm B. The first matrix drives the algorithm cyclicly through
the state space while the second matrix generates a sequence of independent, uniformly
random samples from the state space. Notice that the first algorithm does not repeat states
while the second will with high probability. As a third example, the algorithm driven by
the Markov transition matrix

D=

0 1/2 1/2

1/2 1/3 1/6

1/2 1/6 1/3

\

has average expected hitting time of 11/5. Thus, it clearly is possible to do better than
purely random search by using a stochastic algorithm.

For continuous state spaces, there is an interesting related result sometimes called the
"indentation argument" [20]. This principle states that knowledge of only finitely many
values of / or its derivatives and the fact that / has k continuous derivatives on some region
H C H™, is not sufficient to determine a lower bound on inf /(£!). The reason for this
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is that it is always possible to modify / on an arbitrarily small set, away from where we
have information, in such a way that we decrease inf /(fi) by an arbitrary amount. This
modification will have no measurable effect on the rest of the function in the sense that
neither the value of the function nor the value of any of the derivatives of the function will
change outside this small region of change. Thus, again, to get any advantage one needs
to make assumptions on /, in this case global assumptions such as a global bound on a
derivative.

11.1.3 The Permanent Problem
Consider the problem of optimizing the permanent of 0/1 matrices. The permanent of an
n x n matrix M is defined to be

n

perm(M) — /_,]"[ m«, o-(z) >
a i=\

where the sum extends over all permutations a of the first n integers. The permanent is
similar to the determinant except without the alternating signs. We will only allow the
matrix elements to be 0 or 1. For a given matrix size n and number d of 1's, 0 < d < n2,
the problem is to find the matrix having maximum permanent. We refer to this as the n : d
permanent problem.

Two advantages of this problem are its simplicity and scalability. The problem is com-
pletely determined by the two interger values, n and d, the matrix size and its density of 1's.
As n grows the problem becomes harder in two ways. The number of operations required to
calculate a permanent grows as n\. But in addition, the number of possible permutations, <r,
also grows as n\. Likewise, the calculation difficulty also grows with d. This is a consequence
of the fact that as soon as a zero is encountered in the permanent calculation, no further
terms need be considered, the permanent is immediately 0.

Another advantage of the permanent problem is that there exists a body of literature
describing simulated annealing solutions and with various cooling schedules, see [57].

To illustrate our in-depth methods: simulated annealing, restarted simulated annealing
and evolutionary computation, we apply each to the 14:40 permanent problem. Details of
each implementation will be given in the appropriate section. With n = 14, the number of
matrix elements is 196; this gives the number of possible arrangements of the 1's, i.e. the
size of the search space for this problem, to be (^g6) or about 8.3 x 1041 (even though for a
small proportion of the total, many of these arrangements give the maximum permanent).
As mentioned above, the difficulty in calculating a permanent grows rapidly with n, and also
with d. Selecting the aforementioned values for n and d, resulted in a permanent calculation
sufficiently fast that millions could be tried in a reasonable amount of time.

The accompanying figure shows the results. The performance varied greatly; evidently
this is an easy problem for an evolutionary computation.
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Figure 1. Best vs number of function evaluations for the three algorithms

11.2 A Brief Survey of Some Methods for Global Opti-
mization

In subsequent sections we give in-depth discussions of simulated annealing, restart algo-
rithms, and evolutionary computation. In this section we give brief descriptions of other
representative methods.

A great many methods have been proposed for global optimization. These include grid-
like subdivision methods, exhaustion, branch and bound, random search, and methods
inspired by the natural world. The latter include simulated annealing and evolutionary
computation. The methods given here by no means cover the field but rather are intended
to be a sample of those available.

When the domain is a subset of Euclidean space, obviously its cardinality is infinite and
there is no possibility of examining every point as would be possible (however impractical)
when Cl is finite. On the other hand, objectives defined on Euclidean space usually have
some degree of smoothness, for example a Lipschitz condition, which works in place of
finiteness. An important illustration of this is in conjunction with searching for local optima;
differentiable objectives can utilize gradients both to greatly improve search efficiency and
to recognize attainment.

One classification of search methods is that proposed by [3], as follows:

Deterministic methods

Covering methods
Trajectory, tunneling methods

Probabilistic methods

Methods based on random sampling
Random search methods
Methods based on a stochastic model of the objective

Although this chapter is about stochastic search methods, we include a discussion of
some deterministic methods for comparison.
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11.2.1 Covering Methods
An advantage of covering methods is that both aspects of the optimization problem are
solved: finding an optimum and knowing that it is the optimum. In the case of discrete
solution spaces, covering includes exhaustion and branch and bound methods.

Exhaustion entails computing the objective value on each and every point of the domain,
which is often not feasible. The points of ft are totally ordered in some way, x\, £2, . . . , xjv,
the objective values are computed, 3/1 = f(xi),y2 = /(x2), . . . ,yN = /(XJY) and compared,

We note that the expected number of iterations, E, required to find the optimum is

assuming the ordering of the domain is uncorrelated with the objective. Therefore the
average expected hitting time over all possible functions on ft is (N + l)/2. The No Free
Lunch conjecture is that this value is the best possible no matter what the search strategy.

A comparable algorithm for Euclidean spaces is the following [62].

1) Evaluate / at n equispaced points xi,. . . , xn throughout ft and define yi = f ( x i ) ,
i = l,...,n.

2) Estimate /« by mn = min{j/i, . . . , yn}.

Under the conditions that / satisfies a Lipschitz condition,

L\\XI -x2||, Xi ,x 2 6 ft,

for some fixed L > 0, then the following can be proved. Given e > 0, define the goal to be
the region

Ge = {y:\y-f.< e}.

Theorem 11.2.1 For i = 1, . . . , n, letVi be the sphere \\x — Xi\\ < r%, where

L

If [Ji Vi covers ft, then mn = min{2/i, . . . , yn} belongs to Gf.

Proof. Let x* € Vi, then x* — Xi < TI so

f ( x i ) - /(x*) < Lri = f ( x i ) -mn + e

and thus
/(x*) > mn - e,

so the goal is attained.
Prior to computing f ( x i ) it is impossible to determine whether |Ji Vi will cover all of ft.

Thus, with the x» fixed, it is necessary to increase e until this condition is satisfied. If this
increases e to be larger than the allowable error tolerance, the only solution is to choose
more Xj's and try again.

If it is possible to obtain some additional information, then it may only be necessary to
obtain more samples in parts of the space, rather than uniformly over all of ft. This is the
motivation behind another type of method in this general category, the class of subdivision
algorithms. Subdivision methods are usually applied to a region ft C Rn. The domain is
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covered with a coarse regular pattern, e.g. a grid, and the function values on the nodes are
compared. Promising areas of the space are refined by laying down a finer grid in these
areas. Finding these promising areas usually depends on some additional knowledge of the
function, such as a Lipschitz condition. If the function is assumed to be Lipschitz then the
values at the corners of a grid will yield estimates on the possible values inside the grid
blocks, and thus identify the promising areas.

Notice that care must be taken in the estimation of the Lipschitz factor of the objective
function since a poor estimate of this factor will adversely affect the performance of the
algorithm.

11.2.2 Branch and bound
Branch and bound methods are related to the subdivision methods discussed above. The
basic idea is to partition the domain (Branch) into various regions and obtain estimates
(Bounds) on the minimum function value over these regions. Depending on the quality of
the bounds, you can then eliminate some of the regions from further consideration, thus
narrowing the search. In this section, we describe the general framework of a branch and
bound method, leaving the details to the references [39].

The three primary operations in the branch and bound algorithm are Bounding, Selection
and Refining.

Suppose our problem domain $1 is a subset of a larger set X. For example, Q might be
all the points in X that satisfy some set of constraints. At each stage of the algorithm, we
have a partition Mk of a subset of X which contains £1 and for each element of the partition
M e Mk, bounds a(M) and (3(M) such that j3(M) < in f / (Mnf i ) < a(M). These "local"
bounds give us overall bounds, a/c = mina(M) and (3k = min/3(M) which yield the bounds
Pk < inf/(ft) <ak.

To initialize the algorithm, start with the partition which consists solely of the one set
X. To obtain the lower bound /?o, we use our bounding operation to compute a j3(X) such
that (3(X) < inf/(f2). To do this, we only need an underestimate of the minimum of / over
X and we can choose X to make this estimate easier. For example, we could choose X to
be a convex polytope and find some convex (f> < f so that /3(X) = inf 4>(X).

Finding the bound a involves taking an "inner" approximation Sx C £1 over which we
can find the minimum of /. Thus, a0 = inf f ( S x ) - Let x0 be the point at which this
minimum is achieved.

Having initialized the algorithm, the next steps involve updating the partition Mk, the
bounds ak,/3k , the best feasible point seen so far, Xk, and the "inner" approximation Sj^k.

The first step is to remove any M e Mk which are either infeasible (so that M n fi = 0)
or which we know cannot possibly contain the global minimum. This step is very important
to the efficiency of the algorithm, since the more regions we can eliminate early in the
algorithm, the better will be our estimate of the location of the global minimum. Note
that deciding if M n fi = 0 could be difficult, depending on the structure of the problem.
However, clearly if /3(M) > afe, we know that M does not contain the global minimum and
so can be safely removed.

The next step is the selection step, where we choose which elements of the partition
Mk are subdivided. The choice of selection rule will also be problem dependent. Examples
of natural and simple selection rules are to select the "oldest" region(s) or the "largest"
region(s). Both of these selection rules have the desirable property that eventually all
remaining regions will be selected for subdivision.

The refining operation depends very much on the choice of sets for the partition. If
the elements of the partition are convex polytops or simplices, then a natural choice of
refinement is to do a simplicial refinement, where each simplex is subdivided into several



632 CHAPTER 11. OPTIMIZATION BY STOCHASTIC METHODS

smaller simplices. After we refine the regions which were selected, we again remove any of
these new subregions which are either infeasible or which do not contain the minimum.

Now we must update the bounds a and /? and the "inner" approximating set S. Let
M.k+i be the partition consisting of the remaining sets (note that we know that fi C \J{M :
M e Mk+i})- For each M € Mk+i, we find a set SM C fi n M. Furthermore, we use the
bounding operation to find a number f3(M) so that /?(M) < inf f(M n f2) if M is known
to be feasible or /3(M) < inf/(M) if M is uncertain. In order for our bounds to be useful
and to have a chance of converging, we must choose SM and /3(M) in such a way that if
M' e Mk with M C M' (or if M is part of a refinement of M') then SM D M n SM' (our
"inner" approximation is growing) and (3(M) > 0(M') (our lower bound is increasing). The
bound a(M) is defined as a(M) = inf / ( S M ) -

The overall bounds afc+i and fik+i are defined to be the minimum of the a(M)'s and
/3(M)'s, respectively, for M in the current partition, Mk+i- We update Xk+i, the best
feasible solution seen so far, as the place where f ( x ) = ctk+i-

Now if Qfc+i — 0k+i is smaller than some error tolerance, then the algorithm has found
the minimum to within this tolerance and x^+i is taken to be the location of the minimum.

If the state space fl is finite, then the 'branch and bound' is likewise exhausted except
that the search proceeds in such a way that, with the points of the domain organized in a
tree graph, if the function value at some node of the graph is sufficiently worse than the
running best, then the rest of the branch below that point need not be searched. Clearly
the difficulty is setting up the algorithm in such a way as to obtain the estimates of a and
/? over a region in $7.

11.2.3 Iterative Improvement
An iterative improvement, or greedy, algorithm is one in which the successive approximations
are monotonically decreasing. It is a deterministic process: if run twice starting from the
same initial point, the same sequence of steps will occur. Given the current state, greedy
algorithms function by taking the best point in the neighborhood of the current state,
including the current state. The neighborhood of a state is defined to be the set of all the
states that could potentially be reached in one step of the algorithm starting from the current
state. If the state space is thought of as a graph, the neighbors of a state a are all those
states that are connected to a by an edge. Eventually the greedy algorithm reaches a local
minimum relative to its neighborhood system and no additional improvement is possible.
When this occurs the algorithm must stop.

By its nature, an iterative improvement algorithm partitions the solution space into
basins. A basin being all those points leading to the same local minimum. Graph theoret-
ically, an iterative improvement algorithm can be represented as a forest of rooted trees.
Each tree corresponds to a basin, with the root of the tree the local minimum of the basin.

For problems having a differentiable objective function, the gradient is generally used
to compute the downhill steps required for improvement. In discrete problems, one has
a "candidate neighborhood system," that is, each point has a neighborhood of candidates.
Candidates are examined until one is found which most improves the objective value and that
one becomes the next iteration point. Various heuristics are used for assigning a candidate
neighborhood; this is the primary concern in designing a greedy algorithm for a specific
problem. For example, when the domain is a Cartesian space of some sort, neighbors can
be the one-coordinate perturbations of the present point.

By their very nature, greedy algorithms are good at finding local minima of the objective
function. In order to find the global minimum, it is necessary to find the goal basin, that
is the basin containing the global minimum. Clearly once this basin has been located, the
algorithm will deterministically descend into the basin to find the global minimum.
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Greedy algorithms generally rely on some knowledge of the problem in order to define
natural and reasonable candidate neighborhood systems. Since only downhill steps are
taken, it is desirable to have a heuristic which generates downhill steps with high probability.

11.2.4 Trajectory /tunneling Methods
Trajectory methods depend on the function / being defined on a smooth subset of Rn.
Given this setting, the method then constructs a set of finitely many curves in such a way
that it is known that the solutions lie on one or more of these curves. An example might be
to find the critical points of a function, and these points lie on the curves defined by setting
all but one of the partial derivatives to be zero. Given these curves, we must find a starting
point on an appropriate curve and then trace out the curve. Tracing out the curve often
involves setting up a system of differential equations which define the curve and numerically
solving this set of equations (thus, the curve is the trajectory of a solution to a differential
equation). A physical analogy would be, thinking of the function / as a surface, to roll a
marble over this surface in order to find the valleys.

Another set of methods closely related to trajectory methods are homotopy methods.
In this method you choose a related, but easier, function g to minimize. You compute the
minimizers of g. Then you find a homotopy between the function g and the function /. A
homotopy between g and / is a continuous function H : [0, 1] x ft — > R so that H (0, x) — g(x)
while H(l, x) = f ( x ) ; it is like a continuous "path" from g to /. The idea is that we follow
the minimizers of H (t, x) for each t. If we can do this all the way up to t = 1, then we have
found the minimizers of H (1, •) = /.

Clearly the major task in using a homotopy method is choosing the simpler function g
and, most importantly, the homotopy H. It is necessary to be able to find the minima for
H (t, •) for each t. The algorithm usually proceeds by finding the minima for g = H(0, •).
Let us increment t by some fixed, but small amount. Then £T(i, •) is very close to H(0, •)
so the minima will be very similar. Thus, the minima for g are good starting points to use
in an algorithm to find the minima for H (t, •). Continuing this way, we eventually arrive at
t = 1 and, hopefully, the solution to the original minimization problem.

Tunneling methods involve finding a local minimum and then "tunneling" through the
surrounding "hill" to find a point in the basin of another local minimum. For simplicity
we describe the algorithm for a one-dimensional problem. Let / be defined on an interval
[a, b}. Given the local minimum xi, next find a new point z\ by minimizing the "tunneling"
function

This minimization is started with a point to the right of x\. If /(zi) < /(xi), then z\
belongs to the basin of a local minimum with lower function value than x\ , and thus a new
local search can begin to obtain the local minimum x2. On the other hand, if f(z\) > f ( x i ) ,
then increase a and either find such a point or obtain the end point b. In this case, we know
that no such local minimum exists to the right of #1, so try points to the left of x±.

In the multidimensional case, the tunneling function is changed to one of the form [69]

T->-a

where the Xi are all the local minima with best minimum value /* found during the previous
iterations.
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11.2.5 Tabu search
Tabu search is a modification of iterative improvement to deal with the problem of premature
fixation in local minima. Allowing an algorithm to take "uphill" steps helps avoid this
entrapment. However, this makes it possible for the algorithm to loop between several
states and waste computational time. Thus, some mechanism is needed to discourage this.
A Tabu search implements this by having the neighborhood system dynamically change as
the search progresses. One possibility is for a tabu search to maintain a list of recently visited
states and use these as "tabu" states not to revisit. This results in the actual neighbors of
a state being the potential neighbors minus these tabu points.

Tabu search works by first generating a neighborhood of the current state. Then the best
non-tabu element of this neighborhood is taken to be the next state. In certain situations, it
may be desirable to accept a tabu state, for example if a proposed tabu state is much better
than any previously seen. To allow this possibility, tabu search may includes an aspiration
level condition, by which is meant some criteria to judge whether to allow a tabu transition.

Another possible refinement of a basic tabu search is to incorporate some type of learning
into the generation of the local neighborhood. For example, a problem-dependent heuristic
could favor states that look like recently seen good states.

Like all search algorithms, tabu search performs better the more problem specific infor-
mation is encoded into the procedure. This is especially important in determining how to
dynamically generate the local neighborhood.

11.2.6 Random Search
The simplest probabilistic method is random search which consists of selecting points in fi
uniformly at random for n such points. The function values are computed and the best such
value encountered is reported. Suppose a goal has been established and the probability of
hitting the goal is #o under uniform selection over fi. Then the probability the goal has not
been found after n trials is (1 — $o)n. Hence the probability of success is

S=l-(l-60)n.

Solving for n
n _

log(l-00)'
The following table illustrates this equation.

Iterations needed for 90 or 99 % success using random search
Probability of success per iteration, #Q
1/20 1/50 1/100 1/1,000 1/10,000 1/100,000

90% 45 114 230 2,302 23,025 230,258
99% 90 228 459 4,603 46,050 460,515

One interpretation of the table is that in searching for 1 point from among 100,000, to
attain 90% chance of success requires about 230,000 iterations or over two times as many
points as in the space, clearly undesirable. Another interpretation of the same information
is that in searching for 10 points from among 1,000,000, to attain 90% chance of success one
needs about 230,000 iterations, about one fourth of the points, which is much better.

For the permanent problem described above, 00 < (14!)2/(1
4
9
0
6) « 9.2 x 10~19. Thus we

need about 5 x 1020 iterations to be 99% sure that we have found the goal.
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11.2.7 Multistart
Although we study restart methods in-depth in a subsequent section, at this point we
will mention multistart (see [66]) which is a specialized "batch oriented" restart method.
Multistart combines random search and iterated improvement (greedy algorithms) in a
natural way. The method begins by choosing some number of random points Xi uniformly
in £1. From each of these points a local search is performed, yielding the local minima j/j.
From here, we can either terminate the algorithm, taking the best of the local minima along
with its corresponding minimizer as the output, or we can choose to sample some more
points and perform further local searches starting from these new points.

As already mentioned, one aspect of optimal search is deciding when to stop. For
multistart, some simple stopping rules have been derived (see [8]) which are based on a
Bayesian estimation of both the total number of local minima (and, thus, an estimate on
the percentage of these already visited) and the percentage of fi that has been covered by
the basins of these local minima. These estimates are given by •

w(s — 1) (s — w — l ) ( s + w)
————————— CLHQ ——————— ~ ————— —————C
s - w — 2 s(s — 1)

as the estimates of the number of local minima and percentage of H covered, respectively.
In these formula, w is the number of distinct minima found and s is the number of local
searches performed (the number of Xi sampled randomly).

11.3 Markov Chain and Renewal Theory Considera-
tions

Generally, optimization methods are iterative and successively approximate the extremum
although the progress is not monotonic. For selecting the next solution approximation, most
search algorithms use the present point or, in some cases, short histories of points or even
populations of points in f l . As a result, these algorithms are described by finite Markov
chains over £7 or copies of f2.

Markov Chain analysis can focus attention on important factors in conducting such a
search, such as irreducibility, first passage times, mixing rates and others, and can provide
the tools for making predictions about the search such as convergence rates and expected
run times.

Associated with every Markov Chain is its directed weighted connection graph whose
vertices are the states of the chain and whose edges are the possible transitions weighted by
the associated, positive, transition probabilities. The graph defines a topology on the state
space in terms of neighborhood systems in that the possible transitions from a given state
are to its neighbors. By ordering the states of the chain in some fashion, {xi,X2, - • . , £jv},
an equivalent representation is by means of the transition matrix P(t),

in which Pij(t) is the probability of a transition from state Xi to state Xj on iteration t. If
P is constant with t, the chain is homogeneous, otherwise inhomogeneous. We first consider
homogeneous chains.
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Retention and Acceleration
Let at, the state vector, denote the probability distribution of the chain Xt on iteration t;
a0 denotes the starting distribution. If the starting solution is chosen equally likely, ao will
be the row vector all of whose components are I/AT. The successive states of the algorithm
are given by the matrix product

at = at-iP

and hence
at = a0P*.

Now let a subset of states be designated as goal states, G. It is well-known that the
expected hitting time E to this subset can be calculated as follows. Let P denote the
matrix which results from P when the rows and columns corresponding to the goal are
deleted, and let dt denoted the vector that remains after deleting the same components
from at. Then the expected hitting time is given by

where 1 is the column vector of 1's.
This equation may be re- written as the Neumann series

the terms of which have an important interpretation. The sum dtl is exactly the probability
that the process will still be "retained" in the non-goal states on the tth epoch. Since
do-P* = dt, the term

chd(t) = do-P*!
calculates this retention probability. We call the probabilities chd(-) of not yet seeing the
goal by the tth epoch the tail probabilities (not to be confused with measure-theoretic notions
of the same name) or the complementary hitting distribution,

chd(i) = Pr (hitting time > t), i = 0, 1, . . . .

In terms of chd(-),

If now the sub-chain consisting of the non-goal states is irreducible and aperiodic, vir-
tually always satisfied by these search algorithms, then by the Perron-Frobenius theorem,

P* — > A*x<^ as t — > oo

where x is the right and u> the left eigenvectors for the principle eigenvalue A of P. The
eigenvectors may be normalized so that wl = 1 and u\ = 1. Therefore asymptotically,

chd(t) -» -A* t -> oos

where 1/s = &ox-
The left eigenvector u> has the following interpretation. Over the course of many itera-

tions, the part of the process which remains in the non-goal sub-chain asymptotically tends
to the distribution a;. The equation iuP = \uj shows that A is the probability that on one
iteration, the process remains in the non-goal states.

The right eigenvector x likewise has an interpretation. Since the limiting matrix is the
outer product x<^, X is the vector of row sums of this limiting matrix. Now given any
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distribution vector d, its retention under one iteration is a\(jj\ = a\- Thus x 1S the vector
of relative retention values. To quickly pass from non-goal to goal states, a should favor
the components of x which are smallest. Moreover, the dot product a\ is the expected
retention under the distribution a relative to retention, A, under the limiting distribution.

If it is assumed that the goal can be recognized and the search stopped when attaining
the goal, then we have the following theorem.

Theorem 11.3.1 The convergence rate of a homogeneous Markov Chain search is geomet-
ric, i.e.,

X-*Pr(Xt i G) -> - as t -f oo,s
provided that the sub-chain of non-goal states is irreducible and aperiodic.

On the other hand, if goal states are not always recognized, then we may save the best
state observed over the course of a run, the best-so-far random variable, see [63]. We define
this to be the random variable over the chain which is the first to attain the current extreme
value,

Bt=Xr, f ( X r ) < f ( X k ) l<k<t, r<k

Now if the goal is defined in terms of objective values, then the theorem takes the following
form showing that convergence is almost sure (cf. Hajek's Theorem 11.4.1).

Theorem 11.3.2 The convergence rate of the best observation is geometric,

. X-*Pr(Bt i G) -> - oat ->oo,s
provided that the sub-chain of non-goal states is irreducible and aperiodic.

Making the asymptotic substitutions for chd(-) in the expression for the expected hitting
time, E becomes

E « i(l + A + A2 + . . . )
S
I I
5 1 -A

where the infinite series has been summed. We therefore arrive at the result that two scalar
parameters govern the convergence of the process, retention A and acceleration s. In most
applications A is just slightly less than 1 and s is just slightly more than 1.

In cases where repeated runs are possible, retention and acceleration can be estimated
from an empirical graph of the complementary hitting distribution. Plotting log(chd) vs t
gives, asymptotically, a straight line whose slope is A and whose intercept is — logs.

It is also possible to estimate retention and acceleration during a single run dynamically
for the restarted iterative improvement algorithm. We discuss this further below.

The tail probabilities may also be used to calculate the median hitting time M. Since
M is the time t such that it is just as likely to take more than t iterations as less than t, we
solve for M such that chd(M) = .5. Under the asymptotic approximation for chd(-), this
becomes

-XM~l = chd(M) = .5
o

from which
log^/2)
log(A) '
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11.3.1 IIP parallel search
A major virtue of Monte Carlo methods is the ease of implementation and efficacy of par-
allel processing. The simplest and most universally applicable technique is parallelization
by identical, independent processes, (IIP) parallel. When used for global optimization,
this technique is also highly effective. (IIP) parallel is closely related to a parallelization
technique for multistart in [9]. What we are calling (IIP) parallelization is referred to as
simultaneous independent search (SIS) in [4].

One measure of the power of (IIP) parallel is seen in its likelihood of finding the goal.
Suppose that a given method has q probability of success. Then running m instances of the
algorithm increases the probability of success as given by

This function is shown in Figure 2. For example, if the probability of finding a suitable
objective value is only q = 0.001, then running it 400 times increases the likelihood of
success to over 20%, and if 2,000 runs are done, the chances exceed 80%.

-2000

-0.2-1

2000 4000 6000m
Processors

8000 10000

Figure 2. Probability of success vs number of parallel runs

For the purposes of this figure, the runs need not be conducted in parallel. But when
they are, another benefit ensues - the possibility of superlinear speedup. By independence,
the joint expected hitting time E(m), meaning the expected hitting time of the first to hit,
of the parallel processes is given by

E(m)

1
(Pm)m 3

If we define speedup SU(m) to be relative to the single-processor running time, we find

SU(m) = E(m)
,,771-1 1 -A7"

1 -A



11.3. MARKOV CHAIN AND RENEWAL THEORY CONSIDERATIONS 639

where the last member follows for A near 1.
For s and A near one, the speed up curve will show the usual drop off with increasing m.

But if s is on the order of 1.01 or bigger, then speedup will be superlinear for up to several
processors. See Figure 3.
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= 1.01, lambda = .995

s = 1.001, lambda = .999

10 20 30
Processors

40 50

Figure 3. Speed up vs number of processors

These results show that IIP parallel is an effective technique when s > 1 accelerating
convergence superlinearly. See reference [67].

The convergence rate for (IIP) is worked out for simulated annealing in [4]. Suppose
for a given problem, N iterations in total are available and assume m parallel processes
will each conduct n iterations, mn < N. The m processes are assumed to use the same
search algorithm but otherwise are independent. Let YN denote the best overall ending
configuration among the parallel runs, Biin, 1 < i < m, i.e.

YN = B^n A B2,n A - A

Then YN satisfies

Pi(YN
(mK\
( N )

for some K > 0 and a > 0.
A modification of (IIP) parallel, termed periodically interacting simultaneous search, is

also treated in [4]. The method as defined there is cast in terms of simulated annealing
but can be adapted to any search algorithm. Here, m processors independently undergo
s — 1 iterations resulting in configurations Xs_iti, . . . , Xs-i^m. The next state for the fcth
processor, Xs,k will be the best of the first k of these, i.e.

XStk = Xa-1,1 A A Xs-i I <k<m.

11.3.2 Restarted Improvement Algorithms
We envision a process combining a deterministic downhill operator g, acting on points of
the solution space, and a uniform random selection operator U. The process starts with an
invocation of U resulting in a randomly selected starting point. This is followed by repeated
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invocations of g until a local minimum is reached. Then the process is restarted with another
invocation of U and so on.

As above, this process enforces a topology on the domain which is a forest of trees. The
domain is partitioned into basins Bi, i — 0,1,.. . as determined by the equivalence relation
x = y if and only if gk(x) = g^(y) for some k, j. The settling point or local minimum b of
basin B is linifc_>00grfe(x) where x is any point of B. By the depth of a tree we mean its
maximum path length.

The transition matrix for such a process assumes the following form

P =

B0 0

Q B,

0

Q

Q Q ... Bn

where, to conserve notation, we also use Bi to denote the matrix corresponding to basin
Bi. We index the points starting with the goal basin. Within a basin we index points with
increasing path length from the basin bottom. Then each sub-matrix Bi has the form

P P P ... p

1 0 0 . . . 0

0 1 0 . . . 0

0 0 0

where p = I/TV corresponds to uniform restarting. The 1's in this matrix are in the lower
triangle but not necessarily on the sub-diagonal. The blocks designated by Q are generic
for the form

Q =

p P
0 0

0 0

p

0

Let E denote the expected hitting time to the basin BQ containing a minimizer, the goal
basin. Let Ti be the expected time to reach the settling point of basin Bt. Let \Bi\ denote
the number of points in basin
probability of landing in basin

and Qi the ratio Bi\/N where N = i.e. 6>; is the
on a restart. Then by decomposition of events

E = 60 + (1 + Ti + E)e-i + • • • + (1 + Tn + E)6n (11.3.1)
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or

(11.3.2)

As above E is also asymptotically given by

IL, — — -
s l - A '

Because of the special structure of P in this case, both retention and acceleration can be
calculated directly.

Solving for A and s, the Fundamental Polynomial
In the forest of trees model, it is clear that all states which are a given number of steps from
a settling point are equivalent as far as the algorithm is concerned. Let rj(i) be the number
of vertices j steps from the local minimizer of basin i and let TJ = ^3"=i rj(0 denote the
total number of vertices which are j steps from a local minimizer. In particular, r0 = n is
the number of local minimizers.

Therefore the given forest of trees model in which each vertex counts 1 is equivalent to a
single, linear tree in which each vertex counts equal to the number of vertices in the original
forest which are at that distance from a settling point. Under the equivalency, the P matrix
becomes

p —

PO

I
0

0

0

Pi
0

1

0

0

P2 •

0 .

0 .

1 .

0 .

• Pn-1 Pn

0 0

0 0

0 0

1 0

(11.3.3)

In this, pi = ri/N where, as above, N is the cardinality of the domain. It is easy to calculate
the characteristic polynomial of this matrix directly; expand det(P — XI) by minors along
the first row,

Upon setting ry = I/A we get a polynomial we will refer to as the fundamental polynomial

/fa) = PoV + Piri2 + •••+ Pn-irf1 + pnr,n+l - 1. (11.3.4)

Notice that the degree of the fundamental polynomial is equal to the depth of the deepest
basin.

As above, letting #o be the probability of landing in the goal basin, then

Q<) + PO + Pi +-'-+Pn = 1-

Prom this we see that /(I) = — 00 and
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The derivative /'(??) is easily seen to be positive for r\ > 0 and hence the fundamental
polynomial will have a unique greater than 1 root. Denote it by 77; it is the reciprocal of the
Perron-Frobenius eigenvalue A.

To calculate the acceleration s, we first find the left and right eigenvectors. The right
Perron-Frobenius eigenvector, x, of P is easily calculated. From (11.3.3) we get the recursion
equations

X f c = A x f c + i k = Q,...,n-l.
And so each is given in terms of xo >

Xk=rikxo, k=l,...,n.

Similarly, we get recursion equations for the components of u> in terms of UJQ ,

Uk = ̂ o(npk + rfpk+\ + • • • + rjn+1~kpn).

Recalling the normalizing conditions £)wj = 1, it follows that

And under the normalization, X^iXi = 1, it follows that

Xo =

But s = l/(x • AO) where do is the non-goal partition vector of the starting distribution,

&0= (PO Pi ••• 1

Substituting from above, we get

. = ri(r, - I)/'(r?)

Run time estimation of retention, acceleration and hitting time
Returning to the fundamental polynomial, we notice that its coefficients are the various
probabilities for restarting a given distance from a local minimum. Thus the linear coefficient
is the probability of restarting on a local minimum, the quadratic coefficient is the probability
of restarting one iteration from a local minimum and so on.

As a result, it is possible to estimate the fundamental polynomial during a run by keeping
track of the number of iterations spent in the downhill processes. Using the estimate of the
fundamental polynomial, estimates of retention and acceleration and hence also expected
hitting time can be affected. As a run proceeds, the coefficient estimates converge to their
right values and so does the estimate of E.

11.3.3 Renewal Techniques in Restarting
One can restart in a more general way using other criteria. For example, one could restart if
the vector process Vn = (Xn, • • • Xn+r) of r +1 states with values in 17r+1 = fi x fi x • • • x fi
lies in a subset D of f2r+1 .

We assume that the goal set G is a non-empty subset of the finite set Q. Fix r > 1, let
.D be a subset of fir+1 and define for subsets A of fi the sets

DA = {(xi,x2, - . . , xr+i) 6 D : xi e A} .
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Denote by E the (non-empty) set of x in fi\G which for some fixed t > 0 satisfies

P[Vn eD\Xn = x]>t

for all n, and let U = G U E. Introduce the following two conditions, where TE = min{n :
xn e E} .
(Al) 1 > P(TE < TG] > 0.

(A2) There is a finite K > 1 and a number </> e (0, 1) such that uniformly for x G tt\G, and
all n,

P[TV >m + n Xn = x}< K(j>m,
where the probability on the left hand side is that the first epoch after n at which the
X process lies in U is greater than m + n.

Restarting when a sequence of states lies in a subset D of JT+1 defines a new process on the
original search process and under the conditions (A) the tail probabilities for the r-process
Vn satisfy a renewal equation which yields their geometric convergence to zero.

If the goal is encountered then the next r are taken as identical (and our interest in the
process is terminated) and otherwise the first hitting time TU is defined by

TU = min{n > 1 : Vn € DU}-

Writing

one has upon decomposition of the event {TG > n} as

{TG >n} = {TU > n} U ({TG > n} n {TU = 1})
U • • • U ({TG > n} H {TU = n})

that
n

= j } ] = bn

where fn = P[TG > n, TU = n] and bn — P[TU > n]. Therefore, the tail probabilities un for
the r-process hitting times satisfy a renewal equation.

Theorem 11.3.3 Under the conditions (Al) and (A2), E[TU] < oo,

and there is a 7 €E (0, 1) and a finite constant c such that ^~nun — » c as n — > oo.

Define

Corollary 11.3.4 //(Al), and (A2) hold, if fn is not periodic and there is a real solution
9 > 1 to tyf(0} = 1 satisfying ^fe(^) < oo then there is a p 6 (0, 1) and a finite positive
constant c such that p~nun — > c as n — > oo.

By restarting, the expected time to goal of a search process can be transformed from
infinite to finite. Multistart, (see [66]) where under no restarting the hitting time is infinite
with positive probability, is an obvious example which has already been discussed. Under
simple conditions like restarting according to a distribution which places positive mass on
each state, multistart trivially satisfies the conditions (Al) and (A2) with t = I. Furthermore
the conditions of Corollary 11.3.4 hold and it provides an interesting formula for the Perron-
Frobenius eigenvalue as the reciprocal of the root of a low degree polynomial (see [40]).
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11.4 Simulated Annealing
11.4.1 Introduction
Simulated annealing (SA) is a stochastic method for function optimization that attempts to
mimic the process of thermal annealing of solids. From an initial condition, a chain of states
in fi are generated that, hopefully, converge to the global minimum of the objective function
/, referred to here as the energy E. This sequence of states dances around the state space
with the amount of movement controlled by a "temperature" parameter T. The temperature
of the system is lowered until the process is crystalized into the global minimum.

Simulated Annealing has its roots in the algorithm announced by [51]. This algorithm
used a Monte Carlo method to simulate the evolution of a solid to thermal annealing for
a fixed temperature. The current state of the solid (as represented by the state of some
particle) was randomly perturbed by some small amount. If this perturbation resulted in a
decrease in the (thermal) energy, then the new state was accepted. If the energy increased,
then the new state was accepted with probability equal to exp(—AE/kT) where AE is the
energy difference, k is Boltzmann's constant and T is the temperature. Following this rule
for evolution (called the Metropolis acceptance rule), the probability density for the random
variable of state of the system Xt, converges to the Boltzmann distribution

P(Xt = E) « -U^r (11.4.5)
Zi

where Z(T) is a normalizing constant (called the partition function).
The basic Simulated Annealing algorithm can be thought of as a sequence of runs of

versions of the Metropolis algorithm, but with decreasing temperature. As stated above,
we use the objective function, the function to be minimized, as the energy for the system.
For each temperature, the system is allowed to equilibrate before reducing the temperature.
In this way, a sequence of states is obtained which is distributed according to the various
Boltzmann distributions for the decreasing temperatures. However, as the temperature
approaches zero, the Boltzmann distribution converges to a distribution which is completely
supported on the set of global minima of the energy function, see [62]). Thus, by careful
control of the temperature and by allowing the system to come to equilibrium at each
temperature, the process finds the global minima of the energy function.

Since the Metropolis acceptance scheme only uses energy differences, an arbitrary con-
stant can be added to the objective function (the energy function) and obtain the same
results. Thus we can assume that the objective function is non-negative so can be thought
of as an energy. However, in an implementation this constant obviously does not need to
be added.

The basic (SA) algorithm is described as follows. Let fi be the state or configuration
space and / be the objective function. For each x G fi, we have a set of "neighbors", N(x),
for x, the set of all possible perturbations from x. Let Q designate the proposal matrix, that
is, Q(x, y) is the probability that y is the result of the perturbation given that the current
state is x. Thus, N(x) = {y : Q(x, y) =£ 0}. We assume that the matrix Q is irreducible so
that it is possible to move from any state in fi to any other state in 17.

1) Initialize the state x0 and T0.

2) Choose a x' 6 N(xn) according to the proposal scheme given by the matrix Q.

3) If f ( x ' ) < f(xn), then set xn+i = x'.

4) If f ( x ' ) > f(xn), then with probability 6
A//(fcT'l) set xn+i = x' else let xn+i = xn.
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5) Decrease Tn to Tn+i.

6) If not finished, go to step 2.

Theoretical setting: Markov Chains
Generally, Simulated Annealing is analyzed in the context of Markov Chain theory. Given
the state space fi and energy function /, we denote the acceptance matrix (that generated
by the Metropolis acceptance scheme) by A where

where T is the temperature and k is Boltzmann's constant. Using the proposal matrix Q
along with this acceptance matrix, we get the transition kernel for the chain to be

.?') i ^ i and l -T^Qf

If the proposal matrix Q is symmetric and irreducible and the temperature T is fixed, it
is easy to show that the invariant distribution for this chain is the Boltzmann distribution
(11.4.5) for the temperature T. This is the context of the original algorithm in [51].

The situation for changing (decreasing) temperatures is more difficult.

Cooling schedules
Clearly the choice of cooling schedule is critical in the performance of a simulated annealing
algorithm. The decreasing temperature tends to "force" the current state towards minima,
moving only downhill. However, decreasing the temperature too quickly could result in the
state getting trapped in a local (nonglobal) minimum while decreasing the temperature too
slowly seems to waste computational effort. A fundamental result by Hajek (see below)
gives a general guideline for the cooling schedule.

Despite these theoretical results, practitioners often use other cooling schedules that
decay to zero faster than the inverse log cooling schedule from Hajek's result. This is done
in an attempt to speed up the algorithm.

Cooling schedules can be divided up into fixed schedules, or those that are preset before
a run of the algorithm, and dynamic or adaptive schedules, or those that are changed during
the run of the algorithm.

Common fixed cooling schedules are the inverse log cooling schedule, inverse linear where
T = l/(a + bt) for suitable a, b, geometric where T = ar* for some a and 0 < r < 1.

Dynamic cooling schedules are usually derived using considerations from statistical
physics. One such cooling schedule is the minimum entropy production schedule from [2].
This schedule slows down the annealing when the internal relaxation time or where large
amounts of "heat" have to be transfered out of the system (i.e. when we need to make sure
that the system doesn't get stuck in a local minimum or meta-stable state). A disadvantage
is the extra work necessary to estimate the parameters necessary for the dynamic schedule.
In any particular problem, what is important is the trade-off between the extra efficiency of
a dynamic schedule versus the extra work necessary to calculate the dynamic schedule.

The problem of pre-mature convergence
A common problem that plagues stochastic methods for optimization is that of pre-mature
convergence, or "getting stuck." This is the purpose of decreasing the temperature extremely
slowly. In computer runs of a Simulated Annealing algorithm it is common to see long
sequences of states where there is no improvement in the solution. This is often due to
the system remaining in the same state for many iterations. In fact, as the temperature



646 CHAPTER 11. OPTIMIZATION BY STOCHASTIC METHODS

decreases, it becomes more likely for this to happen and these runs of fixed states tend to
get longer. Thus, several methods have evolved in order to deal with this problem.

One clear solution is to try to bypass these runs directly. Since (SA) is a Markov Chain,
the time spent in chain of repeated states is completely wasted. If one could "by-pass" these
states, moving directly to the next, different state, this effort could be recovered. This is
one feature of the "sophisticated simulating annealing" algorithm proposed by Fox in [23].

Another, simpler, method to deal with this problem is to restart the process. We take
up this idea in the next section.

11.4.2 Simulated annealing applied to the permanent problem
As an illustration of these basic ideas, we give an example of the algorithm applied to the
14:40 permanent problem.

In all the experiments reported on below, our neighborhood system was defined by
allowing any 1 appearing in the matrix to swap positions above or below, left or the right
with an adjacent 0. (Of course swapping with a 1 would not yield a different matrix.) In
this, we allowed wrapping, that is, a 1 on the bottom row could swap positions with a 0 on
the top row; similarly the first and last columns can swap values. In this way, each solution,
or arrangement of d 1's, has 4d neighbors.

The "energy" of the annealing, to be minimized, is taken as the negative of the permanent
itself so that minimizing energy, maximizes the permanent.

As for cooling schedules, we tested: geometric, inverse log, and inverse linear. In all
cases we found the "phase change" temperature to be about T = 1. Thus we arranged
for all cooling schedules to bracket this value. In order to make the comparison fair, we
further arranged that each run would consist of the same number of iterations: 3 million.
This meant that the starting and ending temperatures varied greatly among the different
schedules.

Geometric cooling means
T = a&*

with a and b chosen so that T ranged from 19 down to .1. Inverse log cooling is the
theoretically prescribed cooling,

T = a/ln(l+i).

With a = 8.705194644, temperature ranged from 12.5 down to .58. Inverse linear cooling
means

T = a/(I + bt)

The parameters a and b were chosen so that temperature ranged from 19 down to .4.
Ten runs were made with each schedule. Geometric cooling worked consistently best and

we only show those results.
best run1500

Energy

1000

500

average of 10 runs

worst run

840 corresponds to
temperature = 1.3"7

1000 2000 3000

Number of Iterations (thousands)

Simulated Annealing results for the permanent 14:40 problem



11.4. SIMULATED ANNEALING 647

11.4.3 Convergence Properties of Simulated Annealing and Re-
lated Algorithms

While one obvious goal in a minimization problem is the rapid identification of some or
all x which minimize /, this goal is often not attainable, and in that case other criteria,
such as the rate of increase of the quality of the best solution to date, could be applied
in judging an algorithm's performance. Generally the subject is difficult and relatively
young so that comparatively few rigorous results are available. The methods studied and
their properties are dependent upon the underlying assumptions on / and fi. Discrete time
algorithms designed for finding minima of smooth functions on subsets of lRn, of continuous
time algorithms for finding minima of arbitrary functions defined on a finite set, and all of
the obvious variations have been studied. One of the most thoroughly studied techniques is
simulated annealing. Let Xn be a Markov chain whose state space is fi and whose transitions
are defined by

P[Xn+l = j\Xn=i} = q(i, j)exp{-(/(j) - f(i))+/Tn}, (11.4.6)

where i, j € fi, n indicates the epoch of time, and Tn I 0 as n — » oo. The mathematical model
of the process is a time-inhomogeneous Markov chain. There is a voluminous and growing
literature on Markov chains. Time-homogeneous chains are especially well understood (see,
for example, [22] , [44] . The chains which arise in (S A) are time inhomogeneous and far less is
known about them. Cruz and Dorea [15] employ results from the theory of nonhomogeneous
Markov chains (see [42] ) and are able to reprove some results of Hajek.

The majority of the theoretical work on (SA) to date has been directed at the question
of convergence of the probabilities P[Xn e G \ XQ] for interesting subsets G of fi. For
example, if

then under what conditions on the algorithm, which involves a choice of the transition
function q and of the cooling schedule Tn, does one have limn_oo P\Xn € G \ XQ\ = 1? The
compilation of results below is not comprehensive. More results and sometimes in somewhat
greater generality are available from the original sources.

• The energy landscape is (fi, /, q), where fl is a finite set, / is a function whose minimum
value on £1 is sought, and q is a fixed irreducible Markov transition kernel defined on
ft x n.

• For real numbers a, the level sets are fi(o) = {i 6 fi : f ( i ) < a}.

• The restriction of q to a subset G of fi is ?U(i, j) = q(i,j) if i and j are in G and 0
otherwise.

• The boundary of a subset G of fi is B(G) = {j £ fl\G : maxjeG q(i,j) > 0}.

• For real a and under the assumption that q is symmetric, the relation «-»„ on fJ x fi
denned by

i ~a j if {supg[Jj(0)(i> j) > 0 or i = j}
n

is an equivalence relation and i and j are said to communicate at level a.
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• Weak reversibility holds if for any real a, supn 9[£wa-< (i, j ) > 0 entails supn q\riia\ (j, i) >
0. This property also entails <->a being an equivalence relation on fi x fj.

• The components C of fi/ <->a are called cycles. As a ranges over all positive numbers
the union of the cycles so obtained is what Hajek calls the collection of cups.

• The depth of a cycle C is

= max min (/(j) - /(»))+.
^ ' ^ "

= H(C}/f(C)

• For real t > 0, Dt = max{Z?(Cr) : C is a cycle of ft, f ( C ) > t + minn /}.

• A state i 6 fi is a local minimum of / on fi if no state j with f ( j ) < f ( i ) communicates
with i at level f ( i ) .

• Hajek's depth d(x) of state x is oo if it is a global minimum. Otherwise it is the
smallest number b such that some state y with f(y) < f ( x ) can be reached at height
f ( x ) + b from x (it is a — f ( x ) for the smallest a such that for some y with f(y) < f ( x ) ,
x <->a j/). If x is a local minimum of / then d(x) = H(C), where x is at the bottom of
some cup C.

• The bottom of a cup C (a cycle) is the set of x & C such that f ( x ) = f ( C ) . The depth
of such a state is H(C).

To illustrate these ideas, consider the following connection graph shown along with the
energy for each state.

9 1 4

8
7
6
5
4
3
2

Then we have the following relationships.

0(6) = {2, 9, 10, 11, 13}, {12}, {8}, {5}
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etc.

• #({2,9,10,11,13}) = 7-1

• /({2, 9, 10, 11, 13}) = 1.

I. Finite fi Using continuous time arguments Hajek [34] proved the following about the
discrete time minimization on the finite set f t .

Theorem 11.4.1 (Hajek) Assume that (fi, /, q) is irreducible and satisfies weak reversibil-
ity. If Tn | 0 then
(i) For any state j that is not a local minimum of f , limra_,00 P[Xn = j] = 0.
(ii) Suppose that the Bet of states B is the bottom of a cup C and the states in B are local
minima of depth H(C). Then lin^^oo P[Xn e B] = 0 if and only if

(iii) Let d* denote the maximum of all depths of local, non-global minima. If G is the set of
global minima then

lim P\Xn e G] = 1 (11.4.7)
n— >oo

if and only if

Note: As Hajek points out, if Tn = c/ ln(l + n) then (11.4.7) holds if and only if c > d*.
In theory one must choose c > d* to be assured that the algorithm converges. Hajek

gives a matching problem example in which one can show that d* < 1 for his choice of q. In
any problem c = max / — min / will work but this incurs a penalty in the convergence rate
as can be seen from the next theorem of Chiang and Chow [12]. Fox [23] and Morey, et al
[55] treat the problem of choosing c in more general situations.

Around the same time as Hajek's work, the rate of convergence of (SA) with logarithmic
cooling was established under slightly stronger assumptions. To state the results, let X(t) =
e-i/r(t) an(j je|- ^ _ rnaxjen o!(i), where, with h(i,j) = min/i such that j can be reached
at height f ( i ) + h from i, d(i) = mm{h(i,j) : f ( j ) < f ( i ) } if i is not a global minimum,
d(i) = max.{h(i, j) : j is a global minimum} if i is a global minimum. Then d* is the
maximum of d ( i ) over states which are not global minima and the following is true, assuming,
WLOG, that miniefi f ( i ) = 0.

Theorem 11.4.2 ([12]) Under irreducibility and weak reversibility and i//0°° \d(t)dt = oo
and X'(t}/\(t) = o(\d (t)} as t — > oo then there exist positive constants f3i, independent of
the initial distribution, such that

lim P[*t = i]/A'W (*)=&.
—t — >oo

With the logarithmic cooling schedule c/ ln(i) one has \(t) = t~l/c and for c> d and c > d*
the theorem is true, while if c> d* then limn_ ,00 P[Xn 6 G] = 1.
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It can be seen from this theorem that the rate of convergence of the probabilities can be
quite slow, an observation confirmed in practice, even if d* is available.

Rates of convergence of simulated annealing algorithms have also been studied from a
different perspective using Sobolev inequalities (see [38]). Holley and Strook treat continuous
time irreducible, reversible processes on a finite state space fi and the size of the Radon-
Nikodym derivative ft of the distribution of the annealing process X ( t ] at time t with respect
to stationary (Gibbs) distribution at time t is established. It follows from their work, for
example, that when the cooling schedule is

T(t) = log(l + 1)

for t > 0 the L2 norm of ft — 1, with respect to the Gibbs measure, satisfies

where A > 0 is a constant and m and M are geometric quantities: m = max^^gnj//" (x, y) —
f ( x ) — /(y)}, H(x,y) is the minimum elevation of paths connecting x and y, and M —
max/ — min/. This inequality shows, for example, that

P \ f ( X ( t ) > min/ + d}2 <(! + C)Qt[f > min/ + d]

where Qt is the equilibrium measure at temperature T(t). In contrast to most studies,
Holley and Stroock's analysis applies to the dynamic situation in which T is changing. For
example, Ingrassia [41] investigated the spectral gaps of the discrete time processes XT (t)
on the finite set fi whose transitions are given in (11.4.6) for Tn constant and equal T.
He derived bounds, also in terms of geometric quantities, on the magnitudes of the second
largest and smallest eigenvalues (see also [19]) for irreducible reversible aperiodic chains and
showed, for example, that for the Metropolis algorithm when T is small, the gap is 1 — A2,
where A2 is the second largest eigenvalue of the transition matrix.

In an effort to speed the progress of (SA) with (inverse) logarithmic cooling, many
researchers tried alternative schedules which decrease to 0 more quickly, such as exponential
schedules, even though, as proven by Hajek, the convergence (11.4.7) no longer holds. One
such alternative is the triangular cooling schedules of Catoni. In [11], using large deviation
estimates, still more details are provided on properties of the convergence of (SA). These
results imply those of Hajek and, corroborating empirical observation also indicated the
slow decrease of the probability that f(Xn) exceeds the minimum by t or more.

Theorem 11.4.3 (Catoni) 1. For any energy landscape ( £ l , f , q ) there is a constant K
such that for any schedule Tn J. 0 and t > 0

supP[f(Xn) > t -h min
i(=.O &

where p(t) = l/Dt.

Catoni suggested that since computing time N is finite one should tailor the cooling
schedule to this finite horizon problem. He termed these triangular cooling schedules and
proved the following.

Theorem 11.4.4 (Catoni) 2. For any state space f i and communication kernel q there
exist positive constants B and K such that for any positive constant A, for any initial
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distribution p, for any positive 6 and e for any energy f , for any triangular schedule T^ ,
1 < n < N, such that

with

and

the corresponding annealing algorithm X^ satisfies

m n

Corollary 11.4.5 If d < Ds and h > H(to\Sl(6)) then

N d /Mn(JV)\
" h\

"/JV

is "logarithmically almost optimal" in the sense that

nm '°p|/(jrg
1

)7'+mjna/l =jv-»oo ln(7V)

II. Continua. In addition to the work on minimizing a function / on a finite set £1 by
stochastic methods, there is a large body of detailed work on minimizing a smooth function
/ defined on some subset fi of ]Rfe.

Using large deviation results, Kushner [49] studies processes defined on fi = K, by

Xn+1 = Xn + 7n&(*n,»7n) +7n<T(*nKn, (H-4.

where r/n are random variables, £n are i.i.d. Gaussian random variables,

and there are other restrictions. Taking E[b(x,r)n+i)] = b(x) = —Bx(x) for a continuously
differentiable function B yields a method for locating the minimum of B. Among the
properties he studies are the escape times from neighborhoods G of compact stable invariant
sets K of x = b(x). Under conditions, he shows that for A sufficiently large and x in G,
after long times, L _

C)

where a; e G and Sa(K) is a constant related to the minimum value of an "action functional"
connecting x to the boundary of G.

Another model has the candidate point Xn+i at epoch n + 1 related to the candidate
Xn at epoch n by

Xn+l = Xn + -fn[h(Xn) + rjn+l] + an£n+l, (11.4.9)

where 7n and an are sequences under control of the user of the algorithm, r/n+± is a random
observation error (this models the error in the determination of the precise value of Vh(Xn)),
and £n+i is a random sequence. In' case of minimizing a function / one can take h(x) =
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—V/(z) and £n+i is added to keep the algorithm from becoming trapped in local minima.
This is a discrete time algorithm inspired by the continuous time versions first suggested in
[27]. Pelletier [59] calls this a weakly disturbed algorithm if -jn and crn are chosen such that
v(n) = 7«cr~2 is increasing and v(n)/ ln(n) —>• oo and a strongly disturbed algorithm if v(n)
is increasing and v(n)/ln(n) is suitably bounded. The latter case corresponds to simulated
annealing as follows.

Consider a Markov chain Yn denned on fi with transition probability

P[Yn+l £A Yn = x}= I sn(x,y)dFxn(y) + rn(x)IA(x),
J A

where

sn(x) = max{l,o^|x|}, 7 > 0,

an = A/n, bn =

sn(x,y) =

log log n '
» [f(y) - f(x)]

rn(x) = 1- / sn(x,y)dFxn(y],

and Fxn the cdf of a N(x, b^a^x)!) random variable. The resulting process is an analog of
the usual simulated annealing process. Furthermore, by an appropriate choice of ryn+i, the
process in (11.4.9) represents such a process with £n+i Gaussian.

Among the conditions for the truth of the next theorem is that the measures 7re on 17
defined by

where Ze < oo, satisfy 7re => IT.

Theorem 11.4.6 [25] Under (several) conditions, for any bounded continuous function on
Rd

lim E 0 x [ f ( Y n ) ] = 7 r ( f ) .
n—>oo

Theorem 11.4.7 [59] Under many conditions, including that v(n) is increasing and v(n)/\n(n)
is suitably bounded, if the function g(a) — / e~a^x^dx is regularly varying at infinity with
exponent —77, 77 > 0, then

(i) 4«(n) /(Xn) - rmn /(j,)

Furthermore,
(ii) for any real function f increasing to infinity

In (P \f(Zn] - rmnyefj f ( y ) > '•/^(»)^("(»
— ̂ -^ —————— ——— —

Item (i) shows that the rate of weak convergence of simulated annealing cannot be better
than c/m(n).
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First hitting times
The results about (SA) cited above relate to the asymptotic distribution of the search process
Xn, a non-homogeneous Markov chain. The analysis of some stochastic algorithms provided
by Shonkwiler and Van Vleck [67] takes a different approach in measuring the performance
of stochastic algorithms. Since it is easy to keep track of the best an algorithm has done to
date, it makes sense to ask about the first hitting time of a goal state as a function of the
number of epochs n it has been running.

In the case of homogeneous Markov chains the relationships between first hitting times
and rate of geometric ergodicity has been investigated rather more thoroughly than in the
case of non-homogeneous ones (see [70] and [45]). For (SA), geometric convergence to zero of
the probability P[To > n] that the goal has not been encountered by the algorithm through
epoch n, can not hold in general. In the next section we give an example of a simple (SA)
for which the expected first hitting time is infinite, thereby showing that for any e > 0 there
is a simulated annealing problem for which one cannot have eventually

P[TG >n}< l/n1+£.

11.5 Restarted Algorithms

11.5.1 Introduction
A problem faced by all global minimizing algorithms is dealing with entrapment in local
minima. Evidence that stochastic algorithms can spend excessive time in states other than
the goal comes most frequently and easily from simulations. For example, in simulated
annealing an "optimal" cooling schedule (see [34]) for simulated annealing (SA) guarantees
that the probability the search process is in the goal state tends to 1 as the number of epochs
n tends to infinity; the expected time taken by (SA) to hit the goal can however be infinite
as seen in the following simple "Sandia Mountain" example.

Example 11.5.1 Let Q = {0,1,2} with /(O) = -1, /(I) = 1, and /(2) = 0. Potential
moves will be generated by a random walk and, at the end point, with equal chance of
staying put as moving. This provides for a symmetric move generation matrix. Using the
usual Metropolis acceptance criteria, a^ = e~max^0<^^~f^/'r, the transition matrix is
given by

P =

l_ l e -2 /T le-2/T 0

1/2 0 1/2

0 e~VT l-e~

From annealing theory the temperature T should vary with iteration count t according
to the equation

T=
tn(t + 1)

where C is the depth of the deepest local non-global minimum. Here (7 = 1. Eliminating T
gives the transition probabilities directly in terms of t, thus

and
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The expected hitting time determination involves calculating all the possible ways lead-
ing to state x = 0 in t iterations starting from a given state. Here however we estimate
these probabilities. Hitting the goal at time k includes the possibility of remaining for
t = I , 2,..., k — 2 in state x = 2, then moving in two consecutive iterations to states x = 1
and x = 0. Therefore, the probability of hitting at time k is at least as large as

, _ t, I/2 w, l/2x ,n 1/2,111
2 ^ 3 ' v k-l'

2)(l~ ^ J ' - ' l 1 - f e _ i ) f c 4

k = 2,l

It follows that the expected hitting time from state 2 is at least as large as

k=2 k=2

A simple mechanism for avoiding entrapment is restarting. This means terminating the
present search strategy and using the initialization procedure on the next iteration instead,
usually random selection.

11.5.2 The Permanent Problem using restarted simulated anneal-
ing

As in the simulated annealing application, our neighborhood system for restarted simulated
annealing is defined by allowing any 1 appearing in the matrix to move one position up or
down or to the left or to the right with wrap.

The "energy" of the annealing, to be minimized, was taken as the negative of the per-
manent itself and the cooling schedules we tested were geometric, inverse log, and inverse
linear. For the restart runs, temperature ranged from on the order of 6 down to the order
of 0.2. For each different cooling schedule, we tried several temperature ranges until we
found one that seemed to work well. Thus, we compared the "best" runs for each cooling
schedule. We took the restart repeat count, r + 1, to be 200.

The results displayed in the figures are the averages of 10 runs. The restart algorithm
made both very rapid progress at the beginning of the runs and continued to make progress
even up to the time the runs were halted. All the annealing runs with restart consistently
achieved permanent values on the order of 1500. The restarting step was effective in al-
lowing the algorithm to escape from local minima even at temperatures below the critical
temperature (of approximately 1) where the phase transition occurs.
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Figure 4. Restarted Simulated Annealing results for the permanent 14:40 problem

11.5.3 Restarted Simulated Annealing
The undesirably slow convergence of (SA) has motivated research such as that in Kolonko
[48] and Belisle [7] on the random adjustment of the cooling schedule, on non-random adjust-
ments as reported, for example, in van Laarhoven and Aarts [71] or Nourani and Andresen
[57] , and the thorough theoretical treatment of simulating direct self-loop sequences in Fox
[23] and the truncated version in Fox and Heine [24].

Although geometric decrease of the probability of not seeing the goal by epoch n does
not generally hold for (SA), Mendivil, Shonkwiler and Spruill [50] have shown that it does
for (SA). The algorithm is restarted whenever f(Xn+r) — • • • = f(Xn). Let

a = min {/(y) - f ( x ) : q(x,y) > 0 and f ( y ) - f ( x ) > 0}

Theorem 11.5.2 Under the standard transition assumptions above and if there is f3 > 1
such that

< oo (11.5.10)

then restarting (SA) by a distribution which places positive probability on each point in £)
for r, 1 < r < oo, sufficiently large there is a 7 € (0,1), and a finite constant c such that
7~n-P[r<3 > n] —* c as n —> oo.

Corollary 11.5.3 The (RSA) algorithm which uses the cooling schedule ofc(n) = l/n will,
for sufficiently large r, have tail probabilities which converge to 0 at least geometrically fast
in n.

The conditions of the Theorem are not necessary for the geometric convergence of the tail
probabilities. In the following example, the geometric rate of decrease of the tail probabilities
holds for a restarted simulated annealing which uses the usual logarithmic cooling schedule.
This example is one for which the (SA) satisfies the conditions of Hajek's theorem but
which, without restarting, has an infinite expected hitting time of the goal (see the previous
section). , . . • \; . • * .
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Example 11.5.4 The Sandia Mountain example of the previous section, as an illustration
that independent identical parallel processing (IIP) can make the expected time to hit the
goal go from infinite to finite, is presented here from the perspective of restarting when a
state is repeated; by showing that the conditions of the Theorem are met, it can be shown
that the expected time to goal can be made finite simply by restarting on the diagonal.
Under restarting the tail probabilities do converge to zero geometrically quickly even using
the logarithmic schedule.

Obviously, geometric or faster decrease to 0 of the tail probabilities P[TG > n] under
(RSA) or otherwise entails a finite expected hitting time of the goal states G, but by itself
geometric decrease of the tail probabilities is not a strong recommendation. Under the as-
sumption that both processes use the same generation matrix with (SA) using a logarithmic
schedule Tn = c/ln(n + 1), c > d*, and (RSA) using a linear schedule Tn = 1/n, assume
a common position of the two algorithms at epoch n. At any instant of time at which the
two processes happen to reside at the same location the cooling schedule of one, which is
logarithmic, should be compared with that of the other, which is linear in the (random)
age of the process, for this will indicate the relative tendencies of going downhill. If r is
small then the clock will likely have been reset for (RSA), but if r is large then very likely
the r-process will not have restarted at all and the epoch number will also be the current
age. It is the latter instance which is of interest since (RSA) is assumed to have r "large."
At a location which is not a local minimum the (SA) process will have, as the epochs tick
away, an ever increasing tendency in comparison with (RSA) to proceed in uphill directions.
Thus (RSA) should proceed more rapidly downhill than (SA) at points which are not local
minima.

What happens when (SA) and (RSA) are at a local minimum at the same epoch? Very
likely the (RSA) will be out of this "cup" (see [34]) in r steps whereas the (SA) will take
some time. Since the goal cannot be reached until the process gets out of the cup this is a
crucial quantity in determining the relative performance of the two methods when there are
prominent or numerous local minima. The (RSA) will have an immediate chance of finding
the cup containing the goal whereas, depending upon the proximity of the present cup to
the one containing the goal, (SA) may be forced to negotiate many more cups.

It follows from Fox and Heine [24] and Fox [23] that the enriched neighborhood version
of QUICKER-j?" has tail probabilities converging geometrically quickly to 0. In contrast with
QUICKER, (RSA) requires the computation of only small prescribed numbers of function
values in small neighborhoods.

11.5.4 Numerical comparisons
Some numerical results are presented comparing the performance of various forms of (SA)
to (RSA). The comparisons were carried out for three types of problems, minimization of a
univariate function, minimization of tour length for some TSP's, and finding the maximum
value of the permanent of a matrix. In each case, parameters enter which have some influence
on the performance of the method as we have seen. In (RSA) it seems desirable to proceed as
quickly as possible to points where the function has a local minimum and then, if necessary,
to restart. Rushing to restart is undesirable however, for local information about the function
is indispensable in charting a course to a local minimum; by prematurely restarting, this
information is lost. Therefore one should take care to stay sufficiently long in a location to
examine a large enough collection of "directions" from the current point to ensure that paths
to lower values are discovered. For functions on the line there are only two directions so one
would expect to require very few duplications before the decision to restart is made. Were
the selection of new directions deterministic, clearly at most two would be required, but the
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algorithm chooses these stochastically. In contrast, for a TSP on a reasonable number of
cities, if the neighborhood system arises from a 2-change (see [1]) then one should presumably
wait for a fairly large number of duplications to make sure enough "directions" have been
examined. As a rough guide we note that in (SA) as long as the state has not changed, the
generation matrix yields a sequence of iid "directions." Assuming the proportion of directions
downhill is p and uniform probability spread over those directions by the generation matrix,
the probability the generation matrix has not yielded a downhill after m generations is
simply (1 —p)m. To make this quantity small, say less than /?, m should be approximately
ln(/3)/ln(l — p). On the line the most interesting places are where one direction is up and
the other down so p ~ 1/2 seems reasonable. Furthermore, the consequences of restarting
are minimal so a large a, say 1/2, also seems reasonable. Thus one should take r around
1. In a TSP with 100 cities restarting can be costly since the considerable time it takes to
get downhill will likely be wasted upon restarting. Thus we take a small, say .01. It is not
clear what p should be. Presumably the "surface" represented by the tour lengths could
be rather rough so we'll take p = .05 to ensure a thorough although perhaps too lengthy
examination of directions. This translates to run lengths of r ~ 100 and an examination of
a fairly small proportion of the 4851 "directions" available under 2-change.

Example 11.5.5 For a randomly generated function the median number of epochs required
to find the global minimum by (SA) under optimal cooling, with the stipulation that the
search was terminated at 221 epochs if the minimum had not yet been found, was 221. For
(RSA) with r = 1 the median number of epochs required to find the global minimum of the
function was 21.

Example 11.5.6 In this example an optimal 100 city tour was sought using 2-change as
the neighborhood system with equally likely probabilities for the generation matrix. The
locations were scaled from a TSP instance known as kroAlOO taken from a data base located
on the Web at http://softlib.rice.edu/softlib/catalog/tsplib.html. Each of (SA) and (RSA)
was run for 1000 epochs. The median best tour length found by (SA) was of 35.89 with a
minimum of 34.06. For (RSA) the median best tour length found in 1000 epochs was 14.652
with a minimum of 13.481.

Example 11.5.7 A 24-city TSP instance known as gr24 obtained from the same data base
as kroA above was analyzed again using 2-change for the neighborhood system and equally
likely choices for the generation matrix. Each of (SA) and (RSA) was run for 500 epochs.
The best tour lengths found by (SA) had a median of 2350.5 and a minimum of 1943. (RSA)
with r + 1 = 24 had a median best tour length after 500 epochs of 1632.5 with a minimum
of 1428. The optimal length is 1272. A similar result on 24 cities was obtained by running
the two for 1000 epochs. Under (SA) the median was 2202 with a minimum of 1852 while
for (RSA) the median best tour length was 1554.5 and minimum 1398.

Example 11.5.8 Performance of (SA) with depth 40 and (RSA) with r = 100 was com-
pared on a randomly generated 100-city TSP. Median best tour length after 1000 epochs for
(SA) was 43.14 and the minimum was 40.457. For (RSA) the median best was 19.177 and
the minimum best was 17.983.

An alternative, more careful, analysis of the size of r is provided by closer examination
of the proof of Theorem 11.5.2. Under the cooling schedule c(n) = 1/n with an equally
likely generation matrix the choice

-e~a 1r >
(I -e-")2ln(l-p)
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will guarantee the conclusion of the theorem under its other hypotheses, where p = I — g is
the worst case, smallest probability of a downhill from among the points in fl\U. However,
this may not help in the determination of a "good" r since one would expect these quantities
to be unknown.

11.6 Evolutionary Computations

11.6.1 Introduction
Evolutionary computations, including Genetic Algorithms ([37]) and Evolutionary Strate-
gies ([6]), are optimization methods based on the paradigm of biological evolution by natural
selection. As in natural selection, the essential ingredients of these methods are recombina-
tion, mutation, and selective reproduction working on a population of potential solutions.
Fitness for a solution is directly related to the objective function being optimized and is
greater for solutions closer to its global maximum (or minimum). The expectation is that
by repeated application of the genetic and selection operations, the population will tend
toward increased fitness.

An evolutionary computation is a Markov Chain Xt on populations over H under the
action of three stochastic operators, mutation, recombination, and selection defined on fi.
Although implementation details may vary, mutation is a unary operator, recombination
or cross-over is a binary operator and selection is a multi-argument operator. An evolu-
tionary computation is always irreducible and aperiodic and so converges to a stationary
distribution. While the existence of a stationary distribution is not of great importance,
indeed these chains are never run long enough for the stationary distribution to become
established, irreducibility is. Rather it is the swiftness with which the chain finds optimal
or near optimal values that is paramount. Thus first passage and hitting times are of central
importance. Although only general results of this nature are available at this time, see the
first section of this chapter, theoretical progress is being made. We will present recent devel-
opments at the end of this section. Consequently practical implementations of evolutionary
computations appeal to heuristics and experimental evidence.

The implementation of an evolutionary computation begins with the computer repre-
sentation, or encoding, of the points x of the solution space fi. Frequently this takes the
form of fixed length binary strings which are called chromosomes. A natural mutation of
such a string is to reverse, or flip, one or more of its bits randomly selected. Likewise, a
natural recombination, of two bit strings, called parents, is to construct a new binary string
from the bits of the parents in some random way. The; most widely used technique for this
is one-point cross-over in which the initial sequence of k bits of one parent is concatenated
with the bits beyond the fcth position of the second parent to produce an offspring. Here k
is randomly chosen. Of course, a fitness evaluation must be done for each new chromosome
produced.

Finally, the chromosomes selected to constitute the population in the next generation
might, for example, be chosen by lottery with the probability of selection weighted according
to the chromosome's fitness. This widely used method is termed roulette wheel selection.

These genetic operators would be tied together in a computer program as shown, for
example, in Figure 11.1.

t
While the aforementioned typifies a standard genetic algorithm, many variants are found

in the literature, some differing markedly from this norm. We will present some of these
variations below. As we have discussed before, no one algorithm is right for all problems. It
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Figure 11.1: A top level view of an evolutionary computation

initialize a population of chromosomes
repeat

create new chromosomes from the present set by mutation and recombination
select members of the expanded population to recover its original size

until a stop criteria is met
report the observed best

is often good to embed specialized knowledge about the particular problem into the evolu-
tionary computation's components; for example, the chromosomes in a Traveling Salesman
Problem evolutionary computation are universally taken to be the permutation vector of
the citiesX This is especially so when one has some insights about the particular problem
being attempted. As mentioned above, the one design point that must be adhered to is
assuring irreducibility.

Simulated, annealing and evolutionary computations have several points of commonality.
Both require "an encoding of solutions and both proceed iteratively. Both propose new
candidate solutions, evaluate them, and select a subset for the next iteration. One can
think of a simulated anneal, in terms of an evolutionary program, as having a population
size of one (although it could be larger). The proposal operation of an anneal could be taken
as the mutation operation of this evolutionary computation. The acceptance algorithm of
an anneal works as its selection operation.

The differences between the two are that evolutionary computations incorporate a sec-
ond proposal operator (recombination), one requiring two arguments, and a greater than
one population size to go with it. Although the selection operator of an evolutionary com-
putation is not usually Metropolis acceptance, it could be. Boltzmann modified tournament
selection chooses two structures from the present population by roulette wheel; with equal
likelihood, one is designated as current and the other as candidate. Metropolis acceptance
is then used to select one for the next generation. This is repeated, with replacement, until
the next generation is selected.

On the other hand, simulated annealing incorporates time varying transition probabili-
ties, although evolutionary computations can do so as well.

It is therefore feasible to take a step-wise approach in constructing an evolutionary
computation. The first step is to write a multi-population mutation only algorithm. If
Metropolis acceptance is used as the survival arbiter, then the algorithm is effectively a
simulated anneal. Adding a binary operator on solutions and a multi-argument selection
operation converts it to an evolutionary computation.

Being that evolutionary computations typically do not vary event probabilities over the
course of a run, there arises a fundamental difference with simulated annealing. Theoreti-
cally, an annealing will not only find a global minimizer over its run, it will also identify it as
such, since, asymptotically, the chain will be in such a state. However an evolutionary com-
putation might well find an optimizing structure and then lose it. Theoretically this must
happen since the process is irreducible and must visit all states recurrently. Therefore it is
important to save the best-so-far value discovered by the algorithm, and the corresponding
structure, for this will be part of the exit output, see [63].

As a random variable, the best-so-far value observed up to time t, B(t), will satisfy the
predicted asymptotic convergence rate for the process. In particular, as t —> oo, B(t) tends
to the global maximum, as pointed out above. Therefore, just as in simulated annealing,
globally optimizing states may be identified asymptotically.
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Universal GA solvers The implementation of an evolutionary computation is an ab-
straction in that it operates on computer structures and utilizes an imposed definition of
fitness. As a result it is possible to write a universal evolutionary programming based op-
timizer. The external part consists of interpreting the meaning of the genetic structures
and defines the fitness function. The evolutionary computation acts like an engine, gen-
erating and testing candidate solutions. Two of these are GENESIS and GENOCOP. A
comprehensive list can be found at http://www.aic.nrl.navy.mil/galist/src.

11.6.2 A GA for the permanent problem
We illustrate genetic algorithms by solving the 14:40 permanent problem described above.
We will be using algorithm RS, see below. We give here details of this particular application,
otherwise refer to the general setup below.

The points or states of the solution space are 0/1 matrices of size 14 x 14 having exactly
40 ones. Conceptionally, this will be our computer structure; however, to facilitate working
with such a matrix, we will utilize two alternative encodings. First, we store each matrix
in terms of its row structure: the number of 1's in each row and the positions of the 1's
in each row. This representation allows for short cuts in the permanent calculation and
greatly improves the speed of that part of the algorithm. Also, by unstacking the matrix
row by row we obtain a 0/1 string structure of length 142 = 196 with exactly 40 ones.
This representation will be convenient for the recombination, or binary, operator. Instead
of maintaining both configurations, we keep only the row by row form and calculate the
binary string form from it. This, and the inverse computation, can be done quickly.

As a unary or mutation operation we take the same one used in the simulated annealing
application. Namely, we randomly select a 1 in the 14 x 14 matrix, then randomly choose one
of the four directions North, East, South or West, and exchange values with the neighbor
entry in that direction. We allow wrap around, thus the East direction from the 14th column
is the 1st column and the South direction from the 14th row is the 1st row. The row by row
storage format of the matrix makes it easy to select a 1 at random.
The actual implementation checks to see if the value swapped is a 0 before proceeding, for
otherwise it will be a wasted effort.

Next we must invent a binary or recombination operation. Let A be a 14 x 14 solution
matrix with its 196 elements written out as one long array and B a second one likewise
unstacked. At random, select a position 1 < k < 196 in the array. Starting at position
fc, move along the two arrays, with wrap, comparing their elements the until the first time
they differ, either A has a 1 where B has a 0 or vice-versa. Swap these two values. Moving
along from that point, with wrap, continue comparing values until the first subsequent point
where the two differ in the reverse way. Swap these two values. The modified A matrix is
the output of the operation. Effectively this operation interchanges a 0 and a 1 in A, using
B as a template, generally over a longer distance in the matrix than adjacent elements.

We take the population size to be 16. In the repeat or generation loop, we do 8 re-
combination operations and 8 mutation operations. Thus, after these are performed, the
population size has grown to 32 and needs to be reduced back to 16. Algorithm RS selects
out those for removal, one by one, according to a geometric distribution based on fitness
rank.

The curve labeled "genetic algorithm" in Figure 1 (page 629) shows the results of several runs.
The GA did very well on the problem, obtaining a maximum value of 2592, the best of all the
methods tried.
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11.6.3 Some specific Algorithms

Algorithm JH
Assume structures x € 0 are bit strings.

Uniformly at random, with replacement, select an initial population
= {x(°\ . . . , zi0)} of size z from ft.

evalute their fitnesses <p(xk ), k = 1, . . . , z.
loop t = 0,1,... until exit criteria met

roulette-wheel select xa e P(t)
do (with probability pc) a recombination:

roulette- wheel select x$ e 7>(£)
perform a crossover of XQ and x@
select one of the resulting structures equally likely and

designate it as y
end do
else // recombination not selected

y *-xa
end else
do (with probability pm) a mutation:

select uniformly at random a component of y and perturb it.
end do
evaluate the fitness of y
update best
do a replacement:

with uniform probability select i 6 {1, 2, . . . , z} and
replace xf' by y to produce P(t+ 1)

end do
end loop

Algorithm DG
Assume structures x 6 ft are bit strings and population size z is an even number.

Uniformly at random, with replacement, select an initial population
p1 = {xf},..., xi0)} of size z from ft.

evalute the fitnesses (/>(xk ), k = 1,... ,z.
loop t = 0 , 1 , . . . until exit criteria met

P(t) <- P'
P' <- null
loop j = I to z, increment by 2

roulette-wheel select xa € P(t]
roulette-wheel select x@ g P(t)
do (with probability pc) a recombination:

perform a crossover on xa and xp, keep both offspring x7 and
loop on i ranging over the components of x7

with probability pf perturb component i.
end loop
loop on i ranging over the components of x$

with probability pf perturb component i.



662 CHAPTER 11. OPTIMIZATION BY STOCHASTIC METHODS

end loop
evaluate the fitnesses </>(x7) and 4>(x$)
update best

end do
else // recombination not selected

x& <— xp
end else
add xy and x$ to P'

end loop
end loop

Algorithm RS
The chromosomes of the population are always kept in rank order by fitness. As new chro-

mosomes are created, they are merged into the population in their proper place according
to rank. Population size is fairly small, on the order of 12 to 16.

Uniformly at random, with replacement, select an initial population
"P(O) = {x\ ,..., z40} °f size zo from fi.

Evalute and rank order P(0) by fitness <j>(xk ), k = 1 , . . . , ZQ.
loop t = 0 , 1 , . . . until exit criteria met

z^ ZQ
loop j — 1 to ZQ/8 II do mutations

select i e{ l , 2 , . . . , z} uniformly at random
z <- z+ 1
select uniformly at random a component of Xi and perturb it.
designate the resultant structure xz, evaluate and merge

it into P(t)
end loop
loop j = 1 to z0/2 // do recombinations

let xa be the structure in P(t) with rank j
select / 36{ l ,2 , . . . , z} uniformly at random
z <— z+1
perform a crossover of xa and x@
designate the resultant structure xz, evaluate and merge

it into P(t)
end loop
update best // check the rank 0 structure
loop while z > z0

select a structure from P(t) geometrically at random
and discard it

z <— z — 1
end loop

end loop

11.6.4 GA principles, schemata, multi-armed bandit, implicit par-
allelism

As previously mentioned, evolutionary computations draw their motivation and guidance
from the mechanics of biological evolution. But this can lead to many complicating mecha-
nisms such as chromosomal inversion, multiple alleles, diploidy, dominance, genotype, over-
lapping generations just to name a few. Even a simple evolutionary computation involves
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many implementation parameters. Some obvious ones are population size, number of mu-
tations per iteration, number of recombinations per iteration, number of chromosomes to
replace per iteration, number of mutations per chromosome and others. A more fundamen-
tal "parameter" is how the objective function is mapped to chromosome fitness. It may
be desirable to exaggerate differences in fitness for example. Equally fundamental are the
details of the three main operators, for example, the details of choosing mates. With regard
to mutation, it may be desirable to only flip bits with a certain probability, what should
that probability be? Finally, for how many iterations should the algorithm be run?

Thus many detailed questions arise which cannot be answered mathematically. For
even simple GA's, discovering provable statements about, for example, optimal parameter
determinations such as population size has been intractably difficult. To shed light on these
issues and provide direction, guidance has come in the form of the Schema principle and
building block hypothesis ([37]), and experimental experience.

Nevertheless, results derived from these principles and hypotheses and experiments are
at best guidelines only. Having followed the guidelines, any given problem with it own
unique objective and domain might not conform to the guidelines and at the very least will
require a certain degree of tuning [36].

Schema Principle The Schema principle is best explained in terms of a binary coding. A
string in the search space, e.g. (1 ,0 ,0 , . . . , 1), is a vertex of the Hilbert cube in n-dimensional
space. A schema is an affine coordinate subspace of n-space intersected with the cube. For
example the schema in 3-space signified by (1,0, *) is the set {(1,0,0), (1,0,1)}. A schema
can be specified by an n-tuple of the three symbols, 0, 1, and *, called a schemata in which
* is the "don't care" symbol matching either a 0 or a 1. The order o(H) of a schema is the
number of O's and 1's in its schemata and is thus the number of fixed positions. In terms of
affine subspaces it is the co-dimension of the affine subspace. The length S(H) of a schema
is difference I — f where I is the position of the last fixed bit and / is the position of the
first.

Any given string is a member of 2n different schema because in each position there could
be the given symbol, 0 or 1, or the don't care symbol. In a population of size z there are
up to z2n schema represented (actually less because of overlap, the 0 order schema belongs
to every one of them).

Suppose roulette wheel selection is used for the next generation, as in algorithm DG
(661). Let mt(H) denote the number of representatives of schema H in generation t. If
4>(H, t) is the average fitness of H in generation t and <j>(t) is the average fitness of the
population in generation t, then the expectation E(mt+-i(H)} is given by mt(H)^&Q.

Thus the representation of schema H increases (or decreases) as the factor ^r^p. And
the population thereby increases in fitness from generation to generation.

Since this is going on for each schema represented in the population (and since the present
population represents the result of many previous ones, referring in particular those schema
that have vanished) the processing from generation to generation represents an implicit
parallel processing of schema. If population size is z, the number of short length schema
processed is O(z3), see [31, p. 40].

Now consider the one-point crossover operation. The probability it will disrupt a given
schema H is -~^, i.e. small if 5(H) is small. Hence short schema tend to survive from
generation to generation and, combining with above, if above average, increase in represen-
tation.

The probability that a one position mutation will disrupt a schema H of order o(H) is
^~, i-e. small for low order schema. Schema theory, short, low order, above averagely fit
schema increase in representation in the population.
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In the field of statistical decision theory the 2-armed bandit problem is considered. Each
play of a game has two choices. Having made choice i, i — 1,2, the player receives a payoff
randomly drawn from a distribution with fixed mean fa and variance of. Assuming these
parameters are not known in advance and can only be estimated through repeated play, in
T plays of the game, how many times should the zth choice be made? The answer is, the
number to allocate to the worse performer up to the present time T increases essentially
logarithmically in T. (And hence, T minus O(logarithmic(T)) in the better performer.)
Put differently, the number of trials to allocate to the better performer is an exponential
function of the number to allocate to the poorer one.

It can be shown that this is the same rate at which roulette wheel selection allocates
fitness processing to schema [37].

On the basis of the Schema principle and experimental experience, we discuss some of
the main parameters of an evolutionary computation.

Encoding The first task in constructing an evolution based search algorithm is to define
a mapping, or encoding, between the states of the solution space fi and computer structures.
Usually there is a natural computer formulation of the states, and if so, adopting it is good
practice. We shall discuss some typical situations.

Very often Jlis a Cartesian product space,

= fii x H2 x • • - x Q•ni

so that x e ft is an n-tuple. If each component set fij is finite, card(rij) = Ui i = I , . . . , n,
then a natural encoding is

where TLk = {!> 2, . . . , k}. This is referred to as an integer coding of the solution space. In
the special case that u>i = 2, for all i, then it is a binary coding and the components are
taken as the bits 0 and 1 (instead of 1 and 2).

In the case that the component sets are intervals [aj,6j] of the real line K, then fl
is a subset of Euclidean space and possesses a natural topology. An encoding that takes
advantage of the topology is putting x < — > (£i ,£2> • • • , £n) where each component & e
[aj,6j]. We show below that there are natural mutation and recombination operations of
such structures. This would be a continuous coding of the solution space.

Alternatively, one can represent each continuous variable £j, suitably scaled, as a binary
string. String length will be chosen to achieve a desired level of precision for the represen-
tation. Finally the stings for each component are concatenated thus giving a binary coding
for the solution space.

Not all problems have states which derive from Cartesian products. The most famous
example of this is the Traveling Salesman Problem in which the solution space consists of
tours or, mathematically, permutations of the set of cities. On the grounds that natural
representations are best, the structures for this problem are typically taken as permutations
of 7Ln-i where n is the number of cities. In this case, the operations of mutation and
recombination must be constructed so as to satisfy closure, that is, their resultants must
remain within the set of defined structures.

Fitness If the problem at hand is one of maximization, then the simplest thing to take
for fitness <j> is the objective function / itself. However, considering that for most selection
methods it is either convenient or even necessary to have a non-negative fitness function,
the objective will have to be modified if it is not non-negative. If the problem is one of
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minimization, then again some modification of the objective will be necessary. More impor-
tantly, the choice of fitness function has been shown to have a effect on the performance of
an evolutionary computation, [33] . So a prominent aspect of an implementation is choosing
a mapping between the objective and the fitness function. Despite the performance effects,
asymptotically, the choice of fitness function is immaterial in the sense that any two fit-
ness functions maintaining the rank order of solutions leads to the same limit stationary
distribution, see [65].

Arbitrary mappings can be described in terms of a composition (j>(x) = r ( f ( x ) ) with some
mapping function r. If the problem is one of minimization then r will have to be inverting,
for example r(f) — 1/f if / ^ 0, or r(f) = C — f for some large constant C > max/, or
possibly T(/) = e~f . Special mention should be made of the mapping r(f) = e^f (e+f for
maximizing objectives and e~f for minimizing ones). This mapping is always positive and
needs no a priori knowledge about the objective.

It is easy to see how fitness can affect, for example, roulette wheel selection. If the values
of / vary over only a very small range, then roulette wheel selection is not very different
from uniform selection. This could be fixed with a linear mapping function, thus r could
be a simple shift or scaling, [31].

Dynamic scaling has been suggested with r of the form

where b(t) could be

6(t) = — min{/(x) : x € population at generation t}.

This maintains strong selective pressure throughout the run.
If the selection method is based on rank order, as in algorithm RS (662), then there is

no mapping issue, see [73] .

Selection Distributions The uniform distribution is the simplest probability distribu-
tion and one of the most widely used. It places equal probabilistic weight on the totality of
possible choices. Since computer random number generators are themselves uniform gener-
ators, this is also the easiest distribution to implement. For example, when structures are
binary coded, the uniform distribution for selecting crossover points is the universal choice.
If the string length is L, then

fc = l + ( int)((L-l)*unif())

selects crossover point between the fcth and fc+lst bits from among the choices {1, 2, . . . , L —
1} equally likely. In this, unifQ is the computer function that returns a uniform floating
point random number in the semi-open interval [0, 1) and int is the greatest integer function.

One of the most important selection probability distribution is the fitness weighted lot-
tery or roulette wheel selection. Let F denote the sum of fitnesses of the present population

Under roulette wheel selection, member xa of the population is chosen with probability

pa = <p(xa}/F.

Roulette wheel selection is used to impart a reproductive advantage for the better fit struc-
tures. This can be implemented either in the choice of recombination pairs or in the selection
of survivors for the next generation.
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The geometric selection is one that weights a rank ordered set, say {1,2, . . . }, so that
the probability a is selected is

Thus 1 has the greatest chance of being selected and the chance that another choice is
selected decreases geometrically. For a finite set, {1, 2, . . . , n}, the distribution is modified
by adding the residue,

to every choice. This distribution can be implemented as follows:

k = 1
loop

if( unif() < I ) return fc
k <- k + I
if( k > n )

k = 1 + (int)(n * unifQ)
return k

end if
end loop

Population Size Population sizes reported in the literature cover a wide range from
10, to 1000 or more; most use population sizes greater than 30. When comparing results
between different algorithms, it is important that the total number of function evaluations
be compared and not the number of generations. The cost of a run, in terms of time and
resources, is proportional to the number of function evaluations. The question then is how
to optimally allocate the number of function evaluations between more per generation or
more generations.

The connection with population size is that larger populations entail more function
evaluations per generation. In order to appreciably modify the population from generation
to generation, the number of genetic operations, and correspondingly function evaluations,
per generation will also have to be large. Thus fewer generations can be run.

Population size relates to a trade-off between exploration and exploitation of the fitness
surface. In large populations, there will be larger numbers of similar chromosomes, thereby
ensuring greater exploitation of the local topology. Radical, poorly performing chromosomes
are less likely to survive owing to their small share of the roulette-wheel. In small popula-
tions, there is a much greater chance that even dominant performers will fail to reproduce,
thereby opening the way for radically different solutions to compete. Here the fitness surface
is more widely explored.

Based on the criteria of maximizing the number of new schemata per individual, some
reports favor population sizes for binary coded strings that vary exponentially with string
length L [29], [30]. Population size 100 is used for a 30 bit problem in [31]. However most
experimentalists choose population size between L and IL.

Again under the assumption of integer coding with q symbols, based on the criteria that
every possible point in the search space should be reachable from the initial population, the
calculation of the probability P that a population size Z contains at least one representative
of each symbol at each place of a string of length L is [60]

P =
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In this S(Z,q) is the Stirling number of the second kind (cf. [43]). Thus, for binary coding,
and with P = 99%, population size should be on the order of 10 for string lengths L from
20 to 200.

In Pareto optimization, that is optimization on multiple objectives simultaneously, large
population sizes are necessary in order that the competing objectives be adequately repre-
sented.

Emphasis on Recombination or Mutation As previously mentioned, recombination
is one of the biggest differences between evolutionary computation and simulated anneal-
ing. Moreover, the original evolutionary strategies algorithms did not use a recombination
operation. As we have seen, it is the mutation operator which makes an evolutionary com-
putation irreducible, thereby enabling its theoretical property of asymptotic convergence
to the global optimum. Thus it would be possible to fashion an evolutionary computation
without using recombination at all as we have pointed out by noting the possibility of a
step-wise approach to writing an evolutionary computation. But this would be a hamstrung
evolutionary computation indeed.

By contrast, recombination is very heavily emphasized in genetic algorithms while mu-
tation is not. The theories about the success of genetic algorithms in terms of schemata,
multi-armed bandit, and implicit parallelism all derive from the crossover operator. The
upshot is that mutation rates in genetic algorithms are very small, mainly being used to
avoid premature convergence. Some example recombination and mutation rates are:

source _______ limitation _______ ̂ crossover

[18] 0.001 0.6
[32] 0.005-0.01 0.75-0.95
[64] 0.01 0.95

Since the mutation rates above apply to each bit of an L bit string, the probability of
one or more mutations occurring is

or about 14% for a 30 bit string when pm = 0.005.
Using the criteria that the mutation should maximize the probability that a mutant is-

more fit than its progenitor, it has been derived that Pmutation ~ V-^ wnere L is bit string
length [5].

11.6.5 A genetic algorithm for constrained optimization problems
Many optimization problems, especially those in engineering design, are highly constrained,
and often non-linear, resulting in a complex search space with regions of feasibility and
infeasibility, see [16]. For such problems, it is necessary to find global optima not violating
any constraint.

We direct the reader to the excellent work by Michalewicz and Schoenauer for a review
of the literature [54] .

Most approaches for handling constraints can be classified into two broad categories:

• those that exclude infeasible solutions,

• those that penalize infeasible solutions.

In turn, excluding infeasible solutions can be arranged by
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• discarding them as they arise,

• the use of specialized operators that maintain feasibility,

• repairing infeasible solutions.

Discarding infeasible solutions as they arise impacts the efficiency of the algorithm. If
infeasible solutions arise too frequently, then the algorithm may spend significant amounts
of time looking for those few solutions that do not violate constraints. The probability
that the genetic operators generate feasible offspring when applied to feasible parents is
an important issue. It will take some time to find the region, but also, once found, the
probability of staying within it is important.

The use of specialized operators that maintain feasibility is the most effective method
for constrained problems when applicable. This approach is possible, for example, in the
case of linear constraints.

When feasibility maintaining operators cannot be constructed, it still may be possible to
repair or transform infeasible solutions into feasible ones. This idea works well in the case of
linear equality constraints. By way of illustration, in the example above, another constraint
is that the parameters pi must be non-negative and sum to 1. After carrying out a mutation
or crossover involving the Pi, the new values may be "repaired" by renormalization.

The use of specialized operators and the use of repair operators are related methods for
maintaining feasibility among solutions. However, for many constrained problems, it is too
hard, too costly, or even impossible to maintain feasibility.

The most prevalent technique for coping with infeasible solutions is to penalize a pop-
ulation member for constraint violation. In this way, penalty functions artificially create
an unconstrained optimization problem. Traditionally, the weighting of a penalty for a
particular problem constraint is based on judgment. Often, the algorithm must be tuned,
that is, rerun several times before a weighting of the combination of constraint violations
is found that eliminates infeasible solutions and retains feasible solutions. If the penalty is
too harsh, then the few solutions found that do not violate constraints, quickly dominate
the mating pool and yield suboptimal solutions. A penalty that is too lenient can allow
infeasible solutions to flourish as they can have higher fitness values than feasible solutions
[61].

Penalty approaches might be classified as

• static

• dynamic

• specialized.

Dynamic penalties vary with the degree of constraint violation and with either the history
or the run time of the algorithm. We return to this subject below. Static penalties only vary
with the degree of constraint violation. Many ideas have been promulgated for assessing the
degree of constraint violation. For example, Richardson, et al. [61] tried several approaches
for assigning penalty functions using the derivative of the objective function to give an
indication of how far an infeasible solution is from the constraint boundary. There are also
many direct methods for quantifying such distances. Generally, the degree of penalty should
increase as a function of the distance from the feasible set in some norm.

To deal with the problem of having to do extensive tuning in order to find the most
effective penalty level, methods have been proposed in which the relative weight allocated
to the penalty varies with the progress of the algorithm. There are two types, those for
which the level of penalty depends only on the run time t of the algorithm arid those that
allow other measures of progress, such as recent stagnation, to affect the level. This is a
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major distinction because the former are instances of inhomogeneous Markov chains for
which there is mathematical theory, however difficult to apply, while the latter may only be
analyzed experimentally. Most variable penalty approaches proposed take the fitness to be
modified additively by the penalty, that is

tp = f + wM (11.6.11)

where if is the algorithm fitness, / is the objective to be maximized, M is a measure of the
extent of constraint violation and w is a variable weight; the product wM is the penalty.
But also fitness may be taken as multiplicatively modified by the effect of the penalty,

(11.6.12)

where an "attenuation" a, depends on M and t.
Michalewicz and Attia [52] use a fitness function of the form

where M is quadratic in the constraint violation and l/(2r) is the varying penalty weight.
The parameter r, referred to as "temperature," tends to 0 according to a "cooling schedule"
g(r,t). (Cooling as used here is not in the same sense as used in simulated annealing. In
particular, the weight function tends to infinity as the temperature tends to 0.) In this, t
counts epochs, that is, an entire genetic algorithm run conducted at a fixed temperature. A
complete run of this penalty function algorithm consists of several such epochs. The initial
temperature TO is a parameter of the problem. The cooling schedule is allowed to depend
on the problem, in one case g(r,t) = I0~lg(r,t — 1) recursively; hence

rt = ItrVo

giving geometric decrease in r and therefore a geometric increase in weight.
An advantage of the multiplicative form in which the penalty is applied is that it makes

the method closely related to simulated annealing (but unlike annealing, there is no ac-
ceptance phase). As a consequence, this method can be proved to converge to a globally
optimal feasible solution by an adaptation of a generalization of Hajek's Theorem by Catoni
[10] (generalized annealing). The penalty function makes use of a single problem depen-
dent parameter, the starting temperature TO. As in simulated annealing, this parameter is
not critical; theoretically any positive value will do. In practical terms however, TO should
exceed the "phase transition" temperature.

Let / denote the objective function, to be maximized here, which we will assume is
non-negative valued throughout its domain fi. We will take the fitness function p of the GA
to be the product of / and an attenuation factor a(-, •) which depends on two parameters,
M and T,

<p(x) = a(M,T)f(x). (11.6.13)

The first, M > 0, measures the extent of constraint violation in some metric, e.g. £2, and
is zero in the absence of any violation. The second parameter, referred to as temperature
T > 0, is a function of the running time of the algorithm; T tends to 0 (or small values)
as execution proceeds. When the GA begins, we want the penalty for constraint violation
to be small, or, in terms of attenuation, we want a ss 1, in order that the algorithm be
able to utilize infeasible states as needed to find a global maximum. But toward the end of
execution we want a to be zero or nearly zero since infeasible solutions are unacceptable. A
function which has these properties is

a(M,T)=e~M/T. (11.6.14)
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If no constraint is violated, independent of the value of T, then a = 1 and fitness is the
unattenuated objective value. On the other hand, when T is large (relative to a non-zero
M) then a w l . But as T —> 0, then a —> 0 as well and hence, by equation (11.6.12), fitness
tends to zero too. Thus infeasible solutions should be excluded from the GA populations at
the end of a run. (In practice, a run is terminated before T = 0 and infeasibles may remain
in the population. As the final output of the algorithm, only feasible solutions might be
posted; however it may also be of value to examine good infeasible ones as well.)

A variable fitness genetic algorithm The variable fitness feature may be added to
any evolutionary computation. Because fitness is a function of run time i, the fitnesses of
the current population must be recalculated every time the temperature is updated. This
does not entail a new objective calculation however, only an attenuation factor modification.
If the original temperature is T0 and the new one is T\, then the adjustment factor is

P-M/T! . . ,.

e-M/To - ^ *> •

This fitness modification might also impact the running best solution so care must be
taken to modify that as well.

11.6.6 Markov Chain Analysis Particular to Genetic Algorithms
In this section we assume fi is the set of all binary strings of length L. Thus

for L copies. At the same time a binary string i can be identified with its base two integer
representation,

i <——> ii,-i2L~1 + • - • + i^l + i0.

Thus i e ffijv-i where N = 2L. Letting © denote bitwise EXCLUSIVE OR on fl, the
pair (7Z*2 x • • • x TL?,,®) is a group. Additionally it will be convenient to let i® j be
the bitwise LOGICAL AND of i and j. Following Vose and Liepins [72], we will consider
an infinite population genetic algorithm. In this way the Markov Chain is replaced by a
discrete dynamical system caricature. Subsequently this development was extended to finite
population size [58], but more recent work, e.g. [47], has been along the lines of the infinite
population model. The infinite population assumption implies that on each iteration, the
outcome will be the expected outcome of the finite population chain.

Very recently a different genetic algorithm model has been analyzed by Schmitt, Nehaniv,
and Fujii, [65]. In this model, populations of size z are treated as ^-tuples rather than the
usual multi-sets — sets with multiplicity but no order on their elements. Otherwise no special
assumptions are made. The finite dimensional linear space on which their genetic operators
act is the free vector space of these populations. Results about populations as multi-sets can
be recovered through projection into the quotient space over the kernel of permutations on
these populations. As the authors point out, position in the z-tuple may be used to mimic
spacial effect, for example, on such populations.

Returning to the dynamical systems model, the state of the system will be described by
a vector x* e H^ whose ith component is equal to the proportion of i in the tth generation.
Further, let rij(k) be the probability that bit vector k results from the recombination
process based on parents i and j. It can be shown that if recombination is a combination
of mutation and crossover, then
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Next let F be the nonnegative diagonal matrix with i, zth entry f ( i ) and let M = (m,j)
be the matrix whose terms iriij = ritj(0). Define permutations a-j on IR by

0j(x0, • . . ,ZJV-I)T = (xj®Q,...,

where T denotes transpose. Define the operator J\A by

M(x) = ((0-0x)TM0-0x, . . . , (o-Ar_i

Let = be the equivalence relation on 1RN defined by x = y if and only if there exists a A > 0
such that x = \y.

Theorem 11.6.1 Over one iteration, (the expectation of) xt+1 is given by xt+l = FM.(xt).

Thus the expected behavior of the genetic algorithm is described by two matrices: fitness
and selection behavior is contained in F and mixing behavior is contained in M.

Theorem 11.6.2 The matrix M is nonnegative and symmetric, and for all i,j satisfies
1 = ^kmi®k,j®k-

Next let W = (ifi,j) be the Walsh matrix defined by

fc=i

where »"&(£) is the Rademacher function

see [35] . The Walsh matrix is symmetric and orthogonal and satisfies

Theorem 11.6.3 The matrix WM*W is lower triangular, where M*, the twist of M is
defined by

777,* jj = TTljgjj^.

At this point we can regard the composition Q = FM as a dynamical system on the
unit sphere S in the positive orthant of R since, except for the origin, each equivalence
class of = has a unique member in S. Regarding F as a map on S, its fixed points are the
eigenvectors of -F which are the standard unit basis vectors UQ, . . . , ujv-i-

Theorem 11.6.4 The basin of attraction of the fixed point Uj of F is given by the inter-
section of S with the (solid) ellipsoid

The following holds for fixed points x of M.

Theorem 11.6.5 Let x be a fixed point of M., then x is asymptotically stable whenever the
second largest eigenvalue of M* is less than 1/2.
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In order to determine the second largest eigenvalue of M*, the terms m^,, must be
calculated. Let the genetic algorithm perform a one-point crossover every generation with
probability \ and component by component bit flip with probability /* (as in algorithm DG
(661)). Then it can be shown, [72], that

TOJJ = (11.6.15)
\i "

77'
V * ~ A k=i

where 77 = [4 / ( I — (A), integers are to be regarded as bit vectors when occurring in | • , division
by zero at fj, = 0 and ^ = 1 is to be removed by continuity, and

The following was proved in [47].

Theorem 11.6.6 The spectrum of M* is

(1 - 2^)1*1 (1 - Xwid(i)/(L - l))/2, i = 0, . . . , N - 1.

where wid(i) is the difference between the position of the highest non-zero bit and the lowest
non-zero bit of i for i > 0 and 0 otherwise.

In particular

Corollary 11.6.7 I f O < / j < 1/2 then the second largest eigenvalue of M* is 0.5 — fj,.

In addition there is a simulated annealing like result for genetic algorithms. We follow
Davis and Principe [17] and Suzuki [68]. In this it is assumed that the points in fl are sorted
by decreasing fitness,

Theorem 11.6.8 The stationary distribution q^'(s) for mutation probability p converges
to the best population as ^ —> 0 and x ~^ 0 and the fitness ratio converges to 0,

F = max „ , . J . -> 0.

That is
lira lim | lim qM(x)\
F-*OX^O U^o+ 'J

where the sum is over those populations all of whose members are identical and which eval-
uate to the maximum fitness.
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12.1 Introduction
The purpose of this paper is to offer a concise exposition of stochastic optimization methods
used in mathematical finance models. These models arise in optimal portfolio management
and in the areas of mdexdeiivatives derivatives and equilibrium asset pricing. The main
objective is to construct optimal investment policies and consumption plans, to determine
equilibrium prices of primary assets and to specify prices of derivative securities and hedging
strategies. As this chapter will show, the majority of the above valuation models give rise to
stochastic optimization problems in which the criterion is either to maximize the expected
utility, coming from wealth or consumption streams, or to minimize the expected loss,
coming from a derivative position given a certain liability. The state controlled processes,
modeling the current state of the valuation system are taken to be Markov diffusions with
complete information of the state. The control processes represent investment policies,
consumption plans, or hedging strategies. The optimal solution, or as it is otherwise known,
the value function, gives either the maximal expected utility or the minimal expected cost.
Under general conditions that are related to the Markovian structure of the underlying
models, a general principle of optimality, known as the Dynamic Programing Principle
holds. This result, together with stochastic calculus, yields that the value function solves
the so-called Hamilton-Jacobi-Bellman (HJB) equation. In the case that the controlled
processes are diffusions, the HJB equation turns out to be a second order fully non-linear

°The author would like to acknowledge partial support from a Romnes Fellowship, the Graduate School
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equation of elliptic or parabolic type. If the controlled state processes do not degenerate,
the value function turns out to be smooth and therefore it satisfies the HJB equation in the
classical (strong) sense. Then one may also use classical verification results to determine
the optimal control processes; in fact, it turns out that applying the first order conditions in
HJB, yields the optimal policies in the so-called feedback form, in the sense that the optimal
processes turn out to be explicit functions of the current state of the system and time.

In a number of interesting applications, the value function is not necessarily smooth
and therefore it might not satisfy the HJB equation in the strong sense. Such situations
arise in pricing models in imperfect markets in which the frictions are associated to trading
constraints, transaction costs, stochastic volatility and incomplete information. These im-
perfections result in various degeneracies which may cause the solution to lose its regularity.
Therefore, the notion of solution to the HJB equation must be relaxed and this is indeed
done via the viscosity theory. Under reasonable assumptions on the state dynamics and the
payoff/cost functional, it turns out that the value function solves the HJB equation in the
viscosity sense and, as a matter of fact, it is also unique. This characterization enables us to
get useful results both from the analytic as well as the numerical point of view. Indeed, the
general comparison results for viscosity solutions of the HJB equation have been successfully
used to obtain analytic bounds on derivative prices as well as bounds on the hedging prob-
abilities in markets with frictions; these are situations where the classical Black and Scholes
approach breaks down. In other applications, for example in portfolio management models
with stochastic labor income or with transaction costs, closed form solutions are not avail-
able and numerical approximations for the optimal strategies are highly desirable. Viscosity
solutions have excellent stability properties which, together with the relevant uniqueness re-
sults, are used to establish convergence of a wide class of numerical schemes; the latter need
to have some fundamental properties, namely to be monotone, consistent and stable with
these properties arising naturally in the stochastic optimization problems at hand. Because
of the important role that viscosity solutions play in the study of dynamic valuation models,
a central part of this paper is dedicated to them.

An alternative valuable approach to study optimal portfolio management and derivative
pricing models is based on martingale methods. This powerful methodology is widely used in
a variety of asset pricing problems and yields rich results under rather general assumptions
on the market coefficients. In subsequent sections, we provide a long list of references in
which this approach is used.

The chapter is organized as follows: in Section 12.2, we present some fundamental back-
ground results on the HJB equation and its classical and viscosity solutions. Sections 12.3
and 12.4 are dedicated to stochastic optimization models of expected utility in complete
markets and also in markets with frictions. In Section 12.5, we discuss models of deriva-
tive pricing which can be formulated as models of expected utility, especially in the case of
incomplete markets for which the classical derivative valuation theories fail to apply.

12.2 The Hamilton-Jacobi-Bellman (HJB) equation
In this section we provide a general description of stochastic control methods for diffusion
processes, we derive the relevant HJB equation and we discuss its classical and weak so-
lutions. The overall description is rather formal since it is not intended to give the most
general assumptions or to provide extensive proofs of rigorous results. We refer the techni-
cally oriented reader to the book of Fleming and Soner (1993, Chapters V and VIII) as well
as to the landmark papers by Lions (1983).

We denote by Xt the state of our controlled valuation system and at the control process.
Typically, Xt represents the state wealth process, the value of the hedging portfolio or the
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derivative price process. The control at represents an investment strategy, a consumption
plan or a hedging component.

Investors have preferences reflecting their attitude towards the risk associated with the
stochastic market returns. These preferences are modelled through a utility function, v :
7?.+ —> 7£ which is typically increasing, concave and a smooth function of the wealth or
the consumption stream. An important index is the so-called absolute, resp. relative, risk
aversion coefficient defined by A(x) = — ̂ / f f i , resp. R(z) = — %TTJ) •

Trading takes place continuously in time between the available market accounts. The
prices of the underlying assets, otherwise known as primitives, are determined via classical
equilibrium conditions and they are assumed to be known in all models we are analyzing.
A widely accepted modeling assumption is that asset prices can be modelled as Markov
diffusion processes. Under this fundamental assumption of diffusion structure, a considerable
volume of work has been produced in analytically defining, estimating and callibrating the
asset price diffusion coefficients. Because the prices are taken to be diffusion processes, it
follows that - in the absence of market frictions, like for example transaction costs - the
state process Xt becomes a controlled diffusion as well. To establish some notation, we
assume that the state equation can be written as

with Wt being a standard Brownian motion defined on a probability space (fi, J", P). We
denote by J^ = cr(Ws\ 0 < s < t) the complete filtration generated by the Brownian motion.

The coefficients r, fj, and a reflect the stochastic returns of the various assets available for
trading. In the next section, we will present concrete examples and the precise role of the
market returns will be explicitly stated. Note that in most models, one needs to introduce
additional state variables and the problems become high dimensional. At this point, we
do not address the general cases but we only use (12.2.1) to demonstrate the Dynamic
Programming method.

The investors rebalance their portfolios and consume, either in a finite or an infinite
trading horizon. In the former case, the utility payoff is given by (with a slight abuse of
notation)

J(x,t;T,a) = E (12.2.2)

The expectation is taken with respect to the probability measure P. The functions Ui,
i = 1,2 are the utility functions coming, respectively, from intermediate consumption and
terminal wealth.

In the case of an infinite trading horizon, the payoff is of the form

r r+°° -\
J(x-a)=E\ e-PtU(at)dt/X0=x\, (12.2.3)L7o l

with U being the utility from the intermediate consumption stream.
The value function is defined as

or, as

u(x,t) = su.pJ(x,t;T,a) (12.2.4)
A

u(x) = sup J(x;a), (12.2.5)
A
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with A denoting the set of admissible policies. Typically, the admissible policies must
satisfy certain integrability and measurability conditions; the latter constraint comes from
the fact that the investor, who is actually playing the role of the system controller, does
not have access to future information. Additionally, the admissible policies must satisfy
various contraints that are associated with the specific economic model, for example, limited
borrowing and/or shortselling, bankruptcy constraints and limitation to borrow against
future labor income.

In the sequel, we concentrate on the case of finite horizon and we state the results for the
infinite horizon models afterwards. A key role for the solution u is played by the Dynamic
Programing' Principle which yields that the value function satisfies

u(x,t)=supE\ Ui(as)ds + u(XT,r)/Xt = x\. (12.2.6)
A L Jt J

The random time r is a positive JF-measurable random variable. Under certain technical
conditions, one can show that it suffices to define the above supremum over the set of policies
as that are feedback functions of the current state of the system.

Using the Dynamic Programming Principle and stochastic analysis, one can derive for-
mally the Hamilton-Jacobi-Bellman equation

Mt + max [-a2(x,a)uxx + fj,(x, a)ux + C/i(a)] + r(x)ux = 0 (12.2.7)

with terminal data

..(„. T) — TTr.(r\ C12 2 8")tilii-} -L I —— V^\<*s t • \ -L£ii£j,\jj

Note that no boundary conditions are given for (12.2.7). In fact, because the state Xs

represents the current wealth, it has to satisfy certain constraints related to bankruptcy
limitations and, more generally, to arbitrage conditions. Typically, the presence of these
constraints results in lack of explicit boundary data which can be retrieved only after the
value function is determined and one passes to the limit at the boundary. As discussed
below, it turns out that the correct class of solutions to consider are the constrained viscosity
solutions and it is in this class that state wealth constraints may be suitably addressed.

If it can be shown that the HJB equation admits a smooth solution, then one can argue
that it coincides with the value function. Moreover, one can construct optimal control
policies by applying first order conditions to the HJB equation. This result is known as
the Verification Theorem and it is stated below without a proof. We refer the technically
oriented reader to Theorem of Fleming and Soner (1993). To simplify the presentation, we
assume that the utility functions C/i, t/2 are non-negative.

Theorem 12.2.1 [(Verification Theorem)]: LetV be a classical solution of (12.2.7), (12.2.8)
for x > 0, satisfying for some 7, M bounded

V(x,t)<M(T-t)(l + x"<), (12.2.9)

for each T > 0. Then V(x, t) > J(x, t; T, a) for a & A. Moreover, let

l-a2(x,a)Vxx(x,t)+n(x, a)Vx(x,t) + Ui(a)]. (12.2.10)

Then the policy as = a*(X*,s), with X* being the solution of (12.2.1) with as used, is
optimal and

V(x, t) = u(x, t) = J(x, t- a, T). (12.2.11)
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We remark that the above version of the Verification Theorem is somehow incomplete
in the sense that one needs to specify rigorously the correct probability system that would
support the (optimal) control policies. We choose not to be very specific at this point
since these technical issues are beyond the interests of the audience; rather, we refer to the
discussion by Fleming and Soner (1993, Chapter IV).

One can derive similar results for the case of expected utility maximization problems in
an infinite horizon setting. If the payoff to be maximized is (12.2.3), instead of (12.2.2),
then one can derive the stationary analogue of the HJB equation (12.2.7), namely

/3u = max [-a2(x, a)uxx + n(x, a)ux + U(a)} + r(x)ux. (12.2.12)
& . £

The above equation is a fully nonlinear elliptic equation and if it has a smooth solution
then similar verification results, such as the ones in Theorem 12.2.1, can be proved (see
Fleming and Soner (1993), Theorem 12.3.10).

A key ingredient for the existence of classical solutions of the HJB equation and their
identification with the value function, is that the underlying controlled state process Xt
does not degenerate. In the context of the properties of the HJB equation, it means that
the latter preserves its uniform ellipticity, i.e. cr2(x,a) > ex2, VQ, Vx ^ 0 with e being a
positive constant. In the majority of expected utility maximization models arising in asset
pricing, this condition might be violated. The main reason is that the coefficient of the
second order derivative cr2(x,a) involves the amount invested in risky assets which is not
in general bounded away from zero. In fact, this situation arises very often in models of
incomplete markets, such as, for example, models with trading constraints, stochastic labor
income, stochastic volatility and, more generally, with non-traded assets (see Example 4.b).
Therefore, the value function might not be smooth and one needs to relax the notion of
solutions to the HJB equation. As it was mentioned earlier, a rich class of weak solutions
to the HJB equation are the so-called viscosity solutions. These solutions were introduced
by Crandall and Lions (1983) for first order non-linear partial differential equations and by
Lions (1983) for the second order case. For a general overview of the theory we refer to the
User's Guide by Crandall, Ishii and Lions (1992) and to the book of Fleming and Soner
(1993). The strength of this theory lies in the fact that it provides rigorous characterization
of the value function as the unique solution to the HJB equation. This uniqueness result
plays an instrumental role in pricing derivative securities in markets with frictions (see,
for example, Section 12.5). Moreover, the strong stability properties of viscosity solutions
provide excellent convergence results for a large class of numerical schemes for the value
function and the optimal policies. Numerical results are highly desirable in a wide range of
practical applications, because closed form solutions of the HJB equation are not in general
available (see, Barles et al (1995), Barles and Souganidis (1991), Tourin and Zariphopoulou
(1994)).

In stochastic optimization problems arising in optimal investment and consumption mod-
els, viscosity solutions were first employed by Zariphopoulou (1989) for the Merton problem
with trading constraints (see also Zariphopoulou (1994)), and for a similar model, but
with transaction costs and Markov chain parameters, by Zariphopoulou (1992). Subse-
quently, this class of solutions was used by Fleming and Zariphopoulou (1991), Duffie and
Zariphopoulou (1993), Davis, Panas and Zariphopoulou (1993), Shreve and Soner (1994).
Being also employed in a variety of asset valuation models with market imperfections by
other authors (see among others, Alvarez and Tourin (1996), Barles and Soner (1998)), vis-
cosity solutions gradually become a standard tool in the study of stochastic control problems
arising in models of Mathematical Finance. Because of their important role, a considerable
part of this chapter is strongly oriented towards this theory and the outlaid results follow
closely the unified theme of viscosity solutions of the relevant HJB equations.
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Due to the specific nature of the stochastic optimization models in asset pricing, state and
control constraints are present rather frequently. As we demonstrate in the next sections,
these constraints arise because of exogeneously imposed trade limitations such as prohibition
of shortselling, limited borrowing, leverage and non-bankruptcy. To accommodate this
feature, which as we shall see results in a lack of explicit boundary data, one needs to work
with a special class of viscosity solutions, namely the constrained viscosity solutions. This
class of solutions was introduced by Soner (1986) and Capuzzo-Dolcetta and Lions (1990)
for first-order equations (see also Ishii and Lions (1990)).

Because the majority of the models we review herein are of finite horizon and two-
dimensional, we present the definition of constrained viscosity solutions for the same class
of problems. To this end, we consider a nonlinear second order partial differential equation
of the form

F(X,V,DV,D2V) = 0 inDx [0,T] (12.2.13)

where D is an open subset of 7£2, DV and D2V denote the gradient vector and the second
derivative matrix of V, and the function F is continuous in all its arguments and degenerate
elliptic, meaning that

F(X,p,q,A + B) <F(X,p,q,A) ifB>0. (12.2.14)

Definition 12.2.2 A continuous function V : D x [0,T] —> R is a constrained viscosity
solution of (12.2.13) if the following two conditions hold: i) V is a viscosity subsolution of
(12.2.13) on D x [0,T]; that is, if for any _
(j) e C2'l(D x [0, T]) and any local maximum point XQ e D x [0, T] ofV — (/>,

F(X0, V(X0), D<t>(X0),D*<t>(X0)) < 0, (12.2.15)

ii) V is a viscosity supersolution of (12.2.13) in D x. [0, T]; that is, if for any
C2'l(D x [0, T}) and any local minimum point X0 £ D x [0, T] ofV — (j),

F(X0, V(X0), D</»(X0), D^(X0)) > 0. (12.2.16)

12.3 Models of Optimal Investment and Consumption
I.

In his seminal papers, Merton (1969), (1971) introduced an optimal portfolio management
model of a single agent in a stochastic setting. Trading takes place between a riskless security
(e.g. a bond) and one or more stocks whose prices are modeled as diffusion processes. For
each stock price, the mean rate of return and volatility are assumed to be constant and
known. The investor, endowed with some initial wealth, trades dynamically between the
available securities and consumes part of his wealth continuously in time. He is assumed to
be a "small investor" in the sense that his actions do not influence the equilibrium prices
of the underlying assets. His objective is to maximize the expected utility function which
models his individual preferences as well as his attitude towards the risk associated with the
market uncertainty.

Merton studied, among others, the special case of power utility functions, known as
Constant Relevant Risk Aversion (CRRA) utilities and produced closed-form solutions to
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the optimization problem of the single agent. An important consequence of these results is
that all the risky securities can be replaced by a mutual fund with characteristics indepen-
dent of the individual preferences. This feature facilitated the analysis of dynamic market
equilibria which was developed by Merton (1973) and subsequently further generalized by
others (Araujo and Montiero (1989), Dana and Pontier (1992), Duffie (1986), Duffle and
Huang (1985), Huang (1987), Karatzas, Lakner, Lehoczky and Shreve (1990), (1991), and
Mas-Colell ((1985), (1986)).

We start this section with the celebrated Merton model of optimal portfolio management
in a finite horizon setting.

To this end, we consider a market with two securities, a bond whose price solves

dBt = rBtdt, (12.3.17)

with BQ = B > 0 and a stock whose price process satisfies the linear stochastic differential
equation

dSt = fJ,Stdt + erStdWt, (12.3.18)

with SQ = S > 0. The market parameters p, and a are, respectively, the mean rate of return
and the volatility; it is assumed that p, > r > 0 and a > 0. The process Wt is a standard
Brownian motion defined on a probability space (£l,f, P).

The wealth process satisfies Xs = n® + irs with the amounts 7r° and TTS representing the
current holdings in the bond and the stock accounts. The state wealth equation (12.2.1)
reduces to

dXs = rXsds + (fj,- r)wsds + cnrsdWs. '(12.3.19)

The wealth process must satisfy the state constraint

Xs > 0 a.e. t<s<T. (12.3.20)

The control TTS, t < s < T is admissible if it is ^-progressively measurable - with fs —
cr(Wu;t < u < s) - it satisfies E ft n^ds < +00 and, it is such that the state constraint
(12.3.20) is satisfied. We denote the set of admissible policies by A.

The value function is

u(x, t) = sup E \-Xlf Xt = x] . (12.3.21)
A L7 J

The Dynamic Programming Principle yields that for every stopping time T,

u(x,t) = supE[u(XT,r)/Xt = x\. (12.3.22)
A

Using stochastic analysis and under appropriate regularity and growth conditions on the
value function, we get that u solves the associated HJB equation

ut + maxjr <r2TT2uxx(u - r)-jrux] + rux = 0

u(x, T) = izT, x > 0 (12.3.23)

k«(0,t) = 0,t€ [0,T),

for x > 0 and t e [0,T).
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Remark The above boundary condition is not in general prespecified due to the presence of
the state constraint (12.3.20). As it was mentioned in the previous section, the correct way
to deal with this issue is to use that the value function is the unique constrained solution of
(12.3.23) and then pass to the limit as x —> 0. For the case at hand though, one can derive
(1.3.50) easily by observing that (12.3.20) dictates that the only admissible policy at x = 0
is to invest nothing in the stock account, i.e. TTS = Q, Vt < s < T.

The homogeneity of the utility function and the linearity of the state dynamics with
respect to both the wealth and the control portfolio process, suggest that the value function
must be of the form

u(x,t) = —f(t) (12.3.24)

with f(T) = 1. Using the above in (12.3.23) and after some cancelations, one gets that /
must satisfy the first order equation

f ' ( t ) + \f(t) =0,

with
f(T) = I ,

where

~' r. (12.3.25)
' ' 2(1-7V

Therefore, one expects the value function to be given by

u(x , t ) = — eA(T-e). (12.3.26)
7

Once the value function is determined, the optimal policy may be obtained in the so-
called feedback form as follows: first, we observe that the maximum of the quadratic term
appearing in (12.3.23) is achieved at the point

_
' a2 uxx(x,t)

or, otherwise, at
*

where we used (12.3.26). Next, classical verification results yield that the candidate smooth
solution, given in (12.3.26), is indeed the value function and that, moreover, the policy

is the optimal investment strategy.
In other words,

where X* solves

s t<7 2( l -7) / 17(1—7)
xdws.
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The solution of the optimal state wealth equation is, for Xt = x,

The Merton optimal strategy dictates that it is optimal to keep a fixed proportion, namely
-———r, of the current total wealth invested in the stock account. We will refer to this

proportionality constant as the Merton ratio.

Remark It is important to observe that the Merton model uses heavily the assumption that
the stock price remains strictly positive even though the stock price does not appear explicitly.
One could easily verify this constraint by looking at the actual derivation of the state wealth
equation (12.3.19); we refer the reader to Merton (1969) or Karatzas et al (1987). Given that
the stock price is modeled as a log-normal process, it becomes zero only if it starts at the state
0. In this case, the Merton model degenerates to a deterministic model with no (stochastic)
optimization features. In fact, one could show that no investment takes place in the stock
account and that the wealth process satisfies the deterministic equation dXs = rXsds for

~7

t < s <T. In this case, the value function turns out to be u(x,i) — — er'1^T~t' . We can
7

view this degenerate case as the limiting case of (12.3.23) as /j, — > r or as a — >• +00. Indeed,
if H = r or a = +00, the solution of the HJB equation degenerates to u(x, t) and the optimal
policy, given in (12.3.27), becomes zero.

We continue with various generalizations of the Merton model. Because the scope of
this review paper is to provide a vast exposition of the literature, we chose not to present
complete proofs but rather to cite the references where rigorous results can be found.

12.3.1 Merton models with intermediate consumption

We look at the case that trading takes place in an infinite horizon and intermediate con-
sumption is allowed, say at a (nonnegative) rate Ct. Working similarly as in Merton (1973),
one can show that the wealth equation becomes

dXt = rXtdt - Ctdt + (n - r)-ntdt + (JirtdWt, (12.3.28)

with Xt satisfying the same state constraint (12.3.20) as before. Utility comes only from
intermediate consumption and the value function is defined as the maximal expected dis-
counted utility, namely

'+°0r / ' °0 i
= s\ipE\ e~f)tU(Ct')dt/Xo = x\. (12.3.29)

A LJo J

The set of admissible policies A consists of policies (7r t,Ci), t > 0 which are ft-
measurable - with Ft = er(Ws : 0 < s < t) - satisfy the integrability conditions E JQ ir^ds <
+00, E /0T Csds < +00, VT > 0 and the state constraint (12.3.20).

Merton solved the above problems for the class of Constant Relative Risk Aversion
(CRRA) utilities given by

U(c) = -c~t 7 < 1 (7 ̂  0) (12.3.30)
7
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C/(c) = logc 7" = "0. (12.3.31)

Below, we present explicit results for the case 7^0. The discount factor /3 is assumed
to satisfy the growth condition

The HJB equation becomes

(3V = max \^o-2TT2Vxx + (// - r)TrVx] + F(VX) + rxVx (12.3.33)

with

= —— - (V x )^ . (12.3.34)
c>0

Using that the utility function is homogeneous of degree 7 and that the state equation
is linear with respect to the controls and the state, one gets that the value function is also
homogeneous of the same degree. In fact, one can verify that for

determined by direct substitution in (12.3.33),

V(x)=Kx~l. (12.3.36)

Moreover, the optimal control policies TT^ and C* are given in the feedback form TT^ =
n(X;), C; = C(X;) where

I1
and c(x) = (lK}~x, (12.3.37)

where X£ is the optimal wealth trajectory, given by (12.3.28), with TT£ and Ct* being used.
It is worth remarking that the optimal investment and consumption rules turn out to be

linear in wealth, as it was the case in the previous example.

Remark An interesting class of models arises when the state constraint (12.3.20) is re-
moved and bankruptcy is allowed. In this case, the value function is defined by

where T = inf{i > 0 : Xt = 0} is the time of bankruptcy and P is the value surrendered if
this event occurs. A complete study of such bankruptcy models can be found in Karatzas et
al (1987) as well as in the book of Sethi (1997).
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12.3.2 Merton models with non-linear stock dynamics

In the previous models, a crucial simplification was that the underlying stock price is mod-
eled as a diffusion process with linear coefficients. This assumption enabled us to solve the
optimal investment/consumption problems by introducing a single state variable, the cur-
rent wealth. Even though models with lognormally distributed stock prices are frequently
used, mainly because of their tractability, a rather interesting class of models are the ones
with non-linear stock dynamics. Special cases are, among others, the cases of mean-reverting
stock prices as well as the ones with the volatility term being an explicit function of the cur-
rent stock price; a widely used model of state dependent volatility is the so-called Constant
Elasticity of Variance (CEV) model (see Cox (1996)).

Models with non-linear stock dynamics were studied by Merton (1971) for the case of
logarithmic utilities. Moreover, martingale techniques have been successfuly used by several
authors to analyze models with stock prices solving (12.3.18) with /z and a being replaced by
.^-measurable processes (see for a complete overview the monograph of Karatzas (1997)).
The methodology involved relies heavily on martingale representation results; the solution
is provided in terms of expectations under the "correct" measure of the appropriate payoffs
and the optimal processes via martingale representation theorems.

In our effort to demonstrate how one can use information directly from the HJB equation
to specify the value function and the optimal policies, we present a different approach in
solving the Merton problem with non-linear stock dynamics. To this end, we assume that
there are two securities available, a bond whose price is given by (12.3.17) and a stock whose
price solves

dSs = v(Ss)Ssds + a(Ss)SsdWs, (12.3.38)

with St = S > 0 and 0 < t < s < T. The process Ws is a Brownian motion defined on
a probability space (fi, .F, P). The coefficients p, and a are functions of the current stock
price and they are assumed to satisfy all the required regularity assumptions in order to
guarantee that a unique solution to (12.3.38) exists.

The investor rebalances his portfolio dynamically by choosing at any time s, for s € [t, T]
and 0 < t < T, the amounts TT° and TTS to be invested respectively in the bond and the stock
accounts. His total wealth satisfies the budget constraint Xs = TT° + TTS and the stochastic
differential equation

' 'dX s = rXsds + (n(Ss) - r)i:sds + a(Ss)-!rsdWs,
(12.3.39)

't=x>0 Q<t <s <T.

The above state equation follows from the budget constraint and the dynamics in (12.3.38).
The wealth process must also satisfy the standard non-negativity state constraint (12.3.20).

Remark We assume that the coefficients /j, and a do not depend explicitly on time. This
is assumed only to ease the presentation since the time-dependent case follows easily from
the autonomous one.

The control process TTS is said to be admissible if it is ^-progressively measurable, where
JFS = a(Wu;t <u<s), satisfies the integrability condition E j^<j(Ss)2K2ds < +00 and, is
such that the state constraint (12.3.20) is satisfied. We denote by A the set of admissible
policies.
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The investor's objective is to maximize his expected utility payoff

J(x, S, t; TT) = E [U(XT)/Xt =x, St = S ] , (12.3.40)

with Xs, Ss given respectively in (12.3.39) and (12.3.38).

The value function is

, S , t ; K ) (12.3.41)
A

with the utility function U : [0, +00) — > [0, +00) being of the form

U(x) = -z7 , (12.3.42)
7

with 7 <E (0,1).
The special form of the above utilities together with the linearity of the wealth dynamics

with respect to the state and control processes (see (12.3.39)), suggest that the value function
may be written in a "separable" form. In other words, the value function may be written

xi
as u(x,S,t) = — V(S,t). The component V is in general unknown except for some very

7
special cases of the risk aversion parameter 1—7 and the components of the state dynamics
(see Merton (1971)). As a matter of fact, V solves a nonlinear equation for which no closed
form solutions are available in general.

In Zariphopoulou (1999), it is shown that under a simple power transformation, the
factor V can be expressed in terms of the solution of a linear parabolic equation. This
representation provides closed form solutions for the value function and the optimal policies
which can in turn be used effectively in a more general class of valuation problems with
stochastic components. Without stating at this point the necessary technical assumptions
and the regularity properties of the solutions, we outline the main results below.

Proposition 12.3.1 i) The value function u is given by

7

where v : R+ x [0, T] —» R+ solves the linear parabolic equation

7i vs(1-7)

u = 0

v(S, T) = 1 and v(0, i) = e^ (T-*>, 0 < i < T.

U) The optimal investment policy II* is given in the feedback form
n* = 7T*(XS*, Ss,s) where the function TT* : K+ x 7^+ x [0, T] -> 7? is defined by

_ [i;s(5,f)
" ~~^W
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12.3.3 Merton models with trading constraints

In a variety of applications, trading between the available securities may be restricted. For
example, the amounts we allow to invest might be bounded from above or from below by
given functions of the current wealth or, in simpler cases, by prespecified constants. The
latter case arises when borrowing or shortselling is limited, if allowed at all.

Using Dynamic Programming methods and elements from the theory of viscosity so-
lutions, Zariphopoulou ((1989), (1992)) analyzed the Merton problem when borrowing is
limited and shortselling is not allowed, i.e. the allowed investment strategies TTS must satisfy
0 < TTS < Xs, 0 < t < s < T a.e. Generally speaking, such kind of constraints might
result in lack of smoothness of the value function and explicit solutions are not in general
available. Other models with alternative trading constraints and in which the analysis relies
heavily on the HJB equation, were studied by Grossman and Laroque (1989), Grossman and
Vila (1992), Fleming and Zariphopoulou (1991), Fitzpatrick and Fleming (1991) and more
recently by Munk (1999) in the context of derivative pricing with portfolio constraints.

Besides using the HJB equation directly, martingale methods have been successfully
used, together with convex duality arguments, to produce general representation results for
the value function and optimal policies for a wide range of trading constraints (see, for
example, He and Pearson (1991), Cvitanic and Karatzas (1992), (1993), (1993a) and for a
general overview, the monograph of Karatzas (1997)).

Below, we present a representative optimal investment and consumption model in which
the constraints are of the so-called "leverage type,"

TTs<k(Xs+L), (12.3.43)

with k, L given positive constants. Such models were studied by Grossman and Laroque
(1989) and Vila and Zariphopoulou (1997); the choice of the leverage ceiling k(Xs + L) is
made only to simplify the presentation, since smoothness results may be readily obtained
for TTS < f ( X s ) with / : Ti+ —> 1i being a smooth function of the state wealth.

To this end, we assume that trading takes place in an infinite horizon, intermediate
consumption is allowed and the price Ss of the available stock solves (12.3.18). The wealth
process solves (12.3.28) and the value function is

/

+ 00

e-^U(Ct)dt. (12.3.44)
.

The set of admissible strategies A consists of .^-progressively measurable pairs (TTS,CS)
which satisfy the standard integrability conditions and the leverage constraint (12.3.43).
The HJB equation becomes

/3V = max \^2TT2V" + (fj,- r)nV'} + max[-cV + U(c}\ + rxVx, x>0. (12.3.45)
•x<k(x+L) 2 c>0

Vila and Zariphopoulou (1997) established that the above equation has a C2(0, +00) solu-
tion, with V(0) = ̂ p which coincides with the value function. Using the regularity of the
value function, the first order conditions in (12.3.45) and classical verification results, they
determined the optimal policies, 7rt* and C"t* in the feedback form Ct* = (U')~1(V'(X*)) and

with X* being the optimal wealth process. Observe that because of the leverage constraint,
the HJB equation changes form since the first maximum term in (12.3.45),

I(x;k,L)= max \\a2^V"(x} •+ (M -
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satisfies

/(#; fc, L) = <

V"(x) a2 V"(x) - v

\a2k2(x + L}2V"(x) + (n- r)k(x + L)V'(x)
(12.3.46)

This situation will be revisited in the next model when trading takes place in an inhomoge-
neous financial medium (see Section 12.3.4).

In the case of power utility functions with risk aversion coefficient 1 — 7, one may use the
particular structure of (12.3.46) and (1.3.73) to analyze the nature of the optimal policies.
For a variety of practical applications, an interesting question is how different is the optimal
feedback rule, n(x) = min - ^ r y / / M , k(x + L) from the so-called myopic strategy,

vrmyopic(o;) = min j x , k(x + L).
The proofs of the following results may be found in Section 12.4 of Vila and Za-

riphopoulou (1997).

Proposition 12.3.2 The optimal strategy TT(X) is at most equal to the myopic investment
policy 7rmyopic(x) and, strictly less than it for small wealth values. It coincides with 7rmy°P'c
only if k = 1 and L = 0.

We denote by U (resp. B) the domains in which the trading constraint is not binding
(resp. binding),

8 -

Proposition 12.3.3 If the discount factor (3 satisfies /3 > r — 2~ 2 + ̂  then there exists a
threshold levelx* such thatU= [0, x*) andB— [x*,+oo). Moreover, the optimal investment
strategy w(x) is always greater than kx.

Next, we look at the value functions V° and V°° which correspond to the optimization
problem (12.3.44) but with L = 0 and L = oo respectively. The latter case corresponds
to unlimited borrowing and this is the original Merton problem; as we have seen earlier,
for j3 > rj + 02ti_ T, an optimal solution exists, denoted herein by V°°, and the optimal
consumption rule C°°(x) = Kx with K given in the previous section. If k > n^X^ ,
the borrowing constraint (12.3.43) is not binding and the solution to the original problem
(12.3.44) coincides with the solution V°° of the unconstrained one. If k < n^La, then
the borrowing constraint is indeed binding, as Propositions 12.3.2 and 12.3.3 indicate. The
following result describes the relation between the optimal consumption rules C°°, C° and
C* which correspond respectively to the problems with L = oo, L = 0 and L < oo.
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Proposition 12.3.4 i) 7/0 < 7 < I , C*(x) satisfies

ii) 7/7 < 0, C*(x) satisfies

C°(x)<C*(x) <mi

C*(x]
Hi) C*(x) satisfies lim ——— = K,

X^OQ X

iv) For x € [0,z*), C*(x) > C°°(x).

12.3.4 Merton models with non- homogeneous investment opportu-
nities

In a number of real world situations, the investment opportunities become broader with
higher wealth levels. In fact, when less than $10,000 is available for investment, we can
usually invest only in banking accounts and mutual fund shares; of course, one can still
invest in individual stocks, but in such a case it is hard to have a well-diversified portfolio.
Mutual fund shares will provide all necessary investment tools for both the rich and the
poor, if a form of the mutual fund separation theorem is valid and the real world provides
all the necessary funds. But it is doubtful that all the risky or riskless investments in the
global economy are covered by the existing array of mutual funds. For instance, many
limited partnerships are not covered by public mutual funds. Furthermore, ordinary mutual
funds are usually prohibited from using modern investment techniques involving options,
futures, and other derivative securities. When high wealth levels are available, we are not
constrained by the opportunities offered by the mutual funds; we can invest in limited
partnerships, hedge funds (these funds are known to be agressive in employing modern
investment techniques), individual stocks as well as banking accounts and mutual funds.
There is also an explicit law which prohibits small investors from trading some securities and
rule 144A stipulates that unregistered securities can be traded only by qualified institutional
investors. Therefore, even for institutional investors, the investment opportunity gets better,
when they get richer.

Next, we present an investment problem assuming that there exists a critical wealth level
such that once an investor's wealth level exceeds it, the investment opportunity improves.
We present these optimal consumption and investment rules in closed form for the case of
CRRA utilities. One interesting feature of these optimal rules is that investors' consumption
is much lower when there exists such a transition than in its absence, and investors generally
take more risk when their wealth is below the critical level and become more risk averse once
their wealth exceeds it. Namely, if investors expect that they will have a better investment
opportunity when their wealth increases, they tend to increase both savings and the expected
return on investments by raising the risk of the investment positions they take. Also, once
their wealth crosses the critical level, they tend to reduce risk in investments, being afraid of
losing the better investment opportunity they enjoy. Therefore, the optimal rules somehow
provide a theoretical justification to the casually observed fact that entrepreneurs in fast-
growing economies tend to take more risk than their counterparts in stabilized economies.
It also gives a justification for wealthy investors to use portfolio insurance strategies.
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The mathematical problem arising from the investment problem is itself rather interest-
ing. Namely, the HJB equation for wealth levels above the critical level takes a different
form than it does under the critical level.

We note that this change results in a "discontinuity" of the HJB equation across the
interphase point. This situation is rather different from the one in the previous section, in
which the HJB equation changed its form but in a continuous way. It is worth mentioning
that discontinuous HJB arise frequently in a number of stochastic optimization models of
expected utility even though the associated control problems have not been analyzed in full
rigor. In general, it is not clear under what conditions one can show that the discontinuous
HJB equation has a unique viscosity solution and therefore, to identify it with the value
function (see Kutev and Lions (1992), Koo and Zariphopoulou (1996)).

We start with the description of the investment model. To achieve generality, we assume
that there are more than one risky security at all trading times. To this end, we consider
a market in which there is one riskless asset and M + N risky assets. We assume that the
risk-free rate is a constant r and that the price Sj (t) of the j-ih liquid risky asset follows a
geometric Brownian motion

,r. / . \ M+N

^ ' fc=l

where (W\ ( t ) , . . . , WM+N M) is a standard Brownian motion denned on the underlying prob-
ability space (fi, F, P). The market parameters, /j,j and <jjk, which represent the mean rates
of return and the volatility matrix coefficients of the risky securities, for j, k = 1, . . . , M + N,
are taken to be given constants. We assume that the matrix X = (o"ij)i=i j=\3~ IS non-
singular, i.e., there is no redundant asset among the M + N risky assets.

The critical wealth level is denoted by XQ. The investor's wealth process evolves according
to the equation

dXt = [fXt + (p, — T\M+Ni TTt) — Ct\dt + (KI, <TijdWt), (t > 0)
(12.3.48)

x > 0,

where * denotes the transpose of a matrix,

*, V- = (fJ-1,^2,- •• , MM+JV)*,
(12.3.49)

= (1,1, - . - , ! ) * ,

and by the restriction on the investment opportunity

l,t = • . - -KM+N,t = 0, if Xt < XQ. (12.3.50)

The control processes are the consumption rate C and the vector -n of dollar amounts
invested in the risky assets. To state their properties, we introduce the sets

£+ = \1&L: lt>0 a.s.and E f lsds<+.oo fort > 0) 1
I Jo J

= 1 1 € LM+N : E f ls-lsds < +00 fort > O J ,
and

M = {I 6 L
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where L (resp. LM+N) is the space of ^-progressively measurable processes (resp. vector
processes in M + N) with ft being the augmentation under P of <r{(Wi j S , . . . , WN+M,S) '•
0<s<t}.

The set A of admissible controls consists of pairs (C, TT) in £+ x M. such that Xt > 0
a.e. (t > 0) and the trading restriction (12.3.50) is satisfied.

The investor's objective function is given by

r f+°°J(C) = E\ e1 JQ
where j3 > 0 is the discount factor and U : [0, +00) —* [0, +00) is a strictly increasing,
concave, twice continuously differentiable function with Z7(0) = 0.

The value function V : R+ —>• R of the investor is given by

V(x) = sup J(C). (12.3.51)

We will use the following notation:

where ft = ( / ^ i , . . . , /UM)*, Si = (ffi,j)l=i J^ , and IM 6 T^-M is a vector whose components
are equal to 1.

We will make the following assumption:

Assumption 12.3.53 K? > KI.

Assumption 12.3.53 says that the investment opportunity facing the investor is better
when Xt > XQ than when Xt < x0.

The HJB equation takes the following form:

0J(x) = max [TT*(JU - r!M)J'(x) + (rx - C)J'(x)

+ FSiE^J'^x) + I7(C)], if a; < x0 (12.3.54)
2i

(3J(x) = max[7r*(/u - rlM+w)^'(a;) + (rx - C)J'(x)
C>0,7T

+ ^7r*SS*7rJ"(2;) + U(C)} \i x > XQ.

Proposition 12.3.5 The value function is the unique viscosity solution to the HJB equa-
tion.

For a proof see Koo and Zariphopoulou (1996).
We will now proceed to get a closed form solution for a CRRA class utility function, i.e.,

{ (^T=^i I fry ^ ^

(12.3.55)
logC i/7 = l,

where 7 > 0 is the coefficient of relative risk aversion.
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Definition 12.3.6 : For i = 1,2, define

' 2 7 ' '

ana7

^ = r ~ ̂ 2
+ ^^, ifj = 1-

j4feo /e£ Ai_+ and A^_ 6e i/ie roots of the quadratic

KiX2 + (r- /3 - Ki)\ - r = 0,

and
_ rj | \ _ -i j \

These definitions are similar to those given in Karatzas et al (1987).
It can be easily shown that for i = 1,2

A i i+ > 0, A,,_ < -1

(12.3.56)

pii+ > 0, pi- < 0.

We will also use the following simplified notation:

P+ — P2,+i ^+ = -^2,+ j P— = Pi,—-i X— = A I > _ . (12.3.57)

We now define functions which will be used to express the value function in closed form.

Definition 12.3.7 : Let us assume that U is given by (3.40). For 7 ^ 1, we define Co > 0,
Ji : [0, Co] -> R, JCi : [0, C0] -> .R+, J2 : [C0, oo) -» ,R, and ̂  : [C0l oo) -^ ^?+ 6j/

On —

A-Bj -l —j f-l — -yp_ |̂  1 /^l— -Y

X2(C) =

where

and
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For 7 = 1, we define

Ji(C] = C-e- + \ logC

J2(C) = *±ac-'+ +

where
Si = x0C0

A- - -C0
1+A- and B 2 = x 0 C 0

A + - - 0 .

We will make the following assumption:

Assumption 12.3.58 : KJ > 0 /or i = 1, 2.

The above assumption guarantees that the investment problems without a change in the
investment opportunity set and the ones in which the investment opportunity consists of
the riskless asset and the first M risky assets, or the riskless asset and the M + N risky
assets are all well-defined.

Proposition 12.3.8 .- i) C0 > 0,
(ii) C0 < KIXO ifj^l and C0 < 0x0 1/7=1,
(Hi) CQ < K%XQ if 1 — j^- < 7 and Co > K^XQ if 1 — ̂  > 7.

Proposition 12.3.9 : Suppose that either 7 ̂  1 and

, vp- p+
7<

or 7 = 1 and
/3(K2 -K,) 1
^ _ A+ - A+ 'i°- P+

Tften Xi is a strictly increasing function mapping [0,Co] onto [0, XQ] and "̂2 is a strictly
increasing function mapping [Co,+00) onto [XQ,+OO).

Under the previous assumptions, the function X : R+ —» R+ defined by X(C} = X\(C)
for C < CQ and X(C) = Xz(C) for C > CQ, is well-defined, strictly increasing and maps
[0, +00) onto itself. We denote its inverse by X~l.

We now state the main result:

Theorem 12.3.10 Suppose that U is given in (3.40) and that, either 7 ^ 1 and

/ \ P- P+7<
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or, 7 = 1 and

Let J : R+

f3(K2 -

defined by

J ( x ) =

\ AJ- — \

!

P- P+

It ( X~ — / 1* 1 1 ? /" /T*u i \-**- V / / J

,
/2(^ (x)) ifx

< XQ

> X0.

Then, the following statements are true:

(i) J coincides the value function V .

(ii) V belongs to C2[0,x0) fl C2 (x0 , +00) .

(Hi) The optimal rule of consumption is given by

(iv) The optimal rule of investment is given by TT^ = 7rt(JQ*) where

if X < XQ

if x > XQ and

- rlM+N)

(X)
K(XQ) = lirn^

if x = x0,

(v) lim \V(x) - -^-x1'^} = 0.
x—»+oo L 1 — 7 J

We conclude with some properties of the optimal rules.

Proposition 12.3.11 : Suppose that assumptions of Theorem 12.3.10 are valid.

(i) There exists a neighborhood N(XQ) of XQ such that the optimal consumption when X* 6
N(XQ) is strictly smaller than K-^X^.

(ii) Suppose that 7 > 1 — ̂ =-. Then, there exists a neighborhood N'(XQ) of XQ such that the
optimal consumption is strictly smaller than K2X^ when X* e N'(XQ).

(Hi) Suppose that 7 < 1 — ̂ -. Then, there exists a neighborhood N'(XQ) of XQ such that the
optimal consumption is strictly greater than K-^X^ when X* (= N'(XQ).
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Observe that KiX% is equal to what the investor would consume if the investment
opportunity consisted of the riskless asset and the first M-risky assets and did not change
across XQ, and K^X^ is equal to what the investor would consume if all the assets are
available for investment regardless of the investor's wealth level. Therefore, the result says
that the investor consumes less than what he or she would consume if there were only M-
risky assets. Intuition tells us that if the investor anticipates a better investment opportunity
when he or she gets richer, then there is more incentive to save. The following Proposition
fits into this intuition.

Proposition 12.3.12 Suppose that assumptions of Theorem 12.3.10 are valid. Then, for
0 < x < XQ

and for x > XQ,
( vV"(r\

> 7 if 7 > 1 —f xV"(x}xv W -. _, ;f_, \ i P-
V'(x)

7 if7 < 1 - ^-.
xV"(x) „ ,

^ / ^ -, ,f_, ^- 1 r~

I V'(x)

The proposition says that for the case 7 > 1 (resp. 7 < 1), the coefficient of risk aver-
sion implied by the value function is greater (resp. smaller) than 7 for wealth levels less
(resp. greater) than XQ. Empirical studies give a favorable evidence that 7 > 1. Therefore,
the above result states that when investors anticipate an improvement in the investment
opportunity, they tend to take more risk and thereby increase the expected return on in-
vestments. It also says that once their wealth crosses the critical level, they tend to reduce
their risk-taking, being afraid of losing the better investment opportunity.

12.3.5 Models of Optimal Portfolio Management with General Util-
ities

In a variety of applications, the investors do not have preferences of constant relative risk
aversion or, in other words, their utility functions are not of power form. In this case, the
homogeneity of the value function is lost and explicit solutions are not in general available.
Martingale methods have been successfully used to produce the value function and the
optimal investment plans under a fairly general set of assumptions. For the special case
of constant coefficients, one can also produce closed form solutions for the quantities of
interest, working directly with the HJB equation. This approach was developed in Karatzas
et al. (1987) for stationary models of optimal investment and consumption and it was later
applied to similar models but in a finite horizon setting. In order to simplify the presentation
and to show the main ingredients of the method, we present below the time dependent case
but with no intermediate consumption; for more general settings, we refer the reader to
Karatzas et al. (1987) and for an overview to the monograph of Karatzas (1997).

To this end, we recall the underlying Merton model with terminal utility U : [0, +00) —>
[0, +00) which is assumed to be increasing, concave, of class C2(0, +00) with t/(0) = 0. The
underlying securities, the bond and the stock solve the original price equations (12.3.17) and
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(12.3.18); the wealth process satisfies (12.3.19) and (12.3.20) as well. The value function is
defined as

u(x, t) = sup E [U(XT)/Xt = x] , (12.3.59)
A

with A being the set of admissible policies defined as in Section 12.3.1.
Under the assumption of general utility functions, it is not known a priori that the value

function is smooth and one needs to work with the viscosity solutions.

Theorem 12.3.13 The value function is the unique viscosity solution of

ut + max -o-2TT2uxx + (fj, - T}-KUX + rxux = 0,
7T LZ J

(12.3.60)
u(x,T) = U(x),

on D = [0, +00) x [0, T], in the class of concave solution that are nondecreasing in the spatial
argument

(For a proof see Zariphopoulou (1989) and Fleming and Soner (1993)).

Next, we apply formally the first order conditions in (12.3.60) which yield

lu - r\2 ,,2
u* - o I —— + rxu* = °- (12.3.61)2(7Z Uxx

The following transformation was used by Karatzas, Lehozcky and Shreve (1987) which
transforms (12.3.60) to a linear partial differential equation. To this end, we parametrize
the wealth variable in terms of a function / : [0, +00) x [0, T] — > [0, +00) such that

ux(f(y,t),t)=y. (12.3.62)

For conditions on the existence of such a function, see Karatzas, Lehozcky, Sethi and Shreve
(1987). Successive differentiations of the above and use of (12.3.61) yield that / solves the
linear parabolic problem

(12.3.63)

Clearly, it is straightforward to solve the above linear equation, which has a unique
solution /; under certain natural regularity properties of the utility function, one can also
show that / is smooth. As a matter of fact, the solution / can be represented via the
Feynman-Kac formula as __

,t) = E[U-1(YT)/Yt=y],
where the process Ys, t < s < T, solves the stochastic differential equation

dYs = \(-^-f¥- - r] YsdsL cH J a

with Ws being a Brownian motion on a probability space (f2, Q, Q) and E is the expectation
under Q.
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Also, we observe that the optimal feedback policy function, say n*(x,t) is given by
7T*(:r, t) = —'^Tuixl) or' m v^ew of" the parametrization x = f ( y , t) and the transformation
(12.3.62), as "

),*) = -^—^-yfy (y,t)- (12.3.64)

Once the solution / is determined, one can "invert" the obtained formulae and recover
the value function and the optimal policies (see Karatzas (1997)).

The main ingredient of the above approach is essentially the use of the convex dual of the
value function u(x,t) = sup[u(x,t) — xy\. Because of the special structure of the involved

x>0 _
non-linear terms in the HJB equation, it turns out that u can be specified by solving a linear
parabolic problem. This reduction - going from the non-linear HJB equation to the reduced
linear parabolic problem - is a key component of this approach. Once u is found, one
can recover the value function via u(x,t) — inf [u(y,t) + xy] and subsequently the optimal
policies. It is worth mentioning that in a variety of applications, useful properties of the
control policies can be proved by using directly the convex dual instead of recovering the
value function first and then obtain the optimal policies through the first order conditions
(see, for example, Karatzas (1997)).

The above method differs in many ways from the ones we discuss herein which are based
almost entirely on arguments from the theory of non-linear partial differential equations. In
order to demonstrate a valuable strong alternative to the latter method, we present below
an application of the methods that use heavily elements from the martingale theory and
convex duality. The model we analyze is similar to one defined in (12.3.59) but more general,
in the sense that intermediate consumption is also allowed.

In the exposition below, we do not include all the technical assumptions needed but we
refer the reader to Section 2.4 in Karatzas (1997).

To this end, we assume that the investor can consume at intermediate times and that
his expected payoff is given by

r rT T
J ( x , t - 7 r y C ) = E\ \ e-^-^U1(Cs)d8 + e-ft(T-^U2(XT)/Xt = x\. (12.3.65)L Jt J

The utility functions Ui, i = 1,2 satisfy the technical assumptions

+7e, Ui eC3(0,+oo),

C/,(0+) > -oo, lim ̂ 7 = 0, lim ^^!> exists,
^ x^oo Ui (X) z—0 \Ji (x)

for some a > 2.

We denote, for i = 1,2, by Ii(z) = (t/l')"1(z) and by Ui(y) the convex-duals Ui(y) =
max[Ui(x) - xy}. Observe that Ui(y) = U^I^y)) - yli(y).

It is well known that the process Z0(t) = exp ( - ^Wt - \ (M~2
r^ t\ , 0 < t < T is an

exponential martingale where Wt is the Brownian motion driving the stock price (12.3.18).
One needs to introduce the processes Z(t, s) = ~ and
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H(t,s) = H°[*j = e~r(s~t'>Z(t,s) and a new (state) diffusion process Ya, t < s < T with

dYs = (/? - r)Yads - ——]a

\ = y > o.
Then, Ys =

Next, we represent the wealth variable via
I-T

X(y,t)=E[J e~^
it

and we also define

and

S(y,t)=E\ flJt
It can be shown that X(y, t) = yS(y, t) and that its inverse y(-, £) is well defined. The value
function is then given by

u(x,t) = G(y(x,t),t)
together with its convex dual as

u(y, t) = snp[u(x, t) - xy] = G(y, t) - S(y, t) =
z>0

(12.3.66)

It turns out that the functions G and S solve the linear parabolic terminal time problems

'Gt + £G + C/i(/i(y)) = 0; (y,t) € (0,+oc) x [0,T],

); y > 0,

and
' St + £S + yh (y) = 0; (y, t) e (0, +00) x [0, T),

where the generator £ is given by

(for details regarding boundary and growth conditions see Karatzas (1997)),
From the properties of u one can easily show that the latter may be determined as the

solution of the linear parabolic problem

Ui + C.u + Ui (y) =0, 0 < t < T
(12.3.67)
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This in turn yields the value function that can be determined via the inverse dual trans-
formation u(x,t) = i n f [ u ( y , t ) + xy] or through the representation u(x,t) = G(y(x,t),t).

y>o

Generally speaking, this approach is based on convex duality arguments and martingale
theory and it has been successfully applied to a number of stochastic optimization models
arising in asset and derivative pricing. It has been applied to equilibrium models (see, among
others, Karatzas et al (1990), (1991)), to models of expected utility with trading constraints
or other market frictions, like, for example, transaction costs (see, for example, Jouini and
Kallal (1995), Cvitanic, Pham and Touzi (1997)). In the bibliography we provide additional
references that use this alternative approach.

12.3.6 Optimal goal problems

Besides maximizing the individual's expected utility of terminal wealth, or the expected
payoff from intermediate consumption, one might desire to maximize the probability that the
state wealth reaches a prespecified level by some terminal time T. Optimization problems of
achieving a financial goal arise often in capital risk management. Variations and extensions of
the basic problem, which we present below, are directly related to the maximal probabilities
of (super) hedging a derivative security.

We consider the state wealth equation (12.3.19) and we assume that r = 0 and a = 1,
i.e. the wealth process solves

dXs = nTTsds + wsdWs, t<s<T. (12.3.68)

Our admissible policies TTS are taken to be .^-measurable, satisfying almost surely, and
for t < s < T, the integrability condition ft n^ds < +00 and the state constraint

0<XS<1. (12.3.69)

We denote the set of admissible policies by A.
The objective is to avoid absorption at the origin and at the same time to maximize the

probability of reaching the financial goal x = 1 by the expiration time T. In other words,
our value function is given by

u(x, t) = sup P[XT = l/Xt = x}= sup E [l{XT=l}/Xt = x] . (12.3.70)
A A

This problem was solved by Kulldorff (1993) in discrete time and subsequently by Heath
(1993) in a continuous time setting; it was later revisited by Karatzas (1997). The analysis
below follows closely the arguments used by Heath (1993). To simplify the presentation, we
take the original time to be zero, t = 0 and we bring back thejume dependence later.

First, one recalls that by Girsanov's theorem, the process Ws = Ws + /j,s is a Brownian
motion under Q with the latter being a measure absolutely continuous to P, with density
ZT = exp | - (j,WT - M2?}- In terms of Ws, (12.3.68) becomes Xt = x + /„* irsdWs with
x e [0, 1] being the initial condition for Xt. Thus, Xt is a local martingale under Q; as a
matter of fact, it is actually a martingale because it is bounded.

Therefore, for' the set AI = {u> : Xf(u>) = 1}, we have that Q(A\) < x, which in turn
yields that

P(Ai) < sup{P(,42) : Q(A2) < x}. (12.3.71)

Thus, the original problem is reduced to computing the above supremum.
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Applying directly the Neyman-Pearson lemma yields that this supremum may be com-
puted by specifying a unique number A such that

Q(A3) = x,

with
A 3 = r . . . *PM—-dQ(uj)

In fact, if such a unique number A exists then P(A%) provides the solution.

Because the density ̂  = exp < /uWr - \T >, one needs to find A such that

It follows easily that such a A is uniquely given by

in A = -f

where $ is the cummulative normal distribution. Clearly, an upper bound on P(A\) is then
given by

and if one shows that this bound can be achieved, then this would provide the optimal
solution, i.e. the maximal probability of reaching the financial target 1 by the end of the
trading horizon.

In other words, a candidate for the value function starting at time t, 0 < t < T, at the
point x 6 (0,1), is given by

v(x t) = *&(*&~ (x} -\- LfyT — £).

Next, we look at the HJB equation associated with the stochastic optimization problem
(12.3.70). Observe that (12.3.70) can be viewed as a Merton problem when the interest rate
r = 0, CT = 1, the utility from terminal wealth is given by the step function

i f 0 < x < 1

i f x = 1,

and the wealth state process must satisfy the state constraint 0 < Xs < 1,
t < s < T. The standard Merton problem was presented at the beginning of this chapter;
working, at least formally, along the same lines, we can derive the associated HJB equation

ut + max -̂ " ""XX i /"»•• *^X ")

0 < x < I (12-3.72)

x=l.

We remark that the above equation cannot be handled directly with the analysis de-
veloped for the traditional Merton problem, due to the special form of U and the state
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constraint. One rigorous way to proceed is first to establish that u is the unique constrained
viscosity solution of (12.3.72), (12.3.73) on [0,1] x [0,T] and in turn to verify that the
candidate solution v is such a solution as well. Then, one can conclude that v = u, i.e.

u(x,t) = $($-l(x) + pVT - t). (12.3.73)

This verification result has not been estabished using viscosity arguments but it was proved
by Heath (1993) using elements from martingale theory. It is worth observing that the value
function does not achieve the terminal data U(x) continuously in time since
\imu(x,t) = x ̂  U(x).

The optimal portfolio process TT* is established via the first order conditions in (12.3.72);
they yield that the maximum is achieved at n(x, t) = —^^(xt) wmcni in view of (12.3.73),
implies

with <£ being the normal density. Therefore

with X*, t < s < T, being the optimal wealth with the above TT* being used.
For other properties of the optimal policy and the optimal solution, we refer the reader

to Heath (1993) and Karatzas (1997).

12.3.7 Alternative models of expected utility

Stochastic optimization models of expected utility have played a fundamental role not only
in optimal portfolio management as it was discussed in detail earlier, but also in equilibrium
asset pricing and in derivative valuation. The use of utility maximization in derivative
pricing is discussed in subsequent chapters in the context of pricing methods in the presence
of market frictions.

In asset equilibrium, the prices of the underlying securities are not known a priori, but
they are determined via fundamental "supply and demand" clearing market conditions.
The basic setup consists of a finite number of individuals, say M and a given number of
securities a riskless bond and N risky stocks. Each agent is endowed with a utility function
but all agents have the same beliefs for the asset returns. The ith agent starts with Ci initial
endowment and solves his expected utility optimization problem in order to determine his
optimal policies, the consumption rate Cl'* and the portfolio process TrJ'-7'*, with 1 < i < M,
l<j<N.

The equilibrium prices are determined in terms of the above prolicies via the so-called
market clearing conditions:

M M M M

E fii,* _ '^ A V-^ _M> _ n V* Yi'* — nt't - 2 ^ £ > z^^t ~ u > z^A* ~ u >
i=l i=l i=l i=l

for 1 < i < M, 1 < j < N.
In the absence of market frictions, fundamental "aggregation" properties hold and the

entire analysis can be carried out via the so-called representative agent whose utility function
is an appropriately weighted average of the individual utilities. The underlying individual
optimization problems are then reduced to the basic Merton model for a single investor,
the representative one, who starts with initial wealth given by the aggregate endowment
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e = ]>^=1
 e*- The majority of the involved stochastic control models were studied via

martingale techniques; we refer the reader to the monograph of Karatzas (1997) for an
extensive review of the theory.

In all previous models, one of the fundamental assumptions was the one of time additive
utilities. This assumption facilitates considerably their analysis but it does not explain cer-
tain empirical results on consumers's optimal policies. Alternative kinds of utility functions
have been proposed by various authors include, among others, the utilities of the stochastic
differential utilities, otherwise known as recursive utilities. This type of utility was stud-
ied in a continuous time framework by Duffle and Epstein (1992) (see, also, Schroeder and
Skiadas (1999)). They incorporate a more refined structure of the aggregated information
acquired through time. The associated stochastic optimization problems are mainly ana-
lyzed with techniques from the backwards and forward stochastic differential equations (see
among others, Duffie and Lions (1992), El Karoui, Peng and Quenez (1997)).

Utilities with habit formation were introduced by Constantinides (1990) and they model
how investors' satisfaction drops, according to a given decay rate, as they "get used" to
certain consumption levels. The relevant expected utility models have an additional con-
sumption state variable which decays in accordance to the individuals' habit formation. An
additional consumption state variable is also needed for the model of Hindy and Huang
(1993) who allow for local substitution. This feature allows for discontinuous consumption
processes and, typically, the relevant models give rise to singular stochastic control prob-
lems. Often, the associated HJB equation contains differential and integral terms and its
analysis becomes rather challenging. A rigorous treatment of this class of HJB equations
can be found in Alvarez (1994) and in Alvarez and Tourin (1996).

Alternative criteria to the ones based on utility payoffs from terminal wealth or/and
intermediate consumption, involve payoffs with "long-term" characteristics. Such criteria
arise in certain macroeconomic growth models and give rise to stochastic optimization prob-
lems with ergodic cost criteria. To gain some intuition, we observe that at least heuristically,
the value function of the finite horizon utility maximization problem u(x,t) (see (12.2.7)) is
expected to satisfy

u(x,T) ~ \T + W(x) asT-»oo. (12.3.74)

The coefficient A does not depend on the initial condition x and together with W must
satisfy

A = max \-o-2(x,a)Wxx + fj,(x,a)Wx + Ul(a)} +r(x)Wx.
a Lz J

This HJB equation corresponds to an average cost per unit time stochastic optimization
problem

1 CT

J(x;u) = limsup— E I L(Xt,ut)dt,
T-»oo J- Jo

with Xt solving (12.2.1). Therefore, the time growth coefficient in (12.3.74) coincides with
the maximum average cost per unit time J (see, Bensoussan and Frehse (1992), Bensous-
san et al (1998)). An interesting connection of A with the dominant eigenvalue of certain
operators can be found in Fleming and Sheu (1997) who based their analysis on logarith-
mic transformations of solutions to linear parabolic equations. This work also brings out
the interesting connection between ergodic control and infinite time horizon risk sensitive
control.

Models of risk sensitive control in the area of utility maximization have been proposed
by Bielecki and Pliska (1999) and Fleming and Sheu (1999); see also Platen and Rebolledo
(1996) and McEneaney (1997).
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12.4 Models of optimal investment and consumption II
In this section, we discuss models of expected utility in financial markets with frictions. We
concentrate on two kinds of such frictions, namely transaction costs and stochastic labor
income. Both classes of models are rather representative in asset pricing and derivative
valuation in incomplete markets. Their associated stochastic optimization problems are
rather difficult to solve due to certain degeneracies inherited by the unhedgeable risks that
the market frictions generate. We dedicate most of this section to the study of these models
for two reasons. Firstly, the mathematical methods involved are representative of the ones
used in models of mathematical finance in imperfect markets and secondly, these models
will be revisited subsequently in the context of derivative pricing via utility maximization
methods. At the end of the section, we provide a brief overview of other models of incomplete
markets.

12.4.1 Optimal investment/consumption models with transaction
costs

A crucial simplification in Merton's work is the absence of transaction costs on the vari-
ous trades. The first to incorporate proportional transaction costs in Merton's model were
Magill and Constantinides (1976) in an effort to understand how these costs affect trading
policies and also to explore if the equivalence between multiple stocks and mutual funds is
still preserved. Magill and Constantinides believed that transaction costs have an impor-
tant impact on the trading activity of the investor; in fact, they argued that the individual
must completely refrain from trading at portfolio states which are highly penalized by the
transaction costs. These policies differ substantially from the ones recovered by Merton -
for the same class of utility functions. Indeed, Merton's policies call for a continuous in
time rebalancing of the security holdings so that a constant fraction of the current wealth
remains always invested in the stock account(s). This wealth independent fraction is known
as the Merton ratio and it depends on market parameters and the risk aversion coefficient.
Thus, in the absence of transaction costs, the optimal investment process turns out to be a
diffusion process with values proportional to the ones of the current wealth process. In the
presence of transaction costs, Magill and Constantinides brought out an important insight
about the different nature of optimal investment policies, the one of singular trading policies.
Under these policies, lump-sum transactions take place which amount to instantaneously
altering the portfolio holdings in the bond and the stock account(s). Even though Magill
and Constantinides did not provide a singular stochastic control formulation of the under-
lying model, they paved the way to the correct formulation of the valuation models with
transaction costs (see, also, Constantinides (1979), (1986)).

Taksar, Klass and Assaf (1988) were the first to formulate a transaction cost model as a
singular stochastic control problem in the context of maximizing the long term expected rate
of wealth. Subsequently, Davis and Norman (1990) provided a rigorous mathematical for-
mulation and extensive analysis of the Merton problem in the presence of proportional costs
for CRRA utilities. Their paper is considered a landmark in the literature on transaction
costs and contains useful insights and fundamental results, both theoretic and numerical,
for the value function and optimal investment policies. Even though these results depend
heavily on the homotheticity properties of the value function, inherited by the power form of
the CRRA utilities, the model of Davis and Norman is viewed as the model for benchmark
transaction costs; it is presented and analyzed in detail in the next section.

Departing from the special class of CRRA utilities, Zariphopoulou ((1989), (1992)) was
the first to study optimal portfolio management models with proportional transaction costs
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for general individual preferences. In (1989), Zariphopoulou introduced a simple investment
model with two securities, a riskless bond rate and a risky security whose rate of return is
modeled as a continuous-time Markov chain, and she provided characterization results for
the maximal utilities.

For the case of price processes modeled as diffusion processes and CRRA preferences, a
considerable body of work has been produced with modifications and extensions of the Davis
and Norman (DN) model. Shreve and Soner (1994) revisited the DN model and provided
additional existence and regularity results for optimal policies and the value function for
a wide range of market parameters. A similar model, but in the case of a finite trading
horizon, was studied by Akian, Menaldi and Sulem in (1992) who allowed for more than
one risky securities and provided some regularity results for the value function. Finally, the
ergodic analogue of Akian, Menaldi and Sulem was subsequently analyzed by Akian, Sulem
and Taksar in (1996).

As it will be apparent from the discussion in the next sections, the stochastic optimization
problems with transaction costs do not have in general closed form solutions. Thus, it is
highly desirable — mainly for the practical applications — to provide numerical results for
their value function and the optimal investment policies and consumption plans. Such results
were first provided by Davis and Norman (1990) and later by Tourin and Zariphopoulou
(1994) for general utility functions. Other numerical schemes have been proposed by Akian,
Menaldi and Sulem (1996) for a model of portfolio selection with more than one risky asset
and by Sulem (1997) for a mixed portfolio problem with transaction costs. Pichler (1996)
developed a different class of schemes for the DN model and he also studied the probability
distributions of the relevant expected gains.

As we have alredy seen in previous sections, the central object of study are the value
function and the optimal investment and consummation policies. The value function is ex-
pected to satisfy the HJB equation but certain degeneracies might result in lack of sufficient
regularity. Therefore, one needs to work with the weak (viscosity) solutions and this is the
class of solutions we will be working with.

We continue with the description of the benchmark optimal investment/consumption
model of Davis and Norman incorporating general utilities in the payoff functional. This is
a model of a single agent, or a small investor as it is otherwise known, in the sense that his
actions cannot influence the prices of the underlying securities.

We consider an economy with two securities, a bond with price Bt and a stock with price
St at date t > 0. Prices are denominated in units of a consumption good, say dollars.

The bond pays no coupons, is default free and has price dynamics as in (12.3.17). The
stock price is the diffusion process given by (12.3.18) where \JL is the mean rate of return and
a is the volatility; JJL and a are constants such that n > r and a ^ 0.

The investor holds Xt dollars of the bond and yt dollars of the stock at date t. We
consider a pair of right-continuous with left limits (CADLAG), non-decreasing processes
(Lt,Mt) such that Lt represents the cumulative dollar amount transferred into the stock
account and Mt the cumulative dollar amount transferred out of the stock account. By
convention, L0=M0=0. The stock account process is

yt=y+ t MrdT + / o-yTdWT + Lt - Mt, (12.4.75)
Jo Jo

with 2/0 = y.
Transfers between the stock and the bond accounts incur proportional transaction costs.

In particular, the cumulative transfer Lt into the stock account reduces the bond account
by /3Lt and the cumulative transfer Mt out of the stock account increases the bond account
by aMt, where 0 < a < 1 < (3.
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The investor consumes at the rate ct dollars out of the bond account. There are no
transaction costs in transfers from the bond account into the consumption good.

The bond account process is

Jo

t
{rxT-cT}dr - pLt+aMt, (12.4.76)

with x$ = x. The integral represents the accumulation of interest and the drain due to
consumption. The last two terms represent the cumulative transfers between the stock and
bond accounts, net of transaction costs.

A policy is a ^-progressively measurable triple (ct,Lt,Mt). We restrict our attention
to the set of admissible policies A such that

ct > 0 and E f* crdr < oo a.s. for t > 0,
and (12.4.77)

= xt + (%)yt > 0 a.s. for t > 0,

where we adopt the notation

f az itz > 0
/ /-\r \ I

(12.4.78)

We refer to wt as the net worth. It represents the investor's bond holdings, if the investor
were to transfer the holdings from the stock account into the bond account, incurring in the
process the transaction costs.

The investor's payoff is
r r+°° i

E\ e-<*U(ct)dt\ ,
Uo J

over the consumption stream {ct,t > 0}, where p is the subjective discount rate and the
utility function [0, +00) — > [0, +00) is assumed to have the following properties:

i) U E C([0, +00)) n C>1((0, +00)) is increasing and concave.

ii) U(c) < K(l + c)7, Vc > 0, for some positive constants K and 7, with 0 < 7 < 1.

Given the initial endowment (x, y) in D = < (x, y ) € 7?. x 72, : x + I j y > 0 > , we define

the value function V as

r r+°° iV (x, y) = sup E / e-ptU(ct)dt x0 = x,y0 = y\. (12.4.79)

To guarantee that the value function is well defined we either assume, as in Davis and
Norman (1990) that
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or, assume, as in Shreve and Soner (1994), that

p > rj + -J2(n - r)2/2cr2(l - 7)2. (12.4.81)

Either set of conditions (12.4.80) and (12.4.81), yield that the value function which cor-
responds to a = j3 = 1 and U(c) = K(l + c)7 is finite and, therefore, all functions with
0 < a < I , (3 > 1 are finite.

We continue with some basic properties of the value function. (For their proofs and
other basic properties, see Shreve and Soner (1994) or Tourin and Zariphopoulou (1994).)

Proposition 12.4.1 i) The value function V is jointly concave in x and y, strictly increas-
ing in x and increasing in y.

ii) The value function V is continuous on D.

We continue with a formal discussion on the derivation of the associated HJB equation.
First, we consider a random time T and we assume that the optimal strategy of the

investor is to refrain from trading and to consume at a rate say Ct, for 0 < t < T. The
Dynamic Programming Principle yields

r / _ ~ _ / iV(x,y)= sup E\ I e~pU(ct)dt + e~pTV(xT,yT)/xQ = x,y0=y\.

and, in turn, that V satisfies at the point ( x , y )

rxVx + iaiix.[-cVx + U(c)]. (12.4.82)
c>0

Because the above policy is in general suboptimal, (4.9) holds as inequality, i.e. for all points
(x, y) e D,

pV > 2y2Vyy + p,yVy + rxVx + Taax[-cVx + U(c)\. (12.4.83)

Next, assume that at the point (x, y) € D, it is optimal to make an instantaneous
transaction corresponding to the purchase of bond shares. In other words, let us assume that
the investor rebalances his portfolio from (x, y) to (x + ad, y — S), incurring the appropriate
transaction costs. Then the optimality of this decision implies

V(x,y) = V(x + a6,y-S), (12.4.84)

which in turn yields

-aVx(x,y) + Vy(x,y) = 0. (12.4.85)

Because such a policy is in general suboptimal, (12.4.84) holds as inequality and (12.4.85)
becomes

-aVx + VV>0, (12.4.86)

for (x, y) & D. _
Finally, let us assume that for the portfolio position (x, y) 6 D, it is optimal to rebalance

it .to the new position (x — J38, y + 5). Then optimality implies

V(x, y) = V(x -06,y + 6), (12.4.87)
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which in turn yields at the point (x,y),

PVx(x,y)-Vv(x,y)=0. (12.4.88)

Like the other policies we considered, the last one is in general suboptimal which implies
that (4.14) holds as inequality. In differential form this implies

PVX -Vy>0, (12.4.89)

for all points ( x , y ) e D.
Combining (12.4.83), (12.4.86) and (12.4.89), we obtain the HJB equation (12.4.90),

associated with (12.4.79). As a matter of fact, the HJB equation turns out to be a Variational
Inequality with gradient constraints.

The following result was proved by Tourin and Zariphopoulou (1994) and by Shreve and
Soner (1994) for the case of CRRA utilities.

Theorem 12.4.2 The value function V is a constrained viscosity solution on D of the
Hamilton-Jacobi-Bellman equation

in pV — ^&2y2Vyy — fJ,yVy — rxVx — max(—cVx + U(c)),L 2 c>omm

I3VX ~ Vy, -aVx + Vy\ = 0. (12.4.90)

Next, we state a comparison result for constrained viscosity solutions of (12.4.79) which
appears in Tourin and Zariphopoulou (1994). This result has been used to obtain conver-
gence of the numerical schemes employed for the value function and the optimal policies
and also to derive bounds on derivative prices.

Theorem 12.4.3 Let u be an upper semi-continuous viscosity subsolution of (12.4-90) on
D with sublinear growth and v be a bounded from below uniformly continuous viscosity
supersolution of (12.4-90) in D. Then, u <v on D.

We now concentrate on the special class of Constant Relative Risk Aversion (CRRA)
utility functions

(12.4.91)
^ U(c) = log c for-j = 0.

As we have seen in Merton's model and its variations, because the utility function is
homogeneous and the state dynamics linear in the state and control variables, the value
function inherits the same homogeneity. This in turn can be used effectively to produce
closed form solutions for the HJB equation and explicit feedback formulae for the optimal
policies.

In models with proportional transaction costs, the homotheticity properties are primarily
used to reduce the dimensionality of the relevant optimization problem. This is the central
feature in the benchmark work of Davis and Norman who reduced the dimensionality of
(12.4.79) via the transformation

-). (12.4.92)y
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The function F solves the one-dimensional Variational Inequality

min

(/?7 + z)F' - 7-F, -(cry + z)F' + 7F = 0

3C
for z = - and p = p — /j,-y + |cr27(l — 7) and /t = p — r — a2 (I — 7); the non-linear term

1 - 7 j_ f c7 "I
——— (F')T-1 comes from the reduced form of max < —cVx + — > using that Vx(x,y) =

y^F'(^).
\yj

Davis and Norman analyzed the above equation and under certain assumptions on the
market coefficients, they constructed a solution ^ satisfying, for some positive constants A
and B, and points z\ and z2

-a2z2tjj" + fiztl>' + — — (VO^7, Zl<z<z2 (12.4.93)

The function •)/> was constructed as the solution of a two point boundary problem of
second order with endpoints z\ and z%. These endpoints were specified by the so-called
"principle of smooth fit" which is used to produce a smooth solution of (12.4.93).

X
The set of equations above indicates that when the ratio of account holdings — is between

V
the threshold levels z\ and z%, then it is optimal not to rebalance the portfolio but only to
consume. In other words, the individual must refrain from trading in the region J\fT =
{(x,y)eD:Zl<^<z2}.

X

If the holdings ratio, say — , is below z\ then it is optimal to instantaneously rebalance
XQ _ _ _ _

the portfolio components by moving from the original point to the point (y, x) with y = z\x

with x = ——— - — . This corresponds to a transaction of buying shares of stock and this is
_ 11

the optimal policy that one should apply to all points (x,y) € D with — < z\. Similarly,
x

if the holdings ratio — is above z%, then it is optimal to instantaneously rebalance the
XQ

portfolio components by moving to the point y = z2x with x = - ———— . This corresponds1 +
to a transaction of selling stock shares and this is the optimal policy for all point (x, y) e D

ysuch that — > Z2.x
/ \

The above analysis shows that the state space D = {(x, y) : x+ I I y > 0} depletes into

three regions: the so-called sell (<S) and buy (B) regions (sales and purchases of stock shares
occur instantaneously) and the no trading (NT) region (no trading takes place but only
consumption from the bond account holdings). The NT region lies in between the B and
the S region and the common boundaries are straight lines emanating from the origin; the
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latter properties are dictated by the homotheticity of the value function. Davis and Norman
showed that the existence of a smooth solution of (12.4.93) provides a sufficient condition
for the optimality of a policy, say (cj, L^, Mt*) such that the associated state process ( x ^ , y ^ )
is a reflecting diffusion in the J\fT region and L*t and Mt* are given from the relevant local
times at the lower and upper boundaries, respectively.

As it was mentioned earlier, the work of Davis and Norman is a landmark in the area of
transaction costs. A number of key ideas and insights were gained from their work which
influenced a number of papers in the area. In particular, Shreve and Soner (1994) studied
the same model and extended the DN results in several directions. Below, we present the
main parts of the analysis of Shreve and Soner (1994) together with some relevant results
of Davis and Norman. We choose to proceed this way mainly because Shreve and Soner
used viscosity methods and therefore, we are able to continue our exposition, in a unified
manner, following the previous chapter.

First, using convex analysis arguments, Shreve and Soner (1994) proved the following
result.

Theorem 12.4.4 For 7 < 1,7 ̂  0, there exist constants A > 0, B > 0 such that

1
7^

1V(x, y) = -B~i-l(x +

For 7 = 0, there exist constants A, B such that

for(x,y)eS,

for (x ,y)eR

V(x, y) = - log(x + ay) + A for(x, y) e S,

V(x, y) = - log(ar B for(x, y) e B.

To explore the regularity of the value function in the (NT] region, Shreve and Soner
employed, as in (DN), its homotheticity properties. They used a different scaling transfor-
mation, namely

V(x,y) =

for7 < 1,7 ^ 0

(12.4.94)

They subsequently studied the regularity properties of the above function u(z) where

the variable z is given by z = ———. Using that (x,y) have the property x + ( | y > 0,x + y V/vr -, 1 i
(see (3.4.4)), one gets that z G J = —

0-1' l-a\'
Below, we adopt the notation of Shreve and Soner (1994) and we state their main results.
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To this end, we introduce the quantities,

di(*) = r + (/j,-r)z--a2(l-j)z2

d 2 ( z ) = (»-r)z(l-z)-oa(l-i)z2(I-z)

d3(z) = V(l-z)2

1 — a

Direct computations in (12.4.94) show that the value function V is a smooth solution
of the HJB equation (12.4.90) if and only if u is a classical solution of the second-order
ordinary differential equation

min < pu - di(z)-ju — d2(z)u' — d3(z)u" — U^(—zu' + ju), (12.4.95)

di(zu',yu-d5(zu'>=0 for 7 = 4 0 , < 1 ,

or

lin < pu — —di(z) — d2(z}u' — d^(z)un — UQ(—ZU' + '—
I P P

mhKJp-u- -di(z) -d2(z)u' - d3(z)u" - U0(-zu' + -), (12.4.96)

- + di(z)u',--ds(z)u'\=0 for 7 = 0,

where

U~f(c) = sup{—cc + U(c)} =
— 1 — log c for7 = 0,

with U denned in (12.4.91), (??).
Using arguments from the theory of viscosity solutions, the following result was estab-

lished (see Shreve and Soner (1994)).

Theorem 12.4.5 The function u is C1 on J\{0}. I f u is not also Cl at {0}, then for every
x > 0

'I 7-1
7

V(x,0) =
1 1 T — p
- log x + - log p H- —^— £017 = 0,

r\ _ T^'V
where M = ——— > 0. Furthermore, even if u is not Cl at {0}, its one-sided derivatives

1-7
exist and are limits of its derivatives from the appropriate sides at 0.

Subsequently, Shreve arid Soner (1994) argued that AfT ^ <p and therefore there exist
two numbers, say 9\ and 0%, such that

MT= ( x , y ) &D:6l < -— < 02 (12.4.97)
I x + y )

Using elements from viscosity theory, they also established the following regularity result.
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Theorem 12.4.6 The function u is C2 on (Oi, d2)\{G,1} and, on this set satisfies, in the
classical sense, the equations

pu(z) - di (2)711(2) — d2(z)u'(z) — d3(z)u"(z)-

=0

pu(z) - -d^z) - d2(z)u'(z) - d3(z)u"(z)

-U0 (-zu'(z) + -} =0
\ PJ

£017 / 0,7 < 1

for7 = 0.

(12.4.C

Therefore, V is C2 in the set A/~T\{(x,y) : x = 0 or y = 0} and satisfies, in the classical
sense, the equation

pV = ̂ 2y2Vyy + nyVy + rxVx + maxj-cK, + U(c}}

with U as in (4^18), (4-19). Moreover, the regions 5^0 and B contain the cone
G = {(x,y)eD;y<0}.

The following theorem provides a verification result for the optimal policies (see Shreve
and Soner (1994)).

Theorem 12.4.7 The quantities 9i and 92 satisfy

0 < 6>i < 6*2 < l-a

Furthermore, if ( x , y ) € D, then there is a triple (c,L,M) e A such that with the processes
Xt and yt, as defined in (4-1) and (4-2), the following conditions hold almost surely:

i) If (x,y) £NT, then (xQ,y0) e

ii) the processes ( x t , y t ) G J\fT, Vi > 0,

iii) LI = /0* 1 ys dLs, Vt > 0,
———— "

iv) M* = /„* 1 ya _ dMs, Vt > 0,
—— ——

v) c*t=[Vx(xs,ys)}^, V t > 0 .

The triple is optimal, i.e.
f + OO

V(x,y)=E e~piU(ci)dt.
Jo

Next, we consider the two boundaries of the J\fT wedge region

and

= 0}

={(x,y)eD:y>0,e2x + (92 - l)y = 0},
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we define the reflection direction index

i£(x,y) € 32AfT

and we let j(x,y) =
The above theorem states that for any pair of portfolio positions ( x , y ) e AfT, there is

a solution to the Skorohod problem:

Skorohod problem: Find continuous processes xt, yt, kt such that x0 = x,
Vo = V; ko = 0. k is nondecreasing and the following assertions hold

V i > o
ii) dxt = [rxt - (Vx(xt,yt))^I}dt + ̂ i(xt,yt)dkt

iii) dyt = nytdt + aytdWt + %(xt, yt}dkt

iv) kt = /0 l{(Xt,s/t)eajVT}*t.

We can easily identify the above conditions with the ones presented earlier putting

t = So l { ( x t , y t ) e

t = fo l{(xt,yt)e

where
, , .x + y

Shreve and Soner (1994) used control theory arguments to establish additional regularity
results for the value function across the interfaces #jA/"T defined above. Finally, they produce
various results for the location of the optimal exercise boundaries; these results are stated
below in terms of the slopes Q\ and #2 •

Theorem 12.4.8 The partial derivative Vyy is continuous across d-^NT , and if 9% ^ I ,
then V is C2 across d^NT . If Oi ^ 0, then Vyy is continuous across d\NT , and if Oi ^ 0
and #1 ^ 1, then V is C2 across d\

Proposition 12.4.9 i) The value junction V is C2 in S\{(x,y) : x = 0
or y = 0}.

ii) The functions V, Vx and Vy are continuous in D\{(x, 0) : x > 0}.

The next propositions provide information about the location of the exercise boundaries
and closed-form solutions for the value function.

A
Proposition 12.4.10 // 7 < 1, 7 ^ 0 then there is a positive constant A with — <

— ——— r such that, for (x,y) 6 5,
7(1-7)

V(x,y)^-A^-1(x
1
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7/7 = 0, then there is a constant A with A > ( l o g p ) / p + ( r — p)/p2 such that, for (x, y) e 5,

y (x, y) = - log(x + ay) + A.

Proposition 12.4.11 P4-3 For all 7 < 1, the slope 02 satisfies

2 ^ ——~^~,————\———7—————————r •ao~ (1 — 7) ~\~ 2(1 — o.)(Lij — r)

r-i _ T^y *~v (I f _ 7*1
Moreover, if a2 (I — 7) ^ n - r and the quantity M(i) = -——— — —^-——~ > 0, then

1 — 7 2crz(l — 7)^

> acr2(l — 7) + (1 — a)(^t — r) '

//cr2(l -j) = p,-rand M(~f) > 0, then 02 = 1. -Fma% if M(^) > 0
2<72(1 — 7) > — - — (p, — r) then the slope of the low exercise boundary satisfies

The slope 0\ > 0, i.e. the positive x-axis belongs to the B.

Besides the above results, Shreve and Soner (1994) provided conditions for the value
function to be well denned; these conditions are considerably more general than the ones of
Davis and Norman.

Departing from the benchmark optimal investment-consumption model of Davis and
Norman, other valuation models with transaction costs have been introduced and analyzed
with alternative analytical methods. The main incentive to develop such models comes
from the absence of closed form expressions for the optimal investment strategies in the
DN model, a feature highly desirable for practical applications. In fact, as the outlaid
analysis indicates, in order to analyze the transaction costs portfolio problems one needs to
solve a free boundary problem. The free boundaries define the no-transaction (NT) region
in which trading is prohibited due to the high penalties from the transaction costs. The
precise characterization and the accurate computation of these interphases are imperative
for the practical importance of the model. In addition, more realistic models incorporate
more than one risky securities as these models look at larger portfolios or at "books" of
options. In this case, the regions of trading idleness have a rather complex structure. To
solve such problems is a formidable task both from the theoretic as well as the numerical
point of view.

To overcome these difficulties, alternative models were introduced which, from one hand,
can be analyzed more effectively and, from the other hand, produce optimal trading strate-
gies which do not deviate considerably from their theoretical counterpart. The first models
in this direction are the models of Morton and Pliska (1995) and Pliska and Selby (1995);
Schroder (1993) independently obtained similar results for some special cases. The key fea-
tures in the approach of Morton, Pliska and Selby are the possibility of investing in more
than one stock and the fact that the transaction costs are proportional to a fixed fraction
of the (dynamic) portfolio value.

In the models of Morton, Pliska and Selby, the risky securities are modeled as correlated
geometric Brownian motions and there is no intermediate consumption drainage. The op-
timality criterion differs from the DN payoff in that the aim is to maximize the long-run
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(in Vr)expected growth rate of the total portfolio value, liminf E-————-. The transaction costs
T—>oo T

are considered fixed in the sense that, each time funds are shifted between two or more
securities (riskless or risky ones), a penalty is imposed equal to the fraction (1 — e) times
the current value of the entire portfolio. Aside from the current portfolio value, the penalty
is independent of the prices and the positions in the individual securities.

In Morton and Pliska (1995) the trading strategy which maximizes the relevant criterion
is fully determined by an M-dimensional vector, say b and an optimal stopping time T. The
dimension of b coincides with the number of risky securities (assuming that their variance-
covariance matrix is of full rank) and its components are strictly positive and sum to less
than one. The optimal solution b* and the stopping time r are found by solving a free
boundary problem which can be reduced to a linear complimentarity problem. In the case
of only one risky security, the free boundary consists of only two points and the optimal
solution can be achieved easily. The numerical method becomes much more complex when
there are two or more risky securities because, in this case, the optimal exercise boundary
consists of infinitely many points. Pliska and Selby (1995) addressed this issue by employing
a novel transformation to the original free boundary problem of Morton and Pliska (1995),
for the case of two risky securities. This transformation makes the problem considerably
easier to solve but still does not address the issue of more than two risky securities, both
from the analytic as well as the numerical point of view.

Atkinson and Wilmott (1995) studied the multi-dimensional case under the assumption
that the transaction costs are small — but still of realistic size. They used asymptotic
methods and a local analysis in the original Merton problem which is free of transaction
costs. This asymptotic approach showed that the continuation region resembles an ellipsoid
which actually resembles the region obtained by Morton and Pliska (1995). This property
holds in a certain part of the state space, related to the local behavior of the Merton solution
but the approximation breaks down in the other parts. This key difficulty was successfully
addressed in Atkinson, Pliska and Wilmott (1999) who studied the non-constant coefficient
version of the Atkinson and Wilmott model. By handling the non-constant coefficient case,
Atkinson, Pliska and Wilmott succeeded in bypassing the difficulties in the asymptotic
analysis of Atkinson and Wilmott. Asymptotic results for small transaction costs for the
(DN) model in the case of many risky assets was performed by Atkinson and Al-Ali (1995).

Optimal investment models in which the stock price structure is similar to the Davis
and Norman but with alternative optimization criteria have been analyzed by a number
of authors. Portfolio models with finite trading horizon and utilities depending on the
terminal wealth were studied, analytically and/or numerically, by Fleming et al (1989),
Akian, Menaldi and Sulem ((1992), (1996)), Akian, Sequier and Sulem (1996), Sulem (1997)
and more recently by Tiu and Zariphopoulou (1999). Other models with "long-run" type
criteria have been examined first by Taksar, Klass and Assaf (1988) and subsequently by
Dumas and Luciano (1991), Fleming et al (1989), Sulem (1997), Akian, Sulem and Taksar
(1996).

So far, in all the above models and the-ones discussed in the previous section, the common
avenue of obtaining information about the value function and the optimal investment and
consumption plans is via the HJB equation. An alternative and rather powerful approach
is the one that uses results from martingale theory. The majority of the results obtained
through this approach are found in models of derivative pricing with transaction costs and
they are discussed in the second chapter. In the context of portfolio optimization, this
methodology, together with tools from convex and functional analysis and duality theory,
was employed by Cvitanic and Karatzas (1996) (we also refer the reader to the monograph
of Karatzas (1997)).

Transaction costs have also been incorporated in other kinds of asset pricing models.



12.4. MODELS OF OPTIMAL INVESTMENT AND CONSUMPTION II 719

In many of these models, financial trades are charged by "adjustment" or "shipping" costs
which can have more complex structure. The economic considerations are different and
the mathematical analysis is overall less rigorous as one moves to more applied areas of
finance. Optimal consumption models of durable goods have been examined by Grossman
and Laroque (1989) and Eberly (1999). Other capital asset pricing models with transactions
costs for divident policies, stock returns, term structure, exchange rates and asset demands
are listed in the references.

In summary, transaction costs result in irreversible losses which in most cases cannot
be valuated with the classical existing theories. There are still may challenging questions in
equilibrium asset pricing theory which do not have a satisfactory answer. The difficulties
come not only from the lack of a coherent modeling structure but also from the absence of
good analytic and numerical techniques needed to attack the related stochastic optimization
models.

12.4.2 Optimal investment/consumption models with stochastic la-
bor income

A very important extension of Merton's model is when the individual investor is endowed
with a stream of stochastic income that cannot be replicated by trading the available secu-
rities. In other words, markets are incomplete in an essential way. In the case of general
time-additive utilities, this model was analyzed by Duffie and Zariphopoulou (1993) who
studied the solutions of the HJB equation (see Theorem 12.4.13 below). Considerable sim-
plification is obtained by assuming that the utility function is of the CRRA type; this case
was studied by Duffie et al (1997) and Koo (1991) using pde techniques. A considerable
volume of work on this subject was also produced via martingale methods and the duality
approach, carried out by Cuoco (1997), He and Pearson (1991), Karatzas et al (1991); re-
lated literature also includes Duffie and Richardson (1991), El Karoui and Jeanblanc-Pique
(1991), He and Pages (1993) and Swensson and Werner (1990).

We continue with the description of the underlying financial model and the main results
of the associated stochastic optimization problem. The fundamental assumption is that
individual preferences are modeled via a power function of exponent 7 £ (0,1). The majority
of the results presented below are from Duffie et al (1997).

On a given probability space is a standard Brownian motion W = (W1, W2) in "R.2. The
standard augmented filtration {Tt : t > 0} generated by W is fixed. Riskless borrowing or
lending is possible at a constant continuously compounding interest rate r. A given investor
receives income at the rate Yt, where

' dYt = bYtdt + aYtdW}, (t > 0),
(12.4.99)

,*o =y, (y> 0),

where b and a are positive constants and y is the initial level of income.
A traded security has a price process St given in (12.3.18) and the Brownian motion

W is correlated to W1 with correlation coefficient p e ( — 1,1); for this we can take Wt =
pWl + ̂ /l - p2W?.

A consumption process is an element of the space C+ consisting of any non-negative
{ft}-progressively measurable process C such that E(f^ Ctdt) < oo for any T > 0. The
agent's payoff function J : £+ —> 'R.+ from consumption is given by

f + OO/ f+°° \
/ e~0tC?dt), (12.4.100)v Jo '
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for some risk aversion measure 1 — 7 G (0,1) and discount factor j3 > r.
It is assumed throughout that /? > r, that \p\ ̂  1, and that the volatility coefficient

a is strictly positive. Cases in which j3 < r, <r = 0, or \p\ — 1 are not discussed and,
in general, they may lead to a different characterization of optimal policies than the one
obtained herein.

The agent's wealth process X evolves according to the equation

'dX t = [rXt + (fj. - r)Ht -Ct + Yt]dt + aTltdBt, t>0),
(12.4.101)

where x is the initial wealth endowment, and the control processes C and II represent the
consumption rate Ct and investment lit in the risky asset, with the remainder of wealth
held in riskless borrowing or lending.

The controls C and II are drawn, respectively, from the spaces C = {C G £+ : J7((7) <
00} and <3? = {l : i is J-'t-progressively measurable and E f0 I2ds < oo a.s. (t > 0)}. The
set A(x,y) of admissible controls consists of pairs (C, II) in C x 3> such that Xt > 0 a.s.,
(t > 0), where Xt is given by the state equation (4.27) using the controls (C, II).

The agent's value function v is given by

v(x,y)= sup J(C). (12.4.102)

Assuming, formally for the moment, that the value function v is finite- valued and twice
continuously different iable in D = (0, oo) x (0, oo), it is natural to conjecture that v solves
the HJB equation

-a2y2vyy + max.Hv(c).+ (rx + y)vx + byvy, (12.4.103)yy
2 C>0

for (x, y) € D, where subscripts indicate the obvious partial derivatives and
^

V(^} = 2^2vxx + pwyaavxy + (ft - r)^vxy,

It can be shown directly from (12.4.101) and (12.4.102) that if i; is finite-valued, then it is
concave and is homogeneous with degree 7; that is, for any (x, y) and a positive constant k we
have v(kx,ky) = k~<v(x,y). It therefore makes sense to define
u : [0,+oo) —> [0,+00) by u(z) = v(z,l), so that knowledge of u recovers v from the
fact that v(x,y) = y7u(x/y) for y > 0. The same idea is used, for example, in Davis
and Norman (1990). This does not recover ii(x, 0), which is known nevertheless to be the
Merton's original solution without stochastic income.

If v satisfies (12.4.103) then, for x > 0, u solves
-^ 1 1/3u = -a

2z2u" + max [(-a2-*2 - paaitz)u" + k^u'} + k2zu' + F(u'), (12.4.104)
2* 7T 2i

where

fca = n - r - (1 - 7)pcra, (12.4.105)

fc2 = a2(l -7) +T- -b,
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and F : [0, +00) —> [0, +00) is given by

F(p) = max [-cp + (1 + c)7]. (12.4.106)
c> —1

After performing the (formal) maximization in (4.30), assuming that u is smooth and
strictly concave, we get

\-F(u'), ( z > 0 ) , (12.4.107)

where

k=pkia+k^ (12.4.108)
CT

In Duffle et al. (1997), it is shown that u can be characterized as the value function of
a so-called 'dual' investment-consumption problem. That is,

r r+oo „
u(z]= sup E\ I e-0t(l + Ctrdt\. (12.4.109)

where the set A(z) of admissible policies is defined below. To this end, we consider an
"artificial" consumption- investment problem of an agent whose current wealth Zt evolves,
using a consumption process Ct and risky investment process lit, according to the equation

rdZt = [kZt + kiUt - Ct]dt + aTitdW^ + aZt^/l - p2dW2 (t > 0),
(12.4.110)

where z is the initial endowment and fci and k are given, respectively, by (12.4.105) and
(12.4.108). The set £ of consumption processes consists of any progressively measurable
process C such that Ct > — I almost surely for all t, with E fQ Csds < oo for all t. A control
pair (C,II) for (12.4.110) consists of a consumption process C in £ and a risky investment
process TI e <E> and it is admissible if Zt > 0 a.s., (t > 0), where Zt is given by (12.4.110).

Observe that from one hand, the agent is forced to invest a fixed multiple of wealth in
a risky asset with expected return k and 'volatility' a-\/(l — p2). On the other hand, he
chooses the amount II invested in another risky asset with mean return fci and volatility a.

The agent's utility is given by

r /"+0° - i
J(C)=E\ \ e-0t(l + Ctrdt\.

i- Jo J

The value function w : [0, +00) — > [0, +00) is denned by

w(z) = sup J(C). (12.4.111)

The HJB equation associated with this stochastic control problem is

^ ] r 1
fiw = ~cr2(l - p2)z2wzz + max -a2n2wzz +

2 K 12

cw2 + (l + c)'r] + kzwz (z > 0). (12.4.112)
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We observe that (12.4.111) reduces (at least formally) to (12.4.107) for smooth concave
solutions.

We call problems (12.4.111) and (12.4.109) 'dual' to each other because one hedges an
income stream and the other hedges an investment, and because of the relationship between
their value functions: the reduced value function u of problem (12.4.109) for CRRA utility
reduces to the value function w of (12.4.111) for non-CRRA utility. Conversely, it can be
shown that problem (12.4.111), after substituting the CRRA utility function J for J and
substituting the correlated Brownian motion B for W2 in (12.4.110), has a value function
equivalent to that of problem (12.4.109), after making the opposite substitutions. Thus
either of these dual problems can be reduced to a version of the other with a single-state
variable.

The following results can be found in Duffle et al (1997).

Theorem 12.4.12 i) Suppose that u is an upper- semicontinuous concave viscosity subso-
lution of the HJB equation (12. 4-112) on [0, +00) and u(z) < c0(l + z7) for some c0 > 0;
also suppose that v is bounded from below, uniformly continuous on [0, +00) and locally
Lipschitz in (0, +00), and a viscosity supersolution of (4-38) in (0,+oo). Then u < v on
[0,+oo).

.ii) The value function v is the unique constrained viscosity solution of the HJB equation
(12.4-103) on D in the class of concave functions.

The next result provides a characterization of the value function w of the reduced dual
problem.

Theorem 12.4.13 i) The value function w is concave, increasing, and continuous on
[0,oo).

ii) The value function w is the unique (7[0, +00) Pi (72(0,+oo) solution of (12.4-112) in
the class of concave functions.

Hi) The value function w coincides with the function u.

It turns out that this characterization of u is crucial for proving regularity results for
the value function v as well as for obtaining feedback forms for the optimal policies. By
a "feedback policy,' we mean, as usual, a pair (g,h) of measurable real- valued functions
on [0, oo) x [0, oo) defining, with current wealth x and income rate y, the risky investment
h(x, y) and consumption rate g(x, y). Such a feedback policy (g, h) determines the stochastic
differential equation for wealth given by

' dXt = [rXt + (/z - r)h(Xt,Yt) - g(Xt, Yt) + Yt]dt + <rh(Xt, Yt)dWt, (t > 0),

0=x, (x > 0).
(12.4.113)

If there is a non-negative solution X to (12.4.101) and if the policy (C, II) defined by

Ct = g ( X t , Y t ) , Ht = h(Xt,Yt),

are in C and 3?, respectively, then ((7,11) is an admissible policy by definition of A(x,y).
Before stating the main conclusions, we recall that for the case y = 0 (implying Yt = 0,

t > 0), the value function v is given from Merton's (1971) work. In fact if the constant

(124114)2(1 -7)%2 U/.4.H4;
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is strictly positive, we have
v(x,0) =K~f~1x'r,

with optimal policies given in feedback form by

x ( f j , - r )
h(x,Q) =

<72(l-7)

with K given in (12.4.114).
For x > 0 and y > 0, the feedback policy functions g and h defined by the first-order

optimality conditions for (12.4.103), in light of the homogeneity property v(x, y) = yyu(x/y),
are given by

, (12.4.115)

U'(X/V) /1 0 / i l r « N. (12.4.116)

The following theorem provides the verification result for the value function and the
optimal policies. Its proof is in Theorem 1 by Duffle et al (1997).

Theorem 12.4.14 Suppose /?, K, and r — (j, are all strictly positive.
i) There is a unique Cll([0, +00)) n C2((0, +00)) solution u of the ordinary differential

equation (12.4-107) in the class of concave functions.
ii) The value function v is given by

v(x,0) = K'*-1x'r,

v(x,y)=y'1u(-), y>0. (12.4.117)

Hi) There is a unique solution Xt of (12.4-101) satisfying the budget feasibility constraint
Xt > 0, and an optimal policy (C* , II*) is given by C% = g(Xt, Yt) and II* = h(Xt, Yt) where
g and h are given by (12.4.115)~(12.4-76), with h(0,y) = 0 for all y and <?(0,y) = ay for
all y, where a = (^(O)^)1/^-1).

iv) If ki ^ 0, starting from strictly positive wealth (x > 0), the optimal wealth process,
almost surely, will never hit zero, and starting from zero, almost surely, the optimal wealth
process will instantaneously become strictly positive. The same conclusion holds if ki = 0
and u'(0) > j.

12.5 Expected utility methods in derivative pricing
The area of derivative securities has been one of the fastest growing areas of finance as well
as one of the most active areas of research on stochastic analysis, stochastic control and
computations. Derivatives are financial instruments whose values depend on the price levels
of the so-called primitive securities, like stocks. The fundamental problem of derivative
valuation is in determining the derivative's fair value and in specifying the hedging policy
which eliminates the risk inherent to the contract. Derivative contracts had always existed
in financial environments but it was after the seminal work of Fisher Black and Myron
Scholes (1973) (in collaboration with Robert Merton) that this area blossomed and started
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expanding rapidly. The Black and Scholes valuation approach brought to modern finance
the powerful methodologies of martingale theory and stochastic calculus. Today, numerous
different kinds of derivative instruments are traded all around the world and various new
contracts are being created every day. The valuation of these contracts gives rise to a number
of challenging problems in the areas of stochastic analysis, martingale theory, stochastic
control and partial differential equations.

Despite the ever growing activity in derivatives' markets, very few questions have been
successfully addressed to date when derivatives are produced, traded and hedged in markets
with frictions. The most important kind of frictions comes from the stochastic nature of the
volatility of the primitive stock security. Most of the research on derivatives with frictions
is concentrated on the case of stochastic volatility and several methodologies have been
proposed at different levels of sophistication. The majority of the theoretical results were
obtained via martingale theory and convex duality arguments (see, for example, Cvitanic
and Karatzas (1996), Cvitanic, Pham and Touzi (1997)) without fully involving any expected
utility formulation.

Methods based on expected utility first started, and since then have been developed
primarily for pricing derivative securities in markets with transaction costs. Following our
unified theme to concentrate mainly on expected utility models of asset valuation, we provide
below an overview of such models used in pricing with transaction costs. We also choose to
proceed this way because, as it will be demonstrated below, the existing theories give rise
to challenging singular stochastic control problems whose analysis is interesting in its own
right.

The fundamental difficulty for pricing derivatives in the presence of transaction costs
lies in the fact that the Black and Scholes approach breaks down completely. In fact, in
a frictionless market, Black and Scholes (1973) and Merton (1973a) relied on an ingenious
no-arbitrage argument to price an option on a stock when the interest rate is constant
and the stock price follows a geometric brownian motion. They presented a self-financing,
dynamic trading policy between the bond and stock accounts which replicates the payoff
of the option. They then argued that absence of arbitrage dictates that the option price is
equal to the cost of setting up the replicating portfolio. The appeal of the argument lies
in its reliance on the absence of arbitrage alone and is independent of other aspects of the
equilibrium, such as a particular asset pricing model. The precise derivation arguments of
Black and Scholes are discussed in the next section.

The Achilles' heel of the argument is that the frictionless market assumption must be
taken literally. The dynamic replication policy incurs an infinite volume of transactions over
any finite trading interval, given the fact that the brownian motion which drives the stock
price has infinite variation. In a market with proportional transaction costs, the dynamic
replication policy incurs infinite transaction costs over any finite trading interval and cannot
be self-financing, no matter how small the finite transaction costs rate is.

Merton (1990) maintained the goal of a dynamic trading policy as that of replicating
the option payoff and modeled the path of the stock price as a two-period binomial process.
The initial cost of the replication policy is finite and serves as an upper bound to the write
price of a call which is arbitrage-free. Shen (1990) and Boyle and Vorst (1992) extended
Merton's model to a multiperiod binomial process for the stock price and provided numerical
solutions to the initial cost of the replicating portfolio. As the number of periods increases
within the given lifetime of the call option, the initial cost of the replicating portfolio tends
to infinity.

Bensaid et al (1992) and Edirisinghe, Naik and Uppal (1993) noted that a tighter upper
bound on the write price of a call option is obtained by replacing the goal of replicating the
payoff of the option with the goal of dominating the payoff. For example, the payoff of one
share of stock dominates the payoff of a call option and, therefore, the cost of initially buying
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one share provides an upper bound to the cost of a minimum-cost dominating policy as the
number of periods increases within the given lifetime of the option. Davis and Clark (1994)
conjectured and Soner, Shreve and Cvitanic (1995) proved, that the cost of initially buying
one share of stock is indeed the cost of the cheapest dominating policy in the presence of
finite proportional transaction costs. Their result on feasible super-replicating strategies was
subsequently generalized by Levental and Skorohod (1997).

Leland (1985) initiated a novel approach by introducing a class of imperfectly replicating
policies in the presence of proportional transaction costs. He calculated the total cost,
including transaction costs, of an imperfectly replicating policy and the "tracking error,"
that is the standard deviation of the difference between the payoff of the option and the
payoff of the imperfectly replicating policy. Imperfectly replicating policies were further
studied by Figlewski (1989), Flesaker and Hughston (1994), Henrotte (1993), Hoggard,
Whalley and Wilmott (1994) and Toft (1996). Avellaneda and Paras (1994) extended the
notion of imperfectly replicating policies to that of imperfectly dominating policies.

An alternative approach, initiated by Hodges and Neuberger (1989) and developed fur-
ther by Davis, Panas and Zariphopoulou (1993), is the so-called utility maximization method.
The fundamental ideas for this method stem from the economic principles of stochastic domi-
nance (see, for relevant results, Perrakis and Ryan (1984), Levy (1978) and Ritchken (1985)).
In this approach, the price of the derivative is determined by comparing the value functions
of an investor with and without the opportunity to trade the available derivative. The indi-
vidual preferences are modeled via an exponential utility and the derivative is a European
call. By considering the utility functionals (with and without the derivative), this method-
ology incorporates the individual's attitude towards the risk which cannot be eliminated, in
contradistinction to the case of no transaction costs. The above results were considerably
generalized by Constantinides and Zariphopoulou (1999) who applied utility methods to
establish price bounds for all types of European claims and for general preferences.

Besides the claims of European-type, the valuation of American options was examined
by Davis and Zariphopoulou (1995) for the class of exponential utilities. More recently,
Constantinides and Zariphopoulou (1999) extended their results to the cases of American-
type and path-dependent claims, written on many stocks and for CRRA utilities. Other
path-dependent claims were priced by Dewynne, Whalley and Wilmott (1994) using ideas
from the Leland's valuation approach.

Finally, a considerable volume of work has been produced under the assumption that
the transaction costs are "smalV This assumption is not far from reality for a sizeable class
of models and produces adequate results for the prices and, in particular for the hedging
strategies. To most extent, the relevant analysis imitates the Black and Scholes methodology
together with various elements from the above methods. We mention among others, the
work of Whalley and Wilmott (1997), Barles and Soner (1998) and Albanese and Tompaidis
(1998).

We continue by presenting the classical Black and Scholes pricing formula first and
then the various valuation methodologies, namely the super-replication approach, utility
maximization theory and the method of imperfectly replicating strategies.

12.5.1 The Black and Scholes valuation formula

In their seminal paper, Black and Scholes (1973) developed a theory for the valuation of
derivative securities in frictionless markets. They considered the problem of determining
the value of a European call which is written on an underlying stock whose price Ss follows
the diffusion process, as described in (12.2.2). The market is also endowed with a riskless
security whose price is given by (12.2.1). The European claim is written at the time say
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t > 0 and expires at maturity time T. Its payoff, at expiration, is given by (Sr — K)+ where
K is the (prespecified) exercise price.

The valuation problem amounts to specifying the fair value of the security at its birth
time t.

Black and Scholes had the novel idea of constructing a dynamic portfolio whose value
coincides with the terminal payoff, (Sy — K)+ , of the call. Then they argued that the
amount needed to set up this hedging portfolio, at time t, yields the correct price of the
European call. Moreover, the components of this portfolio, across time, give the perfectly
replicating (hedging) strategies which reproduce the value of the security.

Black and Scholes postulated that the call price is a smooth function of the current stock
price and time. Therefore, there exists a smooth function C : [0, +00) x [0,T) — > [0, +00)
such that the call price process ha, t < s < T can be represented as hs = C(SS, s) with Ss

being given in (12.2.2).
Applying Ito's formula to hs yields

Next, we assume that the riskless interest rate is r > 0 and that the components of the
replicating portfolio are (3S and 6S. In other words, at any time s, we would have to purchase
J3S bonds and 5S shares of the underlying stock. According to the perfect replication idea of
Black and Scholes, the following equalities must hold

(3SBS + 6SSS = hs a.e. t<s<T, (12.5.119)

(3TBT + 5TST = (ST - K)+. (12.5.120)

Taking into account the price equations (12.3.17) and (12.3.18), (12.5.119) yields

dhs = (^5SSS + r{3sBs)ds + a6sSsdWs,

or, equivalently,

dhs = {(IJL + r)SsSs - rhs]ds + aSsSsdWs. (12.5.121)

We recall that the processes (3S and 6S satisfy certain "self-financing" assumptions which
in turn justify the above differential forms. Equating formally the coefficients in (12.5.118)
and (12.5.121) yields

S. = j (12.5.122)

and
hs - dsbs

Ps — —— ——— ,

as long as the following condition holds a.e.

l. (12.5.123)
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Therefore, in order to specify the components ((3S,6S) of the replicating portfolio, it
suffices for C = C(S, t) to solve the second order nonlinear partial differential equation

together with the boundary and terminal conditions, for 0 < t < T, S > 0,

C(0,t) = 0 and (7(5, T) = (S - K)+. (12.5.125)

The solution of (12.5.124) and (12.5.125) is given by

C(S,t) =

where AA is the cumulative standard normal distribution and the quantities di and d2 are
defined as

and

Equation (12.5.124) is the celebrated Black and Scholes equation for European type
claims written on a stock with constant volatility and when the riskless interest rate is

dC(S t}r > 0. The first partial derivative of the call price, — ̂  ' is known as the delta of the
t/o

option and it provides the needed number of stock shares in the replicating portfolio. The
important consequence of the diffusion nature of the stock price is that both components of
the hedging portfolio turn out to be diffusion processes, given by

0. - * and 6. = . (12.5.126)
±>s Ob

Therefore, the Black and Scholes valuation analysis dictates that rebalancing of the
hedging portfolio must take place infinitely often. It is for this reason that in the presence
of transaction costs, these replicating strategies are not feasible. Continuous rebalancing
would produce an infinite volume of transactions no matter how small the transaction costs
are.

12.5.2 Super-replicating strategies

The strategies of Black and Scholes demonstrate that both components of the replicating
portfolio, see (12.5.126), are diffusion processes as it follows from the diffusion nature of
the underlying stock price. Clearly, these hedging strategies will immediately produce an
infinite volume of transactions no matter how small the transaction costs are. Therefore, a
perfectly replicating portfolio no longer exists!

Abandoning the idea of exact replication, one might look for a portfolio strategy which
results, at expiration time T, in portfolio value at least as great as the value of the European
call. Such strategies are known as super-replicating strategies.
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Bensaid, Lesne, Pages and Scheinkman (1992) uncovered the intriguing idea that super-
replication may be feasible, in the sense that the cost of the super-replicating portfolio is
actually finite. This cost then may provide a sensible bound on the price of the option.
Bensaid et al. (1992) constructed super-replicating policies in a discrete-time framework.
(See also Ediriskinghe, Naik and Uppal (1993).)

Unfortunately, in the (limiting) case of continuous time, the super- replication approach
cannot form the basis of a viable valuation theory. In fact, Davis and Clark (1994) conjec-
tured that the minimal cost of the super-replication of a European call is the value of one
share of the underlying stock. Therefore, even though super-replication techniques might
provide finite values, their minimal value yields a trivial bound, the value of one stock of
share, which is of little economic interest.

Using convex analysis arguments, Soner, Shreve and Cvitanic (1995) established the
conjecture of Davis and Clark. Below we state their result by adopting the notation used in
the previous Chapter. The bond and stock account processes, xs and ys, are given by the
state equations (12.4.76) and (12.4.75). The European call has exercise time T, strike price
K and it is written on the underlying stock whose price is given in (12.2.2).

Theorem 12.5.1 Consider the payoff (SV — K)+ of a European call written of a stock with
price Ss, t < s <T, as in (12.2.2). Then in order to have at t = T,

XT + yr > (Sx - K}+ a.e. (12.5.127)

the following constraint must hold for all t < s < T

0 a.e. (12.5.128)

The above result on trivial super-replicating strategies was later established by Levental
and Skorohod (1997) in a general framework. Levental and Skorohod assumed that the
underlying stock price is a continuous semimartingale and under mild non-degenerate and
stability properties, they carried out the analysis for European and American claims. Their
method is based on considering a discrete-time version of the underlying model which is free
of transaction costs. We refer the reader to their paper for general super-replication results;
below, we state a variation of one of their propositions (see Section 12.5 on European options
in Levental and Skorohod (1997) adopting the existing notation. This is done only in order
to be able to refer to their results from subsequent sections and to preserve the continuity
of the exposition.

Proposition 12.5.2 : Consider a European claim with payoff g(ST) at expiration time T,

where g is increasing, convex and g(0) = 0 with lim — — — = t > 0. The stock price Ss,S—>oo S
t < s <T is the diffusion process described in (12.2.2). Then in order to have

XT + yT > 9(ST) a.e. (12.5.129)

the following constraint must hold for all t < s < T

ys - £— > 0 a.e. (12.5.130)
/3J \ a /
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Even though super-replicating strategies produce price bounds of little economic interest,
these results are of fundamental importance in utility maximization theory. In fact, the state
constraints (12.5.128) and (12.5.130) essentially characterize the set of feasible strategies
that the writer, or the buyer of the derivative may use in their valuation strategies. As will
be demonstrated in the sequel, even under stringent constraints (12.5.128), (12.5.130), the
presence of risk aversion — through utility functional — allows us to derive non-trivial
bounds for the so-called reservation derivative prices.

Finally, from the previous results an interesting question arises, namely, how can the
constraints (12.5.128) and (12.5.130) be relaxed, if at all, when the super-replication re-
quirements (12.5.127) or (12.5.129) are allowed to hold with probability 1 — e, instead of
almost surely. This problem is interesting especially from the practical point of view where
some "slippage" might be tolerated. Numerical results for the case of European calls can
be found in Tourin and Zariphopoulou (1998).

12.5.3 The utility maximization theory

The Black and Scholes valuation method produces derivative prices which are independent
of the individual portfolio holdings as well as of the individual attitude towards risk. Clearly,
these universal properties stem from the ability to exactly replicate the payoff of the security,
in the absence of market frictions. As it was discussed earlier, this possibility disappears in
the presence of transaction costs and thus, these universal features might not be preserved.
Indeed, the utility maximization approach brings in the individual attitude towards the
derivative-inherent risk, which cannot be eliminated any more.

Even though one of the main ingredients of the Black and Scholes price cannot be re-
trieved, this method relies on the fundamental economic principles of stochastic dominance
which still provide adequate viable valuation conclusions. The strengths of this approach
are that it can be applied to a large class of derivatives, departing from the European ones;
for this class very little is known through the other existing pricing methods with trans-
action costs. Moreover, the derivative prices are determined via two utility maximization
models which give rise to two (singular) stochastic control problems. The powerful theory
of viscosity solutions facilitates considerably the analysis by providing essential comparison
results for the utilities of the buyer, the writer and the one of the plain investor.

Hodges and Neuberger (1989) were the first to apply the utility approach to price Eu-
ropean calls when the agents are endowed with exponential utilities. Their results were
further developed by Davis, Panas and Zariphopoulou (1993) for the same class of options,
and by Davis and Zariphopoulou (1995) for American options. Note that the exponential
utilities of wealth, say U(z) = I — e~~*z have the property of constant (wealth independent)

Absolute Risk Aversion, i.e. — rr ; = j.U'(z)
Before we present the main results, we discuss the simple case of a one-period model,

where the end of the period coincides with the expiration date of the option. The purpose of
this is two-fold; first, the exposition brings out the fundamental economic ideas of stochastic
dominance and secondly, the analysis demonstrates that the stochastic dominance argument
breaks when intermediate trading is allowed as it is the case in dynamic models. The
seemingly innocuous generalization of the model to allow for intermediate trading activities
makes the valuation problem far more difficult.

The following arguments come from a modification of the stochastic dominance argu-
ments of Perrakis and Ryan (1984), Levy (1978) and Ritchken (1985) to account for pro-
portional transaction costs (see also Reisman (1998)).

i) Bounds on European options via Stochastic Dominance: single-period models
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We consider an economy with two securities, a riskless bond and a risky stock. We
denote by B and S the bond and the stock prices, respectively, at the beginning of the
(single) period and by BT and ST the prices at the end of the period which is assumed to
have length T.

Trading in the bond and the stock accounts occurs only at the beginning and end of the
period and is subject to transaction costs. As in the continuous time model, j3 dollars of
the bond may be converted into one dollar of the stock and, one dollar of the stock may be
converted into a dollars of the bond; the constants a and /? satisfy 0 < a < 1 < /?.

The important simplifying assumption is that no trading may occur at intermediate
times. This assumption is relaxed later and the implications are fully explored therein.

The investor's pre-trade endowment consists of XQ dollars in the bond account and yo
dollars in the stock account. The investor trades at the beginning of the period incurring
transaction costs and attains a post-trade endowment of x dollars in the bond account and
y dollars in the stock account.

S 1
We assume that y > — , that is the investor invests in at least — shares of the stock. Ata a

the end of the period, the investor converts the stock account into the bond account and
consumes

c(ST) = xRF + y^j-

where RF = —pr-B
We assume that the investor's expected utility is the expectation of U(C(ST)), where

u : 72. — > 7£ is increasing and concave. In the absence of the opportunity to invest in an
option, the investor chooses (x,y) to maximize the expected utility.

Given (x, y } , we now present the investor with the opportunity to write one cash-settled,
European-style call option with expiration at the end of the period and strike price K. Let
C denote the post-transaction-cost price at which the investor may write the call: if the
investor writes the call, the bond account increases by C dollars at the beginning of the
period and decreases by [ST — K\+ dollars at the end of the period.

To provide an upper bound to the reservation write price of a call, we adopt the stochas-
tic dominance arguments of Perrakis and Ryan (1984), Levy (1978) and Ritchken (1985),
modified to account for transaction costs.

Consider the zero-net-cost portfolio which consists of a short position in one call and a
Q

g position in — ; s
po

period is z{S-r) where

long position in — ; shares of stock. The net payoff in the bond account at the end of the
po

Note that Z(ST) ^ 0 as ST 5s S where S is defined by

aCS-w~ T+

The investor has post-trade endowment (x, y) and contemplates whether to write the
call. If the investor writes the call and invests the proceeds in the stock, the expected utility
is

E[u(c(ST) + z(ST))} > E[u(c(ST))] + E(z(ST)u'(c(ST) + z(ST))}
(by the concavity of u)

>E\u(c(ST})} + E[z(ST')u'(c(S} +
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(since z(ST) ^ 0 and U'(C(ST) + Z(ST)) ^ u'(c(S) + z ( S ) ) as ST ^ S)

> E[u(c(ST))} + u'(c(S) + z ( S ) ) E [ z ( S T ) }

and exceeds the expected utility from refraining to write the call, unless
E[z(Sr)] < 0, i.e.

(a//3)CE[ST/S] - E((ST -K}+}< 0.
Therefore,

C < 0E[[ST - K}+}/aE\ST/S0} = Cl

and C\ is an upper bound to the reservation write price of a call option.

We consider next a different zero-net-cost portfolio which consists of a short position in
one call and a long position in C dollars in the bond. Proceeding as before, we conclude
that the expected utility in writing the call exceeds the expected utility in not writing the
call, unless

C <E[[ST-K}+}/RF = C2.
Combining the above equations we conclude that C is an upper bound to the reservation
write price of a call option, where

C = E{[ST - K}+] min \R~F\
L

To derive a lower bound to the reservation purchase price of a call option, let C denote
the post-transaction-cost price at which the investor may purchase the call. Consider the
zero-net-cost portfolio which consists of

(a) a long position in one call;

(b) a short position in 1//3 shares of stock; and

(c) investment of aSV//3 — C dollars in the bond account.

Denote by Z(ST) the net payoff in the bond account at the end of the period, where

z(ST) = [ST ~ K}+ -ST + {a| - C}RF.

Repeating the earlier argument, we conclude that the expected utility in purchasing the call
exceeds the expected utility in refraining from purchasing the call, unless E[Z(ST)] < 0,
which yields C as a lower bound to the reservation purchase price of a call, where

= E[[ST - K}+] E[ST] aS
- RF RF /3 '

It is easily shown Jthat C_ < C. In equilibrium, transaction prices of a call option must
lie in the region [C, C]. For, if a transaction occurs at a price C < C_, then the writer is
acting suboptimally as the writer could have found a willing buyer of the call at a price as
high as C_. Likewise, if a transaction occurs at a price C > C, then the buyer of the call is
acting suboptimally as the buyer could have found a willing writer of the call at a price as
low as C.

The stochastic dominance bounds are appealing in that they apply for any increasing
and concave utility function. It turns out, however, that the derivation of these bounds
breaks down when intermediate trading is permitted in the open interval (0, T).
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Let us reconsider the stochastic dominance argument for the reservation write price of
a call. The plausible assumption was made that the investor's endowment satisfies the

S
condition y > —. Without intermediate trading, the consumption at the end of the perioda
is C(ST) and has two crucial properties:

(1) it is monotone increasing in ST with slope greater than one; and

(2) given ST, c(Sx) is independent of the stock price path UJT over (0, T).

The first property is crucial in the proof in that it implies that C(ST)+Z(ST) is increasing
in ST and therefore U'(C(ST] + Z(ST)) is decreasing in ST- The second property is crucial in
the step which allowed us to take U'(C(ST) + z(5r)) outside the expectation: if c is a function
of the price path U>T, \U'(C(UT) + Z(ST)} ST] is a random variable and cannot be taken
outside the expectation. Another problem is that, in the presence of intermediate trading,
C(U>T)+Z(ST) is not even bounded from below and the expected utility is undefined for utility
functions which are only defined for consumption bounded from below. Similar problems
arise in attempting to generalize the stochastic dominance argument in the derivation of a
lower bound to the reservation purchase price when intermediate trading is allowed.

ii) Bounds on prices of European-type claims via utility maximization:
continuous-time models

The utility maximization approach looks at the value functions of the investor with and
without the opportunity to trade (write or buy) the derivative security.

If the investor chooses not to trade the available claim, his value function is given by
V(x,y), as it is defined in (12.4.79). Suppose now that a third asset is introduced, a cash
settled European-style contingent claim with expiration at date T and payoff g(ST) at
expiration. If the investor writes the claim at date t with 0 < t < T, the bond account
is credited with an amount, say C dollars, which represents the price of the claim, and is
debited <?(I!?T) dollars at the expiration date T. To keep the problem tractable we assume
that the investor may not trade the claim in the open interval (0, T).

Let xt and yt be the initial endowment at time t after the bond account has been credited
with the proceeds from writing the claim. Once the claim is written, the writer's objective is
to maximize his expected utility from consumption, as in case (i) with the extra obligation
to surrender to the buyer 5 (fir) dollars at time T. Therefore the utility payoff of the writer
is

" fT

\ e-p(~s-^U(cs)ds + e-p<-T-VV(xT - g(ST), yr) \xt = x,yt = y, St =Jt
E

where V is defined in (12.4.79) and Ss is given by (12.3.18).

The value function of the writer is

J(x,y,S,t)=supE e-rt'-VU^Jds (12.5.131)

_ g(ST),yT) xt =x,yt= y,St = S

where AI is the set of admissible policies defined below.
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It is assumed that the payoff function g satisfies the following assumptions

g : [0, +00) —> [0, +00) is convex

9(0} = 0

lim

(12.5.132)

The previous exposition on feasible super-replication strategies suggests that the set of
the writer's admissible policies must be determined as follows. From (5.14) we have that
the writer's terminal (liquidated) wealth must be nonnegative; in other words, the terminal
constraint

a
> Q(ST) a.e. (12.5.133)

must be fulfilled. The payoff function g satisfies the assumptions of Levental and Skorohod
(1997). Therefore, Proposition 12.5.2 yields that at all previous times
t < s < T, the state wealth of the writer must satisfy the stringent constraint

a.e.. (12.5.134)

So, we define the set A\ of admissible policies of the investor who has written a contingent
claim, as the set of ̂ -progressively measurable processes (ct, Lt, Mt), with Lt and Mt being
CADLAG which also satisfy the conditions

cs > 0 and E / crdr < oo a.s. for t < s < T

and

ws = xs + (a\ (ys - —) > 0 a.s. fort <s <T,W v a'

(12.5.135)

and we define the set of admissible policies {ct, Lt, Mt; T < t} of the investor who has written
a claim by A, as given in (12.4.77) and (3.4.4). Note that for s > T, the option has expired
and settled and the investor's problem is indistinguishable from that of an investor who has
not written the claim. Thus it is natural to define the set of admissible policies for s > T
as A.

The set A\ is a subset of A for t < s < T in the sense that the second restriction ensures
that the investor will have nonnegative net worth upon closing up the short position in the
call option and, therefore, that it is feasible to write a call option in the first place. The
results of Soner, Shreve and Cvitanic (1995), et al (for g ( S ) = (S - K)+) and Levental and
Skorohod (1997) (for general g) state that the set of policies in AI is not overly restrictive
given the goal of ensuring that it is feasible to write the claim option.

The value function J(x,y,S,t) is given by (12.5.131) and is defined for
(x, y, S) e DI where

--]>o, s>o
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Consider now the writer with endowment (x, y ) G D at time t before writing the claim.
If the writer chooses to write the claim at price C, the endowment becomes (x + C, y) and
by Theorem 12.5.5 and Proposition 12.5.2, the price C must be such that (x + C. y, S) e DI.
In the case of zero-transaction costs, the function C = C(S, t) is determined as the price
that makes the writer indifferent between writing the claim or refraining from writing it,
i.e.

In the special case g(S) = (S — K)+ , one can show that C(S,t) is the Black and
Scholes price which is of course independent of the current portfolio holdings (x, y) and
the utility function. Moreover, because of the absence of transaction costs, perfect replica-
tion is possible and the constraint (12.5.134) is not binding.

In the case of non-zero transaction costs, the above equality is not feasible for all
(x,y,S) e DI if C is allowed to depend only on (S, t); this fact motivates the following
definitions.

Definition 12.5.3 The reservation write price C(x, y, S, t), for initial endowment (x, y), is
defined as the minimum value at which the investor is willing to write the claim,. Therefore,
C satisfies for (x + C(x, y, S, t), y, S) e DI

V(x, y) = J(x + C(x, y, S, t),y, S, t). (12.5.136)

Definition 12.5.4 : The write price C(S,t) is defined as the maximum of reservation write
prices across all admissible states (x,y,S). Therefore, C satisfies for all (x + C(S,t),y, S) e

V(x, y) < J(x + C(S, t), y, S, t). (12.5.137)

The above inequality guarantees that the writer will be willing to write the option at any
price higher than C(S,t), independently of his current portfolio position.

The case of exponential utilities was first examined by Hodges and Neuberger (1989) and
subsequently by Davis, Panas and Zariphopoulou (1993). Constantinides and Zariphopoulou
(1999) generalized all previous results on the subject for general individual preferences and
they derived an upper bound h = h(S, t) for the write price which satisfies (12.5.137) on DI.
The main steps for the construction and characterization of the upper bound are presented
below. The proof of their main result can be found in Constantinides and Zariphopoulou
(1999).

Theorem 12.5.5 The value function is a constrained viscosity solution on
DI x [0,T) of the Variational Inequality

- - - = 0, (12.5.138)
dy dx dy\

with

J(x, y, S, T) = V(x - g ( S ) , y ) , (12.5.139)
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where the operators L and £, are given by

T 1 2 2<92J dJ dJ / 6J TT, A£J = pj - cr^y-— - (j,y — -rx— -max - c— + U(c}\
2 ay* ay ax c>o V ax /

(12.5.140)
<9J 1 i < 9 2 J 2 _ d2J ftJ

Moreover, J is the unique constrained viscosity solution of (5.21) in the class of uniformly
continuous and concave functions, with respect to the state variables (x,y,S).

The underlying idea for the derivation of analytic bounds for the write price of a European-
type claim, is to construct suitable subsolutions of the HJB equations (12.4.90) and (12.5.138)
in order to use a comparison result to establish (12.5.136). The main difficulty stems from
the fact that the value functions V and J are defined on different domains and that there are
no explicit or closed-form solutions for the two associated free-boundary problems (12.4.79)
and (12.5.131).

We start with a formal discussion in order to motivate the construction of the ana-
lytic bound. To ease the presentation, we recall that the value functions V and J solve,
respectively,

dV dV 0V dV}?---—— ,-a—— + —— } = 0ox ay dx dy J

mm „ , -~T»dJ dJ dJ dJ}U - CJ, p— - —, -a— + — \ = 0ox ay ax ay J

n

and

in

with the differential operators L and C given in (12.5.140).

The goal is to construct a function h = h(S,t), independent of ( x , y ) , such that, for
(x + h,y,S) 6 DI

V(x, y) < J(x + h(S, t), y, S, t) (12.5.141)

Using the suboptimality inequality

and a simple transformation, we observe that (12.5.141) follows if we find an h such that

J(x,y,S,t) (12.5.142)

4)
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The basic idea of Constantinides and Zariphopoulou (1999) for the choice of the candidate
bound is first to find a price that satisfies (12.5.142) in the case that (x,y,S) 6 dD\, i.e.
when the writer holds the minimal allowed position which amounts to the value of one stock
share, taking into account the transaction costs. We then need to show that this price works
for all wealth levels greater than the minimal one. The results stated below were established
by Constantinides and Zariphopoulou (1999).

To this end, we start with the following lemma which gives us information about the

value function J on dD\ = < (x, y, S) : x + { } I y — — } = 0 > .
I V/V V aJ )

Lemma 12.5.6 For (x,y, S) 6 dD\, the value function J is given by

J(x,y,S,t) = E \e-rV-Vv (-g(ST),^-} St = S\. (12.5.143)

The proof follows directly from the fact that the only admissible policy for the boundary

points (x, y, S) is to move instantaneously at time t, to the point ( 0, — , 5 ) and remain there
V a /

until time T.

The next result gives the main ingredient for the construction of the candidate solution.
Its proof can be found in Constantinides and Zariphopoulou (1999).

Lemma 12.5.7 If h^ = hp(S,t) is such that

V ,- = E e-^T-^V(ST-g(ST),0) \ St = s (12.5.144)

with 0 < hp < -S and p > p, then (12.5.142) holds for (x,y, S) £ OD^.a

Next, we observe that if the NT region is a proper subset of the first quadrant, then the

points I —S, 0 ) and (S — g(S), 0) belong to the B region.
\a J •

In the B region, the value function V satisfies (3VX = Vy, which implies that there exists
a function, denoted as G such that V can be expressed in terms of G as

V(x0,y0) = G(x0 + /%>) for

Therefore,

,a /3 J \a

and

(12.5.145)

V(ST -s(Sr),0) = G(ST -.g(ST)). (12.5.146)

Combining the above equalities and (12.5.144) yields

^-S- h(S,t)} =E[e-^
a /
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It follows easily from the monotonicity properties of the value function V (see, for exam-
ple, Tourin and Zariphopoulou (1994)) that G is strictly increasing and therefore invertible.
This in turn yields that the function h is well denned and given by

h(S, t) = ̂ S- G-1 (E \e-HT-VG(ST - g(ST)) \St = S\). (12.5.147)
a V L J /

It will turn out that the above function is a candidate upper bound for the write price.
The next result is the key step in establishing the validity of h(S,t) being a reservation

price bound.

Proposition 12.5.8 Assume that the AfT region for the utility maximization problem sat-
isfies NT C { ( x , y ) : Ax < y < Bx,x > 0 with B > A > 0}. Also, assume that the utility

c7 c1

function U satisfies \\— < U(c) < \2— for some positive constants AI and X^. Let
7 7

_o
»yj ^̂  I •- ' I • ' I I I . I I ' I I I I XT A

and consider the discount factor p in (12.5.147) given by

-2

(12.5.148)

Then, for the candidate price h, defined in (12.5.147) with p as above, the function
F : DI x [0, T] ->• [0, +00) given by

is a viscosity subsolution of the HJB equation (12.4-90).

The next theorem establishes that the candidate h(S, t) is indeed a price bound.

Theorem 12.5.9 Let h be given by

h(S, t) = S- G-1 E e-^T-^G(ST - g(ST))/ST =

where p is defined in (5.31). Then the function h(S,t) is an upper bound to the reservation
write price.

From the above results, one can see that the "trivial" super-replicating price bound —
of one stock share — is substantially improved once one employs the utility maximization
method. As a matter of fact, the latter method relies on the risk aversion attitude of the
investors as opposed to the super-replicating approach which is based on risk-neutrality.
The weak point of the utility method is that little information is available for the hedging
strategies and this can be actually retrieved only through the optimal investment strategies
for the utility maximization problems (12.4.79) and (12.5.131). On the other hand, the
utility method can be easily extended to other kinds of derivatives like American options,
path-dependent and exotics written, actually, one more than one stock. For these kinds of
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derivatives very little is known through the other valuation methods for markets with trans-
action costs (for a complete study of these cases, we refer the reader to Constantinides and
Zariphopoulou (1999)). Moreover, even though the utility maximization method departs
from the fundamental and classical risk-neutral valuation theory, it could still contribute in
a number of custom-made derivatives or real options, and also serve as the basis line for
developing improved methods based on general risk functional. Finally, the utility maxi-
mization approach can be easily applied to valuation problems with other kinds of frictions,
like stochastic volatility (see, for example, Mazaheri (1998)). An interesting application of
the utility method which relates small transaction costs and modified volatility can be found
in Barles and Soner (1998).

12.5.4 Imperfect hedging strategies

An appealing alternative approach for the valuation of derivatives in the presence of transac-
tion costs, is to relax the requirement of continuous rebalancing by allowing the adjustment
of the "hedging" portfolio to take place at discrete times. Clearly, a correct valuation proce-
dure based on discrete hedging is highly desirable for practical applications since continuous
rebalancing is practically impossible. Generally speaking, even in the absence of transaction
costs, discrete in time rebalancing does not lead to perfect hedging but nevertheless, imper-
fect hedging strategies have become a standard vehicle in valuating derivatives in practice.

This approach departs from the expected utility methodology which, as we saw previ-
ously, depends heavily on intermediate dynamic trading. Nevertheless, we choose to present
the main ideas of this alternative method for the sake of completeness and also, because it
is currently the most frequently used vehicle to valuate hedging strategies. A hybrid the-
ory based on the economic principles of expected utility theory and the techniques of the
imperfect hedging approach would be highly desirable.

Two important papers on discrete hedging without transaction costs were produced by
Boyle and Emanuel (1980) and Wilmott (1994). In both papers, rebalancing takes place at
fixed time intervals. Boyle and Emanuel (1980) provided a thorough study on the hedging
error which is defined as the discrepancy between the discrete hedging strategy and the
continuous in time strategy dictated by the Black and Scholes formula. They established
that rehedging in fixed time intervals produces a hedging error which is proportional to
the gamma of the option and chi-squared distributed. Wilmott (1994) used asymptotic
expansions and found improved hedging strategies which are also related to an adjusted
option value. One of the underlying ideas was to use the number of shares which minimize
the variance of the hedging portfolio over the next time step. By equating the expected
value on the hedged portfolio with the riskless interest rate, Wilmott (1994) found that
the option should be priced at a modified constant volatility. The latter depends on the
rehedging time-interval as well as the mean rate of return of the stock price.

The phenomenon of getting an enhanced volatility when discrete hedging takes place is
rather common in derivative pricing, especially when discrete hedging is used to accomodate
the effects of transaction costs. The groundwork on this subject was originated by Leland
(1985) and his results are considered a benchmark in the area of imperfect hedging.

Imitating the Black and Scholes analysis and proceeding in a rather ad hoc way, Leland
(1985) produced a valuation formula for European options in the presence of proportional
transaction costs. He showed that the equation satisfied by the new option price resembles
the Black and Scholes one (12.5.124) but with increased volatility (see equation (12.5.155)
below). The enhanced volatility explodes, and so does the derivative price as the size of the
hedging time intervals goes to zero.

Below, we continue with the construction of Leland's price for a European option; in order
to be consistent with his calculations, we assume that the transaction costs are symmetric
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which corresponds, in our notation to a = — = 1 — fc; to simplify the exposition we also
assume that the interest rate is zero. Following the Black and Scholes analysis, Leland
postulated that the price of the call, say Ct, at time t, can be represented as a convex
function of the stock price St and time, i.e. Ct — h(St, t) with h : [0, +00) x [0, T] —> [0, +00).

Let us denote the increments of the underlying stock price as ASS = 5s+As — Ss. From
equation (12.2.1) we have, for t < s < T,

ASS ~ 5s(/iAs + crAW5). (12.5.149)

Proceeding formally, we suppose — as in the Black and Scholes case — that there exists
a replicating strategy, say Ss, with 8S denoting the number of stocks needed at time s. Then
the price of the option will change according to

- kSs

Assuming that all the necessary derivatives exist, Ito's formula yields

(12.5.150)

(12.5.151)

Equating the coefficients in (5.33) and (5.34) gives,

dh
!^S(bs'S)aSs5s =

f\i

The first equation above implies 6S = —=(S S , s) which in turn yields
0J

+ m(s)

(12.5.152)

(12.5.153)

where m(s) includes terms of order s or higher. Leland based his derivation of the assump-
tion that

(12.5.154)~ - VAs

without really justifying his choice. Nevertheless, using this approximation together with
(12.5.152) and (12.5.153) yields that the option price function h(S,t) must solve

dh 2fc
(12.5.155)
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Leland's enhanced volatility is then given by

c? = <r(l + ̂ =<-\ . (12.5.156)
V O A / A l V T T / V

The above analysis was carried out for the case of call options. Similar arguments can
lead for the case of put positions to a pricing equation of the same form as (5.38) but with
different enhanced volatility, namely

2k /2\ 1/2
crVAt V TT/

Therefore, in Leland's approach, "short and long" positions have different values.

As it was mentioned earlier, even though Leland did not justify his choice of approx-
imation in (12.5.154), his formula became rather popular in practical applications mainly
because it relies on discrete in time rebalancing and it also requires an implementation simi-
lar to the Black and Scholes one. Moreover, in contradistinction to the utility maximization
method, Leland's approach is able to produce a specific trading strategy, albeit imperfect.

A number of researchers modified or extended Leland's work by choosing different ap-
proximations and encountering modified errors. Boyle and Vorst (1992) applied Leland's
techniques to a binomial valuation model and maintained the obligation to rehedge at con-
stant time steps. They obtained a perfectly hedging strategy and an associated option price.
Additionally, they examined the behavior of the option price as the time step At J, 0 assum-
ing that the proportional transaction costs, A and fj,, decrease to zero at a \/At rate. With
these limiting assumptions, Boyle and Vorst found that the limiting price equation preserves
the Black and Scholes and Leland structure but with a different enhanced volatility, namely

a = a(l + ̂ =}l/2. (12.5.157)

The above volatility can be obtained directly from Leland's arguments provided one chooses
the approximation |AWS| ~ \/As, instead of (12.5.154). Whalley and Wilmott (1996) pro-
vide a nice discussion on the similarities and differences between the various approximations
and how they affect the long and short positions, attributing them mostly to the asymmetries
inherent from the transaction costs.

A different valuation model, for arbitrary option payoffs, was introduced by Hoggard,
Whalley and Wilmott (1994) who used the same idea of rehedging at fixed time intervals
As but they imposed a generalized shares costs structure. In fact, they assume that their
cost structure is of the form fci + k^Ss + ksS^Ss, i.e. there is a component of fixed costs,
ki, a second component of cost A^s proportional to the number of shares rehedged and
a third one, k2SsSs, proportional to the current traded value. Working along the basic
Leland valuation analysis, Hoggard, Whalley and Wilmott derived the following option
price equation (stated for non-zero interest rates)

a/i . i 32fc , ..,,9/1 d2h

As with Leland's analysis, the above equation yields different values for short and long
positions. Moreover its solution may attain negative values, a feature not desirable for
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an option valuation model. Hoggard, Whalley and Wilmott argued that this issue stems
mainly from the ad hoc obligation to rehedge at every time step and it can be corrected
by regulating the rehedging process taking into account the current option values. This
modification calls for dynamically ceasing the rebalancing as soon as the call price goes to
levels that any further rehedging would lead to negative values. This approach gives rise to
a free-boundary valuation problem with similar characteristics to an American put.

Departing from the obligation to rehedge at fixed time-intervals, Whalley and Wilmott
(1994) developed a model in which rebalancing takes place whenever the current position
deviates considerably from the position of perfect hedging. To fix the notation, we denote
by C(S,t) the Black and Scholes price, with perfect hedging and by h(S,t) the price under
imperfect hedging. Recall that the perfect hedging position at time s, is given by the

dCdelta position ds(Ss,s) = -^(Ss,s). In an effort to control the big losses from frequent
uo ^

rehedging in the presence of transaction costs, one might decide to hold —ds(Ss,s) shares
of the underlying without considering the extra cost of selling (or buying) for rehedging.
If the variance of this position is used to measure the inherent risk^exposure, one gets a
risk exposure of size a2Sg(ds(Ss,s) — ds(Ss,s))'2^s. Since choosing ds = ds is not feasible,
Whalley and Wilmott (1994) introduced an index of tolerance by considering the maximum
expected risk in the portfolio, say HQ and by requiring the constraint

\ds(Ss,s)-ds(Ss,s)\<
crSs

to hold at all times. Therefore, any time the above condition is violated, the position should
be rebalanced.

Avellaneda and Paras (1994) studied the ill-posedness of the replication strategies by
Hoggard, Whalley and Wilmott (1994) and proposed an explanation in the case of large
transaction costs which intensifies the difference between the (asymmetric) short and long
positions. They argued that the writer of the derivative is always obliged to rehedge dy-
namically his market exposure independently of the effects from the transaction costs. The
buyer does not face the same stringency as all he risks is the initial premium and, after all,
"hedging is done primarily to offset time-decay." Large transaction costs alter irreversibly
the adjusted delta strategies and the value of the positions become eroded. Avellaneda and
Paras (1994) proposed a new scheme for the valuation of the derivatives which is based
on solving an obstacle problem for the Leland partial differential equation (5.38) with en-
hanced volatility. The obstacle problem arises from optimal stopping rules dictating when
the rehedging must temporarily stop.

In a more recent paper, Avellaneda and Paras (1997), considered the issue of minimizing
the total cost of the hedging strategies of option portfolios. They followed the discrete in
time approach by Bensaid et al (1992) and they examined the limit of the positions as
the number of trading periods becomes large. Generally speaking, Avellandea and Paras
showed that, in the limit, the cost function satisfies a non-linear, diffusion equation. In
particular, if the rehedging interval As, the volatility a and the "roundtrip" transaction

k
costs k satisfy m = —— < 1, then the cost function converges to the solution of a non-

crAs
linear Black and Scholes type equation. The volatility parameter of the latter depends on
the local convexity of the cost function and it is adjusted either to a\/\ + m or to <r\/l — m.
If m < I , the optimal hedging strategy replicates the final payoff via delta-hedging directly
from the solution of the nonlinear Black and Scholes type equation. On the other hand, if
m > 1 the hedging strategy of minimal cost is path-dependent and super-replicates the final
payoff.
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Henrotte (1993) also used ideas from Leland's approach and extended the concept of dif-
fusion limits of replicating positions to hedging policies based on changes in the stock price.
In (1993), Henrotte considers the asymptotic replication error and compres the performance
of hedging strategies based on rebalancing at equal time steps, to strategies depending on
prespecified changes of the underlying stock price. Grannan and Swindle (1999) extended
the use of limiting hedging strategies by optimizing over different classes of strategies, for
example, strategies which allow for varying time intervals. They also explored the induced
replication errors and compared them to the ones of the standard approach based on con-
stant in time intervals. The work of Grannan and Swindle (1994) was subsequently gener-
alized by Ahn et al (1998) who considered rather general hedging strategies which include
all other existing ones, for example "time-interval" strategies, "price change" strategies,
renewal policies and delta-strategies based on local deviations.

As it was mentioned at the beginning of the section, Leland's analysis was not math-
ematically rigorous as some rather ad hoc assumptions were used. Some of his limiting
results and conjectures were later revisited and corrected by Lott (1993) and more recently
by Kabanov and Safarian (1997).

12.5.5 Other models of derivative pricing with transaction costs

Various other valuation techniques have been developed besides the ones mentioned in the
previous sections.

Martingale theory, convex analysis and duality results have been used by a number of
authors to obtain derivative prices and to construct appropriate strategies. A general ap-
proach to characterize arbitrage-free models with transaction costs was developed in Jouini
and Kallal (1995). Along the lines of the super-replication method, martingale techniques
were used by Cvitanic and Karatzas (1996) and by Cvitanic, Pham and Touzi (1997) for
continuous time models and by Koehl, Pham and Touzi (1996) for the discrete case; see also
Kusuoka (1995) for some convergence results.

A different method which relies on insights from both the utility maximization as well as
the Leland's approach, uses as optimality criterion the minimization of the "local risk." It
is based on a local quadratic loss criterion which was first introduced by Schweizer (1988).
This method has been extensively used in the frictionless case by a number of authors, but
for the case of transaction costs, it was first employed by Mercuric and Vorst (1997) for
some special cases (see also Mercuric (1997)). Recently, Lamberton, Pham and Schweizer
(1998) provided rigorous results for the existence of locally risk-minimizing strategies in the
class of square-integrable contingent claims. The strength of this new approach is that,
besides its mathematical tractability, it produces hedging strategies whose initial costs are
much lower than those produced by the super-replicating strategies and whose replicating
errors are relatively small.

In a different direction, various authors considered the derivative valuation problem
assuming that the transaction costs are finite but arbitrarily small. The majority of these
models use key insights from the utility maximization approach, see for example Barles
and Soner (1998), Whalley and Wilmott (1997), Albanese and Tompaidis (1998). The
model of Whalley and Wilmott was successfully tested against others in the Monte Carlo
simulations of Mohamed (1994). In an arbitrary transaction, cost structure was allowed by
Whalley and Wilmott (1997) when the costs are either proportional or fixed. Whalley and
Wilmott produced a simple expression for the "hedging bandwidth" around the Black and
Scholes delta strategies and argued that in this region rehedging is not optimal. They used
asymptotic analysis to specify explicit points of optimal rehedging in the case of proportional,
fixed and mixed transaction costs.
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The accurate valuation of derivatives in the presence of transaction costs has become
more and more desirable as new derivatives are being created every day and custom-made
instruments have a rising demand. Some kinds of path-dependent derivatives, including
Asians and look-backs have been examined by Dewynne, Whalley and Wilmott (1994); their
valuation method is based on Leland's approach of imperfect hedging and the mathematical
analysis is mostly relying on the associated non-linear Black and Scholes type equations.
Using utility maximization methods, Constantinides and Zariphopoulou (2000) recently
priced various kinds of exotic options as well as American instruments written on more than
one security for investors with CRRA utilities.
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Le, 394
L2([Q,T}), 391
Loo([0,1]), 388
(.-separated, 405
A(A), 368, 369
A*(x), 368
AO(A), 411
A/, 381
An(A), 369
AM e(A), 383
£n, 366
1%, 366
LI, 366
[im, 386
A(A), 383
A*, 383
LDP, 363, 368, 378, 388
Langevin equation, 85
Laplacian, 34
large deviation principle (LDP), 361, 363
law of large numbers, 369, 371
learning, 608

Legendre: dual transform, 136
length, 243
less, 699
level sets, 377
leverage type, 691
Levy process, 194
linear, 446, 700
Linear Models, 15
linear operators, 22
linear parabolic, 702
linear-implicit, 243, 248
Upschitz, 84

locally, 84
Lipschitz constant, 17
local characteristic of semimartingale, 199
local characteristics, 90
local minimum, 640
local minorization condition, 12
local quadratic loss, 742
local risk, 742
local time, 81, 713
localizing sequence, 63
locally, 33
locally convex, 397
logarithmic moment generating function,

368, 369, 376, 382, 396
logonormal mode, 244
lower bound, 364, 365, 381
lower semicontinuous, 363, 380, 387
lower value, 483
Lyapunov, 442
Levy group, 152
Levy measure, 92
Levy process, 91
Levy's characterization

Brownian motion, 79
Levy-Khinchin, 21
Levy-Ito decomposition, 93
Levy metric, 401

366
M, 407

/xe, 363
{^}, 378
{AJ, 378
majorant, 176
marketing-production, 548, 568
Markov, 397, 406
Markov additive process, 372
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Markov chain, 375, 401
Markov controls, 4%6
Markov process, 1
Markov property of SFDE, 215
martingale, 48, 50, 51, 61, 63, 66, 68

continuous, 64
purely continuous, 64
purely discontinuous, 64
right-closed, 48

martingale differences, 371
martingale methods, 680
martingale problem, 37
martingale theory, 718
matrix of implicitness, 24 7
maximal solution, 200
maximation method, 725
maximum principle, 24
mean, 8
mean asymptotically efficient, 251
mean rate, 685, 694, 708
measurable, 53
measure, 58, 59, 87
measure: Hida, 128
median, 637
Merton ratio, 687, 707
mesh of partition, 76
metric space, 376, 378, 379
Metropolis acceptance rule, 644
micro-canonical, 406
midpoint method: non-linear-implicitly, 259
Mil'shtein methods, 252, 253
Mil'shtein scheme, 258
mild solution, 223
minimal, 728
minimal allowed position, 736
minimal process, 9
minimal solution, 9
minimizer, 625
minimum entropy production, 645
mixing conditions, 404
moderate deviation principle (MDP), 372,

373
Mogulskii's theorem, 388
multiple index, 243
multiple index: all, 243
multiple index: empty, 243
multistep method: new, 258
mutation, 658
mutual fund, 685
myopic strategy, 692

natural boundary, 26
natural filtration, 99
neighborhood, 632
neighbors, 635
net worth, 709
Neyman-Pearson, 410
noise process, 420
noise: additive, 240
noise: multiplicative, 240
non-zero transaction, 734
nonanticipative, 32
nonautonomous, 240
nonempty open set, 441
nonhomogeneous, 35
nonlinear, 446
nonlinear autoregressive models, 17
nonlinear integrator, 206
Nonsingularity, 25
norm, 23
not, 423
Novikov condition, 37
null recurrence, 34
null recurrent, 5, 29

ODE method, 579, 586
offspring, 658
one share, 728
one-parameter, 23
one-point cross-over, 658
operators: creation, 142
operators: Hida, 142
operators: lambda, 143
operators: number, 143
operators: white noise, 142
optimal, 512
optimal control, 425
optimal investment, 686
optimal performance, 425
optimal stopping, 176
optional, 53, 59, 87, 88
optional projection, 58
optionally, 87
Ornstein- Uhlenbeck process, 85

Pe,m, 378
Pj, 386

367
363

K-mixing, 405
Trk(x,dy), 402
parents, 658
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partial-implicit method, 260
partially ordered, right-filtering set, 386
partition function, 644
past: f , 433
period, 11
perturbation stability, 267
Perturbed Liapunov function, 591
Pinsker, 404
Poincare point, 38
Poisson measure, 89
Poisson process, 10, 20
Polish space, 1, 375, 396, 401
populations, 658
portfolio management, 679
positive, 128, 440
positive recurrence, 34
positive recurrent, 5, 29
positive/negative, 44%
potential, 60, 61
pre-r, 2
pre^r a-field, 3
predictable, 48, 53, 59, 87
predictable decomposition, 100
predictable projection, 58, 88
predictable quadratic, 62
predictable representability, 99, 101
predictable time, 54
predictably, 87
prelocally integrable, 59
premature convergence, 645
principle of coherence, 256
probability of extinction, 8
process, 53
process level LDP, 403
progressive, 53, 78
progressively measurable processes, 392
Prohorov's theorem, 376
projection, 59
projection algorithm, 582
projections, 59
protective limit, 386, 403
protective system, 386
proportional transactional costs, 708
pure, 27
pure birth process, 10
pure jump process, 21
pure jump processes, 22
purely discontinuous, 54, 62

quadratic covariation, 62, 64, 65, 83
quadratic variation, 62, 64, 65

quasi-left-continuous, 57
quasi-martingale, 65
quasi-potential, 394

1R, 366
n£>A', 371
radial, 34
Random directions, 594
random intervals, 53
random map, 15
random measure, 87
random search, 634
random time-change, 55
random walk, 15
Rao's decomposition, 65
rapidly decreasing, 111
rate function, 363
rate of convergence, 584, 590
recombination, 658
recurrence, 29
recurrent, 4, 28, 34, 35, 440
recurrent set, 12
recursive utilities, 706
reflecting boundary conditions, 7
reflecting diffusio, 713
reflection, 27
regular, 26
regular space, 374
rehedging, 741
relative entropy, 367
relative, risk aversion, 681
relax, 738
renormalization, 114
replicates, 741
replicating policies, 725
replicating portfolio, 727
replicating strategies, 726
replication errors, 742
resolvent operator, 23
resolvent set, 23
restarting, 654
retention, 637
right-do sable, 48
risk functionals, 738
risk management, 703
risk-sensitive control, 550, 557, 706
risky investment, 722
Robbins-Monro algorithm, 577, 579
Rockafellar's lemma, 371
Rosenbrock method: r-stage, 248
Rosenbrock methods: stochastic, 248
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roulette wheel selection, 658
Runge-Kutta, 243
Runge-Kutta methods, 254

Sn, 396
S™, 396
s, 400,410
sn, 410
£, 366
E^, 366
SA, 577

differential inclusion, 615
efficiency, 596
global, 584
large deviations, 594, 595
parallel processing, 609, 616
robustness, 616
stopping rule, 594

saddle-point, 483, 512
sample path, 52
Sanov's theorem, 368, 399, 400, 409
scale function, 25
scaling, 144
Schilder's theorem, 390
SUE, 33, 84, 160, 589
SDE driven by nonlinear integrator, 204
SDE governed by Levy process, 194
SDE limit, 593
SDE on Manifold, 168
SDE with anticipating drift, 227
SDE with Jump, 191
SDE with respect to martingale, 198
section theorem, 55
selection, 30, 658
sell, 712
selling stock, 712
semimartingale, 64
set, 53
set: hierarchical, 243
set: remainder, 243
settling point, 640
SFDE, 213
share of stock, 712
shift invariance, 402
singular stochastic control, 706, 707
singular trading policies, 707
Skorohad problem, 716
Skorohod problem, 716
small set, 12
Snell envelope, 51
soft constraint, 583

solution, 84
space: Cochran-Kuo-Sengupta, 122
space: Hida-Kubo-Takenaka, 119
space: Kondratiev-Streit, 120
special semimartingale, 65
speed function, 25
speedup, 638
splitting: additive, 259
splitting: multiplicative, 259
stability, 165, 439
stable, 15, 491
stable equilibrium, 393
stable process, 21
standard one, 28
starting, 639
state, 680
state constraints, 729
state of infinity, 24
state space, 1
state vector, 636
stationary, 2, 3, 404, 405
stationary independent increments, 421
steep, 370
Stein's lemma, 411
step size, 246
step size: local, 246
sticky boundary, 28
Stieltjes integral, 55, 74
Stochastic approximation (see SA), 577
stochastic basis, 55
stochastic control, 180
stochastic differential equation, 391
stochastic differential utitlies, 706
stochastic dominance, 725, 729
stochastic evolution equatioin, 219
stochastic integral, 32, 69, 71, 72, 90

compensated, 71
componentwise, 70, 73
vector, 70

stochastic labor income, 707
stochastic optimization, 606, 608, 610, 625
stochastic partition, 76
stochastic processes, 4^0
stochastic Theta methods, 247
stochastic Volterra equation, 224
stochastically continuous, 91
stock, 708
stopping theorem, 50
stopping time, 2, 3, 48
stopping time problem, 626
strategy, 485, 521
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strategy: admissible, 491, 501, 512
strategy: admissible relaxed, 502
strategy: Markov, 491
Stratonovich integral, 82
Stratonovich SDE w.r.t. semimartingale,

202
Stratonovich SDEs, 167
strong Markov property, 2, 3
strong markov property, 170
strong solution, 84, 161
strongly continuous, 23
sub-additivity, 398, 405
subjective discount rate, 709
subtraction: left, 243
subtraction: right, 243
sup norm, .22
super-replicates, 741
super-replicating, 725, 727, 728
superharmonic, 176
supermatingale, 441
supermeanvalued function, 176
System identification, 603

Tn(v), 367
r-topology, 400, 407
tail probabilities, 636
Tanaka-Meyer formulas, 81
Taylor method, 243, 323
Theta-Euler method, 259
theta-Mil'shtein methods, 253
Theta-Platen's method, 254
thin set, 53
tight, 376
time homogeneous, 161
time-discretization, 246
tolerance, 741
topology, 635
topology of pointwise convergence, 389
total number, 243
total variation distance, 12
tracking, 605
trading, 712
transaction costs, 707, 718, 725
transform: S, 131
transient, 29, 34, 35
transition matrix, 635
transition operator, 22
transition probability, 1
transition rates, 9
translation, 143

trapezoidal method: nonlinear-implicitly,
259

trivial, 2
trivial solution, 438-440
turnpike set, 561-563, 565, 566, 568
two-dimensional, 35
two-point boundary, 34
types, 366

U^x,s, 399
uniformly elliptic, 38
unique, 2
uniqueness, 161, 374
upper bound, 364, 365, 375, 381
upper semicontinuous, 380
upper value, 481
upper value functon, 481
User's Guide by Crandall, Ishii and Lions,

683
usual conditions, 55
utility function, 681

V(y,z),394
V(y,z,t), 394
f», 407
v€, 390
value function, 679, 681, 720, 732
Van der Pol oscillator: modified, 259
Varadhan's lemma, 380
variational inequality, 711
verification result, 715
Verification Theory, 682
version, 51
viscosity solution, 190, 682-684
volatility, 685, 708, 738, 740
volatility matrix, 694

wt, 390
we, 390
W, 386
W, 386
Wagner-Platen expansion, 244
Weak convergence, 588
weak infinitesimal operator, 423
weak solution, 84
weak topology, 384, 399, 400, 403
weak LDP, 365, 368, 379, 397
wealth process, 720
well posed, 37, 38
well-separating, 382
whiskers, 152
white noise: measure, 112
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white noise: multiplication, 145
white noise: space, 112, 117
Wick product, 145
Wick tensor, 118

X, 363
X*, 383

(y^pij), 386
y, 377

Ze, 378
Ze, 378
zero-transaction, 734
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