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Preface

 

The long-range contribution of statistics depends not so much upon getting
a lot of highly trained statisticians into industry, as it does in creating a statis-
tically minded generation of physicists, chemists, engineers, and others who
will in any way have a hand in developing and directing the production processes
of tomorrow.

 

W.A. Shewhart and W.E. Deming

Much has been said about statistics and their use. Often, though, we statisticians
overlook the discussion of the obvious as soon as we move away from the academic
arena. We expect researchers and professionals in all walks of life to use the many
tools offered by the statistical world, but we have failed to educate them appropriately
both in concept and application. The focus of most statistics books seems to be
formula utilization.

This volume will attempt to explain the tools of statistics and to provide guidance
on how to use them appropriately and effectively. The structure of this work is going
to follow (1) the conceptual domain of some useful statistical tools, (2) appropriate
formulas for specific tools, and (3) the connection between statistics and probability.

This volume is not intended to be a textbook. It is intended to be a general
manual for people who are interested in using statistical, probability, and reliability
concepts to improve processes and profitability in their organizations.

The discussion begins with very elementary issues and progresses to some very
advanced tools for decision-making. Specifically, the book begins by delineating the
importance of collecting, analyzing, and interpreting data, from a practical perspec-
tive rather than an academic point of view. The assumption is that you (the reader)
are about to begin a study of something, and you want to do it well. You want to
design a good study, analyze the results properly, and prepare a cogent report that
summarizes what you have found.

Because of these assumptions, this book does not dwell on formulas and signifi-
cance tables or proofs for that matter. The assumption is that a statistical software
package will be utilized, and that the reader will benefit more from learning to under-
stand and interpret the results generated by that software than from memorizing
formulas.
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Introduction

 

This introduction will discuss the basic concepts of all statistics. The intent of the
introduction is to sensitize the reader to the importance of taking statistics into
consideration in the design and planning of experiments. Unless the experimenter
plans a study appropriately, accounts for certain issues that are inherent in any study,
and understands what is needed for a successful experiment, all will be for naught.

 

WHAT ARE DATA?

 

Everything we do is based on data. So, the question quite often is: should the word
be datum or data? Grammatically speaking, the singular word is datum and the plural
is data. However, because generally speaking we have more than one, the convention
is that we use data. In common usage, data are any materials that serve as a basis
for drawing conclusions. (Notice that the word we use is “materials.” That is because
materials may be quantifiable or numerical and measurable or on the other hand
may be attribute or qualitative. In either case they can be used for drawing conclu-
sions.) Drawing conclusions from data is an activity in which everyone engages —
bankers, scholars, politicians, doctors, and corporate presidents. In theory, we base
our foreign policy, methods of treating diseases, corporate marketing strategies, and
process efficiency and quality on “data.”

Data come from many sources. We can conduct our own surveys or experiments,
look at information from surveys other people have conducted, or examine data from
all sorts of existing records — such as stock transactions, election tallies, or inspec-
tion records. But acquiring data is not enough. We must determine what conclusions
are justified based on the data. That is known as “data analysis.” People and orga-
nizations deal with data in many different ways. Some people accumulate data but
do not bother to evaluate it objectively. They think that they know the answers before
they start. Others want to examine the data but do not know where to begin.
Sometimes people carefully analyze data, but the data are inappropriate for the
conclusions that they want to draw. Unless the data are correctly analyzed, the
“conclusions” based on them may be in error. A superior treatment for a disease
may be dismissed as ineffectual; you may purchase stocks that do not perform well
and lose your life’s savings; you may target your marketing campaign to the wrong
audience, costing your company millions of dollars; or you may adjust the wrong
item in a process, and as a consequence, you may affect the response of the customer
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in a very unexpected way. The consequences of bad data analysis can be severe and
far-reaching. That is why you need to know how to analyze data well.

You can analyze data in many different ways. Sometimes all you need to do is
describe the data. For example, how many people say they are going to buy a new
product you are introducing? What proportion of them are men and what proportion
are women? What is their average income? What product characteristic is the cus-
tomer delighted with? In other situations, you want to draw more far-reaching
conclusions based on the data you have at hand. You want to know whether your
candidate stands a chance of winning an election, whether a new drug is better than
the one usually used, or how to improve the design of a product so that the customer
will be really excited about it. You do not have all of the information you would
like to have. You have data from some people or samples, but you would like to
draw conclusions about a much larger audience or population.

At this juncture your answer may be, “I do not have to worry about all this
because the computer will do it for me.” That is not an absolute truth. Computers
simplify many tasks, including data analysis. By using a computer to analyze your
data, you greatly reduce both the possibility of error and the time required. Learning
about computers and preparing data for analysis by computer do require time, but
in the long run they substantially decrease the time and effort required. Using a
computer also makes learning about data analysis much easier. You do not have to
spend time learning formulas. The computer can do the calculating for you. Instead,
your effort can go into the more interesting components of data analysis — gener-
ating ideas, choosing analyses, and interpreting their results.

Because calculations are the computer’s job, not yours, this volume does not
emphasize formulas. It emphasizes understanding the concepts underlying data
analysis. The computer can be used to calculate results. You need to learn how to
interpret them.

 

DESCRIBING DATA

 

Once you have prepared a data file, you are ready to start analyzing the data. The
first step in data analysis is describing the data. You look at the information you
have gathered and summarize it in various ways. You count the number of people
giving each of the possible responses. You describe the values by calculating averages
and seeing how much the responses vary. You look at several characteristics together.
How many men and how many women are satisfied with your new product? What
are their average ages? You also identify values that appear to be unusual, such as
ages in the one hundreds or incomes in the millions, and you check the original
records to make sure that these values were picked up correctly. You do not want
to waste time analyzing incorrect data.

 

TESTING HYPOTHESES

 

Sometimes you have information available for everyone or everything that you are
interested in drawing conclusions about, and all you need to do is summarize your
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data. But usually that is not the case. Instead, you usually want to draw conclusions
about much larger groups of people or objects than those included in your study.
You want to know what proportion of all purchasers of your product are satisfied
with it, based on the opinions of the relatively small number of purchasers included
in your survey. You want to know whether buyers of your product differ from
nonbuyers. Are they younger, richer, better educated? You want to be able to draw
conclusions about all buyers and nonbuyers based on the people you have included
in your study.

To do this (and understand it), you have to learn something about statistical
inference. Later chapters in this volume will show you how to test hypotheses and
draw conclusions about populations based on samples. You will learn how to test
whether you have sufficient evidence to believe that the differences

 

 

 

or relationships
you find in your sample are true for the whole population.

 

DESCRIBING RELATIONSHIPS

 

You often want to determine what the relationship is between two variables. For
example, what is the relationship between dollars spent on advertising and sales? How
can you predict how many additional sales to expect if you increase your advertising
budget by 25%? What is the relationship between the dosage of a drug and the
reduction in blood pressure? How can you predict the effect on blood pressure if you
cut the dose in half? You can study and model the relationship between pairs of
variables in many different ways. You can compute indexes that estimate the strength
of the relationship. You can build a model that allows you to predict values of one
variable based on the values of another. That is what the last part of the book is about.

You must state your ideas clearly if you plan to evaluate them. This advice
applies to any kind of work but especially to research design and statistical analysis.
Before you begin working on design and analysis, you need to have a clearly defined
topic to investigate.

 

ASKING A QUESTION

 

You may have a general suspicion that smoking less makes people feel better. You
may think that component A is better than component B. Or you may have an idea
for a study method that will make people learn more. Before you begin a study
about such intuitions, you should replace vague concepts such as “feeling better”
or “smoking less” or “learning more” with definitions that describe measurements
that you can make and compare. You might define “better” with a specific perfor-
mance improvement or a reduction in failure. You might replace “feeling better”
with an objective definition such as “the subject experiences no pain for a week.”
Or you might record the actual dosage of medication required to control pain. If
you are interested in smoking, you need a lot of information to describe it. What
does each of the subjects smoke — a pipe, cigars, or cigarettes? How much tobacco
do the subjects use in a day? How long have they been smoking? Has the number
of cigarettes (or cigars or pipes) that they smoke changed?
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On the other hand, you must balance your scientific curiosity with the practical
problems of obtaining information. If you must rely on people’s memory, you cannot
ask questions like “What did you have for dinner ten years ago?” You must ask
questions that people will be able to answer accurately. If you are trying to show a
relationship between diet and disease, for example, you cannot rely on people’s
memory of what they ate at individual meals. Instead, you have to be satisfied with
overall patterns that people can recall. Some information is simply not available to
you, however much you would like to have it. It is better to recognize this fact before
you begin a study than when you get your questionnaires back and find that people
were not able to answer your favorite question. If you think about your topic in
advance, you can substitute a better question — one that will give you information
you can use, even if it is not the information you wish you could have.

 

WHAT INFORMATION DO YOU NEED?

 

A critical step in the design of any study is the decision about what information you
are going to record. Of course, you cannot record every possible piece of information
about your subjects and their environment. Therefore, you should

 

 

 

think hard about
what information you will try to get. If you accidentally forget to find out about an
important characteristic of your subjects, you may be unable to make sense of the
patterns you find in your data. When in doubt, it is usually better to record more
information than less. It is easy to leave unnecessary variables out of your data
analysis, but it is often difficult (and expensive) to go back and gather additional
information. For example, if you are studying what types of people are likely to buy
a high-priced new product, you may not be able to adequately compare buyers with
nonbuyers if you forget to include information about income.

 

DEFINING A POPULATION

 

When you conduct a study, you want your conclusions to be far-reaching. If you
are a psychology student, you may want your results to apply to all laboratory rats,
not just the ones in your lab. Similarly, if you are doing a market research survey
on whether people in Los Angeles would buy disposable umbrellas, you may want
to draw conclusions about everybody in the city. If you are an engineer and you are
involved in the development of a particular product, you want to know what kind
of a base or population the product is for. The people or objects about whom you
want to draw conclusions are called a 

 

population.

 

 

 

One of the early steps in any study is nailing down exactly what you want your
population to be. The more definite you are in defining populations, the better your
understanding of samples and the results of your study will be.

Defining a population may seem straightforward, but often it is not. Suppose
that you are a company personnel manager, and you want to study why people miss
work. You probably want to draw conclusions only about employees in your partic-
ular company. Your population is well defined. However, if you are a graduate student
writing a dissertation about the same topic, you face a much more complicated
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problem. Do you want to draw conclusions about professionals, laborers, or clerical
staff? About men or women? Which part of the world is of interest — a city, a
country, or the world as a whole? No doubt, you (and your advisor) would be
delighted if you could come up with an explanation for absenteeism that would
apply to all sorts of workers in all sorts of places. You are not likely to come up
with that kind of explanation, though. Even if you do, you are not likely to come
up with the evidence to support it.

All kinds of people miss work because they are sick, but unlike others, the
president of Major Corporation probably does not need to stay home waiting for
a phone to be installed. The afternoons he takes off to play golf with his buddies
are probably not recorded by the personnel office as absenteeism, either. People
miss work for lots of reasons, and the reasons are quite different for different kinds
of employees. Be realistic and study only a part of the labor force. Absenteeism
among laborers in auto factories in Detroit, for example, is a problem with a
well-defined population about which you would have a fighting chance to draw
some interesting conclusions.

 

DESIGNING A STUDY

 

Even when the population of interest seems to be well defined, you may not actually
be able to study it. If you are evaluating a new method for weight loss, you would
ideally like to draw conclusions about how well it works for all overweight people.
You cannot really study all overweight people, though, or even a group that is typical
of all overweight people. People who do not want to lose weight or who have been
disheartened by past efforts to reduce may not agree to try yet another method. You
will probably be able to try out your new method only on people who want to lose
weight and who have not given up trying. These people, not all overweight people,
form your population.

Remember that a population defined realistically in this way may be different
from the ideal population. For example, the population in your weight loss study
may be lighter, younger, or healthier than the ideal population of all overweight
people. Therefore, your conclusions from studying people who want to lose weight
do not necessarily apply to people who are not motivated. For example, the treatment
may have some unpleasant consequences, such as making people want to chew on
the nearest thing available, such as gum, a pencil, or the corner of a desk. People
who really want to lose weight may be willing to put up with such minor inconve-
niences in order to reach their goal. People who do not care much about their weight
probably will not be. Thus, the new treatment may work quite differently for those
who are motivated versus those who are not.

 

SAMPLING

 

Although you may want to draw conclusions about all rats or all residents of Los
Angeles, you certainly do not want to have to train all of the world’s rats or personally
visit every Los Angeles home. What you want to do is to study some rats or some
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people, draw conclusions based on what you have observed for them, and have the
conclusions apply to the population in which you are really interested.

The rats or people (or other creatures or objects) that you actually observe in
your study are called the 

 

sample.

 

 You can select a sample from a particular population
in countless ways. How you do it is very important because if you do not do it
correctly, you will not be able to draw conclusions about your population. That is
a pretty serious shortcoming. For the most part, interesting studies are those that
allow you to draw conclusions about a much larger group of subjects than that
actually included in the sample.

 

RANDOM SAMPLES

 

What is a good sample? A sample is supposed to let you draw conclusions about
the population from which it is taken. Therefore, a good sample is one that is similar
to the population you are studying. But you should not go out and just look for
animals, vegetables, or minerals that you think are “typical” of your population.
With that kind of a sample (a judgment sample), the reliability of the conclusions
you draw depends on how good your judgment was in selecting the sample — and
you cannot assess the selection scientifically. If you want to back up your research
judgments with statistics (one of the reasons, I hope, why you are reading this book),
you need a 

 

random sample.

 

 

 

Statisticians have studied the behavior of random
samples thoroughly.

 

 

 

As you will learn in later chapters, the very fact that a sample
is random means that you can determine what conclusions about the population you
can reasonably draw from the sample.

So what is a random sample,

 

 

 

if it is so important?

 

 

 

It is a sample that gives every
member of the population (animal, vegetable, mineral, or whatever) a fair chance
of selection. Everyone or everything in the population has the same chance. No
particular type

 

 

 

of creature or thing is systematically 

 

excluded 

 

from the study, and
no particular type is more likely than any other to be 

 

included. 

 

Also, each unit is
selected independently: including one particular unit does not affect the chance of
including another.

If you are interested in the opinions of all the adults in Los Angeles, do not rely
on a door-to-door poll in mid-afternoon or ask questions of people as they leave
church services on a rainy Sunday. Such samples exclude many of the types of
people you want to draw conclusions about. People who have jobs are usually not
home on weekday afternoons, so their opinions would not be included in your results.
Similarly, people standing in the rain may express different opinions (especially
about umbrellas, for example) than they would if they were warm and dry. Polling
in the rain would lead you to a bad guess about the proportion of the city’s residents
interested in your new product (disposable umbrellas). To make things worse, you
cannot tell

 

 

 

what the effects of excluding dry people will be. You cannot tell whether
your observed results are biased one way or another, and you cannot tell by how
much. You might even be on target, but you do not know that, either.

From any particular random sample, of course, the results are not exactly the
same as the results you would get if you included the entire population. Later chapters
will show you how statistical methods take into account the fact that different
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samples lead to somewhat different results. You will then understand how much you
can say about a population from the results you observe in a sample.

 

VOLUNTEERS

 

To make it easier to have people participate in your study, you may be tempted to
rely on volunteers. But you should not rely on any special types of people, and
volunteers are one of those special types. Many studies have shown that people who
volunteer differ in important ways from those who do not.

By the same token, if you are interested in testing a particular product, you
should not base your decisions only on bad samples just because they have failed.
You do not know enough yet about the causes of the failure or the conditions under
which it occurred. Conversely, you do not test only good samples because they have
no failures. In both cases the results will be erroneous.

 

USING SURVEYS

 

Generally, there are two major categories of studies: (1) surveys and (2) experiments.
Other categories of studies also exist, but these two are predominant. The two types
of studies differ in important ways.

In a survey, one records information. You ask people questions and record their
answers, or you take some kind of a measurement. The important thing is that the
experimenter does not actually do anything to the subjects or objects of the study.
In fact, the experimenter tries very hard not to exert any influence whatsoever.

To conduct a good survey, the experimenter must phrase the questions so they
do not suggest “correct” answers. In the case of surveying products, the experimenter
must be conscious of their location, category, and so on, so that a general profile
may be reconstructed with the results obtained and not by limited selection or
discrimination of the product.

The great advantage to conducting your own survey is that you can tailor it for
your own research project. You can ask the questions you want to ask in the way
you want to ask them. You can choose the exact population that you want to study
and select just the kind of sample you need. You can control the training of inter-
viewers, and you can deal with all of the problems that come up during the actual
survey. In short, you can do everything possible to make sure the survey will help
you answer your specific questions of interest.

Doing all of these things takes a great deal of time and often a great deal of
money. If you are going to invest a lot of time and money in a study, you owe it to
yourself to get expert advice. Show your plans to someone who has actually carried
out similar surveys, and ask for advice

 

 — before 

 

you take any big steps such as
printing the questionnaires. If in doubt, consult a statistician or a book on data analysis.

 

ANALYZING AN EXISTING SURVEY

 

Without a doubt, the best way to get survey data is to design and carry out a survey
focused on precisely the research questions you want to study. Realistically, though,
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you often have to settle for “re-using” a survey that somebody else has carried out.
Using data from a survey that was not designed for your study is often called

 

secondary analysis

 

 

 

to distinguish it from the 

 

primary analysis

 

 

 

that was the purpose
of the original survey.

Secondary analysis lets you do research that you could not otherwise do all on
your own. But you must keep in mind that the data were not collected specifically
for your purposes. The survey questions may not have measured exactly what you
wanted them to, but you are stuck with them nonetheless. Remember to interpret
them as they were asked, not as you wish they had been asked.

When you plan to use existing data, you do not have to worry about the thousands
of details that go into conducting a survey. Instead, you have to make sure that the
survey was carried out properly in the first place. Was it conducted by a reputable
organization? Were the questions well phrased? Was the sample well chosen? Were
the forms carefully processed? Most important, have you formulated research ques-
tions that you can reasonably hope to answer with the existing data?

 

DESIGNING EXPERIMENTS

 

Unlike a survey, an experiment involves actually doing something to the subjects or
objects rather than just soliciting answers to questions or making measurements. For
example, instead of asking people whether they think that vitamin C is effective for
preventing colds, you might give them vitamin C and observe how many colds they
develop. Or you may want to try product A and product B and then compare the
results to see which one is better. Sometimes you study the subjects before and after
your experimental treatment. Sometimes, instead, you take several groups of sub-
jects, do something different to each of the groups, and then compare the results.

Experimentation on people poses ethical questions that deserve careful thought.
Many responsible institutions have committees that regulate experiments involving
human subjects. If an experiment exposes a subject to risks, such as possible side
effects from a new drug, you must certainly inform the subjects in advance. Usually
you must have them sign forms to give their consent. Needless to say, that is not a
concern when you test products — even though the test may be a destructive one.

In experiments as well as surveys, the subjects must come from the population that
you are interested in. (As you have probably gathered by now, proper sampling is much
easier with animals, processes, or products in a laboratory setting than with people in
a survey or products in a real world application.) When you design an experiment, you
need to fret about some other things as well. For example, to compare different
treatments or techniques, you must make sure that the groups receiving them are as
similar as possible. Again, randomness is the key. The best way to make groups similar
is to assign subjects or objects to the groups randomly. This procedure does not
guarantee that the groups will be exactly the same, but it does increase the likelihood.

 

RANDOM ASSIGNMENT

 

Random does not mean “any old way.” You cannot assign subjects or objects to
groups according to whatever strikes your fancy or let others make the assignment
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decisions for you. Randomness requires a very specific, systematic approach to
minimize the chance of distortion of groups due to the inclusion of disproportionate
numbers of particular types of individuals or products. 

If you allowed teachers to select which of their students receive personal com-
puters, for example, they might select well-behaved students to reward them for past
efforts. These students may be more intelligent or more diligent than the students
who do not get to use the special equipment. Any evaluation of the effect of personal
computers would be tainted by the differences between the selected students and
the population as a whole.

Or consider this example: An engineer is trying to study customers’ perceptions
of the effect of adjustable brakes in vehicles. The results would be very different if
the sample was based only on individuals with a height of more than 5 feet 11
inches, rather than a random sample of drivers of different heights.

A good way to assign people, animals, or objects to groups is to use a table of
random numbers. You cannot just make up a table of numbers that you think are random.
You are likely to have certain number biases. Unlike experimenters, random number
tables do not have birthdays, license plates, children, or any other reasons to prefer one
number over another. In a properly constructed table of random numbers, every number
from zero to nine has the same chance of appearing in any position in the table.

Table I.1 shows a small random number table. The table has the numbers grouped
into fours, but the grouping is just for convenience. It has no other significance. To
randomly assign subjects to groups, you start at an arbitrary place in the table and
assign the digit at that place to the first subject or object. Each new subject gets a
digit from successive places in the table. If you start at the fourth digit of the first
vertical group in the fourth position in Table I.1, for example, and then proceed to
the right, the first subject gets the number 7, the next subject the number 0, and the
next subject the number 8. (These three digits have been printed in bold type.) Since
everything is random, it really does not matter whether you read the table across or
down. However, once you have selected a starting point, stay in sequence. Using
the table in this systematic way prevents you from choosing “favorite” numbers as
starting points or as the next numbers in the sequence. You can never be too careful
when you are trying to be random.

You use the numbers you assigned to the subjects to assign them to experimental
groups. For example, if you have two groups, you can assign subjects with even

 

TABLE I.1
A Limited Table of Random Numbers

 

8588 5171 0775 7818 8683 3168 …
7185 8645 1537 3754 0201 2450 …
1053 9728 3028 8725 4855 0218 …
7517 0826 7257 5527 2668 8157 …
3551 3316 3584 9439 0011 7365 …

 

M

 

7405 7764 6131 6204 8835 0345 …
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numbers to one group and subjects with odd numbers to another group. This pro-
cedure should result in about the same number of subjects in the two groups. But
if you want the groups to be exactly equal in size, you can assign two- or three-digit
random numbers to each of the subjects. Then arrange the numbers in order, from
smallest to largest. Subjects with numbers in the lower half go to one group, and
subjects with numbers in the upper half go to the other. You can use all sorts of
systems with a random number table to assign subjects to groups, even in very
complicated experimental designs. It is customary nowadays to use a computer
generator program to generate random numbers.

Does randomness really matter?

 

 

 

Yes, it does. Unless you use a procedure that
assigns your subjects randomly, the results of your study may be difficult or impos-
sible to interpret. Many assignment schemes that appear random to the inexperienced
investigator turn out to have hidden flaws. For example, on one occasion, researchers
at a hospital compared two treatments for a particular disease. Patients who were
admitted on even-numbered days received one treatment, and those admitted on
odd-numbered days received the other. That assignment sounds random enough, but
it failed. The number of patients admitted with the disease on even days gradually
became larger than the number admitted on odd days. Why? What happened is that
some of the physicians figured out the scheme and made it a point to admit their
patients on days when the procedure they preferred was in use. A bias such as this
makes it possible for the patients admitted on even and odd days to be quite different.
You cannot rely on the results of a study that used nonrandom assignment.

 

“BLIND” EXPERIMENTS

 

In experiments, as in surveys, you must not bias your observations or treatments
with your own opinions or preconceptions about which group or treatment should
yield better results. Some events, of course, are not disputable, such as the fact that
a rat has died. However, when making observations that are not as clear-cut, such
as assessing the happiness of a person’s marriage, it is all too easy to let unreliable
judgment creep in — even though you are trying to be objective and “scientific.”

Not only you as an experimenter but also your subjects (especially if they are
humans) can influence the outcome of an experiment without even trying. An
example of a biasing influence is the 

 

placebo effect,

 

 

 

a well-known effect in medical
research. A placebo (such as a brightly colored pill that has no real effect) and a
pep talk from a sympathetic physician are enough to cure many ailments. In an
experiment on alertness, for example, if students believe that the vitamin supplements
they get with their math lessons are intended to make them less sleepy during class,
they may actually feel more alert (or more drowsy if they have a bias against the
experiment’s success). In an experiment on anxiety, if the patients believe that the
pill they are getting contains a drug with a powerful relaxing effect, they will feel
more tranquil than if they believe that they are just getting breath mints.

The placebo effect can occur in many kinds of experiments, not just in medical
research. To avoid the effect, you should prevent subjects from knowing which
experimental group they are in, and you should not tell them anything about the
expected results. Keep them “blind” as much as possible. Ethical considerations
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require that they know about any risks and that they give “informed consent.”
However, you can still design the treatments to avoid biasing the results. For example,
if one treatment requires a group of people to take pills, make sure that all of the
other groups get pills too, even if they are just sugar.

The people who record the experimental results should also be unaware of the
assignment of subjects to groups. They too should be “blind.” Make sure they know
exactly what to measure, such as weight without clothes, learning time to the nearest
second, or anxiety on a particular scale. But avoid explaining more than they need
to know. If you satisfy their curiosity by explaining what is going on while the study
is in progress, you will never be sure whether they unconsciously affected the results.
Explain the issues after the study is complete. You do not want anyone’s prejudices
to influence the measurements. Even if you are making the observations yourself,
you can still keep yourself blind by not knowing which subject is in which experi-
mental group. Have an assistant assign the subjects randomly to the various groups,
leaving you pure and untainted.

Medical studies are often characterized as single blind or double blind. When
only the subjects do not know which groups or treatments they have been assigned
to, the experiment is called 

 

single blind.

 

 

 

When both the experimenter and the subjects
are kept unaware of the assignment, the study is called 

 

double blind.

 

 

 

Double blind
studies are the most reliable.

 

CONTROL GROUPS

 

If you are conducting a study to evaluate a new experimental method or treatment,
make sure you include a group that does not

 

 

 

receive the new treatment. This 

 

control
group

 

 

 

will provide you with measurements to which the results of the new treatment
can be compared. If you are evaluating a new instructional method, for example,
the appropriate control treatment may be the standard instructional method. If you
are doing a medical experiment, the appropriate control treatment may be the
standard medication or procedure for a particular ailment. If you are doing a study
of a new component for a new sub-assembly, the control group may be an old design
of that product.

Do not compare the new treatment’s results just to historical information or
commonly held beliefs. Experimenters may be tempted to do so, but then they run
into a variety of problems. For example, a surgeon who is pioneering a new technique
cannot simply compare the survival rates of patients who were given the new
operation with those of patients from previous years. An engineer pioneering a new
catalytic converter cannot afford to evaluate that new technology only by comparing
it to past catalytic converters. Differences may occur for many reasons. Current
patients may have been diagnosed earlier than previous patients, so they have a
better chance of surviving. Another possibility is that the surgeon’s skills may have
improved with time, making the newer patients more likely to survive. In the case
of the catalytic converter, it may be that the new one is “better” because it is
positioned closer to the manifold or because it includes more precious metal.

All kinds of things may be different between groups that are treated at different
times. You do not know — you cannot know — what all of these things are and
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how they affect a study. To avoid this problem, make sure that a control group is
part of your study’s design, and do not rely on historical controls.

 

HOW SHOULD YOU PROCEED IF YOU WANT
TO EXPLORE AN IDEA?

 

Here is what you should do when you want to design a study to explore an idea or
question:

• You should carefully formulate your question and decide exactly what
pieces of

 

 

 

information are necessary to answer it.
• You must determine the population of interest and select a random sample

of objects or people from the population.
• You must be sure that you do not unintentionally bias your sample by

making it more likely that some members are included than others.
• You must collect your information in an objective fashion. The procedure

for gathering the information must be objective and standardized. Ques-
tions must be unambiguous.

• If several different conditions are to be compared, you must ensure that
the subjects are randomly allocated to the groups.

• You must prevent the subjects and investigators from allowing their
personal prejudices to influence the outcome of the investigation.
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Designing and Using 
Forms for Studies

 

This chapter focuses on the need for order in running an experiment. It begins by
addressing the need for having a specific form to collect the data and then proceeds
to address some of the issues that every experimenter should be aware of when doing
surveys and experiments.

 

OVERVIEW

 

Before you accumulate any data, you must design the questionnaire (for a survey)
or have a very good idea about your operational definition and process (for an
experiment), and you must have an appropriate form for collecting the data. It sounds
both simple and silly to talk about these items, but they are fundamental to the
integrity of the study.

For example, instead of asking directly for a person’s age, you may want to
request the actual month, day, and year of birth. Some people, especially as they
grow older, have unpredictable systems for altering their ages at each birthday.
Asking for the date of birth, instead of asking directly for age, increases the likeli-
hood of an accurate answer. The computer will calculate the exact age later. Never
ask interviewers or respondents to calculate anything themselves. Get the raw num-
bers, and let the machine do the arithmetic. If you are interested in the ratio of a
person’s weight to height, for example, the interviewer or respondent should record
the weight and height, and you should leave the ratio to the computer. This procedure
saves time and increases the accuracy of the results. Computers divide better than
distracted people with calculators do.

 

CODING THE DATA

 

The answers to some questions are numbers. If you ask how much people weigh,
how many cigarettes they smoke daily, or how many brothers and sisters they have,
the answers will be numbers, and you can simply leave space on the questionnaire
form to write in each one. You should leave enough room for the biggest number
possible, even if you do not expect to get it. If you ask enough people how many
children they have, for example, you will certainly find somebody who has ten or
more, so you should leave sufficient room for a two-digit number.

1
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When the answer to a question is not a number, you should try to figure out in
advance what answers are possible. Respondents would then select among the
alternatives. If you do not think of the possible responses before the survey, you
will be in serious trouble. For a question about how people view life in general, if
you let people supply their own alternatives, you may end up with as many different
answers as there were people. How are you going to analyze “Kinda OK,” “Could
be worse,” “Great, except for my job,” “Today exciting, yesterday not”? You would
spend hours deciding what to do with a few hundred of such answers. By forcing
people to choose among specific alternatives (such as “Exciting,” “Routine,” “Dull”),
you can get data that you can analyze.

What if you really are interested in the way people say things on their own?
Sometimes you simply do not know in advance what people will say, and you want
to allow them to say exactly what they please. You can certainly have interviewers
write down exactly what the respondents say, word for word. Questions like these,
which do not specify the possible responses, are known as 

 

open-ended questions.

 

A computer will not be much help in analyzing the responses to open-ended ques-
tions directly, though, so you should either study the answers and assign codes to
them before you enter your data or else ask the same questions again in a different
way, with specified choices for responses.

For questions that require choosing among alternatives, think about all the
possibilities. Make sure nothing falls through the cracks. Anticipate the unusual. For
example, if you want to ask about housing, remember that not everyone lives in a
house or an apartment. It is especially important to make provisions for responses
such as “Don’t know” or even “None of your business.” Do not leave it up to an
interviewer to decide what to do when somebody cannot or will not answer a difficult
question. Anticipate these problems, and write clear instructions on the form in the
places where such answers can occur. Whenever answers that do not fit into your
coding scheme are possible, include an “Other” category, and leave space on the
form for writing out the unusual answers. You may be able to do something with
this written information later.

On any survey form, all acceptable answers to a question should be listed. Each
answer has a code with it — a number that represents that answer. For the excit-
ing-routine-dull life question, a code of 1 is circled for the answer “Exciting,” 2 for
“Routine,” and 3 for “Dull.” The code number 8 is reserved for the answer “Don’t
know.” These numerical values are the 

 

coding scheme

 

 

 

for the variable. For each
respondent, one of these numbers will go into the computer to represent the answer
to this question.

Coding schemes are arbitrary. A code of 3 could just as well have been assigned
to Exciting and a code of 1 to Dull. What is important is that each possible response
has a code that is different from the others. For example, you would not code the
states of the union by their first letters because the first letters for the names of many
states are the same.

Coding is an excellent way to do analysis with variable data, whether those data
come from engineering, marketing, personnel, or any other place to which the study
is directed.
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TIPS ON FORM DESIGN

 

Here are a few hints about things you can do when designing your form that will
make your life a lot easier when it comes time to analyze the data. Some of these
hints pertain to the arrangement of the form, and some are about coding.

To design a form well, you should:

•

 

Split up complicated questions.

 

 

 

Some questions are best asked in parts.
•

 

Record numbers when you can

 

. 

 

Record information in as much detail as
possible, using actual numbers. Later, you can use the computer

 

 

 

to create
categories such as small, medium, and large based on the exact numbers.
If you have recorded only the categories, you will not be able to try
different grouping schemes or to analyze the data in more detail. (Excep-
tions to this rule exist. For example, if you are a marketer, you may need
to ask people about their incomes. The questions that you ask should not
focus on the precise income. That is because income is a sensitive matter
for many people, and they may refuse to give their income as an exact
number of dollars;

 

 

 

or they may not know their yearly income to the nearest
dollar. If you are sensitive to these types of questions ahead of time you
can soften the question by letting the interviewer hand a card to the
respondent with preprinted income categories. That way, the respondent
never needs to give an exact figure. Analyzing income categories may be
harder than analyzing exact incomes — but the situation would be even
worse if people refused to answer at all or if they gave false answers.)

•

 

Use a numeric coding scheme.

 

 

 

When items require coding, assign numbers
instead of letters to the responses. Numbers simplify both data entry and
data analysis. For example, coding “comfortable ride” as 1 and “uncom-
fortable ride” as 2 is simpler than the actual adjective used in the study.

•

 

Put an identification number on the form.

 

 

 

You can use the identification
number to locate forms that you later find to have errors or unusual values.
Even if you are running a confidential survey, and each form is not linked
to a particular person, put an identification number on the respondent’s
form 

 

before

 

 

 

you enter the data into the computer. Then enter the identi-
fication number with the rest of the data. This number links the paper
form and the computer record.

•

 

Make sure the data can be entered into a computer directly from the form

 

.
This saves time and helps to minimize errors.

 

COLLECTING THE DATA

 

In many studies, much of the work comes when it is time to collect the data.
Remember that the interviewers or experimenters must carry out your well-designed
survey or experiment exactly as you specified. In a survey, they must ask the questions
in a standardized way, without leading the respondents, and they must use your
coding schemes by entering the proper types of information in the right places. In
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an experiment, the experimenters must make sure that all the variables are accounted
for on their particular sequence and level. It is important to note any irregularities
for later analysis. Unless the interviewers (or you) gather the data well, all the work
you did to prepare the study and any work you do to analyze it will be for naught.

 

WHAT COMES NEXT?

 

When you have the completed forms from your study, you need to enter the data
into a computer so that the computer programs can carry out your instructions for
data analysis. Each item of data entry is a “case” or “run” of the experiment. When
you have entered all the data, make sure that all the data (1) is in and (2) is saved
appropriately for future analysis. The mechanics of entering data into a disk file on
your personal computer are pretty simple. If you are planning to analyze the data,
however, you do not want to make mistakes at this point. You cannot get good
analyses with bad data.

It is easy to make mistakes when you type in your data. Here are some tips that
will make it easier for you to find and fix these mistakes:

• Line up the data for each case so that the same types of information always
appear at the same positions on the line. If you have room, leave a blank
space between the pieces of information or between groups of them so
that they are easier to read. In other words, use 

 

fixed format.

 

• Start each case on a new line. If you have too much data for a case to fit
on a single line, go ahead and use more than one line per case, but never
put more than one case on a line. (You cannot, if you use fixed format.)

• Put the case identification number at the beginning of each line

 

 

 

of the
file. If you are using more than one line per case, repeat it on each line.
Also number each line 

 

within 

 

the case.
• Save your data file frequently as you enter the data. That way, you will

have a permanent copy of most of your data even if something goes wrong
while you are working.

• Make a backup copy

 

 

 

(an extra copy) of the data to use if your original
data file is somehow lost or destroyed. Since disks can be damaged, put
the backup copy on a different physical disk. If you are using a
floppy-based personal computer, put the original and the backup on dif-
ferent floppies. If your computer has a hard disk, you can leave the original
on the hard disk and put the backup on a floppy. Be sure to label the
backup floppy diskettes clearly and put them in a safe place.

 

MODIFYING THE DATA

 

After you have entered the data into the file, a time may come when you need to
modify your data before analyzing them. You can change the values of individual
variables or perform calculations to create new variables out of existing ones. If you
do this, you may need to go back and supply new labeling information to describe
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the modified data. The process depends on the software. If you have done anything
to change the data — such as revising the coding scheme of a variable or simply
reading a raw data file into your original format — you should save a copy of the
data in their existing form.

 

ANALYZING THE DATA

 

Any time after you have identified the data set, you can enter a command to analyze
it. The command will depend on the objective of the project and the need for a
particular technique. Depending on the software that is used, many analysis com-
mands may be available.

 

PRINTING THE RESULTS

 

The results of your analysis are (1) displayed on your computer screen of or (2)
printed in a hard copy format.

 

MISSING DATA

 

For each variable in a study, a special code indicates when information is missing.
Data may be missing for legitimate reasons. Nevertheless, they have to be identified
appropriately. Using computer software, this has become a very easy task. Depending
on the software, the coding may take different formats in both identification and
processing. (Usually, these codes are identified with the numbers 9; 99; 999 or (.)).

If you have used a specific code to identify missing data, the computer will
usually treat the data as missing because you told it to, by entering a MISSING
VALUE command. Data that are missing for this reason are called 

 

user-missing,

 

because you (the user) specified them as missing.
However, sometimes the particular software must treat data as missing regardless

of whether you tell it to or not. Perhaps a case in your data file is simply missing
some variables. Perhaps somebody’s fingers slipped on the keyboard and entered a
response as “YP” instead of “60.” When things like this happen, the statistical
software assigns a special value called the 

 

system-missing

 

 value. Statistics are never
computed with system-missing values because they are not proper values at all.

What good are missing values? Why do we have to fool with them?

 

 

 

Most of
the time, you cannot really do anything with missing values, but you do not want
to throw away the whole cases they came from. Other variables in those cases may
have perfectly good values. And you may change your mind about user-missing
values. People who do not know for whom they will vote are sometimes useless for
your analysis, but sometimes they are the most interesting people of all.

Nobody wants missing values in their data, but they always turn up. One of the
first things you should do with a new data file is to get a general idea of how many
missing values there are and why. You can do that with frequency tables, as will be
explained in the next chapter.
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Counting Frequencies

 

This chapter begins to explain how data can be analyzed using the basic statistical
tools. The counting of frequencies should be the first step in data analysis for two
reasons: (1) it enables you to screen the data for any irregularities, and (2) it allows
you to group the data in percentages or some graphical format.

 

OVERVIEW

 

The data have been collected and entered into the computer, and now you are about
to begin your analysis. Hopefully, this analysis will generate all the answers that
you are seeking to explain.

Most experimenters begin their analysis by double-checking their data. Double-
checking involves the actual counting of all entries by variable or anything else that
has been coded. Fortunately, since you are analyzing your study with a statistical
software package, you do not have to actually count anything. You can tell the
computer to do it for you. Use the appropriate commands, and the answer will be
in front of you before you know it. The FREQUENCIES command counts the
number of times each of the codes occurs. You supply the names of the variables
for which you want counts; everything else is done for you.

 

INTERPRETING A FREQUENCY TABLE

 

When you run a job with the FREQUENCIES command, you get back something
called a 

 

frequency table.

 

 This is simply a table that tells you how frequently each
of the responses occurs. Generally, the table will provide you with the file name,
the variable, and the details of the frequency command, which include: value, actual
frequency, percent, valid percent, cumulative percent, missing, and totals.

If you find codes in the frequency table that are not supposed to occur in the
data, you need to go back and correct or at least check them.

 

VALID PERCENTAGES

 

Sometimes you want to compute percentages using only cases with real responses.
For example, suppose you have asked 100 people whether life is exciting or routine,
and 25 said that it is exciting, 25 said that it is routine, and 50 told you to bug off.

2
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It would be a bit misleading, though it is correct, to state that 25% of those people
think that life is exciting. A naive reader or listener would probably assume that the
other 75% of the people find life unexciting. That is not really true, since the
remaining 75% include people who declined to answer as well as those who find
life routine. You can describe the results better by saying that half of the people who
answered the question find life exciting, and half find life routine. You should also
mention that half of the people in your sample refused to answer the question. You
can find the percentages based only on cases with real answers (so-called 

 

valid
cases

 

)

 

 

 

in the column labeled VALID PERCENT in the frequency table.

 

BAR CHARTS

 

Usually the frequency command has a column, labeled CUM PERCENT, which is
also valuable. To transform your frequency table into a picture, you merely add a
slash and the word BARCHART to your FREQUENCIES command.

When you execute this command, the computer produces a type of display that
is called a 

 

bar chart 

 

because each line in the frequency table is turned into a bar.
The length of the bar depends on the number of cases. (The actual frequency is
given beside the bar.) At a glance, you can tell how often each of the responses was
selected. You can also see whether one of the responses was an overwhelming
favorite, and which responses are about equally likely.

Since computer screens and printers have a limited ability to show detail,
responses that have similar frequencies may end up with bars of equal length even
though the actual frequency counts are slightly different. This does not really matter.
The point of a bar chart is to provide a visual summary of the data, and such minor
distortions do not change the overall impression. If you want precision, look at the
numbers, not the chart.

 

CUMULATIVE PERCENTAGES

 

Yet another statistic presented as an output of the frequency command is the CUM
PERCENT. The cumulative percentage for a response is the sum of the valid per-
centages for that response plus all responses that precede it in a frequency table.

 

LEVELS OF MEASUREMENT

 

Depending upon the type of variable that you have used, the numbers in your data
table may have different meanings.

 

C

 

ATEGORIES

 

If you think about the numbers used to code some of variables in many experiments
and surveys, you will realize that the particular number assigned to a category
conveys no 

 

numerical 

 

information. The codes just represent the categories.
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O

 

RDERED

 

 

 

CATEGORIES

 

Sometimes the order of categories is significant. Think about the exciting-rou-
tine-dull variable. The responses to the question can be arranged in a meaningful
order. If we arrange them in terms of decreasing excitement, then the response
“Exciting” comes first, followed by the response “Routine,” and finally the response
“Dull.” Of course, we could have arranged the responses in the other order as well
(from low excitement to high excitement). In both instances, the response “Routine”
falls between the other two. There is no 

 

order

 

 to those categories, but it does mean
something that Routine is between Exciting and Dull.

 

N

 

UMBERS

 

Although the codes assigned to the exciting-routine-dull variable are ordered from
high to low, they convey only order; they have no other numerical meaning. Someone
who was bored with life (code 3) did not differ by two “excitement units” from
someone who found life exciting (code 1). Subtracting or dividing the codes makes
no sense.

On the other hand, let us say that “education” is one of the variables under study.
This variable is different. The numerical code assigned to each category is not merely
a code. It is the highest grade completed. It is an actual number, and we can treat
it as such. For example, someone with 8 years of education has twice the number
of years of education as someone with 4 years. Someone with 16 years of education
has 4 more years than someone with 12 years. We can add, subtract, and divide the
codes and understand the results.

 

NOMINAL, ORDINAL, INTERVAL, AND RATIO

 

Variables can be classified into different groups based on how they are measured.
Machine number, cost, and weight are all different types of variables. Machine
number is called a 

 

nominal

 

 

 

variable because the numerical codes assigned to the
possible responses convey no information. They are merely labels or names. (That
is why the level of measurement is called nominal — from the Latin word for
“name.”) Codes assigned to possible responses merely identify the response. The
actual code number means nothing.

If the possible responses can be arranged in order, as with the exciting-rou-
tine-dull variable, the variable is called 

 

ordinal

 

: 

 

its codes have an order, nothing
more. (The word 

 

ordinal

 

 comes from — you guessed it — a Latin word meaning
“order.”) Variables such as dollars, job satisfaction, condition of health, and happi-
ness with one’s social life, all of which are usually measured on a scale going from
much to little, are ordinal variables. The numbers assigned to the responses allow
you to put the responses in order, but the actual distances between the numeric
codes mean nothing.

Temperature can be measured and recorded on a scale that is much more precise
than job satisfaction. The interval or distance between values is meaningful every-
where on the scale. The difference between 100 degrees Fahrenheit and 101 degrees
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Fahrenheit is the same as the difference between 102 degrees and 103 degrees. Since
temperature measured on the Fahrenheit scale does not have a true zero, however,
you cannot say that an 80-degree day is twice as hot as a 40-degree day. A temper-
ature of zero does not mean that there is no heat. The zero point is determined by
convention. (If you insist, I will admit that temperatures do have an absolute zero
point; but that has very little to do with the measurement of body or environmental
temperatures.) Thus temperature can be called an 

 

interval

 

 variable.
The last type of measurement scale is called a 

 

ratio

 

 

 

scale. The only difference
between a ratio scale and an interval scale is that the ratio scale has an absolute
zero. Zero means 

 

zero. 

 

It is not just an arbitrary point on the scale that somebody
happened to label with zero. Height, weight, distance, age, and education can all be
measured on a ratio scale. Zero education means no education at all, and zero weight
means no weight at all. On a ratio scale, the proportions or ratios between items are
meaningful. A 200-pound person is twice as heavy as a 100-pound person. A
1000-meter race is twice as long as a 500-meter race. I suppose I need not tell you
what language the words 

 

interval 

 

and 

 

ratio 

 

come from.
Why all the fuss? Why have we spent all this time describing these “levels of

measurement?”

 

 

 

The reason is straightforward — the way in which you analyze your
data depends on how you have measured it. Certain analyses make sense with certain
types of data. Even something as simple as interpreting cumulative percentages
requires you to know what scale your data are measured on. For example, cumulative
percentages do not make much sense for variables measured on a nominal scale.
So, depending on the level of measurement, the appropriate technique, test, and
analysis must be selected. Otherwise, the results will be meaningless.
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Summarizing Data

 

In the previous chapter, you saw that a frequency table is a convenient way of looking
at the responses to a question. Frequency tables are easy to read, and they provide
complete and detailed information. Sometimes, though, they provide too much
information. To bring the information into focus and make the data come alive when
communicating the findings of your study, you need to group and summarize your
data. This chapter tells you how to do that.

 

DESCRIPTIVE STATISTICS

 

Think about a variable such as age, height, temperature, pressure, or weight. When
you measure these variables, a lot of different responses are possible. The more
finely you measure the variables, the larger the number of possible responses. For
example, if you record height only to the nearest foot, the number of different heights
is fairly limited. However, if you measure height to the nearest millimeter, it is
possible that everyone in your sample might have a different measurement. What
would happen if you made a frequency table for such a variable? You would probably
end up with an enormous table with a lot of different values. Most of the codes in
the table would show only a single case with that particular value. In fact, if every
case had a different value, you would end up with nothing more than a list of all
the responses. That kind of frequency table does not do much for you. You need
some way to summarize the data further.

 

N

 

OMINAL

 

 V

 

ARIABLES

 

The way to get further summaries depends on how the variable is measured. If you
have a frequency table that shows the number of people who were born in each of
400 cities, you may not be able to summarize further at all. Since the name or ID
number of the city is a nominal variable, you cannot group the cities into larger
categories without further information, such as what state they are in. In other words,
you cannot really summarize a name effectively. All you can do with the name or
ID number is count the number of people for each one.

If you are going to report the results to an audience that has a short attention
span, you might organize the frequency table so that it goes from the most frequent

3
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city to the least frequent. Then you could mention only the “top ten” cities. The
“top” city has a statistical term you can use to describe it — the

 

 

 

mode

 

.
Nominal variables with many categories simply do not lend themselves to

summarization by computer. If you need to summarize, you have to rearrange the
coding system. For example, you can combine cities in the same state, or you can
group them by population. You can then make frequency tables based on the new,
more compact classification.

 

O

 

RDINAL

 

 V

 

ARIABLES

 

It is easier to summarize an ordinal variable than a nominal variable. If you make
a frequency table and decide that you have too many categories (Extremely exciting,
Greatly exciting, Moderately exciting, Mildly exciting, Slightly exciting, Almost but
not quite exciting...), you can combine

 

 

 

adjacent categories. One way to do this is to
convert all the different codes that stand for varying degrees of excitement to a single
code: Exciting. Similarly, you can combine the various codes for Routine and for
Dull. The frequency table for the less elaborate coding scheme will be easier to read
and probably just as informative.

A variable with ordered categories also gives you more choice in descriptive
statistics. You can report the mode (the category that has the largest number of cases)
for an ordinal variable, as you can for a nominal variable. The mode, remember,
tells you which response occurred most frequently. In addition, another value, often
more descriptive, can be computed for an ordinal variable. It is called the 

 

median.

 

The median is the “middle” value — the value that divides the observations into
equal halves. Notice that you cannot have a middle value unless it makes sense to
put the values in order. That is why the median is a useful statistic for ordinal
variables but not for nominal variables.

If you ask five people to rate the president’s performance on a scale of 1 to 5,
and you get the answers 1, 1, 3, 4, 5, the median answer is 3. The value 3 divides
the five responses into equal halves, when they are placed in order like this. The
median is the middle observation when the values are ordered from smallest to
largest. The median provides you with some idea of what a typical

 

 

 

response is.
What if you have an even number of observations? There may not be a single

median, since two numbers are in the middle.

 

 

 

With the numbers 1, 2, 3, 4, the
numbers 2 and 3 are equally in the middle. If this happens, you can still calculate
the median. Identify those two middle numbers, and figure out what number would
be in the middle of them in this way:

• Add the two middle numbers together.
• Take half of their sum.

In this example, you would add the middle numbers 2 and 3 to get 5. Half of
5, or 2.5, is then the median of 1, 2, 3, 4. Statistical software programs do this for
you automatically.
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I

 

NTERVAL

 

 

 

OR

 

 R

 

ATIO

 

 V

 

ARIABLES

 

If your variable is measured on an interval or ratio scale, you can summarize it in
many different ways. Your options for more powerful analyses are much greater than
they were with the other types of data. You could still make a frequency table, but it
would probably be unwieldy and not particularly informative. Transforming the fre-
quency table into a bar chart probably would not help, since the chart would have as
many bars as there are different values. It would be more useful to make another
frequency table in which each line represents not a single response but several ones.
In other words, you should group the responses into categories. This approach turns
out to be more manageable and more expedient. You can then use a modification of
the bar chart, called a 

 

histogram

 

,

 

 

 

to display the number

 

 

 

of cases occurring in each of
the categories. With most software programs, you can create both a frequency table
and a histogram by identifying such a request under the FREQUENCY command. A
histogram gives you information about the total count and the midpoint, shape, and
spread of the distribution. The 

 

minimum, maximum,

 

 and 

 

increment

 

 specifications are
optional. They determine the lowest and highest values shown, as well as the size of
the interval. This is important because, as we are going to see later, you can use this
information to determine the capability of a process just by utilizing the histogram.

The number of intervals you should use in a histogram depends on the data. If
the intervals are very wide, you may not be able to see important differences. On
the other hand, if they are too narrow, you may have more detail than you want to
see. A good practice is to do several histograms and see which one summarizes the
data most clearly. A rule of thumb for generating the groupings of the data is to
calculate the square root of the number of observations. For example, if you have
100 observations, groups of ten would be appropriate because 

 

D

 

IFFERENCES

 

 

 

BETWEEN

 

 B

 

AR

 

 C

 

HARTS

 

 

 

AND

 

 H

 

ISTOGRAMS

 

A histogram looks pretty much like a bar chart. Only two real differences exist:

1. In a bar chart, each bar represents a single code, while in a histogram the
bars often represent the combined frequencies of several codes.

2. Bar charts and histograms treat codes with no cases (frequencies of zero)
in different ways.

To make a bar chart, you do not have to assume anything about what the codes
actually mean. If you are using the codes from 1 to 3, and no cases have a value of
3, there simply is no bar for that code. Since you can use whatever codes you want
for nominal and ordinal variables, the computer cannot tell what codes were possible
but did not occur. If a value has no cases, no line appears for it in a frequency table,
and no bar appears in a bar chart.

On the other hand, if the variables are measured on an interval or ratio scale,
you do want to know when some of the values do not occur in your data. When this
happens, a histogram leaves a space for them with no bar. If no people were in a
particular sample or category, the histogram would have room for that category, but

100 10.=
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the bar would have shrunk to zero. Conversely, if you made a bar chart of the ages,
on the other hand, no space would be left for the particular category. The “holes”
in the histogram tell you that some possible values did not occur at all. That makes
it easier for you to see what the real distribution of values looks like. It is essential
to know about the “holes” when you have an interval or ratio variable.

 

U

 

SES

 

 

 

OF

 

 H

 

ISTOGRAMS

 

Histograms are useful whenever:

1. A variable has many different values.
2. It is reasonable to group adjacent values.

 

Never 

 

use a histogram to summarize a nominal variable. By looking at a histo-
gram, you can see the shape

 

 

 

of the distribution and therefore you can learn:

1. How often the different values occur.
2. How much spread or variability exists among the values.
3. Which values are most typical of the data.

These things are important, first of all, because they tell you a lot about your
data. Also, some of the statistical procedures that we will be using later do not work
properly unless the data come from particular types (shapes) of distributions.

 

D

 

IFFERENT

 

 T

 

YPES

 

 

 

OF

 

 D

 

ISTRIBUTIONS

 

A variable such as age can have many different types of distributions, depending on
the population you study. If you are studying children who are entering the first
grade, you will discover that their ages are fairly similar. If you made a histogram
of the ages, you would most likely end up with two long bars, one for 5-year-olds
and one for 6-year-olds, with a few short fragments for 7- or 8-year-olds.

On the other hand, if you study college freshmen, you will find that the distri-
bution of the ages spreads out more. Although the majority of college freshmen are
either 18 or 19, there are always a few younger students who skipped grades, and
surprisingly often there is an octogenarian catching up on what he or she missed.
You find people of many different ages in this sample. Some values are more likely
than others, but many different ones occur.

Finally, if you are studying the entire U.S. population, your sample includes
people of all ages. The histogram of their age distribution would not look anything
like that of the first graders or of the college freshmen.

It is fairly obvious that the distribution of the variable “age” will vary depending
upon the group of people under study. In other situations, the fact that distributions
vary in different populations may be less obvious — but it is no less important. For
example, consider the ambient temperature at which a particular product must
operate. If you test the product in Arizona, Louisiana, Florida, and Alaska, you will
get different responses at each site. If you collectively take responses from Mexico,

 

SL3127_frame_MASTER.book  Page 28  Monday, July 1, 2002  9:38 AM



 

Summarizing Data

 

29

 

the United States, and Canada, the distribution will look completely different from
the distribution you would have obtained at one particular location. Figures 3.1
through 3.4 show histograms with different distributions.

 

M

 

ORE

 

 D

 

ESCRIPTIVE

 

 S

 

TATISTICS

 

Often, you want to summarize data even further than a histogram allows. You would
like to be able to report some numbers that describe the distributions more precisely.
What sorts of descriptions might these be? The mode — the most frequently occur-
ring value — is the simplest way to represent “typical.” For a nominal variable, it
is the only thing we can use. The median — the middle value when values are

 

FIGURE 3.1 

 

A typical histogram showing normality.

 

FIGURE 3.2 

 

A typical histogram showing a positive skew distribution.

 

FIGURE 3.3 

 

A typical histogram showing a negative skew distribution.
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arranged from smallest to largest — is another way of representing “typical.” Of
course, you can only make sense of the median for a variable that is measured at
least on an ordinal scale. 

In addition to the mode and the median, other handy statistics can be used to
describe your data.

 

Other Percentiles 

 

The median is the value that splits the sample into two equal parts. Sometimes,
though, it is useful to look at values that split up the cases in other ways. What is
the value that cuts off the bottom quarter of the cases or the top quarter? These
values are called 

 

percentiles

 

 

 

because they tell the percentages of cases above and
below them. The median is the 50

 

th

 

 percentile, since 50% of the cases have larger
values and 50% have smaller values. The 25

 

th

 

 percentile is the value that splits the
cases so that one quarter of them have values below it. (It follows that 75% of the
cases exceed the 25

 

th

 

 percentile.) If you have made a frequency table, you can locate
percentiles in the cumulative frequencies column. However, you can go about it in
a simpler way. By identifying the subcommand percentiles in the frequency com-
mand, you will get the percentiles.

 

The Average or Arithmetic Mean

 

For interval and ratio variables, the arithmetic mean or average is usually a better
measure of central tendency than either the mode or the median. It is simple to
calculate. Just add up all of the values and divide the sum by the number of cases.
When you are using a statistical software package, you can get this information just
by requesting it.

When you calculate (or have your computer calculate) the mean, median, and
mode of a set of data, you will often notice that the three values — each of which
represents the “typical” value of the distribution — are different. Why are all of
these “typical” values different?

 

 

 

There is no reason for the numbers to be identical
since they all define “typical” in different ways. The mode is the value that occurs
most often; the median is the middle value when the numbers are arranged from
smallest to largest; and the mean is the familiar “average” value. Which of these is
the best measure of “typicalness” (more formally called 

 

central tendency

 

)?

 

FIGURE 3.4 

 

A typical histogram showing a bimodal distribution.
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Mean, Median, or Mode?

 

Usually the mode is a poor measure of central tendency for an interval or a ratio
variable. Though it satisfies one of the definitions of “typical,” it ignores much
available information about the data.

Although the median is a good measure of central tendency, it ignores a lot of
the information that you have collected about a variable measured on an interval or
ratio scale. For example, the median of the five ages 28, 29, 30, 31, and 32 is 30.
The median for the five ages 28, 29, 30, 98, and 99 is also 30. The actual values of
ages above and below the median are ignored. The median is 30 regardless of whether
everyone’s age is close to 30 or whether the values vary quite a bit.

When should you report the median, and when should you report the mean? If
a variable is measured on an ordinal scale, the median is the statistic of choice. If
a scale does not have intervals of equal length, it does not make sense to compute
a mean. For a variable measured on an interval scale, the mean and the median are
both useful numbers to report. The mean makes maximum use of the data since all
of the values are actually used in computing it. (Remember, you add up all the
numbers, then divide by the number of numbers.) In some situations, however, the
mean may not really represent the data well.

Suppose you ask five people how many parking tickets they have received in
the last year, and you get the following replies: 2, 5, 6, 7, 90. The mean number of
tickets for this sample is 22. (Verify this: the sum is 110, and 110 divided by five
is 22.) This statistic does not describe the data well. The person who hardly feeds
a meter is making the other people in the sample look more delinquent than they
really are. The median, six, describes the data better.

Whenever some cases have values much larger or smaller than the others, the
mean may not be a good measure of central tendency. It is unduly influenced by
extreme values (called 

 

outliers

 

).

 

 

 

In this situation, you should report the median and
mention that some of the cases had extremely large or small values. For example,
you could say, “The median number of tickets for the sample is six. Eighty percent
had seven or fewer tickets a year. One person reported 90 tickets.”

 

HOW MUCH DO THE VALUES DIFFER?

 

Measures of central tendency provide information only about “typical” values. They
tell you nothing about how much the values vary within the sample. Suppose you
examine the transmissions of 20 vehicles: ten trucks and ten sedans. The trucks were
used to haul heavy items, whereas the sedans were used for pleasure driving. You
are interested in measuring the problems with each vehicle during three months in
service. The data are shown in Table 3.1.

The average number of problems for the two groups of vehicles is the same —
five per week. However, the distributions of values differ. All of the trucks had
consistent numbers of problems — between four and six per week. The numbers
do not vary much from week to week. The sedans, on the other hand, differ from
each other much more. Some seem to have no problems early on but then as time
goes on their problems increase.
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How can you measure this variability? One of the more obvious ways is to report
the smallest and largest values in each of the samples. The minimum number of
problems for the trucks is four and the maximum is six. In the sedans, the minimum
number of problems is zero and the maximum is 15.

The distance between the largest and smallest values is called the 

 

range

 

. 

 

For the
trucks, the range is 2, while for the sedans, it is 15. That is quite a difference. By
comparing the ranges of the two samples, you can tell that the number of problems per
vehicle in the sedan sample differed more from each other than those in the truck sample.

The range is not a particularly good measure of variability, though. It depends
only on the smallest and largest numbers and pays no attention to the distribution
of the numbers in between. Nevertheless, it is the best measure of variability available
for variables measured on an ordinal scale. For a variable measured on an interval
or ratio scale, however, you can compute some better measures.

 

T

 

HE

 

 V

 

ARIANCE

 

For each case, you can compute how much it varies from the mean of all the cases.
Just subtract the overall mean from the case’s value. For the first case in Table 3.1,
the difference is:

4 (the case’s value) – 5 (the mean) = –1

This indicates that this particular truck had one fewer problem than the average.
Table 3.1 shows the differences for each case. From the table, you can see that the
differences are much smaller for the trucks’ performance than for the sedans.

How can you use these differences to measure variability? The simplest tactic that
comes to mind is just to add up the differences and compute a mean difference for each

 

TABLE 3.1
Vehicle Problems per Week

 

Trucks

 

Sedans

Problems
per Week Difference

Problems
per Week Difference

 

4
4
5
5
5
5
5
5
6
6

Sum = 50

–1
–1

0
0
0
0
0
0
1
1

Sum = 0

0
0
0
0
0
3

10
10
12
15

Sum = 50

–5
–5
–5
–5
–5
–2

5
5
7

10
Sum = 0

Mean = 5 Mean = 0 Mean = 5 Mean = 0
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group. Like many seemingly good ideas, this one has a flaw. The sum of the differences
from the mean is always zero. Some of the differences are positive, and some are
negative, so when you add up all of the positive and negative numbers the result is
always zero. You need a better way to assemble all of the differences from the mean.

You can do this in several ways. For example, you could treat all the differences
as if they were positive and compute a mean difference for them. It turns out, though,
that a better way by far is to

1. Square the differences.
2. Add them up.
3. Divide the sum by the number of cases minus one.

This measure is called the 

 

variance

 

.
Why divide by the number of cases minus one instead of the number of cases?

You are working with a sample taken from a larger population, and you are trying
to describe how much the responses vary from the mean of the entire population.
However, since you do not know the population mean, you have to use the sample
mean in your calculation — and using the sample mean makes the sample seem
less variable than it really is. When you divide by the number of cases minus one,
you compensate for the smaller variability that you observe in the sample. Later on,
we are going to define this as degrees of freedom (df).

Large values for the variance tell you that the values are quite spread out. Small
values indicate that the responses are pretty similar. In fact, a value of zero means
that all of the values are exactly equal. For the set of data shown in Table 3.1, the
variance for the trucks is .44, while that for the sedans is 36.44. This supports our
observation that sedans vary more.

 

T

 

HE

 

 S

 

TANDARD

 

 D

 

EVIATION

 

Since you calculate the variance by squaring differences from the mean, it is
expressed in a unit of measurement such as squared hours, squared children, or
something similar. To express the variability in the same unit as the observations,
you take the square root of the variance. This is called the 

 

standard deviation

 

. The
standard deviation is expressed in the same units as the original data. For the trucks
in Table 3.1, the standard deviation is the square root of .44, or .66. For the sedans,
it is the square root of 36.44, or 6.04.

With any statistical package, it is easy to calculate various measures of central
tendency and variability. Under the FREQUENCY command, you specify the sta-
tistics kurtosis, mean, median, mode, standard error of the mean, skewness, sum,
standard error of skewness, minimum, maximum, range, variance and standard
deviation and the computer will do the rest.

 

F

 

REQUENCY

 

 T

 

ABLES

 

 V

 

ERSUS

 

 C

 

ROSS

 

-C

 

LASSIFICATION

 

 T

 

ABLES

 

Up to this point, we have been dealing primarily with frequency tables. We can
obtain additional types of information about our data, though, if we use cross-
classification tables.
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Fundamentally, the difference between frequency tables and cross-classification
tables is that in the first, we deal with variables one at a time while in the second,
we have the capability to do multiple comparisons. To do the comparisons, however,
we must know the variables and their individual groupings.

For example, consider a study in which we have asked people to evaluate the
ride of a new vehicle, classifying it as “comfortable,” “normal,” or “rough.” We want
to know how many of the 684

 

 

 

people who found the ride comfortable were men
and how many were women. How do we find out? No problem. Just use the
CROSSTABS

 

 

 

command.
This command creates a table (such as Table 3.2) showing the categories of the

two variables and compares the variables with each other. Notice that the numbers
appear in 

 

cells

 

, and they are arranged in rows and columns. Labels at the left and
the top of the table describe what is in each of the rows and columns. To the right
and at the bottom of the table are totals — often called 

 

marginal totals

 

 

 

because they
are in the table’s margins.

Because the categories of the two variables are “crossed” with each other, this
kind of table is called a cross-classification table or simply a 

 

cross-tabulation

 

. 

 

A
cross-classification table shows a cell for every combination of categories of the two
variables. Inside the cell is a number showing how many people gave that combi-
nation of responses. (For our example we used a 2 

 

¥

 

 3 cross-tabulation table.
However, the process is the same and just as easy with a computer even with more
than two variables.) The table is a very efficient way to present a lot of numbers.
When you get used to it, it is quite easy to read. Let us look at what is in the cells.

The number in the first cell of the table, 300,

 

 

 

tells you that 300 males found the
ride comfortable. The next number is in the column labeled Female, and it tells you
that 384 females found the ride comfortable. The sum of these two numbers – 684
– is shown in the last column.

Each of the cells also contains a second number. This number is the percentage.
For example: 50.3% of the men reported a comfortable ride, but only 44.4% of the
women reported the same thing. These percentages are just the opposite of what the

 

TABLE 3.2 
Cross-Tabulation Table

 

Ride Count Male 1 Female 2 Row Total

 

Comfortable 1 300
50.3

384
44.4

684
46.8

Normal 2 267
44.8

437
50.5

704
48.2

Rough 3 29
4.9

44
5.1

73
5.0

Column Total 596
40.8

865
59.2

1461
100.0

Missing Observations = 12
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counts show. It is easy to mislead yourself if you compare just the counts in the
cells of a cross-tabulation table. It is better to turn the counts into percentages in
order to eliminate the differences that show up when you have more people in one
group than in another. 

What do these numbers tell you? They tell you how likely it was that a person
who considered the ride comfortable was male or a female. But you are probably
interested in knowing how likely it was that a male or female found the ride
comfortable, and the row percentages do not tell you that. It is usually true in a
cross-tabulation table that either row percentages or column percentages answer
your question. Deciding to use one or the other is often based on which variable
you consider dependent, and which one you consider independent. This is very
important, and is easy to remember which is which. Here is what you need to
remember:

• The dependent variable depends on the other one.
• The independent variable does not depend on the other one; it goes its

own way, independently.

In summary, here are some key points about how you study the relationship
between responses to two or more questions which have a small number of possible
answers:

• A cross-tabulation shows the numbers of cases that have particular com-
binations of responses to two or more questions.

• The number of cases in each cell of a cross-tabulation can be expressed
as the percentage of all cases in that row (the row percentage) or the
percentage of all cases in that column (the column percentage).

• The variable that is thought to influence the values of another variable is
called the 

 

independent 

 

variable.
• The variable that is influenced is called the 

 

dependent

 

 variable.
• If there is an independent variable, percentages should be calculated so

that they sum to 100 for each category of the independent variable.
• When you have more than two variables, you can make separate cross-

tabulations for each of the combinations of variables.

 

M

 

EANS

 

So far we have looked at the relation between variables and groupings of variables.
By doing so, however, we have ignored some of the available information. All cases
with values in the same range have been treated as the same. 

We can look at the relation between ride and male/female in another way that
still produces compact tables but is based on each person’s actual preference. What
we can do is to compute means. That is, we can compute the individual mean of
the participants as well as the group. This can be accomplished by a simple command
of “means” in any statistical package, provided that you specify the variables that
you want to work with.
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M

 

EANS

 

 

 

FROM

 

 S

 

AMPLES

 

So far we have tried to answer questions such as: “What percentage of the sample
thinks that the ride is comfortable?” or “What is the average age of the people who
said the ride is rough?” The emphasis was always on reporting just the results of
the study. We looked at the data and described the sample. Nothing more.

Now, we will begin to look at the problems we face when drawing conclusions
about a whole population on the basis of what is observed in a sample.

In our sample, the men were more likely than the women to find the ride more
comfortable. No doubt about it: 50% of the men but only 44% of the women called
the ride comfortable. Unless an error was made somewhere in entering the data into
the file, the results are crisp and clear. We can speak about the sample with confi-
dence. We know, or can figure out, anything we want to about the sample — assuming
that we asked the right questions and had the data entered correctly into the file.

But talking about a sample is usually not enough. We do not want conclusions
about the 1473 people in the study; we want conclusions about the population that
this sample represents. We want to be able to say such things as: “A comfortable
ride means more to American men than it does to American women.” Based on the
results in the sample, we want to speak about the population from which the sample
was selected.

That may not seem like a big deal. Why not just assume that whatever is true
for the sample is also true for the population? If the men in the sample found the
comfortable ride more appealing than the women did, why not claim that the same
must be true in the population? Let us just conclude that American men are more
enthusiastic about comfortable ride than American women. That would certainly be
simple. But would it always be correct?

 

P

 

ROBLEMS

 

 

 

IN

 

 GENERALIZING

Suppose you had a sample of two men and two women, and you found that one of
the men but neither of the women was concerned about the ride. Would you be
willing to draw the conclusion that, in general, men are more excited by the ride
than women are? The numbers, especially if you do not think about them, suggest
the headline, “Amazing new research shows that half of all men but no women at
all are excited by a vehicle’s ‘ride.’” It does not take much statistical know-how to
find fault with this headline. Generalizing from a tiny sample of two men and two
women to the whole U.S. population is laughable. If you sampled another two men
and two women, you would probably get completely different results. But you could
not generalize from those results, either. You cannot conclude much at all about the
whole population from a sample of four people.

What if the sample were larger, say 200 men and 200 women? Conclusions from
a study with this sample size would certainly be more believable than those from a
four-person study. It is easier to believe that the results observed in the larger sample
hold true for the population. But if you found that 50% of all the men and 49% of
all the women in the larger sample said their vehicle ride was comfortable, would
you be willing to conclude that in the population, men are more likely than women
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to find the ride comfortable? What if the difference were larger, say 50% of the men
compared to 40% of the women?

SAMPLING VARIABILITY

You get different results from different samples. Consequently, it takes some thought
to sort out what you can reasonably say about the population, based on the results
from a sample. If you and I each look at samples of 400 people from the same
population, we are not going to get exactly the same answers when we each analyze
our own data. Our samples will undoubtedly include different people, and our results
will differ. With any luck, the results will be similar, but it is very unlikely that they
will be identical to the last decimal place. Even if they are, they probably would
not be the same values that we would obtain if we questioned the whole population.

How much the results from different samples vary from one to another depends
not only on the size of the samples but also on how often the various responses
occur in the population. (Statisticians call this the distribution of responses in the
population.) If everybody in the United States plans to vote for the same candidate
for President — say, the one you have been working for — any old sample will lead
to the same answer to the question, “What percentage of the vote will my candidate
receive?” The answers would not vary from person to person, and they would not
vary from survey to survey. Any survey would tell you that 100% of the voters plan
to vote for your candidate.

On the other hand, if only half of the voters plan to vote for your candidate,
your samples would show more variability. One sample might show that 60% of the
vote will go to your candidate, and another sample might show that your candidate
will get 45% of the vote. If 1000 researchers took random samples of 400 voters
each, they would obtain a lot of different percentages. Some would be close to the
correct figure of 50%, while others would be higher or lower.

By now you should be wondering if the size of the sample has anything to do
with the results of the study. The effect of sample size on any study is indeed
important. For our discussion here, a basic fact to remember is that results from
large samples do not vary as much as results from small samples do. You can test
this on your own with a simple simulated study.

A COMPUTER MODEL

We can use the computer to actually do what we have been talking about. With the
proper instructions, it can set up a population in which half of the people say they
will vote for your candidate, and half say they will not. We can instruct the computer
to conduct a hypothetical survey by randomly selecting 400 cases from this popula-
tion. Then we can tell the computer to calculate from this sample the percentage of
the cases that endorse your candidate. We can have the computer repeat this kind of
survey as many times as we want. Each time, it will select a new random sample of
400 hypothetical people and compute the percentage planning to vote for your can-
didate. (This is called a simulated survey.) This is very important for you to recognize
because we are going to use this principle in Volume VI, titled Design for Six Sigma.
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OTHER STATISTICS

Although we examined the percentage of people planning to vote for a candidate,
we could have looked at some other characteristic, such as mean weight, mean
number of pencils owned, or mean income. The procedure would have been the
same. For each of the random samples from a population, we would have calculated
the mean. Then we would have seen how much the mean values varied from sample
to sample. The results would have been very similar to what we have seen, and the
same basic rules would have applied. After all, percentages agreeing with a statement
are equivalent to means.

How can a percentage be the same thing as a mean? For a variable that can have
only two possible values (such as yes or no, agree or disagree, cured or not cured),
you can code one of the responses as 0 and the other response as 1. If you add up
the values for all of the cases, divide by the number of cases, and then multiply by
100, you will obtain the percentage of cases giving the response coded as 1.

Consider a simple example. You ask five people whether they approve of the
president’s performance. Three say they do, and two say they do not. If you code
Approve as 1, you have the values 1, 1, 1, 0, 0. The mean of these values is 3/5 =
.6. To get the percentage agreeing with the statement, just multiply the mean by
100. In this survey, 60% of the people approved of the president’s performance.

At this point it is important to take a breather. We have introduced the word
statistic quite a few times but without an official explanation. So, what is a statistic?
A statistic is nothing more than some characteristic of a sample. The average height
of the people in a sample is a statistic. So is the standard deviation or the variance
of the heights. The term statistic is used only to describe sample values. The term
parameter is used to describe characteristics of the population. If you could measure
the height of all the people in the United States and calculate their average height,
the result would be a parameter, since it would be the value for the population. Most
of the time, population values, or parameters, are not known. You must estimate
them based on statistics calculated from samples.

Here is what you can you say about the mean of a population, based on the
results observed in a sample:

• When you take a sample from a population and compute the sample mean,
it will not be identical to the mean you would have obtained if you had
observed the entire population.

• Different samples result in different means.
• The distribution of all possible values of the mean, for samples of a

particular size, is called the sampling distribution of the mean.
• The variability of the distribution of sample means depends on how large

your sample is and on how much variability exists in the population from
which the samples are taken.

• As the size of the sample increases, the variability of the sample means
decreases.

• As variability in a population increases, so does the variability of the
sample means.
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DESCRIBING DATA SETS WITH BOXPLOTS

The final tool to be discussed in this chapter is the boxplot, a very useful graphical
method for summarizing data. Boxplots can be used in two ways: either to describe
a single variable in a data set or to compare two (or more) variables. The keys to
understanding a boxplot are the following:

• The right and left of the box are at the third and first quartiles. Therefore,
the length of the box equals the interquartile range (IQR), and the box
represents the middle 50% of the observations. The height of the box has
no significance.

• The vertical line inside the box indicates the location of the median. The
point inside the box indicates the location of the mean.

• Horizontal lines are drawn from each side of the box. They extend to the
most extreme observations that are no farther than 1.5 IQRs from the box.
They are useful for indicating variability and skewness.

• Observations farther than 1.5 IQRs from the box are shown as individual
points. If they are between 1.5 IQRs and 3 IQRs from the box, they are
called mild outliers and are hollow. Otherwise, they are called extreme
outliers and are solid.

Boxplots are probably most useful for comparing two populations graphically.
As for the terminology and the conventional interpretation of the plot, we owe it all
to the statistician John Tukey.
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Working with the Normal 
Distribution

 

This chapter will explain how to use distributions of the mean to calculate confidence
intervals for the population mean. It will also show how to use them to evaluate
hypotheses about a population mean. The rest of the book will use ideas from this
chapter to evaluate hypotheses of many kinds.

 

OVERVIEW

 

Chapter 3 mentioned that histograms show the shape of the distribution of a particular
sample or population. In fact, if we draw histograms, we will notice that more often
than not the shape looks like a bell. That means that most of the values are bunched
in the center, and as you look farther and farther from the center, you find fewer
and fewer observations.

In most applications and studies, distributions that have this bell shape turn out
to be a particular type of bell-shaped distribution called the

 

 normal distribution. 

 

The
normal distribution is very important in data analysis, as you will see throughout
the rest of this book and in volumes 4, 5, and 6 of this series. In this chapter, you
will look more closely at some characteristics of the normal distribution.

A mathematical equation defines the normal distribution exactly. For a particular
mean and standard deviation, this equation determines what percentage of the obser-
vations falls where. Figure 4.1 is a picture of a normal distribution with a mean of
100 and a standard deviation of 15. As you can see, the distribution is symmetric.
If you folded it in the center, the two sides would match; they are identical. The
center of the distribution is at the mean. The mean of a normal distribution is also
the most frequently occurring value (the mode), and it is the value that splits the
distribution into two equal parts (the median). In any normal distribution, the mean,
median, and mode all have the same value.

 

AREAS IN THE NORMAL DISTRIBUTION

 

For a normal distribution, the percentage of values falling within any interval can
be calculated exactly. For example, in a normal distribution with a mean of 100 and

4
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a standard deviation of 15 (as in Figure 4.1), 68% of all values fall between 85 (one
standard deviation less than the mean) and 115 (one standard deviation more than
the mean). And 95% of all values fall in the range 70 to 130, within two standard
deviations from the mean.

A normal distribution can have any mean and standard deviation. However, the
percentage of cases falling within a particular number of standard deviations from
the mean is always the same. The shape of a normal distribution does not change.
Most of the observations are near the mean, and a mathematical function describes
how many observations are at any given distance (measured in standard deviations)
from the mean. Means and standard deviations differ from variable to variable. But
the percentage of cases within specific intervals is always the same in a true normal
distribution. We are going to use this principle in Volumes IV, V and VI.

It turns out that many variables you can measure have a distribution close to the
mathematical ideal of a normal distribution. We say these variables are “normally
distributed,” even though their distributions are not exactly normal. Usually when
we say this, we mean that the histograms look like Figure 4.1. For example, Fig-
ure 4.2 shows that an actual distribution that is indeed pretty close to normal.

 

FIGURE 4.1 

 

The normal distribution.

 

FIGURE 4.2 

 

Comparison of actual data with a superimposed distribution curve.
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STANDARD SCORES

 

If I tell you that I own 250 books, you probably will not be able to make very much
of this information. You will not know how my library compares to that of the average
consultant. Would it not be much more informative if I told you that I own the average
number of books, or that I am two standard deviations above the average? Then, if
you know that the number of books owned by consultants is normally distributed, you
could calculate exactly what percentage of my colleagues have more books than I do.

To describe my library better in this way, you can calculate what is called a
standard score. It describes the location of a particular case in a distribution: whether
it is above average or below average and how much above or below. The computation
is simple:

1. Take the value and subtract the mean from it. If the difference is positive,
you know the case is above the mean. If it is negative, the case is below
the mean.

2. Divide the difference by the standard deviation. This tells you how many
standard deviation units a score is above or below the average.

For example, if book ownership among consultants is normally distributed with
a mean of 150 and a standard deviation of 50, you can calculate the standard score
for the 250 books I own in this way:

Step 1:

 

 

 

250 (my books) – 150 (average number of books) =
100 (I own 100 books more than the average consultant does.)

Step 2:

 

 

 

100 (difference from step 1)/50 (standard deviation of books) =
2 (standard score)

My standard score is two. Since its sign is positive, it indicates that I have more
books than average. The number two indicates that I am two standard deviation units
above the mean. In a normal distribution, 95% of all cases are within two standard
deviations of the mean. Therefore, you know that my library is remarkable.

In a sample, the average of the standard scores for a variable is always zero,
and the standard deviation is always one. Suppose you ask 15 people on the street
how many hamburgers they consume in a week. If you calculate the mean and
standard deviation for the number of hamburgers eaten by these 15 people and then
compute a standard score for each person, you will get 15 standard scores. The
average of the scores will be zero, and their standard deviation will be one.

When you use standard scores, you can compare values for a case on different
variables. If you have standard scores of 2.9 for number of books, –1.2 for metabolic
rate, and 0.0 for weight, then you know:

• You have many more books than average.
• You have a slower metabolism than average.
• Your weight is exactly the average.
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You could not meaningfully compare the original numbers since they all have
different means and standard deviations. Owning 20 cars is much more extraordinary
than owning 20 shirts.

It is important to recognize that only for this example we focused on two standard
deviations. Nothing prevents us from going even further. For example when we study
Statistical Process Control charting we will be talking about three standard devia-
tions, and certainly when we talk about six sigma we are indeed talking about six
standard deviations.

 

A SAMPLE FROM THE NORMAL DISTRIBUTION

 

Even if a variable is normally distributed in the population, a sample from the
population does not necessarily have a distribution that is exactly normal. Samples
vary, so the distributions for individual samples vary as well. However, if a sample
is reasonably large and it comes from a normal population, its distribution should
look more or less normal. The majority of statistical packages do offer this func-
tionality. For example, the SPSS software package provides additional information
so that the experimenter can actually see the misses of the distribution. Specifically,
SPSS/PC + places colons and dots on the histogram to show a true normal distri-
bution. The colons and dots indicate how many cases would be expected in the
intervals if the distribution were exactly normal with the same mean and standard
deviation as the sample. A colon appears in place of the bar if the normal distribution
falls inside the histogram. A dot appears if the normal distribution falls outside the
histogram (beyond the end of the bar).

 

DISTRIBUTIONS THAT ARE NOT NORMAL

 

The normal distribution is often used as a reference for describing other distributions.
A distribution is called skewed if it is not symmetric but instead has more cases
(more of a “tail”) toward one end of the distribution than the other. If the long tail
is toward larger values, the distribution is called positively skewed, or skewed to the
right. If the tail is toward smaller values, the distribution is negatively skewed, or
skewed to the left. A variable such as income has a positively skewed distribution.
That is because some incomes are very much above average and make a long tail
to the right. Since incomes are rarely less than zero, the tail to the left is not so long.

If a larger proportion of cases falls into the tails of a distribution than into those
of a normal distribution, the distribution has positive kurtosis. If fewer cases fall
into the tails, the distribution has negative kurtosis. You can compute statistics that
measure how much skewness and kurtosis a distribution has, in comparison to a
normal distribution. These statistics are zero if the observed distribution is exactly
normal. Positive values for kurtosis indicate that the tails of a distribution are heavier
than those of a normal distribution. Negative values indicate that a distribution has
lighter tails than a normal distribution does. Of course, the measures of skewness
and kurtosis for samples from a normal distribution will not be exactly zero. Because
of variation from sample to sample, they will fluctuate around zero. To use the
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computer for the calculations, one only needs to identify the command with skewness
and kurtosis, and the computer does the rest.

 

MORE ON THE DISTRIBUTION OF THE MEANS

 

It is understandable that certain variables, such as height and weight, have distribu-
tions that are approximately normal. We know that most of the world is pretty close
to average and that the farther we move from average, the fewer people we find.
But why does the distribution of sample means look like a normal distribution?

This remarkable fact is explained by the Central Limit Theorem. The Central
Limit Theorem says that for samples of a sufficiently large size, the real distribution
of means is almost always approximately normal. The original variable can have
any kind of distribution. It does not have to be bell-shaped in the least. (“Real”
distribution means the one you would get if you took an infinite number of random
samples. The “real” distribution is a mathematical concept. You can get a pretty
good idea of what the “real” distribution looks like by taking a lot of samples and
examining plots of their values — as we have been doing.) Sufficiently large size?
What kind of language is that for a mathematical theorem? Actually, our paraphrase
of the Central Limit Theorem has several vague parts. You have to say what you are
willing to consider “approximately normal” before you know what size sample is
“sufficiently large.” How large a sample you need depends on the way the variable
is distributed. The important point is that the distribution of means gets closer and
closer to normal as the sample size gets larger and larger — regardless of what the
distribution of the original variable looks like. Ultimately, the means will look like
a normal distribution. That is why the normal distribution is so important in data
analysis. Your variable does not have to be normally distributed. Means that you
calculate from samples will be normally distributed, regardless. If the variable you
are studying actually does have a normal distribution, then the distribution of means
will be normal for samples of any size. The further from normal the distribution of
your variable is, the larger the samples have to be for the distribution of the means
to be approximately normal. This is a fundamental assumption under which Statis-
tical Process Control charting operates.

 

MORE ABOUT MEANS OF MEANS

 

So far, we have seen that for a sufficiently large sample size, the distribution of
means is normal. That tells us a lot about how likely different means are, but only
if we know what the mean and standard deviation of the distribution are. The mean
of the “real” distribution of means is the population mean. The mean of the means
is the mean? What does that mean? It means (one step at a time, now): Suppose
you could take an infinite number of samples and calculate the average for each
one. Suppose you could then calculate the average of your averages. What you would
get is the same number as if you just went ahead and took the average of the whole
population. That really is not surprising at all. For example, if 50% of all the people
in a population agree with a statement, then:
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• The true population mean is 50%. We just said that: 50% of all the people
in a population agree.

• The mean of the distribution of sample means from that population is
50%, too.

Similarly, if the average response of a given study in the population is 100, then
the mean of the distribution of means from the population is also 100. It does not
matter how large the samples are, whether you have ten-case samples or 10,000-case
samples. Nor does it matter whether the response is normally distributed. The mean
of the distribution of means is the population mean.

 

THE STANDARD ERROR OF THE MEAN

 

If the mean of the distribution of sample means is the population mean, what is the
standard deviation of the distribution of sample means? Is it also just the standard
deviation of the population? No. As previously mentioned, the standard deviation
of the means depends on two things:

• How large a sample you take. Larger samples mean a smaller standard
deviation for the sample means.

• How much variability exists in the population. Less variability in the
samples also means a smaller standard deviation for the sample means.

To calculate the exact standard deviation of the distribution of sample means,
you must know:

• The standard deviation in the population.
• The number of cases in the sample.

All you have to do is divide the standard deviation by the square root of the
sample size. The result, the standard deviation of the distribution of sample means,
is called the 

 

standard error of the mean.

 

 Although it has an impressive name, it is
still just a standard deviation — the standard deviation of the sample means. Think
about the formula for computing the standard error of the mean: take the standard
deviation of the variable and divide by the square root of the sample size. Suppose
the standard deviation of number of books owned is 50, and the sample size is four
cases. Then the standard error is 50 divided by the square root of 4, to yield 25. If
the sample size is increased to 9, the standard error decreases to 50 divided by the
square root of 9, or 16.7. If the sample size is increased to 100, the standard error
is only 5. The larger the sample size, the less variability there is in the sample means.

 

CALCULATING A CONFIDENCE INTERVAL

 

You have spent a lot of time reading about sample means and how they vary. At this
stage you may wonder why this is necessary. The reason is very simple. You have
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to understand these things in order to use statistics for testing hypotheses about the
population. If you know how much the means vary from sample to sample, you can
draw conclusions about the population by looking at just a single sample. Watch.

Take a well-defined population — the owners of a particular product X. Suppose
that you want to estimate the average satisfaction with that purchase. You randomly
select 25 individuals who have returned their registration cards and send them a
questionnaire. The average satisfaction response of these 25 customers turns out to
be 112, and the standard deviation of their response scores is close to 15, the value
for the population. Based on this sample, what can you conclude about all of the
customers who have purchased product X?

The sample you selected is one of many possible samples. So the mean you
calculated is one of many possible means. In particular, it is one of the means in
the distribution of means for samples of size 25. The problem is that you do not
know where your sample falls in the distribution of means. Is it close to the true
population value? Is it one of the extreme means? Since you do not know the true
value for the response of people who have purchased the product, you cannot tell
if your sample value is too high, too low, or right on target. You never know the
true value in the population, because if you did you would not do the study.

You do not know the population mean, and therefore you do not know the mean
of the distribution of sample means. Nevertheless, you can estimate the standard error
of the mean from your observed standard deviation. Remember, the standard error of
the mean is the standard deviation of the distribution of sample means. The estimated
standard error is the standard deviation (15) divided by the square root of the sample
size (25), which makes 15 divided by 5, or 3. Using this piece of information, you
can visualize the sampling distribution of means, as shown in Figure 4.3.

Based on the Central Limit Theorem, you can assume that the distribution is
normal. That is what the Central Limit Theorem says: for a sufficiently large sample
size, sample means are normally distributed whether the original variable (satisfac-
tion in this case) is normally distributed or not. Since you do not know the mean
satisfaction for the population of owners of the product X, it is labeled with a question
mark in the figure. Because the distribution is normal, you know that 95% of all
sample means should fall within two standard errors of the mean. The standard error
of the mean was found to equal three. So 95% of all sample means should fall within
six of the question mark. The values falling outside of this interval are shaded in
the figure. (We can do this for any level of standard error.)

 

FIGURE 4.3 

 

The sampling distribution of means.

?
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Where is your sample mean in this distribution? Sorry — you cannot figure that
out. If you knew the population value (at the question mark), then you could mark
the location of the mean; but, of course, you do not. Based on this picture, what can
you say about the value of the population mean? Although you cannot give an exact
value, you can calculate a range of values — an interval that should include the
population mean 95% of the time. You calculate the lower limit of this interval by
subtracting two times the standard error from your mean. The lower limit is therefore
112 – 6 = 106. You calculate the upper limit by adding two times the standard error
to your mean. This is 112 + 6 = 118. The interval is from 106 to 118. Now you
have what is known as a 

 

confidence interval,

 

 extending from two standard errors
below the sample mean to two standard errors above the sample mean.

Think of what the diagram shows. You can imagine your sample mean some-
where in the distribution and see what happens. Figure 4.4 shows the sample mean
at 1.5 standard errors above the population mean (the question mark). The confidence
interval is marked off. Does the interval include the unknown population value?
Sure — because it reaches out two standard errors, and the difference between your
sample mean and the population mean is only 1.5 standard errors.

Now imagine your sample value at one standard error unit below the mean, as
in Figure 4.5. Does the confidence interval still include the population value? Yes.
Once again, your sample mean is within two standard errors of the population mean,
so the population mean lies within the confidence interval. The only time your
interval would not include the population value is when your sample mean falls in
the shaded area of Figure 4.3. The shaded region corresponds to the 5% of the
distribution that is more than two standard error units from the population mean.

 

FIGURE 4.4 

 

The sample mean 1.5 standard errors above the population mean.

 

FIGURE 4.5 

 

The sample mean 1 standard error below the population mean.
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(This is the region most often used for analysis. However, in some cases this is not
good enough and we have to go out to three even to six standard error units.)

You do not know the exact value for the population mean. But as shown here,
you can calculate an interval around your sample mean that will include the true,
unknown population mean 95% of the time. This is called a 95% confidence interval.
Of course, you can never tell whether your particular sample mean is one of the
unlikely ones in the shaded region. All you can do is calculate the interval and hope
that you have one of the 95-out-of-a-100 times that the interval includes the popu-
lation value. By the way, there is nothing sacred

 

 

 

about the 95% confidence. A given
confidence is determined a priori by the experimenter and depends on the practicality
of the study. So it is not unusual to see a 90%, 99%, 99.9% or any other confidence.

 

MORE SATISFIED THAN AVERAGE?

 

You calculated a mean satisfaction response of 112 for a sample of 25 customers
for product X. This is 12 points higher than 100, which is supposedly the average
value for people in general. Is it reasonable to conclude that these customers of
product X are different, on average, from people in general? You know that sample
means vary, so you do not expect the value observed in a sample to be exactly the
same as the population value. And now the question arises: Where did the population
come in here? We were just looking at people who purchased product X, right? Yes.
In this rather improbable study, the “population” is just the people selected for the
study based on the most current information about the purchasers of this particular
product. For them, the “population value” of average satisfaction response is the
value you would get if you gave a questionnaire to everybody who bought the product
and you then calculated the average. The problem with this scenario, however, is
that any time you are talking about statistics, the word “population” has a special
meaning. It is the people (or animals or things) that you are trying to draw conclu-
sions about. In this study, it is the satisfaction level of all possible customers for
this product. In other words, we use samples to predict populations in our simple
case. What you have to figure out from your sample of respondents is this: How
likely is this sample mean of 112 if the population mean (for everybody who ever
bought this product X) is 100?

Use a picture again. Figure 4.6 is the distribution of means for samples of size
25 when the population value is 100 and the standard deviation is 15. It looks a lot

 

FIGURE 4.6 

 

The distribution of mean for sample size 25.
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like some of the previous diagrams. The difference is that instead of the question
mark, you see the value 100, the mean for people in general. You can now locate
the observed sample mean on the distribution. It does not fit well, since the value
112 is four standard error units above the mean. This result indicates that it is very
unlikely to observe a sample mean as large as 112 in a sample of size 25 when the
true population value is 100. Only about 0.006% of the cases in a normal distribution
have values as much as four standard deviations away from the mean. So it appears
highly unlikely that the customers of product X have the same mean satisfaction
response as the general population. On the other hand, if you had observed a mean
response of 103 in your sample, you could not say with confidence that the customers
were more satisfied than average, since a sample mean of 103 is perfectly reasonable
for a population value of 100.
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Testing Hypotheses 
about Two Independent 
Means

 

The previous chapters have addressed several issues about samples, means, and
standard errors, with the intent to explain the data. The implication was that they
are all useful but quite different from each other. In fact, you may get different
answers if you use different samples. This chapter will explore these differences
because the real question is, How much will they differ? How can you decide
whether a difference in sample means can be attributed to their natural variability
or to a real difference between groups in the population?

 

OVERVIEW

 

At this point in the book, you can look at specific data and describe a sample. That
is all you can do if you cannot understand the relationships between samples and
populations. However, now you are ready to do more. You can look in the sample
at the percentage of a response and relate that information back to the population.
You know that you have one of many possible samples and that the chances are slim
that the value calculated from the sample is identical to the population value. You
can also calculate the standard error and use that number to calculate a 95% confi-
dence or any other confidence you desire. Even though this calculation is possible,
you never know if the particular interval you calculated contains the population
value (it either does or it does not). However,  you do know that the interval will
include the population value 95 times out of 100 (or whatever the confidence).

If the confidence is narrow, that is a good indication because you want to pinpoint
the population value as closely as possible. You do not know where within a
confidence interval the population value might be. It is much more useful, then, to
know that the 95% confidence interval is between a set of limits rather than outside
of either side of the set. When you conduct a survey or experiment, look at both the
mean and its confidence interval. If the interval is wide, you have only a very rough
estimate of the population mean.

5
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IS THE DIFFERENCE REAL?

 

So now the question is, “Is the difference real?” Usually when you conduct a study,
you have some ideas that you want to explore. These ideas, often called hypotheses,
typically involve comparisons of several groups, such as “Do men and women find
life equally exciting?” “Does income differ between people who find life exciting
and those who do not?” “Is a new machine making a real difference?” 

Chances are if you compare two or more things, you are going to find some
differences. After all, no two things are exactly the same. The question is not so
much if things are different but rather, what can you make of the difference?

So far we have seen that different samples from the same population give
different results. The real issue is, how much will they differ? How can you decide
whether a difference in sample means can be attributed to their natural variability
or to a real difference between groups in the population?

 

EVALUATING A DIFFERENCE BETWEEN MEANS

 

How can you decide when a difference between two means is big enough for you
to believe that the two samples are from a population with different means? It depends
on how willing you are to be wrong. Look at Figure 5.1, which is the real distribution
of differences for samples of size 20 from a distribution with a standard deviation
of 15. (You can calculate the standard deviation of the distribution of differences. It
is called the standard error of the difference.) Since the distribution is normal, you
can find out what percentage of the samples falls into each of the intervals.

The scale on the distribution is marked with the actual values and with “stan-
dardized” values, which are computed by dividing the differences by the standard
error. Looking at standardized distances is convenient, since the percentage of cases
within a standardized distance from the mean is always the same. For example, 34%
of all samples are between zero and one standardized unit greater than the mean,
and another 34% are between zero and one standardized unit less than the mean. If
you always express your distances in standardized units, you can use the same normal
distribution for evaluating the likelihood of a particular difference.

From Figure 5.1, you can see that about 13% of the time, you would expect to
have at least a 7-point difference in the sample means when two population means

 

FIGURE 5.1 

 

Theoretical distribution of differences of means.

6.7%

−9.48 −4.74 0 4.74 9.48
−2 −1 1 2
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are equal. Why? You just found out that the 7-point difference is 1.5 standard errors.
Look on the figure to see what percentage of the differences is that big. You should
look at the area to the right of +1.5 and the area to the left of –1.5. Since the
distribution is symmetric, the two areas are equal. Each one is about 6.7% of the
total, and together they make up a little over 13% of the total. So about 13% of
differences in means are going to be as big as 1.5 standard errors (or 7 points) if
the real difference in means is zero.

 

WHY THE ENTIRE AREA?

 

You may wonder why you do not find the probability of getting a difference of just
seven. Think of the following analogy. You are tired of the life of a poor student
and have decided that the quickest (legal) way to upgrade your status is to marry
rich. You settle on a definition of rich. Perhaps you need an income of $250,000 a
year. Now you want to see how likely it is that you can achieve your goal. You go
to the university library and ask the reference librarian to find some facts. Would
you ask about just the number of eligible singles of the opposite sex with incomes
of $250,000? No, you would ask for incomes of $250,000 or more, since they all
satisfy your criterion of richness. In evaluating your chances of marrying rich, you
would include all incomes of $250,000 or more. Similarly, when you are trying to
decide whether seven is a likely outcome for a difference, your interest is not just
in the number seven but in all differences that are at least that large.

Since both outcomes were possible and you did not know the outcome before
you actually ran your experiment, when you evaluate the chances of seeing a
difference at least as large as seven points, you have to look in both directions. Both
of the extreme regions of the distribution are atypical. Sometimes, though, you can
look in just one direction. It really depends on how you stated your initial hypothesis.
If you hypothesized that you expect higher values you would be looking at the right
tail, if lower you would be looking at the left tail of the distribution. This type of
test is called a 

 

one-tailed test.

 

 Your decision to use a one-tailed test is a very important
one because once you see the results you cannot go back and switch sides and apply
the one-tailed test for a difference that is in the other direction. Use a one-tailed test
only if you definitely expect one specific group to be higher. Otherwise, use a

 

two-tailed test 

 

and look at both sides of the distribution.

 

DRAWING A CONCLUSION

 

Now that you have seen how to use the standard error of a difference in means, how
do you compute it? You take the square root of the variance of the difference. How
do you get the variance of the difference? When you have two means from inde-
pendent samples, the variance of their difference equals the sum of their variances.
This neat little fact would take too long to prove here, but you can see how it is
used. The example above had two means from independent samples of size 20, taken
from a population whose standard deviation was 15. You calculate the standard error
of the difference by following these steps:
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• As explained earlier, the standard error of each mean equals 15 (the
standard deviation) divided by the square root of 20 (the sample size).

• The variance of each mean is just the square of that fraction: 15 squared
divided by 20. That is 225 divided by 20, or 11.25.

• The variance of the difference between the means is the sum of the
variances of each mean. That is 11.25 plus 11.25, or 22.5.

• The standard error of the difference between the means is therefore the
square root of 22.5, or 4.74.

 

MORE ON HYPOTHESIS TESTING

 

In the previous example, you performed a statistical test of a hypothesis. You tested
whether two variables have the same average values in the population. This was the
basic procedure:

• You wanted to draw conclusions about the population, but you could not
experiment with the entire population, so you had to base your conclusions
about the population on the results from the sample.

• You calculated how likely it is that a difference as large as the one you
observed would occur if no difference exists between the two means in
the population.

• Since there was a 13% chance that you could see a difference as large as
the one you observed if the population means did not differ, the evidence
was too skimpy to reject the hypothesis of no difference.

 

WHY IS THAT SO COMPLICATED?

 

You are probably wondering why all of a sudden we use verbiage that perhaps is
not very scientific. Why are we going around in circles? Why do we have to assume
that no difference exists between the means in the population and then figure out
how likely the observed results are if no difference exists? Why not just calculate
the probability that a difference exists? That is what we really want to know, is it not?

Although it sounds like a good idea, in this situation you cannot calculate the
probability that a difference is present. A difference either exists or it does not. If we
have two sample means, say 11 and 12, what do they tell us about whether it is true
that the two means in the population are different? Not much. The probability of getting
two sample means that differ by at least one depends on how much of a difference is
present in the population. It depends on whether the true difference is 0, 1, 2, 4, 100,
or whatever. A difference of one may be very unlikely if the true difference is 100 but
perfectly likely if the true difference is zero or two. But we do not know what the true
difference is. We can only consider the likelihood of a value of one or more in relation
to some hypothetical situation, such as a true difference of zero or a true difference
of 100. We cannot assign the difference some overall probability.

What if you found that the two sample means were 11 and 11? Would you claim
that it is certain the two means are exactly equal in the population? Would you be
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willing to forget the possibility that the population means might be 11 and 11.1? Of
course not. (I hope). You have seen that samples vary and that it is most unlikely
for two sample means to be exactly equal even if the two means are equal in the
population. Similarly, you can easily get sample means that are the same from
populations whose means differ to a small extent.

You simply cannot figure out the probability that two population means are equal
or unequal. You can, however, estimate the probability that you would see a differ-
ence of at least two (or some other value) in the sample when no difference exists
in the population (or when a difference of a particular size is present). In the previous
example, you saw the calculations for the probability that the means from two
samples would differ by at least seven when no difference exists in the population.

To test a hypothesis, you do the following:

1. State the hypothesis of interest. This is what you think is really true for
the population.

2. Determine the frame of reference you will use to evaluate your hypothesis.
This is what is true in the population if your hypothesis is wrong. This
“frame of reference” is called the 

 

null hypothesis, 

 

since it describes the
population when the hypothesis you are interested in is not true, when it
is null.

3. Calculate the probability that you would see a difference at least as large
as the one you observed in your sample if the null hypothesis is true.

4. If this probability (called the observed significance level) is small, say
less than .05, reject the null hypothesis.

5. If the observed significance level is large, do not reject the null hypothesis.
This does not mean that you accept the null hypothesis. You simply do
not reject it. You remain uncertain.

You must state the null hypothesis in a way that allows you to calculate the
distribution of sample means when it is true. You cannot use a null hypothesis that
says the population means are unequal, since no single distribution of sample means
exists for that statement. But you can have a null hypothesis that says the difference
between two population means is five or some other particular number. The null
hypothesis must provide the reference point for calculating the probability of the
observed results. You calculate the probability of the observed results if the null
hypothesis is true.
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Testing Hypotheses 
about Two Dependent 
Means

 

The previous chapters have addressed several issues about samples, means, and
standard errors, with the intent to explain the data. It has been pointed out that all
differ and that depending on the sample you may get different answers. This chapter
will explore these differences based on two dependent means because the real issue
is, how much do they differ? How can you decide whether a difference in sample
means can be attributed to their natural variability or to a real difference between
groups in the population? And what is significant?

 

OVERVIEW

 

Consider another example of testing a hypothesis. We want to see if a difference
exists in the average of two groups. When we do a comparison of two groups, we
must also be cognizant of the intervening variable(s). An intervening variable is a
variable that may explain the difference between the two groups. If that is the case
we can minimize this problem by restricting the comparison of that particular
variable for that group. By doing that restriction we will no longer affect the
comparison as much. As a consequence, the results will be much easier to interpret.

In this case, the null hypothesis is that the groups have the same average. On
the other hand, the hypothesis of interest (sometimes called the 

 

alternative

 

 

 

hypoth-
esis

 

) is that the average of the two groups is not the same. The groups differ.

 

USING THE 

 

T

 

 DISTRIBUTION

 

So far, we always knew or pretended to know the standard deviation in the popula-
tion. In fact, though, it usually must be estimated from the sample. When this is
necessary — when we use the same sample both to test the hypothesis and to estimate
the standard deviation in the population — we have to use the t distribution instead
of the normal distribution. The t distribution is much like the normal distribution.
It just shifts the area in the normal distribution to adjust for the fact that we do not
know what the standard deviations really are. (When sample sizes are large, the t
distribution looks very much like the normal distribution.)

6
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As always, we compute the difference between the two means, find its standard
error, and then calculate how improbable the observed difference is. However, the
answer to our question of “significant” difference is dependent on the pooled variance
estimate and the degrees of freedom. The degrees of freedom are based on the
number of observations in each of the two groups.

 

TWO TYPES OF ERRORS

 

You can make two types of mistakes when testing a hypothesis about two means.
You can claim that the two means are not equal in the population when in fact they
are. Or you can fail to say that a difference exists when it actually does. Statisticians,
being very methodical people, have given these two types of errors particularly
descriptive, easy-to-remember names. They call the first error (claiming that two
means are not equal when in fact they are) a 

 

Type 1 error.

 

 The second type of error
(not finding a difference when one really exists) is called a 

 

Type 2 error.

 

It may be easy to remember that you call the two kinds of error Type 1 and
Type 2, but how do you remember which is which? Perhaps you can remember it
this way. The Type 1 error is the error you are tempted to make. When you say,
proudly, “There is a difference. Something is happening here. I have found a rela-
tionship,” you are taking the chance of making a Type 1 error.

If you can remember what the Type 1 error is, then it is pretty easy to figure
out that the Type 2 error is the one you are not tempted to make, saying “Nothing
is happening here” when a difference really is present in the population.

 

U

 

SING

 

 S

 

OFTWARE

 

 

 

TO
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ENERATE
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UTPUT

 

 

 

FROM

 

 

 

THE

 

 

 

T

 

 T

 

EST

 

 P

 

ROCEDURE

 

The computation of the t test differs depending on whether you assume that in the
population the two groups have the same variances or not. If you can assume that
the two variances are equal, use the numbers in the columns labeled pooled variance
estimate. If you cannot assume that the two variances are equal, use the t test labeled
separate variance estimate. The ratio of the variances in the two samples is shown
in the column labeled F value. Next to the F value, most software shows the
probability that you would see a difference at least as large as the one observed in
the sample if the variances are equal in the population and if the distribution of the
variable is normal. (The F test for equality of variances is quite sensitive to departures
from normality, while the t test is not. If the data are not from normal populations,
the observed significance level for the F statistic may be unreliable.) If the observed
significance level is large, you have little reason to worry about your variances. If
the number is small, you should use the t test marked separate variance estimate. In
general, it is a good idea to use the separate variance t test whenever you suspect
that the variances are unequal.

 

INTERPRETING A 

 

T

 

 TEST

 

It is impossible to prove, based on samples, that two population means are exactly
equal. What if variable X in the population has a mean of 3.2500 units, and variable

 

SL3127_frame_MASTER.book  Page 58  Monday, July 1, 2002  9:38 AM



 

Testing Hypotheses about Two Dependent Means

 

59

 

Y has a mean of 3.2501 units? Since sample means differ, and the statistical proce-
dures for evaluating differences between means must allow for variability from
sample to sample, we will never be able to detect such a small difference in the
population. What does happen instead is that we take two samples, compute a t test,
and find a large observed significance level. Perhaps we find a probability of .50
that the t value could be observed in a population with no difference. This large
observed significance level does not tell us that the means are exactly equal. It just
indicates that the results would not be “far out” if the two means are equal in the
population. So instead of embracing the null hypothesis and claiming that it is true,
we just say that we have no evidence to believe that it is not true. We cannot prove
the null hypothesis.

 

AN ANALOGY: COIN FLIPS

 

Suppose someone comes up to you, hands you a coin, and says, “Tell me if this is
a fair coin — a coin for which heads and tails are equally likely.” If you had nothing
better to do, you would probably start flipping the coin and counting the number of
times heads and tails occur. But you are no longer naive. You know that if you flip
a fair coin 10 times, you will not often get exactly five heads and five tails. All sorts
of outcomes are possible. There is even a reasonable chance that with a fair coin
you will get eight tails and two heads or eight heads and two tails. However, as the
coin becomes less and less unfair, it gets harder and harder for you to detect the
difference. If the true probability of a head on the coin is .4999 instead of .5000,
you would never figure that out unless you are willing to spend the rest of your life
flipping coins. Any combination of flips that you come up with will appear perfectly
reasonable if the coin is fair or if it is minutely biased. Although you can disprove
with a certain degree of confidence that a coin is fair, it is impossible to prove that
it is exactly fair. That is why we cannot say we proved that the average of any
variable or group is the same as the average of another variable or group. All we
can say is that the evidence did not disprove it.

 

OBSERVED SIGNIFICANCE LEVELS

 

When your observed significance level is small, its interpretation is fairly straight-
forward: the two means seem to be unequal in the population. The observed signif-
icance level tells you the probability that the observed difference could be due to
chance. The observed significance level is the probability that your sample could
show a difference at least as large as the one that you observed if the means are
really equal.

So what is a small significance level? Most of the time, significance levels are
considered small if they are less than .05; sometimes, if they are less than .01. Rather
than just rejecting or not rejecting the null hypothesis, look at the actual significance
level as well. An observed significance level of .06 is not the same as an observed
significance level of .92, though both may not be statistically significant. When
reporting your results, give the exact observed significance level. It will help the

 

SL3127_frame_MASTER.book  Page 59  Monday, July 1, 2002  9:38 AM



 

60

 

Six Sigma and Beyond: Statistics and Probability, Volume III

 

reader evaluate your results. Treat the observed significance level as a guide to
whether or not the difference could be due to chance alone.

If your observed significance level is too large to reject the hypothesis that the
means are equal, more than one explanation is possible. The first explanation is that
no difference may exist between the two means or that it may be so small that you
cannot detect it. If the true difference is very small, it may not matter that you cannot
find it. Who really cares about a tiny difference (such as a difference in annual
income of ten dollars)? Little, if anything, is lost by your failure to establish such
tiny differences.

The second explanation is more troublesome. Perhaps an important difference
does exist, and you cannot find it. This can occur if the sample size is small.

If you flip a coin only twice, you cannot establish whether it is fair. A fair coin
has a 50% chance of coming up heads twice or tails twice in two flips and a 50%
chance of coming up with one of each. Any outcome that you see is consistent with
the coin’s being fair. As the number of flips increases, so does your ability to detect
differences. To detect a small difference, you need a big sample so that the difference
would clearly be outside the expected degree of sample variation.

The variability of the responses (in the population) also affects your ability to
detect differences. If the observations vary a great deal, the sample means will vary
a lot as well. Even large differences in observed means can be attributed to variability
among the samples.

To wrap up all of this: if you do not find evidence to reject the hypothesis that
two means are equal in the population, one of two possibilities is true:

• The means are equal or very similar.
• The means are unequal, but you cannot detect the difference because of

small sample size, large variability, or both.

 

TAILS AND SIGNIFICANCE TESTS

 

An observed significance level printed on a computerized t test output is labeled
2-TAIL PROB, standing for two-tailed probability. This value tells you the probability
that you would see in either direction a difference at least as large as the one you
would observe if no difference existed in the population. Either the first group has a
mean larger than that of the second group by at least the observed size, or the second
group has a mean larger than that of the first group by at least the observed size.

If you do not know which of the two groups should have the larger mean, that
is what you have to ask. Differences in either direction cast doubt on the null
hypothesis that in the population the two groups have the same means. If you do
know in advance which group will have the larger mean if they differ, then you use
a one-tailed significance level.

Suppose you know that a new drug for insomnia will either leave the length of
time you need to fall asleep unchanged or decrease it. You take two random samples
of people and perform an experiment. One group gets the drug, and the other gets
a placebo (a fake drug just to make the subjects think they are being treated). Then
you find the average time it takes each group to fall asleep. You calculate the
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difference between the two means, along with its standard error. To find out how
often you would get a difference of this magnitude by chance when the drug and
placebo are equally effective, you need only calculate the probability that you see
a decrease at least as large as the one observed. You are confident that people treated
with the drug will not take longer to fall asleep, so you decide in advance not even
to test for that possibility.

Think back to the coin analogy. Suppose your friend tells you, as he is handing
you the coin, that he suspects the coin is biased. Perhaps his wife always uses it to
settle disputes, and she always bets heads and wins. You have a pretty good suspicion
that the coin is biased in favor of heads and no reason at all to suspect bias in favor
of tails. If you toss the coin ten times, and it comes up all heads, you just want to
know what the probability is that a fair coin comes up ten heads out of ten flips.
You do not worry that it might have come up with ten tails, since the only situations
that will cause you to doubt your coin are excesses of heads.

If you know in advance which of two means should be larger, you can convert
the two-tailed significance level to a one-tailed level. All you do is divide the
two-tailed probability by two. The result tells you the percentage of the t distribution
in one of the tails.

 

THE HYPOTHESIS-TESTING PROCESS

 

In the previous example, we used a statistical technique called the t test to test the
hypothesis that two groups have the same mean in the population. We did the
following:

• For each of the groups, we calculated the mean of the variable we were
interested in comparing.

• We subtracted one mean from the other to determine the difference
between the two.

• We calculated a t statistic by dividing the difference of the two sample
means by its standard error.

• We calculated the observed significance level. This told us how often we
would expect to see a difference as large as the one we observed if no
difference existed between the groups in the population.

• If the observed significance level was small (less than .05), we rejected
the hypothesis that the two means are equal in the population.

• Otherwise, we did not reject the null hypothesis, and we did not accept
it either. We remained undecided. That is because we did not know
whether no difference was present or whether our sample was simply too
small to detect the difference.

This procedure is the same for tests of most hypotheses:

• You formulate a null hypothesis and its alternative.
• You calculate the probability of observing a difference of a particular

magnitude in the sample when the null hypothesis is true.
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• If this probability (the observed significance level) is small enough, you
reject the null hypothesis.

• If the probability is not small enough, you remain undecided.

The only part of this ritual that changes for different situations is the actual
statistic used to evaluate the probability of the observed difference. In the chapters
that follow, we will use different types of statistics to test hypotheses that have these
characteristics:

• Variables are independent.
• Several groups have the same means.
• No linear relationship exists among several variables.

If you make sure now that you understand the way hypothesis testing works,
the rest of this book will be easy to understand.

 

ASSUMPTIONS NEEDED

 

To perform a statistical test of a hypothesis, you must make certain assumptions
about the data. The particular assumptions you must make depend on the statistical
test you are using. Some procedures require stricter assumptions than others. The
assumptions are needed so that you (or your computer) can figure out what the
distribution of the statistic is. Unless you know the distribution, you cannot determine
the correct significance levels. For the pooled-variance t test, you need to assume
that you have two random samples with the same population variance. You also need
to assume that the distribution of the means is approximately normal, which can
happen one of two ways: 

• The variable is normally distributed, so the means will automatically be
normally distributed. 

• The sample size is large enough to allow you to rely on the Central Limit
Theorem to make sure that the means are distributed normally.

Of course, some assumptions are more important than others. Moderate violation
of some of them may not have very serious consequences. Therefore it is important
to know, for each statistical procedure, not only what assumptions are needed but
also how severely their violation may influence the results. We will talk about these
things when we discuss the different statistical procedures. For example, as men-
tioned earlier, the F test for equality of variances is quite sensitive to departures
from normality. The t test for equality of means is less so.

Based on the means observed in two independent samples, how can you test the
hypothesis that two population means are equal? Here is the procedure:

• To test the null hypothesis that two population means are equal, you must
calculate the probability of seeing a difference at least as large as the one
you have observed if no difference exists in the population.
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• The hypothesis that no difference exists between the two population means
is called the null hypothesis.

• The probability of seeing a difference at least as large as the one you have
observed, when the null hypothesis is true, is called the observed signifi-
cance level.

• If the observed significance level is small, usually less than .05, you reject
the null hypothesis.

• If you reject the null hypothesis when it is true, you make a Type 1 error.
If you do not reject the null hypothesis when it is false, you make a Type
2 error.

• The t test is used to test the hypothesis that two population means are equal.

 

PAIRED EXPERIMENTAL DESIGNS

 

When comparing two treatments in an experiment, is it always better to form pairs
of similar subjects (or to observe the same subject under both conditions) than to use
two independent groups? No. Paired experimental designs are only useful when you
can form pairs on the basis of a variable that is related to the one you are studying.
If you pair your subjects based on shoe size when you are studying responses to a
new drug, the paired design actually makes it less likely that you can identify a true
difference when it exists. The two members of a pair are not alike in any way that
matters. In this case, using a paired t test makes it more difficult, statistically, to detect
true differences than just treating the two groups as independent samples.

A paired design is a good way to eliminate some of the differences between
subjects in two groups so you can focus on the particular difference that you are
testing. But you need to keep some things in mind:

• If the effect of a treatment does not wear off quickly, you must make sure
that enough time passes between treatments so that one wears off before
another begins. Otherwise, you will not know whether the first or the
second treatment is causing the results during the second observation.

• You should also be aware of the learning effect. You encounter it when a
subject’s response improves merely by doing the same thing again. For
example, if you give subjects the same test twice, they may do better the
second time, regardless of what else has happened.

You must pay attention to both the timing and the sequence of administering
the treatments. You may also want to include a control group that receives no
treatment but undergoes the same measurements that the treatment groups undergo.

 

SIGNIFICANCE VS. IMPORTANCE

 

What does it mean if you reject the null hypothesis that two population means are
equal? Does it mean that an important difference exists between the two groups?
Not necessarily. Whether a difference of half a year of education between two groups
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is found to be statistically significant or not depends on several factors. It depends
on the variability in the two groups, and it depends on the sample sizes.

A difference can be statistically significant with a sample size of 100, while the
same difference would not be significant with a sample size of 50. The difference
between the two sample means is the same, half a year, but its statistical interpretation
differs. For large sample sizes, small differences between groups may be statistically
significant, while for small sample sizes, even large differences may not be.

What can you make of this? Finding that a difference is statistically significant
does not mean that the difference is large, nor does it mean that the difference is
important from a research point of view. For sufficiently large sample sizes, you
might find that even a small difference is statistically significant. That does not mean
that the difference is of any practical importance. For example, we all know that on
the average, an extra month of education will not do much for you. It is unlikely to
alter your perception of the world. It probably does little to enhance your ability to
explain why some people find life exciting and others do not.

On the other hand, if the sample sizes in the two groups are small, even a difference
of four years of education may not appear to be statistically significant. In this case,
you do not want to rule out a variable that may prove to be an important variable.
Instead, you must worry about the fact that with small sample sizes you can miss
important differences. You must allow yourself the possibility that a big difference
exists because your ability to find it is poor. The probability of detecting a difference
of a particular magnitude when it exists is called the power of a test. You can estimate
in advance how big a sample you need in order to detect a difference that you consider
really important. Discussion of how that is done is a little beyond this book. However,
the reader should understand that the power is actually determined by three factors:

Effect size — The probability of achieving statistical significance is based not
only on statistical considerations but also on the actual magnitude of the
effect of interest.

Alpha (

 

a

 

) — As alpha (Type 1 error) becomes more restrictive, power
decreases. This means that as the experimenter reduces the chance of finding
an incorrect significant effect, the probability of correctly finding an effect
also decreases.

Sample size — At any given alpha level, increased sample sizes always
produce greater power of the statistical test. But increasing sample size can
also produce “too much” power. This means that when you increase sample
size, smaller and smaller effects will be found to be statistically significant,
until at very large sample sizes almost any effect is significant. Remember
that small sample sizes will make the statistical test insensitive and that
large samples will make it overly sensitive. Figure 6.1 shows an example
of the impact of sample size on power for various alpha levels (.01, .05,
.10). Needless to say, the experimenter must consider the impact of power
before selecting the alpha level.

 

SL3127_frame_MASTER.book  Page 64  Monday, July 1, 2002  9:38 AM



 

Testing Hypotheses about Two Dependent Means

 

65

 

In summary, remember that even though two groups are found to be statistically
different, their difference is not necessarily of practical importance. Evaluate the
difference on its own merits.

How can you test the null hypothesis that two percentages are equal in the
population? How can you test the null hypothesis that two variables are independent?
Here are the things that you need to know and will be discussed later:

• Observed frequencies are simply the numbers of cases with specific
combinations of values.

• Expected frequencies are the numbers of cases that would have specific
combinations of values if the null hypothesis were true.

• The chi-square statistic is based on a comparison of observed frequencies
with expected frequencies. From it, you can obtain an observed signifi-
cance level for the hypothesis that two proportions are equal.

• Two variables are independent if knowing the value of one variable tells
you nothing about the value of the other.

• The degrees of freedom of a cross-tabulation reflect the number of cells in
the table that are free to vary. You compute them by taking the number of
rows minus one and multiplying that by the number of columns minus one.

• From the chi-square statistic and the degrees of freedom in a cross-
tabulation, you can calculate the observed significance level for the null
hypothesis that the two variables are unrelated.

• Chi-square increases in direct proportion to sample size if the strength of
the relationship stays the same. If you double the number of cases in each
cell of a cross-tabulation, chi-square is doubled.

 

FIGURE 6.1 

 

Impact of sample size on power for various alpha levels (.01, .05, .10).
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Comparing Several 
Means

 

This chapter will examine whether or not the observed differences in the samples
may be attributed to just the natural variability among sample means or whether a
reason exists why the groups have different means in the population.

 

OVERVIEW

 

If by constructing histograms and calculating some basic descriptive statistics we
have concluded that some differences are present in our groups of study, we now
need to figure out whether the observed differences between the samples may be
attributed to just the natural variability among sample means or whether we have
reason to believe that the groups have different means in the population.

The null hypothesis says that in the population, the means of the groups are
equal. That is, no difference exists in the average of our tested response. The
alternative hypothesis is that a difference exists. The alternative hypothesis does not
say which groups differ from one another. It just says that the groups are not all the
same — at least one of the groups differs from the others.

 

ANALYSIS OF VARIANCE

 

The statistical technique used to test the null hypothesis that several population
means are equal is analysis of variance (ANOVA). It is called that because it
examines the variability in the sample and, based on the variability, it determines
whether there is reason to believe the population means are unequal. We will be
drawing conclusions about means by looking at variability.

All software statistical packages contain several different procedures that can
perform analysis of variance. We will begin with the simplest format of ANOVA,
which is the ONEWAY procedure. It is called one-way analysis of variance because
cases fall into different groups based on their values for one variable.

 

NECESSARY ASSUMPTIONS

 

The data must meet two conditions for you to use analysis of variance:

7
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1. Each of the groups must be a random sample from a normal population.
2. In the population, the variances in all groups must be equal.

You can visually check these conditions by making a histogram of the data for
each group and seeing whether the data are approximately normal. To check whether
the groups have the same variance in the population, you can examine the histograms
as well as compute the variances for each of the groups and compare them. In
practice, analysis of variance gives good results even if the normality assumption
does not quite hold. If the number of observations in each of the groups is fairly
similar, the equal variance assumption is also not too important. The assumption of
random samples, however, is always important and cannot be relaxed.

In analysis of variance, the observed variability in the sample is divided, or
partitioned, into two parts: variability of the observations within a group (around
the group mean) and variability between the group means. Why are we talking about
variability? Are we not testing hypotheses about means? Previously we mentioned
that a relationship exists between variability of observations (in the population) and
variability of sample means. If you know the standard deviation of the observations,
you can estimate how much the sample means should vary. In your study, you have
several different groups (for example, in our earlier example of the ride, we had
individuals who found it comfortable, normal and rough). If the null hypothesis is
true (that is, if all three groups have the same mean in the population), you can
estimate how much observed means should vary due to sampling variation alone. If
the means you actually observe vary more than you would expect from sampling
variation, you have reason to believe that this extra variability is due to the fact that
some of the groups do not have the same mean in the population.

 

WITHIN-GROUPS VARIABILITY

 

We are going to look a little more closely now at the two types of variability we
need to consider. 

 

Within-groups variability

 

 is a measure of how much the observa-
tions within a group vary. It is simply the variance of the observations within a group
in your sample, and it is used to estimate the variance within a group in the
population. (Remember, analysis of variance requires the assumption that all of the
groups have the same variance in the population.) Since you do not know if all of
the groups have the same mean, you cannot just calculate the variance for all of the
cases together. You must calculate the variance for each of the groups individually
and then combine these into an “average” variance.

For example, suppose you have three groups of 20 cases each. All 20 cases in
the first group have a value of 100, all 20 cases in the second group have a value
of 50, and all 20 cases in the third group have a value of 0. Your best guess for the
population variance within a group is zero. It appears from your sample that the
values of the cases in any particular group do not vary at all. But if you had computed
the variance for all of the cases together, it would not even be close to zero. You
would calculate the overall mean as 50, and cases in the first and third groups would
all vary from this overall mean by 50. There would be plenty of variation.
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BETWEEN-GROUPS VARIABILITY

 

We noted earlier that a relationship exists between the variability of the observations
in a population and the variability of sample means from that population. If you
divide the standard deviation of the observations by the square root of the number
of observations, you have an estimate of the standard deviation of the sample means,
also known as the standard error. So if you know what the standard error of the
mean is, you can estimate what the standard deviation of the original observations
must be. You just multiply the standard error by the square root of the number of
cases to get an estimate of the standard deviation of the observations. You square
this to get an estimate of the variance.

Using this insight, you can obtain an estimate of the variance based on

 

between-groups variability.

 

 You have a sample mean for each of the groups, and
you can compute how much these means vary. If the population mean is the same
in all three groups, you can use the variability between the sample means (and the
sizes of the sample groups) to estimate the variability of the original observations.
Of course, this estimate depends on whether the population means really are the
same in all three groups — which is the null hypothesis. If the null hypothesis is
true, the between-groups estimate is correct. However, if the groups have different
means in the population, then the between groups estimate (the estimate of variability
based on the group means) will be too large.

 

CALCULATING THE F RATIO

 

You now have two estimates of the variability in the population: the within-groups
mean square and the between-groups mean square. The within-groups mean square
is based on how much the observations within each of the groups vary. The between-
groups mean square is based on how much the group means vary among themselves.
If the null hypothesis is true, the two numbers should be close to each other. If we
divide one by the other, the ratio should be close to one.

The statistical test for the null hypothesis that all of the groups have the same
mean in the population is based on computing such a ratio. It is called an F statistic.
You take the between-groups mean square and divide it by the within-groups mean
square as shown in the following formula:

F = between-groups mean square/within-groups mean square

 

MULTIPLE COMPARISON PROCEDURES

 

A significant F value tells you only that the population means are probably not all
equal. It does not tell you which pairs of groups appear to have different means.
You can reject the null hypothesis that all means are equal in several different
situations. For example, people who find the ride comfortable may differ in age from
those who find the ride rough but not from those who find the ride normal. Or people
who find the ride comfortable may differ in age from both of the other groups. In
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most situations, you want to pinpoint exactly where the differences are. To do this,
you must use 

 

multiple comparison procedures.

 

Why do you need yet another statistical technique? Why not just calculate t tests
for all possible pairs of means? The reason for not using many t tests is that when
you make a lot of comparisons involving the same means, the probability that one
out of the bunch will turn out to be statistically significant increases. For example,
if you have five groups and you compare all pairs of means, you are making 10
comparisons. When the null hypothesis is true (that is, all of the means are equal in
the population), the probability that at least one of the 10 observed significance levels
will be less than .05 is about .29. If you keep looking, even unlikely events will
happen. The more comparisons you make, the more likely it is that you will find one
or more pairs to be statistically different, even if all means are equal in the population.

Multiple comparison procedures protect you from calling too many differences
significant. They adjust for the number of comparisons you are making. The more
comparisons you make, the larger the difference between pairs of means must be
for a multiple comparison procedure to report a significant difference. So, you can
get different results from multiple t tests than from multiple comparison procedures.
Differences that the t tests find significant may not be significant based on multiple
comparison procedures. When you use a multiple comparison procedure, you can
be more confident that you are finding true differences.

Several different procedures can be used to make multiple comparisons. The
procedures differ in how they adjust the observed significance level for the fact that
many comparisons are being made. Some require larger differences between pairs
of means than others. For further discussion of multiple comparisons, see Kirk (1968).

 

INTERACTIONS

 

Analysis of variance allows you to test not only for the individual variables but also
for their combinations. This is an important concern. As you have noticed in previous
discussions, combinations of variables sometimes have a different effect than you
would expect from variables alone. That effect is important, and as experimenters
we want to know about it. In statistical terms, we say that an interaction effect exists
between variable X and variable Y.

 

ANALYSIS OF VARIANCE IN COMPUTER SOFTWARE

 

Each software package has its own quirks, but all of the software dealing with
ANOVA has some things in common. You use the ANOVA command to perform
analysis of variance with more than one factor. ANOVA does not include the multiple
comparison procedures that ONEWAY offers, but it does allow you to analyze the
effects and interactions of several factors at once. To analyze the effect of the main
variables, you have to specify the dependent variable first and then enter the range
of categories that should be used in the analysis.

All software packages show the results of an analysis in what is called the
ANOVA table. This analysis of variance table may be very elaborate or very simple
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depending on the demands that the experimenter has set for the analysis. A typical
table will have columns for sums of squares, degrees of freedom, mean squares, the
F ratio, and the significance of F. Under MAIN EFFECTS are the statistics for the
variables under study, considered separately. (The statistics across from MAIN
EFFECTS let you evaluate the significance of all the single-variable effects consid-
ered together, if you want to do that.) Under 2-WAY INTERACTIONS are the
statistics for the interactions between the selected variables. The row labeled RESID-
UAL contains the within-cell sum of squares and mean square. What we want to do
in the residual analysis is to identify those specific variables that violate the assump-
tion of linearity (if indeed such variables exist) and apply the needed remedies only
to them. Also, the identification of outliers or influential observations is facilitated
on the basis of one independent variable at a time. Typical patterns of residual
analysis are shown in Figure 7.1.

For each effect in the table, the F statistic is calculated as the ratio of the mean
square for that effect to the mean square for the residual.

To obtain multiple comparison tests, we enter a slash, the RANGE subcommand,
and the name of the test after the previous specification. Some of the tests are:

 

FIGURE 7.1 

 

Typical graphical analysis of residuals.
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Ŷ Ŷ
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• Least significant difference
• Duncan’s multiple range test (one of the most common used)
• Student-Newman-Keul’s test
• Tukey
• Tukey’s honestly significant difference
• Modified least significant difference
• Scheffe’s test

For a detailed explanation for each one of these, see Winer (1971).
How can you test the null hypothesis that several population means are equal?

Here is what you need to know:

• Analysis of variance can be used to test the null hypothesis that several
population means are equal.

• To use analysis of variance, your groups must be random samples from
normal populations with the same variance.

• In analysis of variance, the observed variability in the samples is
subdivided into two parts — variability of the observations within a group
about the group mean (within-groups variation) and variability of the
group means (between-groups variation).

• The F statistic is calculated as the ratio of the between-groups estimate
of variance to the within-groups estimate of variance.

• The analysis of variance F test does not pinpoint which means are signifi-
cantly different from each other,

• Multiple comparison procedures, which protect you against calling too
many differences significant, are used to identify pairs of means that
appear to be different from each other.
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Measuring Association

 

This chapter will consider how to measure the strength and nature of the relationship
between two variables that have a limited number of distinct categories. What if we
want to examine the relationship between two variables that are measured on an
interval or ratio scale? That is what the remainder of the book is about.

 

OVERVIEW

 

One of the most frequently asked questions in any study is, “Are these two variables
related?” Is education related to voting behavior? Is marital status related to happi-
ness? Is ability to close a sale related to the experience of the salesperson? Is a
particular training method related to better results? You usually want to know more
than just whether the two variables are related. You also want to know the strength
and nature of the relationship. If job satisfaction is related to perceiving life as
exciting, how strongly is it related? And does the likelihood of perceiving life as
exciting increase or decrease as job satisfaction increases? Is customer satisfaction
related to loyalty? If so, how much and to what extent? Is a new gadget in a process
related to increased productivity? If so, to what extent or degree?

 

THE STRENGTH OF A RELATIONSHIP

 

Many different statistical techniques are used to study the relationships among
variables. We will consider some of them in the chapters that follow. In this chapter,
we will look at techniques that are useful for measuring the strength and nature of
associations when the two variables are categorical. These variables have a limited
number of possible values, and their distribution can be examined with a cross-
tabulation table.

 

WHY NOT CHI-SQUARE?

 

Previously we used the chi-square test to test the null hypothesis that two categorical
variables are independent. If you reject the null hypothesis of independence, what
can you say about the two variables? Can you conclude anything about the strength
or nature of their association on the basis of the actual chi-square value? Do large
chi-square values indicate strong associations and small values indicate weak ones?

8
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The actual value of the chi-square statistic provides you with little information
about the strength and type of association between two variables. In our discussion
about the cross-tabulation, we implied that sample size will influence the results and,
as a consequence, the chi-square value. If you take a particular cross-tabulation and
multiply all cell frequencies by 10, you also increase the value of the chi-square by
10. By increasing the frequency in each cell, you are not in any way changing the
nature or strength of the association — that remains exactly the same. The value of
the chi-square statistic depends on the sample size as well as the amount of departure
from independence for the two variables. So you cannot compare chi-square values
from several studies with different sample sizes. This is one reason why the chi-square
statistic is not very useful as a measure of association. Furthermore, since chi-square
is based only on expected and observed frequencies, it is possible for many different
types of tables to have the same value for the chi-square statistic. Different types of
relationships between two variables can result in the same chi-square value. Knowing
the chi-square tells you nothing about the nature of the association.

 

MEASURES OF ASSOCIATION

 

Statistics that are used to quantify the strength and nature of the relationship between
two variables in a cross-tabulation are called 

 

measures of association.

 

 Many different
measures of association exist because “association” can be defined in many different
ways. The measures differ in how they can be interpreted and in how they define
perfect and intermediate levels of association. They also differ in the level of mea-
surement required for the variables. For example, if two variables are measured on
an ordinal scale, it makes sense to talk about their values increasing or decreasing
together. Such a statement would be meaningless for variables measured on a
nominal scale.

No single measure of association is best for all situations. To choose the best
one for a particular situation, you must consider the type of data and the way you
want to define association. If a certain measure has a low value for a table, this does
not necessarily mean that the two variables are unrelated. It can also mean that they
are not related in the way that the measure can detect. But you should not calculate
a lot of measures and then report only the largest. Select the appropriate measures
in advance. If you look at enough different measures, you increase your chance of
finding significant associations in the sample that do not exist in the population.

 

MEASURES OF ASSOCIATION FOR VARIABLES

 

When you have variables that are measured on a nominal scale, you are limited in
what you can say about their relationship. You cannot say that marital status increases
as religious affiliation increases, or that automobile color decreases with increasing
state of residence. You cannot say anything about the direction of the association.
If the categories of the variables do not have a meaningful order, it does not make
sense to say they are associated in one direction or another. All you can do is try to
measure the strength of the association. Two types of measures of association are
useful for nominal variables: measures based on chi-square and measures of
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proportional reduction in error (called PRE measures). We will look at each of these
in turn.

 

M

 

EASURES
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ASED
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 C
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S

 

QUARE

 

We just finished discussing why the chi-square statistic is not a good measure of
association. However, since its use is common in tests of independence, people have
tried to construct measures of association based on it. The measures based on
chi-square attempt to modify it so it is not influenced by sample size and so it falls
in the range of zero to one. Without such adjustments, you cannot compare chi-square
values from tables with different sample sizes and different dimensions. (In the range
from zero to one, a value of zero corresponds to no association and a value of one
to perfect association. Coefficients are often 

 

normalized

 

 to fall in this range.)

 

The phi coefficient — 

 

This is one of the simplest modifications of the chi-square
statistic. To calculate a phi coefficient, just divide the chi-square value by the sample
size and then take the square root. The formula is

The maximum value of phi depends on the size of the table. If a table has more
than two rows or two columns, the phi coefficient can be greater than one — an
undesirable feature.

 

The coefficient of contingency — 

 

This measure is always less than or equal to
one. It is often abbreviated with the letter C. It is calculated from the chi-square
statistic using the following formula:

Although the value of C is always between 0 and 1, it can never get as high as 1,
even for a table showing what seems to be a perfect relationship. The largest value
it can have depends on the number of rows and columns in the table. For example,
if you have a four-by-four table, the largest possible value of C is .87.

 

Cramer’s V —

 

 This is a chi-square–based measure of association that can attain
the value of 1 for tables of any dimension. Its formula is:

where k is the smaller of the number of rows and columns. If the number of rows
or columns is two, Cramer’s V is identical in value to phi.
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The lambda statistic measures how much your error rate decreases when you use
additional information about a variable. It is calculated as:

f c= 2 N

C N= +c c2 2

V N k= -c2 1( )
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l

 

 = Misclassified in situation 1 –
Misclassified in situation 2/Misclassified in situation 1

Lambda tells you the proportion by which you can reduce your error in predicting
the dependent variable if you know the independent variable. That is why it is called
a proportional reduction in error measure. The largest value that lambda can be is
one. A value of zero for lambda means the independent variable is of no help in
predicting the dependent variable. When two variables are statistically independent,
lambda is zero; but a lambda of zero does not necessarily imply statistical indepen-
dence. As with all measures of association, lambda measures association in a very
specific way — reduction in error when values of one variable are used to predict
values of the other. If this particular type of association is absent, lambda is zero.
Even when lambda is zero, other measures of association may find associations of
a different kind. No measure of association is sensitive to every type of association
imaginable.

 

T

 

WO

 

 D

 

IFFERENT

 

 L

 

AMBDAS

 

Lambda is not a symmetric measure. Its value depends on which variable you predict
from which. Suppose that instead of predicting the excitement category based on
marital happiness, you tried to predict the reverse — how happy a person’s marriage
was, based on how exciting the person found life to be. You would get a different
value for lambda. The actual statistic will be generated from the “crosstab” job that
produced the cross-tabulation table. For this discussion, you must recognize two
lambdas exist: (1) the asymmetric lambda — which we just covered, and (2) the
symmetric lambda.

Although we just said that the lambda value is not a symmetric statistic, some-
times if you have no reason to consider one of the variables dependent and the other
independent, you can compute a symmetric lambda coefficient. You predict the first
variable from the second and then the second variable from the first. The symmetric
lambda is calculated as the sum of the two differences divided by the total number
misclassified without additional information. In other words, you just add up the
numerators for the two lambdas, then add up the denominators, then divide.

Is it really possible for variables to be related and still have a lambda of zero?
That does not sound right. Actually, this can happen easily, depending on the
distribution of the dependent variable. For example, consider the following cross-
tabulation table:

 

(DEP)endent variable (INDEP)endent variable

 

Count 1.00 2.00 3.00 Row total
1.00 19 10 1 30
2.00 20 20 20 60
3.00 1 10 19 30

Column
Total

40
33.3

40
33.3

40
33.3

120
100.0
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Using the SPSS software we generate a table that looks like:

We can see from the above information that the two variables are clearly asso-
ciated, but value two of the dependent variable occurs most often in each category
of the independent variable. You would predict that value whether or not you knew
the independent variable. Since knowing the independent variable does not help at
all, lambda equals zero. You can see that SPSS/PC+ reports a lambda of zero when
DEP is the dependent variable. Remember: a measure of association is sensitive to
a particular kind of association.

 

M

 

EASURES

 

 

 

OF

 

  A

 

SSOCIATION

 

 

 

FOR

 

 O

 

RDINAL

 

 V

 

ARIABLES

 

Lambda can be used as a measure of association for variables measured on ordinal
scales as well as for variables measured on nominal scales. The computation of
lambda, however, did not use the order information. Because of that, we could
rearrange the order of the rows and columns in any way we wanted and not change
the value of lambda at all.

Several measures of association make use of the additional information available
for ordinal variables. They tell us not only about the strength of the association but
the direction as well. For example, if one variable changes in the same direction as
the other, then we say that the two variables have a positive relationship. If, on the
other hand, the values of one variable increase while those of the other decrease,
we can say the variables have a negative relationship. We cannot make statements
like these about nominal variables, since the categories of the variables have no
order. Values cannot increase or decrease unless they have an order.

 

C
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Many ordinal measures of association are based on comparing pairs of cases. For
example, look at the following data, which contain a listing of the values of Var1,
and Var2, for three cases.

Consider the pair of cases, Case 1 and Case 2. Both Case 2 values are larger
than the corresponding values in Case 1. That is, the value for Var1 is larger for
Case 2 than for Case 1, and the value for Var2 is larger for Case 2 than for Case 1.
Such a pair of cases is called concordant. A pair of cases is concordant if the value
of each variable is larger (or each is smaller) for one case than for the other case.

 

Statistic Symmetric With DEP Dependent With INDEP Dependent

Lambda .12857 .00000 .22500

Number of Missing Observations = 0 

 

Var1 Var2

 

Case 1 1 2
Case 2 2 3
Case 3 3 2
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A pair of cases is discordant if the value of one variable for a case is larger than
the value for the other case, but the direction is reversed for the second variable. For
example, Case 2 and Case 3 are a discordant pair, since the value of Var1 for Case
3 is larger than for Case 2, but the value of Var2 is larger for Case 2 than for Case 3.

When two cases have identical values on one or both variables, they are said to
be tied. Five different outcomes are possible when you compare two cases. They
can be concordant, discordant, tied on the first variable, tied on the second variable,
or tied on both variables. When data are arranged in a cross-tabulation, it is easy to
compute the number of concordant, discordant, and tied pairs, just by looking at the
table and adding up cell frequencies.

If most of the pairs are concordant, the association is said to be positive. As
values of one variable increase (or decrease), so do the values of the other variable.
If most of the pairs are discordant, the association is negative. As values of one
variable increase, those of the other tend to decrease. If concordant and discordant
pairs are equally likely, we say that no association is present.

 

M
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The ordinal measures of association that we will consider are all based on the
difference between the number of concordant pairs (P) and the number of discordant
pairs (Q), calculated for all distinct pairs of observations. Since we want our mea-
sures of association to fall within a known range for all tables we must standardize
the difference, P – Q (if possible, from –1 to 1, where –1 indicates a perfect negative
relationship, 1 indicates a perfect positive relationship, and 0 indicates no relation-
ship). The measures differ in the way they attempt to standardize P – Q.

 

Goodman and Kruskal’s Gamma

 

One way of standardizing the difference between the number of concordant and
discordant pairs is to use Goodman and Kruskal’s gamma. You calculate the differ-
ence between the number of concordant and discordant pairs, (P – Q), and then
divide this difference by the sum of the number of concordant and discordant pairs
(P + Q). For example, using the previous data for Var1 and Var2, we produce a
gamma value of .459. What does this mean? A positive gamma tells you that there
are more “like” (concordant) pairs of cases than “unlike” (discordant) pairs. A
negative gamma would mean that a negative relationship exists.

The absolute value of gamma has a proportional reduction in error interpretation.
What you are trying to predict is whether a pair of cases is like or unlike. In the
first situation, you classify pairs as like or unlike based on the flip of a fair coin. In
the second situation, you base your decision rule on whether you find more concor-
dant or more discordant pairs. If most of the pairs are concordant you predict “like”
for all pairs. If most of the pairs are discordant you predict “unlike.” The absolute
value of gamma (the numerical value, ignoring a minus sign if one is present) is the
proportional reduction in error when the second rule is used instead of the first.

For example, if half of the pairs of cases are concordant and half are discordant,
guessing randomly and classifying all cases as concordant leads to the same number
of misclassified cases — one half. The value of gamma is then zero. If all the pairs
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are concordant, guessing “like” will result in correct classification of all pairs.
Guessing randomly will classify only half of the pairs correctly. In this situation,
the value of gamma is one.

If two variables are independent, the value of gamma is zero. However, a gamma
of zero does not necessarily mean independence. (If the table is two by two, though,
a gamma of zero does mean that the variables are independent.)

 

Kendall’s Tau-b

 

Gamma ignores all pairs of cases that involve ties. A measure that attempts to
normalize P – Q by considering ties on each variable in a pair separately (but not
ties on both variables) is tau-b. It is computed as

where T

 

x

 

 is the number of ties involving only the first variable, and T

 

y

 

 is the number
of ties involving only the second variable. Tau-b can have the values of +1 and –1
only for square tables. Since the denominator is complicated, there is no simple
explanation in terms of proportional reduction of error. However, tau-b is a com-
monly used measure.

 

Tau-c

 

A measure that can attain, or nearly attain, the values of +1 and –1 for a table of
any size is tau-c. It is computed as

where m is the smaller of the number of rows and columns. Unfortunately, no simple
proportional reduction of error interpretation is possible for tau-c either.

 

Somers’ d

 

Gamma, tau-b, and tau-c are all symmetric measures. It does not matter whether
one of the variables is considered dependent. The value of the statistic is the same.
Somers proposed an extension of gamma in which one of the variables is considered
dependent. It differs from gamma only in that the denominator is the sum of all
pairs of cases that are not tied on the independent variable. (In gamma, all cases
involving ties are excluded from the denominator.)
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If the two variables are measured on an interval scale, you can calculate coefficients
that make use of this additional information. The Pearson correlation coefficient,
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discussed later, measures the strength of what is called a 

 

linear

 

 association. The eta
(

 

h

 

) coefficient can be used when a dependent variable is measured on an interval
scale, and the independent variable is measured on a nominal or ordinal scale. When
eta is squared, it can be interpreted as the proportion of the total variance in the
dependent variable that can be accounted for by knowing the values of the indepen-
dent variable.

 

TESTING HYPOTHESES

 

In addition to assessing the strength and nature of a relationship, you may want to
test hypotheses about the various measures of association. For example, you may
want to test the null hypothesis that the value of a measure is zero in the population.
This does not involve anything new. You just have to calculate the probability that
you would obtain a value as large (in absolute value) as the one you observed if the
value is zero in the population. All statistical software packages print as part of their
output the observed significance levels for some of the measures of association that
we have discussed in this chapter.

 

ABOUT STATISTICS FOR CROSSTABS

 

Here is a list of the possible tests (most of which have been discussed in this chapter)
used on the STATISTICS subcommand used with the CROSSTABS command: 

Chi-square
Phi for 2 

 

¥

 

 2 tables,
Cramer’s V for larger tables
Contingency coefficient
Lambda
Uncertainty coefficient

Kendall’s tau-b
Kendall’s tau-c
Gamma
Somers’ d
Eta
Pearson’s r

How can you measure the strength of the relationship between categorical
variables? Here is a summary of the things that you need to know:

• Many measures of association can be used to measure the strength of the
relationship between two categorical variables.

• Measures of association differ in the way they define association.
• You should select a measure to use based on the characteristics of the

data and how you want to define association.
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• The chi-square statistic is not a good measure of association. Its value
does not tell you anything about the strength of the relationship between
two variables.

• Measures of proportional reduction in error (PRE) compare the error you
make when you predict values of one variable based on values of another
with the error when you predict them without information about the other
variable.

• Special measures of association are available for ordinal variables. They
are based on counting the number of concordant pairs (as one variable
increases, so does the other) and the number of discordant pairs (as one
variable increases, the other decreases).

 

PLOTTING

 

So far we have discussed various statistical tests to measure the strength of a rela-
tionship between two variables. Another way to evaluate the relationships between
variables is plotting. The graphical representation makes the evaluation much easier
and provides a good starting point for further investigation. Reference lines on plots
can make it easier to see the patterns that indicate relationships in the data.

Plotting data is one of the best ways to look for relationships and patterns. A
plot is simple to understand and conveys a lot of information about the data. In other
chapters, we discussed methods of summarizing and describing relationships, but
those methods are no substitute for plots. Whenever possible, you should plot the
data first, and then think about appropriate methods for describing the plots. We
made this point earlier in our discussion about histograms.

A plot can also alert you to possible problems in the data. For example, if you
are plotting salary and age, and you find a 22-year-old with a salary of $100,000,
you have reason to be suspicious. Although the values may be correct, it is much
more likely that either the age or the salary was recorded or entered incorrectly. You
would not have been able to pick out this point as suspicious if you examined the
variables individually. A salary of $100,000 is high but possible. An age of 22 is
not unusual. It is the combination of the values that leads you to suspect the point
may be a mistake. Even if the point is correct, it is important to identify it early,
since it may need special treatment in later analyses.

With the analysis of the data and the plotting we can see if the variables under
study “appear to be related.” What do we mean by related here? Nothing really
complicated. Two variables are related if knowing the value of one variable tells us
something about the value of the other variable. Neither of the variables has to be
considered dependent or independent. All we are interested in is how they behave
together. Usually the behavior is shown as a straight line through the data.

Five fundamental types of relationships are possible: (a) strong positive relation-
ship, (b) weak positive relationship, (c) no relationship, (d) strong negative relation-
ship and (e) weak negative relationship. These relationships are shown in Figure 8.1.

In real life, linear relationships look more like a cluster of points scattered all
around with a straight line through the center of the points. Figure 8.2 shows an
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example. The points are clustered around the line, but most of them do not fall
exactly on it. Instead they are distributed around it. You can see quite a bit of
variability around the line, but most points are not too far removed. That is OK,
because you can still see that the relationship is positive, since as one variable moves
in one way so does the other. Remember we are interested only in the direction and
magnitude of the relationship. To find the best place to draw the line we use the
regression method, which we will cover later.

 

FIGURE 8.1 

 

Five types of relationships.
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How can you display the relationship between two variables that are measured
on an interval or ratio scale? Here is a summary:

• A plot displays the values of two variables for each case.
• By examining a plot, you can see what sort of relationship, if any, exists

between two variables.
• The points on a plot may be identified by their values on an additional

variable (called a control variable). This lets you see whether the relation-
ship between the two variables differs for the different categories of the
control variable.

• Points that have unusual combinations of values can be identified from a
plot, since they will be far removed from the other cases.

 

COVARIANCE

 

All of the summary measures to this point involve a single variable. It is also useful
to summarize the relationship between two variables. Specifically, we would like to
summarize the type of behavior often observed in a scatterplot. Two such measures
are 

 

covariance

 

 and 

 

correlation

 

. We will discuss them briefly here and in more depth
in later chapters. Each measures the strength (and direction) of a linear relationship
between two numerical variables. Intuitively, the relationship is “strong” if the points
in a scatterplot cluster tightly around some straight line. If this straight line rises
from left to right, then the relationship is “positive” and the measures are positive
numbers. If it falls from left to right, then the relationship is “negative” and the
measures are negative numbers.

First, it is important to realize that if we want to measure the covariance or
correlation between two variables X and Y — indeed, even if we just want to form
a scatterplot of X vs. Y — then X and Y must be “paired” variables. That is, they
must have the same number of observations, and the X and Y values for any
observation should be naturally paired. For example, each observation could be the

 

FIGURE 8.2 

 

A relationship with points scattered around a straight line.
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height and weight for a particular person, the time in a store and the amount of
money spent by a particular customer, and so on.

With this in mind, let X

 

i

 

 and Y

 

i

 

 be the paired values for observation i, and let n
be the number of observations. Then the covariance between X and Y, denoted by
Cov (X, Y), is given by the formula

You probably will not ever have to use this formula directly — most software
packages have a built-in COVAR function that does it for you — but the formula
does indicate what covariance is all about. It is essentially an average of products
of deviations from means. If X and Y vary in the same direction, then when X is
above (or below) its mean, Y will also tend to be above (or below) its mean. In
either case, the product of deviations will be positive — a positive times a positive
or a negative times a negative — so the covariance is positive. The opposite is true
when X and Y vary in opposite directions. Then, the covariance is negative.

The limitation of covariance as a descriptive measure is that the units in which
X and Y are measured affect it. For example, we can inflate the covariance by a
factor of 1000 simply by measuring X in dollars rather than in thousands of dollars.
To remedy this problem the correlation is used.

When there are more than two variables in a data set, it is often useful to create
a table of covariances and/or correlations. Each value in the table then corresponds
to a particular pair of variables.

 

CORRELATION

 

Although plots give you a pretty good idea of the strength of a linear association,
they do not provide an objective summary measure that you could use to compare
and summarize the relationships between pairs of variables. On the basis of the
plots, you could say that a relationship between variable X and variable Y appears
to be present (it may be strong or weak depending on the slope of the line), but you
cannot really say how strong the relationship is unless you have a summary measure
that quantifies your visual impressions. This is reflected in Figure 8.3. In this figure
a combination of outcomes is summarized in matrix form. Values above the diagonal
are bivariate correlations, with corresponding scatterplots below the diagonal. The
diagonal portrays the distribution of each variable.

The most commonly used measure is the 

 

Pearson correlation coefficient, 

 

which
is abbreviated as r. (The statistic is named after Karl Pearson, an eminent statistician
of the early twentieth century.) Here are some of its characteristics:

• If no linear relationship exists between two variables, the value of the
coefficient is 0.

Cov X Y

X X Y Y

n

i i

i

n

( , )

( )( )

=
- -

-
=

Â
1

1

 

SL3127_frame_C08  Page 84  Monday, July 1, 2002  10:13 AM



 

Measuring Association

 

85

 

• If a perfect positive linear relationship is present, the value is +1.
• If a perfect negative linear relationship is present, the value is –1.

To summarize, the values of the coefficient can range from –1 to +1, with a
value of 0 indicating no linear relationship. Positive values mean that a positive
relationship exists between the variables. Negative values mean that a negative
relationship is present. If one pair of variables has a correlation coefficient of +.8,
while another pair has a coefficient of –.8, the strength of the relationship is the
same for both. The direction of the relationship differs, however.

Does a correlation coefficient of zero mean that no relationship exists between
two variables? Not necessarily. The Pearson correlation coefficient only measures
the strength of a linear relationship. Two variables can have a correlation coefficient
close to zero and yet have a very strong nonlinear relationship. Look at Figure 8.4,
which is a plot of two hypothetical variables. You will note that a strong relationship

 

FIGURE 8.3 

 

Scatterplot matrix of metric variables.
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exists between the two variables. The value of the correlation coefficient, however,
is close to zero. Always plot the values of the variables before you compute a
correlation coefficient. This will allow you to detect nonlinear relationships, for
which the Pearson correlation coefficient is not a good summary measure. The
Pearson correlation coefficient should only be used for linear relationships.

The mathematical formula that tells you how to calculate the correlation coef-
ficient for a pair of variables is

where X and Y are the values of the two variables for a case, N is the number of
cases, and S

 

x

 

 and S

 

y

 

 are the standard deviations of the two variables. It does not
matter which variable you take to be X and which to be Y in the formula, since the
correlation coefficient will be the same. The correlation coefficient is not expressed
in any unit of measurement. The correlation coefficient between two variables will
be the same regardless of how you measure them.

Sometimes the correlation coefficient is used simply to summarize the strength
of a linear relationship between two variables. In other situations you may want to
do more than that; you may want to test hypotheses about the population correlation
coefficient. For example, you may want to test the null hypothesis that no linear
relationship exists between variable X and variable Y in the population. Remember,
if your data are a random sample from a particular population, you want to be able
to draw conclusions about the population based on the results you observe in your
sample. As was the case with other descriptive measures such as the mean, you
know that the value of the correlation coefficient you calculate for your sample will
not exactly equal the value that you would obtain if you had values for the entire
population. You know that if you took many samples from the same population and

 

FIGURE 8.4 
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calculated the correlation coefficients, their values would vary. That is, there is a
distribution of possible values of the correlation coefficient, just as there is a distri-
bution of possible values for sample means. If you know what the distribution is,
you can calculate observed significance levels. For example, you can calculate how
often you would expect to find, in samples of a particular size, a coefficient of .3
or greater when the population value is zero.

 

D

 

OES

 

 S

 

IGNIFICANT

 

 M

 

EAN

 

 I

 

MPORTANT

 

?

 

If you reject the null hypothesis, does that mean that an important relationship exists
between the two variables? No. It simply means that it is unlikely that the value of
the correlation coefficient is zero in the population. For large sample sizes, even
very small correlation coefficients have small observed significance levels. You can
have a correlation coefficient of .1 and have it be statistically significant. It indicates
that a very small, but nonzero, linear relationship exists between the variables. You
should look at both the value of the coefficient and its associated significance level
when evaluating the relationships among variables.

 

ONE-TAILED AND TWO-TAILED SIGNIFICANCE PROBABILITIES

If you do not know before looking at your data whether a pair of variables should
be positively or negatively correlated, you must use a two-tailed significance level.
You reject the null hypothesis for either large positive or large negative values of
the correlation coefficient. If you know in advance whether your variables should
be positively or negatively correlated, you can use a one-tailed significance test, For
example, if you are studying the relationship between total yearly income and value
of housing, you know that if a relationship exists, it will be positive. Poor people
cannot own expensive houses.

For a one-tailed test, you reject the null hypothesis only if the value of the
correlation coefficient is large and in the direction you specified. For a one-tailed
test, the observed significance level is half of the two-tailed value. That is because
you only calculate the probability that you would obtain a more extreme value in
one direction, not two. If you do not specify what kind of test you want when you
use a software package, more often than not the default is a one-tailed test. In order
to get two-tailed tests, you must specify it with specific option of the software.

ASSUMPTIONS ABOUT THE DATA

In order to test hypotheses about the Pearson correlation coefficient you have to
make certain assumptions about the data. If your data are a random sample from a
population in which the distribution of the two variables together is normal, the
previously described procedure is appropriate. If it seems unreasonable to assume
that the variables are from normal distributions, you may have to use other statistical
procedures that do not require the normality assumption. These are nonparametric
procedures and are described in detail in statistics books such as Siegel (1956).
Some of them will be summarized at the end of this chapter.
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EXAMINING MANY COEFFICIENTS

If your study involves many variables, you may be tempted to compute all possible
correlation coefficients among them. If you are just interested in exploring possible
associations among the variables, you may find the coefficients helpful in identifying
possible relationships. However, you must be careful when examining the significance
levels from large tables. If you have enough coefficients, you expect some of them to
be statistically significant even if no relationship exists between the variables in the
population. If you compute 100 coefficients, you expect somewhere around five (95%
confidence) of them to have observed significance levels less than .05 even if none
of them are truly related. Think about it — that is what a significance level means.

When dealing with large samples and many variables, we must be concerned
about missing values. If our study is complete and all the values have been accounted
for, then we call this process pairwise deletion of missing data. Our calculation used
as much of the data as possible. On the other hand, analysis of data when some of
the cases have missing information can be troublesome, especially if you have reason
to believe that the missing values are related to values of one of the variables you
are analyzing.

If your data have any missing values, you should see whether the missing values
show a pattern. For example, you can calculate the average of the variables. If these
values are quite different, you have reason to suspect that the data values are not
randomly missing. When values are not randomly missing, you must use great
caution in attempting to analyze the data. In fact, you may not be able to analyze
some of it. (With pairwise deletion of missing data, you could even end up with
correlation coefficients that were based on entirely different groups of cases.)

Perhaps one of the most confusing issues in correlation is the notion of whether
correlation and cause are the same. So, if two variables are correlated, does that
mean one of them causes the other? Not at all. You can never assume that just
because two variables are correlated, one of them causes the other. If you find a
large correlation coefficient between the ounces of coffee consumed in a day and
number of auto accidents in a year, you cannot conclude that coffee consumption
causes auto accidents. It may well be that coffee drinkers also consume more alcohol,
or are older, or are more poorly coordinated than people who do not drink coffee.
You cannot easily tell which of the factors may influence the occurrence of accidents.

How can you summarize the strength of the linear relationship between two
variables? Here are some key points to remember:

• The Pearson correlation coefficient measures the strength of the linear
relationship between variables.

• Two variables have a positive relationship if, as the values of one variable
increase, so do the values of the other.

• Two variables have a negative relationship if, as the values of one variable
increase, the values of the other decrease.

• A correlation coefficient of +1 means that a perfect positive linear rela-
tionship exists between two variables. A value of –1 means that a perfect
negative linear relationship exists.
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• A correlation coefficient only measures the strength of a linear relation-
ship. If a strong nonlinear relationship between two variables is present,
the correlation coefficient can be zero.

• A correlation between two variables does not necessarily mean that one
causes the other.

• To test the null hypothesis that the correlation coefficient is zero in the
population, you can calculate the observed significance level for the
coefficient.

• You can use a one-tailed test if you know in advance whether the relation-
ship between two variables is positive or negative.

• If you have missing values in your data, you should see whether there is
a pattern to the cases for which information is missing.

REFERENCE

Siegel, S., Nonparametric Statistics for the Behavioral Sciences,  McGraw-Hill, New York,
1956.
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Calculating Regression 
Lines

 

The last chapter discussed the measurement of associations between variables and
focused on the linearity of that relationship. In this chapter we will define that
relationship and its strength through the mathematics of the straight line.

 

OVERVIEW

 

As you saw in the last chapter, the correlation coefficient provides you with a measure
of the strength of the linear association between two variables. All it measures,
though, is how closely

 

 

 

the points cluster about a straight line. It does not tell you
anything about the line itself. In many situations, it is useful to obtain information
about the actual line that is drawn through the data points. For example, if a linear
relationship exists between two variables, and you know the equation for the line
that describes their relationship, you can use one variable to predict values of the
other. If a linear relationship exists between the amount of money a company spends
on advertising and its sales volume for the year, you can use the line to predict sales
volume based on advertising expenditures. That is what this chapter is about. You
will learn how to calculate what is called a regression line and what it means.

 

CHOOSING THE BEST LINE

 

Thinking back to the last chapter, you will remember that the correlation coefficient
was based on how closely points cluster about “a line.” We did not say anything
about how we selected the line shown on the plots. We will consider that now. When
the correlation coefficient is +1 or –1, all the data points fall on a single line. All
you have to do is connect the points and you have a line. You do not have to worry
about choosing a line. When the observations are not perfectly correlated, many
different lines may be drawn through the data. How do we choose among them?
Since we want a line that describes the data, it should be as close as possible to the
points. “As close as possible” can be defined in different ways. The most commonly
used method for determining the line is called the method of least squares. The 

 

least
squares line

 

 is the line that has the smallest sum of squared vertical distances from
the observed points to the line.

9
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THE EQUATION OF A LINE

 

Before we talk any more about lines, we need to consider the equation for a straight
line. Take two variables, say X and Y. Call the variable we plot on the vertical axis
Y, and the variable we plot on the horizontal axis X. Then the equation is

Y = A + B 

 

¥

 

 X

The A and B in this equation

 

 

 

are just numbers. The value A is called the 

 

intercept

 

,
and the value B

 

 

 

is called the 

 

slope

 

. The slope is the angle of the line and the intercept
is the point where it crosses the vertical axis. If the value for the slope is positive,
it tells you that as one variable increases, so does the other variable. If the slope is
negative, it tells you that as one variable increases, the other decreases. If the slope
is large, the line is steep, indicating that a small change in one of the variables would
lead to a large change in the other variable. If the slope is small, the increase or
decrease is gradual. If the slope is zero, it means that changes in the X variable have
no effect on the Y variable.

 

PREDICTING VALUES FROM THE REGRESSION LINE

 

The equation for the least squares regression line for a dependent variable Y and an
independent variable X is

Predicted Y = 10.24 + .27 

 

¥

 

 X

where 10.24 is the intercept, .27 is the slope of the X, and of course the predicted
Y is the value expected based on the calculated numbers. (The numerical numbers
are used here for the purpose of explaining the format of the equation. In real terms,
these are the numbers that we are trying to identify with the regression analysis.)

Once you have a regression equation, it is easy to obtain predicted values. All
you have to do is substitute the value of the independent variable into the equation.

 

CHOOSING THE DEPENDENT VARIABLE

 

When we are computing correlation coefficients it does not matter which variable
we plot on the horizontal axis and which we plot on the vertical. The correlation
coefficient is exactly the same. That is not usually true for regression. The slope and
the intercept will differ depending on which variable is the Y variable in the equation
and which is the X variable. Since regression analysis is used to predict values of
a dependent variable from values of an independent variable, Y is taken to be the
dependent variable and X the independent.

In this example, X is the independent variable and Y is the dependent variable.
Although the regression line is a useful summary of the relationship between two
variables, the values of the slope and intercept alone do not indicate how well the
line actually fits the data. We need some measure of goodness of fit. We know that
if the regression line fits the data perfectly, the observed values for the dependent
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variable equal the predicted values. They all fall exactly on the line. The more
poorly the line fits, the more discrepancy we would expect between the line and
the actual values.

 

CORRELATING PREDICTED AND OBSERVED VALUES

 

One way we can measure how well the line fits is to calculate a correlation coefficient
between the observed values of the dependent variable and those predicted from the
regression equation. The value will be one if a perfect fit exists and close to zero if
the fit is poor.

The correlation coefficient between the observed and predicted values is exactly
the same value we obtained for the correlation of the two variables by using the
method of the last chapter. So, now we have yet another interpretation of the
correlation coefficient. It is a measure of the strength of the linear relationship
between the observed values

 

 

 

of the dependent variable and those predicted by

 

 

 

the
regression line. The correlation coefficient tells us how well the least squares line
fits the data. This interpretation applies only to the absolute value of the correlation
coefficient (its value if you disregard the sign). That is because even if the relationship
between two variables is negative, the relationship between the observed and pre-
dicted values will be positive.

If you square the value of the correlation coefficient, you obtain yet another
useful statistic. The square of the correlation coefficient tells you what proportion
of the variability in the dependent variable is “explained” by the regression. What
do we mean when we say that the regression “explains” variability? In general, the
distance between a point and the regression line is a measure of how much vari-
ability we cannot explain with the regression line. If you compare the sum of the
squared distances from the data points to the regression line with the total variability
in the dependent variable, you can calculate what percent of the total variability is
unexplained by the regression. The remainder of the variability is explained. This
is what the square of the correlation coefficient tells you. It is the proportion of the
total variability in the dependent variable that can be accounted for by the inde-
pendent variable.

 

THE POPULATION REGRESSION LINE

 

When you calculate a regression line that is used only to 

 

describe 

 

an observed
relationship between two variables, you have two concerns. Are the variables mea-
sured on an interval or ratio scale, and does their relationship appear to be linear?
It makes no sense to calculate a regression line relating religious preference to the
region in which someone lives. The categories of these variables have no order, and
a statistic such as the slope is meaningless. Even if the two variables are measured
on an interval scale, it makes no sense to calculate a regression line if their relation-
ship is not linear. You may need to fit some other mathematical function besides a
straight line, or perhaps change the scale on which the variables are measured. Those
topics are mostly beyond the scope of this book, but we will talk a little about them
in our discussion about residuals.
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When you are interested in drawing conclusions about the 

 

population 

 

regression
line, you need additional assumptions. First, we need to clarify what we mean by a
“population regression line.” In all of our previous discussions about hypothesis testing,
we considered our data to be a random sample from some underlying population. We
wanted to draw conclusions about the population based on what we saw in our sample

 

.

 

When we computed a sample mean, we considered it to be our best guess of the
population mean. When we computed a correlation coefficient, we considered it our
best guess for the value of the correlation coefficient in the population.

What we will be doing now is very similar. We will try to draw conclusions
about the relationship of two variables in the population based on the results we see
in our sample. If we had been able to include our entire population in the study, we
could calculate a regression line that describes the relationship between the two
variables in the population. This would be the “true” or 

 

population regression line.

 

We do not know what the true line is, since all we have is a sample from the
population. We do not know the true slope or the true intercept. We do have some
evidence about what they are, however. Our best guess for the population line is the
results observed in our sample.

To be able to test hypotheses about the population line statistically, we must make
some assumptions about the population. We need these assumptions so we will know
that the sampling distributions of the slope and intercept will be normal. (The sam-
pling distribution of the slope is the distribution of the values of the slope that you
would get if you took all possible samples of a particular size from a population. The
sampling distribution of the intercept is defined similarly.) As before, our computa-
tions of the observed significance level will be based on these sampling distributions.

To be able to test a hypothesis about the population line statistically, we must
make some additional assumptions about the population. They are:

1. The distribution is normal.
2. All of these distributions have the same variance.
3. Linearity exists.
4. All observations are selected independently.

We have just stated that to test hypotheses about the population line, we need
to assume that the distributions of the dependent variable must be normal for each
value of the independent variable and that the variances of those distributions
must be equal. Now, what about the means of the distributions? If a linear
relationship exists in the population between the two variables, then the means
of all of the population distributions must fall on a straight line.

 

 

 

To

 

 

 

test regression
hypotheses, we must assume that this is true. Look at Figure 9.1, which schemat-
ically shows the assumptions we have been talking about. In the population, a
true

 

 

 

regression line exists that specifies the relationship between the variables.
This line is drawn in on the plot. For each value of the independent variable there
is a distribution of the values of the dependent variable. These distributions are
all normal and have the same variance. The means of all of these distributions
fall on a straight line.
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The last assumption that we need for linear regression analysis is that all
observations are selected independently. That is, including one observation/person
in the sample should not in any way alter the chance of any other observation/person
being included.

 

SOME HYPOTHESES OF INTEREST

 

We will return to the question of how you can examine your data to see if they
violate any of these assumptions, but meanwhile, suppose that the data do satisfy
all of the assumptions outlined above. What sorts of hypotheses can we now test?
We can test hypotheses about the values of the population slope and the population
intercept and hypotheses about how well the regression model fits the population.
With the computer, this is no problem. However, one has to watch out for the
coefficients of the regression, because instead of thinking of these values as descrip-
tions of the sample, we will now treat them as our best guesses, or estimates

 

, 

 

of the
unknown population values of the slope and intercept. Another thing you have to
watch is the fact that the coefficients and plot values may not be exactly the same,
even though they are the same variables. This is because they are not all the same
cases. Previously we took a smaller sample so we would not have too many cases
to plot. We would expect the slope and intercept in a plot to be better estimates of
the population values than the values that we are considering now, since these are
now based on more cases.

It is also important to recognize that since both the slope and the intercept are
calculated numbers there is variation within them. That variation is identified as the
standard error of the slope and intercept. The standard errors are estimates of the
standard deviation of the sampling distributions of the slope and the intercept.
Remember, the slope and intercept we have calculated are based on one sample from
a population. If you took another sample and calculated values for the slope and
intercept they would differ. The values of the slope and intercept from repeated
samples from the same population have a distribution. The standard deviation of this
distribution is called the standard error. It is just like the standard error of the mean.

 

FIGURE 9.1 

 

Regression assumptions.
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ARE THE POPULATION VALUES ZERO?

 

If no linear relationship exists between two variables in the population, the true slope
is zero. All of the means of the distributions are the same. Even if the population value
is zero, of course, you would not expect the sample value for the slope to be exactly
zero. You hope that it would not be too far from zero, though. To test the null hypothesis
that the value of the slope is zero in the population, we can calculate the probability of
obtaining a slope at least as large as the one we have observed when the null hypothesis
is true. As usual, if this probability is small we will reject the null hypothesis that the
slope is zero. The observed significance level is based on the 

 

t

 

 statistic. This 

 

t

 

 statistic
is calculated (like any 

 

t

 

 statistic) by dividing a sample value by its standard error. In this
case, the 

 

t

 

 values are the sample slope and the sample intercept, divided by their standard
errors. In association with this two-tailed 

 

t

 

 test, there is also a reported significance level
for the tests of the hypotheses that the slope and intercept are zero in the population.

When testing whether a linear relationship exists between variables, the impor-
tant test is the test of the slope. The intercept is simply the value of the dependent
variable when the independent variable is zero. All that the test of the intercept tells
us is whether the regression line goes through the origin. (The origin is the point at
the intersection of the two axes. It is the point where both variables are zero.)

 

CONFIDENCE INTERVALS FOR REGRESSION COEFFICIENTS

 

The sample values for the slope and intercept are our best guesses for the population
values. However, we know it is unlikely that they are exactly on target. As we have
discussed before, it is possible to calculate a confidence interval for the population
value. A confidence interval is a range of values that, with a designated likelihood,
contains the unknown population value. To obtain 95% confidence intervals for the
slope and intercept using for example the SPSS/PC software we identify the com-
mand REGRESSION, but we must add an additional specification to the command.
It is called the STATISTICS subcommand, and it tells the system what values we
want to see printed. That is all. The output is going to give us not only the line of
the regression but also the confidence intervals.

Remember what 95% confidence

 

 

 

means: if we draw repeated samples from a
population, under the same conditions, and compute 95% confidence intervals for
the slope and intercept, 95% of these intervals should include the unknown popu-
lation values for the slope and intercept. Of course, since the true population values
are not known, it is not possible to tell whether any particular interval contains the
population values. Quite often, neither the confidence interval for the slope nor the
one for the intercept contains the value zero. An interval will only include zero if
you cannot

 

 

 

reject the null hypothesis that the slope or intercept is zero, at an observed
significance level of .05 or less.

 

GOODNESS OF FIT OF THE MODEL

 

We already have discussed the importance of assessing how well the regression
model actually fits the data. The REGRESSION command prints several statistics
that describe the “goodness of fit.” Here are some of the most common ones:
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• MULTIPLE R is just the absolute value of the correlation coefficient
between the dependent variable and the single independent variable. It is
also the correlation coefficient between the values predicted

 

 

 

by the regres-
sion model and the actual observed

 

 

 

values. If the value is close to one,
the regression model fits the data well. If the value is close to zero, the
regression model does not fit well.

• Another way of looking at how well the regression model fits is to see
what proportion of the total variability (or variance) in the dependent
variable can be “explained” by the independent variable. The variability
in the dependent variable is divided into two components: variability
explained by the regression, and variability not explained by the regres-
sion. Because of the way they are calculated, these two components are
termed 

 

sums of squares

 

. Indeed, they are conceptually very similar to the
sums of squares we mentioned at the end of Chapter 7. The sums of
squares explained by the regression equation are labeled REGRESSION,
while the unexplained variability is labeled RESIDUAL. You can obtain
the total variability in the dependent variable by adding up these two sums
of squares. To calculate what proportion of the total variability is explained
by the regression, all you have to do is divide the regression sum of squares
by the total sum of squares.

• You can calculate this proportion in an easier way. All you have to do is
square the correlation coefficient. This value is called R SQUARE. From
R

 

2

 

 we see that in the sample we can explain X% of the variability in one
variable by knowing something about the other variable.

• Yet another way to test the null hypothesis that no linear relationship
exists between the two variables is analysis of variance. The actual test
is the F test. F is the ratio of the mean square for regression to the mean
square for the residual, and the mean squares are the sums of squares
divided by their respective degrees of freedom. You can find these mean
squares by looking at the output of the regression output, identified as

 

Mean Square. 

 

If no linear relationship exists between the two variables,
then each of these mean squares provides an estimate of the variance, or
variability, of the dependent variable. If a linear relationship exists, then
the variability estimate based on the regression mean square will be much
larger than the estimate of variability based on the residuals. Large F
values suggest that a linear relationship exists between the two variables.

Is this F statistic related to the test that the slope is zero? It seems as though we
are testing the same hypothesis in both

 

 

 

situations. Yes, the two tests are evaluating
exactly the same hypothesis when only one independent variable exists. In fact, a
relationship exists between the two statistics. If you square the 

 

t

 

 value for the test
that the slope is zero, you will come up with the F value in the analysis of variance
table. (Try it.) For a simple equation such as this, you do not learn anything from
the analysis of variance table that you did not already know from the test of the slope.

The STANDARD ERROR is yet another statistic that is available when you run
a regression analysis. It is an estimate of the standard deviation of the distributions
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of the dependent variable. Remember, we assumed that for each value of the inde-
pendent variable there is a distribution of values of the dependent variable. All of
these distributions are normal and have the same standard deviation. Our estimate
of it is the standard error.

Another powerful option is the ADJUSTED R SQUARE, which is most useful
when you have a model with several independent variables. This statistic adjusts the
value of R

 

2

 

 to take into account the fact that a regression model always fits the
particular data from which it was developed better than it will fit the population.
When only one independent variable is present and the number of cases is reasonably
large, the adjusted R

 

2

 

 will be very close to the unadjusted value. (This statistic is
very useful when we check for measurement error.)

 

MULTIPLE REGRESSION

 

The REGRESSION command can use more than one independent variable in the
same equation (“multiple regression”). To use multiple independent variables, just
name them all on the VARIABLES subcommand. All the variables except the one
you name on the DEPENDENT subcommand are used in the equation.

With multiple independent variables, you can specify how they should be entered
into the equation using the METHOD subcommand. The following methods are
available.

ENTER: 

 

Enter a group of variables all at once. 

 

This is the method we have
been using throughout the chapter. You can specify the names of specific
variables after the keyword ENTER.

REMOVE: 

 

Remove a group of variables all at once. 

 

These must be variables
that entered the equation on a previous METHOD subcommand. You must
specify the names of specific variables after the keyword REMOVE.

FORWARD: 

 

Enter the variables one at a time.

 

BACKWARD: 

 

Remove the variables one at a time. 

 

If some variables are
already in the equation from a previous METHOD subcommand, they are
removed one at a time. Otherwise, all variables are entered and then
removed one at a time.

STEPWISE: 

 

Enter and remove variables one at a time, 

 

until the F statistics
do not indicate that any variables in the equation should be removed or that
any variables that are on the VARIABLES subcommand but not in the
equation need to be entered.

You can specify several METHOD subcommands after a single DEPENDENT
subcommand. The methods are applied one after the other.

How can you test hypotheses about the population regression line, based on the
values you obtain in a sample? Here are the important principles:

• To draw conclusions about the population regression line, you must
assume that for each value of the independent variable, the distribution
of values of the dependent variable is normal, with the same variance.
The means of these distributions must all fall on a straight line.
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• The test of the null hypothesis that the slope is zero is a test of whether
a linear relationship exists between the two variables.

• The confidence interval for the population slope provides you with a range
of values that, with a designated likelihood, includes the population value.

• When a single independent variable is present, the analysis of variance
table for the regression is equivalent to the test that the slope is zero.

 

RESIDUALS

 

When you begin studying the relationship between two variables you usually do not
know whether the assumptions needed for regression analysis are satisfied. You do
not know whether a linear relationship exists between the two variables, much less
whether the distribution of the dependent variable is normal and has the same
variance for all values of the independent variable. One of the goals of regression
analysis is to check whether the required assumptions of linearity, normality, and
constant variance are met. To do this we do an analysis of residuals.

A quantity called the 

 

residual

 

 plays a very important role when you are fitting
models to data. You can think of a residual as what is left over after a model is fit.
In a linear regression, the residual is the difference between the observed and
predicted values of the dependent variable. If a person has 12 years of education
and your model predicts nine, the residual for the case is 12 – 9 = 3. You have three
years of education left over (not explained by the model).

By looking at the residual for each case you can see how well a model fits. If
a model fits the data perfectly, all of the residuals are zero. Cases for which the
model does not fit well have large residuals. Obviously, you can use the REGRES-
SION procedure to calculate the residuals for all of the cases. A typical scatterplot
with a linear fit is shown in Figure 9.2 and a plot of fitted values and residuals in
Figure 9.3.

 

JUDGING THE SIZE OF THE RESIDUALS

 

How can you tell whether a residual is big or small? If I tell you that a case has a
residual of 500, can you say whether the model gives a reasonably good prediction

 

FIGURE 9.2 

 

Scatterplot with possible linear fit superimposed.
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for the case? On first thought, 500

 

 

 

seems to be a pretty large number — an
indication that a model does not fit that case. However, if you are predicting income
in dollars, a residual of 500 may not be all that large. Predicting a person’s income
to the nearest 500 dollars is pretty good. On the other hand, if you’re predicting
years of education, a residual of 500 should send you searching for a new and
improved model. One way to modify the residuals so that they would be easier to
interpret is to standardize them. That is, divide each residual by an estimate of its
standard deviation.

How come you are only dividing the residual by its standard deviation? Why
you are you not first subtracting off the mean, as you did before, when computing
standardized values? You do not need to subtract the mean of the residuals before
dividing by the standard deviation because the mean of the residuals is zero. If you
add up all of the residuals, you will find that their sum, and therefore their mean,
is zero. That is always true for a regression model that includes a constant.

For most cases, the standardized residuals range in value from –2 to +2 and they
are identified as *ZRESID. (Remember that in a normal distribution with a mean
of 0 and a standard deviation of 1, about 95 percent of the cases fall within +2 and
–2.) Whenever you see a standardized residual larger than +2 or smaller than –2,
you should examine the case to see if you can find some explanation for why the
model does not fit. A typical presentation of residuals in a standardized format is
shown in Figure 9.4.

 

LOOKING FOR OUTLIERS

 

If you have a large number of cases, you may not want to look at the values of the
residuals for all of them. Instead you may want to look only at the cases with
“large” residuals. Such cases are called 

 

outliers

 

. This is easy to do with the
REGRESSION procedure. Just leave off the keyword ALL on the CASEWISE
subcommand. In most computer software applications, you will find that if you do
not tell the program to print all cases, it prints only those whose standardized
residuals are greater than 3 or less than –3. By looking at the characteristics of the
outliers, you can see situations where the model does not work well. Typical outliers

 

FIGURE 9.3 

 

Fitted values and residuals.
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will appear with large residuals in the form of Figure 9.5. The effect on the actual
regression line is shown in Figure 9.6 and finally the outliers outside the pattern
are shown in Figure 9.7.

 

FIGURE 9.4 

 

Typical residuals in a standardized format.

 

FIGURE 9.5 

 

Outlier with large residual.

 

FIGURE 9.6 

 

Outlier that tilts the regression line.
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CHECKING ASSUMPTIONS WITH RESIDUALS

 

Residuals are the primary tools for checking whether the assumptions necessary for
linear regression appear to be violated. We can draw histograms of the residuals,
plot them against the observed and predicted values, recompute them excluding
certain cases, and manipulate them in other ways. By examining the resulting plots
and statistics, we can learn much about how appropriate the regression model is for
a particular data set. In the next few sections, we will consider how to check each
of the assumptions in turn.

 

N

 

ORMALITY

 

If the relationship is linear and the dependent variable is normally distributed for
each value of the independent variable (in the population), then the distribution of
the residuals should also be approximately normal. A simple histogram can demon-
strate this.

On the other hand, when the distribution of residuals does not appear to be
normal, you can sometimes transform the data to make it appear more normal. When
you “transform” a variable, you change its values by taking square roots, or loga-
rithms, or some other mathematical function of the data. If the distribution of
residuals is not symmetric but has a tail in the positive direction, it is sometimes
helpful to take logs of the dependent variable. If the tail is in the negative direction
and all data values are positive, taking the square root of the data may be helpful.

The distribution of your residuals may appear not to be normal for several reasons
besides a population in which the distributions are not normal. If you have a variance
that is not constant for different values of the independent variable, or if you simply
have a small number of residuals, your histogram may also appear not to be normal.
So it is possible that after you have remedied some of these problems, the distribution
of residuals may look more normal. To check whether the variance appears to be
constant, you can plot the residuals against the predicted values and also against the
values of the independent variable.

You may find some common transformations useful when the variance does not
appear to be constant. If the variance increases linearly with the values of the
independent variable and all values of the dependent variable are positive, take the

 

FIGURE 9.7 
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square root of the dependent variable. If the standard deviation increases linearly
with values of the independent variable, try taking logs of the data.

 

L

 

INEARITY

 

To see whether it is appropriate to assume a linear relationship, you should always
plot the dependent variable against the independent variable. If the points do not
seem to cluster around a straight line, you should not fit a linear regression model.
Another way to see whether a relationship is linear is to look at the plots of the
residuals against the predicted values and the residuals against the values of the
independent variable. If you see any type of pattern to the residuals — that is, if
they do not fall in a horizontal band — you have reason to suspect that the relation-
ship is not linear.

Sometimes when the relationship between two variables does not appear to be
linear, it is possible to transform the variables and make it linear. Then you can
study the relationship between the transformed variables using linear regression.

It may seem that when you transform the data, you are cheating or at least
distorting the picture. But this is not the case. All

 

 

 

that transforming a variable does
is change the scale on which it is measured. Instead of saying that a linear relationship
exists between work experience and salary, you say that a linear relationship exists
between work experience and the log of salary. It is much easier to build models
for relationships that are linear than those that are not. That is why transforming
variables is often a convenient tactic.

How do you decide what transformation to use? Sometimes you might know
what the mathematical formula is that relates two variables. In that case, you can
use mathematics to figure out what transformation you need. This situation happens
more often in engineering or the physical or biological sciences than in the social
sciences. If the true model is not known, you choose a transformation by looking
at the plot of the data. Often, a relationship appears to be nearly linear for part of
the data but is curved for the rest. The log transformation is useful for “straightening
out” such a relationship. Sometimes taking the square root of the dependent variable
may also straighten a curved relationship. These are two of the most common
transformations, but others can be used.

When you try to make a relationship linear, you can transform the independent
variable, the dependent variable, or both. If you transform only the independent
variable you are not changing the distribution of the dependent variable. If it was
normally distributed with a constant variance for each value of the independent
variable, that remains unchanged. However, if you transform the dependent variable,
you change its distribution. For example, if you take logs of the dependent variable,
then the log of the dependent variable — not the original dependent variable —
must be normally distributed with a constant variance. In other words, the regression
assumptions must hold for the variables you actually use in the regression equation.

 

I

 

NDEPENDENCE

 

Another assumption that we made was that all observations are independent. (The
same person is not included in the data twice on separate occasions. One person’s
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values do not influence the others’.) When data are collected in sequence, it is
possible to check this assumption. You should plot the residuals against the sequence
variable. If you see any kind of pattern, you should be concerned.

Finally, it is important to examine the data for violation of the assumptions since
significance levels, confidence intervals, and other regression tests are sensitive to
certain types of violations and cannot be interpreted in the usual fashion if serious
departures exist. If you carefully examine the residuals, you will have an idea of
what sorts of problems might exist in your data. Transformations provide you with
an opportunity to try to remedy some of the problems. You can then be more confident
that the regression model is appropriate for your data.

How can you tell whether the assumptions necessary for a regression analysis
appear to be violated? Here are the key points to remember:

• A residual is the difference between the observed value of the dependent
variable and the value predicted by the regression model.

• To check the assumption of normality, make a histogram of the residuals.
It should look approximately normal.

• To check the assumption of constant variance, plot the residuals against
the predicted values and against the values of the independent variable.
There should be no relationship between the residuals and either of these
two variables. If you note a pattern in the plots, you have reason to suspect
that the assumption of constant variance is violated.

• To check whether the relationship between the two variables is linear, plot
the two variables. If the points do not cluster about a straight line, you
have reason to believe that the relationship is not linear.

• If any of the assumptions appear to be violated, transforming the data
may help. The choice of the transformation depends on which assumption
is violated and in what way.

 

MULTIPLE LINEAR REGRESSION

 

A special class of statistical techniques, called 

 

multivariate methods

 

, is used for
studying the relationships among several interrelated variables. The goals of such
multivariate analyses may be quite different from that of a univariate analysis, but
they share many common features. Here we will take a look at some of the most
popular ones.

You can use 

 

multiple linear regression

 

 analysis to study the relationship between
a single dependent variable and several independent variables of the form.

Y = Constant + B

 

1

 

X

 

1

 

 + B

 

2

 

X

 

2

 

 + B

 

3

 

X

 

3

 

 … B

 

n

 

X

 

n

 

The model looks like the regression model we already have seen. The difference
is that you now have several variables on the independent variable side of the model.
The independent variables are indicated by X

 

1

 

, X

 

2

 

, X

 

3

 

, …, X

 

n

 

 and the coefficients
by B

 

1

 

, B

 

2

 

, B

 

3

 

, …, B

 

n

 

. As before, the method of least squares can be used to estimate
all of the coefficients.
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Perhaps the most important issue with multiple linear regression is that because
the variables are measured in different units, you cannot just compare the magnitudes
of the coefficients to one another. Because of this characteristic, the experimenter
must standardize the variables in some fashion. That standardization takes place
with a statistic called BETA and contains the regression coefficients when all vari-
ables are standardized to a mean of zero and a standard deviation of one. Of course,
just like before we still use the significance test for the test of the null hypothesis
that the value of a coefficient is zero in the population. You can see that the null
hypothesis can be rejected for all of the variables.

When you build a model with several interrelated independent variables, it is
not easy to determine how much each variable contributes to the model. You cannot
just look at the coefficients and say 

 

this 

 

is an important variable for predicting the
dependent variable and this one is not. The contributions of the variables are
“shared.” The goodness-of-fit statistics we considered for a regression model with
one independent variable can easily be extended to a model with multiple indepen-
dent variables.

SELECTING INDEPENDENT VARIABLES

Often you do not know which independent variables together are good predictors of
the dependent variable. You want to eliminate variables that are of little use from your
equation so you will have a simple, easy-to-interpret model. You can do this with the
assistance of what are called variable selection methods. Based on statistical consid-
erations, such as the percent of variance explained by one variable that is not explained
by any other variables, some software packages (for example SPSS) select a set of
variables for inclusion in a regression model. Although such procedures often result
in a useful model, the selected model is not necessarily best in any absolute sense.

DISCRIMINANT ANALYSIS

You can use regression analysis to predict values of the dependent variable based
on a set of independent variables. The dependent and independent variables are all
measured on an interval or ratio scale. What if the dependent variable is not measured
on an interval or ratio scale? Instead, your data for the dependent variable are ordinal.
What you might want to use in this case is a procedure called discriminant analysis.

In discriminant analysis, you compute “discriminant scores” for each case to
predict what group it is in. These scores are obtained by finding linear combinations
of the independent variables. (A linear combination is formed by multiplying each
variable by some constant and then adding up the products.) For example, you might
compute an individual’s score by taking 2 times income in thousands, plus 1.5 times
age, plus 1.1 times education. Discriminant analysis uses mathematical techniques
to determine the way of computing scores that results in the best separation among
the groups (in other words, the most accurate prediction of what group each case is
in). Statistical packages such as SPSS do all the computations for you, including
selection of the best coefficients. The result of a discriminant analysis tells you how
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well you are able to predict what case a group falls into, based on the values of the
independent variables.

Graphical representations of discriminant analysis are shown in Figures 9.8
through 9.12.

LOG-LINEAR MODELS

Using a cross-classification table and the chi-square statistic, you were able to test
whether two variables that have a small number of distinct values are independent.
However, what if you wanted to know the effect of additional variables on the
relationships that you are examining? You could always make a cross-tabulation

FIGURE 9.8 Graphical illustration of two-group discriminant analysis.

FIGURE 9.9 Optimal cutting score with equal sample sizes.
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table of all of the variables, but this would be very difficult to interpret. You would
have hundreds or thousands of cells and most of them would contain few cases, if any.

One way to study the relationships among a set of categorical variables is with
log-linear models. With a log-linear model you try to predict the number of cases
in a cell of a cross-tabulation, based on the values of the individual variables and
on their combinations. You see whether certain combinations of values are more
likely or less likely to occur than others. This tells you about the relationships among
the variables.

FACTOR ANALYSIS

If you give a group of students 100 different aptitude tests, their scores on the
different tests will no doubt be correlated. The tests probably measure some of the

FIGURE 9.10 Optimal cutting score with unequal sample sizes.

FIGURE 9.11 Territorial map and rotated discriminant Z scores.
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same characteristics, such as verbal skills, mathematical aptitude, reasoning ability,
and perceptual speed. Characteristics such as “verbal skill,” “mathematical aptitude,”
and “reasoning ability” are not well-defined, easily measurable variables like weight
or age. Instead they can be thought of as unifying concepts or labels that characterize
responses to related groups of variables. A mathematically apt person would score
well on all of the tests related to mathematical skills. In fact, that is how the definition
of mathematical aptitude was formulated. Factor analysis is a statistical technique
that attempts to measure such concepts.

In some research situations, you have a set of interrelated variables such as
consumer ratings of products. You think that the ratings are correlated because people
are rating the products on similar dimensions such as product quality and utility.
But you do not know what these underlying dimensions, or factors, are. You can

FIGURE 9.12 Graphical portrayals of the hierarchical clustering process: (a) nested group-
ings, (b) dendogram.
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use factor analysis to help you identify these underlying concepts by using a number
of variables that you can directly measure.

CLUSTER ANALYSIS

If you question sick patients about their symptoms, you will undoubtedly have a
very long list of complaints. You may think that you will find as many combinations
of symptoms as you have patients. However, if you study the types of symptoms
that frequently occur together, you will probably be able to put the patients into
groups — those who have respiratory disturbances, those who have gastric problems,
those who have cardiac difficulties. Classifying the patients into groups of similar
individuals may be helpful both for determining treatment strategies and for under-
standing how the body malfunctions.

In statistics, the search for similar groups of objects or people is called cluster
analysis. By forming clusters of objects and then studying the characteristics the
objects share, as well as those in which they differ, you can gain useful insights.
For example, cluster analysis has been used to cluster skulls from various archeo-
logical digs into the civilizations from which they originated. Cluster analysis is
also frequently used in market research to identify groups of people for whom various
marketing pitches may be particularly attractive.

TESTING HYPOTHESES ABOUT MANY MEANS

Previously, we tested the hypothesis about the equality of population means. We
wanted to know if people find the ride comfortable, normal, or rough. We used the
analysis of variance procedure to test hypotheses that more than two population
means are equal. We tested whether there was a difference in education among the
three excitement groups.

What if we have several interrelated dependent variables, such as education and
income, about which we wish to test hypotheses? How can we test hypotheses that
both education and income do not differ among the three excitement groups in the
population? Multivariate analysis of variance, or MANOVA, is used to test such
hypotheses. Using MANOVA, you can compare four instructional methods based
on student achievement levels, satisfaction, anxiety, and long-term retention of the
material. Or you compare five new ice cream flavors based on the amount consumed,
a preference rating, and the price people say they would pay.

If the same variable is measured on several different occasions, special “repeated
measures” analysis of variance techniques can be used to test hypotheses. These can
be thought of as extensions of the simple paired t test.

The previous chapters explained some of the more widely used statistical tech-
niques, and this chapter has attempted to give an idea of the more sophisticated
methods available. Still others exist. You can use nonparametric procedures that do
not require such stringent assumptions about the distributions of variables. You can
use procedures for analyzing specialized types of data such as test scores or survival
times. There are often many different ways to look at the same problem. No one
way is best for every problem; each view tells you something new.
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Common Miscellaneous 
Statistical Tests

 

This chapter will discuss common tests for nominal data (binomial, chi square [I],
chi square [II], McNemar, and the Cochran Q), ordinal data (Kolmogorov-Smirnov,
Mann-Whitney U, sign, Wilcoxon, Kruskal-Wallis, and Friedman), and interval data
(

 

t

 

 test [I], 

 

t

 

 test [II], 

 

t

 

 test [III], and Scheffe’s test).

 

BINOMIAL TEST

 

Some of the statistical tests you will be studying are used to analyze data with many
categories or outcomes. However, when only two categories are present, the binomial
test (sometimes called a test of proportion) is applicable.  The two categories could
be, for example: grades in a pass/fail course, party affiliation as broken down into
either Republican or Democrat, evaluation of a product as good or bad, a decision
about a process as go or no go, outcome in tossing a coin heads or tails, or outcome
in rolling a six or not a six on a die.

The proportion of cases in one category is referred to as P and in the other
category as Q. The value of P + Q always equals one. If you know the value of P,
you find Q by subtracting P from one. The requirements for the binomial test are:

1. Nominal data
2. One-group test
3. Two categories only
4. Sample size can be less than five
5. Independent observations
6. Simple random sample
7. Data in frequency form

The general formula for the binomial is:

10

P x
N

x
P Qx N x( ) = Ê

ËÁ
ˆ
¯̃

-
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The terms  are binomial coefficients and are computed by the following formula:

The meanings of the symbols are as follows: ! = factorial, N = number of trials
or sample size, X = number of favorable outcomes for a series of trials, P =
probability of favorable outcome in a single trial, Q = (1 – P) = probability of
unfavorable outcome in a single trial.

 

REMARKS ON THE BINOMIAL TEST

 

The binomial is a useful test because it computes exact probabilities in order to get
the region of rejection, and you can use either a one- or two-tailed test. If the number
in the sample is greater than 25, however, calculations of this type become very
cumbersome. The chi-square test and others like it do not compute exact probabil-
ities, but they are easier to calculate.

 

CHI-SQUARE (I) TEST

 

The chi-square (I) test (also known as “goodness-of-fit” test) is used to determine
whether a significant difference exists between the expected frequencies and the
observed frequencies in one or more categories. Do the number of individuals or
objects that fall in each category differ significantly from the number you would
expect? Is this difference between the expected and observed due to sampling error,
or is it a real difference? The requirements for the chi-square (I) test are:

1. Nominal data
2. One-group test
3. One or more categories
4. Independent observations
5. Adequate sample size

a. The expected frequencies should be sufficiently large for two categories
five or larger.

b. When more than two categories are present, no more than 20% should
be smaller than five.

6. Simple random sample
7. Data in frequency form
8. All observations must be used
9. Two-tailed test only (This test cannot be used as a one-tailed test. If

directional testing is necessary, you should use a different test.)

The chi-square formula is:

N

x
Ê
ËÁ

ˆ
¯̃

N
x N x

!
!( )!-
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where O = observed frequencies in each category, E = expected frequencies for the
corresponding observed frequencies, 

 

S

 

 = sum of, k = number of categories, and df
= degrees of freedom (number of categories minus one [k – 1]).

 

CHI-SQUARE (II) TEST

 

The last section dealt with chi-square and its use with one group. However, chi-
square has wide application, and it can be used with two or more groups. To
distinguish between the use of chi-square with one group and with two or more
groups, we shall use the terms chi-square (I) and chi-square (II). The question we
ask in discussing chi-square (II) is: do two or more groups differ in respect to some
characteristics? In other words, do the number of frequencies that fall into each
category for one group differ significantly from the number that fall into each
category for another group or groups? The requirements for chi-square (II) are:

1. Nominal data
2. Two or more groups
3. Independent observations
4. Adequate sample size

a. No more than 20% of expected frequencies can be smaller than five.
b. When expected frequencies are very small, use the Fisher exact prob-

ability

 

 

 

test (Siegel, 1956), not the chi-square (II).
5. Two-tail test only

The method for finding chi-square (II) differs from that for chi-square (I) in the
way the expected frequencies are found. You have no prior basis for computing the
expected frequencies, so they are derived from the data. This involves setting up a
contingency table. The formula however, is the same as that for (I).

 

A WORD OF CAUTION ON 

  

cccc

 

2

 

Chi-square is a convenient measure of association between two factors when the
factors are not quantitative. It indicates the degree to which the frequencies in a
cross-tabulation of the two factors deviate from what they would be if no interrelation
existed between the factors. The computed chi-square has a specific level of statis-
tical significance that you can look up in a standard table.

Suppose we ask 300 testers to rate two brands of a product (A and B) both in
terms of overall preference and preference regarding “comfort.” By a convenient
coincidence, the “comfort” preference divides exactly even, with 100 preferring A,
100 preferring B, and 100 having no preference.

c2
2

= -Â ( )O E
E
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Clearly, a strong association exists between the preference on “comfort” and
overall preference; chi-square is 18.4, indicating a significance level of 99%+.
However, let us assume that we suspect the results and upon further investigation,
we find that we have recorded the data in the wrong cell. The table should have
looked like:

Now, let us see what we have. It still looks like a strong association for A but
not for B, so we should have a lower chi-square, right?

No. Chi-square is still 18.4. As long as the numbers stay the same, it does not
matter how they are labeled. Like the scarecrow in 

 

The Wizard of Oz, 

 

chi-square
does not have a brain. It is merely an algorithm, a mechanical process based on
numbers regardless of what they represent. By itself, it never can take the place of
a regression or correlation because it cannot describe the relationship; it can only
gauge its 

 

statistical 

 

significance, entirely regardless of logic or sense.
Chi-square is nonparametric. To describe a relationship in numerical terms, we

need numerical values — that is, parameters. If we arbitrarily assign value +1 to
preference for A and –1 to preference for B, we can compute a correlation coefficient
of r = +.246 for the original tabulation and exactly half that for the corrected
distribution. The parametric regression/correlation, unlike chi-square, is affected by
the way the rows and columns are labeled because each label has a specific value.

So chi-square is a very useful index when we cannot assign values, but it is very
easy to misuse it; it does not have a brain, so the analyst has to use his or her own
brain to interpret it correctly.

 

McNEMAR TEST

 

The McNemar test is used for before-and-after research designs. It is used with
matched pairs or when a subject is his/her own control. The purpose is to determine
the significance of the observed change. The requirements are listed below.

1. Nominal data
2. Two groups

 

Comfort level A B No preference
A 70 30 100
No preference 55 45 100
B 40 60 100
Total 165 135 300

 

Comfort level A B No preference
A 70 30 100
B 55 45 100
No preference 40 60 100
Total 165 135 300
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3. Related groups
4. Expected frequencies five or more
5. Two-tailed test only (The chi-square table is used for the critical value.)

The formula for the McNemar test is:

where A = number of individuals changing in one direction, D = number of indi-
viduals changing in the opposite direction from A, and E = expected number of
individuals under the null hypothesis 

 

1

 

/

 

2

 

 (A + D). Df = degrees of freedom is always
1 for the McNemar test.

 

COCHRAN Q TEST

 

The McNemar test for two related groups can be extended to more than two groups.
This extension is called the Cochran Q test. It is a method for testing whether
three or more matched sets of frequencies differ significantly. The matching can
be on relevant features of different people, or the same person can be used under
different conditions.

Scores for the Cochran Q test can take only two values: zero or one. The value
one represents values that are recorded as positive, while the zero represents those
that are negative. The requirements for the Cochran Q test are as follows:

1. Nominal data
2. Three or more groups
3 Related groups
4. Data in frequency form
5. Two-tail test only

The Cochran Q formula is:

where k = number of groups, R = row totals, C = column totals, and T = grand total
(sum of R or sum of C). 

 

KOLMOGOROV-SMIRNOV TEST

 

The Kolmogorov-Smirnov is an ordinal test used with one-group samples. The
experimenter uses it to find out whether a distribution of observations is significantly

c2
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different from a theoretical distribution. The test compares the cumulative distribu-
tion of the observed scores and the cumulative distribution of the expected scores.
The point where the two distributions show the largest divergence is then determined.
Next, the experimenter refers to the sampling distribution to determine whether this
divergence is the result of chance or a real difference. Do the scores in these two
distributions come from the same population? To test this difference, one uses the
critical value of D for the Kolmogorov-Smirnov test. The requirements for the
Kolmogorov-Smirnov test are as follows:

1. Ordinal data
2. One group
3. Simple random sample

The formula for the Kolmogorov-Smirnov test is:

where LD = large difference, N = number of individuals in the sample, O = number
of individuals observed, E = number of individuals you would expect in the sample,
OC = observed cumulative distribution, EC = expected cumulative distribution, and
f = frequency of scores.

Special note

 

:

 

 In the process of calculating this test, notice that the definitions
of OC and EC are part of the 

 

cumulative distribution. 

 

Before you can use the
Kolmogorov-Smirnov test, you must know how to create a cumulative distribution.

 

USE OF THE MANN-WHITNEY U TEST

 

The Mann-Whitney U can be applied when you have two independent, randomly
selected groups of unequal sizes. It tests whether two independently drawn samples
have been drawn from the same population. To do the comparison, the experimenter
must rank the data. Once that is done, then the question is: Do the scores from one
sample significantly differ from those of the other sample, so that we can conclude
each sample represents a different population, or is the difference due to the luck
of the draw? In the latter case we would conclude that, though the samples may
differ, they represent the same population. The decision is made on the critical value
as identified in a special table of values for this test. The requirements for the
Mann-Whitney U are as follows:

1. Ordinal data
2. Two

 

 

 

groups
3. Independently drawn samples
4. Data in ranks
5. Simple random samples
6. Sample size can be different for the two groups.

D
LD
N

=
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When the n

 

2

 

 is between 9 and 20 then the formulas for the test are:

1. Mann-Whitney U

2. Mann-Whitney U

U

 

2

 

 = n

 

1

 

n

 

2

 

 – U

 

1

 

The reason that two formulas are necessary is that we need to find the smaller
U of the two. Since we are dealing with two populations, usually of different sizes,
it stands to reason the two formulas will give different values of U. We perform
both tests for U, and whichever happens to be smaller is used as our U value. Do
not worry if you do not understand these formulas now; just look at them. The
symbols we use for computing and understanding the formulas are n

 

1

 

 = size of
smaller group, n

 

2

 

 = size of larger group, N = total number in both groups (n

 

1

 

 + n

 

2

 

)

 

,

 

S

 

R

 

1

 

 = sum of the ranks in group one, 

 

S

 

R

 

2

 

 = sum of the ranks in group two.
When n

 

2

 

 is larger than 20, then the Mann-Whitney U test is:

Obviously, when n

 

2

 

 

 

is larger than 20, you have to carry out some further
calculations. In this case you use your value of U to compute the value of z given
by the formula

 

.

 

 The sampling distribution for z is approaching the normal distribu-
tion, and as a consequence, the table values for the z are appropriate. That means
that you reject the null hypothesis if the probability for z is equal to or less than the
predetermined level of significance. The one-tailed probabilities are given in the z
table; for two-tailed probabilities double the table values.

 

COMMENT ABOUT THE MANN-WHITNEY U

 

The Mann-Whitney U test, a nonparametric test, is often used as a substitute for the

 

t

 

 test, a parametric test. This test is used when the 

 

t

 

 test’s assumptions appear to be
in doubt — for example, when the shape of the distribution does not appear to be
normal and the level of measurement is ordinal. The Mann-Whitney U is an
easy-to-apply nonparametric test.

 

SIGN TEST

 

Earlier we discussed the binomial test. You used the binomial distribution to test
different hypotheses. Now we are going to study the sign test, which is based on

U n n
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the binomial distribution. When the sample size in our experiment is 25

 

 

 

or smaller,
we can evaluate the results by using the binomial distribution as the sampling
distribution.

The sign test measures the significance of the difference between two treatment
conditions. It is used with two groups that are matched. You choose this test when
you are concerned with the direction of differences, which you indicate by a plus
or a minus sign. When using the sign test you analyze every matched pair’s scores,
recording whether the sign of the difference between a pair is negative or positive.
If the scores of a pair are the same, you disregard that pair. The pertinent requirement
for this test is that each pair is matched on the important variable that you are
studying. The actual test of significance is based on the chi-square table (if fewer
than 25 samples) and the z statistic if the sample is larger than 25. The requirements
for the sign test are as follows:

1. Ordinal data
2. Two-group test
3. Related groups
4. When a pair of observations are tied, neither is used
5. Plus and minus signs are used to indicate differences

What we are trying to find out is whether the number of plus signs exceeds the
number of minus signs. If the two are the same, then there is no difference. The
symbols used are: x = the number of pluses or the number of minuses, whichever
is less, and N = total number of pluses and minuses in the group.

The frequency of occurrence of a particular plus or minus sign can be determined
by looking at the probabilities table for the binomial distribution, when p and q both
are equal to 

 

1

 

/

 

2

 

.

 

COMMENTS ABOUT THE SIGN TEST

 

The major weakness of the sign test is that it does not use all the information given,
so if possible a parametric test should be used. As already mentioned, when the
sample size is larger than 25, the normal distribution approximates the binomial
sampling distribution, and the formula used is:

The table for the z values is used for interpretation.

 

WILCOXON SIGNED-RANKS TEST

 

The Wilcoxon test compares the distribution groups. The groups are related in one
of two ways:

Z
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1. The same objects/people have been tested under two different conditions.
2. Pairs of objects/people have been matched on the same basis before being

tested.

The purpose of this test is to determine whether the differences between the
groups favor one group over the other. The sign test, which you have just read about,
concerns itself with only the direction of the differences between the pairs; it does
not consider the size of the differences. All we recorded by using a plus or a minus
sign for each matched pair of scores for the sign test was whether one of the pairs
was larger or smaller; we did not record how large or small this difference was. The
sign test does not use all the information that is available. However, the Wilcoxon
test concerns itself not only with the direction of the differences but also with their
size. It makes a distinction between these differences by ranking them. The critical
value for this test can be found on a table for this particular test. The requirements
of the Wilcoxon signed-ranks test are as follows:

1. Ordinal data
2. Two groups
3. Related groups
4. Ranked data

The symbols used for this test are: N = number of matched pairs, excluding
those with a deviation (D) of zero; T = the smaller value for either 

 

S

 

R

 

+

 

 or 

 

S

 

R

 

–

 

.

 

SAMPLE SIZES LARGER THAN 25

 

When you have a sample size larger than 25, you cannot use the Wilcoxon table. In
such instances, your T is almost normally distributed. When this is the case, you
proceed as before to find T. That is, you find the sum of the smaller ranks. After
you find T, you use the following formula, which you evaluate based on the z table.

 

KRUSKAL-WALLIS TEST

 

The Kruskal-Wallis test is similar to the Mann-Whitney U test. The Mann-Whitney
U compared two groups, whereas the Kruskal-Wallis compares three or more groups.
The experimenter wants to know if the difference among the groups is due to
sampling error or is a real difference. The Kruskal-Wallis test determines whether
a difference is present by finding out if the sums of the ranks for each of its groups
differ significantly from each other. A significant value of H (based on the chi-square
table or the Kruskal-Wallis table) implies that the medians of the distribution are
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not the same. When using the Kruskal-Wallis test, the experimenter does not have
to be concerned about whether the test is one- or two-tailed. The only concern is
whether a difference exists. The requirements for using this test are:

1. Ordinal level
2. Three or more groups
3. Independent groups
4. Simple random sample

The formula for the calculation is:

The symbols used in calculating the test are: N = total number of objects (n

 

1

 

 + n

 

2

 

+ n

 

3

 

 + …), Df = k – 1 Degrees of freedom, equal to the number of groups minus
one, n
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, n

 

2

 

, n
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, …  = number of objects in group 1, group 2, group 3 and so on,
(

 

S

 

R

 

1

 

)

 

2

 

, (

 

S

 

R

 

2

 

)

 

2

 

, (

 

S

 

R

 

3

 

)

 

2

 

, … = sum of the ranks for group 1 squared, group 2 squared,
group 3 squared, and so on.

 

THE EFFECT OF TIES

 

When the number of ties is large, H

 

 

 

will be a little smaller than it should be. There
is a correction for ties that makes it easier to reject the null hypothesis. If you do
not correct for ties, your rejection of the null hypothesis will be harder, and your
test is more conservative. We shall not deal with this correction formula because it
has little effect on the value of H

 

 

 

unless the number of ties is extreme. If you are
interested in the correction, consult Hays (1973) and Siegel (1956).

 

FRIEDMAN TEST

 

The Friedman test is useful when we want to test the null hypothesis that many
groups have been drawn from the same population. The Friedman is an extension
of the previously discussed Wilcoxon test. The Wilcoxon can be used with only two
groups, while the Friedman can be used with three or more groups. Like the Wil-
coxon, the Friedman uses related or matched groups. Either these groups are matched
on the basis of some variable, or the same subjects are used for different treatments.
Since the Friedman uses groups that are matched, the number of subjects in each
sample is the same. Significance is measured based on the chi-square table. The
requirements for this test are:

1. Ordinal data
2. Three or more groups
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3. Related groups
4. Sample drawn at random from matched scores

The formula for this statistic is:

The symbols used in the calculating process of the statistic are: k = number of
columns, N = number of rows,  = sum of the squared rank sums, df = k – 1
degrees of freedom, equal to the number of columns minus one.

 

T

 

 TEST

 

The 

 

t

 

 test, often referred to as Student’s 

 

t

 

 or the 

 

t

 

 ratio, was first described in 1908
in an article in 

 

Biometrika

 

 by William S. Gosset, who wrote under the pseudonym
“Student.” Gosset, a 32-year-old chemist, was a consultant for the Guinness Brewery
in Ireland. (Here we have taken some liberties. The 

 

t

 

 ratio will be known as 

 

t

 

 [I], 

 

t

 

[II], and 

 

t

 

 [III]. When the 

 

t

 

 is used with one group it is referred to as 

 

t

 

 [I]; with two
independent groups, as 

 

t

 

 [II]; and with two related groups, as 

 

t

 

 [III].) In doing his
research he discovered the 

 

t

 

 distribution, which permitted him to test hypotheses
with small samples when the population had a normal distribution, the population
mean was assumed, and the population standard deviation was unknown.

In the majority of small practical research problems, knowledge of the standard
deviation is not available. If previous experience does not supply the standard
deviation, one uses the 

 

t

 

. In using the 

 

t

 

 to test a hypothesis, you calculate the 

 

t

 

 and
then refer to a 

 

t

 

 table to determine the probability for this statistic.

 

t

 

 Test (I): The 

 

t

 

 test (I) is used with one-group samples where the population
has a normal distribution. For example, suppose a population is assumed to have a
mean of 1.85 meters and it has a normal distribution. We then reach into this
population, pull out a sample, compute its mean, and compare its mean to the
population mean of 1.85 meters by using the 

 

t

 

 test (I). If the difference between the
sample mean and the assumed population mean is too large, then the assumption
that the population mean is 1.85 meters is rejected. The requirements for the 

 

t test
(I) are as follows:

1. At least the interval level of measurement
2. Random sample
3. Sample drawn from a population that has a normal distribution

The formula for the t test (I) is 
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that is, the sample means minus the population mean divided by the standard error
of the mean. Using the formula for t does not require skills beyond what we already
have learned. In effect, you are calculating a mean, a standard deviation, and a
standard error of the mean. By using these three formulas, you can compute a t for
any group of scores. To shorten this task, a formula that combines all the components
is used:

The symbols you will encounter in learning about t (I) are  = sample mean, m =
population mean, SX2 = square each score, then find the sum of the squares, N =
count the number of scores, (SX)2 = square the sum of the scores, and df = N – I
= degrees of freedom, number of scores minus one.

COMMENTS ABOUT THE T DISTRIBUTION

The distribution for the t is very similar to the normal curve; that is, it is symmetrical
with a mean of zero and a standard deviation slightly more than one. However, the
t curve is more peaked than the normal curve. Furthermore, the t is not just one
distribution, like the normal curve, but many distributions. Each of these distributions
looks different, depending upon its degrees of freedom. Figure 10.1 shows three
examples of the t curve with different degrees of freedom. Figure 10.2 shows the t
and standard normal distributions.

Notice that the more degrees of freedom you have, the more your t resembles
the normal curve. When the number in your sample is equal to or greater than 100,
the normal curve may be substituted for the t distribution. Because the t is composed
of so many distributions, tables for the t include these distributions. However, most

FIGURE 10.1 t Distributions with 1, 8, and 25 df.
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tables are abbreviated, because you would need a volume to show the different
distributions for the t.

T TEST (II)

The t test (II) concerns itself with two groups. These groups are independent; that
is, an individual in one group cannot be in any way related to an individual in the
other group. The purpose of the t (II), or t ratio as it is called, is to determine whether
the mean of one group is significantly different from the mean of the other group.
The requirements of the t (II) are as follows:

1. The two groups are independent.
2. Measurement is at least at the interval level.
3. The populations are both normally distributed.
4. The populations have the same variances. (Older statistics books and

articles suggest that a test of homogeneity of variance be carried out before
it is permissible to use a t ratio. However, many modern statisticians feel
that such a test is not worth the time and effort. Where these tests for
homogeneity of variance are most needed — on small samples with
unequal sizes — they are the least effective [Hays, 1973].)

5. The samples are drawn at random.

IMPORTANCE OF REQUIREMENTS THREE AND FOUR

Requirement Three states that the two populations should be normally distributed.
A severe departure from normality seems to have little effect on the conclusions
when sample sizes are 30 or more. Of course, the results would be more accurate
if the distribution were normal. In reality you can violate this assumption and not
worry about it as long as your samples are not extremely small (Hays, 1973).

Requirement Four (homogeneity of variance) states that the populations should
have the same variances. When the populations do not have the same variances and
the sample sizes are equal, there is little effect on the conclusions reached by the t
test. However, when the sample sizes are extremely small and of unequal sizes, the

FIGURE 10.2 The t and standard normal distributions.

0.6

0.5

0.4

0.3

0.2

0.1

0

−3
.0

−2
.8

−2
.5

−2
.3

−2
.0

−1
.8

−1
.5

−1
.3

−1
.0

−0
.8

−0
.5

−0
.3 0

0.
2

0.
5

0.
7

1.
0

1.
2

1.
5

1.
7

2.
0

2.
2

2.
5

2.
7

3.
0

t with 5 df

t with 30 df and standard normal

SL3127_frame_MASTER.book  Page 123  Monday, July 1, 2002  9:38 AM



124 Six Sigma and Beyond: Statistics and Probability, Volume III

t ratio is affected. One way to handle this problem is to avoid using samples of
unequal sizes. However, if this is not possible, and if the situation warrants it, use
a nonparametric test instead of a t. If these two solutions are not feasible, the only
other possibility is to use a computational formula that computes the standard error
of each sample separately and use a corrected number for your degrees of freedom.

The best formula to use for the t test (II) is the following:

The numerator is the actual difference between the means, whereas the denominator
is an estimate of the standard error of the difference between the means. The
denominator is an estimate of the variability of the difference between the means
of the two samples. When you use this formula, you are dividing the observed
differences (numerator) by the variation of differences (denominator) that can be
expected due to chance. If no significant difference exists between the groups, the
ratio will be equal to zero. The further the ratio deviates from zero, the more likely
it is that a real difference exists between the groups. The formula for t (II) looks
very complicated, but these symbols are in fact old friends. Their meanings are: 
= mean of group I,  = square the individual scores for group I and then find
the sum, (SX1)2 = sum the individual scores for group I and then square the sum,
N1 = count the number of subjects in group I, and df = N1 + N2 – 2 degrees of
freedom, the number of subjects in group I plus the number of subjects in group II
minus 2.

T TEST (III)

The t test (III) is also used with two groups. This test’s concern is to find out if the
mean of one group is actually different from the mean of the other group. The
difference between the t test (II) and the t test (III) has to do with the nature of the
two groups. The t test (III) is used only in cases where the two groups are related.
When we talk about related groups, we mean groups that are matched on some
variable or in which the subjects are used more than once. The requirements for the
t test (III) are as follows:

1. Two groups related
2. At least interval level of measurement
3. Populations both normally distributed
4. Populations having the same variances
5. Samples drawn at random
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The formula used to evaluate whether the difference between these two groups
is significant is different from the one used for the t (II). You compute the differences
between each pair of scores and then use this difference to estimate the population
standard error of the difference.

where  = mean of the difference, SD2 = square the differences, then find the sum,
(SD)2 = sum the differences, then square the sum, and N = number of pairs of scores.

SCHEFFE’S TEST

The Scheffe’s test is in effect an F test. However, this F test is computed as a separate
test for every comparison using the following formula.

After this F is computed, you compare it to the table value you found when you
did your analysis of variance. If the F is equal to or greater than the table value, it
is considered significant. The MSw is the mean square within from the ANOVA table.

 CORRELATION

How do we choose a correlation technique? We choose on the basis of the situation
that is being examined and the data’s level of measurement. Here we will address
three techniques, of which two are nonparametric and one is parametric. These
procedures are most often found in beginning statistics books, and each serves a
different level of measurement, as illustrated by the following table.

After we choose a correlation technique, we use it to compute a number called
a coefficient of correlation. This number tells us the exact strength and direction of

Level of Measurement Correlational Technique Kind

Nominal Contingency coefficient Nonparametric
Ordinal Spearman rank Nonparametric
Interval Pearson product-moment Parametric
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the relationship between the two sets of scores. We begin our discussion with the
Pearson product-moment coefficient of correlation.

PEARSON PRODUCT-MOMENT COEFFICIENT

The Pearson product-moment coefficient of correlation or the Pearson r, as it is
sometimes called, was derived by the English statistician Karl Pearson. It is the most
popular measure of correlation for measuring the linear relationship between two
numerically valued random variables. In order to use this parametric measure, we
assume the scores on each variable come from a normally distributed population.
The requirements for the Pearson r are as follows:

1. Relationship is linear.
2. Scores of the population form a normal distribution curve.
3. Scattergram is homoscedastic.
4. Scores are at interval level of measurement.

WHAT IS THE PEARSON r?

The Pearson r is simply the mean of the z score products, or 

To compute r you do nothing new. You convert every X-score value and every Y-score
value to a z score. Then you multiply each z score of X by its z score of Y. You sum
the products and divide by the number of pairs. The Pearson r then shows you the
extent to which individuals have the same position on these two variables. Because
you change both sets of scores to z scores, you do not have to worry that the variables
are not measured on the same type of scale. In other words, you can correlate weight
with height. Looking at this formula and understanding what it means helps one to
understand the concept of correlation. However, using this formula to compute r is
computationally a pain in the neck. Can you imagine the time and effort it would
take to convert every X score and Y score to a z score? Needless to say, it makes
life easier to know that other formulas have been derived from this basic definitional
formula. One of the easiest to use is given below:

The terms used in this formula have the following meanings: SXY = multiply
each X by its Y, then sum the results, SX = sum of all X, SY2 = square the Y, then

r
z z
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sum the results, SX2 = square the X, then sum the results, SY = sum of all Y, and
N = number of pairs.

The requirements for using the Pearson r are:

1. Relationship is linear.
2. Data of the population form a normal distribution curve.
3. Scattergram is homoscedastic.
4. Data are at interval level of measurement.

The procedure used for the Pearson r is:

1. Determine r by the formula

2. Determine the statistical significance of r when N is smaller than 30.
a. Refer to a Critical Value of the t value in a table.
b. Using a df of N – 2, enter table value.
c. If your r is equal to or greater than the table value found in table of t,

reject the null hypothesis.
3. Determine the statistical significance of r when N is 30 or larger.

a. Compute z = 
b. Consult a z table.
c. Reject the null hypothesis if your z value has a probability of occurring

that is equal to or less than your level of significance. For a two-tailed
test double the probability shown on the table.

SPEARMAN RANK COEFFICIENT (RHO)

Charles Spearman, a British psychologist, is given credit for the first work on the
relationship between ranks. His early writings on the subject became known as
Spearman’s rank-order correlation. (In reality it was Galton, not Spearman, who
developed the idea of rank order correlation and it was Pearson who derived the
formula.) Anyway, The Spearman rank coefficient is referred to as the Spearman
rho because it is denoted by the Greek letter r. It is a nonparametric measure for
use with data that are either reduced to ranks or collected in the form of ranks.

In testing the significance of this correlation you are testing the null hypothesis
that states there is zero correlation in the population. The requirements for using the
Spearman rho are as follows:

1. Ordinal data
2. Two variables
3. Each subject in the study ranked separately on each variable
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The formula for the Spearman rho is:

The terms used to find the Spearman rho have the following meanings: N = number
of individuals in the group, D = difference between the ranks in the column labeled
R1 and the column labeled R2, r = Spearman rank coefficient, and SD2 = square
each difference and then find the sum.

COEFFICIENT OF CONTINGENCY

This statistic was discussed in Chapter 8.
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Advanced Topics
in Statistics

 

This chapter is an overview of advanced statistical topics that an experimenter may
want to use in the pursuit of finding the appropriate model for understanding and
predicting specific outcomes. Because the topics are very complex and the techniques
very tedious, the chapter will focus on explaining some of the idiosyncrasies and
identifying some of the tests. However, it is assumed that computer software will
be used, and therefore no critical tables are provided. (Readers who are interested
in table values should consult any statistics book that deals with these topics.)

 

WHAT ARE DISCRIMINANT ANALYSIS
AND LOGISTIC REGRESSION?

 

In attempting to choose an appropriate analytical technique, we sometimes encounter
a problem that involves a categorical dependent variable and several metric (mea-
surable) independent variables. For example, we may wish to distinguish good from
bad credit risks. If we had a metric measure of credit risk, then we could use
multivariate regression. But we may be able to ascertain only if someone is in the
good or bad risk category, and this is not the metric type measure required by
multivariate regression analysis.

Discriminant analysis and logistic regression are the appropriate statistical tech-
niques when the dependent variable is categorical (nominal or nonmetric) and the
independent variables are metric. In many cases, the dependent variable consists of
two groups or classifications (for example, male versus female or high versus low).
In other instances, more than two groups are involved, such as low, medium, and
high classifications. Discriminant analysis is capable of handling either two groups
or multiple (three or more) groups. When two classifications are involved, the tech-
nique is referred to as two-group discriminant analysis. When three or more classi-
fications are identified, the technique is referred to as 

 

multiple discriminant analysis
(MDA). 

 

Logistic regression, also known as logit analysis, is limited in its basic form
to two groups, although alternative formulations can handle more than two groups.

Discriminant analysis involves deriving a variate, the linear combination of the
two (or more) independent variables that will discriminate best between 

 

a priori

11
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defined groups. Discrimination is achieved by setting the variate’s weights for each
variable to maximize the between-group variance relative to the within-group vari-
ance. The linear combination for a discriminant analysis, also known as the discrim-
inant function, is derived from an equation that takes the following form:

where 

 

a

 

 = intercept,

 

 

 

Z

 

jk

 

 = 

 

discriminant Z score of discriminant function j for object
k, W

 

i

 

 = discriminant weight for independent variable i,

 

 

 

and

 

 

 

X

 

ik

 

 = 

 

independent
variable i for object 

 

k.

 

Discriminant analysis is the appropriate statistical technique for testing the
hypothesis that the group means of a set of independent variables for two or more
groups are equal. To do so, discriminant analysis multiplies each independent vari-
able by its corresponding weight and adds these products together. The result is a
single composite discriminant Z score for each individual in the analysis. By aver-
aging the discriminant scores for all the individuals within a particular group, we
arrive at the group mean. This group mean is referred to as a 

 

centroid

 

. When the
analysis involves two groups, there are two centroids; with three groups, there are
three centroids; and so forth. The centroids indicate the most typical location of any
individual from a particular group, and a comparison of the group centroids shows
how far apart the groups are along the dimension being tested.

The test for the statistical significance of the discriminant function is a gener-
alized measure of the distance between the group centroids. It is computed by
comparing the distributions of the discriminant scores for the groups. If the overlap
in the distributions is small, the discriminant function separates the groups well. If
the overlap is large, the function is a poor discriminator between the groups. Two
distributions of discriminant scores shown in Figure 11.1 further illustrate this con-
cept. The top diagram represents the distributions of discriminant scores for a
function that separates the groups well, whereas the lower diagram shows the
distributions of discriminant scores on a function that is a relatively poor discrimi-
nator between groups A and B. The shaded areas represent probabilities of misclas-
sifying objects from group A into group B.

Multiple discriminant analysis is unique in one characteristic among the depen-
dence relationships of interest here: if there are more than two groups in the dependent
variable, discriminant analysis will calculate more than one discriminant function.
As a matter of fact, it will calculate NG –1

 

 

 

functions, where NG

 

 

 

is

 

 

 

the number of
groups. Each discriminant function will calculate a discriminant Z score. In the case
of a three-group dependent variable, each object will have a score for discriminant
functions one and two, allowing the objects to be plotted in two dimensions, with
each dimension representing a discriminant function. Thus, discriminant analysis is
not limited to a single variate, as is multiple regression, but creates multiple variates
representing dimensions of discrimination among the groups.

Logistic regression is a specialized form of regression that is formulated to predict
and explain a binary (two-group) categorical variable rather than a metric dependent
measure. The form of the logistic regression variate is similar to the variate in multiple

Z W X W X W Xjk k k n nk= + + + º +a 1 1 2 2
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regression. The variate represents a single multivariate relationship with regres-
sion-like coefficients that indicate the relative impact of each predictor variable. The
differences between logistic regression and discriminant analysis will become more
apparent in our discussion of logistic regression’s unique characteristics later in this
chapter. Yet many similarities also exist between the two methods. When the basic
assumptions of both methods are met, they each give comparable predictive and
classificatory results and employ similar diagnostic measures. Logistic regression,
however, has the advantage of being less affected than discriminant analysis when
the basic assumptions, particularly normality of the variables, are not met. It also
can accommodate nonmetric variables through dummy-variable coding, just as
regression can. Logistic regression is limited, however, to prediction of only a
two-group dependent measure. Thus, in cases for which three or more groups form
the dependent measure, discriminant analysis is better suited.
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WITH
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AND

 

 MANOVA

 

The application and interpretation of discriminant analysis is much the same as in
regression analysis; that is, the discriminant function is a linear combination
(variate) of metric measurements for two or more independent variables and is
used to describe or predict a single dependent variable. The key difference is that
discriminant analysis is appropriate for research problems in which the dependent
variable is categorical (nominal or nonmetric), whereas regression is utilized when
the dependent variable is metric. As discussed earlier, logistic regression is a variant
of regression, thus having many similarities except for the type of dependent
variable. Discriminant analysis is also comparable to “reversing” multivariate
analysis of variance (MANOVA). In discriminant analysis, the single dependent
variable is categorical, and the independent variables are metric. The opposite is

 

FIGURE 11.1 

 

Univariate representation of discriminant Z scores.
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true of MANOVA, which involves metric dependent variables and categorical
independent variable(s).

 

D

 

ISCRIMINANT

 

 A

 

NALYSIS

 

 (DA)

 

DA was initially developed by Fisher (1936) for the purpose of classifying objects
into one of two clearly defined groups. Shortly thereafter, DA was generalized to
problems of classification into any number of groups and has been labeled Multiple
Discriminant Analysis (MDA). For some time, DA was used exclusively for taxonomic
problems in various disciplines (e.g., botany, biology, geology, clinical psychology,
vocational guidance). In recent years, DA has come into use as a method of studying
group differences on several variables simultaneously. Because of some common
features of DA and Multivariate Analysis of Variance (MANOVA), some researchers
treat the two as interchangeable methods for studying group differences on multiple
variables. More often, however, it is suggested that DA be used after a MANOVA for
the purpose of identifying the dimensions along which the groups differ. For a com-
prehensive review of the various uses of DA see Huberty (1975). Good introductory
treatments of DA will be found in Klecka (1980) and Tatsuoka (1970, 1976).

The discussion offered here is limited to the use of DA for the purpose of
studying group differences. Sophisticated classification methods, of which DA is
but one, are available and are discussed, among others, by Rulon et al. (1967),
Overall and Klett (1972), Tatsuoka (1974, 1975), and Van Ryzin (1977).

To understand the DA it is necessary to discuss the concept of Sums of Squares
and Cross Products (SSCP) matrices.

 

SSCP

 

Whereas in the univariate analysis of variance the total sum of squares of the
dependent variable is partitioned into two components: (1) pooled within-groups
sum of squares and (2) between-groups sum of squares — with multiple dependent
variables it is possible to calculate the within and between groups sums of squares
for each of them. In addition, the total sum of cross products between any two
variables can be partitioned into (1) pooled within groups sum of products and (2)
between-groups sum of products. With multiple dependent variables, it is convenient
to assemble the sums of squares and cross products in the following three matrices:

 

W

 

 = pooled within-groups SSCP; 

 

B

 

 = between-groups SSCP; 

 

T

 

 = total SSCP. To
clarify these notions, assume that there are only two dependent variables. Accord-
ingly, the elements of the above matrices are:

where  = pooled

 

 

 

sum of squares within groups for variable 1,  = pooled
sum of squares within groups for variable 2, and SCP

 

w

 

 = pooled within-groups sum
of products of variables 1 and 2.
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where  are the between-groups sums of squares for variables 1 and
2, respectively, and SCP

 

b

 

 

 

is the between-groups sum of cross products of variables
1 and 2.

where SS

 

1

 

 and SS

 

2

 

 are the total sums of squares for variables 1 and 2, respectively,
and SCP

 

12

 

 

 

is the total sum of cross products of variables 1 and 2. Note that the
elements of 

 

T

 

 are calculated as if all the subjects belong to a single group.
Because 

 

T

 

 = 

 

W

 

 + 

 

B

 

, the elements of the total SSCP matrix (

 

T

 

) can be obtained
by adding 

 

W

 

 and 

 

B

 

. This is an important concept and it should be noted that normally

 

W

 

, 

 

B

 

, and 

 

T

 

 are obtained by using matrix operations on the raw score matrices.
This is how computer programs are written. Also, as shown above, only two of the
three matrices have to be calculated. The third may be obtained by addition or
subtraction, whatever the case may be. Thus, 

 

T

 

 was obtained above by adding 

 

W

 

and 

 

B

 

. If, instead, 

 

T

 

 and 

 

W

 

 were calculated, then 

 

B

 

 = 

 

T

 

 – 

 

W

 

, or 

 

W

 

 = 

 

T

 

 – 

 

B

 

.

 

E

 

LEMENTS

 

 

 

OF

 

 DA

 

Although the presentation of DA for two groups may be simplified (see, for example,
Green, 1978, Chapter 4; Lindeman et al., 1980, Chapter 6), it was felt that it will
be more instructive to present the general case — that is, for two groups or more.
Therefore, although in the presentation that follows the equations are applied to DA
with two groups, the same equations are applicable to DA with any number of
groups. Calculation of DA, particularly the eigenvalues, can become very compli-
cated. Consequently, DA is generally calculated by the use of a computer program.

The basic idea of DA is to find a set of weights, v, by which to weight the scores
of each individual so that the ratio of 

 

B

 

 (between-groups SSCP) to 

 

W

 

 (pooled
within-groups SSCP) is maximized, thereby leading to maximum discrimination
among the groups. This may be expressed as follows:

where 

 

v

 

¢

 

 and 

 

v

 

 are a row and column vectors of weights, respectively. 

 

l

 

 is referred
to as the discriminant criterion.

A solution of 

 

l

 

 is obtained by solving the following determinantal equation:
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where 

 

W

 

–1

 

 

 

is the inverse of 

 

W

 

, and 

 

I

 

 is an identity matrix. 

 

l

 

 is referred to as the
largest eigenvalue, or characteristic root, of the matrix, the determinant of which is
set equal to zero. With two groups, only one eigenvalue may be obtained. To solve
this equation, first, the inverse of 

 

W

 

 has to be calculated (see Appendix A for a review
of simple matrix calculations), and the determinant of 

 

W

 

 will be calculated. Second,
we proceed to solve for 

 

l

 

 so that the determinant of the matrix will be equal to zero.
At this point, having calculated 

 

l

 

, the weights, 

 

v

 

, are calculated by solving the
following:

The terms in parenthesis are those used previously in the determinantal equation; 

 

v

 

is referred to as the eigenvector or the characteristic vector. Using the value of 

 

l

 

 and
the values of 

 

W

 

–1

 

B

 

 that we obtained earlier, we can proceed to solve the homogeneous
equations. The results are coefficients that have a constant proportionality.

 

MEASURES OF ASSOCIATION

 

As in the case of univariate analysis, it is desirable to have a measure of association
between the independent and the dependent variables in multivariate analysis. Of
several such measures that have been proposed (Huberty, 1972, 1975; Shaffer and
Gillo, 1974; Smith, 1972; Stevens, 1972; Tatsuoka, 1970, 1971), only one will be
presented here. The measure to be presented is related to Wilks’ 

 

L

 

 (lambda), which
is defined as

where 

 

W

 

 = pooled within-groups SSCP and 

 

T

 

 = total SSCP. Note that lambda is a
ratio of the determinants of these two matrices.

Before describing the measure of association that is related to lambda, it will
be instructive to show how lambda can be expressed for the case of univariate
analysis. Recall that in the univariate analysis of variance the total sum of squares
(SS

 

t

 

) is partitioned into between-groups sum of squares (SS

 

b

 

) and within-groups
sum of squares (SS

 

w

 

). Accordingly, in univariate analysis,
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and, from the preceding,

As is well known, the ratio of SS

 

b

 

 to SS

 

t

 

 is defined as 

 

h

 

2 

 

— the proportion of
variance of the dependent variable accounted for by the independent variable or
group membership. It is clear, then, that lambda indicates the proportion of variance
of the dependent variable not accounted for by the independent variable or the
proportion of error variance, and that lambda may vary from zero to one. When 

 

L

 

= 0 it means that SS

 

b

 

 = SS

 

t

 

, and that the proportion of error variance is equal to
zero. When, on the other hand, L = 1, it means that SSb = 0 (SSw = SSt) and that
the proportion of error variance is equal to one.

Finally, when the dependent variable is regressed on coded vectors that represent
a categorical independent variable, the following equivalences hold:

SSw = SSres; SSb = SSreg; h2 = R2

where SSres = residual sum of squares, SSreg = regression sum of squares, and R2 =
squared multiple correlation of the dependent variable with the coded vectors.
Accordingly, L may be expressed as follows

and

R2 = 1 – L

From the above, one may conceive of 1 – L in multivariate analysis as a
generalization of h2 or R2 of univariate analysis. When in multivariate analysis L =
1 it means that no association exists between the independent and the dependent
variables. When on the other hand, L = 0, it means that a perfect association exists
between the independent and the dependent variables.

It would be an incomplete discussion if we did not mention the relationship of
the test of L to the F test. At least in a special case for two groups the following
formula is the one that is used:

F = [(1 – L )/t]/[L/(N – t – 1)]

where t is the number of dependent variables and N is the total number of subjects.
The df for this F ratio are t and N – t – 1. This is identical in form to the test we
mentioned above (R2), when a coded vector representing group membership was
regressed on the dependent variables.
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A NOTE ON MULTIPLE DISCRIMINANT ANALYSIS

Although the discussion of the equations for DA was applied to the case of two
groups, it should be emphasized that it was said earlier that the same equations apply
to DA with any number of groups. With more than two groups, more than one
discriminant function is calculated. The number of discriminant functions that can
be calculated is equal to the number of groups minus one or to the number of
dependent variables, whichever is smaller. Thus, with three groups, for example,
only two discriminant functions can be calculated, regardless of the number of
dependent variables. If, on the other hand, six groups but only three dependent
variables are present, the number of discriminant functions that can be calculated is
three (the number of the dependent variables).

In the beginning of this chapter, it was mentioned that for the case of two groups,
DA can be calculated by multiple regression analysis in which the groups are
represented by a coded vector. With more than two groups, it is necessary to use
more than one coded vector. Under such circumstances, multiple regression analysis
cannot be used; instead, a canonical analysis with coded vectors may be used to
calculate DA for any number of groups.

MULTIVARIATE ANALYSIS OF VARIANCE (MANOVA)

MANOVA is an extension of univariate analysis of variance designed to simulta-
neously test differences among groups on multiple dependent variables. Several tests
have been proposed for this purpose. Probably the most widely used among them
is a test of Wilks’ L. That is, a test of L (shown below) serves as an overall test of
the null hypothesis of the equality of mean vectors of two or more groups.

In an earlier section, L was discussed in detail in the context of DA, though the
test of significance for L was not shown. A question that naturally arises is: Since
L may be obtained in both DA and MANOVA, in what way do these approaches
differ? Issues of classification to which DA but not MANOVA may be applied aside,
it was said earlier that some researchers treat MANOVA and DA as interchangeable
when the concern is the study of group differences. But other researchers recommend
that MANOVA be applied first in order to determine whether there are overall
significant differences among the groups. This is accomplished by testing L. If the
null hypothesis is rejected, it is recommended that DA be used to identify the
variables on which the groups differ to the greatest extent and the nature of the
dimensions on which they differ.

It was stated above that when more than two groups are being studied, more than
one discriminant function is obtained. In such situations, the test of L still refers to
overall differences among the groups. But if it is found that L is statistically significant,
it may turn out that only one or two discriminant functions are statistically significant,
even though the data allow the calculation of a greater number of such functions.

TESTING THE ASSUMPTIONS OF MULTIVARIATE ANALYSIS

As we already have discussed several times, data are the life blood of any statistical
analysis. However, the data must be appropriate and applicable for the type of
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analysis that we want to conduct. The introduction to this book mentioned some of
the preliminary steps in preparing data for analysis. Here we are going to address
the final step in examining the data, which involves testing the assumptions under-
lying multivariate analysis. The need to test the statistical assumptions is increased
in multivariate applications because of two characteristics of multivariate analysis.
First, the complexity of the relationships, owing to the typical use of a large number
of variables, makes the potential distortions and biases more potent when the assump-
tions are violated. This is particularly true when the violations compound to become
even more detrimental than if considered separately. Second, the complexity of the
analyses and of the results may mask the “signs” of assumption violations apparent
in the simpler univariate analyses. In almost all instances, the multivariate procedures
will estimate the multivariate model and produce results even when the assumptions
are severely violated. Thus, the experimenter must be aware of any assumption
violations and the implications they may have for the estimation process or the
interpretation of the results.

ASSESSING INDIVIDUAL VARIABLES VERSUS THE VARIATE

Multivariate analysis requires that the assumptions underlying the statistical tech-
niques be tested twice: first for the separate variables, akin to the tests of assumption
for univariate analyses, and second for the multivariate model variate, which acts
collectively for the variables in the analysis and thus must meet the same assumptions
as individual variables do.

Normality

The most fundamental assumption in multivariate analysis is normality, referring to
the shape of the data distribution for an individual metric variable and its cor-
respondence to the normal distribution, the benchmark for statistical methods. If the
variation from the normal distribution is sufficiently large, all resulting statistical
tests are invalid because normality is required for use of the F and t statistics. Both
the univariate and the multivariate statistical methods discussed in this volume are
based on the assumption of univariate normality, with the multivariate methods also
assuming multivariate normality. Univariate normality for a single variable is easily
tested, and a number of corrective measures are possible, as shown later. In a simple
sense, multivariate normality (the combination of two or more variables) means that
the individual variables are normal in a univariate sense and that their combinations
are also normal. Thus, if a variable is multivariate normal, it is also univariate normal.
However, the reverse is not necessarily true (two or more univariate normal variables
are not necessarily multivariate normal). Thus a situation in which all variables
exhibit univariate normality will help gain, although not guarantee, multivariate
normality. Multivariate normality is more difficult to test, but some tests are available
for situations in which the multivariate technique is particularly affected by a vio-
lation of this assumption. In this text, we focus on assessing and achieving univariate
normality for all variables and address multivariate normality only when it is espe-
cially critical. Even though large sample sizes tend to diminish the detrimental effects
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of nonnormality, the researcher should assess the normality for all variables included
in the analysis.

Graphical Analyses of Normality
The simplest diagnostic test for normality is a visual check of the histogram that
compares the observed data values with a distribution approximating the normal
distribution. Although appealing because of its simplicity, this method is problematic
for smaller samples, where the construction of the histogram (e.g., the number of
categories or the width of categories) can distort the visual portrayal to such an
extent that the analysis is useless. A more reliable approach is the normal probability
plot, which compares the cumulative distribution of actual data values with the
cumulative distribution of a normal distribution. The normal distribution forms a
straight diagonal line, and the plotted data values are compared with the diagonal.
If a distribution is normal, the line representing the actual data distribution closely
follows the diagonal.

Figure 11.2 shows several normal probability plots and the corresponding
univariate distribution of the variable. One characteristic of the distribution’s shape,
the kurtosis, is reflected in the normal probability plots. Kurtosis refers to the

FIGURE 11.2 Normal probability plots and corresponding univariate distributions.
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“peakedness” or “flatness” of the distribution compared with the normal distribution.
When the line falls below the diagonal, the distribution is flatter than expected. When
it goes above the diagonal, the distribution is more peaked than the normal curve.
For example, in the normal probability plot of a peaked distribution (Figure 11.2d),
we see a distinct S-shaped curve. Initially the distribution is flatter, and the plotted
line falls below the diagonal. Then the peaked part of the distribution rapidly moves
the plotted line above the diagonal, and eventually the line shifts to below the
diagonal again as the distribution flattens. A nonpeaked distribution has the opposite
pattern (Figure 11.2c). Another common pattern is a simple arc, either above or
below the diagonal, indicating the skewness of the distribution. A negative skewness
(Figure 11.2e) is indicated by an arc below the diagonal, whereas an arc above the
diagonal represents a positively skewed distribution (Figure 11.2f). An excellent
source for interpreting normal probability plots, showing the various patterns and
interpretations, is Daniel and Wood (1980). These specific patterns not only identify
nonnormality but also tell us the form of the original distribution and the appropriate
remedy to apply.

Statistical Tests of Normality
In addition to examining the normal probability plot, one can also use statistical
tests to assess normality. A simple test is a rule of thumb based on the skewness
and kurtosis values (available as part of the basic descriptive statistics for a variable
computed by all statistical programs). The statistic value (z) for the skewness value
is calculated as:

where N is the sample size. A z value can also be calculated for the kurtosis value
using the following formula:

If the calculated z value exceeds a critical value, then the distribution is nonnor-
mal in terms of that characteristic. The critical value is from a z distribution, based
on the significance level we desire. For example, a calculated value exceeding ±2.58
indicates we can reject the assumption about the normality of the distribution at the
.01 probability level. Another commonly used critical value is t 1.96, which corre-
sponds to a .05 error level. (Specific statistical tests are also available in SPSS, SAS,
BMDP, and most other programs. The two most common are the Shapiro-Wilks test
and a modification of the Kolmogorov-Smirnov test. Each calculates the level of
significance for the differences from a normal distribution. The experimenter should
always remember that tests of significance are less useful in small samples [fewer
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than 30] and quite sensitive in large samples [exceeding 1,000 observations]. Thus,
the researcher should always use both the graphical plots and any statistical tests to
assess the actual degree of departure from normality.)

Remedies for Nonnormality
A number of data transformations available to accommodate nonnormal distributions
are discussed later in the chapter. This chapter confines the discussion to univariate
normality tests and transformations. However, when we examine other multivariate
methods, such as multivariate regression or multivariate analysis of variance, we
discuss tests for multivariate normality as well. Moreover, many times when non-
normality is indicated, it is actually the result of other assumption violations; there-
fore, remedying the other violations eliminates the nonnormality problem. For this
reason, the researcher should perform normality tests after or concurrently with
analyses and remedies for other violations. (Those interested in multivariate nor-
mality should see Johnson and Wichern [1982] and Weisberg [1985].)

Homoscedasticity

Homoscedasticity is an assumption related primarily to dependence relationships
between variables. It refers to the assumption that dependent variable(s) exhibit equal
levels of variance across the range of predictor variable(s). Homoscedasticity is
desirable because the variance of the dependent variable being explained in the
dependence relationship should not be concentrated in only a limited range of the
independent values. Although the dependent variables must be metric, this concept
of an equal spread of variance across independent variables can be applied when
the independent variables are either metric or nonmetric. With metric independent
variables, the concept of homoscedasticity is based on the spread of dependent
variable variance across the range of independent variable values, which is encoun-
tered in techniques such as multiple regression. The same concept also applies when
the independent variables are nonmetric. In these instances, such as are found in
ANOVA and MANOVA, the focus now becomes the equality of the variance (single
dependent variable) or the variance/covariance matrices (multiple independent vari-
ables) across the groups formed by the nonmetric independent variables. The equality
of variance/covariance matrices is also seen in discriminant analysis, but in this
technique the emphasis is on the spread of the independent variables across the
groups formed by the nonmetric dependent measure. In each of these instances, the
purpose is the same: to ensure that the variance used in explanation and prediction
is distributed across the range of values, thus allowing for a “fair test” of the
relationship across all values of the nonmetric variables.

In most situations, we have many different values of the dependent variable at
each value of the independent variable. For this relationship to be fully captured,
the dispersion (variance) of the dependent variable values must be equal at each
value of the predictor variable. Most problems with unequal variances stem from
one of two sources. The first source is the type of variables included in the model.
For example, as a variable increases in value (e.g., units ranging from near zero to
millions), there is naturally a wider range of possible answers for the larger values.

SL3127_frame_MASTER.book  Page 140  Monday, July 1, 2002  9:38 AM



Advanced Topics in Statistics 141

The second source results from a skewed distribution that creates heteroscedasticity,
In Figure 11.3a, the scatterplots of data points for two variables (V1 and V2) with
normal distributions exhibit equal dispersion across all data values (i.e., homosce-
dasticity). However, in Figure 11.3b, we see unequal dispersion (heteroscedasticity)
caused by skewness of one of the variables (V3). For the different values of V3, there
are different patterns of dispersion for V1. This will cause the predictions to be better
at some levels of the independent variable than at others. Violating this assumption
often makes hypothesis tests either too conservative or too sensitive.

The effect of heteroscedasticity is also often related to sample size, especially
when examining the variance dispersion across groups. For example, in ANOVA or
MANOVA, the impact of heteroscedasticity on the statistical test depends on the
sample sizes associated with the groups of smaller and larger variances. In multiple
regression analysis, similar effects would occur in highly skewed distributions where
there were disproportionate numbers of respondents in certain ranges of the inde-
pendent variable.

Graphical Tests of Equal Variance Dispersion
The test of homoscedasticity for two metric variables is best examined graphically.
The most common application of this form of assessment occurs in multiple regres-
sion, which is concerned with the dispersion of the dependent variable across the
values of the metric independent variables. Because the focus of regression analysis
is on the regression variate, the graphical plot of residuals is used to reveal the
presence of homoscedasticity (or its opposite, heteroscedasticity). The earlier dis-
cussion of residual analysis details these procedures. Boxplots work well to represent
the degree of variation between groups formed by a categorical variable. The length
of the box and the whiskers each portray the variation of data within that group. A
typical boxplot is shown in Figure 11.4.

Statistical Tests for Homoscedasticity
The statistical tests for equal variance dispersion relate to the variances within groups
formed by nonmetric variables. The most common test, the Levene test, can be used
to assess whether the variances of a single metric variable are equal across any

FIGURE 11.3 Scatterplots of homoscedastic and heteroscedastic relationships.
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number of groups. If more than one metric variable is being tested, so that the
comparison involves the equality of variance/covariance matrices, the Box’s M test
is applicable. The Box’s M is a statistical test for the equality of the covariance
matrices of the independent variables across the groups of the dependent variable.
If the statistical significance is greater than the critical level (.01), then the equality
of the covariance matrices is supported. If the test shows statistical significance, then
the groups are deemed different and the assumption is violated. The Box’s M test
is available in both multivariate analysis of variance and discriminant analysis.

Remedies for Heteroscedasticity
Heteroscedastic variables can be remedied through data transformations similar to
those used to achieve normality. As mentioned earlier, many times heteroscedasticity
is the result of nonnormality of one of the variables, and correction of the nonnor-
mality also remedies the unequal dispersion of variance.

Linearity

An implicit assumption of all multivariate techniques based on correlational mea-
sures of association, including multiple regression, logistic regression, factor analy-
sis, and structural equation modeling, is linearity. Because correlations represent
only the linear association between variables, nonlinear effects will not be repre-
sented in the correlation value. This results in an underestimation of the actual
strength of the relationship. It is always prudent to examine all relationships to
identify any departures from linearity that may impact the correlation.

Identifying Nonlinear Relationships

The most common way to assess linearity is to examine scatterplots of the variables
and to identify any nonlinear patterns in the data. An alternative approach is to run
a simple regression analysis and to examine the residuals. The residuals reflect the
unexplained portion of the dependent variable; thus, any nonlinear portion of the
relationship will show up in the residuals. The examination of residuals can also be
applied to multiple regression, where the researcher can detect any nonlinear effects
not represented in the regression variate. If a nonlinear relationship is detected, the
most direct approach is to transform one or both variables to achieve linearity.

FIGURE 11.4 A typical comparison of side-by-side boxplots.
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WHAT IS FACTOR ANALYSIS?

Factor analysis is a generic name given to a class of multivariate statistical methods
whose primary purpose is to define the underlying structure in a data matrix. Broadly
speaking, it addresses the problem of analyzing the structure of the interrelationships
(correlations) among a large number of variables (e.g., test scores, test items, ques-
tionnaire responses) by defining a set of common underlying dimensions, known as
factors. With factor analysis, the experimenter can first identify the separate dimen-
sions of the structure and then determine the extent to which each variable is
explained by each dimension. Once these dimensions and the explanation of each
variable are determined, the two primary uses for factor analysis — summarization
and data reduction — can be achieved. In summarizing the data, factor analysis
derives underlying dimensions that, when interpreted and understood, describe the
data in a much smaller number of concepts than the original individual variables.
Data reduction can be achieved by calculating scores for each underlying dimension
and substituting them for the original variables.

We introduce factor analysis as our first multivariate technique because it can
play a unique role in the application of other multivariate techniques. As already
discussed, the primary advantage of multivariate techniques is their ability to
accommodate multiple variables in an attempt to understand the complex rela-
tionships not possible with univariate and bivariate methods. Increasing the number
of variables also increases the possibility that the variables are not all uncorrelated
and representative of distinct concepts. Instead, groups of variables may be inter-
related to the extent that they are all representative of a more general concept. This
may be by design, such as the attempt to measure the many facets of personality
or store image, or may arise just from the addition of new variables. In either case,
the researcher must know how the variables are interrelated to better interpret the
results. Finally, if the number of variables is too large or there is a need to better
represent a smaller number of concepts rather than many facets, factor analysis
can assist in selecting a representative subset of variables or even creating new
variables as replacements for the original variables while still retaining their orig-
inal character.

Factor analysis differs from the dependence techniques discussed in the next
section (i.e., multiple regression, discriminant analysis, multivariate analysis of
variance, or canonical correlation), in which one or more variables are explicitly
considered the criterion or dependent variables and all others are the predictor or
independent variables. Factor analysis is an interdependence technique in which all
variables are simultaneously considered, each related to all others, and still employ-
ing the concept of the variate, the linear composite of variables. In factor analysis,
the variates (factors) are formed to maximize their explanation of the entire variable
set, not to predict a dependent variable(s). If we were to draw an analogy to
dependence techniques, it would be that each of the observed (original) variables is
a dependent variable that is a function of some underlying and latent set of factors
(dimensions) that are themselves made up of all other variables. Thus, each variable
is predicted by all others. Conversely, one can look at each factor (variate) as a
dependent variable that is a function of the entire set of observed variables. Either
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analogy illustrates the differences in purpose between dependence (prediction) and
interdependence (identification of structure) techniques.

Factor analytic techniques can achieve their purposes from either an exploratory
or confirmatory perspective. There is continued debate concerning the appropriate
role for factor analysis. Many researchers consider it only exploratory — useful in
searching for structure among a set of variables or as a data reduction method. From
this perspective, factor analytic techniques “take what the data give you” and do not
set any a priori constraints on the estimation of components or the number of
components to be extracted. For many if not most applications, this use of factor
analysis is appropriate. However, in other situations, the experimenter has precon-
ceived thoughts on the actual structure of the data, based on theoretical support or
prior research. The experimenter may wish to test hypotheses involving issues such
as which variables should be grouped together on a factor or the precise number of
factors. In these instances, the experimenter requires that factor analysis take a
confirmatory approach — that is, assess the degree to which the data meet the
expected structure.

MULTIPLE REGRESSION ANALYSIS

Multiple regression analysis is a statistical technique that can be used to analyze the
relationship between a single dependent (criterion) variable and several independent
(predictor) variables. The objective of multiple regression analysis is to use the
independent variables whose values are known to predict the single dependent value
selected by the experimenter. Each independent variable is weighted by the regres-
sion analysis procedure to ensure maximal prediction from the set of independent
variables. The weights denote the relative contribution of the independent variables
to the overall prediction and facilitate interpretation as to the influence of each
variable in making the prediction, although correlation among the independent
variables complicates the interpretive process. The set of weighted independent
variables forms the regression variate, a linear combination of the independent
variables that best predicts the dependent variable. The regression variate, also
referred to as the regression equation or regression model, is the most widely known
example of a variate among the multivariate techniques.

Multiple regression analysis is a dependence technique. Because of this, you as
an experimenter must be able to classify the variables as dependent and independent.
However, because regression is also a statistical tool, it should be used when the
variables are metric. Only under certain circumstances it is possible to include
nonmetric data. When we do that, appropriate transformation of data must occur.

REPRESENTING CURVILINEAR EFFECTS WITH POLYNOMIALS

Several types of data transformations are appropriate for linearizing a curvilinear
relationship. Direct approaches involve modifying the values through some arith-
metic transformation (e.g., taking the square root or logarithm of the variable).
However, such transformations have several limitations. First, they are helpful only
in a simple curvilinear relationship (a relationship with only one turning or inflection
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point). Second, they do not provide any statistical means for assessing whether the
curvilinear or linear model is more appropriate. Finally, they accommodate only
univariate relationships and not the interaction between variables when more than
one independent variable is involved. We now discuss a means of creating new
variables to explicitly model the curvilinear components of the relationship and
address each of the limitations inherent in data transformations.

Polynomials are power transformations of an independent variable that add a
nonlinear component for each additional power of the independent variable. The
power of 1 (X1) represents the linear component and is the simplest form representing
a line. The power of 2, the variable squared (X2), represents the quadratic component.
In graphical terms, X2 represents the first inflection point. A cubic component,
represented by the variable cubed (X3), adds a second inflection point. With these
variables and even higher powers, we can accommodate more complex relationships
than are possible with only transformations. For example, in a simple regression
model, a curvilinear model with one turning point can be modeled with the equation

where b0 = intercept, b1X1 = linear effect of X1, and  = curvilinear effect of X1.
Although any number of nonlinear components may be added, the cubic term

is usually the highest power used. As each new variable is entered into the regression
equation, we can also perform a direct statistical test of the nonlinear components,
which we cannot do with data transformations. Three (two nonlinear and one linear)
relationships are shown in Figure 11.5. For interpretation purposes, the positive
quadratic term indicates a U-shaped curve, whereas a negative coefficient indicates
a I-shaped curve.

Multivariate polynomials are created when the regression equation contains two
or more independent variables. We follow the same procedure for creating the poly-
nomial terms as before but must also create an additional term, the interaction term
(XlX2), which is needed for each variable combination to represent fully the multi-
variate effects. In graphical terms, a two-variable multivariate polynomial is portrayed

FIGURE 11.5 Representing nonlinear relationships with polynomials.
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by a surface with one peak or valley. For higher-order polynomials, the best form of
interpretation is obtained by plotting the surface from the predicted values.

How many terms should be added? Common practice is to start with the linear
component and then sequentially add higher-order polynomials until nonsignificance
is achieved. The use of polynomials, however, also has potential problems. First,
each additional term requires a degree of freedom, and this may be particularly
restrictive with small sample sizes. This limitation does not occur with data trans-
formation. Also, multicollinearity is introduced by the additional terms and makes
statistical significance testing of the polynomial terms inappropriate. Instead, the
experimenter must compare the R2 values from the equation model with linear terms
to the R2 for the equation with the polynomial terms. Testing for the statistical
significance of the incremental R2 is the appropriate manner of assessing the impact
of the polynomials.

STANDARDIZING THE REGRESSION COEFFICIENTS: BETA COEFFICIENTS

If each of our independent variables had been standardized before we estimated the
regression equation, we would have found different regression coefficients. The
coefficients resulting from standardized data are called beta (b) coefficients. Their
advantage is that they eliminate the problem of dealing with different units of
measurement, thus reflecting the relative impact on the dependent variable of a
change in one standard deviation in either variable. Now that we have a common
unit of measurement, we can determine which variable has the most impact.

Three cautions must be observed when using beta coefficients. First, they should
be used as a guide to the relative importance of individual independent variables
only when collinearity is minimal. Second, the beta values can be interpreted only
in the context of the other variables in the equation. For example, a beta value for
family size reflects its importance only in relation to family income, not in any
absolute sense. If another independent variable were added to the equation, the beta
coefficient for family size would probably change, because there would likely be
some relationship between family size and the new independent variable. The third
caution is that the levels (e.g., families of size five, six, and seven persons) affect
the beta value. Had we found families of size eight, nine, and ten, the value of beta
would likely change. In summary, beta coefficients should be used only as a guide
to the relative importance of the independent variables included in the equation, and
only over the range of values for which sample data actually exist.

ASSESSING MULTICOLLINEARITY

A key issue in interpreting the regression variate is the correlation among the
independent variables. This is a data problem, not a problem of model specification.
The ideal situation for an experimenter would be to have a number of independent
variables highly correlated with the dependent variable, but with little correlation
among themselves. Yet in most situations, particularly situations involving consumer
response data, there will be some degree of multicollinearity. In some other occa-
sions, such as using dummy variables to represent nonmetric variables or
polynomial terms for nonlinear effects, the researcher is creating situations of high
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multicollinearity. The researcher’s task is to assess the degree of multicollinearity
and determine its impact on the results and the necessary remedies if needed. In the
following sections we discuss the effects of multicollinearity and then detail some
useful diagnostic procedures and possible remedies.

The effects of multicollinearity can be categorized in terms of explanation and
estimation. The effects on explanation primarily concern the ability of the regression
procedure and the experimenter to represent and understand the effects of each
independent variable in the regression variate. As multicollinearity occurs (even at
the relatively low levels of .30 or so), the process for separating the effects of
individuals becomes more difficult. First, it limits the size of the coefficient of
determination and makes it increasingly more difficult to add unique explanatory
prediction from additional variables. Second, and just as important, it makes
determining the contribution of each independent variable difficult because the
effects of the independent variables are “mixed” or confounded. Multicollinearity
results in larger portions of shared variance and lower levels of unique variance
from which the effects of the individual independent variables can be determined.
For example, assume that one independent variable (X1) has a correlation of .60
with the dependent variable, and a second independent variable (X2) has a correlation
of .50. Then X1 would explain 36% (obtained by squaring the correlation of .60)
of the variance of the dependent variable, and X2 would explain 25% (correlation
of .50 squared). If the two independent variables are not correlated with each other
at all, there is no “overlap,” or sharing, of their predictive power. The total expla-
nation would be their sum, or 61%. But as collinearity increases, there is some
“sharing” of predictive power, and the collective predictive power of the independent
variables decreases.

Figure 11.6 portrays the proportions of shared and unique variance for our
example of two independent variables in varying instances of collinearity. If the
collinearity of these variables is zero, then the individual variables predict 36 and
25% of the variance in the dependent variable, for an overall prediction (R2) of 61%.
But as multicollinearity increases, the total variance explained decreases. Moreover,
the amount of unique variance for the independent variables is reduced to levels that
make estimation of their individual effects quite problematic.

In addition to the effects on explanation, multicollinearity can have substantive
effects on the estimation of the regression coefficients and their statistical signifi-
cance tests. First, the extreme case of multicollinearity in which two or more
variables are perfectly correlated, termed singularity, prevents the estimation of any
coefficients. In this instance, the singularity must be removed before the estimation
of coefficients can proceed. Even if the multicollinearity is not perfect, high degrees
of multicollinearity can result in regression coefficients being incorrectly estimated
and even having the wrong signs.

Because of these potential problems, the effects of multicollinearity can be
substantial. In any regression analysis, the assessment of multicollinearity should
be undertaken in two steps: identification of the extent of collinearity, and assessment
of the degree to which the estimated coefficients are affected. If corrective action is
needed, assess the correlation matrix for the independent variables first and then
follow with both pairwise and multiple-variable collinearity. Two of the most
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common measures are the tolerance value and its inverse — the variance inflation
factor. These measures tell us the degree to which each independent variable is
explained by the other independent variable. (Tolerance is the amount of variability
of the selected independent variable not explained by the other independent variables.
A common cut-off threshold is a tolerance of .10. However, each study should be
evaluated on its own merits and appropriately evaluated.)

WHAT IS MULTIVARIATE ANALYSIS OF VARIANCE?

Multivariate analysis of variance is the multivariate extension of the univariate
techniques for assessing the differences between group means. The univariate pro-
cedures include the t test for two-group situations and ANOVA for situations with
three or more groups defined by two or more independent variables. Before pro-
ceeding with our discussion of the unique aspects of MANOVA, let us review the
basic principles of the univariate techniques.

UNIVARIATE PROCEDURES FOR ASSESSING GROUP DIFFERENCES

These procedures are classified as univariate not because of the number of inde-
pendent variables, but instead because of the number of dependent variables. In
multiple regression, the terms univariate and multivariate refer to the number of
independent variables, but for ANOVA and MANOVA, the terminology applies to
the use of single or multiple dependent variables. The following discussion addresses
the two most common types of univariate procedures, the t test, which compares a
dependent variable across two groups, and ANOVA, which is used whenever the
number of groups is three or more.

The T Test

The t test assesses the statistical significance of the difference between two inde-
pendent sample means. For example, an experimenter may expose two groups of

FIGURE 11.6 Proportions of unique and shared variance by levels of multicollinearity.
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respondents to different advertisements reflecting different advertising messages —
one informational and one emotional — and subsequently ask each group about the
appeal of the message on a 10-point scale, with 1 being poor and 10 being excellent.
The two different advertising messages represent a treatment with two levels (infor-
mational versus emotional). A treatment, also known as a factor, is a nonmetric
independent variable, experimentally manipulated or observed, that can be repre-
sented in various categories or levels. In our example, the treatment is the effect of
emotional versus informational appeals.

To determine whether the two messages are viewed differently (meaning that
the treatment has an effect), a t statistic is calculated. The t statistic is the ratio of
the difference between the sample means (m1 – m2) to their standard error. The
standard error is an estimate of the difference between means to be expected because
of sampling error, rather than real differences between means. This can be shown
in the equation

where m1 = mean of group 1, m2 = mean of group 2, and SEm1m2 = standard error
of the difference in group means.

By forming the ratio of the actual difference between the means to the difference
expected due to sampling error, we quantify the amount of the actual impact of the
treatment that is due to random sampling error. In other words, the t value, or t
statistic, represents the group difference in terms of standard errors. If the t value is
sufficiently large, then statistically we can say that the difference was not due to
sampling variability but represents a true difference. This is done by comparing the
t statistic to the critical value of the t statistic (tcrit) If the absolute value of the t
statistic is greater than the critical value, this leads to rejection of the null hypothesis
of no difference in the appeals of the advertising messages between groups. This
means that the actual difference due to the appeals is statistically larger than the
difference expected from sampling error. We determine the critical value (tcrit) for
our t statistic and test the statistical significance of the observed differences by the
following procedure:

1. Compute the t statistic as the ratio of the difference between sample means
and their standard error.

2. Specify a Type I error level (denoted as a, or significance level), which
indicates the probability level the experimenter will accept in concluding
that the group means are different when in fact they are not.

3. Determine the critical value (tcrit) by referring to the t distribution with
N1 + N2 – 2 degrees of freedom and a specified a, where N1 and N2 are
sample sizes.

4. If the absolute value of the computed t statistic exceeds tcrit, the experi-
menter can conclude that the two advertising messages have different
levels of appeal (i.e., m1 π m2), with a Type I error probability of a. The

t statistic = 1µ µ
µ µ
− 2

1 2SE
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researcher can then examine the actual mean values to determine which
group is higher on the dependent value.

Analysis of Variance

In our example for the t test, an experimenter exposed two groups of respondents
to different advertising messages and subsequently asked them to rate the appeal of
the advertisements on a 10-point scale. Suppose we were interested in evaluating
three advertising messages rather than two. Respondents would be randomly
assigned to one of three groups, and we would have three sample means to compare.
To analyze these data, we might be tempted to conduct separate t tests for the
difference between each pair of means (i.e., group 1 versus group 2; group 1 versus
group 3; and group 2 versus group 3).

However, multiple t tests inflate the overall Type I error rate. ANOVA avoids
this Type I error inflation due to making multiple comparisons of treatment groups
by determining in a single test whether the entire set of sample means suggests that
the samples were drawn from the same general population. That is, ANOVA is used
to determine the probability that differences in means across several groups are due
solely to sampling error.

The logic of an ANOVA test is fairly straightforward. As the name “analysis of
variance” implies, two independent estimates of the variance for the dependent
variable are compared, one that reflects the general variability of respondents within
the groups (MSw) and another that represents the differences between groups attrib-
utable to the treatment effects (MSB):

1. Within-groups estimate of variance (MSw: mean square within groups):
This is an estimate of the average random respondent variability on the
dependent variable within a treatment group and is based on deviations
of individual scores from their respective group means. MSw is comparable
to the standard error between two means calculated in the t test as it
represents variability within groups. The value MSw is sometimes referred
to as the error variance.

2. Between-groups estimate of variance (MSB: mean square between
groups): The second estimate of variance is the variability of the treatment
group means on the dependent variable. It is based on deviations of group
means from the overall grand mean of all scores. Under the null hypothesis
of no treatment effects (i.e., m1 = m2 = m3 = … = mk), this variance estimate,
unlike MSw, reflects any treatment effects that exist; that is, differences
in treatment means increase the expected value of MSB.

Given that the null hypothesis of no group differences is true, MSW and MSB

represent independent estimates of population variance. Therefore, the ratio of MSB

to MSw is a measure of how much variance is attributable to the different treatments
versus the variance expected from random sampling. The ratio of MSB to MSW gives
us a value for the F statistic. This is similar to the calculation of the t value and can
be shown as
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Because group differences tend to inflate MSB, large values of the F statistic lead
to rejection of the null hypothesis of no difference in means across groups. If the
analysis has several different treatments (independent variables), then estimates of
MSB are calculated for each treatment and F statistics are calculated for each treat-
ment. This allows for the separate assessment of each treatment.

To determine if the F statistic is sufficiently large to support rejection of the null
hypothesis, follow a process similar to the t test. First, determine the critical value
for the F statistic (Fcrit) by referring to the F distribution with (k – 1) and (N – k)
degrees of freedom for a specified level of a (where N = N1, +... + Nk and k =
number of groups). If the value of the calculated F statistic exceeds Fcrit, conclude
that the means across all groups are not all equal.

Examination of the group means then allows the experimenter to assess the
relative standing of each group on the dependent measure. Although the F statistic
test assesses the null hypothesis of equal means, it does not address the question of
which means are different. For example, in a three-group situation, all three groups
may differ significantly, or two may be equal but differ from the third. To assess
these differences, the experimenter can employ either planned comparisons or post
hoc tests. We examine some of these methods in a later section.

MULTIVARIATE ANALYSIS OF VARIANCE

As statistical inference procedures, both the univariate techniques (t test and
ANOVA) and MANOVA are used to assess the statistical significance of differences
between groups. In the t test and ANOVA, the null hypothesis tested is the equality
of dependent variable means across groups. In MANOVA, the null hypothesis tested
is the equality of vectors of means on multiple dependent variables across groups.
In the univariate case, a single dependent measure is tested for equality across the
groups. In the multivariate case, a variate is tested for equality. In MANOVA, the
experimenter actually has two variates, one for the dependent variables and another
for the independent variables. The dependent variable variate is of more interest
because the metric dependent measures can be combined in a linear combination,
as we have already seen in multiple regression and discriminant analysis. The unique
aspect of MANOVA is that the variate optimally combines the multiple dependent
measures into a single value that maximizes the differences across groups.

The Two-Group Case: Hotelling’s T2

In our earlier univariate example, experimenters were interested in the appeal of two
advertising messages. But what if they also wanted to know about the purchase
intent generated by the two messages? If only univariate analyses were used, the
experimenters would perform separate t tests on the ratings of both the appeal of
the messages and the purchase intent generated by the messages. Yet the two mea-
sures are interrelated; thus, what is really desired is a test of the differences between

F statistic =
MS

MS
b

w
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the messages on both variables collectively. This is where Hotelling’s T2, a special-
ized form of MANOVA that is a direct extension of the univariate t test, can be used.

Hotelling’s T2 provides a statistical test of the variate formed from the dependent
variables that produces the greatest group difference. It also addresses the problem
of “inflating” the Type I error rate that arises when making a series of t tests of
group means on several dependent measures. It controls this inflation of the Type I
error rate by providing a single overall test of group differences across all dependent
variables at a specified a level.

The computational formula for Hotelling’s T2 represents the results of mathe-
matical derivations used to solve for a maximum t statistic (and, implicitly, the most
discriminating linear combination of the dependent variables). This is equivalent to
saying that if we can find a discriminant function for the two groups that produces
a significant T2, the two groups are considered different across the mean vectors.

How does Hotelling’s T2 provide a test of the hypothesis of no group difference
on the vectors of mean scores? Just as the t statistic follows a known distribution
under the null hypothesis of no treatment effect on a single dependent variable,
Hotelling’s T2 follows a known distribution under the null hypothesis of no treatment
effect on any of a set of dependent measures. This distribution turns out to be an F
distribution with p and N1 + N2 – 2 – 1 degrees of freedom after adjustment (where
p = the number of dependent variables). To get the critical value for Hotelling’s T2,
we find the tabled value for Fcrit at a specified a level and compute  as follows:

Differences between MANOVA and Discriminant Analysis

So far we have discussed the basic elements of both the univariate and multivariate
tests for assessing differences between groups on one or more dependent variables.
In doing so, we noted the calculation of the discriminant function, which in the case
of MANOVA is the variate of dependent variables that maximizes the difference
between groups. The question may arise: What is the difference between MANOVA
and discriminant analysis? In some aspects, MANOVA and discriminant analysis
are “mirror images.” The dependent variables in MANOVA (a set of metric variables)
are the independent variables in discriminant analysis, and the single nonmetric
dependent variable of discriminant analysis becomes the independent variable in
MANOVA. Moreover, both use the same methods in forming the variates and
assessing the statistical significance between groups.

The differences, however, center on the objectives of the analyses and the role
of the nonmetric variable(s). Discriminant analysis employs a single nonmetric
variable as the dependent variable. The categories of the dependent variable are
assumed as given, and the independent variables are used to form variates that
maximally differ between the groups formed by the dependent variable categories.
In MANOVA, the metric variables now act as the dependent variables and the
objective becomes finding groups of respondents that exhibit differences on the set
of dependent variables. The groups of respondents are not prespecified; instead, the

Tcrit
2

T p N N N N p Fcritcrit
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experimenter uses one or more independent variables (nonmetric variables) to form
groups. MANOVA, even while forming these groups, still retains the ability to assess
the impact of each nonmetric variable separately.

WHAT IS CONJOINT ANALYSIS?

Conjoint analysis is a multivariate technique used specifically to understand how
respondents develop preferences for products or services. It is based on the simple
premise that consumers evaluate the value of a product/service/idea (real or hypo-
thetical) by combining the separate amounts of value provided by each attribute.
Utility, which is the conceptual basis for measuring value in conjoint analysis, is a
subjective judgment of preference unique to each individual. It encompasses all
product or service features, both tangible and intangible, and as such is a measure
of overall preference. In conjoint analysis, utility is assumed to be based on the
value placed on each of the levels of the attributes and expressed in a relationship
reflecting the manner in which the utility is formulated for any combination of
attributes. For example, we might sum the utility values associated with each feature
of a product or service to arrive at an overall utility. Then we would assume that
products or services with higher utility values are more preferred and have a better
chance of choice.

UNIQUE ASPECTS OF CONJOINT ANALYSIS

Conjoint analysis is unique among multivariate methods in that the experimenter
first constructs a set of real or hypothetical products or services by combining
selected levels of each attribute. These combinations are then presented to respon-
dents, who provide only their overall evaluations. Thus, the experimenter is asking
the respondent to perform a very realistic task — choosing among a set of products.
Respondents need not tell the experimenter anything else, such as how important
an individual attribute is to them or how well the product performs on any specific
attribute. Because the experimenter constructed the hypothetical products or services
in a specific manner, the influence of each attribute and each value of each attribute
on the utility judgment of a respondent can be determined from the respondents’
overall ratings.

To be successful, the researcher must be able to describe the product or service
in terms of both its attributes and all relevant values for each attribute. We use the
term factor when describing a specific attribute or other characteristic of the product
or service. The possible values for each factor are called levels. In conjoint terms,
we describe a product or service in terms of its level on the set of factors charac-
terizing it. For example, brand name and price might be two factors in a conjoint
analysis. Brand name might have two levels (brand X and brand Y), whereas price
might have four levels (39, 49, 59, and 69 cents). When the researcher selects the
factors and the levels to describe a product or service according to a specific plan,
the combination is known as a treatment or stimulus. Therefore, a stimulus for our
simple example might be brand X at 49 cents.
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USES OF CONJOINT ANALYSIS

The flexibility of conjoint analysis gives rise to its application in almost any area in
which decisions are studied. Conjoint analysis assumes that any set of objects (e.g.,
brands, companies) or concepts (e.g., positioning, benefits, images) is evaluated as
a bundle of attributes. Having determined the contribution of each factor to the
consumer’s overall evaluation, the marketing researcher could then:

1. Define the object or concept with the optimum combination of features
2. Show the relative contributions of each attribute and each level to the

overall evaluation of the object
3. Use estimates of purchaser or customer judgments to predict preferences

among objects with differing sets of features (other things held constant)
4.  Isolate groups of potential customers who place differing importance on

the features to define high and low potential segments
5. Identify marketing opportunities by exploring the market potential for

feature combinations not currently available

The knowledge of the preference structure for each individual allows the
researcher almost unlimited flexibility in examining both individual and aggregate
reactions to a wide range of product- or service-related issues.

WHAT IS CANONICAL CORRELATION?

Whereas multiple regression analysis can predict the value of a single (metric)
dependent variable from a linear function of a set of independent variables, for
some research problems, interest may not center on a single dependent variable;
rather, the experimenter may be interested in relationships between sets of multiple
dependent and multiple independent variables. Canonical correlation analysis is a
multivariate statistical model that facilitates the study of interrelationships among
sets of multiple dependent variables and multiple independent variables (Green,
1978; Green and Carroll, 1978). Whereas multiple regression predicts a single
dependent variable from a set of multiple independent variables, canonical corre-
lation simultaneously predicts multiple dependent variables from multiple indepen-
dent variables.

Canonical correlation places the fewest restrictions on the types of data on which
it operates. Because the other techniques impose more rigid restrictions, it is gen-
erally believed that the information obtained from them is of higher quality and may
be presented in a more interpretable manner. For this reason, many researchers view
canonical correlation as a last-ditch effort, to be used when all other higher-level
techniques have been exhausted. But in situations with multiple dependent and
independent variables, canonical correlation is the most appropriate and powerful
multivariate technique. It has gained acceptance in many fields and represents a
useful tool for multivariate analysis, particularly as interest has spread to considering
multiple dependent variables.
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WHAT IS CLUSTER ANALYSIS?

Cluster analysis is the name for a group of multivariate techniques whose primary
purpose is to group objects based on the characteristics they possess. Cluster analysis
classifies objects (e.g., respondents, products, or other entities) so that each object
is very similar to others in the cluster with respect to some predetermined selection
criterion. The resulting clusters of objects should then exhibit high internal
(within-cluster) homogeneity and high external (between-cluster) heterogeneity.
Thus, if the classification is successful, the objects within clusters will be close
together when plotted geometrically, and different clusters will be far apart.

In cluster analysis, the concept of the variate is again a central issue, but in a quite
different way from other multivariate techniques. The cluster variate is the set of
variables representing the characteristics used to compare objects in the cluster anal-
ysis. Because the cluster variate includes only the variables used to compare objects,
it determines the “character” of the objects. Cluster analysis is the only multivariate
technique that does not estimate the variate empirically but instead uses the variate
as specified by the experimenter. The focus of cluster analysis is on the comparison
of objects based on the variate, not on the estimation of the variate itself. This makes
the experimenter’s definition of the variate a critical step in cluster analysis.

Cluster analysis has been referred to as Q analysis, typology construction,
classification analysis, and numerical taxonomy. This variety of names is due in part
to the usage of clustering methods in such diverse disciplines as psychology, biology,
sociology, economics, engineering, and business. Although the names differ across
disciplines, the methods all have a common dimension: classification according to
natural relationships (Aldenderfer and Blashfield, 1984; Anderburg, 1973; Bailey,
1994; Sneath and Sokal, 1973; Everitt, 1980). This common dimension represents
the essence of all clustering approaches. As such, the primary value of cluster
analysis lies in the classification of data, as suggested by “natural” groupings of the
data themselves. Cluster analysis is comparable to factor analysis in its objective of
assessing structure. But cluster analysis differs from factor analysis in that cluster
analysis groups objects, whereas factor analysis is primarily concerned with group-
ing variables.

Cluster analysis is a useful data analysis tool in many different situations. For
example, a researcher who has collected data by means of a questionnaire may be
faced with a large number of observations that are meaningless unless classified into
manageable groups. Cluster analysis can perform this data reduction procedure
objectively by reducing the information from an entire population or sample to
information about specific, smaller subgroups. For example, if we can understand
the attitudes of a population by identifying the major groups within the population,
then we have reduced the data for the entire population into profiles of a number of
groups. In this fashion, the researcher has a more concise, understandable description
of the observations, with minimal loss of information.

Cluster analysis is also useful when a researcher wishes to develop hypotheses
concerning the nature of the data or to examine previously stated hypotheses. For
example, an engineer may believe that attitudes toward performance of a car versus
comfortable ride could be used to separate consumers into logical segments or
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groups. Cluster analysis can classify the performance consumers by their attitudes
versus consumers who prefer comfort, and the resulting clusters, if any, can be
profiled for demographic similarities and differences.

These examples are just a small fraction of the types of applications of cluster
analysis. Ranging from the derivation of taxonomies in biology for grouping all
living organisms, to psychological classifications based on personality and other
personal traits, to segmentation analyses of marketers, cluster analysis has always
had a strong tradition of grouping people. This tradition has been extended to
classifying objects, including the market structure, analyses of the similarities and
differences among new products, and performance evaluations of firms to identify
groupings based on the firms’ strategies or strategic orientations. The result has been
an explosion of applications in almost every area of inquiry, creating not only a
wealth of knowledge on the use of cluster analysis but also the need for a better
understanding of the technique to minimize its misuse.

Yet, along with the benefits of cluster analysis come some caveats. Cluster
analysis can be characterized as descriptive, atheoretical, and noninferential. Cluster
analysis has no statistical basis upon which to draw statistical inferences from a
sample to a population, and it is used primarily as an exploratory technique. The
solutions are not unique, as the cluster membership for any number of solutions is
dependent upon many elements of the procedure, and many different solutions can
be obtained by varying one or more elements. Moreover, cluster analysis will always
create clusters, regardless of the “true” existence of any structure in the data. Finally,
the cluster solution is totally dependent upon the variables used as the basis for the
similarity measure. The addition or deletion of relevant variables can have a substan-
tial impact on the resulting solution. Thus, the experimenter must take particular care
in assessing the impact of each decision involved in performing a cluster analysis.

WHAT IS MULTIDIMENSIONAL SCALING?

Multidimensional scaling (MDS), also known as perceptual mapping, is a procedure
that allows an experimenter to determine the perceived relative image of a set of
objects (firms, products, ideas, or other items associated with commonly held per-
ceptions). The purpose of MDS is to transform consumer judgments of similarity
or preference (e.g., preference for stores or brands) into distances represented in
multidimensional space. Assume that objects A and B are judged by respondents to
be the most similar compared with all other possible pairs of objects. MDS tech-
niques will position objects A and B so that the distance between them in multidi-
mensional space is smaller than the distance between any other two pairs of objects.
The resulting perceptual map, also known as a spatial map, shows the relative
positioning of all objects. 

Multidimensional scaling is based on the comparison of objects. Any object
(e.g., product, service, image, aroma) can be thought of as having both perceived
and objective dimensions. For example, Thisvi’s management may see their product
(a car) as having two color options (red and green), a 100-horsepower motor, and
a 124 inches wheel-to-wheel base. These are the objective dimensions. On the other
hand, customers may (or may not) see these attributes. Customers may also perceive
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the Thisvi car as expensive-looking or fragile. These are perceived dimensions, also
known as subjective dimensions. Two products may have the same physical char-
acteristics (objective dimensions) but be viewed differently because the different
brands are perceived to differ in quality (a perceived dimension) by many customers.
Thus, the following two differences between objective and perceptual dimensions
are very important:

1. Individual Differences: The dimensions perceived by customers may not
coincide with (or may not even include) the objective dimensions assumed
by the experimenter. We expect that each individual may have different
perceived dimensions, but the experimenter must also accept that the
objective dimensions may also vary substantially. Individuals may con-
sider different sets of objective characteristics as well as vary the impor-
tance they attach to each dimension.

2. Interdependence: The evaluations of the dimensions (even if the perceived
dimensions are the same as the objective dimensions) may not be inde-
pendent and may not agree. Both perceived and objective dimensions may
interact with one another to create unexpected evaluations. For example,
one soft drink may be judged sweeter than another because the first has
a fruitier aroma, although both contain the same amount of sugar.

The challenge to the experimenter is first to understand the perceived dimensions
and then to relate them to objective dimensions, if possible. Additional analysis is
needed to assess which attributes predict the position of each object in both percep-
tual and objective space.

A note of caution must be raised, however, concerning the interpretation of
dimensions. Because this process is more an art than a science, the experimenter
must resist the temptation to allow personal perception to affect the qualitative
dimensionality of the perceived dimensions. Given the level of researcher input,
caution must be taken to be as objective as possible in this critical, yet still rudi-
mentary, area.

WHAT IS STRUCTURAL EQUATION MODELING?

Structural equation modeling (SEM) encompasses an entire family of models known
by many names, among them covariance structure analysis, latent variable analysis,
confirmatory factor analysis, and often simply LISREL analysis (the name of one
of the more popular software packages). Resulting from an evolution of multi-
equation modeling developed principally in econometrics and merged with the
principles of measurement from psychology and sociology, SEM has emerged as an
integral tool in both managerial and academic research (Austin and Calderon, 1996;
Bagozzi and Yi, 1988; Bentler, 1980; Breckler, 1990; Dolan, 1996; Duncan, 1975;
Fan, 1997; Hatcher, 1996; Hox, 1995; Joreskog and Sorbom, 1993a; Marsh and
Hoceuar, 1994; McDonald and Marsh, 1990; Neale et al., 1989; O’Brien and Reilly,
1995; Predhazur and Schmelkin, 1992; Rigton, 1996; Robles, 1996; Rubio and
Gillespie, 1995; Steenkamp and van Trijp, 1991; Tremblay and Gardner, 1996) can
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also be used as a means of estimating other multivariate models, including regression,
principal components (Dolan, 1996), canonical correlation (Fan, 1997), and even
MANOVA (Bagozzi, 1988).

As might be expected for a technique with such widespread use and so many
variations in applications, many researchers are uncertain about what constitutes
structural equation modeling. Yet all SEM techniques are distinguished by two
characteristics: estimation of multiple and interrelated dependence relationships, and
the ability to represent unobserved concepts in these relationships and account for
measurement error in the estimation process.

ACCOMMODATING MULTIPLE INTERRELATED DEPENDENCE RELATIONSHIPS

The most obvious difference between SEM and other multivariate techniques is the
use of separate relationships for each of a set of dependent variables. In simple
terms, SEM estimates a series of separate, but interdependent, multiple regression
equations simultaneously by specifying the structural model used by the statistical
program. First, the experimenter draws upon theory, prior experience, and the
research objectives to distinguish which independent variables predict each depen-
dent variable. For example, we may first want to predict “car” image. We then may
want to use “car” image to predict satisfaction, both of which in turn may be used
to predict “car” loyalty. Thus, some dependent variables become independent vari-
ables in subsequent relationships, giving rise to the interdependent nature of the
structural model. Moreover, many of the same variables affect each of the dependent
variables, but with differing effects. The structural model expresses these relation-
ships among independent and dependent variables, even when a dependent variable
becomes an independent variable in other relationships.

The proposed relationships are then translated into a series of structural equa-
tions (similar to regression equations) for each dependent variable. This feature sets
SEM apart from techniques discussed previously that accommodate multiple depen-
dent variables — multivariate analysis of variance and canonical correlation — in
that they allow only a single relationship between dependent and independent
variables.

INCORPORATING VARIABLES THAT WE DO NOT MEASURE DIRECTLY

The estimation of multiple interrelated dependence relationships is not the only
unique element of structural equation modeling. SEM also has the ability to
incorporate latent variables into the analysis. A latent variable is a hypothesized and
unobserved concept that can only be approximated by observable or measurable
variables. The observed variables, which we gather from respondents through various
data collection methods (e.g., surveys, tests, observations), are known as manifest
variables. Yet why would we want to use a latent variable that we did not measure
instead of the exact data (manifest variables) the respondents provided? Although
this may sound like a nonsensical or “black box” approach, it has both practical and
theoretical justification by improving statistical estimation, better representing the-
oretical concepts, and accounting for measurement error.
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IMPROVING STATISTICAL ESTIMATION

Statistical theory tells us that a regression coefficient is actually composed of two
elements: the “true” or structural coefficient between the dependent and independent
variable and the reliability of the predictor variable. Reliability is the degree to which
the independent variable is “error-free” (Blalock, 1982). In all the multivariate
techniques to this point, we have assumed we had no error in our variables. But we
know from both practical and theoretical perspectives that we cannot perfectly
measure a concept and that there is always some degree of measurement error. For
example, when asking about something as straightforward as household income, we
know some people will answer incorrectly, either overstating or understating the
amount or not knowing it precisely. The answers provided have some measurement
error and thus affect the estimation of the “true” structural coefficient (Rigdon, 1994).

The impact of measurement error (and the corresponding lowered reliability)
can be shown from an expression of the regression coefficient as

byx = bsXrx

where byx is the observed regression coefficient, bs  is the “true” structural coefficient,
and rx is the reliability of the predictor variable. Unless the reliability is 100%, the
observed correlation will always understate the “true” relationship. Because all
dependence relationships are based on the observed correlation (and resulting regres-
sion coefficient) between variables, we would hope to “strengthen” the correlations
used in the dependence models and make them more accurate estimates of the
structural coefficients by first accounting for the correlation attributable to any
number of measurement problems.

OVERALL GOODNESS-OF-FIT MEASURES FOR STRUCTURAL EQUATION 
MODELING

Assessing the overall goodness-of-fit for structural equation models is not as straight-
forward as with other multivariate dependence techniques such as multiple regres-
sion, discriminant analysis, multivariate analysis of variance, or even conjoint anal-
ysis. SEM has no single statistical test that best describes the “strength” of the
model’s predictions. Instead, experimenters have developed a number of good-
ness-of-fit measures that, when used in combination, assess the results from three
perspectives: overall fit, comparative fit to a base model, and model parsimony. The
discussions that follow present alternative measures for each of these perspectives,
along with the methods of calculation for those measures that are not contained in
the results and that must be computed separately.

One common question arises in the discussion of each measure: What is an
acceptable level of fit? None of the measures (except the chi-square statistic) has an
associated statistical test. Although in many instances guidelines have been sug-
gested, no absolute test is available, and the experimenter must ultimately decide
whether the fit is acceptable. Bollen (1989, p. 275) addresses this issue directly:
“Overall, selecting a rigid cutoff for the incremental fit indices is like selecting a
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minimum R2 for a regression equation. Any value will be controversial. Awareness
of the factors affecting the values and good judgment are the best guides to evaluating
their size.” This advice applies equally well to the other goodness-of-fit measures.

Before examining the various goodness-of-fit measures, it may be useful to
review the derivation of degrees of freedom in structural models. The number of
unique data values in the input matrix is s (where s = 1/2(k)(k – 1) and k is the total
number of indicators for both endogenous and exogenous constructs). The degrees
of freedom (df ) for any estimated model are then calculated as df = s – t, where t
is the number of estimated coefficients. If the experimenter knows the df for an
estimated model and the total number of indicators, then t can be calculated directly
as t = s – df.

The examination and derivation of goodness-of-fit measures for SEM has gained
widespread interest among academic researchers in recent years, resulting in the
continual development of new goodness-of-fit measures (Ding et al., 1995; Rigdon,
1994, 1996; Tanaka, 1993; Satorra and Bentler, 1994; and others). This is reflected
in the statistical programs as they are continually modified to provide the most
relevant information regarding the estimated model. In this discussion, we have
focused our attention on the LISREL program because of its widespread application.
It has undergone these changes as well. The newest version of LISREL substantially
expands the number and type of fit indices available directly in the output. For this
reason, the following discussion and example data detail the calculations of those
measures not provided in earlier versions of the program.

MEASURES OF ABSOLUTE FIT

Absolute fit measures determine the degree to which the overall model (structural
and measurement models) predicts the observed covariance or correlation matrix.
No distinction is made as to whether the model fit is better or worse in the structural
or measurement models. Among the absolute fit measures commonly used to evaluate
SEM are the chi-square statistic, the noncentrality parameter, the goodness-of-fit
statistic, the root mean square error, the root mean square error of approximation,
and the expected cross-validation index.

Likelihood-Ratio Chi-Square Statistic

The most fundamental measure of overall fit is the likelihood-ratio chi-square (c2)
statistic, the only statistically based measure of goodness-of-fit available in SEM
(Joreskog and Sorbom, 1993b). A large value of chi-square relative to the degrees
of freedom signifies that the observed and estimated matrices differ considerably.
Statistical significance levels indicate the probability that these differences are due
solely to sampling variations. Thus, low chi-square values, which result in signifi-
cance levels greater than .05 or .01, indicate that the actual and predicted input
matrices are not statistically different. In this instance, the experimenter is looking
for nonsignificant differences because the test is between actual and predicted matri-
ces. The experimenter must remember that this method differs from the customary
desire to find statistical significance. However, even statistical nonsignificance does

SL3127_frame_MASTER.book  Page 160  Monday, July 1, 2002  9:38 AM



Advanced Topics in Statistics 161

not guarantee that the “correct” model has been identified, but only that this proposed
model fits the observed covariances and correlations well. It does not assure the
experimenter that another model would not fit as well or better. The .05 significance
level is recommended as the minimum accepted, and levels of .1 or .2 should be
exceeded before nonsignificance is confirmed (Fornell, 1983).

An important criticism of the chi-square measure is that it is too sensitive to
sample size differences, especially for cases in which the sample size exceeds 200
respondents. As sample size increases, this measure has a greater tendency to indicate
significant differences for equivalent models. If the sample size becomes large
enough, significant differences will be found for any specified model. Moreover, as
the sample size nears 100 or goes even lower, the chi-square test will show acceptable
fit (nonsignificant differences in the predicted and observed input matrices), even
when none of the model relationships is shown to be statistically significant. Thus,
the chi-square statistic is quite sensitive in different ways to both small and large
sample sizes, and the experimenter is encouraged to complement this measure with
other measures of fit in all instances. The use of chi-square is appropriate for sample
sizes between 100 and 200, with the significance test becoming less reliable with
sample sizes outside this range.

The sensitivity of the chi-square measure extends past sample size considera-
tions. For example, it has been shown that this measure varies based on the number
of categories in the response variable (Green et al., 1997). Given its sensitivity to
many factors, the researcher is encouraged to complement the chi-square measure
with other goodness-of-fit measures.

Noncentrality and Scaled Noncentrality Parameters

The noncentrality parameter (NCP) is the result of statisticians’ search for an alter-
native measure to the likelihood-ratio chi-square statistic that is less affected by or
independent of the sample size. Statistical theory suggests that a noncentrality
chi-square measure will be less affected by sample size in its representation of the
differences between the actual and estimated data matrices (McDonald and Marsh,
1990). In a LISREL problem, the noncentrality parameter can be calculated as:

NCP = c2 – Degrees of freedom

Although this measure adjusts the chi-square by the degrees of freedom of the
estimated model, it is still in terms of the original sample size. To “standardize” the
NCP, divide it by the sample size to obtain the scaled noncentrality parameter (SNCP)
(McDonald and Marsh, 1990). This can be calculated as

SNCP = [c2 – Degrees of freedom]/Sample size

This scaled measure is analogous to the average squared Euclidean distance
measure between the estimated model and the unrestricted model (McDonald and
Marsh, 1990). For both the unscaled and the scaled parameters, the objective is to
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minimize the parameter value. Because there is no statistical test for this measure,
it is best used in making comparisons between alternative models.

Goodness-of-Fit Index

The goodness-of-fit index (Joreskog and Sorbom, 1988b; Joreskog and Sorbom,
1993a) is another measure provided by LISREL. It is a nonstatistical measure ranging
in value from 0 (poor fit) to 1.0 (perfect fit). It represents the overall degree of fit
(the squared residuals from prediction compared with the actual data), but it is not
adjusted for the degrees of freedom. Higher values indicate better fit, but no absolute
threshold levels for acceptability have been established.

Root Mean Square Residual (RMSR)

The root mean square residual is the square root of the mean of the squared residuals
— an average of the residuals between observed and estimated input matrices. If
covariances are used, the RMSR is the average residual covariance. If a correlation
matrix is used, then the RMSR is in terms of an average residual correlation. The
RMSR is more useful for correlations, which are all on the same scale, than for
covariances, which may differ from variable to variable depending on unit of measure.
Again, no threshold level can be established, but the experimenter can assess the
practical significance of the magnitude of the RMSR in light of the research objectives
and the observed or actual covariances or correlations (Bagozzi and Yi, 1988).

Root Mean Square Error of Approximation 

Another measure that attempts to correct for the tendency of the chi-square statistic
to reject any specified model with a sufficiently large sample is the root mean square
error of approximation (RMSEA). Similar to the RMSR, the RMSEA is the discrep-
ancy per degree of freedom. It differs from the RMSR, however, in that the discrep-
ancy is measured in terms of the population, not just the sample used for estimation
(Steiger, 1990). The value is representative of the goodness-of-fit that could be
expected if the model were estimated in the population, not just the sample drawn
for the estimation. Values ranging from .05 to .08 are deemed acceptable. An empir-
ical examination of several measures found that the RMSEA was best suited to use
in a confirmatory or competing models strategy with larger samples (Rigdon, 1996).

Expected Cross-Validation Index 

The expected cross-validation index (ECVI) is an approximation of the goodness-
of-fit the estimated model would achieve in another sample of the same size. Based
on the sample covariance matrix, it takes into account the actual sample size and
the difference that could be expected in another sample. The ECVI also takes into
account the number of estimated parameters for both the structural and measurement
models. The ECVI is calculated as
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ECVI = c2/Sample size – 1 + (2 ¥ number of estimated parameters)/Sample size – 1

The EVCI has no specified range of acceptable values, but it is used in comparisons
between alternative models.

Cross-Validation Index

The cross-validation index (CVI) assesses goodness-of-fit when an actual cross-val-
idation has been performed. Cross-validation is performed in two steps. First, the
overall sample is split into two samples — an estimation sample and a validation
sample. The estimation sample is used to estimate a model and create the estimated
correlation of covariance matrix. This matrix is then compared to the sample from
the validation sample. A double cross-validation process can be performed by com-
paring the estimated correlation or covariance matrix from each sample to a data
matrix from the other sample.

INCREMENTAL FIT MEASURES

The second class of measures compares the proposed model to some baseline model,
most often referred to as the null model. The null model should be some realistic
model that all other models should be expected to exceed. In most cases, the null
model is a single-construct model with all indicators perfectly measuring the construct
(i.e., this represents the chi-square value associated with the total variance in the set
of correlations or covariances). There is, however, some disagreement over exactly
how to specify the null model in many situations (Sobel and Bohrnstedt, 1985).

Adjusted Goodness-of-Fit Index

The adjusted goodness-of-fit is an extension of the GFI, adjusted by the ratio of
degrees of freedom for the proposed model to the degrees of freedom for the null
model. It is quite similar to the parsimonious normed fit index and a recommended
acceptance level is a value greater than or equal to .90.

Tucker-Lewis Index

The next incremental fit measure is the Tucker-Lewis index (Tucker and Lewis,
1973), also known as the nonnormed fit index (NNFI). First proposed as a means
of evaluating factor analysis, the TLI has been extended to SEM. It combines a
measure of parsimony into a comparative index between the proposed and null
models, resulting in values ranging from 0 to 1.0. It is expressed as:

A recommended value of TLI is .90 or greater. This measure can also be used for
comparing between alternative models by substituting the alternative model for the
null model.

TLI = - -[( ) ( )]( )c c cnull null proposed proposed null nulldf df df2 2 2 1
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Normed Fit Index

One of the more popular measures is the normed fit index (Bentler and Bonnett,
1980), which is a measure ranging from 0 (no fit at all) to 1.0 (perfect fit). Again,
the NFI is a relative comparison of the proposed model to the null model. The NFI
is calculated as:

As with the Tucker-Lewis index, there is no absolute value indicating an acceptable
level of fit, but a commonly recommended value is .90 or greater.

Other Incremental Fit Measures

A number of other incremental fit measures have been proposed, and the newer
version of LISREL includes three in its output. The relative fit index (RFI), the
incremental fit index (IFI), and the comparative fit index (CFI) all represent com-
parisons between the estimated model and a null or independence model. The values
lie between 0 and 1.0, and larger values indicate higher levels of goodness-of-fit.
The CFI has been found to be more appropriate in a model development strategy
or when a smaller sample is available (Rigdon, 1996). The interested reader can find
the specific details of each measure in selected readings (Bollen, 1986 and 1989;
Bentler, 1990).

PARSIMONIOUS FIT MEASURES

Parsimonious fit measures relate the goodness-of-fit of the model to the number of
estimated coefficients required to achieve this level of fit. Their basic objective is to
diagnose whether model fit has been achieved by “overfitting” the data with too
many coefficients. This procedure is similar to the “adjustment” of the R2 in multiple
regression. However, because no statistical test is available for these measures, their
use in an absolute sense is limited in most instances to comparisons between models.

Parsimonious Normed Fit Index

The first measure in this case is the parsimonious normed fit index (PNFI) (James
et al., 1982), a modification of the NFI. The PNFI takes into account the number of
degrees of freedom used to achieve a level of fit. Parsimony is defined as achieving
higher degrees of fit per degree of freedom used (one degree of freedom per estimated
coefficient). Thus more parsimony is desirable. The PNFI is defined as:

NFI =
−χ χ
χ

null proposed

null

2 2

2

PNFI NFI= ×
df

df
proposed

null

SL3127_frame_MASTER.book  Page 164  Monday, July 1, 2002  9:38 AM



Advanced Topics in Statistics 165

Higher values of PNFI are better, and its principal use is for the comparison of
models with differing degrees of freedom. It is used to compare alternative models,
and there are no recommended levels of acceptable fit. However, when comparing
between models, differences of .06 to .09 are proposed to be indicative of substantial
model differences (Williams and Holahan, 1994).

Parsimonious Goodness-of-Fit Index 

The parsimonious goodness-of-fit index (PGFI) modifies the GFI differently from
the AGFI. Where the AGFI’s adjustment of the GFI was based on the degrees of
freedom in the estimated and null models, the PGFI is based on the parsimony of
the estimated model. It adjusts the GFI in the following manner:

PGFI =
[dfproposed]/1/2 (No. of manifest variables)(No. of manifest variables + 1) ¥ GFI

The value varies between 0 and 1.0, with higher values indicating greater model
parsimony.

Normed Chi-Square

Joreskog (1970) proposed that the chi-square be “adjusted” by the degrees of freedom
to assess model fit for various models. This measure can be termed the normed
chi-square and is the ratio of the chi-square divided by the degrees of freedom. This
measure provides two ways to assess inappropriate models: (1) a model that may
be “overfitted,” thereby capitalizing on chance, typified by values less than 1.0; and
(2) models that are not yet truly representative of the observed data and thus need
improvement, having values greater than an upper threshold, either 2.0 or 3.0 (Car-
mines and McIver, 1981) or the more liberal limit of 5.0 (Joreskog, 1970). However,
because the chi-square value is the major component of this measure, it is subject
to the sample size effects discussed earlier with regard to the chi-square statistic.

The normed chi-square has been shown to be somewhat unreliable (Hayduk,
1987; Wheaton, 1987), so experimenters should always combine it with other good-
ness-of-fit measures.

Akaike Information Criterion

Another measure based on statistical information theory is the Akaike information
criterion (AIC; Akaike, 1987). Similar to the PNFI, the AIC is a comparative measure
between models with differing numbers of constructs. The AIC is calculated as:

AIC = c2 + 2 ¥ Number of estimated parameters

AIC values closer to zero indicate better fit and greater parsimony. A small AIC
generally occurs when small chi-square values are achieved with fewer estimated
coefficients. This shows not only a good fit of observed versus predicted covariances
or correlations but also a model not prone to “overfitting.”
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Time Series
and Forecasting

 

Forecasting is very difficult but essential in any business. Most forecasts are based
on past history, and there lies one of the problems. There is no guarantee that the
past will repeat itself. Another, of course, is the introduction of changes that will
certainly change the outcome of the expectations. Practically all forecasts get these
two principles wrong and, as a consequence, statisticians depend on the confidence
levels of the forecast to save face. This chapter will introduce the reader to time
series and forecasting in a cursory way. Specifically, it will cover autocorrelation,
exponential trends, curve smoothing, and econometric models.

 

EXTRAPOLATION METHODS

 

Extrapolation methods are quantitative methods that use past data to forecast the
future. Primarily, this form of analysis depends on the identification of patterns in
the data with the hope that these patterns will be able to be projected into the future.
Sometimes, these patterns are controlled by seasonal patterns or known cycles.

Although the effectiveness of extrapolation methods is not yet proven (Arm-
strong, 1986; Schnarrs and Bavuso, 1986), these methods are extensively used. The
reason for their use is that we all want to predict what may happen in some future
time given some facts — never mind that these facts are more often than not dynamic
and that they change our expected results, every time.

 

E

 

XPONENTIAL

 

 T

 

REND

 

Previously we saw that in a linear relationship we can forecast future expectations
based on regression modeling. In contrast to a linear trend, an exponential trend is
appropriate when the time series changes by a constant percentage

 

 

 

(as opposed to
a constant such as dollar amount) each period. Then the appropriate regression
equation is
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where 

 

c

 

 and 

 

b 

 

are constants and 

 

u

 

 represents a multiplicative error term. By taking
logarithms of both sides, and letting 

 

a = 

 

ln(

 

c

 

) and 

 

e

 

t 

 

= ln(u

 

t

 

), we obtain a linear
equation that can be estimated by the usual linear regression method. However, note
that the response variable is now the logarithm of Y

 

t

 

:

ln(

 

Y

 

t

 

) = a + b

 

t

 

 + 

 

e

 

t

 

Because the computer does the calculations, our main responsibility is to inter-
pret the final result. This is not too difficult. It can be shown that the coefficient b
(expressed as a percentage) is approximately the percentage change per period. For
example, if b = .05,

 

 

 

then the series is 

 

increasing

 

 by approximately 5% per period.
On the other hand, if b = –.05,

 

 

 

then the series is 

 

decreasing

 

 by approximately 5%
per period. An exponential trend can be estimated with a regression procedure
(simple or multiple, whichever you prefer), but only after the log transformation has
been made on Y

 

t

 

. Figure 12.1 shows a hypothetical sales example of a time series
with (a) linear trend superimposed, (b) time series of forecast errors, and (c) time
series of hypothetical sales with exponential trend superimposed.

The output shows that there is some evidence of not enough runs. The expected
number of runs under randomness is 24.833, and there are only 20 runs for this
series. However, the evidence is certainly not overwhelming — the p-value is only
.155. If we ran this test as a one-tailed test, checking only for too few runs, then
the appropriate p-value would be .078, half of the value. The conclusion in either
case is that sales do not tend to “zigzag” as much as a random series would — highs
tend to follow highs and lows tend to follow lows — but the evidence in favor of
nonrandomness is not overwhelming.

 

A

 

UTOCORRELATION

 

The successive observations in a random series are probabilistically independent of
one another. Many time series violate this property and are instead autocorrelated.
The “auto” means that successive observations are correlated with one other. For
example, in the most common form of autocorrelation, positive autocorrelation, large
observations tend to follow large observations, and small observations tend to follow
small observations. In this case the runs test is likely to pick it up because there will
be fewer runs than expected, and the corresponding Z-value for the runs test will
be significantly negative. Another way to check for the same nonrandomness prop-
erty is to calculate the autocorrelations of the time series.

To understand autocorrelations it is first necessary to understand what it means
to lag a time series. This concept is easy to understand in spreadsheets. Imagine you
are looking at a spreadsheet for sales. To lag by 1 month, we simply “push down”
the series by one row; to lag by 2 months, we push down the series by two rows; to
lag by 3 months, we push down the series by three rows. Figure 12.2 shows that flow.

See column C of Figure 12.2. Note that there is a blank cell at the top of the
lagged series (in cell C4). We can continue to push the series down one row at a
time to obtain other lags. For example, the lag 3 version of the series appears in the
range E7:E54. Now there are three missing observations at the top. Note that in
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December 1995, say, the first, second, and third lags correspond to the observations
in November 1995, October 1995, and September 1995, respectively. That is, lags
are simply previous observations, removed by a certain number of periods from the
present time. 

In general, the lag k observation corresponding to period t is Y

 

t–k

 

. Then the
autocorrelation of lag 

 

k, 

 

for any integer 

 

k, 

 

is essentially the correlation between the
original series and the lag 

 

k 

 

version of the series. For example, in Figure 12.2, the
lag 1 autocorrelation is the correlation between the observations in columns B and

 

FIGURE 12.1

 

Time series plots.
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C. Similarly, the lag 2 autocorrelation is the correlation between the observations
in columns B and D.

Autocorrelation may be presented in a chart format called a correlogram (see
Figure 12.3).

We already mentioned that the typical autocorrelation of lag k indicates the
relationship between observations k periods apart. The question, however, is how
large is a “large” autocorrelation? Under the assumption of randomness, it can be
shown that the standard error of any autocorrelation is approximately  in this
case  (T = 48 which denotes the number of observations in the
series.)

 

E

 

XPONENTIAL

 

 S

 

MOOTHING

 

Dealing with data, many times we are willing to use moving averages to smooth
our observations. When we do that, we make our forecast based on equal weight of
each value in our observations. Many people would argue that if next month’s
forecast is to be based on the previous 12 months’ observations, then more weight
ought to be placed on the more recent observations. The second criticism is that the
moving averages method requires a lot of data storage. This is particularly true for
companies that routinely make forecasts of hundreds or even thousands of items. If
12-month moving averages are used for 1000 items, then 12,000 values are needed
for next month’s forecasts. This may or may not be a concern considering today’s

 

FIGURE 12.2

 

Lags and autocorrelation for product X (sales).

 

FIGURE 12.3

 

A typical correlogram.
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relatively inexpensive computer storage capabilities. However, it is a concern of
availability of data.

Exponential smoothing is a method that addresses both of these criticisms. It
bases its forecasts on a weighted average of past observations, with more weight
put on the more recent observations, and it requires very little data storage. In
addition, it is not difficult for most business people to understand, at least concep-
tually. Therefore, this method finds widespread use in the business world, particularly
when frequent and automatic forecasts of many items are required.

There are many versions of exponential smoothing. The simplest is called,
surprisingly enough, simple exponential smoothing. It is relevant when there is no
pronounced trend or seasonality in the series. If there is a trend but no seasonality,
then Holt’s method is applicable. If, in addition, there is seasonality, then Winters’
method can be used. This does not exhaust the list of exponential smoothing models
— researchers have invented many other variations — but these three models will
suffice for us.

 

Simple Exponential Smoothing

 

Every exponential model has at least one smoothing constant, which is always
between zero and one, and a level of the series at time t. The smoothing constant
is denoted by 

 

a

 

, and the level of the series 

 

L

 

t

 

. 

 

The level value is not observable but
can only be estimated. Essentially, it is where we think the series would be at time
t if there were no random noise. The simple exponential smoothing method is defined
by the following two equations, where 

 

F

 

t+k

 

 

 

is

 

 

 

the forecast of 

 

Y

 

t+k

 

 

 

made at time t:

 

F

 

t+k

 

 = L

 

t

 

Even though you usually won’t have to substitute into these equations manually,
you should understand what they say. The first equation shows how to update the
estimate of the level. It is a weighted average of the current observation, Y

 

t

 

, and the
previous level, 

 

L

 

t

 

–1

 

, 

 

with respective weights 

 

a

 

 and 1 – 

 

a

 

. The second equation shows
how forecasts are made. It says that the k-period-ahead forecast, 

 

F

 

t+k

 

,

 

 made of 

 

Y

 

t+k

 

in period t is the most recently estimated level, L

 

t

 

.
This is the same for any value of k 

 

≥

 

 1. The idea is that in simple exponential
smoothing, we believe that the series is not really going anywhere. So as soon as
we estimate where the series ought to be in period t (if it weren’t for random noise),
we forecast that this is where it will also be in any future period.

The smoothing constant 

 

a

 

 is analogous to the span in moving averages. There
are two ways to see this. The first way is to rewrite the first equation, using the fact
that the forecast error, 

 

E

 

t

 

, 

 

made in forecasting Y

 

t

 

, at time t – 1 is 

 

Y

 

t
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A bit of algebra then gives
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This says that the next estimate of the level is adjusted from the previous estimate
by adding a multiple of the most recent forecast error. This makes sense. If our
previous forecast was too high, then E

 

t

 

 is negative, and we adjust the estimate of
the level downward. The opposite is true if our previous forecast was too low.
However, this equation says that we do not adjust by the entire magnitude of E

 

t

 

 

 

but
only by a fraction of it. If 

 

a

 

 is small, say 

 

a

 

 = .1, then the adjustment is minor; if 

 

a

 

is close to 1, the adjustment is large. So if we want to react quickly to movements
in the series, we choose a large 

 

a

 

; otherwise, we choose a small 

 

a

 

.
Another way to see the effect of 

 

a

 

 is to substitute recursively into the equation
for 

 

L

 

t

 

. 

 

If you are willing to go through some algebra, you can verify that 

 

L

 

t

 

 

 

satisfies

where this sum extends back to the first observation at time t = 1. With this equation
we can see how the exponentially smoothed forecast is a weighted average of
previous observations. Furthermore, because 1 – 

 

a

 

 is less than one, the weights on
the Y’s decrease from time t backward. Therefore, if 

 

a

 

 is

 

 

 

close to zero, then 1 – 

 

a

 

is close to 1, and the weights decrease very slowly. In other words, observations
from the distant past continue to have a large influence on the next forecast. This
means that the graph of the forecasts will be relatively smooth, just as with a large
span in the moving averages method. But when 

 

a

 

 is close to 1, the weights decrease
rapidly, and only very recent observations have much influence on the next forecast.
In this case, forecasts react quickly to sudden changes in the series.

What value of 

 

a

 

 should we use? There is no universally accepted answer to this
question. Some practitioners recommend always using a value around .1 or .2. Others
recommend experimenting with different values of alpha until you reach a measure
by which the data smoothing is at optimum.

 

Holt’s Model for Trend

 

The simple exponential smoothing model generally works well if there is no obvious
trend in the series. But if there is a trend, then this method consistently lags behind
it. For example, if the series is constantly increasing, simple exponential smoothing
forecasts will be consistently low. Holt’s method rectifies this by dealing with trend
explicitly. In addition to the level of the series T

 

t

 

, Holt’s method includes a trend
term, T

 

t

 

 and a corresponding smoothing constant 

 

b

 

. The interpretation of T

 

t

 

, 

 

is
exactly as before. The interpretation of T

 

t

 

 is that it represents an estimate of the
change in the series from one period to the next. The equations for Holt’s model
are as follows:
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These equations are not as bad as they look. (And don’t forget that the computer
typically does all of the calculations for you.) Equation 1 says that the updated level

L Y Y Y Yt t t t t= + - + - + - + º- - -a a a a a a a( ) ( ) ( )1 1 11
2

2
3

3
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is a weighted average of the current observation and the previous level plus the
estimated change. Equation 2 says that the updated trend term is a weighted average
of the difference between two consecutive levels and the previous trend term. Finally,
equation 3 says that the k-period-ahead forecast made in period t is the estimated
level plus k times the estimated change per period.

Everything we said about a (alpha) for simple exponential smoothing applies to
both a and b (beta) in Holt’s model. The new smoothing constant beta controls how
quickly the method reacts to perceived changes in the trend. If beta is small, the
method reacts slowly. If it is large, the method reacts more quickly. Of course, there
are now two smoothing constants to select. Some practitioners suggest using a small
value of a (.1 to .2) and setting b equal to a. Others suggest using an optimization
option (available in most software) to select the “best” smoothing constants.

Winters’ Model for Seasonality

So far we have said practically nothing about seasonality. Seasonality is defined as
the consistent month-to-month (or quarter-to-quarter) differences that occur each
year. For example, there is seasonality in beer sales — high in the summer months,
lower in other months. Toy sales are also seasonal, with a huge peak in the months
preceding Christmas. In fact, if you start thinking about time series variables that
you are familiar with, the majority of them probably have some degree of seasonality.

How do we know whether there is seasonality in a time series? The easiest way
is to check whether a plot of the time series has a regular pattern of ups and downs
in particular months or quarters. Although random noise can sometimes obscure
such a pattern, the seasonal pattern is usually fairly obvious. (Some time series
software packages have special types of graphs for spotting seasonality, but we won’t
discuss these here.)

There are basically two extrapolation methods for dealing with seasonality. We
can either use a model that takes seasonality into account explicitly and forecasts
it, or we can first deseasonalize the data, then forecast the deseasonalized data, and
finally adjust the forecasts for seasonality. The exponential smoothing model we
discuss here, Winters’ model, is of the first type. It attacks seasonality directly.
Another approach is the deseasonality — the ratio to moving averages method. 

Seasonal models are usually classified as additive or multiplicative. Suppose that
we have monthly data, and that the average of the 12 monthly values for a typical
year is 150. An additive model finds seasonal indexes, one for each month, that we
add to the monthly average, 150, to get a particular month’s value. For example, if
the index for March is 22, then we expect a typical March value to be 150 + 22 =
172. If the seasonal index for September is –12, then we expect a typical September
value to be 150 – 12 = 138. A multiplicative model also finds seasonal indexes, but
we multiply the monthly average by these indexes to get a particular month’s value.
Now if the index for March is 1.3, we expect a typical March value to be 150(1.3)
= 195. If the index for September is 0.9, then we expect a typical September value
to be 150(0.9) = 135.

Either an additive or a multiplicative model can be used to forecast seasonal
data. However, because multiplicative models are somewhat easier to interpret (and
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have worked well in applications), we will focus on them. Note that the seasonal
index in a multiplicative model can be interpreted as a percentage. Using the figures
in the previous paragraph as an example, March tends to be 30% above the monthly
average, whereas September tends to be 10% below it. Also, the seasonal indexes
in a multiplicative model should sum to the number of seasons (12 for monthly data,
4 for quarterly data). Computer packages typically ensure that this happens.

We now turn to Winters’ exponential smoothing model. It is very similar to
Holt’s model — it again has level and trend terms and corresponding smoothing
constants alpha and beta (a, b), but it also has seasonal indexes and a corresponding
smoothing constant g (gamma). This new smoothing constant gamma controls how
quickly the method reacts to perceived changes in the pattern of seasonality. If
gamma is small, the method reacts slowly. If it is large, the method reacts more
quickly. As with Holt’s model, there are equations for updating the level and trend
terms, and there is one extra equation for updating the seasonal indexes. For com-
pleteness, we list these equations below, but they are clearly too complex for hand
calculation and are best left to the computer. In equation 3, S refers to the multipli-
cative seasonal index for period t. In equations 1, 3, and 4, M refers to the number
of seasons (M = 4 for quarterly data; M = 12 for monthly data). The equations are:

1.

2. 

3. 

4.

To see how the forecasting in equation 4 works, suppose we have observed data
through June and want a forecast for the coming September, that is, a 3-month-ahead
forecast. (In this case t refers to June and t + k = t + 3 refers to September.) Then
we first add three times the current trend term to the current level. This gives a
forecast for September that would be appropriate if there were no seasonality. Next,
we multiply this forecast by the most recent estimate of September’s seasonal index
(the one from the previous September) to get the forecast for September. Of course,
the computer does all of the arithmetic, but this is basically what it is doing.

ECONOMETRIC MODELS

In the world of ever-changing demand by the customer, the pressure is on everyone
to be able to forecast. Econometric models fill this need. Econometric models, also
called causal models, use regression to forecast a time series variable by means of
other explanatory time series variables. For example, a company might use a causal
model to regress future sales on its advertising level, the population income level,
the interest rate, and possibly other variables. Because we have already discussed
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regression models in some depth, we will not devote much time to econometric
models in this chapter; the mechanics are largely the same as in any regression
analysis. However, based on the empirical evidence presented in Armstrong (1985,
1986), here are some findings:

• It is not necessary to include a lot of explanatory variables in the analysis.
It is better to choose a small number of variables that, based on prior
evidence, are believed to affect the response variable.

• It is important to select the proper conceptual explanatory variables. For
example, in forecasting sales, appropriate conceptual variables might be
market size, ability to buy, consumer needs, and price. However, the
operational measures of these conceptual variables are relatively unim-
portant for forecast accuracy. For example, different measures of buying
power might lead to comparable sales forecasts.

• Stepwise regression procedures allow the model builder to search through
many possible explanatory variables to find the best model. This sounds
good, and it is attractive given the access to powerful statistical software
packages. However, it can lead to poor forecasts because it substitutes
computer technology for sound judgment and prior theory. The moral is
that we should not throw everything but the kitchen sink into the regression
package and hope for the best. Some judgment regarding the variables to
include may lead to better forecasts.

• High precision data on the explanatory variables are not essential. Arm-
strong (1986) quotes studies where models requiring forecasts of the
explanatory variables did better than those where no such forecasts were
required. This is contrary to intuition. We might expect that the forecasting
error in the explanatory variables would lead to extra forecasting error in
the response variable. This is apparently not always the case. However,
the same does not hold for the response variable. It is important to have
high-quality data on this variable.

• It might be a good idea to break the causal relationship into a causal chain
of relationships and then estimate each part of the chain by a separate
regression equation. For example, in a study of product sales, the first
stage of the chain might regress price on such variables as wage rates,
taxes, and warranty costs. These price predictions could then be entered
into a model that predicts sales per capita as a function of personal
consumption expenditures per capita and product price. The third stage
could then predict the market size as a function of total population,
literacy, age, and employment. Finally, the fourth stage could regress total
product sales on the predicted values of product sales per capita and
market size.

• The divide-and-conquer strategy outlined in the previous point is simpler
than the complex simultaneous equation approach taught in many
upper-level econometrics courses. The idea behind simultaneous equa-
tions is that there are several response (or endogenous) variables that cause
changes in one another (Y1 causes a change in Y2, which in turn causes
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a change in Y1, and so on). Therefore, the regression model consists of
several equations, each of which has its own response variable. According
to Armstrong, despite great expenditures of time and money by the best
and brightest econometricians, simultaneous equations have not been
found to be of value in forecasting.

• The functional form of the relationship may not be terribly important. In
particular, complex nonlinear relationships do not appear to improve fore-
cast accuracy. However, in addition to the basic linear additive model, the
constant-elasticity multiplicative model

which can be transformed to a linear additive model by taking logarithms,
has strong theoretical support and has done well in applications.

• A great deal of research has gone into the autocorrelation structure of
econometric models. This is difficult analysis for most practitioners. For-
tunately, empirical studies show that it produces only marginal gains in
forecast accuracy.

• Econometric models appear to be most useful, relative to other forecasting
methods, when large changes in the explanatory variables are expected.
But in this case it is important to be able to forecast the direction of change
in the explanatory variables accurately.

Armstrong summarizes his empirical findings on econometric models succinctly:
“There are two important rules in the use of econometric methods: (1) keep it simple,
and (2) don’t make mistakes. If you obey rule 1, rule 2 becomes easier to follow.”
He acknowledges that rule 1 runs contrary to the thinking of many academic
researchers, even practitioners. But the empirical evidence simply does not support
the claim that complexity and forecast accuracy are inevitably related.

Now that we have an understanding of some of the limitations, let us explore
the econometric models a little deeper. Most of the models in this chapter use only
previous values of a time series variable Y to forecast future values of Y. A natural
extension is to use one or more other time series variables, via a regression equation,
to forecast Y. For example, if a company wants to forecast its monthly sales, it might
use its own past advertising levels and/or macroeconomic variables such as Gross
Domestic Product (GDP) and the prime interest rate to forecast future sales. We will
not study this approach in any detail because it can become quite complex mathe-
matically. However, there are a few points worth making.

Let X be a potential explanatory variable, such as the company’s advertising
level or GDP. Then either X or any of its lags could be used as explanatory variables
in a regression equation for Y. If X itself is included, it is called a coincident indicator
of Yt. If only its lags are included, it is called a leading indicator of Yt. As an example,
suppose that Yt represents a company’s sales during month t and X represents its
advertising level during month t. It is certainly plausible that current sales are
determined more by past months’ advertising levels than by the current month’s

Y X X Xb b
k
bk= ºa 1 2

1 2
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level. In this case, advertising is a leading indicator of sales, and the advertising
terms that should be included in the equation are Xt–1, Xt–2, and so on. The number
of lags that should be included is difficult to specify ahead of time. In practice, we
might begin by including a fairly large number of lags and then discard those with
insignificant coefficients in the regression output.

If we decide to use a coincident indicator, the problem is a practical one —
namely, that the value of X is probably not known at the time we are forecasting
Yt. Hence, it must also be forecasted. For example, if we believe that GDP is a
coincident indicator of a company’s sales, then we must first forecast GDP before
we can use it to forecast sales. This may be a more difficult problem than forecasting
sales itself. So from a practical point of view, we would like the variables on the
right-hand side of the regression equation — the explanatory variables — to be
known at the time the forecast is being made.

Once we have decided which variables to use as explanatory variables, the
analysis itself is carried out exactly as with any other regression analysis, and the
diagnostic tools are largely the same as with regression of cross-sectional data.
However, there are several things to be aware of. 

First, because the explanatory variables are often lagged variables, either of the
dependent variables or of some other explanatory variables, we will have to create
these lagged variables to use them in the regression equation.

Second, autocorrelation may present problems. Recall that in the least squares
estimation procedure, the residuals automatically average to zero. However, auto-
correlation of the residuals means that errors in one period are not independent of
errors in previous periods. The most common type of residual autocorrelation,
positive autocorrelation, implies that if the forecast is on the high side in one period,
it is likely to be on the high side the next period. Or if the forecast is on the low
side in one period, it is likely to be on the low side the next period. We can detect
residual autocorrelation by capturing the residuals and then looking at their auto-
correlations to see if any are statistically significant.

Many regression outputs also include the Durbin-Watson statistic to check for
lag 1 autocorrelation. The value of this statistic is always between zero and four.
If the Durbin-Watson statistic is near two, then autocorrelation is not a problem.
However, if it is significantly less than two (as measured by special tables), then
there is significant positive autocorrelation, whereas if it is significantly greater
than two, there is significant negative autocorrelation. Actually, the Durbin-Watson
statistic tests only for autocorrelation of lag 1, not for any higher lags. Therefore,
a graph of the autocorrelations (a correlogram) provides more complete information
than is contained in the Durbin-Watson statistic alone.

If a regression model does contain significant residual autocorrelation, this is
generally a sign that the model is not as good as it could be. Perhaps we have not
included the best set of explanatory variables, or perhaps we have not used the best
form of the response variable. This is a very complex topic, and we cannot do it
justice here. Suffice it to say that a primary objective of any forecasting model,
including econometric models, is to end up with uncorrelated residuals. This is easy
to say, but it is often difficult to obtain, and we admit that the work necessary to
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eliminate residual autocorrelation is not always worth the extra effort in terms of
more accurate forecasts.

An important final point is that two time series, Yt and Xt, may be highly
correlated and hence produce a promising regression output, even though they are
not really related at all. Suppose, for example, that both series are dominated by
upward trends through time but are in no way related. Because they are both trending
upward, it is very possible that they will have a large positive correlation, which
means that the regression of Yt on Xt has a large R2 value. This is called a spurious
correlation because it suggests a relationship that does not really exist. In such a
case it is sometimes better to use an extrapolation model to model Yt and then regress
the residuals of Yt on Xt. Intuitively, we first see how much of the behavior of the
Yt series can be explained by its own past values. Then we regress whatever remains
on the Xt series.

We will not pursue this strategy here, but it does suggest how complex a rigorous
econometric analysis can be. It is not just a matter of loading Ys and Xs into a
computer package and running the “obvious” regression. The output could look
good, but it could also be very misleading.

A FINAL COMMENT ON COMBINING FORECASTS

There is one other general forecasting method that is worth mentioning. In fact, it
has attracted a lot of attention in recent years, and many researchers believe that it
has great potential for increasing forecast accuracy. The method is simple — combine
two or more forecasts to obtain the final forecast. The reasoning behind this method
is also simple — the forecast errors from different forecasting methods may cancel
one another. The forecasts that are combined can be of the same general type —
extrapolation forecasts, for example — or they can be of different types, such as
judgmental and extrapolation. The number of forecasts to combine and the weights
to use in combining them have been the subjects of several research studies.

Although the findings are not entirely consistent, it appears that the marginal
benefit from each individual forecast after the first two or three is minor. Also, there
is not much evidence to suggest that the simplest weighting scheme — weight each
forecast equally, that is, average them — is any less accurate than more complex
weighting schemes.
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Functions of Real
and Random Variables

 

This chapter summarizes the basic concepts of real and random variables as encoun-
tered in the practical usage of statistics and probability. The attempt here is not to
explain the concepts fully but rather to sensitize the reader to their significance and
their application.

 

DETERMINISTIC MATHEMATICS
(REPLICATED BY MEAN)

 

Engineers use deterministic mathematical formulas involving functions of variables
(sums, products, powers, etc.) to describe such things as:

Geometry of objects: e.g., area, volume, arc lengths
Physical laws: e.g., F = Ma, V = iR, etc.
Processes

 

STATISTICAL MATHEMATICS

 

Generally the terms in these formulas are random variables because of uncertainties
of their measurement or manufacture. We need to describe the statistical character-
istics of these formulas by determining relationships between their various means
and variances.
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XAMPLE

 

Problem: Number of people in car pool
Experiment: Observe 20 consecutive cars in “HOV” lane
Assumption: Population is infinite
Find: Central tendencies and dispersions

Mean of observed data: (use sub i for individual sample)

 

Observation
Number of
People X(i)

 

i = 1
2
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i = 20
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You should not expect the mean to equal an observable value, e.g., 3.

 

RANK AND STACK OBSERVED DATA

 

1. Arrange data in ascending values.
Assumes: order of observation not important (unlike reliability where

order or time to failure is important)

X = {2,2,2,2,2,2,2,2, 3,3,3,3,3, 4,4,4,4, 5,5, 6}

2. Group ascending data in like intervals or cells

X = {[2,2,2,2,2,2,2,2], [3,3,3,3,3], [4,4,4,4], [5,5], [6]}

3. Assign a random variable to each cell X

 

k

 

 (use sub k)

X = {[X
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], [X

 

2

 

], [X
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4. Count “frequency” of observations in each cell, f

 

k

 

Mode: 2 people
Median: 3 people
Mid-Range: 4 people
Mean:  = 3.15 people

 

OTHER MEASURES OF CENTRAL TENDENCIES

 

1. Mean: Average value f
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 calculated from all observations (center of
gravity).

Example – Found mean X to be 3.15 people
2. Mode: Most frequently observed value of X
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Example – Maximum f
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 = 2 people
3. Median: Value of ordered X
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 that divides data in half.
Example – Half (n/2 = 10) data points lie below, half above 3
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4. Mid-Range: Value halfway between minimum and maximum observed
values.
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PROBABILITY DENSITY FUNCTION (PDF)

 

1. Problem: The frequency or number of observations within a cell, f

 

k

 

,
depends upon the total sample size, n.

In the example, n = 20; however, if n is increased to 100, then values
of frequency, f

 

k

 

, may change.
2. Solution: Normalize frequency by the total sample size n.

Defines the probability density function (pdf) of the grouped range
values X

 

k

 

:

3. Assumes: Each observed sample is independent of others and represents
equally likely events.

Example Problem: n = 20
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MEAN OF FREQUENCY GROUPED DATA

 

Start with definition of mean. (Sum index 
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 = 5.
2. Divide the cell sum by the total of observations, n = 20.

 

MEAN OF PROBABILITY DENSITY FUNCTION

 

Assumes: All observed data are independent and equally likely.
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where the discrete pdf for each cell is defined as

Check: (Determine sample mean using pdf)

 

FORMULAS FOR MEAN OR AVERAGE

 

1. Mean of all observed data (running average)

where X(i) is the value of the i-th individual observation 
n is the total number of observations
i is the sum index over all n-observed data values.
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2. Mean of frequency grouped data (ranked and stacked)

where X
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 is the nominal value of the k-th cell
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 is the frequency of observations occurring in the k-th cell
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CUMULATIVE FREQUENCY FUNCTION
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CUMULATIVE DISTRIBUTION FUNCTION (CDF) 

1. The number of observed data values below or equal to a stated value of Xk. 
2. The stated value of Xk is often called the threshold: T(Xk).
3. The probability of data values less than or equal to this threshold is the

sum or “cumulation” of probabilities:

where nT is the cell number nc set by the threshold T(XnT).

Example of Car Pool Observations
Cell (Xk) Frequency Threshold Cumulation, Fk

X1 = 2
X2 = 3
X3 = 4
X4 = 5
X5 = 6

f1 = 8
f2 = 5
f3 = 4
f4 = 2
f5 = 1

T(X1)
T(X2)
T(X3)
T(X4)
T(X5)

8
8 + 5 = 13
8 + 5 + 4 = 17
8 + 5 + 4 + 2 = 19
8 + 5 + 4 + 2 + 1 = 20

Example of Car Pool Observations
Cell (Xk) Frequency Threshold Cumulation, F(Xk)

X1 = 2
X2 = 3
X3 = 4
X4 = 5
X5 = 6

f1 = 0.40
f2 = 0.25
f3 = 0.20
f4 = 0.10
f5 = 0.05

T(X1)
T(X2)
T(X3)
T(X4)
T(X5)

0.40
0.40 + 0.25 = 0.65
0.40 + 0.25 + 0.20 = 0.85
0.40 + 0.25 + 0.20 + 0.10 = 0.95
0.40 + 0.25 + 0.20 + 0.10 + 0.05 = 1.0

F
re

q
u

e
n

cy
, 

f k

Frequency Histogram
(Area)

1        2      3       4      5       6       7

0
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F(Xk)

Xk

1          2          3          4          5          6         7
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PROBABILITY OF EXCEEDING THRESHOLD

Recall

Then break total sum into two parts:

1. “less than or equal” plus “exceeds” equal “total”

2. Probability of exceeding threshold:

Probability Histogram
(Area)

0.5

0.4

0.3

0.2

0.1

0

20

15

10

5

0

1       2        3       4       5        6       7 1        2        3        4        5        6        7
Xk

FnT

f Xk

k

nc

( ) .=
=

Â 1 00
1

f X f Xk

k

n

k

k n

nT

T

c

( ) ( )+ ∫
= = +

Â Â
1 1

1

f X f Xk k

k

n

k n

n T

T

c

( ) ( )∫ -
== +

ÂÂ 1
11

n T n c
k

1         2
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CONTINUOUS PROBABILITY

DEVIATIONS OF DATA ABOUT MEAN

1. Deviation of the sample X(i) about the mean

di = (X(i) – ) can be positive or negative

2. Square of deviation of the sample X(i) about the mean

di
2 = (X(i) – )2 is always positive

MEASURES OF DISPERSION

SAMPLE VARIANCE (UNBIASED  fifi E(S2) = ssss2)

Note: the latter form is preferred for computations since computations can be done
“on-the-run” as data is acquired.

f X dX f X dX
A

A

( ) ( )

•

-•
Ú Ú= -1

f(x)

x

A

x

A

f(x)

−� −� ��

X

X

S
n

X i x

n
X i

n
x

i

n

i

n

2 2

1

2 2

1

1
1

1
1

1
1

=
-

-

=
-

-
-

=

=

Â

Â

( )
( ( ) )

( )
( )

( )
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STANDARD DEVIATION (UNBIASED)

Recall

(a2 ± b2)1/2 π a ± b

PROBABILITY DENSITY AND EXPECTED VALUES

1. Probability density function f(Xk)

Where f(Xk) =  is the probability of the r.v.Xk

2. Expected value of sample mean (first moment about origin):

Note: Summation of number of cells, k.
3. Sample variance (second moment about mean):

Special note: Statistics is concerned mainly with the mean and variance.
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Set Theory

 

This chapter introduces the concepts of set theory, some general probability concepts,
and some examples to facilitate the understanding of these concepts.

 

DEFINITIONS

 

1. Universal Set 

 

U

 

Collection or aggregate of all possible elements
Elements are outcomes or samples

2. Null Set ffff

 

Empty set with no elements

 

E

 

XAMPLE

 

 

 

OF

 

 U

 

NIVERSAL

 

 S

 

ET

 

Toss a single die, set of possible dots facing upward:

 

U

 

 = {1, 2, 3, 4, 5, 6}

 

Probability P

 

(

 

U

 

) 

 

∫

 

 1

 

Probability P

 

(

 

f

 

) 

 

∫

 

 0

14

Null Set φ

Universal Set U
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SUBSETS OF ELEMENTS OF UNIVERSAL SET

 

Subset A “contained in” or “element of” Universal Set U

A 

 

Ã

 

 U

Probability:

0 

 

£

 

 P(A) 

 

£

 

 1

 

E

 

XAMPLE

 

 

 

OF

 

 S

 

UBSET

 

 A 

 

OF

 

 

 

A

 

 U

 

NIVERSAL

 

 S

 

ET

 

 U

 

Toss a single die, the set of possible dots facing upward:

 

U

 

 = {1, 2, 3, 4, 5, 6}

Subset A is all 

 

even valued

 

 outcomes.

A = {2, 4, 6} 

 

Ã

 

 U = {1, 2, 3, 4, 5, 6}

Universal Set U

1

2

3

4

6

5

Null Set φ

Universal Set U

A
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“OR” SET OF OPERATION: UNION OF TWO SUBSETS

 

A 

 

»

 

 B = C
Set of all elements belonging

together:
A 

 

or

 

 B 

 

or

 

 both
Sometimes written as “Sum”

A + B = C

(Related to failure probability of

 

parallel

 

 systems)

 

“AND” SET OF OPERATION: INTERSECTION
OF TWO SUBSETS

 

A 

 

«

 

 B
Set of those elements which belong

to both A 

 

and

 

 B
Sometimes written as “Product”
A, B or A · B or AB

(Related to failure probability of

 

series

 

 systems)

Universal Set U

1

3

2

4

6

5

Subset A

Universal Set U

A

A   +   B   =   C

B

Null set f

Universal Set U

A

A,B

B

Null set f
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COMPLEMENTARY SET, A*
(OTHER NOTATION: A, A

 

'

 

)

 

The set of all other outcomes excluding those in subset A

 

DE MORGAN’S LAWS OF COMPLEMENTS

 

(A 

 

«

 

 B)* = A* 

 

»

 

 B*

(A 

 

»

 

 B)* = A* 

 

«

 

 B*

Then:

1. A = (A 

 

«

 

 B) 

 

»

 

 (A 

 

«

 

 B*)
2. A 

 

«

 

 (B 

 

»

 

 C) = (A 

 

«

 

 B) 

 

»

 

 (A 

 

«

 

 C)

Union A 

 

»

 

 A* = 

 

U

 

Universal set
Intersection A 

 

«

 

 A* = 0 Null set
Probability P(A) = 1 – P(A*)

Null Set φ

Universal Set U

A
A*
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“DISJOINT” SETS (MUTUALLY EXCLUSIVE EVENTS)

 

1. No intersection of set A and
set B

A 

 

«

 

 B = 

 

f

 

No common elements in
A and B

2. “Difference” set
Intersection of set A and
the complement of set B

A – B = A 

 

«

 

 B*

Subsets of those ele-
ments of A that do not
belong to B.

 

SAMPLE SPACE: S

 

1. Equivalent to universal space U
• Related to a random experiment

• Uncertainty of results or outcomes
• Consists of all possible outcomes or samples
• Each output is a simple or elementary event, S

 

i

 

• Discrete, e.g., selecting a card or coin tosses
• Continuous, e.g., diameter or weight of rods
• Finite or infinite

Null Set φ

Universal Set U

A

B

A - B

A

B

Null Set φ

Universal Set U

 

SL3127_frame_MASTER.book  Page 199  Monday, July 1, 2002  9:38 AM



 

200

 

Six Sigma and Beyond: Statistics and Probability, Volume III

 

2. Events of sample space: A
• Simple or elementary event is one (individual) outcome of sample

space, S

 

i

 

.

• An event A is a subset or grouping of simple events; e.g., event A of
n simple events: A = {S

 

1

 

, …, S

 

n

 

}
• Elements of event A are samples with defined characteristics; e.g., the

odd numbers tossed on dice.

If the outcome of an experiment S

 

i

 

 is an element of A, then “the event A has
occurred.”

 

E

 

XAMPLES

 

 

 

OF

 

 S

 

ETS

 

Given: Random experiment in a twice-tossed coin.

1. Find the sample space S of the four possible outcomes:
Simple events: S

 

1

 

 = TT, S

 

2

 

 = HT, S

 

3

 

 = HH, S

 

4

 

 = TH
Sample space: S = (S

 

1

 

, S

 

2

 

, S

 

3

 

, S

 

4

 

)

Event A

Sample Space S

Individual
Outcome Si

Sample Space and Simple Events

Event A

Sample Space S

Individual
Outcome Si
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2. Find the subset or event A defined as when: At least one head occurs.

Event A = (HT, HH, TH) = (S

 

2

 

, S

 

3

 

, S

 

4

 

)

3. Find the subset or event B defined as when: At least one tail occurs.

Event B = (TT, HT, TH) = (S

 

1

 

, S

 

2

 

, S

 

4

 

)

4. Find the subset or event C defined as when: At least one head (event A)
AND one tail (event B) occur.

2nd toss

1st toss

H

H

T

T

S4

S1 S2

S3

2nd toss

1st toss

H

H

T

T

S4

S1 S2

S3

Event A

2nd toss

1st toss

H

H

T

T

S4

S1 S2

S3

Event B
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Event C = (HT, TH) = (S

 

2

 

, S

 

4

 

)

“AND” in set theory is an “intersection,” meaning “both A and B.”

C 

 

∫

 

 A 

 

«

 

 B

 

 ∫

 

 (S

 

2

 

, S

 

4

 

)

5. Find the subset or event D defined as when: The first toss is a head.

Event D = (HT, HH) = (S

 

2

 

, S

 

3

 

)

6. Find the subset or event E defined as when: At least one head (event A)
OR at least one tail (event B) occurs.

Event E = (TT, HT, HH, TH) = (S

 

1

 

, S

 

2

 

, S

 

3

 

, S

 

4

 

)

“OR” in set theory is “union,” meaning “either A 

 

or

 

 B 

 

or

 

 both.”

E 

 

∫

 

 A 

 

»

 

 B = (S1, S2, S3, S4) = S

2nd toss

1st toss

H

H

T

T

S4

S1 S2

S3

Event C

2nd toss

1st toss

H

H

T

T

S4

S1 S2

S3

Event D
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7. Find the event F that CANNOT occur assuming the event A does occur.
Event A is defined as when at least one head occurs.

Event A = (HT, HH, TH) = (S2, S3, S4)

Event F is the event “not A.” 

Event F = (TT) = (S1)

Event A and event F are “mutually exclusive” or “disjoint” in set theory.

A « F = f = A « A'

Hence the event 

F = A' = (S1) = (TT)

PROBABILITY CONCEPTS

• Probability quantifies the chances an event will occur.
• Bound probability of an event A.

0 £ P(A) £ 1

• Probability of an event A that is certain to occur.

P(A) = 1 [100%]

• Probability of an event A that cannot occur.

P(A) = 0 [0%]

1. Estimates of probability
a. Classical or a-priori approach —This approach is based on “equally

likely” events.
• Assumes all simple events or individual outcomes are “equally likely.”
• Sample space S: A random experiment with a total of n possible

outcomes.
• Defined event A: Has r of these possible outcomes [r £ n].

• Probability of event A: P A
r
n

( ) =
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EXAMPLE 1

Random experiment: Single toss of
one coin.

Find: Probability of a head.

Sample space: S = {S1, S2} = {T, H}.

TWO mutually exclusive events:
n = 2.

Event A: Tossing ONE head S2; r = 1.

Assume each outcome is “equally likely.”

Probability of Event A = S2: P(A) = P(S2) = r/n = 1/2

EXAMPLE 2

Random experiment: Twice-tossed coin.

Find: Probability of two heads.

Sample space: S = {S1, S2, S3, S4} = {TT, TH, HT, HH}

FOUR  mutually exclusive events: n = 4.

S1 = TT, S2 = TH, S3 = HT, S4 = HH

Event A: Tossing TWO heads, which is simple event S4; r = 1.

Assume the four possible outcomes are “equally likely.”

Probability of Event A = S4: P(A) = P(S4) = r/n = 1/4

EXAMPLE 3

Random Experiment: Single roll of fair die.

Find: Probability of rolling a 3.

Sample space: S = {S1, S2, S3, S4, S5, S6} = {1, 2, 3, 4, 5, 6}

SIX  mutually exclusive simple events: n = 6.

Event A: Rolling the ONE number 3 on the die (i.e., S3); r = 1.

Sample Space

•
S2

•

Event A 

Coin Toss
HT

Sample Space

S1

• •

Coin Toss
HT
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Assume each of the six possible outcomes is “equally likely.”

Probability of Event A = S3: P(A) = P(S3) = r/n = 1/6

b. Frequency or a-posteriori approach — This approach is based on a
“very large” number of independent samples.
• Assumes after n repetitions of a given random experiments, a simple

event Si is observed to occur in ri of these.
• Assumes n is “very large.”
• Vague about how “large” n must be.

• Empirical probability: 

EXAMPLE 4

Random Experiment: Tossing a single coin.

Sample space: S = {S1, S2} = {T, H}

TWO mutually exclusive events: n = 2

Event A: The simple event S2 (head) will occur.

Observations: After n = 1000 tosses we find we have accumulated 483 heads and
517 tails.

Empirical probability of the event “a head:” 

Special note: This is not the same as the 0.5 of the classical approach (Example 1).

c. Axiomatic approach — This approach is based on set theory.
Rule 1: Probability of an event A is bounded.

0 £ P(A) £ 1

Certainty or the sure occurrence of event A
Using Sets: Event A = Sample Space S

P(A) = P(S) = 1

Impossibility or absence of the event A
Using Sets: Event A = Null Space f

P A P S
r

ni
i( ) ( )= ª

P A P S( ) ( ) .= ª =
2

483

1000
0 483
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P(A) = P(f) = 0

Rule 2: Total or cumulative probability
P(A » B) = P(A) + P(B) – P(A « B)
“OR”
P(A + B) = P(A) + P(B) – P(A · B)
P(A + B) = probability of either events A or B or both
P(A) = probability of event A alone
P(B) = probability of event B alone
P(A « B) = probability of both events A and B
“AND” implies intersection of sets: (A « B) ∫ (A · B), in other

words, it removes one count of common simple events.

Useful alternate form: P(A + B) = 1 – P(A* B*)
Similarly, with THREE EVENTS (parallel components of “OR” events)

P(A » B » C) = P(A) + P(B) + P(C) – P(A « B) –
P(A « C) – P(B « C) + P(A « B « C)

Event A

Universal Set U

Null Set f

A, B

A

Universal Set U

Null Set φ

B
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Rule 2A: Total probability of MUTUALLY EXCLUSIVE EVENTS (not to be
confused with independent events). In this case, the occurrence of
one event precludes the occurrence of another.
Sets: Events A and B are mutually exclusive if they have no com-

mon simple event.
“AND” intersection set is zero: A « B = 0
Hence, P(A + B) = Probability of either events A or B or both be-

comes the sum of the individual probabilities:

P(A + B) = P(A » B)
= P(A) + P(B) – P(A « B)
= P(A) + P(B)

Note: All individual simple events, Si, are mutually exclusive.

EXAMPLE 5

Random Experiment: A single toss of a fair die.

Sample space: Six “equally likely” simple events

S1 = 1, S2 = 2, S3 = 3, S4 = 4, S5 = 5, S6 = 6

Event A: Defined as either a 2 or 5 will occur.

A = {S2, S5}

Event B: Defined as any even number will occur.

B = {S2, S4, S6}

A

Universal Set U

Null Set f

B

Si
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Probability of individual event:

P(Si) = 1/6; I = 1, 2, … 6

Probability of Event A:

P(A) = P(S2 + S5) = P(S2) + P(S5)

Probability of Event B:

P(B) = P(S2 + S4 + S6) = P(S2) + P(S4) + P(S6)

EXAMPLE 5A

Random Experiment: A single toss of a fair die.

Find: Total probability that the events A or B or both occur.

“OR” total probability

P(A + B) = P(A) + P(B) – P(A, B)

where P(A) = 1/3; P(B) = 1/2

P(A, B) = probability of both events A and B = P(S2) = 1/6

P(A + B) = 1/3 + 1/2 – 1/6 = 4/6 = 2/3

1

6

1

6

1

3
+ =

1

6

1

6

1

6

1

2
+ + =

Universal Set U

S2

S4 S6

S1 S3

S5

Null Set f
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Note: Total probability must be greater or equal than that of A or B alone.

Rule 3: Joint and Conditional Probability
Joint probability: Probability that an outcome will satisfy both

events A and B simultaneously.

P(A ∑ B) = P(A « B) = P(A)P(B | A)
= P(B)P(A | B)

Conditional Probability: Probability of A given B
P(A | B) = Probability of A given that B has occurred

Rule 3A: Joint probability of mutually exclusive events. Mutually ex-
clusive is not the same as independent.
Joint probability of two mutually exclusive events A and B:

P(A · B) ∫ P(A « B) = 0

Conditional probability of two mutually exclusive events is unde-
fined since by definition the occurrence of event B excludes the
occurrence of event A (see Bayes’ Rule).

For THREE EVENTS (multiplication)

P(A · B · C) = P(A « B « C) = P(A)P(B | A)P(C | A « B)
= P(A)P(B)P(C) if independent

Rule 4: Independent events. Events such that the occurrence of one has
no effect on the occurrence of another.

Null Set φ

• •

• ••

•

Universal Set U

S1 S3

S4 S6

•
S5

S2

•

P A B
P A B

P B
P A B

P B
( | )

( )
( )

( )
( )

= ◊ ∫ «
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Conditional probability of independent events:

P(A | B) = P(A)

Joint probability of independent events:

P(A · B) = P(A « B) = P(A)P(B | A)
= P(A)P(B)

This actually turns out to be the definition of “independence” of
events.

The reader should note that since both P(A) and P(B) are less than
unity, their product will be smaller than either.

(e.g., 1/4 ¥ 1/3 = 1/12)

Therefore, the total probability of independent events may be
shown as:

P(A » B) ∫ P(A) + P(B) – P(A « B)
= P(A) + P(B) – P(A)P(B | A)
= P(A) + P(B) – P(A)P(B)

EXAMPLE 5B

Random Experiment: A single toss of a fair die

Find: Joint probability that events A and B occur

P(A · B) = P(A)P(B | A)

A, B

A

Universal Set U

Null Set f

B
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Independent Events: Events A and B are independent since each consists of a set of
the independent sample space S.

Mutually Exclusive Events: Events A and B are not mutually exclusive since they have
one common simple event S2.

P(A · B) = P(A)P(B | A) = P(A)P(B)
= 1/3 ¥ 1/2 = 1/6

EXAMPLE 6

Random Experiment: A sin-
gle toss of a fair die and a
coin.

Sample  Space :  Twe lve
“equally l ikely”  s imple
events.

A

Universal Set U

Null Set f

B

S1

S4 S5 S6

S3
S2

Coin Toss
Branches

Die Toss
Branches

1        T1 = S1

2        T2 = S2

3        T3 = S3

4        T4 = S4

5        T5 = S5

6        T6 = S6

1        T1 = S7

2        T2 = S8

3        T3 = S9

4        T4 = S10

5        T5 = S11

6        T6 = S12

T

H
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Sample Space S: Twelve “equally likely” simple events

P(Si) = 1/12; i = 1, 2, …, 12

Event A: Coin is a head and die has an even number

A = {S8, S10, S12}

P(A) = P(S8) + P(S10) + P(S12) = 1/12 + 1/12 + 1/12 = 1/4

Event B: Any coin toss and die less than 5 (i.e., 1, 2, 3, 4)

B = {S1, S2, S3, S4, S7, S8, S9, S10}

P(B) = 8P(Si) = 8/12 = 2/3

EXAMPLE 6A

Random Experiment: A single toss of a fair die and a coin.

Find: Joint probability of independent events A and B.

Joint probability that A and B occur

P(A · B) = P(A)P(B | A)

Independent Events: Events A and B are assumed independent; the probability of event
B given that A has occurred is simply

P(B | A) = P(B)

Joint probability of the given independent events is

P(A · B) = P(A)P(B) = 1/4 · 2/3 = 2/12 = 1/6

Note: Since both events must occur, probability of “success” will be smaller than the
probability of either event separately.

Independent events imply

Hence, the occurrence of event A has no influence on the probability of event B
occurring.

P B A
P A B

P A

P A P B

P A
P B( | )

( )

( )

( ) ( )

( )
( )∫ ◊ = =
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Rule 5: Bayes’ Rule
If the events A1, A2, …, An are mutually exclusive whose sum

(union) form the complete sample space S

A1 + A2 + … + An = S

then one of the events Ai must occur.
If any other event B of the space S occurs, then the probability of the

event Am to cause the event B is given by Bayes’ Rule:

Bayes’ Rule is referred to as the “probability of causes,” or a “con-
ditional probability.”

2. Complementary events (See also Binomial Distribution)
If event A represents a “success,” then the complement of event A, denot-

ed A*, represents “failure.”

Probability of event A or a “suc-
cess:”

P(A) = p

Probability of not event A or a
“failure:”

P(A*) = 1 – P(A) = q

Total probability

Probability of event A or event B
or both a “success:”

P A B
P A P B A

P A P B A P A P B Am
m m

n n

( | )
( ) ( | )

( ) ( | ) ( ) ( | )
=

+ º +1 1

A*

Universal Set U

Null Set φ

A

A, B

A

Universal Set U

Null Set φ

B
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Probability of not A “AND” not B: (where not A = A*)

P(A* · B*) = 1 – P(A + B)

3. Series system of events
a. No redundancy (A chain is as strong as its weakest link.)

Product rule for individual independent probabilities (Series components):

Joint Probability:

P(A « B) = P(A · B)

P(A · B) = P(A)P(B | A)
= P(A)P(B), if independent

Note:
1. Independent is not the same as “mutually exclusive.”
2. Individual probabilities are always less than unit.
3. Product probability for the series is always smaller than lowest

individual series components.

P A B P A P B P A B

P A B

P A P B

( ) ( ) ( ) ( )

( * *)

( *) ( *),

+ ∫ + - ◊

= - ◊

= - ◊

1

1  if independent

Cause
(Input)

Effect
(Output)

Events - A Events - B

“AND”

A, B

A

Universal Set U

Null Set φ

B

SL3127_frame_MASTER.book  Page 214  Monday, July 1, 2002  9:38 AM



Set Theory 215

NUMERICAL EXAMPLE

Components A and B represent events both of which must be satisfied simultaneously
for system function. Past history indicates that the individual probability of these
components to function properly is:

P(A) = 0.90 and P(B) = 0.80

The probability that the system will function properly is then the probability of com-
ponent A “AND” the probability of component B.

Since A and B are assumed to be independent events, the probability of the series is

P(A · B) = P(A)P(B | A)
 = P(A)P(B)
 = 0.9 · 0.8
 = 0.72

In any series system,

The probability of the series system is less than those of either of the individual
components.

In the series configuration, if any of the components fail the entire system fails.

b. Series components

A system consists of a series of n components (no redundancy).
Successful operation of each component is independent (independent

implies components do not interact).
Reliability of individual components:

Ri = P(Ai) = pi

Unreliability of individual components:

Qi = P(A*i) = 1 – pi = qi

Cause
(Input)

Effect
(Output)

“AND” “AND”

Component
A1

Component
A2

Component
An
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System reliability is the joint probability of all components:

Note: Serial system reliability is product of individual reliability of the
components Ri. Series systems are inherently less reliable.

System unreliability:

EXAMPLE

A system consists of a series of three identical switches.

Assume 1: Each switch has the same probability not to fail of p.

Assume 2: Performance probability of each switch is independent.

System reliability: Probability of system not failing

System unreliability: Qs = 1 – Rs = 1 – p3

NUMERICAL EXAMPLE

Assume each switch has a reliability or probability of “successful” performance of 90%.

R P A A A

P A P A A P A A A A

P A P A P A

R

s n

n n

n

i

n

i

i

n

∫ ◊ º

= º º

= º

=

-

=

=

’

’

( )

( ) ( | ) ( | )

( ) ( ) ( ),

)

1 2

1 2 1 1 2 1

1 2

1

1

 if independent

= P(Ai

Q R R Qs s i i

i

n

i

n

= - = - = - -
==

’’1 1 1 1
11

( )

R P A A A

P A P A A P A A A

P A P A P A

s
∫

=

=

◊ ◊

( , , )

( ) ( | ) ( | )

( ) ( ) ( ),

1 2 3

1 2 1 3 1 2

1 2 3
 if no interaction

= p p p = p3
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P(Ai) = Ri = p = 0.90

System Reliability: Rs = 0.90 · 0.90 · 0.90 = 0.729

Unreliability of individual switch: Qi = 1 – Ri = 0.10

System unreliability:

Qs = 1 – Rs = 1 – p3 = 1 – (0.90)3 = 1 – 0.729 = 0.271

4. Parallel system of events — some form of redundancy
Total or cumulative rule for individual independent probabilities:

Total Probability:

P(A » B) = P(A + B)

Cause
(Input)

Effect
(Output)

Events - A

Events - B

“OR”

A, B

A

Universal Set U

B

Null Set f

P A B P A P B P A B

P A P B P A P B A

P A P B P A P B

( ) ( ) ( ) ( )

( ) ( ) ( ) ( | )

( ) ( ) ( ) ( ),

+ ∫ + - ◊

= + -

= + - ◊  if independent
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Note:
1. Individual probabilities are always less than unity.
2. Because of redundancy, total probability for the parallel system can

be greater than the smallest component.

NUMERICAL EXAMPLE

Components A and B represent events both of which must be satisfied simultaneously
for a system function. Past history indicates that the individual probability of these
components to function properly is:

P(A) = 0.90 and P(B) = 0.80

The probability of the system to function properly is then the probability of component
A “OR” the probability of component B.

Since A and B are assumed to be independent events, the probability of the
parallel system is:

The reader should notice that the redundancy of the parallel system that allows
either-or components to function results in a system that remains functional
with higher probability than the probability of either of the individual
components acting alone. Therefore, redundancy increases reliability,
which means that a system of n components is connected in parallel.
Another way of looking at this is:

a. Successful operation of each component is independent. Again, inde-
pendent here implies components do not interact.

b. Each component has a reliability P(Ai) = pi; failure probability of each
component is P(A*i) = Qi = 1 – pi = qi

Pictorially this may be shown in Figure 14.1.

P A B P A P B P A B

P A P B P A P B

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

. . . .

. .

.

+ ∫ + - ◊

= + - ◊

= + - ◊

= -

=

0 90 0 80 0 90 0 80

1 70 0 72

0 98
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We can see then from Figure 14.1 that the System Reliability is the total
probability of all components. This also may be shown as:

System unreliability:

GENERAL EXAMPLE A

In the previous example, we had: P(A) = 0.90 and P(B) = 0.80. If this is a parallel
system then

Rp = 1 – P(A*)P(B*) = 1 – 0.10 · 0.20 = 1 – 0.02 = 0.98

FIGURE 14.1 Parallel components.

Parallel Components

Cause
(Input)

Effect
(Output)

Component
A1

Component
A2

Component
An

“OR”

“OR”

R P A A A

P A A P A

P A P A P A

P A

Q

p n

n

n

i

i

n

i

i

n

∫ + + º +

= - ◊ ◊º ◊

= - º

-

= -

=

=

’

’

( )

( * * ( * ))

( * ) ( * ) ( * ),

( * )

1 2

1 2

1 2

1

1

1

1

1

1

 if independent

=

Q Qp i

i

n

=
=

’
1
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GENERAL EXAMPLE B

A system consists of 3 identical switches in parallel.

Assume 1: Each switch has the same probability not to fail of p.

Assume 2: Performance probability of each switch is independent.

System Reliability: Probability of system not failing: (q = 1 – p)

System Unreliability: Qp = 1 – Rp = 1 – (1 – q3) = q3

NUMERICAL EXAMPLE

Assume each switch has a reliability or probability of “successful” performance of
90%, which corresponds to 10% “failure.”

Individual Switch Reliability: P(Ai) = Ri = p = 0.90

Individual Switch Unreliability: P(A*i) = Qi = q = 0.10

System Reliability: Rp = 1 – 0.1 · 0.1 · 0.1 = 1 – 0.001 = 0.999

System Unreliability: Qp = 1 – Rp = q3 = (0.1)3 = 0.001

EXAMPLE 1: SIMPLE COMBINATION OF SERIES-PARALLEL SYSTEM

Probability of success for individual components: P(A), etc.

Probability of failure for individual components: P(A*), etc.

R P A A A

P A A A

q q q q

p
∫ + +

= -

= - ◊ ◊ = -

( )

( * * * )

1 2 3

1 2 3

3

1

1 1

Cause
(Input) Effect

(Output)

Component
A

Component
B

Component
C

“AND”

“OR”

Series-Parallel Combination
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Probability of success in series branch (“AND”) if independent:

P(AB) = P(A)P(B) = 1 – P(A* + B*)

Reliability is success probability of series-parallel system shown:

If probability of all components equal: P(A) = P(B) = P(C) = p

Rsys = 1 – (1 – p2)(1 – p) = 1 – q3

EXAMPLE 2: SIMPLE COMBINATION OF PARALLEL-SERIES SYSTEM

Probability of success for individual components: P(A), etc.

Probability of failure for individual components: P(A*), etc.

Probability of success in parallel circuit (“OR”) if independent:

P(A + B) = P(A) + P(B) – P(A)P(B)

Reliability is success probability of parallel-series system shown:

R P AB C P AB P C P AB P C

P AB P C P C

P A B P C P C

P C P A B P C P C

P C P C P A B P C

P A

sys
∫ + = + -

= - +

= - + +

= - + +

= + - +

= - +

( ) ( ) ( ) ( ) ( )

( )[ ( )] ( )

{ ( * *)}[ ( *)] ( )

( *) ( * *) ( *) ( )

( *) ( ) ( * *) ( *)

( *

1

1

1 BB P C*) ( *)

Cause
(Input) Effect

(Output)

Component
A

Component
B

Component
C

“AND”
“OR”

Parallel-Series Combination

R P A B C P A B P C

P A B P C

P A P B P C

P A P B P C

sys
∫ + = +

= -

= -

= - - -

([ ] ) ( ) ( )

[ ( * *)] ( )

[ ( *) ( *)] ( )

[ ( )( ( ))] ( )

1

1

1 1 1
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If probability of all components equal: P(A) = P(B) = P(C) = p

Rsys = [1 – 1 – p2]p = [2p – p2]p = [1 – q2]p

EXAMPLE 3: SIMPLE COMBINATION OF PARALLEL-SERIES SYSTEM

Reliability is success probability of series-parallel system shown:

Rsys = P(AB + (C + D)) = P(AB) + P(C + D) – P(AB)P(C + D)

Joint and total probabilities can be expressed in term of individual probabilities.

Series branch has joint probability: P(AB) = P(A)P(B)

Parallel branches have total probability:

P(C + D) = P(C) + P(D) – P(C)P(D)

If probability of all components equal: P(A) = P(B) = P(C) = P(D) = p

Rsys = p2 + p + p – p2 – p2(p +p – p2) = 2p – 2q3 + p4

EXAMPLE 4: SIMPLE COMBINATION OF PARALLEL-SERIES SYSTEM

Series-Parallel Combination

Cause
(Input)

Effect
(Output)

Component
A

Component
B

Component
C

Component
D

“AND”

“OR”

“OR”

Series-Parallel Combination
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Reliability is success probability of series-parallel system shown:

Note: This form may be more convenient to use than that developed in Example 1
where we introduced the complement probabilities.

If all probability of all components equal: P(A) = P(B) = P(C) = p

Rsys = p[p · p + p – p · p · p] = p3 + p2 – p4

5.  Sequence tree diagram
A tree diagram is very useful in determining decisions where probabilities

are known and they are of two options. An example adapted from
O’Connor (1996) will illustrate the point. The reliability of missile A to
hit target is 90%; that of missile B is 85%.

A salvo of both missiles is launched. Determine the possibility of at least
one hit.

The tree diagram indicates that four mutually exclusive outcomes may oc-
cur:

Probability of at least one hit:

P(AB) + P(AB*) + P(A*B) = 0.765 + 0.135 + 0.085 = 0.985

R P D AB C

P D P AB C

P D P AB P C P AB P C

P D P A P B P C P A P B P C

sys
∫ ◊ +

= +

= + -

= + -

[ ( )]

( ) [( ) ]

( )[ ( ) ( ) ( ) ( )]

( )[ ( ) ( ) ( ) ( ) ( ) ( )]

Success
P(A) = 0.90

Success
P(B) = 0.85

Success
P(B) = 0.85Failure

P(A*) = 0.10

Failure
P(B*) = 0.15

P(B*) = 0.15
Failure

Note:
Sum of all
probabilities is
unity.

Total Success
P(AB) = P(A)P(B)
           = 0.90 × 0.85
           = 0.765

Total Failure
P(A*B*) = P(A*)P(B*)
           = 0.10 × 0.15
           = 0.015

Success → Failure
P(AB*) = P(A)P(B*)
            = 0.90 × 0.15
            = 0.135

Failure → Success
P(A*B) = P(A*)P(B)
            = 0.10 × 0.85
            = 0.085

SL3127_frame_MASTER.book  Page 223  Monday, July 1, 2002  9:38 AM



224 Six Sigma and Beyond: Statistics and Probability, Volume III

REFERENCE

O’Connor, P., Practical Reliability Engineering, John Wiley & Sons, New York, 1996.

SL3127_frame_MASTER.book  Page 224  Monday, July 1, 2002  9:38 AM



 

225

 

Permutations
and Combinations

 

This chapter discusses elementary probability calculations and the “counting rules”
that underlie the development of several distributions such as the binomial, hyper-
geometric, and Poisson. Perhaps one of the most essential concepts in statistical
theory as applied in the field of quality is the issue of combinations. This chapter
presents a cursory overview of this mathematical expansion and its use. If you are
interested in pursuing the subject in more detail, please consult some basic statistics
or probability books.

 

RULES

 

We begin by defining the counting rules:

 

Rule 1:

 

 If any one of K mutually exclusive and exhaustive events can occur
on each of N trials, then there are K

 

N

 

 different sequences that may result
from a set of trials.

 

Rule 2:

 

 If K

 

1

 

, …, K

 

N

 

 are the numbers of distinct events that can occur on
trials 1, …, N in a series, then the number of different sequences of N
events that can occur is (K

 

1

 

)(K

 

2

 

) … (K

 

N

 

).

 

Rule 3

 

: The number of different ways that N distinct things may be arranged
in order is N! = (1)(2)(3) … (N – 1)(N), where 0! = 1. An arrangement in
order is called permutation, so that the total number of permutations of N
objects is N! The symbol N! is called “N factorial.”

A more generic notation is:

n! 

 

∫

 

 (n) (n – 1) (n – 2)... (n – (n – 2)) (2) (1) = n(n – 1)!

where 1 ! = 1 and 0! 

 

∫

 

 1 but (–n)!  is undefined.

 

Stirling’s approximation to n!:

 

 For large values of n it is difficult to determine
the value of n! Therefore, we can use the approximation:

15

n n n en n!ª -2P
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Note

 

: Most computers, including hand-held calculators, have a factorial
key n! which reduces the need to apply Stirling’s approximation.

 

Rule 4:

 

 The number of ways of selecting and arranging r objects from among
N distinct objects is N!/(N – r)!

 

Rule 5:

 

 The total number of ways of selecting r distinct combinations of N

objects, irrespective of order, is 

 

PERMUTATIONS AND COMBINATIONS

S

 

AMPLING

 

1. Sampling

 

 without 

 

replacement
• Used to arrange distinct objects in some order.
• Permutations: each ordering of distinct objects is unique.
• Combinations: ordering of objects is irrelevant.
• Number of permutations is greater than number of combinations.
• Helps determine probability of “equally likely” outcomes.
• Appears in definition of discrete hypergeometric distribution.

 

E

 

XAMPLE

 

Consider a population of three letters: {a, b, c} = 3 = n

Experiment: Draw two letters: (x, y) = 2 = r

Sampling without replacement: n · (n – 1) · (n – 2) … (n – (r – 1))

Can form six “sample sets”: 6 = 3 · 2 = n · (n – 1)

(a, b) (a, c) (b, c) (b, a) (c, a) (c, b)

 

2. Sampling 

 

with

 

 replacement

 

Can form nine “sample sets”: 9 = 3

 

2

 

 = n

 

r

 

(a, a) (a, b) (a, c) (b, b) (b, c) (b, a) (c, c) (c, a) (c, b)

 

P

 

ERMUTATIONS

 

1. Each Ordering Is Unique

A permutation is a particular sequence of objects (or simple events) where the
order of selection forms subsets or arrangements that are considered unique
or distinctive.

N r N r! !( )- = Ê
ËÁ

ˆ
¯̃

N

r
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For example, the three letters (abc) are considered unique and distinct from
the other five possible arrangements of these letters:

(abc) 

 

π

 

 (acb) 

 

π

 

 (bac) 

 

π

 

 (bca) 

 

π

 

 (cab) 

 

π

 

 (cba)

Therefore, given n distinct objects arrange r of them in a set.
Assume:

a. Each sample is “equally likely.”
b. Each sample is taken “without replacement.”

Permutation of n objects taken r at a time:

Remember that by definition 0! 

 

∫

 

 1

 

E

 

XAMPLE

 

Single toss of three coins

Eight distinct outcomes: n = 2 

 

¥

 

 2 

 

¥

 

 2 = 8

Permutation of n objects taken r at a time:

P r n n n n r

n n n r n r n r
n r n r

n
n r

( ; ) ( )( )   ( ( ))

( )( )   ( ( )) ( )( ( )   )
( )( ( ))   

!
( )!

= - º - -

= - º - - ◊ - - + º
- - + º

=
-

1 1

1 1 1 1
1 1

P r n n n n r

n

n r

( ; ) ( )( )   ( ( ))

!

( )!

= - º - -

=
-

1 1
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Also written as 

Permutations of EIGHT objects taken ONE at a time:

 

2. Permutations Are Choosing “Without Replacement”

a. Permutations: P(r;n)

r = 1

 

�

 

 

 

Æ

 

 P(1;8) = 8

r = 2

 

��

 

 

 

Æ

 

 P(2;8) = 8 

 

¥

 

 7 = 56

r = 3

 

���

 

 

 

Æ

 

 P(3;8) = 8 

 

¥

 

 7 

 

¥

 

 6 = 336

b. Permutations of eight objects taken two at a time:

c. Permutations of eight objects taken three at a time:

3. Permutations of Different Types of Objects

If n objects are comprised of k unique types such that:

 

8 Objects 7 Remain 6 Remain 5 Remain

 

� � � �

� � � �

� � � �

� � � �

� � � �

� � �

� �

�

P n r P P P
n r n r r

n( , ),  ,  ,  
,

P

n

n r

( ; ) ( )( )   ( ( ))

!

( )!

!

( )!

!

!

1 8 8 8 1 8 1 1 8

8

8 1

8

7
8

= - º - - =

=
-

=
-

= =

P

n
n r

( ; ) ( )( )   ( ( )) ( )( )

!
( )!

!
( )!

!
!

2 8 8 8 1 8 2 1 8 7 56

8
8 2

8
6

8 7 56

= - º - - = =

=
-

=
-

= = ◊ =

P

n
n r

( ; ) ( )( )   ( ( )) ( )( )( )

!
( )!

!
( )!

!
!

3 8 8 8 1 8 3 1 8 7 6 336

8
8 3

8
5

336

= - º - - = =

=
-

=
-

= =
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n = n

 

1

 

 + n

 

2

 

 + … + n

 

k

 

Then the number of different permutations of n objects taken n at a time is:

 

E

 

XAMPLE

 

 1

 

Eight balls in an urn comprised of the following:

n

 

1

 

 = 5 red; n

 

2

 

 = 3 white; n

 

3

 

 = 0 black

 

E

 

XAMPLE

 

 2

 

Single toss of three coins

If we do not distinguish order of heads and tails in each of the eight total outcomes

 

Four Types of Objects Regardless of Order of H’s and T’s
Total n = 8

P(n

 

1

 

, n

 

2

 

, n

 

3

 

, n

 

4

 

;n)

 

P(1, 3, 3, 1;8)
n

 

1

 

 = 1

n

 

2

 

 = 3
 = 

n

 

3

 

 = 3

n

 

4

 

 = 1  = 1120 

n = n

 

1

 

 + n

 

2

 

 + n

 

3

 

 + n

 

4

P n n n n
n

n n nk
k

( , , ; )
!

! ! !1 2
1 2

º =
º

P( , , ; )
!

! ! ! ( )
5 3 0 8

8

5 3 0

8 7 6

3 2 1 1
56= =

◊ ◊
◊ ◊ ◊

=

�3

�2 �2 �2 8

1 3 3 1

!

! ! ! !
�1 �1 �1

�0

P n n n n
n

n n n

P

k

k

( , , ; )
!

! ! !

( , , , ; )
!

! ! ! !

1 2

1 2

1 3 3 1 8
8

1 3 3 1
1120

º =
º
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C

 

OMBINATIONS

 

 — O

 

RDERING

 

 I

 

S

 

 I

 

RRELEVANT

 

A combination is a particular sequence of objects (or simple events) selected to form
subsets or arrangements 

 

without regard to the order

 

 of objects in the arrangement.
For example, the three letters (abc) are considered indistinguishable from these five
other possible arrangements of these letters:

(abc) = (acb) = (bac) = (bca) = (cab) = (cba)

Therefore, given n distinct objects arrange r of them in a set.
Combination of n objects taken r at a time; (r 

 

£

 

 n):
Assume:
Each sample is “equally likely”

a. Each sample taken “without replacement”

 

Note

 

: The number of combinations is less than the number of permutations. The
reader should also note that the combination formula may be written in two different
ways as:

(1)

and (2) C(n,r), 

 

n

 

C

 

r

 

, C

 

n,r

 

, C

 

r
n

 

P

 

ERMUTATION

 

 

 

OR

 

 C

 

OMBINATION

 

?

 

E

 

XAMPLE

 

 1

 

How many ways can a group of eight people be chosen to form a committee of five
members?

Assume a full five-member committee is formed. Each person is unique and selected
“without replacement.” Also, no distinction is made in terms of the order of selection
of the “people.” Hence, abcde = bcdea implies a combination.

C r n
n

r
n n n r

r

n
r n r

P n r
r

( ; )
( )( )   ( ( ))

!

!
!( )!

( , )
!

∫ Ê
ËÁ

ˆ
¯̃

= - º - -

=
-

=

1 1

C r n
n

r
n n n r

r

n
r n r

P r n
r
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( )( )   ( ( ))

!

!
!( )!

( ; )
!

∫ Ê
ËÁ

ˆ
¯̃

= - º - -

=
-
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1 1

 

SL3127_frame_MASTER.book  Page 230  Monday, July 1, 2002  9:38 AM



 

Permutations and Combinations

 

231

 

Combination of 8 people (objects) taken 5 at a time:

 

E

 

XAMPLE

 

 2

 

How many ways can a group of eight people be seated at a head table having only
five chairs?

Assume all five chairs are filled. Each person is unique and selected “without
replacement.”

The order of seating is important and distinguishes the seating plan, e.g., the seating
order abcde 

 

π

 

 bcdea. This implies a permutation and not a combination.

So, permutation of 8 people (objects) taken 5 at a time:

P(5;8) = (8)(8 – 1) … (8 – (5 – 1))
= 8 · 7 · 6 · 5 · 4 = 6720

 

E

 

XAMPLE

 

 3

 

How many different ways can a group of five candidates be selected when (1) at least
one award total will be presented, AND (2) each candidate can receive at most only
one award?

Assume at least one award is made.

Assume one person cannot receive two awards. (i.e., sampling “without replacement”)
All awards are equal; order of selection not important. Therefore, the problem is of
combination not permutation in nature.

Solution:

One out of 5 could be selected: C(1;5) = 5
Two out of 5 could be selected: C(2;5) = 10
Three out of 5 could be selected: C(3;5) = 10
Four out of 5 could be selected: C(4;5) = 5
Five out of 5 could be selected: C(5;5) = 1

Total number of possible awards that could be presented:

C(1;5) + C(2;5) + C(3;5) + C(4;5) + C(5;5)
= 5 + 10 + 10 + 5 + 1 = 31

C( ; )
( )( )   ( ( ))

!
5 8

8 8 1 8 5 1

5

8 7 6 5 4

5 4 3 2 1

8 7

1
56

=
- º - -

=
◊ ◊ ◊ ◊
◊ ◊ ◊ ◊

=
◊

=
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B

 

INOMIAL

 

 E

 

XPANSION

 

As we already have mentioned, permutations, combinations and factorials are used
in the binomial distributions. Let us see how.

 

Combinations

 

Combinations are also called “binomial coefficients,” which arise in the expression
for a Binomial Expansion. To identify this expansion given n objects and arranging
r of them in a set, we use the following notation:

 

Properties of Binomial Coefficients

 

Since: n – (n – r) = r then a symmetry exists:

that is, if r + k = n

 

Note:

 

 

 

Binomial Expansion

 

Fundamentally, the binomial expansion is a power function and is based on the
successive powers of the given function of the form

C r n
n

r
n n n r

r

n
r n r

r n
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Examples of this expansion for n = 0 up to n = 5 are given below.

n = 0: (a + b)0 = 1

n = 1: (a + b)1 = a +b

n = 2: (a + b)2 = a2 + 2ab + b2

n = 3: (a + b)3 = a3 + 3a2b + 3ab2 + b3

n = 4: (a + b)4 = a4 + 4a3b + 6a2b2 + 4ab3 + b4

n = 5: (a + b)5 = a5 + 5a4b + 10a3b2 + 10a2b3 + 5ab4 + b5

We can also use the same rationale to use the expansion for other useful factors
and expansions, such as in the following examples:

As a quick way to figure out the expansion, one may use the Pascal’s Triangle
for the (a + b)n array of coefficients of successive powers of (a + b)n.

n

0 1

1 1 1

2 1 2 1

3 1 3 3 1

4 1 4 6 4 1

5 1 5 10 10 5 1

6 1 6 15 20 15 6 1

7

8

a b a b a b

a b a b a b

a b a b a ab b

a b a b a ab b

a b a ab b a ab b

2 2

2 2

3 3 2 2

3 3 2 2

4 4 2 2 2 22 2

- = + -

+ = + -

+ = + - +

- = - + +

+ = + + - +

( )( )

( )( )

( )( )

( )( )

( )( )
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The reader should try to fill the coefficients for n = 7 and 8. Some general
guidelines to generate the coefficients are:

1. A power of n has (n + 1) terms.
If n is odd the number of terms is even.
If n is even the number of terms is odd.

2. The first and last numbers in each row are always 1.
3. The second number and the next-to-last number are equal to n.
4. The numerical values of the remaining inner terms can be determined by

addition of the two numbers appearing directly above, e.g., for row n =
6, the third term is 15 which is the sum of the 10 and 5 appearing above
its position in row n = 5. The fourth is 20 which is the sum of 10 and 10
appearing above its position in row n = 5. The fifth is 15 using the same
rationale and so on.
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Discrete and Continuous 
Random Variables

 

A special terminology is useful for discussing probability distributions of numerical
scores. In this chapter we will discuss discrete and continuous random variables
with some associated distributions. Some of the material in this chapter is used with
permission from Stuart, A., Ford Motor Company.

 

INTRODUCTION

 

A random variable (RV) is a real valued number assigned to each individual sample,
S

 

i

 

, according to some function X(S

 

i

 

)

Individual sample, S

 

i

 

Discrete real-valued number, X

 

i

 

. 
An individual sample cannot be assigned two random values. 
Range of real-numbers is typically finite.

x = {X

 

i

 

} i = 1, 2, 3, …, M

or

x = {X

 

1, 

 

X

 

2, 

 

X

 

3

 

, …, X

 

M

 

}

Assume an ascending order of magnitude: X

 

i–1

 

 < X

 

i

 

 < X

 

i+1

 

. Pictorially, this may
be shown as:

16

Sample Space

Function Processor
X(Si)  = Xi

0 Random VariablesXi

Si
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SAMPLES ASSIGNED THE SAME RANDOM VARIABLE

 

1. Two or more individual samples may be assigned the same numerical
random value X

 

i

 

.
2. The total number of random variables M will be less than or equal to the

total number of individual samples N.
3. Range of random variables: [X

 

1

 

 

 

£

 

 X

 

i

 

 

 

£

 

 X

 

M

 

]
(There are M discrete random variables in the range.)

4. If all samples are assigned a unique RV, then M = N. This may be shown
in a pictorial form as:

 

RANDOM VARIABLES GROUPED INTO CELLS

 

1. Group random variables into cells (or “bins”) if the number of random
variables is large, say M > 30.

2. Groups or cells are formed in the numerical RV domain by dividing the
range into say 10 to 20 equal cells.

3. While the total number of RVs is M, the number of cells is K.
4. All the individual RVs in a cell assume the value of the RV in, say the

center of the cell interval and are denoted X

 

k

 

.
5. Each cell or grouping is designated X

 

k 

 

and represents a finite interval of
contiguous RVs.

Individual: X

 

i

 

 = [(X

 

1

 

, X

 

2

 

, …), …, [X

 

i–1

 

, …, (X

 

M–1

 

, X

 

M

 

)]

Cells: X

 

k

 

 = [(X

 

1

 

), …, (X

 

k

 

), …, [X

 

K

 

)]

where X

 

k

 

 = X

 

i–1

 

 

 

£

 

 X

 

i

 

 < X

 

ik

 

SL3127_frame_MASTER.book  Page 236  Monday, July 1, 2002  9:38 AM



 

Discrete and Continuous Random Variables

 

237

 

This may be shown as:

 

R

 

ANDOM

 

 E

 

XPERIMENT

 

Two tosses of a coin.

Sample Space: S

 

1 

 

=

 

 

 

TT, S

 

2

 

 = TH, S

 

3

 

 = HT, S

 

4

 

 = HH
Function Process:

1. Assign real-value number to occurrence: T = 0 and H = 1.
2. Sum of real-values for individual samples S

 

i

 

 is RV X

 

i

 

.

S

 

1

 

 = TT 

 

Æ

 

 X

 

1

 

 = 0 + 0 = 0

S

 

2

 

 = TH 

 

Æ

 

 X

 

2

 

 = 0 + 1 = 1
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S

 

3

 

 = HT 

 

Æ

 

 X

 

3

 

 = 1 + 0 = 1

S

 

4

 

 = HH 

 

Æ

 

 X

 

4

 

 = 1 + 1 = 2

Random Variables: arranged in ascending order by magnitude

{S

 

i

 

} = {TT, TH, HT, HH} 

 

Æ

 

 {X

 

i

 

} = {0, 1, 1, 2}

 

Note

 

: cell width W

 

c

 

 = 1.

 

DISCRETE PROBABILITY DISTRIBUTION

 

Discrete probability density function: probability assigned to AREA of discrete
random variable cells.

Probability (Cell area) = Height (X

 

k

 

) · Width (W

 

c

 

)

Discrete probability is the frequency of the grouped values x = X

 

k

 

 for the data
corresponding to the individual event S

 

i

 

 in sample space. This may be shown in a
pictorial form in Figure 16.1.

However, when data are grouped as consecutive integer values the cell width is
unity; W

 

c 

 

=

 

 

 

1.

1. Probability of group data with cell width W

 

c

 

:

P(x = X

 

k

 

) = f (X

 

k

 

) · W

 

c

 

; k = 1, 2, 3, …, K

where f(X

 

k

 

) is the probability density for the RV cell X

 

k

 

, which has a
sample frequency f

 

k

 

 for a total sample size of n:

 

FIGURE 16.1 

 

Discrete probability density function.
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f(X

 

k

 

) 

 

∫

 

 f

 

k

 

/n

2. Discrete probability density function properties:
a. Positive 0 < P (X

 

k

 

) = f(X

 

k

 

) · W

 

c

 

b. Unit area (area is sum under curve unity)

 

R

 

ANDOM

 

 E

 

XPERIMENT

 

Two tosses of a coin.
Random variable of sample event X

 

i

 

 is defined as the number of heads to appear
in two tosses.

{S

 

i

 

} = {TT, TH, HT, HH} 

 

Æ

 

 {X

 

i

 

} = {0, 1, 1, 2}

SAMPLE SPACE: TT TH HT HH
Probability (sample space): 1/4 1/4 1/4 1/4  
Random Variable X

 

i

 

: 0 1 1 2  

 

Æ

 

 ascending (Number of Heads)
Grouping into four cells each of width, W

 

k 

 

=

 

 

 

1;
Discrete probability density function f(X

 

k

 

):

f(0) = 1/4; f(1) = 1/4 + 1/4 = 1/2; f(2) = 1/4

The above may be represented in graphic displays as in Figure 16.2.

 

FIGURE 16.2 

 

A bar chart and a histogram of two tosses of a coin.

f X Wk c

k

K

( ) ◊ =
=

Â 1
1

f(Xk)

1

3/4

1/2

1/4

0
0 1 2 3 4 Xk

f(Xk)

1

3/4

1/2

1/4

0
0 1 2 3 4 Xk

BAR CHART HISTOGRAM

(Total Area = S f (Xk) • Wc = 1)
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DISCRETE CUMULATIVE DISTRIBUTION FUNCTION

 

Probability that value of the random variables X

 

k 

 

will be less than or equal to a
specified value X

 

m

 

.

where the capital letter F is used for cumulative distribution. If sample space is a
finite number K of random variables:

x = {X

 

1

 

, X

 

2

 

, X

 

3,

 

 …, X

 

k

 

, …, X

 

m

 

, …, X

 

K

 

}

where we assume an ascending order: X

 

k–1

 

 < X

 

k

 

 < X

 

k+1

 

.
For example, if m = 2:

F (X

 

2

 

) = f (X

 

1

 

) · W

 

c

 

 + f (X

 

2

 

) · W

 

c

 

= P (X

 

1

 

) + P (X

 

2

 

)
= P (X 

 

k

 

 

 

£

 

 X

 

2

 

)

Upper bound: m = K

F (X

 

K

 

) = P(X

 

k

 

 

 

£

 

 X

 

K

 

) = 1

 

R

 

ANDOM

 

 E

 

XPERIMENT

 

Two tosses of a coin.
Random Variable X

 

k 

 

defined as number of heads. (Grouped data X

 

k 

 

has a cell
width of unity W

 

c

 

 = 1.)

R.V.X

 

k

 

 Prob. Fn. f(X

 

k) Cumulative Prob. F(Xk)

Xk < 0 P(X < X1) = 0

X1 = 0 f(X1) = 1/4 F(X1) = P(x £ X1) = 1/4

X2 = 1 f(X2) = 1/2 F(X2) = P(x £ X2)

 = P(X1) + P(X2)

 = 1/4 + 1/2 = 3/4

X3 = 2 f(X3) = 1/4 F(X3) = P(x £ X3)

 = P(X1) + P(X2) + P(X3)

 = 1/4 + 1/2 + 1/4 = 1

Figure 16.3 shows the cumulative distribution of two tosses of a coin.

F X P X X P X f X Wm k m k k c

k

m

k

m

( ) ( ) ( ) ( )= £ = = ◊
==

ÂÂ
11
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RANDOM EXPERIMENT

Toss a pair of fair dice.

Individual Sample Si: Defined as sum of face values on pair of six-sided dice.

Si = D1 + D2

Total sample space size: N = 6 ¥ 6 = 36 possible outcomes
Random Variable Xk : Is cell equal to a specific value of Si

Xk = {Si} = {D1 + D2}

It is quite common in engineering to have numerical value samples.
Total number of Random Variables cells: M = 11
Range of RV: [X1 = 2 £ Xk £ 12 = X11]

FIGURE 16.3 Cumulative distribution of two tosses of a coin.

F(Xk)

1

3/4

1/2

1/4

0
0 1 2 3 4 Xk

3/4

1/2

1/4
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Other possible processes (and distributions) could include:

1. Product: Si = D1 · D2

2. Magnitude of difference: Si  = |D1 – D2|
3. Ratio: Si  = D1/D2

Random Variable: (Xk = {Si} = {D1 + D2})

X (Die 1 + Die 2) = X(Sum) = Sum = X(sum–1)

Example outcome:

X ([Die 1 = 1] + [Die 2 = 2]) = X(1 + 2) = 3 = X2

Consider an event A: Set of all RVs equal to 3

{X2} = {[1 + 2], [2 + 1]} = {3, 3}

Sample size of event A is therefore m = 2
Probability Density: particular event {X2}

f(X2) = P(X2) = m/N

or

f(3) = P(3) = 2/36

Cumulative distribution: for random variable X2 = 3

F(X2) = f(X1) + f(X2)

or

F(3) = f(2) + f(3)
= 1/36 + 2/36 = 3/36

Si = D1 + D2 = Sum of numbers appearing on face cell: Xk = {Si} = {D1 + D2}

The probabilities associated with each cell are shown in Table 16.1
Figure 16.4 shows the probability density function and Figure 16.5 shows the

cumulative probability function.
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TABLE 16.1
Probability Density and Distribution 
of a Pair of Fair Dice

R.V. Xk

No. Outcomes
with Value Xk f (Xk) F (Xk)

2 1 1/36 1/36
3 2 2/36 3/36
4 3 3/36 6/36
5 4 4/36 10/36
6 5 5/36 15/36
7 6 6/36 21/36
8 5 5/36 26/36
9 4 4/36 30/36

10 3 3/36 33/36
11 2 2/36 35/36
12 1 1/36 36/36

Sum = 36 36/36

FIGURE 16.4 Probability density function.

FIGURE 16.5 Cumulative probability function.
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MEAN OR EXPECTED VALUE

MEAN from RV Range: M discrete values or cells, Xk

or MEAN from Sample Space: N discrete individual samples, Si

RANDOM EXPERIMENT

Sum produced by pair of fair six-sided dice.
Random Variable Xk defined as sum of the two numbers:

Xk = {D1 + D2}

Mean

Sample variance and standard deviation

1. Sample variance: Expected value of Xi about the mean

Cell k No. in Xk Xk f (Xk) Xk f (Xk)

1 1 2 1/36 2/36
2 2 3 2/36 6/36
3 3 4 3/36 12/36
4 4 5 4/36 20/36
5 5 6 5/36 30/36
6 6 7 6/36 42/36
7 5 8 5/36 40/36
8 4 9 4/36 36/36
9 3 10 3/36 30/36

10 2 11 2/36 22/36
11 1 12 1/36 12/36

M = 11 36 Sum 252/36

X E X x f Xk k

k

M

∫ =
=

Â[ ] ( )
1

X N X Si

i

N

=
=

Â1
1

/ ( )

X X f Xk k

k

= = =
=

Â ( ) /252 36 7
1

11

sx
2 2

1

= -
=

Â ( ) ( )X X f Xk k

k

M
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or

2. Sample standard deviation: 

 

Exercise

 

: Sum of two fair dice: X

 

k

 

 = {D

 

1

 

 + D

 

2

 

}

Variance:

Standard deviation:

s

 

x

 

 = 2.415

 

CONTINUOUS RANDOM VARIABLES

 

As we have mentioned earlier, discrete random variables are represented by isolated
real-valued numbers. Manipulation of discrete random variables involves summa-
tions of these discrete values. This is illustrated for the frequency of outcomes in k-
cells; n = total number samples.

Probability density function (pdf): 

Cumulative distribution function (CDF) (sum)

 

x

 

k

 

(X

 

k

 

 – X) (X

 

k

 

 – X)

 

2

 

f(X

 

k

 

) (X

 

k

 

 – X)

 

2

 

 f(X

 

k

 

)

 

2 –5 25 1/36 25/36
3 –4 16 2/36 32/36
4 –3 9 3/36 27/36
5 –2 4 4/36 16/36
6 –1 1 5/36 5/36
7 0 0 6/36 0
8 1 1 5/36 5/36
9 2 4 4/36 16/36

10 3 9 3/36 27/36
11 4 16 2/36 32/36
12 5 25 1/36 25/36

Sum 210/36

sx
2

1
2

1

1
1

=
-

-
=

ÂN
X S X

i

N

( ( ) )

sx ∫ -E x x[ ) ]( 2

s x x f xx k k

k

2 2

1

11
210
36

5
5
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=
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Mean

Variance

ADVANTAGES OF CONTINUOUS RANDOM VARIABLES

• Integrals (areas) of continuous r.v. x yield closed form equations that are
easy to manipulate and to analyze.

• Integrals of standardized distributions can be tabulated.

Probability density function (pdf): f (x) where probabilities are only defined as
the area within an interval.

Two constraints of a probability density function: f (x)

1. Positive value: f(x) ≥ 0

2. Unit area: 

Cumulative distribution function (CDF): 

F X f XnT k

k

nr

[ ] ( )=
=

Â
1

X E X X f Xk k k

k

nc

= =
=

Â[ ] ( )
1

S E X X X X f Xk k k

k

nc

2 2 2

1

= - = -
=

Â[( ) ] ( ) ( )

P( ) ( )a X b f x dx

a

b

£ £ = Ú

f x dx

x

( ) ∫
-•
Ú 1

F(x) = -• < £ =
-•
Ú( ( ) ( )P X x f x dx

x
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f(x) = dF(x)/dx

These functions may be represented by the graphs in Figure 16.6.

PROPERTIES OF CONTINUOUS DISTRIBUTIONS

1. Probability is defined only in the context of an incremental range of the
random variable [a £ x £ b].

2. Probabilities cannot be determined for a point x0, since the interval of
integration or the base (b – a) is zero.

3. Probabilities can be determined from either the probability density func-
tion f(x) or the cumulative distribution function F(x).

4. The CDF is more important because tabulated values of the various
standardized or normalized probability distributions models presented in
this form.

5. Mean:

6. Variance:

FIGURE 16.6 The probability (left) and cumulative (right) functions.

P a( ) ( ) ( ) ( ) ( ) ( )£ £ = = - = -
-• -•
ÚÚ ÚX b f x dx f x dx f x dx F b F a

b

a

b a

m x E[X]= =
-•

•

Ú xf x dx( )

s m m m mx x x x xE X x f x dx E X x f x dx2 2 2 2 2 2 2∫ - = - = - = -
-•

•

-•

•

Ú Ú[( ) ] ( ) ( ) ( ) ( )
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STANDARDIZED RANDOM VARIABLE

Sampling histograms that are symmetric and without outliers can be converted to
standardized random variables:

which has (1) mean of r.v.Zk at the origin: Zbar = 0; and (2) variance of r.v. Zk of
any unity:  = 1.

This standardized form of the sample r.v. conveniently presents results in terms
of the number of standard deviations above or below the mean. This number is often
called the “Z-score” and appears as:

P(X – Z · sx £ Xk £ X + Z · sx)

A typical pictorial view of this type of distribution is shown in Figure 16.7.

TYPICAL UNSTANDARDIZED FORM
OF TABULATED CDF

LEADING TAIL INTERVAL

FIGURE 16.7 The normal distribution.

Z
X X

sk
k∫

-

Sz
2

( ){  ( ) }-• < £ -• ∫x b where F 0
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This may be shown mathematically as

TRAILING TAIL INTERVAL

(b £ x < •) where F(•) ∫ 1

This is shown mathematically as

UPPER RANGE FROM MEAN VALUE

This may be shown mathematically as

PROBABILITY DISTRIBUTION

We already have seen that this distribution follows the shape as in Figure 16.7.
However, in addition to the shape one may determine confidence intervals. These
confidence intervals represent the Cumulative Probability Within Interval about
Mean, and they may be represented mathematically (assuming normality) as:

P (X – Z · sx £ Xk £ X + Z · sx)
= F(X = (X + Z · sx)) – F(X = (X – Z · sx))

Z Interval F(Interval)

0.675 X £ Xx £ X + 0.675sx+ 0.675sx 0.500
1 X – 1Sx £ Xk £ X + 1Sx 0.6827
2 X – 2Sx £ Xk £ X + 2Sx 0.9545
3 X – 3Sx £ Xk £ X + 3Sx 0.9973

P x b P x b f x dx F b F F b

b

( ) ( ) ( ) ( ) ( ) ( )-• < £ ∫ £ = = - -• =
-•
Ú

P b X P X b f x dx F F b F b

b

( ) ( ) ( ) ( ) ( ) ( )£ < • ∫ ≥ = = • - = -
•

Ú 1

( )  ( )m m£ £ ∫ÏÌÓ
¸̋
˛

X b where F
1
2

P X b f x dx F b F

b

( ) ( ) ( ) ( )m m
m

£ £ = = -Ú
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UNIFORM DISTRIBUTION

If we consider each die as an independent random variable, then a uniform proba-
bility distribution will be the result and will take the shape shown in Figure 16.8.

With mean value of single die:

Variance about mean:

Standard deviation: sD = 1.708
The uniform distribution may be represented in general mathematical notation

along with the constraints as:

and the shape looks like Figure 16.9.
When checking for the probability density function of a uniform distribution

one should check the following two properties:

1. Positive: f {X; a,b) ≥ O

FIGURE 16.8 Uniform probability density for a die.
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2. Unit area:

Note: Height of p.d.f. is equal to the reciprocal of the base. Figure 16.10 shows
the comparison of the uniform distribution and the cumulative density function.

The mathematical notation of the c.d.f. with the constraints is:

FIGURE 16.9 A generic uniform distribution.

FIGURE 16.10 A comparison of the uniform distribution and its C.D.F.
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Mean: 

Variance:

The reader will notice that in the uniform distribution, (1) median = mean, and
(2) there is no mode.

EXAMPLE

Sound level in a room is found to be uniformly distributed between 80 and 95 dBA.
Occupational Safety and Health Administration (OSHA) regulations set a maximum
safe level of 90 dBA for an 8-hour workday. See Figure 16.11.

Find:

1. The probability density function, f(x) for this noise
2.  The probability of exceeding the 90 dBA standard
3. The mean and standard deviation
4. The level range within ± 1 s of the mean
5. The probability of being in this ± 1 s about the mean

Solutions:

1. f(X) = 1/15; 80 £ x £ 95
2. Probability of exceeding 90 dBA:

P(> 90) = 1 – P(x £ 90) = 1 – F(x = 90)

FIGURE 16.11 The sound level in a room.

m x = +b a
2

s x

b a2
2

12
= -( )

SL3127_frame_MASTER.book  Page 252  Monday, July 1, 2002  9:38 AM



Discrete and Continuous Random Variables 253

3. Mean: 

Standard Deviation: 

4. One-sigma range about mean: (m – 1s) £ x £ (m + 1s)

83.2 £ x £ 91. 8

5. Probability of SPL being in this one-sigma range

NORMAL DISTRIBUTION — OTHERWISE KNOWN 
AS THE “BELL CURVE”

Figure 16.12 shows a typical normal curve with a mean and a standard deviation.

FIGURE 16.12 A typical normal curve.
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TYPICAL COMMENTS ABOUT THE NORMAL CURVE

• Most important distribution function in statistics.
• Many populations are normally distributed.
• Some distributions are made normal by changing variables.
• Normal can approximate discrete binomial distribution.
• Central Limit Theory Æ distribution of means is normal.
• Confidence limits are based on normal parameters.

Only two statistical parameters describe distribution:

m = Mean
s = Standard Deviation

Normal Probability Density Function is symmetric about mean.
Note: Mode = Mean = Median.
It turns out that the probability density function for variable x may be shown as

in Figure 16.13.
Mathematically this is written as:

with the following population parameters: m = population mean, s2 = variance of
population, s = standard deviation of population, RV – • < x < •, inflection points
at x = m ± s.

It is very important to realize that the area under the pdf is always unity even
though the mean and standard deviation may differ. This is shown in Figures 16.13
and 16.14, respectively. Also in Figure 16.14 the probability density function is shown
with different means and fixed standard deviation whereas the Figure 16.15 shows
the probability density function with different means and/or standard deviations.

In addition, the normal curve may be represented as a cumulative distribution
function. Its mathematical notation is

FIGURE 16.13 Probability density function for random variable x.
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Discrete and Continuous Random Variables 255

This is shown pictorially in Figure 16.16.
A word of caution — Any area of specified region under probability density

function may be identified and calculated. However, the calculation cannot be a
direct integration. Rather, because the normal probability function cannot be inte-
grated directly, standardized cumulative distributions are tabulated. When those

FIGURE 16.14 Probability density function with different means and same standard deviation.

FIGURE 16.15 Probability density with different means and/or standard deviation.

FIGURE 16.16 Cumulative distribution function.
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tabulations are figured out, the reader must be very careful because not all tables
give the same “area” of p.d.f. For example, some tables give S-CD values in interval:
p (0 £ Z £ Zo) and some tables give S-CD values of upper tail: P (Zo £ Z £ •).

DIFFERENTIAL EQUATION (DE)

The normal distribution functions can be generated from the first order homogeneous
differential equation having a non-constant coefficient:

where X is the independent random variable, Y is the dependent random variable
(p.d.f.), X is the mean, and s2 is the variance (units of X2).

Separation of variables yields:

Solution of DE: ln Y = –(X – X)2/(2s2)

Given the constraint that the area of the integral is unity, . (The

units of the probability density Y are the inverse of X.) It can be shown that the
amplitude is adjusted so

STANDARDIZED RANDOM VARIABLES — TABULATED FUNCTION

Any random variable X can be transformed into a normalized (non-dimensional)
standardized random variable Z

1. Subtracting the mean shifts mean of RV to origin: Z = 0.
2. Dividing by standard deviation makes variance unity and eliminates phys-

ical units.

This transformation is the function typically tabulated and plotted in statistics
textbooks.
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STANDARDIZED NORMAL DISTRIBUTION (SND)

Probability density function for the random variable Z:

where mean: mz = 0, standard deviation: sz = 1, and RV –• £ z £ •. Pictorially this
can be shown as in Figure 16.17. At the mean value, z = 0, the pdf is N (0; 0, 1) =
0.4. Also, this figure shows the unstandardized distribution as a comparison.

On the other hand, the cumulative distribution function (area under standardized
probability density function for a given interval) of the standardized normal distri-
bution may be presented mathematically as:

The graph is shown in Figure 16.18. Recall, however, that the probability for all
continuous random variables can only be determined in terms of an interval such as
P(Z1 £ Z £ Z2).

FIGURE 16.17 Standardized and unstandardized normal function: (a) unstandardized dis-
tribution, (b) standardized distribution.

FIGURE 16.18 Cumulative distribution function — area of interval.
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258 Six Sigma and Beyond: Statistics and Probability, Volume III

Tabulated possibilities include:

P(–• £ Z £ Z0)
P(0 £ Z £ Z0) 
P(Z0 £ Z £ •)

Figure 16.19 shows the tabulated distribution function for leading tail.

Figure 16.20 shows the tabulated cumulative distribution function under a spe-
cific interval area.

FIGURE 16.19 Tabulated cumulative distribution function — leading tail.

Tabulated Values (Leading Tail):
P(–• £ z £ z0)

Z0 = –3 p (–• £ Z £ –3) = 0.00135
Z0 = –2 p (–• £ Z £ –2) = 0.0228
Z0 = –1 p (–• £ Z £ –1) = 0.1587
Z0 = 0 p (–• £ Z £ 0) = 0.5000
Z0 = 1 p (–• £ Z £ 1) = 0.8413
Z0 = 2 p (–• £ Z £ 2) = 0.9772
Z0 = 3 p (–• £ Z £ 3) = 0.99865

Tabulated Values (Center .Interval):
P(0 ££££ Z ££££ Z0)

Z0 = 0.0: P(0 £ Z £ 0.0) = 0.0000
Z0 = 0.5: P(0 £ Z £ 0.5) = 0.1915
Z0 = 1.0: P(0 £ Z £ 1.0) = 0.3413
Z0 = 1.5: P(0 £ Z £ 1.5) = 0.4332
Z0 = 2.0: P(0 £ Z £ 2.0) = 0.4772
Z0 = 2.5: P(0 £ Z £ 2.5) = 0.4938
Z0 = 3.0: P(0 £ Z £ 3.0) = 0.4987
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Discrete and Continuous Random Variables 259

Finally, the cumulative distribution function with a trailing tail is shown in
Figure 16.21.

EXAMPLE 1

Given: The life of a particular electronic component is normally distributed with a
mean m = 200 hours and a standard deviation of a sx = 20 hours.

FIGURE 16.20 Tabulated cumulative distribution function — area of specific interval.

FIGURE 16.21 Standardized normal distribution with trailing tail.

Tabulated Values (Trailing Tail):
P(Z0 £ Z £ •)

Z0 = 0.0: P(0.0 £ Z £ •) = 0.5000
Z0 = 0.5: P(0.5 £ Z £ •) = 0.3085
Z0 = 1.0: P(1.0 £ Z £ •) = 0.1587
Z0 = 1.5: P(1.5 £ Z £ •) = 0.0668
Z0 = 2.0: P(2.0 £ Z £ •) = 0.0228
Z0 = 2.5: P(2.5 £ Z £ •) = 0.00621
Z0 = 3.0: P(3.0 £ Z £ •) = 0.00135
Z 0 = 4.0: P(4.0 £ Z £ •) = 0.0000317
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Find: The expected percentage of components requiring replacement at or before 150
hours.

Standard random variable:

That is to say, the specified replacement time (150 hr) is 2.5 s below the mean.

Cumulative probability distribution:

P(–• £ X £ 150) = p (–• £ Z £ –2.5) = 0.00621 

Hence, only 0.621% of components are expected to be replaced at or before 150 hours.

Because SND is symmetric, you can use either of these tabulations:

P(–• < Z £ –2.5) = 0.00621 = P(2.5 £ Z < •) = 0.00621

This may be represented in a pictorial form as in Figure 16.22.

EXAMPLE 2

Given: A particular engine component is being manufactured having a tension X that
is found to be normal distribution with a mean m = 60 N and a standard deviation of
sx = 10 N. The manufacturing specifications for the tension of this component are 45
to 70 N.

Find: The percentage of manufactured parts expected to be within specification.

Standard random variable limits:

That is to say, the specifications are within 1.5 s and + 1.0 s of the manufactured
mean. This can be shown in Figure 16.23.

FIGURE 16.22 Electronic components in a symmetrical format of the distribution.
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Determine net probability:

P(45 £ X £ 70) = P(–1.5 £ Z £ 1.0)

Cumulate areas consistent with tabulation given. Assume given trailing tail tabulation:

P(–1.5 £ Z £ 1.0) = P(–1.5 £ Z £ •) – P(1.0 £ Z £ •)
= [1 – P(1.5 £ Z £ •)] – P(1.0 £ Z £ •)
= [1 – 0.0668] – 0.1587 = 0.7745 

Hence, 77.45% of the currently manufactured components are expected to “meet spec.”
This is shown in Figure 16.24.

So, the reader by now has figured out that at any point in the curve we can
indeed find the area provided we know the mean and the standard deviation.

FIGURE 16.23 Area of interval — cumulative distribution function.

FIGURE 16.24 The graphical progression in figuring out the components of “meeting spec-
ifications.”
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Figure 16.25 shows the area under the curve in percentage for the traditional mean
equals zero and standard deviation of one for the three deviations about the mean.

NORMAL APPROXIMATION OF BINOMIAL

Binomial probability distribution:

with mean: m = np and variance: s2 = npq.

Assumptions:

1. Neither of the binomial probabilities p or q = 1-p is near zero.
2. Sample size n is “sufficiently” large (how large depends upon p).
3. The binomial distribution appears nearly symmetric about the mean in

Figure 16.26.

Issues: Binomial lower limit is zero; normal is –•. Binomial is discrete of cell
width, Wc; normal is continuous random variable.

Accuracy improves if:

1. Sample size n increases, or
2. Probability approaches p = 1/2

Certain n and p combinations provide a good approximation for modeling of a
binomial population by a normal distribution. Confining our approximation to the
interval: m ± 3 s requires only that the binomial products np > 5 and nq > 5. These

FIGURE 16.25 Percent area under the SND curve.
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Discrete and Continuous Random Variables 263

products yield binomial distributions which are nearly symmetric about mean m =
np; and have a variance s2 = npq.

It is this symmetry about the mean that allows us to approximate the binomial
distribution as a normal distribution and thereby use the tabulated values to determine
its probabilities. Standardized random variables for the binomial distribution are:

After defining the binomial distribution problem, the probability being sought
can be determined from the table of standardized normal distribution in the form:
p (Z1 £ Z £ Z2). As a rule of thumb, the following minimum sample sizes may be
used for a normal distribution model to approximate a binomial population.

EXAMPLE 1

Given: A supplier produces a special order of 280 electronic instruments, but past
history has shown that 10% of this company’s products are defective.

Find: If the number of defects is assumed to be binomially distributed, compute the
chance that number of defects does not exceed 23 instruments. (The value 23 is a
threshold.)

Statistics:

p = 0.10, q = 0.90, m = np = 28 > 5, nq = 252 >> 5, s = (npq)1/2 = 5.0

FIGURE 16.26 A typical binomial distribution.

p = 0.5 n ≥ 30
p = 0.4 or 0.6 n ≥ 50
p = 0.3 or 0.7 n ≥ 80
p = 0.2 or 0.8 n ≥ 200
p = 0.1 or 0.9 n ≥ 600
p = 0.05 or 0.95 n ≥ 1400

z
X X np

npq
= - ª -m

s
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Direct application of binomial distribution

While this is the true calculation, it is very time-consuming, and tables do not exist to
condense the labor involved. As a result we use the approximation approach by applying
the normal distribution approximation as follows. (In a pictorial format it is shown in
Figure 16.27).

Therefore, there is a 15.9% chance that no more than 23 instruments will not “meet spec.”

Some general comments on continuity correction:

1. The normal distribution is based on a continuous RV while the binomial
distribution is based on a discrete countable integer RV grouped into cells
of a specified width, Cw.

2. The range interval for the continuous normal distribution is from –• to
+•, whereas the binomial distribution is on countable integers (items)
ranging from 0 to n.

3. A continuity correction is applied to the discrete cells to improve the
accuracy of the approximation.

FIGURE 16.27 Normal distribution approximation.
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4. The correction consists of:
a. subtract 1/2-cell width from the lower limit and
b. add 1/2-cell width to the upper limit

5. These limits in standardized form are:

When using the continuity correction, always remember that the error for the
normal distribution to approximate the binomial distribution never exceeds:

EXAMPLE 2

Given: A manufacturer produces a special order of 280 electronic instruments, but past
history has shown that 10% of the instruments that it produces are defective.

Find: if the number of defects is assumed to be binomially distributed, compute the
chance that exactly 28 defective instruments are manufactured.

Statistics: p = 0.10, q = 0.90, m = np = 28 > 5, n q = 252 >> 5, s = (npq)1/2 = 5.0, cell
width = 1 product, 1/2-cell = 0.5.

Solution:

Direct application of binomial distribution:

Normal distribution approximation:

Therefore, there is a 7.96% possibility of producing exactly 28 defects.
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CENTRAL LIMIT THEOREM (CLT) — MEAN OF MEANS 
IS NORMAL (FIGURE 16.28)

• Statistical inference based on normal distribution.
• Estimation techniques based on normal distribution.
• Real data distribution may not be normal.
• Work with mean of sample clusters, not individual values Xi.
• CLT uses normal distribution to infer population parameter: Mean m and

Variance s2

Mathematically the mean of means may be represented by

Whereas the variance of the means is represented as:

where n = number of individual samples in a subject or cluster. If there are clusters,
the M = total number of clusters, nM = N = total number of individual samples.

COMMENTS ON THE SND

For a cluster of n samples, we can use SND to determine:

FIGURE 16.28 Mean of the means.
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1. The probabilities of the sample average, Xm or,
2. The required number of samples, n, in a cluster such that is observed

mean Xm is within a specified range around the true population mean m.
• The cluster size n can be quite small, and the histogram of cluster mean

values, Xm, will rapidly converge to a normal distribution regardless
of the underlying population.

• The Central Limit Theorem applies to any population distribution,
including the discrete and continuous distributions as well as bimodal
distributions.

• When discrete sampling is involved, the distribution of averages (i.e.,
the mean of clusters) must be used.

• The variance of the means is a measure of the spread of clusters means
about the true mean.

• Variance gets smaller as n increases; the smaller the number of samples
in a cluster the larger the variance of the means.

NORMALIZED TRANSFORMS

1. Engineering experiments often produce responses that may not appear
normal, however, many of these responses can often be transformed into
normally distributed representations.

2. The normal distribution is emphasized because many techniques in sta-
tistics are based on the assumption of a normal distribution. Two very
typical transformations are Y = In X and Y =  However, there are
many more.

3. It is important to recognize that many seemingly nonnormal distributions
can be mathematically transformed into what appears to be a normal
distribution.

4. A useful normalization is based on the assumption of a large number of
basic measurements or observations as well as the use of the Central Limit
Theorem.

DISCRETE PROBABILITY DISTRIBUTIONS

BINOMIAL DISTRIBUTION (BERNOULLI)

The binomial and Poisson distributions are the most common distributions with
many applications. Key characteristics of the Binomial and Poisson distributions are:

Binomial distribution
Frequently used in engineering
Probability of success p and failure q
Combinations of p’s and q’s

X .
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Poisson Distribution
Rare successes, p very small
Large sample size
Limit of binomial

Population Parameters: characteristics of the population
Population size: N
Probability of success: p
Probability of failure: q = 1 – p
Mean: µ
Variance: s2

Sample Statistics: characteristics of the sample
Random variable: Xi

Sample size: n
Mean: X
Variance: s2

Samples taken without replacement are generally not independent since p is not
constant. If sample size n < 0.05 N population size, we can consider p unchanged
and “independent.”

Binomial distribution — Probability when EXACTLY x out of n events occur:

The assumptions are:

1. Experiment of n independent events.
2. Probability of a “success” is p.
3. Probability p is constant for all events.
4. Probability of “failure” is q = 1 –p.
5. Parameters n and p are specified.
6. Random variable ¥ number of successes.
7. Random variable is a discrete integer 0 £ x £ n.
8. Order of success not important; combination.

Mean:
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Variance:

EXAMPLE 1

Six tosses of a coin.

Experiment is six tosses of a coin, n = 6.

Probability of a head in one toss, p = 1/2.

Probability of a tail in one toss, q = (1 – p) = 1/2.

Find: probability of getting exactly 2 heads in 6 tosses.

Parameters: n = 6 coin tosses, a head with p = 1/2

Random variable: x = 0, 1, 2, 3, 4, 5, 6

If we were to graph this data, we would obtain the graph shown in Figure 16.29.

Parameters: n = 6; p = 1/2; q = 1/2

Mean: µ = np = 6 · 1/2 = 3

r.v.x. C(x ; n) px q n – x B(x;n,p)

0 (6!)/(0! 6!) = 1 (1/2)0(1/2)6 = 1/64 1/64
1 (6!)/(1! 5!) = 6 (1/2)1(1/2)5 = 1/64 6/64
2 (6!)/(2! 4!) = 15 (1/2)2(1/2)4 = 1/64 15/64
3 (6!)/(3! 3!) = 20 (1/2)3 (1/2)3 = 1/64 20/64
4 (6!)/(4! 2!) = 15 (1/2)4(1/2)2 = 1/64 15/64
5 (6!)/(5! 1!) = 6 (1/2)5(1/2)1 = 1/64 6/64
6 (6!)/(6! 0!) = 1 (1/2)6(1/2)0 = 1/64 1/64

Sum = 64/64

s m m2 2 2

0

= - = -

=

=
ÂE x X B x n p

npq

k

n

[( ) ] ( ) ( ; , )

B x Ci( ; , / ) ( ; )( / ) ( / )

!

! !
( / ) ( / )

( / ) ( / )

( )= ∫

=

= ◊
◊

= =

-2 6 1 2 2 6 1 2 1 2

6

2 4
1 2 1 2

6 5

2 1
1 2 15 1 2

15

64

2 6 2

2 4

6 6

SL3127_frame_MASTER.book  Page 269  Monday, July 1, 2002  9:38 AM



270 Six Sigma and Beyond: Statistics and Probability, Volume III

Variance: s2 = npq = 6 · 1/2 · 1/2 = 3/2 = 1.5

Note that because p = 1/2, (1) the mean is equal to the mid-range, and (2) probability
density is symmmetric about the mean.

EXAMPLE 2

Square rod with four sides.

Sides are denoted 1, 2, 3, 4 respectively.

Experiment is six tosses of four-sided rod, n = 6.

Random variable is tossing the number 3.

Probability of a 3 for a single toss, p = 1/4.

Probability of “no 3” in a single toss, q = (1 – p) = 3/4.

Find: Probability of exactly two 3s in 6 tosses; x = 2.

Parameters: n = 6 tosses; success a “3,” has p = 1/4.

FIGURE 16.29 Binomial distribution histogram: six tosses of a coin.
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Random variable: x = 0, 1, 2, 3, 4, 5, 6

The histogram for this data is shown in percent of B(x;n,p) in Figure 16.30.

Parameters: n = 6, p = 1/4, q = 3/4

Mean: µ = np = 6 · 1/4 = 3/2 = 1.5

Variance: s2 = npq = 6 · 1/4 · 3/4 = 18/16 = 1.125

Observations for p = 1/4: (1) the mean is skewed to the left of the mid-range, and (2)
the probability density is nonsymmetric about the mean.

EXAMPLE 3

Square rod with four sides.

FIGURE 16.30 Histogram in percent of B(x;n,p).

r.v.x. C(x;n) pxqn–x B(x;n,p) %

0 (6!)/(0! 6!) = 1 (1/4)0 (3/4)6 = 36/46 729/46 17.8
1 (6!)/(1! 5!) = 6 (1/4)1(3/4)5 = 35/46 1458/46 35.6
2 (6!)/(2! 4!) = 15 (1/4)2(3/4)4 = 34/46 1215/46 29.7
3 (6!)/(3! 3!) = 20 (1/4)3(3/4)3 = 33/46 540/46 13.2
4 (6!)/(4! 2!) = 15 (1/4)4(3/4)2 = 32/46 135/46 3.30
5 (6!)/(5! 1!) = 6 (1/4)5(3/4)1 = 31/46 18/46 0.44
6 (6!)/(6! 0!) = 1 (1/4)6(3/4)0 = 1/46 1/46 0.02

Where 46 = 4096  SUM = 4096/46 100
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Sides are denoted 1, 2, 3, 4, respectively.

Experiment is six tosses of four-sided rod, n = 6.

Random variable is tossing any number except 3.

Probability of “no 3” in a single toss, p = 3/4.

Probability of a 3 for a single toss, q = (1 – p) = 1/4.

The data are shown graphically in Figure 16.31.

Parameters: n = 6, p = 3/4, q = 1/4

Mean: µ = np = 6 · 3/4= 18/4 = 4.5

Variance: s2 = n p q = 6 · 3/4 · 1/4 = 18/16 = 1.125

Observations for p = 3/4: (1) the mean is skewed to the right of the mid-range, (2) the
probability density is nonsymmetric about the mean.

HYPERGEOMETRIC DISTRIBUTION

Overview

Traditional Notation
N = Total population
S = Population defined “success”
F = Population defined “failure”

FIGURE 16.31 Binomial distribution for square rod.
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Proability Density Function (p.d.f.)
This is shown mathematically as:

Note: If total number of successes S < n then x = 0, …, S, then the cumulative
distribution frunction (CDF) is shown as:

General Comments

1. Hypergeometric distribution applies to discrete samples taken from a finite
population N without replacement.

2. An integer r is often used in place of the variable x.
3. Three parameters (N, S, and n) specify this distribution.
4. Three alternate parameters (N, p, and n), where (p = S/N), may be used

to define the distribution.

Alternate Parameters and Properties

1. Three alternate parameters (N, p, and n), where p = S/N is proportion of
success, q = F/N = 1 – p is proportion of failures

2. Hypergeometric distribution (without replacement)

3. Alternative representation of mean and variance

Mean: m = np

Variance: 

Comments

1. As population size N increases (N – n)/(N – 1) goes to 1, and hypergeo-
metric distribution approaches that of binomial.
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2. Best unbiased estimator of parameter p from actual data: 
population N not sample n.

COMPARISON OF HYPERGEOMETRIC AND BINOMIAL DISTRIBUTIONS

Sample Size

Hypergeometric distribution is based on finite size population N with sample size
n taken without replacement. Consequence: Probabilities can vary with sample size
n. Binomial and Poisson distributions assume either a finite population N with sample
n taken with replacement or a very large population N. Consequence: probabilities
are those of population and do not vary with sample size n.

Discrete Two Options

Both hypergeometric and binomial distributions are based on only two kinds of
outcomes: pass or fail.

Computations

Hypergeometric probability computations can be quite involved even for small
populations. On the other hand, binomial probability or Poisson provide good
approximations to hypergeometric and are more easily computed. For a fixed sample
size n, this approximation improves with increasing population size N.

EXAMPLE 1

A supplier provides N = 25 precision motors; history shows that “on average,” this
company has 8% defects. An inspection sample of n = 8 motors is tested. The RV S
is the successful selection of a defect or bad motor; F is a good motor.

B = S = 25(0.08) = 2, G = F = 25(0.92) = 23, n = 8

The probability of selecting no defective motors (i.e., x = 0) is:

The probability of selecting exactly one defective motor (i.e., x = 1) is:

p S Nª =ˆ / ;p

P X
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C
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The probability of selecting exactly two defective motors (i.e., x = 2) is:

The probability of selecting fewer than two defective motors from a sample of eight is:

P(X < 2) = P(X = 0) + P(X = 1)
= 0.4533 + 0.4533 = 0.9066

That is, there is a 90% certainty of observing fewer than two bad motors in a total
sample size of eight.

Here is how to determine the mean and standard deviation of the number of defective
motors in a sample size of n = 8 and of n = 12:

For n = 8:

µ = np = 8(0.08) = 0.64 motors

 

s = 0.65 motors

For n = 12:

µ = np = 12(0.08) = 0.96 motors

s = 0.69 motors

HYPERGEOMETRIC DISTRIBUTION APPLICATIONS

Often, the meaning of the terms “success” and “failure” depends upon the context in
which they are used. For example, selecting a “bad” motor could be considered a
“success” for their removal. When there is an issue of success or failure or “bad” or
“good,” the hypergeometric distribution is applicable. For example, in the following
sample space we have the good and bad motors for a given supplier segregated as shown:
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A supplier delivers a total of N motors. This population of N motors is comprised
of only two classes:

1. G motors that will be “good” or pass the specification.
2. B ( = N – G): motors that will be “bad” or fail specification. 

Quality control inspects only a small sample of n motors

g motors are good
b (= n – g) motors are bad

Probability Considerations

1. The inspection sample of n motors is taken without replacement from the
finite population of N motors.

2. Without replacement, the probabilities of successes and failures for each
of inspection sample of n motors will not be constant but will depend
upon what motors are selected.

3. An inspection sample of n motors can have b bad motors and g good
motors, where n = g + b.

4. Using combination theory, the total number of unordered ways of selecting
g good motors from a population containing a total of G good motors is:

5. Also, the number of unordered ways of selecting b bad motors from a
population containing a total of B bad motors is the combination:

C(b;B) = B!/b!(B – b)!

6. The total number of ways to get both b bad motors and g good motors is
the product:

7. The total number of ways of selecting n motors from a population N
(without replacement and unordered) is:
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8. Quality inspectors assume that it is “equally likely” to select any sample
of n motors. That is, a sample of n motors containing b1 bad and g1 = (n
– b1) good motors is as likely to be selected as a sample of n-motors
containing b2 bad and g2 = (n – b2) good motors.

9. The probability of any combination of samples containing n motors is
given by:

10. The probability of selecting a sample of n-motors containing exactly g
good motors and b bad motors is given by:

[Recall: If independent P(A · B) = P(A|B) P(B) = P(A) P(B)]

Random Variable

Generally a random variable X is used to define or describe a specific form of
outcome. In our case we consider the random variable to be the “success” of selecting
a number of bad motors from an inspection sample of n motors. (Note: “success”
= bad.)

Quality inspectors set a threshold for the value of this random variable, say X
= xb, that has be established to assure the delivered lot of N motors will be accepted.
(This does not mean that all N motors “meet spec,” only that some acceptable
percentage do.)

xb = b represents some (integer value) lower limit for acceptable. The number
of “failures” or good motors in sample is g = n – xb. The probability of exactly x
motors passing in the sample of n motors is:

EXAMPLE 2

A supplier provides N = 10 precision motor;, history shows that “on average,” this
company’s products have 10% defects. If an inspection sample of n = 1 motor is tested,

P
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what is the probability that exactly one defective motor is selected (i.e., xb = 1)? The
RV X is the “successful” selection of a bad motor; G is a good motor.

EXAMPLE 3 

If an inspection sample of n = 2 motors is tested, what is the probability that exactly
one defective motor is selected (i.e., xb = 1)?

This implies that with two selections the inspector has a 20% chance of detecting the
bad motor.

As the number of samples increases, n = 3, 4, 5, …, N, the probability of selecting the
one defective motor increases as 0.1n. So for five samples the probability is 50% that
the inspector will have selected one bad motor.

EXAMPLE 4 

In the previous examples we designated a success as the selection of exactly one bad
or defective motor. It may appear counterintuitive to identify a “success “ with a
“defect.” However, examine what would happen if we defined a “success” X as selecting
one “good” motor from a sample size of three.

However, C(2; 1) is undefined since we cannot have (–1)!. The reason, of course, is
that we only have one bad motor, and by only asking for one “success” or good motor
to be selected in a sample of three means the other two selections must be bad motors.
But because there is only a total of one bad motor, it is impossible to satisfy this
probability. We exceeded our expectations since we only have one “bad” motor.

x B G n x

P X x
C C

C

b

b

= = = = = = =

= = =

= = =

10 0 1 1 10 0 9 9 1 1

1
1 1 0 9

1 10

1 1 0 9 0 9

10 1 9

1

10
0 1000

( . ) , ( . ) , ,

( )
( ; ) ( ; )

( ; )

[ !/ ! !][ !/ ! !]

[ !/ ! !]
.

X B G N n x

P X x
C C

C

O

b

b

= = = = = =

= = =

= = =

1 9 10 2 1

1
1 1 1 9

2 10

1 1 9 1 8

10 2 8

2

10
0 2000

, , , ,

( )
( ; ) ( ; )

( ; )

[ !/ ! !][ !/ ! !]

[ !/ ! !]
.

X G B N n x

P X x
C C

C

g

g

= = = = = =

= = =

9 1 10 3 1

1
1 9 2 1

3 10

, , , ,

( )
( ; ) ( ; )

( ; )

SL3127_frame_MASTER.book  Page 278  Monday, July 1, 2002  9:38 AM



Discrete and Continuous Random Variables 279

POISSON DISTRIBUTION: LIMIT OF BINOMIAL 
DISTRIBUTION FOR RARE OCCURRENCE

Rare successes: Probability p extremely small but sample size n extremely large,
such that binomial mean = np = a is finite. Since p is so small, we can expect that
x success will also be small compared to sample size n. The Poisson distribution is
also used to compute the probability of the number of “Poisson events” during a
given time interval or within a specified region of space.

We already have defined the binomial distribution as:

For the Poisson distribution, however, we:

1. Reduce the permutation factor, since x << n.

2. Combine factors of like powers.

3. Note that because p « 1 and x is not large, we can approximate (1 – p)x = 1.
4. Having mean np = a we can rewrite n = a/p so

5. Limit as p Æ 0 yields exponential
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6. The result is the Poisson distribution (one parameter: a).

a. In reliability, the parameter a = d t.
b. d is the mean number of events per unit time.

COMPARISON OF BINOMIAL AND POISSON

The probability density function (pdf) for the binomial distribution is:

B (Xi = x;n, p) = [n!/X!(n – x)!] pxq(n–x)

Mean: µ = np = a
Variance: s2 = npq = aq
Two Parameters: n and p

or
a(= np) and q = (1– p)

On the other hand, the probability function for the Poison distribution is:

where a = n p and q = (1 – p) approx. 1.
Mean: µ = a
Variance: s2 = a
One parameter: a( = np)

EXAMPLE  5

A compressor manufacturer has a record of 50 defects per 1000 produced, which
corresponds to a defect percentage of 5%. Since the probability of successfully observ-
ing a defect is small (p = 0.05), then we can assume a Poisson distribution.

Determine probability of observing defects in batch of n = 10:

Poisson parameter: a = np = 10(0.05) = 0.5

Probability of exactly x = 0 failures:

Probability of exactly x = 1 failure:
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Probability of exactly x = 2 failures:

Probability of exactly x = 3 failures:

Figure 16.32 shows the Poisson distribution for each of the failures.

Special comments:

1. The mean is equal to the parameter a; as a result, the smaller the “a’s,”
the more skewed the probability density function (pdf) is to the left.

FIGURE 16.32 Poisson distribution for the four failures.
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2. The standard deviation is equal to the square root of “a”; hence, increasing
the value of “a” also increases the standard deviation.

3. The larger the value of “a,” the more the Poisson distribution approaches
the normal distribution.
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Appendix A —

 

Matrix Algebra:
An Introduction

 

Matrix algebra is one of the most useful and powerful branches of mathematics for
conceptualizing and analyzing engineering, psychological, sociological, and educa-
tional research data. As research becomes more and more multivariate, the need for
a compact method of expressing data becomes greater. Certain problems require that
sets of equations and subscripted variables be written. In many cases, the use of
matrix algebra simplifies and, when familiar, clarifies the mathematics and statistics.
In addition, matrix algebra notation and thinking fit in nicely with the conceptual-
ization of computer programming and use.

This appendix provides a brief introduction to matrix algebra. The emphasis is
on those aspects that are related to subject matter covered in this complete series.
Thus many matrix algebra techniques, important and useful in other contexts, are
omitted. In addition, certain important derivations and proofs are neglected. Although
the material presented here should suffice to enable you to follow the applications
of matrix algebra in this series especially Volumes III and V — it is strongly
suggested that you expand your knowledge of this topic by studying one or more
of the following texts: Dorf (1969), Green (1976), Hohn (1964), Horst (1963), Searle
(1966), and Strang (1980).

 

BASIC DEFINITIONS

 

A

 

 matrix 

 

is

 

 

 

an n-by-k

 

 

 

rectangle of numbers or symbols that stand for numbers. The
order of the matrix is n by k. It is customary to designate the rows first and the
columns second. That is, n is the number of rows of the matrix and k

 

 

 

the number
of columns. A 2-by-3 matrix called 

 

A

 

 might be

1 2 3

1

2

4 7 5

6 6 3
A = È

ÎÍ
˘
˚̇
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Elements of a matrix are identified by reference to the row and column that they
occupy. Thus, a

 

11 

 

refers to the element of the first row and first column of 

 

A

 

, which
in the above example is 4. Similarly, a

 

23 

 

is the element of the second row and third
column of 

 

A

 

, which in the above example is 3. In general, then, a

 

ij

 

 refers to the
element in row i and column j.

The 

 

transpose 

 

of a matrix is obtained simply by exchanging rows and columns.
In the present case, the transpose of 

 

A

 

, written 

 

A

 

', is

If n = k, the matrix is square. A square matrix can be symmetric or asymmetric.
A 

 

symmetric 

 

matrix has the same elements above the principal diagonal as below
the diagonal except that they are transposed. The principal diagonal is the set of
elements from the upper left corner to the lower right corner. Symmetric matrices
are frequently encountered in multiple regression analysis and in multivariate anal-
ysis. The following is an example of a correlation matrix, which is symmetric:

Diagonal elements refer to correlations of variables with themselves, hence the
1’s. Each off-diagonal element refers to a correlation between two variables and is
identified by row and column numbers. Thus, r

 

12

 

 = r

 

21

 

 = .70; r

 

23

 

 = r

 

32

 

 = .40. A column

 

vector 

 

is

 

 

 

an n-by-1 array of numbers. For example:

A 

 

row vector 

 

is a 1-by-n array of numbers:

 

b

 

' = [8.0 1.3 –.20]

 

b

 

' is the 

 

transpose 

 

of 

 

b

 

. Note that vectors are designated by lowercase boldface
letters, and that a prime is used to indicate a row vector.

A 

 

diagonal 

 

matrix is frequently encountered in statistical work. It is simply a
matrix in which some values other than zero are in the principal diagonal of the
matrix, and all the off-diagonal elements are zeros. Here is a diagonal matrix:

A' =
È

Î

Í
Í
Í

˘

˚

˙
˙
˙

4 6

7 6

5 3

R =
È

Î

Í
Í
Í

˘

˚

˙
˙
˙

1 00 70 30

70 1 00 40

30 40 1 00

. . .

. . .

. . .

b =
-

È

Î

Í
Í
Í

˘

˚

˙
˙
˙

8 0

1 3

2 0

.

.

.

2 759 0 0

0 1 643 0

0 0 879

.

.

.

È

Î

Í
Í
Í

˘

˚

˙
˙
˙
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A particularly important form of a diagonal matrix is an 

 

identity 

 

matrix, 

 

I

 

, which
has ones in the principal diagonal:

 

MATRIX OPERATIONS

 

The power of matrix algebra becomes apparent when we explore the operations that
are possible. The major operations are addition, subtraction, multiplication, and
inversion. Many statistical operations can be done by knowing the basic rules of
matrix algebra. Some matrix operations are now defined and illustrated.

 

A

 

DDITION

 

 

 

AND

 

 S

 

UBTRACTION

 

Two or more vectors can be added or subtracted provided they are of the same
dimensionality. That is, they have the same number of elements. The following two
vectors are added:

Similarly, matrices of the same dimensionality may be added or subtracted. The
following two 3-by-2 matrices are added:

Now, 

 

B

 

 is subtracted from 

 

A

 

:

I =
È

Î

Í
Í
Í

˘

˚

˙
˙
˙

1 0 0

0 1 0

0 0 1

4

3

5

7

7

4

11

10

9

È

Î

Í
Í
Í

˘

˚

˙
˙
˙

+
È

Î

Í
Í
Í

˘

˚

˙
˙
˙

=
È

Î

Í
Í
Í

˘

˚

˙
˙
˙

a b c

6 4

5 6

9 5

7 4

7 4

1 3

13 8

12 10

10 8

È

Î

Í
Í
Í

˘

˚

˙
˙
˙

+
È

Î

Í
Í
Í

˘

˚

˙
˙
˙

=
È

Î

Í
Í
Í

˘

˚

˙
˙
˙

A B C

6 4

5 6

9 5

7 4

7 4

1 3

1 0

2 2

8 2

È

Î

Í
Í
Í

˘

˚

˙
˙
˙

-
È

Î

Í
Í
Í

˘

˚

˙
˙
˙

=
-
-

È

Î

Í
Í
Í

˘

˚

˙
˙
˙

A B C

 

SL3127_frame_MASTER.book  Page 287  Monday, July 1, 2002  9:38 AM



 

288

 

Six Sigma and Beyond: Statistics and Probability, Volume III

 

M

 

ULTIPLICATION

 

To obtain the product of a row vector by a column vector, corresponding elements
of each are multiplied and then added. For example, the multiplication of 

 

a

 

' by 

 

b

 

,
each consisting of three elements, is:

Note that the product of a row by a column is a single number called a scalar. This
is why the product of a row by a column is referred to as the scalar product of
vectors. Here is a numerical example:

Scalar products of vectors are very frequently used in statistical analysis. For
example, to obtain the sum of the elements of a column vector it is premultiplied
by a unit row vector of the same dimensionality. Thus,

The sum of the squares of a column vector is obtained by premultiplying the
vector by its transpose:

[ ]a a a

b

b

b

a b a b a b1 2 3

1

2

3

1 1 2 2 3 3

È

Î

Í
Í
Í

˘

˚

˙
˙
˙

= + +

a' b

[ ] ( )( ) ( )( ) ( )( )4 1 3

1

2

5

4 1 1 2 3 5 21
È

Î

Í
Í
Í

˘

˚

˙
˙
˙

= + + =

SX:  [ ]1 1 1 1

1

4

1

3

7

16

È

Î

Í
Í
Í
Í
Í
Í

˘

˚

˙
˙
˙
˙
˙
˙

=

SX2 1 4 1 3 7

1

4

1

3

7

76:  [ ]

È

Î

Í
Í
Í
Í
Í
Í

˘

˚

˙
˙
˙
˙
˙
˙

=
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Similarly, the sum of the products of X and Y is obtained by multiplying the
row of X by the column of Y, or the row of Y by the column of X.

Scalar products of vectors are used frequently in dealing with multiple regres-
sion, discriminant analysis, multivariate analysis of variance, and canonical analysis.

Instead of multiplying a row vector by a column vector, one may multiply a
column vector by a row vector. The two operations are entirely different from each
other. It was shown above that the former results in a scalar. The latter operation,
on the other hand, results in a matrix. This is why it is referred to as the matrix
product of vectors. For example:

Note that each element of the column is multiplied, in turn, by each element of
the row to obtain one element of the matrix. The product of the first element of the
column by the row elements becomes the first row of the matrix. Those of the second
element of the column by the row become the second row of the matrix, and so
forth. Thus, the matrix product of a column vector of k elements is a k 

 

¥

 

 k matrix.
Matrix multiplication is done by multiplying rows by columns. An example is

easier than verbal explanation. Suppose we want to multiply two matrices, 

 

A

 

 and

 

B

 

, to produce the product matrix 

 

C

 

:

Following the rule of scalar product of vectors, we multiply and add as follows
(follow the arrows):

SXY:  [ ]1 4 1 3 7

3

5

7

2

1

11

-

-

È

Î

Í
Í
Í
Í
Í
Í

˘

˚

˙
˙
˙
˙
˙
˙

= -

3

5

7

2

1

1 4 1 3 7

3 12 3 9 21

5 20 5 15 35

7 28 7 21 49

2 8 2 6 14

1 4 1 3 7

-

-

È

Î

Í
Í
Í
Í
Í
Í

˘

˚

˙
˙
˙
˙
˙
˙

=
- - - - -

- - - - -

È

Î

Í
Í
Í
Í
Í
Í

˘

˚

˙
˙
˙
˙
˙
˙

[ ]

3 1

5 1

2 4

4 1 4

5 6 2

17 9 14

25 11 22

28 26 16

È

Î

Í
Í
Í

˘

˚

˙
˙
˙

È
ÎÍ

˘
˚̇

=
È

Î

Í
Í
Í

˘

˚

˙
˙
˙

x

A B C
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From the foregoing illustration, it may be discerned that in order to multiply
two matrices it is necessary that the number of columns of the first matrix be equal
to the number of rows of the second matrix. This is referred to as the 

 

conformability

 

condition. Thus, for example, an n-by-k matrix can be multiplied by a k-by-m matrix
because the number of rows of the first (k) is equal to the number of rows of the
second (k). In this context, the k’s are referred to as the “interior” dimensions; n
and m are referred to as the “exterior” dimensions.

Two matrices are conformable when they have the same “interior” dimensions.
There are no restrictions on the “exterior” dimensions when two matrices are mul-
tiplied. It is useful to note that the “exterior” dimensions of two matrices being
multiplied become the dimensions of the product matrix. For example, when a 3-by-2
matrix is multiplied by a 2-by-5 matrix, a 3-by-5 matrix is obtained:

In general,

A special case of matrix multiplication often encountered in statistical work is
the multiplication of a matrix by its transpose to obtain a matrix of raw score or
deviation Sums of Squares and Cross Products (SSCP). Assume that there are n
subjects for whom measures on k variables are available. In other words, assume
that the data matrix, 

 

X

 

, is an n-by-k. To obtain the raw score SSCP, calculate 

 

X'X

 

.
Here is a numerical example:

( )( ) ( )( )

( )( ) ( )( )

( )( ) ( )( )

( )( ) ( )( )

( )( ) ( )( )

( )( ) ( )( )

( )( ) ( )( )

( )( ) ( )( )

( )( ) ( )( )

3 4 1 5 17

5 4 1 5 25

2 4 4 5 28

3 1 1 6 9

5 1 1 6 11

2 1 4 6 26

3 4 1 2 14

5 4 1 2 22

2 4 4 2

+ =

+ =

+ =

+ =

+ =

+ =

+ =

+ =

+ = 1616

(3-by-2) ¥ (2-by-5) = (3-by-5)

(n-by-k) ¥ (k-by-m) = (n-by-m)

n k

K n

1 4 137

2 3 346

2 5 135

1 2 2

4 3 5

1 3 1

3 4 3

7 6 5

76 71 67

71 74 64

67 64 64

È

Î

Í
Í
Í

˘

˚

˙
˙
˙

È

Î

Í
Í
Í
Í
Í
Í

˘

˚

˙
˙
˙
˙
˙
˙

=
È

Î

Í
Í
Í

˘

˚

˙
˙
˙

X' X X' X
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In statistical symbols, 

 

X'X

 

 is

Using similar operations, one may obtain deviation SSCP matrices. Such matrices
are used frequently in statistical calculations of advanced methodologies.

A matrix can be multiplied by a scalar: each element of the matrix is multiplied
by the scalar. Suppose, for example, we want to calculate the mean of each of the
elements of a matrix of sums of scores. Let N = 10. The operation is

Each element of the matrix is multiplied by the scalar 1/10

 

.

 

 
A matrix can also be multiplied by a vector. The first example given below is

premultiplication by a vector; the second is postmultiplication:

Note that in the latter example, (2-by-3) 

 

¥

 

 (3-by-1) becomes (2-by-1). This sort of
multiplication of a matrix by a vector is done very frequently in multiple regression.

Thus far, nothing has been said about the operation of division in matrix algebra.
In order to show how this is done it is necessary first to discuss some other concepts,
to which we now turn.

 

D

 

ETERMINANTS

 

A determinant is a certain numerical value associated with a square matrix. The
determinant of a matrix is indicated by vertical lines instead of brackets. For example,
the determinant of a matrix 

 

B

 

 is written

S
S S S

S S S
S S S

X X

X X X X X

X X X X X

X X X X X
i j =

È

Î

Í
Í
Í

˘

˚

˙
˙
˙

1
2

1 2 1 3

2 1 2
2

2 3

3 1 3 2 2
3

1 10

20 48

30 40

35 39

2 0 4 8

3 0 4 0

3 5 3 9

/

. .

. .

. .

È

Î

Í
Í
Í

˘

˚

˙
˙
˙

=
È

Î

Í
Í
Í

˘

˚

˙
˙
˙

[ ] [ ]6 5 2

7 3

7 2

4 1

85 30

7 7 4

3 2 1

6

5

2

85

30

È

Î

Í
Í
Í

˘

˚

˙
˙
˙

È
ÎÍ

˘
˚̇

È

Î

Í
Í
Í

˘

˚

˙
˙
˙

= È
ÎÍ

˘
˚̇

Det B

B

= =B
4 2

1 5
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The calculation of the determinant of a 2 

 

¥

 

 2 matrix is very simple: it is the
product of the elements of the principal diagonal minus the product of the remaining
two elements. For the above matrix,

or, symbolically,

The calculation of determinants for larger matrices is quite tedious and will not
be shown here (see references listed at the end of this appendix). In any event, matrix
operations are most often done with the aid of a computer. The purpose here is solely
to indicate the role played by determinants in some applications of statistical analysis.

 

A

 

PPLICATIONS

 

 

 

OF

 

 D

 

ETERMINANTS

 

To give the flavor of the place and usefulness of determinants in statistical analysis
we turn first to two simple correlation examples. Suppose we have two correlation
coefficients, r

 

y1

 

, and r

 

y2

 

, calculated between a dependent variable, Y, and two vari-
ables, 1 and 2. The correlations are r

 

y1

 

 = .80 and r

 

y2

 

 = .20. We set up two matrices
that express the two relations, but this is done immediately in the form of determi-
nants, whose numerical values are calculated:

and

The two determinants are .36 and .96. Now, to determine the percentage of variance
shared by y and 1 and by y and 2, square the r’s:

B = = - = - =
4 2

1 5
4 5 1 2 20 2 18( )( ) ( )( )

B = = -
b b

b b
11 12

21 22
11 22 12 21b b b b

1

1 00 80

80 1 00
1 00 1 00 80 80 36

2

1 00 20

20 1 00
1 00 1 00 20 20 96

y

y

. .

. .
( . )( . ) (. )(. ) .

. .

. .
( . )( . ) (. )(. ) .

= - =

= - =

r

r

y

y

1
2 2

2
2 2

80 64

20 04

= =

= =

(. ) .

(. ) .
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Subtract each of these from 1.00: 1.00 – .64 = .36, and 1.00 – .04 = .96. These are
the determinants just calculated. They are 1 – r

 

2

 

, or the proportions of the variance
not accounted for.

As an extension of the foregoing demonstration, it may be shown how the
squared multiple correlation, R

 

2

 

, can be calculated with determinants:

where |

 

R

 

| is the determinant of the correlation matrix of all the variables, that is, the
independent variables as well as the dependent variable; |

 

R

 

x

 

| is the determinant of the
correlation matrix of the independent variables. From the foregoing it can be seen that
the ratio of the two determinants indicates the proportion of variance of the dependent
variable, Y, not accounted by the independent variables, X’s. The ratio of two deter-
minants is also frequently used in multivariate analyses dealing with Wilks’ 

 

L

 

.
Another important use of determinants is related to the concept of linear depen-

dencies, to which we now turn.

 

L

 

INEAR

 

 D

 

EPENDENCE

 

Linear dependence means that one or more vectors of a matrix, rows or columns,
are a linear combination of other vectors of the matrix. The vectors a' = [3 1 4] and
b' = [6 2 8] are dependent since 2a' = b'. If one vector is a function of another in
this manner, the coefficient of correlation between them is 1.00. Dependence in a
matrix can be defined by reference to its determinant. If the determinant of the matrix
is zero it means that the matrix contains at least one linear dependency. Such a
matrix is referred to as being singular. For example, calculate the determinant of
the following matrix:

The matrix is singular, that is, it contains a linear dependency. Note that the values
of the second row are twice the values of the first row.

A matrix with a determinant other than zero is referred to as being nonsingular.
The notions of singularity and nonsingularity of matrices play very important roles
in statistical analysis, especially in the analysis of multicollinearity. As is shown
below, a singular matrix has no inverse.

We turn now to the operation of division in matrix algebra, which is presented
in the context of the discussion of matrix inversion.

MATRIX INVERSE

Recall that the division of one number into another number amounts to multiplying
the dividend by the reciprocal of the divisor:

Ry k
x

.12
2 1º = - R

R

3 1

6 2
3 2 1 6 0= - =( )( ) ( )( )
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For example, 12/4 = 12(1/4) = (12)(.25) = 3. Analogously, in matrix algebra, instead
of dividing a matrix A by another matrix B to obtain matrix C, we multiply A by
the inverse of B to obtain C. The inverse of B is written B–1. Suppose, in ordinary
algebra, we had ab = c, and we wanted to find b. We would write

In matrix algebra, we write

B = A–1C

(Note that C is premultiplied by A–1 and not postmultiplied. In general, A–1C ππππ CA–1.)
The formal definition of the inverse of a square matrix is: Given A and B, two

square matrices, if AB = I, then A is the inverse of B.
Generally, the calculation of the inverse of a matrix is very laborious and,

therefore, error prone. This is why it is best to use a computer program for such
purposes (see below). Fortunately, however, the calculation of the inverse of a 2 ¥
2 matrix is very simple, and is shown here for three reasons: 

1. It affords an illustration of the basic approach to the calculation of the
inverse.

2. It affords the opportunity to show the role played by the determinant in
the calculation of the inverse.

3. Inverses of 2 ¥ 2 matrices are frequently calculated in some applications
of statistical tools and especially in multivariate analysis.

In order to show how the inverse of a 2 ¥ 2 matrix is calculated, it is necessary
first to discuss briefly the adjoint of such a matrix. This is shown in reference to the
following matrix:

The adjoint of A is:

Thus, to obtain the adjoint of a 2 ¥ 2 matrix, interchange the elements of its
principal diagonal (a and d in the above example), and change the signs of the other
two elements (b and c in the above example). Now the inverse of a matrix A is:

a

b b
a= 1

b
c

a
=

A = È
ÎÍ

˘
˚̇

a b

c d

AdjA =
-

-
È
ÎÍ

˘
˚̇

d b

c a
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where |A| is the determinant of A. The inverse of the following matrix, A, is now
calculated.

First, calculate the determinant of A:

Second, form the adjoint of A:

Third, multiply the adj A by the reciprocal of |A| to obtain the inverse of A.

It was mentioned earlier that A–1A = I. For the present example,

It was said above that a matrix with a determinant of zero is singular. From the
foregoing demonstration of the calculation of the inverse, it should be clear that a
singular matrix has no inverse. Although one does not generally encounter singular
matrices, an unwary researcher may introduce singularity in the treatment of the
data. For example, suppose that a test battery consisting of five subtests is used to
predict a given criterion. If, under such circumstances, the researcher uses not only
the results on the five subtests but also a total test, obtained as the sum of the five
subtests, he or she has introduced a linear dependency (see above), thereby rendering
the matrix singular; similarly, when one uses tests on two scales as well as the
differences between them in the same matrix. Other situations when one should be
on guard not to introduce linear dependencies in a matrix occur when coded vectors
are used to represent categorical variables.

A A1- = =adjA

A A

1
adj

A = È
ÎÍ

˘
˚̇

6 2

8 4

A = = - =
6 2

8 4
6 4 2 8 8( )( ) ( )( )

adjA =
-

-
È
ÎÍ

˘
˚̇

4 2

8 6

A A1- = =
-

-
È
ÎÍ

˘
˚̇

=
-

-
È
ÎÍ

˘
˚̇

1 1
8

4 2

8 6

50 25

1 00 75A
adj

. .

. .

A A

A A I1

-

-

=
-

-
È
ÎÍ

˘
˚̇

È
ÎÍ

˘
˚̇

= È
ÎÍ

˘
˚̇

1 50 25

1 00 75

6 2

8 4

1 00 0

0 1 00

. .

. .

.

.
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It is realized that this brief introduction to matrix algebra cannot serve to
demonstrate its great power and elegance. To do this, it would be necessary to use
matrices with dimensions larger than the ones used here for simplicity of presenta-
tion. To begin to appreciate the power of matrix algebra, it is suggested that you
think of the large data matrices frequently encountered in product development of
any large corporation. Using matrix algebra, one can manipulate and operate upon
large matrices with relative ease, when ordinary algebra will simply not do. For
example, when in multiple regression analysis only two independent variables are
used, it is relatively easy to do the calculations by ordinary algebra. But with
increasing numbers of independent variables, the use of matrix algebra for the
calculation of multiple regression analysis becomes a must. And in addition, matrix
algebra is the language of linear structural equation models and multivariate analysis.
In short, to understand and be able to intelligently apply these methods, it is essential
that you develop a working knowledge of matrix algebra. It is therefore strongly
suggested that you do a serious review of some of the references already mentioned
in this appendix. Furthermore, it is suggested that you learn to use computer pro-
grams when you have to manipulate relatively large matrices. Of the various com-
puter programs for matrix manipulations, one of the best and most versatile is the
MATRIX program of the SAS package, followed by SPSS and Minitab.
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Appendix B —
The Simplex Method
in Two Dimensions

Although the geometrical method for solving linear programming problems is highly
satisfactory for problems that involve only two variables, it is a very difficult one
to use on problems involving several variables. For those problems an algebraic
method is needed. One of the most popular such algebraic devices is known as the
simplex method. Although it was designed to solve more complicated problems, we
will apply it to a two-dimensional problem in order to simplify the explanation.

The problem is to find the values of x and y that maximize the linear function

f = 3x + 2y (1)

subject to the restrictions

2x – y £ 1
x + 2y £ 3

x ≥ 0
y ≥ 0

The solution to this problem can be obtained by inspecting the nature of the feasi-
bility region as shown in Figure B.1 and realizing that f is maximized by a family
of lines 3x + 2y = f, which passes through the point (1,1).

It is true in general that a set of linear inequalities in two variables will always
give rise to a feasibility region whose boundary consists of line segments. It is this
property of the feasibility region that guarantees that a linear function f will take on
its maximum (or minimum) value at a corner point of the boundary.

Although we are studying the problem here in two dimensions only, it can be
shown by algebraic techniques that a similar property of the feasibility region is true
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in higher dimensions. Thus a linear function of k variables subject to a set of linear
inequalities in those variables will assume its maximum (or minimum) value at one
of the corners of the feasibility region that is determined by those inequalities. In
practice we assume this fact without proof.

In view of the preceding comments, it should suffice to find all the corner points
of the feasibility region and then calculate the value of f at each of those points to
determine which of them produces the maximum (or minimum) value of f. Although
such a procedure is carried out for a two-dimensional problem, the same is not true
for higher dimensional problems because the number of corners may become very
large, and much algebra is needed to locate them. The simplex method is a method
that allows us to start at any given corner point and then proceed step-by-step to a
neighboring corner that yields a larger value of f until the maximum corner is
reached. For a minimizing problem, successive corners are chosen that decrease the
value of f each time. We restrict ourselves to maximizing problems, because a
problem in which f is to be minimized can be converted to one in which g is to be
maximized by setting g = –f.

With these preliminaries out of the way, we are ready to solve the problem stated
in (1) by the simplex method. This method begins by introducing as many new
variables as are needed to convert the inequalities into equalities, except for inequal-
ities of the type x ≥ 0 and y ≥ 0. An inequality such as 2x – y £ I can be made into
an equality by introducing a new variable, say r, and writing

2x – y + r = 1

If x and y have values such that 2x – y < I, then r will be a positive number
which, when added to 2x – y, will make the sum equal 1. If x and y have values
such that 2x – y = 1, then r will have the value 0. Thus, r is a nonnegative number
that transforms the inequality 2x – y £ 1 into the equality 2x – y + r = 1. Similarly,

FIGURE B.1 A typical geometry of linear programming.
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−1 2 3

f = 2

f = 4

f = 5

1

1
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we can introduce a nonnegative variable s that will transform the inequality x + 2y
£ 3 into the equality x + 2y + s = 3. The variables r and s that have been introduced
here are called slack variables because they take up the slack on the left side of an
inequality of the form £ to make the equality sign hold. In this connection, the
variables x and y are called the basic variables.

The linear programming problem of (1) may now be reformulated as the problem
of maximizing the function

f = 3x + 2y

subject to the restrictions

2x – y + r = I
x + 2y + s = 3 (2)

x ≥ 0, y ≥ 0, r ≥ 0, s ≥ 0

Next, we express the corner points of our feasibility region in terms of the values
of the four variables x, y, r, and s. The feasibility region for this problem was obtained
earlier and can be found in Figure B.1. It is duplicated in Figure B.2. Each of these
corner points is the point of intersection of two lines out of the set:

x = 0, y = 0, 2x – y = 1, and x + 2y = 3

Since the last two lines of this set are special cases of the first two equalities in
(2) and are characterized by setting r = 0 and s = 0, respectively, we may represent
this set of lines by the symbols:

x = 0, y = 0, r = 0, and s = 0

The origin is a corner point and is labeled (x = 0, y = 0) because it is the
intersection of the y axis (x = 0) and the x axis (y = 0). The corner point on the x

FIGURE B.2 The simplex notation for corner points.
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axis is labeled (y = 0, r = 0) because it is the intersection of the x axis (y = 0) and
the line 2x – y = 1 (r = 0). The corner point labeled (r = 0, s = 0) is so labeled
because it is the intersection of the two lines 2x – y = 1 (r = 0) and x + 2y = 3 (s
= 0). Finally, the corner point on the y axis is labeled (x = 0, s = 0) because it is
the intersection of the y axis (x = 0) and the line x + 2y = 3 (s = 0). The labeling
of all the corner points of the feasibility region in this manner is shown in Figure B.2.

The next step in the simplex method is to start at a corner point and proceed to
a neighboring corner that will increase the value of f, assuming that the maximum
value of f has not already been attained. Suppose that we start at the (x = 0, y = 0)
corner. Then we wish to proceed to the (y = 0, r = 0) corner or to the (x = 0, s = 0)
corner. It should be observed that this procedure leaves one of x = 0 or y = 0 alone
and replaces the other by the zero value of a different variable. Since our function
f = 3x + 2y will grow faster if x is increased one unit than if y is increased one unit,
and we wish to make f as large as possible, we agree to leave y = 0 alone and
increase x as much as possible. But from Figure B.2 this means that we choose the
(y = 0, r = 0) corner in preference to the (x = 0, s = 0) corner. Setting y = 0 and r
= 0 in equations (2), we obtain

2x = 1
x + s = 3

Solving these equations, we find that x = 1/2, s = 5/2, and f = 3/2. Since f had the
value 0 and our starting corner (x = 0, y = 0), this shift has increased its value from
0 to 3/2.

We now repeat the performance, beginning with the (y = 0, r = 0) corner and
treating y and r as the basic variables and x and s as the slack variables. To do so,
we must express f as a function of y and r only. This can be accomplished by
expressing x as a function of y and r and substituting it into the expression for f.
We therefore solve the first equation in (2) for x in terms of y and r and substitute
it into the expression for f. Thus

Now treating y and r as the basic variables, it is clear from this expression that
f can be increased by increasing y from its zero value. Increasing r from its zero
value, however, would decrease the value of f. This implies that we should hold r
fixed at its zero value and should increase y as much as possible. Geometrically,
this means that we should move from the (y = 0, r = 0) corner to the neighboring
corner where r = 0 and y is positive, which from Figure B.2 is the (r = 0, s = 0)
corner. Setting r = 0 and s = 0 in equations (2), we obtain

2x – y = 1
x + 2y = 3

f
y r

y
y r= + -Ê

Ë
ˆ
¯ + = + -3

1
2

2
3
2

7
2

3
2
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Solving these equations, we get x = 1, y = 1, and f = 5. Since the value of f has
increased from 3/2 to 5, this shift has increased the value of f further.

Although we know from our earlier result that we have reached the maximizing
corner, we proceed as though we were not aware of this fact. Thus, since our new
basic variables are chosen to be r and s, we must express f in terms of r and s. This
is accomplished by solving equations (2) for x and y in terms of r and s and
substituting those values into f. The solution of equations (2) is given by

x = 1 – 2r/5 – s/5
y = 1 + r/5 – 2s/5

As a result, f assumes the form

Since r and s cannot be increased from their zero values without decreasing the
value of f, it follows that r = 0 and s = 0 yield the maximum value of f, namely 5.

This technique of shifting to a neighboring corner that increases the value of f
until the maximizing corner has been reached assumes that it is always possible to
arrive at the maximizing corner in this manner. A justification for this assumption
can be given that is based on the nature of the feasibility region. Since this property
of our feasibility region seems obvious from the geometry of the problem for two-
dimensional problems, we do not attempt a justification. The chief advantage of our
method is that it eliminates the necessity of finding the coordinates of all the corner
points and of checking the value of f at each of them. As we stated previously, the
latter method can become a lengthy computational problem in higher dimensions.

Another striking advantage of the simplex method is that the technique can be
carried out in a systematic routine manner by means of matrix methods, regardless
of the number of variables involved. It is not necessary to perform any of the
geometry that was used in our present problem. The geometry was introduced to
explain how and why the simplex method works.

f
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Appendix C —
Bernoulli Trials

In this appendix, we consider a particular random variable that is a generalization
of the coin-tossing random variable. Toward this objective, consider an experiment
in which the outcome can always be classified as a success or a failure. In the coin-
tossing experiment, success would correspond to getting a head, and failure would
correspond to getting a tail. Let p denote the probability of getting a success and
let q = 1 – p denote the failure probability, Further, let the experiment be repeated
n times, and let x denote the total number of successes that will be obtained in the
n repetitions of the experiment. In the coin-tossing experiment, for example, we
would have p = q = 1/2 and n = 3. In terms of this notation the basic problem is to
find the probability distribution of the random variable x.

It is assumed in problems of this type that the n experiments are independent
in a probability sense and, therefore, that the multiplication rule for independent
events may be applied to them. The n independent repetitions of the experiment are
usually called the n trials of the experiment. A sequence of independent trials such
as this in which the probability of success is the same for all trials is called a sequence
of Bernoulli trials. The name is in honor of a Swiss mathematician who pioneered
in the study of probability. The coin-tossing experiment is an illustration of a
sequence of three Bernoulli trials for which the probability of success in any given
trial is 1/2.

The technique for finding the probability distribution of x is a generalization of
that used in Chapter 16 for the coin-tossing problem. We first calculate the proba-
bilities for all possible sequences of outcomes and then add the probabilities of those
sequences that yield the same value of x. Suppose, for example, that we wish to
calculate P{k}, where this symbol denotes the probability that the random variable
x will assume the value k, and where k is some integer between 0 and n. One possible
sequence that will make x = k is the following one in which all the successes occur
first, followed by all failures:
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Another such sequence is the following one in which a failure occurs first,
followed by k consecutive successes, then followed by the remaining failures. Thus

Because of the independence of the trials, the probability of obtaining the first
of these two sequences is given by

The probability for the second sequence is given by

The probability for the two sequences is the same and clearly will be the same
for every sequence that satisfies the condition of having k successes and n – k failures.

The number of ways in which the desired event can occur is equal to the number
of different sequences that can be written down of the type just displayed, those
containing k letters S and n – k letters F. But this number is equal to the number of
ways of choosing k positions out of n positions along a line in which to place the
letter S. The remaining n – k positions will automatically be assigned the letter F.
Since we are interested only in which of the n positions are to be selected and not
in the order in which we choose them, this is a combination problem of choosing
k things from n things. From formula

now we can determine the number of such sequences.
Since each of these sequences represents one of the mutually exclusive ways in

which the desired event can occur, and each such sequence has the same probability
of occurring, namely pkqn–k, it follows that the desired probability is obtained by
adding this probability as many times as there are sequences. But the number of

sequences was just found to be ; therefore, P{k} is obtained by multiplying

pkqn–k by . Hence:

S
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This formula gives the probability of x = k, that is, of obtaining k successes in
n Bernoulli trials for which the probability of success in a single trial is p. The
random variable x is commonly called the binomial variable, and the above formula
is a formula for the binomial distribution.

Although the problems used to motivate this derivation have been related here
to games of chance, there are many types of practical problems that can be solved
by means of the binomial distribution formula. We consider only a few simple
problems that require little computation to illustrate its use.

EXAMPLE 1

The probability that parents with a certain type of blue-brown eyes will have a child
with blue eyes is 1/4. If there are six children in the family, what is the probability
that at least half of them will have blue eyes? To solve this problem, the six children
in the family will be treated as six independent trials of an experiment for which the
probability of success in a single trial is 1/4. Thus n = 6 and p = 1/4 here. It is necessary
to calculate P{3}, P{4}, P{5}, and P{6} and sum them because these probabilities
correspond to the mutually exclusive ways in which the desired event can occur. By
the use of the binomial distribution formula,

The probability of getting at least three successe is obtained by adding these probabil-
ities; consequently, by writing x ≥ 3 to represent at least three successes, we obtain

This result shows that there is a very small chance that a family such as this will have
so many blue-eyed children. In only about 17 of 100 such families will at least half
of the children be blue-eyed.
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EXAMPLE 2

A manufacturer of certain parts for automobiles guarantees that a box of the company’s
parts will contain at most two defective items. If the box holds 20 parts and experience
has shown that the manufacturing process produces 2% defective items, what is the
probability that a box of the parts will satisfy the guarantee? This problem can be
considered as a binomial distribution problem for which n = 20 and p = .02. A box
will satisfy the guarantee if the number of defective parts is 0, 1, or 2. By means of
the binomial distribution formula the probabilities of these three events are given by

The calculations here were made with the aid of logarithms. Since these are mutually
exclusive events, the probability that there will be at most two defective parts, written
x £ 2, is the sum of these probabilities; hence, the desired answer is

P{x £ 2} = .994

This result shows that the manufacturer’s guarantee will almost always be satisfied.

EXAMPLE 3

As a final illustration, consider the following problem concerning whether it pays to
guess on an examination. Suppose an examination consists of 10 questions of the
multiple-choice type, with each question having five possible answers but only one of
the five being the correct answer. If a student receives 3 points for each correct answer
and –1 point for each incorrect answer, and if on each of the 10 questions his probability
of guessing the correct answer is only 1/3, what is the student’s probability of obtaining
a positive total score on those 10 questions?

If x denotes the number of questions answered correctly, then a positive score will
result if 3x > 10 – x because the left side of this inequality gives the total number of
positive points scored and the right side gives the total number of penalty points. This
inequality will be satisfied if x > 10/4, which implies that at least three correct answers
must be obtained to realize a positive score. The desired probability is therefore given by
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Thus the student has an excellent chance of gaining points if his or her probability of
guessing a correct answer is as high as 1/3. If the student knew nothing about the
material and selected one of the five alternatives by chance, the probability would, of
course, be only 1/5 for each question. It is assumed here, however, that the student
knows enough about the subject to be able to discard two of the five possibilities as
being obviously incorrect and to make a guess regarding the other three. If the student
had no such knowledge, so that his or her probability would be 1/5, then similar
calculations would show that it would not pay to guess.
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Appendix D —
Markov Chains

In this appendix, we construct a probability model for a sequence of events that is a
generalization of Bernoulli trials. Recall that Bernoulli trials are independent events
and that the probability of success is constant from trial to trial. We generalize this
model in two ways. First, we permit the number of possible outcomes to be some
positive integer k where k ≥ 2. Thus we no longer can speak only of success or failure
at a trial. Let Al,A2,...,Ak denote those possible outcomes. Second, we drop the
assumption that the trials are independent events and introduce a certain amount of
dependence. A large share of the interesting random variables in the social sciences
as well as in the financial and engineering worlds are variables that are observed at
regular time intervals over a given period of time. Very often those variables are not
independent. For example, the price of a given individual stock may vary from week
to week in a random manner, but its price during one week will usually depend rather
heavily on what its price was during the preceding week. As another illustration, if a
random variable represents the number of items, out of a set of n learned items, that
will be recalled after, say, t time intervals have elapsed, then the value of that variable
will certainly depend on how many items were recalled after t – 1 time intervals.

In some problems of the preceding type, the dependence is a local one in the
sense that the value of the random variable at the end of t time intervals depends
on its value at the end of t – 1 time intervals but not on any earlier time interval
values. This would not usually be true, however, for the stock market because many
buyers look at the past performance of a stock, and not merely at its price last week,
in determining whether to buy it this week. In this section, we consider this special
model in which the dependence of a random variable on earlier random variables
extends only to the immediately preceding one. Thus we assume that the probability
of outcome Aj occurring at a given trial depends on what outcome occurred at the
immediately preceding trial but on no others.

Let Pij denote the probability that outcome Aj will occur at a given trial if outcome
Ai occurred at the immediately preceding trial. The possible outcomes Al,A2,...,Ak

are called the states of the system. Thus Pij is the probability of going from state Ai
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to state Aj at the next trial of the sequence. A sequence of experiments of the
preceding type is called a Markov sequence or a Markov chain.

It should be noted that a Bernoulli sequence is a special case of a Markov
sequence in which there are only two states Al and A2 corresponding to success and
failure and in which P11 =  p, P12 = q, P21 = p, and P22 = q.

The probabilities Pij, which are called transition probabilities, are usually dis-
played in matrix form as follows:

These probabilities apply to the system at any point in time. They express the
probability relationship that exists at two neighboring time points, regardless of the
chosen point in time.

The preceding probabilities are one-step transition probabilities. There are, how-
ever, also two-step and more generally n-step transition probabilities. A two-step
transition probability, denoted by Pij

(2), is the probability that the system will be in
state Aj two time intervals later if it is now in state Ai. Formulas for expressing
multiple-step transition probabilities in terms of one-step probabilities can be
obtained by using matrix methods and the rules of probability. For example, to obtain
a formula for Pij

(2), we proceed as follows.
To arrive at Aj from Ai in exactly two steps, we must first go from Aj to Ar, where

r is one of the integers 1,2,…,k and then go from Ar to Aj at the next step. The
probability of doing this is PirPrj. Since there are k mutually exclusive ways in which
the desired event can occur corresponding to r = 1,2,…,k, the sum of those proba-
bilities must be the value of Pij

(2), Hence, we have the formula

(1)

Now consider the evaluation of P2, that is, of the matrix product

To obtain the element in the ith row and jth column of P2, it is necessary to
multiply the ith row vector in the first matrix by the jth column vector in the second
matrix. This gives the vector product
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Pi1P1j + Pi2P2j +…+ PikPkj

But this is the same as the expression defining Pij
(2) in (1); hence, it follows that P2

is the matrix whose typical element is Pij
(2).We may express this relationship by writing

P2 = [Pij
(2)] (2)

This shows that the two-step transition probabilities may be obtained by merely
multiplying the one-step transition probability matrix by itself. In a similar manner,
it follows that the n-step transition probabilities, pij

(n), are given by the relationship

pn = [pij
(n)]

As an illustration of a Markov chain, we consider a problem related to politics.
Suppose that of the sons of Republican fathers, 60 percent vote Republican, 30
percent vote Democratic, and 10 percent vote Socialist; of the sons of Democratic
fathers, 60 percent vote Democratic, 20 percent vote Republican, and 20 percent
vote Socialist; of the sons of Socialist fathers, 50 percent vote Socialist, 40 percent
vote Democratic, and 10 percent vote Republican. With this information, and assum-
ing that the Markov chain properties hold true, we wish to perform the following:

1. Write down the transition matrix.
2. Calculate the two-step transition matrix.
3. Determine the probability that the grandson of a Republican man will

vote Democratic.
4. Determine the same probability for a great-grandson.

Example:

1. Using the order Republican, Democrat, Socialist, the transition matrix is

2. By using formula (2)
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3. The answer here is given by P12
(2); hence, picking out the element in the

first row and second column of P2,we obtain P12
(2) = .40.

4. Here we need the element P12
(3), which can be obtained by multiplying

the first row vector of P by the second column vector of P2. This gives

(.6)(.40) + (.3)(.50) + (.1)(.47) = .437

In the preceding problem, suppose that the proportions of Republicans, Demo-
crats, and Socialists in a community are given by the row vector A = [a1 a2 a3],
where a1 + a2 + a3 = 1. Then the matrix product

is a row vector whose components give the proportions of Republicans, Democrats,
and Socialists in the first generation of offspring (sons). For example, the first
component in this product, namely

a1P11 + a2P21 + a3P31

gives the probability that a first generation offspring will be a Republican, because
it is the sum of the probabilities of the mutually exclusive ways in which a son will
become a Republican. He may start with a Republican father and then become a
Republican; or he may start with a Democratic father and then become Republican;
or he may start with a Socialist father and then become a Republican. This works
similarly for the other two components. In a similar manner, if we wish to calculate
the proportions of male offspring who will be Republicans, Democrats, or Socialists
at the nth generation, we merely need to calculate the matrix product APn.

As an illustration, suppose that the preceding initial proportions are given by
the row vector A = [.4 .5 .1]. Then after one generation the proportions become

After two generations, the proportions become
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It would be interesting to carry these calculations further for succeeding gener-
ations to observe whether these proportions approach some fixed values. Calculating
high powers of a matrix requires high-speed computing equipment and may be very
expensive. Fortunately, however, there exists a mathematical theorem that tells us
what happens to the transition probabilities in a Markov chain as n becomes increas-
ingly large, without the necessity of extensive calculations. This theorem, which we
do not prove, can be expressed as follows:

Theorem. As n Æ • each row vector of Pn approaches the probability vector X
that is a solution of the matrix equation XP = X.

It is easy to show that if P is a transition probability matrix, which implies that
its elements are nonnegative and that the sum of the elements in any row is 1, then
Pn will also be a matrix of this type. Our theorem therefore states that the resulting
transition probabilities are the same for all rows of the matrix.

As an illustration, we compute this transition matrix, which is often called the
limiting transition matrix, for the preceding political problem. The equation that
needs to be solved is the following one:

Multiplying the matrices on the left and equating components on both sides we
obtain

.6x1 + .2x2 + .1x3 = x1

.3x1 + .6x2 + .4x3 = x2

.1x1 + .2x2 + .5x3 = x3

These equations are equivalent to the set

–.4x1 + .2x2 + .1x3 = 0
.3x1 – .4x2 + .4x3 = 0
.1x1 + .2x2 – .5x3 = 0

They simplify to

–4x1 + 2x2 + x3 = 0
3x1 – 4x2 + 4x3 = 0
x1 + 2x2 – 5x3 = 0

Since the solution to our problem requires that X be a probability vector, we
must have x1 + x2 + x3 = 1. The solution of the preceding equations that also satisfies
this restriction is readily seen to be given by

[ ]

. . .

. . .

. . .
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Our theorem then states that as n Æ •, the elements of Pn approach the elements
of the matrix

Now let us calculate the long-run proportions of Republicans, Democrats, and
Socialists. Just as was done earlier to obtain the first- and second-generation pro-
portions, this can be accomplished by calculating the product of the row vector [.4
.5 .1] and the matrix just obtained. This gives

It should be observed that since the rows of the limiting transition matrix are
all equal and the elements of the row vector A sum to 1, it follows that the result
of this type of matrix product must be a row of the limiting transition matrix. Hence,
the preceding solution

gives the proportions of Republicans, Democrats, and Socialists that will be realized
in the long run if the transition probabilities do not change over time. Incidentally,
this also shows that the initial set of proportions, .4, .5, and .1, has no effect on the
long-run set of proportions.

The preceding result, showing that the limiting proportions are the same as the
limiting values of the transition probabilities, is quite general. It did not depend on
the particular numbers used in the illustration. Thus it is true in general that the
initial proportions in any problem have no effect on the long-run proportions. Those
proportions depend only on the nature of the transition probabilities.
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Appendix E —
Optimization

Consider the following simple 2 ¥ 3 payoff matrix in which the elements represent
dollar rewards to R.

We wish to determine which strategies R and C should choose. Suppose that R
chooses R1, which means that he chooses the first row, then he can be certain of
winning at least $2 and at most $5. If he chooses R2, he could lose $5 but he might
win as much as $6. In view of the wide range of possibilites here, it appears that R
should examine more carefully his possible strategies to determine how much he can
win even if C is clever or lucky enough to choose his best possible strategy each time.

If R were to choose R1, C would certainly choose C2 and thus would limit R to
winning $2. If R were to choose R2, C would obviously choose C1 and thus would
cause R to lose $5. The two elements that represent these two possibilites have been
enclosed in circles in the matrix of Figure E.1. They represent the worst that can
happen to R regardless of how clever C may be in anticipating which strategy R
will select. If R wishes to protect himself as best possible against these undesirable
possibilities, he should choose R1. Choosing R1 makes it certain that R will win at
least $2, and possibly more if it should happen that C does not select his best strategy.
Although neither opponent knows which strategy the other will choose, one of them
may outguess the other and may gain considerably thereby. The preceding analysis
guards R against the occurrence of this possibility.

Now consider which strategy C should employ. He wishes to keep the amount
to be won by R as small as possible because he is required to pay R when R wins.
If he reasons in the same manner as R does, he will examine each of his possible
strategies to see how well he can do even if R is clever enough to anticipate which
strategy C will select. Thus, if C were to select C1, R would choose R1 and win $5.

5 2 3

5 1 6-
È
ÎÍ

˘
˚̇
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If C were to select C2, R would choose R1 and win $2. If C were to select C3, R
would choose R2 and win $6. Each of the elements representing these three possi-
bilities has been enclosed in a square in Figure E.1. They represent the worst that
can happen to C regardless of how clever or lucky R may be. If C wishes to protect
himself as best possible against these undesirable possibilities, he should choose C2

because that minimizes the amount that he will need to pay to R.
The preceding analysis, which assumes that R wishes to maximize his winnings

and C wishes to minimize his losses, leads to the conclusion that R should choose
strategy R1 and C should choose strategy C2. If the game is played with these two
strategies, R will win $2 from C. The number 2 is called the value of this game. It
represents the amount that R expects to win and C expects to pay if R and C play
their best defensive strategies.

If the best strategies for R and C do not yield a common circle-square element
of the payoff matrix, the game does not have a solution, and therefore does not have
a value.

FIGURE E.1 Strategies for R and C.
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Appendix F —
Randomized Strategies

The game described in Appendix E was played under the assumption that it was to
be played only once. Hence, once R and C have selected their strategies, the result
of the game is determined. Suppose, however, that a sequence of games is to be
played and that R and C are permitted to change their strategies from game to game.
How should they proceed then? Since each contestant assumes that the other is just
as intelligent as he is, they dare not develop a systematic pattern of choosing
strategies for fear of this being discovered; hence, it would be advisable for them
to choose their successive strategies by means of some random scheme. This can
be accomplished by having R select a sect of probabilities p1, p2, …, pm that will
determine the relative frequencies with which he wishes his strategies R1, R2, …,
Rm to be played. Similarly, C is permitted to select a set of probabilities q1, q2, …,
qn that will determine the relative frequencies with which he wishes his strategies
C1, C2, …, Cn to be played.

As an illustration, in the game of the preceding section R might choose

Each time the game is to be played, R will use a game of chance that yields p1

twice as frequently as p2 to choose one of those strategies. This could be done, for
example, by drawing a card from a set of three cards that contains two aces and one
deuce. Similarly, C could draw a card from a set of four cards that contains two
aces, one deuce, and one three.

Strategies that are selected by chance according to a set of probabilities are called
randomized strategies. They include the one-play strategies that were obtained in the
preceding section because it is merely necessary to choose p1 = 1, p2 = 0, and ql =
0, q2 = 1, q3 = 0 to arrive at the strategies R1 and C2 that were determined for that
game. If a player uses a set of probabilities in which one of them is 1 and all the
rest are 0, he is said to be using a pure strategy, otherwise he is using a mixed strategy.

p p q q q1 2 1 2 3

2
3

1
3

2
4

1
4

1
4

= = = = = and  and C might choose  and , ,  ,
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Even though a game is to be played only once, and this is the natural situation
in most business-type games, it may be that one of the competitors can do better
than the other by employing randomization in choosing his strategy. Therefore, we
take a fresh look at our earlier one-play games in studying randomized games to
see if improvements are possible by using randomization.

Since the payoffs will vary from game to game because they will depend on
chance, we look at the average payoff in a long sequence of games. This is equivalent
to looking at the expected value of the payoff. Now the expected value of the payoff
in the ith row and jth column of the payoff matrix A is merely aijPiqj because the
row and column choices are made independently, and therefore the probability of
R winning the amount aij is the product of the ith row and jth column probabilities.

As an illustration of a randomized payoff matrix, consider a matrix with the

possibilities of  Letting B denote

this matrix we find that

The expected payoff to R is the sum of these individual expected payoff values.
Their sum is found to be 2 1/4; therefore, R would do slightly better under these
two sets of randomized strategies than under the original nonrandomized version of
the game. It may well be, however, that C chose a poor set of probabilities here.
The purpose of this example is to illustrate how expected payoffs are calculated; it
is not intended to illustrate good randomized strategies.

After a set of probabilities has been selected by each of R and C and the
corresponding expected payoff matrix is calculated, the game is completely deter-
mined and could be played by a machine that selects successive pairs of strategies
according to the probabilities p1,…,pm and q1,…,qn.

The interesting question now is: How should R and C choose their probabilities?
For example, is it possible for R to do better than C in the preceding illustrative
game if his probabilities are chosen properly, regardless of what probabilities C
chooses? In the preceding illustration, R did do better but perhaps C could have
prevented this with a better set of probabilities. The answer to this question is as
follows: Independent of what probabilities R selects, C can find a set of probabilities
such that the expected value of the payoff to R will not exceed $2. In addition,
regardless of what probabilities C may select, R can find a set of probabilities such
that he can be assured of averaging at least $2. Thus neither R nor C can gain in
this particular problem by using mixed strategies rather than pure strategies, provided
that both R and C employ their best defensive randomized strategies.

p p q q q1 2 1 2 3

2
3

1
3

1
2

1
4

1
4

= = = = =,  ,  ,  , . and 

B =
◊ ◊ ◊ ◊ ◊ ◊

- ◊ ◊ ◊ ◊ ◊ ◊

È

Î

Í
Í
Í

˘

˚

˙
˙
˙

5
2
3

1
2

2
2
3

1
4

3
2
3

1
4

5
1
3

1
2

1
1
3

1
4

6
1
3

1
4

SL3127_frame_MASTER.book  Page 318  Monday, July 1, 2002  9:38 AM



319

Appendix G —
Lagrange Multipliers

Problems of maximizing or minimizing a function of several variables when those
variables satisfy some restriction equations can become quite difficult to solve. There
is a technique, called the method of Lagrange multipliers, which often simplifies
the calculations. It is named after the eighteenth-century French mathematician who
introduced it.

For the purpose of illustrating the technique, we solve a simple problem involv-
ing only two variables. We wish to find where the function f(x,y) = x2 + 2xy assumes
its minimum value if the variables are subject to the restriction equation x2y = 27.
This problem can be solved by solving for y in terms of x in the restriction equation
and substituting it into f(x,y) to reduce f to a function of a single variable.

In the Lagrange multiplier method a new function is introduced in the following
manner. First, we rewrite the restriction equation so that it assumes the form g(x,y)
= 0. Hence, we write

g(x,y) = x2y – 27 = 0

The new function then is the function defined by

The parameter l (lambda) is the Lagrange multiplier here. It always multiplies
the restriction function after the restriction equation has been expressed in the form
g(x,y) = 0. We now treat F(x,y) as though it were a function of x and y without any
restriction on those variables. We therefore proceed to find where the function F(x,y)
assumes its minimum value in the manner of the preceding sections. That is, we
calculate Fx and Fy, set them equal to zero, find the critical points, and check to see
which of those points, if any, yields the minimum. In this problem, we obtain

F x y f x y g x y

x xy x y

( , ) ( , ) ( , )

( )

= -

= + - -

l

l2 22 27
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Since we have the restriction equation

x2y – 27 = 0

in addition to the preceding two equations, we have three equations in the three
unknowns: x, y, and lambda (l). We proceed to solve them. Since we are not
interested in the value of l, we try to eliminate it first. Solving for l in the second
of the two partial derivative equations, we obtain

This is substituted into the first of those two equations to give

2x + 2y – 4y = 0

which reduces to

x = y

The preceding three equations in three unknowns are now reduced to the fol-
lowing two equations in two unknowns:

x = y
x2y – 27 = 0

The solution of this pair of equations is x = 3 and y = 3. As previously, it is
easily shown that this pair of numbers minimizes f(x,y) = x2 + 2xy, subject to the
restriction x2y = 27.

The reasoning behind the Lagrange multiplier technique is the following one.
Suppose that we have found a point (x0,y0) that minimizes f(x,y) subject to the
restriction g(x,y) = 0. Then this point must also minimize the function F(x,y)
regardless of the value of l because as long as the restriction g(x,y) = 0 is satisfied,
the term lg(x,y) has the value zero and, hence, minimizing f(x,y) minimizes F(x,y).
Conversely, any point (x0,y0) that minimizes F(x,y) and that also satisfies the restric-
tion equation must minimize f(x,y) subject to this restriction because once more the
term lg(x,y) has the value zero for any such point. Therefore if F(x0,y0) is a
minimum, f(x0,y0) must be a minimum. Although this shows that minimizing F is
equivalent to minimizing f, it does not prove that we may treat F as a function of x
and y without any restrictions on those variables. A proof of this fact is rather
involved and, therefore, will not be given here.

F x y xy

F x x

x

y

= + - =

= - =

2 2 2 0

2 02

l

l

l = 2
x
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The same type of reasoning applies to problems involving functions of several
variables and with several restrictions. We demonstrate the technique on the follow-
ing problem.

Given the function f(x,y,z) = xyz, subject to the restriction xy + 2xz + 2yz =
24, find where it is maximized. We first write the restriction in the form of g(x,y,z)
= xy + 2xz + 2yz – 24 = 0. Then we write

Next, we calculate the three partial derivatives and set them equal to zero. Thus

To solve these equations we solve for l in the last equation and substitute it into
the first two

and

Multiplying through by 2x + 2y and collecting terms, we obtain

2y2z = xy2

and

2x2z = x2y

These equations can be written in factored form as

y2(x – 2z) = 0

and

F x y z f x y z g x y z

xyz xy xz yz

( , , ) ( , , ) ( , , )
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x2(y – 2z) = 0

From the first equation, we obtain y = 0 and x = 2z. From the second equation
we obtain x = 0 and y = 2z. The possible solutions then consist of the pairs

(y = 0, x = 0), (y = 0, y = 2z), (x = 2z, x = 0), (x = 2z, y = 2z)

These are equivalent to

(y = 0, x = 0), (y = 0, z = 0), (x = 0, z = 0), (x = 2z, y = 2z)

We still have the restriction equation to be satisfied, which is

xy + 2xz + 2yz = 24

The first of the four pairs of partial solutions does not satisfy the restriction
equation; hence, it may be discarded. The second and third pairs also fail to satisfy
the restriction equation, and they may also be discarded. Hence, we are left with
the fourth pair only. Substituting those values into the restriction equation, we obtain

4z2 + 4z2 + 4z2 = 24

This gives z2 = 2 and z =  There are therefore two legitimate critical points:

The values of f(x,y,z) = xyz at these two points are  respectively.

Since we are interested in maximizing f we are left with the point 

This problem grew out of maximizing the volume of a box subject to the
restriction that it could not use more than 24 square feet of material. We know from
practical considerations that a finite maximum exists; therefore, this solution must
produce an absolute maximum.

COMMENT

The problem of determining where a function of several variables assumes its
maximum or minimum value is obviously an important one in all branches of science.
The problems that we solved in this appendix are the basic kind of such problems.
From these it is possible to branch out in many directions. There are many theoretical
problems, for example, in economic theory and engineering as well as in many
science situations in which there are several functions of several variables with
functional relations and restrictions imposed on them, and the problem is to

± 2.

( , , ) ( , , )2 2 2 2 2 2 2 2 2 2and - - -

8 2 8 2 and -

x y= =2 2 2 2,  ,

z = 2.
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maximize one of those functions subject to the restrictions. This is similar to the
problem of linear programming, only here the functions are not linear.

The reader of this volume should be aware that a larger share of the applications
of statistics and probability are concerned with how to maximize or minimize some
function with some significant confidence. This obviously is a motivating force in
calculus, but it is also the rationale for linear programming. Mathematical methods
are certainly a powerful tool for solving this type of problem and would merit study
for this reason only.
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Appendix H —
Monte Carlo Simulation

Decisions approaches include pure intuition and judgment, experience and analogy
with similar situations, analysis with the aid of analytical models, experimentation
with real systems, and experimentation with a model of a real system.

Simulation is associated with the last approach. It uses a model of a system and
manipulates it so as to imitate the system’s behavior over time for the purpose of
evaluating alternative design characteristics or decision rules. It is a systematic trial-
and-error method for solving complex problems. Simulation makes available an
experimental laboratory for the experimenter by making it possible to test various
alternatives without risking or committing organizational resources. The effects of
numerous alternative policies can be ascertained without tampering with the actual
system. This form of system experimentation can reduce the risk of upsetting the
existing structure with changes that would not be beneficial. Simulation gives the
manager an opportunity to test and evaluate proposals without running the risk of
actually installing new approaches and absorbing the costs associated with the
changes. With simulation, “trial and error” need not become “trial and catastrophe.”

When problems involve risk or uncertainty, an analytical solution may be difficult
or impossible to obtain. Simulation is useful in situations where analytical solutions
are not appropriate because the models are either too complex or too costly. A
mathematical model using the analytical approach can become incredibly complex
because of numerous interacting variables. Simulation offers an alternative for com-
plex problems not suitable for rigorous analytical analysis.

Simulation develops a model of some phenomenon and then performs experi-
ments on the model. It is a descriptive rather than an optimization technique, which
means that it does not yield optimal solutions. Monte Carlo simulation is a numerical
technique that models a probabilistic system with the intention of predicting the
system’s behavior.

Monte Carlo simulation involves determining the probability distributions of the
variables under study and then sampling from the distributions by using random
numbers to obtain data. It is a probabilistic type of simulation that approximates the
solution to a problem by sampling from a random process. A series of random
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numbers is used to describe the movement of each random variable over time. The
random numbers allow an artificial but realistic sequence of events to occur. Monte
Carlo simulation permits the experimenter to determine how varied policies or
organizational conditions will be modified by the behavior of random or transient
influences. A general approach to solving problems by Monte Carlo simulation is
contained in Figure H.1.

Monte Carlo simulation establishes a stochastic model of a real situation and
then performs sampling experiments on the model. This technique generates a vast
amount of data that might otherwise take a very long time to obtain. Following the
generation of data, computations can be made and a problem solution derived.

The major steps in Monte Carlo simulation are as follows:

1. Make sure that you know the probability distributions of certain key
variables of the problem must be known distributions. They may be

FIGURE H.1 Monte Carlo simulation.
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standard distributions such as the Poisson, normal, or exponential, or they
may be empirical distributions obtained from historical records.

2. Convert the frequency distributions to cumulative probability distribu-
tions. This assures that only one variable value will be associated with a
given random number.

3. Sample at random from the cumulative probability distributions to deter-
mine specific variable values to use in the simulation. A way to sample
is to use numbers from a table of random numbers. The random numbers
are inserted in the cumulative probability distributions to obtain specific
variable values for each observation. The sequence of assigned random
numbers will imitate the pattern of variation expected to be encountered.

4. Simulate the operation under analysis for a large number of observations.
The appropriate number of replications is determined in the same manner
as the appropriate size of a sample in an actual experiment in the real
world. The ordinary statistical tests of significance can be used. With
computerized simulation the size of the sample can be increased without
difficulty, and it is economical to run large samples with very small
sampling errors.

Everything depends on the choice of frequency distributions. Unless there is
some assurance they have been picked well, the entire simulation can be worthless.
Distributions can be obtained from historical records or experimentation or chosen
a priori on a quasi-subjective basis.

Random numbers are the life blood of the method and are numbers of equal
long run frequency. They completely lack sequential predictability. The randomness
of tabulated numbers can be validated by a chi-square test. The stream of random
numbers can be obtained from a published table, or a computer can generate effec-
tively random numbers (called pseudo-random numbers) internally.

Monte Carlo simulation has many practical uses, such as waiting line problems
(where standard distributions for arrival rates and service rates are inadequate),
layout problems of multiphase assembly lines, inventory problems, equipment
replacement problems, engineering tolerancing and so on.

A simulation model does not produce an optimum solution. The experimenter
selects the alternatives to evaluate by simulation but cannot be sure that the best
alternative has been included. The simulation indicates possible solutions based only
on the input of alternatives selected by the manager; it does not indicate which
alternatives to evaluate. Simulation models usually develop heuristic rather than
analytical solutions to a problem, but they can deal with very complex situations
that defy solution by analytical methods.

No analytical solution can be extricated from its premises and assumptions.
Simulation can investigate the effect of a relaxation of assumptions. Also, when no
analytical solution is possible, simulation becomes important as a last resort. While
simulation does not promise optimal solutions, it does allow picking out the best
one tried. The ability of simulation to handle dependent variable interactions renders
it a very powerful tool of systems analysis.
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Simulation is used to reproduce a typical series of events (usually in mathemat-
ical form) that could have occurred in practice. If enough events are simulated and
mean values determined, it can be assumed that they represent what would probably
have happened in practice if the real situation existed. Standard statistical tests can
be run on the output to determine when stability occurs.

Initial transient phenomena such as oscillations, rapid growth, and sudden decay
are not unusual in simulation (or in reality). If system stability is desired, a sufficient
startup period should be allowed for stability to develop. In real life, such transient
phenomena are commonplace occurrences. Whereas analytical methods are usually
based on steady-state conditions, simulation need not be limited by these assumptions.
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Appendix I —
Statistical Reporting
Content

There are many ways to report the results of any statistical analysis. Here, we present
a general outline that is functional and concise and clearly communicates the results.

Planning
• Clarify the objective.
• Develop a clear plan.
• Give yourself enough time. 
• In this stage, think of the:

• Executive summary
• Problem description
• Data description
• Statistical methodology
• Results and conclusions

Developing a report
• Write a quick first draft.
• Edit and proofread.
• Give your report a professional look.

Guidelines for effective reporting
Be clear.

• Provide sufficient background information.
• Tailor statistical explanations to your audience.
• Place charts and tables in the body of the report.

Be concise.
• Let charts do the talking.
• Be selective in the computer outputs you include.

Be precise.
• List assumptions and potential limitations.
• Limit the decimal places.
• Report the result fairly.
• Get advice from an expert.
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EXAMPLE OF A TYPICAL STATISTICAL REPORT FORMAT

Header information
• Name of company
• Date
• To
• From
• Subject

Executive summary

Data set
• Software used
• Sample size
• Preliminary analysis

Analysis
• Objectives
• Statistical methodology 
• Summary of measures
• Appropriate graphs

Results
• Regression analysis and forecasting (if appropriate)
• Conclusions and recommendations
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Akaike information criterion, 165
Alternative hypothesis, 57
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ANOVA, 

 

see

 

 Analysis of variance (ANOVA)
classification, 109, 155–156, 266–267
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conjoint, 153–154
covariance structure, 157
discriminant, 105–106, 129–136, 152–153
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latent variable, 157–158
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MANOVA, 

 

see

 

 Multivariate analysis of 
variance (MANOVA)
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multiple regression, 
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 Multiple regression 
analysis

multivariate, 104, 137–138
primary, 10
secondary, 10

Analysis of variance (ANOVA)
assumptions for, 68
between-groups variability, 69, 150
commands, in software, 70–72
definition of, 67, 150
F ratio, 69, 150–151
heteroscedasticity impact on, 141
MANOVA, 
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 Multivariate analysis of 
variance (MANOVA)

one-way, 67, 70
for regression, 97
vs. SSCP, 132
within-groups variability, 68, 150

And set, 197, 201–202
ANOVA, 
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 Analysis of variance (ANOVA)
Arithmetic mean, 
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 Mean
Autocorrelation, 170–172, 179
Average, 172–173, 189–190; 

 

see also

 

 Mean

 

B

 

Bar chart, 22, 27–28
Basic variables, 299
Bayes’ rule, 209, 213
Bell curve, 41–50, 253–262
Bernoulli trials, 303–307, 309–310
Beta coefficients, 146
Between-groups variability, 69, 132–133, 150, 
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Bimodal distribution, 30
Binomial distribution, 267–272

in Bernoulli trials, 305
binomial expansion, 232–234
complementary events, 213–214
vs. hypergeometric distribution, 274–275
normal approximation of, 262–265
vs. Poisson distribution, 280–282

Binomial test, 111–112
Bivariate correlations, 84
Blind experiments, 12–13
Boxplot, 39, 141
Box’s M test, 142
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Canonical correlation, 154, 158
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definition of, 18
discordant, 78
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valid, 22

Causal models, 176–180
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Central Limit Theorem (CLT), 45, 47, 266–267
Central tendency, 30, 185–186
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in hypothesis-testing process, 65
likelihood-ratio, 160–161
for measures of association, 73–78, 81
in Monte Carlo simulation, 327
noncentrality measure, 161–162
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sample size, 161

Classification analysis, 109, 155–156, 266–267
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Cochran Q test, 115
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Coefficients
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contingency, 75
correlation, 
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 Correlation
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Pearson’s r, 79–80, 84–88, 126–127
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uncertainty, 80

Coincident indicator, 178–179
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Comparative fit index (CFI), 164
Complementary events, 213–214
Complementary set, 198
Concordant cases, 77–78
Conditional probability, 209–210
Confidence interval

as cumulative probability, 249
definition of, 48–49
in regression, 96
size of, 51

Confirmatory factor analysis, 157
Conformability, 290
Conjoint analysis, 153–154
Constant-elasticity multiplicative model, 178
Contingency coefficient, 75
Contingency table, 113
Continuity correction, 264–265
Continuous distribution, 247
Continuous probability, 193
Continuous random variables, 245–247
Control group, 13
Control variable, 83
Corner point, 299–300
Correlation

assumptions for, 87
bivariate, 84
canonical, 154, 158
vs. chi-square test, 114
vs. covariance, 83–84

cross-validation index for fit, 163
definition of, 84–87
example of, 292–293
Galton’s rank order, 127
for linear dependence, 293
for measurement error check, 98
of multiple coefficients, 88–89
one-tailed tests, 87
Pearson’s r, 79–80, 84–88, 126–127
in regression, 91–97
RMSR for fit, 162
significance level, 87
spurious, 180
techniques for, 125–126
two-tailed tests, 87

Correlogram, 172
Counting rules, 225–226
Covariance

Box’s M test, 142
cross-validation index for fit, 163
definition of, 83–84
RMSR for fit, 162

Covariance structure analysis, 157
Cramer’s V, 75
Cross-classification table, 34–35, 73–74
Cross-tabulation table, 34–35, 73–74
Cross-validation index, 162–163
Cumulative distribution function (CDF)

vs. cumulative frequency function,
190–191

definition of, 191–192
discrete, 240–243
in Kolmogorov-Smirnov test, 116
for normal distribution, 254–259
of random variables, 245–251

Cumulative frequency function, 190–191

 

D

 

Data
analysis of, 3
coding of, 16–24
collection of, 17–18
definition of, 3
distribution of, 28–29
entry of, 18
examination of, 137
interval, 24, 27, 125
missing, 19
nominal, 23, 25–26
plots of, 

 

see

 

 Plots
quantification of, 17, 23
ratio, 24, 27
seasonality of, 173–174
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De Morgan’s laws of complements, 198
Degrees of freedom (df)

of cross-tabulation, 65
for McNemar test, 115
in structural models, 160
for T distribution, 58
in variance calculation, 33

Dependent variable, 35, 92–93
Determinant, 291–293
Deviation of means, 193
Diagonal matrix, 286–287
Difference set, 199
Differential equation, 256
Dimensional scaling, 156–157
Discordant cases, 78
Discrete cumulative distribution, 240–243
Discrete probability distribution, 238–239, 

267–274; 

 

see also

 

 Probability 
density function (PDF)

Discriminant analysis, 105–106, 129–136, 
152–153

Disjointed set, 199, 203
Dispersion, 193
Distribution

bimodal, 30
binomial, 

 

see

 

 Binomial distribution
CDF, 

 

see

 

 Cumulative distribution function 
(CDF)

continuous, 247
of correlations, 87
of data, 28–30
discrete cumulative, 240–243
discrete probability, 238–239, 267–274
F statistic, 137, 152
hypergeometric, 272–276
of means, 45–50, 55, 62
negative skew, 29, 44, 139
normal, 41–50, 253–262
Poisson, 267–268, 279–282
positive skew, 29, 44, 139
of responses, 37
sampling, 38, 94
SND, 257–262, 266–267
T, 57–58, 137
uniform, 250–253

Double blind studies, 13
Duncan’s multiple range test, 72
Durbin-Watson statistic, 179

 

E

 

Econometric models, 176–180
ECVI, 162–163
Effect size, 64

Eigenvalues, 133–134
Eigenvector, 134
Elements, 195
Error

measurement, 98, 159
PRE, 75–79, 81
RMSEA, 162
standard, 

 

see

 

 Standard error
type 1, 

 

see

 

 Type 1 error
type 2, 58
variance of, 150

Eta coefficients, 80
Event

based dependence, plot of, 71
complementary, 213–214
independent, 209–212
mutually exclusive, 207
simple or elementary, 200

Expected cross-validation index (ECVI), 162–163
Expected frequencies, 65
Expected value, 244–245, 318
Experiments, 10, 63
Exponential smoothing, 173–174
Exponential trend, 169–170
Extrapolation methods, 169–179
Extreme outliers, 39

 

F

 

F statistic test
for ANOVA, 71
definition of, 69, 150–151
distribution requirement, 137
for MANOVA, 152
for regression, 97
Scheffe’s test, 125
vs. T test, 58, 97
using Wilks’ lambda, 135

Factor, 153
Factor analysis, 107–109, 143–144, 155
Feasibility region, 297–301
Fisher exact probability test, 113
Fit, 96–98, 112–114, 159–165
Fixed format, 18
Forecasting, 169–180
Forms, 15–18
Formulas, 183–194
Frequency table, 21, 34
Friedman test, 120–121

 

G

 

Galton’s rank order correlation, 127
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Game strategies, 315–318
Goodman and Kruskal’s Gamma, 78–79
Goodness-of-fit, 96–98, 112–114, 159–165

 

H

 

Heteroscedasticity, 71, 141–142
Histogram, 27–30, 71, 138
Holt’s method, 173–175
Homoscedasticity, 140–142
Hotelling’s T

 

2

 

, 151–152
Hypergeometric distribution, 272–276
Hypotheses

alternative vs. null, 57
ANOVA, 72, 151
definition of, 52
MANOVA, 151
measures of association, 80
null, 55, 57
regression lines, 95
testing of, 53–55, 61–63, 65

 

I

 

Identification number, 17
Identity matrix, 287
IFI, 164
Increment, 27
Incremental fit index (IFI), 164
Independent event, 209–212
Independent variable, 35
Index

adjusted goodness-of-fit, 163
comparative fit, 164
cross-validation, 163
expected cross-validation, 162–163
of goodness-of-fit, 162–163
incremental fit, 164
nonnormed fit, 163
normed fit, 163–164
parsimonious goodness-of-fit, 165
parsimonious normed fit, 164–165
relative fit, 164
Tucker-Lewis, 163

Indicators, 178–179
Interaction, 70
Intercept, 92–96
Interdependence, 157
Interquartile range (IQR), 39
Interval data, 24, 27, 125
Intervening variable, 57
IQR, 39

 

J

 

Joint probability, 209–212
Judgment sample, 8

 

K

 

Kendall’s Tau-b, 79
Kolmogorov-Smirnov test, 115–116, 139
Kruskal-Wallis test, 119–120
Kurtosis, 44, 138–139

 

L

 

Lagrange multipliers, 319–323
Lambda

in chi-square test, 

 

see

 

 Chi-square
Lagrange multiplier, 319–323
Wilks, 134–136, 293

Latent variable analysis, 157–158
Leading indicator, 178–179
Leading tail interval, 248–249
Learning effect on experiments, 63
Least significant difference, 72
Least squares, 91–92, 179
Level, 153, 173
Levene test, 141–142
Likelihood-ratio chi-square statistic, 160–161
Limiting transition matrix, 313–314
Linear combination, 105
Linear dependence, 293
Linearity, 81–83, 103, 142
LISREL analysis, 157–158
Log-linear models, 106–107
Logistic regression, 129–131
Logit analysis, 129–131

 

M

 

Manifest variables, 158
Mann-Whitney U test, 116–117
Mapping, 156–157
Marginal totals, 34
Markov chains, 309–314
Matrices

adjoint of, 294
algebra for, 285–296
diagonal, 286–287
identity, 287
limiting transition, 313–314
nonsingular, 293
singular, 293, 295
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step transition, 310–314
symmetric, 286

Matrix algebra, 285–296
Maximum specification, 27
McNemar test, 114–115
MDA, 129, 132, 136
MDS, 156–157
Mean

central tendency measure, 30–31
definition of, 30, 35
distribution of means, 45–50
formulas for, 189–190
of frequency grouped data, 188
location, in boxplot, 39
of means, 266
in normal distribution, 41
of PDF, 188–190
of a population, 38
in random variable range, 244–245
of residuals, 100
standard error of, 46–48
statistical formulas for, 184–185

Mean square, 97
Measurement error, 98, 159
Measures of association, 74–81, 134–135
Median, 26, 29–31, 185
Mild outliers, 39
Minimum specification, 27
Mode, 26, 29–31, 185
Modeling

causal models, 176–180
constant-elasticity multiplicative model, 178
curvilinear, 145
econometric, 176–180
log-linear, 106–107
null, 163
SEM, 157–158
structural, 160

Modified least significant difference, 72
Monte Carlo simulation, 325–328
Moving averages, 172–173
Multicollinearity, 146–148
Multidimensional scaling (MDS), 156–157
Multiple comparison procedures, 70
Multiple discriminant analysis (MDA), 129, 132, 

136; 

 

see also

 

 Discriminant analysis
Multiple linear regression, 104–105
Multiple regression analysis

vs. canonical correlation, 154
commands, in software, 98–99
definition of, 144–148
vs. discriminant analysis, 130, 136

Multivariate analysis, 104, 137–138
Multivariate analysis of variance (MANOVA)

vs. ANOVA, 151

assumption testing, 137
definition of, 109, 148
vs. discriminant analysis, 130–131, 152–153
heteroscedasticity impact on, 141
Hotelling’s T

 

2 

 

, 150–151
vs. SEM, 158
Wilks’ lambda test, 136

Mutually exclusive events, 207

 

N

 

NCP, 161–162
Negative relationship of variables, 77–78,

83–85
Negative skew distribution, 29, 44, 139
NFI, 163–164
NNFI, 163
Nominal data, 23, 25–26
Noncentrality parameter (NCP), 161–162
Nonlinearity, plot of, 71
Nonnormed fit index (NNFI), 163
Nonsingular matrix, 293
Normality, 137–140

normal distribution, 41–50, 253–262
plots of, 29, 71, 138
of residuals, 102–103
SND, 257–262, 266–267

Normalized coefficients, 75
Normed fit index (NFI), 163–164
Null hypothesis, 55, 57, 151
Null model, 163
Null plot, 71
Null set, 195
Numerical taxonomy, 

 

see

 

 Cluster analysis

 

O

 

Objective dimensions, 157
Observations, 103–104
Observed frequencies, 65
Observed significance level, 55
One-tailed test, 53, 60–61, 87
One-way analysis of variance, 67, 70
Open-ended questions, 16
Optimization, 315–316
Or set, 197, 202
Ordinal data, 23, 26, 77, 81
Origin, 96, 299
Outliers, 31, 39, 100–102

 

P

 

Paired experimental designs, 63
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Pairwise deletion, 88
Parallel system, 197, 217–219
Parameter, 38
Parsimonious goodness-of-fit index (PGFI), 165
Parsimonious normed fit index (PNFI),

164–165
Pascal’s triangle, 233
PDF, 

 

see

 

 Probability density function (PDF)
Pearson’s r coefficient, 79–80, 84–88, 126–127
Perceived dimensions, 157
Percentages, 21–22, 38, 43, 52
Percentiles, 30
Perceptual mapping, 156–157
Permutations, 226–229
PGFI, 165
Phi coefficient, 75
Placebo, 12, 60
Plots, 186–187

bar charts, 22, 27–28
boxplot, 39, 141
correlogram, 172
of event-based dependence, 71
histogram, 27–30, 71, 138
for measures of association, 81–83
nonlinearity, 71
null, 71
probability, 138–139
of residuals, 71
scatterplot, 83–84, 126
Time-based dependence, 71

PNFI, 164–165
Poisson distribution, 267–268, 279–282
Pooled within-groups, 

 

see

 

 Within-groups
Population, 6, 62–63, 94
Positive relationship of variables, 77–78, 83–85
Positive skew distribution, 29, 44, 139
Power of a test, 64
PRE, 75–79, 81
Primary analysis, 10
Principal components, 158
Principal diagonal, 286
Probability

concepts of, 203–223, 276–277
conditional, 209–210
continuous, 193
cumulative, 249
discrete distribution, 238–239, 267–274
of exceeding threshold, 192
Fisher exact probability test, 113
joint, 209–212
PDF, 

 

see

 

 Probability density function
(PDF)

plot of, 138–139
total, 206–207
transition, 310–314

Probability density function (PDF), 187; 

 

see also

 

 
Confidence interval

discrete probability distribution, 238–239
expected values and, 194
mean of, 188–190
for normal distribution, 254–257
with random variables, 242–253

Probability plot, 138–139
Product rule for series, 214
Proportional reduction in error (PRE), 75–79,

81

 

Q

 

Q analysis, 

 

see

 

 Cluster analysis
Q test, 115
Questionnaire, 15–18

 

R

 

R test, 79–80, 84–88, 126–127
Rack and stack, 185
Random sample, 8, 10–12
Random variable, 235–282
Randomized strategies, 317–318
Range, 32, 39
Ratio data, 24, 27
Regression, 91–109

vs. chi-square test, 114
coefficient composition, 159
curvilinear modeling of, 145
vs. discriminant analysis, 130–131
estimation of, by SEM, 158
exponential trend, 169–170
logistic, 129–131
multiple variables, 

 

see

 

 Multiple regression
plots of, 82

Relationships, 81–83
Relative fit index (RFI), 164
Reliability, predictor, 159, 216, 219–223
Reports, statistical, 329–330
Residuals

autocorrection of, 179
definition of, 71, 99
in regression, 97, 99–104
standardization of, 100–101

RFI, 164
Rho test, 

 

see

 

 Spearman rank coefficient
RMSEA, 162
RMSR, 162
Root mean square error of approximation 

(RMSEA), 162
Root mean square residual (RMSR), 162
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Run, 18
Running average, 189–190

 

S

 

Sample
definition of, 8
judgment, 8
random, 8, 10–12, 236
size of, 64–65, 123–124

Sample space, 199–200
Sampling, 226
Sampling distribution, 38, 94
Scalar, 288
Scaled noncentrality parameter (SNCP), 161
Scatterplot, 83–84, 126
Scheffe’s test, 72, 125
Seasonality, 173–174
Secondary analysis, 10
SEM, 157–158
Sequence tree diagram, 223
Series system, 197, 214–217
Set theory, 195–223
Sets

and, 197, 201–202
complementary, 198
difference, 199
disjointed, 199, 203
null set, 195
or, 197, 202
subsets, 196
universal, 195–196

Shapiro-Wilks test, 139
Sign test, 117–118
Significance level, 

 

see

 

 Observed significance
level

Simplex method, 297–301
Simulated survey, 37
Single blind studies, 13
Singular matrix, 293, 295
Singularity, 147
Six sigma, 44
Skewness, 139
Slack variables, 299
Slope, 92–96
SNCP, 161
SND, 257–262, 266–267
Somers’ d, 79
Spatial map, 156
Spearman rank coefficient, 127–128
SPSS software, 44, 77
Spurious correlation, 180
SSCP, 132–133, 290–291
Standard deviation, 33, 194

Standard error
of autocorrelation, 172
of the difference, 52–54, 149
of the mean, 46–48
in regression, 95–98

Standard score, 43–44
Standardized normal distribution (SND), 

257–262, 266–267
Standardized values

definition of, 52
of random variables, 248, 256–257
for regression coefficients, 146

Statistical Process Control, 44–45
Statistical reports, 329–330
Statistics, 38
Step transition matrix, 310–314
Stimulus, 153
Stirling’s approximation to n!, 225
Strategies, 315–318
Structural equation modeling (SEM), 157–158
Student-Newman-Keul’s test, 72
Studies, 9
Subjective dimensions, 157
Subsets, 196
Sums of squares

of column vector, 288
definition of, 97
SSCP, 132–133, 290–291
for univariate analysis, 134–135

Sums of squares and cross products (SSCP), 
132–133, 290–291

Survey, 9
Survey, simulated, 37
Symmetric matrix, 286
System-missing value, 19

 

T

 

T distribution, 57–58
T test

definition of, 121–125, 148–150
distribution requirement, 137
vs. F test, 97
interpretation of, 58–59
vs. Mann-Whitney U test, 117
vs. MANOVA, 151–152
vs. multiple comparison procedures, 70
in regression, 96
variance estimate, 58

Tables
contingency, 113
cross-classification, 34–35, 73–74
cross-tabulation, 34–35, 73–74
frequency, 21, 34
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Tau-b, 79
Tau-c, 79
Tests

binomial, 111–112
Box’s M test, 142
Duncan’s multiple range, 72
F statistic, 152
Fisher exact probability, 113
Friedman, 120–121
Kolmogorov-Smirnov, 115–116, 139
Kruskal-Wallis, 119–120
Levene, 141–142
Mann-Whitney U, 116–117
McNemar, 114–115
measures of association, 

 

see

 

 Measures of 
association

one-tailed, 53, 87
Pearson’s r, 79–80, 84–88, 126–127
power of, 64
of proportion, 111–112
Q, 115
rho, 127–128
Scheffe, 72, 125
Shapiro-Wilks, 139
sign, 117–118
Student-Newman-Keul’s, 72
T, 

 

see

 

 T test
two-tailed, 

 

see

 

 Two-tailed test
Wilcoxon signed-ranks, 118–119

Threshold, 190–192
Tied cases, 78–79, 120
Time-based dependence, plot of, 71
Tolerance, 148
Total probability, 206–207
Trailing tail interval, 249
Transformations, 102–103, 144–146, 267
Transition probability, 310–314
Transpose, 286
Treatment, 149, 153
Tucker-Lewis index, 163
Tukey, 72
Two-tailed test

chi-square, 112
Cochran Q test, 115
for correlation coefficients, 87
definition of, 53
McNemar test, 115
vs. one-tailed test, 60–61

Type 1 error, 58, 64, 149–150, 152
Type 2 error, 58
Typology construction, 

 

see

 

 Cluster analysis

 

U

 

Uncertainty coefficient, 80
Uniform distribution, 250–253
Universal set, 195–196
Unreliability, 216, 219–223
User-missing data, 19
Utility, 153

 

V

 

Valid cases, 22
Variables

basic, 299
continuous random, 245–247
control, 83
definition of, 23–24
independent, 35
interval, 24, 27, 125
intervening, 57
latent, 157–158
manifest, 158
negative relationship of, 77–78, 83–85
nominal, 23, 25–26
ordinal, 23, 26, 77, 81
positive relationship of, 77–78, 83–85
random, 235–282
ratio, 24, 27
relationship of, 81
selection methods, 105
slack, 299
in statistical formulas, 183–194, 235–282
transformation of, 102–103

Variance
analysis of, 

 

see

 

 Analysis of variance (ANOVA)
definition of, 32–33
inflation factor, 148
multivariate analysis of, 

 

see

 

 Multivariate 
analysis of variance (MANOVA)

statistical formulas for, 184, 193
Vectors, 134, 286, 288
Volunteers, 9

 

W

 

Wilcoxon signed-ranks test, 118–119
Wilks’ lambda, 134–136, 293
Winter’s method, 173, 176
Within-groups, 68, 132–133, 150, 155
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